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Abstract

Reinforcement Learning (RL) is a powerful framework for sequential decision making. However,

standard RL methods often struggle when the environment dynamics are uncertain, leading to

poor performance in real-world applications such as autonomous navigation, financial portfolio

management, and robotic control. This limitation is a significant factor contributing to the lack of

widespread adoption of RL-based control systems in industry.

To address this challenge, researchers introduced the robust Markov Decision Process (MDP),

a sequential decision-making framework that explicitly models uncertainty in transition functions.

Robust MDP aims to find a policy that consistently performs well across a range of possible transition

functions. It has great potential for application in various domains, where the environment dynamics

are uncertain or changing.

In this thesis, we model a robust MDP as a two-player game. The first player represents the

policy, trained via standard policy optimization methods. The second player is an adversary that

selects transition functions aimed at deteriorating the performance of the policy. A key contribution

of this work is the transition gradient theorem, which enables effective training of the adversary by

providing a structured way to optimize the transition functions. The two players are updated in an

alternating fashion.

We validate the proposed approach in simple environments to demonstrate robustness and then

scale up to complex robotic manipulation tasks. Our findings showcase the scalability and efficacy of

robust MDP methods in handling real-world uncertainties, highlighting their potential for practical

applications.
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Chapter 1

Introduction

In this chapter, I will commence with a concise yet comprehensive exploration of the history of

machine learning (ML) and reinforcement learning (RL), shedding light on the pivotal milestones

that have profoundly influenced their evolution. Then I will demonstrate our key contributions. In

the end, I will provide an overview of the thesis structure.

1.1 Background of ML and RL

Reinforcement Learning (RL), a distinct branch of ML, takes a different approach by learning

through interaction with an environment. Unlike supervised learning, RL relies on trial and error,

where an agent makes decisions in a sequential manner, aiming to maximize cumulative rewards

over time. This is formulated using the Markov Decision Process (MDP) framework (Bellman, 1957;

Sutton & Barto, 2018). The agent observes the current state, selects an action, and receives feedback

in the form of a reward, updating its policy to optimize future actions based on this feedback loop.

RL has demonstrated remarkable (even beyond-human) success in applications such as robotics,

games, and control systems (Garcia & Fernandez, 2015; Kaelbling et al., 1996; Schrittwieser et al.,

2020). However, one major limitation of RL is its sensitivity to environmental changes, such as

observation errors, policy fluctuations, or dynamic uncertainties (Amodei et al., 2016).

1.2 Robust Reinforcement Learning

To mitigate these issues, Robust Reinforcement Learning (Robust RL) has been developed to

ensure that the agent can maintain high performance even in uncertain environments (Iyengar, 2005;
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Morimoto & Doya, 2005a; Nilim & El Ghaoui, 2005). The uncertainties in RL can be categorized

into three main types (Kuang et al., 2022): observation uncertainty, which arises from sensor noise or

measurement errors; policy uncertainty, referring to the inherent randomness or ambiguity in policy

decisions; and dynamics uncertainty, where the state transition model itself is unknown or changes

unpredictably.

In recent years, much of the focus in robust reinforcement learning (robust RL) research has been

on handling uncertainties related to state observations. A substantial body of work has examined how

adversarial perturbations or noise in state observations can be mitigated to improve the robustness

of RL agents. For instance, Zhang et al. have extensively explored this area, including their work

on adversarial perturbations (H. Zhang et al., 2020) and several related studies (He & Lv, 2023;

Liu et al., 2022; H. Zhang et al., 2021; H. Zhang et al., 2019). These approaches typically aim to

enhance agent performance by defending against observation disturbances using adversarial training

techniques and stability-optimized architectures.

While observation robustness has garnered considerable attention, dynamics Robustness offer

distinct advantages. In those scenarios, the agent faces uncertainty in the underlying transition

dynamics of the environment, which can vary unpredictably. By considering worst-case scenarios

in the transition probabilities, dynamics robust RL ensures that the agent learns strategies that

perform well even under the most adverse conditions. This is particularly important for real-world

applications where environments are dynamic and non-stationary, such as robotics and autonomous

systems (Morimoto & Doya, 2005a; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013a). Robustness

in dynamics is especially critical in complex environments where state transitions are difficult to

model or predict accurately (Blanchet et al., 2019; Iyengar, 2005). By leveraging robust optimization

techniques, agents can maintain stability and performance even in the presence of significant model

uncertainties.

Interestingly, some works have attempted to reframe dynamics uncertainties as observation

uncertainties, simplifying the problem by assuming that the dynamics changes can be inferred from

perturbations in the observations. (H. Zhang et al., 2019). These transformations provide a more

tractable framework for handling uncertainty but may not fully capture the complexity of dynamic

environment changes.

On the theoretical side, several papers have explored dynamics robust RL with a focus on

mathematical guarantees. Researchers, e.g., Li et al. (Li & Lan, 2023) and Wang et al. (Y. Wang

et al., 2024) have developed theoretical frameworks that provide guarantees for robust learning in

environments with uncertain dynamics. These works primarily focus on developing robust policies

2



under various model uncertainty frameworks and offer convergence guarantees. However, despite

these theoretical advances, such approaches have limited applicability in large-scale environments,

where the computational complexity and the amount of data required make it difficult to deploy

these algorithms effectively in real-world scenarios.

A series of studies have utilized an adversarial player to simulate challenging conditions in

dynamics by applying external forces or perturbations to the agent’s dynamics. Pinto (Pinto et al.,

2017) introduced an adversarial force to alter the agent’s state transitions, aiming to test robustness

under adversarial conditions. Similarly, Tessler (Tessler, Jinnai, et al., 2019) , Kumar (Kumar et al.,

2020) and Pan (Pan et al., 2021) applied adversarial disturbances to affect action-level decisions.

While these approaches demonstrate the potential of adversarial training, they are inherently limited

by the adversarial player’s bounded influence, often confined to small-scale perturbations or predefined

parameters, which restricts the flexibility of dynamics changes.

In contrast, our approach, which directly generates adversarial transitions within a feasible

uncertainty set, enables the agent to adapt to a wider spectrum of environmental variations. This flex-

ibility surpasses the capabilities of adversarial player models by allowing unrestricted, yet controlled,

alterations in the transition dynamics, making it more suitable for handling complex, real-world

uncertainties.

1.3 Contributions

The contributions of this thesis are threefold:

1. Solution to the Optimal Adversarial Transition: We provide a formal proof demonstrating

that identifying the optimal adversarial transition for each policy can be solved using regular

MDP methods. This approach simplifies the complexity of the robust MDP framework by

obtaining the optimal adversary through a conventional MDP solution.

2. Novel Transition Gradient Approach: To address the limitations of existing dual-based

approaches in solving robust MDPs via stochastic approximation, we propose a novel method

that parameterizes two networks to represent the policy and adversary. By introducing a new

transition gradient mechanism, we effectively solve the inner problem, bypassing the challenges

associated with traditional dual optimization techniques.

3. Upper Bound on the Value Function Gap: Given the non-convex, non-concave nature of

the value function in robust MDPs, optimality of the policy cannot be guaranteed. However, we

3



establish an upper bound on the gap between the value function in the worst-case scenario and

the interference-free case. Furthermore, we substantiate the theoretical results with extensive

experiments, which validate the correctness of the theory and demonstrate the effectiveness

and robustness of the feasible solutions obtained.

1.4 Thesis Structure

In Chapter 2, we establish the foundational background necessary for understanding the context

of this work. Chapter 3 delves into our theoretical contributions, where we analyze the proposed

framework and introduce a practical optimization objective. To address this objective, we develop

an optimization method grounded in Transition Gradient techniques. Chapters 4 and 5 provide a

comprehensive overview of our implementation and experimental details. Finally, in Chapter 6, we

summarize the key findings and propose avenues for future research.
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Chapter 2

Background

In this chapter I will provide a brief overview of the background of the research, including Markov

Decision Processes (MDPs), Reinforcement Learning (RL), and different kinds of Uncertainty Sets.

2.1 Markov Decision Process

2.1.1 Basic Concepts

In this section, we discuss the underlying framework of Markov Decision Processes (MDPs), which

provides the mathematical foundation for Reinforcement Learning.

In the discounted setting, we consider a tuple (S,A, p, r, ρ0, γ), where S denotes a state space, A

denotes an action space, p : S × S × A → [0, 1] denotes a transition function, r : S × A → R is a

reward function, ρ0 : S → [0, 1] denotes an initial distribution, and γ ∈ (0, 1] is a discount factor.

At the beginning of the process, the agent’s initial state s0 is sampled from the initial state

distribution ρ0. At each time step t, the agent observes the current state st, and selects an action at

based on its policy π : S → P(A), which is a mapping from states to probability distributions on A.

The agent samples an action according to the probability distribution, i.e., at ∼ π(·|st).

Once the agent takes the action at, the environment responds by transitioning the agent to a

new state st+1, governed by the transition function p, i.e., st+1 ∼ p(·|st, at). After that, it receives

a scalar reward rt+1 from the environment. This reward reflects the immediate benefit or cost of

taking action at in state st.

To balance immediate and future rewards, the agent uses the discount factor γ, which ensures

that rewards received earlier in time are more valuable than those in the distant future. The total

5



discounted reward, also called the return, is calculated as:

Gt =
∞∑

k=0
γkr(st+k, at+k)

where Gt denotes the return at time step t.

Given the start state s and policy π, we define the state value function as:

Vπ(s) = Eπ,p [Gt|st = s]

Following the same logic, given the start state-action pair (s, a), we define the action value

function Qπ to represent future rewards:

Qπ(s, a) = Eπ,p [Gt|st = s, at = a]

The state value function and action value function quantify the expected cumulative reward

(return) an agent will receive. To optimize a policy, we define an optimization objective, the

performance metric Jπ, also known as the objective function. It quantifies how good a policy is in

terms of the expected total return. We use the most common form of Jπ, which is the expected

return starting from the initial state distribution ρ0:

Jπ = Es0∼ρ0 [Vπ(s0)]

2.1.2 Bellman Equation

To efficiently compute the value of a policy, we use the Bellman Equation, which provides a recursive

decomposition of the value function. It expresses the value of a state in terms of the immediate

reward plus the expected value of the next state. Given a policy π, the value of a state s can be

expressed recursively through the Bellman Equation:

Vπ(s) = Eπ,p [r(s, a) + γVπ(s′)|s]

and it can be expanded as:

Vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a) + γVπ(s′)]

6



Similarly, the action value function can also be written as:

Qπ(s, a) = Eπ [r(s, a) + γVπ(s′)|s, a]

=
∑
s′∈S

p(s′|s, a)
[

r(s, a) + γ
∑

a′∈A
π(a′|s′)Qπ(s′, a′)

]

2.1.3 Bellman Operator

To better understand how value functions evolve and converge to optimal solutions, we introduce the

Bellman Operator, which expresses the Bellman Equation in a more compact and formal way. The

Bellman operator is central to the iterative procedures that compute value functions in both policy

evaluation and optimal policy finding.

Bellman Operator for Policy Evaluation

The Bellman operator for policy evaluation is a mapping that transforms the current value function

into a new value function based on the Bellman equation. Given a policy π, the Bellman operator

T π applied to a value function V is defined as:

T πV (s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a) + γV (s′)]

This operator is central in policy evaluation, as it defines how the value function can be updated

iteratively:

Vk+1(s) = T πVk(s)

By repeatedly applying the Bellman operator, the value function converges to the true value of the

policy π, denoted as Vπ. The convergence is guaranteed because the Bellman operator for policy

evaluation is a contraction mapping under certain conditions, ensuring that the sequence of value

functions converges to the fixed point, Vπ.

Bellman Optimal Operator

The Bellman optimal operator, denoted by T , is used to compute the value function associated with

the optimal policy. This operator is based on the Bellman optimality equation, which recursively

defines the value of a state under the optimal policy. The Bellman optimal operator is defined as:

T V (s) = max
a∈A

∑
s′∈S

p(s′|s, a) [r(s, a) + γV (s′)]

7



The operator updates the value function by choosing the action that maximizes the expected return

at each state. Repeatedly applying this operator allows the value function to converge to the optimal

value function V ∗, which satisfies:

V ∗(s) = T V ∗(s)

Thus, the Bellman optimal operator is essential for solving the **optimal control problem**, and its

fixed point corresponds to the optimal value function.

2.2 Reinforcement Learning

In this section, we discuss the foundations of single-agent reinforcement learning (RL) and how the

agent learns to interact with its environment to maximize its expected cumulative reward (Sutton &

Barto, 2018).

2.2.1 Basic Framework

Reinforcement learning operates on the same underlying framework as Markov Decision Processes

(MDPs), where an agent interacts with an environment (Bellman, 1957). The goal of the agent is to

learn a policy π that maximizes the expected return Gt over time. The agent receives feedback from

the environment in the form of rewards, and through trial and error, it improves its decision-making

strategy (Kaelbling et al., 1996).

In single-agent RL, the agent acts alone in the environment, meaning that there is no external

interference from other agents or adversaries. The agent is tasked with learning an optimal policy by

balancing exploration (trying new actions to discover their effects) and exploitation (choosing

actions that are known to yield high rewards) (Thrun, 1992).

2.2.2 Policy Optimization Objective

The objective in reinforcement learning is to find a policy π that maximizes the expected return.

The performance of a policy is quantified by the objective function J(π), which is defined as the

expected return starting from the initial state distribution (Sutton & Barto, 2018):

J(π) = Es0∼ρ0 [Vπ(s0)]

8



Policy gradient methods seek to maximize this objective by iteratively updating the policy parameters

using gradient ascent. The gradient of the performance objective J(π) with respect to the policy

parameters θ can be expressed as (Sutton & Barto, 2018):

∇θJ(πθ) = Es∼dπ,a∼πθ
[∇θ log πθ(a|s)Qπ(s, a)]

This gradient expression forms the basis of policy gradient algorithms, which adjust the policy in the

direction that maximizes the expected cumulative reward (Konda & Tsitsiklis, 2000).

2.2.3 Policy-based and Value-based Methods

Reinforcement learning algorithms can be broadly classified into two categories: value-based

methods and policy-based methods (Sutton & Barto, 2018).

Value-based Methods

Value-based methods focus on learning a value function, which estimates the expected cumulative

reward from any given state (or state-action pair). The agent uses this value function to select actions

that lead to higher rewards. Common algorithms in this category include:

- Q-learning (Watkins & Dayan, 1992): A model-free RL algorithm that learns an action-value

function Q(s, a) and updates it iteratively using the Bellman equation. The optimal policy is derived

by selecting actions that maximize Q(s, a).

- SARSA (Rummery & Niranjan, 1994): An on-policy algorithm that updates the action-value

function based on the state-action-reward-next state-next action tuple (s, a, r, s′, a′).

Policy-based Methods

Policy-based methods directly learn a policy π that maps states to actions without explicitly learning

a value function. These methods can be beneficial in environments with large or continuous action

spaces, where value-based methods might struggle. Common policy-based algorithms include:

- REINFORCE (Williams, 1992): A Monte Carlo-based algorithm that learns a stochastic

policy by computing gradients of the expected return with respect to the policy parameters and

updating the policy in the direction of higher returns.

- Actor-Critic Methods (Konda & Tsitsiklis, 2000): These methods combine policy-based

and value-based approaches. The actor learns the policy, while the critic evaluates the policy by

estimating a value function, providing feedback for the actor.
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2.2.4 On-Policy and Off-Policy

In reinforcement learning, algorithms can be categorized as either on-policy or off-policy based on

how they utilize experience for learning.

- On-Policy Methods: These methods learn the value of a policy while following that same

policy. In other words, the agent learns by using the policy it is currently following to make decisions

and update its estimates. An example of an on-policy algorithm is SARSA (Rummery & Niranjan,

1994), where the agent updates its action-value function based on the actions it actually takes under

the current policy (Sutton & Barto, 2018). Common on-policy algorithms also include A2C, A3C

(Mnih et al., 2016), PPO (Schulman et al., 2017), TRPO (Schulman, Levine, et al., 2015), GAE

(Schulman, Moritz, et al., 2015), REINFORCE (Williams, 1992),

- Off-Policy Methods: Off-policy methods, on the other hand, learn the value of one policy

while following a different policy. The agent can learn from data collected by a behavior policy

that may differ from the target policy it is optimizing. Q-learning (Watkins & Dayan, 1992) is a

typical off-policy method, where the agent updates its action-value function based on the maximum

possible reward, regardless of the action taken by the behavior policy. Common off-policy algorithms

also include DQN (Mnih et al., 2015), DDQN (Van Hasselt et al., 2016), Dueling DQN (Z. Wang

et al., 2016), Prioritized Experience Replay (Schaul et al., 2015), SAC (Haarnoja et al., 2018), TD3

(Fujimoto et al., 2018)

2.2.5 Exploration-Exploitation Trade-off

In reinforcement learning, the agent must balance between exploration (choosing actions that may

yield unknown rewards) and exploitation (choosing actions that are known to maximize rewards

based on past experience). The trade-off between these two is a central challenge in RL (Thrun,

1992).

One common approach to balancing exploration and exploitation is the ϵ-greedy strategy, where

the agent selects the action with the highest estimated value with probability 1 − ϵ and explores

a random action with probability ϵ (Sutton & Barto, 2018). The parameter ϵ controls the degree

of exploration, and it often decays over time to allow more exploitation as the agent learns the

environment.

Another method to encourage exploration is entropy regularization, which is commonly used

in policy-based methods. By adding an entropy term to the optimization objective, the agent is

encouraged to maintain a stochastic policy and explore more during training (Mnih et al., 2016).
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2.2.6 Learning from Interaction with the Environment

In reinforcement learning, the agent continuously interacts with the environment to improve its policy.

The process of learning involves collecting experience in the form of transitions (st, at, rt+1, st+1),

and using this data to update the policy or value functions (Sutton & Barto, 2018). There are two

main approaches for this:

Model-Free Methods

Model-free methods do not assume any knowledge of the environment’s dynamics (transition proba-

bilities and reward function). Instead, they rely on direct interaction with the environment to learn

the optimal policy. Common model-free algorithms include Q-learning, SARSA, and REINFORCE

(Sutton & Barto, 2018).

Model-Based Methods

In contrast, model-based methods aim to learn a model of the environment’s dynamics (i.e., the

transition function and reward function) and use this model to plan future actions. These methods

can be more sample-efficient than model-free methods, as they can simulate future states based on

the learned model and optimize the policy accordingly (Kaelbling et al., 1996).

2.3 Uncertainty Sets in Reinforcement Learning

In robust reinforcement learning, uncertainty sets play a crucial role in defining the space of

perturbations or deviations that the agent must consider when learning policies (Kothari et al., 2020;

Nilim & El Ghaoui, 2005). Different types of uncertainty sets reflect different assumptions about the

nature and structure of these uncertainties. In this section, we explore various kinds of uncertainty

sets used in reinforcement learning, focusing on their construction and theoretical implications.

2.3.1 Rectangular Uncertainty Sets

One of the most common uncertainty structures in reinforcement learning is the rectangular

uncertainty set, often applied to both state and action pairs. I list a few kinds of commonly used

uncertainty sets below.
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(s, a)-Rectangular Uncertainty

In the (s, a)-rectangular uncertainty model, the uncertainty in the transition probabilities for each

state-action pair (s, a) is independent of other state-action pairs. This form of uncertainty is

particularly useful for decomposing the problem, as it allows for independent optimization over each

(s, a) pair (Iyengar, 2005; Wiesemann et al., 2013a).

Mathematically, the uncertainty set for a transition kernel under (s, a)-rectangular uncertainty

can be expressed as:

Urect = {p(s′|s, a) : ∥p(s′|s, a)− p̂(s′|s, a)∥ ≤ δ(s, a) ∀(s, a) ∈ S ×A}

where δ(s, a) defines the uncertainty bound for each state-action pair (s, a), and p̂(s′|s, a) is the

nominal transition model.

Uniqueness: The (s, a)-rectangular uncertainty set is particularly useful in settings where the

environment’s transition dynamics are assumed to vary independently across state-action pairs. It

simplifies the optimization problem by allowing for local uncertainty handling, leading to tractable

solutions in large-scale reinforcement learning problems (Nilim & El Ghaoui, 2005).

2.3.2 Wasserstein Uncertainty

The Wasserstein uncertainty set is based on the Wasserstein distance, which measures the

distance between two probability distributions (Esfahani & Kuhn, 2018). This type of uncertainty

set is useful when the agent’s uncertainty over transitions or outcomes can be described by a shift in

probability mass across states, rather than simple independent perturbations.

For a given nominal transition kernel p̂(s′|s, a), the Wasserstein uncertainty set is defined as:

Uwass = {p(s′|s, a) :W(p(s′|s, a), p̂(s′|s, a)) ≤ δwass}

where W denotes the Wasserstein distance, and δwass is the allowed threshold for deviations from the

nominal distribution.

Uniqueness: The Wasserstein uncertainty set is particularly well-suited for situations where

the uncertainty arises from shifts in probability mass, such as in transportation problems or in

scenarios where the agent must account for correlated changes across states (Blanchet et al., 2019).

Unlike rectangular uncertainty, which assumes independence, Wasserstein uncertainty captures global

distributional shifts.
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2.3.3 n-Contamination Uncertainty

n-contamination uncertainty is another type of uncertainty that assumes the nominal model is

"contaminated" by a certain proportion of adversarial transitions. In this model, the true transition

kernel is a mixture of the nominal model and an adversarial component (Jansen, 2003).

The n-contamination uncertainty set can be written as:

Un−cont = {p(s′|s, a) : p(s′|s, a) = (1− α)p̂(s′|s, a) + αq(s′|s, a), α ≤ δcont}

where α represents the contamination factor, p̂(s′|s, a) is the nominal transition, and q(s′|s, a) is an

adversarial distribution. The contamination level δcont controls the extent to which the adversarial

distribution can affect the true transition model.

Uniqueness: This model is unique in that it assumes the environment contains both a nominal

and an adversarial component, which is a common assumption in settings where agents must operate

under potential malicious attacks or extreme disturbances (Jansen, 2003).

2.3.4 Ellipsoidal Uncertainty

Ellipsoidal uncertainty sets model uncertainty as a region that forms an ellipsoid around the

nominal model. These sets are commonly used in robust control and optimization, where uncertainty

is constrained to lie within a certain ellipsoidal region (Ben-Tal et al., 2009).

An ellipsoidal uncertainty set is defined as:

Uellip =
{

p(s′|s, a) : (p(s′|s, a)− p̂(s′|s, a))⊤Q(p(s′|s, a)− p̂(s′|s, a)) ≤ δellip
}

where Q is a positive definite matrix that defines the shape of the ellipsoid, and δellip is the radius

that bounds the uncertainty.

Uniqueness: Ellipsoidal uncertainty sets are well-suited for scenarios where uncertainties are not

independent but are instead correlated in a structured manner. The shape of the ellipsoid, governed

by the matrix Q, allows for directional sensitivity to uncertainties, which can be advantageous in

systems where certain dimensions of uncertainty are more critical than others (Ben-Tal et al., 2009).
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2.3.5 Polyhedral Uncertainty

Polyhedral uncertainty assumes that the uncertainty lies within a polyhedron, which can be

represented as the intersection of multiple linear inequalities (Bertsimas et al., 2011). This type of

uncertainty set is particularly useful in linear programming and robust optimization.

A polyhedral uncertainty set is expressed as:

Upoly = {p(s′|s, a) : Ap(s′|s, a) ≤ b}

where A and b are matrices that define the linear inequalities bounding the uncertainty.

Uniqueness: Polyhedral uncertainty sets are flexible and allow for a broad range of shapes,

making them suitable for applications in which the uncertainty has a complex structure (Bertsimas

et al., 2011). These sets are computationally efficient to handle, especially in optimization problems,

as they lead to tractable linear programming formulations.

2.3.6 Summary

Uncertainty sets provide a framework for modeling deviations from the nominal model in rein-

forcement learning. Different uncertainty sets capture different types of perturbations and offer

unique advantages depending on the structure of the environment and the kind of uncertainty being

modeled (Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013a). From (s, a)-rectangular

uncertainty that assumes independence across state-action pairs, to Wasserstein, contamination,

ellipsoidal, polyhedral, and Hellinger uncertainty sets, each approach brings its own set of assumptions

and computational benefits. The choice of uncertainty set is crucial for designing robust policies that

can handle real-world variability and adversarial perturbations.

2.4 State Perturbation

Building on the concept of uncertainty sets discussed in the previous section, state perturbation

focuses on the impact of uncertainties in state transitions or observations on policy robustness

and task performance. This section reviews the existing work on state perturbation within the

robust Markov Decision Process (MDP) framework, emphasizing theoretical formulations, adversarial

training, hierarchical methods, and representation learning approaches.
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2.4.1 Theoretical Foundations of Robust MDPs with State Perturbation

The foundational work by (Nilim & El Ghaoui, 2005) and (Iyengar, 2005) introduced robust MDPs

with state perturbations. They formulated the problem as a bi-level optimization, where the outer

level optimizes the policy, and the inner level minimizes the worst-case performance under bounded

uncertainties in state transitions. This is formally expressed as:

max
π

min
p̃(s,a)∈B(s,a)

Es0,a0 [Qπ,p̃(s0, a0)], (2.1)

where π represents the policy, p̃(s, a) is the transition model, and B(s, a) denotes the uncertainty set.

This framework provides theoretical performance guarantees under bounded state perturbations.

Building on this, (Xu & Mannor, 2010) extended the robust MDP framework to incorporate

distributional robustness using Wasserstein distances to address state distribution shifts, offering a

more flexible treatment of state uncertainties in stochastic settings. Similarly, (Wiesemann et al.,

2013b) generalized robust MDPs to Markov games, providing insights into multi-agent systems

under state uncertainties, and (Banerjee & Ghosh, 2021) derived robust Bellman operators to tackle

adversarial perturbations in theoretical reinforcement learning frameworks.

2.4.2 Adversarial Training for State Perturbation

Adversarial approaches have become a dominant method for addressing state perturbation in robust

reinforcement learning. (Pinto et al., 2017) introduced a robust adversarial reinforcement learning

framework where perturbations are injected during training to simulate worst-case scenarios, forcing

the policy to adapt to adversarial state dynamics. Extending this concept, (J. Zhang & Xu, 2021)

employed adversarial training in deep RL, demonstrating its effectiveness in countering state noise

and achieving robustness in high-dimensional environments. These approaches highlight the potential

of adversarially robust training to handle extreme uncertainties.

2.4.3 Hierarchical and Representation Learning Approaches

Robustness in hierarchical and representation learning methods has also been studied extensively.

(Mankowitz et al., 2018) explored robust options in hierarchical reinforcement learning, showing their

effectiveness in mitigating state perturbations by incorporating robust sub-policies. In continuous

control tasks, (Heess et al., 2015) proposed stability-driven learning, addressing the challenges posed

by state perturbations by embedding stability criteria into policy optimization.
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Robust representation learning methods have been proposed to address state perturbations by

focusing on invariant features. (Tessler, Efroni, et al., 2019) presented adaptive representation learning

to improve policy generalization under unseen perturbations, while (Lee et al., 2020) introduced

sparse perturbation models to analyze policy degradation under targeted state changes.

2.4.4 Robust Reinforcement Learning with Neural Networks

Combining robust MDPs with neural networks has led to significant advancements in addressing state

perturbations in large-scale environments. (Morimoto & Doya, 2005b) demonstrated the integration

of neural network-based policies with robust control principles to mitigate state noise. (Vinitsky et al.,

2020) further proposed iterative methods to fine-tune policies for dynamic robustness, providing a

practical approach to adapt to evolving state perturbations.

Recent studies have also focused on first-order optimization techniques for robust reinforcement

learning. (Li & Lan, 2023) developed a convex uncertainty framework for addressing dynamics

perturbations, offering convergence guarantees and applicability to complex control tasks. Similarly,

(Y. Wang et al., 2024) provided theoretical bounds for robust policies under non-stationary dynamics,

emphasizing their applicability in adversarial environments, and extended previous work to average

reward settings.

These studies collectively provide a comprehensive view of addressing state perturbations in

robust reinforcement learning. While significant progress has been made in theoretical foundations,

adversarial training, and practical applications, challenges remain in scaling these approaches to

highly dynamic and stochastic environments. Future work could further explore hybrid methods that

integrate adversarial robustness, hierarchical learning, and neural network architectures to achieve

greater scalability and reliability under state uncertainties.
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Chapter 3

Transition Gradient

In this chapter, we present a robust Markov Decision Process (MDP) framework to address uncer-

tainties in transition dynamics.

The core idea of our approach is to model the problem as a two-player game, where the first

player represents the policy being optimized, and the second player is an adversary that generates

new transition probabilities to challenge the policy’s performance. This adversarial setting allows us

to derive a robust policy capable of withstanding worst-case transition dynamics. We solve the inner

problem of robust MDP by proposing a novel transition gradient method and establishing theoretical

guarantees for policy performance under the strongest adversarial perturbations. By combining

traditional policy optimization techniques with an adversarially-driven transition model, we ensure

that the resulting policies remain robust across a range of perturbations, leading to significantly

improved performance in environments with inherent uncertainties.

The remainder of this chapter details the mathematical formulations, the novel transition gradient

theorem, and the practical implementation of our robust policy training approach.

3.1 Definitions

In addition to the notations introduced in Chapter 2, we define dπ,p : S → P(S) as the stationary

distribution of states induced by a policy π and transition probability p.

Formally, it is given by:

dπ,p(s) = (1− γ)
∞∑

t=0
γt Pr(st = s|π, p)
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We define the transition probability after perturbation as p̃, represented as p̃(s′|s, a) = P̃r(st+1 =

s′|st = s, at = a). Formally, the perturbation function is denoted by p̃ : S ×A → P(S).

Definition 1 For each (s, a), we define a perturbation set B(s, a), which contains all possible

transition probabilities after perturbations. Formally, p̃(s, a) ∈ B(s, a), where B(s, a) is a set of

probability distributions, s ∈ S and a ∈ A. This ensures that the perturbation does not become too

drastic:

B(s, a) = {p′(s, a) | DKL(p′(s, a)∥p(s, a)) < ϵ}

Here, p(s, a) denotes the true transition probability in the environment before the perturbation, and ϵ

is a constant. The constant ϵ provides the supremum of the KL divergence between the transition

probabilities before and after perturbation.

The perturbed value and action-value functions under p̃ are analogous to those in a regular MDP:

Ṽp̃,π(s) = Ep̃,π[
∞∑

k=0
γkrr+k+1|st = s], Q̃p̃,π(s, a) = Ep̃,π[

∞∑
k=0

γkrr+k+1|st = s, at = a]

Objective 1 Our objective is to first obtain an adversarial transition that deviates insignificantly

from the true transition, minimizing the cumulative rewards. We then train the policy under this

adversarial setting to achieve a more robust policy.

Formally, this objective is defined as:

max
π

min
p̃(s,a)∈B(s,a)

Es0,a0 [Qπ,p̃(s0, a0)] (3.1)

This formulation not only seeks to maximize the reward but also aims to achieve the highest

reward under the worst-case scenario. We now begin with the fundamental case: the Bellman

equation for a fixed π and p̃.
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3.2 Uncertain Transition and Bellman Equations

The definition of the new MDP is provided below, introducing dynamics uncertainty on top of the

standard MDP framework. This extension incorporates uncertain transitions, paving the way for

further analysis.

Theorem 1 (Bellman equation for a fixed policy π and p̃(s, a)) The state-value function and

action-value function are represented as follows:

Ṽp̃,π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p̃(s′|s, a)
[
R(s, a, s′) + γṼp̃,π(s′)

]
(3.2)

Q̃p̃,π(s, a) =
∑
s′∈S

p̃(s′|s, a)
[

R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)Q̃p̃,π(s′, a′)
]

(3.3)

3.3 Optimal Adversarial Policy

Natually, the first step is to determine the "optimal" adversarial transition policy p̃∗ under a fixed

policy π, which minimizes the cumulative reward for this π. The value and action-value functions

under the optimal adversarial policy p̃∗ for a fixed policy π are defined as:

p̃∗(π) = arg min
p̃

Q̃π,p̃(s, a)

Note: The adversarial transition p̃ does not vary with the policy π, whereas the optimal transition

p̃∗ is specific to a given policy π and evolves as the policy changes. This dependency is denoted by

p̃∗(π).

Then we proceed to prove that this "optimal" adversarial transition is achievable. We first derive

a lemma that demonstrates the equivalence between finding the optimal adversary in a TA-MDP

and finding the optimal policy in a regular MDP:

Lemma 1 (Equivalence of finding the optimal adversary in a TA-MDP and finding the optimal

policy in an MDP) Given a TA-MDP M = (S, A, B, R, p, γ) and a fixed policy π, there exists a

regular MDP M̂ = (Ŝ, Â, R̂, p̂, γ) such that the optimal policy π̂∗ of M̂ is the optimal adversary for

the TA-MDP.
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This lemma also provides a useful property, namely that −V̂π̂(ŝ) = Q̃p̃(s, a). This implies that

by finding π̂∗, which maximizes V̂π̂(ŝ), we simultaneously solve the regular MDP and determine the

optimal function p̃∗ that minimizes Q̃p̃(s, a), and vice versa.

Next, in Theorem 2, we will continue to prove that this optimal adversarial transition p̃∗ can be

found.

Theorem 2 (Bellman contraction for optimal adversary) Define the robust Bellman operator T :

R|S||A| → R|S||A| as:

(T Q̃)(s, a) = min
p̃(s,a)∈B(s,a)

∑
s′∈S

p̃(s′|s, a) ·
[

R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)Q̃(s′, a′)
]

(3.4)

The robust Bellman equation for the optimal adversary p̃∗ can be written as Q̃p̃∗(π) = T Q̃p̃∗(π).

Additionally, T is a contraction and converges to Q̃p̃∗(π).

Theorem 2 demonstrates that, given a fixed policy π, we can evaluate its performance under the

optimal (strongest) adversary through a Bellman contraction. This is functionally analogous to the

"policy evaluation" procedure in regular MDPs.

Finally, we address the ultimate objective of finding an optimal policy π∗ under the strongest

adversary p̃∗(π∗). For a fixed perturbed transition, the process of obtaining the optimal policy follows

the same steps as in regular MDPs. By Bellman’s Optimality Principle, we know that an optimal

policy always exists.

However, in our case, the optimal adversarial policies vary depending on the current behavior

policy (see note). Taking this into account, in Proposition 1, it has been proven that an overall

optimal policy can be found iteratively.

Proposition 1 (Markov Optimality) There exists a deterministic optimal policy π∗ ∈ ΠMD such

that Ṽπ∗,p̃∗(π∗)(s) ≥ Ṽπ,p̃∗(π)(s) for all s, where p̃∗(π) denotes the optimal adversary for a specific

policy π.

With this guarantee, we can iteratively solve for both the optimal policy and adversarial policy

until they converge to a fixed point. In Iyengar (Iyengar, 2005), several dual problems are proposed,

along with guarantees on computational complexity.
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3.4 Transition Gradient

Unfortunately, we cannot directly apply stochastic gradient descent to solve these problems due to

the inability to express the gradient computation in the form of expectations. Given the difficulty in

optimizing Objective 1 directly, we propose an alternative objective. Specifically, we can employ the

policy gradient approach:

Objective 2 We parameterize the policy π by ω and the adversarial transition p̃ by θ:

max
ω

min
θ

Es0,a0 [Qω,θ(s0, a0) + DKL (p̃θ(s0, a0)∥p(s0, a0))] (3.5)

Specifically, we first fix the policy πω and perform gradient descent over p̃θ on the objective

function Qω,θ, followed by gradient ascent on πω with p̃θ fixed. During the gradient descent phase, we

incorporate a KL-divergence regularization term to ensure that the perturbed transition probabilities

do not deviate significantly from the true transition probabilities. This iterative process refines the

policy and enhances its robustness.

We now delve into the implementation details.

Assumption 1 (Availability of true transition) Since we operate in a simulated environment, we

assume that the true transition probabilities are fully accessible.

Note: We use the true transition probabilities for certain computations but prevent the model

from directly accessing them as part of the states. This forces the model to generalize from its own

experiences.

This assumption provides significant convenience, allowing us to bypass the challenges of estimating

the true transition probabilities. It prevents adversarial transitions from deviating excessively from

the original transitions, which could otherwise lead to training instability and compromise the

reliability of the learned policy in the simulated environment.
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Theorem 3 (Transition Gradient) Given a fixed π, and with the perturbed transition function

parameterized by θ, we have:

∇θEs0,a0 [Qπ,θ(s0, a0)] ∝ E s∼dθ,π(s)
a∼π(·|s)

s′∼p̃θ(·|s,a)

[(
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
)
∇θ log p̃θ(s′|s, a)

]

∇θEs∼dπ,θ(s),a∼π(·|s)[DKL(p(·|s, a)∥p̃θ(·|s, a))]

= Es∼dπ,θ(s),a∼π(·|s)
s′∼p̃θ(·|s,a)

[(
log p̃θ(s′|s, a)

p(s′|s, a) + 1
)
∇θ log p̃θ(s′|s, a)

]
(3.6)

Proposition 2 (Policy Gradient with Transition Gradient) Given a fixed p̃, and with the policy

parameterized by ω, we have:

∇ωEs0,a0 [Qω,p̃(s0, a0)] ∝ E s∼dω,p̃(s),a∼πω(·|s)
s′∼p̃(·|s,a),a′∼πω(·|s′)

[Qω,p̃(s′, a′)∇ω log πω(a′|s′)] (3.7)

Theorems 3 and Proposition 2 show how to compute the gradients. Since both the true probability

p and the perturbed transition p̃ are known, it is possible to use importance sampling. This allows us

to sample from the true environment and estimate the value function in the adversarial environment.

This is particularly important in practical applications, as we generally do not want to manipulate

the environment excessively.

Theorem 4 (Transition Adjustment Sampling) Inspired by the regular importance sampling, we

propose the transition adjustment sampling to adjust the gradient. The gradient of the action value

function could be obtained by:

E s∼dπ(s)
a∼π(·|s)

s′∼p(·|s,a)

[
dπ,θ(s)
dπ(s)

[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]

p̃θ(s′|s, a)
p(s′|s, a) ∇θ log p̃θ(s′|s, a)

]
(3.8)

and the gradient of the KL-divergence term could be obtained by:

Es∼dπ(s),a∼π(·|s)
s′∼p(·|s,a)

[
dπ,θ(s)
dπ(s)

{
log p̃θ(s′|s, a)

p(s′|s, a) + 1
}

p̃θ(s′|s, a)
p(s′|s, a) ∇θ log p̃θ(s′|s, a)

]
(3.9)

when we update the policy, we can use the following gradient:

E s∼dω,p(s),a∼πω(·|s)
s′∼p(·|s,a),a′∼πω(·|s′)

[
dω,p̃(s)
dω,p(s) ·

p̃(s′|s, a)
p(s′|s, a)Qω,p̃(s′, a′)∇θ log πω(a′|s′)

]
(3.10)
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However, we cannot directly get the action value function Qπ,p̃θ
, which associated with the policy

π and the adversarial transition p̃θ, with samples we obtained in the original environment. To address

this issue, we can use weighted return estimation to estimate the action value function.

Qπ,p̃θ
(st, at) ≈

T∑
t′=t

Wt′γt′−trt′ , (3.11)

where Wt′ =
∏t′

i=t
p̃θ(s′

i|si,ai)
p(s′

i
|si,ai) is the cumulative transition adjustment ratio. Here, p̃θ(s′

i|si, ai) is

the generated transition and p(s′
i|si, ai) is the original transition.

Similarly, for those algorithms which utilize funtion approximator to estimate the action value

function, we can use offline function approximation:

Qπ,p̃θ
(st, at) ≈ Qπ,p̃θ

(st, at) + α [rt + γQπ,p̃θ
(s′, π(s′))−Qπ,p̃θ

(st, at)] (3.12)

where s′ = p̃θ(st, at)

However, in practical implementation, ensuring the simultaneous convergence of the policy and

adversarial transition to their optima is challenging. Nevertheless, we demonstrate that under certain

assumptions, the performance loss due to an optimal adversary can be bounded.

Theorem 5 (Performance Gap) Given a policy π, let the state value function in a non-adversarial

MDP be Vπ(s), and let the state value function under the optimal adversary p̃∗ and the same policy

π in a TA-MDP be Ṽπ,p̃∗(π)(s). For all s ∈ S and a ∈ A, the following inequality holds:

max
s,a
|Vπ(s)− Ṽπ,p̃∗(π)(s)| ≤ 2 maxs,a,s′ R(s, a, s′)

(1− γ)2 max
s

∑
a∈A

π(a|s) max
p̃(s,a)∈B(s,a)

DT V (p(·|s, a), p̃(·|s, a))

(3.13)

3.5 Algorithms

Based on the theoretical foundation discussed above, we propose updated versions of the Policy

Gradient (Sutton et al., 1999), Actor-Critic (Konda & Tsitsiklis, 2000), and Proximal Policy Opti-

mization (PPO) (Schulman et al., 2017) algorithms. The changes we made to the original algorithms

are highlighted in blue.
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Algorithm 1 Policy Gradient with Transition Gradient and Transition Adjustment Sampling
1: Initialize policy parameters ω, and transition parameters θ
2: for each episode = 1, 2, . . . , E do
3: Generate a trajectory s1, a1, r2, . . . , sT , aT , rT , following πω and transition p
4: for each step of the episode t = 1, 2, . . . , T do
5: Wt′ ←

∏t′

i=t
p̃θ(s′

i|si,ai)
p(s′

i
|si,ai)

6: Gt ←Wt′
∑T

t′=t γt′−tr′
t

7: ρt ←
p̃θ(st′+1|st′ ,at′ )
p(st′+1|st′ ,at′ )

8: θ ← θ − α
∑T

t ρtGt∇θ log p̃θ(st+1|at, st)
9: −βρt

(
log p̃θ(st+1|st,at)

p(st+1|st,at) + 1
)
∇θ log p̃θ(st+1|at, st)

10: ω ← ω + α
∑T

t ρtGt∇ω log πω(at|st)
11: end for
12: end for
13: Return ω and θ

Algorithm 2 Actor-Critic with Transition Gradient and Transition Adjustment Sampling
1: Initialize actor parameters ωa, critic parameters ωc and transition parameters θ
2: for each episode = 1, 2, . . . , E do
3: Generate a trajectory s1, a1, r2, . . . , sT , aT , rT , following πωa

and transition p
4: for each step t of the episode, t = 1, 2, . . . , T do
5: s′ ← p̃θ(st, at)
6: δt ← rt + γVωc(s′)− Vωc(st)
7: ρt ←

p̃θ(st′+1|st′ ,at′ )
p(st′+1|st′ ,at′ )

8: θ ← θ − αtρt

(
log p̃θ(st+1|st,at)

p(st+1|st,at) + 1
)
∇θ log p̃θ(st+1|at, st)

9: −βρtδt∇θ log p̃θ(st+1|at, st)
10: ωc ← ωc − (−αcδt∇ωc

Vωc
(st))

11: ωa ← ωa + αaρtδt∇ωa log πωa(at|st)
12: end for
13: end for
14: Return ωa, ωc and θ
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Algorithm 3 PPO with Transition Gradient and Transition Adjustment Sampling
1: Initialize policy parameters ω, value function parameters ωv, and transition parameters θ
2: for each iteration = 1, 2, . . . , E do
3: Collect trajectories using πω and transition p
4: for each step t = 1, 2, . . . , T do
5: s′ ← p̃θ(st, at)
6: δt ← rt + γVωc(s′)− Vωc(st)
7: Compute advantage estimate Ât using δt

8: ρt ← p̃θ(st+1|st,at)
p(st+1|st,at)

9: Compute the ratio rt(ω) = πω(at|st)
πωold

(at|st)
10: Update ω using the PPO clipped objective:

ω ← ω + αρtÂt∇ω min
(

rt(ω)Ât, clip(rt(ω), 1− ϵ, 1 + ϵ)Ât

)
11: Update θ using importance-weighted transition update
12: Update value function parameters ωv

13: end for
14: end for
15: Return ω, ωv, and θ
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Chapter 4

Implementation

The device and code base used in this thesis are provided in this chapter.

4.1 Computing Environment

The computing environment used in this thesis is a Linux server with:

• 3x AMD EPYC 7742 64-Core Processor

• 64GB RAM

• 500GB File System

• 1 NVIDIA 4080 GPU

4.2 Stochastic Transition

Many existing reinforcement learning (RL) environments are deterministic, such as the CartPole

(Barto et al., 1983), MountainCar (Moore, 1990), Acrobot (Sutton, 1996), and several Atari games

(e.g., Pong, Breakout, and Space Invaders) (Bellemare et al., 2013). MuJoCo environments like

HalfCheetah and Hopper (Todorov et al., 2012) are also typically deterministic. However, to properly

validate our theoretical contributions, it is essential to modify these environments to incorporate

stochastic transitions.

Introducing noise in the spatial domain is often risky, as it can lead to a range of non-smooth

behaviors, such as teleportation (Haarnoja et al., 2018; Plappert et al., 2018). In our experiments, we

empirically adjusted which states to perturb, focusing primarily on perturbations to velocity rather
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than position. This approach is safer and results in more natural transitions (Heess et al., 2017;

Schulman, Levine, et al., 2015).

Overall, to introduce stochasticity in the environment, we added Gaussian noise with a relatively

small standard deviation to specific states. This allows us to simulate stochastic transitions while

maintaining system stability, ensuring the behavior remains close to real-world conditions (Tang

et al., 2018; Zhu et al., 2020).

Since neural networks have difficulty directly generating Gaussian distributions, unless the mean

and standard deviation are explicitly modeled, this would result in overly constrained perturbations

(e.g., visually appealing but rigid Gaussian distributions).

To introduce more flexibility in the perturbations, we opted to use a neural network to generate

nine elements to simulate a discrete probability distribution. This approach allows for greater

adaptability in the perturbations (Goodfellow et al., 2016), enabling us to avoid the rigid limitations

of traditional Gaussian noise. In practice, a bias factor will be sampled from the generated distribution

(See Figure 4.1), then be multiplied by a scaler.
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Figure 4.1: Distribution

4.3 Other details

One of the core idea in our algorithms is to calculate the ratio between the actual transition probability

and the perturbed transition probability:

p̃(s′|s, a)
p(s′|s, a) (4.1)
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Figure 4.2: Generated Transition Probability

Although there is a KL divergence restriction between the generated transition and the actual

transition, the new transition does not necessarily follow a Gaussian distribution. If we apply the

transition adjustment sampling, the actual bias is sampled according to a continuous Gaussian

distribution, and it will not necessarily be the same as one of the discrete generated bias. The

solution are discuess below.

Generated Transition Probability I generated a probability distribution consisting of nine

discrete probabilities for each dimension. The differences between them and zero are based on the

mean and standard deviation of Gaussian noises. According to the Gaussian distribution formula,

the differences between them and zero, represented by these nine probabilities, are:

n · σ ·
√

2 log 2, n = −4,−3, . . . , 3, 4 (4.2)

where σ denotes the standard deviation. I refer to these nine elements as "sigma points." During

training, the generated probabilities vary, but the differences they represent remain constant.

One issue is that the actual noise values are continuous, and directly computing p̃(s′|s, a) is

impossible. To address this, I let the environment return the next state both with and without noise

at each step. Then, I calculate the difference to determine the actual noise added to the state. I

match the difference to the closest "sigma point" and assign the probability of this "sigma point" to

p̃(s′|s, a).

Example: if we take action 1 at state 4.4, the next state should be 4.5, but we get 4.52. We first

obtain the difference—0.02. Then we find that the distance between 0.02 and the 8th "sigma point"
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is the shortest (as shown in Figure 4.2). Thus, we assign the probability of the 8th "sigma point" to

the transition p̃(4.52|4.4, 1).

Actual Transition Probability For the actual transition probability p(s′|s, a), we first obtain the

difference between the transition with and without Gaussian noise. Then, we calculate the probability

corresponding to this difference in the Gaussian distribution by integrating the probability density in

the nearby interval.

Example: if we take action 1 at state 4.4, and the next state should be 4.5, but we get 4.52,

we first obtain the difference—0.02. Then we calculate the sum of the probability density over the

interval [0.02− ϵ, 0.02 + ϵ] to get the transition probability p(4.52|4.4, 1). In this experiment, I pick

ϵ = σ ·
√

2 log 2/4.
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Chapter 5

Experiment

In this chapter, we include the experimental results of the proposed method. There are in total three

experiments conducted in this chapter.

The first experiment, in section 5.1, is to validate the correctness of the proposed method in grid

world, e.g., frozenlake.

The second experiment, in section 5.2, is to compare the performance of the proposed method

with the baseline methods in the more complex control environment, e.g., CartPole.

The third experiment, in section 5.3, is to evaluate the performance of the proposed method in

more complex robot manipulation environment, such as Mujoco.

5.1 Validation - Grid World

5.1.1 Environmental Settings

States: In this environment, there are three kinds of states: ice surface, holes, and the destination.

The top-left corner is the starting point, and the bottom-right corner is the destination. Additionally,

there are several holes scattered throughout the environment. An episode ends when the agent

reaches the destination, falls into a hole, or reaches the maximum number of steps. A sample

environment is shown in Figure 5.1.

Actions: The agent has four possible actions. When attempting to move in a certain direc-

tion, there is a 0.2 probability of moving in each perpendicular direction and a 0.6 probability of
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Figure 5.1: The Sample Environment of Frozen Lake (left) and Policy and Policy Change (right)

moving in the intended direction. If the next state falls outside the grid boundaries, the agent

remains in its current position.

For more details, refer to Table 5.1.

Table 5.1: Frozenlake Environment Settings

Component Description
States Ice surface, Holes, Destination

Start Position Top-left corner

End Condition
- Reach destination
- Fall into hole
- Max steps reached

Actions

0: Move left
1: Move down
2: Move right
3: Move up

Move Probabilities 0.6: Intended direction
0.2: Perpendicular directions

Boundaries Stay in position if out of bounds

Rewards
+1: Reach destination
0: Max steps reached
-0.3: Fall into hole

5.1.2 Frozenlake with Holes - Fixed Policy

These experiments aim to validate the gradient descent portion of Algorithm 1. We are specifically

testing the first loop (for calculating the optimal perturbation), meaning the policy remains unchanged.
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We first manually identify the optimal policy in the original environment to serve as our fixed policy,

then compare the transitions before and after perturbation.

Intuitively, if we assign a large negative reward for falling into a hole (e.g., reward = -100), the

agent starting at state 0 will likely avoid moving down, since that could lead to falling into the hole.

Instead, the agent would prefer moving left, even though the probability of accidentally moving down

is 0.2. This is still preferable to receiving a large penalty.

However, this is a trade-off: if the penalty is small (e.g., reward = -0.3), the agent may prefer

moving down rather than moving conservatively to the left, which could result in exceeding the

maximum steps and receiving a reward of 0. In this case, a "balance" in the penalty can be

mathematically computed.

In this experiment, we identify the trade-off boundary (which is approximately -0.3).

Examples: Since this is a simple environment, I manually computed the optimal policy as follows:

• At state 0: move down

• At state 2: move right

The transitions before and after perturbation are as follows:

• At state 0, the true transition is [0.2, 0.2, 0.6, 0], while the perturbed transition is [0.21, 0.24,

0.55, 0]. After perturbation, the agent is more likely to fall into the hole but less likely to move

to state 2. The action value function dropped from the initial value of 0.6 to 0.476.

• At state 2, the true transition is [0.2, 0, 0.2, 0.6], while the perturbed transition is [0.26, 0, 0.21,

0.52]. The action value function dropped from the initial value of 0.9 to 0.815.

If we replace the gradient descent over the action-value function in the first loop with gradient

ascent, the transitions before and after perturbation are as follows:

• At state 0, the transition changes from [0.2, 0.2, 0.6, 0] to [0.2, 0.15, 0.65, 0]. After “perturbation”,

the agent is less likely to fall into the hole and more likely to move to state 2, which is close to

the goal. The action value function rose from the initial value of 0.6 to 0.69.

• At state 2, the transition changes from [0.2, 0, 0.2, 0.6] to [0.15, 0, 0.17, 0.66]. The action value

function rose from the initial value of 0.9 to 0.93.

Those results demonstrate the correctness of the proposed method.
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5.1.3 Frozenlake with Holes - Policy Change

We also conducted the experiment to validate the second loop, which involves updating the policy.

In this experiment, we define a uncertainty set by β, which is the KL divergence between the original

transition and the perturbed transition. We gruadually increase the β to see how the policy shifts.

In Figure 5.1 (right), we can observe the policy changed more significantly when β is larger.

The optimal poicy in the original environment is to move down at state 0 (moving downward).

As β increases, the approved perturbations become larger, making it more likely to fall into a pit.

Therefore, at this point, the agent needs to take a more conservative approach by moving leftward

and approaching the goal with a higher probability of parallel movement. the allowed uncertainty set

is larger,

5.1.4 Summary

The fixed policy and policy shifting experiments demonstrate our perturbation increases the risk of

falling into holes and decreases the probability of reaching the destination.

As mentioned earlier, the pre-selected punishment leads to a trade-off: The agent can accept this

punishment and maintain the same optimal policy as in the case where the punishment is zero.

If the probability of falling into a hole increases, which is equivalent to adding punishment, the

balance will be broken. In such a case, applying the new transition will cause the agent to favor

moving left at state 0.

5.2 Validation - Simple Gym Environment

In this section, I will present the experimental results of Policy Gradient and Actor-Critic methods.

5.2.1 Results: Policy Gradient

In the weak adversary experiment, I set the standard deviation to 0.003 and trained policy gradient

agents both with and without considering adversaries. In the strong adversary experiment, I set

the standard deviation to 0.01 and followed the same procedure to train and test the agents. The

agents trained without considering adversaries serve as baselines. All of the curves are obtained by

15 agents with different seeds.

As shown in Figure 5.2, the policy gradient agent with our transition gradient method could

achive better performance in the end of training.
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Figure 5.2: Comparison of the performance between policy gradient with and without Transitoin
Gradient (left) under 0.003-std Gaussian noise (right) under 0.01-std Gaussian noise

5.2.2 Results: Actor-Critic

Due to the inherent advantages of the actor-critic approach, such as employing function approximators

instead of relying solely on sampled returns, it exhibits stronger resistance to adversarial perturbations

compared to policy gradient methods in practical experiments.

Therefore, to emphasize the effectiveness of the transition gradient, I increased the level of the

adversarial challenge. In this experiment, the standard deviation for the weak adversary is set to

0.01, while for the strong adversary, it is set to 0.02. I keep the remaining setting the same as in the

policy gradient experiment.

As shown in Figure 5.3, similar to the results in the policy gradient experiment, the actor-critic

agent with transition gradient, could achive better performance in the end of training.

To demonstrate the robustness of the proposed method, I conducted experiments under Gaussian

noise with standard deviations of 0.001, 0.01, 0.015, and 0.02, and then tested the saved models

under different adversaries.

Saved models: The problem is considered solved when the average reward over the previous 100

episodes reaches 500 (the maximum reward). I save the model when the problem is solved. If the

agent does not reach this goal during the entire training, I save the model with the highest average

reward over 100 episodes.

As shown in Figure 5.4 and Figure 5.5, the agent trained with the transition gradient method is

less sensitive to the adversaries, demonstrated by the less performance drop under higher level of
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Figure 5.3: Comparison of the performance between actor critic with and without Transitoin Gradient
(left) under 0.01-std Gaussian noise (right) under 0.02-std Gaussian noise
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Figure 5.4: CartPole: Comparison the performance of agents training with (left) 0.001-std Gaussian
noise (right) 0.01-std Gaussian noise

adversarial perturbations. These results suggest that the transition gradient method can effectively

improve the robustness of the agent.
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Figure 5.5: CartPole: Comparison the performance of agents training with (left) 0.015-std Gaussian
noise (right) 0.02-std Gaussian noise

Table 5.2: Mean ± standard error of the returns under Weak Adversary, averaged across 15 agents
over 50 episodes each.

Algorithm Walker2d Hopper Half-Cheetah
DR-U PPO 2473 ± 75 1310 ± 33 1888 ± 37
DR-G PPO 2214 ± 66 1438 ± 31 1729 ± 23
TG-PPO 2200 ± 35 1698 ± 24 2101 ± 28

5.3 Mujoco Environments

5.3.1 Training

We utilized the high-quality benchmark implementation from Huang et al., 2022, and used their

optimal hyperparameters without further tuning to establish our baseline. We verified our baseline

by ensuring that locally trained PPO agents achieved similar performance to their reported results.

The same as in CartPole and Frozenlake, since all transitions in the Mujoco environment are

deterministic and driven by the physics engine, we introduced stochasticity by adding Gaussian

noise to the states representing velocity and angular velocity. We ran all environments for 3× 106

steps to ensure convergence. Two baselines were included: (1) vanilla PPO and (2) PPO with

Gaussian/Uniform Domain Randomization (DR), where the standard deviation of the Gaussian noise

was set to 0.01. Our TG-PPO agents were trained in the same stochastic environment.

Figure 5.6, Figure 5.7 and 5.8 shows the episode returns during training. All curves are averaged

over at least 15 independent runs, with shaded regions indicating standard errors. The blue line
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Figure 5.6: Training curves for (left) Walker2d-V4 and (right) Hopper-V4
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Figure 5.7: Training curves for (left) HalfCheetah-V4 and (right) Ant-V4

represents DR-PPO with Gaussian randomization (std = 0.01), the red line represents DR-PPO

with uniform randomization (range: [-0.0173, 0.0173]), and the green line represents TG-PPO.

5.3.2 Evaluation

We evaluated both vanilla PPO, DR-U and TG-PPO by testing 15 agents per algorithm, trained

in environments with varying noise levels (e.g., 1x noise: 0.01, 10x noise: 0.1). For each agent, we

initialized the environment randomly and conducted tests across 50 episodes to calculate the average

return for further analysis.

37



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Global Steps 1e6

60

50

40

30

20

10

Ep
iso

de
 R

et
ur

n

TG-PPO
DR-G
DR-U

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Global Steps 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

TG-PPO
DR-G
DR-U

Figure 5.8: Training curves for (left) Reacher-V4, and (right) InvertedPendulum-V4.

Table 5.3: Mean ± standard error of the returns under Strong Adversary, averaged across 15 agents
over 50 episodes each.

Algorithm Walker2d Hopper Half-Cheetah
DR-U PPO 1815 ± 64 1061 ± 27 1271 ± 19
DR-G PPO 1850 ± 62 1204 ± 26 1154 ± 15
TG-PPO 1878 ± 31 1392 ± 21 1288 ± 14

Table 5.2, 5.3, 5.4 and Table 5.5 show the mean and the standard error of the returns. We can

ovserve that TG-PPO outperforms both DR-PPO and vanilla PPO in all environments under the

strong adversary.

Figure 5.9 shows the box plots of the returns for Vanilla PPO, DR-PPO and TG-PPO. We can

also observe that when the adversary goes from weak to strong, TG-PPO outperforms both DR-PPO

and vanilla PPO in all environments.

Table 5.4: Mean ± standard error of the returns under Weak Adversary, averaged across 15 agents
over 50 episodes each.

Algorithm InvertedPendulum Ant Reacher
DR-U PPO 822 ± 14 2152 ± 45 -13.6 ± 0.16
DR-G PPO 835 ± 13 2305 ± 66 -14.3 ± 0.18
TG-PPO 846 ± 9.7 2598 ± 29 -13.5 ± 0.09
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Table 5.5: Mean ± standard error of the returns under Strong Adversary, averaged across 15 agents
over 50 episodes each.

Algorithm InvertedPendulum Ant Reacher
DR-U PPO 681 ± 17 1451 ± 41 -18.2 ± 0.13
DR-G PPO 759 ± 15 1420 ± 52 -17.4 ± 0.13
TG-PPO 783 ± 10 1688 ± 26 -17.1 ± 0.08
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(a) In environments with weak adversary

(b) In environments with strong adversary

Figure 5.9: Box plots of returns for DR-PPO and TG-PPO. Each box represents results from at least
15 agents trained with the same hyperparameters as those in Table 5.2. Each agent was tested for
50 episodes. The red lines inside the boxes represent the median rewards, and the upper and lower
edges of the boxes indicate the 25th and 75th percentile returns. Line segments outside the boxes
indicate minimum and maximum rewards.

40



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we proposed a novel framework to address the problem of Robust Reinforcement

Learning (RRL). This framework is based on a modified Markov Decision Process (MDP), enabling

seamless integration into existing reinforcement learning algorithms. We began by defining this new

MDP, drawing inspiration from (Iyengar, 2005), and analyzed its theoretical properties. Motivated

by (H. Zhang et al., 2020), we demonstrated that solving for an optimal adversary under a given

policy could be reduced to solving a standard MDP.

To overcome the limitations of existing methods in handling complex environments, we relaxed

the original strict constraints into soft constraints and introduced a novel optimization objective.

This objective was addressed using a bilevel optimization approach, and we derived an upper bound

on the gap between the value function under worst-case perturbations and the interference-free case.

In our experiments, we conducted extensive evaluations across environments of varying complexity,

including gridworld, simple gym environments, and complex robotic manipulation tasks. The

results showcased the robustness and effectiveness of our approach. However, in environments with

significantly extended time horizons, the practical implementation of our framework demonstrated

limitations in scalability and computational efficiency, highlighting areas for future improvement.

However, we note that the bilevel optimization framework may face challenges in long-horizon

problems, where compounding errors and the complexity of the adversarial dynamics can significantly

reduce its effectiveness. Additionally, our approach for generating transitions relies on sigma points,

where the number of sigma points and the standard deviation (std) used in experiments are manually
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specified. This sensitivity to hyperparameter settings limits the adaptability of the framework to

different tasks and environments. Developing methods for automatic hyperparameter tuning or

adaptive sigma point generation would significantly enhance its applicability to a broader range of

tasks. Addressing these issues is critical for extending the applicability of our framework to real-world,

long-horizon tasks.

6.2 Future Work

During our research, several challenges remained unresolved, providing opportunities for future

exploration and development.

1. Convergence Analysis for Policy Gradient: Optimizing the optimal perturbation through

a policy gradient approach introduces a non-convex, non-concave optimization problem, com-

plicating convergence analysis. While our experiments demonstrated the effectiveness of the

proposed framework, a formal convergence analysis remains an open question. Future work

will focus on providing theoretical guarantees for convergence to ensure a deeper understanding

of the method’s behavior under different perturbation scenarios.

2. Scalability to Long-Horizon Problems: One of the key limitations of our framework lies in

its potential inefficiency in long-horizon problems. As the horizon lengthens, compounded errors

and adversarial dynamics become increasingly significant, potentially reducing the effectiveness

of our bilevel optimization approach. Addressing this issue will involve developing hierarchical

or approximate methods that can better manage the complexity of long-horizon tasks, while

maintaining computational feasibility.

3. Integration with Real-World Applications: While our experiments included a range of

simulated environments, real-world applications often involve higher levels of uncertainty, more

complex dynamics, and resource constraints. Future work will focus on adapting the framework

to real-world scenarios, such as robotic manipulation and autonomous navigation, where robust

decision-making under dynamic and adversarial conditions is critical.
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Appendix A

Proof Details

Theorem 1 Proof Given the definition of Ṽp̃,π(s), we have:

Ṽp̃,π(s) := Ep̃,π[
∞∑

k=0
γkrr+k+1|st = s]

= Ep̃,π[rt+1 + γ

∞∑
k=0

γkrr+k+2|st = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

[p̃(s′|s, a)][rt+1 + γEp̃,π[
∞∑

k=0
γkrr+k+2|st+1 = s′]]

=
∑
a∈A

π(a|s)
∑
s′∈S

p̃(s′|s, a)[rt+1 + γEp̃,π[
∞∑

k=0
γkrr+k+2|st+1 = s′]]

=
∑
a∈A

π(a|s)
∑
s′∈S

p̃(s′|s, a)[R(s, a, s′) + γṼp̃,π(s′)]

(A.1)

Then we can easily derive Q̃p̃,π following relationship between value function and state-value function.
■

Lemma 1 proof For an TA-MDP M = (S,A, B, R, p, γ) and a fixed π, we define a regu-
lar MDP M̂ = (Ŝ, Â, R̂, p̂, γ), such that Ŝ = S × A, â ∈ Â : S × A → P(S). To prove this lemma,
we use an extention of stochastic adversary policy π̂(·|s, a), where π̂ : S × A → P(Â). π̂ gives the
probability that we perturb a transition p(·|s, a) to â(·|s, a). For the transition p̂(ŝ′|ŝ, â):

p̂(ŝ′|ŝ, â) = p̂(s′, a′|s, a, â)
= â(s′|s, a) · π(a′|s′)

(A.2)

Reward R̂(ŝ, â, ŝ′) is defined as:

R̂(ŝ, â, ŝ′) =
{

R̂(s, a, â, s′, a′) = −R(s, a, s′) if â ∈ B(s, a)
C if â /∈ B(s, a)

(A.3)

where the constant C satisfies:

C < min{−M,
γ

1− γ
M − 1

a− γ
M} (A.4)

where M means the minimum of R(s, a, s′) and M means the maximum of R(s, a, s′).

Therefore we have the state value function V̂π̂:
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V̂π̂(ŝ) =
∑
â∈Â

π̂(â|ŝ)
∑
ŝ′∈Ŝ

p̂(ŝ′|ŝ, â)[R̂(ŝ, â, ŝ′) + γV̂π̂(ŝ′)]

=
∑
â∈Â

π̂(â|ŝ)
∑
s′∈S

â(s′|s, a) ·
∑

a′∈A

π(a′|s′)[−R(s, a, s′) + γV̂π̂(ŝ′)]
(A.5)

The optimal policy π̂∗ in this case should maximize the expected reward V̂π̂, which means
∀s,∀a, V̂π̂∗(ŝ) ≥ V̂π̂(ŝ), Q̂π̂∗(ŝ, â) ≥ Q̂π̂(ŝ, â) and the optimal value function and action-value function
will be:

∀ŝ,∀â, V̂π̂∗(ŝ) = max
π̂

V̂π̂(ŝ), Q̂π̂∗(ŝ, â) = max
π̂

Q̂π̂(ŝ, â)

Recall Equation (A.4), if C is small enough, we can guarantee that optimal π̂∗ will not choose â out
of B(s, a), and below is the proof:
For those â /∈ B(s, a):

V̂π̂∗(ŝ) = Eπ̂∗ [
∞∑

k=0
γkr̂t+k+1|ŝt = ŝ]

= C + Eπ̂∗ [
∞∑

k=1
γkr̂t+k+1|ŝt = ŝ]

≤ C − γ

1− γ
M = C +

∞∑
k=1

γk(−M)

< − 1
1− γ

M (Note: C < min{−M,
γ

1− γ
M − 1

1− γ
M})

≤ Eπ̂′ [
∞∑

k=0
γkr̂t+k+1|ŝt = ŝ] (Note: Eπ̂′ [

∞∑
k=0

γkr̂t+k+1|ŝt = ŝ] ≥
∞∑

k=0
γk(−M))

= V̂π̂′(ŝ)

(A.6)

The last inequality holds for any π̂′. In this case V̂π̂∗(ŝ) < V̂π̂′(ŝ),which contradicts the assumption
that π̂∗ is optimal. Therefore it’s evidence that the occurrence of â /∈ B(s, a) is impossible under a
small enough C.

According to the basic properties of MDP, we know that M̂ has a optimal policy π̂∗. We
also know that this π̂∗ can be deterministic and will be assigned unit mass probability for optimal
action on each (s, a).

π̂ is deterministic means π̂ ∈ Ω = {π̂ : ∀ŝ,∃â ∈ B(s, a) let π̂(â|ŝ) = 1}, since we have disscussed
the case that π̂ /∈ Ω in Equation (A.6) (and we can avoid this case by choosing a small constant C),
we only discuss cases that π̂ ∈ Ω. Note that π̂∗ is also in Ω.

Since π̂ is deterministic, we can always find â that makes π̂(â|s, a) = 1, and argmaxâ[π̂(â|s, a)]
could be represented as a deterministic function p̃π̂(s, a).
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Given transition p(s, a), action a and state s, p̃π̂(s, a) will be a function. Then we inverse the
sign of each term of Equation (A.5), after which we have:

−V̂π̂(ŝ) = −
∑
s′∈S

p̃π̂(s′|s, a) ·
∑

a′∈A

π(a′|s′)[−R(s, a, s′) + γV̂π̂(ŝ′)]

=
∑
s′∈S

p̃π̂(s′|s, a) ·
∑

a′∈A

π(a′|s′)[R(s, a, s′) + (−γV̂π̂(ŝ′))]

=
∑
s′∈S

p̃π̂(s′|s, a) · [
∑

a′∈A

π(a′|s′)R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)(−V̂π̂(ŝ′))]

=
∑
s′∈S

p̃π̂(s′|s, a) · [R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)(−V̂π̂(ŝ′))]

(A.7)

We recall Equation (3.3) first:

Q̃p̃,π(s, a) =
∑
s′∈S

p̃(s′|s, a)[R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)Q̃p̃,π(s′, a′)]

=
∑
s′∈S

p̃(s′|s, a)[R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)Q̃p̃,π(s′, a′)]

Note if we use the same perturbation function p̃π̂ in Q̃p̃(s, a), we have:

Q̃p̃π̂
(s, a) =

∑
s′∈S

p̃π̂(s′|s, a)[R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)Q̃p̃π̂
(s′, a′)] (A.8)

Compared Equation (A.7) with Equation (A.8), we have −V̂π̂(ŝ) = Q̃p̃(s, a). This property proves
that we can find an optimal policy of a regular MDP M̂ that could determine the optimal adversary
p̃∗ for TA-MDP.
The optimal value function V̂π̂∗ satisfies:

V̂π̂∗(ŝ) = max
p̃π̂(s,a)∈B(s,a)

∑
s′∈S

p̃π̂(s′|s, a) · [−R(s, a, s′) + γ
∑

a′∈A

π(a′|s′)V̂π̂∗(ŝ′)] (A.9)

■
Theorem 2 Proof In Lemma 1 we already establish V̂π̂(ŝ) = −Q̃p̃,π(s, a), which shows the
process that we find the optimal adversary under a fixed π could be done like obtaining the optimal
policy in a regular MDP.

The difference is that, we use maxπ̂ to get the optimal policy π̂ in regular MDP; But in our
case, we use minf to find the optimal perturbation p̃∗.
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Firstly by the definition of Q̃p̃∗,π(s, a), we have:

Q̃p̃∗(π)(s, a) := min
p̃

Q̃p̃(s, a)

= min
p̃

Ep̃[
∞∑

k=0
γkrt+k+1|st = s, at = a]

= min
p̃

Ep̃[rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s, at = a]

= min
p̃

∑
s′∈S

[p̃(s′|s, a)][rt+1 + γ
∑

a′∈A

π(a′|s′)Ep̃[
∞∑

k=0
γkrt+k+2|st+1 = s′, at+1 = a′]]

= min
p̃(s,a)∈B(s,a)

∑
s′∈S

p̃(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′) min
p̃

Ep̃[
∞∑

k=0
γkrt+k+2|st+1 = s′, at+1 = a′]]

= min
p̃(s,a)∈B(s,a)

∑
s′∈S

p̃(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′)Q̃p̃∗,π(s′, a′)]

= T Q̃p̃∗(π)(s, a)

Where the p̃∗ is a fixed point of the Bellman operator. Now we will demonstrate this Bellman
operator is a contraction.

For arbitrary two initialized Q̃p̃1,π(s, a) and Q̃p̃2,π(s, a), if T Q̃p̃1,π(s, a) ≥ T Q̃p̃2,π(s, a), and with the
inequality that:

min
x1

g(x1)−min
x2

k(x2) ≤ g(x∗
2)− k(x∗

2) ≤ max
x

(g(x)− k(x))

where x∗
2 = argminxk(x), we have:

∀s,∀a T Q̃p̃1,π(s, a)− T Q̃p̃2,π(s, a)

= min
p̃1(s,a)∈B(s,a)

∑
s′∈S

p̃1(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′)Q̃p̃1,π(s′, a′)]

− min
p̃2(s,a)∈B(s,a)

∑
s′∈S

p̃2(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′)Q̃p̃2,π(s′, a′)]

≤ max
p̃(s,a)∈B(s,a)

{
∑
s′∈S

p̃(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′)Q̃p̃1,π(s′, a′)]

−
∑
s′∈S

p̃(s′|s, a)[rt+1 + γ
∑

a′∈A

π(a′|s′)Q̃p̃2,π(s′, a′)]}

= γ max
p̃(s,a)∈B(s,a)

∑
s′∈S

p̃(s′|s, a)
∑

a′∈A

π(a′|s′)[Q̃p̃1,π(s′, a′)− Q̃p̃2,π(s′, a′)]

≤ γ max
p̃(s,a)∈B(s,a)

∑
s′∈S

p̃(s′|s, a)
∑

a′∈A

π(a′|s′)∥Q̃p̃1,π − Q̃p̃2,π∥∞

= γ∥Q̃p̃1,π − Q̃p̃2,π∥∞

Similarly, we can prove the case that T Q̃p̃2,π(s, a) ≥ T Q̃p̃1,π(s, a), therefore we have ∀s,∀a, |T Q̃p̃1,π(s, a)−
T Q̃p̃2,π(s, a)| ≤ γ∥Q̃p̃1,π − Q̃p̃2,π∥∞. Hence, we have:

∥T Q̃p̃1,π(s, a)− T Q̃p̃2,π(s, a)∥∞ = max
s,a
|T Q̃p̃1,π(s, a)− T Q̃p̃2,π(s, a)| ≤ γ∥Q̃p̃1,π − Q̃p̃2,π∥∞

Then according to the Banach fixe-point theorem, since 0 < γ < 1, limk→∞ T kQ̃p̃,π converge to a
unique fixed point, which is Q̃p̃∗(π) ■
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Theorem 3 proof We start with Qπ,θ(s, a),

∇θQπ,θ(s, a) = ∇θ

{∑
s′∈S

p̃θ(s′|s, a)
[

R(s, a, s′) + γ
∑

a′∈A
π(a′|s′)Qπ,θ(s′, a′)

]}

= ∇θ

[∑
s′∈S

p̃θ(s′|s, a)
][

R(s, a, s′) + γ
∑

a′∈A
π(a′|s′)Qπ,θ(s′, a′)

]

+
[∑

s′∈S
p̃θ(s′|s, a)

]
∇θ

[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]

=
[∑

s′∈S
∇θp̃θ(s′|s, a)

][
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]

+ γ
∑
s′∈S

p̃θ(s′|s, a)
∑

a′∈A
π(a′|s′)∇θQπ,θ(s′, a′)

=
[∑

s′∈S
∇θp̃θ(s′|s, a)

][
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]

+ γ
∑
s′,a′

Pr [(s, a)→ (s′, a′), k|θ, π]∇θQπ,θ(s′, a′)

(A.10)

where Pr[(s, a)→ (s′, a′), k|θ, π] denotes the probability that agent utilized k steps to transfer from
state-action pair (s, a) to (s′, a′).
For the simplicity, we denote

∑
s′∈S [∇θfθ(s′|s, a)]

[
R(s, a, s′) + γ

∑
a′∈A π(a′|s′)Qπ,θ(s′, a′)

]
as

ϕ(s, a). Then:

∇θQπ,θ(s, a)

= ϕ(s, a) + γ
∑
s′,a′

Pr [(s, a)→ (s′, a′), 1|θ, π]∇θQπ,θ(s′, a′)

= ϕ(s, a) + γ
∑
s′,a′

Pr [(s, a)→ (s′, a′), 1|θ, π]

ϕ(s′, a′) + γ
∑

s′′,a′′

Pr [(s′, a′)→ (s′′, a′′), 1|θ, π]∇θQπ,θ(s′′, a′′)


= ϕ(s, a) + γ

∑
s′,a′

Pr [(s, a)→ (s′, a′), 1|θ, π] ϕ(s′, a′) + γ2
∑

s′′,a′′

Pr [(s′, a′)→ (s′′, a′′), 2|θ, π]∇θQπ,θ(s′′, a′′)

= . . .

=
∑

s′∈S,a′∈A

∞∑
k=0

γk Pr((s, a)→ (s′, a′), k|π, θ)ϕ(s′, a′)

(A.11)
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We denote η(s, a) = Es0,a0

[∑∞
k=0 γk Pr((s0, a0)→ (s, a), k|θ, π)

]
, and come back to∇θEs0,a0 [Qπ,θ(s, a)]:

∇θEs0,a0 [Qπ,θ(s0, a0)]

=
∑

s∈S,a∈A
Es0,a0

[ ∞∑
k=0

γk Pr((s0, a0)→ (s, a), k|θ, π)
]

ϕ(s, a)

=
∑

s∈S,a∈A
η(s, a)ϕ(s, a)

=

 ∑
s∈S,a∈A

η(s, a)

 ∑
s∈S,a∈A

η(s, a)∑
s∈S,a∈A η(s, a)ϕ(s, a)

∝
∑

s∈S,a∈A

η(s, a)∑
s∈S,a∈A η(s, a)ϕ(s, a)

=
∑

s∈S,a∈A
dθ,π(s, a)

∑
s′∈S

[∇θp̃θ(s′|s, a)]
[

R(s, a, s′) + γ
∑

a′∈A
π(a′|s′)Qπ,θ(s′, a′)

]

= Es∼dθ,π(s)
a∼π(·|s)

[∑
s′∈S

[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]
∇θp̃θ(s′|s, a)

]

= E s∼dθ,π(s)
a∼π(·|s)

s′∼p̃θ(·|s,a)

[[
R(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ,θ(s′, a′)
]
∇θ log p̃θ(s′|s, a)

]

(A.12)

We can find that there is no restriction of p̃θ which means it could be vastly different from the original
transition p, one of the solutio is add a regularization using KL divergence. With a fixed π, and the
perturbed transition function is parameterized by θ, then the regularization is:

R(θ) = Es∼dπ,p(s),a∼π(·|s)[DKL(p(·|s, a)∥p̃θ(·|s, a))] (A.13)

We can easily compute the gradient of it:

∇θEs∼dπ,θ(s),a∼π(·|s)[DKL(fθ(·|s, a)∥p(·|s, a))]

= ∇θ

∑
s∈S

dπ,θ(s)
∑
a∈A

π(a|s)
∑
s′∈S

p̃θ(s′|s, a) log p̃θ(s′|s, a)
p(s′|s, a)

=
∑
s∈S

dπ,θ(s)
∑
a∈A

π(a|s)
∑
s′∈S

{
log p̃θ(s′|s, a)

p(s′|s, a) ∇θp̃θ(s′|s, a) + p̃θ(s′|s, a)∇θ log p̃θ(s′|s, a)
p(s′|s, a)

}
=
∑
s∈S

dπ,θ(s)
∑
a∈A

π(a|s)
∑
s′∈S

{[
log p̃θ(s′|s, a)

p(s′|s, a) + 1
]
∇θp̃θ(s′|s, a)

}
=
∑
s∈S

dπ,θ(s)
∑
a∈A

π(a|s)
∑
s′∈S

p̃θ(s′|s, a)
{[

log p̃θ(s′|s, a)
p(s′|s, a) + 1

]
∇θ log p̃θ(s′|s, a)

}
= Es∼dπ,θ(s),a∼π(·|s)

s′∼p̃θ(·|s,a)

[{
log p̃θ(s′|s, a)

p(s′|s, a) + 1
}
∇θ log p̃θ(s′|s, a)

]

(A.14)

■
Theorem 5 Proof
First we denote Pπ(s′|s) =

∑
a∈A π(a|s)p(s′|s, a) and rp(s) =

∑
a∈A π(a|s)

∑
s′∈S p(s′|s, a)R(s, a, s′).

Let Vπ denote the |S|-dimension vector with (s)th component Vπ(s), rp denote the |S|-dimension
vector with (s)th component rp(s) where p denote the transition probability, and Pπ denote the
|S|×|S| matrix with (s, s′)th entry given by Pπ(s′, |s). We refer to Pπ as the transition probability for
state corresponding to the policy π, and refer to rp as the reward vector corresponding to transition
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probability p.
With a discount factor 0 < γ < 1,

Vπ = [Vπ(s)|s ∈ S]

= [
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)[R(s, a, s′) + γVπ(s′)]|s ∈ S]

= [
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)R(s, a, s′) + γ
∑
a∈A

π(a|s)
∑
s′∈S

p̃(s′|s, a)Vπ(s′)|s ∈ S]

= [rp(s) + γ
∑
a∈A

∑
s′∈S

π(a|s)p(s′|s, a)Vπ(s′)|s ∈ S]

can be represented by:
Vπ = rp + γPπVπ (A.15)

Hence, we have:
Vπ = (I − γPπ)−1rp (A.16)

Similarly, we can rewrite Ṽπ,p̃∗(π)(s, a):

Ṽπ,p̃∗(π) = (I − γPπ,p̃∗(π))−1rp̃∗(π) (A.17)

Where Pπ,p̃∗(π)(s′|s) = π(a|s)p̃∗(s′|s, a). Before we proceed to the next step, let’s introduce a new
|S|-dimension vector V :

V = (I − γPπ,p̃∗(π))−1rp (A.18)

For Vπ − V we have:

∥Vπ − V ∥∞ = ∥(I − γPπ)−1rp − (I − γPπ,p̃∗(π))−1rp∥∞

≤ ∥(I − γPπ)−1 − (I − γPπ,p̃∗(π))−1∥∞∥rp∥∞

≤ ∥(I − γPπ)−1∥∞∥(I − γPπ,p̃∗(π))−1∥∞γ∥Pπ − Pπ,p̃∗(π)∥∞∥rp∥∞

= γ∥rp∥∞

(1− γ)2 ∥Pπ − Pπ,p̃∗(π)∥∞

(A.19)

The second inequality comes from the fact that:

∥X−1 − Y −1∥ ≤ ∥X−1∥∥Y −1∥∥X − Y ∥

And the last equation holds because:

∥(I − γPπ)−1∥∞ = ∥
∞∑

n=0
(γPπ)n∥∞ ≤

∞∑
n=0

(γ)n = 1
1− γ

(A.20)

We note that:
γ∥rp∥∞

(1− γ)2 = γ maxs,a rp(s, a)
(1− γ)2 ≤ γ maxs,a,s′ R(s, a, s′)

(1− γ)2 (A.21)

52



It’s a constant that does not depend on p. Then equation (A.19) can be rewritten as:

max
s
|Vπ(s)− V (s)| ≤ γ maxs,a,s′ R(s, a, s′)

(1− γ)2 max
s
∥Pπ(·|s)− Pπ,p̃∗(π)(·|s)∥1

= γ maxs,a,s′ R(s, a, s′)
(1− γ)2 max

s

∑
s′∈S
|Pπ(s′|s)− Pπ,p̃∗(π)(s′|s)|

= γ maxs,a,s′ R(s, a, s′)
(1− γ)2 max

s

∑
s′∈S
|
∑
a∈A

[π(a|s)p(s′|s, a)− π(a|s)p̃∗(s′|s, a)]|

≤ γ maxs,a,s′ R(s, a, s′)
(1− γ)2 max

s

∑
a∈A

π(a|s)
∑
s′∈S
|p(s′|s, a)− p̃∗(s′|s, a)|

= 2γ maxs,a,s′ R(s, a, s′)
(1− γ)2 max

s

∑
a∈A

π(a|s)DT V (p(·|s, a), p̃∗(·|s, a))

≤ 2γ maxs,a,s′ R(s, a, s′)
(1− γ)2 max

s

∑
a∈A

π(a|s) max
p̃∈B(s,a)

DT V (p(·|s, a), p̃(·|s, a))

(A.22)
For V − Ṽπ,p̃∗(π), we have

∥V − Ṽπ,p̃∗(π)∥∞ = ∥(I − γPπ,p̃∗)−1∥∞∥rp − rp̃∗(π)∥∞ (A.23)

According to equation (A.20) and the definition of infinite norm, equation (A.23) can be rewritten as:

max
s
|V (s)− Ṽπ,p̃∗(π)(s)| = 1

1− γ
max

s
|rp(s)− rp̃∗(π)(s)|

≤ 1
1− γ

max
s,a,s′

R(s, a, s′) max
s

∑
a∈A

π(a|s)
∑
s′∈S
|p(s′|s, a)− p̃∗(s′|s, a)|

= 2
1− γ

max
s,a,s′

R(s, a, s′) max
s

∑
a∈A

π(a|s)DT V (p(·|s, a), p̃∗(·|s, a))

≤ 2
1− γ

max
s,a,s′

R(s, a, s′) max
s

∑
a∈A

π(a|s) max
p̃(s,a)∈B(s,a)

DT V (p(·|s, a), p̃(·|s, a))

(A.24)
We can derive a new bound from equation (A.22) and equation (A.24) by Triangle Inequality:

max
s,a
|Vπ(s, a)−Ṽπ,p̃∗(π)(s, a)| ≤ 2 maxs,a,s′ R(s, a, s′)

(1− γ)2 max
s

∑
a∈A

π(a|s) max
p̃(s,a)∈B(s,a)

DT V (p(·|s, a), p̃(·|s, a))

(A.25)
In TA-MDP we restrict p̃(s, a) by DKL(p(·|s, a)∥p̃(·|s, a)) ≤ ϵ, so we can also bound the loss of action
value function under perturbation as:

max
s,a
|Vπ(s, a)− Ṽπ,p̃∗(π)(s, a)| ≤

√
2 maxs,a,s′ R(s, a, s′)

(1− γ)2 max
s

∑
a∈A

π(a|s) max
p̃(s,a)∈B(s,a)

DKL(p(·|s, a)∥p̃(·|s, a))

(A.26)
■
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