
Bridging Machine Learning and Optimization:
Learning Fair and Scalable Problem Solving

by

My Dinh

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

University of Virginia
April 10, 2025

© 2024 My H. Dinh. All rights reserved.

The author hereby grants to UVA a nonexclusive,
worldwide, irrevocable, royalty-free license to exercise

any and all rights under copyright, including to
reproduce, preserve, distribute and publicly display
copies of the thesis, or release the thesis under an

open-access license.

Advisors
Prof. Ferdinando Fioretto

Committee Members
Prof. Anil Vullikanti
Department of Computer Science,
University of Virginia

Prof. Henry Kautz
Department of Computer Science,
University of Virginia

Prof. Jundong Li
Departments of Electrical Engineering and Computer Science,
University of Virginia

Prof. Max Biggs
Darden School of Business,
University of Virginia

.

iv

Acknowledgements

First and foremost, I would like to express my deepest gratitude
to my advisor, Professor Nando, for his years of investment, support,
and collaboration. Beyond being a great mentor and advisor, he has
fostered a nurturing lab environment that has greatly enriched my aca-
demic journey. I am deeply appreciative of the freedom he has given me
to explore topics of personal interest while also encouraging me to take
on more challenging and impactful projects. Over the past few years,
I have learned an immense amount from him, both academically and
personally, and I will truly miss our spontaneous lab discussions.

I would especially like to thank James for being an incredibly sup-
portive and brilliant collaborator. His enthusiasm for optimization and
our countless discussions on new ideas have been a great source of in-
spiration for my research. His high standards and sharp insights have
consistently challenged me to think more critically and rigorously.

My appreciation also extends to all the past and present members
of the RAISE lab—Cuong, Vincenzo, Saswat, Jacob, Michael, Jinhao,
St. John, and Rocket—who have been fantastic colleagues and sources
of both inspiration and laughter. Though our academic paths have di-
verged, each of you has contributed to making my PhD journey more
enriching and enjoyable.

My sincere appreciation goes to my collaborators outside of UVA,
whose valuable discussions and contributions have shaped this thesis:
Mostafa Mohammadian, Kyri Baker, Lauryn P. Gouldin, and William

v

vi

Yeoh. I am also incredibly thankful to my thesis committee—Anil Vul-
likanti, Henry Kautz, Maxwell Biggs, and Jundong Li—for their guidance
and support throughout this process.

I am also grateful to my Vietnamese friends—Lan Anh, Kevin, Duong,
Hien, Minh, and Huyen—for making my first two years at Syracuse
feel like home. Their companionship filled those years with warmth,
joy, countless hotpot gatherings, and unforgettable sleepless Vietnamese
poker nights.

I extend my heartfelt gratitude to my colleagues at Trusting Social
in Vietnam. They were my first mentors and collaborators, helping me
lay the foundation for my journey in deep learning and machine learn-
ing. Their warm-hearted support made the beginning of this adventure
incredibly exciting. Without them, I would not have taken the first steps
on this path.

Looking back, I am deeply grateful for my years in graduate school
and the many lessons—both technical and personal—that I have learned
along the way. Every challenge, discussion, and breakthrough has been
part of a journey that I have truly enjoyed and will always cherish.

Finally, and most importantly, I dedicate my deepest gratitude to my
family, especially my mother, for her unconditional love, support, and
sacrifices. Her unwavering belief in me has been my greatest source of
inspiration and motivation. Without her, none of this would have been
possible.

Abstract

This thesis explores the integration of Machine Learning (ML) and Op-
timization through two frameworks: Predict-Then-Optimize (PtO) and
Learning to Optimize (LtO), with a focus on enhancing fairness, scal-
ability, and efficiency in complex decision-making systems. The PtO
framework integrates ML and optimization by incorporating the opti-
mization layer directly into the ML training process. Our contributions
in this area focus on multi-objective optimization applications, includ-
ing learning-to-rank, court scheduling, and portfolio management. By
integrating optimization layers into ML models, we address challenges
such as fairness and risk management, leading to more robust and effec-
tive decision-making processes. The LtO framework utilizes ML models,
particularly neural networks, to accelerate the solution of constrained op-
timization problems. We demonstrate its application in power systems,
specifically for the AC Optimal Power Flow problem, where our ap-
proach significantly reduces computational costs while maintaining high
accuracy and low constraint violation. Additionally, we investigate a
hybrid of PtO and LtO by learning surrogate models for intractable
Mixed-Integer Programming (MIP) problems in an end-to-end frame-
work, illustrated through a court scheduling application. These studies
highlight the potential of combining both domains to enhance real-world
problem-solving capabilities.

vii

viii

Contents

List of Publications xii

1 Introduction 1
1.1 Problem Settings . 3

1.1.1 Predict-then-Optimize 3
1.1.2 Learning to Optimize 4

1.2 Motivation and Research Questions 5

2 Background 9
2.1 Constrained Optimization 10
2.2 Deep Learning . 12
2.3 Predict-then-Optimize . 14
2.4 Learning-to-Optimize . 17

3 End-to-End Learning for Fair Multiobjective Optimiza-
tion Under Uncertainty 21
3.1 End-to-End Learning for Fair Multiobjective Optimiza-

tion Under Uncertainty . 22
3.2 Preliminaries . 23

3.2.1 Fair OWA and its Optimization 23
3.2.2 Predict-Then-Optimize Learning 24

3.3 End-to-End Learning with Fair OWA Optimization 25
3.4 Differentiable Approximations of OWA Optimization . . . 26

ix

x Contents

3.4.1 OWA LP with Quadratic Smoothing 26
3.4.2 Moreau Envelope Smoothing 29

3.5 Experiments . 30
3.5.1 Robust Markowitz Portfolio Problem 31
3.5.2 Moreau Envelope as a Loss Function 35

3.6 Conclusions . 37

4 Integrating Machine Learning and Constrained Optimiza-
tion: Fairness-Aware Learning-to-Rank 39
4.1 Learning Fair Ranking Policies via Integration with Con-

strained Optimization . 40
4.2 Preliminaries . 43

4.2.1 Problem Setting and Goals 43
4.2.2 Fairness of Exposure 45

4.3 Limitations of Fair LTR Methods 47
4.4 Smart OWA Optimization for Fair Learning to Rank (SO-

FaiR) . 49
4.4.1 Ordered Weighted Averaging Operator 50
4.4.2 End-to-End Learning in SOFaiR 51

4.5 Forward Pass Optimization 53
4.6 Backpropagation . 56
4.7 Experiments . 59

4.7.1 Running Time Analysis 60
4.7.2 Fairness and Utility Tradeoffs Analysis 61
4.7.3 Multi-Group Fairness Analysis 63

4.8 Conclusions . 64

5 Learning to Optimize with Application in AC-OPF Prob-
lem 65
5.1 Deep Learning and Optimal Power Flow Problem 66
5.2 Related Work . 68
5.3 Preliminaries . 69
5.4 OPF Learning Goals . 71
5.5 Deep Learning Proxies for AC-OPF: Roadmap 72
5.6 Generator’s Characteristics. 73

xi

5.7 Network Characteristics 76
5.8 Constraints . 81
5.9 A Novel RNN-based Learning Framework 85
5.10 Conclusions . 89

6 End-to-End Optimization and Learning of Fair Court Sched-
ules 91
6.1 Optimization and Learning of Fair Court Schedules 92
6.2 Related Work . 96
6.3 Motivations and Problem Setting 97
6.4 Preliminaries: Fair OWA Aggregation 101
6.5 Fair Optimization of Court Schedules 102

6.5.1 Group Fairness . 103
6.5.2 Complexity of the Optimization Models 103

6.6 Optimization and Learning for Fair Court Schedules . . . 104
6.6.1 End-to-End Trainable Scheduling Model 105
6.6.2 Differentiable Matching Layer 106
6.6.3 OWA as a Loss Function 107

6.7 Experimental Settings . 108
6.7.1 Data Generation Process 109
6.7.2 Model Settings and Evaluation Metrics 110
6.7.3 Baseline Models . 111

6.8 Results . 111
6.8.1 OWA Utility Regret 111
6.8.2 Normalized mean pairwise distances 113
6.8.3 Running Time . 114

6.9 Conclusions . 116

7 Future Directions: Diffusion for Learning-to-Optimize
Constrained Optimization 117
7.1 Background and Related Work 118

7.1.1 Diffusion Models 118
7.1.2 Diffusion Models for Continuous Optimization . . . 119
7.1.3 Diffusion Models for Discrete Optimization 120

xii Contents

7.2 Preliminaries: Diffusion Model on Learning to Solve Sim-
ple CO Problems . 120
7.2.1 Quadratic Programming 120
7.2.2 Maximal Independent Set 122

7.3 Proposed Solutions: Neural Optimization via Energy-Based
Diffusion Models . 125
7.3.1 Optimization as Energy-Based Inference 125
7.3.2 Continuous Domains: Sliced Score Matching and

Langevin Sampling 125
7.3.3 Discrete Domains: Score Entropy Diffusion 126

7.4 Conclusion . 127

8 Conclusion 129

Appendices 147

Appendix for Chapter 6 149
.1 Causal Graph Conditional Probability Tables 150

List of Publications

Part of the work reported in this thesis was published in the following
publications:

• My H. Dinh, James Kotary, Ferdinando Fioretto. Learning fair
ranking policies via differentiable optimization of ordered
weighted averages. In Proceedings of the ACM Conference on
Fairness, Accountability, and Transparency (FAccT), 2024

• My H. Dinh, James Kotary, Ferdinando Fioretto. Differentiable
approximations of fair OWA optimization. In ICML 2024
Workshop on Differentiable Almost Everything, 2024

• My H. Dinh, James Kotary, Ferdinando Fioretto. End-to-End
Learning for Fair Multiobjective Optimization Under Un-
certainty. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI)., 2024

• My H. Dinh, James Kotary, Lauryn P. Gouldin, William Yeoh, and
Ferdinando Fioretto. End-to-End Optimization and Learning
of Fair Court Schedules. CoRR, 2024

• My H. Dinh, Ferdinando Fioretto, Mostafa Mohammadian, Kyri
Baker. An Analysis of the Reliability of AC Optimal Power
Flow Deep Learning Proxies. In IEEE PES Innovative Smart
Grid Technologies, 2023

xiii

xiv Contents

Other publications which are not part of the thesis:

• James Kotary, My H. Dinh, Ferdinando Fioretto. Backpropa-
gation of Unrolled Solvers with Folded Optimization. In
International Joint Conference on Artificial Intelligence (IJCAI),
2023

• My H. Dinh, Ferdinando Fioretto. Context-Aware Differential
Privacy for Language Modeling, CoRR abss/2301.12288, 2023

• Cuong Tran, My H. Dinh, Kyle Beiter, Ferdinando Fioretto. Learn-
ing Solutions for Intertemporal Power Systems Optimiza-
tion with Recurrent Neural Networks. In 17th International
Conference on Probabilistic Methods Applied to Power Systems,
2022

• Cuong Tran, My H. Dinh, Kyle Beiter, Ferdinando Fioretto. A
fairness analysis on private aggregation of teacher ensem-
bles. In AAAI Workshop on Privacy Preserving Artificial Intelli-
gence (PPAI), 2022

• Cuong Tran, My H. Dinh, and Ferdinando Fioretto. Differ-
entially private deep learning under the fairness lens. In
Advances in Neural Information Processing Systems (NeurIPS),
2021

CHAPTER 1

Introduction

“Innovation is taking two things that
already exist and putting them
together in a new way.”

Tom Freston

1

2 Introduction

Machine Learning (ML) and Optimization have traditionally devel-
oped as separate fields, each addressing distinct challenges with special-
ized methods. However, as real-world decision-making grows increasingly
complex and large-scale, their integration presents new opportunities to
leverage their strengths. Optimization is crucial for tasks like schedul-
ing, logistics, and resource allocation but solving them can be computa-
tionally expensive, especially for large or complex problems. ML, on the
other hand, excels at learning patterns, handling vast data, and adapting
to new scenarios but often lacks explicit constraint enforcement, leading
to suboptimal decisions. By combining these fields, we can create pow-
erful and practical toolkits addressing challenges that neither field can
solve alone.

The integration between these two fields can be largely divided into
two main frameworks: Predict-Then-Optimize (PtO) and Learning-to-
Optimize (LtO). The PtO framework embeds optimization directly into
ML training to align predictions with decision-making objectives. Tra-
ditionally, ML predictions serve as inputs to optimization models, but
when these stages are disconnected, prediction errors can propagate,
leading to suboptimal decisions. For example, in court scheduling, an ML
model predicts defendants’ appearance probabilities across time slots,
which an optimization module then uses to generate schedules that max-
imize attendance while ensuring fair treatment to the individual’s sat-
isfaction. However, if ML predictions are inaccurate or misaligned with
the optimization goal, the final scheduling outcomes may suffer. PtO
addresses this by incorporating optimization layers into ML training,
allowing them to learn how their predictions influence final decisions.
Although solving optimization problems within ML training can some-
times be computationally challenging, PtO has shown promise in multi-
objective optimization tasks such as fair ranking, equitable resource al-
location, and risk-aware portfolio management.

The LtO framework, on the other hand, involves using ML models,
particularly neural networks, to assist in solving constrained optimiza-
tion problems. Many real-world optimization tasks, such as nonlinear or
mixed-integer programming, become computationally expensive as they
scale, making traditional solvers inefficient, especially for real-time ap-

3

plications. A prime example is the electrical power grid, which powers
modern life but suffers from inefficiencies. In the U.S, it supports $400
billion worth of electricity annually over 600,000 miles of power lines, yet
it accounts for about 25% of global carbon emissions. For optimization
problems like optimal power flow (OPF) in energy networks, ML can
help reduce computation time by learning from past problem instances.
This speed is crucial for real-time decision-making tasks such as unit
commitment and power dispatch, where fast and accurate solutions are
necessary. Additionally, hybrid approaches combine ML with traditional
solvers, where an ML model provides a fast, approximate solution that
is then corrected using conventional optimization methods.

This thesis aims to advance the integration of ML and Optimiza-
tion, focusing on fairness, scalability, and efficiency. By bridging the
gap between these two fields, we aim to develop more robust, practical,
and socially responsible decision-making systems for complex real-world
challenges.

1.1. Problem Settings

1.1.1 Predict-then-Optimize

The Predict-Then-Optimize (PtO) framework models decision-making
processes as optimization problems with unspecified parameters c, which
must be estimated by a machine learning (ML) model, given correlated
features z. An estimation of c completes the specification of an opti-
mization problem which is then solved to produce a final decision. The
problem is posed as estimating the solution x⋆(c) ∈ S ⊂ Rn of a para-
metric optimization problem:

x⋆(c) = argmax
x∈S

f(x, c) (1.1)

Although the true value of c is unknown, correlated feature values z ∼ Z
can be observed. The goal is to learn a predictive model Mθ : Z →
C from features z to estimate problem parameters ĉ = Mθ(z), such
that the resulting solution’s empirical objective value under ground-truth

4 Introduction

parameters, is maximized. That is,

argmax
θ

E(z,c)∼Ω f (x⋆(Mθ(z)), c) , (1.2)

where Ω represents the joint distribution between Z and C.
This setting is common to many real-world applications requiring

decision-making under uncertainty, such as planning the fastest route
through a city with unknown traffic delays, or determining optimal power
generation schedules based on demand forecasts.

The above training goal is often best realized by maximizing empirical
Decision Quality as a loss function Mandi et al. (2024a), defined

LDQ(ĉ, c) = f (x⋆(ĉ), c) . (1.3)

Gradient descent training of (1.2) with LDQ requires a model of gradient
∂LDQ

∂ĉ , either directly or through chain-rule composition ∂LDQ

∂ĉ = ∂x⋆(ĉ)
∂ĉ ·

∂LDQ

∂x⋆ . The primary strategy for modeling this overall gradient involves
initially determining the decision quality loss function’s gradient ∂LDQ

∂x⋆ ,
followed by its backpropagation through x⋆. Here, left-multiplication by
the Jacobian is equivalent to backpropagation through the optimization
mapping x⋆. When x⋆ is not differentiable, optimizations, and smooth
approximations are required.

1.1.2 Learning to Optimize

Consider a generic constraints optimization problem. All are parameter-
ized by a vector of coefficients c ∈ Rm. This setup defines a mapping
from any given coefficient vector c to the corresponding optimal solution
x⋆(c) ∈ Rn as follows:

x⋆(c) ∈ argmax
x

fc(x) (1.4a)

s.t hc(x) = 0 (1.4b)
gc(x) ≤ 0 (1.4c)

5

For any choice of c this formulation specifies an optimization problem
by defining the objective function fc : Rn → R, inequality constraints
gc : Rn → Rm, and quality constraints hc : Rn → Rp which together
determine the optimal solution x⋆(c).

The goal is to train an optimization proxy solver Xθ : Rm → Rn

over a distribution of problem instances c ∼ C hich approximates the
mapping x⋆(c) as defined by (1.4a). The proxy model Xθ may consist of
a deep neural network Nθ with trainable weights θ, potentially combined
with a non-trainable correction mechanism K to refine the quality of the
solution, so that Xθ = K ◦ Nθ. The training objective for this proxy
model Xθ can be defined as:

max
θ

Ec∼C [fc(Xθ(c))] (1.5a)

s.t hc(Xθ(c)) = 0 ∀c ∼ C (1.5b)
gc(Xθ(c)) ≤ 0 ∀c ∼ C (1.5c)

The training goal (1.5) highlights that each solution Xθ(c) generated
by the proxy solver must satisfy the original problem’s constraints. Sub-
ject to these constraints, the goal is to maximize the expected objective
value across the distribution of problem instances.

1.2. Motivation and Research Questions

In both frameworks, this thesis explores how integrating ML and Op-
timization can lead to fair, scalable, and computationally efficient solu-
tions. Within each of its main topics of interest, this thesis begins by
outlining the motivations behind its research contributions. The follow-
ing research questions establish the perspective of this work, defining its
aims and goals relative to the current state of the literature.

Research Questions in Predict-then-Optimize Traditional ML
pipelines separate prediction from decision-making, often leading to mis-
alignment between predictive accuracy and downstream decision qual-
ity. This disconnect is particularly problematic in fairness-sensitive and

6 Introduction

risk-averse settings, such as learning-to-rank applications, where sys-
tems must provide highly relevant recommendations while preventing
winner-take-all dynamics. Conventional methods either enforce fairness
constraints in post-processing—compromising accuracy—or rely on rigid
optimization formulations that struggle with scalability and feasibility.

Designing a PtO-based system involves two key challenges: formu-
lating an optimization problem that is both fair and computationally
efficient and differentiating through the optimization mapping to enable
gradient-based learning. Instead of treating fairness as constraints of the
problem, we adopt a multi-objective optimization approach, balancing
competing priorities such as individual utility and overall system perfor-
mance. To guide our contributions in Chapters 4 and 3, we investigate:

1. What does it mean to optimize independent objectives fairly?

2. How can the PtO framework be extended to multi-objective set-
ting?

3. How can optimization-aware training remain computationally effi-
cient at scale?

To answer these questions, we leverage Ordered Weighted Averages
(OWA) optimization, a widely used approach for fair multi-objective op-
timization. In Chapter 4.4.1, we discuss OWA’s properties and its con-
nection to fairness, followed by an intuitive explanation of its application
to court scheduling in Chapter 6.3.

Employing optimization of an OWA objective in PtO is challenging
due to its nondifferentiability, preventing backpropagation of its con-
strained optimization mapping x⋆(c) within machine learning models
trained by gradient descent. To address this, we developed novel ap-
proximation methods for their incorporation in end-to-end learning, de-
tailed in chapter 4.5, 4.6, 3.4 Our proposed framework exploits problem
structure, enabling fast and scalable solutions, with empirical validation
presented in Chapters 4.7, 3.5.

Research Questions in Learning to Optimize Optimization is cru-
cial for decision-making in complex systems, yet increasing problem com-

7

plexity—due to factors such as renewable energy integration and fairness
constraints—creates significant computational challenges. This thesis
investigates how ML can enhance optimization by leveraging problem
structures to develop scalable, data-driven solutions that improve both
efficiency and solution quality. We focus on two applications where tra-
ditional optimization struggles:

• Power grid systems that require rapid, near-optimal solutions un-
der physical and engineering constraints for real-time decision-
making.

• Court scheduling, where optimization can reduce nonappearance
rates by accounting for uncertainty in defendants’ availability

Across these domains, we explore:

1. How can constraints and problem-specific structure be effectively
embedded into the learning pipeline to improve solution quality?

2. How can ML enhance robustness under uncertainty while main-
taining computational efficiency?

These questions motivate the research contributions of this thesis.
For power grid systems, Chapter 5 presents both theoretical and empir-
ical analysis of AC-OPF problems, revealing how problem complexity
impacts ML model performance. Our analysis identifies latent factors
that determine prediction accuracy to enhance the interpretability and
reliability of ML-driven solutions. Building on these insights, we develop
a novel autoregressive RNN architecture that learns the solution trajec-
tories of iterative nonlinear solvers. To improve feasibility, we augment
the training loss with a Lagrangian-based loss function (Chapter 5.9).

For the court scheduling problem, we introduce a proxy model with
an OWA decision-quality loss function, approximating an intractable
OWA Mixed-Integer Program (MIP). This hybrid PtO and LtO ap-
proach integrates ML with efficient scheduling algorithms to enhance
fairness while maintaining computational efficiency (Chapter 6.6).

8 Introduction

Through comprehensive empirical evaluation against state-of-the-art
benchmarks, we demonstrate that our framework achieves superior run-
time efficiency, particularly for real-time applications like power grid dis-
patch, enhanced solution stability across varying problem instances, and
improved fairness satisfaction in resource allocation tasks.

Before detailing the original contributions of this thesis work, the
next chapter gives a broad overview of preliminary concepts and related
research work in the existing literature.

CHAPTER 2

Background

“To boldly go where no one has gone
before.”

Captain Kirk

9

10 Background

This chapter provides the necessary background and related work
for this thesis. It first introduces key concepts in constrained optimiza-
tion and deep learning. Then, it reviews modern research at the in-
tersection of machine learning and optimization, focusing on end-to-end
trainable models, particularly in the predict-then-optimize and learning-
to-optimize settings.

2.1. Constrained Optimization

Constrained optimization (CO) is a fundamental problem in mathemat-
ical optimization, where the goal is to minimize an objective function
f : Rn → R+ over a set of decision variables x ∈ Rn, subject to con-
straints that define a feasible region. Mathematically, this is expressed
as:

min
x∈Rn

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p.

(2.1)

where gi : Rn → R represents the inequality constraints, hj : Rn → R
represents the equality constraints. Together, these constraints define the
feasible set defines the feasible set C in which a valid solution must lie.
A solution x within C is a feasible solution. Among feasible solutions,
one that achieves the lowest objective function value, i.e., f(x) ≤ f(w)
for all feasible w, is an optimal solution.

Convex and Nonconvex optimization A well-studied subclass of
constrained optimization problems is convex optimization, where the
feasible set C is convex, and the objective function f is convex. Con-
vex optimization problems offer several advantages: they can be solved
efficiently using polynomial-time algorithms and provide strong theoret-
ical guarantees on the existence, uniqueness, and stability of solutions
(Boyd et al., 2004).

A problem is nonconvex if either the feasible region or the objective
function is nonconvex. Unlike convex problems, nonconvex problems

11

may have multiple local minima, making it difficult to find the global
optimum. Such problems can have multiple local minima. Many non-
convex problems are NP-hard, making them computationally intractable
for large instances.

Common Class of Constrained Optimization Problems

Another important class of constrained optimization problems involves
linear constraints:

C = {x : Ax ≤ b}
where A ∈ Rm×n and b ∈ Rm . In this case, the feasible set C is

convex. Depending on the nature of the objective function f , different
types of problems emerge:

1. Linear Programming (LP): The objective function is affine, i.e.,
f(x) = cTx for some c ∈ Rn. LPs are widely used in various fields
and can be solved efficiently using the simplex method (Dantzig,
1951), interior-point methods (Boyd et al., 2004), and Augmented
Lagrangian methods (Hestenes, 1969; Powell, 1969).

2. Quadratic Programming (QP): The objective function is quadratic,
i.e., f(x) = 1

2x
TQx+ cTx where Q is symmetric. If Q is positive

semidefinite, the problem remains convex and can be efficiently
solved.

3. Mixed-Integer Programming (MIP): Some decision variables must
take integer value (x ∈ Nn), introducing combinatorial complex-
ity. MIPs are NP-hard, as their feasible set is discrete and non-
convex. Common solution methods include branch-and-bound,
branch-and-cut, and cutting-plane techniques (?).

4. Nonlinear Programming (NLP): The objective function or con-
straints are nonlinear. Many NLPs are nonconvex and lack ef-
ficient, general-purpose solvers. Classical methods include La-
grangian relaxation, sequential quadratic programming (SQP), and
the interior-point method (Nocedal & Wright, 2006).

12 Background

Lagrangian Formulation

To solve the general constrained optimization problem in (2.1), the La-
grangian function is introduced:

L(x,λ,µ) = f(x) +
m∑

i=1

λigi(x) +

p∑

j=1

µjhj(x) (2.2)

where λi ≥ 0 are the Lagrange multipliers associated with the in-
equality constraints and µj are the multipliers for the equality con-
straints.

Karush-Kuhn-Tucker (KKT) Conditions

The KKT conditions provide necessary (and, under some conditions,
sufficient) conditions for a solution x∗ to be optimal. These conditions
include:

1. Primal feasibility: gi(x) ≤ 0, hj(x) = 0

2. Dual feasibility: λ∗
i ≥ 0

3. Stationary: ∇f(x⋆) +
∑m

i=1 λi∇gi(x⋆) +
∑p

j=1 µj∇hj(x⋆) = 0

4. Complementary slackness: λ∗
i gi(x

∗) = 0, ∀i
If these conditions hold, then x⋆ is a candidate for an optimal solu-

tion.
This section primarily focuses on constrained optimization problems

where the constraints are linear, and the objective function is either
linear or quadratic. Additionally, we consider problems that involve
continuous, integer, or mixed-integer decision variables. The Lagrangian
formulation and KKT conditions provide background for the solution
methods discussed in subsequent sections.

2.2. Deep Learning

Deep learning has emerged as a powerful approach for modeling complex
patterns in high-dimensional data. Supervised Deep Learning can be

13

viewed as the task of approximating a complex non-linear mapping from
labeled data. Deep Neural Networks (DNNs) are composed of a sequence
of layers, where each layer takes inputs as the results of the previous layer
LeCun et al. (2015). Formally, a DNN defines a function fθ : Rm → Rn

parameterized by θ , which maps an input x ∈ Rm to an output fθ(x).
A standard feedforward neural network with L layers is given by:

ol = σ(W lxl−1 + bl), l = 1, . . . , L

where o(0) = x is the input, ol ∈ Rml the output vector at layer l,
W ∈Rml×ml−1 and b∈Rml are the weight matrix and bias for layer l,
The function σ(·) is an activation function (e.g., ReLU or sigmoid). The
final layer produces an output o(L), which is used for classification or
regression tasks.

Training deep networks involves optimizing a loss function L, typi-
cally through stochastic gradient descent (SGD) or its variants:

θ∗ = argmin
θ

N∑

i=1

L(fθ(xi), yi)

where {(xi, yi)}Ni=1 is the training dataset. Modern optimizers such as
Adam (Kingma & Ba, 2015) and adaptive learning rates methods have
improved convergences and stability. Regularization methods, includ-
ing dropout (Srivastava et al., 2014) and batch normalization (Ioffe &
Szegedy, 2015), also improve generalization.

Recent advances in deep learning include architectures such as convo-
lutional neural networks (CNNs) (LeCun et al., 1998), recurrent neural
networks (RNNs) (Hochreiter & Schmidhuber, 1997), and transformer
models (Vaswani et al., 2017), each designed for specific data modalities.
These innovations, combined with improved training and regularization
techniques, have led to state-of-the-art performance across various do-
mains.

Challenges in Enforcing Constraints in Deep Learning Despite
these advances, deep learning models inherently operate in an uncon-
strained setting, making them struggle to enforce domain-specific con-
straints, such as physical laws and fairness criteria on their outputs.

14 Background

Several approaches address this limitation by adding additional post-
processing steps or using specialized architectures. Projection-based
methods (Márquez-Neila et al., 2017) project the unconstrained output
onto the feasible set after inference. Regularization techniques (Pathak
et al., 2015) incorporate soft penalties into the loss function to encourage
the satisfaction of constraints. Alternatively, constrained neural archi-
tectures explicitly integrate constraints into the model structure, such as
Lagrangian-based approaches (Fioretto et al., 2020a).

2.3. Predict-then-Optimize

The Predict-Then-Optimize (PTO) framework has emerged as a critical
paradigm in operations research, machine learning, and decision-making
under uncertainty. This framework consists of two sequential stages: (1)
predicting uncertain parameters using machine learning (ML) models
and (2) solving an optimization problem based on the predicted param-
eters to make decisions.

In this setting, the decision-making processes can be described by
parametric CO problems, defined as:

x⋆(c) = argmax
x∈Sc

fc(x) (2.3)

The goal is to predict the unknown parameters ĉ from empirical data
using supervised learning, such that the optimal solution x⋆(ĉ) best
matches a targeted optimal solution x⋆(c), as measured by a task-specific
loss function. In this framework, the parameters c are predicted from the
features z using an ML model Mθ, parameterized by θ. The empirical
data χ captures the correlation between features and targeted solutions
to (2.3) for some c.

Early approach to PtO, known as two-stage learning, treats pre-
diction and optimization as independent stages. In the first stage, an
ML model is trained to predict the uncertain parameters using features
derived from historical data. The second stage involves solving a con-
strained optimization problem using the predicted parameters. However,
two-stage training assumes that reducing prediction error will directly

15

translate into improved decision quality, which is not always true. Re-
search has shown that small prediction errors can sometimes lead to large
decision errors and vice versa Elmachtoub & Grigas (2021); Mandi et al.
(2024a).

To address the limitations of this approach, PtO methods have been
developed. PtO trains the ML model directly to optimize the decision
quality by minimizing the task loss, which measures the suboptimality
of the decisions made using the predicted parameters. A common task
loss is regret, defined as:

regret(ĉ, c) = fĉ(x
⋆(ĉ))− fc(x

⋆(c)).

where x⋆(c)) is the optimal decision under the under the true param-
eters c, and x⋆(ĉ)) is the decision induced by the predicted parameters
ĉ

PtO techniques can be categorized into two broad classes: (i) gradient-
free techniques, which include tree-based methods or explicitly specified
models such as linear models Elmachtoub et al. (2020); Jeong et al.
(2022), and ii) gradient-based techniques. These are the preferred ap-
proaches for training neural networks and involve differentiating through
the optimization problem to compute gradients of the task loss with re-
spect to the ML model parametersMθ Amos & Kolter (2017a); Agrawal
et al. (2019a). This thesis focuses on gradient-based techniques.

Gradient-Based PtO Techniques

Gradient-based PtO techniques require differentiating through the opti-
mization problem. This can be challenging due to the non-differentiability
of many optimization problems, especially those involving discrete vari-
ables. To address this, several techniques have been developed to ap-
proximate or smooth the optimization mapping. These techniques can
be grouped into four categories:

1. Analytical Differentiation of Optimization Mappings: This ap-
proach computes exact derivatives by differentiating the optimality
conditions of certain optimization problems, for which the deriva-

16 Background

tive exists and is non-zero. For example, Gould et al. (2016) pro-
posed implicit differentiation for unconstrained convex problems,
while subsequent work extended this to constrained problems us-
ing KKT conditions Amos & Kolter (2017b); Amos et al. (2019).
General-purpose differentiable solvers, such as cvxpy Agrawal et al.
(2019a), leverage convex cone programming to enable differentia-
tion for broad classes of convex problems. Additionally, Kotary
et al. (2023) studied the relationship between unrolling and dif-
ferentiation of the fixed-point conditions, showing that backprop-
agation by unrolling is equivalent to solving the linear system by
fixed-point iteration.

2. Analytical Smoothing of Optimization Mappings: For with combi-
natorial optimization problems (for which the analytical derivatives
are zero almost everywhere), Smoothing techniques approximate
problems in which the gradient can be differentiated analytically.
Common methods include adding smooth regularizers such as Eu-
clidean norms or entropy functions Wilder et al. (2019); Ferber
et al. (2020); Mandi & Guns (2020), enabling end-to-end learning
for discrete structures such as ranking policies and shortest paths
Kotary et al. (2022); Elmachtoub & Grigas (2021).

3. Smoothing by Random Perturbations: This approach uses random
perturbations to construct smooth approximations of the optimiza-
tion mapping. For instance, Berthet et al. (2020) introduced a
method to differentiate linear programs by adding noise to the cost
vector and computing the expected solution. Similarly, Pogančić
et al. (2019) approximates gradients using finite differences.

4. Differentiation of Surrogate Loss Functions, which approximate
task-specific losses like regret, provide easy-to-compute gradients
or subgradients for training Elmachtoub & Grigas (2021).

Challenges in PtO Despite its advantages, PtO faces several chal-
lenges:

• Scalability: Solving large-scale optimization problems repeatedly
during training can be computationally expensive.

17

• Multistage Decision-Making: Applying PtO to sequential decision-
making problems remains an active area of research.

• Robustness and Risk-Sensitivity: Developing methods that handle
worst-case scenarios and uncertain constraints is critical for real-
world applications

This thesis focuses on addressing the challenges of scalability and ro-
bustness in PtO, with particular emphasis on risk-aware decision-making.

2.4. Learning-to-Optimize

This section reviews the literature on learning CO solutions, focusing
on techniques that incorporate constraints into the learning process to
predict feasible or near-feasible solutions to both continuous and discrete
CO problems.

Data-Driven Learning of CO Solutions A diverse body of work of
research has explored ML architectures that predict fast, approximate
solutions to predefined CO problems. These methods employ supervised
learning on dataset of solved instances or execution traces, where each
dataset χ = {xi,yi}Ni=1 consists of problem instance specification xi

and corresponding optimal solution yi obtained from a solver. Inputs
xi encode problem-specific parameters, such as matrix A and vector b
defining linear constraints in LPs. Notably, each sample in the dataset
may correspond to a different problem instance with varying objective
function coefficients and constraints.

One of early approaches to apply ML for learning CO problem so-
lutions was the work of Hopfield & Tank (1985), which used Hopfield
Networks Hopfield (1982) to solve the traveling salesman problem (TSP).
The approach modified energy functions to emulate the objective of TSP
while enforcing feasibility using Lagrange multipliers. However, Wilson
& Pawley (1988) later demonstrated that this approach suffers from sev-
eral limitations, including sensitivity to parameter initialization and dif-
ficulty tuning hyperparameters. As noted in Bello et al. (2017), modern
deep learning techniques have largely replaced such approaches.

18 Background

More recent frameworks explicitly model constraint satisfaction within
the loss function of a neural network to improve feasibility and gener-
alization. One line of work leverages Lagrangian duality to guide the
solution prediction to better satisfy the problem’s constraints. These
methods have been successfully applied to continuous NLPs, including
energy optimization (Fioretto et al., 2020c; Velloso & Van Hentenryck,
2020) and constrained prediction, such as transprecision computing and
fair classification (Fioretto et al., 2020a; Tran et al., 2021).

Another promising direction involves iterative learning strategies that
refine predicted solutions by leveraging external solvers. For example,
Detassis et al. (2020) proposed an feedback framework where a solver
adjusts targeted solutions to more better match model predictions while
maintaining feasibility, reducing the degree of constraint violation in the
model predictions in subsequent iterations.

Learning Solutions for Graph-Structured CO Problems Be-
yond general unstructured CO problems, a significant line of research
focuses on learning solutions for graph-based CO problems. Advances
in deep learning architectures such as sequence models, attention mech-
anisms, and graph neural networks (GNNs), have provided substantial
improvements in solving combinatorial optimization tasks on graphs.

Vinyals et al. (2015) introduced the pointer network, a sequence-to-
sequence model using an encoder-decoder architecture paired with an
attention mechanism to generate structured permutations over variable-
sized inputs. The model was trained in a supervised manner to learn so-
lutions for the TSP and Delaunay triangulation problems, demonstrating
some ability to generalize over variable-sized problem instances. Expand-
ing on this, Bello et al. (2017) adopted the pointer network architecture
but trained it using RL, using tour length as the reward signal. The
move from supervised to RL was motivated by the difficulties of obtain-
ing optimal solutions and the existence of multiple optimal solutions.

Kool et al. (2018) further improved learning efficiency by applying an
attention-based RL model to the TSP and variants of the vehicle routing
problem. Their approach employs a graph attention network (Velickovic
et al., 2018) inspired by the Transformer architecture (Vaswani et al.,

19

2017). This neural network design introduces invariance to permutations
of the input nodes, improving learning efficiency.

While RL-oriented frameworks have gained popularity, Nowak et al.
(2018) demonstrated that supervised learning can still be an effective
method for the general quadratic assignment problem. Their approach
used GNNs trained on individual problem instances and their targeted
solutions, predicting permutations that are then converted into feasible
solutions by a beam search. For a comprehensive survey on combinatorial
optimization and reasoning with GNNs, see Cappart et al. (2021), which
provides an in-depth review of recent developments in this field.

20 Background

CHAPTER 3

End-to-End Learning for Fair
Multiobjective Optimization Under

Uncertainty

“The worst form of inequality is to try
to make unequal things equal.”

Aristotle

21

22 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

Decision-making often operates under uncertainty, where the Predict-
Then-Optimize (PtO) framework provides a structured approach by learn-
ing unknown parameters from data and solving an optimization problem
based on these estimates. This chapter extends PtO to a multiobjective
setting, where conflicting objectives must be optimized while ensuring
fairness, as seen in real-world problems like resource allocation. To ad-
dress this, we propose a PtO framework for Ordered Weighted Averaging
(OWA) optimization, which offers fairness guarantees across multiple
objectives. However, OWA’s nondifferentiability poses a challenge for
gradient-based learning in ML models. We overcome this limitation by
introducing a differentiable approximation of OWA, enabling end-to-end
training for fair and scalable decision-making. This chapter is based on
the author’s publications Dinh et al. (2024a,b).

3.1. End-to-End Learning for Fair Multiobjective
Optimization Under Uncertainty

The Predict-Then-Optimize (PtO) framework Mandi et al. (2024a) mod-
els decision-making processes as optimization problems with unspecified
parameters c, which must be estimated by a machine learning (ML)
model, given correlated features z. An estimation of c completes the
problem’s specification, whose solution defines a mapping:

x⋆(c) = argmax
x∈S

f(x, c) (3.1)

The goal is to learn a model ĉ = Mθ(z) from observable features z,
such that the objective value f(x⋆(ĉ), c) under ground-truth parameters
c is maximized on average. This is common in many applications requir-
ing decision-making under uncertainty, like planning the fastest route
through a city with unknown traffic delays or predicting optimal power
generation schedules based on demand forecasts.

Optimization of multiple objectives is crucial in contexts requiring a
balance of competing goals, especially when fairness is essential in fields
like energy systems Terlouw et al. (2019), urban planning Salas & Yepes
(2020), and multi-objective portfolio optimization Iancu & Trichakis

23

(2014); Chen & Zhou (2022). A common approach is using Ordered
Weighted Averaging (OWA) Yager (1993) to achieve Pareto-optimal so-
lutions that fairly balance each objective. However, optimizing an OWA
objective in PtO is challenging due to its nondifferentiability, which pre-
vents backpropagation through x⋆(c) within machine learning models
trained by gradient descent. To our knowledge, no prior PtO models
encounter a non-differentiable objective, making this challenge novel.

3.2. Preliminaries

3.2.1 Fair OWA and its Optimization

The Ordered Weighted Average (OWA) operator Yager (1993) is used
in various decision-making fields to fairly aggregate multiple objective
criteria Yager & Kacprzyk (2012). Let y ∈ Rm be a vector of m distinct
criteria, and τ : Rm → Rm be the sorting map that orders y in increasing
order. For any w satisfying w ∈ Rm,

∑
iwi = 1, and w ≥ 0, the OWA

aggregation with weights w is piecewise-linear in y Ogryczak & Śliwiński
(2003):

OWAw(y) = wT τ(y), (3.2)

this thesis uses its concave version, Fair OWA Ogryczak et al. (2014),
characterized by weights in descending order: w1 > . . . > wn > 0.

The following three properties of Fair OWA functions are crucial for
fairly optimizing multiple objectives: (1) Impartiality : Permutations
of a utility vector are equivalent solutions. (2) Equitability : Marginal
transfers from a higher value criterion to a lower one increase the OWA
aggregated value. (3) Monotonicity : OWAw(y) is an increasing function
of each element of y. This ensures that solutions optimizing the OWA
objectives are Pareto Efficient, meaning no criterion can be improved
without worsening another Ogryczak & Śliwiński (2003). Optimization
of aggregation functions that possess these properties leads to equitably
efficient solutions, which satisfy a rigorously defined notion of fairness
Kostreva & Ogryczak (1999).

24 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

3.2.2 Predict-Then-Optimize Learning

Our problem setting fits within the PtO framework. Generally, a para-
metric optimization problem (3.1) models an optimal decision x⋆(c) with
respect to unknown parameters c drawn from a distribution c ∼ C. While
the true value of c is unknown, correlated feature values z ∼ Z can be
observed. The goal is to learn a predictive model Mθ : Z → C from
features z to estimate problem parameters ĉ =Mθ(z), by maximizing
the empirical objective value of the resulting solution under ground-truth
parameters. That is,

argmax
θ

E(z,c)∼Ω f (x⋆(Mθ(z)), c) , (3.3)

where Ω represents the joint distribution between Z and C.
The above training goal is often achieved by maximizing empirical

Decision Quality as a loss function Mandi et al. (2024a), defined:

LDQ(ĉ, c) = f (x⋆(ĉ), c) . (3.4)

Gradient descent training of (3.3) with LDQ requires a model of gradient
∂LDQ

∂ĉ , either directly or through chain-rule composition ∂LDQ

∂ĉ = ∂x⋆(ĉ)
∂ĉ ·

∂LDQ

∂x⋆ . When x⋆ is not differentiable, as in OWA optimizations, smooth
approximations are required, such as those developed in the next section.

Figure 3.1: Predict-Then-Optimize for OWA Optimization.

25

3.3. End-to-End Learning with Fair OWA Opti-
mization

this thesis focuses on scenarios where the objective function f is an
ordered weighted average of m linear objective functions, each parame-
terized by a row of a matrix C ∈ Rm×n so that f(x,C) = OWAw(Cx)
and

x⋆(C) = argmax
x∈S

OWAw(Cx). (3.5)

Note that this methodology extends to cases where the OWA objective
is combined with additional smooth terms. For simplicity, the exposition
primarily focuses on the pure OWA objective as shown in equation (3.5).

The goal is to learn a prediction model Ĉ =Mθ(z) that maximizes
decision quality through gradient descent on problem (3.3), which re-
quires obtaining its gradients w.r.t. Ĉ:

∂LDQ(Ĉ,C)

∂Ĉ
=

∂x⋆

∂Ĉ︸︷︷︸
J

· ∂OWAw(Cx⋆)

∂x⋆︸ ︷︷ ︸
g

, (3.6)

where x⋆ is evaluated at Ĉ. The main strategy involves determining the
OWA function’s gradient g and then computing Jg by backpropagating
g through x⋆. A schematic illustration highlighting the forward and
backward steps required for this process is provided in Figure 3.1.

While nondifferentiable, the class of OWA functions is subdifferen-
tiable, with subgradients as follows:

∂

∂y
OWAw(y) = w(σ−1) (3.7)

where σ are the sorting indices on y Do & Usunier (2022). Based on
this formula, computing an overall subgradient g = ∂/∂xOWAw(Cx) is
a routine application of the chain rule (via automatic differentiation).
The use of OWA subgradients (3.7) in training ML models has been
previously explored in the context of reinforcement learning Siddique
et al. (2020). This work primarily relies on these subgradients to optimize
OWA as a loss function by gradient descent. Section 3.5.2 separately
investigates the use of OWA’s Moreau envelope as a differentiable loss

26 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

function, and finds that it yields similar results.

3.4. Differentiable Approximations of OWA Opti-
mization

This section develops two alternative differentiable approximations of
the OWA optimization mapping (3.5). Prior works Wilder et al. (2019);
Amos et al. (2019) show that when an optimization mapping (3.1) is
discontinuous, as is the case when f and S define a linear program (LP),
differentiable approximations to (3.1) can be formed by regularization of
its objective by smooth functions. Section 3.4.1 will demonstrate how
linear programming models of OWA optimization can be combined with
smoothing techniques for LP, yielding effective differentiable approxima-
tions of (3.5).

However, this model becomes computationally intractable for more
than a few criteria m. An efficient alternative is proposed in Section
3.4.2, where the mapping (3.5) is made differentiable by replacing the
OWA objective with its smooth Moreau envelope approximation. To
the best of the author’s knowledge, this is the first time that objective
smoothing via the Moreau envelope is used (and shown be an effective
technique) for approximating nondifferentiable optimization programs in
end-to-end learning. As approximations of the true mapping (3.5), both
smoothed models are used employed in training and replaced by (3.5) at
test time, similarly to a softmax layer in classification.

3.4.1 OWA LP with Quadratic Smoothing

The mainstay approach to solve problem (3.5) when x ∈ S is linear is
to transform the problem into a linear program without OWA functions
and solve it with a simplex method Ogryczak & Śliwiński (2003). Our
first approach to differentiable OWA optimization combines this trans-
formation with the smoothing technique of Wilder et al. (2019), which
forms differentiable approximations to linear programs

x⋆(c) = argmaxAx≤b cTx (3.8)

27

by adding a scaled Euclidean norm term ϵ∥x∥2 to the objective function,
resulting in a continuous mapping x⋆(c) = argmaxAx≤b cTx + ϵ∥x∥2,
a quadratic program (QP) which can be differentiated implicitly via its
KKT conditions as in Amos & Kolter (2017a).

We adopt a version of this technique to OWA optimization (3.5) by
first forming an equivalent LP problem. It is observed in Ogryczak &
Śliwiński (2003) that OWAw can be expressed as the minimum weighted
average among all permutations of the OWA weights w:

OWAw(r) = maxz z subject to z ≤ wσ · r ∀σ ∈ P, (3.9)

which allows the OWA optimization (3.5) to be expressed as

x⋆(C) = argmaxx∈S,y,z z (3.10a)

subject to: y = Cx (3.10b)
z ≤ wτ · y ∀τ ∈ Pm. (3.10c)

When the constraints x ∈ S are linear, problem (3.10) is a LP. However,
its constraints (3.10c) grows factorially as m!, where m is the number
of individual objective criteria aggregated by OWA. Smoothing by the
scaled norm of joint variables x,y, z leads to a differentiable QP approx-
imation, viable when m is small. This optimization can be solved and
differentiated using techniques from Amos & Kolter (2017a) or a generic
differentiable optimization solver such as Agrawal et al. (2019a):

x⋆(C) = argmax
x∈S,y,z

z + ϵ
(
∥x∥22 + ∥y∥22 + z2

)
(3.11a)

subject to: (3.10b), (3.10c). (3.11b)

Due to the huge number of constraints, this alternative LP form of
OWA optimization is mostly of theoretical significance and should only
be applied when m is small. To reduce the number of constraints, an al-
ternative LP formulation of OWA optimization is proposed by Ogryczak
& Śliwiński (2003). It represents each ordered outcome by the differ-
ences between cumulative sums, expressed as τi(y) = τ̄i(y)− τ̄i−1(y) for
i = 2, . . . ,m where τ̄k(y) =

∑k
j=1 τj(y). The OWA problem (3.5) can

thereby be expressed in the form:

28 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

OWA(x) = min

m∑

i=1

w′
iτ̄i(Cx), (3.12)

where coefficients wi are defined as w′
i = wi−wi+1 for i = 1, 2, · · · ,m−1

and w′
m = wm.

This leads to the following LP formulation of the OWA optimization
(3.5):

x⋆(C) = argmaxx∈S,y,r,d

m∑

k=1

kw′
krk −

m∑

k=1

m∑

i=1

w′
kdik (3.13a)

subject to: y = Cx (3.13b)
dik ≥ rk − yi for i, k = 1, · · · ,m (3.13c)
dik ≥ 0 for i, k = 1, · · · ,m. (3.13d)

Again when x ∈ S are linear, problem (3.13) is an LP with m2+m+p
constraints. Quadratic smoothing can then be applied as in (3.11):

x⋆(C) = argmaxx∈S,y,r,d

m∑

k=1

kw′
krk −

m∑

k=1

m∑

i=1

w′
kdik+ (3.14a)

ϵ
(
∥x∥22 + ∥y∥22 + ∥r∥22 + ∥d∥22

)
(3.14b)

subject to: (3.13b), (3.13c), (3.13d). (3.14c)

Though the number of constraints is far less than in (3.10), it still
grows polynomially, and can only solved efficiently when m numbers up
to a few dozen. The main disadvantage of both QP-smoothing models is
poor scalability in the number of criteria m, due to constraints (3.10c) or
(3.13c). We note that in each case, the transformed QP is much harder
to solve than the associated LP problems. These drawbacks motivate
the next smoothing method, which yields a more tractable optimization
problem by replacing the OWA objective itself with a smooth Moreau
Envelope approximation.

29

3.4.2 Moreau Envelope Smoothing

In light of the efficiency challenges faced by (3.11), we propose an alterna-
tive smoothing technique to form more scalable differentiable approxima-
tions of the optimization mapping (3.5). Instead of adding a quadratic
term as in (3.11), we replace the piecewise linear function OWAw in
(3.5) with its Moreau envelope, defined for a convex function f as:

fβ(x) = min
v

f(v) +
1

2β
∥v − x∥2. (3.15)

Moreau envelopes of concave functions are defined analogously. Com-
pared to its underlying function f , the Moreau envelope is 1

β smooth
while sharing the same (unconstrained) optima Beck (2017). The Moreau
envelope-smoothed OWA optimization problem is then

x⋆(C) = argmaxx∈S OWAβ
w(Cx). (3.16)

With its smooth objective function, problem (3.16) can be solved by
gradient-based optimization methods, such as projected gradient de-
scent, or more likely a Frank-Wolfe method if x ∈ S is linear (see Section
3.5.1). More importantly, it can be effectively backpropagated for end-
to-end training.

Backpropagation of (3.16) is nontrivial since its objective function
lacks a closed form. To proceed, we first note from Do & Usunier (2022)
that the gradient of the Moreau envelope OWAβ

w is equal to a Euclidean
projection:

∂

∂x
OWAβ

w(x) = projC(w̃)

(
x

β

)
, (3.17)

where w̃ = −(wm, . . . , w1) and the permutahedron C(w̃) is the con-
vex hull of all permutations of w̃. It’s further shown in Blondel et al.
(2020) how such a projection can be both computed and differentiated
using isotonic regression in O(m logm) time. To leverage a differentiable
projection (3.17) for backpropagation of the overall optimization (3.16),
we model its Jacobian by differentiating the fixed-point conditions of a
gradient-based solution method.

Letting U(x,C) = projS(x − α · ∂
∂xOWAβ

w(x,C)), a projected gra-
dient descent step on (3.16) is xk+1 = U(xk,C). Differentiating the

30 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

fixed-point conditions of convergence where xk = xk+1 = x⋆, and rear-
ranging terms yields a linear system for ∂x⋆

∂C :

I − ∂U(x⋆,C)

∂x⋆︸ ︷︷ ︸
Φ

∂x⋆

∂C
=

∂U(x⋆,C)

∂C︸ ︷︷ ︸
Ψ

(3.18)

The partial Jacobian matrices Φ and Ψ above can be found given a
differentiable implementation of U . This is achieved by computing the
inner gradient ∂

∂xOWAβ
w(x,C) via the differentiable permutahedral pro-

jection (3.17), and solving the outer projection mapping projS using a
generic differentiable solver such as cvxpy Agrawal et al. (2019a). As
such, applying U at a precomputed solution x⋆(C) allows Φ and Ψ to
be extracted in PyTorch, in order to solve (3.18); this process is efficiently
implemented via the fold-opt library Kotary et al. (2023).

3.5. Experiments

This section focuses on evaluating the differentiable approximations of
Fair OWA optimization introduced in Section 3.4. A robust Markowitz
portfolio optimization problem is chosen for the experimental setting,
detailed in 3.5.1. In generic terms we employ a prediction model Ĉ =
Mθ(z) to jointly estimate, from features z, the coefficients C ∈ Rm×n

of m linear objectives, taken together as Cx ∈ Rm. Its training goal is
to maximize empirical decision quality with respect to their Fair OWA
aggregation f(x,C) = OWAw(Cx):

LDQ(Ĉ,C) = OWAw

(
Cx⋆(Ĉ)

)
. (3.19)

Any descending OWA weights w can be used to specify (3.19); we choose

the squared Gini indices wj =
(
n−1+j

n

)2
.

Evaluation Results in this section are reported in terms of the equiva-
lent regret metric of suboptimality, whose minimum value 0 corresponds

31

to maximum decision quality:

regret(Ĉ,C) = OWA⋆
w (Cx⋆(C))−OWAw

(
Cx⋆(Ĉ)

)
(3.20)

where OWA⋆
w (C) is the true optimal value of problem (3.5). This exper-

iment is designed to evaluate the proposed differentiable approximations
(3.11), (3.14), and (3.16) of Section 3.4; for reference, they are named
OWA-QP-Fac, OWA-QP-Dev, and OWA-Moreau respectively.

Baseline Models In addition to the newly proposed models, the eval-
uations presented in this section include two main baseline methods:

1. Two-stage Method: This standard baseline (denoted as Two-stage)
serves as a comparison for Predict-Then-Optimize training (3.3)
Mandi et al. (2024a). It trains the prediction model Ĉ =Mθ(z)
by MSE regression, minimizing LTS(Ĉ,C) = ∥Ĉ − C∥2 without
considering the downstream optimization model, which is employed
only at test time.

2. Unweighted Sum (UWS) LP: This baseline aggregates the objec-
tive criteria by their unweighted sum, resulting in an LP problem
x⋆(C) = argmaxx∈S 1T (Cx). Quadratic smoothing is applied to
the LP problem Wilder et al. (2019), to allow end-to-end training
on its decision quality loss. This problem is a linear program-
ming approximation of the true Fair OWA problem, for which
existing Predict-Then-Optimize methods including Wilder et al.
(2019) may be applied. However, it does not incorporate the OWA
objective. It is included as a baseline to provide contrasting re-
sults with the Two-Stage, relative to our proposals which enable
Predict-Then-Optimize learning on the true Fair OWA problem.
Throughout, it is referred to as Sum-QP.

3.5.1 Robust Markowitz Portfolio Problem

The classic Markowitz portfolio problem is concerned with constructing
an optimal investment portfolio, given future returns c ∈ Rn on n assets,
which are unknown and predicted from exogenous data. The goal is to

32 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

maximize future return, while managing the overall risk taken by the
asset allocation. One common notion of risk is the covariance among
assets, which can be limited with a convex quadratic constraint. Define
the set of valid fractional allocations ∆n = {x ∈ Rn : 1Tx = 1,x ≥ 0},
then:

x⋆(c) = argmax
x∈∆n

cTx subject to: xTΣx ≤ δ. (3.21)

where Σ ∈ Rn×n are the price covariances over n assets.
An alternative approach to risk-aware portfolio optimization consid-

ers robustness over multiple alternative scenarios. In Cajas (2021), m
future price scenarios are modeled by a matrix C ∈ Rm×n whose ith row
holds per-asset prices in the ith scenario. Thus an optimal allocation is
modeled as

x⋆(C) = argmax
x∈∆n

OWAw(Cx). (3.22)

The following experiment shows how to integrate robust portfolio op-
timization (3.22) end-to-end with per-scenario price prediction Ĉ =
Mθ(z), in order to maximize the risk-aware OWA objective value.

Settings Historical prices of n = 50 assets are obtained from the Nas-
daq online database Nasdaq (2022) years 2015-2019, and N = 5000
baseline asset price samples ci are generated by adding Gaussian ran-
dom noise to randomly drawn price vectors. Price scenarios are simulated
as a matrix of multiplicative factors uniformly drawn as U(0.5, 1.5)m×n,
whose rows are multiplied elementwise with ci to obtain Ci ∈ Rm×n.
While future asset prices can be predicted based on various exogenous
data including past prices or sentiment analysis, this experiment gen-
erates feature vectors zi using a randomly generated nonlinear feature
mapping. The experiment is replicated in three settings which assume
m = 3, 5, and 7 scenarios.

Two sets of stocks were selected to generate two different datasets
based on their average returns across observations. The first set con-
sists of assets from the index with average returns within the 25th to
75th quantile range, while the second set includes assets from the 75th
quantile.

33

Table 3.1: Model’s Hyperparameter Settings in Portfolio Problems

Hyperparameter Min Max Final Value

OWA-LP Two-Stage Sum-QP OWA-QP-Fac OWA-Moreau

learning rate 1e−3 1e−1 1e−2 5e−3 1e−2 1e−2 1e−2

smoothing parameter ϵ 0.1 1.0 N/A N/A 1.0 1.0 N/A
smoothing parameter β0 0.005 0.1 N/A N/A N/A N/A 0.05

MSE loss weight λ 0.1 0.5 0.4 N/A 0.3 0.4 0.1

The predictive modelMθ is a feedforward neural network. A neural
network (NN) with three shared hidden layers followed by one separated
hidden layer for each species is trained using Adam Optimizer and with
a batch size 64. The size of each shared layer is halved, and the output
dimension of the separated layer is equal to the number of assets. Hy-
perparameters were selected as the best-performing on average among
those listed in Table 3.1). Results for each hyperparameter setting are
averaged over five random seeds. In the OWA-Moreau model, the for-
ward pass is executed using projected gradient descent for 250, 500, and
750 iterations for scenarios with 3, 5, and 7 inputs. The update step
size is set to γ = 0.02. At test time, Mθ is evaluated over a test set for
the distribution (z,C) ∈ Ω, by passing its predictions to an LP solver
of (3.22).

For the Moreau-envelope smoothed OWA optimization (3.16) pro-
posed for end-to-end training, the main difference is that its objective
function is differentiable (with gradients (3.17)), which allows solution
by a more efficient Frank-Wolfe method Beck (2017), whose inner opti-
mization over ∆ reduces to the simple argmax function which returns
a binary vector with unit value in the highest vector position and 0
elsewhere, which can be computed in linear time:

xk+1 =
k

k + 2
xk +

2

k + 2
argmax

(
∂

∂x
OWAw(Cxk)

)
(3.23)

Results Figure 3.2 shows percent regret in the OWA objective at-
tained on average over the test sets (lower is better). The y-axis repre-
sents the percentage of regret based on optimal OWA values. A consis-

34 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

3 Scenario
0

20

40

60

80

100

Re
gr

et
 (%

)

5 Scenario

OWA-LP Two-Stage Sum-QP OWA-QP-Fac OWA-QP-DEV OWA-Moreau

7 Scenario

3 Scenario
0

20

40

60

80

100

Re
gr

et
 (%

)

5 Scenario 7 Scenario

Figure 3.2: Percentage OWA regret (lower is better) on test set, on
robust portfolio problem over 3,5,7 scenarios. Performance measured
on datasets generated from assets with averages within the 25th-75th
quantile (top) and returns above the 75th quantile (bottom) respectively.

tent trend is observed in both datasets: end-to-end approaches (all the
bars except Two-stage) tend to outperform two-stage approaches. Ad-
ditionally, our proposed frameworks (OWA-QP-Fac, OWA-QP-Dev,
and OWA-Moreau) perform better than Sum-QP, with improvements
ranging from 5-30%. Both versions of QP smoothing (OWA-QP-Fac
and OWA-QP-Dev) perform well when the number of scenarios is small
but face scalability challenges, highlighting the importance of the pro-
posed Moreau envelope smoothing technique in addressing these limita-
tions (Section 3.4.2).

OWA-LP represents a baseline method where the OWA’s equiva-
lent linear program (LP) is used as a differentiable optimization without
smoothing. For comparison, the grey bars indicate the results from a
non-smoothed OWA LP (3.9) implemented with implicit differentiation
in cvxpylayers Agrawal et al. (2019a). This comparison highlights the
improvement in accuracy due to applying quadratic smoothing in OWA-

35

0 10 20 30 40 50 60
of Scenario

0.00

0.02

0.04

0.06

Ti
m

e
(s

) P
er

 S
am

pl
e OWA-Moreau

OWA-QP-FAC
OWA-QP-DEV

Figure 3.3: Average solving time of 3 smoothed OWA optimization mod-
els, on Robust Portfolio Optimization, over 1000 input samples. Missing
data points past 7 scenarios on OWA-QP-Fac are due to memory over-
flow as the number of constraints grows factorially.

QP-Fac and OWA-QP-Dev. The poor performance of the OWA sub-
gradient training under the non-smoothed OWA-LP demonstrates that
the proposed approximations in Section 3.4 are necessary for accurate
training.

Runtime of the smoothed models (3.11), (3.14) and (3.16) are com-
pared in Figure 3.3. These results show that the Moreau envelope
smoothing maintains low runtime as m increases, while OWA-QP-Fac
approximation suffers past m = 5 and causes memory overflow beyond
m = 6. On the other hand, OWA-QP-Dev demonstrates faster run-
times compared to the original model, though it still struggles when
m > 25.

3.5.2 Moreau Envelope as a Loss Function

A sensible alternative to subgradients is to use the gradients of the OWA
Moreau envelope (3.17). That is, we hypothesize that the Moreau enve-

36 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

0

5

10

15

20

25

30

35

Re
gr

et
 (%

) =0.005
=0.01
=0.05
=0.1

SubGrad

Figure 3.4: Effect of training with OWA as DQ Loss vs its Moreau
envelope. The first four bars represent regret on OWA DQ loss, due to
training with gradients of its Moreau Envelope under various smoothing
hyperparameters β. The rightmost bar shows regret on OWA loss due to
training with subgradients. Results reported on portfolio problem with
7 scenarios, described in Section 3.5.

lope OWAwβ can also be employed as decision quality loss in equation
(3.6) by setting g = ∂/∂x,OWAβ

w(Cx). As discussed in Section 5, this
gradient is equal to the projection of an input vector x onto the permu-
tahedron C(w̃) induced by the OWA weights w:

∂

∂x
OWAβ

w(x) = projC(w̃)

(
x

β

)
, (3.24)

Using Propositions 2 and 5 from Blondel et al. (2020), we can analyze
the asymptotic behavior as β → 0. In this limit, the projection solutions
converge to the subgradient of the OWA, represented as w(σ−1) Blondel
et al. (2020).

Figure 3.4 compares the effect of training OWA Decision Loss with
these two gradient-based methods. The smoothness of the Moreau enve-
lope, controlled by the hyperparameter β, is reflected in the performance
shown by the four leftmost bars in the figure. Smaller values of β result
in improved performance, with β = 0.005 yielding results comparable
to the subgradient method. These findings align with the theoretical

37

asymptotic behavior. Therefore, for simplicity, we have adopted the
subgradient model g in (3.7) as our preferred approach throughout the
paper.

3.6. Conclusions

This work presents an efficient methodology for integrating Fair OWA
optimization with predictive models. This proposal shows the potential
of OWA optimization in data-driven decision-making, which has impor-
tant applications in areas such as risk management and fair resource
allocation.

38 End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty

CHAPTER 4

Integrating Machine Learning and
Constrained Optimization:

Fairness-Aware Learning-to-Rank

“There are no solutions. There are only
trade-offs.”

Thomas Sowell

39

40 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

This chapter extends the Predict-Then-Optimize (PtO) framework to
a setting that combines a nonparametric OWA term with an additional
parametric objective term. We demonstrate how backpropagation can be
efficiently implemented using only a black-box solver for the underlying
optimization problem, without the need for smoothing techniques. This
framework is applied to a practical fairness-aware ranking task, integrat-
ing learning-to-rank models with fair ranking optimization programs in
an end-to-end fashion. This approach optimizes web search results while
ensuring fair exposure guarantees across user-defined content categories,
based on the author’s published work Dinh et al. (2024c).

4.1. Learning Fair Ranking Policies via Integra-
tion with Constrained Optimization

Ranking models have become a pervasive aspect of everyday life. They
are the center of how people find information online, serving as the main
mechanisms by which we interact with products, content, and others.
In these systems, the items to be ranked are videos, job candidates, re-
search papers, and almost anything else. As models based on machine
learning, they are primarily trained to provide maximum utility to users,
by serving the results deemed most relevant to their search queries. In
the modern economy of information, the position of an item in the rank-
ing has a strong influence on its exposure, selection, and, ultimately its
economic success.

Because of this influence, increasing attention has been placed on
the disparate impacts of ranking systems on underrepresented groups.
In these data-driven systems, the relevance of an item is measured by
implicit feedback from users such as clicks and dwell times. As such, the
disparate impacts of rankings can go well beyond their immediate effects.
Disproportionate exposure in rankings results leads to higher selection
rates, in turn boosting relevance scores based on implicit feedback Yadav
et al. (2019); Sun et al. (2020). This can create self-reinforcing feedback
loops, leading to winner-take-all dynamics. The ability to control these
disparate impacts is essential to avoid reinforcement of systemic biases,

41

ensure the health and stability of online markets, and implement anti-
discrimination measures Edelman et al. (2017); Singh & Joachims (2019).

When search results are ranked purely based on relevance, disparate
exposure between groups may be greatly increased in order to achieve
marginal gains in relevance. For example, in a job search system it is
possible for male candidates to receive overwhelmingly more exposure
even when female candidates may have been rated only marginally lower
in relevance. It has indeed been found in Elbassuoni et al. (2019) that in
a job candidate ranking system, small differences in relevance can lead
to large differences in exposure for candidates from a minority group.
Thus, fairness-aware ranking models often suffer little to no degradation
to user utility when compared to their conventional counterparts Zehlike
& Castillo (2020).

On the other hand, these fair learning to rank models are more diffi-
cult to design, since they require the outputs of a machine learning model
to obey potentially complex constraints while simultaneously achieving
high relevance. For this reason, conventional learning to rank methods
are often maladjusted to incorporate fairness. For example, the popular
listwise learning to rank method, through modifications to its loss func-
tion, is only capable of modeling fairness of exposure in the top ranking
position Zehlike & Castillo (2020). In an alternative paradigm, first in-
vestigated by Kotary et al. (2022), a fair ranking linear programming
model is integrated with LTR in an end-to-end training process. By
incorporating fair ranking optimization into the model’s training loop,
rather than in post-processing, utility of the downstream fair ranking
policies can be maximized as a loss function. This allows to provide fair-
ness guarantees at the level of each predicted ranking policy, and precise
control over the fairness-utility trade-off. However, the method comes
with a significant computational cost, as it requires solving a large opti-
mization problem for each sample in each training iteration, challenging
its application to real-world ranking systems. A further limitation of fair
LTR systems, including that of Kotary et al. (2022), is their inability to
effectively deal with multi-group fairness criteria (i.e., going beyond bi-
nary group treatment), which are overwhelmingly common in real-world
applications.

42 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

Figure 4.1: The differentiable optimization module proposed in SOFaiR.
Its forward pass is calculated by an efficient Frank-Wolfe method, and its
backward pass computes the SPO+ subgradient of the OWA problem’s
regret due to prediction error.

Contributions. To address these limitations, we make the follow-
ing novel contributions: (1) It shows how to adopt an alternative ap-
proach based on Ordered Weighted Averages (OWA) to design efficient
policy optimization modules for the fair learning-to-rank setting. (2)
For the first time, it shows how to backpropagate gradients through the
highly discontinuous optimization of OWA functions, enabling its use
in end-to-end learning. (3) The resulting end-to-end optimization and
learning scheme, called Smart OWA Optimization for Fair Learning to
Rank (SOFaiR), is compared with contemporary fair LTR methods,
demonstrating not only substantial advantages in fairness over previous
fair LTR, but also advantages in efficiency and modeling flexibility over
the end-to-end fair LTR scheme of Kotary et al. (2022). A schematic
illustration of the proposed scheme is depicted in Figure 4.1.

These contributions are significant: They demonstrate that by incor-
porating modern fair ranking optimization techniques, the integration
of post-processing optimization models in end-to-end LTR training can
be a viable and scalable paradigm to achieve highly accurate learning to
rank system that also provides strong fairness properties.

43

4.2. Preliminaries

Throughout the paper,vectors and matrices are denoted in bold font.
The inner product of two vectors a and b is written aTb, while the
outer product is a bT . For a matrix M, the vector

−→
M is formed by con-

catenation of its rows. A hatted vector â is the prediction of a machine
learning model, and a starred vector a⋆ is the optimal solution to some
optimization problem. The list of integers {1 . . . n} is written [n]. When
a ∈ Rn and σ is a permutation of [n], aσ is the corresponding permuted
vector. The vectors of all ones and zeros are denoted 1 and 0, respec-
tively. Commonly used symbols throughout the paper are organized in
Table 4.1 for reference.

4.2.1 Problem Setting and Goals

Given a user query, the goal is to predict a ranking over n items, in
order of most to least relevant, with respect to the query. Relevance of
each item to be ranked, with respect to a search query q, is generally
measured by a vector of relevance scores yq ∈ Rn, often modeled on the
basis of empirical observations such as historical click rates Xu et al.
(2010). This setting considers a ground-truth dataset (xq,aq,yq)

N
q=1,

where xq ∈ X is a list of feature vectors (xiq)
n
i=1, one for each of n

items to be ranked in response to query q. aq = (aiq)
n
i=1 is a vector that

indicates which (protected) group g within domain G to which each item
belongs. yq = (yiq)

n
i=1 ∈ Y is a vector of relevance scores, for each item

with respect to query q. For example, on an image web-search context as
depicted in Figure 4.1, a query denotes the search keywords, e.g., “CEO”,
the vectors xiq in xq are feature embeddings for the images relative to q,
each associated with a gender (attribute aiq), and the associated relevance
scores yiq describe the relevance of item i to query q.
Rankings can be viewed as permutations which rearrange the order of a
predefined item list. Intermediate between the user input and final rank-
ing is often a ranking policy which produces discrete rankings (randomly
or deterministically).
Learning to Rank. In learning to rank (LTR), a ML modelMθ is often

44 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

Table 4.1: Common symbols adopted throughout the paper.

Symbol Semantic

N Size of the training dataset
n Number of items to be ranked
m Number of protected groups
xq = (xiq)

n
i=1 List of feature embeddings for items to rank, given

query q
aq = (aiq)

n
i=1 Protected groups associated with items xiq

yq = (yiq)
n
i=1 Relevance scores for each of n items given query q

G The set of all protected group indicators
Mθ End-to-end trainable fair ranking model with

weights θ
σ A permutation of the list [n] for some n
P A permutation matrix corresponding to some σ
Pn The set of all permutations of [n]
τ The sorting operator
Π A ranking policy, or its representative bistochastic

matrix
u(Π, y) Expected utility of policy Π under relevance scores

y
B Birkhoff Polytope, the convex set of all ranking poli-

cies
E(i, σ) Exposure of item i

adopted to estimate relevance scores ŷq of items given their features xq

relative to user query q (see figure 4.1). From this a ranking policy Π is
constructed. Its expected utility u is

u(Π,yq) = Eσ∼Π[∆(σ,yq)], (4.1)

where Π is viewed as a distribution from which rankings σ are sampled
randomly, and their utility ∆ is a measure of the overall relevance of a
given ranking σ, with respect to given relevance scores yq. Although its
framework is applicable to any linear utility metric ∆ for rankings, this

45

thesis uses the widely adopted Discounted Cumulative Gain (DCG):

∆(σ,yq) = DCG(σ,yq) =
n∑

i=1

yi
qbσi

= yT
qP

(σ)b, (4.2)

where P(σ) is the corresponding permutation matrix, yq are the true
relevance scores, and b is a position bias vector which models the prob-
ability that each position is viewed by a user, defined with elements
bj = 1/log2(1+j), for j ∈ [n].
Ranking policy representation. The methods of this thesis adopt
a particular representation of the ranking policy, as bistochastic matrix
Π ∈ Rn×n, where Πjk indicates the probability that item j takes position
k in the ranking. The set of feasible ranking policies is expressed as
Π ∈ B where B is the Birkhoff Polytope:

B = {Π s.t. 1TΠ = 1, Π1 = 1, 0 ≤ Π ≤ 1}. (4.3)

Its conditions on a matrix Π require, in the order of 4.3, that each column
of Π sums to one, each row of Π sums to one, and each element of Π
lies between 0 and 1. Each of these conditions is a linear constraint on
the variables Π.

Linearity of the DCG function (4.1) w.r.t. P allows it to commute
with the expectation, leading to the practical closed form u(Π,y) =
y⊤Πb for u as a linear function of Π:

u(Π,y) = Eσ∼Π∆(σ,y)

= Eσ∼Π

[
y⊤P(σ)b

]
= y⊤

(
Eσ∼ΠP(σ)

)
b = y⊤Πb (4.4)

This is an important observation that enables the constrained opti-
mization of utility functions on the policy Π in end-to-end differentiable
pipelines, as discussed later in the thesis.

4.2.2 Fairness of Exposure

Item exposure is commonly adopted in ranking systems, where items in
higher ranking positions receive more exposure, and it is with respect
to this metric that fairness is concerned. This thesis aims at learning

46 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

ranking policies that satisfy group fairness of exposure, while main-
taining high relevance to user queries. The exposure E(i, σ) of item i
within some ranking σ is a function of only its position, with higher po-
sitions receiving more exposure than lower ones. Throughout the paper,
the common modeling choice E(i, σ) = bσi .

Notions of item exposure in rankings can also be extended to group
exposure in ranking policies. The exposure of group g in ranking σ
is measured by the mean exposure in σ of items belonging to g. The
exposure of group g in ranking policy Π is the mean value of its exposure
over all rankings sampled from the policy:

Eg(Π) = Eσ∼Π
i∼[n]

[
E (i, σ) |aiq = g

]
, (4.5)

and we let EG(Π) be the vector of values (4.5) for each g in G. Derived
similarly to (4.4), linearity of E leads to a closed form for (4.5) when Π
is represented by a bistochastic matrix, where 1g indicates 1 for items in
g and 0 elsewhere Singh & Joachims (2018):

Eg(Π) =
1

|g|1
T
g Π b. (4.6)

Imposing fairness in LTR. It is well-known that individual rankings σ,
as discrete structures, cannot exactly satisfy most notions of individual or
group fairness Zehlike et al. (2017). Therefore a common strategy in fair
ranking optimization is to view ranking policies as random distributions
of rankings, upon which a feasible notion of fairness can be imposed in
expectation Zehlike et al. (2017); Singh & Joachims (2018); Do & Usunier
(2022). For ranking policy Π and query q, fairness of exposure requires
that every group indicated by g ∈ G receives equal exposure on average
over rankings produced by the policy. This condition can be expressed
by requiring that the average exposure among items of each group is
equal to the average exposure among all items:

Eg(Π) = Eα(Π), ∀g ∈ G, (4.7)

where α is the group containing all items. Enforcing the condition (4.7)
on each predicted policy Π is the mechanism by which protected groups
are ensured equal exposure in SOFaiR. In the image search example, it
corresponds to male and female candidates receiving equal exposure on

47

average over rankings sampled from Π. The violation of fairness with
respect to group g is measured by the absolute gap in this condition:

νg(Π) = | Eg(Π)− Eα(Π) | . (4.8)

Note that group fairness encompasses individual item fairness is a special
case, where each item belongs to a distinct group. While the fairness and
utility metrics described above are the ones used throughout the paper,
the methodology of the paper is compatible with any alternative metrics
u and E which are linear functions of the policy Π. This is because the
methodology of Sections 4.5 and 4.6 depend on linearity of (4.4) and
(4.6).

4.3. Limitations of Fair LTR Methods

Current Fair LTR models present a combination of the following limita-
tions: (A) inability to ensure fairness in each of its generated policies,
(B) inability or ineffectiveness to handle multiple protected groups, and
(C) inefficiency at training and inference time. This section reviews
current fair LTR methods in light of these limiting factors.
Regardless of how the policy is represented, fair learning to rank methods
typically train a model Mθ to find parameters θ∗ that maximize its
empirical utility, along with possibly a weighted penalty term F which
promotes fairness:

θ∗ = argmax
θ

1

N

N∑

q=1

u(Mθ(xq),yq) + λ · F (Mθ(xq)) (4.9)

For example, the fair LTR method of Zehlike & Castillo (2020) (called
DELTR) is based on listwise learning to rank Cao et al. (2007), and thus
uses the modelMθ to predict activation scores per each individual item,
over which a softmax layer defines the probabilities of each item taking
the top ranking position. Thus, Zehlike & Castillo (2020) can only use
F to encourage group fairness of exposure in the top position, leading to
poor overall satisfaction of the fairness condition (4.7) (limitation A)
as illustrated in Figure 4.2. To impose fairness over all ranking positions,
Singh & Joachims (2019) (FULTR) also uses softmax over the activations

48 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

DELTR FULTR SOFaiR
(Ours)

SPOFR
0.0

0.2

0.4

0.6

0.8
Fa

irn
es

s V
io

la
tio

n

Figure 4.2: Yahoo-20: Fairness violation at query level.

ofMθ to define probabilities, which are sampled without replacement to
generate rankings using a policy gradient method. However, this penalty-
based method still does not ensure fairness in each predicted policy, as
illustrated in figure 4.2, since the penalty is imposed only on average
over all predicted policies (limitation A). By a similar reasoning, these
methods do not translate naturally to the case of multigroup fairness,
where m > 2 (limitation B): Because the penalty F must scalarize the
collection of all group fairness violations (4.8) (by taking their overall
sum), it is possible to reduce F while increasing the exposure of a single
outlier group Kotary et al. (2022).

Later work Kotary et al. (2022) shows how to overcome limitation A,
by integrating the fair ranking optimization model of Singh & Joachims
(2018) together with prediction of relevance scores ŷq =Mθ. The mod-
eling of predicted policies Π as solutions to an optimization problem
under fairness constraints allows for their representation as bistochas-
tic matrices which satisfies the fairness notions (4.7) exactly. However,
this method suffers limitation C as it requires to solve a linear pro-
gramming problem at each iteration of training and at inference, whose
number of variables in Π ∈ Rn×n scales quadratically as O(n2) becom-
ing prohibitively large as the item list grows. Additionally, at inference
time, the policy must be sampled to produce rankings; this requires a
Birhoff-Von Neumann (BVM) decomposition of the matrix Π into a con-

49

vex combination of permutation matrices, which is also expensive when
n is large Singh & Joachims (2018). Finally, in the case of multiple
groups (m > 2), the fairness constraints can become infeasible, making
this formulation unwieldly (limitation B).

Figure 4.2 shows the query-level fairness violations due to each method
discussed in this section, where fairness parameters in each case are in-
creased maximally without substantially compromising utility. In ad-
dition to higher average violations, penalty-based methods Zehlike &
Castillo (2020); Singh & Joachims (2019) also lead to prevalence of out-
liers. These three existing fair LTR methods are used as baselines for
comparison in Section 4.7. The SOFaiR framework proposed next most
resembles Kotary et al. (2022), as it combines learning of relevance scores
end-to-end with constrained optimization. At the same time, it aims to
improve over Kotary et al. (2022) by addressing the three main limi-
tations stated above. By integrating an alternative optimization com-
ponent with its predictive model, SOFaiR can achieve faster runtime,
and avoid the BVM decomposition at inference time, while naturally
accommodating fairness over an arbitrary number of groups.

4.4. Smart OWA Optimization for Fair Learning
to Rank (SOFaiR)

This section provides an overview of the proposed SOFaiR framework
for learning fair ranking policies that overcomes limitations A, B, and C.
Sections 4.5 and 4.6 will then detail the core solution approaches required
to incorporate its proposed fair ranking optimization module into effi-
cient, end-to-end trainable fair LTR models. As illustrated in figure 4.1,
SOFaiR’s core concept is to intergrate the learning of relevance scores
with a module which optimizes fair ranking policies in-the-loop. By do-
ing so it achieves a favorable balance of fairness and utility relative to
other in-processing methods. The key difference in its approach relative
to Kotary et al. (2022) is in the design of its optimization model which
leverages Ordered Weighted Average (OWA) objectives (reviewed next)
to enforce fairness of exposure. By avoiding the imposition of fairness of

50 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

exposure (see Equation 4.7) as a set of hard constraints on the optimiza-
tion as in Kotary et al. (2022); Singh & Joachims (2018), it maintains
the simple feasible region Π ∈ B, over which efficient Frank-Wolfe based
solution methods can be employed to optimize its OWA objective func-
tion as described in Section 4.5. In turn, the particular form of the
OWA optimization model in-the-loop necessitates a novel technique for
its backpropagation, detailed in Section 4.6. The OWA aggregation and
its fairness properties in optimization problems are introduced next, fol-
lowed by its role in the SOFaiR learning framework.

4.4.1 Ordered Weighted Averaging Operator

The Ordered Weighted Average (OWA) operator Yager (1993) has found
applications in various decision-making fields Yager & Kacprzyk (2012)
as a means of fairly aggregating multiple objective criteria. Let x ∈ Rm

be a vector of m distinct criteria, and τ : Rm → Rm be the sorting
map for which τ(x) ∈ Rm holds the elements of x in increasing order.
Then for any w satisfying {w ∈ Rm :

∑
iwi = 1,w ≥ 0}, the OWA

aggregation with weight w is defined as a linear functional on τ(x):

OWAw(x) = wT τ(x), (4.10)

which is convex and piecewise-linear in x Ogryczak & Śliwiński (2003).
The so-called Generalized Gini Functions, or Fair OWA, are those for
which the OWA weights w1 > w2 . . . > wn are decreasing. Fair OWA
functions possess the following three key properties for fairness in op-
timizing multiple criteria Ogryczak & Śliwiński (2003). (1) Impar-
tiality means that all criteria are treated equally, in the sense that
OWAw(x) = OWAw(xσ) for any σ ∈ Pm. (2) Equitability is the prop-
erty that marginal transfers from a criterion with higher value to one
with lower value results in an increase in aggregated OWA value. That
is , when xi > xj+ϵ and letting xϵ = x except at positions i and j where
(xϵ)i = xi−ϵ and (xϵ)j = xj+ϵ, it holds that OWAw(xϵ) > OWAw(x).
(3) Monotonicity means that OWAw(x) is an increasing function of each
element of x. The monotonicity property implies that solutions which
optimize (4.10) are Pareto Efficient solutions of the underlying multi-
objective problem, thus that no single criteria can be raised without

51

reducing another Ogryczak & Śliwiński (2003). Taken together, it is
known that maximization of aggregation functions which satisfy these
three properties produces so-called equitably efficient solutions, which
possess the main intuitive properties needed for a solution to be deemed
"fair"; see Kostreva & Ogryczak (1999) for a formal definition. As shown
next, the SOFaiR framework ensures group fairness by leveraging a fair
OWA aggregation of group exposures OWAw(EG(Π)) in the objective
function of its integrated fair ranking optimization module.

4.4.2 End-to-End Learning in SOFaiR

As illustrated in figure 4.1, the SOFaiR framework uses a prediction
modelMθ with learnable weights θ, which produces relevance scores ŷq

from a list of item features xq. Its key component is an optimization mod-
ule which maps the prediction ŷq to an associated ranking policy Π⋆(ŷq).
The following optimization problem defines Π⋆(ŷq) as the ranking pol-
icy which optimizes a trade-off between fair OWA aggregation of group
exposures with the expected DCG (as per Equation 4.4) under relevance
scores ŷq. In SOFaiR, it defines, for any chosen weight 0 ≤ λ ≤ 1, a map-
ping which can be viewed akin to a neural network layer, representing
the last layer ofM:

Π⋆(ŷq) = argmaxΠ∈B (1− λ) · u(Π, ŷq) + λ ·OWAw(EG(Π)), (4.11)

wherein the Birkhoff Polytope B is the set of all bistochastic matrices,
as defined in Equation 4.3. Let the objective function of Equation 4.11
be named f(Π, ŷq). It is a convex combination of two terms measur-
ing user utility and fairness, whose trade-off is controlled by a single
coefficient 0 ≤ λ ≤ 1. The former term measures expected user utility
u(Π, ŷq) = ŷ⊤

q Π b, while the latter term measures OWA aggregation
of the group exposures. It is intuitive to see that when λ = 1, the op-
timization (4.11) returns a ranking policy that minimizes disparities in
group exposure, without regard for relevance. When λ = 0, it returns
a deterministic policy which ranks the items in order of the estimated
scores ŷq. Intermediate values 0 < λ < 1 result in policies which trade off
the effects of each term, balancing utility and fairness to various degrees.
As λ increases, disparity between the exposure of protected groups must

52 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

decrease; this leads to a practical mechanism for achieving a desired level
of fairness with minimal compromise to utility.

Since Equation (4.11) defines a direct mapping from ŷq to Π⋆(ŷq),
the problem of learning fair ranking policies reduces to a problem of
learning relevance scores. This corresponds to estimating the objective
function f via its missing coefficients yq. The SOFaiR training method
defines a loss function between predicted and ground-truth relevance
scores, as the loss of optimality in Π⋆(ŷq) with respect to objective f
under ground-truth yq, caused by prediction error in ŷq. That is, the
training objective is to minimize regret in f induced by ŷq, defined as:

regret(ŷq,yq) = f(Π⋆(yq),yq)− f(Π⋆(ŷq),yq). (4.12)

The composition Π⋆◦Mθ defines an integrated prediction and optimiza-
tion model which maps item features to fair ranking policies. Training
the integrated model by stochastic gradient descent follows these steps
in a single iteration:

1. For sample query q and item features xq, a predictive model Mθ

produces estimated relevance scores ŷq .
2. The predicted scores ŷq are used to populate the unknown parameters

of an optimization problem (4.11). A solution algorithm is employed
to find Π∗(ŷq), the optimal fair ranking policy relative to ŷq.

3. The regret loss (4.12) is backpropagated through the calculations of
steps (1) and (2), in order to update the model weights θ by a gradient
descent step.

The following sections detail the main solution schemes for imple-
menting steps (2) and (3). Section 4.5 shows how recently proposed
fair ranking optimization techniques from Do & Usunier (2022) can be
adapted to the setting of this thesis, in which fair ranking policies must
be learned from empirical data. From this choice of optimization design
arises a novel challenge in the backpropagation step (3), since no known
work has shown how to backpropagate the regret of a highly discontin-
uous OWA optimization program. Section 4.6 shows how to efficiently
backpropagate the regret due to Equation 4.11 for end-to-end learning.
Then, Section 4.7 evaluates the SOFaiR framework against several other
methods for learning fair ranking policies, on a set of benchmark tasks

53

from the web search domain.

4.5. Forward Pass Optimization

Optimization Layer

expected utility

Frank-Wolfe with Smoothing

iii) Update

Forward pass

OWA aggregation

group exposure

i) Compute

ii) Find

Backward pass

EG(⇧) =

2
66664

Eg1

...

...
Egk

3
77775

⌧�!

2
666664

⌧1(EG)

...

⌧k(EG)

3
777775

w1�...�wk�������!
lX

i=1

wi⌧i(EG)

⇧?(ŷq) = argmax
⇧

(1� �) · u(⇧, ŷq) + � · OWAw(EG(⇧))| {z }
h(⇧)

rh�(⇧)

⇧̃ 2 argmax⇧ h⇧|rh�(⇧)i
⇧(t)

rLSPO+(�̂,�) =

2
4
�!
⇧?(2�̂ � �)
r?(2�̂ � �)
z?(2�̂ � �)

3
5�

2
4
�!
⇧?(�)
r?(�)
z?(�)

3
5

Figure 4.3: The differentiable optimization module employed in SOFaiR.
It forward pass solves the problem (4.11) by an efficent Frank-Wolfe
method. Its backward pass calculates the SPO+ subgradient, relative to
its equivalent, but intractably large LP form.

The main motivation for the formulation (4.11) of SOFaiR’s fair
ranking optimization layer is to render the optimization problem effi-
ciently solvable. Its main exploitable attribute is its feasible region Π,
over which a linear objective function can be quickly optimized by sim-
ply sorting a vector in Rn, which has time complexity n log n Cormen
et al. (2022). This suggests an efficient solution by Frank-Wolfe methods,
which solve a constrained optimization problem by a sequence of sub-
problems optimizing a linear approximation of the true objective func-
tion Beck (2017). This efficient solution pattern is made possible by the
absence of additional group fairness constraints on the policy variable
Π.

Frank-Wolfe methods solve a convex constrained optimization prob-
lem argmaxx∈S f(x) by computing the iterations

x(k+1) = (1− α(k))x(k) + α(k) argmax
y∈S

⟨y,∇f(x(k))⟩. (4.13)

54 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

Convergence to an optimal solution is guaranteed when f is differentiable
and with α(k) = 2

k+2 Beck (2017). However, the main obstruction to
solving (4.11) by the method (4.13) is that f in our case includes a non-
differentiable OWA function. A path forward is shown in Lan (2013),
which shows convergence can be guaranteed by optimizing a smooth
surrogate function f (k) in place of the nondifferentiable f at each step
of (4.13), in such a way that the f (k) converge to the true f as k →∞.

It is proposed in Do & Usunier (2022) to solve a two-sided fair ranking
optimization with OWA objective terms, by the method of Lan (2013),
where f (k) is chosen to be a Moreau envelope hβk of f , a 1

βk
-smooth

approximation of f defined as Beck (2017):

hβ(x) = min
y

f(y) +
1

2β
∥y − x∥2. (4.14)

When f = OWAw, let its Moreau envelope be denoted ∇OWAβ
w; it is

shown in Do & Usunier (2022) that its gradient can be computed as a pro-
jection onto the permutahedron induced by modified OWA weights w̃ =
−(wm, . . . , w1). By definition, the permutahedron C(w̃) = conv({wσ :
∀σ ∈ Pm}) induced by a vector w̃ is the convex hull of all its per-
mutations. In turn, it is shown in Blondel et al. (2020) that the per-
mutahedral projection ∇OWAβ

w(x) = projC(w̃)(x/β) can be computed
in m logm time as the solution to an isotonic regression problem using
the Pool Adjacent Violators algorithm. To find the overall gradient of
OWAβ

w with respect to optimization variables Π, a convenient form can
be derived from the chain rule:

∇Π OWAβ
w(E(Π)) = µbT . (4.15)

where µ = projC(w̃)(E(Π)/β) and E(Π) is the vector of all item exposures
Do & Usunier (2022). For the case where group exposures EG(Π) are
aggregated by OWA, first note that by Equation 4.6, EG(Π) = AΠb,
where A is the matrix composed of stacking together all group indicator
vectors 1g ∀g ∈ G. Since E(Π) = Πb, this implies EG(Π) = E(AΠ),
thus

∇Π OWAβ
w(EG(Π)) = (AT µ̃) bT . (4.16)

by the chain rule, and where µ̃ = projC(w̃)(EG(AΠ)/β). It remains now
to compute the gradient of the user relevance term u(Π, ŷq) = ŷT

q Π b

55

Algorithm 1: Frank-Wolfe with Moreau Envelope Smoothing
to solve (4.11)

Input: predicted relevance scores ŷ ∈ Rn, group mask A, max
iteration T, smooth seq. (βk)

Output: ranking policy Π(T) ∈ Rn×n

1 Initialize Π(0) as P ∈ P which sorts ŷ in decreasing order;
2 for k = 1, . . . , T do
3 µ̃← projC(w̃)(EG(AΠ)/βk);
4 µ̂← (1− λ) · ŷq + λ · (AT µ̃);
5 σ̂ ← argsort(−µ̂);
6 Let P (k) ∈ P such that P (k) represents σ̂;
7 Π(k) ← k

k+2Π
(k−1) + 2

k+2P
(k);

8 Return Π(T);

in Equation 4.11. As a linear function of the matrix variable Π, its
gradient is ∇Π u(Π, ŷq) = ŷq bT , which is evident by comparing to the

equivalent vectorized form ŷT
q Π b =

−−−→
ŷq b

T · −→Π. Combining this with
Equation 4.16, the total gradient of the objective function in Equation
4.11 with smoothed OWA term is (1−λ) · ŷq b

T +λ · (AT µ̃) bT , which is
equal to

(
(1− λ) · ŷq + λ · (AT µ̃)

)
bT . Therefore the SOFaiR module’s

Frank-Wolfe linearized subproblem is

argmax
Π∈B

〈
Π,

(
(1− λ) · ŷq + λ · (AT µ̃)

)
bT

〉
(4.17)

To implement the Frank-Wolfe iteration (4.13), this linearized sub-
problem should have an efficient solution. To this end, the form of each
gradient above as a cross-product of some vector with the position bi-
ases b can be exploited. Note that as the expected DCG under rele-
vance scores y, the function yTΠ b is maximized by the permutation
matrix P ∈ Pn which sorts the relevance scores y decreasingly. But
since yTΠ b =

−−→
y bT · −→Π, we identify yTΠ b as the linear function of

−→
Π with gradient

−−→
y bT . Therefore equation Equation 4.17 can be solved

in O(n log n), simply by finding P ∈ Pn as the argsort of the vector

56 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

((1−λ) · ŷq +λ · (AT µ̃)) in decreasing order. A more formal proof, cited
in Do et al. (2021), makes use of Hardy et al. (1952).

The overall method is presented in Algorithm 1. Decay of the smooth-
ing parameter βt =

β0√
t

satisfies the conditions for convergence stated in
Lan (2013) when β0 is sufficiently large. Sparse matrix additions each
require O(n) operations, so that Algorithm 1 maintains O(n log n) com-
plexity per iteration. An important advantage of Algorithm 1 over the
fair ranking LP employed in SPOFR Kotary et al. (2022), is that the so-
lution iterates P (k) automatically provide a decomposition of the policy
matrix Π = ρkP

(k) as a convex combination of rankings, by which it can
be readily sampled as a discrete probability distribution. In contrast, the
LP module used in SPOFR Kotary et al. (2022) provides as its solution
only a matrix Π ∈ B, which must be decomposed using the Birkhoff Von
Neumann decomposition, adding substantially to its total runtime.

4.6. Backpropagation

The formulation of the optimization module (4.11) allows for efficient
solution via Algorithm 1, but gives rise to a novel challenge in backprop-
agating the regret loss function through Π⋆(ŷq). By including an OWA
aggregation of group exposure, its objective function is nonlinear and
nondifferentiable. This section shows how to train the integrated pre-
diction and OWA optimization model Π⋆ ◦Mθ to minimize the regret
loss (4.12), despite this challenge. As a starting point, we recognize the
existing literature on "Predict-Then-Optimize" frameworks Kotary et al.
(2021); Mandi et al. (2024a) for minimizing the regret due to prediction
error in the objective coefficients of a linear program, denoted c below:

x⋆(c) = argmin
Ax≤b

cTx. (4.18)

Several known methods have been proposed Elmachtoub & Grigas (2021);
Pogančić et al. (2020); Wilder et al. (2019); Berthet et al. (2020) and well-
established in the literature Mandi et al. (2024a) for end-to-end training
of combined prediction and optimization models employing (4.18). Due
to its OWA objective term, the fair ranking module (4.11) does not sat-

57

isfy the LP form (4.18) for which the aforementioned methods are tay-
lored. The implementation of SOFaiR described here uses the "Smart
Predict-Then-Optimize" (SPO) approach Elmachtoub & Grigas (2021),
since its simple backpropagation rule requires only a solution to (4.18)
using a blackbox solution oracle. This allows its adaptation to the OWA
optimization setting by constructing (but not solving) an equivalent but
intractable linear programming form to (4.11), as shown next.
End-to-End learning with SPO+ Loss. Viewed as a loss function,
the regret (4.12) in solutions to problem (4.18) is nondifferentiable and
discontinuous with respect to predicted coefficients ĉ, since solutions
x⋆(c) must occur at one of finitely many vertices in Ax ≤ b. The
SPO+ loss function proposed in Elmachtoub & Grigas (2021) is by con-
struction a Fischer-consistent, subdifferentiable upper bound on regret.
In particular, it is shown in Elmachtoub & Grigas (2021) that

LSPO+(ĉ, c) = max
x

(cTx− 2ĉTx) + 2ĉTx⋆(c)− cTx⋆(c), (4.19)

possesses these properties, and a subgradient at ĉ is

∇LSPO+(ĉ, c) = x⋆(2ĉ− c)− x⋆(c). (4.20)

Minimizing the surrogate loss (4.19) by gradient descent using (4.20) is
key to minimizing the solution regret in problem (4.18) due to error in
a predictive model which predicts the parameter c.
SPO+ loss in SOFaiR. We now show how the SPO training framework
described above for the problem type (4.18) can be used to efficiently
learn optimal fair policies in conjunction with problem (4.11). The main
idea is to derive an SPO+ subgradient for regret in (4.11), through an
equivalent linear program (4.18), but without solving it as such. This is
made possible by the fact that the subgradient (4.20) can be expressed
as a difference of two optimal solutions, which can be furnished by any
optimization oracle which solves the mapping (4.11), which includes Al-
gorithm (1).

First note, as it is shown in Ogryczak & Śliwiński (2003), that the
OWA function (4.10) can be expressed as

OWAw(r) = minσ∈P wσ · r, (4.21)

and as an equivalent linear programming problem which views the min-

58 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

imum inner product above as the maximum lower bound among all pos-
sible inner products with the permuted OWA weights:

OWAw(r) = maxz z (4.22a)
s.t. z ≤ wσ · r, ∀σ ∈ P, (4.22b)

where P contains all possible permutations of [n] when w ∈ Rn. This
allows SOFaiR’s OWA optimization model (4.11) to be recast in a linear
programming form using auxiliary optimization variables r and z:

(Π⋆, r⋆, z⋆)(ŷq) = argmaxΠ∈B, r, z (1− λ) · ŷ⊤
q Π b+ λ · z (4.23a)

subject to: z ≤ wσ · r, ∀σ ∈ P (4.23b)
r = EG(Π). (4.23c)

According to Ogryczak & Śliwiński (2003), this alternative LP form
of OWA optimization is mostly of theoretical significance, since the set of
constraints (4.23b) grows factorially in the size of r, one for each possible
permutation thereof. This makes (4.23) impractical for computing a
solution to the original OWA problem (4.11), which we instead solve
by Algorithm 1. On the other hand, we show that problem (4.23) is
practical for deriving a backpropagation rule through the OWA problem
(4.11).

Since the unknown parameters ŷq appear only in its linear objective
function, this parametric LP problem (4.23) fits the form (4.18) required
for training with SPO+ subgradients. To derive the subgradient explic-
itly, rewrite the linear objective term ŷ⊤

q Π b =
−−−→
ŷq b

T · −→Π. Then in
terms of the augmented variables (Π, r, z), the objective function (4.23a)
is

(1− λ)x · ŷ⊤
q Π b+ λ · z =

(1− λ)

−−−→
ŷq b

T

0
λ

︸ ︷︷ ︸
γ̂

T

−→
Π
r
z

 . (4.24)

Now the SPO+ loss subgradient can be readily expressed with respect
to the augmented scores γ̂ defined as above:

59

∇LSPO+(γ̂,γ) =

−→
Π⋆(2γ̂ − γ)
r⋆(2γ̂ − γ)
z⋆(2γ̂ − γ)

−

−→
Π⋆(γ)
r⋆(γ)
z⋆(γ)

 , (4.25)

using (4.20), and where γ is the augmented score based on ground-truth
yq. Finally, backpropagation from γ̂ to the base prediction ŷq =Mθ(xq)
is performed by automatic differentiation, and likewise from ŷq to the
model weights θ.

Both terms in (4.25) can be produced by using Algorithm 1 to solve
(4.11) for Π⋆. Then, the remaining variables r⋆ and z⋆ are easily com-
pleted as groups exposures r = EG(Π⋆) and their associated OWA value
z, respectively. Importantly, the rightmost term of (4.25) is independent
of any prediction; therefore it is precomputed in advance of training.
Thus, backpropagation using (4.25) consists of computing the difference
between two solutions, one of which comes from the forward pass and
while the other is precomputed before training. The complexity of this
backward pass consists of O(n2) subtractions, which grows only linearly
in the size of the matrix variable Π ∈ Rn×n. The differentiable fair
ranking optimization module of SOFaiR, with its forward and backward
passes, is summarized in figure 4.3.

4.7. Experiments

Next we evaluate SOFaiR against two prior in-processing methods Singh
& Joachims (2019); Zehlike et al. (2017), and the end-to-end framework
Kotary et al. (2021), denoted as FULTR, DELTR, and SPOFR, respec-
tively. We assess the performance on two datasets:
• Microsoft Learn to Rank (MSLR) is a standard benchmark for LTR

with queries from Bing and manually-judged relevance labels. It in-
cludes 30,000 queries, each with an average of 125 assessed documents
and 136 ranking feature. Binary protected groups is defined using
the 50th percentile of QualityScore attribute. For multi-group cases,
group labels are defined using evenly-spaced quantiles.

• Yahoo! Learning to Rank Challenge (Yahoo LETOR) contains 19,944

60 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

queries and 473,134 documents with 519 ranking features. Binary
protected groups is defined using feature id 9 following Jia & Wang
(2021) and the 50th percentile as the threshold.

For MSLR, we randomly sample 10,000 queries for training and 1,000
queries each for validation and testing. We create datasets with varying
list sizes (20, 40, 60, 80, 100 documents) for MSLR and (20, 40 docu-
ments) for Yahoo LETOR.
Models and hyperparameters. A neural network (NN) with three
hidden layers is trained using Adam Optimizer with a learning rate of
0.1 and a batch size of 256. The size of each layer is halved, and the
output is a scalar item score. Results of each hyperparameter setting is
are taken on average over five random seeds.

Fairness parameters, considered as hyperparameters, are treated dif-
ferently. LTR systems aim to offer a trade-off between utility and group
fairness, since the cost of increased fairness results in decreased utility.
In DELTR, FULTR, and SOFaiR, this trade-off is indirectly controlled
through the fairness weight, denoted as λ in (4.9) and (4.11). Larger
values of λ indicate more preference towards fairness. In SPOFR, the
allowed violation (4.8) of group fairness is specified directly. Ranking
utility and fairness violation are assessed using average DCG (Equation
4.1) and fairness violation (Equation 4.8), respectively. The metrics are
computed as averages over the entire test dataset.

4.7.1 Running Time Analysis

Our analysis begins with a runtime comparison between SOFaiR and
other LTR frameworks, to show how it overcomes limitation C, de-
scribed in section 4.3. Figure 4.4 shows the average training and in-
ference time per query for each method, focusing on the binary group
MSLR dataset across various list sizes. First notice the drastic runtime
reduction of SOFaiR compared to SPOFR, both during training and in-
ference. While SPOFR’s training time exponentially increases with the
ranking list size, SOFaiR’s runtime increases only moderately, reaching
over one order of magnitude speedup over SPOFR for large list sizes.
Notably, the number of iterations of Algorithm 1 required for sufficient

61

accuracy in training to compute SPO+ subgradients are found to less
than those required for solution of (4.11) at inference. Thus the reported
results use 100 iterations in training and 500 at inference. Importantly,
reported runtimes under-estimate the efficiency gained by SOFaiR, since
its PyTorch Paszke et al. (2017) implementation in Python is compared
against the highly optimized code implementation of Google OR-Tools
solver Perron (2011). DELTR and FULTR, as penalty-based methods,
are more competitive in runtime. However, this comes at a cost of the
achieved fairness level (limitation A), as shown in the next section.

DELTR FULTR SPOFR SOFaiR
(Ours)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 T
im

e
(s

ec
) List Size

20
40
60
80
100

DELTR FULTR SPOFR SOFaiR
(Ours)

0

1

2

3

4

5

In
fe

re
nc

e
Ti

m
e

(s
ec

)

Figure 4.4: Running time benchmark on MSLR-Web10k dataset

4.7.2 Fairness and Utility Tradeoffs Analysis

Next, we focus on comparing the utility and fairness of the various LTR
frameworks analyzed. This section focuses on the two-group case, as
none of the methods compared against was able to cope with multi-
group case in our experiments (see next section). Figure (4.5) presents
the trade-off between utility and fairness across the test sets for both Ya-
hoo LETOR and MSLR datasets, encompassing their lowest and highest
list sizes. For each method, the intensity of colors represents the mag-
nitude of its fairness parameter. A progression from lighter to darker
colors indicates an increase in the importance placed on fairness. Conse-
quently, darker colors are expected to correspond with more restrictive

62 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

10 5 10 4 10 3 10 2 10 1

Mean Fairness Violation
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

DC
G

SPOFR
DELTR

FULTR
SOFaiR
 (Ours)

10 5 10 4 10 3 10 2

Mean Fairness Violation

1.6

1.8

2.0

2.2

DC
G

SPOFR
DELTR

FULTR
SOFaiR
(Ours)

10 4 10 3 10 2

Mean Fairness Violation
1.100
1.125
1.150
1.175
1.200
1.225
1.250

DC
G

SPOFR
FULTR

DELTR
SOFaiR
 (Ours)

10 5 10 4 10 3

Mean Fairness Violation
1.3
1.4
1.5
1.6
1.7
1.8
1.9

DC
G

SPOFR
DELTR

FULTR
SOFaiR
 (Ours)

Figure 4.5: Benchmarking performance in term of fairnesss-utility trade-
off on Yahoo-20 (top left), and Yahoo-40(top right). MSLR-20(bottom-
left), MSLR-100 (bottom-right)

models, characterized by lower DCG scores (y-axis) but also fewer fair-
ness violations (x-axis). Each point in the figure represents the largest
DCG score obtained from a fairness hyperparameter search, as detailed
in Appendix C. Note that points on the grid that are higher on the y-axis
and lower on the x-axis represent superior results.

Firstly, notice that most points associated with methods DELTR
and FULTR are clustered in a small region with both high DCG and
(log-scaled) fairness violations. While these methods reach an order of
magnitude reduction in fairness violation on some datasets, the effect is
inconsistent, especially as the item list size increases (limitation A). In
contrast, the end-to-end methods (SPOFR and the proposed SOFaiR)
reach much lower fairness violations, underlining their effectiveness of
their optimization modules in enforcing the fairness constraint.

Both DELTR and FULTR reach competitive utilities, but they con-
sistently display relatively high fairness violations, underscoring their
limitations in providing a fair ranking solution. SOFaiR shows competi-
tive fairness and utility performance compared to SPOFR, with a marked

63

advantage in utility on some datasets. SPOFR ensures fairness but at
the expense of efficiency, whereas SOFaiR reaches similar fairness levels
at a fraction of the required runtime. Additional results on datasets of
various list sizes are included in Appendix B.2.
4.7.3 Multi-Group Fairness Analysis

10 5 10 4 10 3 10 2 10 1

Mean Fairness Violation

1.2

1.4

1.6

DC
G

3 groups
4 groups

5 groups
6 groups

7 groups

10 3 10 2

Mean Fairness Violation

1.0
1.2
1.4
1.6
1.8
2.0

DC
G

3 groups
4 groups

5 groups
6 groups

7 groups

Figure 4.6: Fairness-utility tradeoff due to SOFaiR with multiple groups
on MSLR-40 (left) and MSLR-100 (right) list size

Finally, this section analyzes the fairness-utility trade-off in multi-
group scenarios using the SOFaiR framework. The SPOFR method re-
turns infeasible solutions for most chosen fairness levels when multiple
groups are introduced, preventing its evaluation on these datasets; this
is naturally avoided in SOFaiR as the optimization of OWA aggrega-
tion without constraints simply increases fairness to the extent feasi-
ble. While FULTR provides no code to evaluate multigroup fairness, its
penalty function is in principle ill-equipped to handle multiple groups as
it must scalarize all group fairness violations into a single loss function
as mentioned in Section 4.3 (limitation C). Figure 4.6 compares the
average test DCG against the average fairness violation across various
numbers of groups (ranging from 3 to 7) in the MSLR dataset, for list
sizes of 40 and 100. Additional results for other list sizes in the MSLR
dataset are available in Appendix B.1.

Each data point represents a single model’s performance, with fair-
ness parameters λ adjusted between 0 and 1. Models prioritizing fairness
show reduced fairness violations and lower utilities, indicated by darker
colored points, compared to those with a lower emphasis on fairness, rep-
resented by lighter colored points. A distinct trend is observed: as fair-

64 Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank

ness parameters are relaxed, utility increases for all metrics and datasets.
It is also evident that multi-group fairness comes at a higher cost to util-
ity. Predictably, saturation occurs in each curve, indicating that beyond
a certain point, increasing the fairness weight does not further decrease
fairness violations but merely reduces utility.

4.8. Conclusions

this thesis presented SOFaiR, a method that employs an Ordered Weighted
Average optimization model to integrate fairness considerations into rank-
ing processes. Its key contribution is to enable backpropagation through
optimization of discontinuous OWA functions, which has makes it pos-
sible to precisely enforce flexible group fairness measures directly into
the training process of learning to rank, without greatly compromising
efficiency.

These advantages show that by leveraging modern developments in
fair ranking optimization, the integration of constrained optimization
and machine learning techniques can be a promising direction for future
research in fair LTR.

CHAPTER 5

Learning to Optimize with
Application in AC-OPF Problem

“Learn the rules like a pro, so you can
break them like an artist.”

Pablo Picasso

65

66 Learning to Optimize with Application in AC-OPF Problem

This chapter presents the original contributions of this thesis in the
scope of Learning to Optimize for Optimal Power Flow (OPF) and is
divided into two main sections. The first section investigates the pre-
dictability and robustness of deep learning models for approximating
AC-OPF solutions, analyzing the underlying factors that influence pre-
diction accuracy. This study builds upon the author’s published work
Dinh et al. (2023). The second section introduces a novel autoregressive
deep learning framework that leverages iterative nonlinear solvers during
training to enhance prediction robustness and scalability.

5.1. Deep Learning and Optimal Power Flow Prob-
lem

The Optimal Power Flow (OPF) problem finds the generator dispatch of
minimal cost that meets the demands of a power system. The problem
is required to satisfy the AC power flow equations, which are non-convex
and nonlinear, and is a core building block in many power system ap-
plications. While its resolution has benefited from decades of research
in power systems and operational research, the introduction of intermit-
tent renewable energy sources is forcing system operators to adjust the
generators set-points with increasing frequency. However, the resolution
frequency to solve OPFs is limited by their computational complexity.
To address this issue, system operators typically solve OPF approxi-
mations, such as the linear DC model, but, while more efficient com-
putationally, their solutions may be sub-optimal and induce substantial
economic losses.

Recently, an interesting line of research has focused on how to ap-
proximate AC-OPF using Deep Neural Networks (DNNs) Deka & Misra
(2019); Zamzam & Baker (2020); Fioretto et al. (2020b). Once a DNN is
trained, predictions can be computed on the order of milliseconds. While
the recent results show that these learning models can approximate the
generator set-points of AC-OPF with high accuracy, little is known on
why these models can predict OPF solutions accurately, as well as about
their robust predictions. This chapter provides a step forward to address

67

0.8 0.9 1.0 1.1 1.2
Power demand multiplier ()

2

3

4

5

6

Pe
r U

nit

Generators Output

IEEE-118
pg

28 pg
40

0.8 0.9 1.0 1.1 1.2
Power demand multiplier ()

0

10

20

30

40
Prediction Error (%)

Figure 5.1: Generator output as a function of demand (right) and asso-
ciated predictions (left). Orange (blue) colors show high (low) volatile
curves while continuous (dashed) lines depict easy (hard) prediction
tasks.

this knowledge gap and makes four main contributions.
We first ask: Why are DNNs able to approximate OPF solutions with

low errors? To answer this question, the paper studies the relationship
between the training data and their target outputs. Figure 5.1 (left)
shows how generator outputs change as a function of the total demand
for selected IEEE-118 generators. Notice that the blue curve suggests
a linear dependence between the associated generator outputs and the
loads, indicating that a simple learning model may effectively capture
such behavior, as indeed confirmed in the corresponding low DNN pre-
diction errors reported in Figure 5.1 (right). The paper shows that when
many generators exhibit this behavior, approximating OPF with DNNs
produces accurate results, on average.

There are, however, also generators whose outputs are inherently
more difficult to predict. The orange curve in the figure depicts a much
different scenario with a more volatile underlying function. The right plot
shows the high prediction error attained, indicating robustness issues.
The paper sheds light on why these behaviors are not easily captured by
standard learning models connecting the stability of the training data to
the ability of a learning model to approximate it.

Next, we ask: What are the latent factors that affect the prediction
accuracy of these generators? To address this question, this chapter
studies which characteristics of the OPF may be responsible for these

68 Learning to Optimize with Application in AC-OPF Problem

erroneous predictions, and indicates the need for modeling and predicting
the behavior of the OPF engineering and physical constraints during
training to capture the complexity of the predictions.

Finally, in light of the robustness issues observed in this study, we
propose a new framework that relies on a deep autoregressive Recur-
rent Neural Network to exploit the data generated by iterative nonlinear
solvers during training. The results show that this framework is not only
able to improve the prediction robustness over existing DNN OPF predic-
tors, but also it comes with a reduced memory footprint, thus, enabling
it to predict very large instances, overcoming one of the limitations of
existing DNN OPF predictors relying on fully-connected networks.

5.2. Related Work

The use of machine learning to accelerate the resolution of power system
optimization procedures has recently seen a growing number of results.
A recent survey by Hasan et al. Hasan et al. (2020) summarizes the
development in the area.

In particular, Pan et al. Pan et al. (2019) explore DNN architectures
for predicting DC-OPFs, a linear approximation of the full AC model.
Deka et al. Deka & Misra (2019) and Ng et al. Ng et al. (2018) use a
DNN architecture to learn the set of active constraints. By exploiting
the linearity of the DC-OPF problem, once the set of relevant active
constraints is identified, an exhaustive search can be used to find a so-
lution that satisfies the active constraints. A deep learning approach
for AC-OPFs is also proposed by Yang et al. Yang et al. (2020) to pre-
dict voltages and flows. This approach focuses on specific operational
constraints while dismissing other physical and engineering constraints.

Other recent approaches have attempted to incorporate structure
from OPF constraints into deep learning–based models. For instance,
Fioretto et al. Fioretto et al. (2020b) propose a learning method which
combines deep learning and Lagrangian duality, incorporating informa-
tion about OPF dual variables into the learning loss function to promote
the prediction of feasible solutions. Other approaches focus on enforc-

69

ing OPF constraints directly within the learning process. For instance,
Zamzam and Baker Zamzam & Baker (2020) use a DNN to predict a
partial OPF solution, and then solve for the remaining outputs using
power the flow equations. Donti et al. Donti et al. (2020) extended this
approach though the use of implicit layers which allows a DNN to reason
about the hard constraints.

While these proposals have clearly shown that it is possible to ap-
proximate OPF solutions of high quality, and in vastly reduced computa-
tional times when compared to those required by traditional optimization
solvers, a complete understanding of the reasons for the effectiveness of
these learning models and their reliability is missing. The rest of the
paper provides a first step toward addressing this knowledge gap.

5.3. Preliminaries

Optimal Power Flow. Optimal Power Flow (OPF) is the problem of
determining the least-cost generator dispatch that meets the demands in
a power network. A power network is viewed as a graph (N,E) where the
set of nodes n describes n buses and the edges E describe e transmission
lines. Here E is a set of directed arcs and ER is used to denote the arcs
in E but in reverse direction.

The AC power flow equations are based on complex quantities for
current I, voltage V , admittance Y , and power S. The quantities are
linked by constraints expressing Kirchhoff’s Current Law (KCL), i.e.,
Igi − Id

i =
∑

(i,j)∈E∪ER Iij , Ohm’s Law, i.e., Iij = Yij(Vi − Vj),, and the
definition of AC power, i.e., Sij = ViI

∗
ij . Combining these three properties

yields the AC Power Flow equations, i.e.,

Sg
i − Sd

i =
∑

(i,j)∈E∪ER

Sij ∀i ∈ N

Sij = Y ∗
ij |Vi|2 − Y ∗

ijViV
∗
j (i, j) ∈ E ∪ ER

These non-convex nonlinear equations are the core building blocks in
many power system applications. Practical applications typically include
various operational constraints on the flow of power, which are captured
in the AC OPF formulation in Model 1. The objective function (5.1)

70 Learning to Optimize with Application in AC-OPF Problem

Model 1 The AC Optimal Power Flow Problem (AC-OPF)

variables: Sg
i , Vi ∀i ∈ N, Sij ∀(i, j) ∈ E ∪ ER

minimize:
∑

i∈N

c2i(ℜ(Sg
i))

2 + c1iℜ(Sg
i) + c0i (5.1)

subject to: vl
i ≤ |Vi| ≤ vu

i ∀i ∈ N (5.2)

− θ∆
ij ≤ ∠(ViV

∗
j) ≤ θ∆

ij ∀(i, j) ∈ E (5.3)

Sgl
i ≤ Sg

i ≤ Sgu
i ∀i ∈ N (5.4)

|Sij | ≤ suij ∀(i, j) ∈ E ∪ ER (5.5)

Sg
i − Sd

i =
∑

(i,j)∈E∪ER Sij ∀i ∈ N (5.6)

Sij = Y ∗
ij |Vi|2 − Y ∗

ijViV
∗
j ∀(i, j) ∈ E ∪ ER (5.7)

captures the cost of the generator dispatch. Constraints (5.2) and (5.3)
capture the voltage and phase angle difference operational constraints.
Constraints (5.4) and (5.5) enforce the generator output and line flow
limits. Finally, constraints (5.6) capture KCL and constraints (5.7) cap-
ture Ohm’s Law. Notice that this is a non-convex nonlinear optimization
problem and is NP-Hard Verma (2009). Therefore, significant attention
has been devoted to finding efficient approximation of Model 1.

Deep Learning Models. Supervised Deep Learning can be viewed as
the task of approximating a complex non-linear mapping from labeled
data. Deep Neural Networks (DNNs) are deep learning architectures
composed of a sequence of layers, each typically taking as inputs the
results of the previous layer LeCun et al. (2015). Feed-forward neural
networks are basic DNNs where the layers are fully connected and the
function connecting the layer is given by o = σ(Wx+ b), where x∈Rn

and is the input vector, o∈Rm the output vector, W ∈Rm×n a matrix of
weights, and b∈Rm a bias vector. The function σ(·) is often non-linear
(e.g., a rectified linear unit (ReLU)).

71

5.4. OPF Learning Goals

The goal of this thesis is to analyze the effectiveness of learning an OPF
mapping O : R2n → R2n: Given the loads {Sd

i }ni=1 (vectors of active and
reactive power demand), predict the set-points {(ℜ(Sg

i), |Vi|)}Ni=1, of the
generators, i.e., their active power and the voltage magnitude at their
buses. In the following pg and v are used as a shorthand for ℜ(Sg) and
|V |.

The input of the learning task is a dataset D= {(xℓ,yℓ)}Nℓ=1, where
xℓ =Sd and yℓ = (pg,v) represent the ℓth observation of load demands
and generator set-points which satisfy yℓ = O(xℓ). The output is a
function Ô that ideally would be the result of the following constrained
empirical minimization problem

minimize:
N∑

ℓ=1

L(yℓ, Ô(xℓ)) (5.8a)

subject to: C(xℓ, Ô(xℓ)), (5.8b)

where the loss function is specified by

L(y, ŷ) = ∥pg − p̂g∥2 + ∥v − v̂∥2,
and C(x, ŷ) holds if there exists voltage angles and reactive power gener-
ated that produce a feasible solution to the OPF constraints with x = Sd

and ŷ = (p̂g, v̂), where the hat notation is adopted to denoted the pre-
dictions of the model.

One of the key difficulties of this learning task is the presence of
the complex nonlinear feasibility constraints in the OPF. The approx-
imation Ô will typically focus on minimizing (5.8a) while ignoring the
OPF constraints or using penalty-based methods Fioretto et al. (2020b).
Its predictions will thus not guarantee the satisfaction of the problem
constraints. As a result, the validation of the learning task uses a load
flow computation ΠC that, given a prediction ŷ = Ô(xℓ), computes its
projection onto the constraint set C, i.e., the closest feasible generator
set-points ΠC(ŷ) = argminy∈C ∥ŷ − y∥2, with C being the OPF con-
straint set.

72 Learning to Optimize with Application in AC-OPF Problem

5.5. Deep Learning Proxies for AC-OPF: Roadmap

To perform the aforementioned analysis the paper assumes that the OPF
approximation Ô is given by a feed-forward fully connected (FCC) neural
network, as is the case for most of the work reviewed in Section 5.2. The
analysis will first focus on a model that minimizes (5.8a) while ignoring
the AC-OPF constraints C(xℓ, ŷℓ) as part of the learning process. As
the paper will show later, surprisingly, this model often produce highly
accurate predictions. Section 5 shed light on this surprising behavior by
analyzing the characteristics of the OPF objective, and the ability for
the model to also study the reliability of such prediction from a OPF
view-point. In doing so, the paper, analyzes what characteristics of the
learning model and of the OPF problem render OPF deep learning proxy
effective and reliable.

The paper attempted to categorize the complexity of the generators
based on its cost and the smoothness of its iterative solution trajectory
generated by a nonlinear solver. To analyze the later point, the paper
introduces the notion of complexity score to provide more insights on
which generators are more difficult to predict. The analysis indicates
that within each category of the generators, the prediction error differs
significantly.

As expected, the presence of nonlinear constraints plays a key role on
the learning process of OPF problem. This thesis provides a more com-
prehensive view of how this factor affecting the volatility of generators
dispatch at varying of the input loads and of the objective function.

Our last investigation mostly focuses on the characteristics of the
learning model. The paper provides analysis of model’s parameter size,
input scales, activation function, and its architecture. Motivated by
the volatility analysis of generators dispatch, the paper observes that
the current practice of deep learning model is not able to fully capture
the complexity of the power network. To reason our conclusion, we
provide a novel learning framework that is able to incorporate important
information during the learning process. This deep learning framework
would be able to imitate the iterative method to provide a more accurate
prediction.

73

The next sections shed light on the reasons for these behaviors. Prior to
do so, we describe the training data generation setting.

5.6. Generator’s Characteristics.

The Characteristics of Neural Network’s Input and Output

When investing the robustness issue of DNN on AC-OPF problem, we
observe that there are patterns between inputs and prediction errors.
To investigate these behaviors, this section first analyzes the change in
magnitude of the optimal generators dispatch at varying of the input
loads and then relates this analysis to the complexity of learning to ap-
proximate the generators dispatch.

Observe that, as illustrated in the motivating Figure 5.1, the solu-
tion trajectory associated with the generator set-points on various input
load parameters can often be naturally approximated by piecewise linear
functions. The goal of the mapping function Ô is thus to approximate
as best as possible these picewise linear functions associated with each
generator’s output. Intuitively, the more volatile the function is to ap-
proximate, the harder the associated learning task will be. The paper
introduces the following notion:

Definition 1 (Complexity Score). Given a piecewise linear function f :
Rk → R with p pieces, each of width hi for i ∈ [p], the complexity score
(CS) of f , CSf is computed by:

CIf = pµfσ
λ
f ,

where p is the number of pieces of f , µf is the average slope of f over
p pieces, σf is the standard deviation of {Li}pi=1, and λ is the weight
multiplier.

The complexity score allows us to reason about the volatility of a
piecewise linear function. It will become apparent later how this concept
relates to the learning ability of ReLU neural networks. Notice that the
two piecewise linear functions can be compared, in terms of their volatil-
ity, by their associated complexity score using a lexicographic ordering.

74 Learning to Optimize with Application in AC-OPF Problem

10 1

100

101

102

103

St
d

Er
ro

r

p = 1.0 p = 2.0

0 2000 4000
Complexity Score

10 1

100

101

102

103

St
d

Er
ro

r

p = 3.0

0 2000 4000
Complexity Score

p = 4+

f

low
high

Mean Error
100%

20 100%
10 20%

10%

Figure 5.2: Standard deviation of prediction error (in percentage) vs
complexity score, of an FCC neural network without constraint.

Since the generator dispatch trajectory can be approximated by a
piecewise linear function, we refer to the complexity score of a generator
g to denote the complexity score of the induced piecewise linear function
of the optimal dispatch O(Sd) of g at varying of the loads Sd in the
domain of interest.

Figure 5.2 illustrates the relation between the complexity score of a
generators with the standard deviation of prediction error (in percent-
age) obtained when comparing the optimal dispatches pg, associated
with different input load, to their predictions p̂g obtained by an FCC

75

learning model as described in section 5.5. The figure reports the re-
sult of each generators for test cases IEEE-89, -118, -162, -189, and -300
ordered by their complexity score. Standard deviation of error is an im-
portant metric to investigate the robustness of the learning task under
different input settings. Intuitively, DNNs have more difficulties with the
generators having higher complexity scores. However, figure 5.2 points
out that there are more patterns associated with each input dimension
of the complexity score function. Notice four distinct patterns between
prediction error and complexity score’s input range: i) Generators with
low complexity scores and p = 1 tend to have smaller error predictions
in average and standard deviation. Their σf stays in low range. ii) The
second generator group has a signature of medium range of complexity
score, p = {2, 3}, low σf , and lower standard deviation and average er-
ror iii) Generator group with the same range p = {2, 3} but high σf
thus higher complexity score has higher error standard deviation, and
iv) Generators with p ≥ 4 tend to have higher complexity score, higher
error standard deviation, and higher σf . The paper observes that DNNs
performance is less robust in some groups of generators at particular
load demand regions. These generators either have higher complexity
scores, or higher magnitude in one or combined complexity score’s input
dimension. The issue at certain load demand regions will be discussed
in Section VII.

Readers may notice outliers points that do not fit into discussed pat-
terns, this happens because: i) The load test cases are randomly selected
thus sometimes they do not cover the situation when the generator dis-
patch is more volatile than normal reducing in lower error standard devi-
ation, ii) The value range of solution dispatch varies significantly between
generators, thus affecting the computation of function’s smoothness. iii)
the codependent relationship between between generators input. The
model performs better when predicting easy generators alone than when
predicting easy and hard generators together.

Generator’s cost This section focuses on examining the cost aspect
of each generator group to gain more insights on the difference in per-
formance between groups.

76 Learning to Optimize with Application in AC-OPF Problem

The paper performs KMeans to cluster generators based on their
dispatch values and cost coefficients from all power network. The cost
coefficients of all generators are sorted to examine the distribution of gen-
erator clustering. The paper observes that each generator cluster has a
distinctive cost distribution and dispatch trajectory pattern. Specifically,
the cluster with small cost coefficients (less than 25th% quantile of cost
coefficients distribution) does not change value across power demand.
Generators with cost coefficients in the 50-75% quantile tend have more
volatile trajectories, Finally, for the generator cluster with the highest
cost (greater than 75% quantile), their trajectories stay inactive in the
lower demand and increase dramatically at higher load demand. Un-
surprisingly, these clustering results agree with our observed patterns
about generator’s complexity score and its error’s standard deviation.
The low cost-coefficient group contains generators with low complexity
score, p = {1}, and low error’s standard deviation. The most costly
generators would have p = {2, 3, 4}, high σf , and high error’s standard
deviation. Finally, the generators with mid-range cost coefficients would
also have p = {2, 3} but relatively lower σf , and lower error’s standard
deviation. This observation matches the intuition that the power system
would avoid using expensive generators and involve more costly gener-
ators only when constraints are harder to solve at higher load points,
resulting in sudden changes in generator dispatch. Because the changes
occur at later load points with such spare frequency, the regular DNN
set-up does not have enough information to adjust its prediction and
thus is less robust towards these difficult cases.

5.7. Network Characteristics

Activation Function This section focuses on the influence of activa-

tion function on the learning model of OPF problem. As observed above,
the trajectory of the generators outputs can be described by piecewise
linear functions. Next, note that ReLU networks capture piecewise linear
functions Huang (2020).

This observation justifies the choice of ReLU activation function for

77

0.80 0.85 0.90 0.95 1.00
Power demand multiplier ()

0

2

4

6

Pe
r U

ni
t

pg
11

p1
g
2 FCC Tanh

FCC ReLU

(a) IEEE-162

0.80 0.85 0.90 0.95 1.00
Power demand multiplier ()

0

5

10

15

Pe
r U

ni
t

pg
12

pg
11 FCC Tanh

FCC ReLU

(b) IEEE-300

Figure 5.3: Accuracy of ReLU FCC vs Tanh FCC on selected generators.

DNNs used to approximate OPF solutions. Figure 5.3 illustrates a com-
parison between two FCCs differing only in the type of activation func-
tions they adopt. The plots show the original generators trajectories
(solid lines), the approximations learned with a ReLU network (dot-
ted lines) and those learned with a Tanh network (dashed lines). The
top and bottom plots show results for selected generators from, respec-
tively, the IEEE-162 and IEEE-300 test cases. Notice how the ReLU
network predictions can represent piecewise linear functions that better
approximate the original generator trajectories, when compared to those
obtained from a Tanh network.

Size of Parameter While these ReLU FCC models are compatible
with the task of predicting the solutions of an OPF problem, the model
capacity required to represent a target piecewise linear function exactly
depends directly on the number of constituent pieces. Next, this section
provides theoretical insights to link the ability of an FCC model to learn
good approximations of generators trajectories of various Complexity
Score.

Theorem 1 (Model Capacity Arora et al. (2016)). Let f : Rd → R be
a piecewise linear function with p pieces. If f is represented by a ReLU
network with depth k + 1, then it must have size at least 1

2kp
1
k − 1.

Conversely, any piecewise linear function f that is represented by a ReLU
network of depth k+1 and size at most s, can have at most

(
2s
k

)k pieces.

78 Learning to Optimize with Application in AC-OPF Problem

The result above provides a lower bound on the model complexity to
represent a given piecewise linear function. It implies that larger models
may be able to better capture more complex relationships between inputs
(loads) and output (generator set-points) values.

The second observation relates the load values with the total varia-
tion of the generators outputs. The following theorem bounds the ap-
proximation error when using continuous piecewise linear functions: it
connects the approximation errors of a piecewise linear function with the
total variation in its slopes.

Theorem 2. Suppose a piecewise linear function fp′ , with p′ pieces each
of width hk for k∈ [p′], is used to approximate a piecewise linear fp with
p pieces, where p′≤p. Then the approximation error

∥fp − fp′∥1 ≤
1

2
h2max

∑

1≤k≤p

|Lk+1 − Lk|,

holds where Lk is the slope of fp on piece k and hmax is the maximum
width of all pieces.

Proof. Firstly, the proof proceeds with considering the special case in
which fp conincides in slope and value with fp′ at some point, and that
each piece of fp′ overlaps with at most 2 distinct pieces of fp. This is
always possible when p′ ≥ p

2 . Call Ik the interval on which fp′ is defined
by its kth piece. If Ik overlaps with only one piece of fp, then for x ∈ Ik,

|fp(x)− fp′(x)| = 0 (5.9)

If Ik overlaps with pieces k and k + 1 of fp, then for x ∈ Ik,

|fp(x)− fp′(x)| ≤ hk|Lk+1 − Lk| (5.10)

Each of the above follows from the assumption that fp and fp′ are equal
in their slope and value at some point within Ik. From this it follows

79

that on Ik,

∥fp − fp′∥1 =
∫

Ik

|fp − fp′ | ≤
1

2

∑

1≤i≤p

h2k|Lk+1 − Lk|

≤ 1

2
h2max

∑

1≤k≤p

|Lk+1 − Lk|, (5.11)

so that on the entire domain of fp and fp′ ,

∥fp − fp′∥1 ≤
1

2
h2max

∑

1≤k≤p

|Lk+1 − Lk|. (5.12)

Since removing the initial simplifying assumptions tightens this upper
bound, the result holds.

The result above indicates that the more volatile the generators tra-
jectory, the harder it will be to learn. Moreover, for a neural network
of fixed size, the more volatile the generator trajectory, the larger the
approximation error will be in general.

The final observation is the fact that optimization problems typically
satisfy a local Lipschitz condition, i.e., if the inputs of two instances are
close, then they admit solutions that are close as well, i.e., for

⋆
y (i) ∈

O(x(i)) and
⋆
y (j) ∈ O(x(j)),

∥ ⋆
y (i)− ⋆

y (j)∥ ≤ C∥x(i) − x(j)∥, (5.13)

for some C ≥ 0 and ∥x(i) − x(j)∥ ≤ ϵ, where ϵ is a small value. This ob-
servation suggests that, when this local Lipschitz condition holds, it may
be possible to generate solution trajectories that are well-behaved and
can be approximated effectively. Note that Lipschitz functions can be
nicely approximated by neural networks as the following result indicates.

Theorem 3 (Approximation Chong (2020)). If f : [0, 1]n → R is L-
Lipschitz continuous, then for every ϵ > 0, there exists some single-layer
neural network ρ of size N such that ∥f − ρ∥∞ < ϵ, where N =

(
n+ 3L

ϵ
n

)
.

The result above illustrates that the model capacity required to approxi-
mate a given function depends to a non-negligible extent on the Lipschitz
constant value of the underlying function.

80 Learning to Optimize with Application in AC-OPF Problem

5000 10000 15000 20000 25000 30000
Model Parameter Size

2

4

6

8

10

12

Pr
ed

ict
io

n
Er

ro
r (

%
) IEEE-118

pg
29 pg

28 pg
37

Figure 5.4: Prediction error for three key IEEE-118 generators at in-
creasing of the FCC model complexity.

Combined with the observations reported in the previous section—
showing that, for the test cases analyzed, a large number of generators
have a low complexity score—the results above further illustrate the
ability of DNNs to approximate OPF solutions with small average errors.

First notice that, in theory, it is to be expected that larger DNN mod-
els will be better suited to learning more complex solution trajectories
(Theorem 1). However, this aspect was not observed in our experiments.
Figure 5.4 illustrates this surprising behavior. It reports the prediction
errors associated with the trajectories of three IEEE-118 generators at
the varying of the model size. Notice how prediction errors improve-
ments saturate quickly and that even increasing the model size substan-
tially does not produce notable error reductions. In practice, however,
the theoretical bounds rarely guarantee the training of good approxima-
tors, as the ability to minimize the empirical risk (see Equation (5.8a)) is
often another significant source of error. This section implies that there
are also additional factors that may affect the ability of the DNN models
to learn good OPF approximators, including the presence of the OPF
constraints. This aspect will be elaborated in the next section.

81

Figure 5.5: Non-linear patterns of generators around load multiplier α ∈
[0.97, 1.05] (top) and associated voltage bounds issues at various buses.

5.8. Constraints

The reminder of the section seeks to answer why generators display ir-
regularity patterns in some certain regions.

To answer this question the paper analyzes generators analyzes gen-
erators with large complexity score before and during the irregularities
occur. Indeed, high prediction errors pertain commonly to the optimal
dispatch trajectories associated with these regions.

Figure 5.5 illustrates an example for the IEEE-118 test case, but
these observations are consistent across the whole benchmark set ana-
lyzed. The figure highlights a region of high volatility involving several
generators. The top plot shows the dispatch trajectories of three gener-

82 Learning to Optimize with Application in AC-OPF Problem

generator
0.0

0.2

0.4

0.6

M
AE

 (P
er

 U
ni

t)

No Constraint

generator

With Constraint

generator
0

2

4

6

M
AE

 (P
er

 U
ni

t)

No Constraint

generator

With Constraint

Figure 5.6: Error distributions of generators associated with problematic
buses produced by FCC with and without constraint.

ators (continuous lines) at varying of the input load multipliers α and
their associated upper bound limits (dashed lines) (see constraints (5.4)
of Model 1). The shaded area highlights the region in which large volatil-
ities are observed. This region also correspond to the portion associated
with the higher dispatch error predictions. The bottom plot shows the
trajectories of the voltage magnitude values for a selection of buses. The
upper bounds (constraints (5.2)) are illustrated with a dashed line. No-
tice that, while the generators dispatch are within the feasible operating
regions, the bottom plot highlights the presence of voltage issues on
several buses. The reported buses all are associated with voltage mag-
nitudes value which results in binding constraints (5.2) in the region of
high volatility of the generators considered. These prediction errors are

83

(Gen 48)

(Gen 46)

Figure 5.7: IEEE-300. Optimal generators trajectory (red) for generator
36 (top) and 48 (bottom). Predictions: FCC without constraints (or-
ange), FCC with constraints green), and RNN with constraint (blue).

thus likely to arise as the hidden representation of the DNN does not
accurately learn the operational and physical constraints which regulate
the behavior of the OPF solutions. In other words, the model is un-
aware of these constraints. Figure 5.6 (first column) demonstrated how
error of the generators that associates with bus with buses with binding
constraints vary dramatically across different power demands. The er-
ror tend to have higher mean and higher standard deviation within the
binding region.

Therefore, as investigated by several authors (including, Zamzam
& Baker (2020); Donti et al. (2020); Fioretto et al. (2020b)) this work
found that actively exploiting the problem constraints during training

84 Learning to Optimize with Application in AC-OPF Problem

Test case FCC Without Constraint FCC With Constraint RNN With Constraint

Bound Vio KLC Vio LF Err. (%) Opt. Gap (%) Bound Vio KLC Vio LF Err. (%) Opt. Gap (%) Bound Vio KLC Vio LF Err. (%) Opt. Gap (%)

IEEE-30 0.000 0.001 0.128 0.0 ± 0.0 0.001 0.0 ± 0.0 0.02 ± 0.09 0.86 0.27 ± 0.24
IEEE-118 0.01 ± 0.006 0.05 ± 0.06 102.8 2.2 ± 1.12 0.009 ± 0.007 0.04 ± 0.03 103.8 2.14 ± 1.17 0.002 ± 0.006 0.01 ± 0.03 23.6 0.310 ± 0.22
IEEE-162 0.01 ± 0.02 0.62± 0.66 25.46 1.84 ± 1.47 0.01 ± 0.01 0.17 ± 0.16 41.13 1.99 ± 1.04 0.006 ± 0.04 0.01 ± 0.04 4.478 0.28 ± 0.22
IEEE-300 0.05 ± 0.04 0.45 ± 0.63 20.63 7.68 ± 1.81 0.01 ± 0.02 0.1 ± 0.01 30.58 7.13 ± 5.07 0.008 ± 0.017 0.13 ± 0.98 10.99 0.35 ± 0.11

Table 5.1: Accuracy comparison: FCC with and without constraints and
RNN models.

to be an effective mechanism to enhance the model accuracy. The con-
straints were added using a model similar to Fioretto et al. (2020b)
which encourages the satisfaction of the OPF constraints by the means
of a Lagrangian dual approach. Notice that the constrained and baseline
models differ solely in the loss function, and not in the number of their
parameters.

Table 5.1 reports the average prediction errors ∥ŷ − y∥1 over the
test set, the average load flow (LF) errors ∥ΠC(ŷ)−y∥1 which compare
the closest feasible solution ΠC(ŷ) of the predictions ŷ with the opti-
mal quantities y, and the average optimality gap, as |O(ΠC(p̂g))−O∗(pg)|

O∗(pg) ,
with O being the associated OPF cost. It also compares the average
absolute constraint violations (in p.u.) for the set-points bounds (con-
straints (5.2) and (5.4)) and the KCL (constraint (5.6)). Notice how
the constrained model reduces the constraint violations, when compared
to the baseline. Figure 5.6 also illustrates how the mean and standard
deviation error of the generators associated with the problematic buses
are reduced when introducing Lagrange dual loss to the training pro-
cess. Unsurprising, constrained DNN versions are more robust than the
unconstrained models.

This aspect is also evident in Figure 5.7, which compares the pre-
diction trajectories of the FCC model with (yellow curves) and without
(red curves) constraints for two high-complexity IEEE-300 generators.
Notice that the constrained model predictions follow more closely the
original trajectories when compared to the simple model.

This aspect is surprising from an empirical risk minimization per-
spective: Including constraints using Lagrangian-based penalties adds
additional terms to the loss function which can be interpreted as further
regularizing terms, and thus, it may be expected they would reduce the

85

t=1 t=2 t=T…

Sd
`

<latexit sha1_base64="LBX0MFfyS2SbLlMJimw/+nLrnFY=">AAACC3icbZDLSgMxGIUzXmu9VV26CRbBVZmRgi6LblxWtBdox5LJ/NOGJpkxyQhl6CO4dqvP4E7c+hA+gm9h2s5C2x4IfJzz/yQ5QcKZNq777aysrq1vbBa2its7u3v7pYPDpo5TRaFBYx6rdkA0cCahYZjh0E4UEBFwaAXD60neegKlWSzvzSgBX5C+ZBGjxFjL7wYiuxs/hL0ucN4rld2KOxVeBC+HMspV75V+umFMUwHSUE607nhuYvyMKMMoh3Gxm2pICB2SPnQsSiJA+9n00WN8ap0QR7GyRxo8df9uZERoPRKBnRTEDPR8NjGXZoFYZndSE136GZNJakDS2f1RyrGJ8aQYHDIF1PCRBUIVs1/AdEAUocbWV7TdePNNLELzvOJVK9Xbarl2lbdUQMfoBJ0hD12gGrpBddRAFD2iF/SK3pxn5935cD5noytOvnOE/sn5+gVOkJtl</latexit>

Sd
`

<latexit sha1_base64="LBX0MFfyS2SbLlMJimw/+nLrnFY=">AAACC3icbZDLSgMxGIUzXmu9VV26CRbBVZmRgi6LblxWtBdox5LJ/NOGJpkxyQhl6CO4dqvP4E7c+hA+gm9h2s5C2x4IfJzz/yQ5QcKZNq777aysrq1vbBa2its7u3v7pYPDpo5TRaFBYx6rdkA0cCahYZjh0E4UEBFwaAXD60neegKlWSzvzSgBX5C+ZBGjxFjL7wYiuxs/hL0ucN4rld2KOxVeBC+HMspV75V+umFMUwHSUE607nhuYvyMKMMoh3Gxm2pICB2SPnQsSiJA+9n00WN8ap0QR7GyRxo8df9uZERoPRKBnRTEDPR8NjGXZoFYZndSE136GZNJakDS2f1RyrGJ8aQYHDIF1PCRBUIVs1/AdEAUocbWV7TdePNNLELzvOJVK9Xbarl2lbdUQMfoBJ0hD12gGrpBddRAFD2iF/SK3pxn5935cD5noytOvnOE/sn5+gVOkJtl</latexit>

Sd
`

<latexit sha1_base64="LBX0MFfyS2SbLlMJimw/+nLrnFY=">AAACC3icbZDLSgMxGIUzXmu9VV26CRbBVZmRgi6LblxWtBdox5LJ/NOGJpkxyQhl6CO4dqvP4E7c+hA+gm9h2s5C2x4IfJzz/yQ5QcKZNq777aysrq1vbBa2its7u3v7pYPDpo5TRaFBYx6rdkA0cCahYZjh0E4UEBFwaAXD60neegKlWSzvzSgBX5C+ZBGjxFjL7wYiuxs/hL0ucN4rld2KOxVeBC+HMspV75V+umFMUwHSUE607nhuYvyMKMMoh3Gxm2pICB2SPnQsSiJA+9n00WN8ap0QR7GyRxo8df9uZERoPRKBnRTEDPR8NjGXZoFYZndSE136GZNJakDS2f1RyrGJ8aQYHDIF1PCRBUIVs1/AdEAUocbWV7TdePNNLELzvOJVK9Xbarl2lbdUQMfoBJ0hD12gGrpBddRAFD2iF/SK3pxn5935cD5noytOvnOE/sn5+gVOkJtl</latexit>

kŷ(1)
` � y(1)k2

<latexit sha1_base64="N4T+oxVgKA6jaSf+J5aGrO7dyJc=">AAACLnicbZDLSgMxFIYzXmu9VV26CRahLiwzpaArKbhxWcFeoDMdMmnahiaZIckIw3Tewgdx7VafQXAhbvUtTC8LbftD4M93zuFw/iBiVGnb/rDW1jc2t7ZzO/ndvf2Dw8LRcVOFscSkgUMWynaAFGFUkIammpF2JAniASOtYHQ7qbceiVQ0FA86iYjH0UDQPsVIG+QXyu4YukOkUzfgaZJlvksY66Yl5yK7hDM2+0F33K1Av1C0y/ZUcNk4c1MEc9X9wo/bC3HMidCYIaU6jh1pL0VSU8xIlndjRSKER2hAOsYKxIny0uldGTw3pAf7oTRPaDilfydSxJVKeGA6OdJDtVibwJW1gK/CnVj3r72UiijWRODZ/n7MoA7hJDvYo5JgzRJjEJbUnADxEEmEtUk4b7JxFpNYNs1K2amWq/fVYu1mnlIOnIIzUAIOuAI1cAfqoAEweAIv4BW8Wc/Wu/Vpfc1a16z5zAn4J+v7F/KWqAo=</latexit>

p
2kŷ(2)

` � y(2)k2

<latexit sha1_base64="B0RaDjNortXL3AtKI7gCgt7WKUQ=">AAACNnicbZDLSgMxFIYzXmu9VV26CRahLiwzpagrKbhxWcFeoNOWTJq2ocnMmJwRynTexAdx7VZfwI07EXc+gulloW1/CPz5zjkczu+Fgmuw7XdrZXVtfWMztZXe3tnd288cHFZ1ECnKKjQQgap7RDPBfVYBDoLVQ8WI9ASreYObcb32yJTmgX8Pw5A1Jen5vMspAYPamQtXPyiIC4k7wm6fQOx6Mh4mSdtlQrTiXOEsOcdTNv1hd9Qq4HYma+ftifCicWYmi2YqtzPfbiegkWQ+UEG0bjh2CM2YKOBUsCTtRpqFhA5IjzWM9YlkuhlP7kvwqSEd3A2UeT7gCf07EROp9VB6plMS6Ov52hgurXlyGW5E0L1qxtwPI2A+ne7vRgJDgMcZ4g5XjIIYGkOo4uYETPtEEQom6bTJxplPYtFUC3mnmC/eFbOl61lKKXSMTlAOOegSldAtKqMKougJvaBX9GY9Wx/Wp/U1bV2xZjNH6J+sn18Xwaus</latexit>

p
Tkŷ(T)

` � yk2

<latexit sha1_base64="EPzMshsA3L4NEvhnzmMj+as1jN4=">AAACMHicbZDLSgMxFIYzXmu9VV26CRahLiwzpaArKbhxWaE36LQlk6ZtaDIzJmeEMp3X8EFcu9Vn0JW41KcwvSy07Q+Bn+8/h3B+LxRcg21/WGvrG5tb26md9O7e/sFh5ui4poNIUValgQhUwyOaCe6zKnAQrBEqRqQnWN0b3k7y+iNTmgd+BUYha0nS93mPUwIGdTK2qx8UxJXEHWN3QCB2PRmPkqTjMiHaca5ykVziGcPuuF3AnUzWzttT4WXjzE0WzVXuZL7dbkAjyXyggmjddOwQWjFRwKlgSdqNNAsJHZI+axrrE8l0K55eluBzQ7q4FyjzfMBT+ncjJlLrkfTMpCQw0IvZBK7MPLkKNyPoXbdi7ocRMJ/O/u9FAkOAJ+3hLleMghgZQ6ji5gRMB0QRCqbjtOnGWWxi2dQKeaeYL94Xs6WbeUspdIrOUA456AqV0B0qoyqi6Am9oFf0Zj1b79an9TUbXbPmOyfon6yfX0L7qds=</latexit>

ŷ
(1)
`

<latexit sha1_base64="hZeYKIXxwONtDxQv65vYB8Y7dOM=">AAACQHicdVBLSwMxGMz6tr6qHr0Ei6AgJduH1lvRi0cFW4XuWrJp2oYmu0uSFUrYv+MP8exVwX+gJ/HqyWwfoKIDgWHmmy/JBDFnSiP04szMzs0vLC4t51ZW19Y38ptbTRUlktAGiXgkbwKsKGchbWimOb2JJcUi4PQ6GJxl/vUdlYpF4ZUextQXuBeyLiNYW6mdrxtvtKQle4FvUPGoXDs6QYeoiFC1dlzOiIuqpXLq9bE2XiDMME1vzb57kLY9ynnazhemKThNwWkKulbJUAATXLTzb14nIomgoSYcK9VyUax9g6VmhNM05yWKxpgMcI+2LA2xoMo3o0emcM8qHdiNpD2hhiP1e8JgodRQBHZSYN1Xv71M/NMLxF9yK9Hdmm9YGCeahmR8fzfhUEcwaxN2mKRE86ElmEhmvwBJH0tMtO08Z7uZFgD/J81S0a0UK5eVQv100tIS2AG7YB+44BjUwTm4AA1AwD14BE/g2XlwXp1352M8OuNMMtvgB5zPL2uWrRU=</latexit>

ŷ
(2)
`

<latexit sha1_base64="f2JFNOyNu85B09wrtwOqS06aYjE=">AAACQHicdVDNSgMxGMz6b/2revQSLIKClGxb23orevGoYG2hu5ZsmrbBZHdJskIJ+zo+iGevCr6BnsSrJ7O1BRUdCAwz33xJJog5UxqhZ2dmdm5+YXFpObeyura+kd/culJRIgltkohHsh1gRTkLaVMzzWk7lhSLgNNWcHOa+a1bKhWLwks9iqkv8CBkfUawtlI33zDeeElHDgLfoGK1XK8eo0NUROioXitnxEVHpXLqDbE2XiDMKE2vzX7pIO16lPO0my9MU3CagtMUdK2SoQAmOO/mX71eRBJBQ004Vqrjolj7BkvNCKdpzksUjTG5wQPasTTEgirfjB+Zwj2r9GA/kvaEGo7V7wmDhVIjEdhJgfVQ/fYy8U8vEH/JnUT3675hYZxoGpKv+/sJhzqCWZuwxyQlmo8swUQy+wVIhlhiom3nOdvNtAD4P7kqFd1KsXJRKTROJi0tgR2wC/aBC2qgAc7AOWgCAu7AA3gET8698+K8Oe9fozPOJLMNfsD5+ARtOa0W</latexit>

ŷ
(T�1)
`

<latexit sha1_base64="19uhz6n4cB33IO0YayGaRwv+5GA=">AAACQnicdVBLSwMxGMz6rPVV9eglWAQFLVlbtd6KXjwqtCp015JN0zY02V2SrFDC/h9/iGev6k/Qm3j1YLYPUNGBwDDzzZdkgpgzpRF6caamZ2bn5nML+cWl5ZXVwtr6lYoSSWiDRDySNwFWlLOQNjTTnN7EkmIRcHod9M8y//qOSsWisK4HMfUF7oaswwjWVmoVTo03XNKU3cA3qHRUrh6doD1UQuiwelzOiIsOD8qp18PaeIEwgzS9NTv1fXc3bXmU87RVKE5ycJKDkxx0rZKhCMa4aBVevXZEEkFDTThWqumiWPsGS80Ip2neSxSNMenjLm1aGmJBlW+Gz0zhtlXasBNJe0INh+r3hMFCqYEI7KTAuqd+e5n4pxeIv+RmojtV37AwTjQNyej+TsKhjmDWJ2wzSYnmA0swkcx+AZIelpho23redjMpAP5Prg5KbqVUuawUa6fjlnJgE2yBHeCCY1AD5+ACNAAB9+ARPIFn58F5c96dj9HolDPObIAfcD6/AK0Vrao=</latexit>

ŷ
(T)
`

<latexit sha1_base64="n02BAuv706rVwxe5u/4NOHex6F0=">AAACQHicdVDNSgMxGMzW//pX9eglWIQKUrK2ar0VvXhUsLXQXUs2TdvQZHdJskIJ+zo+iGevCr6BnsSrJ7O1BRUdCAwz33xJJog5UxqhZyc3Mzs3v7C4lF9eWV1bL2xsNlWUSEIbJOKRbAVYUc5C2tBMc9qKJcUi4PQ6GJ5l/vUtlYpF4ZUexdQXuB+yHiNYW6lTqBtvvKQt+4FvUPmoUjs6QfuojNBh7biSERcdHlRSb4C18QJhRml6Y0pXe2nHo5ynnUJxmoLTFJymoGuVDEUwwUWn8Op1I5IIGmrCsVJtF8XaN1hqRjhN816iaIzJEPdp29IQC6p8M35kCnet0oW9SNoTajhWvycMFkqNRGAnBdYD9dvLxD+9QPwltxPdq/mGhXGiaUi+7u8lHOoIZm3CLpOUaD6yBBPJ7BcgGWCJibad52030wLg/6R5UHar5epltVg/nbS0CLbBDigBFxyDOjgHF6ABCLgDD+ARPDn3zovz5rx/jeacSWYL/IDz8Qmk3604</latexit>

LC(ŷ
(T)
` , y`)

<latexit sha1_base64="9vgzMUkXU1RBQpruMQTdM65tV+Y=">AAACM3icbVDLSsNAFJ3UV62vqks3g0VoQUqiBV1JoRsXLir0BU0Nk+m0HTqThJmJUEI+xA9x7VY/QdyJGxf+g5M0C217YODMOfdyOccNGJXKNN+N3Nr6xuZWfruws7u3f1A8POpIPxSYtLHPfNFzkSSMeqStqGKkFwiCuMtI1502Er/7SISkvtdSs4AMOBp7dEQxUlpyipc2R2qCEYvuYqdRtidIRbbLo1kcP0TlViV2bMLYOZxr6afiFEtm1UwBl4mVkRLI0HSK3/bQxyEnnsIMSdm3zEANIiQUxYzEBTuUJEB4isakr6mHOJGDKA0XwzOtDOHIF/p5Cqbq340IcSln3NWTSRS56CXiSs/lq+R+qEbXg4h6QaiIh+f3RyGDyodJgXBIBcGKzTRBWFAdAeIJEggrXXNBd2MtNrFMOhdVq1at3ddK9ZuspTw4AaegDCxwBergFjRBG2DwBF7AK3gzno0P49P4mo/mjGznGPyD8fML/hurSw==</latexit>

Loss terms …

Output
prediction

s1

<latexit sha1_base64="P+vcwB4iwCN3/629xY9M8ccsBww=">AAACAXicbZDLSgMxGIX/eK31VnXpJlgEV2VGCrosunFZ0V6gHUomzbShSWZIMkIZunLtVp/Bnbj1SXwE38K0nYW2PRD4OOf/SXLCRHBjPe8bra1vbG5tF3aKu3v7B4elo+OmiVNNWYPGItbtkBgmuGINy61g7UQzIkPBWuHodpq3npg2PFaPdpywQJKB4hGnxDrrwfT8XqnsVbyZ8DL4OZQhV71X+un2Y5pKpiwVxJiO7yU2yIi2nAo2KXZTwxJCR2TAOg4VkcwE2eypE3zunD6OYu2Osnjm/t3IiDRmLEM3KYkdmsVsaq7MQrnK7qQ2ug4yrpLUMkXn90epwDbG0zpwn2tGrRg7IFRz9wVMh0QTal1pRdeNv9jEMjQvK361Ur2vlms3eUsFOIUzuAAfrqAGd1CHBlAYwAu8wht6Ru/oA33OR9dQvnMC/4S+fgEJwpbU</latexit>

s2

<latexit sha1_base64="eGmdAqImbqTTaurJ70ms5+i3WJw=">AAACAXicbZDLSgMxGIX/qbdab1WXboJFcFVmSkGXRTcuK9oLtEPJpJk2NMkMSUYoQ1eu3eozuBO3PomP4FuYTmehbQ8EPs75f5KcIOZMG9f9dgobm1vbO8Xd0t7+weFR+fikraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wuZ3nnSeqNIvko5nG1Bd4JFnICDbWetCD2qBccatuJrQKXg4VyNUclH/6w4gkgkpDONa657mx8VOsDCOczkr9RNMYkwke0Z5FiQXVfpo9dYYurDNEYaTskQZl7t+NFAutpyKwkwKbsV7O5ubaLBDr7F5iwms/ZTJODJVkcX+YcGQiNK8DDZmixPCpBUwUs19AZIwVJsaWVrLdeMtNrEK7VvXq1fp9vdK4yVsqwhmcwyV4cAUNuIMmtIDACF7gFd6cZ+fd+XA+F6MFJ985hX9yvn4BC12W1Q==</latexit>

sT�1

<latexit sha1_base64="sNz7lUJkc1533IXiW3JLBf+xuiU=">AAACBXicbZDLSgMxGIX/qbdab1WXboJFcGOZkQFdFt24rNAbtEPJpJk2NMkMSUYoQ9eu3eozuBO3PoeP4FuYtrPQtgcCH+f8P0lOmHCmjet+O4WNza3tneJuaW//4PCofHzS0nGqCG2SmMeqE2JNOZO0aZjhtJMoikXIaTsc38/y9hNVmsWyYSYJDQQeShYxgo212rqfNa68ab9ccavuXGgVvBwqkKveL//0BjFJBZWGcKx113MTE2RYGUY4nZZ6qaYJJmM8pF2LEguqg2z+3Cm6sM4ARbGyRxo0d/9uZFhoPRGhnRTYjPRyNjPXZqFYZ3dTE90GGZNJaqgki/ujlCMTo1klaMAUJYZPLGCimP0CIiOsMDG2uJLtxltuYhVa11XPr/qPfqV2l7dUhDM4h0vw4AZq8AB1aAKBMbzAK7w5z8678+F8LkYLTr5zCv/kfP0CAfWYdQ==</latexit>

Figure 5.8: RNN model Overview.

model variance further.
However, Figure 5.7 also highlights some drawbacks of the constrained

model. Despite its improved accuracy (and its ability to approximate
precisely many easy generators) its predictions tend to discard the rapid
changes in trajectories of the generators outputs (see bottom plot). From
a data representation point of view, these cases (where the change in
trajectory occurs) represent outliers and thus are hard to predict. This
observation motivates the introduction of a novel model described next.

5.9. A Novel RNN-based Learning Framework

Motivation The issue observed above could be partially addressed by

providing additional training data to the learning task with the goal of
more suitably representing the inputs associated with the outlier set-
points. Creating this data is, however, a very challenging task. It is
unknown a-priori which set-point, within a trajectory, may be uncom-
mon. Additionally, generating the input loads associated to a desired
set-point would be an extremely challenging operation.

While generating additional targeted data is thus unfeasible, the pa-
per reveals that DNNs has robustness issues when predicting generators
with high cost coefficients and during binding constraint regions. To
find the mitigation solution, the paper looks at how the traditional op-
timization system predict these generators before and during binding

86 Learning to Optimize with Application in AC-OPF Problem

constraints.The selected solver is IPOPT Wächter & Biegler (2006), a
popular nonlinear solver implementing a primal-dual interior point line
search filter method to find a local optimal solution to a given problem
instance. IPOPT iteratively search for feasible solution and terminate
when convergent condition is reached. The paper investigated IPOPT’s
iterative solution trajectory of each generator in different groups as men-
tioned in section VI.

Figure 5.9 (top) displays the solutions trajectory across load de-
mand from selected generator at every group at test case IEEE-300.
As mentioned, the dispatch solution trajectory of each generator group
has unique volatility patterns. Figure 5.9 (bottom) shows the iterative
solution trajectory outputed by IPOPT for the same generators before,
during, and after binding constraints (α = {0.87, 0.97, 1.03}). Firstly,
notice the iterative trajectory of the hard generator groups are more
volatile than the easier ones. Secondly, the iterative trajectories display
more irregular patterns at α ∈ {0.97, 1.03}. The volatility in the itera-
tive trajectory curves is the result of IPOPT refreshing its states when
getting into saddle regions. Notice the strong correlation between the
volatility of iterative solution trajectory and the difficulty of the learn-
ing task. IPOPT seems to behave differently to each generator group at
different load points. This observation connects the generators volatility
with the hardness of the model to capture its output trajectory. Since
only load demand information are supplied to predict solution dispatch,
it is hard for DNNs to pick up these patterns to successfully foresee the
sudden changes in generator dispatch. In other words, it is essential to
incorporate information about the generator’s volatility into the training
process of DNNs. One intuitive solution is to design the system that can
imitate the solver while taking advantage of big training data.

Training Data The paper analyzes the learning models behavior trained
on test cases from the NESTA library Coffrin et al. (2014). For presenta-
tion simplicity, the analysis focuses primarily on the IEEE 118, 162 and
300-bus networks. However, the results are consistent across the entire
benchmark set. The ground truth data are constructed as follows: For
each network, different benchmarks are generated by altering the amount
of nominal load x = Sd within a range of ±20%. For a given load multi-

87

0.80 0.85 0.90 0.95 1.00 1.05
Power Demand Multiplier ()

0

5

10

15

Pe
r U

nit

generator = pg_29

0.80 0.85 0.90 0.95 1.00 1.05
Power Demand Multiplier ()

generator = pg_11

0.80 0.85 0.90 0.95 1.00 1.05
Power Demand Multiplier ()

generator = pg_38

0.80 0.85 0.90 0.95 1.00 1.05
Power Demand Multiplier ()

generator = pg_64

0 10 20 30
Iterative Step

0.0

2.5

5.0

7.5

10.0

12.5

So
lu

tio
n

Tr
aje

ct
or

y

generator = pg_29

0 10 20 30
Iterative Step

0

5

10

15

generator = pg_11

0 10 20 30
Iterative Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50
generator = pg_38

0 10 20 30
Iterative Step

0

1

2

3

4

5

generator = pg_64

0.87
0.97
1.03

Figure 5.9: Selected generators from the forth group (first two columns),
second group (third and forth column), and third group (last col-
umn). The first row shows their iterative solution trajectory at α ∈
{0.87, 0.97, 1.03}. The second row display the optimal generator dis-
patches across loads.

plier α sampled uniformly in the interval [0.8, 1.2], a load vector x′ = Sd′

is generated by perturbing each load value Sd
i independently with addi-

tive Gaussian noise centered in α and such that
∑

i S
d′
i = α

∑
i S

d
i . A

network value that constitute a dataset entry (x′,y′ = O(x′)) is a feasi-
ble OPF solution obtained by solving the AC-OPF problem detailed in
Model 1. The data are normalized using the per unit (pu) system. The
experiments use a 80/20 train-test split and report results on the test
set.

Set-Up and Results This section introduces a DNN model for OPF

predictions which relies on deep autoregressive Recurrent Neural Net-
works (RNN). RNNs are a powerful tool to learn from sequential data
and have been vastly adopted in domains including natural language pro-
cessing and computer vision Kreider et al. (1995); Connor et al. (1994);
Liu et al. (2020). An autoregressive model is typically used in time-series
modeling where the current time step value zt depends linearly on some
value zt′ with t′ < t. Similarly, autoregressive RNNs condition the pre-

88 Learning to Optimize with Application in AC-OPF Problem

Test Case FCC RNN Test Case FCC RNN

IEEE-118 11.4 0.007 IEEE-300 47.8 0.04
IEEE-162 14.8 0.005 PEGASE-1354 154 0.32
EDIN-189 3.4 0.013 RTE-2868 2907 1.64

Table 5.2: RNN vs FCC: Model parameter size (Million).

diction of the current time step on the predictions of the previous steps.
They thus are a natural fit for the intended purpose.

The proposed model is illustrated in Figure 5.8. The model is com-
posed of T sequential Long Short Memory Term (LSMT) units. For unit
t ∈ [T], the model takes as input the demands x = Sd as well as the
embedding y(t−1) outputted by unit t−1, and the state st−1 of unit t−1.
The first unit t = 1 is special and only considers the input demands x.
The model is trained with the following loss:

N∑

ℓ=1

T∑

t=1

√
tL(y(t)

ℓ , ŷ
(t)
ℓ) + LC(yℓ, ŷ

(T)), (5.14)

where LC is the Lagrangian loss involving the prediction from the last
unit to encourage constraint satisfaction, equivalently to that adopted
by the constrained variant of the FCC model. The

√
t multiplicative

factor is adopted to give larger weights to the latter units. The model
returns ŷ(T) as its prediction, which is the output of the recurrent final
unit.

The predictions of the proposed model are summarized in Table 5.1
(right). Notice how the model can reduce the load flow errors and op-
timality gaps by one order of magnitude when compared with the best
FCC results. Notably, the RNN model predictions are much closer to
satisfy the KLC than those produced by the constrained version of the
FCC model. This is important as KLC are notoriously hard to satisfy
for the predictions of DNN models Fioretto et al. (2020b). The ability
of this model to capture robustly rare changes in generators trajectory
can be appreciated in Figure 5.7.

Finally, Table 5.2 reports a comparison of the number of parameters
(proxy to memory footprint) required by the FCC and the proposed

89

RNN models. Notice that the FCC grow very large with the size of
the processed test case highlighting scalability issues, as also observed in
Chatzos et al. (2020), which reported the inability of these models to fit in
memory for test cases larger than 2000 buses. In contrast, the proposed
RNN model does not incur this drawback rendering it applicable to very
large power systems.

5.10. Conclusions

This thesis was motivated by the recent development around using deep
neural networks (DNN) to approximate the solutions of Optimal Power
Flow (OPF) problems. While these learning models show encouraging
results, little is known on why they predict OPF solutions accurately, as
well as about their predictions robustness. The paper provided a step
forward to address this knowledge gap. It studied the connection between
the volatility of the generators outputs with the ability of a learning
model to approximate it, showing that many test cases are characterized
by a large number of generators which are easy to predict. It also showed
that operational and physical constraints are necessary to capture the
complexity of the predictions. Finally, it proposed a new learning model
based on recurrent neural networks, that was not only able to improve
the prediction accuracy over existing supervised learning approaches, but
also reduced the memory requirements.

90 Learning to Optimize with Application in AC-OPF Problem

CHAPTER 6

End-to-End Optimization and
Learning of Fair Court Schedules

“Justice delayed is justice denied.”

William Gladstone

91

92 End-to-End Optimization and Learning of Fair Court Schedules

This chapter takes a step toward integrating Predict-Then-Optimize
(PtO) and Learning-to-Optimize (LtO). It proposes two frameworks in
which learned optimization models—in the LtO sense—can be integrated
end-to-end with predictive models. The key motivation is that such mod-
els are not only differentiable by construction but also efficiently callable,
making them well-suited for inclusion in trainable pipelines. The ap-
proach is demonstrated in the context of court scheduling, where fairness
is critical, as outdated practices like “cattle call” scheduling dispropor-
tionately burden defendants, leading to delays and systemic inequalities.
Developing fairness-aware models in this domain remains challenging due
to logistical constraints, data scarcity, and complex optimization require-
ments. This work is part of the author’s unpublished research Dinh et al.
(2024d).

6.1. Optimization and Learning of Fair Court Sched-
ules

Criminal courts in the United States handle millions of cases annually, re-
quiring schedules that balance the preferences and availability of courts,
prosecutors, defendants, and defense counsel Graef et al. (2023); Gouldin
(2024). However, jurisdictions often prioritize stakeholders unequally,
frequently disregarding defendants’ preferences. Many courts rely on
rigid scheduling models, such as “cattle call” practices, where defendants
are required to arrive early and wait extended periods for their cases to
be called. Late arrivals are often marked as failures to appear, resulting
in significant penalties such as arrest or detention National Council of
Juvenile and Family Court Judges (2021).

Ensuring defendants return for trials and pretrial appearances has
influenced pretrial decision-making for centuries Gould et al. (2016);
Baughman (2018). Nonappearances not only delay justice but also dis-
rupt court proceedings and impose significant rescheduling costs on courts,
legal personnel, witnesses, and other defendants Gouldin (2024); Graef
et al. (2023). Courts typically address this through sanctions like bench
warrants, fines, or new charges rather than implementing time-certain

93

systems, which pose logistical and implementation challenges. Never-
theless, a significant number of defendants still fail to appear, making ef-
fective attendance interventions a crucial pretrial reform priority Gouldin
(2024). Research highlights that indigence remains the most consistently
associated factor to non appearance rates Zettler & Morris (2015), and
defendants with unstable employment, caregiving responsibilities, or lim-
ited transportation face additional challenges, particularly in cases with
extended durations and multiple required appearances McAuliffe et al.
(2023).

Courts and commentators increasingly recognize that improving pre-
trial outcomes requires reforms in court scheduling practices. Supportive
frameworks addressing barriers like transportation, work, and childcare
have been shown to increase appearance rates. Alternatives to traditional
“cattle call” systems, such as block or time-certain scheduling, can reduce
burdens on defendants and improve compliance Gouldin (2024); Crim-
inal Justice Innovation Lab (CJIL) (2022). However, designing sched-
ules that accommodate all stakeholders, particularly defendants, remains
challenging. While data from judges and attorneys is relatively easy to
collect, logistical and financial barriers often prevent courts from gath-
ering similar data about defendants. Even when some preference data is
available, existing systems lack formal mechanisms to ensure procedural
fairness in scheduling, which is essential for promoting justice. Develop-
ing fairness-aware scheduling models is further complicated by the need
to integrate complex constraints into machine learning frameworks and
the scarcity of comprehensive datasets for validation.

Thus, there is a clear need for a system that reduces nonappearance
while ensuring fairness for all defendants. However, addressing these is-
sues is far from trivial. Scheduling is fundamentally a decision-making
process, often framed as a utility maximization problem. The goal is to
assign people to time slots in a way that fairly maximizes overall util-
ity. In court scheduling, this utility can be thought of as a function of
an individual’s preference, even though such data may be unavailable
or uncertain. The task then becomes learning how to map defendants’
socioeconomic and demographic characteristics to court schedules that
meet fairness criteria. Traditional approaches typically rely on a two-

94 End-to-End Optimization and Learning of Fair Court Schedules

Decision Quality

Forward pass

Backward pass
ML Model

1. Learning the likelihood of appearance

M✓

Backpropagation through
Optimization Layer

Defendant’s pool data

L(⇧?(Ŷq),⇧?(Yq))

@L
@Ŷq

2. Scheduling based on the learned likelihood

Prediction

Defendant’s slot preference
⇧?(Ŷq)

@Ŷq

@✓

Scheduling Problem

Figure 6.1: Proposed end-to-end framework for learning to schedule.
Given candidates’ socioeconomic and demographic identifiers, a neural
network is trained to predict their preference score for each time slot.
A differentiable surrogate model uses a predicted score to attain assign-
ments and decision quality loss.

stage process, where machine learning models first predict preferences
and optimization techniques then generate schedules based on these pre-
dictions. However, this two-stage approach has been shown to lead to
suboptimal outcomes Mandi et al. (2024b). A key issue arises from the
misalignment between prediction errors and the final task utilities, which,
in the case of this thesis, account for the effectiveness and fairness of the
court schedule. Since the prediction model is trained independently of
the optimization task, inaccuracies in predicting defendants’ preferences
can directly impact the quality of the resulting schedule. This separation
often leads to suboptimal outcomes, as prediction errors can propagate
through the optimization step, negatively impacting the schedules’ fair-
ness and effectiveness.

To address these challenges, this thesis presents a joint optimization
and learning framework that integrates machine learning models trained
end-to-end with efficient scheduling algorithms. This approach aims to
create an effective court scheduling system that maximizes a principled
notion of fairness, even under uncertainty in defendants’ scheduling pref-
erences. A schematic overview of the framework is provided in Figure

95

6.1. The framework illustrates how a shift to time-certain scheduling can
better accommodate defendants’ needs and preferences while enhancing
system-wide outcomes. As the first to explore the application of ma-
chine learning in court scheduling reform, this thesis contributes to the
advancement of fairer and more efficient judicial systems.

Contributions. This thesis makes the following technical contributions:

1. It formalizes a fair scheduling problem tailored for pretrial court set-
tings, where data about defendants’ scheduling preferences is often
incomplete or uncertain. The problem is formulated as a nonlinear
integer program with a piecewise-defined fairness objective, over un-
certain values in defendants’ scheduling preferences. This formulation
addresses the real-world challenges courts face in obtaining reliable
preference data from defendants.

2. It presents a novel framework that integrates machine learning with
optimization techniques, allowing to handle uncertainty in defendants’
preferences by directly optimizing a decision loss function, thereby
improving the robustness and fairness of the scheduling outcomes.

3. To overcome the computational complexity of the integer program-
ming formulation, it proposes an end-to-end trainable model that pre-
dicts feasible schedules via the parameters of an efficient matching
algorithm. This enables training on the fairness objective directly,
enhancing scalability as well as satisfaction of the fairness objective.

4. Given the lack of publicly available datasets on court scheduling-
dependent preferences, it presents a process for generating realistic
synthetic datasets. This process incorporates demographic data on
arrestee populations and estimates the prevalence of barriers such as
childcare, transportation, and employment challenges. These syn-
thetic datasets enable the training and validation of fairness-aware
scheduling models that account for diverse and sensitive demographic
factors.

96 End-to-End Optimization and Learning of Fair Court Schedules

6.2. Related Work

Court scheduling. Court scheduling refers to the process of organiz-
ing the court’s calendar and scheduling cases at the appropriate time,
location, and format for all necessary participants. This fundamental
judicial function considers resources, schedules, and due process require-
ments Lane & Cox (1976); Graef et al. (2023). Despite its critical role,
however, criminal court scheduling has been understudied partly because
traditional approaches view defendants’ nonappearance as a disruption
rather than considering the barriers defendants face Gouldin (2024).
Most existing research focuses on the efficacy of court reminder systems
or primarily aims to improve pretrial outcomes for individual defendants
McAuliffe et al. (2023); Criminal Justice Innovation Lab (CJIL) (2022).

Innovation in court scheduling faces numerous barriers. The tradi-
tional and hierarchical structure of courts resists efforts to streamline
scheduling processes Ferguson (2022); Institute for Law and Social Re-
search (INSLAW) (1988). Additionally, due process requirements and
the adversarial nature of criminal proceedings further complicate re-
form. The complexity of the judicial process itself is a considerable
hurdle to innovation Institute for Law and Social Research (INSLAW)
(1988). Scheduling must account for multiple factors, such as the avail-
ability of judges, defendants, attorneys, and courtrooms. The complex
landscape causes hesitation among administrators, who prefer to main-
tain the status quo. The system is marked by significant inefficiencies,
causing delays and backlogs that can affect justice delivery. The lack of
data regarding court scheduling practices is another significant hurdle to
reforming court scheduling.

Advances in Machine Learning and Optimization for schedul-
ing. Recent literature has focused on developing constrained optimiza-
tion models that are trained end-to-end with machine learning models
Kotary et al. (2021). In the Predict-Then-Optimize setting, a machine
learning model predicts unknown coefficients for an optimization prob-
lem. Then, backpropagation through the optimal solution of the result-
ing problem allows for end-to-end training of its objective value, under
ground-truth coefficients, as a loss function. The primary challenge lies

97

in backpropagating through the optimization model, for which various
techniques have been proposed. Several techniques have been proposed
to address this challenge. Early work focused on implicit differentia-
tion through the first-order optimality conditions of unconstrained or
smooth convex functions Gould et al. (2016). Subsequent research ex-
tended this approach to constrained problems by differentiating through
Karush-Kuhn-Tucker (KKT) conditions, particularly for quadratic pro-
grams (QPs) Amos & Kolter (2017b); Amos et al. (2019). Other tech-
niques include the differentiation of specific problem classes, such as
sorting and ranking Blondel et al. (2020), linear programming Mandi &
Guns (2020), and convex cone programming Agrawal et al. (2019b).

For discrete optimization problems, including mixed-integer and con-
straint programs, the challenge lies in the discontinuity of mappings with
respect to input parameters. To address this, smoothing techniques have
been developed to approximate the optimization mappings, producing
gradients that are more useful for training Wilder et al. (2019); Fer-
ber et al. (2020); Mandi & Guns (2020). While these approaches have
demonstrated success in various domains, they often focus on general-
purpose optimization objectives and do not explicitly address fairness
considerations. This thesis builds on these advances by introducing a
novel framework for fair optimization in scheduling, leveraging ordered
weighted average (OWA) operators to encode fairness principles such
as impartiality, equitability, and Pareto efficiency. These principles are
particularly critical in the context of court scheduling, where fairness
is not merely a desirable property but a fundamental requirement for
improving access to justice.

6.3. Motivations and Problem Setting

Scheduling defendants in pretrial processes involves arranging their court
appointments in a way that aligns with their preferences for various ap-
pointment times. In this context, a defendant’s preference indicates their
likelihood of attending a scheduled appointment. A significant challenge
is that these preference data are often unavailable, necessitating estima-
tion from available data to create meaningful schedules. This challenge

98 End-to-End Optimization and Learning of Fair Court Schedules

can be partially addressed by employing a pipeline where a machine
learning (ML) model predicts defendants’ preferences, which are then
used as inputs for the scheduling task, as illustrated in Figure 6.1.

In many data-driven decision-making systems, learning and optimiza-
tion are treated separately: an ML model is trained for predictive accu-
racy, and its predictions guide the decision-making task. This “two-stage”
approach works well when predictive models are highly accurate, as pre-
cise predictions tend to inform the correct decisions. However, in prac-
tice, predictive models are rarely perfect, particularly when preference
data are sparse or incomplete. These errors can lead to suboptimal sched-
ules that misalign with defendants’ actual preferences and may exacer-
bate unfairness by disproportionately affecting certain groups, resulting
in biased scheduling outcomes Kotary et al. (2021). Left unaddressed,
such disparities can lead to a “poor get poorer” effect with serious societal
consequences. To mitigate these disparate impacts, this thesis proposes
an integrated optimization and learning framework for scheduling defen-
dant court visit times to certify a desired fairness requirement.

Problem Setting

Figure 6.2: Court scheduling
example.

The setting studied in this thesis consid-
ers a training dataset D = (xp, gp,Yp)

N
p=1

of N elements, each describing a pool of
n defendants to be scheduled on a given
day. For each pool indexed by p ∈ [N],
xp ∈ X describes a list (xpi)

n
i=1 of n de-

fendants to schedule, with each item xpi
defined by a feature vector. These feature
vectors encode representations of the in-
dividuals to schedule, e.g., their socioeco-
nomic identifiers, addresses, and accusa-
tions. The elements gp = (gpi)

n
i=1 describe

protected group attributes of the defen-
dants in some domain G. For example, they may denote employment
type, whether the defendant has access to transportation, or whether

99

they have childcare obligations. Together, the unprotected and protected
attributes (xpi , g

p
i) provide a description of the defendant’s i character-

istics in pool p. Finally, the element Yp ∈ Y ⊆ Rn×n are supervision
labels (Y p

i)
n
i=1 that associate a vector of non-negative values with each

person i ∈ [n], and describe the preference of individual i with respect
to each slot in a possible schedule.

The goal is to learn a mapping between features xp of a pool p of
n defendants and a schedule which fairly optimizes the satisfaction of
their preferences as indicated by Yp. A schedule is represented by a
permutation of the list [n], which determines the appointment times
assigned to each defendant. When clear from the context, we may drop
the various elements of the superscript or subscript p. For modeling
purposes, and when clear from context, we represent a schedule Π by a
permutation matrix, so that Πij indicates the assignment of individual
i to the time slot j. Additionally, let Πi represent the ith row of the
matrix Π.

Figure 6.2 illustrates these elements in our problem setting. It shows
a matrix Π representing a permutation that matches defendants to ap-
pointment slots. The highlighted defendant’s feature vector x4, is illus-
trated in light of their respective row Π4 = [1, 0, 0, 0, 0] in Π, which
indicates that defendant 4 is to be scheduled first. The contextual infor-
mation provided by x4 will be used as input to an ML model to produce
an estimated preference vector y4 = [0.8, 0.2, 0, 0, 0], which associates the
defendant’s likelihood of appearance to the different court visit times.
The protected group information g, expressing gender in the example
above, is represented by the different colored (white/gray) cells.

Learning Objective. The goal in our setting is to predict, for any pool
of defendants (x,g,Y), a permutation matrix Π representing a schedule
which fairly maximizes the utility of each defendant, defined as:

ui(Π,Y) = Y T
i Πi, (6.1)

for defendant i. When Yij represents the likelihood of defendant i attend-
ing appointment j, this quantity represents the likelihood of defendant i
attending their assigned appointment. Given any Π and Y , computing

100 End-to-End Optimization and Learning of Fair Court Schedules

Equation (6.1) for each defendant results in a utility vector u ∈ Rn:

u(Π,Y) = diag(Y TΠ). (6.2)

In this setting, it is natural to ask:

What does it mean to fairly optimize the utilities of each defen-
dant, which are independent objectives?

Any optimization method requires a single-valued objective function
to be defined. For example, one may choose to optimize the total utility
of a scheduling policy, defined as the sum of individual utilities:

1Tu(Π,Y) = Tr(Y TΠ), (6.3)

which is a single-valued function of u. However, a schedule Π which
optimizes total utility does not account for the lowest utilities among all
defendants, which may be arbitrarily low. This makes the total utility
an undesirable objective in our framework, since accepting low utilities
for some defendants increases their odds of nonappearance.

Instead we seek an aggregation of individual utilities which, when
optimized, raises the utilities of all defendants uniformly, to the extent
possible. Maximizing the minimum utility is one approach, but it leads to
pareto inefficient solutions, meaning that some defendants’ utilities are
needlessly suboptimal, in the sense that Π can be chosen to raise those
utilities without harm to the utilities of others Ogryczak & Śliwiński
(2003). This can be viewed as a needless compromise to total utility.
The notion of court scheduling studied in this work calls for aggregation
of individual utilities which, when optimized, raises the lowest individual
utilities while maintaining pareto efficiency.

A well-known aggregation function possessing these properties is the
Ordered Weighted Average (OWA) Yager (1993). The OWA operator
and its fairness properties are formally defined next, before delving into
the description of the proposed framework for learning schedules which
maximize the OWA-aggregated utility, in Section 6.6.

101

6.4. Preliminaries: Fair OWA Aggregation

The Ordered Weighted Average (OWA) operator Yager (1993) is a class
of functions used for aggregating multiple independent values in settings
requiring multicriteria evaluation and comparison Yager & Kacprzyk
(2012). Let y ∈ Rm be a vector of m distinct criteria, and τ : Rm → Rm

be the sorting map in increasing order so that τ1(y) ≤ τ2(y) ≤ · · · ≤
τm(y). Then for any w satisfying {w ∈ Rm | ∑iwi = 1,w ≥ 0} , the
OWA aggregation with weights w is defined as a linear functional on
τ(y):

OWAw(y) = wT τ(y), (6.4)

which is piecewise-linear in y Ogryczak & Śliwiński (2003).
This thesis focuses on a specific instance of OWA, commonly known

as Fair OWA Ogryczak et al. (2014), characterized by weights arranged
in descending order: w1 > w2 . . . > wn > 0. With monotonic weights,
Fair OWA is also concave. Fair OWA objectives are increasingly popular
in optimization as fairness gains attention in decision-making processes.

The following three properties of Fair OWA functions are crucial for
their use in fairly optimizing multiple objectives:
1. Impartiality ensures that Fair OWA treats all criteria equally. This

means that for any permutation σ ∈ Pm, where Pm is the set of
all permutations of [1, . . . ,m], the OWA aggregation with weights w
yields the same result for any permutation of the input vector y.

2. Equitability guarantees that marginal transfers from a criterion with a
higher value to one with a lower value increase the OWA aggregated
value. This condition holds that OWAw(yϵ) > OWAw(y), where
yϵ = y except at positions i and j where (yϵ)i = yi − ϵ and (yϵ)j =
yj + ϵ, assuming yi > yj + ϵ.

3. Monotonicity ensures that OWAw(y) is an increasing function of each
element of y. This property implies that solutions optimizing the
OWA objectives (6.4) are Pareto Efficient solutions of the underlying
multiobjective problem, thus no single criteria can be raised without
reducing another Ogryczak & Śliwiński (2003).

This last aspect is crucial in optimization, where Pareto-efficient solu-
tions are preferred over those that do not possess this attribute. Taken

102 End-to-End Optimization and Learning of Fair Court Schedules

together, these properties define a notion of fairness in optimal solutions
known as equitable efficiency Ogryczak & Śliwiński (2003), which is of
particular interest for the pretrial court scheduling optimization.

Intuitively, OWA objectives lead to fair optimal solutions by always
assigning the highest weights of w to the objective criteria in order of
lowest current value. This thesis employs fair OWA functions as a fair
measure of overall utility with respect to defendants’ preferences, ensur-
ing that the resulting court schedules uphold principles of fairness and
equity. As shown in the next section, while achieving these properties is
desirable for court schedules, it also introduces a challenging optimiza-
tion problem over the space of permutation matrices. Addressing such
computational challenges is one of the key technical objectives of the
paper.

6.5. Fair Optimization of Court Schedules

Using the concepts introduced above, we can form an optimization pro-
gram to fairly maximize utilities in court scheduling. For a pool of defen-
dants represented by (x, g,Y), with known preferences Y , the scheduling
matrix Π that maximizes the OWA-aggregated utility over all defendants
is modeled as a solution to an integer program:

Π⋆(Y) = argmaxΠ OWAw (u(Π,Y)) (6.5a)
subject to: Π ∈ {0, 1}n×n (6.5b)

∑

i

Πij = 1,
∑

j

Πij = 1, ∀i, j ∈ [n]. (6.5c)

where the utility vector u(Π,Y) is defined as in equation (6.2). Here and
throughout, we make a standard choice of fair OWA weights wj =

n−i+1
n ,

known as the Gini indices Do & Usunier (2022) Note that the constraints
(6.5c) hold that each row and column of Π must sum to 1. Together
with (6.5b), this ensures a single value of 1 in each row and column, so
that problem (6.5) models the permutation matrix with maximal fair
OWA-aggregated utility.

103

6.5.1 Group Fairness

The objective in problem (6.5) is to maximize the OWA-aggregated util-
ity vector with respect to each individual defendant. We may also ex-
tend the use of the OWA operator to model different fairness objectives
within our framework. In particular, we are interested in group fairness,
a concept widely employed, for example, in web search rankings Singh &
Joachims (2018, 2019); Do & Usunier (2022); Zehlike & Castillo (2020);
Zehlike et al. (2017).

Individuals may grouped by any category between which fair out-
comes are desired: for example by gender, race, or socioeconomic status.
For any schedule Π the group utility ug of group g is defined as the mean
utility of all defendants in that group. For any group indicator g, let Sg
be the set of defendants’ indices belonging to that group. Then:

ug(Π,Y) =
1

|Sg|
∑

i∈Sg

Y T
i Πi. (6.6)

Let a partition G = {gpi : p ∈ [N], i ∈ [n]} represent the set of all
unique protected group indicators (e.g. male and female, or the set of all
income brackets). Our notion of group fairness is to maximize the OWA
aggregation of all group utilities over a chosen partition. Letting uG be
the vector of all group utilities [ug : g ∈ G],

Π⋆(Y) = argmaxΠ OWAw

(
uG(Π,Y)

)
(6.7a)

subject to: Π ∈ {0, 1}n×n (6.7b)
∑

i

Πij = 1,
∑

j

Πij = 1, ∀i, j ∈ [n] (6.7c)

Of course, the models (6.7) and (6.5) coincide when each individual
defendant constitutes their own group. In Section 6.7, we will evaluate
the ability of our framework to fairly optimize group utilities with respect
to various partitions.

6.5.2 Complexity of the Optimization Models

It is important to remark on the complexity of the integer program (6.7).
Since the OWA function is piecewise linear Ogryczak & Śliwiński (2003),

104 End-to-End Optimization and Learning of Fair Court Schedules

they can be categorized as nonlinear integer programs with a piecewise-
defined objective and is thus NP-hard. Given the form of this integer
program, traditional integer programming approaches cannot be applied
directly to (6.7). Specifically, methods such as branch-and-bound and
cutting plane algorithms, which are commonly used for solving integer
linear programs (ILPs), struggle with the piecewise linear nature of the
OWA objective. These ILP approaches typically rely on linearity and
convexity to efficiently explore the solution space, but the nonlinear,
piecewise-defined objective complicates the feasible region and increases
the computational burden.

Furthermore, optimizing a schedule for n defendants requires n2 inte-
ger variables, causing the size of the program to grow quadratically with
the size of the scheduling pool. This scalability issue makes exact solu-
tions impractical for large instances due to excessive memory and time
requirements. Thus, an important aspect of our integrated optimization
and learning framework, described in the next section, is to avoid solving
(6.7) directly.

6.6. Optimization and Learning for Fair Court Sched-
ules

Problem (6.7) formalizes the fair scheduling problem as an optimization
program dependent on unknown preference coefficients Y . To address
the lack of direct preference data, we use a neural network to learn
these preferences from contextual information, such as defendants’ de-
mographics features xp. Recall from Section 6.3 that available training
data consist of D = (xp, gp,Yp)

N
p=1, where predictors xp are known but

Yp are unknown at test time.
A straightforward combined prediction and optimization model trains

a neural networkMθ with weights θ to predict Y from x, by minimizing
the squared residuals of its predictions:

min
θ

1

N

∑

p

∥Mθ(xp)− Yp∥2 . (6.8)

With this approach, problem (6.7) can be approximately specified by

105

replacing Y with Mθ(x) in (6.7a). It can then be solved assuming a
suitable solution method. However, this “two-stage” approach faces two
major challenges:
1. Scalability issues: As noted earlier, problem (6.7) is an NP-hard

nonlinear integer program whose size grows quadratically with the
number of defendants. Thus an approach based on solving (6.7) will
lack scalability.

2. Misaligned training objective: The training objective in (6.8)
minimizes prediction errors rather than optimizing the utility of the
resulting schedules, leading to suboptimal outcomes. Literature em-
phasizes the importance of aligning model training with the end-task
objective, as discussed in Section 6.2.
Motivated by these challenges, we propose a more efficient alterna-

tive. Instead of minimizing preference prediction errors as in (6.8), our
model directly maximizes the OWA value of predicted schedules under
ground-truth preference values. under the ground-truth preference val-
ues. This requires the computation of an optimal schedule as a function
of preference values during each training iteration and performing back-
propagation through the optimization process.

6.6.1 End-to-End Trainable Scheduling Model

The proposed end-to-end trainable scheduling model consists of three
main components:
1. A neural network Mθ, which maps known features xp to predicted

preferences Ŷ =Mθ(xp).
2. A differentiable module Π that maps Ŷ to a predicted permutation

matrix Π(Ŷ), satisfying constraints (6.7b)-(6.7c).
3. A loss function which allows training ofMθ to optimize the objective

OWAw

(
uG(Π(Ŷ),Yp)

)
expressed in (6.7a) by gradient descent.

Composed of these elements, the resulting end-to-end ML and opti-
mization training objective is:

max
θ

1

N

∑

p

OWAw

(
uG (Π(Mθ(xp)),Yp)

)
. (6.9)

106 End-to-End Optimization and Learning of Fair Court Schedules

Comparing (6.9) with (6.7) highlights the motivation for this archi-
tecture: Gradient descent on the empirical objective (6.9) enables Mθ

to learn predictions Ŷ that yields the schedules Π(Ŷ) solving (6.7) for
Π⋆(Yp), given features xp. This composite mapping, Π ◦Mθ, achieves
the goal of predicting schedules that solve the fair scheduling problem
(6.7) without requiring direct preference data Y ! What remains is to
determine efficient and differentiable implementations of the module Π
and loss function OWAw, to enable backpropagation for gradient descent
training of (6.9).

6.6.2 Differentiable Matching Layer

Our proposed fair scheduling model relies on a module Π(Y) which
maps preference data to permutation matrices. Note that (6.7) is one
such mapping. However, it is neither efficient to compute nor differen-
tiable, thus unsuitable for gradient descent training (6.9). We address
the efficiency aspect first, noting that the OWA objective is not required
to yield a valid permutation. Instead, consider replacing the OWA ob-
jective in (6.7) with the total utility objective (6.3):

Π(Y) = argmaxΠ Tr
(
Y TΠ

)
(6.10a)

subject to: Π ∈ {0, 1}n×n (6.10b)
∑

i

Πij = 1,
∑

j

Πij = 1, ∀i, j ∈ [n] (6.10c)

As the sum of individual utilities, the objective (6.10a) is linear. Addi-
tionally, we identify the constraints (6.10c) as being totally unimodular
with integer right-hand side. A well-known result in optimization states
that the optimal solution to such a linear program (LP) must be integer-
valued Bazaraa et al. (2008).

Thus, we may solve (6.10) by replacing (6.10b) with continuous
bounds Π ∈ [0, 1]n×n and solving the resulting LP. In fact, this LP
is recognized as the classic assignment problem, which admits known so-
lutions in O(n3) time Bazaraa et al. (2008). We refer to the mapping
(6.10) as the matching layer.

Proposition 1. The matching layer (6.10) has complexity O(n3).

107

Proof. The matching layer problem (6.10) is equivalent to the assignment
problem, which can be solved in O(n3) time using algorithms such as
the Hungarian method Kuhn (1955). Specifically, the cost matrix in the
assignment problem is given by the negative of the preference matrix
Y , and the goal is to find the permutation matrix Π that maximizes
the total utility. Therefore Π(Y) can be computed in cubic time with
respect to the number of defendants n.

To enable backpropagation for training (6.9), we implement differen-
tiation using a method from Pogančić et al. (2020), which approximates
gradients through a linear program by finite differences between two so-
lutions of (6.10) under perturbed inputs Y . Thus the combined forward
and backward passes through (6.10) are assured O(n3) complexity, yield-
ing an efficient and differentiable matching layer.

6.6.3 OWA as a Loss Function

To enable gradient descent training in (6.9), we need a method for back-
propagating the OWA loss function. Although the OWA is not differ-
entiable, it is subdifferentiable with known subgradients Do & Usunier
(2022):

∂

∂x
OWAw(x) = w(σ−1), (6.11)

where σ is the sorting permutation for x. Our main approach is to im-
plement subgradient descent training for (6.9) using the formula (6.11).
However, we also investigate the use of an alternative gradient rule in
this thesis. For any convex function f , the Moreau envelope fβ is a 1

β
smooth lower-bounding function with the same minimum:

fβ(x) = min
v

f(v) +
1

2β
∥v − x∥2. (6.12)

It is proven in Do & Usunier (2022) that the gradient of OWA’s Moreau
envelope is equal to the projection of a vector x onto the permutahedron
C(w̃) induced by the OWA weights w:

∂

∂x
OWAβ

w(x) = projC(w̃)

(
x

β

)
. (6.13)

108 End-to-End Optimization and Learning of Fair Court Schedules

Number
of Childs

Employment
Status

Transportation
Accessibility

Work Hour
Childcare
Obligation

Age

Court
Schedule

Preference

Gender
Race

Figure 6.3: Causal factors influencing court schedule preferences: green arrows
show direct, blue arrows show indirect relationships

As shown in 3.5.2, the projection solutions converge to the subgra-
dient of the OWA, represented as w(σ−1) Blondel et al. (2020). Thus, in
this work, we use a subgradient approach to enable backpropagation of
the OWA loss function.

6.7. Experimental Settings

To validate the effectiveness of our proposed integrated optimization and
learning framework for fair court scheduling, we conduct a series of ex-
periments on court scheduling using a novel synthetic dataset. We first
focus on the approach adopted to generate the synthetic preference data
for court scheduling.

109

6.7.1 Data Generation Process

The experiments simulate realistic court scheduling scenarios by creating
a causal graph that models the data generation process, incorporating
individuals’ preferences, socioeconomic status, and demographic char-
acteristics. This causal graph, depicted in Figure 6.3, illustrates the
relationships among these factors. Each feature is treated as a categor-
ical variable, generated based on the conditional probabilities detailed
in Appendix .1, which are elicited by combining, and interviewing court
scheduling experts with Census data.

Fairness is essential when resources are limited and demand is high.
To simulate a scenario requiring fair scheduling, we generate individu-
als’ preferences to predominantly favor specific time slots. For instance,
people dependent on public transportation, working night shifts, or with
childcare responsibilities tend to prefer morning slots (8-12 AM). Each
individual’s preference vector yi is generated under the constraints that∑

j yij = 1 and 0 ≤ yij ≤ 1. Additionally, we assume that each person
has three top choices, ranked by priority. The second and third choices
are set one hour before and after the primary choice. This setup ensures
that when specific time slots have limited availability, individuals’ second
or third preferences are considered, promoting fairness and flexibility in
scheduling.

We generate different training sets with varying pool sizes of de-
fendants, specifically N ∈ {25, 50, 100, 250, 500, 4000}, where each pool
consists of n = 12 individuals assigned to corresponding time slots. Each
individual is allocated to exactly one slot. The paper evaluates the pro-
posed framework based on both group and individual fairness notions
(where the group size is 1 for individual fairness). For group fairness
evaluation, the paper creates different settings using protected group
attributes such as transportation accessibility, employment status, and
work hours. The performance is evaluated on the same test set contain-
ing N = 500 samples, generated using the same probability distribution
as the training data. More details about the probability distributions of
our dataset can be found in Appendix (.1).

110 End-to-End Optimization and Learning of Fair Court Schedules

6.7.2 Model Settings and Evaluation Metrics

Settings. A feedforward neural networkMθ is trained to predict for a
pool of n candidates, given features x, their preference scores Y ∈ Rn×n

for n available slots. The network consists of two hidden layers, where
the size of each successive layer is halved. The model is trained using
the Adam optimizer, with a learning rate of 0.01 and a batch size ∈ {64,
128, 512}. Results for each hyperparameter setting are taken on average
over five random seeds.

Evaluation metrics. All the experiments are evaluated using two key
metrics: regret and normalized pairwise distances. Regret. Regret
quantifies the loss of optimality in the obtained schedule due to predic-
tion errors in estimated preferences Ŷ . Regret measures the difference
in the OWA objective value between using the true preferences Y and
the predicted preferences Ŷ . Formally, it is defined as:

regret(Ŷ ,Y) = OWAw

(
uG(Π⋆(Y),Y)

)

−OWAw

(
uG(Π⋆(Ŷ),Y)

)
,

where: Y is the ground-truth preference matrix, Ŷ is the predicted
matrix, Π⋆(Y) is the optimal schedule for Y , Π⋆(Ŷ) is the schedule for
Ŷ , and uG computes the group utility. Lower regret indicates that the
predicted schedule closely approximates the optimal one, with zero regret
signifying that Ŷ produces the optimal schedule under Y . Minimizing
regret is crucial for ensuring accurate scheduling aligned with the OWA
objective.
Normalized pairwise difference. The Normalized Mean Pairwise
Difference (NMPD) is an intuitive fairness metric that quantifies how
similarly individuals are treated by comparing differences in their out-
comes. For a set of individuals with outcomes (u1, . . . , un), the NMPD
is defined as:

NMPD(u) =
1

n2ū

n∑

i=1

n∑

j=1

|ui − uj | with ū =
1

n

n∑

i=1

ui (6.14)

111

This metric measures fairness by reflecting how uniformly outcomes
are distributed. A lower NMPD indicates more uniform treatment, sug-
gesting a fairer distribution of utility, while a higher NMPD signals
greater disparities, potentially highlighting biases or unfairness. Min-
imizing NMPD is essential for promoting equitable outcomes across in-
dividuals.

6.7.3 Baseline Models

To evaluate the effectiveness of our proposed model, we compare it
against two baseline methods:
1. Two-Stage Method: This standard baseline in Predict-Then-Optimize

frameworks, as discussed by Mandi et al. (2024a), is trained using
Mean Squared Error (MSE) loss without considering downstream op-
timization.

2. Total Utility (TU) Loss: This method employs an end-to-end
learning approach using a differentiable matching layer but optimizes
for the total sum of utilities rather than incorporating the OWA ob-
jective.

6.8. Results

6.8.1 OWA Utility Regret

Figure 6.4 shows the OWA regret (as a percentage) across four fairness
settings: individual fairness, employment status, transportation acces-
sibility, and work hours. OWA regret quantifies the loss of optimality
relative to ground-truth preferences, with lower values indicating closer
alignment to the optimal solution. Across all settings, the OWA Loss
DQ model demonstrates the lowest regret, showcasing superior perfor-
mance. Notably, it outperforms the TU Loss model by 7.8% in em-
ployment status and 6.4% in transportation accessibility, while also sur-
passing the Two-Stage MSE Loss model by 6.7% and 6% in these
respective settings. The performance gains in the individual fairness
and work hours settings are more modest, with improvements of 1.7%

112 End-to-End Optimization and Learning of Fair Court Schedules

and 3.2%, respectively, suggesting that model effectiveness may depend
on the dataset’s characteristics and the specific fairness constraints ap-
plied. When group partitions have no competing demands—i.e., when
preferences are non-conflicting—solutions tend to be nearly optimal re-
gardless of the model. This emphasizes the importance of understanding
data structure and group preference dynamics when evaluating fairness
in scheduling.

0

5

10

15

20

OW
A

Re
gr

et
: T

es
t S

et
 (%

) Individual Employment Status Transportation Accessibility Work Hour

Two-Stages MSE Loss DQ OWA Loss DQ UWS Loss

Figure 6.4: OWA utility regret (6.14) in court scheduling across vary-
ing fairness levels: individual fairness (first subplot) compared to group
fairness (last three subplots). The evaluation is performed on a training
dataset with N = 4000 samples.

The Two-Stage MSE Loss and TU Loss models show similar per-
formance, with the Two-Stage model achieving slightly lower regret in
some contexts, such as 1.1% in employment status and 0.4% in trans-
portation accessibility. This advantage arises from the Two-Stage MSE
Loss model’s ability to minimize decision quality loss when large datasets
enhance prediction accuracy. However, end-to-end approaches generally
perform better, as they integrate prediction and optimization into a uni-
fied framework.

Figure 6.5 illustrates the OWA regret (as a percentage) across test
sets with varying training data sizes and fairness settings: individual fair-
ness, employment status, transportation accessibility, and work hours.
The y-axis represents regret percentages, while the x-axis indicates the
number of training samples (25, 50, 100, 250, 500, 4000). Across all
settings, regret decreases as the number of samples increases, demon-
strating improved model performance with more data. Different fairness

113

25 50 100 250 500 4000
of Samples

8

10

12

14

16

OW
A

Re
gr

et
: T

es
t S

et
 (%

) Individual

25 50 100 250 500 4000
of Samples

Employment Status

25 50 100 250 500 4000
of Samples

Transportation Accessibility

25 50 100 250 500 4000
of Samples

Work Hour

Two-Stages MSE Loss DQ OWA Loss DQ UWS Loss

Figure 6.5: Benchmarking OWA Regret (in percentage) across different
training data sizes.

settings exhibit varying regret levels, consistent with trends in Figure
6.4. For example, the transportation accessibility setting consistently
exhibits higher regret, indicating greater optimization difficulty, while
the employment status setting shows a sharper decrease in regret with
increased training data. There is minimal reduction in regret between
25 and 100 samples, but a more notable improvement between 250 and
500 samples. The Two-Stage MSE Loss and TU Loss models per-
form poorly with smaller datasets and show limited gains as sample
sizes grow. In contrast, the OWA Loss DQ model achieves a steeper
learning curve and outperforms other models, even with small datasets
(N=25), achieving regret percentages of 9.2%, 13.8%, 14.8%, and 12.5%
for individual fairness, employment status, transportation accessibility,
and work hours, respectively. This underscores the model’s robustness in
scenarios with limited data, a critical advantage for court systems where
preference datasets are often sparse.

6.8.2 Normalized mean pairwise distances

Figure 6.6 presents the Normalized Mean Pairwise Difference (NMPD)
values across various fairness settings, including employment status, trans-
portation accessibility, and work hours. Across all settings, the NMPD
values remain consistently low, typically below 0.08, indicating that the
models achieve a high degree of fairness by minimizing disparities in in-
dividual outcomes. Among the end-to-end models, both the OWA Loss

114 End-to-End Optimization and Learning of Fair Court Schedules

0.00

0.02

0.04

0.06

0.08

NM
PD

: T
es

t S
et

Employment Status Transportation Accessibility Work Hour

Two-Stages MSE Loss DQ OWA Loss DQ TU Loss

Figure 6.6: Normalized Mean Pairwise Difference (6.14) in court schedul-
ing across varying fairness levels: individual fairness (first subplot) com-
pared to group fairness (last three subplots). The evaluation is performed
on a training dataset with N = 4000 samples.

DQ and TU Loss models demonstrate consistently low NMPD values, un-
derscoring their ability to promote equitable treatment. The proposed
OWA Loss DQ model performs particularly well, achieving even lower
NMPD values than the TU Loss model, thereby ensuring greater fairness
across all tested settings. In contrast, the Two-Stage MSE Loss approach
exhibits slightly higher NMPD values, especially in the work hours and
transportation accessibility settings. This indicates that the traditional
two-stage method is less effective at maintaining fairness compared to
the advanced end-to-end models.

6.8.3 Running Time

Figure 6.7 presents the run-time comparison of two optimization models
for the court scheduling problem: OWA-ILPs corresponding to Problem
(6.7), and theMatching Layer representing Problem (6.10).

The x-axis denotes the number of group partitions, while the y-axis
indicates the average time (in seconds) required to solve the scheduling
problem for each sample pool, averaged over N = 1000 runs. As detailed
in Section 6.5, solving Problem (6.7) involves addressing an Integer Lin-
ear Program (ILP). ILPs are computationally intensive and face signif-
icant scalability challenges as the number of group partitions increases
due to the exponential growth of constraints. This scalability issue is

115

2 4 6 8 10 12
of Group Partitions

0.00

0.05

0.10

0.15

Ti
m

e
(s

) P
er

 S
am

pl
e OWA-MIPS

Matching Layer

Figure 6.7: Benchmarking the runtime of two optimization models: OWA-
ILPs used in the Two-Stage MSE Loss model during inference, and the
Matching Layer employed in the OWA Loss DQ model.

clearly illustrated in Figure 6.7, where the runtime for OWA-ILPs grows
polynomially with the number of partitions, rendering it impractical for
large-scale scheduling tasks.

In contrast, the Matching Layer uses a linear optimization approach,
greatly improving computation efficiency.Its runtime scales linearly with
the number of partitions, as shown in Figure 6.7. For 12 partitions, the
Matching Layer solves the problem in just 0.002 seconds, making it ideal
for real-time, large-scale court scheduling applications.

The significant difference in runtime performance highlights the Match-
ing Layer’s technical advantage over traditional ILP-based approaches.
By leveraging linear optimization and exploiting problem-specific struc-
tures, the Matching Layer reduces computational burden and integrates
fairness objectives without sacrificing efficiency. This makes it a highly
effective solution for practical court scheduling systems that require both
fairness and scalability.

116 End-to-End Optimization and Learning of Fair Court Schedules

6.9. Conclusions

This thesis addressed the critical problem of fair court scheduling in
pretrial processes. Scheduling defendants’ court appearances in a man-
ner that is both efficient and fair is essential for upholding justice and
maintaining public trust in the legal system. The challenge lies in align-
ing court schedules with defendants’ preferences, which are often un-
known and must be predicted from available data while ensuring that
the scheduling process adheres to fairness principles to prevent systemic
biases and disparate impacts on different groups.

To address these challenges, this thesis proposed an integrated opti-
mization and learning framework that combines machine learning with
Fair Ordered Weighted Average (OWA) optimization. Unlike traditional
two-stage approaches that handle prediction and optimization separately,
our method integrates the prediction of defendants’ preferences with the
scheduling optimization process. This integration allows for direct opti-
mization of scheduling utility under fairness constraints, leading to more
equitable and efficient scheduling outcomes.

Through extensive experiments, we demonstrated that our integrated
framework outperforms baseline models in terms of both scheduling op-
timality and fairness across various scenarios. Our results highlight the
effectiveness of incorporating fairness objectives into the learning process,
particularly in complex settings with competing group preferences. We
believe that this work could pave the way for the utilization of Fair OWA
in learning pipelines, enabling a wide range of critical multi-optimization
problems across various domains that extend beyond scheduling appli-
cations.

CHAPTER 7

Future Directions: Diffusion for
Learning-to-Optimize Constrained

Optimization

“In all chaos, there is a cosmos; in all
disorder, a secret order.”

Carl Jung

117

118 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

This chapter focuses on leveraging diffusion models—a recent and
powerful class of generative models—to learn to solve constrained op-
timization problems. We begin with a background on diffusion models
and a review of related work applying them to optimization tasks in
both continuous and discrete domains. To illustrate the potential of this
approach, we first construct a simple diffusion model for a toy quadratic
programming (QP) problem. We then examine the capabilities and lim-
itations of current state-of-the-art diffusion-based solvers for combina-
torial optimization, which motivates the need for improved methods.
Building on these insights, the chapter introduces a new proposed solu-
tion designed to address key challenges in existing approaches.

7.1. Background and Related Work

Diffusion-based optimization has recently gained traction as a powerful
and generalizable framework, achieving impressive results in a wide range
of optimization tasks, from continuous domains to combinatorial spaces.
Compared to traditional machine learning approaches, diffusion models
offer greater flexibility and the ability to represent complex solution dis-
tributions. However, high computational costs and the enforcement of
hard constraints during inference remain open challenges.

7.1.1 Diffusion Models

Diffusion models are generative models that learn to reverse a stochas-
tic corruption process applied to clean data. Originally developed for
high-dimensional continuous domains such as image generation Ho et al.
(2020), these models progressively transform noise samples into struc-
tured outputs through a learned sequence of denoising steps.

Formally, the forward process perturbs clean data x using a param-
eterized noise schedule αt:

zt =
√
αtx+

√
1− αtϵ, ϵ ∼ N (0, I), (7.1)

and the reverse model pθ(zt−∆t | zt) learns to iteratively denoise back
to the data distribution. Training is typically done via a variational lower

119

bound:

LVLB = Lrecons + Ldiffusion + Lprior

Discrete Diffusion Models. Discrete denoising models adapt this
process to combinatorial spaces. D3PM Austin et al. (2021) introduces
a multinomial corruption process suitable for token-based data, while
SEDD Lou et al. (2023) extends diffusion to continuous time using continuous-
time Markov chains (CTMCs).

Masked diffusion models, such as MDLM Sahoo et al. (2024), fur-
ther simplify training by injecting noise via masking, allowing for tighter
ELBO formulations and avoiding the need for complex CTMC-based
derivations. The objective becomes:

LNELBO = Eq

∫ 1

0

αt′
1− αt

log⟨xθ(zt),x⟩ dt (7.2)

These techniques achieve competitive results across tasks in language
modeling, protein folding, and DNA sequence generation.

7.1.2 Diffusion Models for Continuous Optimization

A growing body of work explores the application of diffusion models
to continuous optimization. These include trajectory optimization Li
et al. (2024a), black-box optimization Krishnamoorthy et al. (2023);
Chen et al. (2024), and general-purpose frameworks like IRED Du et al.
(2024).

IRED combines energy-based models with denoising score match-
ing Hyvärinen (2005); Ho et al. (2020) to learn a sequence of annealed
energy landscapes. It predicts noise added to ground-truth optima across
noise levels, allowing for gradient-based optimization. While effective,
IRED is limited in two ways: (1) it ignores the algorithmic structure of
optimization problems, leading to data inefficiency; and (2) it relies on
continuous diffusion, which can only approximate discrete structures.

120 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

7.1.3 Diffusion Models for Discrete Optimization

In discrete domains, diffusion-based solvers have shown promise on com-
binatorial optimization tasks such as the Traveling Salesman Problem
(TSP), Maximal Independent Set (MIS), and SAT. Unlike deterministic
solvers that map directly from problem instances to solutions, diffusion
models use iterative refinement and stochasticity to explore multimodal
solution spaces.

DIFUSCO Sun & Yang (2023) and T2T Li et al. (2023) apply discrete-
time denoising diffusion with multinomial corruption to model complex
solution distributions. These models employ gradient-guided sampling
and GNN-based denoisers. However, they require hundreds of denoising
steps, which limits scalability.

Fast T2T Li et al. (2024b) introduces optimization consistency to
accelerate inference by directly predicting solutions from partially cor-
rupted inputs. DiffUCO Sanokowski et al. (2024) takes an unsupervised
approach, approximating the Boltzmann distribution over solutions us-
ing the objective function as a surrogate energy model. While promising,
DiffUCO is restricted to discrete-time and an older diffusion architecture.

Despite these advances, existing methods face challenges in compu-
tational efficiency, scalability to large instances, and convergence in mul-
timodal or unstable energy landscapes.

7.2. Preliminaries: Diffusion Model on Learning
to Solve Simple CO Problems

7.2.1 Quadratic Programming

Consider a QP problem is defined as follows:

min
x∈Rn

1

2
x⊤Qx+ q⊤x

subject to Ax = b
(7.3)

where Q ∈ Rn×n is a symmetric positive semi-definite matrix, q ∈
Rn, A ∈ Rp×n, and b ∈ Rp. The goal is to find a solution x∗ that

121

minimizes the quadratic objective while satisfying equality constraints.In
our setting, the training dataset consists of triplets D = {(Ai,bi,x

∗
i)}Ni=1

where each x∗
i is an optimal solution to a corresponding QP defined by

parameters Ai and bi. Matrix Q and vector c is fixed across samples.
We train a conditional diffusion model that learns to generate optimal

solutions x∗ conditioned on QP instances (A, b). The training proceeds
by corrupting the optimal solutions x∗ with Gaussian noise and learning
a denoising score function sθ(x, t | A, b) that approximates the gradient
of the log-density of optimal solutions under a diffusion process.

To model the conditional distribution p(x⋆ | A, b), we adopt a DDPM
framework Ho et al. (2020). The approach consists of two processes: a
forward diffusion process that corrupts optimal solutions with noise, and
a learned reverse denoising process conditioned on (A, b).

Forward Process Given an optimal solution x0 = x∗, we define the
forward noising process as:

q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (7.4)

where {ᾱt}Tt=1 is a fixed noise schedule and t ∈ {1, . . . , T} is the diffusion
timestep.

Reverse Process and Training Objective We train a neural net-
work ϵθ(xt, t | A, b) to predict the noise added during the forward process.
The network is trained to minimize the expected denoising loss:

LDDPM = Ex∗,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ (xt, t | A, b)∥22

]
, (7.5)

where the noisy input is constructed as:

xt =
√
ᾱtx

∗ +
√
1− ᾱtϵ. (7.6)

Inference-Time Sampling : At test time, given a new constraint
pair (A, b), a candidate solution is generated by starting from Gaussian
noise and iteratively denoising it using the learned conditional model
ϵθ(xt, t | A, b) until reaching a final sample x0 that approximates the
optimal QP solution.

122 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

Figure 7.1: Training and validation loss (Eq. 7.5) across different seeds
on a synthetic QP task with input x ∈ R2,

Result: Figure 7.1 shows that the diffusion framework effectively learns
to solve a QP problem on a 2D synthetic dataset, with consistent conver-
gence of training and validation losses. The results indicate that, given
constraint information, the model is able to recover optimal solutions
with high precision.

7.2.2 Maximal Independent Set

The Maximal Independent Set (MIS) problem is a fundamental discrete
optimization task over binary variables. Given a graph G = (V,E), the
objective is to find a subset of nodes that form an independent set—i.e.,
no two selected nodes share an edge—while maximizing the size of this
set. We represent the solution as a binary vector x ∈ {0, 1}n, where
xi = 1 indicates inclusion of node i in the independent set. This can be
formulated as the following integer program:

max
x∈{0,1}n

1⊤x

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E,
(7.7)

where the constraints enforce independence by preventing adjacent
nodes from being selected simultaneously.

We replicate the setting introduced in Sun & Yang (2023), which pro-

123

poses the DIFUSCO framework—an approach that leverages discrete
denoising diffusion models for solving combinatorial problems like MIS.
Our experiments are conducted on the SATLIB benchmark, a dataset
consisting of graph instances derived from SAT problems encoded in
conjunctive normal form (CNF). In this transformation, nodes represent
variables or clauses, and edges encode logical relationships, such as mu-
tual exclusion between conflicting literals. The resulting graphs are large,
irregular, and present significant combinatorial complexity, making them
well-suited for benchmarking neural solvers.

Following Sun & Yang (2023), we generate ground-truth solutions
using the KaMIS solver. Our model is trained on a subset of 10,000
instances and evaluated on 1,000 held-out test graphs.

Forward Process We use the discrete diffusion formulation from DI-
FUSCO to model a Markov chain that gradually corrupts the binary
MIS solution x0 = x∗ over time. At each timestep t, the binary vector
is corrupted via a multinomial transition defined by:

q(xt | xt−1) = Cat(xt; p = x̃t−1Qt), (7.8)

where x̃ ∈ {0, 1}n×2 is the one-hot encoding of x, and Qt is a tran-
sition matrix that introduces Bernoulli noise governed by a schedule βt.
As t→ T , the process converges to a uniform distribution over {0, 1}n.

Reverse Process and Training Objective To recover clean solu-
tions, we train a denoising model pθ(x̃0 | xt) to estimate the original
binary vector given a corrupted sample xt. The reverse process is mod-
eled via a posterior:

pθ(xt−1 | xt) =
∑

x̃0

q(xt−1 | xt, x̃0) · pθ(x̃0 | xt), (7.9)

where q(xt−1 | xt, x̃0) is computed analytically. The denoising model
is implemented as an Anisotropic Graph Neural Network (AGNN), which
incorporates node features, edge structure, and temporal embeddings to
predict denoised binary vectors at each step.

124 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

Inference and Decoding At inference time, sampling begins from a
fully noisy state xT ∼ Uniform({0, 1}n). The learned reverse transitions
are applied iteratively from t = T to t = 0, yielding a final binary vector
x0. This output is post-processed via a greedy decoding strategy to
ensure that the final solution is a valid independent set.

Observation We observe that the optimality gap across different train-
ing runs varies significantly, ranging from as low as 0.05% to nearly 20%.
This variation indicates instability in the training process and suggests
a strong dependence on random initialization. This experiment indi-
cates the need for more robust discrete diffusion model for combinatorial
optimization problems.

Figure 7.2: Validation objective values (as defined in Eq. (7.7)) across
multiple training runs for the MIS experiment. The dashed line denotes
the ground truth optimal objective, while the solid curves show predicted
objectives from different model initializations.

125

7.3. Proposed Solutions: Neural Optimization via
Energy-Based Diffusion Models

7.3.1 Optimization as Energy-Based Inference

Many real-world optimization problems—such as scheduling, routing,
and resource allocation—can be formulated as:

min
x∈C

f(c,x) (7.10)

where x ∈ C ⊆ Rd is the decision variable, c parameterizes the prob-
lem, and f is a task-specific cost function. Classical optimization meth-
ods work well when f and C are tractable; however, real-world instances
often involve non-convex, high-dimensional, or discrete domains, render-
ing exact or approximate solvers ineffective.

Instead of solving Eq. (7.10) directly, we reframe optimization as
probabilistic inference, sampling solutions from a Boltzmann distribution
that favors low-cost decisions:

pB(x;β | c) =
exp(−βE(c,x))

Z
, Z =

∫
exp(−E(c,x)) dx, (7.11)

where β = 1/T > 0 is the inverse temperature. As β →∞, pB con-
centrates on optimal solutions. However, sampling from pB is intractable
in high dimensions, especially for discrete problems.

To address this, we train a neural network qθ(x) to approximate pB
without explicitly computing Z.

7.3.2 Continuous Domains: Sliced Score Matching and
Langevin Sampling

For continuous optimization problems, we approximate the score func-
tion∇x log pB(x | c) using a neural network sθ(xt, t, c), trained via Sliced
Score Matching (SSM) Song et al. (2019). SSS sidesteps the intractable
partition function logZ since ∇x logZ = 0; the gradient of the log-
density depends only on the energy landscape. The forward process

126 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

adds Gaussian noise to the input, and the model learns to reverse this
process:

LSSM = Ext∼q(xt|x0)
v∼N (0,I)

[
v⊤∇xtsθ(xt, t, c)v +

1

2
∥sθ(xt, t, c)∥2

]
. (7.12)

During inference, samples are generated using annealed Langevin dy-
namics:

xt−1 = xt + ηtsθ(xt, t, c) +
√

2ηtϵt, ϵt ∼ N (0, I). (7.13)

7.3.3 Discrete Domains: Score Entropy Diffusion

For discrete optimization problems, we adopt the (SEDD) framework
Lou et al. (2023). Unlike D3PM Austin et al. (2021), which relies on
mean prediction and scales poorly in high dimensions, SEDD directly
learns the concrete score:

sθ(x, t)y ≈
pt(y)

pt(x)
, y ̸= x, (7.14)

which represents the ratio of transition probabilities between neigh-
boring discrete states. Similar to score matching, the score entropy for-
mulation avoids explicit computation of logZ Lou et al. (2023). This
score is trained using the score entropy loss:

LSE = Ex∼pt

∑

y ̸=x

wxy

(
sθ(x)y −

pt(y)

pt(x)
log sθ(x)y

)
, (7.15)

which generalizes score matching to discrete domains while ensuring
stable optimization.

The forward process is defined via continuous-time Markov transi-
tions with matrices Qt that perturb the input into a base distribution.
During inference, the reverse process is simulated using a τ -leaping strat-
egy, allowing efficient and parallel updates. This design supports arbi-
trary prompting and performs well in high-dimensional discrete tasks.

127

7.4. Conclusion

This proposal explores the potential of diffusion models for learning to
solve continuous and discrete optimization problems. While prior work
demonstrates their expressiveness, challenges remain in scalability, con-
straint handling, and stability. By adapting diffusion models to struc-
tured optimization tasks, this research aims to develop more robust,
efficient, and generalizable solvers.

128 Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization

CHAPTER 8

Conclusion

“Every new beginning comes from some
other beginning’s end.”

Seneca

129

130 Conclusion

This thesis has aimed to explore how machine learning (ML) and con-
strained optimization can be integrated to develop fair and scalable so-
lutions to decision-making. We structured this investigation around two
key frameworks—Predict-Then-Optimize (PtO) and Learning to Opti-
mize (LtO)—each addressing different challenges in applying to decision-
making process. Within each domain, we have described our method-
ological contributions as well as our original designs aimed at enhanc-
ing performance in various application areas, including learning-to-rank,
court scheduling, portfolio management, and power systems optimiza-
tion.

Beyond these individual frameworks, we explored a hybrid approach
that combines elements of PtO and LtO to tackle intractable Mixed-
Integer Programming (MIP) problems, exemplified through court schedul-
ing. This work explores the synergies between these frameworks, demon-
strating how techniques from one setting can benefit the other. By
proposing algorithmic designs that blur the boundaries between Learn-
ing to Optimize and Predict-Then-Optimize, we aim for a unified field of
study that fully integrates ML and optimization as complementary and
interdependent disciplines.

As part of our discussion on future directions, we concluded with an
exploration of modern generative models—particularly diffusion mod-
els—for learning to solve constrained optimization problems across both
continuous and discrete domains. These models offer a promising ap-
proach for efficiently navigating complex solution landscapes by generat-
ing high-quality candidate solutions. Beyond decision-making, this line
of research holds broader relevance for scientific fields, as many combi-
natorial objectives exhibit structural parallels with the Spin Glass model
from statistical physics. This connection suggests that advances in gener-
ative modeling for optimization could contribute to solving foundational
problems in physics, materials science, and network theory.

As machine learning continues to transform computational science
and the availability of data grows, informed decision-making will in-
creasingly rely on a fusion of predictive and prescriptive modeling. This
thesis highlights the promise of deeply integrating ML and optimization,
showing that their synergy enables solutions that are more scalable, fair,

131

and effective than either approach alone. We hope this work provides
a comprehensive perspective on these technologies and inspires further
research into how they can expand to different settings.

132 Conclusion

Bibliography

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter,
J. Z. (2019a). Differentiable convex optimization layers. Advances in
neural information processing systems, 32 .

Agrawal, A., Barratt, S. T., Boyd, S. P., Busseti, E., & Moursi, W. M.
(2019b). Differentiating through a cone program.
URL https://api.semanticscholar.org/CorpusID:121394814

Amos, B., & Kolter, J. Z. (2017a). Optnet: Differentiable optimization
as a layer in neural networks. In ICML, (pp. 136–145). JMLR. org.

Amos, B., & Kolter, J. Z. (2017b). Optnet: Differentiable optimization
as a layer in neural networks. In International Conference on Machine
Learning , (pp. 136–145). PMLR.

Amos, B., Koltun, V., & Kolter, J. Z. (2019). The limited multi-label
projection layer.

Arora, R., Basu, A., Mianjy, P., & Mukherjee, A. (2016). Understand-
ing deep neural networks with rectified linear units. arXiv preprint
arXiv:1611.01491 .

Austin, J., Johnson, D. D., Ho, J., Tarlow, D., & van den Berg, R.
(2021). Structured denoising diffusion models in discrete state-spaces.
In Advances in Neural Information Processing Systems, vol. 34, (pp.
17981–17993).

133

https://api.semanticscholar.org/CorpusID:121394814

134 Bibliography

Baughman, S. B. (2018). The Bail Book . Cambridge, UK: Cambridge
University Press.

Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2008). Linear program-
ming and network flows. John Wiley & Sons.

Beck, A. (2017). First-order methods in optimization. SIAM.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S.
(2017). Neural combinatorial optimization with reinforcement learn-
ing. arXiv:1611.09940 .

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., & Bach,
F. (2020). Learning with differentiable pertubed optimizers. Advances
in neural information processing systems, 33 , 9508–9519.

Blondel, M., Teboul, O., Berthet, Q., & Djolonga, J. (2020). Fast differ-
entiable sorting and ranking. In International Conference on Machine
Learning , (pp. 950–959). PMLR.

Boyd, S., Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization.
Cambridge university press.

Cajas, D. (2021). Owa portfolio optimization: A disciplined convex
programming framework.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to
rank: from pairwise approach to listwise approach. In Proceedings of
the 24th international conference on Machine learning , (pp. 129–136).

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C., & Veličković,
P. (2021). Combinatorial optimization and reasoning with graph neu-
ral networks. arXiv preprint arXiv:2102.09544 .

Chatzos, M., Fioretto, F., Mak, T. W. K., & Hentenryck, P. V. (2020).
High-fidelity machine learning approximations of large-scale optimal
power flow. arXiv preprint arXiv:2006.16356 .

Chen, C. S., Beckham, C., Liu, Z., Liu, X., & Pal, C. (2024). Robust

135

guided diffusion for offline black-box optimization.
URL https://arxiv.org/abs/2410.00983

Chen, Y., & Zhou, A. (2022). Multiobjective portfolio optimization via
pareto front evolution. Complex and Intelligent Systems, 8 , 4301–
4317.
URL https://doi.org/10.1007/s40747-022-00715-8

Chong, K. F. E. (2020). A closer look at the approximation capabilities
of neural networks. In 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020 .
OpenReview.net.
URL https://openreview.net/forum?id=rkevSgrtPr

Coffrin, C., Gordon, D., & Scott, P. (2014). NESTA, the NICTA energy
system test case archive. CoRR, abs/1411.0359 .
URL http://arxiv.org/abs/1411.0359

Connor, J., Martin, R., & Atlas, L. (1994). Recurrent neural networks
and robust time series prediction. IEEE Transactions on Neural Net-
works, 5 (2), 240–254.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022).
Introduction to algorithms. MIT press.

Criminal Justice Innovation Lab (CJIL) (2022). North carolina court
appearance project: Findings and policy solutions from new hanover,
orange, and robeson counties.

Dantzig, G. B. (1951). Maximization of a linear function of variables
subject to linear inequalities. Activity analysis of production and allo-
cation, 13 , 339–347.

Deka, D., & Misra, S. (2019). Learning for DC-OPF: Classifying active
sets using neural nets. Https://arxiv.org/pdf/1902.05607.

Deka, D., & Misra, S. (2019). Learning for DC-OPF: Classifying active
sets using neural nets. In 2019 IEEE Milan PowerTech.

https://arxiv.org/abs/2410.00983
https://doi.org/10.1007/s40747-022-00715-8
https://openreview.net/forum?id=rkevSgrtPr
http://arxiv.org/abs/1411.0359

136 Bibliography

Detassis, F., Lombardi, M., & Milano, M. (2020). Teaching the old
dog new tricks: supervised learning with constraints. In A. Saffiotti,
L. Serafini, & P. Lukowicz (Eds.) Proceedings of the First International
Workshop on New Foundations for Human-Centered AI (NeHuAI),
vol. 2659 of CEUR Workshop Proceedings, (pp. 44–51).

Dinh, M. H., Fioretto, F., Mohammadian, M., & Baker, K. (2023). An
analysis of the reliability of ac optimal power flow deep learning prox-
ies. In IEEE PES Innovative Smart Grid Technologies.
URL https://ieee-isgt-latam.org

Dinh, M. H., Kotary, J., & Fioretto, F. (2024a). Differentiable approxi-
mations of fair OWA optimization. In ICML 2024 Workshop on Dif-
ferentiable Almost Everything: Differentiable Relaxations, Algorithms,
Operators, and Simulators.
URL https://openreview.net/forum?id=NBt4ZBOFth

Dinh, M. H., Kotary, J., & Fioretto, F. (2024b). End-to-end learning for
fair multiobjective optimization under uncertainty. In Conference on
Uncertainty in Artificial Intelligence.

Dinh, M. H., Kotary, J., & Fioretto, F. (2024c). Learning fair ranking
policies via differentiable optimization of ordered weighted averages.
In ACM Conference on Fairness, Accountability, and Transparency
(ACM FAccT), (pp. 2508–2517).
URL doi.acm.org?doi=3630106.3661932

Dinh, M. H., Kotary, J., Gouldin, L. P., Yeoh, W., & Fioretto, F. (2024d).
End-to-end optimization and learning of fair court schedules. CoRR,
abs/2410.17415 .

Do, V., Corbett-Davies, S., Atif, J., & Usunier, N. (2021). Two-sided
fairness in rankings via lorenz dominance. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.) Advances in
Neural Information Processing Systems, vol. 34, (pp. 8596–8608).
Curran Associates, Inc.
URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/48259990138bc03361556fb3f94c5d45-Paper.pdf

https://ieee-isgt-latam.org
https://openreview.net/forum?id=NBt4ZBOFth
doi.acm.org?doi=3630106.3661932
https://proceedings.neurips.cc/paper_files/paper/2021/file/48259990138bc03361556fb3f94c5d45-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/48259990138bc03361556fb3f94c5d45-Paper.pdf

137

Do, V., & Usunier, N. (2022). Optimizing generalized gini indices for
fairness in rankings. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval , (pp. 737–747).

Donti, P. L., Rolnick, D., & Kolter, J. Z. (2020). Dc3: A learning method
for optimization with hard constraints. In ICLR.

Du, Y., Mao, J., & Tenenbaum, J. B. (2024). Learning iterative reasoning
through energy diffusion. In International Conference on Machine
Learning (ICML).

Edelman, B., Luca, M., & Svirsky, D. (2017). Racial discrimination in
the sharing economy: Evidence from a field experiment. American
economic journal: applied economics, 9 (2), 1–22.

Elbassuoni, S., Amer-Yahia, S., Ghizzawi, A., & El Atie, C. (2019).
Exploring fairness of ranking in online job marketplaces. In 22nd In-
ternational Conference on Extending Database Technology (EDBT).

Elmachtoub, A. N., & Grigas, P. (2021). Smart “predict, then optimize”.

Elmachtoub, A. N., Liang, J. C. N., & McNellis, R. (2020). Decision
trees for decision-making under the predict-then-optimize framework.
URL https://arxiv.org/abs/2003.00360

Ferber, A., Wilder, B., Dilkina, B., & Tambe, M. (2020). Mipaal: Mixed
integer program as a layer.

Ferguson, A. G. (2022). Courts without court. Vanderbilt Law Review ,
75 , 1461–1466.

Fioretto, F., Hentenryck, P. V., Mak, T. W., Tran, C., Baldo, F., & Lom-
bardi, M. (2020a). Lagrangian duality for constrained deep learning.
In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, (pp. 118–135). Springer.

Fioretto, F., Mak, T. W., & Van Hentenryck, P. (2020b). Predicting
AC opf: Combining deep learning and lagrangian dual methods. In
AAAI .

https://arxiv.org/abs/2003.00360

138 Bibliography

Fioretto, F., Mak, T. W., & Van Hentenryck, P. (2020c). Predicting ac
optimal power flows: Combining deep learning and lagrangian dual
methods. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), (pp. 630–637).

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., &
Guo, E. (2016). On differentiating parameterized argmin and argmax
problems with application to bi-level optimization.

Gouldin, L. P. (2024). Keeping up appearances. University of California
at Davis Law Review , 58 . Forthcoming.

Graef, L., Mayson, S. G., Ouss, A., & Stevenson, M. T. (2023). Systemic
failure to appear in court. University of Pennsylvania Law Review ,
172 , 1, 11.

Hardy, G. H., Littlewood, J. E., & Pólya, G. (1952). Inequalities. Cam-
bridge university press.

Hasan, F., Kargarian, A., & Mohammadi, A. (2020). A survey on ap-
plications of machine learning for optimal power flow. In 2020 IEEE
Texas Power and Energy Conference (TPEC), (pp. 1–6).

Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of
optimization theory and applications, 4 (5), 303–320.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilis-
tic models. In Advances in Neural Information Processing Systems,
vol. 33, (pp. 6840–6851).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9 (8), 1735–1780.

Hopfield, J., & Tank, D. (1985). Neural computation of decisions in
optimization problems. Biological cybernetics, 52 , 141–52.

Hopfield, J. J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proceedings of the national
academy of sciences, 79 (8), 2554–2558.

139

Huang, C. (2020). Relu networks are universal approximators via piece-
wise linear or constant functions. Neural Computation, 32 (11), 2249–
2278.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models
by score matching. Journal of Machine Learning Research, 6 (24),
695–709.
URL http://jmlr.org/papers/v6/hyvarinen05a.html

Iancu, D. A., & Trichakis, N. (2014). Fairness and efficiency in multi-
portfolio optimization. Operations Research, 62 (6), 1285–1301.
URL https://doi.org/10.1287/opre.2014.1310

Institute for Law and Social Research (INSLAW) (1988). Decision-
related research on technology utilized by local government: Court
scheduling phase ii.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International
Conference on Machine Learning (ICML), (pp. 448–456).

Jeong, J., Jaggi, P., Butler, A., & Sanner, S. (2022). An exact sym-
bolic reduction of linear smart Predict+Optimize to mixed integer
linear programming. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepes-
vari, G. Niu, & S. Sabato (Eds.) Proceedings of the 39th International
Conference on Machine Learning , vol. 162 of Proceedings of Machine
Learning Research, (pp. 10053–10067). PMLR.
URL https://proceedings.mlr.press/v162/jeong22a.html

Jia, Y., & Wang, H. (2021). Calibrating explore-exploit trade-off for fair
online learning to rank.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic op-
timization. In International Conference on Learning Representations
(ICLR).
URL https://arxiv.org/abs/1412.6980

Kool, W., Van Hoof, H., & Welling, M. (2018). Attention, learn to solve
routing problems! arXiv preprint arXiv:1803.08475 .

http://jmlr.org/papers/v6/hyvarinen05a.html
https://doi.org/10.1287/opre.2014.1310
https://proceedings.mlr.press/v162/jeong22a.html
https://arxiv.org/abs/1412.6980

140 Bibliography

Kostreva, M. M., & Ogryczak, W. (1999). Linear optimization with mul-
tiple equitable criteria. RAIRO-Operations Research-Recherche Opéra-
tionnelle, 33 (3), 275–297.

Kotary, J., Dinh, M. H., & Fioretto, F. (2023). Backpropagation of
unrolled solvers with folded optimization. In International Joint Con-
ference on Artificial Intelligence, (pp. 1963–1970). ijcai.org.
URL https://doi.org/10.24963/ijcai.2023/218

Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-
to-end constrained optimization learning: A survey. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21 , (pp. 4475–4482).
URL https://doi.org/10.24963/ijcai.2021/610

Kotary, J., Fioretto, F., Van Hentenryck, P., & Zhu, Z. (2022). End-to-
end learning for fair ranking systems. In Proceedings of the ACM Web
Conference 2022 , (pp. 3520–3530).

Kreider, J. F., Claridge, D. E., Curtiss, P., Dodier, R., Haberl, J. S., &
Krarti, M. (1995). Building Energy Use Prediction and System Iden-
tification Using Recurrent Neural Networks. Journal of Solar Energy
Engineering , 117 (3), 161–166.

Krishnamoorthy, S., Mashkaria, S. M., & Grover, A. (2023). Diffusion
models for black-box optimization.
URL https://arxiv.org/abs/2306.07180

Kuhn, H. W. (1955). The Hungarian Method for the Assignment Prob-
lem. Naval Research Logistics Quarterly , 2 (1–2), 83–97.

Lan, G. (2013). The complexity of large-scale convex programming under
a linear optimization oracle.

Lane, P., & Cox, W. (1976). Guide to Court Scheduling, 1 - A Framework
for Criminal and Civil Courts. Institute for Law and Social Research.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521 (7553), 436.

https://doi.org/10.24963/ijcai.2023/218
https://doi.org/10.24963/ijcai.2021/610
https://arxiv.org/abs/2306.07180

141

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE ,
86 (11), 2278–2324.

Li, A., Ding, Z., Dieng, A. B., & Beeson, R. (2024a). Constraint-aware
diffusion models for trajectory optimization.
URL https://arxiv.org/abs/2406.00990

Li, Y., Guo, J., Wang, R., & Yan, J. (2023). T2t: From distribution
learning in training to gradient search in testing for combinatorial
optimization. NeurIPS .

Li, Y., Guo, J., Wang, R., Zha, H., & Yan, J. (2024b). Fast t2t: Op-
timization consistency speeds up diffusion-based training-to-testing
solving for combinatorial optimization. NeurIPS .

Liu, Y., Gong, C., Yang, L., & Chen, Y. (2020). Dstp-rnn: A dual-
stage attention-based rnn for long-term and multivariate time series
prediction. Expert Systems with Applications, 143 , 113082.

Lou, A., Meng, C., & Ermon, S. (2023). Discrete diffusion language mod-
eling by estimating the ratios of the data distribution. arXiv preprint
arXiv:2310.16834 .
URL https://arxiv.org/abs/2310.16834

Mandi, J., & Guns, T. (2020). Interior point solving for lp-based pre-
diction+optimisation. In Advances in Neural Information Processing
Systems (NeurIPS).

Mandi, J., Kotary, J., Berden, S., Mulamba, M., Bucarey, V., Guns, T.,
& Fioretto, F. (2024a). Decision-focused learning: Foundations, state
of the art, benchmark and future opportunities. Journal of Artificial
Intelligence Research, TBA, TBA.

Mandi, J., Kotary, J., Berden, S., Mulamba, M., Bucarey, V., Guns, T.,
& Fioretto, F. (2024b). Decision-focused learning: Foundations, state
of the art, benchmark and future opportunities. Journal of Artificial
Intelligence Research, 81 , 1623–1701.

https://arxiv.org/abs/2406.00990
https://arxiv.org/abs/2310.16834

142 Bibliography

Márquez-Neila, P., Salzmann, M., & Fua, P. (2017). Imposing hard con-
straints on deep networks: Promises and limitations. In International
Conference on Computer Vision (ICCV).

McAuliffe, S., Hammer, S., Fishbane, A., & Wilk, A. (2023). National
guide to improving court appearances. IDEAS42, 1.
URL https://www.ideas42.org/wp-content/uploads/2023/05/
national-guide-improving-court-appearance.pdf

Nasdaq (2022). Nasdaq end of day us stock prices. https://data.
nasdaq.com/databases/EOD/documentation. Accessed: 2023-08-15.

National Council of Juvenile and Family Court Judges (2021). Research
report: Assessing time-certain calendaring dockets. Tech. rep., Na-
tional Council of Juvenile and Family Court Judges. Accessed: 2024-
10-03.
URL IncludetheURLhereifavailable

Ng, Y., Misra, S., Roald, L., & Backhaus, S. (2018). Statistical learning
for DC optimal power flow. In Power Systems Computation Confer-
ence.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer
Science & Business Media.

Nowak, A., Villar, S., Bandeira, A. S., & Bruna, J. (2018). Revised note
on learning algorithms for quadratic assignment with graph neural
networks.

Ogryczak, W., Luss, H., Pióro, M., Nace, D., & Tomaszewski, A. (2014).
Fair Optimization and Networks: A Survey. Journal of Applied Math-
ematics, 2014 (SI08), 1 – 25.
URL https://doi.org/10.1155/2014/612018

Ogryczak, W., & Śliwiński, T. (2003). On solving linear programs with
the ordered weighted averaging objective. European Journal of Oper-
ational Research, 148 (1), 80–91.

https://www.ideas42.org/wp-content/uploads/2023/05/national-guide-improving-court-appearance.pdf
https://www.ideas42.org/wp-content/uploads/2023/05/national-guide-improving-court-appearance.pdf
https://data.nasdaq.com/databases/EOD/documentation
https://data.nasdaq.com/databases/EOD/documentation
Include the URL here if available
https://doi.org/10.1155/2014/612018

143

Pan, X., Zhao, T., & Chen, M. (2019). DeepOPF: Deep neural network
for dc optimal power flow. In SmartGridComm, (pp. 1–6).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in pytorch. In NIPS-W .

Pathak, D., Krahenbuhl, P., & Darrell, T. (2015). Constrained con-
volutional neural networks for weakly supervised segmentation. In
International Conference on Computer Vision (ICCV).

Perron, L. (2011). Operations research and constraint programming
at google. In Principles and Practice of Constraint Programming–
CP 2011: 17th International Conference, CP 2011, Perugia, Italy,
September 12-16, 2011. Proceedings 17 , (pp. 2–2). Springer.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M.
(2019). Differentiation of blackbox combinatorial solvers. In Interna-
tional Conference on Learning Representations.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., & Rolinek, M.
(2020). Differentiation of blackbox combinatorial solvers. In Interna-
tional Conference on Learning Representations (ICLR).

Powell, M. J. (1969). A method for nonlinear constraints in minimization
problems. Optimization, (pp. 283–298).

Sahoo, S. S., Arriola, M., Schiff, Y., Gokaslan, A., Marroquin, E., Chiu,
J. T., Rush, A., & Kuleshov, V. (2024). Simple and effective masked
diffusion language models.
URL https://arxiv.org/abs/2406.07524

Salas, J., & Yepes, V. (2020). Enhancing sustainability and resilience
through multi-level infrastructure planning. International Journal of
Environmental Research and Public Health, 17 (3), 962.

Sanokowski, S., Hochreiter, S., & Lehner, S. (2024). A diffusion model
framework for unsupervised neural combinatorial optimization. ICML.

https://arxiv.org/abs/2406.07524

144 Bibliography

Siddique, U., Weng, P., & Zimmer, M. (2020). Learning fair policies
in multiobjective (deep) reinforcement learning with average and dis-
counted rewards. In Proceedings of the 37th International Conference
on Machine Learning , ICML’20. JMLR.org.

Singh, A., & Joachims, T. (2018). Fairness of exposure in rankings. In
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining , (pp. 2219–2228).

Singh, A., & Joachims, T. (2019). Policy learning for fairness in ranking.

Song, Y., Garg, S., Shi, J., & Ermon, S. (2019). Sliced score matching:
A scalable approach to density and score estimation.
URL https://arxiv.org/abs/1905.07088

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdi-
nov, R. (2014). Dropout: A simple way to prevent neural networks
from overfitting. In Journal of Machine Learning Research, vol. 15,
(pp. 1929–1958).

Sun, W., et al. (2020). Evolution and impact of bias in human and ma-
chine learning algorithm interaction. PLOS ONE .
URL https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0235502

Sun, Z., & Yang, Y. (2023). Difusco: Graph-based diffusion solvers for
combinatorial optimization. NeurIPS .

Terlouw, T., AlSkaif, T., Bauer, C., & van Sark, W. (2019). Multi-
objective optimization of energy arbitrage in community energy
storage systems using different battery technologies. Applied Energy ,
239 , 356–372.
URL https://www.sciencedirect.com/science/article/pii/
S0306261919302478

Tran, C., Fioretto, F., & Hentenryck, P. V. (2021). Differentially private
and fair deep learning: A lagrangian dual approach. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI).

https://arxiv.org/abs/1905.07088
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235502
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235502
https://www.sciencedirect.com/science/article/pii/S0306261919302478
https://www.sciencedirect.com/science/article/pii/S0306261919302478

145

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need.
In Advances in Neural Information Processing Systems (NeurIPS),
vol. 30.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Ben-
gio, Y. (2018). Graph attention networks. In International Conference
on Learning Representations, (ICLR).

Velloso, A., & Van Hentenryck, P. (2020). Combining deep learn-
ing and optimization for security-constrained optimal power flow.
arXiv:2007:2007.07002 .

Verma, A. (2009). Power grid security analysis: An optimization ap-
proach. Ph.D. thesis, Columbia University.

Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer networks. In
Advances in Neural Information Processing Systems (NeurIPS , (pp.
2692–2700).

Wächter, A., & Biegler, L. T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming. Mathematical Programming , 106 (1), 25–57.

Wilder, B., Dilkina, B., & Tambe, M. (2019). Melding the data-decisions
pipeline: Decision-focused learning for combinatorial optimization. In
AAAI , vol. 33, (pp. 1658–1665).

Wilson, G., & Pawley, G. (1988). On the stability of the travelling sales-
man problem algorithm of hopfield and tank. Biological Cybernetics,
58 (1), 63–70.

Xu, J., Chen, C., Xu, G., Li, H., & Abib, E. R. T. (2010). Improv-
ing quality of training data for learning to rank using click-through
data. In Proceedings of the third ACM international conference on
Web search and data mining , (pp. 171–180).

Yadav, H., Du, Z., & Joachims, T. (2019). Fair learning-to-rank from
implicit feedback. DeepAI .

146 Bibliography

URL https://deepai.org/publication/
fair-learning-to-rank-from-implicit-feedback

Yager, R. R. (1993). On ordered weighted averaging aggregation
operators in multicriteria decisionmaking. In D. Dubois, H. Prade,
& R. R. Yager (Eds.) Readings in Fuzzy Sets for Intelligent Systems,
(pp. 80–87). Morgan Kaufmann.
URL https://www.sciencedirect.com/science/article/pii/
B9781483214504500110

Yager, R. R., & Kacprzyk, J. (2012). The Ordered Weighted Averaging
Operators: Theory and Applications. Springer Publishing Company,
Incorporated.

Yang, Y., Yang, Z., Yu, J., Zhang, B., Zhang, Y., & Yu, H. (2020). Fast
calculation of probabilistic power flow: A model-based deep learning
approach. IEEE Transactions on Smart Grid , 11 (3), 2235–2244.

Zamzam, A., & Baker, K. (2020). Learning optimal solutions for ex-
tremely fast AC optimal power flow. In IEEE SmartGridComm.

Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., & Baeza-
Yates, R. (2017). Fa*ir: A fair top-k ranking algorithm. In Proceedings
of the 2017 ACM on Conference on Information and Knowledge Man-
agement , CIKM ’17, (p. 1569–1578). New York, NY, USA: Association
for Computing Machinery.
URL https://doi.org/10.1145/3132847.3132938

Zehlike, M., & Castillo, C. (2020). Reducing disparate exposure in rank-
ing: A learning to rank approach. In Proceedings of the web conference
2020 , (pp. 2849–2855).

Zettler, H., & Morris, R. (2015). An exploratory assessment of race and
gender-specific predictors of failure to appear in court among defen-
dants released via a pretrial services agency. Criminal Justice Review ,
40 .

https://deepai.org/publication/fair-learning-to-rank-from-implicit-feedback
https://deepai.org/publication/fair-learning-to-rank-from-implicit-feedback
https://www.sciencedirect.com/science/article/pii/B9781483214504500110
https://www.sciencedirect.com/science/article/pii/B9781483214504500110
https://doi.org/10.1145/3132847.3132938

Appendices

147

Appendix for Chapter 6

“Knowledge is like a sphere; the more
its volume expands, the greater its
contact with the unknown.”

Blaise Pascal

149

150 Appendix for Chapter 6

.1. Causal Graph Conditional Probability Tables

Below are the conditional distributions of the causal graph depicted in
Figure 6.3.

Table 1: Distribution of Race among Defendants

Race P(x)

White 1/2
Non White 1/2

Table 2: Distribution of Age Groups among Defendants

Age Group P(x)

Below 18 1/20
18-54 4/5
Above 55 3/20

Table 3: Distribution of Gender among Defendants

Gender P(x)

Male 9/20

Female 11/20

151

Table 4: Transportation Accessibility Conditional on Race

Transportation Accessibil-
ity (x)

Race (y) P(x|y)

Public transportation White 4/5

Private transportation White 1/5

Public transportation Non White 3/5

Private transportation Non White 2/5

Table 5: Employment Status Conditional on Race

Employment Status
(x)

Race (y) P(x|y)

Employed White 4/5

Unemployed White 1/5

Employed Non White 7/10

Unemployed Non White 3/10

Table 6: Work Hour Conditional on Employment Status

Work Hour Employment
Status

P(x|y)

Day shift Employed 1/2

Night shift Employed 3/10

Irregular shift Employed 9/50

No shift Employed 1/50

Day shift Unemployed 0.0
Night shift Unemployed 0.0
Irregular shift Unemployed 0.0
No shift Unemployed 1.0

152 Appendix for Chapter 6

Table 7: Number of Children Conditional on Age Group

Number of Children Age Group P(x|y)

No child Under 18 19/20

+1 child Under 18 1/20

No child 18-54 11/20

+1 child 18-54 9/20

No child Above 55 1/5

+1 child Above 55 4/5

Table 8: Childcare Obligation Conditional on Gender and Number of
Children

Childcare Obligation Gender, Number of
Children

P(x|y,z)

No obligation Female, no child 1.0
No obligation Female, +1 child 3/10

No obligation Male, no child 1.0
No obligation Male, +1 child 17/20

Have obligation Female, no child 0.0
Have obligation Female, +1 child 7/10

Have obligation Male, no child 0.0
Have obligation Male, +1 child 3/20

153

Table 9: Schedule preferences (Part 1)

Schedule
Preference
(o)

Transportation Accessibility (l), Work
Hour (m), Childcare Obligation (n)

P(o |
l,m,n)

8:00AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

8:30AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

9:00AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

9:30AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

10:00AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

10:30AM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

1/6

1:00PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

1:30PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

2:00PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

2:30PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

3:00PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

3:30PM Public Transportation, Day or Regular Shift,
Have or Don’t Have Childcare Obligation

0

154 Appendix for Chapter 6

Table 10: Schedule preferences (Part 2)

Schedule
Preference
(o)

Transportation Accessibility (l), Work
Hour (m), Childcare Obligation (n)

P(o |
l,m,n)

8:00AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

8:30AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

9:00AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

9:30AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

1/3

10:00AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

1/3

10:30AM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

1/3

1:00PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

1:30PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

2:00PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

2:30PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

3:00PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

3:30PM Public Transportation, Night Shift, Have or
Don’t Have Childcare Obligation

0

155

Table 11: Schedule preferences (Part 3)

Schedule
Preference
(o)

Transportation Accessibility (l), Work
Hour (m), Childcare Obligation (n)

P(o |
l,m,n)

8:00AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

8:30AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

9:00AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

9:30AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

10:00AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

10:30AM Private Transportation, Day Shift, Have Child-
care Obligation

1/6

1:00PM Private Transportation, Day Shift, Have Child-
care Obligation

0

1:30PM Private Transportation, Day Shift, Have Child-
care Obligation

0

2:00PM Private Transportation, Day Shift, Have Child-
care Obligation

0

2:30PM Private Transportation, Day Shift, Have Child-
care Obligation

0

3:00PM Private Transportation, Day Shift, Have Child-
care Obligation

0

3:30PM Private Transportation, Day Shift, Have Child-
care Obligation

0

156 Appendix for Chapter 6

Table 12: Schedule preferences (Part 4)

Schedule
Preference
(o)

Transportation Accessibility (l), Work
Hour (m), Childcare Obligation (n)

P(o |
l,m,n)

8:00AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

1/4

8:30AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

1/4

9:00AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

1/4

9:30AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

1/4

10:00AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

10:30AM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

1:00PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

1:30PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

2:00PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

2:30PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

3:00PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

3:30PM Private Transportation, Night or Irregular Shift,
Have or Don’t Have Childcare Obligation

0

	List of Publications
	Introduction
	Problem Settings
	Predict-then-Optimize
	Learning to Optimize

	Motivation and Research Questions

	Background
	Constrained Optimization
	Deep Learning
	Predict-then-Optimize
	Learning-to-Optimize

	End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty
	End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty
	Preliminaries
	Fair OWA and its Optimization
	Predict-Then-Optimize Learning

	End-to-End Learning with Fair OWA Optimization
	Differentiable Approximations of OWA Optimization
	OWA LP with Quadratic Smoothing
	Moreau Envelope Smoothing

	Experiments
	Robust Markowitz Portfolio Problem
	Moreau Envelope as a Loss Function

	Conclusions

	Integrating Machine Learning and Constrained Optimization: Fairness-Aware Learning-to-Rank
	Learning Fair Ranking Policies via Integration with Constrained Optimization
	Preliminaries
	Problem Setting and Goals
	Fairness of Exposure

	Limitations of Fair LTR Methods
	Smart OWA Optimization for Fair Learning to Rank (SOFaiR)
	Ordered Weighted Averaging Operator
	End-to-End Learning in SOFaiR

	Forward Pass Optimization
	Backpropagation
	Experiments
	Running Time Analysis
	Fairness and Utility Tradeoffs Analysis
	Multi-Group Fairness Analysis

	Conclusions

	Learning to Optimize with Application in AC-OPF Problem
	Deep Learning and Optimal Power Flow Problem
	Related Work
	Preliminaries
	OPF Learning Goals
	Deep Learning Proxies for AC-OPF: Roadmap
	Generator's Characteristics.
	Network Characteristics
	Constraints
	A Novel RNN-based Learning Framework
	Conclusions

	End-to-End Optimization and Learning of Fair Court Schedules
	Optimization and Learning of Fair Court Schedules
	Related Work
	Motivations and Problem Setting
	Preliminaries: Fair OWA Aggregation
	Fair Optimization of Court Schedules
	Group Fairness
	Complexity of the Optimization Models

	Optimization and Learning for Fair Court Schedules
	End-to-End Trainable Scheduling Model
	Differentiable Matching Layer
	OWA as a Loss Function

	Experimental Settings
	Data Generation Process
	Model Settings and Evaluation Metrics
	Baseline Models

	Results
	OWA Utility Regret
	Normalized mean pairwise distances
	Running Time

	Conclusions

	Future Directions: Diffusion for Learning-to-Optimize Constrained Optimization
	Background and Related Work
	Diffusion Models
	Diffusion Models for Continuous Optimization
	Diffusion Models for Discrete Optimization

	Preliminaries: Diffusion Model on Learning to Solve Simple CO Problems
	Quadratic Programming
	Maximal Independent Set

	Proposed Solutions: Neural Optimization via Energy-Based Diffusion Models
	Optimization as Energy-Based Inference
	Continuous Domains: Sliced Score Matching and Langevin Sampling
	Discrete Domains: Score Entropy Diffusion

	Conclusion

	Conclusion
	Appendices
	Appendix for Chapter 6
	Causal Graph Conditional Probability Tables

