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ABSTRACT

After conflict and disaster, social stability is a high priority strategic goal for

stakeholders. Reconstruction and infrastructure development close capacity

gaps, gain popular support for governments and institutions, and stave off

illegitimate authority. Development allows the population to resume their

daily lives and the government to demonstrate its reach and capabilities. It

is a means to undermine support for insurgents and illegal activity while

fomenting order. Infrastructure portfolios with carefully determined char-

acteristics can be explicitly selected with this in mind, constituting a sys-

tem. An optimal infrastructure portfolio for such a nebulous environment

should include robust design features. It well satisfies design criteria and

demonstrates resistance to exogenous factors. A systems approach using

agent-based modeling, response surface methodology, robust parameter de-

sign, and a local optima filter provides leaders with statistically distinct,

locally optimal choices better informing infrastructure decisions in a com-

plex environment by using noneconomic measures to recommend settings in

support of population stability.

The meta-model robust design process is introduced as a systems engi-
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neering methodology to address infrastructure decisions in complex, adaptive

environments with exogenous factors. The process is comprised of a several

subcomponents that trade accuracy (bias) for robustness. The robust fea-

tures of the methodology include robustness in regression and robustness in

parameter design. The local optima filter is able to differentiate between

control variable recommendations when response confidence intervals and

associated statistical tests fail to do so.

The meta-model is applied using known functions to demonstrate its

properties. It is also applied to a post-combat infrastructure selection sce-

nario in the city of Jalalabad, Nangarhar Province, Afghanistan. Finally, it

is applied to infrastructure policy selection in Tijuana City, Baja California,

Mexico. Though application, the meta-model robust design process provides

stakeholders with recommendations that might not be otherwise selected due

to the myriad permutations, the curse of dimensionality, heteroscedasticity,

the desire for robustness, and the use of noneconomic assessment measures.
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1. INTRODUCTION

”If a problem cannot be solved, enlarge it.”

∼ President Dwight D. Eisenhower
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In February 1991, the Gulf War ended the Iraqi occupation of Kuwait.

The aggressor’s retreat eliminated security threats and fostered unfettered

reconstruction. Coalition partners transitioned authority to the Kuwaiti gov-

ernment and departed. Despite hosting the world’s largest military battle in

25 years, Kuwait quickly restarted its economy and resumed its prosperous,

pre-war existence.

Conventional combat followed by a lasting accord is no longer the norm

for the United States and its allies. Worldwide, opposition entities capitalize

on the relatively low cost and high impact of persistent insurrection. They

orchestrate protracted crusades, with the assistance of nonstate actors, with-

out regard for realistic end states, capability calculus, or treaties and truces.

Recent experience in Iraq and Afghanistan support this conjecture. [2] Both

countries demonstrate the rise of insurgencies. After Saddam Hussein’s regu-

lars were defeated in 2003, it took nearly a decade for the United States and

its partners to end large-scale security operations in Iraq. Presently, last-

ing peace in Afghanistan is a distant goal despite the North Atlantic Treaty

Organization’s (NATO) 2001 invasion.

Because an insurgency’s center of gravity is a dissatisfied civilian pop-

ulation, a counter-insurgency (COIN) strategy under consideration by the

United States Department of Defense (DOD) includes implementation of ge-

ographically tailored infrastructure projects. [3] With infrastructure, a nation

demonstrates capacity and sets the conditions for peace and prosperity. In

post-combat / disaster environs governments must serve the population but
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they are often fragile and lack depth. A policy of increasing infrastructure

capacity can erode support for and indifference toward insurgents.

In order to limit unrest and foster long term stability, it is critical that

leaders choose the greatest value-added infrastructure projects. However, the

infrastructure is subject to dynamic and complex environments like social and

economic systems. These environments present significant challenges when

designing infrastructure systems, selecting project portfolios, and allocating

resources to support the population and subdue discord. [4]

Reconstruction is not just necessary after violence and conflict. Natural

and manmade disasters strike bluntly at a locale and also precipitate recon-

struction. The contrast between Hurricane Sandy’s impact on the northeast-

ern coast of the United States in November 2013 and NATO reconstruction

in Afghanistan illustrates the problem scope and research need. Storm dam-

age in New York and New Jersey exceeded $70 billion (US), but leaders

restored systems and services using historical references, codified processes,

and trusted agencies. [5] In Afghanistan, $130 billion was spent in 2009 and

2010. [6] Rather than repairing pre-existing systems across a highly-evolved

metroplex, the Afghan resources have been distributed at multiple levels via

assorted stakeholders in a loosely affiliated country, with triple the popu-

lation, thirty times the area, but without unified intent and purpose. [7] In

addition, the resources are not limited to application to brick and mortar con-

structions. They are distributed across security, governance, development,

and counter-narcotic functions, with the loin’s share going toward security (¿
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2/3). [6]. The absence of strong authority, stability, and a viable blue print

due to decades of blighting warfare makes broad improvement unlikely given

current methods of infrastructure improvement selection. [8, 9]

While it is not the only suitable application of the research, large scale

warfare is of interest. Warfare involves premeditated, focused, and sustained

efforts to disable critical infrastructure. In the time period following war-

fare, it is critical to quickly reestablish stability but this is a challenge for

stakeholders due to capacity gaps. [10]

Viewed through the lens of systems engineering, the complexity of this

problem relates to stakeholder needs and capacity delivery. It encompasses

the challenge of an engineering solution for a labyrinthine environment. It

demands robustness, a viable solution despite a range of exogenous, un-

controllable, factors. Design recommendations must account for locale and

stakeholder behavior and justify the investment, long time horizons, and

enormous resource allocation. A systems view of infrastructure selection

provides leaders with insight they currently do not possess in order to imple-

ment better policies for political and popular stability.

Four steps, each with subcomponents, comprise a solution strategy to un-

derpin infrastructure decisions, the Meta-Model and Robust Design Process

(MMRDP)

• Create a model of relevant stakeholder behavior

• Create, evaluate, and select statistical models based on data from the
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behavioral model

• Find robust system settings that account for exogenous factors and

achieve a desired end state

• Provide stakeholders a choice of settings based on resource constraints

The process estimates and analyzes poorly understood, high dimension,

nonlinear response spaces that are subject to control and exogenous factors,

Figure 1.1. Stakeholders require consistent, predictable end states to justify

the effort required to enact solutions. In this regard, the estimated response

must be robust, with quantifiable insensitivity to exogenous factor volatility

and varied system design settings.

1.1 Problem Statement

The dissertation research goal is to provide policy makers with a method to

guide municipal infrastructure selection policy in poorly understood environ-

ments. This could be in the time period after large scale military combat,

after a regional disaster, or a situation requiring significant levels of previ-

ously unavailable capability. This effort is captured by the research questions

and hypotheses.

Research Questions

• How does one support strategic stability goals using public infrastruc-

ture?
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Fig. 1.1: The meta-model robust design process incorporates systems thinking,
simulation optimization, and robust methods in order to improve infras-
tructure development policy.
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• How does one identify settings for infrastructure investment in a par-

ticular locale that are optimal and robust?

Hypotheses

• It is possible estimate locally optimal response behavior that is insen-

sitive to exogenous behavior in high dimensional space.

• It is possible to efficiently estimate relative probabilities for portfolios

that achieve satisficing expected response behavior in high dimensional

space.

Given an unstable and complex environment with infrastructure capacity

gaps, apply noneconomic criteria to select from infrastructure projects, each

with associated costs, and attributes, to discriminate between projects and

select portfolios that support stability. Using a proxy for a measure of popu-

lation stability for a particular geographic area, Y , maximize Y , as a function

of first order functions of, second order functions of, and interactions between

1..N control factors (X), 1..M environmental factors. Constraints include but

are not limited to control limits and a total budget, B, as determined by the

stakeholders.

Maximize Y, Y ∼ F (X,Z) (1.1)
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subject to

xi ≤ xU(i) (1.2)

xi ≥ xL(i) (1.3)∨
i ∈ I, I = 1..N (1.4)

Factorj ∼ Gj (1.5)∨
j ∈ J, J = 1..M (1.6)

∑
ΨX ≤ B (1.7)

XL, XU − control variable upper and lower bounds.

G− general exogenous variable distribution

B − budget constraint

1.2 Dissertation Organization

The dissertation literature review addresses infrastructure systems and MM-

RDP components. The following chapter outlines MMRDP and its proper-

ties. MMRDP is then applied to city models of Jalalbad, Afghanistan and
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Tijuana, Mexico. Results are presented. The dissertation concludes with

significant findings and discussion.



2. LITERATURE REVIEW

”A successful society is characterized by a rising living standard

for its population, increasing investment in factories and basic

infrastructure, and the generation of additional surplus, which is

invested in generating new discoveries in science and

technology.”

∼ Robert Trout, American Radio Commentator
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The literature review addresses steps within MMRDP, stakeholder anal-

ysis, infrastructure effects, measures to validate infrastructure selection, mod-

eling techniques for data generation, and response surface methodology (RSM)

to map and discover outcome behaviors of interest. Overall, the literature

dictates the need for MMRDP due to the lack of a codified methodology to

model a social environment in order to infer particular factors, interactions,

and higher order effects for use in infrastructure selection, particularly when

considering noneconomic measures.

2.1 Stakeholder Analysis

MMRDP is a systems engineering approach and as such requires a thorough

understanding of the environment, stakeholders, factors, relationships, and

measures. The philosophy of a systems view is well stated by Parnell et al.

(2008). Stakeholders select infrastructure systems that close known capabil-

ity gaps and underpin documented needs, such as security, governance, and

development. A systems view demands analysis of measures, inputs, func-

tions, linkages, interactions, and outcomes. In this way, one can identify and

characterize potential solutions. Figure 2.1 shows the systems considerations

when generating a basic framework for solution identification and scoring.

Systems thinking is a holistic mental framework and worldview

that recognizes a system as an entity first, as a whole, with its
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Fig. 2.1: Systems thinking as illustrated by Parnell et al.
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fit and relationship with its environment being primary concerns.

[11]

Stakeholder analysis results in problem scope and centers on data col-

lection. Three direct methods are available for collection, interviews, focus

groups, and surveys. [11] One must assess the situation to determine the best

method for their stakeholders using efficiency and the informative nature of

the feedback as measures. For instance, the literacy and size of a stakeholder

population may require large scale, face to face interviews rather than other,

less labor intensive methods to collect data. Other considerations such as a

stakeholder’s willingness to participate, culture or morays, may have signifi-

cant impact on collection methods. It the responsibility of the practitioner to

be sensitive to these issues in order to perform a comprehensive stakeholder

analysis.

Stakeholder analysis is a primary and critical step, as it informs all sub-

sequent elements of MMRDP. The process of stakeholder analysis is unique

to the problem at hand, however it includes the following steps in every

case. [11]

Identify People and Organizations Relevant to the Problem: Compile the set

of stakeholders

Determine the Stakeholder Wants, Needs, Desires: Identify the problem func-

tions, objectives, measures, and constraints
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Isolate Relevant Factors: Consider politics, economics, society, ethics, val-

ues, history, and technology

Refine the Problem Statement: Use stakeholder input to bound the system,

scope, and redefine the problem

An analysis of the local environment can yield key insights about the

functions that impact stakeholder objectives. One then develops stakeholder

needs, outlining capability gaps that will drive system design. Those gaps

have associated, quantifiable metrics. The metrics facilitate a basis of com-

parison when determining if needs and objectives are best met.

Parnell et al. (2008) define solutions in terms of their ability of the design

to meet the stated need:

“There are three different types of system designs: satisficing,

adaptivising, and optimizing. Satisficing, for an existing system,

means the current performance is satisfactory. For a new sys-

tem, satisficing means that any feasible solution will be satisfac-

tory. . . . The primary criteria for adaptivising solutions is cost

effectiveness. Improved system performance is the goal, but only

when it can be obtained at a reasonable cost. Satisficing accepts

any solution that works. Adaptivising looks for “good” solutions.

. . . Optimizing solutions are better than or at least equal to all

others. They are the best according to the performance measures.

However, they may require much effort or expense.”
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It is important that the practitioner and stakeholders use their assessment

of the environment and resources to apply distinctions within the solution

strategy.

2.2 Infrastructure Classification

In this study, public infrastructure research includes primary and secondary

effects of infrastructure improvement or introduction of new infrastructure or

systems of infrastructure on a population. Segments within the population

and their characteristics are considered. The research addresses efforts to im-

prove local environment attributes as determined by local, regional, national,

or international offices or bodies.

Governments are inexorably responsible for and at the mercy of infras-

tructure. This relationship pre-dates written history and it defines cultures,

expectations, and long term regional success. Whether provoked by disaster,

warfare, moral imperative, or other needs, infrastructure investment is costly

and must be justified. Infrastructure investment must explicitly address gaps

by type.

Infrastructure definitions are subjective and can be classified in a num-

ber of ways. The American Society of Civil Engineers (ASCE) publishes a

biannual report card on infrastructure within the US by type and subtype.

Its primary categories (classes) are Water and Environment, Transportation,

Public Facilities, and Energy. [12] Each type has a very specific description
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and assessment criteria.

Countries and other consortiums also categorize infrastructure accord-

ing to functional decomposition. [13] For instance, the World Bank not

only makes functional distinctions in infrastructure systems, it delineates be-

tween tanglible and more abstract systems, such as waste water versus public

health. [14] Regardless of how systems are categorized, a thorough functional

analysis will best outline needs that can later be mapped to systems within

proposed solutions. [11]

2.3 Noneconomic Metrics for Infrastructure Selection

Measuring the effects of public investment on economic measures comprises

over a century of research. In 1883, Adolph Wagner demonstrated the ben-

efits to a state that invests in infrastructure, among many other services,

for its people. [15] Based on analysis of 19th century Germany, Wagner’s

law posits that increasing revenues for the state should be plowed back into

the population which then foment ever increasing productivity and revenue

streams. The results of further exploration of his claim are mixed. Research

on infrastructure benefits has primarily focused on measurable economics

effects such as productivity and tax revenue.

Aschauer (1989) shows that government spending in the United States

from 1949 to 1985 related to infrastructure gives a lift to the economy but

other government spending showed no increase in productivity. [16] Other
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changes due to infrastructure investment are also difficult to specifically iden-

tify. As a component of infrastructure, transportation investment exempli-

fies this difficulty. [17] While it seems that public opinion generally assumes

transportation networks have tangible benefit, Cohen (2007) [18] and Lak-

shmananan (2011) [17] both state that magnitude of benefit as well as the

regional influence is not always conclusive. Benefits are more attributable at

micro rather than macro levels due to obvious first order effects. [18]

These challenges appear to undermine the proposed research but in fact

they propel it. Very few studies examine the relationships between the

population, its perception of the environment, and infrastructure systems.

Noneconomic, strategic arguments for infrastructure investment are philo-

sophical, relying on engineering-based measures from singular projects to

show how things will improve. There are no codified methodologies that

attempt to capture second order effects of infrastructure systems on a pop-

ulation. This leaves organizations with interested in long term effects on

the public, such as the United Nations (UN), NATO, Red Cross and Red

Crescent, or national governments, without a method to broadly justify or

inform decisions.

Along that vein, Perz et al. (2011) show the need for infrastructure in

an area of low economic means. The southwest Amazon basin is challenged

to capture the nature of all stakeholder needs across a region contained by

three countries, with few modern conveniences and dozens of cultures. [19]

They identify that infrastructure investment in the region is poorly measured
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by economic statistics thereby undermining the development opportunity for

the local population.

Cavallo and Daude (2011) are also representative of developing nation

infrastructure investment studies. Weakly performing geographic areas are

not likely to get public infrastructure they need because the importance of

philosophical and moral measures, such as quality of life, lag far behind

economic measures when determining infrastructure feasiblity. This limits

access to what many other parts of the world take for granted as essential

services. [20]

2.4 Agent-Based Models

The high cost of infrastructure makes large scale trial implementation of mul-

tiple candidate solutions impossible. This constraint leads the practitioner

to employ simulation to gain information and refine analysis. Given the high

reliance on simulation and experimentation in this research, computer aided

experimentation is a natural choice.

Computer simulation is ubiquitous within statistics, engineering, and ex-

perimentation. [21] It is also a tool for operations research and operations

management researchers. [22] Kleijnen et al. (2006), Sanchez et al. (1996),

and Sanchez (2000) are representative of the many surveys and papers that

outline computer-based experimentation within a broad set of methodolo-

gies. The popularity of computer simulation is due to decreasing hardware
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costs as well as better and more intuitive software. These advances bolster

extended applications as well, such as a broad infrastructure effects. [23]

Because infrastructure provides capability for a population, MMRDP esti-

mates the effect of infrastructure on individuals. The variety of stakeholders,

their interactions, high system complexity, and the desire for emergent be-

havior, make an agent-based model (ABM) appropriate for behavioral data

for follow on within MMRDP. ABMs offer the combination of individual

autonomous behavior, group aggregation, and emergent outcomes within a

computer-based simulation. ABMs introduce autonomous agents in a pre-

scribed environment and track changes to both over time. The agents inter-

act with each other and the environment allowing study of the system as a

whole. Cioppa et al. (2004) illustrate how ABMs are useful when testing

tactics and strategy in dynamic environments where underlying causes and

relationships are poorly understood. [24] These features, along with ABM

flexibility, make them extremely attractive when encountering social prob-

lems without closed-form solutions.

The Department of Defense (DOD) and other federal agencies use ABMs

for their breadth of application and depth of study. DOD sponsors a family

of ABM tools with the New Zealand Ministry of Defence and the Naval Post-

graduate School (NPS) collectively called Project Albert to aid research. [25]

Project Albert simulations have modelled a variety of situations to include

conventional warfare, logistics, security, and unconventional warfare. [26]

ABMs are common outside of the military purview as well. For instance
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NetLogo, a mutli-agent programming language, is widely used freeware. It

has demonstrated broad application in modeling complexity in nature and

societies. [27] Designed and managed by the Center for Connected Learn-

ing and Computer-Based Modeling at Northwestern University, it includes

a model library with dozens of systems that evolve over time such as wolf -

sheep predation, enzyme kinetics, and motor vehicle traffic. [28] Netlogo and

other similar languages are valuable due to their ease of use, their flexibility,

and their large communities of diverse users.

Another, more specific, example of social modeling with ABMs, Young

and Flacke (2010) present the logic and construct for an ABM to estimate

population growth in Dar es Salaam, Tanzania. They apply existing data,

such as UN development reports, and empirical data collected to server the

needs of the simulation. [29]

A useful feature of an ABM is the ability to incorporate a Geographi-

cal Information Systems (GIS) layer. This layer significantly effects human

behavior in reality and is germane to infrastructure planning. Isolation, av-

enues of travel, and other distinct features of geography are as important

distance when planning infrastructure projects. The states of the agents re-

flect the geography’s influence using GIS data imported into the model. At

each time step, an agent’s attributes can change as a function of model layers

and interactions with other agents.
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2.5 Response Surface Methodology

MMRDP steps include response surface methodology (RSM) given the desire

to find an optimal response as a means to highlight certain input factors and

recommend settings. Developed by Box and Wilson in 1951, RSM is a frame-

work combining statistical models and numerical approaches in order to gen-

erate a relationship between a response, y and k + 1 inputs, (x1, x2, ...xk+1),

where (k+ 1) ∈ P = (1..p), k ≤ p factors or variables. [30] Typically, factors

have constraints such as xklower ≤ xk ≤ xkupper or xk ∈ Z.

RSM uses an estimate of a previously unidentified relationship to provide

the user with a locally optimum response value and its associated factor

settings. [31] Model 2.1 shows the general form of the relationship between

the response and selected factors. [32]

y = η(~x)β + ε (2.1)

Here, η(~x) and β comprise the true but unknown function of inputs of first

order or higher. RSM attempts to estimate this relationship. The associated

random error is ε, ε ∼ (0, σ2). [32]

The model used to estimate model 2.1 is typically restricted to low order,

two or less with interactions, regardless of the complexity of the true rela-

tionship, η(~x)β. Assuming that one defines a small enough neighborhood,

RSM uses first order relationships, model 2.2, and second order relationships,

model 2.3, to represent model 2.1. They are sufficient given assumptions
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about the error and response expected value E[y|~x] = E[ŷ|~x] hold. [32]

ŷ = β0 +
k∑
i=1

βixi + ε (2.2)

ŷ = β0 +
k∑
i=1

βixi +
∑∑

i<j

βijxixj +
k∑
i=1

βiix
2
i + ε (2.3)

By iterating experiments, RSM highlights a sequential path to an area on

the estimated response surface where the performance is better than earlier

addresses. RSM is complete when better performance cannot be found. Box

and Wilson point out that RSM does not promise convergence and one may

initiate RSM from multiple starting points to search for global optima. [30]

Based on termination criteria the process provides relevant factor levels to

achieve local optima driving system design and stakeholder decisions.

The exploration of the surface is fueled by successive experimental de-

signs. It allows the practitioner, through a flexible but codified set of steps,

to move through an solution space toward an area where the estimated re-

sponse performance is may be better than earlier addresses. RSM segments

the response surface by experimenting in small neighborhoods, Figure 2.2.

RSM maps response surfaces using piecewise approximations using little a-

priori knowledge of the true function, Figure 2.3. In this way, RSM can

estimate and maneuver through a P -dimensional response surface one small

neighborhood at a time evaluating the mean of the estimated response func-

tion and its variance, σ2. [33]
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Fig. 2.2: The response surface experiments are in small neighborhoods.
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Fig. 2.3: Optimality is discovered by moving across the experimental neighbor-
hoods of a response surface via the discovery of steep paths.
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Between each successive better performing response point, a path of steep-

est ascent / descent (PSA / PSD) is constructed from β̂. RSM then uses the

PSA / PSD as an azimuth to move using arbitrary steps, toward a more

desirable mean response performance as defined by the user, a minimum,

maximum, or target response value, Figure 2.4. [31]

Fig. 2.4: RSM seeks response improvement along the path of steepest improve-
ment.

Tests for curvature as well as general lack of response improvement alert

the user to generate a new experiment, a new PSA or PSD, or to terminate

the effort. If curvature is present, a second order model is fit. Using a system

of equations generated by partial derivatives of the estimated second order

model can then be solved in order to find the stationary, locally optimal,

point. The optimal point classification is local because RSM cannot guar-
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antee convergence. It is sensitive to the surface topology, initial point, PSA

/PSD step size, and experimental design construct. [31] RSM includes the

following steps.

• Selecting a starting point in P space

• Conducting experiments within a specified neighborhood using up to

P factors

• Creating 1st or 2d order regression models from significant factors to

estimate the response as appropriate

• Identifying and following a path toward better response performance

• Determining a new starting point or terminating the process with a

recommendation of a factor address (≤ P elements) and a relationship

that yields a best local response performance

It is important to note that error within PSA increases as the distance

from the latest ”best point” increase because the error of each successive step

maintains the error of the intial step and that of the regression model used

to take the step. The more steps that one takes the greater the error. The

error is re-baselined with each regression resulting from a new experiment.

2.5.1 Locally Optimal Point Selection

The primary motivation for RSM in this research is to identify optimal set-

tings for control variables. Once
−→
β is found via regressive, additive, or other



2. Literature Review 27

models, one can solve for the optimal input levels.

y = β̂0 + x′β̂1 +
∑∑

i<j

x′iβ̂ijxj +
k∑
i=1

x′iβ̂iixi + ε (2.4)

assuming that E[ε] = 0 and variance of the estimated response is constant,

equation 2.5 shows the relationship between ~x and y.

ŷ(x) = β̂0 + x′β̂1 +
∑∑

i<j

x′iβ̂ijxj +
k∑
i=1

x′iβ̂iixi + ε (2.5)

While other methods exist to find ~x, such as Hoerl’s 1959 introduction

of ridge analysis, later modified by Draper in 1963 and Khuri and Myers in

1979, one can use partial derivatives of fx̂ to generate a system of equations

in order to find the locally optimal setting, ~x∗. [31]

2.6 Experimental Design

Within RSM, the exploration of the surface can be fueled by successive

computer-based experiments. For this research, all experiments are full fac-

torial, resolutionIV , designs with each of k factors run at +1 and −1 levels

for n replications of 2k points. Many other experimental designs are avail-

able but the anticipated cost due to computer simulation versus other design

types is low. [31]

Experimental design considerations include orthogonality of the design,

to avoid collinearity within ~β and rotatability, ensuring constant variance
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for all design points. Rotatable designs were developed by Box and Hunter

in 1957 to fix the estimated response variance and that of the ~β. [32] This

allows for better comparisons of points in hyper-space and reduces violations

of RSM assumptions.

When appropriate, second order models use an experimental design that

adds a central composite design (CCD) to the 2k design for a total of n =

2k+2k+1 points. The greater number of points is due to the greater number

of parameters to be estimated in the second order design as shown in model

2.3. In this case there are p = 1 + 2k + k(k−1)
2

parameters, the minimum

number of design points required. [32]

The CCD includes the center point and 2k facial points to form a star

design. Simply put, a 2k design forms the corners of a hyper-cube and the

CCD generates axial points in the center of each face but at the same distance

from the center point as each corner. This way the design ensures constant

variance for each element in ~β and by extension constant variance in the

estimated response. [34] This distance, α, is chosen to ensure rotatability,

thus α = F 1/4 where F = 2k, the number of points in the full factorial

design.

For example, in a 23 design, there are 6 faces requiring 2∗3+1 additional

points for the CCD when including the center point. Assuming that each

corner point is a radial distance of
√

2 from the center, points centered on

each face of the cube must be the same distance. In the 23 design this

equates to a distance of k1/2. Figure 2.5, shows the 23 full factorial, main
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effects design including a CCD. The 15 design points are sufficient to estimate

the 10 parameters of a second order model. Though a full factorial is a

greedy experimentation method, the use of computer simulation as a part

of MMRDP facilitates these techniques. In addition, a full factorial design,

retains sufficient degrees of freedom to include interactions within the model

as necessary. In the event the simulation becomes too costly one can use

nearly orthogonal latin hyper-cube sampling, (NOLHS).

Fig. 2.5: The experiments in a 2k first order function estimate full factorial design
jump to 2k + 2k + 1 for a second order function.

NOLHS can reduce the computational burden due to simulation. It ran-

domizes the levels of all factors considered by the ABM and reduces the

number of design points while generates a space-filling set of experiments,

ensuring a thorough exploration of the levels and factors at a discount. The

NOLHS algorithm developed by Cioppa and Lucas, is a smaller design, in-
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duces orthogonality, and fits main-effect and interaction-effect models with

nearly uncorrelated estimates of the coefficients for linear regression. [35]

In this instance, relief from full factorial designs in P -space can result in

experiments that are orders of magnitude smaller.

NOLHS has drawbacks. It saves time, money, and effort, but provides

partial coverage of space as a tradeoff for efficiency. It must be carefully

applied to show a distinction between integer and continuous variables. With

continuous variables NOLHS forces its user to select alternate methods and

interpolate response values across large gaps at times as all design points

are not run. This can be problematic with complex functions but can be

mitigated by viewing the function in small neighborhoods when applied as a

component of RSM.

2.7 Statistical Model Evaluation

Of the the methods to uncover and describe structure that may exist in the

data, sum of squared error (SSE) is natural choice to determine the accuracy

of a model. It is immune to model nesting considerations. [36] SSE, mean

squared error (MSE), root mean squared error (RMSE) are unbiased but

intuitively, suffer from the scale of the input variables. Normalized MSE

(NMSE) is attractive because it is scale insensitive. [37]

SSE =
∑

(yi − ŷi)2 (2.6)
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MSE =

∑
(yi − ŷi)2

n− p
(2.7)

RMSE =

√
y′y − β̂X ′X

n− p
(2.8)

NMSE =
1

σ̂2n

n∑
k=1

(yk − ŷk)2 (2.9)

The square of correlation coefficient, R2, adjusted R2
adj, predicted R2

pred,

and Mallow’s Cp, are also tools to compare model fit.

R2 =
β̂X ′X − nȳ2

y′y − nȳ2
(2.10)

R2
adj = 1− (1−R2)(

n− 1

n− p
) (2.11)

R2
pred = 100[1− (

PRESS

y′y − nȳ2
)]% (2.12)

Cp =
SSE

σ̂2
− n+ 2p (2.13)

However, they have drawbacks as well. For instance, R2 and all of its

variants measure linear correlation. Thus it is not suitable for second order

models. Mallow’s Cp penalizes the user for a higher numbers of factors but

only for those models where the number of factors is greater than the expected
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value of Mallow’s Cp, P . The Cp statistic is often used as a stopping rule

for various forms of stepwise regression. Mallows proposed the statistic as a

criterion for selecting among many alternative subset regressions. Under a

model not suffering from appreciable lack of fit (bias), Cp has expectation

nearly equal to P;

Models with large values of R2, and R2adj, and small values of RMSE are

sought. R2 increases with additional predictor variables regardless of how

significant factors are. On the contrary, R2adj may decrease if additional

predictors do not contribute significantly to explaining the variability in the

response. Thus, it is important to observe both statistics rather than R2

alone.

In the actual, unknown relationship, Y = η(θ)+ ε = f(θ)+δ(θ)+ ε where

ε is random error and δ(θ) is the bias. [31] Typically, δ(θ) is unknown. In

the event that δ(θ)) cannot be calculated, a more likely scenario, one can

use MSE as a measure to evaluate a model. MSE can be easily calculated

for a model without explicit knowledge of bias, and it accounts for bias and

variance of the response. MSE = σ2 + δ2.

Within RSM, the process repeatedly compares models; first order, first

order with interactions, second order, and second order with interactions.

Because the models are nested, MMRDP uses deviance as a method to com-

pare and select. Deviance, a calculation of the log - likelihood ratio for a

model, is suitable for Generalized Linear Models (GLMs) with continuous,

discrete, and binary data. [37]
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Agresti (2002), summarizes deviance and its calculation. Given a set of

observations, y = (y1, ..., yn), L(µ;y) represents the log-likelihood function

of the means µ = (µ1...µn) The likelihood function is a monotonically in-

creasing function whose maximum is at the same location as the maximum

probability. This is implied by the relationship between the likelihood func-

tion of the parameters given factor observations and the probability mass

function (pmf), L(Θ | x) = f(x | Θ). [37]

Agresti (2002) denotes the maximum of the log-likelihood as L(µ̂;y) for a

model. It is achieved via the saturated model, one where there is a separate

parameter for each observation and perfect fit. However, the saturated model

is useless with other data as it is not generalizable and it offers no feature

reduction. It is the basis for comparison for all other models being fit. Any

model other than the saturated model yields a likelihood function, L(y’;y).

Deviance, −2[L(µ̂;y)] can be calculated for each model under consideration.

Additionally, deviance is χ2 distributed, allowing for estimation of the sta-

tistical significance of changes in the ratio. [38] Within RSM, the model with

the lowest level of deviance is selected for best fit.

2.8 Conclusion

The amalgamation of these well defined processes offer a framework for MM-

RDP. They provide the practitioner a way to move through problem de-

velopment and its scope, model the environment, generate data, estimate
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relationships, and seek optimality. Additional steps must be taken when

model assumptions are violated or if one desires robust settings.



3. METHODOLOGY

”Thomsen and Cantrell both expressed some doubts about the

future popularity of such approximate formulas for the

hyperareas of hyper-ellipsoids.”

∼numericana.com, May 2004

Since 2009, Knud Thomsen’s approximation formulas have been

cited 54 times.

∼scholar.google.com, March 2013
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MMRDP is comprised of subcomponents arranged in a series of steps.

The literature review addresses its basic elements. Using the process to

estimate relationships in complex adaptive environments requires extensions

within RSM, statistical models, and robust design. Robust solutions also

demand greater clarification for inclusion in MMRDP. A detailed version of

MMRDP is outlined in Figure 3.1.

3.1 Methodology Overview

The meta-model, F (X,Z), initiates the process that inculcates control vari-

ables, X, and exogenous variables, Z. It represents a true function for output

in terms of the environment, its inputs, and relationships, ηX,Z . It is rendered

and validated using stakeholder analysis and represented via a computer sim-

ulation, Figure 3.2.

A combination of experimental design, regression, and RSM, join to form

the estimate of the meta-model.

Characterize the Environment: Incorporate a systems approach and cap-

ture stakeholder needs and critical variables, processes, and relation-

ships.

Create an Agent-Based Model: Represent key features of the environment,

the stakeholders, and courses of action to provide a rich data set for

analysis.
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Fig. 3.1: MMRDP seeks optimality for infrastructure system selection in nebulous
environments
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Fig. 3.2: The meta-model represents the environment and introduces bias
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Seek Locally Optimal Settings: Employ RSM to provide a detailed view of

the response surface in order to capture the effects of constraints and

variance on optimal settings.

Use Statistical Modeling: Discover significant inputs and estimate low order

relationships between inputs and the response in each experimental

neighborhood.

Present Robust Design Alternatives: Provide stakeholders discernable alter-

natives based on optimal performance that are insensitive to system

variance associated with exogenous variables.

Filter Robust Design Alternatives: Further discriminate between robust al-

ternatives by comparing the relative probability of success for each al-

ternative.

Recommend Pareto Optimal Solution: Provide stakeholders best candidate

recommendations.

The combination of the meta-model and robust design offers users flex-

ibility both in approach in general application. Despite the ground work

necessary required to scope the problem, MMRDP is applicable across a

wide range of environments. It is a systems approach and can use data from

any model to further the process and serve as a basis for RSM. The process

offer users the ability to trade speed and computational frugality for fidelity

detailed exploration of the response surface. Output is further analyzed by
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assessing course of action likelihood of success before determining pareto

optimality.

The general problem is stated formally.

Maximize Y ∼ f(
∑
βX,

∑
ξZ)

subject to

Xi ≤ BU(i)

Xi ≥ BL(i)∨
i ∈ I, I = 1..N

Zj ∼ Gj∨
j ∈ J, J = 1..M∑
ψX ≤ C

BL, BU control variable upper and lower bounds

G exogenous variable distribution

C budget ceiling

A collection of techniques within MMRDP are required to address the prob-

lem.

3.2 Extreme Value Theory

Some environments experience influential but low probability events, such an

improvised explosive device (IED) detonation, a tornado, or the discovery of

valuable resource. It is natural to include such events in the ABM. However,

the rarity demands study of extreme value theory.
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Extreme values are not uncommon in complex dynamic systems. They

highlight a two-fold problem. Usually, little data exists to fully characterize

the environment or the relationships are very poorly understood to support

confident estimates. [39] There are a number of ways to address this as the

typical assumption of classic gaussian behavior for both inputs and outputs

is not reliable. Selection of extreme value models is an exercise in tradeoffs.

Gumbel models, Frechet models, Weibull models are a few goodness of fit

and Likelihood ration tests are available for all [39]

Maximum likelihood estimation for parametric modeling can be com-

pleted based on the Generalized Extreme Value (GEV) Distribution outlined

below. [40]

The model emulates the presence of

Mn = max(X1, X2, ..., Xn) (3.1)

where X1, ..., Xn is a sequence of independent and identically distributed

(IID) output values. Mn represent the maximum value over a set time period

of length n. The exact distribution of Mn is

P (Mn > z) = P (X1 > z,X2 > z, ..., Xn > z) (3.2)

= P (X1 > z)× P (X2 > z)× ...× P (Xn > z) (3.3)
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= (Fz))n (3.4)

Unfortunately F (z) is rarely known. Estimation of F (z) begins with its

behavior as n→∞ . Because F n(z)→ 0 as n→∞, Mn must be transformed

to make its probability insensitive to changes in scale.

M∗
n =

Mn − bn
an

(3.5)

where an > 0, and bn are constants chosen to stabilize the location and

scale of Mn. As such the choices for an and bn are more critical than Mn.

From Coles(2001), The Extremal Types Theorem outlines the range of

limit distributions for M∗
n.

If there exist sequences of constants (an > 0) and (bn) such that

P (
Mn − bn
an ≤ z

)→ G(z) (3.6)

as n → ∞ where G is a nondegenerate (stabile) distribution function,

then G belongs to one of the following families

G(z) = exp{− exp[−z − b
a

]},−∞ < z <∞ (3.7)

G(z) =

 0 z ≤ b

exp{−( z−b
a

)−α} z > b
(3.8)
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G(z) =

 exp{−[−( z−b
a

)α]} z < b

1 z ≥ b
(3.9)

These three distributions, the extreme value distributions, are the Gum-

bel, Fréchet, and Weibull families. They will be sufficient to increase the

fidelity of stochastic models as necessary.

3.3 Function Estimation

Often practitioners encounter ordinal and categorical variables essential to

the model. In general, regression techniques abound to address all types of

variables. However, as a component of RSM, ordinal and categorical inputs

present a challenge. At the inception of RSM, Box and Wilson (1951) stated

We shall assume that within the region considered the derivatives

of the response function are continuous.

However, this can be overcome. Kleinjen et al.(2005) point out that

discontinuities exist in highly complex environments and should be antic-

ipated within the response surface. [21] Khuri and Mukhopadhyay (2010),

Nelder and Wadderburn (1972), McColloch and Searle (2001), and Myers et

al. (2002) point to GLMs as a suitable method to address function smooth-

ness. [32,41–43] GLMs are favorable as they can fit discrete data, continuous

data, and nongaussian distributions if necessary. [37]
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Options for the practitioner are not limited to GLMs. Using models

with discrete and continuous variables Moisen and and Frescino (2002) com-

pared linear models, generalized additive models (GAMs), classification and

regression trees (CARTs), multivariate adaptive regressive splines (MARS),

and artificial neural networks (ANNs). While all showed suitability, MARS

stands out for its computational speed and its performance in the presence

of discrete variables. [44]

Multivariate Adaptive Regressive Splines

Complex, dynamic systems are often characterized by nonlinear relationships

and high dimensional spaces. [45] Lack of deep understanding and the po-

tential for broad application due to the high instance of complex systems

has increased the interest and use of Generalized Additive Models (GAMs)

in regression. [46] GAMs offer relevant utility within the research due to

the strong potential for nonlinear relationships. The forward and backward

selection of variables with GAMs is attractive because of dimension reduc-

tion. [46] A GAM with X1, X2, ..., Xp as factors and Y as the response has

the form

E(Y |X1, X2, ..., Xp) = α+ f1(X1) + f2(X2) + f3(X3) + ...+ fp(Xp) (3.10)

The functions

fj(Xj), j = 1..p, (3.11)
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assumed to be smooth, can modeled using sums of basis functions, hm,

and least square estimates for β values.

M∑
m=1

β̂mhm(X) (3.12)

The functions are a linear basis expansion in X. [46] They form elements

of a piecewise linear function that can represent regular linear models, poly-

nomial terms, and nonlinear transformations. In addition, the basis functions

can act as indicators for regions of Xj to activate and deactivate functions

and factors within those functions to best employ the GAM to approximate

through least square the unknown function. [46]

MARS, an additive model, has been shown to efficiently and accurately

estimate functions in high dimension regions. [47] Developed by Friedman

in 1991, MARS offers benefit with high dimensional complex data sets. [48]

This is true for estimating functions using data with and without error com-

ponents. MARS, as a nonparametric method of approximation that uses

forward/backward selection and multivariate basis function expansion takes

the following form.

f̂(X) = β̂oho +
M∑
m=1

β̂mhm(X) (3.13)

The spline basis function construction of estimation allows for selection

of different sets meaningful variables across different regions of the response

surface. [47] Crino and Brown (2007) and Leathwick et al. (2006) showed
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that MARS, as a component of RSM, can outperform other methods of

response approximation including GAMs, Neural Networks(NN), simulated

annealing (SA) and genetic algorithms (GA). [49] MMRDP could potentially

be applied across a broad range of systems and high dimensional spaces. The

MARS model’s ability to estimate linear and nonlinear relationships with its

piecewise construction makes it very attractive.

Employment of regression models within RSM points to GLMs as suffi-

cient. GLMs are well suited for simple, low order models. GAMs and MARS

models are more flexible. They can address nonlinear response surfaces and

collinear factors, in their response surfaces. [50] While this is a desirable

feature when studying complex systems in general, the GAM and MARS ap-

proaches incur a cost. They are more difficult to interpret, and they demand

a great deal of computational effort compared to GLMs. GLMs offer flexibil-

ity with their choice of link functions demonstrating robustness to a variety

of types of error, binomial, guassian, exponential among others. The small

neighborhoods of RSM validate simple models but they are not immune to

the catalog of error. Because of this fact, the low computational effort, and

interpretability, MMRDP will employ GLMs with RSM and robust RSM.

General Linear Model Goodness of Fit

GLM fit can be assessed using statistical deviance. Deviance is a comparison

the log likelihood, L(µ̂, y) of saturated model to that of the model under

assessment. [37] The saturated model maximizes the L(µ̂, y) using a the most
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general model. The most general model has a perfect fit, µ̂ = ȳ and parameter

for every observation. It explains the relationship and all variation in the

data. [37] Fitted models have fewer parameters, a worse fit, and an associated

deviance, equation 3.14.

− 2[L(µ̂, y)− L(y, y)] = 2 log
maximum likelihood for model

maximum likelihood for saturated model

(3.14)

GLMs nest with the saturated model and greater deviance exhibits a

worse fit.

3.4 Incorporating Robustness

The solutions found with MMRDP are robust in that they provide pre-

dictable response behavior despite the presence of exogenous factors. The

concept of robustness is not fixed in the literature. The definition varies

based on point of view and application, Roy (2002). [51] One can seek

model robustness Mulvey et al.(1995). [52] and Vincke (1999). [53], algo-

rithm robustness, Sorensen(2004). [54] or solution robustness, Rosenhead et

al.(1972). [55], Kouvelis and Yu (1997) [56], Wong and Rosenhead (2000). [57]

Decision analysis dominates the literature. Wong and Rosenhead (2000) see

robustness as a measure of the useful flexibility preserving many options for

choices to be made in the future.

The robust design methods can add a degree of response insensitivity
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to the exogenous factors. One may pursue risk analysis with RSM, Chen

et al.(2003), and Al-Omar(2002). But with complex adaptive environment,

this amounts to an insurmountable task. One cannot fully account for all

possible outcomes and assign probabilities, as in classic application of risk

analysis.

Mosteller and Tukey (1977) present the definition of a robust estimate

most relevant to the research in two parts. [58]

• A small change in the data will not result in a significant change in the

estimate.

• Across a range of inputs the estimate is efficient

The first point involves robustness to atypical data. The estimate is

sufficient for the majority of the data. The second point refers to robustness

to violations of assumptions. The estimate is relatively accurate without

regard for the distribution of the data. [59]

MMRDP has three facets of robustness, in regression, parameter design,

and local optima discrimination. Robust regression addresses violations of

gaussian, homoscedastic, or independence assumptions. [31] Robust parame-

ter design generates a model where the response is less sensitive to exogenous

factor variance. [60] Local optima discrimination compares already robust

solutions using the relative probability of meeting minimum response perfor-

mance criteria.
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3.4.1 Robust Regression

Statistical model extensions within RSM center on alternate forms of data

regression, particularly deviations from OLS regression assumptions. Robust

regression is used when encountering gaussian, homoscedasticity, or indepen-

dence assumption violations. [31]

Classic RSM subsumes the assumptions of ordinary least square regression

and Taylor series approximation.

• Normal(gaussian) response behavior with noise ∼ IID N(0, σ2)

• Neighborhoods where experiments occur are small enough to view the

unknown function, η, to be estimated and optimized as second order

functions or lower

Normal response behavior allows for ordinary least squares regression and

yields best linear unbiased estimator (BLUE) of Ŷ . It also generates regres-

sion coefficients,
−→
β , with gaussian uncertainty. Small experimental neigh-

borhoods allow the user to initially view η as linear justifying first order

models and reducing regression complexity and computing cost. [31] Even

when presented with curvature, this assumption allows for low order Taylor

approximations of η and preserves degrees of freedom. [31] Preserving degrees

of freedom allows for estimation of variance and other moments beyond av-

erage estimated response value and allows fractional factorial experimental

designs. It should be noted that Taylor series approximation does not address

autocorrelation nor categorical factors.
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Nongaussian behavior can be determined in several ways, such as a QQ

plot, fig 3.3 or more precisely with a Shapiro-Wilks test for normality.

Fig. 3.3: A QQ plot shows nongaussian behavior.

The Shapiro-Wilks test null hypothesis is that data is normally dis-

tributed. Given an ordered set of random data , x(i), I = 1..n, a test is

run using the W statistic. [61]

W =
(
∑n

i a1x(i))
2∑n

i (x(i) − x̄)2
(3.15)
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a = (a1, ..., an) =
m′V −1

(m′V −1V −1m)1/2
(3.16)

Here m′ is the set of expected values of standard normal order statistics

and V is the corresponding nxn covariance matrix.

W has no explicit form for a general level of n. However, tabular re-

sults are available for specific values of n. For instance, in the R Statistical

Package, stats, the Shapiro-Wilks test function, shapiro.test(x) work for

n = 3..5000. [62] To apply the test with a given set of data, one compares

a calculated statistic, Wcalc to Wn,α. If Wcalc < Wn,α, the null is rejected at

the 1− α level, Figure 3.4.

Fig. 3.4: The results of the Shapiro-Wilk test on the response points classify it as
nonGuassian behavior at the α = .05 level.

When response data violates gaussian, homoscedastic, or independence

assumptions, ordinary least squares regression is not the BLUE. Phenomena

such as extreme values may be at play. Extreme values are not uncommon

in complex dynamic systems and little data exists to fully characterize the

environment or the relationships. [39]

In the presence of nongaussian behavior, once can use transformation of

the response, such as a log transformation, bootstrapping, or robust regres-
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sion. [31] Robust linear regression, does not minimize mean squared error

like Ordinary Least Squares (OLS). It minimizes residual correlation. Com-

mon robust regression techniques are least trimmed squares (LTS), and least

median of square (LMS). [63] These techniques lower estimated response vari-

ance compared to OLS but will not outperform OLS in the event of gaussian

behavior. They are most suitable in the event of nongaussian behavior. [64]

Least Median Squares

LMS seeks to minimize the median, M of the residuals, minM(e2
i ), in-

stead minimizing the sum of squared differences in OLS, min
∑

i (e
2
i ) =

min
∑

i (yi −
∑
xijβj)

2. [65] Application of the median within the optimiza-

tion is in response the desire for less sensitivity to outliers within the data. [66]

Least Trimmed Squares

LTS is from the class of L-Estimators [59] It finds the minimum value of

−→
β by minimizing the summed, ordered residuals. LTS removes points, like

extreme values, to reduce the variance of the set. When the sample set is

not altered, the result from OLS is the same as LTS. LTS is preferred over

LMS. LTS converges at rate n1/2. LMS converges at a rate of n1/3 [67]

3.4.2 Robust Parameter Design

In an environment with exogenous factors, poorly understood relationships,

and lurking variables, the goal is to seek large regions of desirable system



3. Methodology 53

performance on the response surface in order to mitigate variance of the

system. In robust parameter design, optimality is sought when some factors

are not controllable, exhibit variance.

This research does not attempt to provide risk assessments to stakehold-

ers. As a point of clarification, robust design is distinctly different than risk

assessment. Risk assessment involves analysis of undesirable outcomes and

their probability. [68] Robust design seeks to limit response sensitivity to

variability in the factors. Given a complex system, one cannot purport to

know all of the outcomes associated with it. [45] Amaral and Ottino (2004)

stress that the nature of systems with emergent outcomes negate comprehen-

sive risk assessment efforts. Thus, robust design is a more appropriate aim.

It allows users to seek trade offs between variance behavior, and response

behavior, Figure 3.5.

Robust design was developed by Genichi Taguchi to minimize process

variance. Focusing on production, he splits factors that impact a system

in two categories, control and noise. [60] Those things manufacturers can

control, such as labor on hand or design dimensions are control factors. Those

they cannot control, such as the weather or the time it takes for a chemical

process to complete, are exogenous noise. For instance, variations in air

density may impact the adhesion of parts in a bonding process. A familiar

extension of Taguchi’s work is the Lean Six Sigma process championed by

General Electric and other companies. [69]

Taguchi’s robust design provides solutions by modeling a process and the
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Fig. 3.5: Robust parameter design uses mean and variance surfaces to tune re-
sponse behavior through control factor settings.

variables accordingly. His methods find optimal settings for desired outcomes

then reduced noise sensitivity in that response by tuning the overall process.

Taguchi’s method centers on a two piece 2k experimental design. [60] Set or-

thogonal to each other, an inner array contains control variables and an outer

array holds the exogenous ones. Additionally, he combines response mean

and variance into one response, signal to noise ratio (SNR). SNR is Taguchi’s

method to seek the estimated response mean and minimize variance. [32]
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Smaller is better - response minimization

SNR = −10log10[
∑
y2i
n

]

Larger is better - response maximization

SNR = −10log10[

∑ 1

y2
i

n
]

Nominal the best - response target

SNR = 10log10[ ȳ
2

n
]

Due to the unique construction of each SNR, each is maximized. While

Taguchi’s method was a leap forward in process control, it has its faults. Its

failure to consider interactions, the high required number of experiments, and

the SNR’s insensitivity to factors that impact mean or variance separately

motivated more research. [32]

Since Taguchi’s development, Welch, et al. (1990) [70] and Shoemaker,

Tsui, and Wu (1991) [71] found more efficient methods of experimental design

to do the same, primarily by combining the noise and control variable arrays.

Their research solidified the idea that one design can generate response sur-

faces for both the mean and the variance, a dual response problem. In this

form, one can solve for a relationship using the response mean (minimize,

maximize, or target) then use that as an additional constraint when mini-
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mizing the variance. [32] As a extension, RSM is applied using robust design,

per Vining and Myers (1990) [72] and Myers, Khuri, and Vining (1992). [73]

As in classic RSM, function smoothness is not an issue in dual surface

RSM. Nelder and Lee (1991) [74], and Engel and Huele (1996) [69] validated

generalized linear models (GLM’s) in robust design. One is not limited to

GLM’s, a number of other robust design techniques that are more specific to

computer simulation been addressed by Sanchez (2000) [75], and Atkinson

et al. (2007). [76]

As extension of model 2.1, one can separate the input variables into con-

trol, x, and exogenous(noise), z, variables. Accounting for control interac-

tions and polynomial functions is g(x). β are the coefficients for the control

variables, δ are the coefficients for the noise variables and 4 are the coeffi-

cients for interactions. [32]

Estimated Function: y(x, z) = β0 + g(x)′β + z′δ + g(x)′4z + ε (3.17)

Response Expectation: E[y(x, z)] = β0 + g(x)′β (3.18)

Response Variance: V ar[y(x, z)] = [δ′ + g(x)′4]Var[z][δ′ + g(x)′4]′ + σ2
ε

(3.19)
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Dual Response Surface Optimization Framework

Objective Function: minimize or maximize E[y(x, z)]

Subject to

mini ≤ xi ≤ maxi,∀i, i = 1..n

Var[y(x,z)] ≤ σ2
ceiling

Optimization within MMRDP

Algorithmically, the optimization problem is separate from the RSM proce-

dure. Once there is suitable data for both surfaces, it can be solved using soft-

ware such as the Generalized Algebraic Modeling System,(GAMS), Gurobi,

or ILOG CPLEX. [77–79] They allow for objective function relaxation and

preprocessing for linear and nonlinear optimization including continuous, in-

teger or binary variables.

3.4.3 Robust Setting Discrimination

Exclusively seeking optimality on a response surface is a limiting effort.

Stakeholders, particularly in an environment with exogenous factors, may

find it valuable to define the landscape more fully, not solely by locally op-

timal points. MMRDP extends RSM as a final step through optimal point

discrimination.

Given a set of local optimal points found using RSM, A∗, each point

a∗1...a
∗
f has P − 1 dimensions and a corresponding univariate expected re-
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sponse value y∗1...y
∗
f that comprise the P dimensional response surface. In a

stochastic environment, the response value also has a confidence interval due

to exogenous behavior.

Estimated (1− α)% Confidence Interval

̂̄yi ± z1−α
2

√
syi
n

(3.20)

For gaussian behavior, Law and Kelton (1999) and Bland and Altman

(1996) among many others recommend basic (1 − α)% confidence interval

construction structured with the estimated mean, Ȳ (n), and estimated vari-

ance S2(n) using n data points. Based on the data available, the student-t

statistic or standard normal value, z, is used as appropriate when construct-

ing the half width. [22]

The intervals assume gaussian and IID error due to OLS regression mod-

els. Despite the presence of nongaussian behavior, one can always frame

confidence intervals based on gaussian behavior within MMRDP. The sim-

ulation generates j multiple independent replications per design point. As

such, each optimal point has an average response value, ȳi. By the central

limit theorem (CLT), 1
si

∑j
k=1 (yij − µij) ∼ N(0, 1) which implies that ȳi ∼

N(µyi , σ
2
yi

). [22]

MMRDP includes a robust design filter to incorporate a more sophis-

ticated account of uncertainty in the RSM optimal estimates, aid in dis-

criminating between the optima. Comparing points via confidence intervals,
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(1 − α)% may imply lack of a statistically significant differences between

courses of action. The confidence regions around each locally optimal point

may overlap negating the use of paired-t or similar tests. [22]

Local Optima Filter Via Satisficing Bound Surface Area Estimation

The local optima filter is an alternate method that can be used to discrim-

inate between courses of action with overlapping confidence intervals. Both

classic and dual surface RSM can produce multiple local optima. All solu-

tions form a set, each with a mean and variance, typically gaussian due to

central limit theorem, Figure 3.6. Confidence interval overlap can occasion-

ally be overcome via a paired-t or Tukey test in order produce an ordering

within the set. [22] However, confidence intervals assume gaussian behavior,

constant variance, and are not conservative in that they do not include the

satisficing bound desired by stakeholders.

During stakeholder analysis, the desired response behavior will be quan-

tified by bound. It is sensible to seek a range, rather than a point estimate

of desired behavior. In the case of a maximization problem, the stakeholders

should identify minimum, or satisficing, behavior that serves as both screen-

ing criteria and a lower bound for the desired response. RSM is a noncon-

verging sequence and can provide locally optimal multiple points by selecting

varied initial points. [80] Assuming that more than one optimal point will be

found through multiple applications of RSM within MMRDP, each point will

have an associated satisficing area in the P dimensional space. From there,
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Fig. 3.6: The stochastic nature of the response can be represented with 2 sided,
symmetric confidence intervals which often overlap and make them in-
distinguishable.
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it is necessary to quantify the areas and compare them in order to rank order

the estimates and associated settings.

This facet of robustness is valuable when there exists low fidelity system

understanding. Figure 3.7, shows how the topology of a response surface can

serve as an alternate method to organize locally optimal points by quantifying

the size of the associated satisficing area.

Fig. 3.7: Though both the left and right points are optimal, the left point is prefer-
able due to the larger area of satisficing response behavior.

As an additional step within robust methods, one can consider the ef-

fective area of acceptable response behavior as a method to discriminate

between optima in the presence of exogenous factors. On a shared response
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surface, each optima will have a perimeter outlined by acceptable response

behavior. Among optima with overlapping confidence intervals, the area as-

sociated with each optima due to exogenous factors facilitates a ranking,

where one can select the course of action (control factor settings) with the

largest area as the best solution.

This method offers two benefits. It maximizes the probability of desired

response behavior in the complex system of interest. It also provides an addi-

tional method to discriminate between solutions that may have overlapping

response value confidence intervals.

Surface area is easy to understand and measure in three dimensions. This

makes it a good tool to use for collaboration with stakeholders. Satisficing

areas are the topological space equivalent of performance trade off. For

example, it is easier to land a helicopter on a mesa than a spire. The spire

may yield better response performance but that must be balanced against

the relative probability associated with a larger versus a smaller area.

In this light, the probability of achieving success with a locally optimal

point is directly proportional to its associated surface area. Large areas of

suitable, not best, behavior should be sought when simulating poorly under-

stood and complex systems because they represent greater a probability of

success. MMRDP seeks to provide response behavior greater than a prede-

termined floor value as a substitute for point maximization. Conversely, one

seeks response behavior less than or equal to a predetermined ceiling as a

substitute for a point minimization.
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The response surface will be composed of some estimate function, y =

f(x,z); presumably, at a point of inflection. In the instance of seeking a

maximum, ideally one is on a peak; for a minimum, the opposite. In general,

intercept points for the desired satisficing behavior radius on f(x,z) can be

found by solving the quadratic form of the function relative to the acceptable

performance level. However, MMRDP only assumes functions are valid in as

small neighborhood. Experimentation to define the space in necessary. Once

complete, there exist the additional task of approximating another function

to represent the satisficing bound for each optima.

Assume hyper-cube surface area was sought to approximate the satisficing

area. The hyper-cube requires simulation of 2∗N−1 times to generate limits

in 2∗N−1 directions of the N−1 exogenous dimensions. It requires Ksteps

from the optimal point ∗2 ∗ N − 1 dimensions ∗R replications. It is labor

intensive but as a full exploration, it does not assume symmetry about the

optimal point. The hypercube has the advantage of greater accuracy in that

it is a result of fuller exploration of the space.

An alternative and quicker method to outline limits would be to follow the

path of of Greatest Degradation (PGD) until the boundary of the acceptable

response boundary (ARB) is found. The path greatest deterioration (PGD)

is the opposite of the path of steepest improvement. The Euclidian distance

between the optimal point and closest boundary point forms a radius, r.

Surface area is determined by the surface area of a hyper-shape with radius

R. This method assumes symmetry about the optimal point.
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The PGD moves from the optimal point to the satisficing boundary un-

covering the shortest path to the least desirable behavior. Using the β co-

efficients of f(x), one can create the PGD and pursue it for some distance

until suboptimal performance is found. The PGD is defined as the negative

equivalent of the PSA / PSD as appropriate.

Using PGD, the practitioner will arrive at a point,G, at the boundary of

satisficing performance. The difference between the start point, X∗ and G is

r, a P − 1 dimensional vector of P − 1 radii used to define the space.

Most obvious in 3-space, surface area of a function is one dimension less

than volume. This holds for P dimensions as well. For smooth functions,

volume is found via P integrals of the function and surface area one fewer. [81]

In P dimensional space is there are P dimensional shapes with associated

hyper-volumes and P − 1 dimensional hyper-surface areas.

Volume (3) =
∫ ∫ ∫

(f(x1, x2))dx1dx2dy

Volume (P) =
∫
x1
...
∫
y

(f(x1, ..., xp−1))dx1...dxp−1dy

Surface Area (3) =
∫ ∫

(f(x1, x2))dx1dx2

Surface Area (P) =
∫
x1
...
∫
xp−1

(f(x1, ..., xp−1))dx1...dxp−1

• Hyper-cube: (−r1, r1)...(−rp−1, rp− 1)(−y, y)



3. Methodology 65

• Hyper-sphere: x1
r

+ ...+ xp−1

r
+ y

r
= 1

• Hyper-ellipsoid: x1
r1

+ ...+ xp−1

rp−1
+ y

rp
= 1

Hyper-cubes (n-cubes) do not have an integrable function. Hyper-dimensional

measures are based on the number of dimensions (P ), edges((P − 1)2P−1),

their lengths(2r1...2rp−12y), and the number of faces (2P ). P space hyper-

volume is
∏P

i=1 ri and hyper-surface area is summation of the hyper-area of

each face. A 3-cube surface area is the sum of six 2-cube surface areas. A

4-cube (tesseract) surface area is the sum of eight 3-cube surface areas. A P -

cube surface areas is the sum of 2P , (P −1)-cube surface areas. Hyper-cubes

can be problematic as an estimator due to their computational burden.

The orthogonal vertices of the hyper-cube can cause over estimation of

hyper-area. [82] Hyper-spheres effectively interpolate cube edges and vertices

providing a more conservative estimate of surface area. It is assumed that

within the application of MMRDP, conservative recommendations are most

desirable due to an awareness of complexity within systems.

Hyper-spheres have an integrable function that yields a P -space volume

and surface area. [81,83]

P = 2k Hyper-sphere Volume

VPSphere =
πk

k!
r2k (3.21)
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P = 2k Hyper-sphere Surface Area

SAPSphere =
k − 1!

(2k − 1)!
22k−1πk−1r2k−1 (3.22)

P = 2k + 1 Hyper-sphere Volume

VPSphere =
k!

(2k + 1)!
22k+1πkr2k+1 (3.23)

P = 2k + 1 Hyper-sphere Surface Area

SAPSphere =
k!

(2k)!
22kπkr2k (3.24)

The radius r is defined as the euclidian distance from the local optimal

point to the edge of satisficing behavior found via PGD. The radius, r, is a

vector of dimension P . A radius represents an average length for all dimen-

sions, Figure 3.8. A higher fidelity representative shape is the hyper-ellipsoid

as it explicitly represents the behavior bounds in each of P dimensions fig-

ures, 3.9 3.10. Like the sphere, the ellipse function is smooth, continuous, and

integrable. This method assumes symmetry about the optimal point. [84] [85]

While analytically tractable, the function is not reliably defined across

broad areas given complexity, a lack of homoscedasticity, and the lack of

fidelity from small neighborhood taylor series approximations. However, the

presence of bounds facilitates substitute P −space functions for f(r). [81,83]

Figure 3.10
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Fig. 3.8: Circle in two dimensions in standard form, x2 + y2 = r2 , with surface
area, π × r2.
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Fig. 3.9: Ellipse in two dimensions in standard form, x2

r21
+ y2

r22
= 1, with surface

area, π × r1 × r2
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Fig. 3.10: Ellipsoid in three dimensions in standard form, x2

r21
+ y2

r22
+ z2

r23
=, with

surface area,
∫ ∫

(1 + dz
dx

2
+ dz

dy

2
)
1
2dxdy

3 Dimension Ellipsoid Function

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.25)

3 Dimension Ellipsoid Volume

∫ ∫ ∫
(1 +

dz

dx

2

+
dz

dy

2

)
1
2dxdydz (3.26)

3 Dimension Ellipsoid Surface Area

∫ ∫
(1 +

dz

dx

2

+
dz

dy

2

)
1
2dxdy (3.27)
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N dimension Ellipsoid Function

x2
1

a2
1

+ ...+
x2
n−1

a2
n−1

+
z2

a2
n

= 1 (3.28)

N Dimension Ellipsoid Volume

∫ x1

...

∫ z

(1 +
dz

dx1

2

+ ...+
dz

dxn−1

2

)
1
2dx1...dxn−1dz (3.29)

N Dimension Ellipsoid Surface Area

∫ x1

...

∫ xn−1

(1 +
dz

dx1

2

+ ...+
dz

dxn−1

2

)
1
2dx1...dxn−1 (3.30)

This closed form solution to find surface area is tractable but not com-

putationally efficient due to the generation of up to P − 1 differentiations of

the functions as well and P − 1 integrals of their sum.

Local Optima Filter Demonstration

As an example of the value of the optima filter, consider Montgomery’s semi-

conductor process problem. [86] Montgomery (1999) provides function esti-

mates, based on data, for the response mean and response variance of a

process with two control variable (X1, X2) and three exogenous variables

(Z1, Z2, Z3).
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Response Mean Model

30.37− 2.92X1 − 4.13X2 + 2.6X2
1 + 2.18X2

2 + 2.87X1X2 (3.31)

Response Variance Model

19.26 + 3.2X1 + 12.45X2 + 7.52X2
1 + 8.52X2

2 + 2.21X1X2 (3.32)

General Response Model

30.37− 2.92X1 − 4.13X2 + 2.6X2
1 + 2.18X2

2 + 2.87X1X2

+ 2.73Z1 − 2.33Z2 + 2.33Z3 − .27X1Z1 + 100X1Z2

+ 2.58X1Z3 + 2.01X2Z1 − 1.43X2Z2 + 1.56X2Z3 (3.33)

Assume there is a goal to minimize the response and that the stakeholders

set a satisficing bound where acceptable behavior is less than or equal to

40. In this instance, the exogenous variables are distributed according to

a gaussian distribution with a mean of 0 and a variance of 1. The mean

response surface solution is the global maximum, 28.41, with a variance of

22.62. The dual (mean and variance) surface optimization solution minimizes

the variance, 14.62, and finds a mean response value within the statisficing

bound, 35.01, Figure 3.11.

The 95% confidence interval for both solutions overlap and cover the

satisficing bound, Figure 3.12. By fixing the control settings and simulating
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Fig. 3.11: In an overlay of the mean and variance contour plots, the single surface
and dual surface optimal points are identified.
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the general function with the range of the exogenous factors, PGD’s are

generated to find the minimum distances to the satisficing bounds via hyper-

ellisoid surface area for each. The dual surface optimal point surface area

is less than the single surface optimal point, 2.43 vs 5.35. In this instance,

traditional methods would be sufficient to select the optimal point.

Fig. 3.12: The confidence intervals overlap.
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However assume all parameters stay the same but the variance of the

exogenous factors is increased from 1 to 10. The two optimal points are the

same location but with higher variance than before, 28.41 vs 35.01, Figure

3.13.

Fig. 3.13: In an overlay of the mean and variance contour plots, the single surface
and dual surface control settings are the same as before but with higher
variance.
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As before, the 95% confidence interval for both solutions overlap and cover

the satisficing bound, Figure 3.14. By fixing the control settings and simulat-

ing the general function with the range of the exogenous factors, PGD’s are

generated to find the minimum distances to the satisficing bounds via hyper-

ellipsoid surface area for each. The dual surface optimal point surface area

now much greater than the single surface optimal point, 596.75 vs 324.48. In

this instance, traditional methods would not serve the conservative nature of

stakeholders

The measuring the satisficing bounds is a valuable way to discriminate

between local optima because is does not assume gaussian behavior, it uses

direct simulation data to better encapsulate high order functions, and it does

not assume constant variance. In the event that stakeholders strongly desire

an understanding of how a course of action compares to another in terms of

violating a bound because of exogenous variable behavior, the local optima

filter is viable and valuable. Assuming the data already exists, it is rapid.

This is and important and beneficial property because the filter shows no

generalizable results. The combination of mean response value, response

variance level, statisficing bound, and the underlying relationships drive the

results of the satisficing surface area calculations and subsequent ordering.

Numerical Approximation of Hyper-Ellipsoid Surface Area

A P dimension ellipsoid surface area approximation developed by Knud

Thomsen (2004) simplifies the calculation and is scalable. [87] The Thom-
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Fig. 3.14: The confidence intervals overlap.
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sen (2004) numerical approximations are available based on the surface area

function for a hyper-sphere and the Hölder mean.

Hölder Mean / Power Mean : for any exponent p the hölder mean is the

quantity H whose pth power is the arithmetic mean of the p powers of

the quantity under consideration. [88] Thomsen (2004)recommends a

value for p. [87] where p→ 2 for large n.

H = Hp = (ap1 + . . . + apn−1)
1
p (3.34)

p = log n/ logA (3.35)

A =

√
πΓ(n

2
+ 1

2
)

Γ(n
2
)

(3.36)

Case N = 2k (n even)

A =
π(2k − 1)!!

2k(k − 1)!
(3.37)

Case N = 2k + 1 (n odd)

A =
2kk!

(2k − 1)!!
(3.38)

The !! operator is a double factorial where n!! = n(n − 2)(n − 4)...,

the product of all positive integers up to n, with the same parity as n. [89]
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0!! = 1, 1!! = 1, 2!! = 2, 3!! = 3, 4!! = 8, 5!! = 15, 6!! = 48, 7!! = 105...

P = 2k Dimension Surface Area of a hyper-sphere

2πkr2k−1

Γ(k)
(3.39)

where Γ(k) = (k − 1)!

The approximation of surface area for a hyper-ellipsoid substitutes the

Hölder mean for the radius element (rn−1) in the hyper-sphere surface area,

equation 3.39.

Thomsen’s approximation of hyper-spheroid surface area

N = 2k

2HKTπ
n
2

Γ(n
2
)

N = 2k+1

2n
1
pHKTπ

n−1
2

Γ(1 + n−1
2

)

(3.40)

Hölder Mean for hyper-ellipsoid

HKT =
n∏
j=1

aj(

∑n
i=1 a

−p
i

n
)
1
p (3.41)
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The Hölder Mean used in Thomsen’s ellipsoid estimation (HKT ) is equiv-

alent to the Hölder Mean (Hp) as previously defined.

Hp =
∏n

j=1 aj(

∑n
i=1 a

−p
i

n
)
1
p = (

∑n
i=1 a

p
i

n
)
1
p

HKT =
2∏
j=1

aj(

∑n
i=1 a

−p
i

n
)
1
p

let n = 2

a1a2(
a−p1 + a−p2

2
)
1
p

(ap1a
p
2

a−p1 + a−p2

2
)
1
p

((
ap1a

p
2

ap1
+
ap1a

p
2

ap2
)(

1

2
))

1
p

(
ap2
2

+
ap1
2

)
1
p

let n = N

(
apn
n

+ ...+
ap1
n

)
1
p ⇒

HKT = (

∑n
i=1 a

p
i

n
)
1
p = Hp

Pareto Optimality

A final tool to assist with the decision is a Pareto Analysis. Despite the

noneconomic core of MMRDP, finances must be considered in conjunction

with critical factors. A Pareto chart allows stakeholders to visually identify
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the Pareto efficient curve and select the desired combination of cost and

performance. [11]

3.5 Properties of Methodology

MMRDP is best suited for poorly understood environments with complex

features. It offers a range of solutions in the face of nebulous situations

with long planning horizons and significant resource investment requirements.

The timeline adds to complexity and large investments justify the extensive

front-end cost of MMRDP full implementation. Stakeholder analysis, model

development, and simulation demand indigenous knowledge of the problem,

time, money and technical competency.

Curse of Dimensionality

MMRDP is used in high dimension spaces and subject to the curse of dimen-

sionality. [90] In sample spaces, the volume grows with each added dimension.

The sample landscape becomes sparse and variance inexorably increases un-

less the data set increases as well. For instance, normally distributed data ex-

hibits reduced kurtosis and heavier tails as dimensions grow. [82] The growth

in the space is exponential and has the immediate effect of requiring signif-

icantly more experiments to maintain proportional spacial and counter the

growth, Figure 3.15.

This effect of high dimension is evident in linear predictor MSE(Ŷ ),
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Fig. 3.15: As dimensionality increases, there is an exponential impact on sample
size and spatial density.

E[(Ŷ − Y )2]. OLS regression estimates are unbiased in univariate and mul-

tivariate linear relationships with gaussian error. [46] Despite lack of bias,

MSE climbs proportionally with dimension in OLS regression. The unavoid-

able increase in variance is the cause, MSE(Ŷ ) = V AR(Ŷ ) + Bias(Ŷ , Y )2,

Figure 3.16. [46]

Due to the curse, stakeholders applying MMRDP must absorb experimen-

tation cost, primarily time, due to the increasingly smaller neighborhoods

where homoscedasticity and linear assumptions hold. Sparse experimental

designs become less desirable as dimensions increase.

The response and factor relationship change across increasing dimensions.

Application of local optima filter methods via surface area demand compar-

ison using normalized values to negate scale influence and always across the

same number dimensions.
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Fig. 3.16: Ordinary Least Squares estimators are unbiased. The variance increase
from dimensionality increases mean squared error.
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Local Optima Filter Conservative Performance Area Estimation

The strategy of selecting a function as an approximation for the surface area

is problematic in that it deliberately induces error. However, it maintains

the theme of robustness, via a conservative approach that reflects stakeholder

desires. Given the type of environment suitable for application of MMRDP,

underestimation is acceptable and tantamount.

Assume continuity exists on the response surface in the neighborhood

surrounding the optimal point. The combination of PGD discovery of the

satisficing boundary and hyper-ellipsoid function substitution will under es-

timate surface actual area.

An example is provided using PGD to estimate the area of satisficing be-

havior in two a dimension space given the desired minimization of a function,

f(x), and an optimal point, X∗.

The 2 dimension symmetric case, Figure 3.17:

x∗ = 10

f(x) = (x− 10)2 + 50

Satisficing boundary: f(x) ≤ 100

Known area (orange and blue): 470.4

Estimated area (blue): 353.6

Area Underestimate: 116.8

The 2 dimension asymmetric case, Figure 3.18:
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Fig. 3.17: The path of greatest degradation method ensures underestimation of
surface area in the presence of symmetric functions.
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x∗ = 10

for x ≤ x∗

f(x) = (x− 10)2 + 50

for x > x∗

f(x) = (x−10)2

6
+ 50

Satisficing boundary: f(x) ≤ 100

Known area (orange and blue): 813.1

Estimated area (blue): 353.6

Area Underestimate: 459.5

Hyper-Ellipse Surface Area Estimation error

When encountering very oblong, prolate, hyper-ellipsoids, Thompsen’s method

to estimate surface area can be up to 2
1+ 1

p

π
times actual surface area. [87] How-

ever, smaller estimation error ,≤ 1.061%, is more common. Exact ellipsoid

surface area is analytically tractable, equation 3.42, but is an unnecessary

effort. The surface area estimate is sufficient for MMRDP. In independent

testing, Thompson’s method yields very little error, Table 3.1.

Ellipsoid Surface Area =

∫ ∫
(1+(

xr
1/2
3

√
1 + −x2

r1

−y2
r2

r1

)2+(
yr

1/2
3

√
1 + −x2

r1

−y2
r2

r2

)2)
1
2dxdy

(3.42)
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Fig. 3.18: The path of greatest degradation method ensures underestimation of
surface area in the presence of asymmetric functions.
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Tab. 3.1: Thomsen’s surface area estimation method yields less than .25% error in
three dimensions.

Radii known SA KT Estimate % diff

1,1,1 12.56637061 12.56637 4.89E-06

10,5,1 333.946 334.3984 -0.135

1,8,7 369.097 369.9699 -0.236

20,10, 5 1586.92 1584.783 0.134

.01,.05,.4 0.132122 0.1319855 0.103

Application of MMRDP Robust RSM

MMRDP procedures were applied to four known functions, Appendix A.

Each function is multidimensional, with known optimal values and variable

constraints meant to simulate response, control, and exogenous variables, Ta-

ble 3.2. Both basic and robust RSM were applied to data from the test func-

tions exhibit stochastic behavior, both gaussian and nongaussian. Gaussian

behavior is simulated using standard normal parameters and nongaussian

behavior is simulated using exponential(λ = 1), uniform (-2,2), and convo-

lutions of pairs and tuples of the random variable types, Appendix B. The

random variable generation meets the desired performance requirements.

Figure3.19 summarizes results from simulations of Dejong’s first function

in n dimensions and the robust methods. It shows the basic RSM and robust

best local optimal value outcome given multiple start points and the varied

combinations of control and exogenous factors. In general, bias increases

with dimension and there is a slight estimation advantage in the presence of
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gaussian error. This is due to the use of OLS regression in the presence of

gaussian error and LTS for nongaussian error. OLS is specifically optimized

for gaussian error while LTS can be applied broadly to all complimentary

stochastic behavior. Figure 3.19 shows the bias and variance tradeoff between

robust solutions and more optimal ones when using the DeJong function data.

Results from other functions, Rosenbrock’s valley in n dimensions, Rastrigin’s

function in n dimensions, Schwefel’s function in n dimensions, can be found

in Appendix C.

Tab. 3.2: The four test functions have known minimum values across 1 to N di-
mensions.

Function Number Name Dimensions Optimal Value

1 DeJong’s First N 0
2 Rosenbrock’s Valley N 0
3 Rastringin’s N 0
4 Schwefel’s N -418.98

In general, MMRDP robust methods exhibit similar growth in MSE with

dimensionality for all functions. MMRDP has greater success in terms of

bias in the face of gaussian error than other types of error. This is true for

all four functions, Figure 3.20.

3.6 Conclusion

MMRDP should not be conducted without contemplation. The overhead can

be significant in terms of time and effort required to generate the ABM. The

high fidelity simulation required by stakeholders, the more time required for
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Fig. 3.19: Both RSM and the robust searches are subject to bias. However, the
robust outcomes yield lower variance as a trade for increased bias. The
marked difference in mean squared error between the two methods is due
to the exponential relationship between bias and mean squared error.
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Fig. 3.20: While bias increases with dimension, it is less prevalent when estimating
functions with gaussian error than those without.

construction and validation. MMRDP can suffer from lack of convergence

and it hinges on the veracity of the ABM. The simulation is the link between

stakeholder analysis and the statistical methods but it it cannot be validated.

Complexity, human behavior, and resource allocation conspire to provide the

modeling challenge. Currently, historical reference and the delphi method

are most promising validation methods. However, the inherent subjectivity

of both will not provide the practitioner guaranteed valid models.

Despite the risk, MMRDP can address the problem of locally optimizing a

response using a computer simulation model by outlining an ordered, logical,

and validated exploration of the space. [31] Though it lacks high precision,

includes the assumption of symmetrical topography, and is subject to the
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curse of dimensionality, MMRDP is viable. It distills complexity into a man-

agable representation and gives leaders a previously unused method evaluate

courses of action. Within RSM, instills a lack of sensitivity within solutions

to exogenous variable behavior with both gaussian and nongaussian stochas-

tic data. When discriminating between locally optimal RSM outcomes, it

offers conservative estimates of satisficing behavior area in order to eliminate

the ambiguity of confidence interval. This method also eliminates numerous

additional simulation runs required to use paired - t or Tukey testing.



4. APPLICATION OF THE ROBUST META-MODEL:

JALALABAD CITY, NANGARHAR PROVINCE,

AFGHANISTAN

”The first condition of understanding a foreign country is to

smell it.”

∼ Rudyard Kipling, British Author, Poet, and Nobel Laureate
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4.1 Introduction

Consider the application of MMRDP with respect to the current situation

for the United States and NATO in Afghanistan. The United States Army

Corps of Engineers (USACE) funded an effort to model the impact of in-

frastructure portfolios on public opinion in support of COIN strategy. Key

stakeholders include the International Security Assistance Force (ISAF), the

Government of the Islamic Republic of Afghanistan (GIRoA), local govern-

ments, and civilians. Analysis of the local environment yields key insights

about the relationships that meet the stakeholders’ objective, improved pop-

ulation opinion of the government in Afghanistan. Initially, the analysis

identifies infrastructure capability gaps and associated quantifiable metrics.

With the help of an ABM and RSM, locally optimal and robust infrastructure

solutions are recommended to improve public opinion of government.

4.2 Background

Large-scale civil reconstruction accompanies catastrophe. Natural and in-

advertent disasters occur but here, civil recovery as a function of violence

and conflict is of interest. Warfare involves a premeditated, focused, and

sustained effort to disable critical infrastructure. Afghanistan, a prime ex-

ample, requires a large investment in reconstruction after the 2001 invasion

by US and Coalition Forces (CF). The conflict region offers no feasible bench-

marks for reconstruction. Applying western and NATO values and ideals to
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the problem is a naive strategy. [8]

The NATO mission in Afghanistan faces a tenacious insurgency. [2] To

assist in achieving NATO’s goal of stability, COIN strategy includes fostering

local support for the government by meeting basic population needs. [91]

With this in mind, regional and local system of systems design should bridge

capability gaps and enhance rule of law through selected project portfolios.

However, there are few methodologies that capture higher order effects on

populations and include interactions within infrastructure system portfolios.

[92] This motivates the use of MMRDP to improve public support, Figure

4.1.

Fig. 4.1: MMRDP selects local infrastructure systems to augment counter insur-
gency strategy and improve public opinion.

The United States military uses reconstruction as a foundational element

of stability and a critical task within COIN. Though expensive, it is beneficial

to all stakeholders, tangible in nature with a direct and positive impact on
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the community, and fosters long term stability. Countries with loose national

cohesion, porous borders, limited governmental influence, minimal revenue

streams, and rudimentary infrastructure development present military com-

manders with a problem, mission creep. Is the charge to bring peace by

merely brokering an end to large-scale conflict, or grant a more robust peace

opportunity, built upon stability and the people’s access to critical resources

and services? The US stability strategy addresses the debate by outlining

the constituents of stability. [93]

• A safe and secure environment

• Established rule of law

• Social well-being

• Stable governance

• A sustainable economy

Worldwide, DOD is collecting lessons learned with an increased emphasis

on COIN doctrine. [3] The military is best suited to address and insurgency

because it has the ”integral mobility and protection capability” necessary

to operate and win the true prize of an insurgency, the population. [94]

Infrastructure reconstruction is a lynch pin for a successful COIN strategy.

It is an accessible tool for large military organizations, governments, and

coalitions. It is a necessary and moral obligation, and it is a means to
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undermine insurgency by bridging capability gaps and demonstrating to the

population the sanctioned authority’s reach. [3]

The US Army and US Marine Corps COIN strategy is comprised of four

steps. [3]

Shape Set the conditions to plan and execute operations.

Clear Establish security in the locale for all participants.

Hold Affirm the government’s authority and control.

Build Gain support from the population.

The steps foster incremental improvement for the population in a region

and beget less sanctuary for insurgents. This, in turn, invites and sustains

stability. It is not purely a military effort. Sustainable gains against insur-

gency are multi-faceted. They reflect a grander cooperative effort between

the population, governments, and agencies. Efforts by NATO in Afghanistan

and the Coalitions Forces in Iraq have had varying levels of success due to

naivety or blatant disregard for holistic solutions by civil and military lead-

ers. Military units that fail to plan for life after large scale combat is over

will have a large problem with security. That will bleed into reconstruction

and stability failures as well.

Security as a Basis for Stability

Infrastructure is not always tangible. In violent situations, infrastructure

that foments stability must include security. [91] More traditional systems
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are then viable projects. Without security, access to other infrastructure

systems is limited, negating their existence. [95] Maslow’s Hierarchy of Need

offers a method to prioritize societal infrastructure needs. [96] The hierarchy

is based on that which motivates human behavior, from the base physiological

needs to less tangible goals such as esteem, Figure 4.2.

Mapping Maslow’s hierarchy to regional needs can offer decision makers

a plan for resource allocation. [97] In Afghanistan, security is the base needs

that all gains build from. [91]

• Physiological needs – required to survive: Water, food, shelter

• Safety needs – ensure order and predictability: Public health, security,

justice, information

• Love and belonging – friends and family: Awaken culture and commu-

nity institutions

• Esteem – the need for respect: Participation in governing, inclusive

decision making

• Self-actualization – need to realize full potential: Regional center for

other countries to emulate

4.3 Problem Statement

Stakeholders wish to maximize public opinion of the government in the city

of Jalalabad, Nangarhar Province, Islamic Republic of Afghanistan based on
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Fig. 4.2: Maslow’s Hierarchy of Need demonstrates security as a base human need.
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infrastructure policy decisions and a fixed budget, Figure 4.3. Specifically,

within the class of problems that encompass optimization of a univariate re-

sponse in a complex, data-poor environment, MMRDP is used to estimate

a mathematical relationship between relevant factors and the response. It

explores the relationship within factor bounds and budget constraint in or-

der to discover locally optimal response levels insensitive to exogenous factor

uncertainty. In the event multiple optimal portfolio options exist without sta-

tistically significant differences, the MMRDP optima filter uses an alternate

method to discriminate. The relationships and the recommended significant

factors levels constitute an improved robust solution to this problem.

Given a set of infrastructure projects, each with associated life cycle costs

and attributes, selection criteria are necessary to discriminate between them,

group them, and select them. Maximize public opinion of government, O, as

a function of projects, and environmental factors for a population across a

specific geographic region. Constraints include control factor minimum and

maximum levels and a total budget, B.
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Fig. 4.3: The impact of infrastructure on Jalalabad population opinion is the focus
of the study
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Maximize O,O ∼ f(X,Z) (4.1)

subject to (4.2)

xi ≤ xU(i) (4.3)

xi ≥ xL(i) (4.4)∨
i ∈ I, I = 1..4 (4.5)

Factorj ∼ Gj (4.6)∨
j ∈ J, J = 1..3 (4.7)∑

ΨX ≤ B (4.8)

XL, XU − control variable upper and lower bounds.

G− exogenous variable general distribution

B − budget constraint

4.4 Stakeholder Analysis

Input for stakeholder analysis consists of feedback from GIRoA, NATO, US-

ACE, the UN, civilians from the region, and the US military. It considers the

myriad needs of the stakeholders, emergent properties of the environment,

interactions, and planning documents such as the Afghan National Develop-

ment Strategy (ANDS). ANDS outlines the GIRoA plan to establish gover-

nance, rule of law, human rights, and economic and social development. [98]
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Fig. 4.4: The Center for Nation Reconstruction and Capacity Development post
combat development timeline shows that resources available for recon-
struction after hostilities are finite and they decrease.

It also serves as the azimuth for infrastructure development in Afghanistan.

Given available resources, a general set of projects can be selected as candi-

dates for a region.

Insurgent activity, ethnicity, gender, religion, and regional norms make it

extremely difficult to measure the impact of individual or systems of infras-

tructure projects. Include graft, politics, geography, and the challenge grows

exponentially. It is therefore very difficult for GIRoA to understand how to

gain traction with the population through infrastructure investment.

In Afghanistan, failure to improve the lives of the population lends cre-

dence to the Taliban movement. The civilian population support those that

give them the basics they so desperately need. [99] This leads to a tacit,

but real, legitimacy for Taliban rule, extends the insurgency indefinitely, and
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renders goals of security, governance, and development unattainable.

Operations in Afghanistan have cost ISAF over 3200 lives since 2001. [100]

The civilian death toll is at least 5 times greater. [9] The 43 nations of ISAF

have a strong moral and strategic imperative to stabilize this “graveyard of

empires” because the government cannot generate and maintain peace on its

own.

Protracted efforts by the NATO and GIRoA have achieved only minor

changes in the status quo. As a result, Afghan insurgents continue to operate

with near impunity and civilian patience with foreign troops wears thin. [101]

Coalition partners in Afghanistan are reconsidering their support given great

sacrifices and cost. Beyond forces, they provide billions of dollars a year

in foreign aid. Though expected after large scale hostilities, reconstruction

resources quickly peak, then wane. Figure 4.4, from the Center for Nation

Reconstruction and Capacity Development (C/NRCD), shows the resource

decline after hostilities dissipate. In Afghanistan, resources and resolve are

dwindling. This limits needed infrastructure projects that might serve as

tools to turn the tide toward peace.

Afghanistan’s strategic importance and diversity has led to countless wars

within and across its borders. It constitutes the route from the Middle East

to Asia, comprising much of the famed Silk Road. [7] It is a tapestry of

distinct ethnicities and religions making the country more of a collection of

tribes and races rather than a unified nation, complicating efforts for country

wide stability. [102]



4. Application of the Robust Meta-Model: Jalalabad City, Nangarhar Province, Afghanistan 104

Afghanistan’s history of warfare, the ISAF invasion, and subsequent se-

curity operations in this fractious nation make the need for infrastructure

capacity and capabilities great. Few roads are paved. Electricity, sewer, and

water are luxuries even within the capital, Kabul. A steady exodus has all

but drained any intellectual capital along with the stewardship of institu-

tions that most other countries take for granted. [102] Only 15% of Afghans

are literate and they have the second lowest life expectancy of any nation in

the world, 45 years. [7] Among many others, USACE, and the C/NRCD are

working to design, install, and improve infrastructure across the nature in

order to underwrite a more promising future.

Precedents illustrate the benefits of reconstruction. The Marshall Plan,

1947–51, provided a means for the United States to help rebuild and rede-

velop Europe. It was lauded for the positive impact on individuals as well as

on entire countries. The Allies worried that newly peaceful Western Europe

would not recover unless substantial programs for support of the people and

industry, such as training and construction were not enacted. [103] By 1952,

the economies of each member nation of the Marshall Plan surpassed pre-

war levels by double digit margins. [104] Governments exploited stability to

maintain rule of law and foster greater prosperity.

Things are slowly improving in Afghanistan. However, resource allocation

failures still occur due to a lack of understanding. Unforeseen second and

third order effects can make bad situations worse despite good intentions.

ISAF and USACE want to provide infrastructure that the Afghans need. As
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Fig. 4.5: ISAF and GIRoA use common lines of operation, Security, Governance,
and Development, to drive operation, strategy, and tactics.

an overall strategy for stability, ISAF and GIRoA jointly focus on improving

three lines of operation (LOOs): Security, Governance, and Development,

Figure 4.5. However, there are currently few mechanisms to indicate the

effects of infrastructure on popular support for GIRoA or changes in the

status of the LOOS.

Insurgent activity, ethnicity, gender, religion, and regional norms make it

extremely difficult to measure the impact of individual or systems of infras-

tructure projects. Include graft, politics, geography, and the challenge grows

exponentially. It is therefore very difficult for GIRoA to understand how to
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gain traction with the population through infrastructure investment.

Marshalling stakeholders and analyzing the local environment yield key

insights about functions that meet the stakeholders’ objectives. Further anal-

ysis generates capability gaps and associated quantifiable metrics. The gaps

drive infrastructure solution recommendations while the metrics allow for a

basis of comparison screening criteria for needs and objectives.

Figure 4.6 shows a functional diagram from the stakeholder analysis. Each

LOO was decomposed by a group of experienced military officers with ex-

perience in Afghanistan into its critical functions. [91] Those functions were

dissected as necessary until metrics were appropriate. Strong performance

on the infrastructure metrics will support the LOOs and draw support away

from the insurgents by improving public opinion of GIRoA. This vertical and

horizontal nesting of effort and understanding reflects stakeholders’ desires

and allows for comparison of alternatives.

Public Opinion of Government

The meta-model, through an ABM, generates a measure of public opinion

as an outcome of an infrastructure portfolio selection. Generating public

opinion adds a greater level of complexity to the process because it is key

to understanding the the relationship between insurgent support and in-

frastructure selection. Factors that impact public opinion of government in

Muslim countries include domestic economic issues, education, and health

services. [105] Weak government institutions frustrate citizens while poorly
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Fig. 4.6: The functional decomposition of the Lines of Operation links each line
to metrics. It identifies capacity gaps and their associated metrics.
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representing all races, tribes, religions, and classes inviting greater unrest

and discord. This can lead to the, typically large and poor, segments of the

population seeking alliances with power in order to increase their chances

of achieving self determination. Over time, the Taliban are becoming less

popular due to their lack of ability improve economic conditions and public

service. But support for the Taliban will propagate if the authority cannot

reliably provide the same. [105] In the eyes of the people, there is no distinc-

tion between government institutions and government actors meaning that

all get the blame for the poor performance of anyone or anything associated

with it. [106]

Though westerners see the the long ISAF commitment in Afghanistan as

noble, locally, it is seen negatively. The impression is that ISAF has changed

from liberator to occupier. [105,107] Until ISAF ends it mission, GIRoA and

Afghan National Security Force (ANSF) led operations can alleviate tensions

through greater inherent cultural savvy. They limit foreign involvement and

validate domestic capability as well. In Afghanistan, a high tolerance for

insecurity given the past 30 years has provided patience for operations that

negatively impact the public in the short term in order to achieve long term

gains. [108] However, this bit of goodwill is nearly gone. Polling indicates

that populations desire stability as a means to fight extremism because a

stable environment is less likely to exploit or ostracize a minority. This

leads to greater social cohesion, fewer disruptions, and a higher opinion of

police. [109] In order to improve opinion, a multifaceted approach that looks
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beyond on economics and includes security is necessary to improve public

opinion of government. This philosophy was applied within the ABM to

generate the opinion measure.

The public opinion measure in the meta-model is the result of portfolio

settings, agent behaviors, characteristics, attitudes, and interactions. Some

outcomes are intuitive while others are not. For instance, if deaths increase

due to substandard health care, public opinion suffers. However, a population

encountering strict security measures or a large instance of ISAF troops, may

not increase their opinion despite a decrease in insurgent attacks. The role

of cultural awareness is another complicated feature of the model. While it

would seems that the population would be more tolerant of ANSF patrols

compared to ISAF patrols, the great variability in the quality of ANSF agents

can provide surprising opinion results.

The stakeholder analysis also includes an infrastructure impact assess-

ment. Key infrastructure needs for Jalalabad include transportation, water,

power, sanitation, agriculture, and public health. An impact analysis for

each addresses user benefits, socio-economic effects, and the impact on the

civilian population as well as the insurgency, Appendix D.

The stakeholder analysis indicates that for Jalalabad, security, public

health, and unfettered access to water are most important to the population.

Consideration for ISAF presence, ethnicity. and socio-economic factors must

also be made within the meta-model to determine opinion.
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4.5 Jalalabad Agent-Based Model

The meta-model process for infrastructure portfolio selection is a systems

approach incorporating stakeholder analysis as an initial step. In addition

to ANDS and the ISAF and GIRoA LOOs, the model uses measures of per-

formance (MOP) and measures of effect (MOE) for each level of governance

and military responsibility. The framework the model is based on is period-

ically reviewed and revamped to adjust to new players and changes in the

environment. [6] This offers not only current but future stakeholder analysis

needs making the use of computer simulation desirable.

Infrastructure systems have long planning horizons and require tremen-

dous investment. An agent-based model is desirable for data collection. It

is the best opportunity to experiment and observe individual autonomous be-

havior, pseudo-emergent outcomes, and model complexity within a computer-

based algorithm. Participatory modelling is another way to increase the fi-

delity of a social model and inculcate complexity. However, Afghanistan’s

lack of widespread information technology coupled with the poorly educated

population negate this option. Only small fractions of the population would

be able to participate in such a model introducing bias.

The stakeholder analysis informs a representative ABM of a local area.

Data from the simulation is used within response surface methodology to

generates a robust, locally optimal portfolio, Figure 4.7. Drawing from the

stakeholder analysis, MMRDP explores portfolios of water wells and health
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Fig. 4.7: The meta-model process incorporates stakeholder analysis, ABM simu-
lation, and dual surface RSM for a robust solution.

care while instituting security policies and ISAF:ANSF patrol troop ratios

in Jalalabad.

The ABM represents the Jalalabad city center, in Nangarhar Province,

Afghanistan, total population of approximately 200, 000 people, Figure 4.3.

It considers the impact of public health options (hospital capacity), access to

municipal water supplies (public access wells), security levels (on the ground

presence and capability), and ANSF and ISAF patrol mixes on the popu-

lation. The ABM does not aspire to discern small differences in geographic

arrangement of infrastructure courses of action but contains geographic fea-

tures (terrain and distance) to add fidelity. The model demonstrates the

impact of gross infrastructure decisions through the lens of the population
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opinion. Insurgents follow directives such as Harass the authority and attrit

its agents and Maintain unrest in the civilian population. It is in their inter-

est to prolong conflict and undermine security, governance, and development

for as long as possible. The ubiquity of the struggle can demonstrate any or-

ganization’s reach and highlight government failings. [3] The geospatial and

demographic data in the ABM comprise exogenous factors that are beyond

the control but of interest to decision makers.

The ABM used in the Jalalabad study was developed in Repast Simphony

version 1.2 and is based on the RepastCity project. [110] The RepastCity

project serves as a starting point for the Jalalabad ABM because it fea-

tures agents moving around a city between their homes and other buildings.

Agents in the simulation represent individuals whose attributes and traits

are sampled from a demographic model collected from a variety of sources

summarized in Table 4.1. The agent-based model simulates behavior using

200 agents and their public opinion over a 60 day period for a given infras-

tructure portfolio. 200 agents are the limit of the simulation therefore the

representative geographic area of Jalalabad is sized to an appropriate propor-

tional level, Figure 4.8. Each iteration requires 5-10 minutes on a quad core

system. As an extension of stakeholder analysis, the model uses empirical

data in the simulation, Table 4.1.

The model represents a small portion of the city with the maximum num-

ber of agents. While the agents are spread equally between them, each

neighborhood has its own characteristics in terms of exogenous variables.
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Fig. 4.8: Agent-Based Model of Jalalabad (Pink Triangle - Hospital, Blue Circle
- Well, Brown Square - Home, Green Pentagon - Police Station, Orange
Star - Agent)

Tab. 4.1: The Jalalabad ABM uses local and national empirical data.

Afghanistan Data Value Source

Life Expectancy 48.3 World Bank, 2010
Poverty Rate 36% World Bank, 2008
Rural Access to Improved Water 42% World Bank, 2010

Jalalabad Data Value Source

Annual Instances of Outpatient Sickness 4,792 ANHSR, 2004
Population 205,000 UNICEF, 2009
Pashtun 85% CIA Factbook, 2011
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The geospatial and demographic data input capability of Repast provides

the flexibility to increase the model’s fidelity and generalize the approach for

other applications by adding necessary layers or changing the background

environment. Jalalabad road data from the National Geospatial Intelligence

Agency (NGIA) and building data provide routes of travel within the model

and the initial regional infrastructure levels within the city at the outset.

Within the model, agents interact with each other and receive benefits

from local infrastructure projects. Due to ethnic divides and an ingrained

culture of corruption, not every agent receives the same level of service from

the infrastructure projects. Based on their wealth and ethnicity, rich Pash-

tuns receive immediate health care and do not risk being turned away from a

well or a hospital. Alternately, poor agents and minorities wait longer than

usual for health care and may not receive care at all. This is the case in

times where the level of security is low. Security forces are built into the

simulation to help preserve equal access to infrastructure projects. Security

forces are comprised of a mixture of ANSF and ISAF patrols.

The level of security also influences the probability of a mass-casualty

event. A low frequency random distribution generates mass-casualty events

where the parameter is tied to the level of ground security. With low secu-

rity, there is an increased chance of an event compared to times when high

security is in place. The large events simulate the effect of capacity stressors

on the health system by natural disasters, epidemics, or improvised explosive

devices (IEDs). The ration of ISAF:ANSF troops impacts the population.
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A high ratio of ISAF to ANSF patrols may be more effective in stopping

insurgent gatherings and preventing mass casualty events, but the ISAF pa-

trols are more costly than their ANSF counterparts. ISAF troops run more

efficient military operations but have won little trust. ANSF troops can have

high cultural sensitivity yielding better intelligence and local knowledge but

at times they fall prey to ethnic prejudices, regional differences, poor prepa-

ration, and graft.

Within the model, agent health is modeled as a health score between 1

and 4. All agents are begin at level 1, good health. Based on proximity

to a water source, agents have a probability of becoming sick. [111] When

they become sick, health scores change to 2 and agents move along the roads

between their homes and the nearest hospital. If not treated quickly enough,

an agent’s health condition may deteriorate to a score of 3. Once they arrive

at a hospital, they enter a patient queue and eventually receive care when

it is their turn. Health scores of 2 require some primary outpatient services.

Health scores of 3 require longer (inpatient) stays at the hospital before they

can be released. In some cases, agents with inpatient sicknesses cannot be

treated fast enough and they die. Death is the final stage in an agent’s exis-

tence and it corresponds to a health score of 4. Occasionally, mass casualty

events occur. These events represent IEDs or other insurgent strikes and

subject civilians to harm. Such events can lead to severe injury (health score

3) or death (health score 4).

The statistic of interest for each simulation is Public Opinion. It is de-
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pendent on the type of infrastructure portfolios in the city as well exogenous

factors. The number of population deaths, injuries, illness, and insurgent

attacks influence Public Opinion. Each replication has terminal level of the

statistic. Those portfolios with the greatest level of Public Opinion are most

desirable.

Verification of the agent-based model is not a simple as discrete event

simulation. However it is possible. For instance, long runs of the replications

yield estimations of death and illness rates. In a portfolio with no additional

infrastructure, these rates met expectations from embedded rates. Validation

is more difficult, if not impossible. In the presence of a complex, adaptive

system like Jalalabad, some data exists but validation is best sought by

polling the expertise within the stakeholders.

4.6 Evaluation of Infrastructure Portfolios

The Jalalabad ABM has four control factors and three exogenous factors,

each with various levels, Tables 4.2 and 4.3. The control factor levels also

have an associated costs, Table 4.4. [95] The Jalalabad simulation has a very

small surface space yielding only 48 design points, Table 4.5.

While MMRDP was run without a priori knowledge of a global optimum,

the small response surface size makes full control factor enumeration possible

and informs measurement of bias induced by MMRDP. The estimate of the

optimal control settings is known, Table 4.6.
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Tab. 4.2: The Jalalabad ABM has integer control factors.

Wells Hospitals Security ANSF

Definition Wells to
Construct

Hospitals to
Construct

Security
Presence

Patrol
Units

Unit Wells Hospitals Level Level

Levels 4 3 2 2

Min 0 1 Low ANSF
Heavy

Max 3 3 High ISAF
Heavy

Tab. 4.3: The Jalalabad ABM exogenous factors are continuous.

Wealth Ethnicity Deaths

Definition Population
Fraction
Above the
Poverty
Line

Pashtun
Fraction of
Population

Deaths Per
60 Days

Unit % % Agents

Mean 29.53 85.01 13.75

Variance 148.48 10.12 17.47
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Tab. 4.4: Infrastructure systems each have an associated, scalable cost.

Project Cost

System Cost (USD)
Well Network Construction (135 wells) $150,000

Status Quo Well Coverage $0
Low Well Coverage (1 network) $150,000
Mid Well Coverage (2 networks) $300,000
High Well Coverage (3 networks) $450,000

Hospital Construction $25,000,000
Low Hosp. Coverage (1 hospital) $25,000,000
Mid Hosp. Coverage (2 hospitals) $50,000,000
High Hosp. Coverage (3 hospitals) $75,000,000

Train and equip Afghan soldier $25,000
Pay for Afghan soldier per month $240
Total yearly cost of Afghan soldier $25,240

Train and equip ISAF soldier $50,000
Pay for ISAF soldier per month $1,500
Total yearly cost of ISAF soldier $51,500

Low Security ISAF-heavy (40 soldiers) $898,700
High Security ISAF-heavy (160 soldiers) $2,696,100
Low Security Afghan-heavy (40 soldiers) $636,100

High Security Afghan-heavy (160 soldiers) $1,908,300
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Tab. 4.5: 48 Courses of action are available for Jalalabad between three types of
infrastructure.

Project Portfolios

Portfolio Wells Hospitals Security Security Lead Cost (USD)
1 Status Quo 1 Platoon ISAF $ 26,797,400.00
2 Status Quo 1 Platoon Afghan $ 26,272,200.00
3 Status Quo 1 Company ISAF $ 32,189,600.00
4 Status Quo 1 Company Afghan $ 30,088,800.00
5 Status Quo 2 Platoon ISAF $ 51,797,400.00
6 Status Quo 2 Platoon Afghan $ 51,272,200.00
7 Status Quo 2 Company ISAF $ 57,189,600.00
8 Status Quo 2 Company Afghan $ 55,088,800.00
9 Status Quo 3 Platoon ISAF $ 76,797,400.00
10 Status Quo 3 Platoon Afghan $ 76,272,200.00
11 Status Quo 3 Company ISAF $ 82,189,600.00
12 Status Quo 3 Company Afghan $ 80,088,800.00
13 1 Network 1 Platoon ISAF $ 26,947,400.00
14 1 Network 1 Platoon Afghan $ 26,422,200.00
15 1 Network 1 Company ISAF $ 32,339,600.00
16 1 Network 1 Company Afghan $ 30,238,800.00
17 1 Network 2 Platoon ISAF $ 51,947,400.00
18 1 Network 2 Platoon Afghan $ 51,422,200.00
19 1 Network 2 Company ISAF $ 57,339,600.00
20 1 Network 2 Company Afghan $ 55,238,800.00
21 1 Network 3 Platoon ISAF $ 76,947,400.00
22 1 Network 3 Platoon Afghan $ 76,422,200.00
23 1 Network 3 Company ISAF $ 82,339,600.00
24 1 Network 3 Company Afghan $ 80,238,800.00
25 2 Networks 1 Platoon ISAF $ 27,097,400.00
26 2 Networks 1 Platoon Afghan $ 26,572,200.00
27 2 Networks 1 Company ISAF $ 32,489,600.00
28 2 Networks 1 Company Afghan $ 30,388,800.00
29 2 Networks 2 Platoon ISAF $ 52,097,400.00
30 2 Networks 2 Platoon Afghan $ 51,572,200.00
31 2 Networks 2 Company ISAF $ 57,489,600.00
32 2 Networks 2 Company Afghan $ 55,388,800.00
33 2 Networks 3 Platoon ISAF $ 77,097,400.00
34 2 Networks 3 Platoon Afghan $ 76,572,200.00
35 2 Networks 3 Company ISAF $ 82,489,600.00
36 2 Networks 3 Company Afghan $ 80,388,800.00
37 3 Networks 1 Platoon ISAF $ 27,247,400.00
38 3 Networks 1 Platoon Afghan $ 26,722,200.00
39 3 Networks 1 Company ISAF $ 32,639,600.00
40 3 Networks 1 Company Afghan $ 30,538,800.00
41 3 Networks 2 Platoon ISAF $ 52,247,400.00
42 3 Networks 2 Platoon Afghan $ 51,722,200.00
43 3 Networks 2 Company ISAF $ 57,639,600.00
44 3 Networks 2 Company Afghan $ 55,538,800.00
45 3 Networks 3 Platoon ISAF $ 77,247,400.00
46 3 Networks 3 Platoon Afghan $ 76,722,200.00
47 3 Networks 3 Company ISAF $ 82,639,600.00
48 3 Networks 3 Company Afghan $ 80,538,800.00

Tab. 4.6: The global optimal point is known given the small decision space of the
Jalalabad study.

Wells Hospitals Security ANSF Public Opinion Variance Cost

3 2 1 1 633.62 100544.32 $ 55,538,800.00
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RSM can begin at any point in the control space. The study used three

initial points. Each represents a policy of monolithic infrastructure invest-

ment; maximum health care, maximum Afghan-led security presence, and

maximum wells, Table 4.7. Each yielded a locally optimal and robust con-

trol setting recommendation via MMRDP.

Tab. 4.7: Each initial point represents a full investment in one infrastructure type.
Start Points Wells Hospitals Security ANSF Public Opinion Variance Cost

All Security 0 1 1 1 387.90 119460.47 $ 30,088,800.00
All Wells 3 1 0 0 501.33 88695.94 $ 27,247,400.00

All Hospitals 0 3 0 0 365.57 34992.84 $ 76,797,400.00

Within the RSM, the Jalalabad agent-based model was run iteratively

using 24 full-factorial designs for each experiment. The resolution-IV ex-

perimental design, derived from a foldover resolution-III design creates or-

thogonal, experimental sets free from colinearity. [31] Within the crossed

array, each design point of interest had 13 replications due to the stochas-

tic nature of the exogenous variables, Wealth, Ethnicity, and Deaths. Each

experimental design run required 48 hours on a dedicated host server. The

total computation time for all initial points was over 2 weeks. The R Sta-

tistical Package, version 2.15, was used estimate the response surface and

paths of greatest improvement leading to further experiments and three lo-

cally optimal points. [62] The average response value for each design point

was fit using using a GLM regression model due to the integral factors. The

appropriate fit was determined by measuring deviance of first order, second

order, and interaction models. Without exception, the second order model
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with interactions produced the best fit at locally optimal points.

After reaching classic RSM local optimality, the response variable, Public

Opinion, was maximized using dual response surface optimization. To fa-

cilitate this step, satisficing behavior was determined to be response values

greater than or equal to the median, ≥ 449.1. In the neighborhood sur-

rounding each locally optimal point, the factors were fit to variance data. In

this case, LTS regression models were used as the response was distributed

according to a χ2 distribution. [22] The best fit for the variance models was

found via second order models with interactions. Both regression models

were combined along with a budget constraint of $60,000,000 and the con-

trol factor limits within an optimization problem. The objective function

maximized the Opinion response subject to reduced variance levels and the

constraints. The resultant nonlinear, mixed integer problem was solved us-

ing GAMS software, see Appendix F. [77] In each of the three instances, it

yielded a robust optimal control setting recommendation. Finally, the local

optima filter was used to discriminate between the robust course of action

recommendations to provide a ranking in terms of likelihood of achieving

suitable behavior.

4.7 Results

MMRDP yielded three robust optimal recommendations each with bias but

variance less that associated with the global optimal point, Table 4.8.
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Tab. 4.8: MMRDP identifies three local optima that are less sensitive to exogenous
factors than the global optimal point.

Local Optima Wells Hospitals Security ANSF Public Opinion Cost Variance Bias

1 1 2 0 1 538.65 $ 51,422,200.00 26486.23 94.97
2 2 1 0 1 476.67 $ 26,572,200.00 32349.54 156.95
3 1 2 0 0 432.43 $ 51,947,400.00 46423.84 201.19

Global 3 2 1 1 633.62 $ 55,538,800.00 100544.32 0.00

Each robust optima, 1, 2, and 3, sacrifice bias for lower variance compared

to classic RSM results, Table 4.9. Of note, optima point 2 found via classic

RSM was the global optimal point but robust RSM abandoned it for a point

with less variance.

Tab. 4.9: Local optima 1, 2, and 3 arrive at lower variance points via dual surface
optimization.

All Security (1) Wells Hospitals Security ANSF Public Opinion Bias Variance Cost

Start Point 0 1 1 1 387.90 245.72 119460.47 $ 30,088,800.00
Classic RSM 2 1 1 1 584.10 49.51 42092.70 $ 30,388,800.00

Dual Surface RSM 1 2 0 1 538.65 94.97 26486.23 $ 51,422,200.00

All Wells (2) Wells Hospitals Security ANSF Public Opinion Bias Variance Cost

Start Point 3 1 0 0 501.33 132.28 88695.94 $ 27,247,400.00
Classic RSM 3 2 1 1 633.62 0.00 100544.32 $ 55,538,800.00

Dual Surface RSM 2 1 0 1 476.67 156.95 32349.54 $ 26,572,200.00

All Hospitals (3) Wells Hospitals Security ANSF Public Opinion Bias Variance Cost

Start Point 0 3 0 0 365.57 268.05 34992.84 $ 76,797,400.00
Classic RSM 0 2 1 0 511.03 122.59 108261.20 $ 57,189,600.00

Dual Surface RSM 1 2 0 0 432.43 201.19 46423.84 $ 51,947,400.00

MMRDP demonstrates its value in its ability to sift through the courses

of action using modeling and simulation. Intuitive solutions and extreme re-

source allocations are inferior to both the RSM and robust optimal solutions,

Table 4.10.

The three optima are robust in terms of the effects from exogenous factors

however, they are statistically the same due to their overlapping confidence

intervals, Table 4.11 and Figure 4.9.
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Fig. 4.9: The robust optimal points show no statistically significant differences.
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Tab. 4.10: MMRDP provides solutions that beat intuitive solutions via both ex-
pected response outcome and response variance.

COA Wells Hospitals Security ANSF Cost Expected
Public
Opinion

Variance Greater
Than
Median

All Hospitals 0 3 0 0 $76,797,400 365.57 34992.84 No

Minimum Cost 0 1 0 1 $26,272,200 339.84 56622.43 No

All Security 0 1 1 1 $30,088,800 387.90 119460.47 No

Robust Optimal 2 1 0 1 $26,572,200 476.67 32349.54 Yes

All Wells 3 1 0 0 $27,247,400 501.33 88698.94 Yes

Maximum Cost 3 3 1 0 $82,639,600 478.24 97003.38 Yes

RSM Optimal 3 2 1 1 $55,538,800 633.62 100544.32 Yes

Tab. 4.11: The 95% confidence intervals for the optima overlap and do not provide
a clear recommendation.

Local Optima Public Opinion Variance Half Width Upper Limit Lower Limit

1 538.65 26486.23 114.32 652.96 424.33
2 476.67 32349.54 126.34 603.00 350.33
3 432.43 201.19 9.96 442.39 422.47

Local Optima Filter Results

The local optima filter within MMRDP addresses this situation by determin-

ing the surface area of the ellipsoid that approximates satisficing response

performance. Larger surface areas are directly correlated to higher proba-

bilities of achieving desired response behavior. In this study, the ellipsoid is

defined by the exogenous variable behavior, Wealth, Ethnicity, and Deaths,

about the recommended control factor settings, Public Opinion ≥ 449.1.

Through experimentation around each robust optima, the PGD to the sat-

isficing was determined, providing radii for the corresponding ellipsoid and

subsequently, its surface area, Table 4.12. Course of action 2, provides the

greatest probability of success when compared to the others using ellipsoid

surface area estimation as a proxy for probability comparison.
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Tab. 4.12: Course of action 2 presents the greatest probability of success compared
to the other optima using ellipsoid surface area estimation.

Satisficing Radii Wealth Ethnicity Deaths Surface Area

1 1.74 0.99 0.13 11.20
2 9.74 2.51 2.63 252.79
3 4.77 1.01 1.13 51.15

As additional inference for stakeholders, simulation data yielded more

information about the response behavior in relation to the exogenous factors.

By their nature, exogenous factors are uncontrollable. However, stakeholders

can use simulation to determine their estimated effects on the control setting

response. With optima 2, Civilian Deaths dominates other exogenous factors,

Figure 4.10. While the factor of Civilian Deaths interacts with the other

exogenous factors, the response is undesirable when Civilian Deaths exceed

23 in a 60 day period.

The result achieved by MMRDP has its greatest advantage in its analysis.

The complexity of the COIN strategy for Jalalabad, the long time lines, the

cost, the actors and the exogenous factors complicate decisions beyond the

reach of tractional mission analysis methods. Security based decisions would

be ignorant of other critical factors. Economic approaches would be none

more helpful. Neither the most expensive nor the least expensive courses

of action yielded better results in the expected level of public opinion or its

variance. MMRDP offers insight about infrastructure’ impact on COIN that

leaders do not have.
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Fig. 4.10: Civilian deaths effect public opinion more than any other exogenous
factor.
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Pareto Efficiency

Pareto efficiency must be considered carefully within MMRDP. Robustness

can invite deliberate suboptimal response performance to reduce variabil-

ity. The naive (nonrobust) approach generates a curve that outperforms the

robust approach, Figure 4.11. The robust method recommends optima 1.

Fig. 4.11: The Pareto efficiency curve dominates Robust courses of action.

In this study, the pareto efficiency curve and the ellipsoid surface area es-

timation generate conflicting recommendations. The surface area calculation

provides a clearer separation between the recommended courses of action.

Optima 2 is the best recommendation, Table 4.13.

Tab. 4.13: Optima 2 is the MMRDP recommended setting.
Local Optima Wells Hospitals Security ANSF Public Opinion Cost Variance Bias

2 2 1 0 1 476.67 $ 26,572,200.00 32349.54 156.95



4. Application of the Robust Meta-Model: Jalalabad City, Nangarhar Province, Afghanistan 128

4.8 Conclusion

In the Jalalabad study, the recommendation highlights the benefits of cultural

fluency as a combat multiplier. While it recommends construction of 2 well

systems and one hospital, it does not recommend high levels of visible security

forces. It indicates that the population is tired of the troop presence despite

ISAF’s perception that more security is better. It also indicates that the

efficiency of highly trained foreign troops is ”lost in translation” making them

a reactive force compared to Afghan forces. Ideally, stronger investment in

Afghan security will yield more predictable long term results at a lower cost

compared to other more intuitive courses of action. Excess infrastructure

capacity does not compare to just enough capacity with adequate security

that best satisfy local stakeholder needs.

To improve the Jalalabad meta-model it may be worthwhile to move

away from the Repast City ABM. Repast is not built for large-scale ABMs.

It is slow, requiring approximately 20 minutes per replication with only 200

agents. It also very troublesome with upgrades, a common problem with

freeware. Repast makes it difficult to build a freestanding, hardware and

software independent simulation. Transfers between machines and software

upgrades should not be points of friction as they appear to be.

Further analysis is required in reference to ANSF models. It is necessary

to determine the impact of training on reported high corruption. The impact

of nonlocal or minority Afghan security elements in Jalalabad is also unde-
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termined. Within the ANSF, the contrast between Afghan National Army

(ANA) performance and Afghan National Police (ANP) performance is of

interest. In this way, ANSF can be deployed more precisely, cultural aware-

ness can be exercised more effectively, and the imminent draw down of ISAF

troops can be better mapped based on ANSF preparedness. Security, as a

task, should underpin, not disrupt, reconstruction.

A noneconomic measure of stability provides stakeholders a picture of

Afghanistan in the light used when the ISAF mission began in 2001. While

strong economic performance is important to stability, is it not what com-

pelled ISAF to enter Afghanistan. In that light, economic measures will

not indicate the success or failure of the ISAF COIN mission. Public opin-

ion of government, a harbinger of regional stability and insurgent support,

is a viable means to guide infrastructure capacity development in a COIN

environment.

Success of the the meta-model process hinges on the veracity of the re-

sponse mean and variance, a very difficult task to validate. The process can

also suffer if local data or expertise is unavailable. However, in the case of

Jalalabad, ISAF has an eleven year history in the area. Many of the local is-

sues are understood and well documented. ISAF employs human intelligence

assets, human terrain mapping, and maintains a lessons learned repository

available to units in the region. Dual surface RSM as a mechanism to achieve

robust solutions, pairs well with the ABM and is an attractive feature for

USACE, ISAF, GiROA, and other stakeholders with long time horizons and



4. Application of the Robust Meta-Model: Jalalabad City, Nangarhar Province, Afghanistan 130

significant resource investments.



5. APPLICATION OF THE ROBUST META-MODEL:

TIJUANA, ESTADA BAJA CALIFORNIA, MEXICO

”America’s energy sector is just one part of an aging infrastructure

badly in need of repair. Ask any CEO where they’d rather locate

and hire: a country with deteriorating roads and bridges, or one with

high-speed rail and internet; high-tech schools and self-healing power

grids. The CEO of Siemens America – a company that brought

hundreds of new jobs to North Carolina – has said that if we

upgrade our infrastructure, they’ll bring even more jobs.”

∼ President Barack Obama

State of the Union Address, February 2013

”Smart businesses do not look at labor costs alone anymore. They

do look at market access, transportation, telecommunications

infrastructure and the education and skill level of the workforce, the

development of capital and the regulatory market.”

∼ Janet Napolitano, Secretary of Homeland Security, 2009-2013
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MMRDP is applicable when seeking municipal stability in the absence of

violence and organized conflict. Consider the the manufacturing (maquiladora)

industry in Tijuana, Mexico. Tijuana’s maquiladoras represent those in many

of the Mexican cities along the United States’ southern border. Mexican im-

migration to Tijuana City has produced steady population growth in response

to decades of Mexican maquiladora proliferation without corresponding in-

vestment in shelter and basic services. Social and municipal stability can be

put at risk due to capacity gaps and lack of reliable service access for labor-

ers. In this study, an ABM informed by stakeholder analysis about Tijuana

and the maquiladora industry. The stakeholder analysis identifies key factors

and classifies them by type, control and exogenous.

MMRDP, through classic and robust RSM, identifies policy courses of

action to minimize the maquiladora city immigrant laborers’ long term rate

of basic service exclusion. Low rates of exclusion can reduce the potential

for unrest by improving quality of life. Informed infrastructure investment

can provide policy recommendations for a sustainable maquiladora system

underpin long term stability for municipalities and industrial partners.

5.1 Introduction

Operating under an arrangement between the United States and Mexican

governments, raw materials and finished products arrive and depart, duty-

free, from Mexican maquiladoras, domestic factories owned and operated
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by foreign companies. [112] For over forty years, labor needs climbed. [113,

114] In exchange for business friendly practices, these manufacturing centers

garner a motivated labor force and a beneficial supply chain construct.

High employment in maquiladora cities is a double-edged sword. Indus-

trial growth benefits cities financially but it is difficult for them to absorb

the influx of new arrivals and provide them basic services in a timely man-

ner. [115] As a result, ready access to potable water, electricity, and trans-

portation is unlikely for newcomers. New immigrants cluster in outlying

areas on the assumption that they will find suitable shelter there. Most set-

tle in ramshackle communities on the city outskirts that often overlap with

areas used to illegally dispose of waste. [116]

As a part of the permissive business environment, municipal authorities

seldom review industrial practices or update exogenous policies. Industrial

growth goes unchecked resulting in unregulated air pollution and inadequate

water treatment. [117] The population’s elderly and children are at the great-

est risk, another potential source of volatility.

Beyond the pace of growth, the arid environment of the region limits the

water supply, recasting growth from ally to antagonist. [118] City infrastruc-

ture investment increases via a woefully reactive policy stance that fails to

address infrastructure capacity gaps and pace growth. For sustained invest-

ment and quality of life, alternate policies must be considered. The reliable

Mexican labor force and economics of the maquiladora system justify their

expansion but the substandard social aspects of the system can undermine
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it long term.

5.2 Background

During the early 1940’s the United States developed the bracero program

to address a labor shortage in the southwest stemming from World War II

enlistments. [114] The bracero program eased travel for Mexican laborers

travelling to and from US border state farms during the harvest season. In

the off season, the labor force would take up station in northern Mexico

waiting for employment. The pool of human capital was a opportunity for

both the Mexican government and large businesses like General Motors and

Ford. [119] The laborers’ reputation for quality and dedication, as well as

their high unemployment rate, set the stage for the maquiladora program

to begin. US businesses built factories in Mexico. They transported raw

materials in and exporting finished goods out duty-free; as long as they

used Mexican labor. This policy increased inter-Mexican immigration to the

border region due to the allure of work and in order to meet labor demand

in cities such as Tijuana, Chipapa, Notana, Hoplili, and Nogales, Figure

5.1. [120,121]

Maquiladora cities in the northern Mexican border zone have thrived for

decades. Tijuana, a representative case study in the western state of Baja

California, has quadrupled its population since 1980. [122] Located adjacent

to San Diego, CA, the Pacific Ocean, and the busiest international border
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Fig. 5.1: Tijuana boasts the 2d largest annual Maquiladora output in Mexico.

crossing in the world, Tijuana is an ideal trade center. Not surprisingly, the

maquiladora program expanded from solely US to international participation.

Today, Tijuana hosts maquiladoras for over 100 multinational companies

including, Sanyo, Sony, Volkswagon, and Panasonic, Table 5.1. [123]

Tab. 5.1: Mexican Maquiladora Border Towns have seen consistent grow for over
30 years.

Number of Operating Plants Employment (000) Total Exports ($Billion)

1980 620 123.9 2.52

1985 758 217.5 5.08

1990 1,920 446.3 14.09

1995 2,267 681.3 31.1

2000 3,703 1,310.00 79.47

2002 3,240 1,090.00 57.8

2006 2,813 1,210.00 81.9

2010 2,454 1,400.00 117.6

2011 2,448 1,450.00 132.2
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World market growth along with genial Mexican national and maquiladora

city industrial licensing has fostered steady employment. The increase in cit-

izens has not yielded similar expansion of suitable living environments for

its laborer inhabitants. The pull of strong employment has led to over-

crowding and a large infrastructure capacity gap. Access is outstripped by

growth. [124] Regionally, 40% of all water consumed is untreated with 10%

of the population without any immediate access to water. [125] This lack

of access to water can lead to widespread disease, malnutrition, and public

health degradation. [118]

The immigrants’ limited access to basic services has secondary effects as

well. Lack of electricity disincentives growth, keeps quality of life artificially

low, limits access to information, and extends the ”working masses” myth

where businesses and municipalities are insensitive to labor force quality

of life, i.e. increased risk due illegal electrical networks and service theft.

The poor conditions threaten stability and may reduce the probability of

continued investments.

Despite decades of growth, labor unrest is common in Mexico. Recent

history points to an unforseen agent, the North American Free Trade Agree-

ment (NAFTA). NAFTA was designed to reduce or eliminate tariffs and trade

barriers between Canada, the US, and Mexico. [126] It further incentivised

investment and growth in Mexican maquiladoras from the date of its sign-

ing, 17 December 1993. Unexpectedly, it was not well received in Mexico.

Its signature coincides with the beginning of the influential and pro-labor
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Fig. 5.2: Zapatista protests in Chiapas led to armed conflict in 1994 and 1995. [1]

Zapata movement. The movement began the same day as the signature in

the southern state of Chiapas. [127] Within two years of its inception, there

were over 200 Zapatista led strikes and protests in Chiapas alone. They led

to direct, armed conflict with the Mexican National Army, Figure 5.2. [127]

Chiapas has interesting parallels to Afghanistan in that it has high ethnic

diversity in a small area where more than half of the population does not

speak the national language. It is likely the unrest began due to subpopula-

tions feeling marginalized. It took hold with laborers who felt that greater

trade would not show requisite improvements in laborer quality of life. [128]
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The Zapatista movement was spread by interstate immigration and uni-

fied dissatisfied labors in all 31 states by 2006. [129] Throughout Mexico,

laborers claimed that the government colluded with industry to hold wages

low to hold down costs and spur more investment. [128] Laborers demanded

social and economic upward mobility and the ability to organized unions

without interference. [128] Tijuana was not immune to the unrest seeing a

series a strikes in the mid-1990s and early 2000s. [130,131].

During the past few decades, China’s economy has experienced simi-

lar growth to Mexico due to manufacturing expansion and a ready labor

force. [132] As with Mexico, China’s winnings have come with a social cost.

Failure to provide requisite quality of life improvement and gains for the peo-

ple have resulted in unrest, an uncommon phenomena in the Middle King-

dom. Labor disruptions at Foxconn, the largest Apple Iphone component

supplier, has brought undue attention and disruption to the supply chain

while increasing manufacture costs. [133] Concern for the environment and

public health has motivated protests in Shanghai as well. [134] Business an-

alysts attribute recent labor force shifts away from China to other countries

to the unrest. [135] Populations seem willing to sacrifice to establish fiscal

momentum but not to sustain it. Sustainable manufacturing growth should

account for laborer quality of life.

There are other cases for achieving labor stability in the face of growth.

After World War II, the Japanese recovery and subsequent economic miracle

showed a markedly different approach to labor during its industrial explosion.
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From the 1950s until the 1990s, the Japanese economy saw 9-10% annual

growth due to its manufacturing and technology. [136] Contrary to China

and Mexico, Japanese firms and their laborers benefit from mutual loyalty.

In exchanged for their effort, laborers can count on a living wage, medical

disability, survivor benefits, and life long employment. [137, 138] Some com-

panies also subsidise housing and dormitories. [138] The Japanese system is

not perfect. Its laborers and managers are often at risk from over-work. [139]

However, insurgency stemming from unrest is unheard of since the growth

began.

Japan’s industrial investments have been largely domestic resulting in

slower growth when compared to China or Mexico. Perhaps the fealty and

concern for access to basic services shown within Japanese industry has its

roots there. It can provide an azimuth for the maquiladora system. The high

employment in Mexico has not broken the poverty cycle as it did in Japan.

Low pay has held the interest of investors but has not served the population

as a whole. [128]

In an effort to analyze the situation for maquiladora immigrants and

underpin social stability, researchers at the Center for Connected Learning

and Computer-Based Modeling (CCL-CBM), Northwestern University, mod-

elled the socio-economic environment in Tijuana. Their Tijuana Bordertowns

model serves as a platform to examine the impact of policy decisions and

migration rates on border region immigrants. [28] The CCL-CBM Tijuana

model demonstrates the impact of industrial growth, regulation, and capacity
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development via a variety of statistical measures.

5.3 Problem Statement

As a hedge against instability and to ensure the long term viability of maquiladora

investment, Mexican national and municipal leaders, corporations, and other

stakeholders wish to minimize the fraction of immigrant labor population

excluded from reasonable shelter, potable water, and reliable electricity in

Tijuana, Mexico. MMRDP will recommend robust policy solutions based on

an ABM that models a subregion of Tijuana.

Given I control factors and J exogenous factors, recommend control fac-

tor settings that minimize the response, S, providing outcomes that are lo-

cally optimal within the response space and somewhat insensitive to system

variability. In this study, the response the long term Tijuana immigrant basic

services exclusion rate.

Minimize S ∼ F (X,Z) (5.1)

subject to

xi ≤ xU(i) (5.2)

xi ≥ xL(i) (5.3)∨
i ∈ I, I = 1..6 (5.4)
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Factorj ∼ Gj (5.5)∨
j ∈ J, J = 1..4 (5.6)

XL, XU − control variable upper and lower bounds.

G− exogenous variable general distribution

5.4 Methodology

A systems approach to the problem consists of application of MMRDP cen-

tered on Tijuana’s socio-economic, immigrant, and labor environments. The

model measures, via simulation, the steady state percentage of the immi-

grant population without access to potable water. It employs experimental

design, robust response surface methodology via dual response surface op-

timization and an optima filter for factor discrimination and best setting

selection. It provides a solution strategy to analyze the response space and

underpin infrastructure development policy in Tijuana, Figure 5.3.

5.4.1 Tijuana Agent-Based Model

In Tijuana, immigration rates and settlement patterns can be sporadic and

unpredictable while infrastructure growth is sluggish, expensive, and reactive.

The NetLogo ABM simulates elements of the complex environment and the

socio-economic features of immigrant settlements in Tijuana, Mexico. [19]
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Fig. 5.3: The meta-model process incorporates stakeholder analysis, ABM simu-
lation, and dual surface RSM for distinct robust solutions.

Complex settings, such as Tijuana’s environment, often yield counterintuitive

and emergent behavior that would not otherwise observers or considered.

[140]

The Tijuana Bordertowns project features agents moving from other Mex-

ican states to work in maquiladoras in Tijuana City. [28, 141] Agents in the

simulation represent individuals whose attributes and traits are sampled from

a demographic model. [141] The agent-based model simulates behavior for

thousands of immigrants over a two year period for a given infrastructure

policy in a small section of Tijuana, Figure 5.4. On a quad core system, the

iteration rate is 2-4 per minute.

Immigrants arrive randomly ∼ exp(λ) seeking work, housing, and access
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Fig. 5.4: Agent-Based Model of Tijuana City in the vicinity of Chihuahuala La
Mesa.

to water and electricity. If immigrants arrive with savings, their prospects for

basic services are better. Other, more veteran, laborers use their wages to pay

bills, food and rent, and save the rest. An agent can stay put, move to better

climes within Tijuana, or seek employment and residential status across the

border in the United States. Generally, laborers seek better living conditions

throughout a simulation run. The rate of upward mobility, a random feature

of the model and a function of agents’ savings rates and job availability, is

positively correlated with the availability of regulated, acceptable housing

and basic services within the city.

Within the model, agents (maquiladora laborers) arrive from other Mex-

ican states, settle, and work. Initially, they live in any available location,

typically the outskirts, and have little access to city utilities and services.

The cycle of growth causes land values to increase and populations to move.
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Agents are assessed costs for for food, transportation, housing, while trying

to save their wages. After the simulation runs for two years, statistical sta-

bility is achieved in terms of the fraction of the population with out access

to potable water and electricity. It is this rate of exclusion that the process

aims to minimize, Figure 5.5.

Fig. 5.5: The simulation statistic of interest stabilizes after two years of simulation
run time.

The city and industry play a role in the simulation. The city can decide

to periodically assess the state of the labor population. It then has several

options to address service needs. It can rearrange neighborhood boundaries

to improve service point access. It can more strictly regulate service delivery

systems. It can build housing and service capacity at varied rates. For

instance, the city can rapidly build to try and meet demand or it can build

infrastructure slower but provide greater carrying capacity, capacity that
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exceeds current needs. Additionally, more factories can be built.

Among many agent attributes, the simulation tracks how many of the im-

migrant agents have regular access to potable water over time. The potable

water access is a proxy for access to regulated electricity, reliable transporta-

tion, and adequate housing. The simulation accounts for preferred access

by charging laborers rent via a graduated scale. As the city responds to

growth and developed land becomes scarce, cost of living increases. This

cycle continues with each wave of arrivals during a simulation replication. It

important to note that the model does not calculate the cost to the munic-

ipality of development, rather it allows the use to vary policy and observe

outcomes without economic constraints.

Maquiladora density, population density, city population growth, employ-

ment levels, and employee quality of life vary with respect to transportation,

potable water access, and electricity access. [141] Access to low quality water

sources increases disease rates, malnutrition, and negatively impacts long-

term quality of life. [111] Electricity and transportation serve to improve

quality of live and also ensure the workers have ready access to job oppor-

tunity and information. A satisfied, mobile workforce is important to the

maquiladora investors for production, retention, and growth.

Along with other borders towns, the Mexican Trade Commission, and em-

ployers seek to sustain the pool of labor by providing an attractive alternative

to other sources of income in Mexico. This analysis requires a sophisticated

understanding of all relevant stakeholders and the socio-economic environ-
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ment. It is optimized using MMRDP.

5.4.2 Evaluation of Infrastructure Portfolios

The Tijuana ABM has six control factors and four exogenous factors with

various levels, Tables 5.2 and 5.3. Control factors are those settings one can

change while exogenous factors are those that are measurable but unman-

ageable. [142]

Tab. 5.2: Tijuana ABM Control Factors are a mixture of integer and continuous
variables.

City
Growth

Maquiladoras Service
Centers

Required
Capital

Colonia
Size

Carrying

Capacity

Definition Decision to
include ser-
vice growth
as a regu-
lar part of
policy and
budget

Tariff-free
manufactur-
ing centers in
ABM

Service
providers
of potable
water and
electricity

Average
initial sav-
ings of new
immigrants

Relative
colonia size
compared
to current
sizes

Service
capacity of
city infras-
tructure
compared
to current
needs

Units Binary Factories Centers USD Multiplier Integer

Steps

Levels 2 8 3 110 9 6

Min On 1 1 150 0 1

Max Off 8 3 1200 2 6

Tab. 5.3: The Tijuana ABM Exogenous Factors are continuous variables.
Migration Crossing

Ticks
Initial Den-
sity

Building

Ticks

Definition Inter-arrival
time between
Tijuana im-
migration
arrivals

Inter-arrival
time between
immigration
waves to US

Population
Density of
Colonias (> 1
is undesirable)

Time between
municipal
assessments
for Colonia
improvements

Units Days Days Fraction Months

Mean 3 10 0.75 3.25

Variance 9 100 0.2 1
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The decision space is much larger than the Jalalabad problem, three more

total factors (one exogenous and two control) each with more levels. Full

enumeration of the control space yields 285,120 design points. The global

optimal point and its variance are unknown.

RSM can begin at any point in the control space. The study used three

initial points. Each is a random selection from within the control factors;

City Growth, Number of Maquiladoras, Number of Service Centers, Required

Initial Capital for New Laborers, Colonia Size, and Infrastructure Carrying

Capacity, Table 5.4. Each yielded a locally optimal and robust control setting

recommendation via MMRDP.

Tab. 5.4: Each initial point is a random point in the control field.
Initial
Point

City
Growth

Maquiladoras Service
Centers

Required
Capital

Colonia
Size

Carrying
Capac-
ity

Response
Aver-
age

Re-
sponse
Vari-
ance

1 1 3 2 800 0.75 6 0.411 0.457
2 1 2 2 820 0.25 4 0.446 0.00702
3 0 2 1 920 1.75 2 0.590 0.00725

Within the RSM, the Tijuana agent-based model was run iteratively us-

ing 26 full-factorial designs centered on each initial point and subsequent

improving points. This resolution-IV experimental design, derived from a

foldover resolution-III design creates orthogonal, noncolinear, experimental

sets free from colinearity. [31] The designs are crossed with instances of ex-

ogenous variables, yielding replications due to address the stochastic nature

of the model, Migration Rate, Emigration Rate, Initial Density, Building

Ticks. Each experimental design run required 96 hours on a dedicated host

server. The total computation time for the initial experiments was over 12
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days. This was true for for successive experiments as well. The R Statistical

Package, version 2.15, was used estimate the response surface and paths of

greatest improvement leading to further experiments and three locally op-

timal points. [62] The average response value for each design point was fit

using using a GLM regression model due to the mix of continuous and inte-

gral factors. The appropriate fit was determined by measuring deviance of

first order, second order, and interaction models. Second order models with

interactions produced the best fit at improving and locally optimal points.

Via a crossed array design, each design point incorporated 10 replications.

The factors were fit via GLMs with an identity link to the design point

estimated response values to allow for gaussian error estimates.

After reaching classic RSM local optimality, the response variable, in-

frastructure exclusion rate, was minimzed using dual response surface opti-

mization. To facilitate this step, satisficing behavior was determined to be

response values greater than or equal to the median, ≤ 0.43. In the neighbor-

hood surrounding each locally optimal point, the factors were fit to variance

data. In this case, LTS regression models were used as the response was

distributed according to a χ2 distribution. [22] The best fit for the variance

models was found via second order models with interactions. Regression

models for the response mean and variance were combined with the control

factor limits within an optimization problem. The objective function mini-

mized the infrastructure exclusion rate response subject to reduced variance

levels and the constraints. The resultant nonlinear, mixed integer problem
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was solved using GAMS software, see Appendix F. [77] In each of the three

instances, it yielded a robust optimal control setting recommendation. Fi-

nally, the local optima filter was used to discriminate between the robust

course of action recommendations to provide a ranking in terms of likelihood

of achieving suitable response behavior.

5.5 Results

From three random start points, MMRDP yielded three robust optimal rec-

ommendations, Table 5.5. MMRDP sought to minimize the value of the

response however, the locally optimal robust recommendations increase bias

to achieve lower variance. This is evident in the progress of the response

values from initial point to classic RSM local optima to dual surface optima,

Figure 5.6. Two of the three robust optima are statistically the same due to

their overlapping 95% confidence intervals, Table 5.6 and Figure 5.7.

Tab. 5.5: MMRDP finds local and robust optima by experimenting with all initial
points.

Local
Op-
tima

City
Growth

MaquiladorasService
Centers

Required
Capital

Colonia
Size

Carrying
Capac-
ity

Response
Aver-
age

Response
Vari-
ance

1 1 6 1 150 2 1 0.631 0.01640
2 1 2 1 840 0.5 3 0.394 0.00172
3 1 1 2 940 1.75 3 0.371 0.00243

Local Optima Filter Results

To address the statistical similarity of robust optima two and three, MM-

RDP employs the local optima filter. For robust optimal points, it estimates
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Fig. 5.6: Three local optima are robust in the presence of exogenous factors, as
shown by the reduction in variance from the corresponding classic RSM
local optima.

Tab. 5.6: The 95% confidence intervals for optima 2 and 3 overlap providing no
distinct best choice.

Local Optima Response Estimate Response Variance Half Width Upper Limit Lower Limit

1 0.63 0.02 0.02 0.65 0.61
2 0.39 0.00 0.03 0.43 0.36
3 0.37 0.00 0.04 0.41 0.33
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Fig. 5.7: The second and third robust optimal points show no statistically signif-
icant difference but they both outperform the first robust optimal point
in terms of minimal response value.
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the associated multi-dimensional surface area defined by the variability from

the exogenous factors. Within the set being considered, the optima with the

largest surface area has the largest associated probability of achieving satis-

ficing behavior. In this study, the ellipsoid radii are derived by the length of

the exogenous factor vector from the optima to the satisficing bound using

fixed control settings. The satisficing bound is defined as long term immi-

grant infrastructure exclusion rates ≤ .43, the median value of the response.

Robust optima 1 fails consideration given the satisficing bound. Experimen-

tation about optima 2 and 3 were used define PGDs from each optima to the

satisficing bound. The corresponding PGDs were used define the two radii

vector for optima 2 and 3 and create surface area estimates.

Tab. 5.7: Course of action 3 has a larger relative probability of achieving satis-
ficing behavior than course of action 2 using the ellipsoid surface area
estimates.

Exogenous Factor Satisficing Radii

Robust Optima Migration Crossing Initial Density Building Surface Area
2 8 85 0.7 0.5 5315.44
3 5 93 0.8 2.5 10959.18

Within course of action 3, it is possible to outline the effect of the ex-

ogenous factors further. The estimated relationship between the exogenous

factor is second order and includes interactions with the control factors. How-

ever, a simple view of the relationship will suffice to indicate which exogenous

factor has the most influence, Figure 5.8. The two most critical exogenous

factors for response variability are population density and migration rate.
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Fig. 5.8: The exogenous factors population density and migration rate induce the
greatest variability in the response.
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Pareto Efficiency

In the study, the economic effects and costs are not explicitly measured in

order to consider a large range of public policies in Tijuana. The final step in

MMRDP is an examination the courses of action for Pareto optimality. This

is not possible in the traditional sense due to the lack of fiscal data. However,

one may consider the number of maquiladoras as a proxy for cost. More

maquiladoras is a more costly investment. This is an extremely simplified

view as more maquildoras means more revenue for the state and factories as

well. The evidence of this relationship is the near exponential manufacturing

growth in Mexico since the 1980’s.

The efficiency curve illustrate the tradeoff between bias and variance.

Robustness can invite deliberate suboptimal response performance in order

to reduce variability. The naive (nonrobust) approach generates a curve

that outperforms the robust approach, Figure 5.9. The robust method curve

recommends optima and course of action 3. The local optima filter provides

additional evidence that optima 3 is the best course of action for the study,

Table 5.8.

Tab. 5.8: Optima 3 is the MMRDP recommended setting.
Local
Op-
tima

City
Growth

Maquiladoras Service
Centers

Required
Capital

Colonia
Size

Carrying
Capac-
ity

Response
Aver-
age

Response
Vari-
ance

3 1 1 2 940 1.75 3 0.371 0.00243
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Fig. 5.9: The robust optima appear suboptimal but has the advantage of reduced
sensitivity to exogenous factors.

5.6 Conclusion

Course of action 3 is a logical selection. It represents a very conservative ap-

proach to industrialization, likely due to the resources necessary to minimize

the response. Without explicitly accounting for fiscal constraints or revenue,

it is the most conservative course of action for the city and the businesses.

The simulation recommends only 1 maquiladora and 2 services centers in the

area of interest, but reality is different. In actuality there are at least five

maquiladoras but only 1 service center in the same area.

Course of action 3 recommends that laborers arrive with a high level of

savings. This is unrealistic the lack of employment opportunity elsewhere in

Mexico for unskilled labor. However, it gives stakeholders an estimate of a
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per immigrant arrival cost for base infrastructure access.

The conservative approach of course of action 3 is also somewhat proac-

tive. It recommends infrastructure capacity at three times the available rate.

This may be an expense that is unfeasible given the reduced levels of revenue

that course of action 3 may invite compared to current levels. However, it

implies that at a minimum, more regular assessment of base infrastructure

access must be measured to ensure appropriate infrastructure growth. More

frequent and detailed assessment within the city may provide more impe-

tus for policy change and point to more appropriate carrying capacity and

colonia sizes in future planning endeavors.

In the representative area, the meta-model infrastructure portfolio selec-

tion process can require significant overhead to scope the problem and it also

introduces bias. Despite that and the ABM construction effort to estimate

relationships, the meta-model demonstrates flexibility and robustness in the

face of complexity and varied random behavior. The process offers users the

ability to trade speed and computational frugality for fidelity and detailed

exploration of the response surface. Run multiple times, it can provide many

feasible locally optimal settings to improve recommendations that could not

otherwise be supported while still meeting minimum capacity screening crite-

ria. It provides policy makers and stakeholders a means to justify enormous

infrastructure investment in the name of stability by improving laborer qual-

ity of life.

In contrast to the Jalalabad model, the Tijuana model does not account
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for cost of infrastructure investment and policy changes. It is naive to assume

that economic considerations will be disregarded. However, the long term

cost of stability is real and its impact on maquiladora investment warrant

careful consideration of municipal infrastructure investment to improve the

laborers quality of life in ensure long-term stability. As an approach to

improve the model, it may be used without economic features to eliminate

unfeasible courses of action that do not support stable practices. Future

versions of the model can then apply cost date to the smaller feature space

to highlight efficient and acceptable solutions.

Mexico’s maquiladora system is the result of ready labor, infrastructure,

locale, and favorable business policy. However, leaders have failed to under-

stand the tenuous position of the system. It is not robust to labor disruptions

nor is it able to indefinitely absorb laborer living conditions. The desire to

build upon past success is understandable, however the capacity gaps will

likely worsen and reach a tipping point. At this point, continuing to ignore

laborer quality of life is just as unprofitable as undertaking a plan to maxi-

mize immigrant infrastructure access. A moderate approach to stem the lack

of infrastructure access is a necessary start but more elusive due to complex-

ity. MMRDP can guide policy by offering better solutions within the morass

of the current maquiladora environment in each city.



6. CONCLUSION

”We talk too much about the money and not enough about the

benefits.”

∼ Thomas J. Donohue, President, U.S. Chamber of Commerce,

on infrastructure development
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6.1 Contributions

This research effort consists of a codified robust optimization methodology

for complex adaptive systems and presents two major applications for insti-

tuting system of infrastructure systems solutions that address social stability.

MMRDP demonstrates academic rigor and promise in application. Previous

research validates the use of a systems approach that uses an ABM to rep-

resent interactions within and between social groups, a geographic locale,

and infrastructure policy. The research also substantiates the use of general-

ized linear models and ordinary least squares or robust regression techniques

within repeated application of response surface methodology to discover mul-

tiple locally optimal response values and corresponding setting sets.

MMRDP uses dual surface optimization to reduce solution sensitivity to

exogenous behaviors and induce robust design. However within robust de-

sign, exogenous behavior can foul solution discrimination efforts. Variance is

ubiquitous and confidence intervals may overlap making it difficult to rank

order recommended, locally optimal, control settings. Estimating P-space

satisficing response behavior hyper area addresses these confidence interval

overlap problems. Comparing courses of action via the optima filter is an im-

provement on confidence intervals and associated methods. It presents users

a better picture of performance in terms of the satisficing bound, it does not

assume gaussian error, and it can represent high order relationships as nec-

essary. Thompson’s work in hyper-ellipsoid estimation on conjunction with



6. Conclusion 160

steepest path approaches from RSM provides a rapid, accurate method that

minimizes computational burden and takes advantage of simulation data.

MMRDP deliberately increases bias when comparing the robust solutions

to basic RSM solutions. However, the variance reduction in the robust so-

lution is consistent in effect but not value. The feasibility constraints can

greatly limit the effectiveness of the variance reduction. Individual problem

characteristics determine the ease of finding locally optimal points, regression

models, variance characteristics, and robust solution selection.

Rather than seeking peak optimal points, MMRDP searches for satisficing

behavior in high dimension spaces. In these nebulous environments this is

an achievable goal in that it allows for the presence of control and exogenous

factors. It also increases the probability of meeting stakeholder desires.

The application of P-space ellipsoid surface area to estimate hyper-surface

area associated with desired response behavior to discriminate between courses

of action is an advancement in the science. It provides a relative probability

of success measure between candidate solutions for stakeholders.

MMRDP is well suited to analyze and optimize settings in the Jalalabad

and Tijuana problems. While they are distinctly and dramatically different

situations and environments, they are both related. They seek to improve

the quality of life of the population in order to achieve stability measured

via a proxy statistic. Both problems are complex, involve human behavior

and infrastructure, and demand intense effort for proper stakeholder analysis

and problem definition. They use simple rule sets to model interactions
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between agents, the environment, and infrastructure settings. They provide

low variance estimates of satisficing behavior while bridging capacity gaps

using noneconomic measures.

Application of MMRDP extends beyond development, disaster relief, and

regional growth. Due to its ability to model facets of complexity, MMRDP

can address system effects along other lines. For instance, it could be used

to address outcomes of policy decisions within a number of complex systems.

MMRDP would be useful on the study of recidivism within inhabitants of

the US Criminal Justice System. Though a wildly different topic, MMRDP

would be applicable in the study of the US energy system implementation

of renewable energy policies. Given MMRDP’s flexibility, it could also be

used for optimizing multi-attribute training for individuals or achieving an

outcome within a system of education. MMRDP can be a tool for a variety

of decision makers.

6.2 Future Work

MMRDP can improve. Given a class of problems, computational alternatives

within MMRDP should be considered. For instance, within RSM and Ro-

bust RSM regression techniques abound. GLM’s need not be the only regres-

sion model construct. GAMs, support vector machines, MARS, and myriad

choices can be selected based on statistical merit. A broader selection of

application can improve MMRDP subcomponent selection recommendations
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to minimize MSE via bias and variance reduction.

MMRDP is the benefactor of data from the ABM and at the same time

all findings hinge on the ABM’s veracity. Validation is therefore paramount.

Further study is required to achieve it as a consistent milestone within MM-

RDP. A highlight of validation comes from previous work on the Jalalabad

problem. Preliminary modeling showed how marginal returns from hospitals

and water investment were only available when paired with security. [91] This

supports anecdotal evidence provided by experienced military veterans and

reflects the recommendations of current US military doctrine. [3]

Validation is unlikely to be a guarantee however. One cannot assume

to validate a model of a complex system. A complex system by its nature

has emergent behavior. Emergent behavior is unforeseen and unanticipated,

making validation impossible. Another method to improve veracity may be

to investigate the use of Bayesian models with MMRDP. As stated earlier

the inherent imprecision of the overall effort can be improved via input from

experts. Bayesian models address uncertainty in a different way by updating

a prior, initial, density function. It is improved by examining the likelihood

that the observed data is well explained by the prior density function. They

allow the practitioner to inject expert opinion into the model. [50] However,

the computational complexity of Bayesian models makes their inclusion in

MMRDP a significant challenge to overcome.

MMRDP is not a dynamic tool in that is assumes constant environmental

characteristics when it generates models from observed data. To preform as
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a viable large scale, long term tool, MMRDP would benefit from a change de-

tection function. This would require the inclusion of time series analysis at a

minimum. Most time series analysis requires homoscedasticity and invariant

model parameters. [143] These assumptions defeat the purpose of time series

analysis in MMRDP. However, more current methods address time-varying

parameters in series. [144] The computational burden of these models is high

however they could be used to find seams in time and in space where param-

eters are fixed. This segmentation can improve the prospects of large models

be defining boundaries for sub elements of a larger regional model. It can

also identify where different infrastructure portfolios would be more effective

for the population at different points in time. This would allow for a phased

plan, an important feature for the time lines associated with infrastructure

development.

MMRDP accounts for exogenous behavior but currently does not address

measurement error. Measurement error research grew from automobile and

other manufacturing processes. Gage reliability and reproducibility (Gage

R&R) is a systematic process that limits measurement variability by ana-

lyzing operator variance. [145] It provides the practitioner, through random

sampling, an understanding of variablity associated with measuring versus

that associated with the value being recorded. While not an area focus for

this research, it would have great value. It would ultimately provide practi-

tioners with smaller levels of measurement error thereby making models and

MMRDP filtering of recommendations better reflections of the true system
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behavior.

The robust design methods only add a degree of insensitivity to the exoge-

nous factors. Within current RSM application, consideration has not been

given to the accuracy of the input control variables. Work has been done

in terms of risk analysis and RSM, Chen et al.(2003), and Al-Omar(2002).

But this amounts to accounting for possible types of outcomes and assigning

probabilities, as in classic application of risk analysis. However, an intu-

itive and useful notion of response error associated with RSM needs greater

attention.

Variation and measurement error are base motivations for probability

theory and statistics. [146] However, they are accounted for selectively by

analysts. While a key component of models in physics, other models assume

them away. In fact, Avkiran and Thoraneenitiyan (2010) state that produc-

tivity and service models, which can well represent relevant infrastructure

models, rarely employ measurement error at all assuming that the variance

of inputs is fixed and/or zero. [147] At a bare minimum, this practice yields

an incorrect levels of estimated mean and estimated variance and can falsely

assume probability distribution models for the same.

MMRDP would serve improve its scale. In its current form, the stake-

holder analysis and lack of validation confidence limit MMRDP use to small

regions and cities. Stakeholders may benefit from nation-level application. A

proposed strategy would include stitching together small sets of stakeholder

analysis efforts in a hierarchy where the local information would inform data
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about the larger area of interest. This multi-level approach has been used

with success in social modeling. [148] The effort would require a preprocess-

ing step to divide the larger regions an an initial step to segment the work.

It would also require a more sophisticated understanding of infrastructure

capacity within and between subregions. Optimality would be achieve both

locally in each region and meta-locally within the entire gross area. Given

the proper motivation to undertake the analysis and build models of each

subregion, this would increase the viability of MMRDP as a tool on a much

larger scale than demonstrated with this study.

MMRDP could be slightly altered to give stakeholders more choices within

the factor settings via the optimal filter. Instead of fixing locally optimal con-

trol setting levels discovered via single and dual surface RSM and exploring

the variance of the response around each due to exogenous factors, one could

do the opposite. Fix the exogenous factors at their mean and explore which

control settings illicit satisficing behavior or better. This method would give

stakeholders more freedom to tradeoff performance and cost within the set

surrounding each optima. On it own, this method would not be as conser-

vative as the primary application of the optima filter. In order to maintain

the conservative stance, portfolios that generate satisficing behavior would

still require exploration of their behavior via PGD and corresponding hyper-

ellipsoid surface areas for comparison and ranking.

Within the class of complex problems, MMRDP robust optimality is an

obtainable and desirable objective. Governments and other organizations



6. Conclusion 166

with finite resources that want to generate specific outcomes in complex dy-

namic environments have no other tool available with a multidisciplinary

and codified methodology. MMRDP can serve as a general algorithm for in-

frastructure allocation evaluation in humanitarian relief missions or regional

military operations. This research provides a necessary and useful extensions

of RSM and a systems methodology with which to employ them.

MMRDP provides practitioners with a codified systems engineering pro-

cess that generates tuned optimal system settings in the face of complex and

dynamic environments. It combines critical aspects of stakeholder analysis,

systems thinking, modeling, experimental design, computer aided simulation,

response surface methodology extensions, robustness, optimization, and mea-

surement error.

This tailored combination of methods is a unique in its construction and

its output. Its use of an ABM to represent the environment and incorporate

effects of geography on agents provides practitioners with ability to use sim-

ple rule sets and implement models for any location to gain unique results.

The process estimates stochastic, high dimension, and nonlinear relationships

with a univariate response. It generates a response surface that incorporates

robust regression, robust design, and recommendations to stakeholders re-

flecting their understanding of control variables.

MMRDP is exclusive in its inputs, subcomponents, and analysis. It is

best applied in nebulous and poorly understood environments. It provides

solution recommendations in environments where it it very unlikely that
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one may select acceptable control measures on their own, particularly when

desiring exogenous factor insensitivity. There exists no other process like

MMRDP because typically one does not consider noneconomic evaluation of

infrastructure systems. Within the robust application of RSM, stakeholder

expectations can be misplaced if areas of improved response performance

are not mapped and quantified. Robust filtering does exactly that. It is a

critical step given the poorly understood environments that are suitable for

MMRDP, such as second order effects of infrastructure investment.

MMRDP has shown its value via its properties and its application. It

is a viable method to serve global and national agency ends by underwrit-

ing policy and strategy for long term population stability through improved

quality of life. The desire to limit insurgency is real but the means are elu-

sive. Insurgencies grow within marginalized people in ignored geographic

regions. Once leaders determine an insurgency exists, it is too late to de-

feat it via conventional means. MMRDP may benefit from future study and

refinement, it is ready to support decision makers and stakeholders in these

difficult environments.
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A.1 DeJong’s First Function in n Dimensions

f(x) =
n∑
i=1

x2
i

Constraints

− 5.12 ≤ xi ≤ 5.12

Global Minimum

f(x) = 0

xi = 0

i = 1..n
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Fig. A.1: Dejong’s First Function in 3 dimensions
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A.2 Rosenbrock’s Valley in n Dimensions

f(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)2]

Constraints

− 2.048 ≤ xi ≤ 2.048

Global Minimum

f(x) = 0

xi = 0

i = 1..n
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Fig. A.2: Rosenbrock’s Valley in 3 dimensions
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A.3 Rastrigin’s Function in n Dimensions

f(x) = 10n+
n∑
i=1

[x2
i − 10 cos(2πxi)]

Constraints

− 5.12 ≤ xi ≤ 5.12

Global Minimum

f(x) = 0

xi = 0

i = 1..n
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Fig. A.3: Rastrigin’s Function in 3 dimensions
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A.4 Schwefel’s Function in n Dimensions

f(x) =
n∑
i=1

[−xi sin(
√
|xi|)]

Constraints

− 500 ≤ xi ≤ 500

Global Minimum

f(x) = −418.9829

xi = 420.9687

i = 1..n
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Fig. A.4: Schwefel’s Function in 3 dimensions



B. TEST FUNCTION STOCHASTIC BEHAVIOR
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B.1 Gaussian Random Variable Simulation Output

Fig. B.1: The simulated functions include realizations of standard normal behav-
ior.
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B.2 Uniform Random Variable Simulation Output

Fig. B.2: The simulated functions include realizations of uniform behavior centered
on 0.
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B.3 Exponential Random Variable Simulation Output

Fig. B.3: The simulated functions include realizations of exponential behavior with
a mean of 1.



B. Test Function Stochastic Behavior 182

B.4 Sum of Gaussian and Exponential Random Variables

Simulation Output

Fig. B.4: The simulated functions include realizations of the sum of exponential
and gaussian behavior.
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B.5 Sum of Gaussian and Uniform Random Variables

Simulation Output

Fig. B.5: The simulated functions include realizations of the sum of uniform and
gaussian behavior.



B. Test Function Stochastic Behavior 184

B.6 Sum of Exponential and Uniform Random Variables

Simulation Output

Fig. B.6: The simulated functions include realizations of the sum of uniform and
exponential behavior.
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B.7 Sum of Gaussian, Exponential and Uniform Random

Variables Simulation Output

Fig. B.7: The simulated functions include realizations of the sum of uniform and
exponential and gaussian behavior.
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C.1 DeJong’s First Function in N Dimensions with Stochastic

Behavior

Fig. C.1: The results of MMRDP using Dejong’s first function show the tradeoff
between bias and variance when arriving at the robust solution.
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C.2 Rosenbrock’s Valley in N Dimensions with Stochastic

Behavior

Fig. C.2: The results of MMRDP using Rosenbrock’s valley function show the
tradeoff between bias and variance when arriving ar the robust solution.
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C.3 Rastrigin’s Function in N Dimensions with Stochastic

Behavior

Fig. C.3: The results of MMRDP using Rastringen’s function show the tradeoff
between bias and variance when arriving ar the robust solution.
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C.4 Schwefel’s Function in N Dimensions with Stochastic

Behavior

Fig. C.4: The results of MMRDP using Schwefel’s function show the tradeoff be-
tween bias and variance when arriving ar the robust solution.
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D. INFRASTRUCTURE IMPACT ASSESSMENT

Compiled by: Derrick Hui, Tom Warner, Christopher Marsh, Lawrence Bowl-

ing, and Caleb Erikson, Department of Systems & Information Engineering,

University of Virginia. [95]
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D.1 Infrastructure Impact Analysis: Transportation

“The direct effect of transport infrastructure investment is to im-

prove travel conditions for its users. Users’ behavior will thus

change, with wider impacts on the network. There could be fur-

ther impacts, including accessibility, level and location of employ-

ment and increased efficiency, that will contribute to the regener-

ation of a region. The externalities generated by the investment

in transport infrastructure also need to be recognized. [149] ”

Direct User Benefits:

• Decreased travel time

• Regarded as the largest direct economic benefit of transportation in-

frastructure

• Decreased vehicle operating costs

• Increased vehicle safety

Wider Effects:

• Improves reliability and quality of transport services

• Induces trade



D. Infrastructure Impact Assessment 197

Socioeconomic Effects:

Accessibility

Cause:

Reduced travel time, Increased potential to travel

Metric:

Quantity of economic or social activity reachable by transport system

Effect:

Increase in the market size for manufacturing and/or labor, Increased com-

petition and/or centralization

Employment

Cause:

Jobs created for construction, operation, and maintenance of the transporta-

tion system

Metric:

Direct employment for system, Indirect employment on complimentary projects

Efficiency

Cause:

Time and cost savings for industry or business

Improved reliability

Metric:

Profitability of affected business
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Effect:

Productivity gains due to increased production and distribution, Economic

growth

Afghanistan Impact

”Now my children can walk safely and easily to school. The cars

move faster and the drive is smoother. Now it’s much easier for

me to take my fruit and vegetables to the market. This paved

road is very good“

- Sultan Mohammad. [150]

Previous Afghan Effects:

U.S. Agency of International Development

The construction of 1,000 kilometers of rural road:

Increased access to

• Clinics

• Hospitals

• Schools

• Markets
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• Greater opportunity for farmers to move their products to market

• Employed over 2,000 Afghan construction personnel

Insurgency Impact:

“In the northwest of the country, which is not an epicenter of the

insurgency, bandits have seized control of the roads and routinely

rob travelers. In Badghis province, despite millions of dollars in

development, the roads remain unfinished and the Taliban have

successfully used opposition to them as propaganda.”. [151]

The insurgency have been shown to use roads in the following ways:

• Lay siege to villages

• Capture entire districts

• Attack road construction crews

• Execute complex ambushes against coalition forces
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D.2 Infrastructure Impact Analysis: Water

Direct Effects:

• Reliable and easily accessible water supply

• Fewer waterbourne disease

• Metrics: life expectancy, disease rate, cost

Wider effects:

• System must be maintained

• Lower groundwater table and possible contamination at treatment plant

site

• Soil erosion and compaction near site

Socioeconomic impact:

Increased economic activity in areas with water supplies

Cause: increased worker productivity and increased trade to region

Effect: increased standard of living

Metric: annual salary, GDP per capita of area, unemployment rate

Jobs created by workers to maintain and operate system
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Afghanistan Impact:

17% of rural population have access to improved water source.

34% of urban population have access to improved water source.

Much of Afghanistan is without water sanitation, however the Afghani’s must

use the water source for it to be an effective source of preventing disease and

stimulating the economic growth. Many Afghani’s may not be able to pay for

the use of water to their private homes. The government may need to consider

subsidizing the installments of water spouts in populated areas. [152–154]
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D.3 Infrastructure Impact Analysis: Power

Direct Effects:

• Provide electricity

• Improved irrigation systems

• Better education

• Computers, lighting, etc

• Advances for medical centers

• Refrigeration for drugs, sophisticated medical technology

Wider Effects:

• Reinforces Afghan governance capability

• Sense of ownership by local population

• Encourages capital flow with neighboring countries (Uzbekistan, Tajik-

istan, Turkmenistan)

• Export or import of power, power purchase agreements

Socioeconomic Effects:
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• Improved Productivity

• Increased with ability to work at night

• Increased crop yields due to larger acreage

• Increased economic output with reliable power supply

• Employment

• Civil work

• Mechanical work

• Electrical work

• Change in quality of life

• Better care at medical centers

• More advanced care

• Better access to food

Adverse health effects:

• Introduction of certain types of power plants (e.g. coal) produce air-

borne pollution

• Privatization
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• Opportunity for entrepreneurs

Power in Afghanistan

“Afghanistan, due to the terrain and widely scattered nature of

the rural population, presents huge challenges to standard grid

based electrification outside of the major cities. By emphasiz-

ing distributed, local power generation Afghanistan can poten-

tially provide a model of power supply development in which

distributed power generation on the periphery rapidly meets the

immediate power needs of the population before the full grid ex-

pands from the country center (Kabul) out.”. [155]

The Afghan National Development Strategy deems power the top priority

for the country. [156]
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D.4 Infrastructure Impact Analysis: Sanitation

“Evidence suggests that exogenous problems can have a substan-

tial impact on human health. Unsafe water supply, sanitation,

and hygiene are responsible for 3% of all deaths and 4.4% of all

years of life lost (YLL). But the poorest developing countries are

the worst affected; 9% of these deaths occur in nonOECD coun-

tries and 90% of those dying are children.” [157]

Direct User Benefits:

• Removal of waste water

• Reducing risk of floods

• Diverting excess runoff from precipitation or adverse weather

• Purifying water for reintroduction into system

• Removal of standing water

• Reduced risk of groundwater contamination

Wider Effects:

• System maintenance

• Decreased pollution of water sources
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• Improves level of governance by introducing increased government over-

sight (regulations and stipulations)

Socioeconomic Effects:

Employment

Cause: Construction and upkeep of waste treatment plants, necessary gov-

ernment oversight

Effect: Increase in number employed

Metric: Employment rate

Increased Quality of Life

Cause: Effective transport of waste away from populated areas and clean

water sources, provision of latrines

Effect: Reduced occurrence of waste-borne illnesses

Metric: Number of people that have contracted a waste-borne pathogen per

1000 people, occurrence of disease-causing microorganisms in water supply

Benefit to Agriculture

Cause: Treatment of animal waste

Effect: Decomposition of waste to fertilizer

Metric: Tons of fertilizer produced domestically

Risk of contamination of current water sources

Cause: Effective transport and treatment of waste
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Effect: Reduced risk of waste-water contaminating wells and aquifers

Metric: Particulate matter in well water (parts per million)

Previous Afghan Effects: UNICEF launched a relief program in Afghanistan

in 2000 with financial assistance from USAID and the government of Den-

mark. To prevent epidemics of cholera and diarrhea:

• Constructed and rehabilitated wells and latrines

• Installed handpumps

• Trucked water to villages

By the end of 2000, UNICEF had provided water and sanitation services

to 300,000 people in over 500 villages.

Insurgency Impact:

Improvements to sanitation by the Afghani government and by foreign aid are

at risk of being compromised, as the Taliban and other insurgent forces are

concurrently providing them. This can serve to delegitimize the Afghan gov-

ernment, and allows the insurgency to curtail services to vulnerable groups.

[153]
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D.5 Infrastructure Impact Analysis: Social Services

Agriculture:

Direct User Benefits:

Increased, consistent availability of food

Wider Effects:

• More taxable goods

• Potential for overfarming and depriving soil of nutrients.

• Irrigation with unclean water poses health risks

Socioeconomic Effects:

Increased economic activity due to inter-country trade

Cause: Improved farming techniques, larger diversity of crops

Effect: Increased crop output

Metric: Increase in agricultural domestic product

Education

Direct User Benefits:

• Improved literacy rate

• Greater chance at landing a high-paying job
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• Good education increases employability, either domestically or with a

foreign company

Wider Effects:

• Larger job market (both for applicants and type of jobs)

• Higher education can lead to growth in white-collar service sector

• More people qualified for technical jobs

• Proxy for health education

Socioeconomic Effects:

• Increased intellectual capital

• Improved health

Direct User Benefits:

• Provision of emergency care

• Disease treatment and prevention of epidemics

Wider Effects:

Health education
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Socioeconomic Effects:

Improved quality of life

Cause: Increased access to health practitioners, improved awareness of dis-

eases

Effect: Lower incidence of disease

Metric: Infant mortality rate, immunization rate, life expectancy

Limitations:Inability to provide consistent emergency care at locations other

than hospitals

Clinics and offices may not be able to perform the needed level of care.

Range of health system coverage limited by transportation of a particular

region. [153]
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E.1 Basic RSM Script with Robust Regression Features

f

#RSM bas i c Dua l Response te s t funct ions #v loop centered mean .R

#25FEb13

#TeagueEB

#bas i c RSM with opt imiza t i on f o r Dual Response

# c a l c u l a t e s random s t a r t po in t s and a l l ows f o r func t i on s e l e c t i o n

#looks at data as a data frame and uses 4 models f o r f i t

# i t a l s o i n c l u d e s and automatic DOE genera tor

#1s t order

#1s t order with 2 way i n t e r a c t i o n s

#2d order

#2d order with 2 way i n t e r a c t i o n s

#looks at va lue s

#Tests f o r normalcy in r e sponse s and r e s i d u a l s

#determine i f robust modeling i s nece s sa ry

#robust r e g r e s s i o n ( assume nongauss ian behavior )

#Perform b e t t e r than OLS when the OLS assumptions are not s a t i s f i e d .

#uses co s t c o n s t r a i n t

#max cos t i s 13775

#uses f a c t o r c o n s t r a i n t s

#uses f t e s t ( anova with main e f f e c t s model vs i n t e r a c t i o n or

#2d order model ) f o r curve t e s t

#t e s t f o r curve us ing anova ( f t e s t )

# i n c l u d e s s imu la t i on

# 1) S e l e c t a s t a r t i n g po int

# 2) Explore I /0 behavior in the neighborhood o f SP

#use a 1 s r t order polynomial ( I n t e r c e p t and main e f f e c t s only )

#Res IV des ign

#3) Choose s t e e p e s t descent / ascent path based o f f o f the va lue s f o r Beta
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#4) Run t e s t s on path u n t i l path does not improve

#5) t e s t f o r curvature

# i f curvature e x i s t s , s t ep 6 e l s e s tep 1

# cons id e r 3d order as nes sary to avoid a s s e s s i n g an i n f l e c t i o n

#point as a min or max

#6)In neighborhood o f optimum desg in run and f i t LSE o f 2d order des ign

#Use s t a r des ign

#Use func t i on from e x c e l shee t f o r the s imu la t i on and as the unk

##############

#l i b r a r y c a l l s

l i b r a r y (MASS) # f o r glm and c o n f i n t and t e s t s f o r normal i ty

l i b r a r y ( boot )

l i b r a r y (”arm”)

l i b r a r y ( lme4 )

l i b r a r y ( s t a t s ) # f o r anova ( f t e s t ) and shap i ro t e s t

l i b r a r y ( car ) # f o r QQ & r e s i d u a l p l o t s & curvature t e s t ( res idCurvTest )

l i b r a r y ( survey )

l i b r a r y ( aod ) # f o r the wald t e s t

l i b r a r y ( micEcon ) # f o r RSquared fcn

l i b r a r y ( pp l s ) # f o r normal ize . vec to r

l i b r a r y ( a l r 3 ) # f o r r e s i d u a l p l o t s and curvature t e s t

l i b r a r y ( robustbase ) # f o r M es t imat ion lmrob r e g r e s s i o n

l i b r a r y ( memisc ) # f o r ca s e s func t i on

l i b r a r y ( quantmod ) # f o r getSymbol

l i b r a r y ( FrF2 ) # f o r DOE matr i ce s

l i b r a r y ( lmtes t ) # f o r l i k e l i h o o d r a t i o t e s t o f nested models

l i b r a r y ( rsm ) # used f o r psa PSI

l i b r a r y ( combinat ) # f o r combinations and permutation

l i b r a r y ( earth)# f o r mars

l i b r a r y ( s c a t t e r p l o t 3 d ) # f o r 3d p l o t s

l i b r a r y ( g p l o t s ) # f o r f i l l e d contour p l o t s
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l i b r a r y ( akima ) # f o r i n t e r p o l a t i o n

#c l e a r s c r e en c n t l l

#point to d i r

setwd (”C: / Users / Administrator /Documents/UVA JUL10−JUN13/ cour s e s / D i s s e r t a t i o n / Defense /R Code/ Test Funct ions ”)

#setwd (”˜/UVA JUL10−JUN13/ cour s e s / D i s s e r t a t i o n / Defense /R Code/ Test Funct ions ”)

work di r <− ”C: / Users / Administrator /Documents/UVA JUL10−JUN13/ cour s e s / D i s s e r t a t i o n / Defense /R Code/ Test Funct ions ”

f u n c d i r <− paste ( work dir , ”/ R Cal l Funct ions /” , sep = ””)

opt im work dir <− paste ( work dir , ”/R Call OPTIM FILES /” , sep = ””)

#############################################################################################################

#source Functions

##############################################################################################################

######## reads in l e v e l s f o r f a c t o r s

source ( paste ( func d i r , ”CCD FRAME. r ” , sep = ””))

#########################F t e s t to check f o r curvature

source ( paste ( func d i r , ”CURVE CHECK f . r ” , sep = ””))

####reads in the DOE frame from a premade text f i l e

source ( paste ( func d i r , ”DOE FRAME. r ” , sep = ””))

######## reads in l e v e l s f o r f a c t o r s

source ( paste ( func d i r , ”DOE LEVELS f . r ” , sep = ””))

######a p p l i e s approprate s tep s i z e s to each column in the DOE

source ( paste ( func d i r , ”DOE STEP f . r ” , sep = ””))
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##################Check a po int to see i f i t ’ s with in l i m i t s an then c o r r e c t i t

source ( paste ( func d i r , ”FACTOR CHECKPOINT. r ” , sep = ””))

##################Check a po int to see i f i t ’ s with in l i m i t s an then c o r r e c t i t

source ( paste ( func d i r , ”FACTOR CHECKDF f. r ” , sep = ””))

##################Create R e p l i c a t e s o f the func t i on ( t h i s i s done in s t ead o f a s imu la t i on )

source ( paste ( func d i r , ”GEN REPLICATES f . r ” , sep = ””))

#####a p p l i e s s t a r t po in t s to DOE Frame

source ( paste ( func d i r , ”NEW START. r ” , sep = ””))

#########t e s t r e s i d u a l s f o r normal i ty and p l o t s them

source ( paste ( func d i r , ”NORM TEST. r ” , sep = ””))

#########################c r e a t e a matrix where the columns are normal ized

source ( paste ( func d i r , ”NORMMATRIX.R” , sep = ””))

#########################c r e a t e a matrix where the columns are normal ized based on another matrix

source ( paste ( func d i r , ”NORMMATRIX f.R” , sep = ””))

#######undoes norma l i za t i on o f exper imenta l va lue s

source ( paste ( func d i r , ”UN NORMAL. r ” , sep = ””))

#######undoes norma l i za t i on o f exper imenta l va lue s that have been centered

source ( paste ( func d i r , ”UN NORMAL and center . r ” , sep = ””))

####### c r e a t e s norma l i za t i on o f exper imenta l va lue s a f t e r c e n t e r i n g them us ing the same matrix as a base

source ( paste ( func d i r , ”NORMMATRIX and center . r ” , sep = ””))

####### c r e a t e s norma l i za t i on o f exper imenta l va lue s a f t e r c e n t e r i n g them us ing another matrix as a base

source ( paste ( func d i r , ”NORMMATRIX f and center . r ” , sep = ””))

#######Generates an expr e s s i on based on s e l e c t i o n and produces the exp r e s s i on c h a r a c t e r i s t i c s

source ( paste ( func d i r , ”GEN EXPRESSION. r ” , sep = ””))
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#######Generates an expr e s s i on in n dimensions and r e p o r t s to GEN EXPRESSION. r

source ( paste ( func d i r , ”EXPRESSION DIM. r ” , sep = ””))

#######Generates a value as a part o f a po int

source ( paste ( func d i r , ”GEN START POINT. r ” , sep = ””))

#######Generates a s t a r t po int in n space po int

source ( paste ( func d i r , ”GEN START VECT. r ” , sep = ””))

#######Generates the CCD p i e c e o f the DOE

source ( paste ( func d i r , ”GEN CCD f . r ” , sep = ””))

#######Generates the main p i e c e o f the DOE

source ( paste ( func d i r , ”GEN DOE f . r ” , sep = ””))

#######Generates va lue s f o r environmental f a c t o r s

source ( paste ( func d i r , ”GEN ENV f . r ” , sep = ””))

#######Generates in fo rmat ion about s t a t i o n a r y po in t s

source ( paste ( func d i r , ”EIGENVALS FROM B. r ” , sep = ””))

#######w r i t e s exp r e s s i on in to a gms f i l e f o r opt imiza t i on

source ( paste ( func d i r , ”GEN GAMS SCRIPTv4 generic . r ” , sep = ””))

#######determines Hyper−E l l i s o i d s u r f a c e area v ia es t imate

source ( paste ( func d i r , ”H E APPROX f . r ” , sep = ””))

############################### f o r H E APPROX f . r######

source ( paste ( func d i r , ”D FACT f . r ” , sep = ””))

#********************************************************************************

#begin s c r i p t i n g
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##*******************************************************************************

#Step 1

#Function , Dimension , Rep l i ca t ion , & Min or Max & Ful l F a c t o r i a l Main E f f e c t s DOE with CCD Generation

######################################################################################################################################

######################################################################################################################################

#s e l e c t a func t i on from a l i s t o f f u n c t i o n s

func number = 1 # there are 7

# 1 − Dejong ’ s f i r s t f unc t i on in n dimensions

# 2 − Rosenbrock ’ s v a l l e y in n dimensions

# 3 − Ratr ingin ’ s func t i on in n dimensions

# 4 − Schwefel ’ s f unc t i on in n dimension

# 5 − parabola with a min o f ze ro

# 6 − parabola with a max o f ze ro

# 7 − l i n e a r func t i on

#s e l e c t the c o r r s c t i n f o f i l e on the v a r i a b l e s f o r the func t i on

c h a r i n f o = paste (” varchar ” , func number , ” . txt ” , sep = ””)

va r sou r c e <− c h a r i n f o #g i v e s i n f o on a l l v a r i a b l e s and s t ep s f o r f u n c t i o n s

t o t v a r <− 4 #t o t a l number o f v a r i a b l e s ( dimensions )

t o t e v a r s <− 3 # number o f environmental v a r i a b l e s

#t o t c v a r s <− # of c o n t r o l v a r i a b l e s

#number o f r e p l i c a t i o n s per des ign po int

reps <− 30 #must be > 2

#I n i t i a l i z e loop counter

PSI loop <− 1

# max number o f s t ep s taken
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p max = 50 #This can be adjusted should i t be dynamic?

#c r e a t e a l i s t with i n f o on the environmental v a r i a b l e s

#1 i s norm , 2 i s exp , 3 i s uniform

e chars<− matrix ( nrow = 3 , nco l = to t eva r s , byrow = FALSE)

e c ha r s [ , 1 ] <− c (1 , 0 , 2) #c (2 , 50 , 1) # #c (3 , −2, 2) #

# normal random v a r i a b l e ( type , mean , sd ) mean o f 0

e c ha r s [ , 2 ] <− c (2 , 50 , 1) #c (3 , −2, 2) #

# exp random v a r i a b l e ( type , rate , i gno r e ) smal l mean

e c ha r s [ , 3 ] <− c (3 , −2, 2)

# uniform random v a r i a b l e ( type , min , max)mean o f ze ro

#c r e a t e a vec to r o f the means f o r a l l RV

e mean <− seq (0 , l ength . out = t o t e v a r s )

f o r ( c in 1 : t o t e v a r s ) {

i f ( e c ha r s [ 1 , c ] != 3)

{e mean [ c ] <− e c ha r s [ 2 , c ] } e l s e

{e mean [ c ] <− ( e c ha r s [ 3 , c ]− e c ha r s [ 2 , c ] ) /2}

}

e sd <− seq (0 , l ength . out = t o t e v a r s )

f o r ( c in 1 : t o t e v a r s ) {

i f ( e c ha r s [ 1 , c ] != 3)

{ e sd [ c ] <− e c ha r s [ 1 , c ] } e l s e

{e mean [ c ] <− ( e c ha r s [ 2 , c ]− e c ha r s [ 1 , c ] ) /2}

}

#c r e a t e i n i t i a l va lue s f o r the evi ronmenta l v a r i a b l e s

env va l s <− GEN ENV f . r ( to t var , t o t eva r s , e c ha r s )

# 1 − Dejong ’ s f i r s t f unc t i on in n dimensions

# 2 − Rosenbrock ’ s v a l l e y in n dimensions

# 3 − Ratr ingin ’ s func t i on in n dimensions

# 4 − Schwefel ’ s f unc t i on in n dimension
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#problem type minimze = true i s minimize

minimize = TRUE

# could j u s t f l i p re sponse ra the r than a bunch o f i f / than statements

#RSM Search improving boolean ho lder v a r i a b l e

improving = TRUE

#l i n e a r i t y boolean

b o o l i n e a r = TRUE

#l e v e l o f conf

alpha <− . 001

#how many i t e r a t i o n s o f exper imentat ion have you done

#an i t e r a t i o n i s e i t h e r running a DOE with a model

#output or c r e a t i n g a route the g e t t i n g those va lue s

loop count <− 1

#c r e a t e a f u l l f a c t o r i a l main e f f e c t s DOE of appropr ia t e s i z e

ba s i c .DOE <− GEN DOE f . r ( t o t v a r )

#modify CCD f o r with alpha

a<− 2ˆ(1/2)

#load f a c t o r min , max , and s t ep s

f a c t o r . l e v e l s <− DOE LEVELS f . r ( va r sou r c e )

#varsource may have ho lde r s beyond the cur rent number o f dimensions

f a c t o r . l e v e l s <− f a c t o r . l e v e l s [ , 1 : t o t v a r ]

# get f a c t o r . l e v e l s to the r i g h t number o f columns

#generate a f i r s t order f u l l f a c t o r i a l des ign CCD

CCD.DOE <− GEN CCD f . r ( t o t v a r )

#c o l names in CCD.DOE = c o l names in ba s i c .DOE
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dimnames (CCD.DOE) [ [ 2 ] ] <− dimnames ( ba s i c .DOE) [ [ 2 ] ]

#combine CCD and DOE f o r 2d order models

ba s i c .DOE <− rbind ( ba s i c .DOE, a*CCD.DOE)

# ignore the warning ( not meaningful )

# j u s t use t h i s DOE from now on i t s s imp le r

#modify DOE step to r e f l e c t s tep f o r each f a c t o r

stepped .DOE <− DOE STEP f . r ( var source , ba s i c .DOE)

# produces frame that i s stepped c o r r e c t l y

#generate a s t a r t po int

s t a r t p o i n t <− GEN START VECT. r ( var source , to t var , f u n c d i r )

#updated des ign matrix

updated des ign <− NEW START. r ( s t a r t p o i n t , stepped .DOE)

#use only t o t v a r c o l s

#c l ean the exper imenta l matrix to avoid NA and − i n f

updated des ign [ i s . na ( updated des ign ) ] <− 0

#updated des ign [ i s . i n f i n i t e ( as . data . frame ( updated des ign ) ) ] <− 0

#add cente r po int

updated des ign <− rbind ( updated des ign , s t a r t p o i n t )

#check that the f a c t o r s are with in bounds

updated des ign <− FACTOR CHECKDF f. r ( f a c t o r . l e v e l s , updated des ign , t o t e v a r s )

#i n i t i a t e r e sponse s vec to r f o r s imu la t i on

r e sponse s <− matrix ( data = NA, nrow = ((2* t o t v a r ) +

(2ˆ t o t v a r )+1) , nco l = 1 , byrow = FALSE)

#generate a s e t o f env var and r e p l i c a t i o n s per DP

checky = 0

# checky i s a counter that he lp s run the loop i f r eps only = 1
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f o r ( checky in 1 : reps ) {

# begin c r e a t e r e p l i c a t i o n s

#i n s t a l l the random v a r i a b l e s f o r the e vars in the updated des ign

env va l s <− NULL

env va l s <− GEN ENV f . r ( to t var , t o t eva r s , e c ha r s )

#put in the random v a r i a b l e s f o r e v a r s

#gene ra t e s 2ˆ t o t v a r + 2* t o t v a r + 1

#rows per column f o r f u l l f a c t doe , ccd , and s t a r t po int

updated des ign [ , 1 : t o t e v a r s ] <− env va l s

# take the va lue s f o r the env var

i f ( checky > 1){ r e sponse s <−

cbind ( responses , GEN REPLICATES f . r ( as . matrix ( updated des ign ) , 1 , f unc d i r , func number ) )}

e l s e { r e sponse s <− GEN REPLICATES f . r ( as . matrix ( updated des ign ) , 1 , f unc d i r , func number )}

checky = checky+1} # end c r e a t e r e p l i c a t i o n s o f the r e sponse s

#c l ean the r e sponse s to avoid NA and INF

re sponse s [ i s . na ( r e sponse s ) ] <− 0

#re sponse s [ i s . i n f i n i t e ( r e sponse s ) ] <− 0

#i n i t i a l i z e the h i s t o r y o f bes t va lue s

Best V Track <− cbind ( updated des ign , r e sponse s [ , 1 ] )

#i n t i a l i z e the t r a c k e r and add a columns f o r the response

Best V Track [ Best V Track < 1000000000] <− 25000

# i n t i a l i z e the t r a c k e r va lue to 25000 f o r a l l spot s in dataframe

#f i x c o l names t h i s i s a way to change names

hold <− colnames ( Best V Track )

hold [ ( t o t v a r +1)] <− ”Response”

colnames ( Best V Track ) <− hold

# get i n t i a l po int on the t r a c k e r

B V Index <− 0 # i n t i a l i z e index in t rack with bes t va lue

Best V Track [ 1 , 1 : t o t v a r ] <− ( s t a r t p o i n t )

Best V Track [ 1 , ( t o t v a r +1)]<−

GEN SIM f . r ( Best V Track [ 1 , 1 : t o t v a r ] , 1 , f unc d i r , func number ) # i n t i a l r e sponse
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B V Index <− as . numeric ( dim ( Best V Track ) [ 1 ] )

#cur rent row o f bes t va lue and best s e t o f f a c t o r s

#make a column o f the best r e sponse s by row and generate ave response per row

#what to do i f non normal response , do you weight i t ?

t op r e spons e s <− matrix ( r e sponse s [ , 1 ] , nco l = 1)

#i n i t i a l z e the column as an nx1

top ave r e sp <− t op r e spons e s

# use to choose bes t us ing top average value ra the r than top value

r e sp va r <− t op ave r e sp

#ho lder f o r the var iance o f each s e t o f r e sponse s

f o r ( row cnt in 1 : dim ( re sponse s ) [ 1 ] ){# loop on rows

i f ( minimize == TRUE){ #begin look f o r min

top r e spons e s [ row cnt , 1 ] <− min( r e sponse s [ row cnt , ] )

t op ave r e sp [ row cnt , 1 ] <− ave ( r e sponse s [ row cnt , ] ) [ 1 ]

r e sp va r [ row cnt , 1 ] <− var ( r e sponse s [ row cnt , ] ) [ 1 ]

} e l s e {#begin look f o r max

top r e spons e s [ row cnt , 1 ] <− max( re sponse s [ row cnt , ] )

t op ave r e sp [ row cnt , 1 ] <− ave ( r e sponse s [ row cnt , ] ) [ 1 ]

r e sp va r [ row cnt , 1 ] <− var ( r e sponse s [ row cnt , ] ) [ 1 ] } }

#end e l s e loop on rows

#f i n d f i r s t t rue va lue s f o r the t r a c k e r depending on i f i t s a min or max problem

i f ( minimize == TRUE)

{Best <− which ( top ave r e sp == min ( top ave r e sp ) , a r r . ind = TRUE)} e l s e

#ge t s address o f bes t re sponse row f o r a min

{Best <− which ( top ave r e sp == max( top ave r e sp ) , a r r . ind = TRUE)}

#get s address o f bes t re sponse row

#use Best to l o c a t e and s e l e c t the f i r s t t rue value and the cor re spond ing n space l o c a t i o n

Best V Track [ 2 , 1 : t o t v a r ] <− ( updated des ign [ Best [ 1 ] , ] )

Best V Track [ 2 , t o t v a r + 1]<− ( min ( r e sponse s [ Best [ 1 ] , 1 : r eps ] ) )

Best V Track<− Best V Track [ 1 : 2 , ] # shr ink B V Track to 2 row to s t a r t

B V Index <− as . numeric ( dim ( Best V Track ) [ 1 ] )
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#update cur rent row o f bes t va lue and best s e t o f f a c t o r s

#update the matrix optimal va lue and i t s address

Bes t va l <−Best V Track [ B V Index , t o t v a r +1]

B e s t f a c t o r s <− Best V Track [ B V Index , 1 : t o t v a r ]

# re tu rn s va lue s o f f a c t o r s that gen the cur rent bes t va lue

#i n i t i a l i z e the o v e r a l l s u r f a c e a r ch ive

#s u r f a r c h i v e i s a l l o f the po in t s v i s i t e d and

#the reponses generated by DOE and the path o f improvement

#columns t o t v a r+1 to t o t v a r+reps are the reponses

s u r f a r c h i v e <− cbind ( updated des ign , responses , top re sponse s ,

top ave re sp , r e sp va r )

# in the fu tu r e do t h i s then rbind to s u r f a r c h i v e

#use best po int from Best V Track as a new s t a r t po int to begin the PSI

next po in t <− B e s t f a c t o r s

#Step 2

#Test ing f o r S t o c h a s i t c then Gaussian Random Behavior in re sponse then Conduct Regres s ion ( with in whi l e loop )

######################################################################################################################################

######################################################################################################################################

whi le ( improving == TRUE) { #begin f i r s t order model l oop ing f o r s t ep s 2 ,3 ,4 , 5 , 6

p r i n t ( paste (” s tep 2 , loop− ” , PSI loop ) )

NORM tru = NULL # i n i t i a l i z e marker f o r gauss ian behavior o f the re sponse

#t e s t f o r guass ian behavior

#r e p l i c a t e some re sponse s from the same s e t

#(best va lue b/c that i s the next s t a r t i n g po int )
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#generate a s e t o f r e p l i c a t i o n s per DP

test dummy <− seq (0 , l ength . out = 100) # response ho lder

#c r e a t e a matrix to hold the repeated s t a r t po int c o n t r o l v a r i a b l e s

c o n t r o l h o l d e r <− NULL

c o n t r o l h o l d e r <− matrix ( data = as . matrix ( next po in t [ ( t o t e v a r s +1)

: t o t v a r ] ) , nrow = 100 , nco l = ( tot var−t o t e v a r s ) , byrow = TRUE)

#c r e a t e i n s t a n c e s o f the env v a r i a b l e s

env va l s <− NULL #i n i t i a l i z e

env va l s <− GEN ENV f . r (10 , t o t eva r s , e c ha r s )#put in the random v a r i a b l e s f o r e v a r s

e v a r t e s t <− env va l s [ 1 : 1 0 0 , ] # take 100 rows o f the env vars

#bind i t a l l t og the r then r e p l i c a t e

e v a r t e s t <− cbind ( e v a r t e s t , c o n t r o l h o l d e r ) # take 100 rows o f the env vars

test dummy <− GEN REPLICATES f . r ( as . matrix ( e v a r t e s t ) , 1 , f unc d i r , func number )

# generate 100 r e p l i c a t e s

#t e s t f o r s t o c h a s t i c behavior

i f ( var ( as . numeric ( r e sponse s [ dim ( re sponse s ) [ 1 ] , ] ) > 0 ) )

{ pr in t (” S t o c h a s t i c Response Behavior i s Detected ”)}

NORM tru <− NORM TEST. r ( r e sponse s [ dim ( re sponse s ) [ 1 ] , ] , a lpha )

# i f t rue − gauss ian , i f f a l s e − nongauss ian

#Create a normal ized vec to r o f f a c t o r s us ing func t i on NORM matrix on the c o l s

fac tor s norm <− NORMMATRIX and center . r ( updated des ign )

f a c t o r s no r m rep s <− f ac tor s norm

# i n i t i a l i z e to he lp with r e g r e s s i o n t h i s turn the r e p l i c a t i o n s in to long columns

r e s p o n s e s r e p s <− as . matrix ( r e sponse s [ , 1 ] )

# i n t i a l i z e a new response column on the 1 s t c o l o f r e sponse s

r e s p o n s e v a r h o l d e r <− r e s p o n s e s r e p s #i n i t i a l i z e a ho lder f o r the var iance

r e s p o n s e v a r h o l d e r <− as . matrix ( nco l = 1 , apply ( responses , 1 , var ) )

# a s s i g n each row the var iance value o f the r e p l i c a t i o n at a po int
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#c r e a t e a l a r g e s e t o f f a c t o r s and 1 response to enable r e g r e s s i o n f o r a l l r e p l i c a t i o n s

f o r ( i ndex r ep s in 2 : reps ) { # begin loop

f a c t o r s no r m rep s <− rbind ( factors norm , f a c t o r s no r m rep s )

#length the normal ized f a c t o r rows by 1 r e p l i c a t i o n

r e s p o n s e s r e p s <− rbind ( r e spons e s r ep s , as . matrix ( r e sponse s [ , i ndex r ep s ] ) )

# lengthen the re sponse by 1 r e p l i c a t i o n

} # end loop

#change matrix to dataframe

factors norm reps DF <− data . frame ( f a c t o r s no r m rep s )

#ignore the warning

i f (NORM tru == TRUE) { # using OLS

#OLS l i n e a r r e g r e s s i o n only model

#main e f f e c t s model

p r i n t (” Using OLS Regres s ion ”)

model . 1 <− lm( formula = r e s p o n s e s r e p s ˜ . , data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # f i r s t order model

#model with j u s t i n t e r a c t i o n s

model . 1 i n t <− lm( formula = r e s p o n s e s r e p s ˜ . ˆ 2 , data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # f i r s t order model with 2 way i n t e r a c t i o n s

#model with 2d order r e l a t i o n s h i p

model . 2 <− lm( formula = r e s p o n s e s r e p s ˜ I ( factors norm reps DF ˆ2) ,

data = factors norm reps DF ) #2d order model

#model with i n t e r a c t i o n s and squared va lue s

model . 2 int<− lm( formula = r e s p o n s e s r e p s ˜ .ˆ2 + I ( factors norm reps DF ˆ2) ,

data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # 2d order model with 2 way i n t e r a c t i o n s

} e l s e { # use WLS f o r robust r e g r e s s i o n s #lmrob not working , us ing lmrob in s t ead

pr in t (” Using Robust Regres s ion Techniques ”)

#main e f f e c t s model

model . 1 <− lmrob ( formula = r e s p o n s e s r e p s ˜ . ,
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data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # f i r s t order model

#model with j u s t i n t e r a c t i o n s

model . 1 i n t <− lmrob ( formula = r e s p o n s e s r e p s ˜ . ˆ 2 ,

data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # f i r s t order model with 2 way i n t e r a c t i o n s

#model with 2d order r e l a t i o n s h i p

model . 2 <− lmrob ( formula = r e s p o n s e s r e p s ˜ I ( factors norm reps DF ˆ2) ,

data = factors norm reps DF ) #2d order model

#model with i n t e r a c t i o n s and squared va lue s

model . 2 int<− lmrob ( formula = r e s p o n s e s r e p s ˜ .ˆ2 + I ( factors norm reps DF ˆ2) ,

data = factors norm reps DF )

#uses normal ized f a c t o r va lue s # 2d order model with 2 way i n t e r a c t i o n s

}# end e l s e f o r types o f r e g r e s s s i o n (OLS vs WLS)

#} #end whi le loop to ensure r e g r e s s i o n s are completed

#Create a l i s t ( reg model ) f o r 1 , 1 int , 2 , 2 i n t

#i t w i l l hold models f o r OLS or WLS depending on norm tru

reg model <− l i s t ( one = model . 1 , o n e i n t = model . 1 int ,

two = model . 2 , two int = model . 2 i n t )

#to get var cov matrix

#vcov ( lm . ob j e c t )

#Step 3

#S t a t i s t i c a l Model S e l e c t i o n ( with in whi l e loop )

######################################################################################################################################

######################################################################################################################################

pr in t ( paste (” s tep 3 , loop− ” , PSI loop ) )

b o o l i n e a r = NULL #i n t i a l i z e

#t e s t f o r b e t t e r f i t ME vs ME and i n t e r a c t i o n s model
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b o o l i n e a r <− CURVE CHECK f . r ( reg model$one ,

reg model$two int , alpha , NORM tru)

# l i n e a r ve r sus 2d order with i n t e r a c t i o n s

#true means that the re i s l i t t l e d i f f e r n c e between the models

#so use the s imp le r one , IE the main e f f e c t s model

#i f f a l s e − f i t 2d order model and opt imize

#i f t rue − s t i c k with l i n e a r model and f i n d a path o f s t e e p e s t

# ascent / descent and cont inue

#f o r c e a l i n e a r loop #b o o l i n e a r == TRUE

i f ( b o o l i n e a r == FALSE) { # begin IF − l i n e a r model i s i nappropr i a t e

#use reg mode l$ two int f o r p r e d i c t i o n

p r i n t (” t e s t con f i rms a b e t t e r f i t from the 2d order model ”)

p r i n t (” procede to opt imiza t i on ”)

improving = FALSE

#k i ck s out o f the loop Do you have to put a break here ?

break # stops whi l e improving loop

} e l s e { #begin i f l i n e a r model IS appropr ia te ( b o o l i n e a r i s t rue )

#use reg model$one f o r p r e d i c t i o n

#Step 4

#Path o f S teepe s t improvement ( PSI ) ( with in whi l e loop )

######################################################################################################################################

######################################################################################################################################

pr in t ( paste (” s tep 4 , loop− ” , PSI loop ) )

#r e s e t normal ized route

Route <− NULL

#r e s e t r e sponse s

r e sponse s = NULL

e s t r e s p o n s e s = NULL
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#normal ize the vec to r a f t e r you drop the i n t e r c e p t

PSI <− NULL

PSI <− r e g m o d e l $ o n e i n t $ c o e f f i c i e n t s

PSI <− PSI [−1] # take away the f i r s t column ( the i n t e r c e p t )

#modify the PSI so the s t ep s are only in the d i r e c t i o n o f the c o n t r o l v a r i a b l e s

#i n c l u d e s zero out s t ep s in the env d i r

PSI [ 1 : t o t e v a r s ]<− seq (0 , 0 , l ength = t o t e v a r s )

#vecto r o f 0 s o f l ength t o t e n v a r s

############################

#Normalize the PSI

norm PSI <− normal ize . vec to r ( PSI [ 1 : t o t v a r ] )

#t h i s i s your s tep s i z e a long and you only do i t f o r the main e f f e c t s ( t o t v a r )

#your should procede with l a r g e r one f i r s t from PSI

step PSI <− norm PSI/max( abs ( norm PSI ) )

# t h i s i s your adjusted step s i z e i t ’ s normal ized so take the l a r g e s t s tep in the d i r o f g r e a t e s t improvement

#determine d i r e c t i o n o f g rad i en t from step PSI us ing cur rent bes t po int and step PSI

#you don ’ t need to use the ave r e sponse s here

Best = NULL

i f ( minimize == TRUE)

{Best <− which ( r e s p o n s e s r e p s == min ( r e s p o n s e s r e p s ) , a r r . ind = TRUE)} e l s e

#ge t s address o f bes t re sponse row f o r a min

{Best <− which ( r e s p o n s e s r e p s == max( r e s p o n s e s r e p s ) , a r r . ind = TRUE)}

#get s address o f bes t re sponse row

n pts <− p r e d i c t ( reg model$one , as . data . frame ( rbind ( factors norm reps DF [ Best [ 1 ] , ] ,

f actors norm reps DF [ Best [ 1 ] , ] + step PSI ) ) ) #f i n d f i r s t 2 po in t s

change <− n pts [ 2 ] − n pts [ 1 ] #t h i s i s the d i f f e r e n c e between the s t a r t and next s tep

#ensure that you step in the r i g h t d i r e c t i o n i f i t s a min or max problem
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i f ( minimize == TRUE) {#min problem so go in a negat ive d i r

i f ( change > 0) { s tep PSI = −s tep PSI }} #end i f

i f ( minimize == FALSE) {#max problem so go in a p o s i t i v e d i r

i f ( change < 0) { s tep PSI = −s tep PSI }} #end i f

#Create the path to the new spot

Route <− factors norm reps DF [ 1 : p max , ]

# use r e g r e s s i o n b a s i s data frame with c o r r e c t number o f rows

Route [ 1 , ] <− factors norm reps DF [ Best [ 1 ] , ]

#normal ized s t a r t po int i s the best po int thus f a r

dummy holder <− Route [ 1 , ] # f o r the loop to bu i ld the route

# the po in t s a long the s tep w i l l be f o r e s t imate s

#o f the response t h e s e s are normal ized

f o r ( p count in 1 : p max−1) {#begin path c r e a t i o n loop

Route [ p count +1 ,] <− dummy holder + ( p count * s tep PSI )

} # end path c r e a t i o n loop

#decode the normal ized route back to input r e g u l a r

#value l e v e l s and check bounds us ing updated des ign

Route regu la r <− Route # s e t s i z e and shape

Route regu la r [ Route regu la r > −10000000000] <− NA

# r e s e t va lue s

#use updated des ign to recode route in to r o u t e r e g u l a r

Route regu la r <− UN NORMAL and center . r ( as . matrix ( Route ) ,

as . matrix ( updated des ign ) , t o t v a r )

Route regu la r <− FACTOR CHECKDF f. r ( f a c t o r . l e v e l s ,

Route regular , t o t e v a r s )

#check va lues f o r f e a s i b i l i t y and c o r r e c t s them

Route regu la r <− as . data . frame ( Route regu la r )

#Generate observed and est imated re sponse s f o r the path ( route )
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r t c n t = 0 # r t c n t i s a counter that he lp s run the loop i f r eps only = 1

f o r ( r t c n t in 1 : reps ) {# begin c r e a t e r e p l i c a t i o n s loop

#i n s t a l l the random v a r i a b l e s f o r the e vars in the updated des ign

env va l s <− NULL

env va l s <− GEN ENV f . r ( to t var , t o t eva r s , e c ha r s )

#put in the random v a r i a b l e s f o r e v a r s

#CORRECT THE LENGTH OF THE ENV−VALS ROWS

Route regu la r [ , 1 : t o t e v a r s ] <− env va l s [ 1 : dim ( Route regu la r ) [ 1 ] , ]

# take the va lue s f o r the env var

#normal ize the Regular route us ing l a s t updated des ign va lue s

Route <− NORMMATRIX f and center . r ( Route regular , as . matrix ( updated des ign ) )

Route <− rbind ( factors norm reps DF , as . matrix ( Route ) )

#use t h i s form o f data to make p r e d i c t happy below

Route <− Route [ ( dim ( factors norm reps DF ) [ 1 ] + 1 ) :

( dim ( factors norm reps DF ) [1 ]+ p max ) , ]

#route i s now c o r r e c t rows and format IOT p r e d i c t

#c r e a t e an obse rvat i on and an es t imate

i f ( r t c n t > 1){ r e sponse s <− cbind ( responses ,

GEN REPLICATES f . r ( as . matrix ( Route regu la r ) , 1 , f unc d i r ,

func number ) ) #obse rvat i on

e s t r e s p o n s e s <− cbind ( e s t r e s p o n s e s , p r e d i c t ( reg model$one ,

Route ) ) #es t imat ion

} e l s e

{ r e sponse s <− GEN REPLICATES f . r ( as . matrix ( Route regu la r ) ,

1 , f unc d i r , func number )

# the e l s e i s to bu i ld the f i r s t column

e s t r e s p o n s e s <− p r e d i c t ( reg model$one , Route ) } #est imat ion

r t c n t = r t c n t +1}

# end c r e a t e r e p l i c a t i o n s o f the r e sponse s and est imated r e s p o s e s loop

#make a column o f the best r e sponse s by row and a column o f average

#f o r obs e rva t i on s and est imated re sponse s
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#i f not normal do i use a weighted average ? not sure

t op r e spons e s <− matrix ( r e sponse s [ , 1 ] , nco l = 1)

#i n i t i a l z e the column as an nx1

t o p e r e s p o n s e s <− matrix ( e s t r e s p o n s e s [ , 1 ] , nco l = 1) #same

top ave r e sp <− t op r e spons e s #same

t o p e a v e r e s p <− t o p e r e s p o n s e s #same

re sp e va r<− t o p e a v e r e s p #same

resp var<− r e s p e v a r #same

f o r ( row cnt in 1 : dim ( re sponse s ) [ 1 ] ){# loop on rows

i f ( minimize == TRUE){ #begin look f o r min

top r e spons e s [ row cnt , 1 ] <− min( r e sponse s [ row cnt , ] )

t o p e r e s p o n s e s [ row cnt , 1 ] <− min( e s t r e s p o n s e s [ row cnt , ] )

t op ave r e sp [ row cnt , 1 ] <− ave ( r e sponse s [ row cnt , ] ) [ 1 ]

#average obse rvat i on va lue s

t o p e a v e r e s p [ row cnt , 1 ] <− ave ( e s t r e s p o n s e s [ row cnt , ] ) [ 1 ]

#average es t imate va lue s

r e sp va r [ row cnt , 1 ] <− var ( r e sponse s [ row cnt , ] ) [ 1 ]

#f i n d var iance o f the re sponse

} e l s e { t op r e spons e s [ row cnt , 1 ] <− max( re sponse s [ row cnt , ] )

#begin look f o r max

t o p e r e s p o n s e s [ row cnt , 1 ] <− max( e s t r e s p o n s e s [ row cnt , ] )

t op ave r e sp [ row cnt , 1 ] <− ave ( r e sponse s [ row cnt , ] ) [ 1 ]

#average obse rvat i on va lue s

t o p e a v e r e s p [ row cnt , 1 ] <− ave ( e s t r e s p o n s e s [ row cnt , ] ) [ 1 ]

#average es t imate va lue s

r e s p e v a r [ row cnt , 1 ] <− var ( e s t r e s p o n s e s [ row cnt , ] ) [ 1 ] } }

#f i n d the var i ance o f the response

#end e l s e loop on rows

#Connect the r e p l i c a t i o n s with the route in r e g u l a r coo rd ina t e s

Route regu la r <− cbind ( Route regular , re sponses , top re sponse s ,

top ave re sp , r e sp va r ) # obse rva t i on s

Route <− cbind ( Route , e s t r e s p o n s e s , t op e r e spons e s ,
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t op e ave r e sp , r e s p e v a r )#es t imat i on s

# more a n a l y s i s between the two s e t s o f outcomes can be done here

# such as mean and var iance comparisons

#update the s u r f a c e a r ch ive us ing obs e rva t i on s only

s u r f a r c h i v e <− rbind ( s u r f a r c h i v e , Route regu la r )

#show a true p l o t o f the path o f improvement

p l o t ( c ( 1 : dim ( Route regu la r ) [ 1 ] ) , Route r egu la r$ top ave re sponse s ,

pch=”*” , xlab =’Path o f Improvement Steps ’ , y lab =’Response Value ’ ,

c o l = 20 , main = ” Basic RSM with Univar ia te Response : Path From Last Best Point ”)

l i n e s ( Route$ top e responses , pch=19, c o l = ” red ”)

#sd e = sd ( e s t r e s p o n s e s )/dim ( Route ) [ 1 ]

# c a l c u l a t i o n s o f standard e r r o r o f the es t imate # could do t h i s per obse rvat i on row as we l l and make a vec to r

#sd e = by row to do

#sd e = sd ( r e sponse s )/dim ( Route regu la r ) [ 1 ] # c a l c u l a t i o n s o f standard e r r o r o f the obse rvat i on

#Route error<−seq ( sd e , dim ( Route ) [ 1 ] * sd e , by=sd e ) # ignore the warning

#l i n e s ( Route$ top e re sponses + s q r t ( Route er ror ) ) #p lo t lower and upper standard e r r o r o f the es t imate

#l i n e s ( Route$ top e re sponses − s q r t ( Route er ror ) )

#Step 5

#Next Point S e l e c t i o n / F i r s t Order Model Stopping C r i t e r i a ( with in whi l e loop )

######################################################################################################################################

######################################################################################################################################

pr in t ( paste (” s tep 5 , loop− ” , PSI loop ) )

#use an i f to d i f f e r n e n t i a t e between a minimzation or a maximization problem

i f ( minimize == TRUE) { # i f i t i s a minimzation problem

i f (min ( Route r egu l a r$ t op ave r e sp ) >= Bes t va l ) {

#begin i t s a min and not improving

improving = FALSE# a way to get out o f the

#1s t order bus in e s s go back and do a 2d order from l a s t min
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pr in t ( paste (” After ” , PSI loop , ”paths ,

f i r s t order model y i e l d s no improvement on cur rent min ”) )

p r i n t (” Generating 2d order model ”)

#s c r i p t runs a DOE with CCD around the best po int

break

# ends the whi l e improving loop and moves on to 2d order model

} e l s e #i t s a min and improving

{minimum <− which ( Route regu la r ==

min( Route r egu l a r$ t op ave r e sp ) , a r r . ind = TRUE)

#get s address o f l owest average value

Row best <− minimum [ 1 ]

next po in t <− Route regu la r [ Row best , 1 : t o t v a r ]

# re tu rn s row o f bes t

Bes t va l <− Route r egu l a r$ t op ave r e sp [ Row best ]

#update new best va lue

p r i n t ( paste (” After ” , PSI loop ,

”paths , f i r s t order model y i e l d s improvement ”) )

#update the h i s t o r y o f bes t va lue s

adder <− NULL

adder <− Route regu la r [ Row best ,

c ( 1 : to t var , t o t v a r+reps +2)]

names ( adder ) <− names ( Best V Track )

Best V Track <− rbind ( Best V Track , adder )

}# end e l s e f o r max and improving

} e l s e { # begin e l s e i t s a maximization problem

#check to see i f the r e i s improvement along the path and where i s i t

i f (max( Route r egu l a r$ t op ave r e sp ) <=

Bes t va l ) { #i f not improving f o r a max

improving = FALSE

# a way to get out o f the 1 s t order bus in e s s go back and do a 2d order from l a s t min
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pr in t ( paste (” After ” , PSI loop ,

”paths , f i r s t order model y i e l d s no improvementon cur rent max”) )

p r i n t (” Generating 2d order model ”)

#s c r i p t runs a DOE with CCD around the best po int

break

# ends the whi l e improving loop and moves on to 2d order model

} e l s e

{maximum <− which ( Route regu la r ==

max( Route r egu l a r$ t op ave r e sp ) , a r r . ind = TRUE)

#get s address o f l owest va lue in c o l 3

Row best <− maximum [ 1 ]

next po in t <− Route [ Row best , 1 : t o t v a r ]

# re tu rn s row o f bes t

Bes t va l <− Route r egu l a r$ t op ave r e sp [ Row best ]

#update new best va lue

#update the h i s t o r y o f bes t va lue s

Best V Track <− rbind ( Best V Track ,

Route regu la r [ Row best , c ( 1 : to t var , t o t v a r+reps +2)])

}# end e l s e f o r max and improving

}# end e l s e f o r maximization problem

Best V Track <− as . data . frame ( Best V Track )

# coe r c e in to a dataframe

cat ( s p r i n t f (” f i r s t order model complete \n”) )

cat ( s p r i n t f (” f i r s t order l o c a l opt imal va lue i s %f \n ” ,

Best V Track$Response [ dim ( Best V Track ) [ 1 ] ] ) )

#p r i n t the best po int

# we have to be c u a r e f u l here about the environmental f a c t o r s

o count <− 0

f o r ( o count in 1 : ( dim( Best V Track ) [ 2 ] ) ) { #begin p r i n t loop

cat ( s p r i n t f (” Best average response %s l e v e l i s %f \n” ,

colnames ( Best V Track ) [ o count ] ,
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Best V Track [ dim( Best V Track ) [ 1 ] , o count ] ) )

cat ( s p r i n t f (”\n ”) )

} # end p r i n t loop

} #end e l s e − b o o l i n e a r i s TRUE ( l i n e a r model IS appropr ia t e )

#Step 6

#New Experiment and s t a r t po int f o r l i n e a r modeling ( with in whi l e loop )

######################################################################################################################################

######################################################################################################################################

pr in t ( paste (” s tep 6 , loop− ” , PSI loop ) )

# r e s e t f o r new va lue s

updated des ign <− NULL

#updated des ign matrix

updated des ign <− NEW START. r ( next po int ,

stepped .DOE) #use only t o t v a r c o l s

#c l ean the exper imenta l matrix to avoid NA and − i n f

updated des ign [ i s . na ( updated des ign ) ] <− 0

#updated des ign [ i s . i n f i n i t e ( as . data . frame ( updated des ign ) ) ] <− 0

#add cente r po int

updated des ign <− rbind ( updated des ign , next po in t )

#check that the f a c t o r s are with in bounds

updated des ign <−

FACTOR CHECKDF f. r ( f a c t o r . l e v e l s , updated des ign , t o t e v a r s )

#c l ean re sponse s vec to r f o r s imu la t i on

r e sponse s <− matrix ( data = NA, nrow =

((2* t o t v a r )+(2ˆ t o t v a r )+1) , nco l = 1 , byrow = FALSE)

#one column b/c o f the upcoming cbind
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#generate a s e t o f env var and r e p l i c a t i o n s per DP

checky = 0 # checky i s a counter that he lp s run the loop i f r eps only = 1

f o r ( checky in 1 : reps ) {# begin c r e a t e r e p l i c a t i o n s

#i n s t a l l the random v a r i a b l e s f o r the e vars in the updated des ign

env va l s <− NULL

env va l s <− GEN ENV f . r ( to t var , t o t eva r s , e c ha r s )

#put in the random v a r i a b l e s f o r e v a r s

#gene ra t e s 2ˆ t o t v a r + 2* t o t v a r +

#1 rows per column f o r f u l l f a c t doe , ccd , and s t a r t po int

updated des ign [ , 1 : t o t e v a r s ] <− env va l s

# take the va lue s f o r the env var

i f ( checky > 1){ r e sponse s <− cbind ( responses ,

GEN REPLICATES f . r ( as . matrix ( updated des ign ) , 1 ,

f unc d i r , func number ) )}

e l s e { r e sponse s <− GEN REPLICATES f . r ( as . matrix ( updated des ign ) , 1 , f unc d i r , func number )}

checky = checky+1}

# end c r e a t e r e p l i c a t i o n s o f the r e sponse s

i f ( PSI loop > 1000) { # too many i t e r a t i o n s

improving = FALSE

# a way to get out o f the 1 s t order bus in e s s go back and do a 2d order us ing CCD

break

cat ( s p r i n t f (” te rminat ing on loop e f f o r t %i \n ” , PSI loop ) )

cat ( s p r i n t f (” Local Optimal Value Reached i s %f \n ” , Bes t va l ) )

cat ( s p r i n t f (” \n ”) )

} # too many i t e r a t i o n s

# UPdate Counter f o r number o f t imes PSI i s c r ea ted and fo l l owed

PSI loop <− PSI loop+1

} # end whi le improving loop
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i f ( improving==FALSE){ pr in t (” no more improvements to be had ”)

} e l s e { pr in t (” s t i l l improving but b a i l e d ”)}

#Step 7

#2d order e x p l o r a t i o n

######################################################################################################################################

######################################################################################################################################

#examine f i r s t order des ign vs f i r s t o rderuse second order model from l a s t r e g r e s s i o n

##########################

#USE LAST REGRESSION RESULTS

b o o l i n e a r = NULL #r e i n t i a l i z e

#t e s t f o r b e t t e r f i t ME vs ME and i n t e r a c t i o n s model

b o o l i n e a r <− CURVE CHECK f . r ( reg mode l$one int ,

reg model$two int , alpha , NORM tru)

#true means that the re i s l i t t l e d i f f e r n c e between

#the models so use the s imp le r one , IE the main e f f e c t s model

#Step 8

#BIAS and VARIANCE COMPARISON

######################################################################################################################################

######################################################################################################################################

cat ( s p r i n t f (”Known Local Optimal Value Reached i s %f \n ” ,

Best V Track [ dim( Best V Track ) [ 1 ] , dim( Best V Track ) [ 2 ] ] ) )

cat ( s p r i n t f (”Known Local Optimal Point i s %f \n ” ,

Best V Track [ dim( Best V Track ) [ 1 ] , 1 : ( dim ( Best V Track ) [ 2 ] − 1 ) ] ) )

cat ( s p r i n t f (” \n ”) )

i f ( b o o l i n e a r == TRUE) # use the s imp le r model

{ f i n a l m o d e l = reg mode l$one int
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cat ( s p r i n t f (” Use F i r s t Order I n t e r a c t i o n Model ” ) ) } e l s e

{ # use the more complex model

cat ( s p r i n t f (” Use Second Order Model with I n t e r a c t i o n s ” ) )

f i n a l m o d e l = reg mode l$ two int

}

NMSEcrpred <− mean ( ( f i n a l m o d e l $ r e s i d u a l s )ˆ2)/

mean ( ( mean( r e s p o n s e s r e p s )− r e s p o n s e s r e p s )ˆ2)

p r i n t (”NMSE”)

p r i n t (NMSEcrpred )

p l o t ( c ( 1 : dim ( Best V Track ) [ 1 ] ) ,

Best V Track$Response , pch=”*” , xlab =’Points ’ ,

y lab =’Response Value ’ , c o l = 20 ,

main = ” Basic RSM: Improvement by I t e r a t i o n ”)

p l o t ( r e spons e s r ep s , f i n a l m o d e l$ r e s i d u a l s ,

pch=”*” , xlab =’True Values ’ , y lab =’ Res iduals ’ ,

c o l = 20 , main = ”RSM 2d Order Model Res idua l s vs Known”)

qqPlot ( f i n a l m o d e l$ r e s i d u a l s ,

main=”Basic RSM F i r s t Order I n t e r a c t i o n Model Res idua l Q−Q PLot ”)

## drawing the QQplot

summary( f i n a l m o d e l )

#Variance es t imate

e s t v a r = 0

f o r ( c in 1 : t o t v a r ){ e s t v a r = e s t v a r + as . numeric ( f i na l mode l$ cov [ c , c ] ) }

i f ( l ength ( e s t v a r ) == 0) { e s t v a r = 0}

i f ( e s t v a r == 0){ e s t v a r = (summary( f i n a l m o d e l ) $sigma )ˆ2}

#examine b ia s

Base Model= GEN EXPRESSION. r ( func number , to t var , f u n c d i r )#get the known model min

BIAS <− Base Model$opt − Bes t va l
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pr in t (” Variance ”)

p r i n t ( var ( ( r e sponse s ) [ 1 , ] ) )

p r i n t (” Estimate var iance ”)

p r i n t ( e s t v a r )

p r i n t (” Best Response ”)

p r i n t ( Best V Track$Response [ l ength ( Best V Track$Response ) ] )

p r i n t (” Bias ”)

p r i n t (BIAS)

p r i n t (”NMSE”)

p r i n t (NMSEcrpred )

#Step 9

#c r e a t e the second s u r f a c e ( var i ance )

######################################################################################################################################

######################################################################################################################################

#check f o r behavior type and recommend a type o f r e g r e s s i o n

NORM tru = NULL # i n i t i a l i z e marker f o r gauss ian behavior o f the re sponse

DOE length <− dim ( factors norm reps DF ) [ 1 ] / reps #how many reps to make IOT r e g r e s s the var iance

#t e s t f o r guass ian behavior

#r e p l i c a t e some re sponse s from the same s e t ( bes t va lue b/c that i s the next s t a r t i n g po int )

#generate a s e t o f r e p l i c a t i o n s per DP

#test dummy <− seq (0 , l ength . out = DOE length ) # response ho lder

#c r e a t e a matrix to hold the repeated s t a r t po int c o n t r o l v a r i a b l e s

c o n t r o l h o l d e r <− NULL

c o n t r o l h o l d e r <− matrix ( data = as . matrix ( B e s t f a c t o r s [ ( t o t e v a r s +1): t o t v a r ] ) ,

nrow = DOE length , nco l = ( tot var−t o t e v a r s ) , byrow = TRUE)

#c r e a t e i n s t a n c e s o f the env v a r i a b l e s

env va l s <− NULL #i n i t i a l i z e

env va l s <− GEN ENV f . r ( round ( s q r t ( DOE length ) ) ,

t o t eva r s , e c ha r s )#put in the random v a r i a b l e s f o r e v a r s
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e v a r t e s t <− env va l s [ 1 : DOE length , ] # take c o r r e c t number o f rows o f the env vars

#bind i t a l l t og the r then r e p l i c a t e

e v a r t e s t <− cbind ( e v a r t e s t , c o n t r o l h o l d e r )

NORM tru <− NORM TEST. r ( r e s p o n s e v a r h o l d e r [ dim( re sponse s ) [ 1 ] , ] ,

a lpha ) # i f t rue − gauss ian , i f f a l s e − nongauss ian

#c r e a t e a r e g r e s s i o n based on the var iance f o r the f i n a l model

ne c f a c rows <− factors norm reps DF [ 1 : DOE length , ]

#the nece s sa ry rows used o f the t o t a l o f factors norm reps DF

#holder f o r the var iance o f the model outcome at the above l e v e l s

NORM tru = TRUE #f o r now

i f (NORM tru == TRUE) { # using OLS

#OLS l i n e a r r e g r e s s i o n only model

#main e f f e c t s model

p r i n t (” Using OLS Regres s ion ”)

#model with j u s t i n t e r a c t i o n s

model . 1 i n t <− lm( formula = r e s p o n s e v a r h o l d e r ˜ . ˆ 2 ,

data = nec f a c rows )

#uses normal ized f a c t o r va lue s # f i r s t order model with 2 way i n t e r a c t i o n s

#model with i n t e r a c t i o n s and squared va lue s

model . 2 int<− lm( formula = r e s p o n s e v a r h o l d e r ˜ . ˆ2

+ I ( ne c f a c rows ˆ2) , data = nec f a c rows )

#uses normal ized f a c t o r va lue s # 2d order model with 2 way i n t e r a c t i o n s

} e l s e { # use WLS f o r robust r e g r e s s i o n s #lmrob not working , us ing lmrob in s t ead

pr in t (” Using Robust Regres s ion Techniques ”)

#model with j u s t i n t e r a c t i o n s

model . 1 i n t <− lmrob ( formula = r e s p o n s e v a r h o l d e r ˜ . ˆ 2 ,

data = nec f a c rows )
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#uses normal ized f a c t o r va lue s # f i r s t order model with 2 way i n t e r a c t i o n s

#model with i n t e r a c t i o n s and squared va lue s

model . 2 int<− lmrob ( formula = r e s p o n s e v a r h o l d e r ˜ . ˆ2

+ I ( ne c f a c rows ˆ2) , data = nec f a c rows )

#uses normal ized f a c t o r va lue s # 2d order model with 2 way i n t e r a c t i o n s

}# end e l s e f o r types o f r e g r e s s s i o n (OLS vs WLS)

#} #end whi le loop to ensure r e g r e s s i o n s are completed

#Create a l i s t ( v reg model ) f o r 1 , 1 int , 2 , 2 i n t

#i t w i l l hold models f o r OLS or WLS depending on norm tru

v reg model <− l i s t ( o n e i n t = model . 1 int ,

two int = model . 2 i n t )

#t e s t f o r b e t t e r f i t

b o o l i n e a r <− CURVE CHECK f . r ( v reg mode l$one int ,

v reg mode l$ two int , alpha , NORM tru)

# l i n e a r ve r sus 2d order with i n t e r a c t i o n s

#true means that the re i s l i t t l e d i f f e r n c e

#between the models so use the s imp le r one , IE the main e f f e c t s model

#i f f a l s e − f i t 2d order model and opt imize

#i f t rue − s t i c k with l i n e a r model and f i n d a path o f s t e e p e s t ascent / descent and cont inue

i f ( b o o l i n e a r == FALSE) { # begin IF − l i n e a r model i s i nappropr i a t e

#use reg mode l$ two int f o r p r e d i c t i o n

p r i n t (” t e s t con f i rms a b e t t e r f i t from the 2d order var i ance model ”)

var model <− v reg mode l$ two int

} e l s e{#use reg mode l$ two int f o r p r e d i c t i o n

p r i n t (” t e s t con f i rms a b e t t e r f i t from the 1 s t order var i ance model ”)

var model <− v reg mode l$one in t } #end b o o l i n e a r loop f o r var i ance model

#Step 10

#Export the s e l e c t e d model to GAMS
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######################################################################################################################################

######################################################################################################################################

######################################################################################################################################

##repor t optimal p o s i t i o n

##t r a n s l a t e from cente red norm

Regular Recommendation point <− B e s t f a c t o r s

Regular Recommendation point Norm <−

rbind ( updated des ign , B e s t f a c t o r s )

Regular Recommendation point Norm <−

NORMMATRIX and center . r ( Regular Recommendation point Norm )

# normal ized best po int from RSM

#ID the normal ized means o f the environmental v a r i a b l e s

Eval Norm mean <− seq (0 , l ength . out = t o t e v a r s ) # i n t i a l i z e a ho lder

f o r ( cou in 1 : t o t e v a r s ) {

Eval Norm mean [ cou ] =

colMeans ( Regular Recommendation point Norm [ cou ] ,

na . rm = FALSE, dims = 1) }#take normal ized mean o f env vars }

Regular Recommendation point Norm <−

Regular Recommendation point Norm [ dim ( Regular Recommendation point Norm ) [ 1 ] , ]

# t h i s i s the normed point

#0 f o r max 1 f o r min

GEN GAMS SCRIPTv4 generic . r

(1 , paste (” Prope r t i e s op t im ” , to t var , ” ” , t o t e v a r s , sep = ””) ,

opt im work dir , f i na l mode l , to t var , t o t eva r s ,

Eval Norm mean , e sd , var model , sd var )

#s ink ( )

#robust recommendation po int

Robust Recommendation point <−



E. R Statistical Package Code 243

as . data . frame ( UN NORMAL and center . r ( t ( as . matrix ( c ( Eval Norm mean ,

0 ) ) ) , as . matrix ( updated des ign ) , t o t v a r ) )

#repor t po in t s

p r i n t (”RSM Point ”)

p r i n t ( Regular Recommendation point )

colnames ( Robust Recommendation point ) <−

colnames ( Regular Recommendation point )

p r i n t (” Dual RSM Point ”)

p r i n t ( Robust Recommendation point )

Dual RSM VALUE = 13.260 #from GAMS

#step 11

#look at impact o f recommeded p o s i t i o n above to determine the l i m i t s used f o r e l l i p s e

######################################################################

#############################################################################

# run a s imu la t i on with the f i x e d c o n t r o l va lue s and the range o f environmental va lue s

e l l i p s e s i m s <− 10000 #s imu la t i on s to run ( rows )

exp DF <− as . data . frame ( matrix ( data = −10000000 ,

nrow = e l l i p s e s i m s , nco l = t o t v a r ) )

colnames ( exp DF ) <− colnames ( factors norm reps DF )

exp DF [ , ( t o t e v a r s +1): t o t v a r ] = Robust Recommendation point [ 1 ,

( t o t e v a r s +1): t o t v a r ]

#c r e a t e a s e t o f environmental v a r i a b l e s and p lace them in exp DF columns

env va l s da ta <− GEN ENV f . r ( to t var , t o t eva r s , e c ha r s )

f o r ( t r i p in 1 : ( ( e l l i p s e s i m s /dim ( env va l s da ta ) [ 2 ] ) ) ) {

env va l s da ta <− rbind ( env va l s data , GEN ENV f . r ( to t var ,

t o t eva r s , e c ha r s ) )}

exp DF [ , 1 : t o t e v a r s ] = env va l s da ta [ 1 : dim ( exp DF ) [ 1 ] , ]

#al low range o f env v a r i a b l e s and f i x e d c o n t r o l var



E. R Statistical Package Code 244

#gen r e p l i c a t i o n s

exp DF responses <− GEN REPLICATES f . r ( as . matrix ( exp DF ) ,

1 , f unc d i r , func number )

exp DF <− cbind ( exp DF , exp DF responses )

colnames ( exp DF ) [ t o t v a r +1] <− ” EX response ”

#Find the edges we want the min and max o f each

#environmental v a r i a b l e that j u s t meet the performance c r i t e r i a

#gotta r e v i s i t t h i s with a max and to change acceptab l e behavior

S a t i s B e h l e v e l <− 13 #anything l e s s than t h i s i s okay

exp DF Sat i s addres s <− which ( exp DF [ , t o t v a r +1] < S a t i s B e h l e v e l )

Good exp DF <− exp DF [ exp DF Sat i s address , ] # DF with a l l good value

#f i n d min and max o f a l l columns

Add Good exp DF <− Good exp DF [ 1 : 2 , ] # 1 i s min 2 i s max

f o r ( count in 1 : t o t e v a r s ){

Add Good exp DF [ 1 , count ] = min ( Good exp DF [ , count ] )

Add Good exp DF [ 2 , count ] = max( Good exp DF [ , count ] )

}

Add Good exp DF <− Add Good exp DF [ , 1 : t o t v a r ]

#min amd max o f a l l v a r i a b l e s that meet s a t i s f i c i n g behavior

#you could then vary the c o n t r o l v a r i a b l e s with

#f i x e d env v a r i a b l e s to see how p o l i c y matters

#brown doesn ’ t l i k e i t

#step 12

#geometry measurement

#################################################################################
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###############################################################################

## get con f idence i n t e r v a l i t ’ s on e x c e l shee t

##get e l l i p s e SA

x vec <− Add Good exp DF [ 1 , 1 : t o t e v a r s ] #i n i t i a l i z e

x vec <− abs ( Add Good exp DF [ 2 , 1 : t o t e v a r s ]− Add Good exp DF [ 1 , 1 : t o t e v a r s ] ) / 2

# you should normal ize t h i s in the r e a l dea l to e l i m i n a t e the i n f l u e n c e o f s c a l e

Sat i s Area <− H E APPROX f . r ( x vec , f u n c d i r )

p r i n t (” env var r a d i i ”)

p r i n t ( x vec )

p r i n t (” Hyper E l l i p s o i d Approximate Area ”)

p r i n t ( Sat i s Area )

###############################

#f o r fun

x vec = c (10 ,20 ,30 , 40)

Sat i s Area <− H E APPROX f . r ( x vec , f u n c d i r )

p r i n t ( Sat i s Area )

#END
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F.1 General Dual Response Surface Optimization Code

$ontext

s o l v e s g e n e r i c problem f o r robust parameters

r e q u i r e s a non l i nea r c o n s t r a i n t now

$ o f f t e x t

Var iab l e s

x 1 input environmental var1

x 2 input environmental var2

x 3 input environmental var3

x 4 input c o n t r o l var4

Outcome o f Inte re s t Object ive Function ;

Equations

OBJ d e f i n e o b j e c t i v e func t i on

con E 1 ENV l i n e a r c o n s t r a i n t 1

con E 2 ENV l i n e a r c o n s t r a i n t 2

con E 3 ENV l i n e a r c o n s t r a i n t 3

con L 4 Control l i n e a r c o n s t r a i n t 4

con U 4 Control l i n e a r c o n s t r a i n t 4

qcon1 quadrat i c c o n s t r a i n t 1

qcon2 quadrat i c c o n t r a i n t 2 ;

OBJ . . Outcome o f Inte re s t =e= 12.3594083966838 + 1.16654866247444 * x 1 +

3.37908676860181 * x 2 + 0.302698129144805 * x 3 + 2.14011408367422 * x 4

− 3.04224053644248 * x 1 * x 2 − 0.423047375812866 * x 1 * x 3

− 0.553524071931917 * x 1 * x 4 − 1.50330824578895 * x 2 * x 3

− 2.51929167231507 * x 2 * x 4 + 0.254340744296701 * x 3 * x 4 ;

$ontext

Subject To

$ o f f t e x t
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con E 1 . . x 1 =e= 0.554636676355028 ;

con E 2 . . x 2 =e= 0.254956103947439 ;

con E 3 . . x 3 =e= 0.562918564456854 ;

con L 4 . . x 4 =g= 0 ;

con U 4 . . x 4 =l= 1 ;

qcon1 . . 12.3594083966838 + 1.16654866247444 * x 1

+ 3.37908676860181 * x 2 + 0.302698129144805 * x 3

+ 2.14011408367422 * x 4 − 3.04224053644248 * x 1 * x 2

− 0.423047375812866 * x 1 * x 3

− 0.553524071931917 * x 1 * x 4 − 1.50330824578895 * x 2 * x 3 −

2.51929167231507 * x 2 * x 4 + 0.254340744296701 * x 3 * x 4 =g= 0 ;

qcon2 . . 12.3594083966838 + 1.16654866247444 * x 1 +

3.37908676860181 * x 2 + 0.302698129144805 * x 3 +

2.14011408367422 * x 4 − 3.04224053644248 * x 1 * x 2 −

0.423047375812866 * x 1 * x 3 − 0.553524071931917 * x 1 * x 4 −

1.50330824578895 * x 2 * x 3 − 2.51929167231507 * x 2 * x 4 +

0.254340744296701 * x 3 * x 4 =l= 5 ;

$ontext

RUN OPTIMIZATION MODEL

$ o f f t e x t

Model Prope r t i e s op t im 4 3 / a l l / ;

So lve Prope r t i e s op t im 4 3 us ing MIQCP minimizing Outcome o f Inte re s t ;

$ontext

con s id e r a l l mixed quadrat i c s o l v e r s

MINLP

RMINLP *

MIQCP

RMIQCP *

MPEC
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RMPEC *

other s o l v e r s MIP, RMIP, NLP, LP, MCP, CNS, DNLP, QCP

$ o f f t e x t

Display x 1 . l , x 2 . l , x 3 . l , x 4 . l , Outcome o f Inte re s t . l ;
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F.2 Jalalabad Dual Response Surface Optimization Code

$ontext

s o l v e s jbad problem f o r robust parameters

r e q u i r e s a non l i nea r c o n s t r a i n t now and I want to f i x the

environmental v a r i a b l e va lue s

$ o f f t e x t

Var iab l e s

Wells input c o n t r o l var 1

Hosp i t a l s input c o n t r o l var 2

Secur i ty input c o n t r o l var 3

ANSF input c o n t r o l var 4

Wealth input environmental var 1

Ethn i c i ty input environmental var 2

Deaths input environmental var3

Opinion Object ive Function ;

I n t e g e r Var i ab l e s Wells , Hosp i ta l s , Secur i ty , ANSF ;

P o s i t i v e Var iab l e s Wealth , Ethnic i ty , Deaths ;

Equations

top d e f i n e o b j e c t i v e func t i on ( l i n e a r )

con0 l i n e a r c o n s t r a i n t 0

con1 l i n e a r c o n s t r a i n t 1

con2 l i n e a r c o n s t r a i n t 2

con3 l i n e a r c o n s t r a i n t 3

con4 l i n e a r c o n s t r a i n t 4

con5 l i n e a r c o n s t r a i n t 5

con6 l i n e a r c o n s t r a i n t 6

con7 l i n e a r c o n s t r a i n t 7

con8 l i n e a r c o n s t r a i n t 8

con9 l i n e a r c o n s t r a i n t 9

con10 l i n e a r c o n s t r a i n t 10

qcon1 quadrat i c c o n s t r a i n t 1
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qcon2 quadrat i c c o n t r a i n t 2 ;

top . . Opinion =e= − 16636.0531117491 + 595.939093042811 * Wells −

546.51585629555 * Hosp i t a l s + 465.056607271189 * Secur i ty −

649.100453410244 * ANSF + 35.0994901600187 * Wealth +

386.322624758043 * Ethn i c i ty + 37.6663470290266 * Deaths −

19.8706710909187 * Wells * Wells −

21.5234251244179 * Hosp i t a l s * Hosp i t a l s +

0 * Secur i ty * Secur i ty + 0 * ANSF * ANSF −

0.0341823638580988 * Wealth * Wealth −

2.20337403829448 * Ethn i c i ty * Ethn i c i ty

− 0.60291830031308 * Deaths * Deaths +

2.75053396535278 * Wells * Hosp i t a l s

+ 21.9794889667183 * Wells * Secur i ty −

1.2140544609311 * Wells * ANSF

+ 3.22382473014026 * Wells * Wealth −

7.70755594205386 * Wells * Ethn i c i ty +

2.57664540592889 * Wells * Deaths

+ 45.50878897696 * Hosp i t a l s * Secur i ty

+ 16.875661130284 * Hosp i t a l s * ANSF

+ 1.18835599790886 * Hosp i t a l s * Wealth

+ 6.15660603991043 * Hosp i t a l s * Ethn i c i ty

+ 1.62614990572716 * Hosp i t a l s * Deaths −

78.8433812084868 * Secur i ty * ANSF

− 6.86048284112075 * Secur i ty * Wealth −

2.65946195593054 * Secur i ty * Ethn i c i ty

− 1.79870818554652 * Secur i ty * Deaths −

0.388540372070931 * ANSF * Wealth

+ 8.25098038825402 * ANSF * Ethn i c i ty −

1.88796608043232 * ANSF * Deaths

− 0.362381551301084 * Wealth * Ethn i c i ty −

0.359284346016301 * Wealth * Deaths

− 0.211434108085828 * Ethn i c i ty * Deaths ;
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$ontext

Subject To

$ o f f t e x t

con0 . . Wells =g= 0 ;

con1 . . Wells =l= 3 ;

con2 . . Hosp i t a l s =g= 1 ;

con3 . . Hosp i t a l s =l= 3 ;

con4 . . S e cu r i ty =g= 0 ;

con5 . . S e cu r i ty =l= 1 ;

con6 . . ANSF =g= 0 ;

con7 . . ANSF =l= 1 ;

con8 . . Wealth =e= 29.9512195121951 ;

con9 . . Ethn i c i ty =e= 85.0177383592018 ;

con10 . . Deaths =e= 13.5676274944568 ;

qcon1 . . 14897.7897265209 − 2427.86876328487 * Wells

− 2010.21790062714 * Hosp i t a l s − 9475.03680132395 * Secur i ty

+ 23344.8014464483 * ANSF + 484.454780790978 * Wealth

− 141.428870728064 * Ethn i c i ty − 1286.21050142143 * Deaths

+ 765.879206991294 * Wells * Wells +

2257.39361648258 * Hosp i t a l s * Hosp i t a l s

+ 0 * Secur i ty * Secur i ty + 0 * ANSF * ANSF +

2.00393871941766 * Wealth * Wealth

+ 2.65556871801094 * Ethn i c i ty * Ethn i c i ty −

9.40585017846207 * Deaths * Deaths

− 78.9282264559726 * Wells * Hosp i t a l s −

931.568570188538 * Wells * Secur i ty

− 2788.23691451205 * Wells * ANSF +

7.08405425930839 * Wells * Wealth

+ 23.6799145121029 * Wells * Ethn i c i ty −

8.29033817746078 * Wells * Deaths

− 430.465720657925 * Hosp i t a l s * Secur i ty +

1664.16469042741 * Hosp i t a l s * ANSF

+ 19.5411894156747 * Hosp i t a l s * Wealth
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− 101.307624276003 * Hosp i t a l s * Ethn i c i ty

+ 17.3471550584183 * Hosp i t a l s * Deaths −

3472.93781382067 * Secur i ty * ANSF

+ 38.7464728507852 * Secur i ty * Wealth −

41.2603491836068 * Secur i ty * Ethn i c i ty

− 41.4449073743057 * Secur i ty * Deaths +

38.5797233130601 * ANSF * Wealth

− 216.138554353917 * ANSF * Ethn i c i ty −

181.430080081984 * ANSF * Deaths

− 7.50528995267218 * Wealth * Ethn i c i ty −

5.68339997654623 * Wealth * Deaths

+ 21.6194574736393 * Ethn i c i ty * Deaths =g= 0 ;

qcon2 . . 14897.7897265209 − 2427.86876328487 * Wells

− 2010.21790062714 * Hosp i t a l s − 9475.03680132395 * Secur i ty

+ 23344.8014464483 * ANSF + 484.454780790978 * Wealth

− 141.428870728064 * Ethn i c i ty − 1286.21050142143 * Deaths

+ 765.879206991294 * Wells * Wells +

2257.39361648258 * Hosp i t a l s * Hosp i t a l s

+ 0 * Secur i ty * Secur i ty + 0 * ANSF * ANSF +

2.00393871941766 * Wealth * Wealth

+ 2.65556871801094 * Ethn i c i ty * Ethn i c i ty −

9.40585017846207 * Deaths * Deaths

− 78.9282264559726 * Wells * Hosp i t a l s −

931.568570188538 * Wells * Secur i ty

− 2788.23691451205 * Wells * ANSF +

7.08405425930839 * Wells * Wealth

+ 23.6799145121029 * Wells * Ethn i c i ty −

8.29033817746078 * Wells * Deaths

− 430.465720657925 * Hosp i t a l s * Secur i ty +

1664.16469042741 * Hosp i t a l s * ANSF

+ 19.5411894156747 * Hosp i t a l s * Wealth

− 101.307624276003 * Hosp i t a l s * Ethn i c i ty

+ 17.3471550584183 * Hosp i t a l s * Deaths −

3472.93781382067 * Secur i ty * ANSF



F. General Algebraic Modeling System (GAMS) Code 254

+ 38.7464728507852 * Secur i ty * Wealth −

41.2603491836068 * Secur i ty * Ethn i c i ty

− 41.4449073743057 * Secur i ty * Deaths +

38.5797233130601 * ANSF * Wealth

− 216.138554353917 * ANSF * Ethn i c i ty −

181.430080081984 * ANSF * Deaths

− 7.50528995267218 * Wealth * Ethn i c i ty −

5.68339997654623 * Wealth * Deaths

+ 21.6194574736393 * Ethn i c i ty * Deaths =l= 500 ;

$ontext

RUN OPTIMIZATION MODEL

$ o f f t e x t

Model JBAD optim / a l l / ;

So lve JBAD optim us ing MIQCP maximizing Opinion ;

$ontext

con s id e r a l l mixed quadrat i c s o l v e r s

MINLP

RMINLP *

MIQCP

RMIQCP *

MPEC

RMPEC *

other s o l v e r s MIP, RMIP, NLP, LP, MCP, CNS, DNLP, QCP

$ o f f t e x t

Display Wells . l , Hosp i t a l s . l , S e cu r i t y . l , ANSF. l , Wealth . l ,

Ethn i c i ty . l , Deaths . l , Opinion . l ;
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F.3 Tijuana Dual Response Surface Optimization Code

$ontext

s o l v e s t j problem f o r robust parameters

$ o f f t e x t

Var iab l e s

c o l o n i a s i z e input c o n t r o l var 1

maqui ladoras input c o n t r o l var 2

c i ty growth input c o n t r o l var 3

r e q u i r e d c a p i t a l input c o n t r o l var 4

c a r r y i n g c a p a c i t y input c o n t r o l var 5

s e r v i c e c e n t e r s input c o n t r o l var 6

m i g r a t i o n t i c k s input environmental var1

c r o s s i n g t i c k s input environmental var2

i n i t d e n s i t y input environmental var3

b u i l d i n g t i c k s input environmental var4

No Water Rate Object ive Function ;

Binary Var iab l e s c i ty growth ;

I n t e g e r Var i ab l e s maquiladoras , r e q u i r e d c a p i t a l ,

c a r ry ing capac i t y , s e r v i c e c e n t e r s , m i g r a t i o n t i c k s ,

c r o s s i n g t i c k s , b u i l d i n g t i c k s ;

P o s i t i v e Var iab l e s c o l o n i a s i z e , i n i t d e n s i t y ;

Equations

top d e f i n e o b j e c t i v e func t i on ( l i n e a r )

con0 l i n e a r c o n s t r a i n t 0

con1 l i n e a r c o n s t r a i n t 1

con2 l i n e a r c o n s t r a i n t 2

con3 l i n e a r c o n s t r a i n t 3

con4 l i n e a r c o n s t r a i n t 4

con5 l i n e a r c o n s t r a i n t 5

con6 l i n e a r c o n s t r a i n t 6
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con7 l i n e a r c o n s t r a i n t 7

con8 l i n e a r c o n s t r a i n t 8

con9 l i n e a r c o n s t r a i n t 9

con10 l i n e a r c o n s t r a i n t 10

con11 l i n e a r c o n s t r a i n t 11

con12 l i n e a r c o n s t r a i n t 12

con13 l i n e a r c o n s t r a i n t 13

con14 l i n e a r c o n s t r a i n t 14

con15 l i n e a r c o n s t r a i n t 15

qcon1 quadrat i c c o n s t r a i n t 1

qcon2 quadrat i c c o n t r a i n t 2 ;

top . . No Water Rate =e= 2.70565692882453 +

1.70097733199104 * c o l o n i a s i z e + 0.145733931719902 * maqui ladoras −

0.0468463038237284 * c i ty growth −

0.00915491608211609 * r e q u i r e d c a p i t a l +

0.173292638066306 * c a r r y i n g c a p a c i t y +

0.0116071317484104 * s e r v i c e c e n t e r s +

0.0250345023259445 * m i g r a t i o n t i c k s −

0.00937563867938412 * c r o s s i n g t i c k s +

0.142780628924493 * i n i t d e n s i t y −

0.0133557028374103 * b u i l d i n g t i c k s −

0.429523792333567 * c o l o n i a s i z e * c o l o n i a s i z e −

0.00239118868154128 * maqui ladoras * maqui ladoras +

0 * c i ty growth * c i ty growth +

5.32192577219425 e−06 * r e q u i r e d c a p i t a l * r e q u i r e d c a p i t a l −

0.00215591259675241 * c a r r y i n g c a p a c i t y * c a r r y i n g c a p a c i t y +

0.0181566425895818 * s e r v i c e c e n t e r s * s e r v i c e c e n t e r s +

2.65870591147775 e−06 * m i g r a t i o n t i c k s * m i g r a t i o n t i c k s −

2.07033521120881 e−05 * c r o s s i n g t i c k s * c r o s s i n g t i c k s −

0.0973340563923149 * i n i t d e n s i t y * i n i t d e n s i t y +

0.000348284691709261 * b u i l d i n g t i c k s * b u i l d i n g t i c k s +

0.000802481606297115 * c o l o n i a s i z e * maqui ladoras +
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0.0116619028626727 * c o l o n i a s i z e * c i ty growth +

4.81916880636648 e−05 * c o l o n i a s i z e * r e q u i r e d c a p i t a l +

0.0110773027296882 * c o l o n i a s i z e * c a r r y i n g c a p a c i t y −

0.0616140582352136 * c o l o n i a s i z e * s e r v i c e c e n t e r s −

0.00214444603183015 * c o l o n i a s i z e * m i g r a t i o n t i c k s +

0.000385776556828555 * c o l o n i a s i z e * c r o s s i n g t i c k s −

0.0254140360867118 * c o l o n i a s i z e * i n i t d e n s i t y +

0.00583991336468383 * c o l o n i a s i z e * b u i l d i n g t i c k s +

0.0039515664315855 * maqui ladoras * c i ty growth −

0.000124401358283802 * maqui ladoras * r e q u i r e d c a p i t a l −

0.00262598988530515 * maqui ladoras * c a r r y i n g c a p a c i t y +

0.00043131737488799 * maqui ladoras * s e r v i c e c e n t e r s +

0.000388416866027953 * maqui ladoras * m i g r a t i o n t i c k s +

0.000356614921082457 * maqui ladoras * c r o s s i n g t i c k s −

0.0155941638533717 * maqui ladoras * i n i t d e n s i t y +

0.000288492240722143 * maqui ladoras * b u i l d i n g t i c k s −

6.29798748177082 e−06 * c i ty growth * r e q u i r e d c a p i t a l +

0.00207707797922167 * c i ty growth * c a r r y i n g c a p a c i t y −

0.00172452992433469 * c i ty growth * s e r v i c e c e n t e r s −

0.000121624852736611 * c i ty growth * m i g r a t i o n t i c k s −

0.000530809099338623 * c i ty growth * c r o s s i n g t i c k s +

0.0355021222011358 * c i ty growth * i n i t d e n s i t y +

0.00055127557403271 * c i ty growth * b u i l d i n g t i c k s −

0.000202497467914457 * r e q u i r e d c a p i t a l * c a r r y i n g c a p a c i t y

− 4.04995651133513 e−05 * r e q u i r e d c a p i t a l * s e r v i c e c e n t e r s

− 2.06526560017132 e−05 * r e q u i r e d c a p i t a l * m i g r a t i o n t i c k s

+ 1.02214920894501 e−05 * r e q u i r e d c a p i t a l * c r o s s i n g t i c k s

+ 0.000167355245768302 * r e q u i r e d c a p i t a l * i n i t d e n s i t y +

1.28320879381106 e−05 * r e q u i r e d c a p i t a l * b u i l d i n g t i c k s +

0.00326421785862024 * c a r r y i n g c a p a c i t y * s e r v i c e c e n t e r s +

6.09299705696893 e−05 * c a r r y i n g c a p a c i t y * m i g r a t i o n t i c k s −

0.000252052807034688 * c a r r y i n g c a p a c i t y * c r o s s i n g t i c k s −

0.0109963206738276 * c a r r y i n g c a p a c i t y * i n i t d e n s i t y +

0.00280077380318248 * c a r r y i n g c a p a c i t y * b u i l d i n g t i c k s

− 0.00100405548340211 * s e r v i c e c e n t e r s * m i g r a t i o n t i c k s
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− 8.92187748347011 e−05 * s e r v i c e c e n t e r s * c r o s s i n g t i c k s

+ 0.0022380257125031 * s e r v i c e c e n t e r s * i n i t d e n s i t y

− 0.00104492022005652 * s e r v i c e c e n t e r s * b u i l d i n g t i c k s

+ 6.32935145256014 e−06 * m i g r a t i o n t i c k s * c r o s s i n g t i c k s

− 0.000803822763073537 * m i g r a t i o n t i c k s * i n i t d e n s i t y −

0.000302551522867998 * m i g r a t i o n t i c k s * b u i l d i n g t i c k s −

4.13522374509258 e−05 * c r o s s i n g t i c k s * i n i t d e n s i t y +

4.21416968011705 e−05 * c r o s s i n g t i c k s * b u i l d i n g t i c k s

− 0.0146106379049282 * i n i t d e n s i t y * b u i l d i n g t i c k s ;

$ontext

Subject To

$ o f f t e x t

con0 . . c o l o n i a s i z e =g= 0 ;

con1 . . c o l o n i a s i z e =l= 2 ;

con2 . . maqui ladoras =g= 1 ;

con3 . . maqui ladoras =l= 8 ;

con4 . . c i ty growth =g= 0 ;

con5 . . c i ty growth =l= 1 ;

con6 . . r e q u i r e d c a p i t a l =g= 150 ;

con7 . . r e q u i r e d c a p i t a l =l= 1200 ;

con8 . . c a r r y i n g c a p a c i t y =g= 1 ;

con9 . . c a r r y i n g c a p a c i t y =l= 6 ;

con10 . . s e r v i c e c e n t e r s =g= 1 ;

con11 . . s e r v i c e c e n t e r s =l= 3 ;

con12 . . m i g r a t i o n t i c k s =e= 7.32297099937409 ;

con13 . . c r o s s i n g t i c k s =e= 9.51679532651784 ;

con14 . . i n i t d e n s i t y =e= 0.801752555810557 ;

con15 . . b u i l d i n g t i c k s =e= 3.25443354892552 ;

qcon1 . . 2 .70565692882453 + 1.70097733199104 * c o l o n i a s i z e

+ 0.145733931719902 * maqui ladoras −

0.0468463038237284 * c i ty growth −

0.00915491608211609 * r e q u i r e d c a p i t a l +

0.173292638066306 * c a r r y i n g c a p a c i t y +
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0.0116071317484104 * s e r v i c e c e n t e r s +

0.0250345023259445 * m i g r a t i o n t i c k s −

0.00937563867938412 * c r o s s i n g t i c k s +

0.142780628924493 * i n i t d e n s i t y −

0.0133557028374103 * b u i l d i n g t i c k s −

0.429523792333567 * c o l o n i a s i z e * c o l o n i a s i z e −

0.00239118868154128 * maqui ladoras * maqui ladoras +

0 * c i ty growth * c i ty growth +

5.32192577219425 e−06 * r e q u i r e d c a p i t a l * r e q u i r e d c a p i t a l −

0.00215591259675241 * c a r r y i n g c a p a c i t y * c a r r y i n g c a p a c i t y +

0.0181566425895818 * s e r v i c e c e n t e r s * s e r v i c e c e n t e r s +

2.65870591147775 e−06 * m i g r a t i o n t i c k s * m i g r a t i o n t i c k s

− 2.07033521120881 e−05 * c r o s s i n g t i c k s * c r o s s i n g t i c k s

− 0.0973340563923149 * i n i t d e n s i t y * i n i t d e n s i t y

+ 0.000348284691709261 * b u i l d i n g t i c k s * b u i l d i n g t i c k s

+ 0.000802481606297115 * c o l o n i a s i z e * maqui ladoras

+ 0.0116619028626727 * c o l o n i a s i z e * c i ty growth

+ 4.81916880636648 e−05 * c o l o n i a s i z e * r e q u i r e d c a p i t a l

+ 0.0110773027296882 * c o l o n i a s i z e * c a r r y i n g c a p a c i t y

− 0.0616140582352136 * c o l o n i a s i z e * s e r v i c e c e n t e r s

− 0.00214444603183015 * c o l o n i a s i z e * m i g r a t i o n t i c k s

+ 0.000385776556828555 * c o l o n i a s i z e * c r o s s i n g t i c k s

− 0.0254140360867118 * c o l o n i a s i z e * i n i t d e n s i t y

+ 0.00583991336468383 * c o l o n i a s i z e * b u i l d i n g t i c k s

+ 0.0039515664315855 * maqui ladoras * c i ty growth

− 0.000124401358283802 * maqui ladoras * r e q u i r e d c a p i t a l

− 0.00262598988530515 * maqui ladoras * c a r r y i n g c a p a c i t y

+ 0.00043131737488799 * maqui ladoras * s e r v i c e c e n t e r s

+ 0.000388416866027953 * maqui ladoras * m i g r a t i o n t i c k s

+ 0.000356614921082457 * maqui ladoras * c r o s s i n g t i c k s

− 0.0155941638533717 * maqui ladoras * i n i t d e n s i t y

+ 0.000288492240722143 * maqui ladoras * b u i l d i n g t i c k s

− 6.29798748177082 e−06 * c i ty growth * r e q u i r e d c a p i t a l

+ 0.00207707797922167 * c i ty growth * c a r r y i n g c a p a c i t y

− 0.00172452992433469 * c i ty growth * s e r v i c e c e n t e r s
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− 0.000121624852736611 * c i ty growth * m i g r a t i o n t i c k s

− 0.000530809099338623 * c i ty growth * c r o s s i n g t i c k s

+ 0.0355021222011358 * c i ty growth * i n i t d e n s i t y

+ 0.00055127557403271 * c i ty growth * b u i l d i n g t i c k s

− 0.000202497467914457 * r e q u i r e d c a p i t a l * c a r r y i n g c a p a c i t y

− 4.04995651133513 e−05 * r e q u i r e d c a p i t a l * s e r v i c e c e n t e r s

− 2.06526560017132 e−05 * r e q u i r e d c a p i t a l * m i g r a t i o n t i c k s

+ 1.02214920894501 e−05 * r e q u i r e d c a p i t a l * c r o s s i n g t i c k s

+ 0.000167355245768302 * r e q u i r e d c a p i t a l * i n i t d e n s i t y

+ 1.28320879381106 e−05 * r e q u i r e d c a p i t a l * b u i l d i n g t i c k s

+ 0.00326421785862024 * c a r r y i n g c a p a c i t y * s e r v i c e c e n t e r s

+ 6.09299705696893 e−05 * c a r r y i n g c a p a c i t y * m i g r a t i o n t i c k s

− 0.000252052807034688 * c a r r y i n g c a p a c i t y * c r o s s i n g t i c k s

− 0.0109963206738276 * c a r r y i n g c a p a c i t y * i n i t d e n s i t y

+ 0.00280077380318248 * c a r r y i n g c a p a c i t y * b u i l d i n g t i c k s

− 0.00100405548340211 * s e r v i c e c e n t e r s * m i g r a t i o n t i c k s

− 8.92187748347011 e−05 * s e r v i c e c e n t e r s * c r o s s i n g t i c k s

+ 0.0022380257125031 * s e r v i c e c e n t e r s * i n i t d e n s i t y

− 0.00104492022005652 * s e r v i c e c e n t e r s * b u i l d i n g t i c k s

+ 6.32935145256014 e−06 * m i g r a t i o n t i c k s * c r o s s i n g t i c k s

− 0.000803822763073537 * m i g r a t i o n t i c k s * i n i t d e n s i t y

− 0.000302551522867998 * m i g r a t i o n t i c k s * b u i l d i n g t i c k s

− 4.13522374509258 e−05 * c r o s s i n g t i c k s * i n i t d e n s i t y

+ 4.21416968011705 e−05 * c r o s s i n g t i c k s * b u i l d i n g t i c k s

− 0.0146106379049282 * i n i t d e n s i t y * b u i l d i n g t i c k s =g= 0 ;

qcon2 . . 2 .70565692882453 + 1.70097733199104 * c o l o n i a s i z e

+ 0.145733931719902 * maqui ladoras −

0.0468463038237284 * c i ty growth −

0.00915491608211609 * r e q u i r e d c a p i t a l

+ 0.173292638066306 * c a r r y i n g c a p a c i t y

+ 0.0116071317484104 * s e r v i c e c e n t e r s

+ 0.0250345023259445 * m i g r a t i o n t i c k s

− 0.00937563867938412 * c r o s s i n g t i c k s

+ 0.142780628924493 * i n i t d e n s i t y
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− 0.0133557028374103 * b u i l d i n g t i c k s

− 0.429523792333567 * c o l o n i a s i z e * c o l o n i a s i z e

− 0.00239118868154128 * maqui ladoras * maqui ladoras

+ 0 * c i ty growth * c i ty growth +

5.32192577219425 e−06 * r e q u i r e d c a p i t a l * r e q u i r e d c a p i t a l

− 0.00215591259675241 * c a r r y i n g c a p a c i t y * c a r r y i n g c a p a c i t y

+ 0.0181566425895818 * s e r v i c e c e n t e r s * s e r v i c e c e n t e r s

+ 2.65870591147775 e−06 * m i g r a t i o n t i c k s * m i g r a t i o n t i c k s

− 2.07033521120881 e−05 * c r o s s i n g t i c k s * c r o s s i n g t i c k s

− 0.0973340563923149 * i n i t d e n s i t y * i n i t d e n s i t y

+ 0.000348284691709261 * b u i l d i n g t i c k s * b u i l d i n g t i c k s

+ 0.000802481606297115 * c o l o n i a s i z e * maqui ladoras

+ 0.0116619028626727 * c o l o n i a s i z e * c i ty growth

+ 4.81916880636648 e−05 * c o l o n i a s i z e * r e q u i r e d c a p i t a l

+ 0.0110773027296882 * c o l o n i a s i z e * c a r r y i n g c a p a c i t y

− 0.0616140582352136 * c o l o n i a s i z e * s e r v i c e c e n t e r s

− 0.00214444603183015 * c o l o n i a s i z e * m i g r a t i o n t i c k s

+ 0.000385776556828555 * c o l o n i a s i z e * c r o s s i n g t i c k s

− 0.0254140360867118 * c o l o n i a s i z e * i n i t d e n s i t y

+ 0.00583991336468383 * c o l o n i a s i z e * b u i l d i n g t i c k s

+ 0.0039515664315855 * maqui ladoras * c i ty growth

− 0.000124401358283802 * maqui ladoras * r e q u i r e d c a p i t a l

− 0.00262598988530515 * maqui ladoras * c a r r y i n g c a p a c i t y

+ 0.00043131737488799 * maqui ladoras * s e r v i c e c e n t e r s

+ 0.000388416866027953 * maqui ladoras * m i g r a t i o n t i c k s

+ 0.000356614921082457 * maqui ladoras * c r o s s i n g t i c k s

− 0.0155941638533717 * maqui ladoras * i n i t d e n s i t y

+ 0.000288492240722143 * maqui ladoras * b u i l d i n g t i c k s

− 6.29798748177082 e−06 * c i ty growth * r e q u i r e d c a p i t a l

+ 0.00207707797922167 * c i ty growth * c a r r y i n g c a p a c i t y

− 0.00172452992433469 * c i ty growth * s e r v i c e c e n t e r s

− 0.000121624852736611 * c i ty growth * m i g r a t i o n t i c k s

− 0.000530809099338623 * c i ty growth * c r o s s i n g t i c k s

+ 0.0355021222011358 * c i ty growth * i n i t d e n s i t y

+ 0.00055127557403271 * c i ty growth * b u i l d i n g t i c k s
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− 0.000202497467914457 * r e q u i r e d c a p i t a l * c a r r y i n g c a p a c i t y

− 4.04995651133513 e−05 * r e q u i r e d c a p i t a l * s e r v i c e c e n t e r s

− 2.06526560017132 e−05 * r e q u i r e d c a p i t a l * m i g r a t i o n t i c k s

+ 1.02214920894501 e−05 * r e q u i r e d c a p i t a l * c r o s s i n g t i c k s

+ 0.000167355245768302 * r e q u i r e d c a p i t a l * i n i t d e n s i t y

+ 1.28320879381106 e−05 * r e q u i r e d c a p i t a l * b u i l d i n g t i c k s

+ 0.00326421785862024 * c a r r y i n g c a p a c i t y * s e r v i c e c e n t e r s

+ 6.09299705696893 e−05 * c a r r y i n g c a p a c i t y * m i g r a t i o n t i c k s

− 0.000252052807034688 * c a r r y i n g c a p a c i t y * c r o s s i n g t i c k s

− 0.0109963206738276 * c a r r y i n g c a p a c i t y * i n i t d e n s i t y

+ 0.00280077380318248 * c a r r y i n g c a p a c i t y * b u i l d i n g t i c k s

− 0.00100405548340211 * s e r v i c e c e n t e r s * m i g r a t i o n t i c k s

− 8.92187748347011 e−05 * s e r v i c e c e n t e r s * c r o s s i n g t i c k s

+ 0.0022380257125031 * s e r v i c e c e n t e r s * i n i t d e n s i t y

− 0.00104492022005652 * s e r v i c e c e n t e r s * b u i l d i n g t i c k s

+ 6.32935145256014 e−06 * m i g r a t i o n t i c k s * c r o s s i n g t i c k s

− 0.000803822763073537 * m i g r a t i o n t i c k s * i n i t d e n s i t y

− 0.000302551522867998 * m i g r a t i o n t i c k s * b u i l d i n g t i c k s

− 4.13522374509258 e−05 * c r o s s i n g t i c k s * i n i t d e n s i t y

+ 4.21416968011705 e−05 * c r o s s i n g t i c k s * b u i l d i n g t i c k s

− 0.0146106379049282 * i n i t d e n s i t y * b u i l d i n g t i c k s =l= .002 ;

$ontext

RUN OPTIMIZATION MODEL

$ o f f t e x t

Model TJ optim exper iment 3 / a l l / ;

So lve TJ optim exper iment 3 us ing MIQCP minimizing No Water Rate ;

$ontext

con s id e r a l l mixed quadrat i c s o l v e r s

MINLP

RMINLP *

MIQCP
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RMIQCP *

MPEC

RMPEC *

other s o l v e r s MIP, RMIP, NLP, LP, MCP, CNS, DNLP, QCP

$ o f f t e x t

Display c o l o n i a s i z e . l , maqui ladoras . l , c i ty growth . l ,

r e q u i r e d c a p i t a l . l , c a r r y i n g c a p a c i t y . l , s e r v i c e c e n t e r s . l ,

m i g r a t i o n t i c k s . l , c r o s s i n g t i c k s . l , i n i t d e n s i t y . l ,

b u i l d i n g t i c k s . l , No Water Rate . l ;
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ABM - Agent-based model

AIC - Akaike Information Criterion

AGC - US Army Geospatial Center

ANN - Artificial Neural Network

ANSF - Afghan National Security Forces

ARB - Acceptable Response Boundary

ASCE - American Society of Civil Engineers

BIC - Bayesian information Criterion

BLUE - Best Least Unbiased Estimator

CCD - Central Composite Design

CCL-CBM - Center for Connected Learning and Computer-Based Modeling

CF - Coalition Forces

CLT - Central Limit Theorem

C/NRCD - Center for Nation Reconstruction and Capacity Development

COIN - Counter-insurgency

COA - Course of Action

Cp - Mallow’s Cp Statistic

DOD - Department of Defense

DA - Department of the Army

DF - Direct Fire

DOE - Design of Experiment

FM - Field Manual

FOUO - For Official Use Only
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GA - Genetic Algorithm

GAM - Generalized Additive Model

GAMS - General Algebraic Modeling System

GIRoA - Government of the Islamic Republic of Afghanistan

GLM - Generalized Linear Model

IED - Improvised Explosive Device

IID - Independent and Identically Distributed

IIMM - International Infrastructure Management Manual

ISAF - International Security Assistance Force

JIEDDO - Joint IED Defeat Organiztion

LOO - Line of Operation

MARS - Multivariate Adaptive Regression Splines

MMRDP - Meta-Model and Robust Design Process

MSE - Mean Squared Error

NAFTA - North American Free Trade Agreement

NATO - North Atlantic Treaty Organization

NGIA - National Geospatial Intelligence Agency

NMSE - Normalized Mean Squared Error

NN - Neural Networks

NOLHS - Nearly Orthogonal Latin Hyper-cube Sampling

NPS - Naval Postgraduate School

OLS - Ordinary Least Squares

PGD - Path of Greatest Degradation
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PSA - Path of Steepest Ascent

PSD - Path of Steepest Descent

R&R - Reliability and Reproducibility

RSM - Response Surface Methodology

RMSE - Root Mean Squared Error

SA - Simulated Annealing

SNR - Signal to Noise Ratio

SSE - Sum of Squared Errors

UN - United Nations

USACE - United States Army Corps of Engineers

YLL - Years of Life Lost



H. THE YOUNG BRITISH SOLDIER

Rudyard Kipling, 1895
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WHEN the ’arf-made recruity goes out to the East
’E acts like a babe an’ ’e drinks like a beast,
An’ ’e wonders because ’e is frequent deceased
Ere ’e’s fit for to serve as a soldier.
Serve, serve, serve as a soldier,
Serve, serve, serve as a soldier,
Serve, serve, serve as a soldier,
So-oldier of the Queen!

Now all you recruities what’s drafted to-day,
You shut up your rag-box an’ ’ark to my lay,
An’ I’ll sing you a soldier as far as I may:
A soldier what’s fit for a soldier.
Fit, fit, fit for a soldier . . .

First mind you steer clear o’ the grog-sellers’ huts,
For they sell you Fixed Bay’nets that rots out your guts -
Ay, drink that ’ud eat the live steel from your butts -
An’ it’s bad for the young British soldier.
Bad, bad, bad for the soldier . . .

When the cholera comes - as it will past a doubt -
Keep out of the wet and don’t go on the shout,
For the sickness gets in as the liquor dies out,
An’ it crumples the young British soldier.
Crum-, crum-, crumples the soldier . . .

But the worst o’ your foes is the sun over’ead:
You must wear your ’elmet for all that is said:
If ’e finds you uncovered ’e’ll knock you down dead,
An’ you’ll die like a fool of a soldier.
Fool, fool, fool of a soldier . . .

If you’re cast for fatigue by a sergeant unkind,
Don’t grouse like a woman nor crack on nor blind;
Be handy and civil, and then you will find
That it’s beer for the young British soldier.
Beer, beer, beer for the soldier . . .
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Now, if you must marry, take care she is old -
A troop-sergeant’s widow’s the nicest I’m told,
For beauty won’t help if your rations is cold,
Nor love ain’t enough for a soldier.
’Nough, ’nough, ’nough for a soldier . . .

If the wife should go wrong with a comrade, be loath
To shoot when you catch ’em - you’ll swing, on my oath! -
Make ’im take ’er and keep ’er: that’s Hell for them both,
An’ you’re shut o’ the curse of a soldier.
Curse, curse, curse of a soldier . . .

When first under fire an’ you’re wishful to duck,
Don’t look nor take ’eed at the man that is struck,
Be thankful you’re livin’, and trust to your luck
And march to your front like a soldier.
Front, front, front like a soldier . . .

When ’arf of your bullets fly wide in the ditch,
Don’t call your Martini a cross-eyed old bitch;
She’s human as you are - you treat her as sich,
An’ she’ll fight for the young British soldier.
Fight, fight, fight for the soldier . . .

When shakin’ their bustles like ladies so fine,
The guns o’ the enemy wheel into line,
Shoot low at the limbers an’ don’t mind the shine,
For noise never startles the soldier.
Start-, start-, startles the soldier . . .

If your officer’s dead and the sergeants look white,
Remember it’s ruin to run from a fight:
So take open order, lie down, and sit tight,
And wait for supports like a soldier.
Wait, wait, wait like a soldier . . .

When you’re wounded and left on Afghanistan’s plains,
And the women come out to cut up what remains,
Jest roll to your rifle and blow out your brains
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An’ go to your Gawd like a soldier.
Go, go, go like a soldier,
Go, go, go like a soldier,
Go, go, go like a soldier,
So-oldier of the Queen!
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