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ABSTRACT

Over the past years, the fast-growing trend of Internet of Things (IoT) is bringing millions of
new smart devices and sensors into homes, office buildings and industries. These smart devices
and sensors enable smart IoT applications (e.g., energy prediction, activity recognition, etc.) to
increase the quality and efficiency of our lives. To achieve promising performance for smart IoT
applications, it requires massive data from different users and sensors to guarantee the performance
due to machine learning and deep learning purposes. However, the edge devices of IoT applications
often collect and store only limited data, which is insufficient for training modern learning mod-
els. Collaboratively training sets steps to achieve better application performance among different
devices, while introducing the concern of data privacy. On the other hand, directly applying privacy-
preserving techniques such as differential privacy can dramatically degrade the performance of IoT
applications.

In this dissertation, we aim to achieve privacy-first smart IoT applications while ensuring their
accurate performance for multi-user and multi-sensor scenarios. First, we propose Personalized
Federated Deep Reinforcement Learning (PFDRL), a system that helps local users to achieve private
and accurate energy management. PFDRL replaces the central server with decentralized federated
learning (DFL) framework and enables a personalized federated reinforcement learning to tackle the
standby energy reduction in residential building. Next, we present Atlas, a private and accurate
personalized federated local differential privacy (LDP) framework for IoT applications. We first
design a layer-sharing mechanism called layer importance mask to separate the local model into
global and personalized layers. Second, we design a weighted LDP mechanism and add noise to
the global layers before transmitting them to the federated learning framework for aggregation.
Third, we combine local personalized layers and aggregated global layers to perform IoT tasks.
Finally, we introduce PrivateHub, a system that utilizes contrastive learning with diffusion
models for synthetic data generation in multi-sensor scenarios. PrivateHub helps to prevent the
private applications’ identification from multi-sensor environments while ensuring the accurate
performance of the non-private applications.
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Chapter 1

INTRODUCTION

The trend of Internet of Things (IoT) is bringing in millions of new smart devices such as smart-
phones, sensors and wearables in our physical environment to increase the quality of human life. The
continuously growing number of smart devices and users provide massive amount of IoT sensing
data along with the recent advancements in deep learning techniques have shown great potential for
smart Internet of Things (IoT) applications. To achieve these exciting IoT applications, the users
often need to (1) aggregate data from more users to build a robust model, or (2) utilize different types
of sensors. However, a growing concern with these data aggregation is data privacy. For aggregating
data from different users: Since the edge devices of IoT applications often collect and store only
limited data, which is insufficient for training modern deep learning models. Collaborative training
methods such as cloud computing and federated learning set steps to build robust models for IoT
applications by aggregating data from more users. However, these methods bring the concern of
data privacy (e.g., untrusted central server, model inversion). According to the McAfee survey [1],
52% of users have experienced stolen data while using cloud service. As a result, the number of
people willing to share their personal data fell from 41% to 31% from 2018 to 2019 [2]. On the
other hand, directly applying privacy-preserving techniques such as differential privacy and local
differential privacy can dramatically degrade the accurate performance of IoT applications. For
utilizing different types of sensors: Multiple types of sensor fusion such as lights, doors, speakers,
appliances, CO2, etc. are installed and controlled by the IoT systems in our homes and work spaces,
all of which enhance our quality of life [3]. However, such a sensor fusion scenario can reflect
private activities. In our previous work [4], we discovered that by combining IoT devices with CO2
sensors and humidity sensor, we can successfully identify whether the room is occupied or not. The
concern in this multi-sensor setting is that, we aim to achieve accurate performance for the original
purpose of these sensors and prevent to detect these latent and private activities. Such a trade-off
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between data privacy and IoT application accuracy has been a bottleneck for the development of
modern IoT applications.

To address these aforementioned concerns, in this dissertation, we explore three possible direc-
tions to achieve privacy-first IoT applications while ensuring a comparable accuracy performance
to non-privacy-preserving methods. Our first approach targets the group of local users who shares
similar user patterns and wish to train their data in a controlled and secured environment without
malicious or honest but curious cloud service. Our second approach applies to global users with
massive kinds of IoT applications that use malicious or honest but curious cloud service is a must,
but we still need to protect the data privacy while achieving accurate performance. Our third ap-
proach aims to conditionally generate data streams in private multi-sensor scenarios, effectively
distinguishing non-private applications while preserving the confidentiality of private ones.

1.1 Thesis Statement

Collaborative training with IoT sensor data from different users and sensors enables accurate models,
but introduces data privacy concerns. Applying privacy-preserving techniques such as differential
privacy can ensure data privacy, however, can also dramatically degrade the accuracy of IoT ap-
plications. By replacing a central server with a decentralized federated learning (DFL) framework
with personalized reinforcement learning, augmenting the federated learning framework with a
weight-enhanced local differential privacy (LDP) approach with a dynamic layer sharing mechanism,
and using a contrastive learning based diffusion model for conditional synthetic data generation,
we can achieve privacy-first smart IoT applications while ensuring their accurate performance for
multi-user and multi-sensor scenarios.

1.2 Contributions of this Dissertation

In this thesis, we attempt to address the trade off between IoT data utility and privacy in multi-
users: residential users and global users and multi-sensors scenarios and produce the following
contributions:

• We propose PFDRL, we propose a framework for residential-users where residents can share
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their energy management plans while achieving a privacy-preserved and cloud-service-free
residential energy management system (EMS) with a personalized federated deep reinforcement
learning (PFDRL) framework. Instead of sharing just load forecasting results to identify standby
energy, our framework can also allow residents to share their energy management plans to
collaboratively train the reinforcement learning agent. Our design is based on the uniqueness
of energy consumption in the residential area. (1) The energy consumption for each household
in the residential area tends to share a similar energy usage pattern since they are in the same
time zone and under the same weather conditions [5], [6], which reduces the training noise from
outside households. (2) Residential area is a neighborhood with a limited number of households,
which is a more controllable and reliable environment compared to global participants. This
innate condition can provide collaborative training while omitting the need for cloud service
by broadcasting the training gradient to other households. (3) Energy management task is not
time-sensitive since the energy management plan can be updated once per several days so that the
communication efficiency does not become a hindrance to our design.

• We propose Atlas, a private and accurate personalized federated local differential privacy
(LDP) framework for IoT applications. We first design a layer-sharing mechanism called layer
importance mask to separate the local model into global and personalized layers. Second, we
design a weighted LDP mechanism and add noise to the global layers before transmitting them to
the federated learning framework for aggregation. Third, we combine local personalized layers
and aggregated global layers to perform IoT tasks.

• We propose PrivateHub, a novel synthetic datastreams generation method that utilizes con-
trastive learning in the diffusion model to conditional generating datastreams within the realm of
private multi-sensor scenarios, ensuring accurate identification of non-private applications while
simultaneously maintaining the concealment of private applications. PrivateHub is driven
by the objective of harnessing the potent generative capacity of diffusion models to discern the
aforementioned data types. Specifically, we propose a comprehensive framework for enhancing
the performance of diffusion models in generating task-specific data, comprising two key stages:
App-Conditioned Pre-training (ACP) and APP-Aware Fine-tuning (AAF). Initially, ACP involves
pre-training a diffusion model using standard procedures on multi-sensor datastreams, enabling
the model to generate app-conditioned data. Subsequently, AAF facilitates the diffusion model
in further discriminating between privacy-sensitive and non-privacy-sensitive data through con-
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trastive learning optimization. In this stage, an off-the-shelf application classifier is employed to
extract features from various generated data, encouraging the model to produce data exhibiting
feature distances closer to those of privacy non-sensitive ones.
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Chapter 2

PFDRL: PERSONALIZED FEDERATED DEEP REINFORCE-

MENT LEARNING FOR RESIDENTIAL ENERGY MANAGE-

MENT

Over the past few years, an increasing number of IoT devices have been installed in residential
and commercial buildings to satisfy the increased demand for users’ comfort, well-being, and
quality of life. However, this increase in buildings’ convenience, functionality, and connectivity
require producing more energy which raises monetary costs and harmful gas emissions that directly
cause environmental problems (e.g., climate change, water pollution, air pollution, and thermal
pollution). In 2019, residential and commercial buildings were responsible for 40% of U.S. carbon
emissions [7].

Standby energy is one of the reasons that cause the increasing energy consumption. By 2019,
standby energy represents approximately 10% of residential electricity use in most developed
countries and a rising fraction in developing countries [10]. Figure 2.1 shows an example of the
particular energy consumption of 5 devices in 24 hours, which illustrates that standby energy
consumption can be relatively large for certain smart devices if the devices are in standby mode for
a period of time. Previous work [9], [11] has investigated the major causes of increased standby
energy consumption of smart devices, and for the most part, energy is just wasted by devices waiting
for commands. Despite the user comfort and efficiency that IoT devices provide to residences, the
growing number of new IoT devices is having a negative effect on standby energy consumption. The
sustained growth of smart home devices is expected to continue with a compound annual growth
rate of 16.9% over the 2019-2023 forecast period [12], which brings a significant standby energy
consumption problem.

Reducing the standby energy in buildings, especially in residential buildings has become an
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Figure 2.1: Results on daily energy consumption of 5 devices in a day. We calculate the standby
energy usage and active usage following the setup: Amazon TV Stick, Sony Smart TV, Smart
Bulb, and Bose sound system are active for 8 hours and standby for 16 hours, Xbox is active
for 3 hours and standby for 21 hours [8], [9].

important task for each residence. To achieve standby energy reduction in residential buildings, it
is essential to accurately distinguish device standby energy usage from regular usage [13]. As a
single user may not have enough data to train such a model, residents can collaboratively train their
collected energy data to achieve better performance in device standby energy identification [14].
Traditional approaches require collecting device-level energy data for load forecasting using machine
learning and deep learning methods to identify standby energy, then making energy management
plans based on the prediction result [15], [16]. This prediction usually happens in the cloud. Although
cloud platforms can bring high computational power and aggregate data from different users, they
introduce the critical risk of potential personal data leakage [1], such as the central server becoming
a malicious party. Federated learning (FL) is an emerging tool to address privacy issues, which
allows IoT devices to collaboratively train a model. Existing approaches [17], [18] present a similar
framework for load forecasting and energy management. However, such a framework still faces three
problems: (1) Even though the data is stored locally, the FL framework still needs cloud support to
aggregate a global model. Such a model contains all the training information from different local
IoT devices, which is still vulnerable to training data recreation attacks by model inversion and
still faces the potential risk of data leakage. The monetary cost of cloud service can also weaken
the motivation of users to participate in the energy management system. (2) Localized energy
management systems (EMS) require a long time to converge. Since only the load forecasting part is
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done through FL, local EMS still lacks training examples, so achieving the best energy management
performance is difficult. (3) Existing FL paradigms learn a single global model for every user, which
can only improve the average accuracy, not the accuracy for each individual user. The diversity
of users’ data can lead to model convergence delay and cause low EMS performance for certain
residents.

In this paper, we propose a framework where residents can share their energy management plans
while achieving a privacy-preserved and cloud-service-free residential energy management system
(EMS) with a personalized federated deep reinforcement learning (PFDRL) framework. Instead
of sharing just load forecasting results to identify standby energy, our framework can also allow
residents to share their energy management plans to collaboratively train the reinforcement learning
agent. Our design is based on the uniqueness of energy consumption in the residential area. (1) The
energy consumption for each household in the residential area tends to share a similar energy usage
pattern since they are in the same time zone and under the same weather conditions [5], [6], which
reduces the training noise from outside households. (2) Residential area is a neighborhood with a
limited number of households, which is a more controllable and reliable environment compared to
global participants. This innate condition can provide collaborative training while omitting the need
for cloud service by broadcasting the training gradient to other households. (3) Energy management
task is not time-sensitive since the energy management plan can be updated once per several days
so that the communication efficiency does not become a hindrance to our design.

First, we introduce a decentralized federated learning (DFL) framework to enable distributed
edge devices in the residential area to collaboratively train a model without a cloud server. The
training parameters from each local model are broadcasted and aggregated between the smart home
agents owned by each residence at a certain frequency, which removes the need of using a central
cloud server and reduces the possibility of data leakage (e.g., malicious cloud server) and monetary
cost from cloud service.

Second, to further improve the time to achieve the best EMS performance, we applied deep
reinforcement learning (DRL) with DFL to share the EMS plan to reduce standby energy. We also
use the load forecasting result as an input feature in the DRL framework to help with decisive action.

Third, we introduce personalized federated DRL (PFDRL) to maximize the EMS performance
for each client in the sharing system as well as speed up the model converging time. We divide the
network inside the DRL into base layers and personalized layers. Our training algorithm comprises
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the base layers being trained in a federated fashion and personalization layers being trained only from
local data with stochastic parameter descent. We evaluate the proposed PFDRL on the real-world
Pecan Street dataset [19] and compare our results with four different types of EMS. Experimental
results show that the proposed framework can achieve 92% load forecasting accuracy and save
98% of total standby energy consumption in a day for each residence in a residential area which
outperforms all other methods.

2.1 Related Work

2.1.1 Load Forecasting & Energy Management

Various works in load forecasting majorly focus on two different aspects: aggregated household-level
forecasting or device-level forecasting. Due to the fact that device-level forecasting suffers from
high volatility and uncertainty of device usage that is not significant on aggregated loads, their major
approaches are different. Kong et al. [20] introduced a centralized density-based clustering technique
to evaluate and compare the inconsistency between the aggregated load and individual loads, then
they adopted Long Short-Term Memory (LSTM) and designed a load forecasting framework for
individual residential households. However, they require all data to be transmitted to a central hub,
which can cause privacy concerns regarding sensitive user data. Din et al. [21] introduced a single
device level load forecasting based on the Deep Neural Network approach, which they do not require
the collection of lengthy historical data. However, their approach failed to conduct any load control
and data privacy, which is a key contributor to our research.

2.1.2 Energy Data Privacy & Federated Learning

Only a few works in home energy management systems have considered data privacy [22]–[24].
Most of their work aims to deal with the tradeoffs between energy data privacy and energy costs. For
example, Yang et al. [23], developed an online control algorithm using the Lyapunov optimization
technique to balance the problem between cutting down electricity bills and keeping the privacy of
load requirements and electricity bill processes. A recent trend in maintaining user privacy is using
federated learning approaches, where each agent processes its own collected data locally, and only
transmits the calculated parameter to a central node. This reduces the amount of data transmission
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and preserves user privacy. There have been several papers using federated learning. Wang et al. [25]
train the machine learning model by distributing data across multiple edge nodes instead of sending
them to a central node. Their proposed approach adaptively finds the best trade-off between local
parameter update and global parameter aggregation under a given resource budget. Lee et al. [26]
propose a novel federated reinforcement learning (FRL) approach for the energy management of
multiple smart homes with home appliances, a solar photovoltaic system, and an energy storage
system. However, the current FL focus on building a global model instead of a personalized model
to maximize the energy management performance for each client. On the other hand, FL still utilizes
cloud service to aggregate the model, which can be malicious and vulnerable and lead to personal
data leakage from model inversion.

2.1.3 Energy Management Personalization

To better serve a large number of users with custom settings, personalized federated learning is
proposed. In the FL approaches proposed in [27]–[29], the lower layers between all users are shared
to the cloud server while keeping several user-specific upper layers on the edge. In this design, the
more general features are saved on the lower layers while the upper layers capture a higher level of
abstraction, which contains more user-specific features. However, these personalized methods rely
on a pre-defined structure of model sharing, thus limiting the optimization of performance for each
user. In this paper, we added a parameter α that determines the number of layers to be transmitted,
thus can optimizes the performance for every single user. Other personalization energy management
systems for residential buildings focus on personalized scheduling and demand response, with many
using Bayesian networks for decision making [30], [31]. However, these methods rely on the full
support of the cloud service, which might be malicious and bring data privacy issues.

2.2 System Design

2.2.1 System Overview

We present a personalized federated deep reinforcement learning (PFDRL) framework, which
contains two parts: a decentralized federated learning (DFL) framework and a personalized deep
federated reinforcement (PRL) framework. Figure 2.2 shows the structure of the proposed system.
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Figure 2.2: Overview of the PFDRL Framework: 1⃝ Local energy data collection and training
for standby energy identification; 2⃝ Parameters broadcasting at certain time frequency β
between each residence; 3⃝ Local testing with updated model; 4⃝ Feed load forecasting result
together with real-time energy value as deep reinforcement learning environment; 5⃝ State
observation; 6⃝ Reward calculation; 7⃝ Action selection to determine device mode; 8⃝ Divide
neural networks inside the deep reinforcement learning models as base and personalization
layers using optimization parameter α. Broadcast base layers at a certain time frequency
γ and keep the personalization layers locally. Each residence will use the updated PFDRL
framework to perform energy management locally.
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Our proposed DFL framework removes the requirement for cloud services. First, each agent
collects the device load data from every IoT device deployed in its local residence and trains a
load forecasting model with the same machine learning method. Second, the agents broadcast
the parameters of each device at a certain time frequency β, so that each agent has the parameter
information from the same kind of device in other residences. Third, the load forecasting result is
calculated based on the updated model. After each agent updates its local model by aggregating
the qualified parameter for each device, the agent predicts the future power draw for each device
to identify standby energy. In the meantime, the devices are still recording load data for the next
training phase, and this process happens at the same interval, by default hourly. Fourth, the output
of DFL, which is the load forecasting result, will be used as the input for the PFL framework along
with the real-time load data. The proposed PRL framework will optimize the percentage of the base
layer and personalized layer to achieve the best performance for each client in the system by the
performance optimization parameter α. Then the base layer will be broadcast to other agents in the
system. The PFL framework is deployed on each agent in each resident. The load forecasting result
can reflect the predicted mode for each device; the real-time load data can reflect the current mode
for each device. Such information will be fed to the DRL agent to take the standby energy-reducing
actions, such as switching the IoT device mode from standby to off.

2.2.2 Decentralized Federated Learning for Load Forecasting

Traditional distributed machine learning techniques require a certain amount of private data to be
aggregated and analyzed at central servers (e.g., cloud servers) during the model training phase
using distributed stochastic parameter descent (DSGD). Such a training process suffers from
potential private data leakage risks. To address such privacy challenges, a collaboratively distributed
machine learning paradigm, called federated learning (FL), was proposed for edge devices to train
a global model while keeping the training datasets local and without sharing raw training data.
However, traditional FL requires a cloud aggregator to obtain the global model by aggregating sparse
parameters and sending this global model to the local agent. Such a method will create a global
model in the cloud which suffers from not only potential private data leakage risks but expensive
communication costs caused by the cloud.

In this paper, we focus on solving the above issue in a residential building. We remove the
need for a central server by allowing the residents to process all collected data locally on edge
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and broadcasting the model updates between the smart home agent in each residence inside the
residential building. Such setup has the following benefits: (1) Remove the need for cloud service,
which will save extra monetary cost from cloud usage, and avoid the possibility of a malicious
central server. (2) The model information will only be broadcasted inside the residential building,
which we believe is much easier to operate and privacy-preserved for residences.

Locally Training Process: In our system, we consider a residential home that includes N

residents. Each residence n has an agent such as Google Home or Amazon Alexa, which has the
connection between the IoT devices in certain residence n, where n ∈ {1, 2, ..., N}. We denote An

as the agent in the system, which represents its residence n. For each agent An, we have the same
default training model initially, such as Long Short Term Memory (LSTM). We denote DXn as
different IoT devices, in different residents, and X refers to the type of certain IoT device. Since
each IoT device, DXn has its own local dataset (i.e., sensing time-series data from IoT nodes), we
train the model separately for each device on the connected agent. For example, the TV in residence
one, we define as DTV 1, TV in residence two, we define as DTV 2, the lighting in residence one,
we define as Dlight1, etc. We train the model for each device in each residence on the connected
agent locally and separately. Thus every device has a certain parameter. For example, a parameter
GTV 1 is calculated for the TV in residence one in a certain time period. In each resident’s home, an
agent will record the parameter for all the resident’s devices. As an instance, for residence one, the
agent A1 has the parameter information GTV 1, Glight1, GHV AC1 and all the other devices that are
connected to A1.

Given a local dataset recorded by an IoT device DXn, our goal is to predict the future energy
consumption for this certain device for the following hour. An LSTM model is used in the training
set to learn the usage pattern of the device, and the testing set is used to predict the estimated energy
consumption after the parameter aggregation. For each device DXn, we first predict the energy
consumption VXn in every minute for the next hour. Then, we calculate and record the parameter
for each device DXn locally, respectively, for broadcasting. To avoid high frequency broadcasting,
we set β hours as the parameters broadcast rate to reduce the frequency of broadcasting parameters.
In our experiment, we will determine the hyperparameter β that has the best result.

Parameter Aggregation: After each agent An determine the selected parameters from other
agents for each device DXn, each agent will update the model with such parameters GXn. To do so,
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we use DSGD for iterative updates, and the loss function to be optimized is defined as follows:

F (w) =
1

DXn

∑
n∈DXn

f(n,w) (2.1)

where F (w) is the loss function for the updated model, f(n,w) is the loss function for the previous
model, and w is the model’s weight.

In the parameter aggregate phase, the agents obtain an updated model wt+1 for the next iteration
as follows:

wt+1 = wt − η
1

Nb

N∑
n=1

∑
x∈Bn,k

▽f(x,wt) (2.2)

where η is the learning rate, Bn, k is the data sample for the kth round of training, and each local
dataset size of b. All the collaborated agents repeat the above process until the model reaches
convergence. Then we use the updated model to predict the energy consumption for a certain device
for the next hour.

Algorithm 1 shows the training process of DFL load forecasting. Each home agent initialized its
load forecasting model with the same structure for each device. The parameter for each model is set
as random. For each device DXn, first, it locally trains its own model and finds the convergence
Wn,t. After all models are converged, the smart home agent will broadcast the fine-turned model
parameters to all other smart agents from other residences. The broadcast frequency β will be
determined from our experiment. Upon receiving all Ws, each agent aggregate the model parameters
locally and update its own model. The load forecasting result for standby energy identification is
also predicted using the updated model locally.

2.2.3 Personalized Federated DRL For Energy Management

After the load forecasting is made from the DFL framework, each DRL agent An needs to decide
whether the mode of a certain device DXn should be changed or not. In the DRL framework, the
action is made every minute based on the result from the DFL framework. So, the DRL agent
performance is highly influenced by the DFL load forecasting accuracy. In our system, we first
formulate this problem as a Markov Decision Process (MDP), and use a reinforcement learning (RL)
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Algorithm 1: DFL load forecasting Algorithm
1 Initialize load forecasting model for each device DXn;
2 Initialize model weight Wn,0 at random;
3 for n =0 to N do
4 for t =0 to T do
5 Wn,t← SGD(Wn,t−1, η); (LocalTrainingStep)
6 Check if each device DXn finished local training;
7 Broadcast Wn,t to other residences;
8 Receive Ws from all other residences;
9 Wn,t+1←

∑N
n=1

Wn,t

N

10 end
11 Update local model with Wn,t+1;
12 Localized load forecasting
13 end

method based on Deep Q-Network (DQN) as our base energy management system. Then, we divide
the neural network inside the DRL as base layers and personalization layers. We broadcast the
base layers to other residences and keep the personalization layers locally. The combined model
with global aggregated base layers and localized personalization layers can achieve a collaborative
training process as well as better energy management results for each residence.

2.2.3 DRL for energy management:

Reinforcement learning is a method where at each time step t, an agent observes a state st in an
environment, takes an action at based on the observation, and receives a positive or negative reward
rt for the action taken. The objective of the DRL agent is to find an action policy π that would
maximize the expected cumulative reward [

∑∞
t=0 rt].

We first formulate this problem as a Markov Decision Process (MDP), denoted by M =

(S,A,P ,R), where S is the state, A is the action, P is the probability between each two states and
R is the reward. Below, we introduce the elements in the MDP for our problem.

State Space: The state space S is defined as the input of the DRL model. For each device
DXn, it has three operation modes: off, standby, and on. Each mode can be reflected by energy
consumption. In our system, the state space consists of two separate parts: The first part is the
predicted energy consumption, which reflects the predicted device mode. The second part is the



29

real-time energy consumption, which reflects the real device mode.

We denote the predicted energy consumption by:

V = {V1, V2, ...Vt, ...VT} (2.3)

where Vt means the tth predicted energy consumption and T is the total number of predicted energy
consumption. Since in the DFL prediction phase, each prediction is made for the next hour, the total
number T is set as 60 minutes. The real-time energy consumption is recorded at the same timestamp
as the predicted value:

RV = {RV1, RV2, ...RVt, ...RVT} (2.4)

where the value of t for RVT is the same as Vt.

For each device DXn, it has a default value for each operation mode where Voff means the
device is off, Vs means the device is in standby mode, Von means the device is in on mode. For
each RVT and Vt, if the value is 0, we define the predicted and real mode of a certain device as
off mode. If the value is between 0.9 ∗ Vs and 1.1 ∗ Vs, we define the predicted and real mode of a
certain device as in standby mode. If the value is between 0.9 ∗ Von and 1.1 ∗ Von, we define the
predicted and real mode of a certain device as on mode [32]. We denote S as predicted mode for
certain device, where S∈ {Soff , Ss, Son} as off, standby and on mode. We denote RS as the real
mode for certain device, where RS∈ {RSoff , RSs, RSon} as off, standby and on mode.

Action Space: The action space A is defined as the agent An can make decisions on whether
the mode of a certain device DXn should be changed or not at time t. After receiving the predicted
and real mode of certain devices, the action at is expressed in the following:

at =


0, Off mode

1, Standby mode

2, On mode

(2.5)

Probability: The state space is changed with certainty, so the probability between states is
always 1.

Reward: Based on action space A, the DRL agent receives a reward r(t) for each action taken
at time t. In the system, the agent can receive positive rewards in one scenario: the predicted mode
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Table 2.1: Reward Function

Ground truth mode DRL action Reward Value
On On 10
On Standby -10
On Off -30

Standby On -10
Standby Standby 10
Standby Off 30

Off On -30
Off Standby -10
Off Off 10

and the real mode for a certain device are the same at the time. In this case, the reward is set as
10. On the other hand, the agent can receive negative rewards in two scenarios: first, the predicted
mode and the real mode for a certain device are different at time t, and the predicted mode should
be moved up or down for one mode. In this case, the reward is set as -10. Second, the predicted
mode and the real mode for a certain device are different at time t, and the predicted mode should
be moved up or down for two modes. In this case, the reward is set as -30. An exception for the
reward is that we wish once the real mode is standby, we want to change it to off mode, so we mark
the reward as 30 in this scenario. Based on the aforementioned statement, we define reward rt at
time t for action at as shown in table 2.1.

Q-value calculation: The agent takes the action at that satisfies maxQ(st, at) and receives
a reward r(st, at). The goal is to find a policy π that will approximate the optimal Q-function
Q∗(st, at) which always satisfies Bellman’s optimality equation. That is,

Q∗(st, at) = r(st, at) + κ ·max
at+1

Q∗(st+1, at+1) (2.6)

where, Q∗(st+1, at+1) is the next-step’s optimal Q value.

As there will also be new load data coming from each device, we keep training our DRL agent to
achieve the best performance over time. After the first time DRL agent training process, each DRL
agent has its own DRL model ready for broadcast. We apply a performance optimization parameter
α to determine which part of the model will be broadcasted and updated to achieve the best energy
management performance in the following section.
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2.2.3 Federated Personalization for Reinforcement Learning:

We divide the neural network in DRL into two parts: base layers and personalization layers. Base
layers act as the shared layers which are trained in a collaborative manner. Equation 2.7 shows the
model aggregation step for base layers:

W (DRLB)n,t+1 = W (DRLB)n,t − δ
N∑

n=1

∑
x∈Bn,k

▽f(x,W (DRLB)n,t)

N
(2.7)

where W (DRLB)n,t denotes the base layers model weight for the nth residence at time t. δ is
the learning rate, Bn, k is the data sample for the kth round of training, and each local dataset size
of b. By uploading and aggregating only part of the models, PFDRL requires less computation and
communication overhead, which is essential in IoT environments. On the other hand, in PFDRL,
the participants share the parameters of their DRL model, which can achieve better performance
in a shorter time because of the collaborative training.

While the personalization layers are trained locally, thereby enabling to capture of personal
information of IoT devices. Equation 2.8 shows the model aggregation step for PFDRL:

W (PFDRL)n,t+1 = W (DRLP )n,t +W (DRLB)n,t+1 (2.8)

where W (DRLP )n,t is the weight of personalization layers, and W (PFDRL)n,t+1 is the up-
dated model weight for PFDRL. In this way, the globally-shared base layers can be broadcasted
to participating IoT devices for constituting their own EMS plan with their unique personalization
layers. Thus, our proposed PFDRL is able to capture the fine-grained information on a particular
device for superior personalized inference or classification and address the statistical heterogeneity
to some extent. We define an 8 hidden layers architecture of neural networks inside the DRL agent
and determine a performance optimization parameter α to decide the proportion of base layers and
personalization layers. To avoid high-frequency broadcasting of base layers, we set γ hours as the
parameters broadcast rate to reduce the frequency of broadcasting parameters. In our experiment,
we determine the hyperparameter γ that has the best result.

Algorithm 2 shows the training process of personalized deep federated reinforcement (PFDRL).
DRL agents will take actions based on DRL state space, which is the load forecasting value and
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real-time energy value. The reward will be calculated based on the action. The system calculates the
Q-value and finds the maximum value based on the selection of action space. We adopt the Huber
Loss function [33] which acts quadratic for small errors and linear for large errors. This prevents the
network from having a dramatic change while processing outliers. After the local training step is
done, we select α base layers of the model broadcasted to other residences, each residence combines
the updated model with the aggregate base layers and localized personalization layers to perform
energy management plans.

Evaluation: In this section, we evaluate our proposed framework with different hyperparameter
settings. We also evaluate our proposed framework comparing with different sets of compared
methods in load forecasting performance and energy management performance.

2.2.4 Datasets and Experiment Settings

Energy Consumption: The proposed framework is applied to a real-world dataset for performance
demonstration: the Pecan Street dataset [19]. The Pecan Street dataset contains the energy consump-
tion for every minute of different home appliances such as bedrooms lights, dryers, HVAC, etc in
669 residents in Texas from 2013-01-01 to 2017-12-31. Since the recorded data has some missing
data points, also the devices in each residence are not exactly the same, we select 200 residents
that have the HVAC, electric furnace, dishwasher, dryer, refrigerator and oven load records as our
experiment dataset since they are considered to cost the most of standby energy in a household [34].

Electricity Price: Since the electricity price can be divided into fixed-rate electricity plans and
variable rate electricity plans. We obtain the electricity price from the websites of Texas Electricity
Rates [35] and the websites of Energy Information Administration [36]. For fixed-rate electricity
prices in TX, the average rate is 11.67 cents per kilowatt-hour (kWh). For variable rate electricity
prices in TX, the range is between 0.08 cents to 20 cents per kWh depending on the time. We
compare both in our experiments to see the price difference.

Experiment Settings: The experiments are deployed in our local server with a GTX 2070
super GPU. For both energy load forecasting and management, we first use 80% of the energy
consumption dataset as the training set and use them to calculate the parameter and aggregated the
parameters from other agents to get the updated model. Second, we use the rest 20% of the dataset
for testing. For the hyperparameters in PFDRL, we set the learning rate as 0.001, discounted rate as
0.9, the memory capacity as 2000, and the target replace iteration as 100. Each hidden layer has 100
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Algorithm 2: PFDRL Algorithm
1 Initialize DRL environment with load forecasting result V and real-time energy valueRV

for each device DXn;
2 for n =0 to N do
3 for t =0 to T do
4 at = random(0,2);
5 or, at =a Q(st, a);
6 TakeAction(at);
7 A.append(aj), ;
8 S.append(sj);
9 at = A[t];

10 st = S[t];
11 Compute rt from st, at;
12 st+1 = S[t+ 1];
13 for each iteration do
14 Calculate Q value, yi = r(si, ai) + κ ·max

a′
Q(i+1, a

′);

15 Calculate error, τi = yi −Q(si, ai);
16 Calculate loss, L = 1

B

∑
et∈B L(τ);

17 Update network parameters; (LocalTrainingStep)
18 end
19 for α ∈ (1, 8) do
20 Broadcast α layers in DRL to other residences;
21 Keep (8− α) layers locally;
22 Receive α layers from all other residences;
23 Do Equation 2.7
24 end

25 end
26 Do Equation 2.8;
27 α = α + 1

28 end
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Figure 2.3: Comparison methods.

neurons followed by a ReLU function. The output layer has 3 neurons providing Q-values of the
state of the three modes.

2.2.5 Compared Methods

For load forecasting, we compare four prediction algorithms: Linear regression (LR) [37], Support
vector machine (SVM) [38], Back-propagation network (BP) [39], and Long short-term memory
(LSTM) [40] with the same experiment settings and choose the method with the best performance
applied to the PFDRL model.

To evaluate PFDRL, we choose the following four methods as comparisons.

• Local based load forecasting + local based EMS [41] (Local).

• Cloud based load forecasting + local based EMS [42] (Cloud).

• Federated learning based load forecasting + local based EMS [18] (FL).

• Federated learning based load forecasting + federated learning based EMS [18] (FRL).

We train the models with the same dataset under their settings. Figure 2.3 shows the details of each
compared method.
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2.2.6 Performance Metrics

1. Hyperparameters selection. We measure the hyperparameterα, β, and γ to determine the threshold
for broadcast frequency and the number of broadcasted layers in our system.

2. Prediction accuracy. To measure the prediction accuracy of energy consumption, we measure
the prediction accuracy as below: Acn = 1− |Vn−RVn|

RVn
where Acn is the prediction accuracy of nth

prediction, Vn is the predicted value of nth prediction and RVn is the real value of nth prediction.

3. Saved energy value. To measure the saved energy value, we use RVn − Vn to calculate the
value.

4. Saved monetary cost. We calculate the total monetary cost based on real price dataset [35], [36]
for fixed rate electricity plans and variable rate electricity plans under CDXn,t = (RVn,t − Vn,t) · pt
where CDXn,t is the monetary cost for device DXn at time t. pt is the energy price at time t.

5. Time overhead. We use training time latency and testing time latency to show the time
overhead of the load forecasting methods and the energy management methods.

2.3 Experimental Results

Hyperparameters Selection of PFDRL: Figure 2.4(a) shows the saved standby energy of the
PFDRL framework with different shared layers α. We use α ∈ {1, 2, 3, 4, 5, 6, 7, 8} to determine
the best α of the proposed framework. We observe that α = 6 has the best result, which means
the best performance comes from we set 6 layers as base layers and 2 layers as personalization
layers. Figure 2.4(b) shows the accuracy of our proposed DFL framework with different broadcast
frequencies β. We employ β ∈ {0.1, 0.5, 1, 2, 6, 12, 24} to adjust the best frequency of the proposed
framework. We observe that β = 6 and 12 have the best prediction accuracy for load forecasting,
which means the parameters should be broadcasted every 6 or 12 hours. Since higher broadcast
frequency will cause lower communication efficiency, we choose β = 12 as the best frequency of
our framework. Figure 2.4(c) shows the saved standby energy of our proposed PFDRL framework
with different broadcast frequencies γ. We employ γ ∈ {0.1, 0.5, 1, 2, 6, 12, 24} to adjust the best
frequency of the proposed framework. We observe that γ = 2, 6, and 12 have the best performance,
which means the parameters should be broadcasted every 2, 6, or 12 hours. Due to the same reason
as described in Figure 2.4(b), we choose γ = 12 as the best frequency of our framework.
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Figure 2.4: System Parameters

Load forecasting Accuracy: Figure 2.5(a) shows the cumulative distribution function (CDF) of
the load forecasting result. The result follows LR<SVM<BP<LSTM. For LR, it’s normal to face
under-fitting and low precision, so the load forecasting accuracy is lower. For SVM, its performance
with large datasets is lower than the others. For BP, it is easy to fall into a local extreme value,
and the weights converge to a local minimum point, which causes the network training to fail. For
LSTM, it can capture the long-term pattern based on the memory cell, which can bring higher load
forecasting accuracy. Figure 2.5(b) shows the load forecasting accuracy in a day at different times.
The result follows LR<SVM<BP<LSTM due to the same reason as explained in Figure 2.5(a). We
also observe that the accuracy from 2 AM to 6 AM and from 12 PM to 16 PM are higher than the
other time in the day. The reason is that, in such a time frame, residences usually have the same
energy usage patterns for each device. From 8 AM to 10 AM and evening time, the energy usage in
different residences is vary depending on the date.

Figure 2.6(a) shows the prediction accuracy while we accumulatively train the DFL framework
with different numbers of days. We set the number of residences as 100 in this experiment. The
result follows LR<SVM<BP<LSTM due to the same reason as explained in Figure 2.5(a). Since
we accumulatively train the DFL framework, for each hour, each agent has the aggregated parameter
for each device. The updated parameter will be used for the next training period, which will improve
the prediction accuracy over time. On the other hand, from day 1 to day 30, the growth of accuracy
is higher than from day 70 to 100. The reason is that the aggregated parameter tends to approach
the best value for load forecasting. Figure 2.6(b) shows the prediction accuracy with different
numbers of residences participating in the DFL framework. We set the number of days as 365 in
this experiment. For the number of residences under 100, the result follows LR<SVM<BP<LSTM
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Figure 2.6: Prediction Accuracy Comparison with Different Experiment Settings

due to the same reason as explained in Figure 2.5(a). For the number of residences above 100, the
result shows a drop. The reason is that the four methods use all the parameters or data to train the
model together. Such methods can indeed improve the average accuracy when the number of total
participants is small. When the number of residences goes up, the number of different kinds of load
patterns also goes up. In this case, using all the parameters or data to train the model may cause
prediction accuracy to drop in some devices.

Performance Comparison with Compared Methods: Figure 2.7 shows the amount of saved
energy per residence and the percentage of standby energy usage versus different training days.
The result for saved energy per client follows Cloud≈FL≈FRL<Local≈PFDRL. Because the
local method and PFDRL have personalization, so the EMS plan is more accurate, which leads
to the result that more energy can be saved from standby energy. The result for achieving the
best performance time follows: PFDRL≈FRL<FL≈Cloud<Local. Because PFDRL and FRL are
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Figure 2.8: Saved monetary cost per residence via months.

sharing the EMS plan with other clients in the system, which leads to the fact that sharing the EMS
plan with all participants can speed up the system to achieve better performance. For FL and cloud,
since they only do load forecasting in the sharing mechanism, they have a more accurate input
feature for the localized EMS, but since the EMS plans are not shared, so they will need to spend
more time to achieve the best performance. For local based method, since both load forecasting
and EMS plan are locally based, it has the lowest speed. Figure 2.8 shows the saved monetary cost
per residence and the percentage of the total monetary cost versus different months. We compare
both the fixed-rate electricity plan and the variable rate electricity plan using our system. The result
follows Fixed Rate≈Variable Rate. Since the amount of saved energy is the same, the difference
in the total monetary cost in a month is between the electricity plan. On average, we can observe
that Fixed Rate≈Variable Rate. From April to June, the variable rate plan will save more money for
each resident. From August to October, the fixed-rate plan will save more money for each resident.
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Figure 2.9 shows the amount of saved energy per residence at different times of the day. We
can observe that the result follows Cloud≈FL≈FRL<Local≈PFDRL due to the same reason as
explained in Figure 2.7. We can also observe that, between 2 AM and 4 AM, the saved energy is
at a minimum. The reason is that the total usage of energy is at the lowest level. On the other hand,
between 12 PM and 0 AM, the saved energy is at maximum since residents are using more energy
at such time in the day. Figure 2.10 shows the system performance in personalization. We show the
mean accuracy of the personalized model and not the personalized model. We can observe that the
personalized model has better performance than the not personalized model. Also, from the error
bar, we can observe that personalized model can achieve better performance for most residences.

2.4 Case study

We also test our proposed method in the case study. Figure 2.11(a) shows the appliances we used in
this case study. We record the energy usage for a single washer, TV and oven for a month duration
and use it as one test set to test our model. The purpose of this case study is to see that, how will the
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Figure 2.11: Case Study

system perform for a newly added home in the system.

Figure 2.11(b) shows the case study performance. The result for saved energy per client follows:
Cloud≈FL≈FRL<Local≈PFDRL, on the other hand, the result for achieving best performance
time follows: PFDRL≈FRL<FL≈Cloud<Local due to the same reason as shown in Figure 2.7. We
can also see that it takes around 7 days for the newly added client to achieve best performance.

2.5 Conclusion

In this paper, we propose a privacy-preserved energy management system that can achieve the best
performance in a short time and minimize the energy usage caused by standby energy. First, we
introduce decentralized federated learning (DFL) framework to enable distributed edge devices to
collaboratively train a model without using cloud service. Second, to further improve the time to
achieve the best EMS performance, we applied deep reinforcement learning (DRL) with FL in order
to share the EMS plan. Third, we design a personalized federated DRL (PFDRL) to maximize the
EMS performance for each individual client in the sharing system by dividing the network inside
the DRL into localized-based layers and personalized layers. We evaluate the proposed PFDRL
energy management system on the real-world Pecan Street dataset, which saves 98% of total standby
energy consumption per day in a residential building.
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Chapter 3

ATLAS: ENSURING ACCURACY FOR PRIVACY-PRESERVING

IOT APPLICATIONS

The Internet of Things (IoT) technologies enable a large number of applications that involve a
rich set of sensors, such as energy consumption prediction [43], traffic forecasting [44], health
monitoring [45], and human activity recognition (HAR) [46]. The key to enabling these IoT
applications is machine learning or deep learning models trained on a massive amount of data.
However, the edge devices of IoT applications often have access to only limited data, which is not
sufficient for modern deep learning model training. The common solution is to aggregate all clients’
data in a central server and train a global model using all available data, which raises problems with
data privacy, sub-optimal accuracy performance and communication latency. Given the privacy-
sensitive, data heterogeneity and latency-sensitive nature of IoT sensing data (e.g., medical data for
health monitoring, activity data for HAR), we need to have a privacy-preserving, personalized and
communication efficiency framework for smart and reliable IoT applications.

To address the intertwined challenges of data scarcity, data privacy, and communication latency
in IoT applications, federated learning (FL) provides a popular method to achieve distributed
machine learning among numerous devices without sharing raw data with a central server for
collaborative training [47], FL has been widely applied in the IoT domain [48]. Most state-of-the-art
FL frameworks share and aggregate the weights of the models trained on sensitive client data
instead of the raw data directly [28], [47], [49], [50]. Unfortunately, FL still cannot guarantee
sufficient privacy for sensitive data. Recent works have demonstrated that shared weights also can
leak sensitive information by model inversion during the process of model updating [51], [52].

To further enhance privacy in FL training, recent studies applied more advanced privacy-
persevering methods like differential privacy (DP) to FL models [53], [54]. Differential privacy adds
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ϵ random noise [55] to provide strong guarantees of privacy for individuals within a dataset. Recent
studies of FL models with (local) differential privacy limit the leakage of sensitive information
in FL training [54] and avoid the possibility of information leakage during data transmission.
But, the addition of random noise necessarily reduces the accuracy of these models. Yu et al. [56]
confirmed FL models introduce a fundamental conflict between protecting privacy and higher model
utility/performance. They further claimed that model personalization methods like local adoption
are effective in improving FL model performance, even for models with privacy protection. In
summary, a suitable FL system is in demand to guarantee the three problems for IoT applications.
(1) Privacy. The LDP approaches should have a strong privacy guarantee for IoT applications. (2)
Model performance. The design of the algorithm can work collaboratively with the DP mechanism
to ensure comparable model accuracy to non-privacy-preserving methods. (3) Communication
efficiency. The personalization algorithm needs to optimize the number of parameters transferred to
the aggregation step resulting in lower communication costs for different IoT applications.

Status Quo and their Limitations.

(1) Local differential privacy mechanisms. As the practice of utilizing sensitive user data to
train deep learning models has amplified privacy worries across various sectors, recent research [57]
has shown that using FL alone can not meet the requirements of data privacy due to model inversion.
Incorporating local differential privacy into federated learning serves as an effective method to
ensure stringent privacy guarantees. However, existing LDP methods [58]–[60] add the same LDP
noise to all the model layers for simplicity which is not practical, such methods ignore the fact
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that the model weights from different layers vary significantly. Presuming that the weights across
all layers fall within a constant range can lead to significant fluctuations in the estimated model
weights, ultimately resulting in suboptimal model performance.

(2) Federated learning frameworks. There are many existing personalized FL models using
different technologies like adding user context [61], transfer learning [61], [62], multi-task learn-
ing [63], meta-learning [64], and the others [56], [65]. All the sets of personalized methods aim to
solve the problem of data heterogeneity and achieve higher performance for individual users. The
common personalized FL can be divided into two main categories: (1) model enhancement based
federated learning personalization models [56], [66], [67]. (2) transfer learning based federated
learning personalization models [29], [61], [62], [64].

However, the existing federated personalization solutions are not the perfect partner for the
differential privacy setting. For model enhancement based federated learning personalization models,
such as ClusterFL [66], the main concept is to enhance model training accuracy by identifying data
relationships across nodes by clustering the clients in the central server. It expedites convergence
and maintains accuracy by efficiently removing slower or less correlated nodes within each cluster.
Yet, such a method requires high-quality model information (e.g., model gradient) for clustering
based centralized aggregation. Directly adding LDP noise such as the Gaussian mechanism to such
models will cause dramatic performance reduction [68].

Transfer learning-based personalization methods aim to divide the model into two parts, the
sharable layers for global aggregation and the personalized layers for local updates. Such a setup
is more compatible with the FL-LDP setting since the differential privacy noises are added into
each layer which does not require high-quality gradients to train the whole model. But existing
transfer learning types of FL personalization methods, such as Wang et al. [62], FedPer [29],
and Reptile [64], cannot optimize the model performance since their sharable layers are simply
fixed. Practically, the layers’ importance for global aggregation and local updates are dynamically
changing over time. Models for each client do not know which part of the layers can contribute
more to the global model and which part of the layers is more helpful to the local models for
each iteration [69]. Thus, to further enhance the performance of FL-LDP setup, a reliable and
personalized layer selection mechanism is in demand to customize the layer weights that need to be
transferred to the global server. It can improve the model utility while reducing the communication
cost compared to traditional FL approaches.
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(3) Uniqueness of IoT data. While Federated Learning (FL) holds substantial importance in
solving data privacy for IoT application collaborative training, the majority of FL research primarily
utilizes well-established datasets like CIFAR-10, MNIST and CIFAR-100 for evaluation. However,
these datasets don’t reflect the authentic characteristics and complexities of real-world IoT data,
which fails to prove their practicality of IoT applications.

Overview of Proposed Approach. Motivated by the limitations of existing solutions, we present
Atlas, a privacy-first practical personalized federated learning framework with dynamic local
differential privacy designed specifically to resolve the above challenges simultaneously. Atlas
aims to provide a unified privacy-preserving FL framework for IoT applications to (1) collaborative
training deep learning models with different clients with privacy guarantees, (2) learn a personalized
model for each participating client with optimal performance under the privacy guarantee. (3)
achieve reasonable communication costs for IoT applications.

Figure 3.1 shows the high-level system architecture of our proposed system. The core idea
of Atlas can be split into two parts. First, we design a dynamic layer importance selection and
sharing framework based on a self-learned layer importance mask mechanism for each client. The
layer importance mask is refined along with the model parameters during the FL training process,
which customizes the global and local layers according to the characteristics of each layer in every
client. During the training process, the layer importance mask is randomly initialized and interacts
with model layer weights to calculate the global importance of each layer during updating, the layers
with higher importance scores will contribute to the global model training while the layers with
lower importance scores will be pruned and contribute to local model training [70]. Note that since
we only update selected layers to the central server, the communication cost can also be minimized
during this process. Second, we add LDP to globally important layers. Instead of adding the same
LDP noise to all selected model layers, we utilize the layer importance mask from the first step
to add different noise for different selected layers and propose a more dynamic and practical LDP
mechanism to demonstrate how the range influences the variance in the model weights.

System Implementation and Performance, we developed the Atlas system and performed
extensive experiments using real IoT-related application data. The model performance is evaluated
specifically on five IoT tasks, We compare Atlas with 8 popular baseline functions in the personal-
ized FL and LDP domain and achieved comparable model performance with non-privacy-preserving
methods with privacy guarantee.
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To the best of our knowledge, Atlas is the first FL framework that optimizes the personalized
model by dynamic layer selection during training while adding practical lDP to guarantee model
utility, privacy, and communication efficiency at the same time in an IoT scenario. Compared to
other state-of-the-art FL methods, Atlas demonstrates the personalization power of our proposed
dynamic layer selection strategy with LDP, which effectively resolves the limitations of the existing
approaches. More specifically, table 3.1 shows the comparison between Atlas and status quo
methods. Atlas improves the model utility compared to LDP-FL by using a novel layer selection
personalization method, while other personalized FL frameworks like FedMask, are hard to train
along with differential privacy. Compared to FedPer and other local fine-tuning methods, our
proposed global layer selection technique optimized the model structure for both global training and
local fine-tuning. In addition, since we only update selected layer parameters to the central server
in Atlas, the communication cost can be reduced compared to traditional FL frameworks like
FedAvg and ClusterFL.

Table 3.1: Comparing Atlas with existing FL approaches in IoT scenario.

Approach Personalization Privacy-Preserving Communication

FedAvg [47] % % %

ClusterFL [66] " % %

FedPer [29] " % "

FedDL [70] " % %

FedMask [67] " % "

LDP-FL [54] % " %

Atlas " " "

3.1 Background and motivation

In this section, we introduce the background and motivation of our work. We first show the need
for applying privacy-preserving techniques to federated learning frameworks and the drawbacks of
current methods. Then we discuss the background of current federated learning frameworks and
the benefit of personalization, which we believe is the key to overcoming the drawbacks of directly
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applying privacy-preserving techniques.

3.1.1 Privacy Preserving for FL

Federated learning (FL) enables collaborative training by using a central server to aggregate the
locally trained model weights instead of sharing users’ local data to maintain data privacy. However,
recent research works [54], [71], [72] have shown that FL itself is not private enough. The FL
framework still requires cloud support to aggregate a global model. Such a model contains all
the training information from different users and remains vulnerable to training data attacks with
malicious cloud server or model inversion which result in facing the potential risk of data leakage.
One way to enhance the FL framework with privacy guarantee is to apply differential privacy
or local differential privacy mechanisms. However, the trade-off between privacy guarantee and
model accuracy is quite tricky for IoT applications. We conduct experiments to investigate how
significantly the accuracy is dropped by adding Gaussian local differential privacy (GLDP) to
FedAVG [47]. In this experiment, we apply noise-free FedAVG and GLDP FedAVG (ϵ = 2) and
adopt the VGG16 [73] and ResNet32 [74] as the default model configurations. We train the models
on the CIFAR-10 dataset (note that we use CIFAR-10 as an example for general purposes). As
Figure 3.2 shows, adding GLDP to FedAVG causes a dramatic accuracy drop from 86.4% to 72.3%
for VGG16, and from 92.3% to 76.1% for ResNet32. Such a performance drop for IoT applications
is not acceptable in practice. Therefore we aim to enhance the model performance while ensuring
the guarantee of data privacy.

3.1.2 The Need for Personalization in FL

Federated learning facilitates collaborative model training while ensuring that local data remains
confidential and unshared. Among various FL strategies, FedAvg [47] stands out as a foundation
method. In the FedAvg framework, a central server coordinates with numerous client devices.
During each iteration of communication, a specific subset of these devices is chosen to participate.
The chosen devices engage in training activities on their respective local data, employing a uniform
learning rate and identical count of local epochs to cultivate their individual local models. These
models undergo updates via stochastic gradient descent (SGD). Subsequently, the local model
updates are transmitted to the central server, where they are collectively averaged, resulting in
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Figure 3.2: Comparison of Accuracy between Noise-free and GLDP FedAVG in Different
Model Configurations.

an update to the global model. This updated global model is then distributed back to all the
devices. However, it is crucial to note that the data across devices typically follows a non-IID
distribution in practical scenarios. This statistical heterogeneity poses challenges in developing
a shared global model that can effectively generalize across all participating devices. Therefore,
introducing personalization is crucial to effectively address the challenges arising from statistical
heterogeneity.

3.2 Related Work

Federated Learning and Personalization Numerous studies from a wide range of research have
explored the usage of FL methods from various perspectives. Some recent works in the FL domain
have focused on the usage of IoT devices. Li et al., [75] presented an overview of challenges, open
problems, and issues associated with FL by considering the heterogeneity of devices while assuming
all clients are resource-boundless. Yang et al., [76] focused on the FL settings categorization, Niknam
et al., [77] elaborated on the issues of FL setup in a wireless environment. Adapting a global model
can help achieve personalization. Existing works in this domain mainly use two separate steps that
result in extra overhead. With first having the global model learned in a federated fashion, then
fine-tuning the global model for each client using its local data. The common personalized FL can be
divided into two main categories: (1) model enhancement based federated learning personalization
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models [56], [66], [67]. (2) transfer learning based federated learning personalization models [29],
[61], [62], [64].

Differential Privacy Differential privacy has been widely used for IoT and distributed learning
systems. Shokri et al., [78] presents a distributed learning system using local differential privacy
without a central trusted party. However, it is only able to work on models with a small number of
parameters due to its DP guarantee being per parameter. Wei et al., [79] proposed a new framework
of differential privacy adding artificial noise on the client side, and discussed several key properties
for differential privacy. Similar to most of the existing LDP methods [58]–[60] They add the same
differential noise to all model layers, which fail to consider the range difference of model weights
thus resulting in suboptimal model performance.

3.3 System Design

3.3.1 System Overview

In this paper, we present Atlas, a privacy-preserving, personalized and communication-efficient
federated local differential privacy framework to achieve private and accurate IoT applications.
Figure 3.3 depicts the overview of our Atlas framework.

In the initial phase, the central server sets up a uniform model structure for every client involved
in the system. Throughout the local training iterations, we integrate a network layer importance
mask to cultivate a personalized model, taking into account the significance of various layers in the
deep learning model explicitly. The self-learned layer importance mask selects the layers with higher
importance scores that are labeled as global layers and will be transmitted to the central server for
aggregation 1⃝. For all the selected layers, we add the weight-enhanced Gaussian Local differential
privacy (GLDP) noise for each local client, taking into consideration the varying impacts of weights
in each layer on the model’s performance 2⃝. The selected layers with LDP noise together with the
layers’ importance score will be transmitted to the central server for aggregation within a random
time slot T to to break the linkage among the model weight updates from the same clients and to
mix them among updates from other clients 3⃝. The central server then aggregates each layer based
on the available layer number and sends back the updated layers to each client 4⃝ 5⃝. Each client
generates their own personalized local model for IoT applications 6⃝. By evaluating the impact and
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Figure 3.3: The Overview of Atlas Framework: 1⃝ Local IoT data training with layer
importance mask for local and global layers selection; 2⃝ Dynamically adding LDP to each
selected global layers by the importance of each layer. 3⃝ Transmitting selected global layers
with LDP from the devices to the central server. 4⃝ Central server layer by layer aggregation.
5⃝ Sending back updated layer information to local clients. 6⃝ Personalized model generation.

significance of weights in different model layers on the model’s own performance, Atlas is able to
achieve optimal model personalization. Even after incorporating local differential privacy (LDP), it
still manages to deliver performance comparable to non-private methods. Additionally, by filtering
the importance of model layers, we only propagate a certain number of layers in the model, which
can reduce communication costs.

3.3.2 Model Layer Selection and Layer Importance Mask

What distinguishes Atlas from traditional approaches is that Atlas focuses on evaluating the
significance of each layer in contributing to the model’s overall effectiveness, and using this evalua-
tion to determine which layers should be transmitted to the central server. An intuitive thought on
the various ranges of weights of different deep learning model layers is that the larger the weight

is, the more important the layer is. Practically, it’s not always the truth. The relationship between
the magnitude of a weight and its importance may not always be direct. In some cases, a larger
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Figure 3.4: Personalization Layer Selection via Layer Importance Mask

weight might mean that it has a greater impact on the model’s output, which intuitively could be
interpreted as the weight or the corresponding feature being more ”important.” However, the true
importance of each model layer depends on multifarious factors and the actual situation could be
much more complex. For example, the importance of weight also depends on its location within
the network structure. In some situations [80], smaller weights might be on a critical path and
have a significant impact on the output, while larger weights might be on a less important path.
Therefore, it’s necessary to dynamically select the importance of each layer to perform optimal
model personalization in FL. Guided by the insights of deep learning model pruning [81], we design
a layer importance mask to capture the inner differences among each layer in the deep learning
model. Figure 3.4 shows the detail of our model personalization layer selection via layer importance
mask.

We use a fully connected layer as a representative example to demonstrate our proposed mecha-
nism for choosing layers. It is important to mention that this approach is versatile and can be readily
adapted to various other layer types. We define a fully connected layer as y = W · x,where y ∈
Rm is the output, x ∈ Rn is the input, and W ∈ Rm×n denotes the weight matrix of the fully
connected layer. Instead of using a binary mask in deep learning model pruning, we present a
self-learned real-value layer importance mask. We apply the layer importance mask as the same
size as the model W , and express the mask-based fully connected layer as y = (W ⊙ E) · x, where
⊙ denotes the elementwise multiplication and E denotes the real-value mask, where E ∈ Rm×n. In
the feed-forward step, we set EB as a binary mask under the threshold function as Equation 3.1.

EB
ij =

1, Eij ≥ τ

0, Eij < τ
(3.1)
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where EB
ij represents the element located in ith row and jth column of EB . τ denotes the threshold.

Given the non-differentiable nature of the threshold function, the current method [82] directly
applies the gradients of E to the binary mask EB as Equation 3.2.

∂L

∂E
=

∂L

∂EB
(3.2)

While this approach can optimize E and EB, it might lead to significant variations in gradient
magnitude, potentially hindering the optimization of E. In order to mitigate the variance in the
gradient, we adopt the method in [67] and integrate a sigmoid function. By replacing the hard
threshold function with the differentiable sigmoid function, the back-propagation step from E to
EB can be defined as Equation 3.3.

∂L

∂E
= β ⊙ ∂L

∂EB
(3.3)

where β denotes the gradient matrix of the sigmoid function.

For each training iteration, we set τ as the threshold to determine local personalization layers and
global layers. For example in Figure 3.4, as we set τ = 0.5, we only transmit layer 2 and layer 3 to the
central server for global aggregation. Since the layer importance mask is self-learned and updated
with the deep learning model during the training step, we eliminate the assumption that larger
weights are more important for the model. Since the pruned local contains more model information
for the local user, we keep all pruned layer information for future local updates and personalized
model generation, which can be beneficial for each client. On the other hand, thanks to the layer
importance mask, Atlas only needs to transmit a partial number of model layer information to the
central server, which helps to achieve better communication efficiency.

3.3.3 Dynamic Local Differential Privacy

The local differential privacy module requires clipping the computed parameter gradients and
adding noise (e.g., Gaussian noise). However, the depth of the layers in a deep learning model
influences the features that its parameters extract. Features of different scales correspond to different
layers, resulting in gradients and variances of varying magnitudes. For example, lower layers in
deep convolutional networks can extract texture features, while deeper layers focus on semantic
features. In most of the current local differential privacy mechanisms, there has been a lack of
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explicit consideration for the variance in weight ranges across different layers of deep learning
models. Recent works [54], [83] have discussed the possibilities of considering the impact of range
difference of model weights in LDP, however, these methods set a fixed model weight range by
default in their LDP mechanism, which is not practical. With Atlas pinpointing the significance
of different layers in a deep learning model, we can now dynamically account for the variations in
the range of model weights across these layers when implementing the local differential privacy
mechanism. The core difference about Atlas is that Atlas adds different LDP noise to each
selected layer based on their layer importance mask. We can also dynamically add the LDP based
on the layer importance mask update from each FL global aggregation, which is optimal for the
deep learning model performance while ensuring privacy guarantee. Figure 3.5 shows an example
of our practical and dynamic LDP mechanism.

We first discuss the preliminary method which considers the range difference of model weights
in the LDP mechanism. The main concept is to add noise separately to the gradients of each
group using a unique pair of (Cg, zg), where C is the clipping range, g is the the model gradient.
First, we divide the model weights w into M groups. In the training process, the model gradients
can be represented as G = (g1, g2, ..., gM). We denote that function of the clipping range C as
πC(g) = g ·min(1, C

∥gt∥2 ), for number L of training data in one training lots, we denote that gradient
of the ith, where 1 ≤ i ≤ L training data as Gi = (gi1, g

i
2, ..., g

i
M). For all gradient G, we utilize

(Cg, zg) and perform differential privacy stochastic gradient descent (DP-SGD) as in Equation 3.4.

G̃ =
1

L
[

L∑
i=1

πC(G
i) +N (0; z2C2I)]

= [
1

L

L∑
i=1

πC(G
i)] +N (0;

z2C2

L2
I)

(3.4)

The previous research [83] proved that the above mechanism satisfied the (ϵ, δ)−DP, so we will
not dive deep into the theoretical proof. Based on this mechanism, we observe that the differential
privacy mechanism sums up the final aggregated gradients and then adds normalized noise with a
variance of σ = zC. By averaging the obtained gradients, we acquire a gradient G̃ that satisfies the
requirements of differential privacy. In this case, we can reformat Equation 3.4 that for each gm, we
use independent (Cm, zm) as the differential privacy parameter. Since we have the layer importance
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Figure 3.5: Dynamically adjust model weights to LDP mechanism.

mask E which is So we have Equation 3.5.

g̃m =
E

L
[

L∑
i=1

πCm(g
i
m) +N (0; z2mC

2
mI)]

= [
E

L

L∑
i=1

πCm(g
i
m)] +N (0;

z2mC
2
m

L2
I)

(3.5)

where E is the layer importance score from the previous step. Since we require
∑M

m=1C
2
m = C2,

so we have ∥G∥2 ≤ C, which satisfy the gradient clipping requirement of DP.

Next, we calculate the privacy bond for our dynamic LDP mechanism. We denote σm =

EmzmCm and reformat Equation 3.5, we get Equation 3.6.

g̃m =
σm

L
[

L∑
i=1

πCm(g
i
m)/σm +N (0; I)] (3.6)

We can get Equation 3.7 based on the properties of the gradient function.

πCm(gm)/σm = πCm/σm(gm/σm) (3.7)
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Figure 3.6: Dynamic LDP with Parameter Shuffling

We can further scale the input vector to G∗ = (g1/σ1, · · · ,gM/σm) , At this point, the differential
privacy mechanism is equivalent to adding standard Gaussian noise to the scaled gradient vector
G∗, which can be expressed as Equation 3.8:

g̃m = σm ·
1

L
[

L∑
i=1

πCm/σm(g
i
m/σm) +N (0; I)] (3.8)

Then, we apply the clipping operation in groups with a threshold parameter of C∗
m = Cm/σm, C

∗ =√∑M
m=1(C

∗
m)

2 LDP noise, where the noise multiplier z∗ is as Equation 3.9.

z∗ =
1

C∗ =
1√

1
z21

+ · · ·+ 1
z2M

(3.9)

We can obtain the privacy loss associated with our dynamic LDP mechanism by substituting the
noise multiplier z∗ into the calculations of moments accountant with Gaussian mechanism [84].

On the other hand, prior research [85] indicates that ensuring anonymity in data reports at each
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timestep and preventing their linkage over time, significantly enhances overall privacy protection.
Yet, Sun et al., [54] argue that merely ensuring client anonymity doesn’t adequately guard against
side-channel linking attacks. For instance, if multiple clients send numerous weight updates simul-
taneously during each cycle, the cloud might still correlate them. In Atlas, even though we only
transmit certain selected layers to the central server for aggregation, we understand that partial
model information can also be correlated. To this end, we use LDP parameter shuffling in our
system. Figure 3.6 shows an example of how we do LDP with parameter shuffling. We broadcast the
selected layers within the random time T to make it more difficult for the central server to identify a
single client.

Client i Client j

I teration
q

Client k

Client i Client j Client k

Aggregation

Central Server

LDP LDP LDP

   

 

 

 

    

 

 

 

 

 

 

 

 

Figure 3.7: Atlas Model Aggregation

3.3.4 Central Server Aggregation

Figure 3.7 shows how we perform model aggregation in the central server for Atlas. After a
certain round of local training, each client has the locally trained model weights for each layer,
together with the layer importance mask. For each global aggregation round, after adding the
dynamic LDP mechanism to the selected model weights and layer importance mask, the central
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server performs model aggregation. Note that for each client, the number of the selected layers is
different, which means we can not directly perform an averaging strategy like FedAvg. To solve this
problem, we perform layer-by-layer aggregation. As Figure 3.7 shows, client i selects model weight
W i

a, W i
b and W i

d for global aggregation, and keeps W i
c locally for personalization. Client j selects

model weight W j
a and W j

c for global aggregation and keeps W j
b and W j

d locally for personalization.
Client k selects model weight W k

a , W k
b and W k

c for global aggregation, and keeps W k
d locally for

personalization. Since each client has the default model structure, for each layer and client, we only
aggregate their transmitted layers for global aggregation. More specifically in this example, we
have:

Wa·t+1 =
W i

a,t +W j
a,t +W k

a,t

3

Wb·t+1 =
W i

b,t +W k
b,t

2

Wc·t+1 =
W j

c,t +W k
c,t

2

Wd·t+1 = W i
d,t

(3.10)

where Wt is the model weights for different layers before global aggregation, Wt+1 is the model
weights for different layers after global aggregation. We perform the same strategy to the layer
importance mask as well.

3.3.5 Personalized Model Generation

As shown in Figure 3.3, after each global aggregation round, the central server sends back the
updated layer weight for each client. Before the next local training round, each client generates
their personalized modal locally based on the locally pruned layers and globally updated layers.
Figure 3.12 shows an example of how Atlas achieves personalized model generation. We take
client i as an example. Since the layer importance mask determined W i

a,t, W
i
b,t and W i

d,t for global
aggregation, W i

ct stayed locally waiting for the next local computational round. After our system
updates all the selected layers, Client i receives the new weights for different layers, which is W i

a,t+1,
W i

b,t+1 and W i
d,t+1. The updated model weights then combine with the localized W i

ct for the next
local computational round for local training. Such a design takes into account the global aggregation
as well as the localized personalized information, which ensures that the updated personalized
model can achieve the best performance for each client in the system.
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Figure 3.8: Atlas Personalized Model Generation

3.4 Evaluation

To demonstrate the generality, practicability and usefulness of Atlas across different IoT appli-
cations, we design our experiments to evaluate Atlas on five real-world IoT application datasets
focusing on the following research questions:

• RQ1: How does Atlas perform on real-world datasets compared to traditional methods, non-
privacy-preserving FL methods, and LDP-based FL methods?

• RQ2: How does Atlas perform on variate of scalability compared to non-privacy-preserving FL
methods and LDP-based FL methods?

• RQ3: How do different LDP privacy budgets in Atlas and LDP-based FL methods affect the
accuracy of different IoT applications?

• RQ4: For IoT applications, it’s practical to have new clients with heterogeneous data joining the
system. How well can Atlas handle the new clients?

• RQ5: How is the communication efficiency?

3.4.1 Applications and Datasets

Below are detailed descriptions of these five IoT applications, the statistics of the datasets that are
used in the applications are concluded in table 3.2.
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Application#1: Energy Prediction. Pecan Street 1 contains the energy consumption for every
second of different home appliances in 1641 residents in Texas from 2013-01-01 to 2017-12-31.
Since the recorded data has some missing data points, also the devices in each resident are not
exactly the same, we randomly select 100 residents that have the full load records as our default
experiment dataset. Recently, Pecan Street dataset also updated second-level data for New York and
minute-level data for California. To test how Atlas can handle the new users and demonstrate the
performance of RQ4, we will use the New York dataset together with Texas dataset for evaluation.

Application#2: Human Activity Recognition. Human Activity Recognition (HAR) is a task
that distinguishes a physical activity completed by an individual subject. Physical activities, for
example, Walking, Standing, and Sitting, etc. build our comprehensive actions in daily life. A well-
known publicly available HAR dataset called Human Activity Recognition Using Smartphones

DataSet 2, the HAR using smartphones dataset contains 30 participants age ranged from 19-48. Each
person performed six activities (WALKING, WALKING UPSTAIRS, WALKING DOWNSTAIRS,
SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist [46].
Two types of 3-axial signal data are collected from the accelerometer sensor and gyroscope sensor
in fixed-width sliding windows of 2.56 sec respectively.

Application#3: Sleep Stage Classification. Sleep stage classification is essential for the assess-
ment of sleep quality and the diagnosis of sleep disorders. The Montreal Archive of Sleep Studies

(MASS) 3 is an open-access and collaborative database of laboratory-based polysomnography (PSG)
recordings. There are 97 males and 103 females of age ranging from 18 to 76 years participated in
this study, and five sleep stages are recorded for classification [86].

Application#4: Daily Activity Recognition. The WISDM (Wireless Sensor Data Mining) dataset [87]
stands as a prominent resource for daily activity recognition tasks. It utilizes accelerometer and
gyroscope sensor data gathered from smartphones and smartwatches. The dataset encompasses data
from 51 participants, each engaged in 18 distinct daily activities over sessions lasting 3 minutes. We
keep the same data pre-processing mechanism as mentioned in [88]. More specifically, we have
streamlined the dataset by consolidating activities like eating soup, chips, pasta, and sandwiches
into a unified ”eating” category, while eliminating rare activities associated with ball play, such
as kicking, catching, and dribbling. Acknowledging that individuals might not simultaneously

1https://www.pecanstreet.org/dataport/
2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
3http://ceams-carsm.ca/mass/
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carry a smartphone and wear a smartwatch in real-world scenarios, we divided WISDM into two
distinct datasets: WISDM-W, containing solely smartwatch data, and WISDM-P, comprising only
smartphone data. The training and test sets for WISDM-W include 16,569 and 4,103 samples,
respectively, while for WISDM-P, they contain 13,714 and 4,073 samples, respectively. In our exper-
iment, we only focused on the WISDM-W subset of this dataset, mainly because the application#2
is a smartphone-based dataset.

Application#5: Smart Home Daily Living Sequence Recognition. The CASAS dataset4, a product
of the CASAS smart home project, serves as a resource for recognizing daily living activities (ADL)
through sequences of sensor states over time, aiming to facilitate independent living applications.
The data collection took place across three different apartments, each outfitted with a trio of sensor
types: motion, temperature, and door sensors. We keep the same data pre-processing mechanism
as mentioned in [88]. We have chosen five specific datasets named “Milan”, “Cairo”, “Kyoto2”,
“Kyoto3”, and “Kyoto4”, selected for the consistency in their sensor data representation. Within each
dataset, we have streamlined the original ADL categories into 11 home activity-related categories
such as “sleep”, “eat”, and “bath”. Each data entry is a categorical time series with a length of 2,000,
depicting sensor states across a certain time span. In total, the training and test sets comprise 12,190
and 3,048 samples, respectively.

Application#6: Image Classification. Image classification is an important part of smart IoT appli-
cations. We use CIFAR-10 [89] to demonstrate the performance of Atlas in Image Classification.
Although CIFAR-10 is not a typical IoT application dataset, it has been widely used to test the
performance of federated learning frameworks. In this experiment, we use Resnet 32 [74] as the
base model for training.

Table 3.2: Dataset Statistics.
Statistics

Dataset
IoT Platform Data Modality Dataset Size Model

Pecan Street Smart Home Energy 3.2 GB LSTM
UCI-HAR Smartphone Accelerometer, Gyroscope 58.17 MB LSTM
MASS PSG PSG 1.2 GB LSTM
WISDM-W Smartwatch Accelerometer, Gyroscope 294 MB LSTM
CASAS Smart Home Motion Sensor, Door Sensor, Thermostat 233 MB LSTM
CIFAR-10 - Image 163 MB Resnet 32

4https://casas.wsu.edu/datasets/
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3.4.2 Experimental Setup and Evaluation Metrics

We implemented our experiments on five real-world IoT application datasets using two NVIDIA
RTX 3090 GPUs. We divided the data into training and test sets using an 80-20 split. We chose the
base model with the same structure including 8 LSTM layers with three fully connected layers for
each application (for CIFAR-10, we use Resnet 32 as the base model). By default, each participating
client performs 10 local training rounds for one global aggregation round when evaluating the model
performance of each application. We also evaluate the performance of different participating clients
and the influence on different local training rounds/global aggregation rounds as well.

We compare Atlas with 8 baselines in 3 categories. (1) Traditional methods include localized,
centralized model, centralized clustering and FedAvg, (2) Personalized FL approaches include
FedPer and Cluster FL), (3) Privacy-preserving FL methods include LATENT, PM-SUB and HM-
TP.

• Localized model, trains models on local clients by using only the local data, without the collabo-
rations between different clients. Since there is no privacy issue nor communication cost when
training data is completely local, we use this method only as a baseline to compare the model
performance among different IoT applications.

• Centralized model, trains all data on a centralized global server as a unified model. This method
has significant privacy issues such as malicious cloud servers, etc. We did not use any privacy
protection mechanisms in this approach. We use this method only as a baseline to compare the
model performance among different IoT applications.

• Centralized clustering model [90], trains all data on a centralized global model with a centralized
clustering algorithm. Similar to the Localized and centralized model, we use the centralized
clustering model only as a baseline to compare the model performance among different IoT
applications. We include this method to show the best performance that collaborative training
among different users can get to compare with our method.

• FedAvg [47], is a classic federated learning model that clients exchange model information with
the central server by sending updated local parameters and retrieving the aggregated global model,
facilitating ongoing local training.
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• FedPer [29], is a federated learning model that each client contributes to share their lower layers
and leave their upper layers locally for personalization. The method requires to pre-set the number
of layers that are shared in the system. In our experiments, we set the number of layers to be 4.

• Cluster FL [66], introduces a unique clustered federated learning framework, enhancing the
training accuracy while discerning the inherent clustering relationship among data across different
nodes. Leveraging these cluster relationships, ClusterFL efficiently eliminates slower-converging
or weakly-correlated nodes within each cluster, hastening convergence without sacrificing accu-
racy.

• FedSGD-LDP [71], introduces Gaussian mechanisms to preserve local differential privacy (LDP)
of user data in the FL model. The method directly adds LDP noise to all the model weights to
achieve privacy guarantee for each client.

• LDP-FL [54], makes the local weights update differentially private by adapting to the varying
ranges at different layers of a deep neural network, which introduces a smaller variance of the
estimated model weights. This method considers a variety of range differences in model weights
to achieve a better performance.

For evaluation metrics, we use accuracy for the classification IoT applications and R2 for
regression applications. We evaluate the performance on each client’s test data, and report the
average accuracy over all clients for evaluations. For communication evaluation, we normalize the
time cost as the ratio to the communication time of FedAVG as reported communication cost.

3.4.3 Results

3.4.3 RQ1: Performance Analysis on real-world IoT data

In this section, we evaluate how Atlas performs compared to the other 8 baseline models. Fig-
ure 3.9 demonstrates that Atlas can achieve comparable accuracy performance compared to the
other personalized model while providing privacy guarantee. Also, Atlas outperforms all other
LDP-based FL frameworks. More specifically, we can observe that for UCI-HAR, Atlas can
achieve 94% accuracy, which is similar level compared to central training, and FedPer. Compared
to the best performance model, which is ClusterFL, Atlas sacrifices 4% accuracy performance
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in exchange for privacy-preserving, which is practical for real-world IoT applications. For MASS,
Atlas achieves 85% accuracy which sacrifices 4% accuracy compared to the centralized clustering
method and 3% compared to ClusterFL. Atlas also outperforms the LDP-FL-based model by 7%.
For WISDM-W and CASAS, the results follow the same pattern as the classification tasks. We
observe that Atlas generally sacrifices 2% to 6% of accuracy in exchange for privacy guarantee.
One unique case is the Pecan Street data, we observe that Atlas sacrifices 0.104 in R2, which
is larger than other tasks. We also noticed that for all LDP-based FL methods, the performance
dropped dramatically. The reason is that time-series data such as energy data, typically contains
crucial temporal correlations and patterns. Adding noise to satisfy differential privacy requirements
can distort these temporal relationships, leading to misinformation extracted from the data which
makes the model performance drop higher. For all LDP base FL frameworks, Atlas outperforms
LDP-FL by 0.142 and FedSGD-LDP by 0.272, which is still the best for privacy-guarantee methods.
For image classification tasks like CIFAR-10, we observe the same trend as the previous tasks.
We also notice that the accuracy performance of Atlas only drops 3.2% comparing to the best
performed method, which is central cluster, and outperformed the LDP-based methods by 10%.

3.4.3 RQ2: Performance analysis on scalability.

Figure 3.10 shows the model performance comparison on different numbers of clients participating
in the system. We compare Atlas with non-privacy-preserving FL methods, LDP-based FL
methods in this section. For each IoT application, we assign a different number of clients during the
training process. We observe that the general performance of Atlas follows the same pattern as
in RQ1. Interestingly to see that, for UCI-HAR, the performance changes dramatically based on
the change in the number of clients compared to other datasets. We see that along with the growth
of the participating clients, most of the methods first achieve a higher model performance, but fail
to hold such a performance while the number of clients is growing higher. However, Atlas and
ClusterFL remain steady with the growth of the number of clients. The reason is because of the
model personalization. For other methods, since there is no model personalization mechanism, as
more and more clients joined the system, the diversity of clients’ data makes the global model
vulnerable to providing an accurate global model for each client. However, Atlas utilizes the layer
personalization mask for model personalization, which keeps the personalization layers locally and
only updates the weights that are beneficial for the global model, which makes Atlas maintain
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a steady performance facing a larger amount of clients. From this study, we also think that it
showcases the uniqueness of the IoT application. For different IoT applications, we can observe
different moving patterns with different numbers of users. As for the other applications, we can
see that for MASS, Pecan Street, CASAS, WISDM-W and CIFAR-10, the accuracy and R square
first move higher along with the increase of the client numbers by around 10%, then decrease by
around 2-4% once the number of clients is getting larger, which is around 70. The main reason is
that, the clients may have different data patterns, and since the number of clients is going up, the
performance will slightly drop due to the heterogeneity of user data.

3.4.3 RQ3: Impact of Different LDP Parameter ϵ

Figure 3.11 shows the impact of privacy budget ϵ for LDP-based FL framework. In differential
privacy, there’s typically a trade-off between privacy and accuracy. A larger privacy budget allows
for more accurate results, as it permits more noise to be added to the data, thereby preserving privacy
while minimizing the impact on the accuracy of the analysis or query results. We assign the same ϵ

to all LDP-based FL models to ensure that they are under the same privacy guarantee level. We can
observe that for all IoT applications, the accuracy follows Noise-Free¿Atlas>LDP-FL> FedSGD-
LDP. We can also observe that the accuracy remains steady once the privacy budget increases to
2. Atlas outperforms all other baseline models and only sacrifices 2% to 6% compared to the
noise-free method.

3.4.3 RQ4: Impact on New Users

In real-world settings, it’s practical that there will be new users joining the system. Traditionally
researchers tend to use dataset separation to evaluate the model’s ability to handle new clients in the
system. However, it’s not practical in real-world IoT settings. Because even with dataset separation,
part of the separated dataset still contains the data pattern even if it’s not used in either model
training or testing. To this end, we want to evaluate how Atlas handles new users more practically.
As we mentioned in the dataset selection section. We trained our model solely using the Pecan
Street energy datasets from houses in Texas. To evaluate our assumption, here we use the trained
model from Pecan Street Texas data and use purely Pecan Street New York data as testing. Since
there is a time difference between NY and TX, we adjusted the timeframe in the original dataset
and performed the experiment. Figure 3.12 shows the result of the impact on new users joining the
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system. We can observe that, compared with the local training method, Atlas can achieve better
performance for most of the new clients, which proves that Atlas can handle new users joining
the system.

3.4.3 RQ5: Communication Efficiency

Figure 3.13 shows the performance of communication efficiency between FL methods and Atlas.
We observe that for all IoT applications, the results have a similar pattern that Atlas outperforms
FedAVG and ClusterFL, but not as well as FedPer. The reason is that, although both FedPer and
Atlas pruned certain model layers locally and only transmit partial of the whole model, Atlas
also needs to transmit the layer importance mask to dynamically the layer selection mechanism and
LDP, which will incur more communication cost.

3.5 Conclusion

We present Atlas, a practical personalized federated learning framework with dynamic local
differential privacy for IoT applications. Initially, we implemented a layer importance mask for
sharing layers, distinguishing between global and personalized components within the local model.
Following that, we introduce weight-enhanced Local Differential Privacy (LDP) noise to the global
layers prior to their integration into the federated learning framework for aggregation purposes.
Ultimately, we amalgamate the local personalized layers with the aggregated global layers to
effectively execute IoT tasks. Atlas achieved comparable model performance with non-privacy-
preserving methods with privacy guarantee.
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Figure 3.9: Performance comparison on accuracy and R2 between traditional methods, non-
privacy-preserving FL methods, LDP-based FL methods and Atlas
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Figure 3.10: Model performance comparison on variate of scalability between non-privacy-
preserving FL methods, LDP-based FL methods and Atlas.
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Figure 3.11: Model performance comparison on variate of privacy budget ϵ between LDP-
based FL methods and Atlas.



68

0

0.2

0.4

0.6

0.8

1

Local Atlas

R
 S

q
u

ar
e

d

Figure 3.12: Model performance comparison on adding new users in Atlas.



69

FedAvg

FedPer

ClusterFL

Altas

0

0.2

0.4

0.6

0.8

1

85 90 95 100

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

Accuracy

(a) UCI-HAR

FedAvg

FedPer

ClusterFLAltas

0

0.2

0.4

0.6

0.8

1

70 75 80 85 90

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

Accuracy

(b) MASS

FedAvg

FedPer

ClusterFLAltas

0

0.2

0.4

0.6

0.8

1

60 65 70 75 80 85 90

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

Accuracy

(c) WISDM-W

FedAvg

FedPer

ClusterFLAltas

0

0.2

0.4

0.6

0.8

1

60 65 70 75 80 85 90

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

Accuracy

(d) CASAS

FedAvg

FedPer

ClusterFLAltas

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

R Squared

(e) Pecan Street

FedAvg

FedPer

ClusterFLAltas

0

0.2

0.4

0.6

0.8

1

70 75 80 85 90 95 100

N
o

rm
al

iz
e

d
 

C
o

m
m

u
n

ic
at

io
n

 
O

ve
rh

e
ad

Accuracy

(f) CIFAR-10

Figure 3.13: Model performance comparison on communication efficiency between FL meth-
ods and Atlas.
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Chapter 4

PRIVATEHUB: CONTRASTIVE DIFFUSION MODEL FOR

PRIVATE MULTI-SENSOR SCENARIO DATA GENERATION

Internet of Things (IoT) systems have become integral to today’s digital society. These systems, by
connecting various sensors, enable intelligent applications such as traffic forecasting [44], health
monitoring [45], and human activity recognition (HAR) [46]. Researchers have done good work
utilizing the rich amount of IoT sensors to empower these applications, however, it also brings
sensor data privacy challenges.

When it comes to sensor data privacy, we often tend to contemplate the issue solely from the
perspective of the data stream itself. For instance, when the data stream originates from users’
bodily information, it is commonly perceived as privacy-sensitive data [91]. However, in a complex
environment such as multi-sensor scenarios, data amalgamated from multiple sensors can also
reveal a plethora of privacy-sensitive information, even if each sensor’s data stream individually
does not appear to be privacy-sensitive. For example, in a smart space environment surrounded by
multiple sensors [92], such as smart thermostats and inexpensive commercial off-the-shelf sensors
like Doppler, temperature, and humidity sensors, these sensor streams can actively infer various
types of indoor activities. Although some activities may be considered as non-private activities (e.g.,
standing, sitting), other activities may be considered as highly private activities (e.g., calling via
Zoom, typing on the computer, eating meals, writing on the whiteboard). Ensuring that non-private
activities are accurately identified while private activities remain concealed has emerged as a new
privacy challenge in the context of multi-sensor IoT environments. In addition, with the increasing
number of sensors, such privacy concerns are becoming increasingly pronounced.

There are three kinds of traditional privacy protection methods for IoT data streams. (1) Rule-
based privacy frameworks (data access restriction policies) [93]–[95]establish a set of rules or
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Figure 4.1: High-level architecture of PrivateHub

policies that govern the handling of personal data. These rules can include requirements such as
obtaining explicit consent from individuals before collecting their data, limiting access to sensitive
information to authorized personnel only, encrypting data during transmission and storage, and
specifying conditions under which data can be shared with third parties. However, rule-based privacy
frameworks depend on human formulation and enforcement of rules, making them susceptible to
human errors, misunderstandings, or negligence. Unclear or inaccurate rules, or improper enforce-
ment, can lead to improper data processing or non-compliance with regulatory requirements. On the
other hand, the rule-based privacy framework is not suitable for our new privacy challenge, as it
processes data as per data stream instead of the interaction of multiple data streams, which is the
main reason that causes privacy issues. Also, if the users send multiple data streams to a third party,
the third party can still run activity inference models to detect private activities. (2) Differential
privacy based frameworks [68], [96], [97] employ differential privacy (DP) methods to provide
privacy protection for sensor data as well. Differential privacy methods add noise (e.g., Laplace
Noise, Gaussian Noise) to the data in a mathematically rigorous manner with a privacy budget ϵ [55]
to provide strong guarantees of privacy for a data stream. Such a unified method is suitable for a
single-sensor data stream, however, not ideal for complex multi-sensor scenarios. The reason is
that, in complex multi-sensor scenarios, DP achieves privacy protection by adding noise to all data
streams based on ϵ, which fails to capture the inner connection among sensors in a multi-sensor
environment, resulting in a degradation of all applications no matter they are considered as private or
non-private. (3) Generative models for data privacy [98]–[100] also serve as a way to protect the



72

privacy of IoT data by enabling the generation of synthetic data similar to the original datastreams
without exposing the raw data. However, traditional methods such as VAE [101], GAN [102], and
conditional GAN [103] suffer from poor performance caused by posterior and mode collapse, where
the model ignores certain factors in the latent variable, and the generator focuses on generating only
a few modes of the data distribution, neglecting others. Compared to the aforementioned methods,
diffusion models [104] exhibit greater stability and are capable of producing high-quality samples
characterized by enhanced clarity and realism. This is attributed to their capacity to replicate the
data generation process continuously over time. However, in addressing this novel privacy challenge,
it is imperative to generate data streams conditionally to accurately discern non-private applications
while safeguarding the privacy of private applications, which is presently beyond the capability of
the current diffusion models.

Given this new privacy challenge caused by multi-sensor IoT environments, the ideal solution
should be able to achieve the following three requirements: (1) Accurate identification of non-
private applications; (2) Successfully concealing private applications; (3) the sensor datastreams are
meaningful. (e.g., smart thermostats data can still perform temperature prediction.)

In this paper, we propose PrivateHub, a novel synthetic datastreams generation method that
utilizes contrastive learning in the diffusion model to conditional generating datastreams within the
realm of private multi-sensor scenarios, ensuring accurate identification of non-private applications
while simultaneously maintaining the concealment of private applications. PrivateHub is driven
by the objective of harnessing the potent generative capacity of diffusion models to discern the
aforementioned data types. Figure 4.1 shows the high-level architecture of PrivateHub. Our goal
is that: for all the multi-sensor data streams, the users can use them as input and send them into our
proposed framework in a secure environment. Then, the output, which is the generated synthetic
data streams, can be used to detect all non-private sensitive applications and fail to detect any private
applications labeled by the data owner.

Specifically, we propose a comprehensive framework for enhancing the performance of diffusion
models in generating task-specific data, comprising two key stages: App-Conditioned Pre-training
(ACP) and APP-Aware Fine-tuning (AAF). Initially, ACP involves pre-training a diffusion model
using standard procedures on multi-sensor datastreams with application category embedding, en-
abling the model to generate app-conditioned data. Subsequently, AAF facilitates the diffusion
model in further discriminating between privacy-sensitive and non-privacy-sensitive data through
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contrastive learning optimization. In this stage, an off-the-shelf application classifier is employed
to extract features from various generated data, encouraging the model to produce data exhibiting
feature distances closer to those of privacy non-sensitive ones. We conduct our experiments on
real-world multi-sensor datasets from both smart homes and smart offices. We first run a motivation
task to prove that this multi-sensor environment application privacy is severe and important, then
we showcase that our proposed method can successfully solve this emerging problem and also
outperformed the other comparison methods.

4.1 Related Work

4.1.1 Data Privacy

Numerous studies have explored data privacy from different perspectives. There are mainly two
different types: Rule-based Privacy Frameworks [93]–[95] and Differential privacy based frame-
works [68], [96], [97]. For rule-based frameworks, Tamini et al., [105] created a user-centric privacy
protection strategy focusing on user habit-based anomaly detection system. Lola et al., [93] designed
a two phase principles. First, the IoT device manufacturer declares their device’s data collection
intentions. Second, the user declares their own preferences of what is permitted to the IoT device.
Nonetheless, these frameworks rely on the human creation and enforcement of rules, leaving them
vulnerable to human errors, misunderstandings, or oversight. Ambiguous or incorrect rules, or their
improper application, can result in inappropriate data handling or failures to meet legal standards.
Furthermore, rule-based frameworks are ill-suited to our new privacy challenge, as they manage
data by individual streams rather than considering the interactions between multiple streams, which
are central to the privacy issues in question. For DP based systems, Gao et al., [68] tried to integrate
federated learning and LDP to ensure IoT data privacy. However, while effective for single-sensor
streams, this approach is less effective in complex multi-sensor scenarios. DP-based approaches do
not account for the intricate relationships among sensors in a multi-sensor environment, resulting in
diminished utility across all applications, regardless of their privacy designation.
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4.1.2 Generative Models

Generative models are often employed for data augmentation tasks. Based on the generated data,
generative models have huge potential to contribute to overcoming the multi-sensor data privacy
challenge. GAN-based methods are increasingly effective in generating realistic time-series data.
For example, SensoryGANs [106] has introduced systems for creating synthetic sensor data, which
significantly enhance human activity recognition in resource-constrained settings. TimeGAN [107]
and ActivityGAN [108] excel at preserving temporal dynamics and enriching sensor-based HAR
datasets, respectively. However, GAN-based methods experience diminished performance due to
posterior and mode collapse, where the model overlooks specific aspects of the latent variables
and the generator predominantly creates only a limited range of the data distribution’s modes,
disregarding the rest.

Diffusion models are suitable for generating synthetic IoT data streams with good quality. For
example, Sivaroopan et al., [109] presented a Diffusion-Model (DM) based end-to-end framework,
NetDiffus, for synthetic network traffic generation. However, most of the conditional generation
in diffusion models [110], [111] mainly focuses on image generation, which is not suitable for
multi-sensor data streams.

Among all smart building applications, the data generated by IoT sensors contains unique
user-specific patterns that can reveal the user’s identity. Thus, data utility can enable important
applications, but may also lead to user’s privacy concerns. As demonstrated in earlier work [112],
speech data gathered by the built-in microphones of virtual personal assistants and mobile phones
may be processed to infer the user’s emotional state and mental health status without the user’s
awareness or consent. Cameras integrated in mobile devices, particularly in indoor situations, can
gather sensitive and personal data [113]. On the other hand, if the application makes an uninvited or
invasive inference on this data, or when this data is transferred to third-party servers for storage and
processing, this might result in privacy breaches, such as building occupancy detection using smart
meter data [114].

Various research works have already been proposed to solve data privacy issue in several
aspects, such as differential privacy algorithms [115], GANs, Autoencoders [116], and Variational
Autoencoders(VAE) [101]. Hajihassnai et al. [117] introduced ObscureNet, an encoder-decoder
architecture that successfully masks private characteristics connected with time series data collected
by sensors in IoT devices while retaining the original time series’ information content. Osia et
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al. [118] presented a new hybrid framework for efficient privacy-preserving mobile analytics by
breaking down a DNN into a feature extractor module, which should be deployed on the user’s
device, and a classifier module, which operates in the cloud. Malekzadeh et al. [119] introduced
Replacement AutoEncoder, a privacy-preserving sensing framework that transforms discriminative
features corresponding to sensitive inferences into non-sensitive features to protect individuals’
privacy. The possibility of recognizing the sensitive inferences and detecting the occurrence of them
is eliminated, and is evaluated in an activity recognition task.

4.2 Motivation

4.2.1 The New Privacy Challenge

When addressing data privacy, the emphasis often lies on the confidentiality of the data per se,
yet the implications of sensor fusion in multi-sensor environments are frequently overlooked.
Although sensor fusion enhances application predictions through the integration of diverse data
inputs—yielding significant benefits—this technique also raises substantial privacy concerns. In
multi-sensor environments, the aggregation of data from various sensors can reveal intricate details
about an individual’s private life, including sensitive activities that are typically concealed. This
duality poses a critical challenge: while the predictive utility of multi-sensor fusion is undeniable,
it simultaneously has the capacity to expose highly private behaviors. As such, the development
and deployment of these technologies must carefully balance the benefits against the potential for
privacy invasion. Ensuring robust privacy safeguards and transparent policies in the deployment of
sensor fusion technologies is crucial to maintaining trust and protecting individual privacy rights in
increasingly monitored environments.

To demonstrate that this is a critically important and highly prevalent research question in
practice, we conducted preliminary experiments to validate this issue. We collected datastreams
from multi-sensor environments (in this case 2 office rooms) and tried to classify the activities
by using these sensor data. Figure 4.2 shows an example of our sensor placement of the office
setup. The sensor we use in the setup is AWAIR Omni© which collects indoor environmental quality
(IEQ) factors data (e.g. CO2, PM2.5, illuminance, etc.), sound pressure level (SPL), humidity, and
temperature. Characteristics of this sensor can be found in table 4.1. In this set of experiments, 5
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participants engaged in various activities typical of office environments, including: (1) typing on a
computer, (2) conducting Zoom© calls, (3) writing on a whiteboard, and (4) standing while drinking.
These activities were performed for 15 minutes each within two different offices where sensors
were uniformly placed. Each participant underwent two sessions, each lasting 1 hour, during which
sensors recorded data every 10 seconds. Following each participant’s session, the room was vacated
and left with open doors for 1 hour to allow for natural cleaning of the office environment. This
precaution ensured that pollutants emitted during one session did not affect subsequent experiments.
Thus, all experimental conditions started with identical indoor air pollutant concentrations.

We choose to perform the above four activities for 2 reasons. First, these are normal indoor
office activities that we have every day. Second, typing on a computer, conducting Zoom© calls and
writing on a whiteboard are often considered as very personal activities and highly privacy-sensitive,
however, standing while drinking is a meaningful activity to help track the user’s health (The intake
of water in a standing position can cause damage to your kidneys) [120]. Ideally, we want the
data streams can only detect standing while drinking, and can not detect the privacy-sensitive ones.
However, we run a simple Support Vector Machines (SVM)[121], and we train the classification
model in a self-training fashion. The reason we use self-training is that in supervised training, it’s
already well-known that given the sensor data and the correct labels, we can successfully classify
the activities [122]–[124]. But in reality, when people share the sensor data, it’s not always sent
with the labels. So if the soft label from self-training can match the actual label in the datasets, it
means even sending sensor data streams without labels, it’s still a potential privacy leakage.

Figure 4.3 shows the confusion matrix of our preliminary study, where A0, A1, A2 and A3 reflect
the four above activities. We found that the soft label of each activity from self-training can match
the real label with high accuracy from 82% to 87%, which indicates that this activity privacy leakage
in a multi-sensor environment is crucial and it’s important and meaningful for us to come up with a
private activity protection framework before sharing multi-sensor data streams.

4.2.2 Beneficial for IoT Data training among users

For users owning IoT data, a prevalent challenge often revolves around the inadequacy of local
data, which significantly impedes the ability to train effective machine learning models. As a result,
there is a growing inclination towards collaborative learning approaches. Traditionally, two kinds of
primary methodologies have emerged: (1) Cloud Computing based Methods [125], [126]: which
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Figure 4.2: Example of sensor data collection.

Table 4.1: Characteristics of sensors

Device Sensor Value
range

Error Unit

Awair
Omni

Humidity [0, 100] ±2% %
Temperature [-40,

125]
±2 ◦C ◦C

CO2 [400,
5000]

±75ppm ppm

TVOC [0,
60000]

±10% ppb

PM2.5 [0, 1000] ±15 µgm−3

SPL [48, 90] dBA

Figure 4.3: Confusion matrix of our preliminary study
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Figure 4.4: Training setups of PrivateHub

involve aggregating user data within cloud data centers for collective machine learning training.
While this approach can substantially enhance model performance, it introduces potential privacy
risks due to the necessity of transmitting raw data to centralized cloud servers. (2) Federated
Learning based Methods [69], [127]: which mitigate privacy concerns by solely uploading model
parameters for aggregation, yet it remains vulnerable to privacy breaches such as model inversion
attacks. Conversely, overly stringent measures to safeguard data privacy, including techniques like
differential privacy [96], may inadvertently compromise the efficacy of machine learning models by
limiting the amount of useful data available for training.

However, in practical contexts, the actual sensitivity of data privacy may not always align with
conventional perceptions. For instance, recording environmental factors like ambient temperature
and CO2 levels typically does not classify as privacy-sensitive information. Similarly, many activities
inferred from such sensor data are often not deemed sensitive from a privacy perspective. However,
the primary apprehension arises when seemingly innocuous data points are leveraged to infer
sensitive activities, thereby discouraging users from participating in collaborative data sharing
initiatives. Hence, this paper proposes a novel data generation architecture designed to uphold robust
privacy measures while ensuring that meaningful activities can still be effectively identified and
analyzed. The framework aims to safeguard privacy-sensitive activities while enabling users to
confidently share their data, thereby fostering greater collaboration and innovation in IoT-driven
applications.
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4.3 System Design

In this section, we illustrate the details of the proposed method. We draw our motivation from the
fact that existing methods mainly focus on how to improve the efficiency of activity prediction,
where the privacy issue among these methods are largely neglected, expecting effective techniques
to discriminate privacy sensitive data and the non-private sensitive ones. Therefore, our method
is motivated to leverage the powerful generative ability of diffusion model in discriminating the
aforementioned data. Particularly, we propose a general paradigm to optimize the diffusion model in
producing App-aware data, along with two stages, namely App-Conditioned pre-training (ACP) and
App-Aware fine-tuning (AAF). Figure 4.4 shows the training setup of our method. Specifically, in
Figure 4.4(a), ACP pre-trains a diffusion model on multi-sensor data datastreams with task category
embedding, so that the model is capable of producing app-conditioned data after this stage. In this
process, we aim to build a pre-trained diffusion model for multi-sensor data streams generation and
use it as a base model for the AAF step. The steps of ACP follow the regular procedure of diffusion
model training. We discuss the detailed steps in the following section 4.3.2.

Afterward, AAF enables the diffusion model to further discriminate privacy sensitive and non-
sensitive data by conducting contrastive learning for optimization, where this stage adopts an
off-the-shelf activity classifier to extract features from different generated data and encourages the
model to produce data with closer feature distance to the privacy non-sensitive ones. Figure 4.4(b)
shows the training setup for AAF. More specifically, once we have the pre-trained model from ACP,
the users can input their multi-sensor data streams into the diffusion model to generate synthetic
data. Then, the off-the-shelf activity classifier (we use a simple CNN structure in our method as an
example, any off-the-shelf activity classifier method can replace the CNN classifier.) will classify the
private and non-private classes. On the other hand, we design an App-aware feature discrimination
function (AAFD), which integrates contrastive learning to distinguish the generated data. We aim to
generate the multi-sensor data streams more related to non-private applications and less related to
private applications. We achieve this by using the feature of real data and generated data to calculate
the loss function and send it to update the diffusion model at each iteration. Moreover, we understand
that the generated data may not be able to have the expected performance at all conditions. For
example, in some iterations, the generated data can not perform application classification with
desired accuracy. To eliminate the low-quality data generation, we introduce a data filtering process
to ensure that only the data generated can achieve certain classification accuracy will be used to



80

send to AAFD. We discuss the detailed steps in the following section 4.3.3.

4.3.1 Design Fashion of Pre-training and Fine-tuning

We choose to adopt the pre-training and fine-tuning fashion to design our system for three reasons:
(1) Accuracy and Efficiency: pre-training and fine-tuning architectures offer several distinct
advantages over training models from scratch. Pretrained models leverage extensive datasets to
learn rich and generalizable feature representations, significantly enhancing data efficiency. This
foundational knowledge enables the models to achieve or surpass the performance of models trained
from scratch in considerably shorter timeframes and with less data during the fine-tuning phase.
However, directly training the model from the beginning to the end of the process will cause
longer training time. On the other hand, the model will deal with noise corruption and updating the
contrastive loss function at the same time, which lead to poor accuracy performance. (2) Flexibility:
pre-trained models can be adapted across different applications with minimal adjustments, provided
there is sufficient similarity between the applications. In reality of our multi-sensor application
privacy challenge, it’s highly possible that different users have varying standards for the privacy of
their own data and activities. For instance, some users may not consider their dining activities to be
privacy-sensitive, while others may strongly disagree. Therefore, the flexibility of data generation
systems becomes critically important. By utilizing architectures that incorporate pre-training and
fine-tuning, we can ensure that data tailored to the diverse privacy requirements of different users can
be generated quickly and flexibly. In contrast, employing direct training would necessitate starting
the training process from scratch for every unique user demand, which could lead to significant
inconvenience.

4.3.2 App-Conditioned Pre-training

Since there is no available pre-trained models to support our motivation, the first step is to train a
diffusion model with the multi-sensor data streams, i.e., the ACP stage. In doing so, ACP trains the
diffusion model following the standard procedures, which consist of the training and sampling
processes, where Figure 4.5 demonstrates the overall pipeline of the ACP stage.
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Figure 4.5: The overall pipeline of the App-Conditioned Pre-training (ACP) stage.

Training. Given an input data x0, we firstly randomly sample a noise ϵ and a timestep t from
the random Gaussian distribution N(0, I) and uniform distribution U(0, T ), respectively, where
I denotes an identity diagonal matrix and T represents the maximum timestep. Then, we use
the sampled ϵ and t to corrupt the input clean data x0 into a series of noisy data, termed as
{x1, x2, . . . , xT}, where the process q(xt|xt−1) is formulated by:

q(xt|xt−1) = N(xt;
√
1− βt · xt−1, βt · I),

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1), (4.1)

where the aforementioned equations denote the reparameterization trick in DDPM [128]. Following
Eq. 4.1, we can sample xt at any timestep t with αt = 1 − βt and ᾱt =

∏t
i=1 αi, where xt is

computed through the following equation:

xt = q(xt|x0),

= N(xt;
√
ᾱt · x0, (1− ᾱt) · I),

=
√
ᾱt · x0 +

√
1− ᾱt · ϵ, (4.2)

where
√
ᾱt is a blending scalar correlated to the noise schedule of DDPM [128].
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Sampling. The sampling process of diffusion model pθ(x0 : T ) starts from a random Gaussian
noise xT ∼ N(0, I), and iteratively de-noises from it into the final clean data x0 conditioned on the
task embedding Ec, where the sampling process is formulated as:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),Σ),

pθ(x0:T ) = p(xT )
T∏
t=1

pθ(xt−1|xt), (4.3)

Specifically, we use DDIM sampler during the sampling process, where the final clean data x0 is
generated through:

xt−1 =
√
ᾱt−1 ·

xt −
√
1− ᾱt · ϵθ(xt,Ec, t)√

ᾱt

,

+
√
1− ᾱt−1 · ϵθ(xt,Ec, t), (4.4)

4.3.2 Optimization Objective

In training, the usual variational bound on negative log-likelihood is optimized by:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
=

Eq

[
− log p(xT )−

∑
log

pθ(xt−1|xt)

q(xt|xt−1)

]
=: L, (4.5)

where L in the equation above is written as:

L = Eq

 DKL(q(xtx0)∥p(xT ))+∑
t1DKL(q(xt−1xt, x0)∥pθ(xt−1xt))

− log pθ(x0x1)

 . (4.6)

Herein, KL refers to the Kullback-Leibler divergence.

To optimize the diffusion model, we use an embedding layer with a learnable matrix M to
project the task category label c into task embedding Ec, where Ec then serves as the condition for
the diffusion model to de-noise xt. Besides the task category label c, we also incorporate statistical
features for each task to enrich the information available about each task. The features include the
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Figure 4.6: The overall pipeline of the App-Aware Fine-tuning (AAF) stage.

mean, standard deviation, and Z-score, calculated as (x− µ)/σ, where x is an observed value, µ
represents the mean, and σ denotes the standard deviation. Once xt and Ec are computed, we send
xt, Ec, and t into the diffusion model to predict noise, and minimize the Mean-Squared Error (MSE)
distance between the predicted and the random Gaussian noise ϵ, where the loss function L(θ) to
optimization the model parameters θ of the diffusion model is written as:

L(θ) = ∥ϵ− ϵθ(xt, t,Mc)∥2, (4.7)

where we follow DDPM in predicting noise ϵθ(xt, t,Mc) instead of the mean, so as to fit the data
distribution. Herein, we conduct the diffusion model following the original architecture of DDPM
[128], which uses an enhanced U-net architecture that consists of an encoder, a decoder, and multiple
Transformer [129] blocks. Particularly in DDPM, the encoder mainly down-samples the input image
into latent representations; the decoder up-samples the latent representations to the original size
of image; the Transformer blocks learn the internal correlation between image patches via the
self-attention mechanism. In the setting of multi-sensor environment, the U-net firstly encodes
the noisy data xt into latent representations, and decodes the representations into predicted noise
ϵθ(xt, t,Mc), where the Transformer blocks establish the relationship of data at various sensor time.
In this way, we update the model parameters θ of the diffusion model until convergence, where the
optimized diffusion model is capable of producing data according to task categories.
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4.3.3 App-Aware Fine-tuning

With the assistance of the ACP stage, the diffusion model is able to produce realistic data according
to various tasks. Nevertheless, the intrinsic capabilities of the trained model still fails to discriminate
privacy sensitive and non-sensitive data. To improve the inefficient capabilities, tailored optimization
for data discrimination is expected, recent studies show that Reinforcement Learning with Human
Feedback (RLHF) [130], [131] has demonstrated superior proficiency in aligning model outputs
with human preferences. However, reinforcement learning algorithms, especially those based on
value functions like Q-learning [132], frequently encounter stability and convergence issues during
training. These arise from their dependency on accurate value estimates, which are influenced by
policy changes, leading to high variance. Also, designing effective reward functions that reflect long-
term goals is challenging and critical, as it significantly impacts learning outcomes. Additionally,
the performance of these algorithms heavily relies on the complexity and observability of their
environments, which can impede learning effective strategies. Due to the need for extensive data
and prolonged training, these algorithms also require significant computational resources, limiting
their applicability in resource-constrained scenarios. Moreover, although reinforcement learning
can perform well in specific tasks, the strategies learned often struggle to generalize to different
tasks or slightly altered environments.

Thus, we draw another insight from the advancement of contrastive learning, which digs positive
and negative samples in a self-supervised manner, and enables the model to generate outputs that
are more similar to the positive samples. This technique has illustrated promising performance in a
wide series of down-stream tasks in the computer vision community, and shows superior efficiency
compared to RLHF without the extra requirements of human feedback. Figure 4.6 shows the overall
pipeline of our AAF stage. To enhance the diffusion model with contrastive learning, we need to
consider from two perspectives: (1) the rules of selecting positive and negative samples; (2) the loss
function of contrastive learning. In the following texts, we present the details of both aforementioned
perspectives.

Rules to Select Positive and Negative Samples. Our goal of contrastive learning is to enable
the diffusion model to discriminate privacy sensitive and non-sensitive data. Therefore, the rules to
select positive and negative samples are straightforward, where we choose the real non-sensitive
data as positive sample, and treat generated data with respect to privacy sensitive task categories. In
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details, given the privacy sensitive task category c′ and non-sensitive one c, we follow the standard
process of Eq. 4.4 and generate the corresponding data with the pre-trained diffusion model, termed
as x0 and y′, respectively. Then, we randomly sample a real non-sensitive data y∗ from the multi-
sensor datas streams D = {y∗1, y∗2, . . . , y∗ND

} with the total length of dataset termed as ND. In this
way, we leverage y∗ and y′ as the positive and negative samples, respectively, where x0 and y′ are
then used in later processes of the AAF stage.

Data Filtering. Before we compute the loss function with contrastive learning, it is vital to ensure
the data quality of x0. Once we optimize the diffusion model with ill-presenting quality of x0, there
are possibilities that x0 has closer distance to y′ than y∗, where might lead to inferior optimization
during fine-tuning. To solve this problem, we leverage an off-the-shelf activity classifier Eϕ with
its model parameters as ϕ. We observe that low-quality data would cause Eϕ to produce inaccurate
results, where we set a threshold G to filter the produced low-quality data, where the data filtering
process D(x0, G) is formulated as:

y = D(x0, G) =

{
x0, Eϕ(x0) > G

∅, Eϕ(x0) ≤ G
(4.8)

Afterward, we use the filtered data y to compute the loss function of contrastive learning. If the
data filtering process outputs ∅, we do not compute the loss function of contrastive learning in
this training iteration. In our experiment, we use a simple convolutional neural network (CNN) for
application classification, which contains four convolutional layers followed by a ReLU activation
function with 2 fully connected layers.

4.3.3 App-Aware Feature Discrimination

Once y, y′, and y∗ are ready, the final step is to optimize the diffusion model with the contrastive
learning, i.e., the App-Aware Feature Discrimination (AAFD) process. Figure 4.7 shows the overall
pipeline of AAFD, where the model in gray represents the off-the-shelf activity classifier. To
perform AAFD, we use the activity classifier Eϕ as a feature extractor, where we leverage the latent
representations before the final Fully-Connected (FC) layer as extracted features, and then conduct
the contrastive learning by comparing various features of different data, encouraging the diffusion
model to generate outputs that are more similar to y∗ rather than y′. Specifically, we firstly input y, y′,
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Figure 4.7: The overall pipeline of the App-Aware Feature Discrimination (AAFD). Herein,
the model in gray represents the off-the-shelf activity classifier; “FC” denotes the fully-
connected layer, which is normally a single linear projection layer to project the final latent
representations into a probability distribution.

and y∗ into Eϕ, and obtain their corresponding features, termed as F, F′, and F∗, respectively. Then,
we compute the loss function of contrastive learning (termed Lcontrast(θ)) following the standard
form of triple loss, which is written as the following equation:

Lcontrast(θ) =
[
∥F− F∗∥2 − ∥F− F′∥2 + α

]
, (4.9)

where α represents a hyper-parameter that determines the margin value of the triplet loss. In training,
we optimize the diffusion model with the loss function in Eq. 4.9 until convergence. For further
analyses of this stage, the contrastive learning encourages the diffusion model to produce data y

that have closer feature distance to the real data y∗ rather than y′, and allow the activity classifier Eϕ
to output more accurate results with the corresponding feature inputs. In this way, we are capable of
allowing the diffusion model to producing privacy non-sensitive data, meanwhile maintaining the
sample quality in its generated data.
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4.4 Evaluation

To evaluate the performance of PrivateHub on generality, practicability and usefulness, we
experiment our method on real-world smart home and smart office multi-sensor datasets on the
following research questions:

• RQ1: How does PrivateHub perform on synthetic data generation? Can the generated
data streams from PrivateHub detect non-private applications and conceal private ones?
And what are the performance differences between PrivateHub and the other methods?

• RQ2: How does PrivateHub perform if the users switch the selection of the private/non-
private applications? Will it influence the overall performance? This is a practical test to see
if PrivateHub is robust enough to handle different users.

• RQ3: How do the generated data streams perform on their original purposes? (e.g., CO2

prediction, temperature prediction, etc)

• RQ4: How does PrivateHub perform if there are missing application labels?

4.4.1 Applications and Datasets

For the new application privacy challenge in multi-sensor environments, we opt to validate our
approach using smart home and smart office datasets. It is important to note that this does not imply
that our method is limited to data generation in these two scenarios. We selected these scenarios
because they represent common examples of multi-sensor environments.

(1) Smart Home Activities: The CASAS dataset1, a product of the CASAS smart home project,
serves as a resource for recognizing daily living activities (ADL) through sequences of sensor
states over time, aiming to facilitate independent living applications. The data collection took place
across different apartments, each outfitted with a trio of sensor types: motion, temperature, light,
water, burner and door sensors. We keep the same data pre-processing mechanism as mentioned
in [88]. We have chosen five specific datasets named “Milan”, “Kyoto1”,“Kyoto2”, “Kyoto3” and
“Kyoto4” selected for the consistency in their sensor data representation. Within each dataset, we

1https://casas.wsu.edu/datasets/
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have streamlined the original ADL categories into 11 home activity-related categories such as
“sleep”, “eat”, ”leave home”, ”enter home”, “bath”, etc. Each data entry is a categorical time series
with a length of 2,000, depicting sensor states across a certain time span.

(2) Smart Office Activities: We use the above mentioned self-collected smart office dataset to
illustrate the smart office activities. Figure 4.2 shows an example of our sensor placement of the
office setup. We follow the same setup as mentioned in our motivation section.

4.4.2 Experimental Setup and Evaluation Metrics

We implemented our experiments using one NVIDIA RTX 3090 GPU. For the diffusion model
settings, the step size of the forward diffusion process is controlled by a variance schedule βt ∈
(0.0001, 0.05), where t ranges from 1 to T . The maximum diffusion step is set to be 100. The batch
size was 128, and training spanned 200 epochs with early stopping using a patience of 30 epochs to
counter overfitting.

For the CASAS datasets, since we are under the pre-training and fine-tuning setup, we combine
these datasets together for training in a leave-one-out fashion. For example, If we assume ”Kyoto4”
is a new user, we use “Milan”, “Cairo”, “Kyoto1”,“Kyoto2” and “Kyoto3” to perform the pre-
training step, then only use ”Kyoto4” for fine-tuning and testing. We divided the leave-one-out
dataset into fine-tuning training and testing sets using an 80-20 split.

For our self-collected smart office dataset, since we collected the multi-sensor data streams on 2
office rooms, we chose to pre-train on one room, and fine-tuning on other room, and we also divided
the fine-tuning room datasets into fine-tuning training and testing sets using an 80-20 split.

For comparison methods, since PrivateHub is a synthetic data generation framework, we
compare our method within the same functionality. However, it’s crucial to state that most of the
GAN-based models [106], [133], [134] have shown limitations that the generated data often lack
diversity and pose significant challenges during the training phase due to mode collapse and unstable
convergence. So we choose the following GAN-based methods tailored to our cases. We compare
PrivateHub with three different types of methods.

• TimeGAN [107]: Different from the other GAN-based method, TimeGAN has shown good
results to be trained stably and successfully generating time series data. For TimeGAN, we
adopt our pre-training and fine-tuning setup, which means that we replace the diffusion model
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part solely with the TimeGAN framework and compare the results.

• Conditional GAN [135]: Conditional GAN extends the original framework by incorporating
conditional information, enabling the generation of data samples that are conditioned on
specific attributes or labels. This model architecture enhances the versatility and directed
capability of GANs, making them more suitable for tasks that require controlled output
generation. In our case, the conditional is to generate data that can conceal private activities
and still maintain reasonable accuracy on non-private ones. So we assign the discriminator
with a lower score on the private activities and a higher score on the non-private ones. Since
this method needs to put the condition features within the training process, we only use direct
training for Conditional GAN.

• Occupancy-GAN [92]: Occupancy-GAN is designed to conditionally generate data as well.
Different from Conditional GAN, in Occupancy-GAN, the generated data is classified by
two application classifiers. Two classifiers output 2 different losses and add these losses into
the generator. It utilized a customized loss combination function to guide the generator by
reducing loss from GAN and operational classifier (C1) and increasing loss from expositional
classifier (C2). It eventually tries to optimize the C1 and break down the C2. Since this method
needs to put the condition features within the training process, we only use direct training for
Occupancy-GAN.

For evaluation metrics, we use accuracy for the classification tasks. We evaluate the performance
of each user’s test data. We repeated each experiment 5 times and averaged results for classification
accuracy. For CASAS datasets, we label the ”bath” and “leave home” as private activities, the rest
we assume them as non-private ones. For smart office dataset, we label conducting Zoom© calls as
the private ones, the rest we assume them as non-private ones. Please note that this is our default
setting, in RQ2 we switch the application selections.

4.4.3 Results

4.4.3 RQ1: Performance of synthetic data generation

In this section, we compare how PrivateHub performs on synthetic data generation with other
methods of concealing private activities. Table 4.2 shows that PrivateHub can achieve com-
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parable accuracy performance compared to raw data on non-private activities, and also achieve
lower than 40% of private activities, which is around 40-50% lower than the raw data. We can also
observe that, TimeGAN has better performance on both sides comparing to conditional GAN and
Occupancy-GAN. However, comparing to PrivateHub, the non-private accuracy performance
is significantly lower. Also, the private activities are also higher than PrivateHub, but we do
observe that all methods have a lower private activity accuracy compared to raw data. The reason is
that, for PrivateHub and TimeGAN, the pre-training and fine-tuning setup can help smooth the
whole training process, which makes the generated data more similar to the raw data distribution
on the non-private activity features. Also, our designed AAFD can better capture the difference
between private and non-private activities, which makes the accuracy on private activities much
lower.

On the other hand, PrivateHub outperforms TimeGAN. The reason is that, although we
only change the diffusion model with TimeGAN, the GAN architecture is not really suitable for
this task compared to diffusion modelsDiffusion models are renowned for their ability to generate
exceptionally high-quality samples, characterized by impressive detail and coherence, due to their
incremental denoising approach that methodically removes noise throughout the data generation
process. This attribute ensures that the produced samples closely mimic real data. Furthermore,
these models exhibit superior training stability, attributed to their probabilistic foundations based
on Markov chains and gradual gradients. Such stability mitigates common training issues like
convergence difficulties, providing a smoother learning curve. Additionally, the training process
of diffusion models is particularly intuitive, involving a direct and clear engagement with both
the data and noise distributions. This process is facilitated by progressively refining noisy data
through a denoising process, making the models both effective and accessible for generating new
data instances.

4.4.3 RQ2: Performance of synthetic data generation with switched private and non-private

activities

We compare the robustness of PrivateHub by switching the private and non-private activity
labels. By default, we use ”bath” and ”leave home” as private activities, and the rest we label as
non-private. However, different users may have different privacy activities. In this experiment, we
switch the labels 3 times and we demonstrate the performance on ”Milan” and ”Kyoto1” datasets.
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Private 1 we labeled ”cook” and ”eat” as private, Private 2 we labeled ”personal hygiene” and ”eat”
as private, Private 3 we kept the ”bath” and ”leave home” to see the difference.

Figure 4.8 shows the result of private and non-private activity switch. We observe that the
overall trend follows the same as RQ1. However, we see that for Milan, under Private 1 settings,
the GAN-based methods can not generate qualified data streams. And for Kyoto1, both Private 1
and 2 settings can not generate qualified data, while PrivateHub can generate synthetic data
under all 3 settings. The reason is that, compared to Diffusion Models, GAN-based models have
limitations that restrict their effectiveness in applications that require outputs with high diversity.
Although Conditional GANs offer a method to introduce conditional variables to the generator,
controlling the specific types of outputs generated by GANs in practice still presents challenges. In
contrast, Diffusion Models facilitate a more natural control over the outputs by adjusting the noise
levels throughout the generation process, allowing for a more nuanced and flexible manipulation of
the generated data. On the other hand, instead of using conditional embedding, we use contrastive
learning based loss function, AAFD, to further fine-tine the generated data. Contrastive learning
effectively learns data representations by maximizing the consistency between similar samples and
minimizing the consistency between dissimilar samples, which helps the diffusion model to generate
more non-private data and less private data. This approach enables the extraction of informative and
discriminative features, which enhances the performance of subsequent tasks.

4.4.3 RQ3: Performance of synthetic data generation with original purpose

In this section, we want to figure out if the generated data will damage the original purpose of each
data stream. For example, in our collected data, the original purpose for AWAIR Omni© which
collects indoor environmental quality (IEQ) factors data (e.g. CO2, PM2.5, illuminance, temperature,
etc.) is to monitor the indoor environment of the smart office, and further perform prediction tasks,
such as CO2 level prediction, temperature prediction. There is a chance that the generated data may
damage such data utility. Figure 4.9 shows the performance on CO2 and temperature prediction.
We use a simple LSTM [136] for time series prediction. We observe that all methods can achieve
reasonable predictions and PrivateHub has the closet performance comparing to raw data.
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Figure 4.8: Performance comparison on switch private and non-private activities (Y-axis is
accuracy)
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4.4.3 RQ4: Performance of PrivateHub on missing application labels

In reality, it’s very likely that when the user sends the data streams, there will be missing activity
labels. However, it’s crucial to understand whether the generated data from PrivateHub with
partial activity labels can still be classified. In this experiment, we block 2 activity labels and train
PrivateHub with all other labels then test if we can still identify the blocking 2 applications. We
tried 5 different setups and compared PrivateHub with the missing label training version. We
observe that for most (60%) of the setups, we have no accuracy lost. For 20% of the setups, we have
around 2% accuracy drop. For the last setup, we have around a 14.2% accuracy drop. The reason is
probably that the blocking label is highly related to private applications.

4.5 Conclusion

Multi-sensor environments are widespread, constantly collecting environmental data which enhances
daily life but also introduces privacy risks in multi-sensor contexts. Our method utilizes contrastive
learning within a diffusion model to generate synthetic data streams tailored for privacy in multi-
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Figure 4.10: Performance comparison on missing application labels (Y-axis is accuracy)

sensor settings. We propose App-Conditioned Pre-training (ACP) and APP-Aware Fine-tuning
(AAF). ACP conditions the model on multi-sensor data with application-specific embeddings, while
AAF fine-tunes the model’s ability to distinguish between privacy-sensitive and non-sensitive data.
Our tests show that we effectively reduce privacy risks, lowering the detection accuracy of private
applications by 40% to 50% and maintain the same level of performance on non-private applications
compared to raw data.
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Chapter 5

CONCLUSION

The proliferation of the Internet of Things (IoT) is integrating millions of new smart devices, includ-
ing smartphones, sensors, and wearables, into our physical environment, significantly enhancing
human life quality. The exponential increase in smart devices and users generates vast amounts of
IoT sensing data, which, coupled with advances in deep learning, offers substantial potential for
smart IoT applications. To realize these applications, users typically need to either (1) aggregate data
from multiple users to construct robust models or (2) employ various types of sensors. However, such
data aggregation raises significant privacy concerns. In multi-user environments, IoT edge devices
often collect limited data, which is inadequate for training advanced deep learning models. Collabo-
rative training approaches like cloud computing and federated learning are employed to develop
robust models by pooling data from numerous users, but these techniques can compromise data
privacy (e.g., through untrusted central servers or model inversion). In multi-sensor environments,
sensor fusion involving various devices like lights, doors, speakers, and CO2 sensors enriches our
living and work environments, however this fusion can inadvertently expose private activities. In our
previous research [4], we demonstrated that combining data from CO2 and humidity sensors could
accurately determine room occupancy. The challenge in multi-sensor environments is maintaining
sensor accuracy for their intended purposes while avoiding the detection of sensitive activities.

In response to these concerns, this dissertation explores three strategies to achieve privacy-centric
IoT applications without compromising the accuracy relative to non-privacy-preserving methods.
(1) Personalized Federated Deep Reinforcement Learning (PFDRL), a system designed to aid local
users in achieving private and efficient energy management. PFDRL adopts a decentralized federated
learning (DFL) framework, eliminating the need for a central server and implementing personalized
federated reinforcement learning to address standby energy reduction in residential buildings. (2)
Atlas, a framework that ensures privacy and accuracy in IoT applications through personalized
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federated local differential privacy (LDP). Initially, we establish a layer-sharing strategy known
as the layer importance mask, which differentiates between global and personalized layers within
the local model. Subsequently, we incorporate a weighted LDP mechanism, applying noise to the
global layers prior to their transmission to the federated learning framework for aggregation. Lastly,
we merge the local personalized layers with the aggregated global layers to execute IoT tasks. (3)
PrivateHub, an innovative method for generating synthetic data streams that employs contrastive
learning within a diffusion model framework. This method conditionally generates data streams for
private multi-sensor scenarios, effectively differentiating non-private applications while protecting
the privacy of sensitive ones. PrivateHub harnesses the robust generative capabilities of diffusion
models to accurately identify various data types.PrivateHub includes a structured framework that
enhances the performance of diffusion models for generating application-specific data, consisting of
two main phases: App-Conditioned Pre-training (ACP) and APP-Aware Fine-tuning (AAF). In the
ACP phase, the diffusion model undergoes pre-training using standard techniques on multi-sensor
data streams to produce application-conditioned data. Following this, the AAF phase enhances the
model’s ability to distinguish between privacy-sensitive and non-sensitive data using contrastive
learning optimization. During this stage, we utilize a readily available application classifier to
analyze features from the generated data, prompting the model to produce outputs whose feature
distances align more closely with those of non-sensitive data.

5.0.1 Limitations and Future Work

While this dissertation has brought major improvements in the trade-off in multi-user and multi-
sensor IoT data between accuracy and privacy, the presented approaches still have some limitations,
which are worth exploring in the future. In this section, we review the limitations of our current
designs and highlight some future research avenues as a continued effort toward private and accurate
IoT applications.

Communication efficiency optimization: In realistic IoT settings, communication efficiency is
a crucial factor to evaluate whether the designed system can be used in real-time. In this dissertation,
we understand that our proposed method achieves lower communication cost simply because of the
selected layer mechanism, which means we transmit less package to the central server and is not
optimal for communication efficiency compared to other FL frameworks that are mainly focusing
on communication reduction [67].
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Secure environment: This dissertation mainly focuses on the trade-off between IoT data privacy
and accuracy. It’s necessary to highlight that, security is another important factor in a realistic IoT
setup. In this dissertation, we did not pay much attention to the security side. In the future study, to
achieve an accurate and private IoT framework, we should consider integrating security procedures
to enhance our system.

Hierarchical federated learning: Our federated learning methods are based on single-layer FL
settings, meaning we only have clients and a central server. In reality, IoT platforms are not always
single-layer. For example, it’s practical that in a smart building, the data streams are collected from
low computational power devices and they connect with an edge gateway, then the gateways connect
to the cloud server. Such a hierarchical setting brings more challenges on privacy, accuracy and
communication efficiency. We aim to dive deeper into more realistic IoT settings and better optimize
the trade-off between these aspects.
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[64] Y. Jiang, J. Konečnỳ, K. Rush, and S. Kannan, “Improving federated learning personalization
via model agnostic meta learning,” arXiv preprint arXiv:1909.12488, 2019.

[65] V. Kulkarni, M. Kulkarni, and A. Pant, “Survey of personalization techniques for federated
learning,” in 2020 Fourth World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), IEEE, 2020, pp. 794–797.

[66] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing, “Clusterfl: A similarity-aware feder-
ated learning system for human activity recognition,” in Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services, 2021, pp. 54–66.

[67] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask: Joint computation and
communication-efficient personalized federated learning via heterogeneous masking,” in
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, 2021,
pp. 42–55.

[68] J. Gao, M. Tang, T. Wang, and B. Campbell, “Pfed-ldp: A personalized federated local
differential privacy framework for iot sensing data,” in Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems, 2022, pp. 835–836.



105

[69] J. Gao, W. Wang, F. Nikseresht, V. Govinda Rajan, and B. Campbell, “Pfdrl: Personalized
federated deep reinforcement learning for residential energy management,” in Proceedings
of the 52nd International Conference on Parallel Processing, 2023, pp. 402–411.

[70] L. Tu, X. Ouyang, J. Zhou, Y. He, and G. Xing, “Feddl: Federated learning via dynamic
layer sharing for human activity recognition,” in Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems, 2021, pp. 15–28.
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