




Abstract

Over the past decades, coordinated control of multi-agent systems has received increasing

attention for its potential in applications such as cooperation of robots, coordination of un-

manned air vehicles, management of distributed database and synchronization of networked

oscillators.

Flocking behavior is said to be achieved if both position aggregation and heading align-

ment are achieved. Collision avoidance is an additional control objective in most flocking

applications involving physical subjects. Formation control is a widely used method to create

flocking behavior in a multi-agent system. Since formation control requires a virtual leader

and a predefined geometric configuration of the flock, the resulting closed-loop multi-agent

system is sensitive to agent ordering and individual agent failure. An alternative approach to

enforcing the aggregation of agents is to define an artificial potential function. The artificial

potential function determines the attractive-repulsive interaction between the agents. Then,

a control law based on the gradient of the potential function drives the system into a desired

configuration. In this case, no a priori knowledge is needed and the closed-loop system is

more robust.

Consensus control is another important problem in coordinated control. It is concerned

with reaching a networkwide agreement on some quantities of interest while each agent can

only access local information. Many of the existing studies address the consensus of multi-

agent systems with linear dynamics, and both linear and nonlinear controllers have been

proposed.

Regardless of the control algorithm employed, coordinated control highly relies on inter-

actions among agents and for this reason communication delays are inevitable and should be

taken into consideration during the development of the control algorithm. Control of indi-
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vidual dynamic systems with time delays has been studied extensively in the literature. In

particular, the low gain feedback method has been demonstrated to be effective in developing

control laws for the stabilization of linear and nonlinear delayed systems.

In this dissertation, we firstly consider the flocking of nonholonomic vehicles in the pres-

ence of communication delays. In both continuous-time and discrete-time scenarios, dis-

tributed control laws are developed based on artificial potential functions. Aggregation of

positions and alignment of headings are proved separately through the Lyapunov functional

approach. Then, we study the consensus of a class of nonlinear affine systems in the presence

of communication delays. In both continuous-time and discrete-time settings, distributed

control laws are constructed and consensus is proved as well.
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Chapter 1

Introduction

1.1 Overview of multi-agent systems

There has been exploding amount of study related to multi-agent systems over the past

decades, and one can refer to [1] and [2] for a more comprehensive introduction to the

related topics and applications. In this research, we only concern the coordinated control of

multi-agent systems. In particular, flocking and consensus problems will be investigated.

A multi-agent system consists of a number of interacting intelligent agents that cooperate

to solve a problem or to achieve a common objective. Each intelligent agent in the system

must be endowed with autonomy and social ability. That is, each agent must be able

to observe the environment and other agents in the system and to react based on such

observations. Intelligent agents can be any entities that possess such two properties, such

as, unmanned vehicles and robotics.

The most significant feature and the biggest advantage of multi-agent systems is that the

capability of the system as a whole can be greater than the sum of individuals’ capability.

As a result, multi-agent systems can be used to solve large-scale or complicated problems

that are not solvable by individual systems.
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1.2 Flocking control of multi-agent systems

Collective motion of agents in a large community with a common objective is easy to observe

in nature. Many types of mammals, birds and fishes rely on coordinated motion in the form

of a flock or swarm for survival. The most basic collective behavior of a flock, which involves

the aggregation (or gathering) of the agents and the alignment in their direction of motion,

is commonly known as flocking [3].

The study of this topic can be traced back to 1986, when the flocking behavior was first

simulated by Craig Reynolds with his computer program “Boids” [4]. Craig Reynolds has

proposed three simple but crucial steering rules,

• Cohesion: to stay close to neighbor agents;

• Separation: to avoid collisions with neighbor agents;

• Alignment: to match heading with neighbor agents.

Craig Reynolds’ rules describe how each agent moves according to the positions and headings

of its nearby agents and provide guidelines to much of the later research.

Different approaches for flocking control have been proposed by scientists and engineers

according to different application background. One approach to achieving flocking is by

specifying the formation geometry of the flock a priori. A control law then brings the agents

to their predefined relative positions. This method has been widely employed in applications

where maintaining a specific geometric configuration helps reduce the system cost or increase

the capability of system, such as search and rescue in large-scale disasters, clustering of small

satellites and security patrols. Many authors have explored the formation control method in

their work. A model-independent approach is presented in [5] by decoupling the formation

problem into the trajectory tracking of each agent. The stable formation of multi-agent

systems with communication delays was studied in [6] for linear systems, and in [7, 8] for a

class of nonlinear agents. Obstacle avoidance and vehicles following in traffic are studied in

[9]. In [10], obstacle avoidance is achieved in flocking by switching the formation pattern.

Despite of the advantages of the formation control method, in many cases, defining the

formation of a multi-agent system may require a specific ordering of the agents, which can

2



negatively affect the robustness of the closed-loop system to instances of individual agent

failure.

An alternative approach to enforcing the aggregation of the agents is to define an artifi-

cial potential function. The artificial potential function determines the attractive-repulsive

interaction between the agents. A control law based on the gradient of the potential function

drives the system into a formation corresponding to minimum energy, which together with

connected topologies imply aggregated positions. The flocking behavior of agents that are

described by linear systems was studied in [11, 12, 13]. For systems consisting of a class

of nonholonomic agents, reference [14] provides the theoretical justification for the flocking

behavior in the delay-free scenarios. In [15], flocking with obstacle avoidance is studied by

constructing artificial repulsive forces associated with obstacles. In the design of potential

function based control laws, it is not necessary to define a specific formation geometry for the

system, which makes the closed-loop system much more robust to individual agent failure.

1.3 Consensus control of multi-agent systems

Consensus control is another important problem in coordinated control. Many algorithms

used to solve other coordination problems, including formation control and swarm tracking,

origin from consensus protocols. Consensus control is concerned with reaching a network-

wide agreement on some quantities of interest while each agent can only access local infor-

mation. Applications of consensus control include wireless sensor networks, management of

distributed database and synchronization of networked oscillators.

The consensus control problem of multi-agent systems with linear models has been in-

tensively studied by researchers. Reference [16] studied a double integer model and delayed

directed networks. Consensus of higher order multi-agent systems has been studied in [17]

and [18]. In [17], a truncated predictor feedback based protocol was developed for multi-

agent systems with bounded communication delays. Their further analysis showed that the

closed-loop system tolerates arbitrarily large communication delays. The work conducted in

[18] also allowed for internal uncertainties and external disturbance.

More recently, there has been a surge of interest in consensus of nonlinear multi-agent
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systems. In [19], second order consensus problem was studied for multi-agent systems with

a class of affine nonlinear dynamics. Reference [20] addressed leader-follower consensus of

multi-agent systems whose dynamics are given in a normal form with uncertainties. Two

neural networks were employed to estimate nonlinearities in the system. In [21], the author

investigated output consensus of a class of affine nonlinear systems that possess input-output

passivity. It was demonstrated that output consensus is guaranteed if the storage function

of the system is positive definite and radially unbounded.

1.4 Time-delay systems

As mentioned earlier in Sections 1.2 and 1.3, both flocking control and consensus control

require collecting information from neighboring agents, which is subject to communication

delays. It is well known that time-delays cause problems such as instability. Hence, when we

design control protocols for either flocking or consensus control, communication delays should

be considered and actions should be taken to eliminate the negative effects of communication

delays.

Many methods have been developed for the control of individual dynamic systems with

time delays. Introductions to the related issues for linear and nonlinear systems, and some

examples of recent advances can be found in [22, 23, 24] and the references therein. In

particular, the low gain feedback method [25] has been demonstrated to be effective in

developing control laws for the stabilization of linear and nonlinear delayed systems. For

example, Lin and Fang developed in [26] a low gain control approach for the stabilization

of a class of linear systems with constant input delay. Zhou et al. extended in [27] the low

gain control approach for the stabilization of linear systems with time-varying input delay,

and Yoon and Lin in [28] studied the stabilization of exponentially unstable linear systems

with time-varying input delay.

1.5 Research objectives

A summary of some existing research and problems that remain unresolved is as follows.
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1. Flocking of nonholonomic vehicles based on artificial potentials has been studied in

[14], but communication delays were not considered.

2. State consensus of multi-agent systems has been studied for some nonlinear models

but not for the class of general nonlinear systems described by

żi = f(zi) + g(zi)ui, i = 1, 2, . . . , N, (1.1)

where zi ∈ Rn is the state vector, ui ∈ Rm is the control input, and g(zi) = [g1(zi),

g2(zi), . . . , gm(zi)] ∈ Rn×m. f(zi) and gk(zi), k = 1, 2, . . . ,m, are smooth vector fields

in Rn.

3. In many cases, controllers operate in discrete-time settings. However, as observed in

[29, 30], applications of continuous-time controllers through direct discretization could

be very restrictive due to the requirement for small sampling periods. For applica-

tion purpose, for both flocking and consensus problems, control algorithms should be

designed in discrete-time settings as well.

In view of the problems summarized in the above list, in this research we aimed to:

1. Design control protocols for achieving flocking of nonholonomic vehicles based on po-

tential functions and in consideration of communication delays. A low gain method is

developed.

2. Design control laws for the consensus of nonlinear multi-agent system (1.1). We first

study the delay-free scenario and then consider cases with communication delays.

3. For both flocking and consensus problems, control laws are constructed in discrete-time

settings as well.

1.6 Dissertation outline

The remainder of this dissertation will be organized as follows. In Chapter 2, mathematical

tools and concepts are introduced. Chapters 3 and 4 provide our solutions to the flock-

ing of nonholonomic vehicles in the continuous-time and discrete-time setting, respectively.
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Chapters 5 and 6 consider a class of nonlinear multi-agent system in continuous-time and

discrete-time, respectively. Distributed control laws are constructed that drive the system

into consensus. Finally, conclusions regarding this work are drawn in Chapter 7, where pos-

sible future works are proposed as well. The results reported in this dissertation have been

published in [31, 32, 33, 34].
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Chapter 2

Fundamentals

2.1 Graph theory

Coordinated control of multi-agent systems, including flocking and consensus, requires the

exchange of information among the agents. In this work, we represent the communication

network among the agents by an undirected graph.

Definition 1. An undirected graph G = {V , E} consists of a nonempty set of nodes V =

{v1, v2, . . . , vN}, and a set of edges E ⊂ V ×V. The unordered pair (vi, vj) ∈ E if and only if

there exists a bidirectional communication link between node vi and node vj. Let Ni denote

the index set of the neighboring nodes of vi, that is,

Ni = {1 ≤ j ≤ N : (vi, vj) ∈ E}.

Definition 2. An undirected graph G = {V , E} is said to be complete if (vi, vj) ∈ E for any

vi, vj ∈ E and vi 6= vj. This means that there is an undirected edge between any pair of nodes.

Definition 3. In an undirected graph, a path is defined as a sequence of nodes in which any

two consecutive nodes are linked by an edge. An undirected graph G = {V , E} is said to be

connected if there exists a path between any vi, vj ∈ E and vi 6= vj.

Definition 4. The topology of a graph G can be described by an associated adjacency matrix
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Aadj = [aij] ∈ RN×N , which is defined as

aij =

 1, if (vi, vj) ∈ E ,

0, otherwise.

We define the Laplacian matrix of G as L = D − Aadj, where D = diag{d1, d2, . . . , dN} and

di =
∑N

j=1 aij, i = 1, 2, . . . , N . For an undirected graph, L = LT.

Without loss of generality, we assume that the communication network does not allow

self-loops. In other words, (vi, vi) 6∈ E , and aii = 0, for i = 1, 2, . . . , N , in Chapters 3 and 4.

The reason for such an assumption will be explained in the next section.

The following lemmas state some useful properties of the Laplacian matrix.

Lemma 1. [35] The Laplacian matrix L of an undirected graph is positive semi-definite.

Lemma 2. [36] An undirected graph is connected if and only if zero is a simple eigenvalue

of the Laplacian matrix L with 1̄N = [1 1 . . . 1]T ∈ RN being the only corresponding

eigenvector.

Lemma 3. Let L = LT be the Laplacian matrix of an undirected graph G. For any

υ =


υ1

υ2

...

υN

 ∈ RNn, ω =


ω1

ω2

...

ωN

 ∈ RNn,

we have

2υT(L⊗ In)ω =
N∑
i=1

N∑
j=1

aij(υi − υj)T(ωi − ωj),

where aij is the entry of the adjacency matrix of the undirected graph G.

Proof. By the definition of the Laplacian matrix and straightforward calculations, we obtain

υT(L⊗ In)ω =
N∑
i=1

υT
i

N∑
j=1

aij(ωi − ωj)

=
N∑
i=1

N∑
j=1

aijυ
T
i (ωi − ωj). (2.1)
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For an undirected graph, aij = aji. Thus,

υT(L⊗ In)ω =
N∑
i=1

N∑
j=1

ajiυ
T
i (ωi − ωj).

Reordering and renaming the summation indices, we have

υT(L⊗ In)ω =
N∑
i=1

N∑
j=1

aijυ
T
j (ωj − ωi). (2.2)

Adding both sides of (2.1) and (2.2) gives

2υT(L⊗ In)ω =
N∑
i=1

N∑
j=1

aijυ
T
i (ωi − ωj) +

N∑
i=1

N∑
j=1

aijυ
T
j (ωj − ωi)

=
N∑
i=1

N∑
j=1

aij(υi − υj)T(ωi − ωj).

Lemma 4. Let L = LT be the Laplacian matrix and D be the corresponding degree matrix

as defined in Definition 4. Then,

L ≤ 2D.

Proof. By the definition of Laplacian matrix, we have

L− 2D = −D − A.

For any z ∈ Rn,

zT(−D − A)z =
N∑
i=1

zi

N∑
j=1

aij(−zi − zj)

=
N∑
i=1

N∑
j=1

aijzi(−zi − zj). (2.3)

Reordering and renaming the summation indices, we have

zT(−D − A)z =
N∑
i=1

N∑
j=1

ajizj(−zi − zj).

For an undirected graph, aij = aji. Thus,

zT(−D − A)z =
N∑
i=1

N∑
j=1

aijzj(−zi − zj). (2.4)
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Adding both sides of (2.3) and (2.4) gives

zT(−D − A)z = −1

2

N∑
i=1

N∑
j=1

aij(zi + zj)
2

≤ 0.

Therefore, −D − A ≤ 0, which implies that L ≤ 2D.

Lemma 5. Let L = LT ∈ RN×N be the Laplacian matrix of an undirected graph G. Then,

L2 ≤ 4d2
maxIN , where dmax = maxi=1,2,...,N{di} denotes the maximum degree of the communi-

cation graph..

Proof. For any x ∈ RN , by the definition of Laplacian matrix, we have

xTL2x =
N∑
i=1

(
N∑
j=1

aij(xi − xj)

)2

≤ dmax

N∑
i=1

N∑
j=1

aij(xi − xj)2

= 2dmaxx
TLx, (2.5)

where the second and the third lines are obtained by applying Chebyshev’s sum inequality

and Lemma 3, respectively.

By Lemma 4, it follows from (2.5) that

xTL2x ≤ 4dmaxx
TDx

≤ 4d2
maxx

Tx,

which completes the proof.

2.2 Potential function based flocking control

To explain the underlying scheme of our control algorithm, we start with the simplest case

and only consider the interaction between agents i and j. Suppose the two agents are

steered by a pair of attractive and repulsive forces which are solely dependent on the distance

between two agents. As in physics, their potential is given by the integration of force and
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conversely force can be calculated from the potential function. If we properly design a

potential function, the corresponding attractive and repulsive forces will drive the two agents

to a desired configuration.

Definition 5. The artificial potential function between agents i and j is

Vij(‖rij‖) = Va(‖rij‖) + Vr(‖rij‖), (2.6)

where rij is the relative position between agents i and j. Va(‖rij‖) and Vr(‖rij‖) are respec-

tively the attractive and repulsive potential components which should be designed such that

• Va(‖rij‖) is a strictly increasing function and has a minimum at ‖rij‖ = 0;

• Vr(‖rij‖) is a strictly decreasing function and approaches its minimum as ‖rij‖ → ∞;

• the combined potential Va(‖rij‖) + Vr(‖rij‖) does not have any local maximum and

reaches its unique minimum at ‖rij‖ = d, for some d > 0.

Figure 2.1: Attractive and repulsive forces

Suppose that agent i is driven by a virtual force

Fij = −∇riVij(‖rij‖)

= − (∇riVa(‖rij‖) +∇riVr(‖rij‖))

= −rij (ga(‖rij‖) + gr(‖rij‖)) . (2.7)
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The positive valued function ga(‖rij‖) and negative valued function gr(‖rij‖) represent

attraction and repulsion term respectively and balance at the unique distance ‖rij‖ = d, as

illustrated in Figure 2.1. When ‖rij‖ > d, ga(‖rij‖) dominates and the two agents move

towards each other. On the other hand, gr(‖rij‖) dominates when ‖rij‖ < d, and then the

two agents diverge. Consequently, agents i and j maintain a distance of d.

For a system composed of N > 2 agents, the potential of each agent is given by

Vi =
∑
j∈Ni

Vij(‖rij‖)

=
∑
j∈Ni

Va(‖rij‖) + Vr(‖rij‖). (2.8)

Hence we obtain the summation of virtual forces acting on each agent as

Fi = −∇riVi

= −
∑
j∈Ni

rij (ga(‖rij‖) + gr(‖rij‖)) , (2.9)

which steers the system to a configuration corresponding to a local minimum of
∑N

i=1 Vi. In

this case there might exist multiple minima. Let the minima be at ‖rij‖ = dij, j 6= i. Note

that, these dij might not be identical. Besides, we notice that attractive and repulsive forces

only exist between two different and neighboring agents, so self-loops are excluded from our

communication network when considering the flocking control problems.

In our design, we select

Vij(‖rij‖) = ρ2

 1∥∥∥1
ρ
rij

∥∥∥2 + ln

(∥∥∥∥1

ρ
rij

∥∥∥∥2
) , (2.10)

which is illustrated in Figure 2.2. It can be seen that potential function (2.10) takes its

unique minimum at ‖rij‖ = ρ. Taking gradient yields

−∇riVij(t) = −2rij(t)Πij(t)

, −2Υij(t), (2.11)

where

Πij(t) =
ρ2

‖rij(t)‖2
− ρ4

‖rij(t)‖4
. (2.12)
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where ρ2

‖rij‖2 is the attraction term and − ρ4

‖rij‖4 is the repulsion term.

The choice of the artificial potential function that satisfies Definition 5 is not unique.

Figure 2.2: Artificial potential function

2.3 Lie algebra

The Lie algebra is useful in the analysis of nonlinear affine systems, and it consists of a vector

space and a multiplication on the vector space called “Lie bracket.”

Definition 6. Let f(z) : Rn → Rn and h(z) : Rn → Rn be smooth vector fields. Their Lie

bracket is defined by

[f(z), h(z)] =
∂h

∂z
f(z)− ∂f

∂z
h(z).

Then, we define following notations inductively

ad 0
f h(z) = h(z),

ad qf h(z) = [f(z), ad q−1
f h(z)], q ∈ N+.

The Lie derivatives are also defined inductively as

L0
fh(z) = h(z),

Lqfh(z) =
∂Lq−1

f h(z)

∂z
f(z), q ∈ N+.

13



Chapter 3

Flocking of Nonholonomic Vehicles in

the Continuous-time Setting

3.1 Problem statement

Consider a multi-agent system composed of N nonholonomic vehicles, numbered 1, 2, . . . , N .

The dynamics of agent i are given by [8],

ẋi(t) = vi(t) cos θi(t),

ẏi(t) = vi(t) sin θi(t),

θ̇i(t) = ωi(t).

(3.1)

The states and inputs of vehicle i are illustrated in Figure 3.1. The position of agent i

is given by the vector ri = [xi, yi]
T, whereas the orientation is determined by the state θi.

The control inputs for each agent are the translational velocity vi(t) and the angular velocity

ωi(t). For agents i and j, the relative position is determined as

rij(t) = ri(t)− rj(t) =

 xi(t)

yi(t)

−
 xj(t)

yj(t)

 . (3.2)

The heading error between agent i and agent j is denoted by eij(t) = θi(t)− θj(t).

We notice that the general control-affine nonlinear model (1.1), considered in Section 1.5,

14



Figure 3.1: Dynamics of agent i

reduces to a nonholonomic vehicle model (3.1) with the following substitutions

zi =


xi

yi

θi

 , ui =

vi
ωi

 , f(zi) =


0

0

0

 , g(zi) =


cos θi 0

sin θi 0

0 1

 .
We are interested in developing a control law, such that the multi-vehicle system (3.1)

achieves aggregation of positions and alignment of headings. In addition, collision avoidance

is crucial in a system consisting of vehicles. We make the following assumptions regarding

the communication network and the initial conditions.

Assumption 1. The communication topology is described by an undirected and connected

graph G = {V , E}, where V is the indexed set of agents in the system and E represents the

communication links among the agents.

The assumption of a connected communication graph is necessary to guarantee that all

the agents in the system aggregate into a single flock. If the mentioned assumption is not

satisfied, then the agents can be divided into smaller groups of connected agents.

Assumption 2. An agent collects position and heading information of all its neighboring

agents with a constant delay τ ≥ 0, but knows its own states in real time.

Assumption 3. For an arbitrary positive constant c, let the initial conditions of system

(3.1), be inside the bounded set

Ω =

{
(rij, eij) :

N∑
i=0

Vi ≤ c, −2π < eij < 2π

}
,
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where the bound on eij comes from the condition that −π < θi ≤ π.

This assumption requires that, before the controllers take effect, no collision occurs and

no vehicle is infinitely far from its neighboring vehicles.

3.2 Control protocols

Based on the analysis in Section 2.2, we know that it is feasible to realize cohesion and

separation among agents by introducing attractive and repulsive forces. The next step is

to integrate these forces into control inputs, the translational velocity vi and the angular

velocity ωi.

Figure 3.2: Decomposition of artificial force Fi

For any vehicle i, we decompose its steering force Fi along two perpendicular directions

as shown in Figure 3.2. The resulting components determine control inputs respectively as

vi(t) =− ε[cos θi(t) sin θi(t)]∇riVi(t− τ),

ωi(t) =− εκ
∑
j∈Ni

eij(t− τ)− ε[− sin θi(t) cos θi(t)]∇riVi(t− τ).
(3.3)

The first term in ωi is introduced for the purpose of heading alignment, and κ is a tunable

control parameter. Control inputs are scaled by a low gain parameter ε > 0, in order to

compensate the effects of communication delays.
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3.3 Analysis of flocking behavior

First, the following lemmas are introduced to help in the derivation of further results.

Lemma 6 is a special case of the Leibniz integral rule [37], while Lemmas 7 and 8 are

special cases of Chebyshev’s sum inequality and Jensen’s inequality [38], respectively.

Lemma 6. Let f(s) be a continuous function in some region of a(t) ≤ s ≤ b(t) and t0 ≤

t ≤ t1. Also suppose that the functions a(t) and b(t) are both continuous and both have

continuous derivatives for t0 ≤ t ≤ t1. Then for t0 ≤ t ≤ t1,

d

dt

∫ b(t)

a(t)

f(s)ds = f(b(t))
d

dt
b(t)− f(a(t))

d

dt
a(t). (3.4)

Lemma 7. Consider a series of real vectors ai where i = 1, 2, · · · , N . Then,(
N∑
i=1

ai

)T( N∑
i=1

ai

)
≤ N

N∑
i=1

aTi ai. (3.5)

Lemma 8. Let a and b be real numbers, and f(s) be an integrable real-valued function. Then(∫ b

a

f(s)ds

)2

≤ (b− a)

∫ b

a

f 2(s)ds. (3.6)

Lemma 9. Define a function, in terms of any given integrable function f(t), as follows,

h(t) =

∫ τ

0

∫ t

t−s1
f(s2)ds2ds1,

where τ ∈ R+ is a constant. Then,

d

dt
h(t) = τf(t)−

∫ t

t−τ
f(s2)ds2.

Proof. Switching the order of integration, we can rewrite h(t) as

h(t) =

∫ t

t−τ

∫ τ

t−s2
f(s2)ds1ds2

=

∫ t

t−τ
(τ − t+ s2)f(s2)ds2,

from which we have, by Lemma 6,

d

dt
h(t) =−

∫ t

t−τ
f(s2)ds2 + (τ − t+ t)f(t)
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− (τ − t+ t− τ)f(t− τ)

=τf(t)−
∫ t

t−τ
f(s2)ds2.

The behavior of the multi-vehicle system (3.1) under the proposed low gain control laws

(3.3) is established in the following three Lemmas, and the main theorem for this chapter is

given afterwards.

Lemma 10. Consider the multi-agent system in (3.1) under the decentralized control laws

(3.3) and communication topology described by an undirected and connected graph G =

{V , E}. Let I be the set of all complete trajectories of the closed-loop system with all agents

i satisfying the condition[
cos θi(t) sin θi(t)

]∑
j∈Ni

rij(t− τ)Πij(t− τ) = 0. (3.7)

If there exists a subset V2 ⊆ V such that a trajectory in I satisfies
∑

j∈Ni
rijΠij 6= 0, for all

ni ∈ V2, then the same trajectory approaches a steady state solution such that θ̇i = 0 for all

agent i.

Proof. First of all, it is observed from (3.3) that vi = 0 for all trajectories satisfying (3.7).

Therefore rijΠij is constant for all agents i and j, and every trajectory in I. Let {V1, V2} be a

partition of V such that
∑

j∈Ni
rijΠij = 0 for agents i such that ni ∈ V1, and

∑
j∈Ni

rijΠij 6= 0

for agents i such that ni ∈ V2. Without loss of generality, assume the agents are ordered

such that ni ∈ V1 for agents i ≤ ñ and ni ∈ V2 for agents i > ñ for some positive integer ñ.

Then the vector of agent orientations is defined as,

θ =


θ1

θ2

...

θN

 =

 θ̃1

θ̃2

 , (3.8)

where θ̃1 ∈ Rñ and θ̃2 ∈ RN−ñ. Because rijΠij is constant for all agents i and j, it follows

from (3.7) that ˙̃θ2 = 0.
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Let the Laplacian matrix of G be given as

L =

 L1 L3

LT
3 L2

 , (3.9)

where L1 ∈ Rñ×ñ and L1 > 0 under the assumption that G is connected. The equation

for the orientation θ̃1 then becomes, ˙̃θ1(t) = −εκL1θ̃1(t− τ)− εκL3θ̃2, and the second time

derivative of θ̃1(t) is found to be

¨̃θ1(t) = −εκL1
˙̃θ1(t− τ)

= −εκL1eεκL1τ ˙̃θ1(t). (3.10)

From the facts that L1 > 0 and eεκL1τ > 0, it is obtained that L1eεκL1τ > 0 and (3.10) is

asymptotically stable, and the trajectories of (3.10) asymptotically approach ˙̃θ1 = 0.

Lemma 11. Consider the multi-agent system (3.1) with communication delay τ and initial

conditions in Ω. Given the artificial potential function

Vr,1 =
N∑
i=1

Vi(t), (3.11)

there exists an ε̄1 > 0 such that, for any 0 < ε ≤ ε̄1, the low gain control laws (3.3) steer the

system into a formation corresponding to a minimum of Vr,1.

Proof. Consider the artificial potential function (3.11), which can be expressed as

Vr,1(t) =
N∑
i=1

∑
j∈Ni

Vij(t). (3.12)

The time derivative of the function Vr,1 along the trajectories of (3.1) under the control law

(3.3) is given by

V̇r,1(t) =
N∑
i=1

∑
j∈Ni

2ΥT
ij(t)ṙij(t),

= 2
N∑
i=1

∑
j∈Ni

ΥT
ij(t)

(
−2εΦi(t)

∑
k∈Ni

Υik(t− τ)

+2εΦj(t)
∑
m∈Nj

Υjm(t− τ)

)
, (3.13)

19



where the time-varying positive semi-definite matrix Φi(t) is defined as

Φi(t) =

 cos θi(t)

sin θi(t)

[cos θi(t) sin θi(t)
]
. (3.14)

The right-hand side of equality (3.13) can be rearranged to obtain

V̇r,1 =−4ε
N∑
i=1

∑
j∈Ni

ΥT
ij(t)Φi(t)

∑
k∈Ni

Υik(t−τ)

+4ε
N∑
i=1

∑
j∈Ni

ΥT
ij(t)Φj(t)

∑
m∈Nj

Υjm(t− τ), (3.15)

which, by a reordering of the summation signs and in view of the fact that rij(t) = −rji(t),

simplifies to

V̇r,1 = −8ε
N∑
i=1

∑
j∈Ni

ΥT
ij(t)Φi

∑
k∈Ni

Υik(t− τ). (3.16)

It is observed in (3.16) that, within the summation about index i, the summation about

index j to the left of Φi is given at time t and the summation about index k to the right of

Φi is at the delayed time t− τ .

From (2.12), Υij(t) can be rewritten as

Υij(t) = Υij(t− τ) +

∫ t

t−τ
λij(σ)dσ, (3.17)

where

λij(t) = Λij(t)ṙij(t), (3.18)

and

Λij(t) = Πij(t)I + 2

(
2ρ4

‖rij(t)‖6
− ρ2

‖rij(t)‖4

)
rij(t)r

T
ij(t).

Substituting the right-hand side of (3.17) into (3.16) results in

V̇r,1 =−8ε
N∑
i=1

∑
j∈Ni

ΥT
ij(t−τ)Φi

∑
k∈Ni

Υik(t−τ)

−8ε
N∑
i=1

∑
j∈Ni

t∫
t−τ

λT
ij(σ)dσΦi

∑
k∈Ni

Υik(t−τ). (3.19)
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The matrix product within the second summation term about index i can be further ex-

panded to obtain

V̇r,1≤−8
N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)(εΦi − 2ε2Φ2

i )
∑
k∈Ni

Υik(t− τ)

+
N∑
i=1

t∫
t−τ

∑
j∈Ni

λT
ij(σ)dσ

t∫
t−τ

∑
k∈Ni

λik(σ)dσ.

Applying the result of Lemma 8 to the product of integrals in the above inequality gives

V̇r,1≤−8
N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)(εΦi − 2ε2Φ2

i )
∑
j∈Ni

Υik(t− τ)

+τ
N∑
i=1

t∫
t−τ

∑
j∈Ni

λT
ij(σ)

∑
k∈Ni

λik(σ)dσ. (3.20)

Define a second potential functional as

Vr,2(t) =
N∑
i=1

τ

τ∫
0

t∫
t−s1

∑
j∈Ni

λT
ij(s2)

∑
k∈Ni

λik(s2)ds2ds1. (3.21)

Using the result from Lemma 9, we find the time derivative along the trajectories of (3.1)

and (3.3) to be

V̇r,2 = τ 2

N∑
i=1

∑
j∈Ni

λT
ij(t)

∑
k∈Ni

λik(t)− τ
N∑
i=1

t∫
t−τ

∑
j∈Ni

λT
ij(s)

∑
k∈Ni

λik(s)ds. (3.22)

Finally, define the total potential functional

Vr = Vr,1 + Vr,2. (3.23)

The time derivative along the trajectories of (3.1) and (3.3) is found by combining (3.20)

and (3.22) as

V̇r≤−8
N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)(εΦi − 2ε2Φ2

i )
∑
k∈Ni

Υik(t− τ)

+τ 2

N∑
i=1

∑
j∈Ni

λT
ij(t)

∑
k∈Ni

λik(t). (3.24)
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The function λij(t) was defined in (3.18), and the summation about index j is expressed as∑
j∈Ni

λij(t) =−2εΛiΦi

∑
k∈Ni

Υik(t− τ) + 2ε
∑
j∈Ni

ΛijΦj

∑
k∈Nj

Υjk(t− τ), (3.25)

where Λi is defined to simplify notation as

Λi =
∑
j∈Ni

Λij. (3.26)

By Lemma 7, the product of (3.25) with its transpose is found to be∑
j∈Ni

λT
ij(t)

∑
m∈Ni

λim(t) ≤ 8ε2
∑
j∈Ni

ΥT
ij(t− τ)ΦiΛ

2
iΦi

∑
m∈Ni

Υim(t− τ)

+ 8ε2

∑
j∈Ni

ΛijΦj

∑
k∈Nj

Υjk(t− τ)

T

×

(∑
m∈Ni

ΛimΦm

∑
k∈Nm

Υmk(t− τ)

)
. (3.27)

The result of Lemma 7 can be applied once again on the second term on the right-hand side

of the above inequality to obtain∑
j∈Ni

λT
ij(t)

∑
m∈Ni

λim(t) ≤ 8ε2
∑
j∈Ni

ΥT
ij(t− τ)ΦiΛ

2
iΦi

∑
m∈Ni

Υim(t− τ)

+ 8ε2(N − 1)
∑
j∈Ni

∑
k∈Nj

ΥT
jk(t− τ)

× ΦjΛ
2
ijΦj

∑
k∈Nj

ΥT
jk(t− τ). (3.28)

By summing the left-hand side of the above inequality about the index i, the following

expression is obtained

N∑
i=1

(∑
j∈Ni

λT
ij(t)

∑
m∈Ni

λim(t)

)
≤ 8ε2

N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)ΦiΛ

2
iΦi

∑
m∈Ni

Υim(t− τ)

+ 8ε2(N − 1)
N∑
j=1

(∑
k∈Nj

ΥT
jk(t− τ)Φj

×
∑
i∈Nj

Λ2
ijΦj

∑
k∈Nj

Υjk(t− τ)

)
. (3.29)
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The above expression can be further simplified by a reordering of the summation indices and

the definition of a constant η such that

ηI ≥ (N − 1)
∑
j∈Ni

Λ2
ij, for i = 1, 2, . . . , N. (3.30)

Such constant η exists for any (rij, eij) ∈ Ω. The result of substituting the above inequality

into (3.29) is

N∑
i=1

(∑
j∈Ni

λT
ij(t)

∑
m∈Ni

λim(t)

)
≤ 8Nηε2

N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)Φ2

i

∑
m∈Ni

Υim(t− τ). (3.31)

Finally, by combining (3.24) and (3.31), we obtain the derivative of Vr(t) as

V̇r≤−8
N∑
i=1

∑
j∈Ni

ΥT
ij(t− τ)(εΦi − 2ε2Φ2

i −Nε2τ 2ηΦ2
i )
∑
k∈Ni

Υik(t− τ). (3.32)

We note that Φi = Φ2
i is positive semi-definite. Define a positive ε̄1 such that

ε̄1 <
1

2 + τ 2Nη
, (3.33)

and let 0 < ε ≤ ε̄1. Then it follows that

εΦi − 2ε2Φ2
i −Nε2τ 2ηΦ2

i ≥ 0, (3.34)

and V̇r ≤ 0.

From (3.32) it can be deduced that V̇r may be equal to zero only if, based on the definition

of Φi in (3.14), [
cos θi(t) sin θi(t)

]∑
j∈Ni

rij(t− τ)Πij(t− τ) = 0, (3.35)

for all positive integer i ≤ N . Assuming that
∑

j∈Ni
rijΠij is not zero for all agent i,

Lemma 10 gives that any complete trajectory of the system (3.1) under the control laws (3.3)

satisfying (3.35) corresponds to an equilibrium point of the closed-loop system if ωi = 0 for

all agents i. Based on (3.3), this is equivalent to

∑
j∈Nk

rkjΠkj =
κ

2

 sin θk

− cos θk

 ∑
j∈Nk

ekj, (3.36)
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for all positive integer k ≤ N . Because rij = −rji, the sum of the left-hand side of (3.36)

over all 0 < k ≤ N equals zero, and

N∑
k=1

κ

2

 sin θk

− cos θk

 ∑
j∈Nk

ekj = 0. (3.37)

For any agent i, define ~vi and ~v−i as

~vi =

 sin θi

− cos θi

∑
j∈Ni

eij, (3.38)

~v−i =
N∑
k=1
k 6=i

 sin θk

− cos θk

 ∑
j∈Nk

ekj. (3.39)

It follows from (3.37) that ~vi + ~v−i = 0 and

‖~vi‖2 = ‖~v−i‖2. (3.40)

The right-hand side of (3.40) is computed from (3.39) to be

‖~v−i‖2 =
N∑
k=1
k 6=i

N∑
l=1
l 6=i

cos ekl
∑
j∈Nk

ekj
∑
j∈Nl

elj,

=−‖~vi‖2 − 2
N∑
k=1
k 6=i

cos ekl
∑
j∈Ni

eij
∑
j∈Nk

ekj, (3.41)

where the second line of the above equation comes from (3.37) and the fact that

‖~vi + ~v−1‖2 =
N∑
k=1

N∑
l=1

cos ekl
∑
j∈Nk

ekj
∑
j∈Nl

elj,

≡ 0.

By combining the results in (3.40) and (3.41), it is obtained that for any agent i,

∑
j∈Ni

eij = −
N∑
k=1
k 6=i

cos eik
∑
j∈Nk

ekj. (3.42)

For any agent m adjacent to an agent i, the partial derivative of (3.42) about relative

orientation eim is determined to be

1 = sin eim
∑
j∈Nm

emj + cos eim. (3.43)
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If sin eim = 0, then it follows from the above equation that cos eim = 1, which is true only if

the orientations of agents i and m are aligned. On the other hand, if sin eim 6= 0, then∑
j∈Nm

emj =
1− cos eim

sin eim
, (3.44)

for any agent m ∈ Ni. By the same token, i ∈ Nm, and∑
j∈Ni

eij =
1− cos emi

sin emi
. (3.45)

This implies that for the two adjacent agents i and m,∑
j∈Ni

eij +
∑
j∈Nm

emj = 0. (3.46)

Consider the subgraph Ḡ = {V , Ē} of G, where Ē = {(ni, nj) ∈ E| sin eij 6= 0}, and define

N̄i = {j|(ni, nj) ∈ Ē} and L̄ to be the Laplacian matrix of Ḡ. Without loss of generality,

we assume that Ḡ is a connected graph. For the case where the last assumption on Ḡ is not

satisfied, the remainder of the current proof can be repeated for each connected subgroup

of Ḡ, in combination with the fact that the orientations of agents i and j are aligned if

(i, j) ∈ E\Ē = {(i, j) ∈ E|(i, j) /∈ Ē}.

For any adjacent agents i and m in Ḡ, it follows from the same argument as in (3.46)

that ∑
j∈N̄i

eij +
∑
j∈N̄m

emj = 0. (3.47)

Because Ḡ is connected, there are at least N − 1 edges in Ē resulting in N − 1 linearly inde-

pendent equations in the form of (3.47) for any adjacent agents i and j in Ḡ. Furthermore,

because Ḡ is undirected, it is true that

N∑
i=1

∑
j∈N̄i

eij = 0. (3.48)

By combining (3.47) and (3.48), N linearly independent equations are obtained with the

unique solution
∑

j∈N̄i
eij = 0 for all agents i or,

L̄θ = 0, (3.49)
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where θ = [θ1, θ2, . . . , θN ]T. Because Ḡ is undirected and connected, by Lemma 2, L̄ has a

single eigenvalue equal to zero. A nontrivial solution of (3.49) is θi = z for all agents i and

some z ∈ (−π, π], thus all the agent orientations are aligned. Referring back to (3.36), the

alignment of the orientations of all agents results in that∑
j∈Ni

rijΠij = 0 (3.50)

must be true for all i in order to correspond to an equilibrium point of the closed-loop

system. Therefore, by LaSalle’s invariance principle, the multi-agent system is driven to the

equilibrium state (3.50). It then follows from (2.11) that the relative positions of the agents

satisfying (3.50) correspond to a minimum of (3.11). This completes the proof.

The previous two lemmas demonstrate the convergence of the agents to a formation. To

complete the flocking behavior, it is necessary to demonstrate that the orientations of the

agents become aligned. The next lemma guarantees the asymptotic alignment of the agents

as they converge to the formation of minimum artificial potential energy.

Lemma 12. Consider the multi-agent system (3.1) with a communication delay τ and initial

conditions in Ω. Then there exists an ε̄2 > 0 such that, for any 0 < ε ≤ ε̄2, the low gain

control laws (3.3) aligns the orientations of the agents as ∇riVi(t) asymptotically approaches

zero for all i.

Proof. Consider the positive definite function

Ve,1 =
N∑
i=1

∑
j∈Ni

e2
ij(t). (3.51)

The time derivative of this function along the trajectories of (3.1) under the control laws

(3.3) is found to be

V̇e,1 = 2
N∑
i=1

∑
j∈Ni

eij(t)ėij(t). (3.52)

The dynamics of the difference between the orientation of agent i and j is determined from

(3.3) as

ėij(t) = ε

(
−κ

∑
k∈Ni

eik(t− τ)−Ψi∇riVi(t− τ)
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+κ
∑
k∈Nj

ejk(t− τ) + Ψj∇rjVj(t− τ)

, (3.53)

where Ψi(t) = [− sin θi(t) cos θi(t)] is defined to simplify the notation. The value of Ψi is

always obtained at the current time t, and thus the time variable will be dropped in the

remainder of the proof.

By combining (3.52) and the dynamics equation of eij in (3.53), we can express the

derivative of V̇e,1 as

V̇e,1 ≤ − 4εκ
N∑
i=1

∑
j∈Ni

eij(t)
∑
k∈Ni

eik(t− τ)

+ 2ε
N∑
i=1

∑
j∈Ni

eij(t)
(
−Ψi∇riVi(t−τ) + Ψj∇rjVj(t−τ)

)
. (3.54)

Once again, the above derivative contains terms given at time t and t− τ . In this proof, the

information about the dynamics of the closed-loop system is employed in order to express

all terms at the same time value.

Given the system dynamics in (3.1), eij(t) can be rewritten as

eij(t) = eij(t− τ) +

∫ t

t−τ
ėij(σ)dσ, (3.55)

where ėij is given in (3.53). Substituting the equality (3.55) into (3.54) and reordering the

summation indices result in

V̇e,1≤−4εκ
N∑
i=1

(∑
j∈Ni

eij(t− τ)

)2

− 4εκ
N∑
i=1

∫ t

t−τ

∑
j∈Ni

ėij(σ)dσ
∑
k∈Ni

eik(t− τ)

−4ε
N∑
i=1

∑
j∈Ni

eij(t− τ)Ψi∇riVi(t− τ)

−4ε
N∑
i=1

∫ t

t−τ

∑
j∈Ni

ėij(σ)dσΨi∇riVi(t− τ). (3.56)

The above expression can be further simplified by recalling that 2ab ≤ a2 + b2 for a, b ∈ R.

After applying this relationship to the second, third and fourth terms on the right-hand side

of (3.56), the quadratic terms are collected, and Lemma 8 is employed to rewrite the square

of the integral on ėij. The resulting expression is

V̇e,1 ≤ − 4(εκ− 2ε2κ2)
N∑
i=1

(∑
j∈Ni

eij(t− τ)

)2
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+

(
1

κ2
+ 4ε2

) N∑
i=1

∇riV
T
i (t− τ)ΨT

i Ψi∇riVi(t− τ)

+ 2τ
N∑
i=1

∫ t

t−τ

(∑
j∈Ni

ėij(σ)

)2

dσ. (3.57)

Consider a second positive definite functional

Ve,2 = 2τ
N∑
i=1

∫ τ

0

∫ t

t−s1

(∑
j∈Ni

ėij(s2)

)2

ds2ds1. (3.58)

The time derivative of this functional along the trajectories of (3.1) under the control law

(3.3) is computed by using the result of Lemma 9

V̇e,2 = 2τ 2

N∑
i=1

(∑
j∈Ni

ėij(t)

)2

− 2τ
N∑
i=1

∫ t

t−τ

(∑
j∈Ni

ėij(σ)

)2

dσ. (3.59)

In view of Lemma 7, the square of the sum of ėij(t) can be expressed as(∑
j∈Ni

ėij(t)

)2

≤ (N − 1)
∑
j∈Ni

ė2
ij

≤ 4ε2(N − 1)
∑
j∈Ni

(κ∑
k∈Ni

eik(t− τ)

)2

+

(
κ
∑
k∈Nj

ejk(t− τ)

)2

+∇riV
T
i (t− τ)ΨT

i Ψi∇riVi(t− τ)

+∇rjV
T
j (t− τ)ΨT

j Ψj∇rjVj(t− τ)

)
. (3.60)

The summation of (3.60) about index i then becomes,

N∑
i=1

(∑
j∈Ni

ėij(t)

)2

≤ 8ε2(N − 1)2

κ2

N∑
i=1

(∑
j∈Ni

eij(t− τ)

)2

+
N∑
i=1

∇riV
T
i (t− τ)ΨT

i Ψi∇riVi(t− τ)

, (3.61)

after the summation indices are reordered and similar terms are collected.

Finally, consider the positive definite functional

Ve = Ve,1 + Ve,2.
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The time derivative of Ve is obtained by combining (3.57), (3.59) and (3.61) as

V̇e≤−4
(
εκ− 2ε2κ2 − 4ε2τ 2(N − 1)2κ2

) N∑
i=1

(∑
j∈Ni

eij(t− τ)

)2

+

(
1

κ2
+ 4ε2 + 16ε2τ 2(N − 1)2

) N∑
i=1

∇riV
T
i (t− τ)ΨT

i Ψi∇riVi(t− τ). (3.62)

Under the assumption that ∇riVi asymptotically approaches zero for all i, for any given

γ > 0 there exists a T1 > 0 such that for t > T1,

V̇e≤−4
(
εκ− 2ε2κ2 − 4ε2τ 2(N − 1)2κ2

) N∑
i=1

(∑
j∈Ni

eij(t− τ)

)2

+ γ2. (3.63)

Define a positive constant ε̄2 ≤ ε̄1 such that

ε̄2 <
1

κ (2 + 4(N − 1)2τ 2)
. (3.64)

Then for any positive ε ≤ ε̄2, the right-hand side of (3.63) is negative if
∣∣∣∑j∈Ni

eij(t− τ)
∣∣∣ >

ψγ, for any agent i, where the positive constant ψ is computed as

ψ =
1

2

√
(εκ− 2ε2κ2 − 4ε2(N − 1)2κ2τ 2)−1.

This implies that there exists a T ≥ T1 such that for t > T ,
∣∣∣∑j∈Ni

eij(t)
∣∣∣ ≤ ψγ for

all i. Moreover, since γ can be arbitrarily small and ψ is a constant, this implies that∑
j∈Ni

eij(t) → 0 as t → ∞ for all i. Thus, we obtain that Lθ → 0 as t → ∞, where

θ = [θ1, θ2, . . . , θN ]T, and L is the Laplacian matrix of the graph G. Because G is undirected

and connected, by Lemma 2, solving equation Lθ = 0 gives a nontrivial solution θi = z for

all i, where z ∈ R is a free variable. Therefore, the orientations of all agents must align as

t→∞.

Lemma 11 demonstrates the aggregation behavior between the agents in the closed-loop

multi-agent system. Lemma 12 proves that the orientations of the agents become aligned as

the agents converge to a minimum energy formation. The complete flocking behavior of the

closed-loop system can be shown by combining the results from these two lemmas.

Theorem 1. Consider the multi-vehicle system (3.1), with a constant communication delay

τ . If both Assumptions 1 and 3 hold, then, for a sufficiently small ε, the distributed control
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laws (3.3) steer the system to a formation corresponding to a minimum of
∑N

i=1 Vi and a

common orientation.

Proof. Let ε ≤ ε̄2. Then by Lemma 11, the control laws (3.3) steer the multi-agent system

into a formation corresponding to a minimum of (3.11) and ∇riVi(t) approaches zero for

all i. Also, by Lemma 12 the orientations of all agents become aligned as the closed-loop

multi-agent system approaches the final formation. This completes the proof.

For the delay-free scenarios, i.e. τ = 0, with any arbitrary ε > 0, the statement in

Theorem 1 is true for any choice of ε > 0.

For the cases where τ > 0, we can find an upper bound ε̄ct such that for any ε ∈ (0, ε̄ct),

the statement in Theorem 1 is always true. The upper bound ε̄ct relies on the communication

delay τ , the control parameter κ, the graph connectivity and the potential functions. We are

not surprised to find that either greater communication delays or a larger κ will lead to a

smaller ε̄ct. However, it is interesting that a communication graph with stronger connectivity

will also result in a smaller ε̄ct. A reasonable explanation of such result is that stronger

connectivity implies higher dependence on the received information and therefore greater

effects from communication delays. Thus, we need smaller ε.

We should also notice that the achievement of a minimum total potential does not nec-

essarily indicate position aggregation unless with a connected graph.

Collision avoidance between agents is another objective in this study. Based on the

previous theoretical analysis, the total potential of a system satisfying both Assumptions 1

and 3 remains bounded if ε is sufficiently small, and thus the distance between two vehicles

with a communication link cannot be zero. A consequence of this is that collision is prevented

between any two neighboring vehicles. Since any vehicle j that is not in Ni does not affect

the artificial potential of vehicle i, there are chances that vehicles i and j crash into each

other. Following the same idea, a direct result of Theorem 1 is that collision avoidance is

guaranteed for system (3.1) under the control laws (3.3) only when the communication graph

is complete.
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3.4 Simulation results

The effectiveness of the proposed continuous-time control laws is verified in this section

through simulation. Consider five agents with dynamics (3.1) and steered by the control

laws (3.3) with ρ = 1 and κ = 0.01. In the trajectory plots, circles and crosses give the

initial positions the final positions, respectively.

3.4.1 Flocking with a complete graph

We first consider the case where the communication graph is complete and each agent collects

information from it neighbors in real time, i.e. τ = 0 s. The initial positions of the five agents

are respectively [−2.9, 2.8]T, [−2.5,−0.5]T, [0.2,−2.8]T, [2.4,−2]T, and [2.5, 1.5]T. The initial

headings of the five agents are respectively −2.25 rad, −0.49 rad, 2.61 rad, 1.84 rad, and

2.88 rad.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 3.3: Simulation with a complete graph, τ = 0 s, ε = 1.

As shown in Figure 3.3, the agents converge to a formation that the relative distances

among agents is approximately 1 as we specified before. In addition, the relative headings

of the agents asymptotically converge to zero as the agents approach the final formation.

Then, we introduce communication delays, τ = 0.1 s, and still have ε = 1 as in the

delay-free scenario. It can be seen in Figure 3.4 that communication delays cause problems

and the system becomes unstable.
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(a) Trajectories and headings. (b) Relative distances and headings.

Figure 3.4: Simulation with a complete graph, τ = 0.1 s, ε = 1.

After we tune the low gain parameter to a smaller value, ε = 0.05, the system regains

a flocking behavior as shown in Figure 3.5. Comparing the results in Figures 3.3 – 3.5, we

verify that the proposed control laws (3.3) are effective.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 3.5: Simulation with a complete graph, τ = 0.1 s, ε = 0.05.

32



3.4.2 Flocking with a disconnected graph

The necessity of a connected communication graph can be verified by simulation as well.

Consider a disconnected graph, as shown in Figure 3.6, which consists of tow connected

components. We choose the initial positions of the five agents as [−2.9, 2.8]T, [−2.5,−0.5]T,

[0.2,−2.8]T, [2.4,−2]T, and [2.5, 1.5]T, respectively. The initial headings of the five agents

are respectively −2.25 rad, −0.49 rad, 2.61 rad, 1.84 rad, and 2.88 rad. We observe in Figure

3.7 that the agents converge to 2 separate flocks.

Figure 3.6: A disconnected graph.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 3.7: Simulation with a disconnected graph, τ = 0.1 s, ε = 0.05.

3.4.3 Collisions in systems without complete graphs

As we mentioned in Section 3.3, collision avoidance is guaranteed only when the commu-

nication graph is complete. We now consider a connected but incomplete graph as shown
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in Figure 3.8. To carry out simulation, the initial positions of the five agents are selected

as [−2.9, 2.8]T, [−2.5,−0.5]T, [0.2,−2.8]T, [2.4,−2]T, and [2.5, 1.5]T, respectively. The ini-

tial headings of the five agents are respectively −2.25 rad, −0.49 rad, 2.61 rad, 1.84 rad, and

2.88 rad.

As expected, flocking behavior is observed in Figure 3.9. Different from examples with

complete graphs, we also observe in Figure 3.9 that two of the agents collide and their

positions overlap in the final formation. Further investigation shows that these collided

agents do not share a communication link, which means that they are blind to each other

and collision cannot be avoided.

Figure 3.8: A connected but incomplete graph.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 3.9: Simulation with a connected but incomplete graph, τ = 0.1 s, ε = 0.05.
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3.5 Summary

In this chapter, flocking control of multi-vehicle systems with nonholonomic dynamics and

large communication delays was studied for the continuous-time scenarios. From an artificial

potential function describing the attractive-repulsive interaction between the vehicles, a de-

centralized low gain control law was constructed. Before this work, potential function based

flocking has not been studied for multi-agent systems with nonholonomic dynamics in the

presence of communication delay. Through the Lyapunov functional approach, we proved

that, as long as the communication topology is a connected undirected graph and initial

potential is finite, for any arbitrarily large communication delay we can always find some

low gain parameter such that aggregated positions and aligned headings will be achieved.

Numerical examples demonstrated the effectiveness of the proposed control protocols. This

chapter also demonstrates that the artificial potential function is a very useful and intuitive

tool for coordinated control design. With given control objectives, we design the artificial po-

tential function accordingly. Besides flocking, many other coordinated behaviors, including

consensus and swarm tracking, can be achieved through such approach.
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Chapter 4

Flocking of Nonholonomic Vehicles in

the Discrete-time Setting

As mentioned in Section 1.5, direct discretization of a continuous-time controller requires

small sampling periods. For the application purpose, we study the discrete-time flocking

control problems in this chapter.

4.1 Problem statement

The continuous-time nonholonomic vehicle model (3.3) is discretized through a zero-order

hold with an arbitrary sampling period T . The discrete-time model of multi-vehicle system

is obtained as follows,

xi(k + 1) = xi(k) + Tvi(k) cos θi(k),

yi(k + 1) = yi(k) + Tvi(k) sin θi(k),

θi(k + 1) = θi(k) + Tωi(k),

(4.1)

where the discrete-time states and inputs are defined as x(k) = x(kT ), y(k) = y(kT ), θ(k) =

θ(kT ), vi(k) = v(kT ), and ω(k) = ω(kT ), respectively. Similarly as in the continuous-time

setting, we define the position vector ri = [xi, yi]
T, the relative position vector rij = ri − rj

and the heading error eij = θi − θj.

We assume that all agents have their states and inputs updated simultaneously, and so

have the information on the relative position and heading error of their neighboring agents.
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We also assume that the communication delay between two neighboring agents is a multiple

of the sampling period, i.e., τT , where τ ∈ N. As in the continuous-time case, we also assume

an undirected and connected communication graph as well as bounded initial potential. In

the following section, we will develop a potential function based low gain control law which

creates the flocking behavior of the multi-agent system in the discrete-time setting.

4.2 Control protocols

We propose the following discrete-time potential function based low gain control laws,

vi(k) =− ε
[
cos θi(k) sin θi(k)

]
∇riVi(k − τ),

ω̃i(k) =− εκ
∑
j∈Ni

eij(k − τ)− ε
[
− sin θi(k) cos θi(k)

]
∇riVi(k − τ),

ωi(k) = sign(ω̃i(k)) min
{
|ω̃i(k)|, π

2T

}
.

(4.2)

We note that discrete-time control laws (4.2) are very similar to continuous-time control laws

(3.3) except that the discrete-time angular velocity reaches saturation at ± π
2T

as shown in

Figure 4.1.

Figure 4.1: Saturated angular velocity.

When a vehicle reaches its steady states, for i = 1, 2, . . . , N , the following equations[
cos θi(t) sin θi(t)

]
∇riVi(t− τ) ≡ 0, (4.3)

and [
cos θi(k) sin θi(k)

]
∇riVi(k − τ) ≡ 0, (4.4)
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must hold for the continuous-time and the discrete-time scenarios respectively. Equations

(4.3) and (4.4) indicate that the steering force for each vehicle is either zero or perpendicular

to its heading. Note that (4.3) is true over a continuous time span, but (4.4) holds only

at discrete points in time. From (4.3), it is derived that θ̇i(t) = 0. However, from (4.4),

we can only obtain θi(k + 1) − θi(k) = mπ and m can be any integer. In other words, in

the continuous-time case, all vehicles asymptotically approach a steady state where angular

velocity equals to zero, while in the discrete-time case, without the saturation on angular

velocity, the headings of vehicles may stay oscillating among angles with a common difference

π after the vehicles reach their steady states.

4.3 Analysis of flocking behavior

A discrete-time version of Lemma 9 is needed for developing further results.

Lemma 13. Define a new discrete-time function in terms of any given discrete-time function

f(k) as follows,

h(k) =
τ∑

s1=0

k−1∑
s2=k−s1

f(s2),

where τ ∈ N is a given constant. Then, the variation of h(k) equals

h(k + 1)− h(k) = τf(k)−
k−1∑

s2=k−τ

f(s2).

Proof. Reordering the summation indices, we can rewrite h(k) as

h(k) =
k−1∑

s2=k−τ

τ∑
s1=k−s2

f(s2). (4.5)

Since the function f in (4.5) does not depend on s1, (4.5) can be simplified as

h(k) =
k−1∑

s2=k−τ

(τ − k + s2 + 1)f(s2),

=(τ − k + 1)
k−1∑

s2=k−τ

f(s2) +
k−1∑

s2=k−τ

s2f(s2).
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Then, the variation of h(k) is computed as

h(k + 1)− h(k) =(τ − k)
k∑

s2=k−τ+1

f(s2)− (τ − k + 1)
k−1∑

s2=k−τ

f(s2) +
k∑

s2=k−τ+1

s2f(s2)−
k−1∑

s2=k−τ

s2f(s2),

=(τ − k)(f(k)− f(k − τ))−
k−1∑

s2=k−τ

f(s2) + kf(k)− (k − τ)f(k − τ),

=τf(k)−
k−1∑

s2=k−τ

f(s2). (4.6)

The next lemma demonstrates, for a sufficiently small value of the low gain parameter ε,

system (4.1) achieves position aggregation under the control law (4.2), even in the presence

of an arbitrarily large communication delay τ .

Lemma 14. Consider multi-agent system (4.1) with communication delay τ . If both As-

sumptions 1 and 3 are satisfied, there exists an ε̄1 > 0 such that, for any 0 < ε < ε̄1, the

low gain control laws (4.2) drive the system into a formation corresponding to a minimum

of
∑N

i=0 Vi.

Proof. By Taylor series expansion, we have

Vij(k + 1) =Vij(k) +∇T
rij
Vij(k)(rij(k + 1)− rij(k)) +Rij(k), (4.7)

where Rij(k) is the Lagrange remainder.

By Assumption 3, the initial states of the system are bounded in the set Ω, and the

second and higher order derivatives of Vij are also bounded. Thus, there always exists an

α > 0 that satisfies

Rij(k) ≤ α(rij(k + 1)− rij(k))T(rij(k + 1)− rij(k)), (4.8)

for all i and j.

Consider a potential function

Vr,1(k) =
N∑
i=1

∑
j∈Ni

Vij(k). (4.9)
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Combining (4.7) and (4.8) yields

∆Vr,1(k) =Vr,1(k + 1)− Vr,1(k),

≤
N∑
i=1

∑
j∈Ni

∇T
rij
Vij(k)(rij(k + 1)− rij(k))

+ α
N∑
i=1

∑
j∈Ni

(rij(k + 1)− rij(k))T(rij(k + 1)− rij(k)). (4.10)

In view of (4.1) and (4.2), we have

rij(k + 1) =rij(k)− εTΦi(k)∇riVi(k − τ) + εTΦj(k)∇rjVj(k − τ), (4.11)

where Φi(k) is a positive semi-definite matrix and is defined as

Φi(k) =

cos θi(k)

sin θi(k)

[cos θi(k) sin θi(k)
]
.

For simplicity, we introduce the following notation,

∇riVij(k) = 2rij(k)Πij(k), (4.12)

where

Πij(k) =
ρ2

‖rij(k)‖2
− ρ4

‖rij(k)‖4
. (4.13)

Substituting (4.11) and (4.12) into (4.10) yields

∆Vr,1(k) ≤
N∑
i=1

∑
j∈Ni

2rT
ij(k)Πij(k)

(
− 2εTΦi(k)

∑
l∈Ni

ril(k − τ)Πil(k − τ)

+ 2εTΦj(k)
∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

)
+ α

N∑
i=1

∑
j∈Ni

2εT

×

(
− Φi(k)

∑
l∈Ni

ril(k − τ)Πil(k − τ) + Φj(k)
∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

)T

× 2εT

−Φi(k)
∑
l∈Ni

ril(k − τ)Πil(k − τ) + Φj(k)
∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

 .

Applying Lemma 7 to the second term on the right-hand side of the above inequality and

reordering summation indices gives

∆Vr,1(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k)Πij(k)

)T

Φi(k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
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+ 16αε2T 2dmax

N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

× Φ2
i (k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
, (4.14)

where dmax = maxi=1,2,...,N{di} and di is defined in Definition 4. By the Mean Value Theorem,

we have

rij(k)Πij(k) = rij(k − τ)Πij(k − τ) + Λ(r̂ij)(rij(k)− rij(k − τ)), (4.15)

where r̂ij = rij(k − τ) + cij(rij(k)− rij(k − τ)), for some cij ∈ (0, 1), and

Λ(r̂ij) =

(
ρ2

‖r̂ij‖2
− ρ4

‖r̂ij‖4

)
I + 2

(
2ρ4

‖r̂ij‖6
− ρ2

‖r̂ij‖4

)
r̂ij r̂

T
ij.

Define λij(k) = Λ(r̂ij)(rij(k + 1)− rij(k)), then (4.15) can be rewritten as

rij(k)Πij(k) = rij(k − τ)Πij(k − τ) +
k−1∑

σ=k−τ

λij(σ). (4.16)

Substituting (4.16) into (4.14), we obtain

∆Vr,1(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φi(k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

− 8εT
N∑
i=1

(∑
j∈Ni

k−1∑
σ=k−τ

λij(σ)

)T

Φi(k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

+ 16αε2T 2dmax

N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φ2
i (k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
.

Applying Lemma 7 to the second term on the right-hand side of the above inequality gives

∆Vr,1(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φi(k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

+ 16ε2T 2

N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φ2
i (k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

+ 16αε2T 2dmax

N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φ2
i (k)

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

+
N∑
i=1

(
k−1∑

σ=k−τ

∑
j∈Ni

λij(σ)

)T( k−1∑
σ=k−τ

∑
j∈Ni

λij(σ)

)
.
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Lemma 7 can be applied again to the last term on the right-hand side of the above inequality

to obtain

∆Vr,1(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

×
(
Φi(k)− 2αεTdmaxΦ2

i (k)− 2εTΦ2
i (k)

)(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)

+ τ
N∑
i=1

k−1∑
σ=k−τ

(∑
j∈Ni

λij(σ)

)T(∑
j∈Ni

λij(σ)

)
. (4.17)

Consider a second potential function

Vr,2(k) = τ
N∑
i=1

τ∑
s1=0

k−1∑
s2=k−s1

(∑
j∈Ni

λij(s2)

)T(∑
j∈Ni

λij(s2)

)
.

In view of Lemma 13, the variation of Vr,2(k) is computed as

∆Vr,2(k) = Vr,2(k + 1)− Vr,2(k),

= τ 2

N∑
i=1

(∑
j∈Ni

λij(k)

)T(∑
j∈Ni

λij(k)

)

− τ
N∑
i=1

k−1∑
σ=k−τ

(∑
j∈Ni

λij(σ)

)T(∑
j∈Ni

λij(σ)

)
. (4.18)

Finally, we define a proper Lyapunov function Vr(k) = Vr,1(k) + Vr,2(k), the variation of

which can be easily determined by combining (4.17) and (4.18) as follows,

∆Vr(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T (
Φi(k)− 2αεTdmaxΦ2

i (k)− 2εTΦ2
i (k)

)
×

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
+ τ 2

N∑
i=1

(∑
j∈Ni

λij(k)

)T(∑
j∈Ni

λij(k)

)
.

In view of Lemma 7, the above inequality implies that

∆Vr(k) ≤− 8εT
N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T (
Φi(k)− 2αεTdmaxΦ2

i (k)− 2εTΦ2
i (k)

)
×

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
+ τ 2dmax

N∑
i=1

∑
j∈Ni

λT
ij(k)λij(k). (4.19)
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With the aid of (4.11), λij(k) can be rewritten as,

λij(k) = 2εTΛ(r̂ij)

−Φi(k)
∑
l∈Ni

ril(k − τ)Πil(k − τ) + Φj(k)
∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

 ,

and Lemma 7 can be used to demonstrate that

λT
ij(k)λij(k) ≤ 8ε2T 2

(∑
l∈Ni

ril(k − τ)Πil(k − τ)

)T

Φi(k)Λ2(r̂ij)Φi(k)

×

(∑
l∈Ni

ril(k − τ)Πil(k − τ)

)
+ 8ε2T 2

∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

T

× Φj(k)Λ2(r̂ij)Φj(k)

∑
l∈Nj

rjl(k − τ)Πjl(k − τ)

 . (4.20)

By Assumption 3, there exists some constant η > 0 such that ηI ≥ Λ2(r̂ij) for any i and

j 6= i. After summing both sides of (4.20) over i and j, we deduce that

N∑
i=1

∑
j∈Ni

λT
ij(k)λij(k) ≤ 16ε2T 2ηdmax

N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φ2
i (k)

×

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
. (4.21)

Substituting (4.21) into (4.19) and combining the fact that Φ2
i (k) = Φi(k) is positive

semi-definite give

∆Vr(k) ≤− 8εT
(
1− 2αεTdmax − 2εT − 2εTητ 2d2

max

) N∑
i=1

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)T

Φi(k)

×

(∑
j∈Ni

rij(k − τ)Πij(k − τ)

)
. (4.22)

Define the following constant

ε̄1 =
1

2T (1 + αdmax + ητ 2d2
max)

. (4.23)

Then it follows that ∆Vr(k) ≤ 0, for any 0 < ε < ε̄1.

From (4.22), we can easily see that ∆Vr(k) ≡ 0 if and only if[
cos θi(k) sin θi(k)

]∑
j∈Ni

rij(k − τ)Πij(k − τ) ≡ 0, (4.24)
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for all agent i and all k ≥ 0, and hence the following is true as well,[
cos θi(k + 1) sin θi(k + 1)

]∑
j∈Ni

rij(k + 1− τ)Πij(k + 1− τ) ≡ 0. (4.25)

Equation (4.24) indicates that vi(k) = 0 for all agent i. Any complete trajectory of

system (4.1) satisfying (4.24) also possesses the property that rij(k+ 1) = rij(k). Therefore,

we have ∑
j∈Ni

rij(k + 1− τ)Πij(k + 1− τ) =
∑
j∈Ni

rij(k − τ)Πij(k − τ),

which, together with (4.25), implies that[
cos θi(k + 1) sin θi(k + 1)

]∑
j∈Ni

rij(k − τ)Πij(k − τ) = 0, (4.26)

for any agent i. Suppose that
∑

j∈Ni
rijΠij 6= 0 for all agent i. Then, after comparing (4.24)

and (4.26), we find that

θi(k + 1)− θi(k) = mπ,

where m could be any integer. According to the proposed control laws (4.2), it is true that

|θi(k + 1)− θi(k)| ≤ π

2
.

Consequently, we have θi(k + 1) = θi(k), and ωi(k) = 0, for all agent i.

Finally, following similar arguments as in the proof of Lemma 11, we conclude that

ωi(k) = 0 if and only if ∑
j∈Ni

rijΠij = 0, (4.27)

for all agent i. Therefore, by LaSalle’s Invariance Principle, system (4.1) is driven into a

formation that satisfies (4.27). In the meantime, it can be easily verified from (4.12) that

any equilibrium satisfying (4.27) corresponds to a minimum of
∑N

i=0 Vi. This completes the

proof.

Remark 1. In the above proof, we derived a sufficient condition on the low gain parameter

ε for position aggregation in the presence of communication delay τ . For the delay-free cases

where τ = 0, the first term in (4.14) becomes negative semi-definite and the second term is

positive semi-definite. Then, without further manipulations we obtain that ∆Vr,1 ≤ 0 when

ε < 1
2αTdmax

.
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Lemma 14 proves that system (4.1) converges to a desired formation under the distributed

low gain control laws (4.2). In the next two lemmas, it will be shown that heading alignment

is also guaranteed.

Lemma 15. Consider the following system

z(k + 1) = z(k) + u1(k),

where z ∈ R is the state variable and u1 ∈ R is the control input. Let V (z(k)) = z2(k).

Suppose that there exists some feedback control law u1(z(k)) under which

∆V (k) = V (z(k + 1))− V (z(k)) < 0, z(k) 6= 0.

Then,

∆V (k) < 0, z(k) 6= 0,

if we replace u1(z(k)) with u2(z(k)) = sign(u1(z(k))) min{|u1(z(k))|, β}, where β is a positive

constant.

Proof. We know that

∆V (k) =z2(k + 1)− z2(k),

=2z(k)u1(z(k)) + u2
1(z(k)) < 0, z(k) 6= 0.

(4.28)

The saturated control input u2(z(k)), z(k) 6= 0, can be rewritten as

u2(z(k)) =au1(z(k)),

a =
min(|u1(z(k))|, β)

|u1(z(k))|
,

and a ∈ (0, 1]. If the system is steered by u2(z(k)) instead, the variation of V (z(k)) becomes

∆V (k) =2z(k)u2(z(k)) + u2
2(z(k)),

=2az(k)u1(z(k)) + a2u2
1(z(k)),

≤a
(
2z(k)u1(z(k)) + u2

1(z(k))
)
.

In view of Equation (4.28), we have

∆V (k) < 0, z(k) 6= 0.
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Lemma 16. Consider multi-agent system (4.1) with communication delay τ . If both As-

sumptions 1 and 3 are satisfied, there exists an ε̄2 > 0 such that, for any 0 < ε < ε̄2, the low

gain control laws (4.2) aligns the orientations of all agents as the formation convergence is

achieved asymptotically.

Proof. Consider a positive definite function

Ve,1(k) =
N∑
i=1

∑
j∈Ni

e2
ij(k). (4.29)

In view of Lemma 15, it is equivalent to prove that heading alignment will be achieved if

the system (4.1) is steered by ω̃i instead, where ω̃i is defined in (4.2). In other words, we

consider the following dynamics of orientation errors,

eij(k + 1) =eij(k) + εT

(
−κ
∑
l∈Ni

eil(k − τ)−Ψi(k)∇riVi(k − τ)

+κ
∑
l∈Nj

ejl(k − τ) + Ψj(k)∇rjVj(k − τ)

 , (4.30)

where we have introduced the following definition to simplify notation,

Ψi(k) =
[
− sin θi(k) cos θi(k)

]
.

Let eij(k + 1) = (eij(k + 1)− eij(k)) + eij(k). After simple manipulations we obtain the

following equality,

e2
ij(k + 1) = e2

ij(k) + 2eij(k)(eij(k + 1)− eij(k)) + (eij(k + 1)− eij(k))2. (4.31)

Combining (4.30) and (4.31) yields

∆Ve,1(k) =Ve,1(k + 1)− Ve,1(k),

=2εT
N∑
i=1

∑
j∈Ni

eij(k)

(
−κ
∑
l∈Ni

eil(k − τ)−Ψi(k)∇riVi(k − τ)

+κ
∑
l∈Nj

ejl(k − τ) + Ψj(k)∇rjVj(k − τ)

+
N∑
i=1

∑
j∈Ni

∆e2
ij(k), (4.32)
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where ∆eij(k) = eij(k + 1)− eij(k). By reordering summation indices and collecting similar

terms, (4.32) can be simplified as

∆Ve,1(k) =− 4εκT
N∑
i=1

∑
j∈Ni

eij(k)
∑
l∈Ni

eil(k − τ)− 4εT
N∑
i=1

∑
j∈Ni

eij(k)Ψi(k)∇riVi(k − τ)

+
N∑
i=1

∑
j∈Ni

∆e2
ij(k). (4.33)

Express eij(k) in terms of eij(k − τ) and ∆eij as follows,

eij(k) = eij(k − τ) +
k−1∑

σ=k−τ

∆eij(σ).

Substituting the above expression into (4.33) results in

∆Ve,1(k) =− 4εκT
N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

− 4εκT
N∑
i=1

k−1∑
σ=k−τ

∑
j∈Ni

∆eij(σ)
∑
l∈Ni

eil(k − τ)

− 4εT
N∑
i=1

∑
j∈Ni

eij(k − τ)Ψi(k)∇riVi(k − τ)

− 4εT
N∑
i=1

k−1∑
σ=k−τ

∑
j∈Ni

∆eij(σ)Ψi(k)∇riVi(k − τ) +
N∑
i=1

∑
j∈Ni

∆e2
ij(k). (4.34)

Recalling that 2ab ≤ a2 + b2 for any a, b ∈ R, and applying it to the non-quadratic terms in

(4.34), we obtain

∆Ve,1(k) ≤
(
−4εκT + 5ε2κ2T 2

) N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+

(
4

κ2
+ 4ε2T 2

) N∑
i=1

(Ψi(k)∇riVi(k − τ))2

+ 2
N∑
i=1

(
k−1∑

σ=k−τ

∑
j∈Ni

∆eij(σ)

)2

+
N∑
i=1

∑
j∈Ni

∆e2
ij(k).

In view of Lemma 7, it follows from the above inequality that

∆Ve,1(k) ≤ (−4εκT + 5ε2κ2T 2)
N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+

(
4

κ2
+ 4ε2T 2

) N∑
i=1

(Ψi(k)∇riVi(k − τ))2
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+ 2τ
N∑
i=1

k−1∑
σ=k−τ

(∑
j∈Ni

∆eij(σ)

)2

+
N∑
i=1

∑
j∈Ni

∆e2
ij(k). (4.35)

Define a second positive definite function

Ve,2(k) = 2τ
N∑
i=1

τ∑
s1=0

k−1∑
s2=k−s1

(∑
j∈Ni

∆eij(s2)

)2

.

By Lemma 13, the variation of Ve,2(k) is computed as

∆Ve,2(k) = Ve,2(k + 1)− Ve,2(k)

= 2τ 2

N∑
i=1

(∑
j∈Ni

∆eij(k)

)2

− 2τ
N∑
i=1

k−1∑
σ=k−τ

(∑
j∈Ni

∆eij(σ)

)2

. (4.36)

Finally, consider the Lyapunov function Ve(k) = Ve,1(k) + Ve,2(k). Its variation is deter-

mined by combining (4.35) and (4.36) as follows.

∆Ve(k) ≤ (−4εκT + 5ε2κ2T 2)
N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+

(
4

κ2
+ 4ε2T 2

) N∑
i=1

(Ψi(k)∇riVi(k − τ))2

+ 2τ 2

N∑
i=1

(∑
j∈Ni

∆eij(k)

)2

+
N∑
i=1

∑
j∈Ni

∆e2
ij(k). (4.37)

By Lemma 7, the last two terms in (4.37) can be simplified and combined

∆Ve(k) ≤ (−4εκT + 5ε2κ2T 2)
N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+

(
4

κ2
+ 4ε2T 2

) N∑
i=1

(Ψi(k)∇riVi(k − τ))2

+
(
2τ 2dmax + 1

) N∑
i=1

∑
j∈Ni

∆e2
ij(k). (4.38)

Applying Lemma 7 to the following definition of ∆eij(k)

∆eij(k) = εT

−κ∑
l∈Ni

eil(k − τ)−Ψi(k)∇riVi(k − τ) + κ
∑
l∈Nj

ejl(k − τ) + Ψj(k)∇rjVj(k − τ)

,
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we have

∆e2
ij(k) ≤ 4ε2κ2T 2

(∑
l∈Ni

eil(k − τ)

)2

+ 4ε2κ2T 2

∑
l∈Nj

ejl(k − τ)

2

+ 4ε2T 2 (Ψi(k)∇riVi(k − τ))2 + 4ε2T 2
(
Ψj(k)∇rjVj(k − τ)

)2
. (4.39)

Summing both sides of (4.39) over i and j and reordering the summation indices, we have

the resulting inequality as

N∑
i=1

∑
j∈Ni

∆e2
ij(k) ≤ 8ε2κ2T 2dmax

N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+ 8ε2T 2dmax

N∑
i=1

(Ψi(k)∇riVi(k − τ))2 . (4.40)

Substituting (4.40) into (4.38) yields

∆Ve(k) ≤ (−4εκT + (8dmax + 5)ε2κ2T 2 + 16ε2κ2T 2τ 2d2
max)

N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+

(
4

κ2
+ (8dmax + 4)ε2T 2 + 16ε2T 2τ 2d2

max

) N∑
i=1

(Ψi(k)∇riVi(k − τ))2. (4.41)

It is proved in Lemma 14 that ∇riVi(k − τ) asymptotically approaches 0 as k → ∞ for

all agent i, if ε < ε̄1. This indicates that, for any given γ > 0, there exists some K1 > 0 such

that for k ≥ K1,

∆Ve(k) ≤ (−4εκT + (8dmax + 5)ε2κ2T 2 + 16ε2κ2T 2τ 2d2
max)

×
N∑
i=1

(∑
j∈Ni

eij(k − τ)

)2

+ γ2. (4.42)

Define the following positive constant

ε̄2 =
4

κT (16τ 2d2
max + 8dmax + 5)

.

In (4.42) we easily observe that, for any 0 < ε < min{ε̄1, ε̄2}, ∆Ve(k) < 0 when∣∣∣∣∣∑
j∈Ni

eij(k − τ)

∣∣∣∣∣ > γ√
4εκT − (8dmax + 5)ε2κ2T 2 − 16ε2κ2T 2τ 2d2

max

,
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for any agent i. Since the dominator in the above expression is a constant and γ can

be arbitrarily small, this implies that
∑

j∈Ni
eij(k − τ) → 0 as k → ∞ for all agent i.

Consequently Lθ → 0 as k →∞, where θ = [θ1, θ2, . . . , θN ]T and L is the Laplacian matrix

defined in Definition 4. Under the assumption that the communication network is undirected

and connected, by Lemma 2, the only nontrivial solution of Lθ = 0 is θ = [b, b, . . . , b]T,

for some constant b dependent on the initial conditions. Hence, orientation alignment is

guaranteed.

Flocking behavior includes position aggregation and heading alignment. Combining Lem-

mas 14 and 16 gives the following theorem, which demonstrates the behavior of the multi-

vehicle system (4.1) under the proposed discrete-time control laws (4.2).

Theorem 2. Consider the discrete-time multi-vehicle system (4.1), with a communication

delay τ ∈ N. If both Assumptions 1 and 3 hold, then, for a sufficiently small ε, the discrete-

time distributed control laws (4.2) steer the system into a formation corresponding to a

minimum of
∑N

i=1 Vi and a common orientation.

Proof. Properly choose some positive ε < min{ε̄1, ε̄2}, where ε̄1 and ε̄2 are specified in

Lemmas 14 and 16 respectively. By Lemma 14, the positions of all agents gradually converge

to a formation corresponding to a minimum of
∑N

i=1 Vi and ∇riVi → 0 as k → ∞ for

i = 1, 2, . . . , N . Then, by Lemma 16, the orientations of all agents converge asymptotically

to a common value as the desired formation is approached.

Unlike in the continuous-time case where ε can be any arbitrary positive number when

τ = 0, in discrete-time setting, even in the absence of communication delays, ε still needs

to be bounded by some ε̄dt1 > 0 to achieve a stable flocking behavior. When a constant

communication delay τ ∈ N+ is considered, there exists some ε̄dt2 > 0 such that for any

ε ∈ (0, ε̄dt2) the statement in Theorem 2 is always true. Obviously, ε̄dt2 < ε̄dt1.

Another difference between the discrete-time and continuous-time cases is that ε̄dt1 and

ε̄dt2 depend on the sampling period T as well, in addition to communication delay τ , the

control parameter κ, graph connectivity and potential functions.

As in the continuous-time case, a minimum of
∑N

i=1 Vi indicates aggregated positions

only when communication graph is connected, and collision avoidance is guaranteed only

50



under a complete graph, i.e., each vehicle knows the positions and headings of all the other

vehicles.

4.4 Simulation results

The effectiveness of the proposed discrete-time control laws is verified in this section through

numerical simulation, with a connected but incomplete graph as shown in Figure 4.2. Con-

sider five agents with dynamics given in (4.1) and steered by the control laws (4.2). We

choose the control parameters ρ = 1 and κ = 0.05, and the sampling period is T = 1 s.

Figure 4.2: A connected but incomplete graph.

4.4.1 Flocking without delays

First, a delay-free scenario is considered. The initial positions ri(0) of the five agents are

respectively [−2.9, 2.8]T, [−2.5,−0.5]T, [0.2,−2.8]T, [2.4,−2]T, and [2.5, 1.5]T. The initial

orientations θi(0) of the five agents are respectively −2.25 rad, −0.49 rad, 2.61 rad, 1.84 rad,

and 2.88 rad.

In the continuous-time settings, ε can be any positive number to achieve flocking behavior.

However, in discrete-time settings, as observed in Figure 4.3, the agents do not converge to

a close vicinity even with ε = 0.8.

If we choose a smaller value of the low gain parameter, such as ε = 0.05, the agents achieve

both aggregated positions and aligned headings, as plotted in Figure 4.4. This means that

in the absence of communication delays the low gain parameter still need to be sufficiently

small in order to create a stable flocking behavior.
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(a) Trajectories and headings. (b) Relative distances and headings.

Figure 4.3: Simulation with a connected but incomplete graph, τ = 0, ε = 0.8.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 4.4: Simulation with a connected but incomplete graph, τ = 0, ε = 0.05.
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4.4.2 Flocking with delays

Next, we introduce communication delays τ = 4 and examine the effects of delays on the

closed-loop multi-agent system. Again, the initial positions of the five agents are chosen as

[−2.9, 2.8]T, [−2.5,−0.5]T, [0.2,−2.8]T, [2.4,−2]T, and [2.5, 1.5]T, respectively. The initial

orientations θi(0) of the five agents are respectively −2.25 rad, −0.49 rad, 2.61 rad, 1.84 rad,

and 2.88 rad.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 4.5: Simulation with a connected but incomplete graph, τ = 4, ε = 0.05.

(a) Trajectories and headings. (b) Relative distances and headings.

Figure 4.6: Simulation with a connected but incomplete graph, τ = 4, ε = 0.015.
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In the delay-free cases, agents converge to a flock when ε = 0.05. In the delayed system,

we notice that a smaller low gain parameter is required. In Figure 4.5 where ε = 0.05, it can

be seen that agents are not able to aggregate. Again, we reduce the low gain parameter to

ε = 0.015 and then flocking behavior is obtained, as shown in Figure 4.6.

4.5 Summary

In this chapter, flocking control of multi-vehicle systems with nonholonomic dynamics and

large communication delays was studied in the discrete-time setting. A decentralized low

gain control law was constructed based on an artificial potential function. We proved that

the closed-loop multi-agent system possesses the desired flocking behavior, including position

aggregation and orientation alignment, in the presence of arbitrarily large communication

delays. In addition, the effectiveness of the proposed controllers was demonstrated by numer-

ical examples. Discrete-time flocking of nonholonomic vehicles through a potential function

based method was first studied in this work.
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Chapter 5

Consensus of Nonlinear Multi-agent

Systems in the Continuous-time

Setting

5.1 Problem statement

We consider a multi-agent system consisting of N agents, each described by,

ẋi = f(xi) + g(xi)ui, (5.1)

where, for i = 1, 2, . . . , N , xi ∈ Rn is the state vector of agent i, ui ∈ Rm is the control

input, g(xi) = [g1(xi), g2(xi), . . . , gm(xi)] ∈ Rn×m, and f(xi) and gk(xi), k = 1, 2, . . . ,m,

are smooth vector fields in Rn.

Definition 7. Global consensus of a multi-agent system is said to be achieved if the states of

all agents are synchronized, i.e., for all xi(0) ∈ Rn, i = 1, 2, . . . , N , limt→∞ ‖xi(t)−xj(t)‖ =

0, i, j = 1, 2, . . . , N .

Neighborhood consensus errors are defined as

ei =
N∑
j=1

aij(xi − xj), (5.2)
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We introduce the following notations,

x = [xT
1 , x

T
2 , . . . , x

T
N ]T ∈ RNn, (5.3)

e = [eT
1 , e

T
2 , . . . , e

T
N ]T ∈ RNn, (5.4)

u = [uT
1 , u

T
2 , . . . , u

T
N ]T ∈ RNm, (5.5)

F (x) = [fT(x1), fT(x2), . . . , fT(xN)]T ∈ RNn, (5.6)

G(x) =


g(x1)

g(x2)
. . .

g(xN)

 ∈ RNn×Nm. (5.7)

Then the dynamics of the multi-agent system (5.1) can be expressed more compactly as

ẋ = F (x) +G(x)u. (5.8)

The consensus errors (5.2) can be rewritten as

e = (L⊗ In)x, (5.9)

ė = (L⊗ In) (F (x) +G(x)u) . (5.10)

In view of Assumption 1, communication graph of the multi-agent system is undirected

and connected. This assumption indicates that consensus is achieved if and only if all the

elements in e(t) approach zero as t goes to infinity.

Remark 2. Since the Laplacian matrix L is symmetric, there exists some orthogonal matrix

T ∈ RN×N such that

TTLT =


0

λ2

. . .

λN

 , JL.

By Lemma 1, we know that L is positive semi-definite and λ2, λ3, . . . , λN > 0. Therefore, we
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can always construct a positive definite matrix M by M = TJMT
T, where

JM =


1
λ1

1
λ2

. . .

1
λN

 ,
with any λ1 > 0. Noting that JLJMJL = JL, we have

LML = TJLT
TTJMT

TTJLT
T

= TJLT
T

= L.

Consequently, we have

eT(ML⊗ In) = xT(LML⊗ In)

= xT(L⊗ In)

= eT. (5.11)

Assumption 4. There exists a positive definite matrix P ∈ Rn×n, such that for all xi, xj ∈

Rn,

(xi − xj)TP [f(xi)− f(xj)] ≤ 0.

Suppose that system (5.1) has linear unforced dynamics, that is, f(xi) = Axi, i =

1, 2, . . . , N . If each individual system is open-loop marginally stable, we can find a matrix

P > 0 which satisfies Assumption 4 by solving the Lyapunov equation ATP + PA = Q, for

someQ ≤ 0. For systems that have nonlinear f(xi), this assumption requires the entire multi-

agent system to be “open-loop cooperatively marginally stable.” That is, in the absence of

control inputs the distance between any two agents remains bounded.

Assumption 5. For any z ∈ Rn, we have

dim span{ad qf gk(z) : 0 ≤ q ≤ n− 1, 1 ≤ k ≤ m} = n.

Assumption 5 is a controllability-like condition. If an affine in control system is open-

loop marginally stable and this controllability-like condition is satisfied, then the system is

globally asymptotically stabilizable [39].
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5.2 Consensus in the absence of communication delays

Since consensus of system (5.1) has not been studied in the existing works, we first ex-

amine the case where communication delays are not considered and propose the following

distributed control laws,

ui(t) = −gT(xi(t))Pei(t)

= −gT(xi(t))P
N∑
j=1

aij(xi(t)− xj(t)), (5.12)

where the definition of the matrix P is as defined in Assumption 4. Using the notations in

(5.3)-(5.7), we obtain

u(t) = −GT(x(t))(IN ⊗ P )e(t). (5.13)

The following lemmas are important in the analysis of the closed-loop multi-agent system.

Lemma 17 implies that, under Assumption 4, the consensus errors remain bounded in the

absence of control inputs. Lemma 18 is a consequence of the controllability-like condition,

as introduced in Assumption 5, to the overall multi-agent system.

Lemma 17. If Assumption 4 is satisfied, then,

eT(IN ⊗ P )F (x) ≤ 0,

where the matrix P = PT is as defined in Assumption 4.

Proof. We note that

(IN ⊗ P )F (x) = [fT(x1)P, fT(x2)P, . . . , fT(xN)P ]T

, FP (x).

Then

eT(IN ⊗ P )F (x) = eTFP (x)

= xT(L⊗ In)FP (x). (5.14)

Applying Lemma 3 to (5.14) gives

eT(IN ⊗ P )F (x) =
1

2

N∑
i=1

N∑
j=1

aij(xi − xj)TP (f(xi)− f(xj)) .

By Assumption 4, we have eT(IN ⊗ P )F (x) ≤ 0.
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Lemma 18. If Assumption 5 is satisfied, then, for any x ∈ RNn, dim span{ad qFGr(x) : 0 ≤

q ≤ n− 1, 1 ≤ r ≤ Nm} = Nn, where Gr(x) denotes the rth column of G(x).

Proof. We define the following notations,

0n×1 =


0

0
...

0

 ∈ Rn, 0n×n =


0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 ∈ Rn×n.

Then for all i = 1, 2, . . . , N , k = 1, 2, . . . ,m,

G(i−1)m+k(x) =



0n×1

...

0n×1

gk(xi)

0n×1

...

0n×1


.

 i− 1

By the definition of Lie brackets, we have

ad 0
FG(i−1)m+k(x) =



0n×1

...

0n×1

gk(xi)

0n×1

...

0n×1


,

 i− 1
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adFG(i−1)m+k(x) =

i− 1




0n×n · · ·0n×n 0n×n 0n×n · · · 0n×n
...

. . .
...

...
...

. . .
...

0n×n · · ·0n×n 0n×n 0n×n · · · 0n×n
0n×n · · ·0n×n ∂gk(xi)

∂xi
0n×n · · · 0n×n

0n×n · · · 0n×n 0n×n 0n×n · · · 0n×n
...

. . .
...

...
...

. . .
...

︸ ︷︷ ︸
i− 1

0n×n · · ·0n×n 0n×n 0n×n · · · 0n×n





f(x1)
...

f(xi)
...

f(xN)



−



∂f(x1)
∂x1

∂f(x2)
∂x2

. . .

∂f(xN )
∂xN





0n×1

...

0n×1

gk(xi)

0n×1

...

0n×1



 i− 1

=



0n×1

...

0n×1

∂gk(xi)
∂xi

f(xi)

0n×1

...

0n×1


−



0n×1

...

0n×1

∂f(xi)
∂xi

gk(xi)

0n×1

...

0n×1



 i− 1

=



0n×1

...

0n×1

adfgk(xi)

0n×1

...

0n×1


.

 i− 1
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Similarly, it is straightforward to show that, for all i = 1, 2, . . . , N , k = 1, 2, . . . ,m, q ∈ N,

ad qFG(i−1)m+k(x) =



0n×1

...

0n×1

ad qf gk(xi)

0n×1

...

0n×1


.

 i− 1

(5.15)

By Assumption 5 and (5.15), we have, for any x ∈ RNn,

dim span{ad qFGr(x) : 0 ≤ q ≤ n− 1, 1 ≤ r ≤ Nm} = Nn.

The behavior of the multi-agent system (5.1) under the proposed control laws (5.12), in

the absence of communication delays, is established in the following theorem.

Theorem 3. Consider a multi-agent system whose dynamics are given by (5.1). Suppose

that Assumptions 1, 4 and 5 hold. Then the control laws (5.12) steer the multi-agent system

into global consensus. That is,

lim
t→∞
‖xi(t)− xj(t)‖ = 0, i, j = 1, 2, . . . , N.

Proof. Consider the following Lyapunov function

VM(e) = eT(t)(M ⊗ P )e(t),

where matrices M > 0 and P > 0 are defined in Remark 2 and Assumption 4, respectively.

For brevity, we drop all the time variables in the remainder of this proof.

Taking time derivative along the trajectories of (5.10) yields

V̇M = 2eT(M ⊗ P )ė

= 2eT(M ⊗ P )(L⊗ In) (F (x) +G(x)u)

= 2eT(ML⊗ In)(IN ⊗ P ) (F (x) +G(x)u) . (5.16)

61



In view of (5.11), we have

V̇M = 2eT(IN ⊗ P ) (F (x) +G(x)u) . (5.17)

Substituting (5.13) into (5.17) gives

V̇M = 2eT(IN ⊗ P )F (x)− 2eT(IN ⊗ P )G(x)GT(x)(IN ⊗ P )e. (5.18)

By Lemma 17, we conclude that V̇M ≤ 0.

Since both terms on the right-hand side of (5.18) are non-positive, V̇M = 0 if and only

if 2eT(IN ⊗ P )F (x) = 0 and 2eT(IN ⊗ P )Gr(x) = 0, 1 ≤ r ≤ Nm, which are respectively

equivalent to

2xT(L⊗ P )F (x) = 0, (5.19)

and

2xT(L⊗ P )Gr(x) = 0, 1 ≤ r ≤ Nm. (5.20)

Note that VM(e) = xT(LML⊗ P )x = xT(L⊗ P )x. Then,

∂VM(e)

∂x
= 2xT(L⊗ P ). (5.21)

Substitution of (5.21) into (5.19) and (5.20) results in

∂VM(e)

∂x
F (x) = 0, (5.22)

and
∂VM(e)

∂x
Gr(x) = 0, 1 ≤ r ≤ Nm, (5.23)

respectively. It is clear now V̇M = 0 if and only if

LFVM(e) = 0, (5.24)

and

LGrVM(e) = 0, 1 ≤ r ≤ Nm. (5.25)

Here we have abused the notations by using the Lie derivative notations LFVM(e) and

LGrVM(e) to denote ∂VM(e)
∂x

F (x) and ∂VM(e)
∂x

Gr(x), respectively. We will also use similar nota-

tions in the rest of the proof.
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Under (5.25), equation (5.8) reduces to ẋ = F (x).

Let S be the largest invariant subset of {e ∈ RNn | V̇M = 0}. Hence, for any e(0) ∈

S, e(t, x(0)) stays in S forever, where e(t, x(0)) = (L ⊗ In)x(t, x(0)) and x(t, x(0)) is the

trajectory of ẋ = F (x) starting from x(0). This, together with (5.24) and (5.25), imply that,

for any e(0) ∈ S,

LFVM(e(t, x(0))) = 0, t ≥ 0, (5.26)

and

LGrVM(e(t, x(0))) = 0, t ≥ 0, 1 ≤ r ≤ Nm. (5.27)

Define ξ = adFGr(x(t, x(0))), 1 ≤ r ≤ Nm. In view of (5.26) and (5.27), it follows that

LξVM(e(t, x(0))) = LFLGrVM(e(t, x(0)))− LGrLFVM(e(t, x(0)))

= 0. (5.28)

Similar manipulations lead to

LξVM(e(t, x(0))) = 0, ∀e(0) ∈ S, (5.29)

where ξ=ad qFGr(x(t, x(0))), q∈N, 1≤r≤Nm. Under Assumption 5, it follows from Lemma

18 that dim span{ad qFGr(x) : 0 ≤ q ≤ n − 1, 1 ≤ r ≤ Nm} = Nn, ∀x ∈ RNn. This, along

with (5.29), imply that

S =

{
e ∈ RNn | ∂VM(e)

∂x
= 01×Nn

}
=
{
e ∈ RNn | 2xT(L⊗ P ) = 01×Nn

}
=
{
e ∈ RNn | (IN ⊗ P )e = 0Nn×1

}
. (5.30)

Since P is nonsingular, S = {e = 0Nn×1}. Therefore, by LaSalle’s Invariance Principle,

limt→∞ e(t) = 0, and consensus is achieved.

Remark 3. If there is a constraint on the magnitude of the control inputs of the agents, we

can modify the control input to each agent i as

uik = sign(−gTk (xi)Pei) min(|gTk (xi)Pei|, α), (5.31)

where uik, k = 1, 2, . . . ,m, is the kth element in ui, and α > 0 is the bound on the in-

puts. The bounded control inputs (5.31) then bring the multi-agent system into consensus if

Assumptions 1, 4 and 5 are satisfied.
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5.3 Consensus in the presence of communication de-

lays

In this section, we take communication delays into consideration and restrict g(xi) in (5.1)

to a constant matrix, that is,

ẋi = f(xi) +Bui. (5.32)

We assume the communication delays to be a constant τ . Then, we propose the following

distributed low gain control laws,

ui(t) = −εBTPei(t− τ), (5.33)

where ε is a low gain parameter. Furthermore, with the help of the notations in (5.3)-(5.7),

we have

u(t) = −ε(IN ⊗BTP )e(t− τ). (5.34)

The dynamics of the consensus errors are given by

ė(t) = (L⊗ In)
(
F (x(t))− ε(IN ⊗BBTP )e(t− τ)

)
. (5.35)

Assumption 6. There exists a constant β > 0 such that,

(f(xi)− f(xj))
T PBBTP (f(xi)− f(xj)) ≤ β(xi − xj)TPBBTP (xi − xj), ∀xi, xj ∈ Rn,

where the matrix P is as defined in Assumption 4.

The following lemma states a important property of positive semi-definite matrix.

Lemma 19. [40] Consider two positive semi-definite matrices A and B. The product of the

two matrices, AB, is positive semi-definite if and only if AB is symmetric.

Then, we establish further results regarding the behavior of the closed-loop multi-agent

system (5.32).

Theorem 4. Consider a multi-agent system whose agent dynamics are described by (5.32).

Suppose that Assumptions 1, 4, 5 and 6 are all satisfied. There exists a constant τ̄ > 0 such

that for any τ ∈ [0, τ̄ ], the control laws (5.33) steer the system into global consensus as long

as the low gain parameter ε is sufficiently small. That is, for any τ ∈ [0, τ̄ ], there exists an

ε̄ such that for any ε ∈ (0, ε̄], limt→∞ e(t) = 0 for all xi(0) ∈ Rn, i = 1, 2, . . . , N .
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Proof. We consider the following Lyapunov function,

VM(e) = V1(e) + V2(e) + V3(e), (5.36)

with

V1(e) = eT(t)(M ⊗ P )e(t),

V2(e) = ετ

∫ τ

0

∫ t

t−s1
ėT(s2)Φė(s2)ds2ds1,

V3(e) =

(
∞∑
k=0

aqk

)∫ τ

0

∫ t

t−s1
ėT(s2)Ψė(s2)ds2ds1,

where a = 8ετ 3Nβ, q = 4τ 2β, and Φ = IN ⊗ PBBTP and Ψ = M ⊗ PBBTP are positive

semi-definite matrices. To guarantee the convergence in V3, we require q < 1, i.e., τ < 1
2
√
β
.

We note that V1 is the Lyapunov function used in the proof of Theorem 3 for the delay-free

case. Because of the presence of communication delays, a positive semi-definite term appears

in the time derivative of V1 and in order to cancel that term we introduce V2. However, the

time derivative of V2 in turn contains another positive semi-definite term, so we introduce the

first term in V3. Similarly, every time we add a new term to the Lyapunov function to cancel

the positive semi-definite term in the derivative resulting from the previously introduced

term in the Lyapunov function, the new term itself resulting in a new positive semi-definite

term in the derivative. This is the reason why V3 contains infinitely many terms.

Taking time derivative of V1 yields

V̇1 = 2eT(t)(M ⊗ P )ė(t), (5.37)

which, together with (5.35), give

V̇1 =2eT(t)(ML⊗ P )F (x(t))− 2εeT(t)(ML⊗ PBBTP )e(t− τ)

=2eT(t)(IN ⊗ P )F (x(t))− 2εeT(t)(IN ⊗ PBBTP )e(t− τ). (5.38)

Note that

e(t) = e(t− τ) +

∫ t

t−τ
ė(σ)dσ. (5.39)

Equation (5.38) can then be continued as

V̇1 =2eT(t)(IN ⊗ P )F (x(t))− 2εeT(t− τ)(IN ⊗ PBBTP )e(t− τ)
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− 2εeT(t− τ)(IN ⊗ PBBTP )

∫ t

t−τ
ė(σ)dσ

≤2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ) + ε

∫ t

t−τ
ėT(σ)dσΦ

∫ t

t−τ
ė(σ)dσ.

By Lemma 8, it follows that

V̇1 ≤2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ) + ετ

∫ t

t−τ
ėT(σ)Φė(σ)dσ. (5.40)

For V2, by Lemma 9, we have

V̇2 = ετ 2ėT(t)Φė(t)− ετ
∫ t

t−τ
ėT(σ)Φė(σ)dσ. (5.41)

In view of (5.35), it follows from Lemma 7 that

V̇2 ≤2ετ 2FT(x(t))(L⊗ In)Φ(L⊗ In)F (x(t)) + 2ε3τ 2eT(t− τ)Φ(L2 ⊗BBT)Φe(t− τ)

− ετ
∫ t

t−τ
ėT(σ)Φė(σ)dσ. (5.42)

We expand the first term in the above inequality and obtain

FT(x(t))(L⊗ In)Φ(L⊗ In)F (x(t))

=
N∑
i=1

∥∥∥∥∥
N∑
j=1

aijB
TP [f(xi)− f(xj)]

∥∥∥∥∥
2

≤N
N∑
i=1

N∑
j=1

∥∥aijBTP [f(xi)− f(xj)]
∥∥2
, (5.43)

where we have applied Lemma 7. By Assumption 6, it follows from (5.43) that

FT(x(t))(L⊗ In)Φ(L⊗ In)F (x(t))

≤Nβ
N∑
i=1

N∑
j=1

∥∥aijBTP (xi − xj)]
∥∥2

=2NβxT(t)(L⊗ PBBTP )x(t)

=2NβeT(t)(M ⊗ PBBTP )e(t). (5.44)

Substituting (5.39) and (5.44) into (5.42), and applying Lemmas 7 and 8, we obtain

V̇2 ≤8ετ 2NβeT(t− τ)Ψe(t− τ) + 8ετ 3Nβ

∫ t

t−τ
ėT(σ)Ψė(σ)dσ
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+ 2ε3τ 2eT(t− τ)Φ(L2 ⊗BBT)Φe(t− τ)− ετ
∫ t

t−τ
ėT(σ)Φė(σ)dσ. (5.45)

Expanding the third term on the right-hand side of (5.45) to a summation form, as what we

did in (5.43), and applying Lemmas 3 and 7, we have

V̇2 ≤8ετ 2NβeT(t− τ)Ψe(t− τ) + 8ετ 3Nβ

∫ t

t−τ
ėT(σ)Ψė(σ)dσ

+ 4ε3τ 2NeT(t− τ)Φ(L⊗BBT)Φe(t− τ)− ετ
∫ t

t−τ
ėT(σ)Φė(σ)dσ. (5.46)

By Lemma 9, the time derivative of V3 is given by

V̇3 =
∞∑
k=0

aqkτ ėT(t)Ψė(t)−
∞∑
k=0

aqk
∫ t

t−τ
ėT(σ)Ψė(σ)dσ. (5.47)

Again, recalling (5.35), it follows from Lemma 7 that

V̇3 ≤
∞∑
k=0

2aqkτFT(x(t))(L⊗ PBBTP )F (x(t))

+
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)−
∞∑
k=0

aqk
∫ t

t−τ
ėT(σ)Ψė(σ)dσ. (5.48)

By Assumption 6, (5.48) can be continued as

V̇3 ≤
∞∑
k=0

2aqkτβxT(t)(L⊗ PBBTP )x(t)

+
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)−
∞∑
k=0

aqk
∫ t

t−τ
ėT(σ)Ψė(σ)dσ

=
∞∑
k=0

2aqkτβeT(t)Ψe(t)

+
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)−
∞∑
k=0

aqk
∫ t

t−τ
ėT(σ)Ψė(σ)dσ. (5.49)

Substituting (5.39) into (5.49) and applying Lemmas 7 and 8, we have

V̇3 ≤
∞∑
k=0

4aqkτβeT(t− τ)Ψe(t− τ) +
∞∑
k=0

4aqkτ 2β

∫ t

t−τ
ėT(σ)Ψė(σ)dσ

+
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)−
∞∑
k=0

aqk
∫ t

t−τ
ėT(σ)Ψė(σ)dσ, (5.50)
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which, by collection of similar terms, simplifies to

V̇3 ≤
∞∑
k=0

4aqkτβeT(t− τ)Ψe(t− τ) +
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)

− 8ετ 3Nβ

∫ t

t−τ
ėT(σ)Ψė(σ)dσ. (5.51)

Summing both sides of (5.40), (5.46) and (5.51) yields

V̇M ≤2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ) + 8ετ 2NβeT(t− τ)Ψe(t− τ)

+ 4ε3τ 2NeT(t− τ)Φ(L⊗BBT)Φe(t− τ) +
∞∑
k=0

4aqkτβeT(t− τ)Ψe(t− τ)

+
∞∑
k=0

2aqkε2τeT(t− τ)Φ(L⊗BBT)Φe(t− τ)

=2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ) +
∞∑
k=0

8ετ 2NβqkeT(t− τ)Ψe(t− τ)

+
∞∑
k=0

4ε3τ 2NqkeT(t− τ)Φ(L⊗BBT)Φe(t− τ). (5.52)

As mentioned before, when q < 1, i.e., τ < 1
2
√
β
, the summations of geometric series in (5.52)

are finite and therefore (5.52) can be rewritten as

V̇M ≤2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ)

+
4ε3τ 2N

1− 4τ 2β
eT(t− τ)Φ(L⊗BBT)Φe(t− τ)

+
8ετ 2Nβ

1− 4τ 2β
eT(t− τ)(M ⊗ In)Φe(t− τ). (5.53)

Since B, L and M are known and constant, there exist positive constants η1 and η2 such

that,

L⊗BBT ≤ η1INn, (5.54)

M ⊗ In ≤ η2INn. (5.55)

Substituting (5.54) and (5.55) into (5.53), we have

V̇M ≤2eT(t)(IN ⊗ P )F (x(t))− εeT(t− τ)Φe(t− τ)

+
4ε3τ 2Nη1

1− 4τ 2β
eT(t− τ)Φ2e(t− τ) +

8ετ 2Nβη2

1− 4τ 2β
eT(t− τ)Φe(t− τ). (5.56)
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We have proved that 2eT(t)(IN⊗P )F (x(t)) ≤ 0 in Lemma 17. It is straightforward to obtain

from (5.56) that V̇M ≤ 0 when(
ε− 8ετ 2Nβη2

1− 4τ 2β

)
Φ− 4ε3τ 2Nη1

1− 4τ 2β
Φ2 ≥ 0. (5.57)

Since Φ ≥ 0 and the left-hand side of (5.57) is symmetric, by Lemma 19, (5.57) is true when(
ε− 8ετ 2Nβη2

1− 4τ 2β

)
INn −

4ε3τ 2Nη1

1− 4τ 2β
Φ ≥ 0. (5.58)

In order to satisfy (5.58), we need the following two conditions

ε− 8ετ 2Nβη2

1− 4τ 2β
> 0, (5.59)

and

ε− 8ετ 2Nβη2

1− 4τ 2β
− 4ε3τ 2Nη1

1− 4τ 2β
λmax(Φ) > 0, (5.60)

where λmax(Φ) is the maximum eigenvalue of the positive semi-definite matrix Φ = IN ⊗

PBBTP . According to the preceding derivations, V̇M ≤ 0 when both (5.59) and (5.60) are

satisfied. Then, solving (5.59) and (5.60), we obtain τ ≤ τ̄ and ε ≤ ε̄, where τ̄ and ε̄ are

such that,

τ̄ <

√
1

4β(2Nη2 + 1)
,

ε̄ <

√
1− 4τ 2β(2Nη2 + 1)

4τ 2Nη1λmax(Φ)
.

Clearly, τ̄ < 1
2
√
β
.

From (5.56), we observe that V̇M = 0 if and only if

2eT(t)(IN ⊗ P )F (x(t)) = 0, (5.61)

and

eT(t− τ)

((
ε− 8ετ 2Nβη2

1− 4τ 2β

)
Φ− 4ε3τ 2Nη1

1− 4τ 2β
Φ2

)
e(t− τ) = 0, (5.62)

which is equivalent to

eT(t− τ)(IN ⊗ PB)Γ(IN ⊗BTP )e(t− τ) = 0, (5.63)
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where

Γ =

(
ε− 8ετ 2Nβη2

1− 4τ 2β

)
INm −

4ε3τ 2Nη1

1− 4τ 2β

(
IN ⊗BTPPB

)
. (5.64)

Since Φ and (IN ⊗BTPPB) have the same nonzero eigenvalues, under (5.59) and (5.60), we

have Γ > 0. Then, (5.63) is true if and only if

eT(t− τ)(IN ⊗ PB) = 01×Nm. (5.65)

In view of (5.61) and (5.65), following similar derivations as in the proof of Theorem 3, we

conclude that the largest invariant set in which V̇M = 0 is S = {e = 0Nn×1}. Therefore, by

LaSalle’s Invariance Principle, limt→∞ e(t) = 0. This completes the proof.

5.4 Simulation results

The performance of the proposed control laws is demonstrated by numerical simulation.

In our simulation, we consider multi-agent systems with five agents and a communication

topology shown in Fig. 5.1, which is an undirected and connected graph.

Figure 5.1: The communication topology

5.4.1 Example 1: Linear unforced dynamics without delays

The dynamics of agent i, i = 1, 2, . . . , 5 are given as follows

ẋi = Axi + g(xi)ui, (5.66)

where xi ∈ R2, ui ∈ R,

A =

−1.5 3

1 −2

 , g(xi) =

 0

1 + x2
i1 + x2

i2

 .
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It can be easily verified that Assumption 5 holds and Assumption 4 is satisfied with

P =

1 0

0 3

 .
Shown in Fig. 5.2a and 5.2b are trajectories of the agents and the consensus errors. In

the simulation, the initial states of the agents are randomly chosen as x1(0) = [1.6,−4.6]T,

x2(0) = [3.5, 4.3]T, x3(0) = [1.8, 2.6]T, x4(0) = [2.4,−1.1]T, and x5(0) = [1.6,−3.3]T. As

observed in Fig. 5.2a, where circles indicate the initial states and crosses represent the states

when simulation terminates, the sates of the agents are synchronized. We can see more

clearly in Fig. 5.2b that consensus errors converge to zero as the system evolves.
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Figure 5.2: Example 1: Linear unforced dynamics, τ = 0

5.4.2 Example 2: Nonlinear unforced dynamics without delays

The dynamics of agent i, i = 1, 2, . . . , 5, are given by,

ẋi1 = xi2,

ẋi2 = −xi1 − x3
i2 + (1 + x2

i1 + x2
i2)ui. (5.67)

It can be easily verified that both Assumptions 4 and 5 are satisfied, with P = I2.

Trajectories of the agents under the influence of the control laws (5.12) are shown in

Fig. 5.3a, where circles and crosses respectively indicate the initial states and the states when
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simulation terminates. The evolution of the errors are shown in Fig. 5.3b. In the simulation,

we have chosen the initial conditions to be x1(0) = [1.6,−4.6]T, x2(0) = [3.5, 4.3]T, x3(0) =

[1.8, 2.6]T, x4(0) = [2.4,−1.1]T, and x5(0) = [1.6,−3.3]T. Again, the states of all the agents

reach an agreement and errors approach zero.
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Figure 5.3: Example 2: Nonlinear unforced dynamics, τ = 0

5.4.3 Example 3: Nonlinear unforced dynamics with delays

The dynamics of agent i, i = 1, 2, . . . , 5, are given by,

ẋi1 = −x3
i1 + xi2,

ẋi2 = −xi1 + ui, (5.68)

which satisfy all the proposed assumptions, with P = I2 and β = 1. The communication

delay is τ = 0.1. The low gain parameter is thus chosen to be ε = 0.5.

We have chosen the initial conditions to be x1(t) = [1.6,−4.6]T, x2(t) = [3.5, 4.3]T,

x3(t) = [1.8, 2.6]T, x4(t) = [2.4,−1.1]T, and x5(t) = [1.6,−3.3]T, for t ∈ [−τ, 0]. Simulation

results are shown in Figs. 5.4a and 5.4b, from which consensus is observed.
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Figure 5.4: Example 3: Nonlinear unforced dynamics, τ = 0.1, ε = 0.5

5.4.4 Example 4: Consensus under actuator saturation

Consider the multi-agent system described by (5.67) and assume that the magnitude of the

control input of each agent is limited by 1. Following Remark 3, the appropriately modified

bounded control laws, with α = 1, would ensure consensus. In simulation, we choose the

initial states of the agents as x1(0) = [1.6,−4.6]T, x2(0) = [3.5, 4.3]T, x3(0) = [1.8, 2.6]T,

x4(0) = [2.4,−1.1]T, and x5(0) = [1.6,−3.3]T. The simulation results in Figs. 5.5a and 5.5b

show that the consensus errors converge to zero and the states of agents are synchronized.
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Figure 5.5: Example 4: Consensus under actuator saturation, τ = 0
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5.5 Summary

Consensus behavior of multi-agent systems with continuous-time control-affine nonlinear

dynamics was studied in this chapter. We proposed distributed control laws based on neigh-

borhood consensus errors, that achieve global consensus both in the absence and in the

presence of communication delays. In addition, a theoretical upper bound on the tolera-

ble communication delays is provided. The performance of the proposed control laws is

demonstrated by numerical simulation.
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Chapter 6

Consensus of Nonlinear Multi-agent

Systems in the Discrete-time Setting

Recalling that applications of continuous-time controllers through direct discretization could

be very restrictive due to the requirement for small sampling periods. In order to fulfill the

demand of implementing consensus control in a discrete time setting, we study the discrete-

time consensus control problems in this chapter.

6.1 Problem statement

We consider a discrete-time multi-agent system that consists of N agents, each described by,

xi(k + 1) = Axi(k) + g(xi(k))ui(k), (6.1)

where xi ∈ Rn and ui ∈ Rm are the state vector of agent i and the control input, respectively,

A ∈ Rn×n and g(xi) ∈ Rn×m.

Similarly, we have the following definition of global consensus in the discrete-time setting.

Definition 8. Global consensus of a multi-agent system is said to be achieved if the states of

all agents are synchronized, i.e., for all xi(0) ∈ Rn, i = 1, 2, . . . , N , limk→∞ ‖xi(k)−xj(k)‖ =

0, i, j = 1, 2, . . . , N .
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Neighborhood consensus errors are defined as

ei(k) =
N∑
j=1

aij(xi(k)− xj(k)), i = 1, 2, . . . , N. (6.2)

Then, with notations (5.3)–(5.7) the dynamics of the multi-agent system (6.1) can be

expressed more compactly as

x(k + 1) = (IN ⊗ A)x(k) +G(x(k))u(k). (6.3)

The consensus errors (6.2) and its dynamics can be rewritten as

e(k) = (L⊗ In)x(k), (6.4)

and

e(k + 1) = (IN ⊗ A)e(k) + (L⊗ In)G(x(k))u(k), (6.5)

respectively.

Assumption 7. The agent dynamics is open-loop marginally stable and P ∈ Rn×n is a

positive definite matrix such that

ATPA− P ≤ 0.

Assumption 8. For any z ∈ Rn, we have

dim rowsp
{(

Al
)T (

ATPA− P
)
Al, gT

(
Alz
)
PAl+1 : l = 0, 1, 2, . . .

}
= n,

where rowsp denotes row space.

6.2 Consensus in the absence of communication delays

In this section, we first study a simpler case where each agent collects the states of its

neighboring agents instantly. That is, communication delays are not considered. In the next

section, we will study global consensus control of multi-agent systems that are subject to

communication delays.
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We propose the following distributed control laws to enforce the state consensus,

ui(k) =− 2
(
Im + 2dig

T(xi(k))Pg(xi(k))
)−1

gT(xi(k))PA
N∑
j=1

aij (xi(k)− xj(k)) , (6.6)

where the definition of the matrix P is given in Assumption 7. Using the notations in

(5.3)-(5.7), we obtain

u(k) =− 2
(
INm + 2GT(x(k))(D ⊗ P )G(x(k))

)−1
GT(x(k))(IN ⊗ PA)e(k). (6.7)

The behavior of the discrete-time multi-agent system (6.1) under the proposed control

laws (6.6) is established in the following theorem.

Theorem 5. Consider a multi-agent system whose dynamics are given by (6.1). Suppose

that Assumptions 1, 7 and 8 hold. Then the control laws (6.6) steer the multi-agent system

into global consensus. That is, under the control laws (6.6),

lim
k→∞
‖xi(k)− xj(k)‖ = 0, i, j = 1, 2, . . . , N,

for all xi(0) ∈ Rn, i = 1, 2, . . . , N .

Proof. Consider the following Lyapunov function

V (e) = eT(k)(M ⊗ P )e(k),

where matrices M > 0 and P > 0 are as defined in Remark 2 and Assumption 7, respectively.

The difference of V (e) along the trajectories of (6.5) is evaluated as

∆V = eT(k + 1)(M ⊗ P )e(k + 1)− eT(k)(M ⊗ P )e(k)

= eT(k)
(
M ⊗

(
ATPA− P

))
e(k) + 2uT(k)GT(x(k))(LM ⊗ PA)e(k)

+ uT(k)GT(x(k))(LML⊗ P )G(x(k))u(k). (6.8)

Recalling that LML = L and eT(ML⊗ In) = eT, we have

∆V = eT(k)
(
M ⊗

(
ATPA− P

))
e(k) + 2uT(k)GT(x(k))(IN ⊗ PA)e(k)

+ uT(k)GT(x(k))(L⊗ P )G(x(k))u(k). (6.9)
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Applying Lemma 4 to the third term on the right-hand side of (6.9) gives

∆V ≤ eT(k)
(
M ⊗

(
ATPA− P

))
e(k) + 2uT(k)GT(x(k))(IN ⊗ PA)e(k)

+ 2uT(k)GT(x(k))(D ⊗ P )G(x(k))u(k). (6.10)

Substituting (6.7) into (6.10) gives

∆V ≤ eT(k)
(
M ⊗

(
ATPA− P

))
e(k)

− 4eT(k)
(
IN⊗ATP

)
G(x(k))

(
INm + 2GT(x(k))(D ⊗ P )G(x(k))

)−1

×GT(x(k)) (IN ⊗ PA) e(k)

≤ 0. (6.11)

Since both terms on the right-hand side of (6.11) are non-positive, ∆V ≡ 0 implies

eT(k)
(
M ⊗

(
ATPA− P

))
e(k) ≡ 0,

and

GT(x(k))(IN ⊗ PA)e(k) ≡ 0Nm×1,

which are equivalent to

xT(k)
(
L⊗

(
ATPA− P

))
x(k) ≡ 0, (6.12)

and

GT(x(k))(L⊗ PA)x(k) ≡ 0Nm×1, (6.13)

respectively. Under (6.13), we have u(k) ≡ 0Nm×1 and the solution to (6.3) is given by

x(k) =
(
IN ⊗ Ak

)
x(0). (6.14)

Substitution of (6.14) into (6.12) and (6.13) results in,

xT(0)
(
L⊗

(
Ak
)T (

ATPA− P
)
Ak
)
x(0) = 0, k ≥ 0,

and,

GT
((
IN ⊗ Ak

)
x(0)

)
(L⊗ PAk+1)x(0) = 0Nm×1, k ≥ 0,

respectively, which can be further expanded to,

N∑
i=1

N∑
j=1

aij(xi(0)− xj(0))T
(
Ak
)T (

ATPA− P
)
Ak(xi(0)− xj(0)) = 0, k ≥ 0, (6.15)
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and,

gT
(
Akxi(k)

)
PAk+1ei(0) = 0m×1, k ≥ 0,

i = 1, 2, . . . , N, (6.16)

respectively. Note that each term on the left-hand side of (6.15) is non-positive. Then (6.15)

is equivalent to

aij(xi(0)− xj(0))T
(
Ak
)T (

ATPA− P
)
Ak(xi(0)− xj(0)) = 0, ∀i, j = 1, 2, . . . , N,

Since
(
Ak
)T (

ATPA− P
)
Ak is negative semi-definite, it follows that

aij
(
Ak
)T (

ATPA− P
)
Ak(xi(0)− xj(0)) = 0n×1,

∀i, j = 1, 2, . . . , N,

which further implies that

(
Ak
)T (

ATPA− P
)
Akei(0) = 0n×1, i = 1, 2, . . . , N. (6.17)

In view of Assumption 8, the space spanned by the rows in the matrices
(
Ak
)T (

ATPA− P
)
Ak

and gT
(
Akxi(k)

)
PAk+1, k ≥ 0, has a dimension of n. Then, from (6.16) and (6.17), we

conclude that ∆V ≡ 0 only when e(0) = 0Nn×1, which implies e(k) = 0Nn×1, k ≥ 0. There-

fore, by LaSalle’s Invariance Principle, for any e(0) ∈ RNn, limk→∞ e(k) = 0Nn×1 and global

consensus is achieved.

Remark 4. If there is a constraint on the magnitude of the control inputs of the agents, we

can modify the control inputs to each agent i as

ũik = sign(uik) min(|uik|, α), k = 1, 2, . . . ,m, (6.18)

where ũik is the kth element in the constrained inputs to agent i, uik is the kth element in ui

as defined in (6.6), and α > 0 is the bound on the inputs. The bounded control inputs (6.18)

then bring the multi-agent system into consensus if Assumptions 1, 7 and 8 are satisfied.
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6.3 Consensus in the presence of communication de-

lays

In this section, we assume the communication delay to be τ steps and τ ∈ N+ is constant.

Communication delays increase the complexity in the analysis of the system behavior, and

we need to make following assumptions before establishing further results.

Assumption 9. There exists a matrix B ∈ Rn×m and a positive constant α such that

αBBT ≤ g(z)gT(z) ≤ BBT, ∀z ∈ Rn.

Remark 5. For any z ∈ Rn and any positive definite matrix Q ∈ Rm×m, if Assumption 9

is satisfied, the following inequalities always hold,

g(z)QgT(z) ≤ λmax(Q)

λmin(Q)
BQBT,

g(z)QgT(z) ≥ αλmin(Q)

λmax(Q)
BQBT. (6.19)

Since asymptotically stable eigenvalues do not affect the stability of the system, without

loss of generality, we make an assumption as follows.

Assumption 10. Let matrix B be as defined in Assumption 9. The matrix pair (A,B) is

controllable and all eigenvalues of A are located on the unit circle.

We propose the following low gain control laws for consensus in the presence of commu-

nication delays,

ui(k) =−
(
γ2B

TPB + γ3Im
)−1

gT(xi(k))PA
N∑
j=1

aij (xi(k − τ)− xj(k − τ)) , (6.20)

which, with the notations in (5.3)-(5.7), can be rewritten as

u(k) =−
(
IN ⊗

(
γ2B

TPB + γ3Im
)−1
)
GT(x(k))(IN ⊗ PA)e(k − τ). (6.21)

where B is the matrix defined in Assumption 9, and the positive definite matrix P is the

unique positive definite solution to the following discrete-time algebraic Riccati equation,

P = ATPA− ATPB
(
BTPB + γ1Im

)−1
BTPA+ εP. (6.22)
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There are multiple parameters in (6.21) and (6.22). The parameter ε ∈ (0, 1) is a low gain

parameter, and the parameters γ1, γ2 and γ3 are designed such that

γ1 =
λmax(M)

α(1− ε)n
γ3,

γ2 =
γ3

γ1

=
α(1− ε)n

λmax(M)
,

γ3 ≥
2dmaxλmax(P )λmax(BBT)

(1− ε)n
, (6.23)

where dmax = maxi=1,2,...,N{di} denotes the maximum degree of the communication graph.

Remark 6. If the matrix pair (A,B) is controllable, for any ε ∈ (0, 1), there always exists

a unique positive definite solution to discrete-time algebraic Riccati equation (6.22), and

such a solution can also be obtained from the parametric Lyapunov equation as follows, with

W = P−1,

W − 1

1− ε
AWAT = − 1

γ1

BBT. (6.24)

We establish following lemmas, which are essential in proving global consensus under

communication delays, in the discrete-time setting.

Lemma 20. Consider a matrix pair (A,B) that satisfies Assumption 10, and let P be the

positive definite solution to (6.22), with ε ∈ (0, 1). Then, the following inequalities hold,

λmax(BTPB) ≤ tr(BTPB) ≤ γ1

(
1

(1− ε)n
− 1

)
, (6.25)

ATPB
(
BTPB + γ1Im

)−1
BTPA ≤ 1− (1− ε)n

(1− ε)n−1
P, (6.26)

(A− In)T P (A− In) ≤ φP, (6.27)

where

φ =
2

(1− ε)n−1
− 2− (n− 2)ε+ 2 (n− tr(A)) .

Proof. We first prove (6.25). It is clear that

det
(
BTPB + γ1Im

)
= γm1 det

(
1

γ1

BTPB + Im

)
.

By Sylvester’s determinant identity, it follows that

det
(
BTPB + γ1Im

)
= γm1 det

(
1

γ1

PBBT + In

)
. (6.28)
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Multiplying both sides of (6.24) by P gives

In +
1

γ1

PBBT =
1

1− ε
PAP−1AT. (6.29)

Substituting (6.29) into (6.28), we have

det
(
BTPB + γ1Im

)
= γm1 det

(
1

1− ε
PAP−1AT

)
=

γm1
(1− ε)n

(det(A))2

=
γm1

(1− ε)n
. (6.30)

Denote the eigenvalues of BTPB by λ1, λ2, . . . , λm. Then, by the definition of determinant,

we have

det
(
BTPB + γ1Im

)
=

m∏
i=1

(λi + γ1)

= γm1 + γm−1
1

m∑
i=1

λi + γm−2
1

∑
i 6=j

λiλj + . . .+
m∏
i=1

λi,

which, together with (6.30), gives

γm1 + γm−1
1

m∑
i=1

λi + γm−2
1

∑
i 6=j

λiλj + . . .+
m∏
i=1

λi =
γm1

(1− ε)n
.

Noting that λi ≥ 0 for i = 1, 2, . . . ,m, we get

max{λ1, λ2, . . . , λm} ≤
m∑
i=1

λi ≤ γ1

(
1

(1− ε)n
− 1

)
.

Then, we prove (6.26). Note that

PB
(
BTPB + γ1Im

)−1
BTP = P

1
2

(
P

1
2B
(
BTPB + γ1Im

)−1
BTP

1
2

)
P

1
2

≤ λmax

(
P

1
2B
(
BTPB + γ1Im

)−1
BTP

1
2

)
P.

For any matrix S, SST and STS share the same non-zero eigenvalues, and thus λmax

(
SST

)
=

λmax

(
STS

)
. Then, it follows that

PB
(
BTPB + γ1Im

)−1
BTP ≤ λmax

(
R−

1
2BTPBR−

1
2

)
P,
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where R = BTPB + γ1Im. Let λ be an eigenvalue of R−
1
2BTPBR−

1
2 . By the definition of

eigenvalues, we have

det
(
λIm −R−

1
2BTPBR−

1
2

)
= 0. (6.31)

Multiplying to left and right of both sides of the above equation by det(R
1
2 ), we obtain

det
(
λ
(
BTPB + γ1Im

)
−BTPB

)
= 0,

which can be further simplified as

det

(
γ1λ

1− λ
Im −BTPB

)
= 0. (6.32)

Equations (6.31) and (6.32) imply that if λ is an eigenvalue of R−
1
2BTPBR−

1
2 then γ1λ

1−λ is

an eigenvalue of BTPB. In other words, if λ is an eigenvalue of BTPB then λ
γ1+λ

is an

eigenvalue of R−
1
2BTPBR−

1
2 . Note that λ

γ1+λ
is strictly increasing with respect to λ, when

λ > 0. Then, we have

λmax

(
R−

1
2BTPBR−

1
2

)
=

λmax

(
BTPB

)
γ1 + λmax (BTPB)

≤ 1− (1− ε)n.

Therefore, it follows that

PB
(
BTPB + γ1Im

)−1
BTP ≤ (1− (1− ε)n)P.

Multiplying to left and right of both sides of (6.22) by A−T and A−1, respectively, we obtain

P − (1− ε)A−TPA−1 = PB
(
BTPB + γ1Im

)−1
BTP

≤ (1− (1− ε)n)P,

from which it follows that

ATPA ≤ 1

(1− ε)n−1
P. (6.33)

Substitution of (6.33) into (6.22) yields

ATPB
(
BTPB + γ1Im

)−1
BTPA = ATPA− (1− ε)P

≤ 1− (1− ε)n

(1− ε)n−1
P.

83



Finally, we prove (6.27). Obviously,

(A− In)TP (A− In) = ATPA− ATP − PA+ P. (6.34)

The parametric Lyapunov equation (6.24) can be rearranged as

P−1 − 1

1− ε
(A− In + In)P−1(A− In + In)T = − 1

γ1

BBT,

which can be expanded to

(ε− 2)P−1 + (A− In)P−1(A− In)T + AP−1 + P−1AT =
1− ε
γ1

BBT. (6.35)

Multiplying to left and right of both sides of (6.35) by P , we have

PA+ ATP =
1− ε
γ1

PBBTP + (2− ε)P − P (A− In)P−1(A− In)TP. (6.36)

Substitution of (6.36) into (6.34) gives

(A− In)TP (A− In)

= ATPA− 1− ε
γ1

PBBTP − (1− ε)P + P (A− In)P−1(A− In)TP

≤ ATPA− (1− ε)P + P (A− In)P−1(A− In)TP. (6.37)

Note that

P (A− In)P−1(A− In)TP = P
1
2

(
P

1
2 (A− In)P−1(A− In)TP

1
2

)
P

1
2

≤ tr
(
P

1
2 (A− In)P−1(A− In)TP

1
2

)
P

= tr
(
(A− In)P−1(A− In)TP

)
P. (6.38)

Multiplying both sides of (6.35) by P and taking trace of both sides of the resulting equation,

we obtain

(ε− 2) tr(In) + tr
(
(A− In)P−1(A− In)TP

)
+ tr(A) + tr

(
P−1ATP

)
=

1− ε
γ1

tr
(
BBTP

)
,

from which it follows that

tr
(
(A− In)P−1(A− In)TP

)
=

1− ε
γ1

tr
(
BTPB

)
− 2 tr(A) + (2− ε)n
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≤ 1− (1− ε)n

(1− ε)n−1
− 2 tr(A) + (2− ε)n. (6.39)

Substituting (6.33), (6.38) and (6.39) into (6.37) yields

(A− In)TP (A− In) ≤ 1

(1− ε)n−1
P − (1− ε)P

+

(
1− (1− ε)n

(1− ε)n−1
− 2 tr(A) + (2− ε)n

)
P

=

(
2

(1− ε)n−1
− 2− (n− 2)ε+ 2 (n− tr(A))

)
P.

Lemma 21. Consider the following continuous function of ε ∈ (0, 1),

H(ε) =
6λmax(M)

αλmin(M)

1− (1− ε)n

ε(1− ε)3n−1

(
2

(1− ε)n−1
− (n− 2)ε− 2 + 2(n− tr(A))

+
2dmaxλmax(M)

α

1− (1− ε)n

(1− ε)3n−1

)
.

If all eigenvalues of matrix A are located on the unit circle, H(ε) is strictly increasing.

Proof. We define the following continuous functions

h1(ε) =
1− (1− ε)n

ε(1− ε)n−1
,

h2(ε) =
1

(1− ε)2n
,

h3(ε) = h1(ε)h2(ε),

h4(ε) =
2

(1− ε)n−1
− (n− 2)ε.

Taking derivative of h1(ε), we get

dh1(ε)

dε
=

(1− ε)n − 1 + nε

ε2(1− ε)n
.

We can easily verify that (1− ε)n− 1 + nε is strictly increasing in (0, 1) and thus (1− ε)n−

1 + nε > 0. Therefore, h1(ε) is strictly increasing and h1(ε) > limε→0+ h1(ε) = n, for any

ε ∈ (0, 1). Obviously, h2(ε) is positive and strictly increasing in (0, 1) as well. Consequently,

dh3(ε)

dε
=
dh1(ε)

dε
h2(ε) +

dh2(ε)

dε
h1(ε)
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> 0,

and h3(ε) is strictly increasing. Thus, h3(ε) > limε→0+ h3(ε) = n. Again, taking derivative

of h4(ε) gives
dh4(ε)

dε
=

2(n− 1)

(1− ε)n
− n+ 2,

which is strictly increasing with respect to ε. Then, we have

dh4(ε)

dε
>
dh4

dε
(0) = n.

Thus, h4(ε) is strictly increasing as well, and h4(ε) > h4(0) = 2. We note that

H(ε) =
6λmax(M)

αλmin(M)
h3(ε)

(
h4(ε)− 2 + 2(n− tr(A)) +

2dmaxλmax(M)

α
h3(ε)

)
.

Clearly, h4(ε)− 2 + 2(n− tr(A)) + 2dmaxλmax(M)α−1h3(ε) is strictly increasing and positive

for any ε ∈ (0, 1). Therefore, H(ε) is strictly increasing in (0, 1).

Then, in the following theorem, we establish the behavior of the closed-loop multi-agent

system under the proposed low gain control laws (6.20).

Theorem 6. Consider a multi-agent system whose dynamics are given by (5.1). Suppose

that Assumptions 1, 9, and 10 are all satisfied. Then there exists a constant τ̄ > 0 such that

for any τ ∈ [0, τ̄), the low gain control laws (6.20) steer the multi-agent system into global

consensus if the low gain parameter ε is small enough. That is for any τ ∈ [0, τ̄), there exists

an ε̄ ∈ (0, 1) such that for any ε ∈ (0, ε̄], under the control laws (6.20), limk→∞ ‖xi(k) −

xj(k)‖ = 0, for all xi(0) ∈ Rn, i, j = 1, 2, . . . , N .

Proof. Consider a Lyapunov function,

V (e(k)) = eT(k)(M ⊗ P )e(k). (6.40)

In view of (6.10), we have

∆V ≤ eT(k)
(
M ⊗

(
ATPA− P

))
e(k) + 2uT(k)GT(x(k))(IN ⊗ PA)e(k)

+ 2uT(k)GT(x(k))(D ⊗ P )G(x(k))u(k). (6.41)
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Substitution of (6.21) and (6.22) into (6.41) yields

∆V ≤ eT(k)
(
M ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(k)− εeT(k)(M ⊗ P )e(k)

− 2eT(k − τ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k)

+ 2eT(k − τ)
(
IN ⊗ ATP

)
Ω(D ⊗ P )Ω (IN ⊗ PA) e(k − τ), (6.42)

where Ω = G(x(k))
(
IN ⊗

(
γ2B

TPB + γ3Im
)−1
)
GT(x(k)). We define

∆e(k) = e(k + 1)− e(k).

Noting that

e(k) = e(k − τ) +
k−1∑

σ=k−τ

∆e(σ),

we continue (6.42) as

∆V ≤ eT(k)
(
M ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(k)− εeT(k)(M ⊗ P )e(k)

− eT(k)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k)

− eT(k − τ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k − τ)

+
k−1∑

σ=k−τ

∆eT(σ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA)

k−1∑
σ=k−τ

∆e(σ)

+ 2eT(k − τ)
(
IN ⊗ ATP

)
Ω(D ⊗ P )Ω (IN ⊗ PA) e(k − τ)

≤ λmax(M)eT(k)
(
IN ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(k)− εeT(k)(M ⊗ P )e(k)

− eT(k)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k)

− eT(k − τ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k − τ)

+
k−1∑

σ=k−τ

∆eT(σ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA)

k−1∑
σ=k−τ

∆e(σ)

+ 2dmaxλmax(P )eT(k − τ)
(
IN ⊗ ATP

)
Ω2 (IN ⊗ PA) e(k − τ). (6.43)

Under Assumption 9, we have

− eT(k)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k)

≤ − α
γ2λmin

(
BTPB

)
+ γ3

γ2λmax (BTPB) + γ3

eT(k)
(
IN ⊗ ATPB

(
γ2B

TPB + γ3Im
)−1

BTPA
)
e(k)
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= − αγ1

γ3

·
λmin

(
BTPB

)
+ γ1

λmax (BTPB) + γ1

eT(k)
(
IN ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(k).

Inserting (6.23) and (6.25) into the above inequality, we obtain

− eT(k)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) e(k)

≤ − λmax(M)eT(k)
(
IN ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(k). (6.44)

Similarly, under Assumption 9, we have

2dmaxλmax(P )Ω ≤ 2dmaxλmax(P )
γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

(
IN ⊗B

(
BTPB + γ1Im

)−1
BT
)

≤ 2dmaxλmax(P )λmax(M)

α(1− ε)2n

(
IN⊗B

(
BTPB + γ1Im

)−1
BT
)

≤ 2dmaxλmax(P )λmax(M)

α(1− ε)2n
· λmax(BBT)

γ1

INn

≤ 2dmaxλmax(P )

(1− ε)n
· λmax(BBT)

γ3

INn

≤ INn,

which implies that

2dmaxλmax(P )Ω2 ≤ Ω. (6.45)

Substituting (6.44) and (6.45) into (6.43) and collecting similar terms yields

∆V ≤− εeT(k)(M ⊗ P )e(k) +
k−1∑

σ=k−τ

∆eT(σ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA)

k−1∑
σ=k−τ

∆e(σ).

By Lemma 7, it follows that

∆V ≤− εeT(k)(M ⊗ P )e(k) + τ

k−1∑
σ=k−τ

∆eT(σ)
(
IN ⊗ ATP

)
Ω (IN ⊗ PA) ∆e(σ).

Again, in view of Assumption 9, we continue the above inequality as

∆V ≤− εeT(k)(M ⊗ P )e(k) + τ
γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

k−1∑
σ=k−τ

∆eT(σ)

×
(
IN ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
∆e(σ).

With (6.26), we can further simplify the above inequality as,

∆V ≤− εeT(k)(M ⊗ P )e(k)
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+ τ
γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1

k−1∑
σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ). (6.46)

In view of (6.5), we have

∆e(k) = (IN ⊗ (A− In))e(k) + (L⊗ In)G(x(k))u(k). (6.47)

Equation (6.47) along with Lemma 7 imply

k−1∑
σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

≤ 2
k−1∑

σ=k−τ

∆eT(σ)
(
IN ⊗ (A− In)TP (A− In)

)
∆e(σ)

+ 2
k−1∑

σ=k−τ

uT(σ)GT(x(σ))
(
L2 ⊗ P

)
G(x(σ))u(σ)

≤ 2φ
k−1∑

σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

+ 8d2
maxλmax(P )

k−1∑
σ=k−τ

eT(σ − τ)(IN ⊗ ATP )Ω2(IN ⊗ PA)e(σ − τ).

Recalling that 2dmaxλmax(P )Ω2 ≤ Ω, we get

k−1∑
σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

≤ 2φ
k−1∑

σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

+ 4dmax

k−1∑
σ=k−τ

eT(σ − τ)(IN ⊗ ATP )Ω(IN ⊗ PA)e(σ − τ).

Once again, under Assumption 9, substituting (6.26) to the above inequality, we have

k−1∑
σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

≤ 2φ
k−1∑

σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

+ 4dmax
γ1

γ3

λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

k−1∑
σ=k−τ

eT(σ − τ)
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×
(
IN ⊗ ATPB

(
BTPB + γ1Im

)−1
BTPA

)
e(σ − τ)

≤ 2φ
k−1∑

σ=k−τ

∆eT(σ) (IN ⊗ P ) ∆e(σ)

+ 4dmax
γ1

γ3

λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1

×
k−1∑

σ=k−τ

eT(σ − τ) (IN ⊗ P ) e(σ − τ). (6.48)

Inserting (6.48) into (6.46) gives

∆V ≤− εeT(k)(M ⊗ P )e(k)

+ τ
γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1

(
2φ

k−1∑
σ=k−τ

eT(σ) (IN ⊗ P ) e(σ) + 4dmax
γ1

γ3

×
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1

k−1∑
σ=k−τ

eT(σ − τ) (IN ⊗ P ) e(σ − τ)

)
. (6.49)

For any integer l ∈ [−2τ, 0] and a constant ρ > 1, if we have V (e(k + l)) < ρV (e(k)), or

equivalently eT(k + l)(M ⊗ P )e(k + l) < ρeT(k)(M ⊗ P )e(k), then,

eT(k + l)(IN ⊗ P )e(k + l) <
ρ

λmin(M)
eT(k)(M ⊗ P )e(k).

Inserting the above condition into (6.49), we have

∆V ≤−

(
ε− 2τ 2γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1
· ρ

λmin(M)

×

(
φ+ 2dmax

γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

1− (1− ε)n

(1− ε)n−1

))
eT(k)(M ⊗ P )e(k). (6.50)

Let ρ = 3/2, if the following condition

ε− 3τ 2γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)n−1

× 1

λmin(M)

(
φ+ 2dmax

γ1

γ3

·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

1− (1− ε)n

(1− ε)n−1

)
≥ ε

2
,

or equivalently,

1

τ 2
≥6λmax(M)

αλmin(M)
·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

ε(1− ε)2n−1
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×
(

2

(1− ε)n−1
− (n− 2)ε− 2 + 2(n− tr(A))

+ 2dmax
λmax(M)

α
·
λmax

(
BTPB

)
+ γ1

λmin (BTPB) + γ1

· 1− (1− ε)n

(1− ε)2n−1

)
, (6.51)

is satisfied, then it follows from (6.50) that

∆V ≤ −ε
2
V (e(k)),

which, by Razumikhin Stability Theorem, implies that for any e(0) ∈ RNn, limk→∞ e(k) =

0Nn×1, and global consensus is achieved.

We now examine condition (6.51). It is easy to verify that the right-hand side of (6.51)

and (1− (1− ε)n) /(1 − ε)2n−1 is always positive for any ε ∈ (0, 1). Therefore, (6.51) is

satisfied, if the following inequality holds,

1

τ 2
≥6λmax(M)

αλmin(M)
· 1− (1− ε)n

ε(1− ε)3n−1

(
2

(1− ε)n−1
− (n− 2)ε

− 2 + 2(n− tr(A)) +
2dmaxλmax(M)

α

1− (1− ε)n

(1− ε)3n−1

)
. (6.52)

Notice that the right-hand side of (6.52) is H(ε) which is defined in Lemma 21 and is proved

to be strictly increasing in (0, 1). In addition, limε→0+ H(ε) = 12λmax(M)
αλmin(M)

n(n − tr(A)), and

limε→1− H(ε) = +∞. Then, we conclude that for any τ < τ̄ , τ̄ =
√

αλmin(M)
12λmax(M)n(n−tr(A))

, we

can always solve for a ε̄ ∈ (0, 1) from τ−2 = H(ε̄), and for any τ ∈ [0, τ̄) and ε ∈ (0, ε̄], (6.51)

is always satisfied. This completes the proof.

When all eigenvalues of A are located at z = 1, n− tr(A) = 0 and hence τ̄ = +∞, which

means that the closed-loop multi-agent system tolerates arbitrarily large communication

delays. In addition, we note that τ̄ depends on the minimum and maximum eigenvalues of

the positive definite matrix M , one of whose eigenvalues is determined by the design. In order

to maximize τ̄ , we would like to minimize λmax(M) and maximize λmin(M). From Remark

2, we see that eigenvalues of M are also dependent on eigenvalues of L which come from the

given communication graph. At best, we can design M such that λmax(M) = 1/λmin +(L)

and λmin(M) = 1/λmax(L), where λmin +(L) denotes the minimum non-zero eigenvalue of L.
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6.4 Simulation results

In this section, the performance of the proposed control laws is demonstrated by numeri-

cal simulation. In our simulation, we consider multi-agent systems with five agents and a

communication topology shown in Fig. 6.1, which is a connected undirected graph.

Figure 6.1: The communication topology

6.4.1 Example 1: Consensus without communication delays

The dynamics of agent i, i = 1, 2, . . . , 5, are given as follows

xi(k + 1) = Axi(k) + g(xi(k))ui(k), (6.53)

where xi ∈ R2, ui ∈ R,

A =

 0.6 0.8

−0.8 0.6

 , g(xi) =

 0

1 + x2
i1 + x2

i2

 .
It can be easily verified that Assumptions 7 and 8 are satisfied with P = I2.

Shown in Figs. 6.2a and 6.2b are trajectories of the agents and the consensus errors.

To carry out simulation, the initial states of the agents are randomly chosen as x1(0) =

[0.1, 1.6]T, x2(0) = [3.1, 3.7]T, x3(0) = [0.4,−2.9]T, x4(0) = [−2.8,−1.9]T, and x5(0) =

[2.7,−2]T. As observed in Fig. 6.2a, where circles indicate the initial states and crosses

represent the states when simulation terminates, the sates of the agents are synchronized.

We can see more clearly in Fig. 6.2b that consensus errors converge to zero as the system

evolves.

92



−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

x
i1

x i2

(a) Trajectories of agents

0 5 10 15 20 25 30 35 40
−5

0

5

10

k

e i1
(k

)

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

k

e i2
(k

)

(b) Consensus errors

Figure 6.2: Example 1: Consensus without communication delays, τ = 0

6.4.2 Example 2: Consensus under actuator saturation

Consider the multi-agent system described by (6.53) and assume that the magnitude of the

control input of each agent is limited by 0.1. Following Remark 4, the appropriately modified

bounded control laws, with α = 0.1, would ensure consensus. In the simulation, we choose

the initial states of the agents as x1(0) = [0.1, 1.6]T, x2(0) = [3.1, 3.7]T, x3(0) = [0.4,−2.9]T,

x4(0) = [−2.8,−1.9]T, and x5(0) = [2.7,−2]T. The simulation results in Figs. 6.3a and 6.3b

show that the consensus errors converge to zero and the states of agents are synchronized.
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Figure 6.3: Example 2: Consensus under actuator saturation, τ = 0
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6.4.3 Example 3: Consensus with communication delays

We now consider a scenario with communication delays. The dynamics of agent i, i =

1, 2, . . . , 5, are given as follows

xi(k + 1) = Axi(k) + g(xi(k))ui(k), (6.54)

where xi ∈ R2, ui ∈ R2,

A =

 0.999 −0.0447

0.0447 0.999

 , g(xi) =

0.9 cosxi2 sinxi2

1.8 cosxi2 2 sinxi2

 .
It can be easily verified that Assumptions 9 and 10 are satisfied with

B =

0.7071 0.7071

1.414 1.414

 , α = 0.81.

In this case, we have τ̄ = 1.4489 and ε̄ = 1.437 × 10−4. In the simulation, we take τ = 1

and ε = 1.437 × 10−4. Other control parameters are selected as γ1 = 7.1412, γ2 = 0.4201

and γ3 = 3, which satisfy (6.23). Again, the initial states of the agents are chosen as

x1(0) = [0.1, 1.6]T, x2(0) = [3.1, 3.7]T, x3(0) = [0.4,−2.9]T, x4(0) = [−2.8,−1.9]T, and

x5(0) = [2.7,−2]T. In Figs. 6.4a and 6.4b, we observe that all agents reach state consensus

and consensus errors converge to zero asymptotically.
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Figure 6.4: Example 3: Consensus with communication delays, τ = 1
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6.5 Summary

This chapter studied the consensus control problem in the discrete-time setting, and each

agent is a nonlinear system affine in control. We proposed discrete-time distributed control

laws based on neighborhood consensus errors for systems with and without communication

delays. Consensus under the proposed control laws was proved and was observed in simula-

tion as well. It was demonstrated that the closed-loop multi-agent system tolerate arbitrarily

large communication delays when all eigenvalues of matrix A are located at z = 1. For the

case where not all eigenvalues of matrix A are located at z = 1, a theoretical upper bound

on the tolerable delays was derived.
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Chapter 7

Conclusions

This dissertation studied the coordinated control problems, including flocking control and

consensus control, of nonlinear multi-agent systems in the presence of communication delays.

Low gain design method was demonstrated to be effective in counteracting the effect of

communication delays without increasing the complexity of controller structures.

We proposed artificial function based low gain control laws for the flocking of nonholo-

nomic vehicles in both continuous-time and discrete-time settings. It was proved that in

both cases, the closed-loop multi-agent system can tolerate arbitrarily large communication

delays when the low gain parameter is small enough. In addition, collision avoidance was

proved if the communication graph is complete.

In this dissertation, we also proposed consensus error based low gain control laws for

the consensus of nonlinear affine agents in both continuous-time and discrete-time settings.

For the consensus control problems, in most cases, the closed-loop multi-agent system can-

not tolerate arbitrarily large communication delays and a theoretical upper bound on the

tolerable communication delays was derived.

For each of the coordinated control problems concerned in this dissertation, simulation

results were presented to illustrate the performance of the proposed coordinated control laws.

In this dissertation, the communication graph was assumed to be undirected, connected

and fixed, and the communication delays are assumed to be constant. More general com-

munication graphs and time-varying communication delays remain to be considered.
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