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Abstract

In this dissertation, we study how network structure plays an important role in

two separate fields: global optimization and trust dynamics in peer-to-peer networks.

In global optimization, we consider the class of model-based search methods.

Roughly speaking, these are methods in which random search is implemented

according to a probability distribution or “model” which is updated at each

iteration depending upon the quality of solutions identified. We show that search

for the global minimum is equivalent to search in a designated network and that

the complexity of the problem can be described in terms of network structure. By

focusing on the best solutions identified, most model-based algorithms emphasize

“exploitation” over “exploration”. Depending upon the structure of the problem, this

emphasis in “exploitation” may end up significantly slowing down the identification

of the global minimum. We propose a new algorithmic design for model-based

search based on multiple interacting threads. In this design, each thread implements

a model-based search and they interact through a simple acceptance-rejection rule

preventing duplication of search efforts. We show that the speed of convergence

(both in the worst case and on average) increases exponentially in the number of

threads. Thus, in the proposed algorithmic design, exploration is a complement

rather than a substitute to exploitation. The second part of the dissertation

aims to characterize the dynamics of trust in unreliable peer-to-peer networks.

Distributed trust or reputation systems have naturally evolved as a potential

scalable solution to ensuring data exchange in peer-to-peer networks is reliable. In

a trust-based system each node maintains and updates the trust (or reputation)

score of neighboring nodes. These trust coefficients are modified depending upon
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locally verified outcomes. For example, in a peer-to-peer file sharing system a

node’s trust will be decreased if neighboring nodes verify that the last file uploaded

or forwarded by that node was corrupted. In this dissertation we consider the

implications on network structure in distributed trust dynamics of peer-to peer

networks of agents. We characterize the performance of a general class of trust-

based schemes as a function of the underlying network structure. We conclude

with an application to cyber security of large scale wind power system.
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Chapter 1

Introduction

The earliest work on network analysis can probably be traced back to 1736

when Leonhard Euler studied the seven bridges of Konigsberg. Since then, network

analysis has found applications in diverse fields including sociology, electrical

engineering, biology, computer science amongst others. In many applications,

networks that have been studied exhibit intricate patterns of connection among

nodes. For example, the shortest path between two randomly-selected nodes is

shorter in a “small world” network structure than in a lattice network structure of

the same size. The reason is that in a “small world” network most nodes can be

reached from each other by a small number of hops or steps (though most nodes

are not neighbors of one another).

We are interested in the role network structure plays in two separate fields of

study: global optimization and trust dynamics in peer-to-peer networks. In this

dissertation, we will demonstrate how network structure plays an important role

in these research areas.

In global optimization, we consider the class of model-based search methods,

where random search is implemented according to a probability distribution or

“model”. The model will be updated at each iteration based on the solutions

identified so far. We show that search for a globally optimal solution is equivalent

to search in a given network and that the complexity of the problem can be described

in terms of network structure. The basic loop in a model-based search method is
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Figure 1.1: De Jong’s 5th Function

as follows. First, a solution is randomly selected according to a given sampling

distribution (or “model”). Second, a local search procedure is launched in order to

identify a local minimum. Finally, the sampling distribution will be modified so

that it will posit more mass on the best local solutions (lowest value) found so far.

By focusing on the best solutions, this algorithm emphasizes “exploitation” over

“exploration”. However, depending on the structure of the problem, the emphasis in

“exploitation” may cause the slow down of the identification of a globally optimal

solution – provided such identification is feasible. To motivate our ideas, consider

the problem of finding the minimum of De Jong’s fifth function shown in Figure

[1.1]. The function exhibits a “multi-funnel” structure with 25 local minima in

total, as illustrated in Figure [1.2] and [1.3] – the shaded node being the globally

optimal solution. Note that each locally-optimal solution has a relatively wide

basin of attraction. Due to its emphasis on exploration, the algorithm is likely to

be trapped within one of these basins. This can be seen as the algorithm positing

small probabilities on the “links” or “edges” leading from one basin to another.

As a result it may take a long time (and great computational effort) to identify a

globally optimal solution. The structure of this particular case makes it obvious

that exploration is of more importance than exploitation. However, in practice, the
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underlying structure of the global optimization problem is not known in advance,

making it hard to strike a balance between exploration and exploitation.
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Figure 1.3: Network Representation of De Jong’s 5th Function

Generally speaking, most single-thread algorithms for global optimization differ

in the way computational effort between exploitation and exploration is allocated.

The allocation used ultimately determines the overall performance of the algorithm.

For example, if too little emphasis is put on exploration, the globally-optimal

solution is likely to remain unidentified. On the other hand, more exploration

boosts up the chances to identify the globally optimal solution but it also slows

down convergence. In this dissertation, we propose a new algorithmic design for
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global optimization based on multiple interacting threads. In this design, each

thread implements a model-based search in which the allocation on exploration

versus exploitation does not vary over time. Threads interact through a simple

acceptance-rejection rule preventing duplication of search efforts. We show that the

speed of convergence (both in the worst case and on average) increases exponentially

in the number of threads. Thus, in the proposed algorithmic design, exploration is

a complement rather than a substitute to exploitation.

The second part of the dissertation aims to characterize the dynamics of trust

in unreliable peer-to-peer networks.

Advances in information and communications technologies have enabled the

proliferation of significant amounts of data. In today’s world, computer networks

and cell phones pervade the daily activities of millions. As networked sensors

are increasingly being embedded in day to day activities, the amount of data

available is growing at a pace that tests the limits of state-of-the-art techniques

for data analysis. Most problems posed by increasing amounts of data have been

labeled in the media as the “big data” challenge. Decentralization is an important

characteristic of many “big data” networks. While the lack of centralized authority

allows for scalability, it also makes it hard to guarantee data is reliable. Distributed

trust or reputation systems have naturally evolved as a potential scalable solution

to ensuring reliable data. Typically, each node maintains and updates a trust

or reputation score of neighboring nodes. These trust coefficients are updated

depending on locally verified outcomes. For example, in a peer-to-peer file sharing

system a node’s trust score will be decreased if neighboring nodes verify that the

last file uploaded or forwarded by that node was corrupted. A corrupted file may

be the result of a malicious action of the node. However, it may also be due to

a random event affecting a benevolent node. Hence, the dynamics of trust or

reputation scores should be smooth enough in order to minimize false positives

and false negatives.
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In this dissertation we consider the implications on network structure in dis-

tributed trust dynamics of peer-to-peer network of agents that independently

estimate a parameter. In the model, each agent in the network will periodically

produce an independent estimate of an unobservable parameter and communicates

that estimate to its neighbors. There are of two types of agents: “good” and

“bad” estimators. When given enough data, a “good” agent will (asymptotically)

produce the correct parameter estimation. On the contrary, a “bad” estimator is

bound to produce an incorrect estimation no matter the amount of data consumed.

Each agent is agnostic of its own nature. Hence, the dynamics of trust play an

important role in enabling each agent to produce a correct merged estimate. This

necessarily requires the correct identification of the nature of each agent. For this

we examine the notion of “wisdom of crowds” as a basis for correct trust updates.

Assuming the majority is indicative of good behavior, nodes will downgrade the

trust scores of nodes in the minority. Our goal is to characterize the performance

of this scheme as a function of the underlying network structure (as well as the

number and distribution of “bad” nodes).

a "bad" agent a "good" agent

Figure 1.4: A Loosely-Connected Social Network with Two Highly Influential Agents

To illustrate the importance of network structure consider the network depicted

in Figure 1.4. Note that all “good” agents form a cycle, with two “bad” agents

connecting to every “ good” agent. In this configuration, each “good” agent is
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only able to communicate with two “good” neighbors, while both “bad” agents

can communicate with any “good” agent directly. Hence, the degree of a “good”

agent is 4, two of which belong to “good” neighbors, the other two of which are the

two “bad” agents. The degree of a “bad” agent equals the number of total “good”

agents. This type of structure may be considered as a loosely-connected social

network with two highly influential agents. The application of trust dynamics

based upon the notion of “wisdom of crowds” is likely to fail as each “good” agent

may lower the weight accorded to other “good” agents within its neighborhood

with some positive probability.
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Chapter 2

Global Optimization

2.1 Introduction

Many heuristics used for global optimization can be described as population-

based algorithms. Each iteration, a set of solutions is evaluated and a new set of

solutions is randomly generated according to a given rule designed to strike a balance

in the resource allocation between “exploration” and “exploitation”. Examples

include Genetic Algorithms (GA) (see [1]) and Particle Swarm Optimization (PSO)

(see [2]). Despite their popularity, the theoretical ground of the speed of convergence

of these algorithms remains limited as it is exceedingly difficult to characterize

the relationship between the parameter settings and efficiency. Recently, a class

of model-based algorithms has received increased attention (see [3]). In a model-

based algorithm, the optimal solution is estimated at each iteration by sampling

candidate solutions from a sequence of probability distributions (or “models”)

over the feasible region. Due to its successful applications to hard optimization

problems (see [4] and [5] for a survey of these applications) the Cross-Entropy (CE)

method is perhaps the most popular algorithm in this class.

In model-based algorithms, the trade-off between exploration and exploitation

is reflected in the way the probability distribution (or the “model”) is updated.

The degree to which the new probability distribution (or “model”) is concentrated

around the best solutions identified so far reflects the relative emphasis on exploita-
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tion versus exploration. The implication is clear: if too little emphasis is put on

exploration, the globally optimal solution may not be identified. Increasing the

allocation of computational effort to exploration increases the chances of identify-

ing a globally optimal solution but it may also slow down convergence. In many

model-based algorithms, the relative emphasis on exploitation versus exploration

varies over time so that computational effort on exploitation slowly overtakes

computational effort on exploration. As in most single-thread algorithmic designs

for global optimization, convergence speed is sacrificed for the sake of guaranteeing

sufficient exploration.

In this chapter, we propose a new algorithmic design for global optimization with

multiple interacting threads. In this design, each thread implements a model-based

search with an emphasis on exploitation that does not vary over time. Efficient

exploration is achieved by means of a simple acceptance-rejection rule preventing

duplication of search efforts amongst different threads. We show that the speed of

convergence (both in the worst case and on average) increases exponentially in the

number of threads. Thus, in the proposed algorithmic design, exploration does not

need to be traded off over time with exploitation.

The structure of this chapter is as follows. In Section 2.2, we describe the

single-thread model-based search and provide an illustration with the cross-entropy

method. We also develop a Markov chain model where the state space is the set of

all locally optimal solutions and characterize the speed of convergence of the single-

thread model-based algorithm. The worst-case convergence rate is determined by

the second largest eigenvalue associated with the transition matrix. Intuitively, the

second largest eigenvalue is associated with the “worst” possible combination of

locally optimal solutions that could be identified. The average speed of convergence

is characterized in terms of clusters (an aggregation of states). A cluster posits a

difficult computational challenge to the model-based search whenever new models

generated by the algorithm (given a state in the cluster) do not vary significantly.

Thus, the speed of convergence of the single-thread model-based search deteriorates
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in problems with many difficult clusters whose basins of attraction are relatively

large. In Section 2.3, we introduce a new interactive (multi-thread) version of

the search method subject to an acceptance-rejection test aimed at preventing

duplication on search effort. We show that the speed of convergence (both worst-

case and average) increases exponentially in the number of threads. Finally,we

offer concluding comments in Section 2.4. Numerical examples are provided in

Chapter 3.

2.2 Single-Thread Model-Based Search

Consider a general optimization problem min{f(x) : x ∈ Ω} where f : Rn 7→ R

is continuous and Ω ⊂ Rn is such that X∗ = arg min
x∈Ω

f(x) is well-defined. Assume

further f has N locally (non-globally) optimal solutions, say X = {x1, x2, . . . , xN},

that is,

xi ∈ arg min
x∈B(xi)

f(x)

where B(xi) ⊆ Ω will be defined below. The multi-start method that we shall

describe later makes use of a local search algorithm which identifies xi ∈ B(xi) as

output if the initial input given to the algorithm is an element of the set B(xi) ⊂ Ω.

Let ` : Ω→ Ω denote the map defined by `(x) = xi if x ∈ B(xi). We refer to B(xi)

as the “basin of attraction” of solution xi under the local search algorithm used.

We make the following assumption on the quality of the local search algorithm:

Assumption 2.2.1.
⋃

xi∈X∪X∗
B(xi) = Ω

Let J t ∈ 2X∪X
∗

denote the “state” at iteration t > 0, i.e. the subset of the set

of locally (and globally) optimal solutions identified in the first t local searches

conducted. Let G denote a class of probability distributions with support Ω. Let

g(J t) ∈ G denote the probability distribution (or “model”) associated with the

state of information J t. The basic iteration of the single-thread model-based search

is as follows:



10

1. A sample, say y, from g(J t) is drawn and a local search algorithm is launched.

The resulting state is

J t+1 = J t ∪ `(y)

2. A new model g(J t+1) ∈ G is selected by a designated rule.

2.2.1 Illustration: Cross-Entropy

One possible implementation of step (2) in the single-thread model-based search

algorithm is as follows. Given state J t+1:

1. A reference probability density function h(x; J t+1) is computed. For example,

such a reference probability density function can be defined as

h(x; J t+1) =
I(f(x), J t+1)U(x)

E[I(f(x), J t+1)U(x)]

where U is the uniform probability density function on Ω and

I(f(x), J t+1) =


1 f(x) ≤ min

x∈Jt+1
f(x) + ε

0 f(x) > min
x∈Jt+1

f(x) + ε

with ε > 0. Note this reference density posits more mass around the best

local solutions in J t+1.

2. The model is updated by selecting a distribution that minimizes the cross-

entropy with respect to the reference distribution:

g(J t+1) = arg min
g∈G

∫
Ω

ln
h(x; J t+1)

g(x)
h(x; J t+1)dx

2.2.2 Markov Chain Model

Abusing notation, we denote by J∗ the class of states with a globally optimal

solution, i.e. J ∈ J∗ if and only if J ∩X∗ 6= ∅. The transition probability matrix
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for the single-thread model-based search model can be partially specified as follows.

For J ∈ 2X ,

P (J ′ | J) =



∫
B(x)

g(x; J)dx J ′ = J ∪ {x} x /∈ X∗∫
B(X∗)

g(x; J)dx J ′ ∈ J∗

1−
∑

x∈X∪X∗\J

∫
B(x)

g(x; J)dx J ′ = J

(2.1)

Remark. The definition of the transition probability matrix in Equation (2.1)

requires the assumption that all “models” g ∈ G are integrable over the solution

space Ω. This assumption is done for ease of exposition, i.e. when the underlying

optimization problem is combinatorial in nature, a similar transition probability

matrix can be obtained with a proper definition of “basins of attraction” associated

to the given local search algorithm.

2.2.3 Convergence

Before we proceed with our analysis we make the following additional assump-

tions:

Assumption 2.2.2. Given any g ∈ G, g(x) 6= 0 for x ∈ Ω almost surely.

In other words, every basin of attraction has a chance to be visited when the

algorithm generates samples at each iteration.

Assumption 2.2.3. P (J∗| J∗) = 1

Note this last assumption is satisfied when the new model is selected according

to the minimization of cross entropy with respect to the reference distribution and

min
x∈X

f(x)− f(x∗) > ε

We start our analysis of convergence with the following lemma.

Lemma 2.2.1. (a) The transition matrix P is upper triangular.
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(b) The eigenvalues are λi = P (Ji| Ji) for Ji ∈ 2X and P (J∗ | J∗) = 1.

(c) The Markov chain {J t : t > 0} has only one absorbing state J∗.

Proof. Let |J | denote the number of distinct locally optimal solutions for J ∈ 2X .

We can endow 2X with the partial order “�” defined as follows: J � J ′ if and

only if |J | > |J ′|. This partial ordering is extended as follows. For states with the

same number of distinct locally optimal solutions, we select an arbitrary ordering.

Finally, we posit J∗ � J for any J ∈ 2X (recall that J∗ denotes the class of states

with a globally optimal solution, i.e. J ∈ J∗ if and only if J ∩X∗ 6= ∅). Consider

now transition matrix P on the partially ordered state space 2X ∪ J∗. Based on

Equation (2.1), PJ2,J1 = P (J2 | J1) might be non-zero only when either J2 ⊇ J1

or J2 = J∗. Thus, P is upper-triangular and hence all the eigenvalues are entries

along the diagonal. By construction, PJ∗,J∗ = 1, i.e. J∗ is an absorbing state and

in light of Assumptions 2.2.1 and 2.2.2 all states J ∈ 2X are transient.

It follows from Lemma 2.2.1 that the second largest eigenvalue is

λ[2] = max
J∈2X

∑
x∈J

∫
B(x)

g(x; J)dx

The second largest eigenvalue of the transition matrix has a close relationship

with the convergence rate of the Markov chain represented by the transition matrix.

Let πt(J) = Pr(J t = J | J0) be denoted as the distribution at time t, and π as the

stationary distribution. It follows from Lemma 1 that

πt(J∗)→ 1

Moreover, it can be shown that the convergence rate of the Markov chain is

upper-bounded by the second largest eigenvalue of its transition matrix.
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Theorem 2.2.1. Assume all the eigenvalues of the transition matrix P are distinct.

There is a constant C > 0 such that

∣∣πt(J∗)− 1
∣∣ ≤ Cλt[2]

Proof. The proof is similar to that of [6] for a simplified implementation of a

genetic algorithm. Assume the Markov chain has K states, where the last state

in order is J∗. By hypothesis, the transition matrix P is diagonalizable. In other

words,

P =
K∑
i=1

λiviu
T
i

where vi and ui are the right and left eigenvectors of λi. Similarly, we will obtain

P t =
K∑
i=1

λtiQ
(i,t)

where Q(i,t) is a matrix completely determined by P . So at time t, the distribution

πt(L) for state L is

πt(L) =
∑
J

P t
J,Lπ

0
J =

∑
J

K∑
i=1

λtiQ
(i,t)
J,L π

0
J

Hence, it follows

1− πt(J∗) =
∑
L6=J∗

πt(L)

=
∑
L6=J∗

∑
J

K∑
i=1

λtiQ
(i,t)
J,L π

0
J

=
∑
L6=J∗

∑
J

1 ·Q(K,t)
J,L π0

J +
∑
L6=J∗

∑
J

K−1∑
i=1

λtiQ
(i,t)
J,L π

0
J

≤ C1 + C2

∣∣λ[2]

∣∣t
≤ C

∣∣λ[2]

∣∣t



14

2.2.4 Average Performance

Given a state J (i.e. a set of locally optimal solutions), the stopping time τ(J)

is defined as follows:

τ(J) = inf{t ≥ 0| J t ∈ J∗, J0 = J}

Note that E[τ(J)] can be regarded as a measure of the average performance of the

algorithm. In order to quantify the average performance, we first introduce the

definition of “clusters” of states.

Definition 2.2.1. Let η > 0. An η-cluster, say J , is a set of states such that for

every state J ∈ J and any x ∈ B(J̄):

|g(x; J)− g(x; J̄)| ≤ η

where J̄ which we shall refer to as the representative state of J is defined as:

J̄ =
⋃

x∈J,J∈J

{x}

In words, a cluster is a set of states giving rise to similar “models” (e.g.

sampling distributions over the domain Ω). The total information associated to

locally optimal solutions in a cluster is encapsulated in the state J̄ . In other words,

for any state J ∈ J , by definition, we have J ⊆ J̄ .

Note also that the definition of a cluster trivially implies a single-solution state

{x} ∈ 2X is a η-cluster. Hence, there exist a group of clusters whose basins of

attraction partition the feasible region Ω\B(X∗). Let J 1,J 2,. . . ,J K(η), K(η) > 0

denote the coarsest group of clusters whose basins of attraction partition the

feasible region, i.e.

Ω\B(X∗) =

K(η)⋃
k=1

B(J̄k)

where J̄k is the representative state of cluster J k respectively.
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Definition 2.2.2. For each cluster J k, k ∈ {1, . . . , K(η)}, we define λk = P (J̄k |

J̄k) where J̄k is the representative state of cluster J k.

Recall that P (J | J) is the probability that the model-based search will not

yield a new locally optimal solution after one iteration given that the current

state is J . In this sense, Definition (2.2.2) provides a measure of how likely it is a

model-based search could “get stuck” in a cluster of states.

Definition 2.2.3. Let m(B) denote the Lebesgue measure of set B ⊆ Ω. For each

cluster J k, k ∈ {1, . . . , K(η)}, we define

θk =
1− λk

m(B(J̄k))

A model-based search is likely to “get stuck” in a cluster J̄k with a high value

λk. However, getting stuck in such cluster is unlikely when it has a relatively small

basin of attraction m(B(J̄k)). In this sense, θk provides a measure of the difficulty

posed by different clusters for a single-thread model-based search algorithm. As we

shall see in the following result, the average performance of a model-based search

can be extremely poor when all clusters (in the coarsest partition) have low values

of θk.

Theorem 2.2.2. Let η > 0 and {J 1,J 2,. . . ,J K(η)} the coarsest set of η-clusters.

Assume the initial state J0 is obtained by randomly choosing an initial point in Ω.

The average performance (expected number of iterations needed to identify globally

optimal solutions) is bounded below as follows:

E[τ(J0)] ≥ m(Ω)−1

K(η)∑
k=1

1

θk − η
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Proof. Let Jkmin = arg minJ∈J k E[τ(J)]. It follows that

E[τ(Jkmin)] = 1 +
∑

Jk
min⊆J ′∈J k

P (J ′ | Jkmin)E[τ(J ′)] +
∑

Jk
min⊆J ′ 6∈J k

P (J ′ | Jkmin)E[τ(J ′)]

≥ 1 +

 ∑
Jk
min⊆J ′∈J k

P (J ′ | Jkmin)

E[τ(Jkmin)]

≥ 1 +
(
λk − ηm(B(J̄k))

)
E[τ(Jkmin)]

Hence,

E[τ(Jkmin)] ≥ 1

1− λk + ηm(B(J̄k))

The expected stopping time from a uniformly randomly chosen initial (singleton)

state J0 is then lower bounded as follows:

E[τ(J0)] ≥
K(η)∑
k=1

m(B(J̄k))

m(Ω)
min
{x}∈J k

E[τ({x})]

≥
K(η)∑
k=1

m(B(J̄k))

m(Ω)

1

1− λk + ηm(B(J̄k))

= m(Ω)−1

K(η)∑
k=1

1

θk − η

Theorem (2.2.2) reveals that the average performance of the single-thread model-

based search is closely linked to the numerical values of θk, k ∈ {1, . . . , K(η)}. Note

that each θk is decreasing in the eigenvalue λk and in the Lebesgue measure of the

basin of attraction m(B(J̄k)). Hence, this result indicates that the single-thread

model-based search will exhibit poor performance in problems in which (i) the

coarsest group of clusters have large basins of attraction and (ii) the model-based

search is likely to “get stuck” in each cluster (i.e. high values λk). This observation

is similar to the characterization of “difficult” problems in the context of global

optimization of energy structures (see [7]) in terms of “multiple basin structures” .
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2.3 Interactive Model-based Search

Our analysis has identified conditions in which a single-thread model-based

approach to global optimization may yield poor performance. In what follows we

consider a multi-thread interactive implementation of model-based search that is

shown to speed up convergence. To formalize, suppose that a total of M parallel

threads implement the model-based search and their current state is denoted by

Ji, i ∈ {1, . . . ,M} and the corresponding model is gi(J) where J = (J1, . . . , JM).

Let us denote by KL(gi(J), g`(J)) the Kullback-Leibler divergence:

KL(gi(J), g`(J)) =

∫
Ω

ln
g`(x;J)

gi(x;J)
g`(x;J)dx

2.3.1 Acceptance-Rejection Test

Let η > 0. The new model for the i− th thread, say g′i(J), is defined as

g′i(J) =

 g(x; Ji) KL(gi(J), g`(J)) > η ∀` 6= i

g̃(x; Ji) Otherwise
(2.2)

where g̃(x; Ji) is defined as

g̃(Ji) ∈ arg min
g∈G

∫
B(Ji)

g(x)dx (2.3)

We can now formally describe the interactive model-based search as follows.

Let J t = (J t1, J
t
2, . . . , J

t
M ) denote the joint state. To summarize, the basic iteration

in the interactive model based search algorithm is described as follows:

1. A sample, say yi, from g(J ti ) is drawn and a local search algorithm is launched

for thread i ∈ {1, . . . ,M}. The resulting state is

J t+1
i = J ti ∪ `(yi)
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2. A temptative new model g(J t+1
i ) ∈ G is selected. The acceptance-rejection

test is implemented and the resulting model is given by g′i(J
t+1) as described

in (2.2).

Note that threads are independent as long as they are far away from one another.

However, if any two threads are too close to each other, they reject their own

models derived from the current updating rule and turn to a model which in a

sense guarantees improved exploration. The acceptance-rejection test formalizes

the need to diversify search activities when current search activities by two or more

threads are too similar. As we shall show, the interactive parallel implementation

of the model-based search method is guaranteed to obtain a faster convergence

rate, both in the worst case and on average.

Remark. In practice, we may randomly select a new model g̃i(J
t+1) from the

family of parameterized probability functions to avoid using Equation (2.3) directly.

This provides an easier way to expectedly allocate the search efforts for diversity.

2.3.2 Convergence Speed

Recall that the worst-case performance is characterized by the second largest

eigenvalue of the transition matrix. In the analysis of average performance, we

derived a lower bound increasing in the eigenvalues of the representative states for

the coarsest group of clusters. These results suggest that in order to speed up the

convergence of a model-based search the eigenvalues must be reduced. As we shall

show, the interactive implementation of the model-based search has this property.

Theorem 2.3.1. Let J = (J1, . . . , JM) be a state for model-based search with M

threads. If λJ and λ′J denote the corresponding eigenvalues of transition matrix

under independent and interactive threads respectively, then

λJ ≥ λ′J
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Moreover, assume λ[2] is the second largest eigenvalue of the single-thread model-

based search.

(λ[2])
M ≥ λ′J

Proof. We consider the case when M = 2. For any state J = (J1, J2), eigenvalues

of independent and interactive parallel implementation, λ and λ′ respectively, are

λJ = P ((J1, J2) | (J1, J2)) =

 ∫
B(J1)

g1(J1)dx


 ∫
B(J2)

g2(J2)dx


λ′J = P ((J1, J2) | (J1, J2)) =

 ∫
B(J1)

g′1(J1)dx


 ∫
B(J2)

g′2(J2)dx


respectively. Because of the acceptance-rejection test, it follows that

λ′J =



[ ∫
B(J1)

g(x; J1)dx

][ ∫
B(J2)

g(x; J2)dx

]
KL(g1(J), g2(J)) > η,

KL(g2(J), g1(J)) > η[ ∫
B(J1)

g̃(x; J1)dx

][ ∫
B(J2)

g(x; J2)dx

]
KL(g1(J), g2(J)) < η,

KL(g2(J), g1(J)) > η[ ∫
B(J1)

g(x; J1)

][ ∫
B(J2)

g̃(x; J2)dx

]
KL(g1(J), g2(J)) > η,

KL(g2(J), g1(J)) < η[ ∫
B(J1)

g̃(x; J1)

][ ∫
B(J2)

g̃(x; J2)dx

]
KL(g1(J), g2(J)) < η,

KL(g2(J), g1(J)) < η



20

It follows that

λ′J ≤ max


∫

B(J1)

g(J1)dx,

∫
B(J1)

g̃(J1)dx


×max


∫

B(J2)

g(J2)dx,

∫
B(J2)

g̃(J2)dx


≤

 ∫
B(J1)

g(J1)dx


 ∫
B(J2)

g(J2)dx


= λJ (2.4)

where the second inequality comes from Equation (2.3). So the eigenvalue as-

sociated with an arbitrary state J = (J1, J2) is always no greater than that of

the independent version. Let λ[2] denote the second largest eigenvalue of the

single-thread model based search. With M threads, Inequality (2.4) implies that

λ′J ≤ λJ =
M∏
k=1

λJk ≤ (λ[2])
M

where Jk = (J1, J2 . . . , JM). Hence, all eigenvalues of the interactive model based

search are bounded above by (λ[2])
M . The speed of convergence is exponentially

increasing in the number of threads.

2.4 Conclusion

Model-based algorithms for global optimization have received increased atten-

tion recent years. In a model-based algorithm, an optimal solution is estimated

at each iteration by sampling candidate solutions from a sequence of probability

distributions (or “models”) over the feasible region.

In this chapter, we have analyzed a general class of (single-thread) model-based

search algorithms. We have showed the speed of convergence (worst-case) is associ-
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ated with the “worst” possible combination of locally optimal solutions that could

ever be identified. The average speed of convergence is characterized in terms of

clusters (aggregation of states). A cluster posits a difficult computational challenge

to the model-based search whenever new models generated by the algorithm (given

a state in the cluster) do not vary significantly. Thus, the speed of convergence of

the single-thread model-based search deteriorates in problems with many difficult

clusters whose basins of attraction are relatively large.

We have introduced a new interactive (multi-thread) version of the model-based

search method. Interaction takes place through a relatively simple acceptance-

rejection. We show that the speed of convergence (both in the worst case and

on average) is shown to be increasing exponentially in the number of threads.

Numerical examples will be provided to illustrate these results in Chapter 3.
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Chapter 3

Numerical Examples for Global

Optimization

In this chapter, a number of numerical examples are performed to demonstrate

the performance of the interactive model-based search method presented in Chapter

2 with regard to various global optimization problems. We start with a well-

illustrated two-dimensional function who contains two separate valleys. Next

we move forward to two high-dimensional global optimization problems. The

objective functions used in this chapter are generally considered as hard global

optimization problems in that they contain many local minima, usually preventing

common search methods from discovering the global minimum efficiently. We

will compare the algorithm’s performance with regard to each of these classical

global optimization problems by varying the quantity of computation budgets, i.e.

threads.

3.1 Langermann’s Function

We first consider a reversed two-dimensional Langermann’s function on the

two-dimensional solution space of [0, 10]× [0, 10] in the form of

f(x̄) = −
m∑
i=1

ci

e−‖x̄− A(i)‖2

π cos
(
π ‖x̄− A(i)‖2) (3.1)
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where

m = 5 A =

3 5 2 1 7

5 2 1 4 9


T

c =

(
1 3 5 2 3

)T

By saying “reversed” Langermann’s function, we mean putting a negative sign

in front of the original form of Langermann’s function, as did in Equation (3.1).

The reversion switches all the local maxima to local minima. It helps the simulation

process much easier in that our algorithm description is based on minimization

(though it also works in maximization).
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Figure 3.1: Langermann’s Function (m=5)

As shown in Figure [3.1], Langermann’s Function mainly contains two vast

valleys separate from each other throughout the solution space. General model-

based algorithms will be easily trapped into the valley that does not contain the

globally-optimal solution. It happens mostly when the initial starting points are

located in that valley. In fact, a model-based algorithm who concentrates its

searching efforts heavily on exploitation is much more likely to wind up with
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identifying as the globally-optimal solution the local minimum in the wrong valley.

This makes it highly difficult for a model-based algorithm to efficiently discover

the global minimum on average, and hence impairs the algorithm’s performance.

The reason behind is the landscape of Langermann’s function, i.e., two separate

but large valleys each of which contains some potential local minima.

We use our interactive model-based algorithm present in Chapter 2 in search

of the global minimum of the reversed Langermann’s function. The parameterized

family of models used in the numerical example is the class of multivariate normal

distributions with the fixed covariance matrix I. I is the identity matrix. So the

varying parameter is the mean of a multivariate normal distribution. At each

iteration the algorithm will select an appropriate mean and hence an appropriate

multivariate normal distribution from the parameterized family of model. The

specific rule to select the “optimal” mean in this numerical example is to minimize

the cross-entropy with respect to the reference distribution presented in Section

2.2.1. To ease the computational burden, as we mentioned in Chapter 2, when the

original model is rejected according the acceptance-rejection test, another model

is randomly selected from the class of sampling distributions. Finally, the local

search used in the simulation is BFGS Quasi-Newton method(details can be found

in [8]).

Figure [3.2] compares the average performance (based on 1000 simulations)

using the parallel implementation of acceptance-rejection test with regard to the

reversed Langermann’s function. The y-axis in Figure [3.2] represents the lowest

value of the Langermann’s function the algorithm identified until the current

iteration. Note that the y-axis is moved up to make the global minimum equal to

zero for a better and clearer visualization.

The figure depicts the average performance of the algorithm when the com-

putational budget is 1 2, 3, 5 and 10 thread(s) respectively. When there is only

one thread working on the global optimization problem, the convergence speed is

shown to be relatively slow without any interaction. It actually fails to discover
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Figure 3.2: Performance with Several Threads

the correct globally-optimal solution within 30 iterations (It does converge and will

discover the correct global minimum, expectedly, within 100 iterations. The result

is not attached in the dissertation). The single thread was to search the best results

using intensive local exploitation on the solution space. Because of the feature

of landscape of Langermann’s function, i.e., the existence of two distinguishing

but large valleys, too much exploitation is likely to lead the thread into the wrong

valley and is hard to jump out in shortage of sufficient effort to exploration.

It can be seen that the average performance is significantly improved when the

algorithm used two threads instead of one single thread. This change allows the

interactive parallel implementation present in Section 2.3 to play a vital role in

the balance of exploration and exploitation. As a result of interaction between

threads, the lowest value of the objective function identified by the algorithm using

2 threads is generally improved more than 100% compared to the one using a single

thread at the same iteration.

With more computational budgets (such as 3, 5 and 10 threads), Figure [3.2]

shows that the average speed of convergence is furthermore improved. When the

number of threads increased to 10, the algorithm will discover the correct global
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minimum within less than 10 iterations.

In the parallel implementation using the acceptance-rejection rule, different

threads manage to avoid too much “exploitation”, i.e. concentrating search ac-

tivities in a promising cluster with a relative large basis of attraction. With the

number of threads increase, the expected performance is also improved in that

more potential bad clusters are avoided. Hence, the average performance of the

algorithm performed in Langermann’s function is improved with the number of

threads increased.

The experiments also suggest that the marginal improvement decreases in the

number of threads. There is a huge performance jump from a single-thread imple-

mentation to an interactive two-thread implementation. However, the improvement

in performance using even more threads is not as dramatic as the case changing

from one to two. It demonstrates how important to introduce the interaction

implementation into a general model-based algorithm. The performance improve-

ment does not merely comes from increase in the computational budgets, but is

largely caused by the introduction of thread interaction in the purpose of making

a balance between exploitation and exploration.

3.2 High-dimensional Global Optimization Problems

To see how the interactive model-based algorithm works on high-dimensional

solution spaces, we launched our search method on a 10-dimensional solution space.

The high-dimensional objective functions used for simulations are specified as

follows.

3.2.1 Ackley’s path function

The well-known Ackley problem is a minimization problem, originally defined

for two dimensions ([9]). It has been generalized to high dimensions in [10]. The

objective function, called Ackley’s path function, is a highly multi-modal objective
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function, containing many small valleys of local minima throughout its entire

solution space.

The specific form of a 10-dimensional Ackley’s path function is

f(x̄) = 20 + e− 20e−0.2
√

1
n

∑10
i=1 x

2
i − e

1
n

∑10
i=1 cos(2πxi) x̄ ∈ [−10, 10]10 ⊆ R10

The function’s global minimum is known to be f(x∗) = 0 with x∗ = (0, . . . , 0).
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Figure 3.3: Average Performance with regard to 10-Dimensional Ackley’s Function

In this numerical example, the parameterized family of models used is the

class of multivariate normal distribution with fixed covariance matrix 1
5
I. I is the

identity matrix. The local search used for each thread is BFGS Quasi-Newton

method (details can be seen in [8]). The specific rule to select the “optimal” mean

in this example is to minimize the cross-entropy with respect to the reference

distribution presented in Section 2.2.1. Also, to ease the computational burden,

as we mentioned in Chapter 2, when the original model is rejected according the
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acceptance-rejection test, another model is randomly selected from the class of

sampling distributions.

Figure [3.3] demonstrates the results based on 1000 independent simulations. As

mentioned, the y-axis represents the lowest value of the objective function identified

by the algorithm so far. The Figure basically depicts the same trends as in the

two-dimensional Langermann’s function in Section 3.1. First, the convergence rate

is slow with only one single thread but boosts up radically when the number of

threads increases to 2. Second, the performance of the algorithm continues to be

improved with the increase in the number of threads.

We also include Figure [3.4] which adds error bars on each point in Figure

[3.3]. Those vertically straight lines are the standard deviations of the average

performance based on 1000 simulation results. It can be seen that the variances

are reduced by increasing the computational budget, i.e., the number of threads.
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Figure 3.4: Performance Variance with regard to 10-Dimensional Ackley’s Function
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3.2.2 Griewank’s function

The 10-dimensional Griewangk’s function is also highly multi-modal. It contains

many valleys of widespread local minima, because of the introduction of cosine

modulation. The Griewank’s function is first brought up by A. O. Griewank in

[11].

The exact form of Griewangk’s function is as follows.

f(x̄) =
10∑
i=1

x2
i

4000
−

10∏
i=1

cos

(
xi√
i

)
+ 1 x̄ ∈ [−10, 10]10 ⊆ R10

The function’s global minimum is f(x∗) = 0 with x∗ = (0, . . . , 0).
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Figure 3.5: Performance with regard to 10-Dimensional Griewangk’s Function

The parameterized family of models used in the simulation is the class of

multivariate normal distribution with fixed covariance matrix 4I, where I is the
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identity matrix. The results are based on 200 independent simulations. All the

other algorithm configuration is the same as that present in Section 3.2.1.

Figure [3.5] shows the trend of the average performance of the interactive

model-based search method launched with regard to Griewank’s function. It can be

seen from the figure that it also follows the basic three trends (see generalization in

Section 3.2.1) shown by the 2-dimensional reversed Langermann’s function, though

the speed of convergence is much slower compared to the low-dimensional case in

all the quantities of threads.

3.2.3 Conclusion

Due to the “curse of dimensionality”, high-dimensional global optimization

problems turn out to be much harder to solve than those in low-dimensional

solution spaces. However, it can be seen from our high-dimensional numerical

examples of Ackley’s path function as well as Griewank’s function that, the parallel

implementation with acceptance-rejection test of the model-based search method

works smoothly and well on high-dimensional solution spaces. In both examples,

the algorithm is able reach the true global minimum given sufficient computational

budgets (the convergence of Griewangk’s function is not completely attached). Es-

pecially working with each other interactively by information exchange, the search

threads are likely to identify the correct global minimum within several iterations.

Both examples suggest that the algorithm’s performance is also improved dramati-

cally by varying the quantity of threads. In particular, the speed of convergence

of the interactive model-based search method raises intensively compared to the

single-thread algorithms. It suggests that exploration on high-dimensional spaces

is of great importance to help discover the globally-optimal solution in an efficient

way. Also, the madrigal improvement in performance diminishes when the number

of threads keep increasing.
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Chapter 4

Trust Dynamics in Peer-to-Peer

Networks

4.1 Introduction

Advances in information and communications technologies have enabled the

proliferation of significant amounts of data in a large number of research areas (see

for example [12] and [13]). In today’s world, computer networks and cell phones

pervade the daily activities of millions. As networked sensors are increasingly being

embedded in day to day activities, the amount of data available is growing at a

pace that tests the limits of state-of-the-art techniques for data analysis (see for

example [14]). The many challenges posed by increasing amounts of data have

been labeled in the media as “big data”.

Decentralization is an important characteristic of a large number of “big data”

networks (see [15]). While the lack of centralized authority allows for scalability, it

also makes it hard to guarantee data is reliable (see [16]). For example, Ripeanu

analyze performance of the Gnutella protocol, a typical P2P architecture, to

demonstrate how the topology graph could impair its reliability (see [17]). Trust

or reputation systems have naturally evolved as a potential scalable solution to

ensuring reliable data (see for example, Resnick et. al. (2000) [18]). However,

there is very little theoretical support for the effectiveness of trust or reputation
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management systems (see for example, Sun et. al. (2006) [19] and Jiang and Baras

(2006) [20] for notable exceptions).

In this chapter we analyze the dynamics of trust in a social network of data-

analyzing agents. A number of algorithms have been proposed and studied to

allocate trust amongst agents in the computer science community (see [21]). To

facilitate the presentation of ideas we work in a stylized setting in which each agent

is fitting a statistical model for an independent and identically distributed stream

of data. There are two types of agents: a “good” agent is one that would correctly

fit a model (asymptotically) while a “bad” agent is unable to do so. Agents do

not know a priori whether they are “good” or “bad”. In this framework, a “bad”

agent can be interpreted as resulting from either a genuine, random fault or from

deliberate malicious behavior.

Periodically, agents share their estimates with their neighbors in a network

and individually evaluate the “trustworthiness” of each neighbor’s estimate. The

choice of trustworthiness has an impact on whether detection on malicious nodes

will succeed or not (see [22] and [23]). In our work, we consider a simple rule in

which every individual agent would downgrade an neighbor’s trustworthiness if

his/her estimate differs significantly from most other estimates available to him.

We show that the resulting reputation system will converge given the condition

that each neighbor’s estimate is asymptotically consistent, i.e., either to agree with

the majority in a long run, or to constantly differ from most other estimates. We

then implement the rule to a more specific form feasible for practical purposes.

We show that, using this implementation of “wisdom of crowds”, each individual

agent will successfully identify all the malicious nodes in his/her neighborhood

with probability one when the majority of his neighbors are well-behaved.

Besides analysis of each agent’s individual behavior, we also consider how the

entire network structure could play a role in network’s vulnerability. To achieve

this goal, we analyze a widely-observed category of network structure: scale-free

networks. We show the conditions when a scale-free network will survive completely,
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together with when it will encounter an entire breakdown, on average. In addition,

the number of agents that survived after a random attack is also approximately

provided.

Our work is related to a recent literature in consensus with faulty interactions

(see [24]). However our work differs mainly in how to identify malicious agents

present in a network. Pasqualetti’s work is to manipulate inputs of agents in

order to discover inconsistent behavior of faulty nodes. In our work, the mali-

cious intention will be found through information exchange and trust allocation.

Moreover, knowledge of the entire network is necessary for the algorithms used

for local detection in Pasqualetti’s paper,; while the conditions we propose to

ensure successful detection only requires each agent to observe his/her neighbors,

regardless of the entire network structure. In a sense, detection and identification

characterized in this chapter is more suitable for decentralized networks, where the

knowledge of the entire network’s connectivity is not completely available.

Our work also differ from the paper by Sundaram et. al. (2008) ([25]). Sundaram

et. al. propose parity space methods to accomplish attack detection via linear

iterations; while we develop policies of trust allocation in order to identify malicious

nodes. By re-allocating trust on neighbors, each individual node will utilize up-to-

date information from their neighbors to better observe any sign of misbehavior

in the neighborhood. This difference allows us to characterize robustness of some

specific networks in a more detailed way. In particular, we analyze agents’ behavior

in scale-free networks and provide conditions when the entire network would survive

from an attack or encounter a breakdown.

The structure of this chapter is as follows. We characterize the reputation

system in decentralized networks in Section 4.2. In particular, we provide the

conditions under which the reputation system will be convergent. In Section 4.3, we

analyze scale-free network’s robustness and provide the conditions when scale-free

networks will expectedly identify all existing malicious nodes and when they will

fail to detect any potential attack. In the last section, we compare the number
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of remaining good agents after an attack with respect to three types of network

structure: grids, scale-free networks and small-world networks. The number of

remaining good agents after an attack reflects the vulnerability of the underlying

type of network structure. We show that scale-free networks are most robust to

cyber attacks amongst the three types of network structures.

4.2 The Model

Consider a set N = {1, . . . , N} of agents which are estimating a parameter

θ ∈ {0, 1} based upon independent experimentation. Let µtn = Pr(θ = 1|Ht
n)

where Ht
n = σ(X1

n, . . . , X
t
n) and {X1

n, . . . , X
t
n} is an i.i.d collection of random

experiments conducted by agent n ∈ N . Agents are of two types. A “good” agent

will asymptotically produce the correct parameter estimation, that is,

µtn → 1θ with probability 1

where 1θ = 1 if θ = 1 and 1θ = 0, otherwise. On the contrary, a “bad” agent is

bound to produce incorrect, inconsistent estimations so that there exists an η > 0

|µtn − 1θ| > η eventually

Agents are connected so that we may use a directed graph G(V,E) to represent

the network topology. Agents do not know their neighbors’ type. They hope to

benefit from information shared by neighbors, at the risk of potential exposure to

“bad” agents who may provide wrong opinions. We now introduce a procedure to

merge estimates of agents in a manner consistent with the “wisdom of the crowd”.

4.2.1 Merge Estimates

Assuming estimates are broadcasted at every time period t ≥ 0, first we

consider the following linear combination rules for merging estimates from neighbors.
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Assume the set of an agent i’s neighbors is Ni = {1, . . . , Ni} = {j | eji = 1}. The

merged estimate ωti of agent i at time t is

ωti =

∑
j∈Ni

βt−1
ij ωt−1

j∑
j∈Ni

βt−1
ij

where βtij is a weight assigned to neighbor j by agent i at time t. The ruls of

updating weights will be described in Section 4.2.2.

In other words, let ωt = (ωt1, . . . , ω
t
N)T be the merged estimates at time t, it is

updated as

ωt = At−1ω
t−1

where N ×N matrix At = (atij) is defined as

atij =


βtij∑
k∈Ni

βtik
j ∈ Ni

0 j /∈ Ni

4.2.2 Update Weights

It can be seen that the higher value atij gets, the more confidence agent i

puts on this neighbor j. With that being said, it is of importance to design a

good mechanism of updating weights in the purpose of eliminating inaccurate

information as well as enhancing valuable opinions.

We introduce a stochastic reputation scoring scheme to update weights of

neighbors at each time t based on the concept of “wisdom of the crowd”. It is

involved in two steps. At time t

Step 1 Partition the set of neighbors Ni into two subsets N+
i (t) and N−i (t), i.e.,

N+
i (t) ∩N−i (t) = ∅ and N+

i (t) ∪N−i (t) = Ni (4.1)

In particular, we assume the size of N+
i (t) is no smaller than that of N−i (t).
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Step 2 Given non-negative functions ht(x), gt(x), update βtij as follows

βtij =


ht(βt−1

ij ) j ∈ N+
i (t)

gt(βt−1
ij ) j ∈ N−i (t)

(4.2)

The specific way to classify the neighbors of agent i into N+
i (t) or N−i (t) is flex-

ible and can even be dependent on previous information upon time t. Nevertheless,

we need two conditions to ensure convergence.

Condition 4.2.1. For every neighbor j, it satisfies either

P

(
∞⋂
t=T

{j ∈ N−i (t)}

)
→ 1 as T →∞ (4.3)

or

P

(
∞⋂
t=T

{j ∈ N+
i (t)}

)
→ 1 as T →∞ (4.4)

The condition, in some sense, reflects the requirement of information consistency.

Since the types (“good” or “bad”) of neighbors are determined, it is expected that

neighbors are likely to provide similar opinions in the long run given that they are

of the same type . Hence, a neighbor will frequently appear in either N+
i (t) or

N+
i (t), but not both asymptotically.

Furthermore, the way to increase or decrease weights is represented by functions

ht or gt respectively. These functions are also flexible and can be time-varying.

However, we do need an intuitive requirement on the weight-updating functions:

Condition 4.2.2. The non-negative function ht defined in Step 2 is increasing.

Moreover, assuming a series of {at} is defined by at+1 = ht(at), {at} is convergent

for any initial value in the positive domain of h0

Condition 4.2.3. The non-negative function gt in Step 2 is decreasing. Assuming

a series of {bt} is defined by bt+1 = gt(bt), {bt} is convergent for any initial value

in the positive domain of g0



39

The conditions on weight-updating functions play a role to eliminate the

influence from neighbors who are in the minority in the long run, as well as to

enhance the trustworthiness of the neighbors who consistently agree with the

majority.

4.2.3 Convergence

We show that, under the conditions present in Section 4.2.2, the weights

associated with neighbors will converge, regardless of the details of information

classification and the functions used for weight updating.

Theorem 4.2.1. {βtij}, the sequence of neighbor j’s weights assigned by agent i,

will converge under Condition (4.2.1), (4.2.2) and (4.2.3).

Proof. Assume neighbor j satisfies Expression (4.4), we have

P
(

lim
t
sup{j ∈ N−i (t)}

)
= 1− P

(
lim
t
inf{j ∈ N+

i (t)}
)

= 1− lim
N
P

(
∞⋂
n=N

{j ∈ N+
i (t)}

)

= 0

It shows that neighbor j will be classified into set N−i (t) for only finitely many

times. It implies there exists a T1 such that j ∈ N+
i (t) for all t > T1. Due to

(4.2) and the assumption on ht, we conclude that limt→∞ β
t
ij = H. Similarly, we

conclude that limt→∞ β
t
ij = 0 as long as neighbor j satisfies Expression (4.3). So

βtij converges.

Condition (4.2.1) may be allowed to relaxed into either

Condition 4.2.4. For every neighbor j, either given δ > 0 , it satisfies

P
(
j ∈ N−i (t)

)
≥ δ eventually (4.5)
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or it satisfies

P

(
∞⋂
t=T

{j ∈ N+
i (t)}

)
→ 1 as T →∞

or

Condition 4.2.5. For every neighbor j, either given δ > 0

P

(
∞⋂
t=T

{j ∈ N−i (t)}

)
→ 1 as T →∞

or

P
(
j ∈ N+

i (t)
)
≥ δ eventually (4.6)

We propose two corollaries that could relax Condition (4.2.1) with the require-

ment of more assumptions on weight-updating functions.

Corollary 4.2.1. Assuming ht(x) = x, the weight sequence {βtij} will be convergent

if neighbor j satisfies Condition (4.2.4) and (4.2.3).

Proof. Assume neighbor j satisfies Inequality (4.5). Then there exists a T0 such

that P (j ∈ N−i (t)) ≥ δ for all t > T0. Construct an “imaginary” agent r in

the following way: at time t > T0 this agent will be classified into N−i (t) with

probability δ. Then the series of events {r ∈ N−i (t)}t>T0 are independent and∑
t>T0

P
(
{r ∈ N−i (t)}

)
=∞. By applying the second Borel-Cantelli lemma ([26]),

it follows

P
(

lim
t
sup{rt ∈ N−i (t)}

)
= 1

Note that P
(
{j ∈ N−i (t)}

)
≥ P

(
{r ∈ N−i (t)}

)
= δ for all t > T0. Then we have

P
(

lim
t
sup{j ∈ N−i (t)

)
= 1

which implies that neighbor j will be classified into set N−i (t) for infinitely many t.

Note that neighbor j’s weight βtij is unchanged if j ∈ N+
i (t) but will be deducted

based on gt if j ∈ N−i (t). Then P (limt sup{j ∈ N−i (t)}) = 1 implies limt β
t
ij = 0

under Assumption (4.2.3). The other case is directly from Theorem (4.2.1).
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Similarly, we have another relaxation as follows. Just as the previous corollary,

it propose an exact form of the weight-deduction function gt in order to relax

Condition (4.2.1).

Corollary 4.2.2. Assuming gt(x) = x, the weight sequence {βtij} will be convergent

if neighbor j satisfies Condition (4.2.5) and (4.2.2).

4.2.4 Illustration

There are various ways to implement the set partition and to choose the score-

updating functions in Section 4.2.2. One approach to illustrate the concept of

“wisdom of the crowd” is as follows.

For example, at each iteration t, each agent n produces a sample estimate θ̃tn

such that

θ̃tn =


1 with probability µtn

0 with probability 1− µtn

For each agent i’s neighborhood, let

At0(i) = {n ∈ Ni| θ̃tn = 0} At1(i) = {n ∈ Ni| θ̃tn = 1}

Then define the majority set and the minority set such that

N+
i (t) =


At0 |At0| > |At1|

At1 |At0| ≤ |At1|

N−i (t) =


At1 |At0| > |At1|

At0 |At0| ≤ |At1|

(4.7)

It is obvious to see that this definition of partition on Ni satisfies the equations

(4.1) in Step 1. Similar definition can be easily made when the true state of θ is

θ = 0.
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As for the weight-updating function used for lowering the weights of minority

in Step 2, we simply apply

ht(βt−1
ij ) = βt−1

ij and gt(βt−1
ij ) = αβt−1

ij for some α ∈ (0, 1)

They clearly satisfy Assumption (4.2.2) and (4.2.3).

In this scenario, we show that the merged estimates are convergent, and the

limits are consistent with the opinion of the majority given a complete network.

Theorem 4.2.2. ωt, the vector of the merged estimates, converges to 1θ w.p. 1.

as long as the majority are “good” agents and the network is fully connected.

Proof. For simplicity, we assume the true state of θ is θ = 1. Since the network is

fully connected, it is reasonable to concentrate on any single agent i. Define

E = {n ∈ Ni| lim
t→∞

µtn = 1}

F = {n ∈ Ni|
∣∣µtn − 1θ

∣∣ > ε, eventually}

Since the number of neighbors is finite, there exists a uniform T1 such that for

t > T1

µtj < 1− η

for j ∈ F . And similarly, given ε > 0, there exists a uniform T2 such that for t > T2

µtk > 1− ε

for k ∈ E. Note the majority of neighbors are “good”, i.e., |E| > |F |. Hence, for

a“bad” agent j′ ∈ F

P
(
j′ ∈ N−i (t)

)
≥
∏
k∈E

µtk
∏
j∈F

(
1− µtj

)
≥ (1− ε)|E| η|F |
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for t > max{T1, T2}. Consider δ = (1− ε)|E| η|F |, then any “bad” agent in the

neighborhood satisfies Inequality (4.3) in Condition 4.2.1. Now for a “good” agent

k′ ∈ E, also note that the partition of N−i (t) and N+
i (t) is independent at each

time. Hence,

P

(
∞⋂
t=T

{k′ ∈ N+
i (t)}

)
=
∞∏
t=T

P
(
k′ ∈ N+

i (t)}
)
≥
∞∏
t=T

∏
k∈E

µtk ≥
∞∏
t=T

(1− ε)|E|

when T ≥ max{T1, T2}. Since ε is arbitrary, it follows that

P

(
∞⋂
t=T

{j ∈ N+
i (t)}

)
→ 1 as T →∞

i.e., any good agent satisfies Inequality (4.4) in Assumption 4.2.1. Therefore,

Corollary 4.2.1 implies that lim βtij = 0 if j ∈ F and lim βtik = βk if k ∈ E. Then

the merged estimates ωt are convergent to 1θ

4.3 Robustness Analysis in Scale-Free Networks

Given a network G = (V,E) of size N , assume each node is likely to be malicious

with equal probability q, the question naturally arises how a well-behaved node in

the network will be affected by those potential bad nodes using the implementation

present in Section 4.2.4.

First of all, it is mindful to point out that whether or not a node will succeed to

detect malicious behavior could be a random variable. However, based on Theorem

4.2.2, node i will find out all of his bad neighbors with probability 1 if and only if

di + 1 > 2pi (4.8)

where di is the degree of node i and pi is the number of bad nodes connected to

node i.
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Now we discuss the condition that a node will expectedly detect all of its

malicious neighbors given a scale-free network.

4.3.1 Distributions of Degrees and Malicious Nodes

Assume a scale-free network is generated by Barabasi-Albert procedure ([27])

using a complete network with N0 initial nodes. The procedure adds a new node

with ∆m(∆m ≤ N0) links (that will be connected to the nodes already present

in the system) each time until the desired network size N is reached. How each

link of the new node is constructed follows the preferential attachment, i.e., the

probability with which a new node at time t will be connected to node i is
dti∑
dtj

.

Assume dti is node i’s degree at time t, then for i > N0, we define

dti =


0 t < i−N0

∆m t = i−N0

(4.9)

As for i ≤ N0, it is obvious

d0
i = N0 − 1 (4.10)

because the initial network is complete.

Lemma 4.3.1. Expectation of the number of node i’s bad neighbors, pti, is equal

to expectation of node i’s degree dti at the same time, multiplied by the probability

of a node to be malicious, q, i.e.,

E[pti] = qE[dti] (4.11)

Proof. According to the preferential attachment, the expectation of node i’s degree

dt+1
i at time t+ 1 conditioning on the previous degree dti is as follows

E[dt+1
i | dti] = dti

(
1−Dt

i

)∆m
+
(
dti + 1

) (
1−

(
1−Dt

i

)∆m
)

= dti + 1−
(
1−Dt

i

)∆m
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where Dt
i :=

dti
N0(N0−1)+2∆mt

is the probability that node i is connected to the newly-

added node N t for each link attachment (totally ∆m links). Using Expression

(4.9) and (4.10) as initial values, the degree expectation is

E[dt+1
i ] = d

max{0,i−N0}
i + E

 t∑
j=max{0,i−N0}

(
1−

(
1−Dj

i

)∆m
) (4.12)

where

d
max{0,i−N0}
i =


∆m i > N0

N0 − 1 i ≤ N0

Since each newly-added node could be bad with probability q as assumed, the

expected number of bad neighbors of node i at time t+ 1 conditioning on dti and

pti is

E
[
pt+1
i | dti, pti

]
= pti + q

(
1−

(
1−Dt

i

)∆m
)

Note the initial values of pti are p
max{0,i−N0}
i = qd

max{0,i−N0}
i because each node

already presenting in the system is likely to be bad with probability q as well.

Then, it concludes that

E[pt+1
i ] = p

max{0,i−N0}
i + qE

 t∑
j=max{0,i−N0}

(
1−

(
1−Dj

i

)∆m
) = qE[dt+1

i ]

4.3.2 Reliability of Scale-Free Networks

By Inequality (4.8) in the lemma, node i will expectedly detect all his malicious

nodes if the desired network size N is reached (note N = T +N0) if

E[dTi ] + 1 > 2E[pTi ]
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Using Equation (4.11), we get

(2q − 1)E[dN−N0
i ] < 1

It reaches the conclusion that node i will expectedly detect all the malicious

neighbors when the network size is N = T +N0 if

q ≤ 1

2
(4.13)

or

E[dN−N0
i ] <

1

2q − 1
q >

1

2
(4.14)

where E[dN−N0
i ] can be evaluated from Equation (4.12).

Thus, the characteristics, especially preferential attachment, of a scale-free

network topology enables us to propose a theorem that provides the conditions under

which the network will succeed or fail. Moreover, it also gives an approximation

on the number of good nodes that will survive after a malicious attack.

Theorem 4.3.1. Assume a scale-free network of size N is generated by BA pro-

cedure with the initial complete network of size N0. Also assume the total link

each new node adds to the system, ∆m, is no more than N0. Given the malicious

rate q (the probability that a node is malicious), all the nodes in the network will

expectedly succeed to detect all their malicious neighbors if

q <
1

2N
+

1

2
(4.15)

When q ≥ 1

2N
+

1

2
, the expected number of nodes that will detect all their malicious

neighbors is approximately

M = 2N∆m(∆m+ 1)

d 1
2q−1

e−1∑
k=∆m

[(k + 2)(k + 1)k]−1 (4.16)
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Especially, the network is expected to fail to detect any malicious node if

q ≥ 1

2∆m
+

1

2
(4.17)

Proof. Assume the degree distribution sequence is h(k), i.e., the number of nodes

with degree k is h(k)N . Obviously h(k) = 0 when k < ∆m or k > N . Condition

(4.14) indicates, when q > 1
2
, the total number of nodes that will expectedly detect

all their malicious neighbors is

M :=

d 1
2q−1

e−1∑
k=1

h(k)N =

d 1
2q−1

e−1∑
k=∆m

h(k)N (4.18)

It implies two extreme cases. First, M = 0 when ∆m > d 1
2q−1
e − 1. Second,

M = N , i.e. the the total number of nodes that can detect malicious nodes equals

the network’s size, when N ≤ d 1
2q−1
e − 1. Due to Inequality (4.13) and (4.18),

the two extreme cases result in Inequality (4.15) and Inequality (4.17). As for

Equation (4.16), notice the fact (see [27]) that a scale-free network generated by

BA procedure will approximately have a degree distribution sequence

h(k) =


2∆m

∆m+ 1

(k + 2)(k + 1)k
k ≥ ∆m

0 k < ∆m

Then, Equation (4.16) can be deduced from Condition (4.18).

Theorem 4.3.1 suggests several implications of a scale-free network’s vulnerabil-

ity. First, a scale-free network is relatively robust in that it is expected to detect

any malicious node if the probability each node becomes bad is less than
1

2N
+

1

2
,

which is pretty costly for a hacker.

Second, a high-degree node (usually called a “hub” in a scale-free network)

is more likely to fail to detect his malicious neighbors compared to small-degree

nodes according to Inequality (4.14). That is to say, hubs are more vulnerable than
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other nodes in a scale-free network. To reduce the chance of network breakdown,

the condition suggests that it requests more security strengths on hubs.

Third, vulnerability of a scale-free network will be reduced if connectivity (∆m)

increases. Thus, robustness can still be improved by raising network’s connectivity

even if the size of the network and the malicious rate are both fixed.

4.4 Network Vulnerability

Not only does Theorem (4.2.1) provide conditions on convergence but it also

sheds insight into how network topology plays a role in network’s resilience to

malicious hacking.

To characterize the aftermath malicious nodes may cause, we first introduce

the concept which defines the influence of malicious nodes to the opinion forming

of a network. Due to the complexity of network topology and information ex-

change, it is possible that whether a “good” node will be affected by his malicious

neighbor(s) remains stochastic. For example, a “good” node becomes“bad” with

one-half chance and stays “good” with another one-half chance if exactly half of

his neighbors(including himself) are malicious nodes in a fully-connected network

using the implementation described in Section 4.2.4. Thus, the opinion evolution

converges to a random variable other than a deterministic limit. For simplicity,

we focus on the “good” nodes whose opinions will deterministically switch to bad

ones.

Definition 4.4.1. The smallest bad component S(G,BM ) of a network G = (N , E),

given the set of M initially bad agents BM = {n ∈ {n1, . . . , nM} ⊆ N | |µtn − 1θ|9

0}, is the set of agents whose limits of opinions will deterministically be bad. That

is, S(G,BM ) = {n ∈ N | |ωtn − 1θ|9 0}, where µtn and ωtn are individual estimates

and merged estimates of agent n at time t, respectively.

It can be seen that the size of S(G,BM) provides a lower bound of how a

malicious attack may impair the network. Furthermore, the size of the smallest
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bad components varies in the location and the size of initially bad agents assigned

to the network. That is, BM will determine the value of S(G,BM) if the network

is fixed. Although the size is as important as the location, the number of initially

bad agents an attack is able to assign to the network is somewhat restricted due to

cost budgets and other realistic concerns. It is natural for a hacker to choose the

best locations of malicious nodes to optimize the aftermath of an attack if the size

of nodes he can attack is fixed. That is, given a network G, a hacker is interested in

finding out an optimal form of attack B∗M such that S(G,B∗M ) = maxBM
S(G,BM )

when M is fixed.

Given a network G, we denote the largest size of the smallest bad components

under M initially malicious nodes as

S∗(M) = S(G,B∗M) = max
BM

S(G,BM) (4.19)

We use Expression (4.19) to characterize the vulnerability of the given network G

in terms of how many nodes will be attacked definitely and eventually given M

initially “bad” agents.

Using the implementation described in Section 4.2.4, we run simulations on

three types of networks to see how a network’s structure may have impacts on its

vulnerability to a potential attack. Each network contains 25 agents. The types of

these networks are lattice, small-world and scale-free, respectively. The small-world

network is generated by the Watts-Strogatz (WS) procedure ([27]) from a 5-regular

network with rewiring probability p = 0.2. The scale-free network is generated

by Barabasi-Albert (BA) procedure ([27]) from a 3-node complete network with

∆m = 2.

Figure (4.1) depicts the simulation results by showing The relationship between

M and S∗(M) for the three types of network structure.

When the number of malicious nodes (M ≤ 4 << 25) is much smaller than the

network size, the scale-free network is slightly more vulnerable than both the small-

world network and the lattice network. It arises from the notable characteristic
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Figure 4.1: Network Vulnerability under Three Types of Network Structure

of scale-free networks, called “preferential attachment”, which results in a small

amount of nodes with a degree that greatly exceeds the average. Thus, attacking

those “hubs” directly will affect more nodes in their neighborhood, compared to

small-world networks and lattice networks. There does not exist those “hubs” in

the latter two.

However, when the total number of malicious nodes increases, things turns

around. As we can see, the lattice network is most vulnerable when facing massive

attacks, followed by the small-world network. The scale-free network turns to be

the most robust one. The results are consistent with other researchers’ observations

on Internet breakdowns ([28] and [29]).

There are several aspects that contributes to the simulation results. The first

aspect is randomness of a network. In graph theory, randomness of a network is

represented by the network’s entropy:

I =

max degree∑
i=1

hi log(hi)

where h = (hi)i=1,...,max degree is the degree sequence distribution of a network.

Scale-free networks and small-world networks are generally considered as more

“random” than a structured network, such as a lattice, in that they have a relatively
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higher bits of entropy. For example, in our simulation the entropies of three types

of networks are as follows:

lattice small-world scale-free

entropy 1.0100 1.5651 1.6697

It can be seen that both the small-world network and the scale-free network

contain more bits of entropy than the lattice, which makes them less structured.

A less structured network is hard to be attacked in that it generally does not lose

its connectedness if several nodes do not behave properly. Connectedness to other

nodes in a network is the key for information exchange and aggregation. Failure

that occurs in a more random network is less likely to have a dramatic impact on

the entire network. Thus, both small-world networks and scale-free network are

more robust than grids.

The second aspect that distinguishes the behavior of scale-free network from the

other two is that a scale-free network’s degree distribution asymptotically follows

a power law. This characteristic of scale-free networks allows nodes to be arranged

hierarchically. On one hand, most nodes have negligible impacts on the entire

network because of their small degrees. On the other hand, even if several hubs are

malicious, they will break the network into several isolated components amongst

which information exchange becomes unavailable. Thus, rumors stop spreading

out because of shortage of the network connection. This property of scale-free

networks significantly contributes to their robustness to malicious attack.

At last, we need to point out that the individual degree of nodes is not the

critical part to the network vulnerability. For instance, the lattice network of 25

nodes has an average degree of 4.2, while the small-world network is of 5, and the

scale-free network is of 2.9. In fact, it is more likely to be how values of degrees are

distributed among the nodes of a network that makes main contributions to network

robustness. As we can see, entropy is based on the degree sequence distribution,

indicating randomness of a network. Also, a scale-free network’s extraordinary

behavior against malicious attacks also comes from its degree hierarchy. With that
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being said, the network robustness is determined by how nodes are connected with

each other throughout the network.
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Chapter 5

Case Study: Cyber-security Application

to Wind Farms

Acknowledgments: This chapter would not have been possible without the work

accomplished by Nathan Trantham, the graduate student in the department of

Systems and Information Engineering at University of Virginia. Mr. Trantham

explored the mechanics of general wind farms and run a vast number of simulations

with the implementation of the distributed model-based algorithm discussed in

Chapter 4. I share the credit of my work, especially which is present in this chapter,

with Nathan Trantham.

5.1 Background

A wind turbine is a device designed to capture the kinetic energy available in

wind and then convert this energy to usable electrical energy through a generator

(see [30]). The operation of a wind turbine is based on the time averaged wind

speed. Wind speed is broken up into three regimes: below cut-in speed , allowable

wind speed, and above cut-out speed. When the averaged wind speed is below the

cut-in speed or above cut-out speed, the turbine is commanded to remain in an

idle state. When the wind speed is in between these thresholds, then the turbine

is free to spin and generate electricity (see [31]). Despite the insignificant time
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amount used in transitory states, it can be seen that a turbine is generally in one

of the two primary stationary states: the idle state and the generative state.

In a common offshore wind farm (e.g. the Horns Rev wind farm in Denmark),

a large number of turbines are grouped closely together (see [32]). The aggregate

nature of wind turbines within a wind farm gives rise to an interesting and complex

situation concerning the movement of wind through a wind farm. Temporary

disagreements in state amongst turbines could happen due to the natural stochastic

fluctuation in wind.

In a scenario where the initial wind speed is zero, as wind moves toward the

wind farm it first will reach the most upwind array of turbines. Once the wind

speed has surpassed the wind speed cut-in threshold for the generation state of

the turbines supervisory controller, then that first array of turbines will begin to

produce power. If the wind speed is near the threshold value, then the wind deficit

created by the operation of the first array of turbines will be sufficient to not allow

subsequent downwind arrays to operate. Only after the wind speed is high enough

to compensate for all of the wind deficits from wind turbine wakes will the entire

wind farm be in the generation state.

The finite-state machine structure of a wind turbines supervisory controller

and the spatiotemporal coherence of wind speed within a wind farm make our

model and the corresponding results present in Chapter 4 applicable to help detect

cyber-security attack targeting at a wind farm. In particular, a dynamic reputation

scheme is advantageous in this application in that the stochastic nature of the

dynamic system governing the states of the turbines (i.e. wind).

5.2 Trust Dynamics Algorithm

As mentioned in Section 5.1, we assume there are two states in which each

turbine could be: the idle state and the generative state. Each turbine will

determine which state to stay based on the wind speed it detects on a regular basis

and will switch between the two states when the wind speed changes.
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In addition, it will be assumed that the turbines within the wind farm are

spaced in a regular, grid-like manner as they are in virtually all large offshore wind

farms (e.g. Horns Rev and Nysted). The eight turbines surrounding a central

turbine will be defined as that turbines neighborhood and will be used for local

collaboration and interaction. Turbines that reside on an edge of the farm will

interact with the adjacent turbines that do exist. The set of the neighbors of

turbine i is denoted by Ni. Figure (5.1) visually depicts the neighborhoods of node

5 and 10.

Figure 5.1: illustration of the neighborhood definition in a wind farm

Also, each turbine i has a reputation score γti bounded between 0 and 100

that is effectively an indicator of how often it agrees in state with the states of

turbines nearest in physical proximity. Turbines initially are assigned a perfect

reputation score of 100, but have their scores manipulated at regular intervals

which are the same as those when they determine their states on a regular basis.

A threshold reputation score is defined such that, when a particular turbine’s

reputation score drops below the said threshold, it will be deemed anomalous,

indicating that a particular turbine has operated in such a suspicious manner in

context to the operation of the turbines located physically nearby. In this way, the

locally collaborative reputation scheme relies on the “wisdom of crowds” effect:
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if a turbine is consistently in a different state from its neighboring turbines, then

there is reason to suspect malfunctioning of that turbine.

Assuming turbine i’s current state at time t is Sti ∈ {idle, generative}, define

st+1
i = γti +

∑
j∈Ni

ctj

where cj is neighboring turbine j’s contribution defined as

ctj =


bγtj
100

Stj = Sti

pγtj
100

Stj 6= Sti

we will update turbine i’s reputation score by

γt =


100 if sti > 100

sti if 0 < sti < 100

0 if sti < 0

The reputation scoring updating scheme indicates that a turbine’s reputation

score at time t + 1 is its reputation score at time t plus the contributions from

its neighbors. A neighboring turbine’s contribution is the product of the nominal

penalty or bonus value times its scaled reputation score at previous iteration. By

weighting the contribution of a neighbor turbine according to its reputation score,

the efficacy of untrustworthy turbines (those with low reputation scores) is reduced.

The values of nominal bonus b and penalty p can be unequal and are up to the

user to set. For a more aggressive algorithm that can detect corruption quicker,

but with the tradeoff of a higher false detection rate, the nominal penalty value

can be set to a higher value than the nominal bonus value. The absolute and

relative values of the nominal bonus and penalty values affect the behavior of the

algorithm and this behavior is discussed more in the next section.
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5.3 Simulation

To test the performance of the trust dynamics algorithm under various wind

farm configuration, it is necessary to develop a realistic simulation for wind farms.

In particular, the spatiotemporal profile of wind turbine states is required to

complete the simulation configuration. The profile requires two basic information:

a time series of wind speed and the spacial orientation of all of the turbine within

a wind farm.

5.3.1 Simulation Development

In this simulation, we use the Horns Rev wind farm in Denmark as the test

bed for the simulation of the trust dynamics algorithm. In the Horns Rev wind

farm, the turbines are located in an 8 row × 10 column rectangular grid with 560

meters of spacing ([32]), as illustrated in Figure [5.2].

Figure 5.2: Illustration of Wind Turbine Spacing

As for the time series of wind speed for each turbine, we first generate a

time series of the free stream wind speed prior to interaction with the wind farm.

According to the data provided by [33]., wind speed in the Horns Rev wind

farm is characterized by the Weibull distribution in Figure [5.3]. Because of the

autocorrelation nature of wind, we use HOMER, a software tool developed by

the National Renewable Energy Laboratory (NREL), to generate an appropriate

and autocorrelated time series of wind speed as an input to the simulation. Then
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we modified the time series of free stream wind speed for each turbine. The

modification is based on two facts. First, the time series must be temporally

shifted to compensate for the time required for wind to propagate through the

wind farm. Therefore, the wind speed time series for each wind turbine must be

shifted according to its location within the wind farm. Second, the wind speed

needs to be adjusted to compensate for the wind deficits caused by turbine wakes.

As discussed in Section 5.1, downstream turbines will experience a lower mean

wind speed than their upstream counterparts.

Figure 5.3: Weibull Distribution of Free Stream Wind Speeds

Taken into account these facts, a time series of wind speed for each turbine

will be modified based on the time series of free stream wind speed generated by

HOMER. And we use these as inputs for the simulation.

With the spatiotemporal profile of wind turbine states at hand, the trust

dynamics algorithm can be applied. Initially at the first time step, it performs

reputation score manipulations according to the algorithms details. Once the

algorithm completes a particular time slice, it stores the reputation information

and proceeds to the next time slice. This process is repeated iteratively until the

entire profile is complete or it reaches a user-defined stop criterion (e.g. stop the

simulation when X number of turbines have been identified).
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5.3.2 Simulation Results

A variety of attack scenarios were tested to display the algorithm’s behavior

in various corruption contexts. Specifically, the magnitude of the parameter shift,

location of corrupted turbines within the wind farm, and the quantity of corrupted

turbines were the test variables manipulated to display the algorithm’s performance

in a variety of attack scenarios. The simulation was run for 160 iterations (800

minutes) where each iteration is 5 minutes. For the simulation results presented

below, the algorithm’s nominal bonus and penalty values were 4 and 8, respectively.

The metrics presented to evaluate the algorithm’s performance are false positives

and false negatives.

Figure [5.4] demonstrates the algorithm’s baseline performance, i.e., there is no

corruption within the wind farm. The image on the right of Figure [5.4] depicts

the locations of corrupted turbines. Blue circles indicate non-corrupted turbines.

From the baseline simulation, it can be seen that when there are no corruptions to

the wind farm the algorithm produces no false positives or false negatives.

Figure 5.4: Baseline Simulation Results

Now we randomly generate 5 corrupted turbines within the wind farm, by

changing the wind speed cut-in threshold from 4m/s (normal) to 12m/s (corruptive).

Red squares in the right image of Figure [5.5] indicate the locations of corrupted

turbines. From the performance results, it can be seen that the first few time steps

produce 5 false negatives. This is normal behavior as it takes multiple iterations for

individual turbines to have their reputation score decremented past the corruption
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threshold score of 50. The additional false negative around the 60th iteration is

a result of turbines having the ability to regain trustworthiness. In other words,

turbines are not permanently deemed corrupt and are considered okay if their

reputation score increases pass the threshold. This property may not be desirable

in a real-world scenario, but was deliberately kept in for transparency and to

demonstrate the difficultly of deciphering between corruption and the stochastic

nature of wind.

Figure 5.5: Simulation Results from a Small Set of Corrupted Turbines

The next test is to vary the level of turbine corruption, i.e. the magnitude of

the parameter manipulation. A fixed topology of 4 columns of corrupted turbines

can be seen below in the right image of Figure [5.6]. A total of 8 simulations

were run where the corrupt turbines generation wind speed cut-in parameter was

varied from 6m/s to 20m/s in 2m/s increments. The count of false positives and

false negatives after 160 iterations is plotted against the corruption level in the

left image of Figure [5.6]. The algorithm produced a substantial amount of false

positives at the 6m/s corruption level and a few at the 8m/s level, but produced

none at higher levels of corruption. This is the expected trend because smaller,

more subtle parameter manipulations are more difficult to detect.

Now we change the number of corrupted turbines in our simulation. The

locations of the corrupted turbines were randomly assigned and the quantity

of corrupted turbines varied from 5 to 40 with increments of 5 turbines. The

manipulation of the generation wind speed cut-in parameter was held constant

at 12m/s. Figure [5.7] shows the history of false positives and false negatives for
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Figure 5.6: Simulation Results by Varing the Level of Corruption

each quantity of corrupted turbines. It can be seen that when 30 or more turbines

are corrupted there are false positives and negatives reported at every iteration.

The performance of the algorithm degrades as the number of corrupted turbines

increases, as illustrated in Figure [5.8]. The algorithm is founded on the idea

of “wisdom of the crowd”, so it is expected to perform poorly as the number of

corrupted turbines approaches 40 (half of the total number of turbines at Horns

Rev wind farm).

Figure 5.7: Simulation Results by Varying the Number of Corrupted Turbines

Lastly, we compare simulation results using various quantities and levels of

turbine corruptions to provide a more complete demonstration of the algorithm’s

performance . Figure [5.9] depicts the false positive and false negative counts after

160 iterations for 64 different simulation settings. The locations of the corrupted
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Figure 5.8: Simulation Results by Varying the Number of Corrupted Turbines

turbines were randomly generated and varied between 5 and 40 corrupted turbines.

At each of these quantities, the level of corruption was varied from 6m/s to 20m/s.

Congruous with results from before, the algorithm performs better when the

quantity of corrupted turbines is low and the level of corruption is high.

Figure 5.9: Simulation Results under 64 Different Simulation Settings

Remarks. The nominal bonus and penalty values used for the algorithm were

4 and 8, respectively. These values were chosen for the simulation tests because

they yielded reasonably good results, but should not be considered optimal values.

Manipulations to these values would affect detection time, detection probability,

false positive rate, and false negative rate. For instance, a small bonus and large

penalty would create a more aggressive algorithm. It would be aggressive in the
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sense that it could more quickly identify a corrupted turbine, but with the tradeoff

of a higher false positive rate. The exact values of the nominal bonus and penalty

would be user-specified according to the user’s desired algorithm characteristics.

5.3.3 Conclusion

The algorithm was test under various simulation environments where cyber-

attacks were emulated through parameter manipulations to turbine supervisory

controllers. It was found that it performed best when there were less than 30

corrupted turbines and the turbine’s wind speed cut-in parameter was altered to

a value of 10m/s or higher. When these conditions were present, the algorithm

properly identified all corrupted turbines and yielded zero false positives or false

negatives at the end of an 800 minute simulation. As the number of corrupted

turbines approaches 40 (half of the total number of turbines at Horns Rev), the

algorithm’s performance degrades and begins to yield increasingly more false

positives and false negatives. The algorithm is not applicable to situations when

half or more of the turbines are corrupted due to its reliance on the “wisdom of

the crowd” principle. When the magnitude of the wind speed cut-in parameter

manipulation is small (value changed to 10m/s or less), the algorithm’s performance

degrades as the corrupted value approaches the nominal value of 4m/s. As the

corrupted parameter value approaches the nominal parameter value, the corrupted

turbine’s state profile begins to more closely approximate the state profile that

would be generated if that turbine were not corrupted. This sheds insight into

why the algorithm has difficulty identifying turbines with subtle corruption. Based

on these results, it is reasonable to conclude that the trust dynamics algorithm

presented in this dissertation is a good option that could be used to help develop

cyber-security solutions for wind power systems.
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Chapter 6

Conclusion

People have been studying network structure for decades. And network structure

is by no means an isolated research area. On the contrary, a number of fields

of study require deep understanding of the underlying network topology. In this

dissertation, we show that in certain cases network structure is of more importance

than convention has it. Not only does it play a critical role in problems directly-

related to network topology, such as cyber security in decentralized sensor networks,

– which are intriguing problems in their own right, but it also provides an alternative

insight into those problems that might be implicitly formulated into the framework

of network structure, for example, global optimization.

By analyzing a general class of (single-thread) model-based search algorithms

for global optimization, we reveals that the speed of convergence (worst-case)

is associated with the “worst” possible combination of locally-optimal solutions

that could ever be identified. In light of this finding, we use the concepts of

function’s landscape network to characterize the average convergence speed. This

formulation smoothly allows a general global optimization problem to be fit into the

framework of network structure. In particular, the average speed of convergence is

characterized in terms of clusters (aggregation of states). A cluster posits a difficult

computational challenge to the model-based search whenever new models generated

by the algorithm (given a state in the cluster) do not vary significantly. Thus,

the speed of convergence of the single-thread model-based search deteriorates in
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problems with many difficult clusters whose basins of attraction are relatively large.

It suggests that the worst and average performance of model-based algorithms for

global optimization is highly linked to and can be characterized in terms of the

objective function’s landscape network.

We introduce a new interactive (multi-thread) version of the model-based search

method to balance the efforts between exploration and exploitation. Interaction

among multiple threads takes place through a relatively simple acceptance-rejection

test. We show that the speed of convergence in the worst case increases exponen-

tially in the number of threads.

We also provide a number of numerical examples (including hard high-dimensional

optimization problems) solved by the algorithm we proposed in Chapter 3. The

results illustrate that the interactive model-based algorithm works well not only in

low-dimensional solution spaces but also in high-dimensional solution spaces. The

average performance is greatly improved with the increase in the number of threads.

In particular, the improvement is radical when the number of threads is changed

from one to two. It suggests that it is highly recommended for problem solving to

take into consideration the interaction between threads. Interaction helps balance

the tradeoff between exploration and exploitation. Interaction amongst threads

also makes information exchange possible and thereafter becomes useful for the

identification of global minimum.

Unlike global optimization, we turn back to see a cyber-security problem directly

related to network topology in Chapter 4 and 5. The interactive feature of the

global optimization algorithm inspired us about the importance of information

exchange and aggregation. However, the process of information exchange can

be maliciously corrupted and even cause a severe security problem. We analyze

the dynamics of trust in a social network of data-processing agents. Each agent

is fitting into a statistical model for an independent and identically distributed

stream of data. To score the reputation of other agents, we consider a simple rule

in which every individual agent would downgrade an neighbor’s trustworthiness if
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his/her estimate differs significantly from most other estimates available to him.

We show that the resulting reputation system will converge given the condition

that each neighbor’s estimate is asymptotically consistent, i.e., either to agree with

the majority in a long run, or to constantly differ from most other estimates.

We implement the designated rule to a more specific form feasible for practical

purposes. We show that, using this implementation of “wisdom of crowds”,

each individual agent will successfully identify all the malicious nodes in his/her

neighborhood with probability one when the majority of his neighbors are well-

behaved.

Using this implementation, we also consider how the entire network structure

could play a role in network’s vulnerability. To achieve this goal, we analyze a

widely-observed category of network structure: scale-free networks. We show the

conditions when a scale-free network will survive completely, together with when it

will encounter an entire breakdown, on average. In addition, the number of agents

that survived after a random attack is also approximately provided. We also take a

glaze at other network topology, such as small-world networks and lattice networks.

Simulation results are illustrated to compare the robustness among various types

of network topology.

A more practical application, cyber security in wind farms, is studied using

the algorithm implementation presented in Chapter 4. We test the algorithm

performance under a simulation environment based on the real data resource

from the Horns Rev wind farm in Denmark. It was found that the algorithm

performed best when the number of corrupted turbines keep less than half of the

total number, and when the turbines wind speed cut-in parameter was altered

to a relatively high value. The simulation results are consistent with theoretical

analysis and demonstrate the effect of “wisdom of the crowd . Based on these

results, it is reasonable to conclude that the trust dynamics algorithm presented in

this dissertation is a good option that could be used to help develop cyber-security

solutions for wind power systems.



68

In a summary, this dissertation manages to analyze the implications of network

structure that could work in various fields of study. We propose two algorithms

to two distinct research areas. Both algorithms are designed and developed after

a careful examination on the underlying network structure of the problems. By

theoretical analysis and empirical examples, we demonstrate that the performance

of the algorithms is pleasant in their own scopes.
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