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One of the fundamental goals of nuclear physics is understanding the structure of each
type of subatomic particles that comprise matter and radiation. The two most basic
types of components for these particles are quarks and gluons, which act to bind the
quarks together in the form of a force called the strong interaction. [This is the short
caption|This is the long caption The most fundamental composite particles in nuclear
physics are hadrons, which can be composed of two or three quarks. Hadrons which
consist of three quarks are Baryons; two notable types of Baryons are protons and
neutrons which are the fundamental particles that comprise atomic nuclei and therefore
are the fundamental building blocks of matter. Hadrons which consist of two quarks
are mesons; this type of hadron forms from interactions in matter occurring at very
high energies. Currently, nuclear scattering experiments are used to probe the structure
of hadrons. The experiments consist of beams of leptons fired at designated target
hadrons; leptons are a type of spin % particle that like quarks and gluons has an unknown
substructure. The leptons used in the scattering experiments of interest for this analysis
are electrons and muons. Deep inelastic scattering (DIS) collisions are a critical example
of scattering experiments that use leptons fired at high enough energies at the target
hadrons to enable the user to determine the structure of these hadrons; the goal of
these computations is to create theoretical models based on DIS data. The DIS between
leptons and target hadrons can be probed using Quantum Chromo Dynamics, or QCD.
QCD is a field theory used to describe and analyze strong interactions which occur
among partons within the hadron. QCD provides a framework for separating the cross
section of DIS into components that can be computed by expansions of the strong
couplings and components that can only be computed by experiment, or the “soft”
parts. Artificial neural networks (ANNs) provide a novel method for modeling the
“soft” parts of DIS that eliminate user bias in making these models fit the experimental
data. ANNSs are sets of data organized into nodes, referred to as neurons, that take input
data models and use layers of neurons containing computational algorithms to transform
them into final sets of data neurons. Previous attempts to use ANNs to model DIS data
have used supervised networks, where the final data set was used as a guidance step
each time the ANN algorithm is used; this has led to success in eliminating bias in
theoretical models but has not made it possible to visualize and classify these models.
A new type of neural network, capable of dimensional reduction of data, without the
supervising process of the previous networks is needed to effectively model functions
describing nuclear scattering for a range of kinematics and to enable us to analyze the
models formed during the ANN algorithm based on their behaviors and quality of fit to
experimental data sets. The Self Organizing Map (SOM) is an ANN, using unsupervised
learning, that was successfully used to create such desired, unbiased theoretical models of
the Parton Distribution Functions, or PDFs. In addition, the SOM successfully showed

the relationship between how well the generated models fit data sets and the models’



ii

behavior by making it possible to observe how the PDFs cluster on two dimensional
maps. The SOM was particular useful in probing DIS models because this procedure
made it possible to analyze various conditions placed upon the models, in terms of
qualitative and quantitative analysis of the resulting cluster formation, and to determine

errors in model formations based on these clusters.



Contents

Abstract i
List of Figures v
List of Tables X
1 Introduction: Self Organizing Maps and their Intent . . . . . . . . 1
1.1 Introduction . . . . . . ... 1

1.2 Artificial Neural Networks . . . . . . .. .. .. ... ... . .... 1

1.3 Deep Inelastic Scattering . . . . .. .. ... ... 7

1.4 Quark Parton Model . . . . . . . .. ... 20

1.5 Perturbative QCD . . . . . . . . .. 25

2 SOMPDEF . . . . . e 31
2.1 PDFs . . . . e 33

2.2 SOM algorithm . . . . . . .. .. ... 34
2.2.1 Initialization . . . . . .. .. ... ... ... ... ... 34

2.2.2 Training . . . . . . . Lo 35

2.2.3 Mapping . . . . . . . e 36

2.3 Representing PDFs as SOMs . . . . .. ... ... ......... 36

2.4 Genetic Algorithm . . . . . .. .. ... oo 37

3 SOMPDF as a quantitative parametrization of DIS data . . . . . 39
3.1 Main program SOMPDF . . . . ... ... ... ... ... ... 40

3.2 Module Gpd Init . . . . . .. .. ... . 41

3.3 Module Gpd Gen . . . . . . . ... 42

3.4 Module Generators . . . . . . . . . . ... 42

3.5 Module Gpd Utils . . . . . . . . .. . 42

3.6 Module Gpd Parameters . . . . . .. ... ... .. 42

3.7 Module Gpd Functions . . . . . . . ... ... ... ... ... ... 42

3.8 Module Gpd Perturbs . . . . . . ... ... ... oL 43

3.9 Module Somkit . . . . . . ... 43

3.10 Module Som Utils . . . .. ... ... .. ... ... ... ... 43

3.11 Module Gpd Eval . . .. ... ... 43

3.12 Module Gpd Norm . . . . . ... ... ... ... ... 44

313 MPI . . . 44

3.14 SOMPDF flow Chart . . . . . ... .. ... ... ... ..... 47

3.15  New Initialization Method . . . . . . . .. ... ... ... ..... 48

3.16  Description of Structure Function Fit . . . . .. ... ... .. .. 52

3.17  PQCD Evolution: Moments . . . . . . ... ... ... ....... 53

iii



Contents iv

3.18 Map Features . . . . . ... L Lo 69
3.19  Experimental Data . . . . . .. ... ... o oL 70
3.20 Error Analysis . . . . . .. ... 70
3.21 Lagrange Error . . . . . . . .. ... Lo 76
4 SOMPDF PDF Fit Results . . . . . ... ... ... ... ....... 78
5 Large x Corrections . . . . . . .. .. ... .. L L oo 91
5.1 Target Mass Corrections . . . . . . . . . . . . . . . 91
5.2 Large x Resummations . . . . . . . ... ... ... .. ... 92
5.3 Averaging the Resonance Region with the Bernstein Moments . . 99
5.4 Large x Fit SOM . . . . . . . ... . 136
5.5 Large x % Cluster Analysis . . . . .. ... ... ... .. ..... 142
5.6 Large x quark and gluon Cluster Analysis . . . . . ... ... ... 147
5.7 % Cluster Quantification . . . . . . .. .. ... ... 151
5.8 % Dimensional Clusters and Error Extraction . . . . . .. .. ... 153
6 Conclusion . . . . . . . L 167

7 Appendix A . . . . L 173



List of Figures

1.1
1.2
1.3
1.4
2.1
2.2
3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3

44

4.5

4.6

4.7

4.8

4.9

An example of a supervised neural network. . . . . . .. ... ... ... . 2
An example of an unsupervised neural network. . . . . . . .. ... .. .. 6
A visualization of the SOM showing how data units in the neural network

are positioned on a two dimensional map. . . . . ... ... ... 7
A visualization a Deep Inelastic Scattering interaction . . . . . .. .. .. 9

An example of an envelope formed for the first iteration for Q2 = 150 GeV?2. 38
An example of an envelope formed for the 250" iteration for Q2 = 150

GeV2. 39
Structure function Ff* plotted vs x at Q2 values of 2.5,10,150 and 800 GeV? 55
Kinematic range of the DIS experimental data used in our analysis.. . . . 71
Kinematic range of the large x experimental data used in our analysis. . . 71
Illustration of the difference between the PDF uncertainty calculated with

the Lagrange multipliers method . . . . . . . . .. ... ... ... .... 75
Iustration of the behavior of the minimum fit value for the observable

FQP using the Lagrange Multiplier method. . . . . . . . . . . ... .. ... 76
x? values for each PDF on a 6 x 6 map for the initial GA iterations. . . . 79
x? values for each PDF on a 6 x 6 map for the final GA iterations. . . . . 80
The SOM for the SOMPDEF generated Structure Function, F5, compared

to the experimental values fora 6 x 6 map. . . .. ... ... ... .... 81

The SOMPDF fit results for number of iterations for a 6 x 6 map and
a 1 x 1 map with the equivalent PDFs generated per cycle and used in
tralning. . . . . . ..o 84
SOMPDF generated valence quark PDF (u, + d,) at Q? = 150 GeV?
along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF
[1] ABM [61] CT10 [58]. . . . o o o e 85
SOMPDF generated difference between the up and down sea quark quark
PDF (u—d ) at Q? = 150 GeV? along with the following collaboration
PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58]. . . . ... ... 85
SOMPDF generated up sea quark PDF @ at Q% = 150 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [B8]. o o 86
SOMPDF generated gluon PDF at Q? = 150 GeV? along with the fol-
lowing collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10
B8], . o o 86
SOMPDF generated strange quark PDF at @Q? = 150 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CTI10 [B8]. . o o oo 87



List of Figures vi

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

SOMPDF generated strange quark PDF at Q2 = 2.5 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [B8]. .« o o 87
SOMPDF generated valence quark PDF (u, + d,) at Q% = 2.5 GeV?
along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF
[1] ABM [61] CT10 [58]. . . . . o oo e e e 88
SOMPDF generated up sea quark PDF @ at Q% = 2.5 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CTI10 [B8]. .« o o 88
The pull of the SOMPDF generated Valence Quark PDF (u,+d,) relative
to collaboration PDFs is shown at Q? = 150 GeV? alongside the relative
error of the Valence Quark PDF. The collaboration PDF's are CJ Mid [59]
[60] NNPDF [1] ABM [61] and CT10 [58]. . . . . . . ... ... ... ... 89
The pull of the SOMPDF generated Valence Quark PDF (u,+d,) relative
to collaboration PDFs is shown at Q? = 2.5 GeV? alongside the relative
error of the Valence Quark PDF. The collaboration PDF's are CJ Mid [59]
[60] NNPDF [1] ABM [61] and CT10 [58]. . . . . . . ... ... ... ... 89
The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at @Q? = 150 GeV? alongside the relative error of the
gluon Quark PDF. The collaboration PDF's are CJ Mid [59] [60] NNPDF
[1] ABM [61] and CT10 [B8]. . . . . . . . .. o i 90
The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at Q? = 2.5 GeV? alongside the relative error of the gluon
PDF. The collaboration PDFs are CJ Mid [59] [60] NNPDF [1] ABM [61]
and CTI0 [58]. . . . . . oo 90
F} resonance moment integrands and corresponding Bernstein moment
points for Q% = 0.55 GeV2. . . . . ... 103
F} resonance moment integrands and corresponding Bernstein moment
points for Q% =2.5 GeV2. . . . . ... 103
F} resonance moment integrands and corresponding Bernstein moment
points for Q2 =3.4 GeV2. . . . . . ... 104
F} resonance moment integrands and corresponding Bernstein moment
points for Q2 =8.2 GeV2. . . . . . . ..., 104
FY values for the resonance region and Bernstein moments for Q? interval
(0.53:0.63) VS X« . v v vt 105
Ff values for the resonance region and Bernstein moments for Q? interval
(0.53:0.63) vs W2 . . . L 105
F.P values for the resonance region and Bernstein moments for Q? interval
(0.53:0.63) VST . . . .. 107
F.P values for the resonance region and Bernstein moments for Q? interval
(0.53:0.63) vs W2 . . . . L 108
Ff values for the resonance region and Bernstein moments for Q? interval
(0.8:1.2) VST . v v 108

5.10 F2P values for the resonance region and Bernstein moments for Q2 interval

(0.8:1.2) vs W2 L . L L 109
5.11 F2D values for the resonance region and Bernstein moments for Q2 interval

(0.8:1.2) VST . . o v i 109
5.12 FP values for the resonance region and Bernstein moments for Q)2 interval

(0.8:1.2) vs W2 . L 110



List of Figures vii

5.13 F2P values for the resonance region and Bernstein moments for Q2 interval
(15:22) VST o o v v o 110

5.14 FY values for the resonance region and Bernstein moments for Q2 interval
(1.5:2.2) vs W2 L L Lo 113

5.15 FP values for the resonance region and Bernstein moments for QQ? interval
(L5:2.2) VST . o v v 114

5.16 Ff values for the resonance region and Bernstein moments for Q? interval
(1.5:2.2) vs W2 . L L 115

5.17 F{ values for the resonance region and Bernstein moments for Q2 interval
(2.3:25) VST v v v i 115

5.18 F{ values for the resonance region and Bernstein moments for Q2 interval
(23:25) vs W2 L L 116

5.19 FP values for the resonance region and Bernstein moments for Q? interval
(2.3:25) VST o o v i 116

5.20 Ff values for the resonance region and Bernstein moments for Q2 interval
(23:25) vs W2 L L 118

5.21 F{ values for the resonance region and Bernstein moments for Q2 interval
(29:3.9) VST ... 120

5.22 F{ values for the resonance region and Bernstein moments for Q2 interval
(29:3.9) vs W2 . L. 120

5.23 FQD values for the resonance region and Bernstein moments for Q? interval
(29:3.9) VST ... 121

5.24 FQD values for the resonance region and Bernstein moments for Q? interval
(29:3.9) vs W2 . . . 122

5.25 FQP values for the resonance region and Bernstein moments for Q2 interval
(5.3:6.2) VST . . . 124

5.26 FY values for the resonance region and Bernstein moments for Q? interval
(5.3:6.2) vs W2 . . . 124

5.27 FP values for the resonance region and Bernstein moments for Q% interval
(5.3:6.2) VST . . v v 125

5.28 FP values for the resonance region and Bernstein moments for Q% interval
(5.3:6.2) vs W2 . . . 126

5.29 F2P values for the resonance region and Bernstein moments for Q? interval
(T.0:735) VST . . o oo s 126

5.30 F2P values for the resonance region and Bernstein moments for Q2 interval
(7.0:735) vs W2 . L Lo 128

5.31 FP values for the resonance region and Bernstein moments for Q2 interval
(7.0:735) VST . . . . o oo 129

5.32 FP values for the resonance region and Bernstein moments for Q? interval
(7.0:7.35) vs W2 . Lo 130

5.33 F{ values for the resonance region and Bernstein moments for Q2 interval
(T8 :88) VST v v v v ittt e 132

5.34 F{ values for the resonance region and Bernstein moments for Q2 interval
(7.8:88) vs W2 . . L 132

5.35 Ff values for the resonance region and Bernstein moments for Q2 interval
(T8 :8.8) VST v v v ittt e 133

5.36 F values for the resonance region and Bernstein moments for Q? interval
(7.8:88) vs W2 . . . 133



List of Figures viii

5.37

5.38

5.39

5.40

5.41

5.42

5.43

5.44

5.45

5.46

5.47

5.48

5.49

5.50
5.01
5.52
5.53
5.54
5.55

5.56
5.57
5.58
5.59
5.60
5.61
5.62
5.63
5.64

5.65

F2P values for the resonance region and Bernstein moments for Q2 interval

(9.2:10.2) VST . . . . .o 134
F} values for the resonance region and Bernstein moments for Q2 interval
(9.2:102) vs W2 . L Lo 134
FP values for the resonance region and Bernstein moments for Q2 interval
(92:10.2) VST . o v v 136
FP values for the resonance region and Bernstein moments for Q2 interval
(9.2:10.2) vs W2 . L L 137
The Ff" values for the resonance region and Bernstein moments for 169
resonance points . . . . ... Lo Lo o e e e 137

D
The initial generated envelope of I;ip theoretical curves for Q? = 2.5 GeV?
2
relative to the Bernstein moment points . . . . . . .. .. .. ... 138

D
Generated best fitting % curve fitting generated % values to the large x
2

datasets . . . . . . . e 139
x? lego plot for a 6 x 6 map is shown without Target Mass Corrections
and large  Resummations added for Q> =2.5 GeV? . . . . .. ... ... 140
x? lego plot for a 6 x 6 map is shown with Target Mass Corrections and
large © Resummations added for Q2 =2.5 GeV? . . . .. ... ... ... 141
% lego plot for a 6 x 6 map is shown without Target Mass Corrections
and large + Resummations added for Q> =2.5 GeV? . . . . .. .. .. .. 142
% lego plot for a 6 x 6 map is shown with Target Mass Corrections and
large © Resummations added for Q2 =2.5 GeV? . . . ... .. ... ... 143
g functions, without Target Mass Corrections and large  Resummations
added for Q2 =2.5 GeV? . . . . .o 144
% functions, with Target Mass Corrections and large z Resummations
added for Q2 =2.5 GeV? . . . . ..o 145

Plots of u, PDFs without large x Corrections added for Q? = 2.5 GeV?2. . 146
Plots of d, PDFs without large x Corrections added for Q? = 2.5 GeV?2. . 147
Plots of u PDFs without large z Corrections added for Q% = 2.5 GeV?.. . 148
Plots of d PDFs without large = Corrections added for Q% = 2.5 GeV2. . . 149
Plots of gluon PDFs without large 2 Corrections added for Q% = 2.5 GeV?2.150
Plots of strange PDFs without large 2 Corrections added for Q? = 2.5

GeV2. 151
Plots of charm PDFs without large 2 Corrections added for Q? = 2.5 GeV?.152
Plots of u, PDFs with large x Corrections added for Q% = 2.5 GeV2. . . . 153
Plots of d, PDFs with large 2 Corrections added for Q? = 2.5 GeV?2. . . . 154
Plots of u PDFs with large 2 Corrections added for Q? = 2.5 GeV2. . . . 155
Plots of d PDFs with large x Corrections added for Q? = 2.5 GeV2. . . . 156

Plots of gluon PDFs with large o Corrections added for Q% = 2.5 GeV?. . 157
Plots of strange PDFs with large 2 Corrections added for Q? = 2.5 GeV?2. 158
Plots of charm PDFs with large x Corrections added for Q% = 2.5 GeV2. . 159

The ratios % for Q> = 2.5 GeV?, on a two dimensional plot, large x
corrections vs no large x corrections. . . . . .. ... L oL 161
The ratios % for Q?> = 2.5 GeV?, on a two dimensional plot, large x

Resummations vs Target Mass Corrections. . . . . .. .. .. .. .. ... 162



List of Figures ix

5.66 The ratios % for Q> = 2.5 GeV?, on a two dimensional plot, large z

corrections vs no large x corrections with the 25 and 50" iterations
taken out. . . ... oL Lo 163

5.67 The ratios % for Q% = 2.5 GeV?, on a two dimensional plot, large = Re-

summations vs Target Mass Corrections with the 25" and 50" iterations
taken out. . . . ... L 164

5.68 The ratios % for Q? = 2.5 GeV?, on a color coded two dimensional plot,
large = corrections vs no large x corrections. . . . . . . ... ... 165

5.69 The ratios % for Q? = 2.5 GeV?, on a color coded two dimensional plot,
large x Resummations vs Target Mass Corrections. . . . . . . .. .. ... 166

5.70 Theoretical % curves, taken from a cluster of six PDF units with similarly
x? and % values without large x corrections. . . . . . . . .. ... ... .. 167

5.71 Theoretical % curves, taken from a cluster of six PDF units with similarly
x? and % values with large x corrections. . . . . . . . . ... ... ... .. 168

5.72 36 % curves, taken from a cluster of six PDF units with similarly x? and
g values without large x corrections. . . . . . . . . . .. ... ... .... 169

5.73 36 % curves, taken from a cluster of six PDF units with similarly x? and
% values with large = corrections. . . . . . . . . .. ..o L L. 170



List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
5.1
5.2

5.3

5.4

5.5

5.6

0.7

5.8

5.9

5.10

5.11

5.12

Code Module For Each Step . . . . . . . .. .. ... ... ... ...... 48
Parameter Set for v, PDF Equations . . . . . ... .. ... ... ..... 51
Parameter Set for d, PDF Equations . . . . . . .. ... ... .. ..... 51
Parameter Set for gluon PDF Equations . . . . . ... ... ... ..... 51
Parameter Set for w PDF Equations . . . ... .. ... ... .. ..... 52
Parameter Set for d PDF Equations . . . . . . .. .. ... ........ 52
Parameter Set for s PDF Equations . . . .. ... ... ... ....... 53
Free Parameters for the PDFs . . . . . . . ... oo o000 54
Moment Values . . . . . . . . . . . ..o 67
Fit Results for Various Dimensions . . . . . . . .. ... ... ... .... 70
Scattering Data Kinematics . . . . . . . . . . ... oL 70
Functional Form Approximating the Bernstein Moment Curve for various

Q% values . . . ... 102
Integral values of Resonance Data Points with Errors, Bernstein Moments

with Errors and Functional forms for various Q% values . . ... ... .. 102

Table of Q% = 0.55 GeV? Ff Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist,
which for this @2 value is (0.17,0.58). . . . . . . . .. ... .. 106
Table of @? = 0.55 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist,

which for this @2 value is (0.17,0.58). . . . . . . . ... ... ..., 106
Table of Q? = 1 GeV? FY Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 111
Table of Q% =1 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 111
Table of Q% = 1.8 GeV? Ff Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 112
Table of Q% = 1.8 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 112
Table of Q% = 2.5 GeV? Ff Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 117
Table of Q% = 2.5 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 117
Table of Q? = 3.4 GeV? Ff} Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 119
Table of Q? = 3.4 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . . 119



List of Tables xi

5.13 Table of Q? = 5.7 GeV? FY Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 123

5.14 Table of Q* = 5.7 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 123

5.15 Table of Q*> =7 GeV? FY Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 127

5.16 Table of Q*> =7 GeV? Ff Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 127

5.17 Table of Q? = 8.2 GeV? FY Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 131

5.18 Table of Q? = 8.2 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 131

5.19 Table of Q? = 9.6 GeV? FJ Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 135

5.20 Table of Q?> = 9.6 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to x values for which Resonance Data points exist. . 135



Acknowledgements xii

I would like to give thanks to everyone who has supported me in my endeavors, worked
with me and given me the tools I need to triumph in my journey towards the best
possible dissertation. This includes my parents, who instilled in me the innate value
of education and intellectual curiosity from the time I was old enough to read. They
provided me with guidance, love and support from my preschool years, and earlier, all
the way through to the end of my time at graduate school. My parents and others have
provided consistent emotional support and advice that has been particularly helpful for
me as [ navigated the academic world. In high school and college, I also received training
in research from Dr. Gujrati at the University of Akron and Dr. Michael Lisa at the
Ohio State University. My quantum mechanics professor Dr. Robert Perry at the Ohio
State University was also instrumental in ensuring I would be prepared for graduate

school.

At the University of Virginia, numerous professors were especially helpful to me as I
looked to gain as much knowledge and skills as possible during my tenure here. Dr.
Sackett, Dr. Fowler and Dr. Lamacraft, as my course professors, were helpful to me as
I looked to master the fundamentals of graduate level physics. Larry Suddarth and Dr.
Craig Dukes devoted much of their time and energy to aiding me as I learned to teach
college students the physics labs and the principles behind them. A special acknowledg-
ment goes towards Dr. Dinko Pocanic for his assistance during my completion of my

Master’s Thesis.

For my PhD, the help and support I received from Dr. Liuti and her colleague Dr. Day
was immense. They worked with me on my ability to not only understand advanced
nuclear physics concepts but also to be able to explain them to anyone inside or outside
academia. Dr. Day provided financial support when it was needed out of his own initia-
tive and regularly offered advice on how to organize, extract and present data. Dr. Liuti
successfully recognized the communication and interaction skills I needed and ensured
that went about developing them as much as possible. To that end, I would like to
acknowledge the efforts of Deborah Berkeley, Jennifer Beard, Baozhen Xie and Dreama
Johnson at the University of Virginia Learning Center for their tireless efforts as well.
When it was time to solve problems that occured in our research endeavors and make
our work presentable, she put in long hours working alongside me as we overcame any
challenges that arose in this task. This research project would not have been possible

to complete without the contributions of Katherine Holcomb in the form of the required



Acknowledgements xiii

code to perform the necessary algorithms, which could readily be modified, and Aurore
Courtoy, who assisted in the computations of observables at critical kinematics. There-
fore, I wish to give special thanks to Dr. Holcomb and Dr. Courtoy. Special recognition
also goes to Dr. Nilanga Liyanage; he was willing to support my endeavors any way
he could as Graduate Director and aid in overcoming any challenges that arose. Peter
Arnold was of great help in ensuring that my ability to present the work I have performed
was up to par as well. Lastly, I would like to acknowledge the work of fellow theoretical
physics students Abha Rajan, Gabriel Wong, Shahin Igbal and Ajinkya Kamat. They

were an integral part of the physics community I worked with at University of Virginia.



Introduction: Self Organizing Maps and their Intent 1

1 Introduction: Self Organizing Maps and their Intent

1.1 Introduction

Nuclear scattering has been probed for decades in attempts to analyze interactions
among fundamental particles and the hadrons they comprise. In particular, developing
models for the strong interactions among components of hadrons through inelastic scat-
tering has been an ongoing process. Inelastic scattering cross sections, which provide us
the scattering rates and the likelihood of a scattering event occurring for a given tar-
get hadron, have components for which numerous attempts to create theoretical models
for have been made. These components are the structure functions of inelastic scat-
tering. These structure functions in turn are made up of individual components called
Parton Distribution Functions (PDFs). Articifial Neural Networks (ANNs) represent
a novel method for creating theoretical models for determining the PDFs. Currently,
the structure functions can only be determined though scattering experiments; numer-
ous collaborations have looked to extract the PDFs from structure function data sets
obtained from experimentation. Previous extraction attempts have relied on analytical
parametric functional PDF forms in order to obtain their PDFs. This has led to inherent
bias in the PDF extraction because these attempts required theoretical assumptions for
determining the shape of the PDF curves. The Neural Network PDFs (NNPDFs) are a
notable set of PDF parametrizations because they successfully used supervised learning
in order to eliminate user’s bias. The neural network the NNPDF collaboration used
contained a set of 37 free parameters given by the ANN weights. These PDFs were then
fitted to experimental data and the differences between the resulting structure functions
and the structure function values taken from experimental measurements were mini-
mized using a Genetic Algorithm (GA) approach [1]. The user’s bias was eliminated
because any information about the behavior of the PDF's was obtained directly from ex-
perimental data. However, because the process was dependent on the experimental data
sets in order to extract PDF behavior, its use was particularly limited in kinematical

regions where experimental data was not available.

The validity of the ANN has been analyzed in previous studies [2],[1],[3] by methods
including a “convergence condition” or “stopping criterion”. This refers to the point in

the training phase of over-learning, or when the training steps produce only statistical
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fluctuations of data, thereby setting the length of the training phase. This supervised
learning, however, is limited by its inability to extrapolate or predict the behavior of the
functions in kinematic regions where no experimental data exist. This is particularly
problematic when it comes to extrapolation and prediction of function behavior for
newer sets of high energy experiments. These new experiments will include polarized and
unpolarized semi-inclusive and exclusive high energy scatterings off of hadronic targets
[4] [5]. The number of kinematics and observables measured over these kinematics
will be larger and the kinematic coverage will be smaller than in previous high energy
experiments. This has created a strong incentive to develop an ANN that has the same
capabilities as the NNPDF to perform unbiased fits and can also make extrapolations
and predictions on the scattering functions for which it creates models. These new
sets of ANNs will use weighted combinations of previous attempts to create models for
the PDFs in order to come up with proper initial functions than can be fed into the
ANNs. The ANNs will then look to generate a unique set of models for these structure
functions. These networks will then fit the theoretical models to the structure function
data provided by the SLAC [6], BCDMS [7], NMC [8], Fermi Lab E665 [9], H1 [10],
ZEUS [11] and Jefferson Lab experiments [12] in an attempt to come up with a reliable

theoretical way to model the PDF's at all kinematical values.

The specific type of neural network used is the Self Organizing Map (SOM). This use
of the SOM was influenced by previous attempts to use this network type to probe high
energy physics [13]. This network will use a new type of parametrization for the PDFs
called the SOMPDF method [14]. The SOM used will take variations of previously
created theoretical models, perform semi random variations of them and take random
combinations and create a resulting set of PDFs that will be entered into the SOM iter-
ations. The fit between each PDF in the set and the full set of experimental data points
will be used as the best fit on which the learning process will be based. The SOM relies
on unsupervised learning, a competitive learning process that enables the network to
extract the PDFs from the experimental structure function data without the structure
function experimental data or any models of the data being used in a continuous feed-
back mechanism. The SOM is unique in its ability to visualize multidimensional data
sets such as those presented by the structure functions and the PDFs. This network’s
ability to convert multidimensional data into two dimensional maps makes it especially

advantageous in recognizing patterns in specific regions of these maps, or clusters, for
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PDFs in various kinematic ranges and for observables taken from these PDFs. This
property of the SOM map can be used in tandem with the GA. This GA functions in
the same manner as the NNPDF GA and so seeks to generate theoretical structure func-
tions whose values for a set of kinematics are as close as possible to the corresponding

experimental measurements of these functions.

The SOM and GA used together can enable us categorize the PDFs and their fits to
experimental data in various cluster sizes within a two dimensional map. The NNPDFs
also use a GA in order to make the neural network generated functions’ fit to experimen-
tal data sets as ideal as possible by optimizing a function of the differences between the
generated functions and the experimental sets. However, the NNPDF method does not
allow for two dimensional observation of the clustering properties of the generated func-
tions over kinematic ranges of interest nor enable us to see how incorporation of physics
processes into the network affects the behaviors of the generated sets of functions during
fitting. The first attempt to use the SOM to solve the case for unpolarized functions
are in [15] [16] The remainder of Section 1 is dedicated to thorough explanations of
the neural network methodology; Section 1.1 details the purpose and procedure behind
ANNSs as well as the different types of learning ANNs can utilize. Section 1.2 covers the
physics processes that the ANNs will probe. Section 2 will be based on the methodology
behind the SOM and how it will be utilized in conjunction with the GA to fit the PDFs
to the data. Section 3 will describe how the SOMPDF code is designed and explain how
the PDFs are initialized. Section 4 will show how the PDF errors will be determined.
Section 5 will show the fit results of the SOM method. This section will also show how
the SOMPDF network can enable us to visualize how the effects occurring when the
constituent components of the hadron carry large momentum fractions during scatter-
ing affect the behavior of the generated functions and the possible ranges of observables.
Clustering analysis and errors of the generated functions will also be analyzed. Section

6 will discuss the future possibilities resulting from the SOM extractions and analysis.

1.2 Artificial Neural Networks

ANNSs are an information neural network based on the workings of an animals’ central
nervous system. The term neural network traditionally refers to models utilized in

cognitive psychology, statistics and artificial intelligence (AI). These neural networks
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consist of sets of nodes that are classified as neurons because they can take sets of
numerical input parameters and use learning algorithms to adapt them and because
they can estimate non-linear functions of input data. These parameters can be referred
to as adaptive weights; these weights are essentially the connection strengths between
neurons in a generated network activated during the network’s training. An ANN in
its fundamental form has three layers; the first layer contains sets of of input neurons,
the second layer, or the “hidden” layer, has a set of neurons which contain a process by
which the input data are evolved and trained and the third layer of neurons contains
a resulting set of output data. In a complex ANN the hidden layer can be a series of
numerous layers, each of which takes the data neurons generated by the previous layer
and transforms them into a new network of data neurons. A visualization of a supervised

ANN is shown in Figure 1.1.

InpLt Hidden Layer Output
Layer Layer

Input #1 —=

Input #2 —=

Input #3 —»=

FIGURE 1.1: An example of a supervised neural network.

Although neural networks have an aforementioned traditional usage, in modern times
there have been various important applications for them. The primary categories of ANN
applications are function approximation, classification [17], data processing, robotics and
control. Within these categories there exists a wide array of real life applications. They
have been vital towards progress in understanding how biological neural systems work.
The field of theoretical and computational neuroscience is centered around the analysis
and computational modeling of neural networks found in various biological environments.
The goal of this field is to create neural networks modeled after biological systems in
order to gain a fundamental understanding of how biological systems operate. In order
to do this, neuroscientists look to link together biological observables, biological neural

networks and statistical learning and information theory. The types of neural network
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models used for this include models of short-term behavior of individual neurons, models
of the formation of neural circuits from interactions among neurons and models how
how behavior of neural networks can arise from abstract neural models of biological
subsystems. These can be models of short term or long term plasticity of neural systems
and their relationships towards learning and memory of systems ranging from those of
individual neurons to complete neural networks. Researchers currently utilize ANNs in
system identification and control, for example in controlling vehicle paths and predicting
the trajectory of vehicles and other objects and pattern recognition, which has uses in
radar systems analysis, face identification and object recognition. Additionally, ANNS
have practical applications in directing manipulators, handwritten text and other speech
recognitions, financial systems and control engineering. In medicine, they have also been
notable for their use in radiology and in particular in their use in improving the accuracy

and speed of various types of cancer diagnosis methods.

The ANNs have established themselves as an invaluable method for pattern recognition
and data visualization since Warren McCullough and Walter Pitts [18] first designed
in the 1940s. Donald Hebb, in developing his Hebbian Theory of how neurons in the
brain connect to form engrams and adapt to chances, developed the first kind of un-
supervised neural network [19]. In the past twenty years they have been widely used
as computational tools in high energy, nuclear and computational physics analysis. In
recent years there have been vast improvements on the capabilities of ANNs; the re-
current neural networks developed by the Jurgen Schmidhruber group [20], which have
been internationally recognized for their abilities in pattern recognition, are a notable

example.

Neural networks are, in essence, simply sets of models based on a function f such
that f : X — Y; X and Y are the input and output data maps in the networks.
ANNS can also consist of distributions over X or over X and Y. An ANN has three
parameters which it relies on to fit the input data sets. The first parameter is the
interconnection pattern between different layers of neurons, the second parameter is the
learning process for updating the weights of the interconnections between the layers and
the third parameter is the activation function that transforms the data in the input
neurons into the desired data in the output neurons. The function that maps input data
to output data in neural networks can be written as a composition of other functions;

a frequent description of this function is as a nonlinear weighted sum of functions that
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directly produce the values for the output neurons using the input values from the first

neuron layer. These functions are referred to as the activation functions.

Neural networks are used in modeling in physics, robotics and other fields because they
can utilize the principle of learning with regards to data sets and models. The possibility
of networks to perform learning is in fact what has generated the most interest in their
applications. Learning is a process in which pattern recognitions are used to find a
set of models that can be used to solve a task while minimizing the cost function.
The learning process computes the cost of using the models to accomplish the task;
learning entails taking a set of functions F', which can be used to solve a given task,
and finding a set of functions fx € F' that form the optimal solution to the task. In
order to achieve this, the learning procedure uses a cost function C' to attempt to find
the optimal solution. The learning process looks to find the optimal solution fx by
ensuring that C'(fx) < C(f)Vf € F. The cost function effectively computes how closely
a model created to solve a given task compares to the most optimal model for that task;
minimizing this function is a fundamental goal of learning. Because learning is designed
to create models for a set of observables, the cost function must be a function of those
observables as well. For a neural network with a very large number of data samples,
machine learning becomes necessary. Machine learning in the late 1980s replaced Al
networks based on systems using if-then rules; this network method is defined by its
use of information contained in variable parameters of dynamical systems. In machine
learning, the cost function is partially minimized every time it is computed from an
input data sample taken from a distribution. Machine learning can be supervised or
unsupervised. In supervised learning, pairs of data x and y are given with the goal of
finding a function that can make the transformation X — Y for all data sets Y and Y
that x and y could be taken from. In this learning type, the cost function is related to the
mismatch between the data sets and the results obtained by attempting to map one set
of data to another. In reinforcement learning, the data set x is nor provided at the start
of the network procedure but rather generated from the network’s interactions with a
specific environment over a period of time. In this learning type, after a given time ¢ the
network performs an action y; with an associated cost ¢;. The goal of this learning type
is to select a policy for performing actions that leads to the slowest cost over an extended
period t:y; the total cost can be the cumulative costs ¢; for all actions y; performed in

time t4o;. In unsupervised learning, there is a set of data x and a neural network that
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creates a final output f, dependent on both x and f, without another set of data used to
supervise the mapping. In this method, the cost function to be minimized is dependent
on the observables that the ANN is trying to model and the parameters and variables of
the ANN models themselves. A simple form of unsupervised learning involves the case
where the data model is simply f(z) = a for some constant a. By minimizing the cost
function C' = E[(z — f(z))?] we would obtain a value a equal to the mean of data set
. The neural network used to generate DIS models will require a more complex cost
function. ANNs can be categorized based on their capacity, or their ability to model
a given function accurately, their computational power and their convergence. The
convergence, however, can be difficult to categorize since it is dependent on a multitude
of different factors. These include the number of local minima, which is dependent on
the cost function, the number of variable parameters within the models generated and

how far the initial models are from the desired observable to which we wish to fit them.

ANNSs also allow for classification of data models based on their features and observables
computed from these models and for two (or higher) dimensional pattern recognition
among the output network of data values generated from the hidden layers. The patterns
identified by the ANNs are referred to as clusters. Clustering is the facet of unsupervised
learning that provides one of the primary motivations for using this particular network
to probe DIS and its composite functions. In the case of models of structure functions
and their component functions, the SOM can treat these models as data sets and iden-
tify clusters which form when the network generates an output map from an initial
distribution of data models. These clusters can come from the properties of the models
themselves and from their computed fits to experimental data sets. These properties of
ANNs make them ideal for generating models based on inelastic scattering observables.

An example of an unsupervised network is shown in Figure 1.2.

SOMs, as noted previously, are an unsupervised network that uses a two dimensional
grid for mapping and fitting a multi dimensional set of input data. The map was first
proposed as a type of neural network by Finnish researcher Tuevo Konohen [21]; its ap-
plications for problem solving in numerous physics, biological, mathematical and medical
fields has made Konohen the most cited researcher in his nations’ history. Researchers
define the algorithm as a “map” because results using unsupervised learning are most
often represented as 2D geometrical configurations. The ability of the SOM to project

high dimensional input data onto lower dimensions representations while preserving the
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Layer L,

FIGURE 1.2: An example of an unsupervised neural network.

topological features present in the training data allows us to use this neural network in
order to fit input models to final data sets generated from scattering experiments. This
visualization allows us to isolate the individual properties of the input data functions we
use and create more accurate models of them. It additionally allows us to observe how
the cost functions of the input data sets adapt over time through the learning process
and assists us in determining how to lower the cost function for a given number of iter-
ations of the learning process. The SOM has the ability to preserve topological features
of data units on a two dimensional map; the SOM when completed will feature sets of
local neighborhoods of data units with essential common features preserved throughout
the iterations of the SOM. This ensures that the SOM is one of the most useful networks
in existence for visualizing complex, nonlinear sets of data units. A SOM network is

shown in Figure 1.3.

The method by which the SOM works allows us to use experiments conducted for a given
physics process to train input sets of data consisting of attempts to create functions of
these processes. The SOM places a set of n dimensional data vectors on an Nz N map,

placing one data vector in each of the N? cells and uses a competitive learning process
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FI1GURE 1.3: A visualization of the SOM showing how data units in the neural network
are positioned on a two dimensional map.

to train the data. The competitive learning process has each of the data vectors on the
map competing with each other to be the best fit for an outside set of training data, with
the set of data vectors on the map undergoing evolution after each use of the competitive
process to more closely fit the training data. Each data vector on the map will have a
cost function, which for this map can also be called a discriminant function, and the aim
is to find the map vector with the lowest cost function. We classify the map vector with
the lowest cost function as the one having the best fit to the training data and declare
it the winner in the competitive process. This process allows us to model functions that
describe various processes in physics using only previous attempts to make theoretical

models and known experimental results.

1.3 Deep Inelastic Scattering

The self organizing map is used to probe the cross section of Deep Inelastic Scattering
(DIS). DIS is the inelastic scattering between a lepton and a hadron, which in the specific
case of the SOMPDF experiments is a proton or a deuteron. A lepton is ’scattered’, or
deflected, off of a hadron at high energies, which give the leptons a short wavelength
that allows the scattering process to probe the insides of the hadron. The ability of
the process to probe the inside of the hadron this way is where the ’deep’ part of

deep inelastic scattering comes from. The first of such inelastic scattering experiments
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were performed at the Standford Linear Accelerator Center in 1968 using procedures
similar to the Rutherford scattering experiments. Electrons were fired at proton and
neutron targets and observations of the inelastic scattering that resulted led to several
key conclusions. In particular, when high intensity electron beams were fired at nucleons,
the rate of scattered electrons was far higher than expected [22]; Feynman concluded
that this was because when the electrons collided with the nucleons, they were probing
these targets at small enough distances to where the targets had to be treated as having
a set of components with their own coupling forces. Thus, these experiments revealed
that hadrons have internal structure; protons, neutrons and other baryons consist of
three quarks and that the quarks within these hadrons consist of point-like charges
with charge ratios later predicted by the Standard Model along with neutral point-like
elements. These point-like elements are referred to as partons [23]. The scattering
rates of the electron beams when fired at nucleon targets were a result of the scattering
of electrons off of these partons, which each had momentum fraction = of the target
hadron. Conservation of momentum for these elastic collisions naturally required that
% = 1. This parton model described the distribution of constituent partons in terms of
functions that could be called parton density functions. The parton theory was further
developed by the classification of quarks as spin % particles with six types and two
possible charges for them; charges of % for up, charm and top quarks and _71 for down,
strange and bottom quarks. The up and down quarks were the key quarks that led
to classification of nucleons according to the parton model; protons consisted of two
up and one down quark and neutrons consisted of two down and one up quark. The
quarks which determine the hadron type can be identified as valence quarks. The parton
model also includes the existence of quark anti quark pairs which are referred to as “sea”
quarks. In the DIS between electrons and hadrons, a virtual photon or other type of

boson is also exchanged which allows us to further probe the structure of the hadron.
An example of a Deep Inelastic Collision is shown in Figure 1.4.

A lepton scatters off of a hadron, which originally has momentum p, with initial mo-
mentum % and final momentum k', while the momentum ¢ of the virtual photon 5
produced in the exchange is given by ¢ = k — k'. The hadron in the scattering process
breaks apart with each parton within the hadron carrying its own momentum fraction x
after the collision. Q? is defined as an explicitly positive quantity related to the virtual

photon momentum by —Q? = ¢%. For Q? < 10? GeV?, the electromagnetic interaction
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F1GURE 1.4: A visualization a Deep Inelastic Scattering interaction is shown. ~* is the
virtual photon exchanged and ¢ is the momentum transfer as a result of the photon
exchange.

dominates the cross section enabling us to focus on the photon exchange in evaluating

it. In the scattering experiments, only the leptons with momentum &' are detected.

The scattering experiments begin with the electron beams fired towards a nucleus that
contains the designated target set of hadrons. For low @Q? values, defined such that
Q? << M? where M is the mass of the target hadron, the struck nucleons recoil as
a whole when struck by the electron and so there is no probing of the constituent

2
ST where v = E — E’ is the

particles within the hadron. The recoil energy is v =
energy transfer of the virtual photon in the exchange, £ and E’ are the initial and
final energies of the scattered electron and M4 is the mass of the nucleus that contains
the target hadron. The nucleus can also move to an excited state containing energy

vV = 5im ST In the electron nucleus collisions, the variable x4 = RV AL

which for elastic collisions goes to 1, should be introduced to quantify the properties
of the collisions. In higher energy limits, the resolving power of the probing from the
collisions increases, the elastic scattering cross section decreases and the probability of
the electron scattering off of an individual nucleon within the nucleus as opposed to
the whole nucleus increases. As Q2 increases towards a typical hadronic scale, which
corresponds to Q2 being above 0.5 GeV? the target hadron behaves increasingly less as a

pointlike particle and the component particles of the nucleus are increasingly involved in

_ @

the scattering. Therefore, it becomes more practical to introduce the kinematic r = 55-.

The proton and neutron have magnetic moments that reflect their construction as well;
these moments are described in terms of the constituent quarks within the proton uud

and neutron udd. The quark charges are Q, = % for the up quark and Qg = —% for the



Introduction: Self Organizing Maps and their Intent 10

down quark. The magnetic moments for the up and down quarks are given in terms of
the proton and neutron moments below in relation 1.1 and equation 1.2. pg = % is

[

the proton’s Dirac moment.

1
P = & (4htp + pin) o (1.1)

1
Ha = ¢ (44n + pp) o (1.2)

Feynman’s development of the picture of the parton model along with the results of the
first inelastic scattering experiments [24] [25] led to a fundamental understanding of the
scaling in x of the structure functions proposed by Bjorken. In the context of Deep
Inelastic Scattering (DIS), the point-like partons within the hadron interacted with the
electrons and the photons exchanged during the electron scattering process. When the
electron hadron inelastic scattering occurred, the virtual photons exchanged scattered
inelastically off the partons with the DIS cross-section being the incoherent sum of the
cross sections of the virtual photon scatterings. In the high momentum limit of the
proton, the Bjorken scaling x variable for a given quark is the fraction of the proton
momentum contained in the parton during the inelastic scattering of the electron. The
size of the elastic cross section of the elastically scattered parton is directly proportional
to the probability ¢;(z) of finding a parton of type ¢ with momentum fraction z in the

proton.

The electron, muon, neutrino and anti neutrino scattering experiments made it possible
to get a full picture of the quark and anti quark distributions inside the hadrons. The
u and d valence quark probability distributions were shown to approach 0 in the large
z limit and the £ = 0 limit. The small x region was shown to be dominated by sea
quarks; the total momentum of the quarks was shown to only contain half the total
momentum of the hadron target. Another critical factor in the quark gluon model
is that in the small time frame over which the electron hadron scattering occurs, the
quarks act as free particles without any fundamental interactions occurring between
them. Therefore, in the limit Q% — oo the elastic scattering of the photons off of the
partons has an increasingly small cross section. The Q? — oo limit thus corresponds to

a set of scattering interactions over which all the partons in the hadron behave as free
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particles. The field theory of the parton model dictates that in the asymptotic limit
of Q? all the partons act as free particles [26] [27] [28]. The principle of asymptotic
freedom in the parton quark model, as a crucial part of the field theory behind the
development of the quark gluon models, completed the picture. Asymptotic freedom
predicts a weakening in the coupling of the strong interactions as the energy transfer in

the interactions increases.

Feynman and Bjorken introduced the parton model, which was capable of successfully
separating the long distance physics from the short distance physics in the processes
within the parton, in the late 1960s [29] [30]. The short distance, high energy processes
could be computed through perturbative expansions of the strong coupling and the lower
energy, long distance processes which could only be computed by the creation of phe-
nomenological models. These models are the Parton Distribution Functions, or PDF's.
The parton model is understood to be the lowest order approximation of perturbative
QCD. The separation of QCD determinations of scattering cross sections into the hard
and soft parts requires the PDFs to be dependent on = and Q?. The data from HERA
experiments, among others, has confirmed the PDF dependence on Q? [31]. The phys-
ical meaning of the Q2 dependence comes from the production of additional partons
from a given set of partons upon being probed by the exchanged vector photons. This
Q? dependence is predicted by perturbative QCD and quantified by the PDF evolution

equations.

The quark parton model indicates that gluons are a crucial component of the hadrons,
however it only enters the quark parton model through their interactions with the sea
quarks. As a result, since virtual photons do not scatter off of gluons as they do for
quarks, the scattering cross sections cannot be used to determine gluon distributions
they way they can for quark distributions. Only indirect measurements of the gluon
distributions can be made. The gluons contribute to the total momentum of the hadron
in the DIS; containing roughly fifty percent of the hadron’s total momentum. The gluons
also are more prevalent in the small z region of the hadron. However, beyond this there
is relatively little that is know about the gluons other than the expected normalized
moments of their probability distributions over x. The electron proton scatterings and
proton proton interactions will need to be more extensively probed at very small x
values, ideally in the range < 10™%, where gluon gluon interactions dominate. This

will be needed to obtain further information about the gluon distributions.
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Quantum Chromodynamics, or QCD, is used to probe and determine the strong in-
teractions among the partons within the hadrons; in the inelastic scattering collisions
probed, perturbative QCD is utilized since interactions among quarks and gluons within
the hadron are analyzed. QCD is a type of quantum field theory, introduced in 1973,
specifically centered around strong interactions in which its Lagrangian is invariant under
transformations around the SU(3) symmetry group [32] [33] [34]. Gell-Mann, Ne’eman
and Zweig first brought forth a model in 1963, in an attempt to understand the effects of
hadron production in nuclear scattering, where the hadrons were to be governed by this
symmetry type. This led to quarks being introduced as the most fundamental element
of QCD; the quarks and gluons constitute the elementary fields in this field theory type
[35] [36] [37] [38]. Currently, perturbative QCD cannot be used to determine the full
cross section of the collisions since color charged particles within the hadron cannot be
isolated and observed. Therefore the cross section is divided into a hard part that can
be determined through the use of perturbative QCD, and a “soft part” that currently
can only be reliably found through experimentation. The soft part’s dependence on x
and Q2 is what allows us to separate the hadronic cross sections and composite Feynman
amplitudes into these hard and soft parts. In our computations, ANNs are utilized in
attempt to determine the cross section for DIS processes where electrons are scattered
off of protons and neutrons. The classical Lagrangian that corresponds to the QCD field

theory is given in equation 1.3.

0. . 1 A
Lejass = quc%«ks\pa(W“Du —m),, VYo — ZT?“GWG‘:' (1.3)
In the QCD lagrangian, ¥, are the quark vector fields, A is the gluon vector field, G'}”

is the corresponding gluon field strength tensor and D* is the covariant derivative.

In QCD there is a basic coupling g regarding the subatomic interactions is dimension-
less. However, the quark gluon interactions within deep inelastic scattering contain loop
corrections to the quark gluon coupling and so a new scale to the effective coupling is
added. The coupling is now given below for a,(Q?) in Next to Leading Order (NLO)
in equation 1.4 with A as the associated scale for the Q? values and 3y and (31 as posi-
tive constants obtained from expansions of Beta functions whose values depend on the

number of quark flavors included in the coupling.
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Our knowledge of the quark distributions in the parton today is still only reliably ob-
tained from DIS experiments. The starting point for the separation of the unpolarized
cross section for the inelastic scattering interactions is given in expression 1.5. This
expression for the cross section allows us to begin to extract the hadronic tensors and
subsequently the structure functions due to parity conservation and electromagnetic

current conservation. This results in invariance of the Feynman amplitude T.

1 B3k 1
A3k 7

= S0 - 1.5
77 fux 2k(’) PSSY (1.5)

X and )\ are the helicities of the lepton before and after it scatters and o is the spin of
the proton. k' is given by k' = g— k. The flux refers to the flux of the incoming neutron
beam, defined to be flux = \/m where v in terms of the kinematics M, W? and
Q? can be written as v = ﬁ(VV2 + Q% — M?). k(/) is the 0 component among the 4

momentum components of k. The scattering amplitude T is given in expression 1.6.

/ 1
T = e*u(k , )y p(k, Nz <X > (1.6)

X is the hadronic state after scattering and J7™ is the electromagnetic current. The
cross section can now be expressed in terms of the structure functions, allowing us to
evaluate the structure functions in order to determine them. This is shown below in

expression 1.7.

, do 2M  o?

vBr ~soamEgr ()

s in terms of the initial hadron and lepton momenta defined previously is s = (p + k‘)2.

The leptonic tensor is given below in equation 1.8.
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The Hadronic tensor is given in equation 1.9.

1 d4 iq- em em
WHV(pv Q) = W?/Q;]elqn < p70—‘T(Ju (U)Ju (0))‘17,0’ >

The leptonic and hadronic tensors can be combined as shown in equation 1.10.

MW, = 2W1Q% + #Wg[(s — M?)(s — W? — Q% — M?Q?]

(1.9)

(1.10)

W?2 in terms of the other kinematics is given by W2 = Q?(1 — 1) + M?2. The resulting

cross section is given below in relation 1.11.

d?o 2ol M
= oW1 (W2, Q2
dQQdW2 5 — M22Q2 [ 1( ;@ )

+Wo (W2, QQ){ (s = MQ)](;Q_QZVQ —9) 1H

The Mott Cross Section is given in expression 1.12.

do _Ama® [(s — M?)(s — W? — Q?) )
A yorr @ [ M2Q? - ]

The combined result of these cross sections is in expression 1.13.

A2 D18 1 _ M2 _W?— QZ -1
7ngdW2 =07 [2W1(W27Q2){ (s )](\;912@2 ) _ 1}
+W2(W2,Q2)] do

rct,)ZMOTT

(1.11)

(1.12)

(1.13)
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The structure functions W7 and W5 can also be expressed terms of each other in the limit
Q? — oo by the Callan Gross relation [39] in relation 1.14. Because the quark currents
coupled to the photon consisted of spin % particles, Callan and Gross [39] were able to
relate the two scaling structure functions F; and F5 using the relation in formula 1.15.

Given the relationship between W7 and F} shown in formula 1.16, this leads directly to

equation 1.17 for relating W5 to Fb.

2e MWy = Wo (1.14)

Fy(z) = 20 F) () (1.15)

MW, = Fy (1.16)

ﬁ(wﬂ + Q% — M)Wy = Fy (1.17)

The equations for the scattering cross section use only Lorentz scalars; therefore they
can be computed in any frame. As an example, the following kinematics, shown in

equation 1.18 for the target nucleon rest frame, can be used in order to compute the

W2 +Q2 _M2

=re) and is related to x and s by

cross section. The kinematic y is given by y =
Q? = swy . At higher scattering energies s >> M and the scaling of = becomes closer

to Bjorken scaling.

(s—M?) _, (s—M?
E=__—" /g X" /_
IV i (1-y)
M?zy dQdE"  2mMy
(s—=M?)(1—y) dady 1—y

(1.18)
)2 =

(szn§

These terms enable us to rewrite the inelastic cross section as follows in expression 1.19.
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d’o o* M 02

= ——[2W1(sin;)
dQdE’ 8E2Eh(sm%) 2 (1.19)

4EZ, 0.2

—|—W2 (cosf)

2

E’ and E are the initial and final energies of the scattered electron, Ej is the target
hadron energy and 6 is the scattering angle. In terms of the computation of the PDFs
and the PDF moments, to be used in normalizing the PDFs, the input variables @Q?,
where ¢ = (k — k/)Q = —@Q?, and z are utilized. These scattering energies, momentum

transfers and momentum fractions can additionally be written in terms of each other

through the relations Q? = 4EE’ (:sz'ng)2 and z = 2%)41/ In the process of determining

v

the valence quark PDFs, the variables y = £ and 2z =

5 are also introduced, with

integration being done over z to compute the PDFs. W? is an invariant which can also
be written as W? = px? where px? is the momentum of the hadronic system in the

inelastic scattering process.

The kinematics for the inelastic collision can also be written in terms of the the mo-

mentum p of the target nucleon. The variable v can be written, for example, in the
-q W2+Q27M2

form v = 5/ = =—55——. In terms of the momenta of the leptons and nucleons
’.2
and hadronic systems, the kinematics of the momentum fractions are x = % and
p(k—k)
Yy=""pr -

The flexibility of the inelastic cross section expressions finally allows us to use the HERA
frame, or the lab frame of an electron with energy F colliding with a proton (or other
target nucleon) of energy E, with E’ and 6 referring to the same kinematics used in the
other frames. In this frame, the inelastic cross section can be written in terms of the

electron and proton kinematics as follows in expression 1.20 and expression 1.21.

E 0 E 0
(1-y) = ﬁcos( )2 Ty = E—sm(§)2
dQdE'  AnEsin(§)?
dedy T

(1.20)
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a?M 0 AE7 9

PodQdE = —— | 9Wysin(z)? + Wa—~Lcos(=)? 1.21
7 8E2E,sin(2)t [T SURLE %) (1.21)

2 M?

The first set of inelastic scattering experiments indicated how the structure functions Wy
and vWy are scaled according to the kinematic x. Bjorken predicted that in the high
energy limit v, Q> — oo the structure functions approach the limits MW (z, Q?) —

Fi(z) and vWa(z, Q%) — Fy(x) [40].

The elastic contributions to the cross sections can also be determined in terms of the
elastic structure functions. These structure functions are computed chiefly in terms of
the electromagnetic form factors G2, and G2%. These elastic contributions Wy’ and W'

are below in expression 1.22.

@ (@)
2M M (1.22)
W5 (W?,Q?) = 6§(W? — M?)2MG(Q?)

WE(W?2,Q?) = 6(W? — M?)

The electromagnetic form factor G(Q?) can also be expressed in terms of the individual

electric and magnetic form factors seen in expression 1.23.

2 2
GQ) =[G+ 5G] (1+ QQW) (1.23)

The elastic scattering cross section expression can now be completed, shown in expres-

sion 1.24.

2(s — M2)2 — 5Q?
Q4

d el 2ol
1 = (o arp @)

G(Q?)] (1.24)

The electromagnetic form factors approach é for larger values of Q?; however, for
Q? < 5 GeV? the cross sections and structure functions of partonic, hadronic and parton

hadron interactions must include the elastic components.
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The structure functions W; and W can also be computed in terms of each other using
their relationships to the cross sections for the transverse and longitudinal boson ex-
changes in DIS. This computation begins with the standard photon polarization vectors
e, whose individual 4 momentum and transverse components meet conditions e - g = 0,
e% = —1 and ¢2 = 1. The transverse and longitudinal scattering cross sections o7
and og can now be written as follows in terms of the electromagnetic flux shown in

equation 1.25.

Ara® Wy
ar = flux
1.25
o o9 = 4ra —)—
oo Q2’ flux

The structure functions W; and Ws can now be expressed in terms of the longitudinal

and transverse cross sections og and o as shown in relation 1.26.

Wi(v, Q%) = Vi

dma?
Q2

dra2y\/v? + Q?

or
(1.26)

Wa(v,Q%) = (00 +o7)

Given the ratio of longitudinal to transverse cross sections R = % the structure func-
tions can now be written in terms of each other as follows in expression 1.27 and equa-

tion 1.28.

Wl(V27Q2) 1/2

_ L
A (14+R) 1+ Q2) (1.27)

The polarization vector € of the virtual photon with a cross section proportional to

oT + €og can be written below in formula 1.28.

—1] B (1.28)

v? [(S—MQ)(S—2MI/—M2)

e*1=1+2(1+@) VEGE

The total cross section can now be written as (equation 1.29)



Introduction: Self Organizing Maps and their Intent 19

d?o aM\v2+Q? or

dQ2AW? 7w Q2 (s — M2)>1—¢

(1+€R) (1.29)

and since the longitudinal and transverse cross sections, representing scattering rates,
must by their definition be positive, we obtain the following inequality (equation 1.30 ).

2

0<W; <(1+ @)WQ (1.30)
In a Deep Inelastic Experiment, when the scattered particle is an electron or muon the
kinematics above allow us to determine Q2, z and y from the observables E’ and . In
order to extract W7 and W5 from the differential cross section, this observable can be
obtained for varying values of 6 and E. This can be used to extract the value of R for
individual values of v and Q? or the average value of R can be computed for a full range
of z and Q? for an experimental data set. In collaborations that determine the structure
function, an average R value for the full range of kinematic variables is obtained and

used to extract the structure functions from observable cross sections. This method is

shown below in expression 1.31.

d%c

=TT 1+R

I/WQ(J:’QQ) = |: dda.QdE :| |:V€( i ):| (131)
(58) Mot 1+eR

A collaboration such as SLAC can therefore extract structure function values for a

substantial = and Q? range once the differential cross section is found for a given set of

E’ and © values .

The hadron structure functions can be separated in terms of the Parton Distribution
Functions, or PDFs, and the charges on each of the parton types in the hadron. The
PDF's define the probability that a parton type will be found with at a specific  value
for an input Q2. Since QCD dictates that free quarks do not exist when a hadron is
struck by an electron, it is necessary to know the values of the PDFs for all quarks

within a hadron in a collision.
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1.4 Quark Parton Model

A fundamental understanding of the quark parton model is needed in order to evaluate
the quark and gluon PDFs and to determine the scaling of the kinematics of which these
PDFs are dependent. In this model, the partons within the hadrons probed by high
energy leptons behave as collections of scattering components. The hadrons probed in
high energy DIS reactions have a dependency not on the energy of all components in
the scattering but on the specific kinematics discussed previously, for example © and
v. This dependency is referred to as Bjorken scaling. In addition, the partons within
the hadron are governed by asymptotic freedom. This refers to the principle that the
strength of the coupling constant a4(Q?), which is given in Next to Leading Order in
1.4, weakens for the strong interactions at increasing energies. In the Deep Inelastic
Scattering model, if we use the target rest frame with the virtual photon emitted along

the z axis, we have p = (M,0,0,0) and ¢ = (,0,0, —y/v2 + @?). In terms of these

4 momentum kinematics, the light cone variables a™ = % and a= = “O\;ias can be
introduced, which give us the scalar product a-b = a™b™ +a~ b~ — ar - by resulting in
equation 1.32.

+ Mz _ (2v+ M)

=59 =5 (1.32)
g and ¢~ represent the previously defined light cone variables for 4 momentum ¢q. In
the limit Q?> — oo, ¢~ — oo and ¢t is a constant. The space time interval centered
around the points where the currents J,(§) and J,,(0) affect the DIS are space time scales
of interest. £ is the space time interval between the points at which the eletromagnetic
currents J,(§) and J,(0) act on the scattering process. In the Bjorken limit, the space
time intervals can be approximated as é* — 0 and ¢~ < Mii Because all of the space
time components in which the electromagnetic current act, except for £~, approach 0,

the characterization of DIS is shown to be light cone dominated physics.

In order to derive the Q2 — oo limits of the structure functions, we start with con-
structing the previously determined hadronic tensor W), that describes the physics in

the hadron parton model. This tensor is given below in expression 1.33.
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Wiula.0) =2 [ aterilo. by o, )slk + )ds (133)

This tensor sums the individual tensors wzl,(q, k), describing the interactions between

quarks and virtual photons, and the structure functions f%(p, k) which are dependent on
the scalar p-k. The kinematics of the parton model can be used to show that the fraction
of light cone momentum carried by quark x; = I’j—i is the same as the Bjorken momentum

fraction . This is because we have the kinematic relations k2 = 2ktTk— — k% =0 and

2
k™ = oI
2z;pt

note that k4 ¢> = k? + 2k - ¢ + ¢*> = 22;Mv — Q* = 22;Mv — 2xMv = 2Muv(z; — ).

leading to k- q = k¢~ + k= q" = x;p7q” = x;p-q = v;Mv. Now, we

From here, we see that the delta function becomes 6[k + ¢*] = 5i0[x; — z]. The new
structure function tensor that comes from this change in variables is written below in

expression 1.34.

4 . .
Wiula.p) =S¢ [ S (£ 1) + £ - K)6i - 2)

(1.34)
X [2kuky + kuqy + quky — guk - g

This expression for the hadronic tensor can be used to determine how structure functions
relate to each other in the Bjorken limit. In the condition v = p = 0 the tensor is written

below in expression 1.35.
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4 . .
Woo =22 [ TR (o) + (o K6 — )

X [2koko + kogo + qoko — gook - q] =

4
£t [ Sr Ui B+ £ (o koG — 2)

2Mv

x[2koko + 2qoko — gooriMv] =
(1.35)

4
5t [ Sl D) + 1o B3 — 2

X [Qko(ko + qo) — xiMy] =

4
£t [ St Ui )+ £ (o oG — )

><I/(2k0 — l’M)

The condition v = p = 0 also gives the following relation (equation 1.36 ) for the

corresponding structure function tensor.

2

14
Voo = g

1
— MWy + 7W2] (1.36)
2x

These two expressions for the hadronic tensor Wyy can be reduced, since Wyg — 0 in the
target rest frame, to the structure function relations vWy = 2e MW, and vWo — Fy(z),
the latter the result of the Bjorken limit. In addition, the structure functions can now
be expressed in terms of the individual quark distributions as well. This relation is

described in 1.37.

F = Z erq(x) (1.37)
i
gi(z) in terms of the quark flavor distributions f% and f% is given in expression 1.38.

™

ai(z) = 7

/ AL oK)+ (0 k) (1.38)



Introduction: Self Organizing Maps and their Intent 23

e; is the charge of each parton according to the Standard Model and ¢;(z) is the sub-
sequent PDF for that parton. f%(p-k) and f’(p- k) are the quark functions for +1
and —% helicities. The conventional interpretation of g;(x) is the probability of finding a
quark type ¢ that function is associated with containing a fraction of parton momentum
x in the inelastic scattering interaction. The singlet and nonsinglet quark distributions
must also be defined as well. The singlet distribution is X (z) = i¥(¢;(z) + ig) and the
nonsinglet distribution is NSz = i¥(g;i(z) — ig) = uy(z) + dy(x), with u,(x) as the up
valence quark distribution and d,(x) as the down valence quark distributions. In terms
of the total up and down quark distributions u(z) and d(x), the valence quark distribu-
tions are u,(z) = u(x) — u(z) and dy(x) = d(z) — d(z). The total sea quark distribution
is then S(z) = 2(u(x) + d(x) + 5(z) + &(x)).

The parton distributions in the quark model exhibit unique characteristics in the limit
x — 1, the elastic limit for the DIS. The structure function Wi, from which the other

structure functions can be computed, takes the following form ( equation 1.39 ).

Wi(.Q%) = 8V = 11%) it () (139

This form factor dominates the Q? behavior of the structure functions in the resonance
region of the parton model. The effect of the form factors in the resonance region for
the parton model, where M? < W2 < 4 GeV?, means that values for these form factors
in these regions affect the Q2 behavior of the structure functions at sufficiently small

Q? values and for large x values. In order to isolate these contributions, the structure

2
functions can be rewritten in terms of the rescaled variable x’ with 2/ = z[1 + %Ozx}_l

with mg = 1.1 GeV. The structure function in this rewritten scaling kinematic is below

in expression 1.40.

2
[ R G @) (1.40)

We can approximate the corresponding structure function Fj(z) o< 1 — 2" and approx-
imate the electromagnetic form factor as G (Q?) o< @QV. This leads to Q? for this
form factor for NV = 2. Then, in the resonance region we also have the approximation

(1—-2)x & from which we get the relations n = 2N — 1 and so we get the resonance
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region approximations F (), Fa(x) oc 1 — 23 for the large x limit. The Q? dependence of
the form factors and subsequent structure functions, dictated by the exponents within
the form factors, are dictated by the constituent rules for these exponents [41] [42] .
These rules state that the exponents in these factors are dependent only on the number
of elementary constituents that exist in a hadronic bound state. These rules are based
on the assumption that within this state at least one of the components is involved in
a hard scattering process. For the Fy(x) behavior the large = limit under these rules

2ngs—1

is Fo(r) x 1 —x . In this estimate, ny = nyg — 1 where ng is the total number of

types of quarks found within the hadron.

The PDFs currently obtained at large x limits can be estimated from experimental
results by noting the relationships between the different structure function types and
the PDF's that comprise them. For example, in the large x limit, the quark distributions
are valence dominated and sea quarks are negligible. Therefore, the estimation of the
up and down valence quark distributions from the experimentally determined structure

functions can be determined as follows in equation 1.41.

no 14400
B _ T Twe (1.41)
E 4 + d”g‘r;

<9

v(@) % However, the

If SU(6) symmetry were exact, we would have for large z )

un

experimental data from the SLAC and EMC collaborations show that for large z, % —
2

% which suggests that the limit for Zzg% for large x is (1 — x).

as(Q?) as a function of Q2 is in Leading Order approximated by o, o and so

_1
In(%)
for very large Q? values as becomes very small. This approximation is the focus of
Perturbative QCD. For smaller Q2 values o, becomes larger and different methods need
to be used to probe these strong interactions. Lattice QCD is a primary example of the
techniques that are used. The SOMPDF code will use QCD computations to determine
the moments for Q? values ranging from 1.0 GeV? to 30000 GeV?2. These Q? values are

taken from experimental measurements of the structure functions at specific kinematics.
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1.5 Perturbative QCD

The perturbative regime of QCD treats quarks in the target hadron as being very weakly
bound for lower scattering energies and approaching free point-like particles in their
behavior for larger energies. This theory of asymptotic freedom should be derived from

QCD field theories in order to fundamentally understand DIS.

QCD is symmetric relative to the colors of the quarks in question. Its Lagrangian is in

expression 1.42.

1 Ny
L= 3G Ga" + X an(Du — mi)ak (1.42)
In the above Lagrangian, g is the 4-vector propagation of the quark k in the target
hadron, where k is one of the N types of quarks that are taken into account in the
hadron. G is the 4 vector propagation of gluons in the hadron. The gluon propagation

vectors Gy, and D), can be written as follows in expression 1.43.

GS, = 0,A% — 0, A% + g fapc AL AS
e " " (1.43)
Dy =0, —igT* Ay

In the gluon vector component expressions, Af is the g, component of the ay, gluon
propagation vector. The gluons in a hadron are confined by SU(3) symmetry. Therefore,
the matrices T% describing the gluon 4 vectors must obey the relation [7'¢, T8 | = ifapeTC.
Gluon loops are associated with color factors that are needed to normalize the dimension-
less quark gluon coupling factor g and the vector fields associated with gluon gluon and
quark quark interaction loops. T»(F') = % is the color factor normalizing g, Co(F') = %
is the color factor associated with the quark quark interactions and Cy(A) = 3 is the
color factor for the gluon gluon interactions. The quark gluon coupling g needs to mod-
ified to include all the higher order loop corrections to quark gluon interactions. Given

quark gluon interactions with momentum (), the gluon and quark loop corrections to

the coupling result in the coupling being expressed in equation 1.44 as
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g 1112(02—2
(3272) A?

3 2
g Q 3 2
N P e

32W2[ n-- + K| +250

A2 (1.44)

7=39(Q%) =g o
This is a Green’s function which is non convergent for A?> — oco. In order to solve the
problem of divergence of this modified coupling, a scaling choice p, where Q2 = ;2 which
can renormalize the coupling needs to be introduced. Then, when the coupling is fixed at
this introduced scaling parameter the coupling at any other Q? value could be expressed
in terms of this fixed coupling quantity. This leads to the modified coupling now being
independent of the wavelength A; however, the dependence on the renormalization scale

1 18 the necessary trade-off to achieve this independence.

The Green’s functions in the QCD can be renormalized from here using the modified
group equation. To provide an example of this equation, we can start with a simply
scalar field wy which represents a field theory with interactions quantified by coupling
go- The renormalized field w can be introduced in terms of the initially defined scaling
parameter p and the scale factor Z as wg = Z, (9o, %)w These fields have Lagrangians
that describe the same types of parton loop propagation’s; therefore, the Green’s func-
tions for the QCD fields can be written as I'™ (p, g, 1) = Z.(go, %)Fén) (p, go, A). This
Green’s function’s dependence has been taken away from the momentum scaling value
A and in the process it has become necessary to use the renormalization scaling p. This
normalization constraint udI'/du = 0 gives the following constraint in expression 1.45 on
the renormalized Green’s function in terms of how it must vary relative to the coupling

and remormalization scaling.

[uaaﬂ + ﬁ(g)gg — n7(9)] 7™ (p, g, 1) = 0
Yw(g) = “ai [Z. (g0, 2)] (1.45)

Blg) = u(fig(u)

For each type of coupling among quarks and gluons, there is typically a single § field,
which is needed to determine the behavior of the effective couplings within the target
hadron in the high energy limit. The quark and vector propagation vectors are associated

with anomalous dimensions yr(g) and y4(g). The RGE equation solutions can first
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be analyzed with a solution where the total propagation of the hadron components
is zero, i.e. 7,(9) = 0. Let’s also take the variable ¢, with ¢ being the solution to
t = f %. Changing the external momentum p to the hadronic system to p — efp
requires the renormalization scaling factor u to change to u — e~*u. In this case, the
coupling value g must change to ¢ — g(u). The Green’s function, as a result of the
renormalization, changes to I'(elp, g,u) = T'(p,g(t), ). If the propagation vectors of
the quarks and gluons are not conserved, the Green’s functions changes by the factor
T(elp, g, 1) = T(p, g(t), ,u)eacp{ —nf dt”y(g(t’))}. The [ function can also be computed

from an independent Green’s function [43]; the result is shown in equation 1.46.

3
89) ~14(9)g ~ 21p(0)g = ~ o5 [(5 + TCa(A) + 2Co(F)]  (1.46)

resulting in ((g) = —ﬁo(lg%) with Gy defined as By = 11 — %Nf. The solution to the

5 -3
rescaled coupling factor is now d%—gf) = —fy-Z

1672 "

The rescaled coupling, including all the quark and gluon interactions during DIS, is

related to the strong coupling constant by as = g(Q?)/4n. The strong coupling factor

as can also be written as In %22 =— 0 %Z"‘g. The resulting expression for the strong
coupling is now in formula 1.47. Both sides of 1.47 must be set to a constant in order
to satisfy it. When this constant is set to —f—fr In A%, 1.47 produces the Leading Order

term in 1.4.

LB
as(Q?) 4w

L __ S In p2 (1.47)

InQ? =
ne as(p?)  4Ar

The fact that By > 0 results in the relation as(Q?) — 0 for Q? — oco. It is also
dependent on the scaling factor A which can only be determined from experimentation.
For perturbative expansions in QCD to be effective as(Q? must also be sufficiently small
relative to the loop expansion terms to the coupling so that Taylor series expansions are

still applicable.

The inelastic scattering cross section needs to be factored into the parts where the princi-
ples of perturbative QCD apply and where they do not apply as noted in subsection 1.3.
In order to do this, the components of the inelastic scattering governing the virtual

photon exchange must be split into their subsequent perturbative and non perturbative
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parts. The factoring of the virtual Compton scattering amplitude in DIS is where the
application of QCD becomes fully understood. The first part of the Compton scattering
is in terms of interactions among the hadronic and leptonic components. Specifically,
this part is the amplitude section describing long distance interactions involving low and
high energy exchanges; for this part the techniques of perturbative QCD do not apply.
The second part involves exchanges of high energy values and has singularities for large
Q? values that can be handled by perturbative QCD; its computation is done by higher
order series expansions of the coupling o which are increasingly accurate for ay — 0.
We start with the forward scattering amplitude of the virtual photon 7}, , (g%, v), making
it scalar instead of a 4 vector for further simplification. The scalar amplitude is given

in expression 1.48 by

T v) =% [ d'ne™ < p,olT(I(0) I O)lp. > (1.48)

2
This complex plot has a pole relative to v at v = % and a cut of simple poles from v =
2
% to v = oo and a cut of poles resulting from the process p — vX. These cuts
have discontinuities at the v and Q? values where the hadronic tensors, reduced now to

a hadronic scalar, and the Compton amplitudes are related by ImT(¢?,v) = 27W (¢?,v)

and T(q%,v) =4 [ -2 T (¢?,v). In order to obtain the structure functions from these
VvV “—=U

tensors, we use a technique referred to as operator product expansion (OPE). It begins

with writing out the time ordered products of the Compton scattering amplitude as

follows in expression 1.49.

o0

o
iT(JI()J(0) = X 3 Crn(n?, )0, (187 (1.49)
7=2n=0 "’ M1 Hin
1 is the renormalization scale as was used earlier in reevaluating the Green’s functions,
O7 is a set of traceless operators, 7 is the twist number for the structure functions and
C n represents the Wilson coefficients in the structure function expansions. The OPE

results in the Compton scattering amplitude being expressed as follows in equation 1.50.

9 9 iq- 1 = =T
T(q*v) — E---8[/d4776"’70’7,n(772,u2)(n2) ] X PP On (1) (1.50)
Hn

T Opy

VR
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with ( equation 1.51 )

1,173
Crnln’ %) = C'rn(, 1) (1) (1.51)
and also ( equation 1.52 )
< |0}, ()P >= O (1) Py (1.52)

The Compton amplitude can now be written ( equation 1.53 ) as a straightforward
expression based on the Q? dependence of the Wilson coefficient functions and the

renormalization scale dependence of the accompanying operators.

T(,1) = 5Crn(@ )0 (12) () ()7 (1.53)

Due to the symmetry of the Compton scattering amplitude, odd terms for n vanish.
Therefore, the relation between the Compton scattering amplitude and the structure

function tensors can be written below in expression 1.54.

X~ —T 1 . -_
F 0@ 1205 (12) ()

5 (1.54)

e

1
/ dza™ W (¢?, z) =
-1

The same OPEs applied to the electromagnetic current ( equation 1.55 ) yield a similar

result for Fj.

1
1 > _ — =
[z R ) = § S Crmanl@ )0 ) (1.5)
—1 T=
Since F5 is the next highest moment structure function, the expression for this function
changes to n — 2 in the structure function integral. This application of the OPEs shows
that all of the Q? dependence in the structure functions is contained in the Wilson co-
efficients. Defining the functions f(y, u?) and o(z, Q% u?) so that [dyy" 1 f(y,u?) =

—T=2

O, (1% and [dzz""to(z,Q? u?) = Cro0n(Q?% p?) make the expansion of the struc-

ture functions in terms of their Wilson Coefficient and tensor components clearer in the
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physical sense. This expansion in terms of the functions relevant to the parton physics

are below in expression 1.56.

P (2.Q%) :/

T

1
dyyf<y,u2>o<z,cz2,u2> (1.56)
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2 SOMPDF

The goal of the neural network we use is to create reliable theoretical models for the
PDF's which also produce structure functions which sufficiently fit the experimental data
and allow for various types of clustering of these models. The quality of fit is defined

using the observable x2. The x? is evaluated according to equation 2.1 [44] [45].

Z‘e:cp

iezp _ Tiezp
2 2 jdata jdata
X" = By Xigyy = Micap Mjdata ( (2.1)
jdata

For each ¢,D jfizpt o is the structure function measurement from the data set, ijifl’; , s the

theoretically determined structure function value for the same kinematic and a;edzz . 18
the uncertainty of each structure function measurement from an experimental data set

at a given kinematic.

For our SOMPDF code, the self organizing process can be used to analyze and separate
how the individual PDFs contribute to the y? values and how the y? values are affected
by attempts to fit the structure functions at large x vs small z. They can also potentially
be used to separate the effects of large x corrections, particularly from dividing out the
Y2 components by another arbitrarily chosen parametrized structure function, using
the Target Mass Corrections (TMC) and the large  Resummations (LxR). The SOM
places the PDFs that are rescaled upwards and downwards by a preset range of possible
magnitudes, or 'wiggled’, on an n x n grid and organizes them around local regions.
The organization is completed by finding the best fitting PDFs and matching the PDF's
within a surrounding radius to the best matching PDF. By adjusting PDF's in local
regions towards the best fitting PDF, the SOM process can allow us to determine how
each of the individual PDFs is wiggled in order to produce the best possible generated
PDF and how the PDFs are wiggled in the small z and large = regions to produce
the best possible functions. It could also allow us to separate the effects of the large x
physics corrections, chiefly the TMC and the LxR, by seeing how adding these corrections
results in the structure functions being wiggled to form the structure functions most
comparable to experimentalal data. Other supervised networks, in contrast, fit the
structure functions to final data sets by using the PDF distributions without analysis

of the specific aspects of these distributions and without visualizing how they affect
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the overall fit. Self organizing maps allow for isolation and proper visualizations of the
various components of the structure functions, corrections to the structure functions
and their composite PDFs. The SOM can also be used to determine how the y? values
from the generated PDFs are organized and thereby allow us to see how these x? values
are decreased over a set number of iterations. A map of the PDFs and the structure
functions for large and small z could also be shown in order to determine how these
plots cluster in local regions around the best fitting structure functions and component

PDFs.

The basic SOM algorithm can be defined as a non linear extension of Principal Compo-
nent Analysis (PCA) [46]. In PCA one applies an orthogonal transformation to convert a
set of data that are possibly correlated into sets of values that are linearly uncorrelated,
and which constitute the principal components. The first principal component exhibits
the largest variance, i.e. it is a straight line that minimizes the sum of the squared
distances from the data points (least squares approximation) of the data set by a line.
The second principal components is by subtracting from the original data vectors their
projections onto the first principal component and by finding a new straight line ap-
proximation. The procedure is applied to the following components recursively. PCA is
useful for interpreting the behavior of high dimensional data because, by allowing one to
represent the dominant data sets in a linear form, and by simultaneously discarding the
sub-dominant components, PCA can reduce the number of dimensions of the problem.
PCA, however, cannot account for nonlinear relationship among data. Furthermore, it
has poor visualization properties in cases where more than two dimensions are impor-
tant [47]. The essential feature that sets the SOM algorithm a part from PCA and
similar data reduction methods is that the lines resulting from PCA can be effectively
replaced by lower dimensional manifolds in the SOM method. Because of their flexibil-
ity, these can detect features of the data that the PCA would not. In this procedure
SOM essentially identifies two dimensional clusters which form among the generated
map of functions and observables computed from these functions. These clusters would
not be identifiable using PCA. In addition, SOMs have enhanced visualization features
to represent higher dimensional data, while visualization for more than four components

becomes an impossible task for PCA [47].

Finally, from the theoretical point of view, SOMs are particularly relevant algorithms

in systems theory, as they model the emergence of a collective ordering in a composite
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system through the competition of its constituents. We anticipate that the SOM method
of neural network analysis will have future applications to complex nuclear and high

energy data. [48].

2.1 PDFs

The structure functions that the SOMs will be fitting to experimental data are in equa-
tion 2.2 - equation 2.3 where C; are the coefficient functions, and g¢;(z) as defined in
equation 1.38 are the quark flavor PDFs. As noted in the DIS section, PDFs, the func-
tions fi(x,Q?), with i = g or g, comprise the structure functions of inelastic processes
in QCD. Three attempts to make theoretical models for the PDFs are the GRV model,
[49] [50], the MSTW model, [51] and the ABM model [52]. The SOMPDF procedure
will use weighted mixings of semi-randomized variations of these PDF models as input

PDFs for the SOM process.

Fe. Q) =3 / (s as) fila/y, Q2), (2.2)

td
sl =55 [, (jw) fily, Q)
(2.3)

In the above expressions, Py,(2), the splitting function, is the probability for a quark in
DIS scattering emitting a new quark that reduces its momentum by a fraction of z. The
splitting functions can also be formed for other vertices. Pgq(2) describes the probability
for emission of a gluon in a quark gluon vertice. Pg_.45(2) gives the probability of a
quark and an antiquark being emitted from an annihilation vertex. Pgg(z) applies to
a three gluon vertex, providing the probability of a gluon being emitted from an initial

gluon. This function is given in Leading Order in formula 2.4

1422
1—=z2

Pyq(z) = Co(F)



SOMPDF 34

PDFs are extracted from experimental data on deep inelastic lepton-nucleon scattering
and from related hard scattering processes in a continuously increasing range of x and
Q? data values taken from the multiGeV region using fixed target measurements at
Jefferson Lab and others [53][54][55] [56] . A summary of PDFs and uncertainties is
given in [57]. LHC precision measurements of W=, tf will be extracted in the future.
The continuously increasing experimental data set which needs to be included in the
analysis while simultaneously attacking the various theoretical open questions in PQCD
render global fits a challenging enterprise. Currently, numerous collaborations have
determined the parametrization for the unpolarized PDFs. CT [58], CJ [59],[60],[49],[50]
and ABM [61] use a parametric form for the PDFs with 4 —5 free parameters per parton
distribution type, at an input scale, @2, which varies for the different fitting forms.
NNPDF [1], [3],[62] utilize neural networks to create unbiased initial distributions. All
parametrization except for CTEQ use the perturbative QCD evolution equations to
Leading Order (LO), Next to Leading Order (NLO), and Next to Next to Leading
Order (NNLO) in terms of as.

2.2 SOM algorithm

The SOM is formed by a two dimensional grid of neurons, or nodes. The nodes are
presented with a stimulus in the form of a parametrized vector of dimension n; this is
called the input vector and it describes the set of data to be processed. Each element of
the vector is presented to all nodes on the map with a synapse or weight, w. Each node
corresponds to the weight vector w containing n weights (same dimension as the input

vector).

The SOM algorithm consists of three stages: i) Initialization; i) Training; i) Mapping.

2.2.1 Initialization

The SOM learning process, as discussed previously, is defined as unsupervised. During
the initialization procedure weight vectors of dimension n are associated with each cell
i

Vi= [vgl), ...,Uz(n)]



SOMPDF 35

V; are given spatial coordinates. This means that the geometry and topology of a 2D
map that gets populated randomly is defined to be the V; values. Typically each of these
vectors consist of a randomized value of the data unit type to be placed on the map.

The data for these initial vectors are defined to be the map vectors.

2.2.2 Training

Next, an input vector is presented to the grid. The node whose map vector is most
similar to the input vector is defined as the best matching unit or BMU. The weights,
w, of the BMU and of the surrounding nodes form a neighborhood, N, of some specified

radius 7.

For the training, a set of input data

£ = [61(1)7 "'751‘(’”)]7

(isomorphic to V;) is then presented to V;, or compared using a quantity called the

similarity metric that is chosen to be

Ly(w,y) = > \Ja? —y?

1=1,2
This is the ordinary Euclidean norm for vectors x and .

As noted in Section 1.1, SOMs are based on unsupervised and competitive learning as
opposed to previously used supervised networks. For the map, this means that the cells
that are closest to the BMU activate each other in order to “learn” from £. In order to
complete this learning, data units in the neighboring cells adjust their values according

to the following relation ( 2.5).
Vi(n +1) = Vi(n) + hei(n)[€(n) = Vi(n)], (2.5)

where n is the iteration number, and h;(,,) is the neighborhood function defining a radius
on the map which decreases with both n, and the distance between the BMU and node .

In our case we use square maps of size Lysap, and the value of h.;(n) is in equation 2.6.
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hei(n) = 1.5 (”“”‘_”> Larap (2.6)

Nirain
Here, ngrqin is the number of iterations. At the end of a properly trained SOM, cells that
are topologically close to each other will contain data which are similar to each other. In
the final phase the data units to be used for analysis are positioned on the map and the
cluster formation is completed. For this neural network type, the clustering properties

are particularly important for analysis of the data contained in the maps.

Once the learning process is complete, the newly generated set of data will be associated

with the location of its BMU.

2.2.3 Mapping

SOMs are built as two dimensional arrays whose cells get adjusted towards a specific
set of input signals according to a given order. Since each map vector now represents a
specific type of information, the SOM is an ideal tool to visualize N-dimensional data. It
visualizes these data sets by projecting them onto an n-dimensional map, where n < N,

with the data units clustered according to a designated common attribute.

2.3 Representing PDFs as SOMs

The envelopes of theoretical generated curves that are used in the SOM are formed
from PDFs using semi randomly varied parameters for each of the parton PDFs that
comprise them. The curves are referred to as an envelope of curves because the resulting
structure functions from the PDF's are designed to encircle the experimental data, with
generated curves forming above and below the data values. The details of this method
are in Section 3. We select PDF's from the envelope to: i) form our training data, which
are defined as the code PDF vectors; ii) place vectors on the map, which are defined
as the map vectors. An iteration is defined as the process where the entire set of code
vectors, or input PDF's, is presented to the map vectors, the most closely matching the
input PDFs being declared the “winning” PDFs. The SOMPDF code generates map
vectors of PDFs. The map PDF's are grouped around the winning PDF according to the
neighborhood radius function. The parameters in the PDFs that comprise the SOM are

used to regulate their  and Q? dependence. Wiggling these parameters up and down



SOMPDF 37

semi-randomly by a given scaling factor creates a set of generated PDF's which comprise
the £ vectors which can be used in the Self Organizing process. The n dimensions of the
& vector in this case are the differences between the PDFs at large and small x values
for an array of Q2 values, with the Q? values taken from the available quantities given
by the experimental data. This means that the experimental data sets for the structure
function are read into the SOMPDF code and all the resulting Q? ranges from these data
sets represent the Q2 values for which the differences amongst the map PDFs will be
determined. These differences between these PDFs represent the quantity [{(n) — V;(n)]
in the adjustment function equation 2.5 for the neighboring PDFs surrounding the best
matching PDF. The map PDF with the smallest differences relative to the code training
PDF's represents the BMU for the PDF map.

2.4 Genetic Algorithm

Finally, we use a GA whereupon the new map PDFs or the input PDFs are analyzed
relative to known experimental data for the Fy values and PDFs with the lowest x?
values are used as seeds for the next set of input PDFs. This process is repeated for 250
iterations; over the course of these iterations the x? values eventually asymptotically
approach a given value, which is referred to as the saturation value. The number of
PDFs depends on the size of the map; for an n x n map there are n?> PDFs for each
envelope. The PDF maps will be done using two different types of maps. The first type
will use a 6 x 6 map and the second type will use a 1 x 1 map with 36 PDFs. These two
different methods of using the SOMPDF code will allow us to isolate the efficiency and

other possible effects of using the Self Organizing process.

In the genetic algorithm, the PDF's are generated from an previous attempt to parametrize
them and then they are wiggled upwards or downwards to create a set of PDFs for each
cell in the n x n map. Of the generated PDFs, those with the best fit, defined here
as the PDFs whose values most closely match those of the experimental data structure
function values, are chosen for each cell. From here, the PDF from all the n? number
of PDF's with the closest fit to the experimental data are chosen as the best PDF. This
PDF is then used as a seed vector from which the next set of PDFs are generated. This
process is repeated a given number of times for each iteration and the SOMPDF code

runs this process for a select number of iterations. Each iteration uses the GA along
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with the Self Organizing Process to evolve the PDFs from initial to final stages. The
PDF's from each cell, from which the best fitting PDF is used, form an envelope of PDF's
and a subsequent envelope of structure function values. An example of the initial and
final PDFs are shown in Figure 2.1 and Figure 2.2. We aim to initialize the formation
of this PDF envelope so that it sufficiently encircles the experimental structure func-
tion values from above and below these values. This is done to eliminate any biases
in evolving the best fitting PDFs by creating a sufficiently randomized set of generated
PDF curves. This formation is also done to fit the experimental data closely enough
to ensure that future SOM and GA iterations produce the structure functions with the
best possible fit to data. The need to eliminate bias in fitting the data arises because if
the envelope of SOM generated PDFs does not encompass the data on both sides, when
the PDF sets are trained and evolved with the SOP and the GA, the PDFs in future
iterations will remain above or below the experimental data and the processes will not
sufficiently be able to learn from y? values to form PDFs for subsequent iterations. A fit
to the experimental data is no longer feasible if the initial envelopes do not encompass

the data.

U, + D, Q? = 150 GeV? Envelope and Collaboration PDFs

1.6
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1ol NNPDF == |

PDFs

FIGURE 2.1: An example of an envelope formed for the first iteration, for Q% = 150
GeV?, for the valence quark PDFs relative to the valence quark PDFs determined by
other collaborations.
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U, + D, Q? = 150 GeV? Envelope and Collaboration PDFs
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FIGURE 2.2: An example of an envelope formed for the 250" iteration, for Q% = 150
GeV?, for the valence quark PDFs relative to the valence quark PDFs determined by
other collaborations.

3 SOMPDF as a quantitative parametrization of DIS data

The previous two sections ANNs as a whole and the SOM, the specific type of ANN
used in our procedure, were explained in detail along with the nuclear physics processes
this network was designed to probe and how the SOM network would successfully probe
them. The first section discussed the need to create, visualize and classify unbiased
parametrized theoretical models of scattering cross section observables. From there, the
case was made for the unsupervised SOM as an ideal network to achieve this. The
nuclear and high energy physics that generated the observables we look to model were
analyzed in order to to show the full scope of applications of the generated theoretical
models. The second section provided a step by step of the workings of the SOM so that

the process by which the theoretical models are generated could be fully understood.

In this Section we give a detailed report of the major changes that were applied to
the initial approach in Ref.[63]. The initialization procedure is now based on a new
criterion which we describe below. The new freedom of variation allowed by the updated
initialization procedure enabled us to introduce also a new, more flexible criterion to take
into account Q2 evolution. Although our current attempts to apply the SOM to DIS

are limited to PQCD at NLO, our new method allows us to naturally take into account
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other sources of Q? dependence. These sources include TMC,LxR and nuclear effects

which all affect the large x behavior of the structure functions.

Before proceeding with the detailed description it is important to underline the difference
between the experimental data and the training data. This distinction forms the basis of
the unsupervised learning process. The training data constitute an envelope of generated
theoretical PDF curves which are built in the initialization procedure. These theoretical
curves encompass the measured observable data values. The envelope of data sets forms
the input data vectors for the SOM fitting process. The experimental scattering data
sets are structure function observables to which the nuclear models formed from the

SOM and GA are designed to be fitted.

3.1 Main program SOMPDF

The input SOM parameters are read in from the input file 'Sompdfparameters.txt’ using

the subroutines Setparamfile and Readparams.

The experimental data files are read in using the subroutine Getf2data and the total
number of  and Q? values to be used in PDF computations, based on the experimental
data files, are obtained with the subroutine Uniquevals. The experimental data files
may contain duplicate points for the same z and Q? values. In order to ensure that
these duplicate values do not get used in the structure function fitting procedure, the
Uniquevals subroutine creates a set of points containing only one structure function
value for each 2 and Q? value. The subroutines SOMgridcreate and L2DistArr create
the actual SOM that the map PDF vectors are placed on and enables us to determine

the total number of map cell units on which the map vectors will be placed.

To start the training of the PDF envelopes there are the three previously mentioned
three types of PDF sets declared that will be set up in later subroutines: GRV [49] [50],
MSTW [51] and ABM[52] . The PDF envelopes that are used in the SOM training and
the GA will be weighted combinations of these three PDF types. The Initweight and
Initgpd subroutines construct the initial weight vectors and PDF envelopes, the ones to
be used in the first iteration of the GA and SOM. GPDcreate sets up the PDF arrays,
based on the number of z and Q? values previously determined, in order to fill them

with values computed from the three PDF sets used. The Mixvecs subroutine creates
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combinations of the three different types of PDFs used in the SOM/GA computations,
filling the arrays set up in GPDcreate, and subsequently utilizes them to train the map
vectors in the Self Organizing Process and for the first step of the GA. The subroutine
Writemapvecs calls a series of subroutines in the Printutils module that prints out the
initial envelope of PDF map vectors used in the first iteration of the SOM and GA
methods. The Train subroutine is where the SOM procedure is utilized; the placement of
training PDF vectors on the map, finding the best fitting PDF map vectors and adjusting
the neighboring factors using a neighborhood radius dependent function are all done in
this section. The next set of subroutines comprise the GA method for maximizing the
fit of the theoretical generated PDF's to scattering data. The training PDF vectors are
then normalized with the Processweights subroutine. The normalization is done by first
completing the integral of all of the PDF types. From there, the normalization factors
for each PDF type are computed such that when the PDF integrals are redone, the
valence quark PDFs satisfy the Baryon number constraint, the sea quarks satisfy the
Mellin moment normalizations and the quark and gluon PDFs satisfy the conservation
of momentum constraint. The Baryon number, Mellin moment and conservation of
momentum constraints are explained in detail in later subsections. The PDF vectors
in this set with the lowest y? values, which designate the best fitting PDF vectors
to the experimental data, are found using the Findbestvecs subroutine. From there,
the Createseedgpds subroutine sets up PDF seed vectors using the best fitting vectors
found in the Findbestvecs subroutine. These set vectors are then used to generate
the PDF vectors for the next iteration of the SOM and GA. This process is repeated
for a designated number of iterations and the best fitting PDF and the accompanying
generated envelope of PDFs that contain the best fitting PDF are printed out in the

Writebestmapvec and Writemapvecs subroutines.

3.2 Module Gpd Init

This module contains the Initweight and Initgpd subroutines that set up the array size

for the PDFs and make calls to generate PDFs for use in the SOM.
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3.3 Module Gpd Gen

This module contains the Mixvecs and Processweights subroutines that generate the

map and training PDFs for each iteration of the SOM and the GA.

3.4 Module Generators

This module contains the subroutines that produce semi randomly generated PDF's, for
the SOM and for the training vectors, using the functions constructed in the Module

Gpd Functions.

3.5 Module Gpd Utils

This Module reads in the experimental data files and sets up the allocatable arrays x
and Q2 values as well as for the quark and gluon PDFs. The module uses the number
of different Q? values contained in the data files read in to set up the array for Q? used
to set up the PDFs. The module uses Bjorken scaling to set up the x arrays. The Q?

and z arrays are then used to set up the PDF arrays.

3.6 Module Gpd Parameters

This module sets up groups of parameters, some of which are scaled by constants in
order to ensure that a proper envelope forms, for the three PDF types, GRV, FMRST
and ABM.

3.7 Module Gpd Functions

This Module computes three types of PDF sets using Bjorken z values and the Q2
values read in from the data sets: GRV, FMRST and ABM. The parameters that are

semi randomly wiggled provide the @2 dependence for each PDF type.
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3.8 Module Gpd Perturbs

This Module wiggles a subset of the parameters in each PDF set semi randomly by a
predetermined scaling factor. For the parameters set at a given value P, the module
determines a new value for this parameter in the range [P, — A, P, + A] where A is the

scaling factor used for the parameter subset.

3.9 Module Somkit

This Module contains the Train subroutine where the actual SOP process is performed.
The aforementioned subroutine takes given set of training PDF data vectors and finds
the best matching unit, or bmu, on the SOM of PDF vectors relative to each data vector
in the training set training PDF vectors. After the bmu is determined, the neighboring
SOM PDF vectors are adjusted using the functional form Lesrwhere L is the distance
between the bmu and a neighboring map vector and R is the neighborhood radius for
the SOM. The bmu among the SOM PDF vectors is also determined for the data vectors

after the map training step is complete.

3.10 Module Som Utils

This module contains the SOMgridcreate subroutine that set up the size of the SOM
and the neighborhood radius used in the SOM. It also contains the Getextrmmetric
subroutine that find the PDFs in a generated set with the lowest x? value for use to

generate a set of seed PDFs in the next GA iteration.

3.11 Module Gpd Eval

This Module takes in the PDFs formed from the semi random parameter wigglings in
the gpd functions module and forms the proton and deuteron structure functions. It
also calculates the y? value for each Bjorken x and @Q? value read in relative to the
experimental data point closest to that  and Q? value for the appropriate structure
function. From here, the Module determines a total y? value for each PDF set in a

generated envelope of PDFs to be used in the SOM and GA.
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3.12 Module Gpd Norm

This module performs the integrations of the PDFs over the Bjorken = values for each
Q? value read in and normalizes them to a set of conditions read in after the integration
routine. The integrals of w, and d, are computed so that the normalization constant

satisfying the conditions below can be met as specified by the Baryon number constraints.

Nu/Uvdx =2 (3.1)

Nd/Dvdx =1 (3.2)

The %,d, s and ¢ quark PDFs are normalized according to their designated Mellin Mo-
ments, which will be provided in detail in later sections. These moments are determined
from quark non singlet and singlet combinations. The Gluon moment is then normalized

so that the momentum sum rule is satisfied.

/va + 2D, + 220 4 22d 4 x5 + xc + 2Gdr = 1 (3.3)

3.13 MPI

The SOMPDF code uses MPI in order to run a set of processes in parallel to ensure
that the generation of the required map and code PDFs occurs in a timely manner.
The map vector and a set of code vectors are generated for one process and then the
code information is broadcast to the other parallel processes so that the map and code
vectors can be generated in the same manner. The code is currently on the University
of Virginia Rivanna coding system. The code currently runs 36 parallel processes, one
for each map cell unit, and the Rivanna script for running the code with MPI is shown

below. This script allocates 6 nodes with 6 processes for each node in order to obtain

the full 36 processes.
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Listing 1: MPI code
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3.14 SOMPDF flow Chart
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TABLE 3.1: Code Module For Each Step
’ Step Number \ Code Section

1 module fileutils.f90

2 subroutine set functionnames
3 f2utils. f90

4 SLURM Script

5 module mpivars.F90

6 module math funcs. f90

7 module gpdinit.F'90

8 module gpdinit. F90

9 module gpdinit. F90

10 module gpdgen.F'90

11 module gpdgen.F 90

12 module gpdfunctions.f90 + gpdperturbs.f90 + gpdparameters. f90
13 module gpdnorm.f90

14 module gpdeval. f90andsomutils. f90
15 module somkit. f90

16 module somkit. f90

17 module somkit. f90

18 module somkit. f90

19 module somkit. f90

20 module somkit. f90

21 module printutils. f90

3.15 New Initialization Method

We start by describing the construction of the initial envelope for the SOM training.
When we subsequently apply the GA, we construct new envelopes which contain sets of
PDF's that are generated from each previous iteration, and that are selected based on

their 2 values so that, after a number of iterations we minimize it.

As discussed in subsection 2.4, the challenge one meets in forming an initial envelope is
that on the one hand it must be constructed randomly in order to meet the criterion of
unbiased formation, and on the other hand it must be adjusted enough to sufficiently

follow the experimental data.

Our envelope is formed with randomly weighted combinations of three distinct paramet-
ric forms of PDFs, GRV, FMRST, and ABM, at an initial Q% = Q2. We then introduce
Q? dependent parameters by using the procedure from previous parametrization [49]
[50] [52] [51] . Q? dependent parameters were introduced for all three parametric forms

we used.
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The observables we want to use in constructing the initial envelopes are shown in equa-

tion 3.4 and equation 3.5 .

4 1 2 2 2
F2P:x§(uv+2a)+§(dv+2cz)+§s+§c+§b (3.4)
1 4 2 2 2
D _
Fy :xg(uv+2u)+§(dv+2d)+§s+§c+§b (3.5)

In forming the initial envelopes of these functions, there were a set of fundamental
observations to take into account in varying the parameters. One was that certain
parameters that were adjusted either did not have fundamental effects on the nature of
the best fitting and envelope PDF's when varied or agdjusted to a large enough extent
as to make varying these parameters unproductive. For the remaining parameters, it
was discovered, for a given parameter P;, that varying that parameter by the factor
P;+ AP where AP was a predetermined shifting factor, was ideal for creating envelopes

enclosing the data.

In order to illustrate how the parameters were varied in order to form an envelope we
take the quark distributions, starting with the valence distributions u, and d, in the
GRV parametric form [49], which are shown in expression 3.6 and equation 3.7. The

gluon and sea quark distributions are shown in expression 3.8 -equation 3.11.

wy = Ap(t) 2P O 1 — )P O 1 4+ OV (1) /z + CY (¢) ) (3.6)

dy = Ap(t) 2P O (1 — )PP O 1 + CP )z + CP (1) z) (3.7)
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9= (@AW (Ag(t) + Bo(t)z + Cg(t)a?)(~ Inz)BLe®

H(tM6W) exp (~Eg(t)) + /—(EPa(t)) (t950) In(a)) (3.8)

(1—z)Pe®

u = (2B (Ayp(t) + Byp(t)z + Cyp(t)a?)(— nz)Brus®

+H((t0E0) exp (~Eyp(t)) + \/ —(EPyp(t))(t°r(1)) In(z))) (3.9)

(1— x)DUB(t)

d = (48O (App(t) + Bpp(t)z + Cpp(t)z?)(— Inz)BLrs®)

H(tM02O) exp (~ Epp(t) + | ~(EPps(t)(t9050) In(x)))  (3.10)

(1— x)DDB(t)

(= S
>~ () 50

(1+ (Ag(t))(¥x) + Bs(t)x)((1 — I)Ds(t)) (3.11)

exp(—Es(t) + §/—EPs(t)(t%0) In(x))

For the GRV functions, the parameters used in determining the Q? dependence of the
u, quark PDF are in 3.2. For the d, quark PDF the are in 3.3. For the gluon PDF
they are in 3.4. For the  quark PDF they are in 3.5, for the d quark PDF they are in
3.6 and for the s quark PDFs they are in 3.7. The free parameters used to set up the

parton parameters in 3.2 - 3.7 are initialized as shown in 3.8.
with ¢ shown in formula 3.12 [64].

In Q?/A?

t:lniang/A2

(3.12)
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’ U, parameter ‘ Expression ‘
Ay(t) au11 + @it + au13(t?) + ay1a(t®)
BY (1) 0.285
BY(t) bu21 + buzat + by23 (t?) + buoa(t3)
Y (t) cu11 + cutat + cuas(t?) + cura(t?)
CY (t) cu21 + Cuzat + cu23(t?) + cuza(t?)

TABLE 3.2: Parameter Set for v, PDF Equations

’ d, parameter \ Expression ‘

Ap(t) agi1 + agi2(Vt) + agist
BP(t) bai1 + baat

BY (1) bao1 + baoat + baaz (t2) + baoa(t?)
CP(t) cai1 + car2(Vt) + caist
CP(t) a1 + caza(Vt) + caost

TABLE 3.3: Parameter Set for d, PDF Equations

’ gluon parameter \ Expression ‘

ALaruon (t) algl + alg2t
BLaruon (t) blgl + blg2t
agruon (t) ag,t + ag,(t?)
baruon (t) bg, + bg,t
carLuon(t) Cgy + Cgt
dGLUON (t) dg1 + d92t
Eqruon(t) g + egyt
EPgrvon(t) 2.466
AAGLUON(t) 1.128
Barvon(t) 1.575

TABLE 3.4: Parameter Set for gluon PDF Equations

The PDFs enter the observable, F5, as was shown in equation 2.2 - equation 2.3. The
quantitative analysis of the PDFs is shown in [49]. In equation 3.13, C}, C2 and C3 are
the uniform, randomized weighting factors that gauge how much each of the structure
function types contributes to the formation of the function used in the GA. forv, farsTw
and fapas are the generated structure functions generated from the input models using

semi randomized parameter variations.

F = Cifarv + Cofmustw + Csfapu (3.13)
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’ 4 parameter ‘ Expression ‘

AL@B (t) alﬁl + CLZfLQt
Aap (1) ag, + ag,t
BTLB (t) bﬂlt + bﬂz (t2)
C_B (t) Caq + Cﬂ2t
Da,, (1) day + dg,t
E-B(t) €y + €ﬁ2t

EP; (1) epa, + epa,t
bla, (1) 0.0

AAg, (1) 0.594

Bal(t) 0.614

TABLE 3.5: Parameter Set for w PDF Equations

’ d parameter ‘ Expression ‘

ALJB (t) ald-l + al(zzt
A, () ag, +ag,t
By, (t) | bt +bg,(t")
Cd_B (t) cg, tegyt
DEB (t) dd’l + dJQt
Eg. (1) eg, +eg,t

EPg, (t) epg, +epg,t
blg, (t) 0.0

AA;, (t) 0.594

B(t) 0.614

TABLE 3.6: Parameter Set for d PDF Equations

Notice that whether the PDFs given above are able to fit quantitatively all, or a subset
of the existing data is not important for constructing the envelope. The parametriza-
tion provide functional forms that are sufficiently close to the data so that by properly
varying some of their parameters one can construct a bundle of curves whose envelope
encompasses all of the available data. This step of our analysis can be challenging in
that by using some of the baseline parametrization formulas it is nearly impossible to

bracket newer data.

3.16 Description of Structure Function Fit

The structure functions shown in equation 2.2 - equation 2.3 can be used to determine
the x? values for the PDFs in each of the n? sets and also to plot and analyze the

behavior of the generated structure function values relative to the experimental data.
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’ s parameter ‘ Expression

ALg,(t) als, + als,t
EPs(t) 8.12
Ags(t) as, + ag,t
Bs(t) b51 + bSZt
Dg(t) ds, + dsyt + ds,t?
Es(t) s, + €syt
Ss(t) 0.0
AAg(t) 0.756
Bs(t) 0.101

TABLE 3.7: Parameter Set for s PDF Equations

Once the given number of iterations is complete and the best fitting PDFs are chosen
from the final evolved PDF set, we can evaluate not only if the x2? value is sufficiently
low but also of the structure function behavior matches that of the experimental data
for the full x range. These structure functions are plotted, for a 6 x 6 and a 10 x 10
map, alongside the experimentally generated structure function values in Figure 3.1.
The results show that the SOMPDEF generated structure functions were able to fit the
experiments in terms of function behavior at large and small x. There were difficulties
for the 6 x 6 map in fitting the SOMPDF structure function values to the experimental
values for small as well as large x and these difficulties were profoundly more apparent for
the lowest two Q2 values. The 10 x 10 map showed a marked improvement in fitting the
generated structure functions to the experimental values and showed the use of the SOM
in fitting the data. Increasing the map size therefore led to substantial improvements
in the ability of the SOMPDF code to fit its theoretical models to the scattering data
due to its use of the Self Organizing Process and increased number of theoretical input
models to use for the GA. Ultimately, 6 x 6 maps were chosen for creating the final sets
of generated theoretical PDF and structure function sets. This was because this size was
sufficient to make effective use of the GA and the network’s self organizing abilities and

cluster formation properties while simultaneously maintaining a level of practicality.

3.17 PQCD Evolution: Moments

When the PDF sets are generated, for use in the SOM and the GA, they must be
normalized in accordance to the principles of QCD; each time a PDF, whether for use as

a map or training PDF, is generated from semi randomly generated combinations of the
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’ free parameter | Expression ‘ free parameter ‘ Expression H free parameter | Expression

Q11 0.330 bu21 3.17 Cyll -2.28
Gy12 0.151 bu21 1.17 Cyul12 15.73
Aqy13 -0.059 bu21 -0.47 Cul3 -4.58
(yl4 0.027 bu21 0.09 Culd 0.0

Cu21 56.7 aqi1 0.459 ba12 -0.031
Cu22 -53.6 aq12 0.315 bd21 3.98

Cus3 11.21 agi3 0.515 baza 1.04

Cu24 0.0 bdll 0.624 bdgg -0.3

bd24 0.0 Cd11 8.13 Cd12 -6.77
Cd13 0.46 Cd21 6.59 Cd22 -12.83
€423 5.65 alg, 0.323 alg, 1.653
bly, 0.811 bl 2.044 agy 1.963
ag, -0.519 by, 0.078 by, 0.624
Cor 30.77 Cas -24.19 dy, 3.188
dg, 0.720 € -0.881 €gs 2.687
als, 2.942 als, -1.016 as, -4.60
(s, 1.167 bs, 9.31 b, -1.324
ds, 11.49 ds, -1.198 ds, 0.053
es, 2.630 alg, 0.636 ala, -0.084
€sy 1.729 ag, 1.121 g, -0.193
ba, 0.751 ba, -0.785 Ca, 8.57

Cay -1.763 da, 10.22 da, 0.668
eu, 3.784 €y 1.280 ePu, 1.808
€Puy 0.980 alg, 0.636 alg, -0.084
ag, 1.121 ag, -0.193 epg, 0.980
by, 0.751 by, -0.785 cq, 8.57

cd, -1.763 dg, 10.22 dg, 0.668
eq, 3.784 ed, 1.280 epg, 1.808

TABLE 3.8: Free Parameters for the PDF's

three PDF types, a normalization factor allowing the integrated PDFs to satisfy three
requirements must be computed. These conditions are the momentum sum rule, Baryon
conservation and the individual Mellin Moments. Perturbative evolution was taken into
account by requiring that the various PDF's reproduce the momentum fractions evolution
predicted by NLO pQCD. The PDF theoretical curves were generated through variations
of the Q? dependent parameters that comprise the quark PDFs in order to fit them to
data sets. Subsequently, it was not necessary to have all the quark and gluon PDF types
be subjected to Perturbative QCD evolution.

The current work for the SOMPDF project has been centered around first normalizing
the values of and the parton distribution functions (@z,dx, sz ...) over x, where x is

the momentum fraction carried away by the partons during the deep inelastic collision
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FIGURE 3.1: Structure function F{f plotted vs = at Q? values of 2.5,10,150 and 800

GeV?

of the hadron with an electron, over the range of 0 to 1. Each of the individual PDFs

are normalized to values satisfying the conditions outlined in Section 3.12 by their own

specified factors. These normalization factors are determined by the Mellin Moments

for Q? evolution.

Prior to determining the normalization moments for the PDFs, the normalization rules

for partons must be established; these rules will constrain the formation of the PDFs

when the SOM and GA are used. This is because for a proton there must be two up

quarks and one down quark, and the momentum of the partons in the proton must

be conserved during the collision. Subsequently, the up and down quark PDFs are con-

strained by their Baryon numbers and the partons are all constrained by the momentum

sum rule. The conditions for the PDF constraints are in relation 3.14-equation 3.16.
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/ updz = 2 (3.14)
/dvdx =1 (3.15)

/va+Dv+2u+2d+23+2c+de:1 (3.16)

The Mellin Moments are taken from non singlet, or NS, and singlet structure functions
[65]. The NS combination of quarks is given through the sets of valence quarks; u, = u—1u
and d, = d—d are the NS quark combinations used in the Mellin Moment, computations.
The singlet quark combination is given in terms of the sum of quark combinations; the
singlet distribution can be written as u, + d, 4+ 2%+ 2d 4+ 25 + 2c when strange and charm
quarks are included. For NS PDF combinations, the Q2 dependent Mellin Moments are
in relation 3.17 [65].

‘@

2 di}VS

;) (3.17)

as(

Q=
oo N

MYS(Q?) = Mff%@%)(

as(

-
[N

In this NS evolution, d¥* refers to the non singlet constants of asymptotic freedom given

in Roberts [65].

The Q? dependence of the singlet quark combinations must be computed in terms of the
mixing of quarks and gluons. Therefore, it requires two sets of operators as opposed to
one set for the NS moments. The operators are ( equation 3.18 )

infl

05 = —lay" D2 4 DF"q + permutations] (3.18)
n!
and ( equation 3.19 )
Z'n72
0% = Tr[D*2..... + D*** G 4 permutations] (3.19)

" n!
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Given i = @, g we now have the singlet and gluon coefficient functions ( equation 3.20 ).

6;(@2) — S (1,52 (t))exp| — gl In ¢] (3.20)
p2 j=q.G 260
with ( equation 3.21 )
.. .. g2
i (g) = AT 21

The dimensions 7, 7" are calculated form one loop gluon corrections [66] [67]. For the

singlet dimensions, in LO ~;" =~y NS and the anomalous gluon dimensions are given
below in expression 3.22.
1 4 4 n1
n,GG

GG _90y(A) = |~ — _ 4+

7 2(4) 3 nn-1) m+1)(n+2) =2j (3.22)
8
+ ngT2(F )

The eigenvalues of the anomalous dimension matrix can be defined as 'yoi resulting in

3.23.

1 GG GG\ 2 G _Gq?
7§=2{(73’qq—73’ )£ [0 =7 ) + 450 (3.23)

The final expressions for the quark and singlet moments are written below in expres-

sion 3.24 .
M Q) = ((1 = an)ryy + anry )M (QF) + ba(ryy — ) M (Q))
1—ap)(r} —r, _ (3.24)
ME(Q) = an TN ZT0) 052y 1 (1= anr + ) ME QD)
with 3.25
n,qq __ n,+ _ TL,(]G
ap=20 "0 4 "% (3.25)

n,— n)+ ’ n,— 7'L,+
Y — Yo — N
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and 3.26

+_ [QS(Q2d$] + _ ’7(7)17i
" as(Q% o 200

(3.26)

The singlet moments evolve, shown in equation 3.27, relative to Q% over Q? the same

way the NS quark moments do.

ME(Q?) = / dea™ 25z, Q2) (3.27)

The gluon moments are not physical quantities the way the non singlet and singlet quark
moments are. However, the gluon moments need to be normalized such that the total
moments of the quarks and gluons satisfy conservation of momentum independent of
Q2. To do this, we need to switch to the Gross and Wilzek [66] convention shown in

equation 3.28.

2
2
,yg,qG _ _8NfT2(F)w
n(n+1n+2)
) ) (3.28)
S STONG 2 i e
Yo 2(F) n(ng —1)
For the second quark and gluon moments the result is shown in expression 3.29
2,99 2,Gqg _
Y%+ =0
° ’ (3.29)

2,6G | _2,4G
Y0 + % =0

The pair of singlet and gluon evolution moment equations now give the following result

shown in expression 3.30.

M3(Q%) + M5 (Q%) = M5 (QF) + M§ (Q}) (3.30)

The Q? dependent evolution of the singlet quark PDF combination is in formula 3.31.
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+
3Nf o (Q2)\ % 3Nf
MS(Q?) — —— | = s MF(Q3) — —L 3.31
d; refers to the non singlet constants of asymptotic freedom given in Roberts [65].
In these singlet structure forms, the value of Q2 is set to be Q3 = 0.55 GeV2. The
initial values of the Mellin Moments are set so that for the @ and d moments, they are

approximately equal to each other and roughly twice the moment value of the s quark.

When determining the Q? dependent evolution of the PDFs, the strong coupling constant
is also evolved past its Leading Order value. The as to NLO needs to be determined to
account for the corrections to A from the rescaling of the quark normalizations in the

hadron absorbed to second order and higher corrections to the NS moment.

The two-loop correction to the coupling constant results in a new expression (equa-

tion 3.32 ) for ag where the two loop term (3 is given by #; = 102 — %Nf.

9 3
as(@?) O‘Si?)) + . (3.32)

4 ) +61(

d O‘s(QQ))

danQ( ) =l

The algebraic terms a, b and ¢ can be introduced, where a = Gyas(Q?) /4w, b = 31/B0>
and t = In(Q?/p?). The evolution term In %; can be written in terms of the combined

algebraic expressions in formula 3.33.

1
a(p?)

1+ ba

—bln ( ) —Inp? (3.33)

Setting each side equal to —In A? gives us equation 3.34 for In Q? in terms of aj.

1

Q?  Ar ﬁln[47r ﬂ]

HF B /60053 B ﬁ[)2 +

Bocs T Bo? (3.34)

The NLO a4 is given in expression 3.35 as an approximation for small as. For the
computation of the moments the values of a(M,) are allowed to vary within the range
as(M,) = 0.1135 — 0.1195, which is consistent with other PDF collaborations. This
results in the computation of the theoretical models implicitly taking into account the

correlations between a; and PDF uncertainty.
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Q* 2
@ Bl (3.35)
™ (foln}z) 0 (Boln %)
In order to set up the Altarelli-Parisi equations [68], the total set of contributions to
the Q? dependence of the non singlet quark, singlet quark and gluon structure functions
must be computed. This begins with the fundamental expression for the quark density

from which non singlet quark, singlet quark and gluon distribution functions can be

obtained. This desired density can be given in expression 3.36.

da(w) = [ dyao) [ Pra()d1n Ly de]o(ay — ) (3.36)

As Q? in the scattering gets larger, gluons are emitted in the quark quark annihilation
vertex that governs parton splitting. This emission also governs the size of the proton
transverse momentum L%. When @? increases, the quark density in the hadron target
changes due to two factors. The first one is a second quark emerging with momentum
fraction  when the first quark, with momentum fraction y > x, emits a gluon. This is
the source of the quark distribution dg(z). In addition, the hadron will contain other
quarks with momentum fraction x that emit gluons which contain momentum fraction
2’ with 2’ < z. The splitting function for both contributions is the same and results
in a new expression, shown in expression 3.37 for the non singlet, or valence, quark

distribution.

dg"®(z, Q%) _ as(Q?)
dln@Q? 2r¢

/@MWN%%@%aAawwy—m—aw—xﬂ

(3.37)

From here, we can work towards deriving the more conventional form of the AP equa-
tions. The first step is bringing the delta functions into the splitting functions to give

us equation 3.38.

Paa(2) = Co(F) | 1= = Z5(1 - 2) (3.38)
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(1 = 2)_ is defined in equation 3.39

) [t )
/dz(l_z)+_ e (3.39)

This definition comes from the standard definitions of the plus function given in equa-

tion 3.40.

15
(F(z)), = lim{F(x)@(l —z—0F)—0(1 —x—ﬁ)/o F(y)dy} (3.40)

p—0

This function must vanish quickly enough as z — 1 for the + function to satisfy the

following distribution integral (equation 3.41 ).

1
/0 (F(z)),dz =0 (3.41)

The quark gluon splitting term Pyq(z) contains a + function of the form (1{(3 . This
+

type of 4+ function has a limit shown in equation 3.42

— = lim{(f(z)ﬂ(l —z—0)— f(z)0(1 —x— ) ln(ﬂ)} (3.42)

1—2x)

When a function (1f_(;; is evaluated over the (0 : 1) range, the first term on the rhs of
+

the expansion in equation 3.42 yields the integral [ dz ({EZZ)) and the second term vanishes

{(_12),) The integral on the rhs of equation 3.39

everywhere except z = 1 yielding f dz(

vanishes at the endpoints, yielding, with integration by parts, equation 3.43.

=) _ [,
e —/d in(1 - )¢ (3.43)

This allows us to write the non singlet Q% dependent moment equation in expression 3.44.

quS(QQ) _ @ ! dy ns 2 £
W = 27T/x ;q (y,Q )Pq (5) (3.44)

This non singlet moment becomes, given M* (Q?) = i dza"1gVs (7,¢%), equation 3.45
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NS ()2 2
Q? dM:;QéQ ) _ aség )/dzz"_quq(Z) (3.45)

We can from here relate the splitting function to the anomalous dimensions for valence

quark combinations (equation 3.46 ).

1
/dzz”_lpqq(z) = fzyg’NS (3.46)

The above is the valence moments for one quark type. Factoring in all the valence quark
types and adding in the contributions from the emitted gluon loops gives us the relations

for the quark and gluon distribution functions shown in expression 3.47 - equation 3.48.

dg'(z,Q%)  ay(Q?
dlnQ? 2«

(3.47)
d .
- / 500 @) Py () + G, @ Pyal)]
dG(z,Q%)  a,(Q”
din@Q? 27 (3.48)
dy . ; |
< [ 150w, @Y Pap () + Gl @Pac ()]

In the above quark and gluon distributions, ¢ and j run over every quark type found
within the target hadron. At this level, the quark gluon interactions cannot lead to
changes in quark type, the probability of a quark emitting a gluon is independent of
the type of quark and the emission of a gluon creates a quark anti quark pair whose
probability of formation is also independent of that quark type. This gives us the

relations Ppig; = 0;5Pyq, P = Paq and P = Pya.

From here, we can expand the splitting function Py, (2) from a specific quark type to all

quark types included in the NS moments as [ dzz"flPij(z) = —i’yg i Then, we have

for the quark and gluon AP equations, equation 3.49
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dg® 2 JQ% [d
qdij’Q% ) a;f /;qu(z)qs(Z,Q2) —I—Nqu(;(z)G(gQQ)
dG(z,Q?)  a,(Q? (3.49)

) 2 [ pee (2.6Y) + Pra)G (L@
The splitting equations, since they describe the probability of quark and gluon emission
from an initial set of quarks and gluons within the target hadron, are also governed by
conservation of momentum. The quark gluon vertices and the combination of annihila-
tion and three gluon vertices, which produce quark and gluon pairs, must each result in
zero net momentum added to the hadron. This allows us to relate the splitting functions

as shown in relation 3.50.

/dzz [Pyq(2) + Paqg(2)] =0
(3.50)

/dzz [2N; Py (z) + Paa(z)] =0

The splitting functions are also related, for z < 1, by the expressions Pyy(2) = Pgqe(1—2),
P,o(z) = Pyg(1 — 2) and Pgg(z) = Paa(l — z). Then, the splitting functions for the
quark gluon vertex for quark gluon interactions, the annihilation vertex and the gluon

pair production vertex can be given as well, in relation 3.51 - equation 3.53.

2
Paqg(z) = 02(F)71 - (1Z ) (3.51)
Pyo(2) = To(F) [z + (1 — 2)°] (3.52)
Poa(z) = CQ(A)[ : + 1=z +2z(1 - Z)] + L5(1 —2) (3.53)

(1-— z)+ z 20

The full Q? dependence of the Mellin Moments for the PDFs can from these conditions
be determined from integration of the AP Equations, given in expression 3.54 - equa-
tion 3.56 The AP equations describe the evolution of densities for every parton type and

combination present in a hadron.
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d (LY ra
Tag 2@ = = = /% [PH?@J‘C’Q *Ff(’Q)> + Pgaq(Z)Fg(,Q)}
(3.54)
d S 7; dZ
MFf(a:, y=2 (7TA )/Z[PquFf(j,Q) +Pgﬂng(Z,Q)] (3.55)
d S 7; dZ
MFJZ(%, y=2 (WA )/Z[PgeqFf(Z,Q) +Pgﬁng(Z,Q)] (3.56)

We can also express using the non singlet moment evolution in LO using the (1 —z),
term and taking into account z behavior at the endpoints. The (1 — z)_ expansion term

is evaluated in expression 3.57.

1 T 1 T
/ dzf(z)u—z);l_/o a=f (D) - 2)!
- [Carda - -
X ) (3.57)
[ @l -s@la-2

—f(x) /Ow dz(1—2)"!

The non singlet structure function FV9, where FN5(z,Q?) = x¢™V%(Q?), can be ex-

panded by noting that (equation 3.58)
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2 Ty
2
Caf {%Q /yz ¥y, Q%)

[t Ssu-2)) -

+

dzg™¥ (2, Q%) _ as(Q?) /1

/ Lyl + SR — (14 e Y (0, QA (1 - 2)

1
Y@+ lemr [ - 27 4 P @)

x

(3.58)

Using these expansion terms and completing the integrals of the + function expansion
terms in equation 3.58 at the z = 1 endpoint gives us the expression for the non singlet

structure functions in equation 3.59.

dFNS($7Q2) _ aS(Q2)
dlnQ? 2«

odz x
[ QY - 27w )

CZ(F){[?) +2In(1 — )] FN%(z, Q%)+
2 (3.59)

The NS moments can be evolved to NLO by expanding the dimensionless terms ;" NS

[69]and B which are an integral part of the NLO expansions of the coefficient func-

tions. They can be written in equation 3.60.

o g\ 2
S = NS (G

1,52) =1+ BVNS (&

s (3.60)

Ch )+

The results for BYS in x and n space [70] are shown in expression 3.61 - equation 3.62.
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3 1422 1
BYS = Oy(F)] 2(1+§) +5(9+52)
— )+
(3.61)
1+ 22 o\ [In(1 — ) 2 5
—21 2(1 — (94 Z7%)8(1 —
w20 A0 -+ S o)
nl a1l 2 a1l
By =Cy(F)3Y - —4% ———— % -
j=17 j=1j n(n+1)j=1j (3.62)
nl1s1 3 4 2 '
Y-y + 24— 29
s=1sj=1j n n+1 n?2

This allows us to express the NLO evolution of the non singlet moment in terms of the

above dimensionless terms as shown in equation 3.63.

os(§2)\
M@ = s@p (<A
as(38) (3.63)
2y _ 2
X[1+C7{LVS(QS(Q ) as(Qo))]
47
n,NS
The quantities d,, and Cflv S can be written in terms of the other quantities as d,, = 702 %

NS NS | NS g NS
—_ 1 0]
and C'° = B,/” + 45— — 267

For the NLO non singlet moment equations the resulting logarithmic derivative is now

shown in relation 3.64.

2
dF(ZC,QQ) - 1 as(%) (0) X 9
dInQ? _/z 27 Faq F(;’Q ) dz

(3.64)

1 Qs ij 2 .
+/x ( éﬁ )> [Plg = B/ABYS (2)IF (2, Q%) dz

The splitting function can be integrated to the resulting form shown in expression 3.65.

n,NS
/dzz"1P4 i(z) = —17"’” — | BoCNS + Proo” ~ | (o (3.65)
" 4 n 260 s
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where ( equation 3.66 )

Y = 28,dp® (3.66)

The non singlet moment is now displayed in equation 3.67.

(3.67)

d(in MY¥(Q?) __737N3<as<§§>>_ e B sl
dn(Q?) 2 dr 0~n 23 Ar

The singlet moments can be written using the terms in equation 3.68. In addition, the
sea quark moments in terms of the NS and singlet moments determined previously are
written in equation 3.73 - equation 3.75 (equation 3.73 is the strange quark moment,
equation 3.74 is the up antiquark moment and equation 3.75 is the down antiquark
moment). The moments for the SOMPDF generated theoretical PDFs and the collabo-
ration PDFs for Q? = 2.5 GeV2andQ? = 150 GeV? are in 3.9.

TABLE 3.9: Moment Values

Collaboration | M3 | Ms* | MY
Q% = 2.5 GeV?
ABM [52] 0.4644 | 0.0849 | 0.4226
CT10 [58] | 0.4482 | 0.0873 | 0.4263
MSTW [51] | 0.4416 | 0.0900 | 0.4322
NNPDF [1] | 0.4601 | 0.0790 | 0.4378
SOMPDF 6 x 6 | 0.4269 | 0.086 | 0.3852
Q? = 150 GeV?
ABM [52] 0.3407 | 0.0995 | 0.5098
CT10 [58] | 0.3276 | 0.1010 | 0.4793
MSTW [51] | 0.3177 | 0.1050 | 0.4844
NNPDF [1] | 0.3340 | 0.0965 | 0.4861
SOMPDF 6 x 6 | 0.3248 | 0.0986 | 0.4601

T3 = (un(QF) +2a(Q3)) — (du(Q}) +2d(Q3F)) (3.68)

T8 = (uy(QF) + 2u(Q3)) + (du(QF) + 2d(Q7)) — 45(Q5) (3.69)

T15 = (uy(Q5) + ©(Q0)) + (do(QF) + 2d(Q7)) + 25(QF) — 6¢(Q5) (3.70)
724 = (uy(QF) + 20(QF)) + (du(Q7) + 2d(QF)) + 25(Q) + 2¢(Q7) (3.71)
T35 = (un(Q5) + 20(Q3)) + (du(Q3) + 2d(QF)) + 25(QF) + 2¢(Q3) (3.72)



SOMPDEF as a quantitative parametrization of DIS data

68

1,-T8
g = 7(7MNS

5 (3 Ma @)+
T15

NS (A2
ﬁMn (Q7)+

(3 atuons +

uy(QF) + du(Q3) + 2u(Q5)+

2d(Q5) + s(QF) + (@F))

—(uy(QF) + du(QF) + 20(QF) + 2d(QF)+
S(QB) + o(@3) — gluom—)

4C'f
0s(@) vy N 24

)

—~

+ 1))

B = (NS Q)T3 + L MYS(Q)+

T1
%Mgs(Qz)‘*‘

(7 gluon +

uy(QF) + du(QF) + 2u(QF)+
2d(Q7) + s(QF) + ¢(@7))
—(uo (QF) + du(QF) + 2u(Q3) + 2d(Q5)+

S(Q2) + (@) — gluom X

icf
as(Q%) \y sy, Nf _1y 124
(as(Q%>) )<4Cf+1) ) 5 )

—2MY5(Q*)uu (Q})

(3.73)

(3.74)



SOMPDEF as a quantitative parametrization of DIS data 69

d= [N QT3 + Z MY (@) +

T15
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(3 atuon +

uy(QF) + du(QF) + 2u(Q5)+
2d(Q5) + s(Q3) + ¢(Q7)) (3.75)
—(uy(QF) + du(Q) + 2(QF) + 2d(QF)+
S(Q8) + c(Q}) — gtuoms 15
s(Q*) vy NS 724
as (@) 4Ct

( ' Nar + V()

~2M,Y3(Q)dy(QF)
3.18 Map Features

The SOMPDF procedure uses a list of map parameters than can be adjusted each time
the code is run. Below we list the values that represent the best possible choices in terms
of speed of convergence and flexibility of results, and which as a result we used in the

final SOMPDF run.

e number of PDF types to be used for mixing n funcs =1 — 3;

e number of PDFs per cell n.; = 2;

e number of PDF's to be generated during each cycle in training, nge, = 4;
e number of new PDFs to be generated each cycle, nygw = 10;

e number of steps to be used in training each SOM, ngep = 5;

e type of norm (e.g.LjorLsy) to use for calculating distances between map and code

PDFs
e initial learning rate, LOR

e maximum number of iterations regardless of the fitting method, Ny;ax = 200
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e slope parameters based on the number of previous x? values to look at when checking

whether the x? curve had flattened out yet, s flat = 2 X 1073.

The results for the x? for each map size attempted are in 3.10.

’ Size ‘ Minimum x?
4x4 1.05202
5Xb 1.0463
6x6 1.02279
77 1.0648

TABLE 3.10: Fit Results for Various Dimensions

3.19 Experimental Data

The experimental data that the SOMPDEF code uses to fit the generated PDFs to comes
from a set of numerous collaborations. The experimental data sets used come strictly
from proton and deuteron DIS “highest quality” data along with collider data. The
collaborations are, as noted previously, SLAC, BCDMS, E665, H1, ZEUS and NMC.
Only DIS and collider data are used because it is required to determine the capability of

the Self Organizing process in fitting parametrized curves to data for isolated processes.

The kinematic range of the DIS experimental data is in Figure 3.2 and the kinematic

range of the large x data is in Figure 3.3. The corresponding table is in 3.12.

TABLE 3.11: Scattering Data Kinematics

’ Experiment ‘ Measurement | Usable Points X range Q? range

BCDMS Ff 350 7.0 x 1072 -0.75 | 7.50 - 2.3 x 10°
H1 FF 364 1.0 x 1074 -0.65 | 2.0-3.0 x 10*
ZEUS Ff 240 1.0 x 107*-0.65 | 2.7-3.0 x 10*
NMC FP 145 8.0 x 1073-0.5 | 1.75 - 6.5 x 10!
SLAC Ff 194 7.0 x 1072-0.85 | 1.12 - 29.2 x 10*
E66 Ff 46 1.2 x 1072-0.39 | 1.0-6.5 x 10

TABLE 3.12:

3.20 Error Analysis

For our error analysis we used the Statistical Error method and then, for the final set of

results, the Lagrange multiplier method. We started with the Statistical Error method
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Fi1cURE 3.2: Kinematic range of the DIS experimental data used in our analysis.
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FI1GURE 3.3: Kinematic range of the large x experimental data used in our analysis.
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so that we could determine the extent to which the PDF envelopes fluctuate and to
determine how capable the Statistical Error method is at calculating the error band
relative to the Lagrange Multiplier Method. The Statistical Error method also enabled
us to determine the extent to which the Self Organizing Process and the GA generated a
set PDF curves, at the end of the final iteration, that had significant fluctuations relative
to one another. In the Statistical Error method, each of the n? PDFs generated in the
final iteration of the SOMPDF code is treated as its own experiment. The standard
deviation of these PDFs is used as the error band and the mean value of the PDFs is

taken to be the central band.

The results of the Lagrange and Statistical Error band are shown in Figure 3.4. The
Statistical Error Band is significantly larger than the Lagrange Error band. This result
suggests that the curves that comprise the PDF envelope after the final iteration are not
sufficiently precise for determining the PDF errors, using the Statistical Error method, as
effectively as the Lagrange Multiplier method can. The central bands for the Statistical
Error method and the Lagrange multiplier method are also distinctly different. This
shows that the mean value of the PDF curves for the final iteration does not give the
same measurement as the best fitting PDF's resulting from the GA. A fundamental issue
of the PDF fitting procedure is that the best fit of the structure functions is done relative
to a global data set that contains data points from a variety of experiments, each with
their own level of precision. The number of parameters involved in the fitting procedure

further complicate the error determination.

As a result of these complications, the Lagrange Multiplier method is more ideal for
determining the error bands as shown by the generated error bands for each method.
The reason that the Lagrange method for determining the error band more effectively
incorporates the number of parameters and variation of experimental sets is because
the Statistical method incorporates all generated PDF curves regardless of how well
or poorly they fit and the Lagrange method does not. Consequently, the Statistical
method incorporates the parameter variations that do not lead to effective fits and so
becomes increasingly less reliable when the number of variable parameters used and the
number of different experimental sets, each with their own precision level as noted above,
increase in the computations. In contrast, the Lagrange Multiplier method is based on
using variations of the best fitting PDFs relative to the free parameters. For varied

free parameters, setting up Hessian matrixes of their derivates to determine PDF errors
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cannot be done so the Lagrange Error Method presents an alternative way to determine
PDF errors based on the observables x? sand F,. This method’s use of the best fitting
PDFs and their dependence on parameter wiggling significantly improves the precision
of this error computation relative to the Standard Error method. It also makes it more
ideal for taking into account the different precision levels of the various experimental

sets used.

This method evaluates the variation of the y? along a specific direction defined by the
maximum variation of a given physical variable. In our case the physical variables are

)

the proton (deuteron) structure functions FQP D), However, at variance with previous
analysis that used this method [44] , we do not have at our disposal sets of individual
parameters for each given PDF, that can be varied. In order to overcome this problem
we devised a strategy that we describe below, based on another error method calculation
[45], which uses SOMPDF's on appropriately rescaled data to determine the PDF's error.

Because the Lagrange multiplier method does not rely on basic statistical variations, it

requires an input value for the x? tolerance for the best fitting PDFs.

We apply the Lagrange Multiplier Method to PDF analysis where one uses a function
1y determined by equation 3.76 for which the minimum for a given A, z and Q? can be
found relative to the parameters a. The parameters a are the wiggled Q2 dependent

parameters whose variations generate the desired envelope of theoretical PDF curves.

Y\ a) = x3(a) + AFy P (a) (3.76)

where A is a series of Lagrange multipliers. X%(a) is the absolute minimum of ; this
minimum is the standard x? used in 2.1, for a specific  and Q?, to determine the fit
of the generated structure functions to experimental data. The designated minimum
of x? is the minimum of y? for all 2 and Q2 values used in the SOMPDF procedure

summed together. For each A value there is a singular minimum value of 1) as a function

(D)

of a. Subsequently, each minimum of ¥ has a resulting FQP and x? value that can

be extracted. Then, when the minimum of 1 is computed for a sufficient number of

(D)

X values, x? as a function of F2P can be plotted. The extraction is completed by

determining the parameters a that resulted in the minimum value of ¢ and calculating

(D)

the resulting FQP and x?.
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The Lagrange Multiplier Method is based on using the x? values of the structure func-
tions relative to experimental data at specific Q? and z values in order to determine

)

the errors on F2P ®) for these Q? and z values. This method depends on using the ex-
perimental data sets in order to find corresponding errors in F5. The error is therefore
calculated only in  and Q? regions where experimental data points are defined. In
the x and Q? regions where experimental data points do not exist, the PDFs are not
constrained by the data points and therefore the error bands are not constrained by the

Lagrange error. This means that the Lagrange error method is dependent on having a

sufficient number of experimental data points in order for it to work properly.

The method first depends on computing the x? as a function of Ff or FP, for a given Q?
[ for example Q2 = 150 GeV? | for the z values that the experimental data cover for this
input Q2 value. This was done for Q? = 150 and Q? = 2.5 since those were the Q? values
that were used to determine the error bands plotted for the PDFs. The A values were
chosen to be multiples of 25 and the function determined for each A is ¢ as written in
expression 3.76 for A = 25,50, 75.... For each A, the minimum value of v is determined
and this set of minimum values forms a parabola. This is because minimum values of
for all the X\ values will create a parametric relationship between x? and FQP (D) (a); the
determining of the variations Ax? will then create the error AFQP (D) (a). The parabola
is calculated around a confidence level of 10 percent around x? = 1.0 which was found to
be the global minimum x? when all data sets were used. The difference in corresponding
Fy values for 2 = 1.0 and x? at the 10 percent confidence level, which in this case is
x? =1.0+0.1%1.0 = 1.1, is the resulting Lagrange error on Fy. This resulted in very low
Lagrange values for Fy because the Lagrange method is using the x? values in relation
to Fy values for specific  and Q2 values and not using measurements on observables
which are independent of z and Q? or are taken over all of these values instead of one
value at a time. In order for the Lagrange multiplier method to work properly, the
errors in x2 and F, must be completely independent of our Lagrange multiplier spacing
choice. The parameters a within the PDFs do not explicitly appear in the Lagrange
error computations; however the size of the Lagrange error band will depend on the
extent of the parameter variation and the freedom to wiggle the parameters in obtaining

the best fitting PDF's.

We represent the y? obtained for our choice of interval and A values plotted as a function

of FQP D) in Figure 3.5. As one can see, for each A value, there is a singular minimum
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(D). The curve around this minimum follows

value of x? (Eq.(??)) as a function of F2P
a parabolic shape. The minima of ¢ were calculated for a sufficeint number of A\ values
to ensure that the x? range of the resulting parabola, after the x? and F» values for
each minima of 1) were extracted, included the global minimum x? and the x? for a 10

(D) values for

percent confidence level. The differences between the corresponding FQP
the global minimum y? and the x? at 10 percent confidence level were used to determine

the Lagrange error in FQP (D), denoted here by AF.

Lagrange vs Stat Q = 150 GeV? SOM PDFs

1.6 T
Statistical &==
Lagrange

14+ 1

1.2+ 1

FIGURE 3.4: Illustration of the difference between the PDF uncertainty calculated with
the Lagrange multipliers method and the statistical error analysis. Analogous results
are obtained for other PDFs.

So far, we followed closely the analysis of Ref.[44]. In order to apply the Lagrange
multiplier method to our SOM approach we proceeded as follows. We generate sets of
“pseudo experimental data” by shifting Fy"? for given z and Q? values by £AF, and we
repeat the SOMPDF fit for each new data set. The new structure functions are defined
by a corresponding set of new individual PDFs, Fy,*" NEW " The difference between the
values define then the

P,

individual PDFs from the limiting upper and lower Fy* NEW

Lagrange error for each of the individual PDF's for the original
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25 ‘

Q? = 150 GeV?

x =0.0032

1.28 1.3

FIGURE 3.5: Illustration of the behavior of the minimum fit value for the observable Fy’

using the Lagrange Multiplier method. The dots correspond to A = 0, +- 25,4- 50,4-

75. The minimum fit value was evaluated here in one kinematical bin : = = 0.0032,

Q? = 150 GeV?, corresponding to equation 2.1 for that specific kinematic. Similar
graphs are obtained for all the other z and Q2 bins.

3.21 Lagrange Error

The error bands for the individual PDFs are the result of using the Lagrange Multiplier
method. In this method, the Lagrange error, dF5 is determined and the Fh structure
functions are fitted to an experimental data set. The F5 structure functions are then
fitted, using the same self organizing process, to a new data set determined by taking
each experimental data value F#X? and shifting it by F*F 4+ §F, and then the process
is repeated a third time fitting the structure function to a data set determined by shifting
the FEXP values to FPXF — §F,. The differences between the PDFs determined from
fitting F5 to FQEX P and the PDFs determined from fitting F to FZEX P 4 §5F, are taken
and this forms the upper Lagrange error. The differences between the PDF's determined
from fitting F5» to FQEXP and the PDFs determined from fitting F5 to F2EXP — 0Fy are
taken and this forms the lower Lagrange error. The Lagrange multiplier method relies
on using the self organizing, unsupervised fitting methods for fitting the F5 structure

functions to all three of the different experimental data sets

The individual PDF's comprise the structure functions that are fitted as shown in expres-

sion 2.1. The PDF error bands therefore depend directly on the methods by which the
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structure functions they comprise are fitted. The lack of using the final experimental
data sets as a reinforcement for fitting the PDFs resulted in the SOMPDF Lagrange
error bands being more similar to each other for each of the PDFs than they were to

the error bands determined by the other collaborations.
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4 SOMPDF PDF Fit Results

After the PDF envelope is formed, the Self Organizing map is initialized and run through
the training process. The initial and final maps can be plotted so that their clustering
properties can be observed. These clustering properties for the 6 x 6 are shown in
Figure 4.1, 4.2 and 4.3. Figure 4.1 and Figure 4.2 show the clustering properties
of the global x? values for the initial and final map. The global x? does not have any
clustering patterns in the initial map. The neighborhood radius function used in the
SOM, with its ability to preserve the topology of the best fitting theoretical PDFs,
enables us to make note of multiple local minimal y? values that result from fitting
generated sets of theoretical curves. In the final map, the lowest values of the global x?,
representing the best fits to the experimental data sets, are clustered in the lower and
upper left hand corners and in the center of the map as well. The structure functions
that are used to form these y? values can be positioned on a map so that the properties
of these structure functions over small and large x that contribute to this y? clustering

can be analyzed. The actual curves are shown in Figure 4.3.

The Self Organizing Process is designed to minimize the global x? values of the generated
PDF's and disentangle the components of the DIS and deeply virtual exclusive and semi-
inclusive processes. Specifically, the task is to identify pattern formation in the structure
functions and composite PDFs in terms of local x? values and function behavior for a
range kinematics. The map in Figure 4.3 reveals the generated theoretical SOMPDF
curves along with the experimental data sets, for Q? = 2.5 GeV?, that correspond to the
PDF x? map in Figure 4.2. Figure 4.2 and Figure 4.3 reveal that the PDFs’ clustering
properties are based on the quality of their fit to the data and on their behavior at small
and large x. The Self Organizing Process depicted in Figure 4.3 shows how the PDFs,
which are formed as a result of this process’s evolution over various iterations, and their
individual properties can be visualized. This visualization also demonstrates the ability
of the Self Organizing process to determine how to make the structure functions fit
the data ideally without outside supervision. The Self Organizing process has shown
to be effective in clustering recognition for the fit attempt using proton and deuteron
Structure Functions using DIS data sets. This process can also be used, as will be shown
in Section 5, to isolate and disentangle the properties of the DIS and other processes

when large = physics corrections are factored in as well.
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FIGURE 4.1: 2 values from the fit on a 6 x 6 map for the initial GA iterations. The
x? values are lower for darker squares.

The results of the x? values for the final iteration for the 6 x 6 and 1 x 1 map are in Figure
4.4. The 6 x 6 map has two PDFs used per map cell and four PDF's generated per cycle
as per the original map conditions. The 1 x 1 map is designed to be the equivalent of
the 6 x 6 map without self organizing features. Therefore, it uses one cell with 72 PDF's
in the cell and 144 PDF's generated for that cell in a given cycle. The 6 x 6 map shows
the effects of the GA and the Self Organizing Process while the 1 x 1 map shows the
effects of using only the GA. The 6 x 6 map shows a somewhat faster rate of decrease
in the x? values, revealing the effects the Self Organizing process has on the ability of
the SOMPDF method to fit parametrized PDFs to experimental data sets. The Self
Organizing process also results in a lower overall 2 at the end of the final iteration.
This effect is not particularly large. However, the local neighborhoods showing multiple
x? minima have proven to be a critical asset in observing how the PDFs are computed

as the neural network tries to fit them to data. Therefore, the Self Organizing process is



SOMPDF PDF Fit Results 80

FIGURE 4.2: x? values from the fit on a 6 x 6 map for the final GA iterations. The

x? values are lower for darker squares. The clustering properties of the x? values are

clearly visible. In addition, the decrease of the values relative to those in Fig. 4.1
illustrates the effectiveness of the GA.

critical in allowing us to analyze the clustering properties of the structure functions and
the PDF's that comprise them. In addition, the SOM shows nonlinear correlations among
the generated functions that form during the fitting process as it reveals multiple local
minima as opposed to a single local minima that forms from the GA. These nonlinear
correlations are visualized through the two dimensional groupings of generated PDF
curves with similar x? values. The heights of the data units can be contrasted to each
other to see where on the map the non linear correlations occur. These groupings are
formed by local neighborhood radii during the Self Organizing Procedure. Subsequently,
multiple ways in which the procedure can be used to improve the fit can be visualized.
Therefore, the x? measurement is not the sole factor in determining the success of the

Self Organizing process.
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FI1GURE 4.3: The SOM for a 6 x 6 map representing the SOMPDF generated structure
function, Fy, for Q2 = 2.5 GeV?, compared to the experimental values. The visual-
ization properties of the map in forming the clusters structure at small and large x
ranges are also shown. The blue curves are clusters of structure functions which have
both a low x? (dark squares in Fig. 4.2) and a selected particular behavior in . The
red points are corresponding the experimental structure function values. The Bjorken
x range (the x axis) is (0.05 : 1.0) and the Structure Function range (the y axis) is
(0:0.5).

In Figure 4.5- 4.9, the results for PDF's using the SOMPDF fitting method are shown
for @Q?> = 150 GeV? and in Figure 4.10- 4.12 they are shown for Q? = 2.5 GeV? .
The PDFs are shown along with the CTEQ, MSTW, ABM and NNPDF collaborations
and with the Lagrange error bands for the SOMPDF and the four other collaboration
PDFs. The PDF curves show a fit with the collaboration PDFs, within the errors of
the SOM and Collaboration PDFs, for the quark PDFs, for the majority of possible x
values used in the data fitting. However, there was difficulty getting the valence quark
PDFs to fit the collaboration PDFs for Q? = 150 GeV? for x in the range (0.1 : 0.3)

and the d — @ and strange quarks at this same Q? value for small 2. This was largely
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due to the lack of experimental constraints in forming the PDFs at low x. The DIS
experimental data points in this z range are not sufficient to restrict the resulting PDF
behaviors, particularly if no previous theoretical assumptions about these behaviors are
made. The lack of experimental restrictions at small x also explains the relatively large
error bands obtained by the collaborations for their strange quark PDF computations.
The gluon quark PDFs were also not as accurate of a fit at Q> = 150 GeV?; however,
that is largely because the values of the gluon PDF's are not factored into the structure

functions and so are not part of the determination of the x? values.

To better study the error determination, we construct the “pull” graphs which show the
ratio of our PDFs to various collaborations. In Figure 4.13- 4.16, the ratios of the
SOMPDF curves to each of the four other collaboration curves are shown along with
the relative Lagrange error on the SOMPDEF curves. For the fits, the ratio of the valence
quark PDFs to the collaboration PDFs for both Q? values used fell within the relative
error range relative to one for the majority of the x values, with the exception of the
0.2 — 1.0 range and the 0.0001 — 0.001 range for @* = 150 GeV? and the 0.0001 — 0.009
and 0.02 — 0.05 range for Q2 = 2.5 GeV2. The gluon quark ratio for Q? = 150 GeV? did
not fall within the relative error range for all collaborations for x values less than 0.008
or greater than 0.15. For Q2 = 2.5 GeV? the gluon quark ratio did not fall within the
error range for all collaborations for = values less than 0.04 or greater than 0.2. As a

whole, however, the ratios were reasonable close to one for the majority of x values.

There are multiple possible reasons for the fact that the SOMPDF generated PDF's did
not fit the collaboration PDFs for all « values and for the sizes of the error bands. There
are many different free parameters that were semi randomly varied to create proper
initial envelopes of generated curves and eliminate theoretical bias. The tradeoff was
an increased difficulty in computing the error bands for each PDF type. The SOMPDF
code tries to fit the PDFs to both small and large = data. As a result of this, when
the code scales the PDF parameters to fit the small x data, it can decrease the quality
of the fit to the large x data and vice versa. Another possible factor is that there are
an insufficient number of restrictions on the the quark PDF behavior for the full range
of permissible z and Q? values. Subsequently, simply fitting the structure functions to
the experimental values for the structure functions is not by itself constraining enough.
Finding the best fit values using the lowest possible x? results for all the possible Q?
values could also lead to difficulties in fitting the PDFs for the full @ and z range. This
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is because the contributions of the PDFs at various z values to the x? results could be
partially dependent on the input Q? points used in the PDF computation. The valence
quarks are also constricted by the Baryon number sum rule, allowing their quark PDF's
less freedom of variance for all x ranges, limiting the ability to make the SOMPDF
valence quark PDFs fit those of the Collaboration PDFs and also restricting their error
bands. There are also more available data points for lower x ranges where sea quarks
dominate using the DIS data; this results in the error bands for the strange quarks to
more consistently correlate with uncertainties in the structure function data points for
the low x region. For the valence quark distributions, the lack of available DIS data
points in the region 0.05 < x < 0.45, resulting in fewer restrictions for these quark
distributions in that x range for the SOMPDF code, also explains why the quark model,
for both large and small Q? values, is not as consistent with the collaborations’ model
as it is for lower = values. In the SOMPDF code the x? values are computed using the

relation shown in equation 4.1.

FRSOMPDE (5. 02 — R BXP (5. 92)]?
¥ = Z [ 2 (AF2EXP)22 ] 4

7

The F5 values are proportionally much larger for smaller x than for larger x. This means
that the SOM PDFs that comprise the structure functions will not be as effected by the
GA and the Self Organizing process at larger z. The reason for this is because the GA
and the Self Organizing process use the x? values in order to evolve the PDFs from
their starting point to the final iteration result and the magnitude of the x? values that
determine the extent to which these processes evolve the PDFs are smaller at larger
x. The lack of consistency for the gluon PDFs to the collaboration PDFs and the
relatively weak gluon fit at lower Q2 is due to the fact that the gluon PDFs, as noted
previously, do not contribute to the structure functions and so the GA does not play a
direct role in evolving the gluon PDFs they same way it does for the quark PDFs. The
evolution of the gluon PDFs are more dependent on the self organizing process than the
evolution of the quark PDFs are since the gluon PDFs do not evolve in accordance to
the Self Organizing process and the GA in conjunction as the quark PDF's do. This also
leads to more fluctuations in the gluon PDFs, including fluctuations across different @2
values. An additional factor in explaining the size of the error bands for the strange

quarks is the total set of experimental data used by the SOMPDF code relative to the
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experimental data used by the collaborations the code PDFs are contrasted against.
In the SOMPDF code and in the Alekhin [61] collaboration, only the Deep Inelastic
scattering data sets are used. The NNPDF [1] collaboration uses DIS data along with
HERA Charm structure function, Fixed Target Drell Yan production, Collider Vector
Boson and Collider Jet Production data. The CTEQ [58] collaboration uses DIS data
along with Drell Yan, Jet Production, v and Jet Production, W Asymmetry and Z
Rapidity production data. The CJ collaboration [59] [60] uses DIS, Drell Yan and W-
asymmetry data. The more limited data sets used for fitting the structure functions
in the SOMPDF code and the Alekhin collaboration result in smaller error bands for
the strange quarks relative to those of the other collaborations analyzed because the the
increased amount of experimental data sets leads to an increased number of conditions for
the fitting procedures which leads to an increase on sources of statistical and systematic

uncertainties.

5.5
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FIGURE 4.4: The SOMPDF fit results for number of iterations for a 6 x 6 map and a
1 x 1 map with the equivalent PDFs generated per cycle and used in training.



SOMPDF PDF Fit Results

85

u, +d, Q%= 150 GeV? Collaboration and SOM PDFs

1.6 T
6x6 XXX
14+ CT10 |
ABM mam
121 CIMid =5 |

NNPDF

0(.)0001 0.001 0.01 0.1 1

FIGURE 4.5: SOMPDF generated valence quark PDF (u, + d,) at Q? = 150 GeV?
along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [58].
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FIGURE 4.6: SOMPDF generated difference between the up and down sea quark quark
PDF (u—d ) at Q% = 150 GeV? along with the following collaboration PDFs: CJ Mid
[59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.7: SOMPDF generated up sea quark PDF @ at Q? = 150 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.8: SOMPDF generated gluon PDF at Q? = 150 GeV? along with the
following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.9: SOMPDF generated strange quark PDF at Q? = 150 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.10: SOMPDF generated strange quark PDF at Q% = 2.5 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.11: SOMPDF generated valence quark PDF (u, + d,) at Q? = 2.5 GeV?
along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [58].
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FIGURE 4.12: SOMPDF generated up sea quark PDF % at Q2 = 2.5 GeV? along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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FIGURE 4.13: The pull of the SOMPDF generated Valence Quark PDF (u, + d,)

relative to collaboration PDF's is shown at Q2 = 150 GeV? alongside the relative error

of the Valence Quark PDF. The collaboration PDFs are CJ Mid [59] [60] NNPDF [1]
ABM [61] and CT10 [58].
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FIGURE 4.14: The pull of the SOMPDF generated Valence Quark PDF (u, + d,)

relative to collaboration PDFs is shown at Q? = 2.5 GeV? alongside the relative error

of the Valence Quark PDF. The collaboration PDFs are CJ Mid [59] [60] NNPDF [1]
ABM [61] and CT10 [58].
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F1GURE 4.15: The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at Q2 = 150 GeV? alongside the relative error of the gluon Quark PDF.
The collaboration PDFs are CJ Mid [59] [60] NNPDF [1] ABM [61] and CT10 [58].
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FIGURE 4.16: The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at Q? = 2.5 GeV? alongside the relative error of the gluon PDF. The
collaboration PDFs are CJ Mid [59] [60] NNPDF [1] ABM [61] and CT10 [58].
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5 Large x Corrections

5.1 Target Mass Corrections

The fundamental issue about the large x data calculations was modifying the gpd eval-
uation code, designated here as the gpdeval.f90 module, so that it took into account

TMC and LxR.

The previous moment calculations were done using the NS spin operator and using
terms (g—;)”, which are negligible for @Q? > M? but not for Q2 in the intermediate
range closer to M?2. Nachtmann [71] accounted for this correction by writing the NS
moment relative to the structure function as shown in expression 5.1. These corrections
are applied specifically to the NS moments in 3.17. This is the Nachtmann moment;
this new moment represents the correction to the previous computation of the moments
accounting for TMC. Here, r is given in expression 5.2 and ( is given in equation 5.3.
The relationship between the resulting Nachtmann moment p™(@Q?) and Cornwall Norton
moment M™(Q?), to NLO for the n'* moment, is in expression 5.4. The TMC for the
structure functions are [72] equation 5.5. In the computation of the TMC the n = 2

moment was used.

M™MQ?) = /: Cgl i 3(?n++1;§(2 i(§)+ 2)1"2)da: (5.1)

r=4/(1 4%2;"2 (5.2)

¢= ffr (5.3)

(@) = (@) + "D g 5.
623 M?

TMC 2y _ 2 2 b Y
FPMC Q1) = [5G @) + S [ R @) (55

Q27"4
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5.2 Large x Resummations

The next step is combining the target mass corrections with the large  Resummations.
As noted previously in subsection 3.17 the Q2 dependent parameters are wiggled during
the SOM and GA processes which is how we account for Perturbative QCD evolution.
However, there are still NLO corrections to the PDF computations consisting of (Inn)?
terms that result from the formation of virtual and real gluon emission mismatches.
These real and virtual gluon emissions are the two types of gluon corrections to the
deep inelastic scattering processes. For x values sufficiently far away from 1, the real
and virtual gluon emissions cancel each other out. However, in the limit x — 1.0 there
is less phase space for real gluon emissions and they no longer cancer out virtual gluon
emissions. This results in terms of order (Inn)? in the NLO corrections to the moments
of the structure functions. The method of renormalizing the moments of the structure
functions lacks the ability to properly resum these terms with powers of (Inn) with the
power 2 or higher and so the large  resummation is used to pick up the (Inn)? terms so
that they can be used in the renormalization of the moments. The gpdeval. f90 module
is modified so that these Resummations are taken into account below. The large x

resummation starts with equation 5.6.

dF(2,Q%) [ as(@®) J0) /T 2
W_/x PR Q7 a (5.6)

The NLO corrections are formula 5.7.

X 1 « 2
>F(Z,Q2)dz+/ ( éf)

T

dF(z,Q%) _ /1 0s(@)

o2 P PPy —B/4B)5 ()P (%, Q%) dz

(5.7)

The large x resummation technique uses the simple and eloquent solution of replacing
Q? with QQ@, which can be approximated to Q?(1 — z) in the strong coupling oy in

the limit z — 1. This replacement results in the o expansion given in equation 5.8.

dF (z,Q%) _ /1 a5 (Q*(1 - 2))

O T 2
Tn0? o P F(Z,Q )dz (5.8)
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The as(Q*(1 — 2)) term can be Taylor expanded while keeping terms up to order

(as(QQ))Z. This expansion is given in relation 5.9.

as(Q*(1 - 2)) = as(Q%) — o ln(1 — 2)(as*(Q?)) (5.9)

The resulting non singlet structure function with this newly expanded «y is expres-

sion 5.10.

,Q%)dz
(5.10)

T 2 1 g 2 g 2
PO [ (AL i) - (AL By pie) )

T
z

Switching on the NLO corrections to the non singlet structure functions, without using
the large x resummations, gives us, second order in oy, equation 5.11. In this expression,
Pq(g) is the Leading Order splitting function and Pq(ql) is the next to Leading Order
splitting function. By observing the z dependent components in the expansion of B s
in expression 3.61, and recalling the Leading Order splitting function formula in 2.4,
we can verify that that the structure function in expression 5.10 picks up the resulting

NLO expansion term expected in 5.11 from the In(1 — 2) term in BY®.

dF(2,Q%) _ [ as(@?) 5(Q%) .
Aol e = R RCE R = R )]F(Z’QZ)(dz)
5.11

The terms from equation 5.10 can then be transformed from z space to N space using
the Mellin transform relative to the z variable. These Mellin transforms are given in

expression 5.12.

BYS ™ as(@?)

as(Q?
L h ) - s + I l(DY) a2

danz( AT

) =—0Bo((

Similarly, we can take BV terms, including those of order (Inn)?, in z space in equa-

tion 3.61 for the F5 structure function and transform them to N space.

The individual mellin transforms of each term in BYS are in formula 5.13.
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+ 2 _9 (5.13)
n+1 n? '

BYS — Cy(F)3 S L4 % S 4
2 =17 =152 n(n+1)j=1j s=lsj=1j

1 2 n 1 nls1 3 4
j=1j  j=1j n

equation 5.13 is the NLO moment to order (Inn)? once the large 2 Resummations are

applied.

The scaling for as(Q?) can further be changed to a(Q?) — a,(Q?*1=2).

z

The expansion of as(Q?) can then be completed in expression 5.14.

1—2z 4
s(Q° = 3
A AN
_ 41
Bo(In (%) +In (152)) (5.14)

2
In(%5)

Given the mathematical approximation in 5.15, 5.14 can be reduced to an expansion

around a(Q?).

1
1+

~l-=x (5.15)

Using the replacement z — 1111(622 in 5.15, the resulting expansion of as(Q? 17) is
DAz
5.16. !
1—2 47 In(1=2)
aS(Q2 ) = 2 <1 Zz =
z /60 111(/\2) IH(T) (5 ]_6)
o 1—2 5()( A >2 oo Bo. -z 1 b2
——— 5 —In( )= as(Q7) — - In ( ) 5= (as(Q7))
Boln (%) z 4\ g, 1n(%§) 2 z /2w

In this rescaling, when z gets large enough perturbative expansions are not sufficient

when evaluating the structure functions. When this rescaling is used, it is particularly
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useful to introduce a parameter z,,,, which can be used to split the structure function
integral into two sections. The first section, where perturbative expansions are sufficient,
isz < z < zZmae and the second section, where perturbative expansions are not sufficient,

1S Zmaz < z < 1.

With a,(Q?) replaced with o (Q*1=%) the non singlet Structure Function distribution

can be rewritten as shown in 5.17.

d ,Q? g s 6.2 Ji; 1—
x;l(icgﬂ) :/x 5(;31(3)(2”(;) [Péql)(z)—Pq(c})(Z) - 201n<1n . Z)Pég)(Z)D(Z)yq(y,QQ) =

! d s 512 B nz ﬂ ivergen
/ﬂﬁ 5(;13(1(3)(2) (52 [Pq%)(z) — Pi(2) = B (z) — B t(Z)D(Z)yq(y,QQ)
(5.17)

The convergent and divergent components of Bflv S are equation 5.18 and equation 5.19.

BYS(2) = —21n(2) PQ)(2) (5.18)
Biivergent(?) = 2In(1 — 2) P (2) (5.19)

The non singlet Altarelli-Parisi equations in 5.17 can also be converted to structure
function form as 5.20. This expression comes from using a new scaling parameter
(6(z)) in the coupling constant, which can be set to (6(z)) = W2, so that the non singlet
expansion in NLO can be expressed in terms of the Wilson Coefficient BY°. Because
the coupling «; is cut at the endpoints, they can be computed from the + function
computation can then be computed separately from the z integral of the non singlet
terms. The coupling constant also undergoes the shift a,(Q?z) — ozs(QZl%Z), with VV2

2
_N21=2z
set to W = Q*=—~.
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1 (0% n z X
FYS(@) = awslo) + [ a2 by

x

) =

z

1 [0 2 X
aws(@)+ [ =2 (B0 ) (w1~ 2) e = 3) 4 L0452l =

L (Q? as(z, Q? x
ans(e) + [ a2 EIEIED 0 (01 2~z = )+ L9+ 52 s (D)
(5.20)

The logarithmic terms in equation 5.20 can be expressed as equation 5.21.

i ? 1 @ 5W2 — Qs 2 1 In(1 —
aif Jin(1 - 2) = 2/@3 d1n Q%! )%O‘ @) _ 5 <1+12(QQ/§2> (5.21)

The In(1 — z) expansion terms can be rewritten [73] in formula 5.22.

2

1

nfl—z)= ——— n0? s 201 _ »)) — i 2
In(1 - z) 10(Q@D) Jog dIn Q”[as,L0(Q°(1 — 2)) — as,L0(Q7)] 522,
. 1 1n<1_’_1n(1—z)> ‘
as,20(Q%)Bo InQ?/A?

This gives a new expression for the non singlet structure functions in equation 5.23.

1 2

s 3 1
FNS(2) = gy (@) +/ e g ) [qu(z)(— Inz— 2> +59+52)+
v A In(1 - 2) (5.23)

T n(l—z T

Pl(z2)——————In 1+ ——2 —
2O oy (1 gz s
Once the NS structure function has been rewritten in this manner, the integrals should

be split according to a given z,., endpoint using the + functions to split the integral

into two ranges, one for z < 2,4, and the other for z > 2,4, in equation 5.24.
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[ ot smn (1 i ) [5], 00— (1 g 5
(5.24)

Evaluating the step functions in expression 5.24 results in expression 5.25.

Fmaz In(1 - z) 1 L In(1 — zpmaz) 1
[ ol (e =]+ Lo (0 ) ==

(5.25)
A new set of splitting functions is equation 5.26.
R =R R [ R =
1 5 1 ~ a 5 b >
[olfe] - olim] L] fof],
)

Q\
QL
N
| — |
—_
=
N SN—

} 1dz— 1dsz) fl)—/adzf(z
+Jo 0 I—2 0

] /dz-/ dzf zi_i” )+/O dzf(zi:f(l)_/oadz{(—zl

A resulting form for lemaz dz {f (Z)] is equation 5.27.
Jr

/1 dz[lf(_z)z] :/1 dzw—fu)/ozmld_zz (5.27)
Zmax + Zmax

This means equation 5.25 can be written using the expression in equation 5.28.
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Fmaz In(1—2)\1+2%~ z
/:v dz1n<1+an2/A2> — QNS(;)
1 14221 ~ x — Zmazx
(L] i) om0 )
< . 1— 2 +qNS(z) 1 Q2/A2
Fmaz In(1-2)\1+2%~ =z
/x dzln(1+an2/A2> 1_Z(]NS(;)

1 2\ x\ _ o
T <1+ 1Q27XZI> (5.28)

~ Fmaz — Zmaz)
—2 In(1
QNS(x)/O 17’2)( Il< + 1 QQ/AQ

Zmax ln(l — Z) 1 + Z ~ X
/x dzln <1 Q2/A2> — QNS(;

~—

! (1+ 22 qns(2) — 2qx5(x) — Zm
z 1 1 axr
+/zm * -2 < - Q?/A? )
~ — Zmazx
—2¢qns()In(1 — zmag) X In < 1 QQ/AQ )

The endpoints of equation 5.28 are equation 5.29.

Zmaz ] 4 22 In(1— z) 1
P = d In(1
), ( T nQ2/A? ) asso(e)

1—A2/Q2 In(1 — Zmazx 1
R ) R e e

The large x corrections are implemented in the SOMPDF procedure by using the new

(5.29)

expression for In(1 — z) written equation 5.22 and performing the subsequent integrals
over x for the structure function F{¥°(x). The large x experimental data sets and PDF
computations are centered on the regions of x and @Q? that are defined in terms of
W? such that 1.0 < W?2 < 4.0 with W? being the same kinematic defined in Chapter
1, W2 = Q%1 — %) + M?, and with M being the mass of the target hadron. The
experimental structure functions at these z and Q? values comprise the resonance data

sets which the SOMPDF code needs to fit the structure functions to at large x.
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5.3 Averaging the Resonance Region with the Bernstein Moments

For large = data values, the Deuteron Structure Function £’ and the Proton Structure
Function FY are taken from sets of resonance data sets for each of these structure
function types. The generated theoretical structure functions are fitted to resonance data
from [74] and [75]. The resonance region data, for Ff’ and FJ', needs to be averaged
over the resonance region so that the SOM and GA procedure can fit the generated
theoretical structure functions to smooth curves of data sets. The Mellin Moment was
the first attempt to average out the resonance region and form a continuous set of large
x data. However, these moment computations did not sufficiently factor in the behaviors
at large x where the resonance phenomena occurs. To address this, a new attempt was
made use integrated moments that could form a continuous large x data set with the

non resonance data; this attempt was the Bernstein polynomials.

The x values and the error values on the x values are given by the corresponding Bern-
stein polynomials. The specific polynomials are given in relation 5.30- equation 5.32 for

z and equation 5.33 for the error in z.

pai() = 2P (1 — )N FCpy, (5.30)

T'(N +2)

ONk = R DIV — k1) (5:31)
1
TN = /0 dx xpN,k(-T) = ]If]—:-12 (5.32)
N-k+1
(A@QZ(N+2P(N+3) (5:33)

In relation 5.30- equation 5.33, x is the Bjorken z value over which the Bernstein integral
is being done, F¥ is the structure function for a specific Q2 value at a given x value, N
is the total number of Bernstein Moments used and i is the i*" Bernstein Moment being
computed. The constant Cy is a Gamma Function related constant that is given in

relation 5.31. In the above equations, N is the total number of Bernstein Moments being
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used in the Bernstein integrals and 7 is the specific Bernstein Moment being calculated.
For our computations, there are 16 Bernstein moments being used so N is set at 15 and
1 ranges from 0 to 15; in this case, ¢ = 3 as an example would be used to determine the
4th Bernstein integral moment in the computation of z in expression 5.32 and the 4th

Bernstein integral moment of the error on x in expression 5.33.

The Bernstein Moment is shown in relation 5.34. The Bernstein error on Fs is cal-
culated by using the Bernstein integrals with the error in F5 in the same manner as
the Bernstein errors on the F5 values themselves are calculated. The Bernstein error is
shown in relation 5.35. The Proton and Deuteron structure functions for which the Res-
onance Bernstein values and the extrapolated functions are plotted are in formula 5.36

- equation 5.38.

1
FyP Q%) :/o da py () FS) (2, Q?) (5.34)
2 2
(AF Jife,zr)(Qz)) = [PNMS%)FZ-(W) (i, Q) Ay (5.35)

%

In table 5.1, a functional form is determined for the proton structure functions based
on the Bernstein Moment values. In table 5.2, the integrals of the structure functions
are shown when they are computed by integration of the resonance and extrapolation
regions, the Bernstein points and the functional forms shown in table 5.1. These integral
tables are computed as a check on the Bernstein integration method to demonstrate that
this technique can be used with reasonable accuracy to compute the Bernstein Moments
of resonance data points. The integrations from the resonance data, Bernstein Moments
and the functional forms all show agreement with each other within 15% error; the
reliability of the Bernstein technique is therefore verified. In the tables 5.3 - 5.20, the
Bernstein integrals for Fy(xy) were computed in the = range (Tmin, Tmaz) Where Tpin
and Z;qe are the minimum and maximum x values of the resonance region in x for each
@Q? value where resonance F, data points exist. In addition, the Bernstein integrals in
the x ranges (0, z,in) are calculated using the extrapolated F; values computed from the
CT10 PDFs in these regions. The CT10 PDF extrapolation is performed in the region
(0, Zymin) with the PDF combinations ", €2 ¢;(Q?, z) where ¢; is the parton charge and
¢;(Q?, x) is the PDF value for a given parton.
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In Figure 5.1 - 5.4, the resonance data figures and their Bernstein averages are shown
along with a series of Bernstein integrands used to compute the averages. This is done by
computing the value of F5 using the combinations of PDFs for the proton and deuteron
structure functions shown in expression 5.36 and equation 5.38, with the neutron struc-
ture function given in equation 5.37. For the deuteron structure function, the smearing
factor ), is included in the computation of the deuteron structure function. The smear-
ing factor comes from the deuteron structure functions being smeared with the momen-
tum of the nucleons in the deuteron. The resulting binding, Fermi motion and off shell
structure corrections result in the deuteron structure function being dependent on the
smearing factors. These integrands are the Bernstein functions py () Féexp ) (z,Q?%)
over the total range (0, Zqz) calculated in order to find each of the k& Bernstein points
for each Q? range. The figures indicate that the Bernstein integration moments pick
up resonance peaks as the cover greater regions of z where the resonance regions are
located. The closer they align with the z ranges of the resonance regions, the more
they pick up the values of the resonance peaks. In Figure 5.5 - 5.40, the computed
Bernstein averages along with the extrapolated curves are shown for all Q2 values for z
and W? values inside and outside the resonance regions. In Figure 5.41 an example of
a resonance curve in the in the Q? interval (2.9 : 3.9) (GeV?) to show how the resonance
curve changes as a result of an increased value of N. In Figure 5.42 an envelope of %
curves for Q% = 3.4 GeV? is shown to illustrate the ability of the SOMPDF procedure
to create unbiased fits for large x data as well as DIS data. In Figure 5.43 a generated

curve for Q? = 7 GeV? for % for a 6 x 6 and a 1 x 1 map is displayed with the lagrange

P(O? » -

F2(§7) _ g(uv(QQ,x) +2u(Q% x)) + %(dU(QZ,x) +2d(Q2, 7)) + %S(Q2,w) (5.36)
N 2 T _

QL) 4 (@2 ) +2(Q% ) + 4 (un(Q%. ) + 20(Q ) + Ls(@2) (537

F(Q% x) + SpFy (Q%, x) (5.38)
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TABLE 5.1: Functional Form Approximating the Bernstein Moment Curve for various

Q? values
’ Q? GeV? ‘ Functional Form ‘ a b ¢

0.55 (a(l —2)* +bat) 0.777285 |  1.19712 0.0
1.0 (a(l—2z)—br+c(l—2z)x) 0.46873 | 0.0774563 | 0.0283069
1.8 (a(l—z) +ba?) 1.26009 | 0.0699836 0.0
2.5 (a1l —2)"% —ba%5 —c(1 —x)z ) | 0.7408 | 0.165159 0.841746
3.4 (a(l—z)—bx—c(l—2)z) | 0.567944 | 0.00827568 | 0.406153
5.7 (a(l —2)* +ba?) 5.0532 | 0.0205239 0.0
7.0 (a(l—2)—bx—c(l—x)z) | 0.369392 | 0.00113869 | 0.306584
8.2 (a(l —xz)° +bat) 20.1298 | 0.0155009 0.0
9.6 (a(l—2)% +b(1 —z)z—ca?) | 0.303746 | 0.0384961 | 0.000667997

TABLE 5.2: Integral values of Resonance Data Points with Errors, Bernstein Moments
with Errors and Functional forms for various Q? values

’ Q? GeV? ‘ Resonance | Bernstein | Functional ‘ Resonance Unc ‘ Bernstein Unc
0.55 0.097286 0.1079 0.09735 4.2264E-04 2.6210E-04
1.0 0.11494 0.120381 0.121119 2.7484E-04 1.9697E-04
1.8 7.4188E-02 | 6.7255E-02 | 7.1065E-02 2.0064E-04 1.2309E-04
2.5 5.0253E-02 | 5.0650E-02 | 5.5433E-02 2.2534E-04 1.5350E-04
3.4 2.7969E-02 | 2.4721E-02 | 2.9112E-02 1.1580E-04 8.1337E-05
5.7 8.5448E-03 | 8.0573E-03 | 8.3974E-03 2.1821E-04 7.3200E-05
7.0 4.5377E-03 | 3.8151E-03 | 5.2264E-03 | 2.01616E-04 8.0562E-05
8.2 3.4128E-03 | 3.4724E-03 | 3.2301E-03 3.2299E-04 4.1881E-05
9.6 1.8364E-03 | 1.4628E-03 | 2.1553E-03 2.8876E-04 2.6195E-05
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FIGURE 5.1: The FY resonance moment integrands and corresponding Bernstein mo-

ment points, for Q? = 0.55 GeV?, are shown for the 5!, 6t", 7t 8" and 9** moments.

The filled squares are the Bernstein moment points and the crosses are the correspond-
ing Bernstein moment resonance integrands.
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FIGURE 5.2: The FY resonance moment integrands and corresponding Bernstein mo-

ment points, for Q% = 2.5 GeV?, are shown for the 6t", 7t 8" and 9" moments. The

filled squares are the Bernstein moment points and the crosses are the corresponding
Bernstein moment resonance integrands
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FIGURE 5.3: The FY resonance moment integrands and corresponding Bernstein mo-

ment points, for Q% = 3.4 GeV?, are shown for the 9", 10" 11** and 12" moments.

The filled squares are the Bernstein moment points and the crosses are the correspond-
ing Bernstein moment resonance integrands
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FIGURE 5.4: The FY resonance moment integrands and corresponding Bernstein mo-

ment points, for Q? = 8.2 GeV?, are shown for the 13t",14*" and 15" moments. The

filled squares are the Bernstein moment points and the crosses are the corresponding
Bernstein moment resonance integrands
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FIGURE 5.5: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the z range
that constitutes the resonance region for Q2 = 0.55 GeVZ2.
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FIGURE 5.6: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the W2
range that constitutes the resonance region for Q% = 0.55 GeV?2.
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TABLE 5.3: Table of Q? = 0.55 GeV? Ff Bernstein Moment Values. The Resonance
Region here refers to = values for which Resonance Data points exist, which for this 2
value is (0.17,0.58).

k| e | Ax [ FSGP@) | AFST(@) | Res | DIS |
0.00 | 0.0588 | 0.0555 0.3627 0.3908E-02 | 0.0374 | 0.9592
1.00 | 0.1176 | 0.0537 | 0.3676 | 0.3666E-02 | 0.1605 | 0.8289
2.00 | 0.1765 | 0.0519 0.3503 0.3017E-02 | 0.3667 | 0.6168
3.00 | 0.2353 | 0.0500 0.3176 0.2064E-02 | 0.6007 | 0.3827
4.00 | 0.2941 | 0.0480 0.2813 0.1289E-02 | 0.7953 | 0.1929
5.00 | 0.3529 | 0.0460 0.2484 0.9720E-03 | 0.9161 | 0.0777
6.00 | 0.4118 | 0.0438 0.2180 0.9930E-03 | 0.9723 | 0.0252
7.00 | 0.4706 | 0.0416 0.1837 0.1072E-02 | 0.9924 | 0.0068
8.00 | 0.5204 | 0.0392 | 0.1410 | 0.1032E-02 | 0.9982 | 0.0016
9.00 | 0.5882 | 0.0367 | 0.9387E-01 | 0.8270E-03 | 0.9996 | 0.0004
10.0 | 0.6471 | 0.0340 | 0.5191E-01 | 0.5330E-03 | 0.9999 | 0.0001
11.0 | 0.7059 | 0.0310 | 0.2294E-01 | 0.2680E-03 | 1.0000 | 0.0000
12.0 | 0.7647 | 0.0277 | 0.7743E-02 | 0.1010E-03 | 1.0000 | 0.0000
13.0 | 0.8235 | 0.0240 | 0.1871E-02 | 0.2700E-04 | 1.0000 | 0.0000
14.0 | 0.8824 | 0.0196 | 0.2880E-03 | 0.5000E-05 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.2100E-04 0.000 1.0000 | 0.0000

TABLE 5.4: Table of Q? = 0.55 GeV? FP Bernstein Moment Values. The Resonance
Region here refers to = values for which Resonance Data points exist, which for this Q?
value is (0.17,0.58).

k| 2 | Az [FGP@Q) | AFS (@) | Res | DIS |
0.00 | 0.0588 | 0.0555 | 0.3468 | 0.3571E-02 | 0.0362 | 0.9604
1.00 | 0.1176 | 0.0537 | 0.3429 | 0.3355E-02 | 0.1571 | 0.8318
2.00 | 0.1765 | 0.0519 | 0.3210 | 0.2785E-02 | 0.3612 | 0.6213
3.00 | 0.2353 | 0.0500 | 0.2868 | 0.1879E-02 | 0.5945 | 0.3876
4.00 | 0.2041 | 0.0480 | 0.2514 | 0.1078E-02 | 0.7909 | 0.1962
5.00 | 0.3529 | 0.0460 | 0.2214 | 0.7030E-03 | 0.9143 | 0.0789
6.00 | 0.4118 | 0.0438 | 0.1960 | 0.7460E-03 | 0.9720 | 0.0253
7.00 | 0.4706 | 0.0416 | 0.1691 | 0.9100E-03 | 0.9925 | 0.0067
8.00 | 0.5204 | 0.0392 | 0.1357 | 0.9880E-03 | 0.9983 | 0.0015
9.00 | 0.5882 | 0.0367 | 0.9677E-01 | 0.8910E-03 | 0.9996 | 0.0003
10.0 | 0.6471 | 0.0340 | 0.5894E-01 | 0.6490E-03 | 0.9999 | 0.0001
11.0 | 0.7059 | 0.0310 | 0.2054E-01 | 0.3730E-03 | 1.0000 | 0.0000
12.0 | 0.7647 | 0.0277 | 0.1164E-01 | 0.1640E-03 | 1.0000 | 0.0000
13.0 | 0.8235 | 0.0240 | 0.3377E-02 | 0.5200E-04 | 1.0000 | 0.0000
14.0 | 0.8824 | 0.0196 | 0.6400E-03 | 0.1100E-04 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.5900E-04 | 0.1000E-05 | 1.0000 | 0.0000
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FIGURE 5.7: The FP values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the z range
that constitutes the resonance region for Q2 = 0.55 GeV2.
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FIGURE 5.8: The FP values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the W?
range that constitutes the resonance region for Q% = 0.55 GeV2.
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FIGURE 5.9: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1 GeV?2.
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FIGURE 5.10: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F{* resonance points in the Q? interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 1 GeV?2.
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FIGURE 5.11: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1 GeV?2.
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FIGURE 5.12: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 1 GeV?2.
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FIGURE 5.13: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1.8 GeVZ.
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TABLE 5.5: Table of Q2 =1 GeV? FY Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FEP@) | AFS(@Q) | Res | DIS |

T

0.00 | 0.0588 | 0.0555 0.3646 0.3914E-02 | 0.0193 | 0.9778
1.00 | 0.1176 | 0.0537 0.3770 0.3744E-02 | 0.0979 | 0.8909
2.00 | 0.1765 | 0.0519 0.3721 0.3276E-02 | 0.2565 | 0.7222
3.00 | 0.2353 | 0.0500 0.3504 0.2444E-02 | 0.4694 | 0.5044
4.00 | 0.2941 | 0.0480 0.3182 0.1543E-02 | 0.6800 | 0.2969
5.00 | 0.3529 | 0.0460 0.2821 0.9010E-03 | 0.8398 | 0.1449
6.00 | 0.4118 | 0.0438 0.2466 0.6230E-03 | 0.9343 | 0.0579
7.00 | 0.4706 | 0.0416 0.2142 0.5470E-03 | 0.9781 | 0.0188
8.00 | 0.5294 | 0.0392 0.1855 0.5380E-03 | 0.9941 | 0.0049
9.00 | 0.5882 | 0.0367 0.1576 0.5590E-03 | 0.9987 | 0.0010
10.0 | 0.6471 | 0.0340 0.1260 0.5580E-03 | 0.9998 | 0.0002
11.0 | 0.7059 | 0.0310 | 0.8944E-01 | 0.4960E-03 | 1.0000 | 0.0000
12.0 | 0.7647 | 0.0277 | 0.5267E-01 | 0.3790E-03 | 1.0000 | 0.0000
13.0 | 0.8235 | 0.0240 | 0.2377E-01 | 0.2380E-03 | 1.0000 | 0.0000
14.0 | 0.8824 | 0.0196 | 0.7263E-02 | 0.1070E-03 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.1129E-02 | 0.2500E-04 | 1.0000 | 0.0000

TABLE 5.6: Table of Q> =1 GeV? F Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k| 2 | Az [FGP@Q) | AFS(@Q) | Res | DIS |
0.00 | 0.0588 | 0.0555 | 0.3477 | 0.3577E-02 | 0.0175 | 0.9797
1.00 | 0.1176 | 0.0537 | 0.3482 | 0.3440E-02 | 0.0915 | 0.8976
2.00 | 0.1765 | 0.0519 |  0.3347 | 0.3070E-02 | 0.2450 | 0.7338
3.00 | 0.2353 | 0.0500 | 0.3082 | 0.2317E-02 | 0.4557 | 0.5176
4.00 | 0.2941 | 0.0480 | 0.2746 | 0.1446E-02 | 0.6681 | 0.3079
5.00 | 0.3529 | 0.0460 | 0.2396 | 0.7850E-03 | 0.8321 | 0.1517
6.00 | 0.4118 | 0.0438 |  0.2069 | 0.4720E-03 | 0.9305 | 0.0611
7.00 | 0.4706 | 0.0416 | 0.1783 | 0.3890E-03 | 0.9768 | 0.0199
8.00 | 0.5294 | 0.0392 | 0.1534 | 0.3800E-03 | 0.9937 | 0.0052
9.00 | 0.5882 | 0.0367 | 0.1297 | 0.3850E-03 | 0.9986 | 0.0011
10.0 | 0.6471 | 0.0340 |  0.1042 | 0.3690E-03 | 0.9998 | 0.0002
11.0 | 0.7059 | 0.0310 | 0.7570E-01 | 0.3150E-03 | 1.0000 | 0.0000
12.0 | 0.7647 | 0.0277 | 0.4682E-01 | 0.2380E-03 | 1.0000 | 0.0000
13.0 | 0.8235 | 0.0240 | 0.2284E-01 | 0.1520E-03 | 1.0000 | 0.0000
14.0 | 0.8824 | 0.0196 | 0.7747E-02 | 0.7000E-04 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.1361E-02 | 0.1700E-04 | 1.0000 | 0.0000
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TABLE 5.7: Table of Q? = 1.8 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FEP@) | AFS(@Q) | Res | DIS |

T

0.00 | 0.0588 | 0.0555 0.3664 0.3892E-02 | 0.0009 | 0.9987
1.00 | 0.1176 | 0.0537 0.3770 0.3763E-02 | 0.0078 | 0.9887
2.00 | 0.1765 | 0.0519 0.3745 0.3519E-02 | 0.0348 | 0.9522
3.00 | 0.2353 | 0.0500 0.3606 0.3188E-02 | 0.1024 | 0.8671
4.00 | 0.2941 | 0.0480 0.3376 0.2793E-02 | 0.2239 | 0.7250
5.00 | 0.3529 | 0.0460 0.3062 0.2239E-02 | 0.3914 | 0.5438
6.00 | 0.4118 | 0.0438 0.2682 0.1573E-02 | 0.5765 | 0.3591
7.00 | 0.4706 | 0.0416 0.2272 0.9900E-03 | 0.7442 | 0.2049
8.00 | 0.5294 | 0.0392 0.1871 0.6280E-03 | 0.8687 | 0.0989
9.00 | 0.5882 | 0.0367 0.1504 0.4530E-03 | 0.9440 | 0.0396
10.0 | 0.6471 | 0.0340 0.1178 0.3640E-03 | 0.9805 | 0.0130
11.0 | 0.7059 | 0.0310 | 0.8790E-01 | 0.3070E-03 | 0.9945 | 0.0034
12.0 | 0.7647 | 0.0277 | 0.5918E-01 | 0.2490E-03 | 0.9987 | 0.0008
13.0 | 0.8235 | 0.0240 | 0.3273E-01 | 0.1700E-03 | 0.9998 | 0.0002
14.0 | 0.8824 | 0.0196 | 0.1282E-01 | 0.8400E-04 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.2609E-02 | 0.2200E-04 | 1.0000 | 0.0000

TABLE 5.8: Table of Q% = 1.8 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k| 2 | Az [FGP@Q) | AFS(@Q) | Res | DIS |
0.00 | 0.0588 | 0.0555 | 0.2772 | 0.3358E-02 | 0.0073 | 0.9927
1.00 | 0.1176 | 0.0537 | 0.1727 | 0.2346E-02 | 0.0933 | 0.9067
2.00 | 0.1765 | 0.0519 |  0.1248 | 0.1403E-02 | 0.4864 | 0.5136
3.00 | 0.2353 | 0.0500 | 0.1626 | 0.1817E-02 | 0.8809 | 0.1191
4.00 | 0.2941 | 0.0480 | 0.2427 | 0.2776E-02 | 0.9817 | 0.0183
5.00 | 0.3529 | 0.0460 |  0.3000 | 0.3191E-02 | 0.9974 | 0.0026
6.00 | 0.4118 | 0.0438 |  0.2092 | 0.2787E-02 | 0.9996 | 0.0004
7.00 | 0.4706 | 0.0416 | 0.2505 | 0.1895E-02 | 1.0000 | 0.0000
8.00 | 0.5294 | 0.0392 | 0.1866 | 0.1037E-02 | 1.0000 | 0.0000
9.00 | 0.5882 | 0.0367 | 0.1322 | 0.5120E-03 | 1.0000 | 0.0000
10.0 | 0.6471 | 0.0340 | 0.9350E-01 | 0.2980E-03 | 1.0000 | 0.0000
11.0 | 0.7059 | 0.0310 | 0.6659E-01 | 0.2180E-03 | 1.0000 | 0.0000
12.0 | 0.7647 | 0.0277 | 0.4642E-01 | 0.1650E-03 | 1.0000 | 0.0000
13.0 | 0.8235 | 0.0240 | 0.3132E-01 | 0.1270E-03 | 1.0000 | 0.0000
14.0 | 0.8824 | 0.0196 | 0.2306E-01 | 0.1090E-03 | 1.0000 | 0.0000
15.0 | 0.9412 | 0.0139 | 0.2327E-01 | 0.1510E-03 | 1.0000 | 0.0000
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FIGURE 5.14: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the W?2 range
that constitutes the resonance region for Q2 = 1.8 GeVZ.
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FIGURE 5.15: The FP values for the resonance region and the Bernstein moments are
shown here. The green points are all of the F resonance points in the Q? interval
(1.5 : 2.2) and blue points are the Bernstein averages for those points in the x range
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that constitutes the resonance region for Q? = 1.8 GeVZ.
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FIGURE 5.16: The F¥ values for the resonance region and the Bernstein moments are
shown here. The green points are all of the F resonance points in the Q? interval
(1.5 : 2.2) and blue points are the Bernstein averages for those points in the W? range

that constitutes the resonance region for Q2 = 1.8 GeVZ.
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FIGURE 5.17: The Ff values for the resonance region and the Bernstein moments are
shown here. The green points are all of the F resonance points in the Q2 interval
(2.3 : 2.5) and blue points are the Bernstein averages for those points in the x range

that constitutes the resonance region for Q2 = 2.5 GeVZ.
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FIGURE 5.18: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F{* resonance points in the Q? interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 2.5 GeVZ.
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FIGURE 5.19: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 2.5 GeVZ.
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TABLE 5.9: Table of Q% = 2.5 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FEP@) | AFS(@Q) | Res | DIS |

T

0.00 | 0.0588 | 0.0555 0.3822 0.3736E-02 | 0.0001 | 0.9998
1.00 | 0.1176 | 0.0537 0.3785 0.3594E-02 | 0.0009 | 0.9981
2.00 | 0.1765 | 0.0519 0.3664 0.3346E-02 | 0.0059 | 0.9891
3.00 | 0.2353 | 0.0500 0.3446 0.3092E-02 | 0.0241 | 0.9586
4.00 | 0.2941 | 0.0480 0.3170 0.2939E-02 | 0.0717 | 0.8866
5.00 | 0.3529 | 0.0460 0.2864 0.2780E-02 | 0.1650 | 0.7596
6.00 | 0.4118 | 0.0438 0.2537 0.2461E-02 | 0.3073 | 0.5874
7.00 | 0.4706 | 0.0416 0.2190 0.1948E-02 | 0.4815 | 0.4021
8.00 | 0.5294 | 0.0392 0.1830 0.1354E-02 | 0.6570 | 0.2396
9.00 | 0.5882 | 0.0367 0.1474 0.8480E-03 | 0.8038 | 0.1221
10.0 | 0.6471 | 0.0340 0.1143 0.5160E-03 | 0.9055 | 0.0520
11.0 | 0.7059 | 0.0310 | 0.8508E-01 | 0.3280E-03 | 0.9627 | 0.0180
12.0 | 0.7647 | 0.0277 | 0.5933E-01 | 0.2250E-03 | 0.9881 | 0.0050
13.0 | 0.8235 | 0.0240 | 0.3621E-01 | 0.1640E-03 | 0.9970 | 0.0011
14.0 | 0.8824 | 0.0196 | 0.1674E-01 | 0.1060E-03 | 0.9993 | 0.0002
15.0 | 0.9412 | 0.0139 | 0.4250E-02 | 0.4100E-04 | 1.0000 | 0.0000

TABLE 5.10: Table of Q2 = 2.5 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k| 2 | Az [FGP@Q) | AFS(@Q) | Res | DIS |
0.00 | 0.0588 | 0.0555 | 0.3644 | 0.3418E-02 | 0.0001 | 0.9999
1.00 | 0.1176 | 0.0537 | 0.3481 | 0.3315E-02 | 0.0008 | 0.9984
2.00 | 0.1765 | 0.0519 |  0.3259 | 0.3188E-02 | 0.0052 | 0.9903
3.00 | 0.2353 | 0.0500 | 0.2969 | 0.3018E-02 | 0.0218 | 0.9623
4.00 | 0.2941 | 0.0480 | 0.2653 | 0.2843E-02 | 0.0664 | 0.8938
5.00 | 0.3529 | 0.0460 | 0.2336 | 0.2577E-02 | 0.1560 | 0.7702
6.00 | 0.4118 | 0.0438 |  0.2026 | 0.2144E-02 | 0.2952 | 0.5996
7.00 | 0.4706 | 0.0416 | 0.1717 | 0.1578E-02 | 0.4680 | 0.4136
8.00 | 0.5204 | 0.0392 | 0.1411 | 0.1010E-02 | 0.6443 | 0.2487
9.00 | 0.5882 | 0.0367 | 0.1118 | 0.5780E-03 | 0.7940 | 0.1281
10.0 | 0.6471 | 0.0340 | 0.8515E-01 | 0.3300E-03 | 0.8991 | 0.0553
11.0 | 0.7059 | 0.0310 | 0.6215E-01 | 0.2080E-03 | 0.9594 | 0.0195
12.0 | 0.7647 | 0.0277 | 0.4346E-01 | 0.1420E-03 | 0.9872 | 0.0054
13.0 | 0.8235 | 0.0240 | 0.2998E-01 | 0.1000E-03 | 0.9971 | 0.0011
14.0 | 0.8824 | 0.0196 | 0.2329E-01 | 0.8800E-04 | 0.9996 | 0.0001
15.0 | 0.9412 | 0.0139 | 0.2247E-01 | 0.1260E-03 | 1.0000 | 0.0000
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FIGURE 5.20: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F’ resonance points in the Q? interval

(2.3 :2.5) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q2 = 2.5 GeVZ.
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TABLE 5.11: Table of Q? = 3.4 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FSP@Q) | ARG Q)] Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.3949 0.3624E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3799 0.3468E-02 | 0.0000 | 0.9999
2.00 | 0.1765 | 0.0519 0.3611 0.3209E-02 | 0.0004 | 0.9995
3.00 | 0.2353 | 0.0500 0.3332 0.2953E-02 | 0.0026 | 0.9970
4.00 | 0.2941 | 0.0480 0.2987 0.2792E-02 | 0.0112 | 0.9875
5.00 | 0.3529 | 0.0460 0.2613 0.2640E-02 | 0.0369 | 0.9593
6.00 | 0.4118 | 0.0438 0.2247 0.2397E-02 | 0.0969 | 0.8953
7.00 | 0.4706 | 0.0416 0.1911 0.2041E-02 | 0.2060 | 0.7810
8.00 | 0.5294 | 0.0392 0.1604 0.1591E-02 | 0.3627 | 0.6204
9.00 | 0.5882 | 0.0367 0.1315 0.1101E-02 | 0.5434 | 0.4391
10.0 | 0.6471 | 0.0340 0.1037 0.6680E-03 | 0.7140 | 0.2715
11.0 | 0.7059 | 0.0310 | 0.7750E-01 | 0.3750E-03 | 0.8472 | 0.1431
12.0 | 0.7647 | 0.0277 | 0.5372E-01 | 0.2350E-03 | 0.9324 | 0.0626
13.0 | 0.8235 | 0.0240 | 0.3305E-01 | 0.1830E-03 | 0.9758 | 0.0221
14.0 | 0.8824 | 0.0196 | 0.1614E-01 | 0.1410E-03 | 0.9931 | 0.0063
15.0 | 0.9412 | 0.0139 | 0.4626E-02 | 0.6600E-04 | 0.9985 | 0.0015

TABLE 5.12: Table of Q? = 3.4 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

N

| Az | FGPQ) | AFS(Q%) | Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.3766 0.3316E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3491 0.3201E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3209 0.3061E-02 | 0.0003 | 0.9996
3.00 | 0.2353 | 0.0500 0.2868 0.2888E-02 | 0.0021 | 0.9975
4.00 | 0.2941 | 0.0480 0.2494 0.2722E-02 | 0.0092 | 0.9894
5.00 | 0.3529 | 0.0460 0.2119 0.2511E-02 | 0.0309 | 0.9649
6.00 | 0.4118 | 0.0438 0.1769 0.2217E-02 | 0.0828 | 0.9081
7.00 | 0.4706 | 0.0416 0.1457 0.1847E-02 | 0.1800 | 0.8044
8.00 | 0.5294 | 0.0392 0.1180 0.1417E-02 | 0.3251 | 0.6539
9.00 | 0.5882 | 0.0367 | 0.9314E-01 | 0.9650E-03 | 0.5009 | 0.4764
10.0 | 0.6471 | 0.0340 | 0.7080E-01 | 0.5620E-03 | 0.6767 | 0.3036
11.0 | 0.7059 | 0.0310 | 0.5135E-01 | 0.2810E-03 | 0.8224 | 0.1641
12.0 | 0.7647 | 0.0277 | 0.3524E-01 | 0.1370E-03 | 0.9206 | 0.0722
13.0 | 0.8235 | 0.0240 | 0.2256E-01 | 0.8800E-04 | 0.9727 | 0.0245
14.0 | 0.8824 | 0.0196 | 0.1324E-01 | 0.8700E-04 | 0.9935 | 0.0057
15.0 | 0.9412 | 0.0139 | 0.7927E-02 | 0.1930E-03 | 0.9992 | 0.0006
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FIGURE 5.21: The F{ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F{* resonance points in the Q? interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 3.4 GeVZ.
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FIGURE 5.22: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q2 = 3.4 GeVZ.
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FIGURE 5.23: The FP values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q? = 3.4 GeVZ.
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FIGURE 5.24: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F’ resonance points in the Q? interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the W?2 range
that constitutes the resonance region for Q2 = 3.4 GeVZ.



Large x Corrections

123

TABLE 5.13: Table of Q? = 5.7 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FSP@Q) | ARG Q)] Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.4148 0.3466E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3815 0.3286E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3541 0.3011E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 0.3207 0.2756E-02 | 0.0000 | 0.9999
4.00 | 0.2941 | 0.0480 0.2818 0.2593E-02 | 0.0002 | 0.9995
5.00 | 0.3529 | 0.0460 0.2396 0.2438E-02 | 0.0013 | 0.9974
6.00 | 0.4118 | 0.0438 0.1972 0.2220E-02 | 0.0058 | 0.9893
7.00 | 0.4706 | 0.0416 0.1578 0.1964E-02 | 0.0212 | 0.9639
8.00 | 0.5294 | 0.0392 0.1240 0.1726E-02 | 0.0628 | 0.9014
9.00 | 0.5882 | 0.0367 | 0.9681E-01 | 0.1523E-02 | 0.1505 | 0.7823
10.0 | 0.6471 | 0.0340 | 0.7504E-01 | 0.1298E-02 | 0.2925 | 0.6096
11.0 | 0.7059 | 0.0310 | 0.5647E-01 | 0.9890E-03 | 0.4716 | 0.4171
12.0 | 0.7647 | 0.0277 | 0.3960E-01 | 0.6270E-03 | 0.6541 | 0.2463
13.0 | 0.8235 | 0.0240 | 0.2457E-01 | 0.3430E-03 | 0.8082 | 0.1221
14.0 | 0.8824 | 0.0196 | 0.1239E-01 | 0.2160E-03 | 0.9143 | 0.0486
15.0 | 0.9412 | 0.0139 | 0.3950E-02 | 0.1140E-03 | 0.9706 | 0.0149

TABLE 5.14: Table of Q? = 5.7 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

N

| Az | FGPQ) | AFS(Q%) | Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.3958 0.3173E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3503 0.3036E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3141 0.2878E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 0.2756 0.2697E-02 | 0.0000 | 0.9999
4.00 | 0.2941 | 0.0480 0.2351 0.2525E-02 | 0.0002 | 0.9996
5.00 | 0.3529 | 0.0460 0.1948 0.2315E-02 | 0.0011 | 0.9977
6.00 | 0.4118 | 0.0438 0.1566 0.2054E-02 | 0.0052 | 0.9903
7.00 | 0.4706 | 0.0416 0.1227 0.1791E-02 | 0.0189 | 0.9672
8.00 | 0.5294 | 0.0392 | 0.9427E-01 | 0.1583E-02 | 0.0558 | 0.9104
9.00 | 0.5882 | 0.0367 | 0.7161E-01 | 0.1424E-02 | 0.1336 | 0.8017
10.0 | 0.6471 | 0.0340 | 0.5355E-01 | 0.1226E-02 | 0.2617 | 0.6414
11.0 | 0.7059 | 0.0310 | 0.3852E-01 | 0.9200E-03 | 0.4300 | 0.4558
12.0 | 0.7647 | 0.0277 | 0.2583E-01 | 0.5570E-03 | 0.6140 | 0.2801
13.0 | 0.8235 | 0.0240 | 0.1580E-01 | 0.2680E-03 | 0.7851 | 0.1404
14.0 | 0.8824 | 0.0196 | 0.8917E-02 | 0.1260E-03 | 0.9151 | 0.0498
15.0 | 0.9412 | 0.0139 | 0.5163E-02 | 0.6300E-04 | 0.9841 | 0.0083
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FIGURE 5.25: The F{ values for the resonance region and the Bernstein moments are
shown here. The green points are all of the F resonance points in the Q2 interval
(5.3 : 6.2) and blue points are the Bernstein averages for those points in the x range

that constitutes the resonance region for Q2 = 5.7 GeVZ2.
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FIGURE 5.26: The F{ values for the resonance region and the Bernstein moments are
shown here. The green points are all of the F resonance points in the Q2 interval
(5.3 : 6.2) and blue points are the Bernstein averages for those points in the W? range
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that constitutes the resonance region for Q% = 5.7 GeV?2.
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FIGURE 5.27: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 5.7 GeVZ2.
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FIGURE 5.28: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q2 = 5.7 GeVZ2.
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FIGURE 5.29: The FY¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the = range
that constitutes the resonance region for Q% = 7 GeV?2.
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TABLE 5.15: Table of Q? =7 GeV? FY Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FEP@) | AFS(@Q) | Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.4220 0.3414E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3819 0.3224E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3515 0.2945E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 0.3164 0.2690E-02 | 0.0000 | 1.0000
4.00 | 0.2941 | 0.0480 0.2765 0.2526E-02 | 0.0000 | 0.9999
5.00 | 0.3529 | 0.0460 0.2338 0.2368E-02 | 0.0002 | 0.9996
6.00 | 0.4118 | 0.0438 0.1907 0.2150E-02 | 0.0013 | 0.9980
7.00 | 0.4706 | 0.0416 0.1500 0.1893E-02 | 0.0057 | 0.9916
8.00 | 0.5294 | 0.0392 0.1141 0.1644E-02 | 0.0204 | 0.9713
9.00 | 0.5882 | 0.0367 | 0.8445E-01 | 0.1418E-02 | 0.0607 | 0.9192
10.0 | 0.6471 | 0.0340 | 0.6152E-01 | 0.1203E-02 | 0.1488 | 0.8131
11.0 | 0.7059 | 0.0310 | 0.4422E-01 | 0.1029E-02 | 0.2990 | 0.6456
12.0 | 0.7647 | 0.0277 | 0.3080E-01 | 0.9280E-03 | 0.4966 | 0.4424
13.0 | 0.8235 | 0.0240 | 0.1978E-01 | 0.7860E-03 | 0.6968 | 0.2528
14.0 | 0.8824 | 0.0196 | 0.1060E-01 | 0.5460E-03 | 0.8531 | 0.1160
15.0 | 0.9412 | 0.0139 | 0.3682E-02 | 0.3140E-03 | 0.9457 | 0.0407

TABLE 5.16: Table of Q? =7 GeV? F Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k| 2 | Az [FGP@Q) | AFS(@Q) | Res | DIS |
0.00 | 0.0588 [ 0.0555 | 0.4027 | 0.3125E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 | 0.3505 | 0.2980E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 | 0.3117 | 0.2815E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 | 0.2717 | 0.2632E-02 | 0.0000 | 1.0000
4.00 | 0.2941 | 0.0480 | 0.2306 | 0.2459E-02 | 0.0000 | 0.9999
5.00 | 0.3529 | 0.0460 |  0.1900 | 0.2248E-02 | 0.0002 | 0.9996
6.00 | 0.4118 | 0.0438 | 0.1515 | 0.1988E-02 | 0.0012 | 0.9981
7.00 | 0.4706 | 0.0416 | 0.1168 | 0.1722E-02 | 0.0053 | 0.9921
8.00 | 0.5294 | 0.0392 | 0.8730E-01 | 0.1491E-02 | 0.0197 | 0.9724
9.00 | 0.5882 | 0.0367 | 0.6377E-01 | 0.1292E-02 | 0.0604 | 0.9202
10.0 | 0.6471 | 0.0340 | 0.4611E-01 | 0.1090E-02 | 0.1515 | 0.8114
11.0 | 0.7059 | 0.0310 | 0.3322E-01 | 0.8860E-03 | 0.3090 | 0.6373
12.0 | 0.7647 | 0.0277 | 0.2349E-01 | 0.7160E-03 | 0.5143 | 0.4275
13.0 | 0.8235 | 0.0240 | 0.1552E-01 | 0.5410E-03 | 0.7168 | 0.2364
14.0 | 0.8824 | 0.0196 | 0.8891E-02 | 0.3180E-03 | 0.8719 | 0.1012
15.0 | 0.9412 | 0.0139 | 0.4347E-02 | 0.1410E-03 | 0.9664 | 0.0253
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FIGURE 5.30: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 7 GeV?2.
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FIGURE 5.31: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q? = 7 GeV?2.
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FIGURE 5.32: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F’ resonance points in the Q? interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 7 GeV?2.
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TABLE 5.17: Table of Q? = 8.2 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

k| o | Ax | FGP@Q) | AFST(QY) | Res | DIS |
0.00 | 0.0588 | 0.0555 | 0.4272 | 0.3378E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 | 0.3821 | 0.3181E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 | 0.3496 | 0.2898E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 | 0.3133 | 0.2643E-02 | 0.0000 | 1.0000
4.00 | 0.2041 | 0.0480 |  0.2728 | 0.2479E-02 | 0.0000 | 1.0000
5.00 | 0.3529 | 0.0460 | 0.2209 | 0.2319E-02 | 0.0001 | 0.9997
6.00 | 0.4118 | 0.0438 | 0.1868 | 0.2102E-02 | 0.0006 | 0.9986
7.00 | 0.4706 | 0.0416 | 0.1463 | 0.1848E-02 | 0.0031 | 0.9937
8.00 | 0.5294 | 0.0392 | 0.1105 | 0.1606E-02 | 0.0123 | 0.9766
9.00 | 0.5882 | 0.0367 | 0.8116E-01 | 0.1392E-02 | 0.0407 | 0.9294
10.0 | 0.6471 | 0.0340 | 0.5860E-01 | 0.1181E-02 | 0.1094 | 0.8273
11.0 | 0.7059 | 0.0310 | 0.4179E-01 | 0.9260E-03 | 0.2368 | 0.6605
12.0 | 0.7647 | 0.0277 | 0.2878E-01 | 0.6180E-03 | 0.4165 | 0.4570
13.0 | 0.8235 | 0.0240 | 0.1802E-01 | 0.3230E-03 | 0.6139 | 0.2674
14.0 | 0.8824 | 0.0196 | 0.9233E-02 | 0.1340E-03 | 0.7875 | 0.1283
15.0 | 0.9412 | 0.0139 | 0.3000E-02 | 0.5200E-04 | 0.9080 | 0.0480

TABLE 5.18: Table of Q? = 8.2 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

N

| Az | FGPQ) | AFS(Q%) | Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.4078 0.3092E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3507 0.2940E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3099 0.2771E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 0.2690 0.2587E-02 | 0.0000 | 1.0000
4.00 | 0.2941 | 0.0480 0.2274 0.2412E-02 | 0.0000 | 1.0000
5.00 | 0.3529 | 0.0460 0.1867 0.2200E-02 | 0.0001 | 0.9997
6.00 | 0.4118 | 0.0438 0.1484 0.1942E-02 | 0.0006 | 0.9986
7.00 | 0.4706 | 0.0416 0.1140 0.1681E-02 | 0.0029 | 0.9935
8.00 | 0.5294 | 0.0392 | 0.8475E-01 | 0.1456E-02 | 0.0116 | 0.9758
9.00 | 0.5882 | 0.0367 | 0.6150E-01 | 0.1265E-02 | 0.0387 | 0.9271
10.0 | 0.6471 | 0.0340 | 0.4406E-01 | 0.1071E-02 | 0.1041 | 0.8229
11.0 | 0.7059 | 0.0310 | 0.3123E-01 | 0.8340E-03 | 0.2255 | 0.6555
12.0 | 0.7647 | 0.0277 | 0.2136E-01 | 0.5600E-03 | 0.3985 | 0.4537
13.0 | 0.8235 | 0.0240 | 0.1336E-01 | 0.3070E-03 | 0.5963 | 0.2648
14.0 | 0.8824 | 0.0196 | 0.7197E-02 | 0.1380E-03 | 0.7857 | 0.1205
15.0 | 0.9412 | 0.0139 | 0.3287E-02 | 0.4900E-04 | 0.9331 | 0.0319
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FIGURE 5.33: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 8.2 GeVZ.
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FIGURE 5.34: The FY¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q% = 8.2 GeV?2.
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FIGURE 5.35: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 8.2 GeVZ.
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FIGURE 5.36: The F values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q? interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q? = 8.2 GeV?2.
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FIGURE 5.37: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 9.6 GeVZ.
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FIGURE 5.38: The FY values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q% = 9.6 GeV?2.
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TABLE 5.19: Table of Q2 = 9.6 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to = values for which Resonance Data points exist.

N

| Az [ FEP@) | AFS(@Q) | Res | DIS |

T
0.00 | 0.0588 | 0.0555 0.4324 0.3342E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 0.3822 0.3138E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 0.3476 0.2852E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 0.3103 0.2598E-02 | 0.0000 | 1.0000
4.00 | 0.2941 | 0.0480 0.2692 0.2433E-02 | 0.0000 | 1.0000
5.00 | 0.3529 | 0.0460 0.2260 0.2271E-02 | 0.0000 | 1.0000
6.00 | 0.4118 | 0.0438 0.1829 0.2054E-02 | 0.0001 | 0.9998
7.00 | 0.4706 | 0.0416 0.1424 0.1803E-02 | 0.0006 | 0.9990
8.00 | 0.5294 | 0.0392 0.1062 0.1563E-02 | 0.0032 | 0.9954
9.00 | 0.5882 | 0.0367 | 0.7596E-01 | 0.1348E-02 | 0.0135 | 0.9817
10.0 | 0.6471 | 0.0340 | 0.5240E-01 | 0.1142E-02 | 0.0461 | 0.9404
11.0 | 0.7059 | 0.0310 | 0.3532E-01 | 0.9180E-03 | 0.1274 | 0.8437
12.0 | 0.7647 | 0.0277 | 0.2336E-01 | 0.6620E-03 | 0.2779 | 0.6757
13.0 | 0.8235 | 0.0240 | 0.1459E-01 | 0.3960E-03 | 0.4813 | 0.4641
14.0 | 0.8824 | 0.0196 | 0.7691E-02 | 0.1920E-03 | 0.6866 | 0.2663
15.0 | 0.9412 | 0.0139 | 0.2587E-02 | 0.6800E-04 | 0.8469 | 0.1233

TABLE 5.20: Table of Q? = 9.6 GeV? Ff Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k| 2 | Az [FGP@Q) | AFS(@Q) | Res | DIS |
0.00 | 0.0588 [ 0.0555 | 0.4128 | 0.3059E-02 | 0.0000 | 1.0000
1.00 | 0.1176 | 0.0537 | 0.3507 | 0.2901E-02 | 0.0000 | 1.0000
2.00 | 0.1765 | 0.0519 |  0.3080 | 0.2728E-02 | 0.0000 | 1.0000
3.00 | 0.2353 | 0.0500 | 0.2662 | 0.2542E-02 | 0.0000 | 1.0000
4.00 | 0.2941 | 0.0480 | 0.2243 | 0.2366E-02 | 0.0000 | 1.0000
5.00 | 0.3529 | 0.0460 | 0.1835 | 0.2154E-02 | 0.0000 | 1.0000
6.00 | 0.4118 | 0.0438 |  0.1452 | 0.1898E-02 | 0.0001 | 0.9998
7.00 | 0.4706 | 0.0416 | 0.1108 | 0.1641E-02 | 0.0006 | 0.9991
8.00 | 0.5294 | 0.0392 | 0.8132E-01 | 0.1419E-02 | 0.0031 | 0.9956
9.00 | 0.5882 | 0.0367 | 0.5732E-01 | 0.1232E-02 | 0.0130 | 0.9825
10.0 | 0.6471 | 0.0340 | 0.3905E-01 | 0.1048E-02 | 0.0451 | 0.9424
11.0 | 0.7059 | 0.0310 | 0.2605E-01 | 0.8430E-03 | 0.1262 | 0.8467
12.0 | 0.7647 | 0.0277 | 0.1713E-01 | 0.6010E-03 | 0.2788 | 0.6774
13.0 | 0.8235 | 0.0240 | 0.1081E-01 | 0.3440E-03 | 0.4902 | 0.4587
14.0 | 0.8824 | 0.0196 | 0.6078E-02 | 0.1370E-03 | 0.7127 | 0.2460
15.0 | 0.9412 | 0.0139 | 0.2784E-02 | 0.3300E-04 | 0.8973 | 0.0837
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FIGURE 5.39: The F¥ values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F2D resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q? = 9.6 GeVZ.

5.4 Large x Fit SOM

The SOM is particularly useful for extracting % values from the ratio of the Deuteron
Structure Functions to the Proton Structure Functions in the large x limit, where d is
the total down quark distribution d = d,, + 2d and u is the total up quark distribution
U = Uy + 27. % values, particularly at large x, are a notable example of how QCD
methods, including Generalized Parton Distributions, and low energy non perturbative
QCD models for nucleon spin structure and flavor can provide clear predictions [76]. The
u quark behavior at large x is taken primarily from proton data and so therefore is largely
independent of nuclear corrections; this allows us to use % to extract d quark values.
Currently, the overall behavior of % for x > 0.2 is not well known despite the theoretical
models that have been made for this function as ¢ — 1. In addition, measurements of the
d quark and gluon PDFs at large x, the former of which the % determinations can assist
in, are also needed to compute QCD cross sections in collider experiments. The large
x effects discussed previously, the TMC, LxR and smearing factors, further complicate
the extraction of the % behavior at large x from the structure functions. In addition,

nuclear corrections in the extraction of neutron structure functions lead to uncertainties
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FIGURE 5.40: The F values for the resonance region and the Bernstein moments are

shown here. The green points are all of the F’ resonance points in the Q? interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the W? range
that constitutes the resonance region for Q% = 9.6 GeV?.
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FIGURE 5.41: The FY values for the resonance region and the Bernstein moments are
shown here along with a computation of 169 Bernstein resonance points to show how
the Bernstein functions behave for larger numbers of chosen resonance points.
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FIGURE 5.42: The initial generated envelope of %; theoretical curves for Q? = 2.5
2

GeV? relative to the Bernstein moment points for the same @? value. The blue curves

D
are the initial envelope of theoretical generated % curves. The green points are the
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computed 7% values taken from the Bernstein moment integrals of resonance —2- and
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data. This shows the ability of the SOMPDEF procedure to generate unbiased theoreti-
cal fits to experimental scattering sets when the ratios of Deuteron to Proton structure
functions are plotted as opposed to the Deuteron and Proton structure functions
separately.

in d quark calculations [77]. The BONUS collaboration has used tagging measurements
to reduce the uncertainty due to these corrections for z < 0.7 [78]; however more work
is needed to understand the uncertainty within the resonance region. The SOM is ideal
for using pattern recognition among clusters that form from mapping the PDFs in order
to identify the physics behind the large x % behavior. These SOM x? and % values are
shown on a lego plot in Figure 5.45 - 5.46.

The SOM for the ratio of the total up and down quarks has been done with and without
the combined TMC and LxR. The map of x? values without large = Corrections is in
Figure 5.44 and the x? with these large  corrections is in Figure 5.45. For the Maps
of % values, Figure 5.46 shows them without the large = Corrections and Figure 5.47
shows this map with the large x Corrections. The results can be analyzed in terms of

d

the size and the location of the clusters for which, in the limit x — 1.0, { — 0 or %
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F1GURE 5.43: This is a generated best fitting % curve fitting generated f%,; values to
2
the large x data sets.

is in the range (0.05 : 0.5) and additionally for the clusters for which % becomes close
to one. For quarks in a proton or neutron, SU(6) symmetry predicts that the quarks
will exhibit flavor, or SU(3) and spin, or SU(2), symmetry in terms of the interactions
among the quarks. For the large x region, SU(6) symmetry can be broken; if the spin
of the quark pairs in the hadron is zero this refers to the S = 0 qq model and if the
spin projection of quark pairs is zero then this refers to the S, = 0 qq model. For a
proton, SU(6) symmetry predicts two up quarks for one down quark and so the % limit
is predicted to be 0.5. The S = 0 qq model predicts a limit of zero and the S, = 0
qq model predicts a limit of 0.2. The quark hadron duality model predicts a limit of
roughly 0.42 and if % >> 1 for large = that corresponds to a heavy prevalence of down

quarks over up quarks. The clusters for % — 0 for one or both dimensions correspond

to the S = 0 qq dominated limit for large x.

The comparison of these clusters can inform us about the strength of the effects of the
TMC and LxR. Without the large = corrections, large clusters of data units where %
is close to zero form throughout the map. For the % data unit clusters, with the large
x corrections the clusters become more distinct in the upper left corner for % values

in the range (0.05 : 0.5) and in the center for % values greater than one. Essentially,

clusters of data units for which the % values are greater than zero but less than one
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FIGURE 5.44: A x? lego plot for a 6 x 6 map is shown without Target Mass Corrections
and large 2 Resummations added for Q% = 2.5 GeV?. An example of a cluster of
neighboring 2 units is shown in the colored region.

form to an extent that does not occur without large « Corrections. Therefore, the large
x Corrections leading to the PDF fitting procedure divide the % neural network units
into new patterns of fundamentally different values as opposed to the more uniform
map of very low % values without the large x corrections. This shows that the large
x corrections lead to distinct sets of possible values for the prevalence of up and down
quarks with large hadron momentum fractions that are not present when the corrections

are not applied.

The SOM can also be used to show correlations between the individual PDFs and the
Structure Functions they comprise. Previous attempts to show the correlations among
the different PDF's are in [79]. This can be done by observing the relationships between
the x2 clusters and any clusters that form for any of the individual PDFs during the

training process. Without the TMC and LxR, the x? map shows clustering of the
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FIGURE 5.45: A x? lego plot for a 6 x 6 map is shown with Target Mass Corrections
and large 2 Resummations added for Q% = 2.5 GeV?. An example of a cluster of
neighboring 2 units is shown in the colored region.

Structure functions with the lowest x? value in the lower left hand corner, around the
map vector with the lowest x? value. With the TMC and LxR added, the x? map
illustrates a cluster of functions around the map vector with the smallest y? value,
which is located in the first entry in the fourth row. Therefore, cluster formation around
the map vector unit with the lowest y? value occurred regardless of the large x conditions
implemented. With the large x corrections, however, more distinct clusters around the
larger x? values form in the lower left and right hand corners and in the upper right

hand corner.
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FIGURE 5.46: A % lego plot for a 6 x 6 map is shown without Target Mass Corrections
and large z Resummations added for Q? = 2.5 GeV?. An example of a cluster of
neighboring % units is shown in the colored region.

5.5 Large x % Cluster Analysis

The clusters for the full plots of % are shown in Figure 5.48 - 5.49. The data units,
representing plots of %, can be classified according to the quark models the represent
in the limit £ — 1. This enables us to take full advantage of the ability of the SOM to
group neural network units into easily visualized two dimensional representations and
identify key common futures of PDFs in these data network units. The clusters for %
are organized according to the possible limits predicted by various conditions outlined

previously.

Without TMC and LxR added, the range of d/u values is approximately the same as the
range with the corrections added. As a result of this, the clustering and classification of

the data units based on appropriate quark models occurs with the same possible values



Large © Corrections 143

100000
10000
1000
100

10

FIGURE 5.47: A g lego plot for a 6 x 6 map is shown with Target Mass Corrections
and large z Resummations added for Q? = 2.5 GeV?. An example of a cluster of
neighboring g units is shown in the colored region.

of data units for both conditions. For the map vectors without TMC and LxR added,
shown in Figure 5.48, the d/u value map shows clustering of the upper left and right
corners as well as in the center for the lowest d/u values. For the map vectors with TMC
and LxR added, shown in Figure 5.49, clusters of d/u >> 1 data units form along the
upper right hand corner. In the left side of the map, clusters data units corresponding
to the S = 0 qq, S; = 0 qq and quark hadron duality conditions form around data
units with a d/u >> 1 limit. With large x corrections added, the number of PDF units
corresponding to the S, = 0 qq and quark hadron duality conditions also increases;
there are 14 PDF data units corresponding to one of these two quark models when large
x corrections are added and only 8 PDF data units corresponding to these conditions
without large x Corrections. This reveals the capability of the SOM and the GA, in

conjunction with the large x corrections, to produce neighborhood regions of PDFs that



Large © Corrections 144

N~
\

\

FIGURE 5.48: Shown is a plot of % functions, without Target Mass Corrections and
large x Resummations added for Q% = 2.5 GeV?, for the Bjorken x range (the x axis)
(0:0.95) and the 4 range (y axis) (0 : 1.0). The curves are colored according to the
% values in the limit £ — 1. The red curves represent % functions such that % — %,

which approximates to SU(6) symmetry, or d > (.5. The green curves represent %

functions such that g — 0, which approximates to S = 0 qq model. The purple curves

u

represent % functions such that % — %, which approximates to .S, = 0 qq model. The
blue curves represent g functions such that % — 0.42, which approximates to quark
hadron duality.

conform to specific physical models.

The clustering for the full d/u PDF ratios illustrates how the fitting procedure influences
their formation; the size of these clusters with and without TMC and LxR can also aid
in visualizing the strength of the large x corrections in PDF formation. The size of the
cluster of d/u values less than 0.2 with TMC and LxR is zero map units. Without the
TMC and LxR, the largest cluster for the lowest d/u values is 15 map vector units in size.
Therefore, for data units d/u values less than 0.2, adding large x corrections eliminates

clusters of this data type, although clusters corresponding to d/u values less than 0.5
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FIGURE 5.49: Shown is a plot of % functions, with Target Mass Corrections and large x
Resummations added for Q% = 2.5 GeV?, for the Bjorken x range (the x axis) (0 : 0.95)
and the £ range (y axis) (0 : 1.0). The curves are colored according to the < values
in the limit x — 1. The red curves represent % functions such that % — %, which
approximates to SU(6) symmetry, or % > (0.5. The green curves represent g functions
such that % — 0, which approximates to the S = 0 qq model. The purple curves

represent < functions such that % — L which approximates to the S, = 0 qq model.

m 5
The blue curves represent % functions such that % — 0.42, which approximates to
quark hadron duality.

are still visible. In addition, in terms of the total number of map vector units with a d/u
value greater than 0.47, regardless of cluster formation, there are 6 such units on the
d/u grid without large x corrections added where as there are 18 such units on the grid
with the large = corrections added. This helps to determine the effects of the TMC and
LxR on the ranges of d/u ratios. Furthermore, the size of the clusters for various d/u
values with the large = corrections relative to the size of the clusters without such large
x corrections enables us to visualize how adding the large x corrections directly affects

PDF formation throughout the GA procedure. In particular, it reveals that when large x
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FiGUrRE 5.50: Shown are plots of u, PDFs without large  Corrections added for

Q? = 2.5 GeV?. The Bjorken x range (the x axis) is (0.0001 : 1) and the u, range (the

y axis) is (0 : 1). The PDF curves are in green with the clusters, identified based on

visualization of PDFs with common behaviors for large and small x regions, shown as
blue curves.

corrections are added, d/u data units are split between those corresponding to S = 0 qq,
S, = 0 qq and quark hadron duality conditions and units where down quarks with large
momentum fractions are far more prevalent than up quarks. d/u values do not form
large clusters corresponding to the S = 0 qq condition the way they do without large
x corrections. This suggests that when large = corrections are added, multiple types
of physics conditions, including a heavy prevalence of down quarks over up quarks, are
possible when the PDFs are run through the SOM network to fit scattering data. Adding
the large x corrections also results in the creation of patterns of data units following the
S, = 0 qq and quark hadron duality models that are not present when these corrections
are not added. Subsequently, the maps show the necessity of adding TMC and LxR

along with nuclear corrections in order to maximize the ability of the SOMPDF code to
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FicUre 5.51: Shown are plots of d, PDFs without large z Corrections added for

Q? = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the d, range (the

y axis) is (0 : 1). The PDF curves are in green with the clusters, identified based on

visualization of PDFs with common behaviors for large and small x regions, shown as
blue curves.

achieve these models.

5.6 Large x quark and gluon Cluster Analysis

The map vector grids for the valence quark, sea quark and gluon PDFs are shown
without large x Corrections in Figure 5.50 - 5.56. Without the large = Corrections, the
u, map is in Figure 5.50, the d, map is in Figure 5.51, the u quark map is in Figure
5.52, the d quark map is in Figure 5.53, the gluon Map is in Figure 5.54, the strange
map is in Figure 5.55 and the charm map is in Figure 5.56. When there is no TMC or
LxR factored in, The u, vectors form clusters based on their similar behavior for small

and large x values in the upper right hand corner. The d, vectors form clusters based
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FI1GURE 5.52: Shown are plots of u = wu, + 2u, or up quark, PDFs without large x

Corrections added for Q? = 2.5 GeVZ2. The Bjorken x range (the x axis) is (0.0001 : 1)

and the u range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,

identified based on visualization of PDFs with common behaviors for large and small
x regions, shown as blue curves.

on similar relations in x behavior in the upper and lower right corner and upper left
corner. The u quark map vector grid shows clusters of PDF's based on similar behaviors
for small and large = in the upper half of the map. The d quark map vector grid showed
a clustering of the vectors in the upper right corner for small and large x values as well
as a clustering in the lower left corner based on PDF behavior for various x values. The
relationship between clusters of the gluon map vector grid and the d quark vector grid
can be seen as well. The gluon PDF's in fact cluster in the same regions as the d quarks.
The strange quark map vector grid shows clusters based on the PDF behavior in the
upper right and lower left corner as well. The charm quark map vector grid additionally
shows clustering in the same regions as the strange and gluon PDFs. However the range

of charm quark values is substantially smaller than for the map vectors of the other
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FIGURE 5.53: Shown are plots of d = d,, + 2d, or down quark, PDFs without large

Corrections added for Q? = 2.5 GeVZ2. The Bjorken x range (the x axis) is (0.0001 : 1)

and the d range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,

identified based on visualization of PDFs with common behaviors for large and small
x regions, shown as blue curves.

PDFs. The maps of the PDF's for each parton type effectively showed how the possible
behaviors of each PDF type can create the most ideal fit for the generated structure

functions.

We can also observe the effects of the PDF clusters when TMC and LxR are added; the
maps with these effects added are in Figure 5.57 - 5.63. With the large = Corrections,
the u, map is in Figure 5.57, the d,, map is in Figure 5.58, the v quark map is in Figure
5.59, the d quark map is in Figure 5.60, the gluon Map is in Figure 5.61, the strange
map is in Figure 5.62 and the charm map is in Figure 5.63. The u, map vectors show
the clustering in the upper left and lower right hand corners. The d, map vectors show
clustering in the upper right corner and the lower left corner. The u quark map vector

grid shows clustering in the lower left corner and in the right side of the map. The d
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FI1GURE 5.54: Shown are plots of gluon PDFs without large  Corrections added for

Q? = 2.5 GeV2. The Bjorken z range (the x axis) is (0.0001 : 1) and the gluon range

(the y axis) is (0 : 50). The PDF curves are in green with the clusters, identified based

on visualization of PDFs with common behaviors for large and small x regions, shown
as blue curves.

quark map vector grid shows clustering in the lower left and right corners. The gluon
map vector grid reveals clusters of gluon vectors in the upper left section and lower left
section, in a similar vein to how the d quark PDFs form clusters, in the map. The
strange quark map shows clustering in the upper right and lower left corners of the map
and the charm quark map shows clustering in the upper left corner. These PDF maps
illustrate how the large = corrections affect the relationship between the quality of fit of

the PDF clusters and the PDF behavior over various = ranges.
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FI1GURE 5.55: Shown are plots of s, or strange quark, PDF's without large « Corrections

added for Q% = 2.5 GeVZ2. The Bjorken z range (the x axis) is (0.0001 : 1) and the s

range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified

based on visualization of PDFs with common behaviors for large and small x regions,
shown as blue curves.

5.7 % Cluster Quantification

The sizes of the clusters with and without the large x corrections can be analyzed by
using the maps of the % values with and without these corrections. Clusters for the
purpose of this formulaic analysis are defined as groups of map vectors that contain a
uniting element and connected to each other by neighboring units to the left or right
or upwards or downwards. The cluster sizes can be analyzed for the plot of % values
for = in the range (0.0001 : 1.0). Without the large x corrections, the largest cluster
in Figure 5.48 consists of 15 map vector units conforming to the physical S = 0 qq
model, located in the upper left side and the center of the map vector grid. With the

large x corrections added, the largest cluster in Figure 5.49 consists of 8 map vectors,
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FI1GURE 5.56: Shown are plots of ¢, or charm quark, PDFs without large « Corrections

added for Q% = 2.5 GeV2. The Bjorken z range (the x axis) is (0.0001 : 1) and the c

range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified

based on visualization of PDFs with common behaviors for large and small x regions,
shown as blue curves.

consisting of data units where for large x % > 1. So the rate of change R of clustering
due to the corrections, a measurement of the large x correction effects, can be written

equation 5.39.

R= (5.39)

Ce
Cr
In this formula, C, is the size of the largest continuous cluster without the corrections
and C, is the largest size with corrections. In this case, we have C. = 8.0 and C), = 15.0.
C. also defines the cluster size for the largest cluster with the large = corrections added
with either % — lor % >> 1. Without the large x corrections added, C), is also the size

of the clusters for which % — (0. Both of these clusters contain data units with PDFs that
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FIGURE 5.57: Shown are plots of u,, PDFs with large 2 Corrections added for Q2 = 2.5
GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the u, range (the y axis) is
(0:1). The PDF curves are in green with the clusters, identified based on visualization
of PDFs with common behaviors for large and small x regions, shown as blue curves.

break SU(6) symmetry, therefore they can be classified as symmetry breaking clusters.
These cluster sizes give us 5= = 0.533 for the effects of TMC and LxR on the broken
symmetry clustering. Relative to the size of the clusters without TMC and LXR, the
percent error can be determined to be C"T_nCC x 100 = 87.5% for the cluster change.
Essentially, the cluster sizes and types enable us to analyze the extent to which the
addition of large x Corrections effectively broke up clusters of S = 0 qq data units and

led to formation of clusters with new types of physical models for the data units.

5.8 % Dimensional Clusters and Error Extraction

The SOM PDFs can be clustered in two dimensional plots where each of the two di-

mensions represents an observable value under a specific set of conditions. The two
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FIGURE 5.58: Shown are plots of d, PDFs with large = Corrections added for Q2 = 2.5
GeV?2. The Bjorken z range (the x axis) is (0.0001 : 1) and the d, range (the y axis) is
(0:1). The PDF curves are in green with the clusters, identified based on visualization
of PDFs with common behaviors for large and small x regions, shown as blue curves.

dimensions can be cluster plots of % or x? with various combinations of large = cor-
rections. In Figure 5.64, the % values with TMC and large x corrections, which are
displayed in dimension two, are shown relative to % values with no corrections, which is
designated dimension one. In Figure 5.65, the two dimensions are % with large = Re-
summations for dimension two and % with TMC for dimension one. Figure 5.66 - 5.67
show the same results with the 25" and 50" iterations omitted for clarity so that the
iterations with better fit values can be displayed in the cluster regions. The clusters are
grouped based on the possible large z conditions outlined previously: S =0 qq, S, =0
qq, quark hadron duality and SU(6) symmetry. The grouping of the SOM values into
% clusters based on physical limits enables us to visualize how the large = corrections
directly influenced PDF formation during the Self Organizing and fitting procedures. A

black line equivalent to y = x on the x and y axis is drawn in all the dimensional plots
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F1GURE 5.59: Shown are plots of u = u, + 2%, or up quark, PDFs with large x

Corrections added for Q? = 2.5 GeVZ2. The Bjorken x range (the x axis) is (0.0001 : 1)

and the u range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,

identified based on visualization of PDFs with common behaviors for large and small
x regions, shown as blue curves.

in order to enable us to visualize the extent to which the clusters show linear and non

linear correlations.

The relationship between the % values in a cluster one dimension and the corresponding
% values in a second dimension reveal the strength of the effects of large = corrections in
terms of altering the x — 1 limit for a given dimensional cluster. The number of data
points present in dimension two relative to dimension one follows linear as well as non
linear trends which illustrate how large x corrections affect the resulting nuclear models
for the up and down quarks when they are carrying close to the full hadron momentum.
For a given value in dimension two, as the value of dimension one increases there is no
uniform pattern or trend for the number of data units that exist in the dimension two

value. In Figure b5.64, the clusters such that % — 0 for dimension one show that a
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FIGURE 5.60: Shown are plots of d = d, + 2d, or down quark, PDFs with large x

Corrections added for Q? = 2.5 GeVZ2. The Bjorken x range (the x axis) is (0.0001 : 1)

and the d range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,

identified based on visualization of PDFs with common behaviors for large and small
x regions, shown as blue curves.

significant of the cluster points are also in the region % — 0 for dimension two and that
the majority of points exist in clusters for the other limit ranges. For % — %, 0.42 and
for g limits greater than 0.47 there are also more points in the clusters where dimension
one and dimension two are not equal. Furthermore, this difference is small for the data
units where % >> 1 showing that the large x corrections make less of an impact on
the data units when down quarks are more prevalent for large momentum fractions.
Therefore, the two dimensional plot for % values under the conditions in Figure 5.64
shows significant linear as well as non linear clustering. To measure this effect, we can
define Ny as the number of points on the two dimension plot that are in the same %

range for dimension two as they are for dimension one and Ny as the number of points

that are in one of three possible different ranges. We can then quantify the strength of
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F1GURE 5.61: Shown are plots of gluon PDFs with large  Corrections added for

Q? = 2.5 GeV2. The Bjorken z range (the x axis) is (0.0001 : 1) and the gluon range

(the y axis) is (0 : 50). The PDF curves are in green with the clusters, identified based

on visualization of PDFs with common behaviors for large and small x regions, shown
as blue curves.

the large x corrections, S, in breaking up the clusters of % values that formed without

these corrections with equation 5.40.

Ny
= 4
Se= 5 (5.40)

In the % — 0 range, there are 36 points in dimension two in the % — 0 range and 81
points in dimension two located in one of the other three regions, so we have Ny, = 36

and Ny = 81 giving us S, = % = % = 2.25 For dimension one in the % — % range,
there are Ny = 2 points in dimension two that are in the same range and Ny = 13 points

in dimension two in the other three ranges, so S, = % = % = 6.5. For dimension one
S

in % — 0.42 range, there are Ny, = 7 points in the same range for dimension two and
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FIGURE 5.62: Shown are plots of s, or strange quark, PDF's with large « Corrections

added for Q% = 2.5 GeVZ2. The Bjorken z range (the x axis) is (0.0001 : 1) and the s

range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified

based on visualization of PDFs with common behaviors for large and small x regions,
shown as blue curves.

Ny = 13 points in one of the other three ranges giving a ratio of S, = % = % = 1.86.
For dimension one in the % range such that % is greater than or equal to 0.47, there are
N, = 22 points in dimension two in the same range and Ny = 42 points in dimension
two in different ranges giving a value of 1.09 for %. This illustrates that the large x
corrections used together have a level of influence on cluster formation for all possible %
limits, an effect which is weaker for higher % limits and stronger for the quark hadron
duality,S = 0 qq, S, = 0 qq and SU(6) symmetry models. In Figure 5.65, the number
of points in dimension two for a given dimension one show similar results. In this figure,
for dimension one in the % — 0 range, there are Ny = 36 points in the same range for

dimension two and Ny = 108 points in one of three different ranges giving S, = % =3.

In the % range greater than or equal to 0.47 for dimension one, there are Ny = 19
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FI1GURE 5.63: Shown are plots of ¢, or charm quark, PDFs with large = Corrections

added for Q% = 2.5 GeV2. The Bjorken z range (the x axis) is (0.0001 : 1) and the c

range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified

based on visualization of PDFs with common behaviors for large and small x regions,
shown as blue curves.

points in the same region for dimension two and Ny = 13 points in different regions;
the strength is now S, = % = 0.68. Therefore, the clusters in a physical sense reveal
the effects of various conditions imposed for specific quark types when they are carrying
various fractions of the hadron’s momentum in inelastic scattering. % in the large x limit
is equivalent to the prevalence of up valence quarks relative to down valence quarks with
nearly all of the hadron’s momentum. Therefore, the clusters for this SOM also reveal
that the large x corrections have a smaller effect on the distribution of the valence quarks
when down valence quarks are more prevalent at large momentum fractions relative to
up valence quarks such that the x — 1 limit for % is significantly larger than zero. The

two dimensional groupings of % provide an in depth analysis of how the theoretical PDFs

are formed that could not have been achieved with the previously utilized supervised
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networks or with PCA.

Figure 5.64 and Figure 5.65 also show how the x — 1 limit for g for the generated
theoretical curves increasingly approach the physical limits as the number of SOM and
GA iterations increases as well. For the curves in Figure 5.64, for example, from the
25" and 50" iteration, for instance, roughly half of the total of 36 in the map have
the generated curves had a % limit within zero and one. When the SOMPDF process
hits the 100" and afterwards the 250" iteration, there are still roughly half of the map
curves with a g limit between one and zero. Similar trends are observed for Figure
5.65, when the effects of the LxR and TMC are isolated in the dimensional SOM plot.
Therefore, non linear correlations of % values among data units are preserved as the
neighborhood radius for the fitting procedure is implemented for the PDFs in the data
units. In Figure 5.68 and Figure 5.69 the dimensional plots are shown with each section

of % values given a separate color to highlight the formation of dimensional clusters.

The PDF errors can also be extracted from the SOMs using clusters of closely related g
and x? values that form from the fitting procedure and the neighborhood radius function.
For the 250%" iteration without large = corrections, the cluster from 5.44 with y? a range
of 1.35:2.75 : and a % range of (0.05 : 0.35) was taken. For the 250" iteration with
large z corrections, the cluster from 5.45 with a y? range of (1.5 : 2.5) and a % range
of (0.1 : 0.5) was used. The cluster of data units for the generated map of theoretical
curves without large = corrections was taken from the first and third data units in the
first row and the first four data units in the second row. The cluster of data units with
large = corrections was taken from the second element of the first row, the first and
third element of the second row and the first three elements of the third row. The error
bands for each of the two theoretical PDF sets was taken from the standard deviation
of the curves. This resulted in an error uniquely based on the clustering of the curves
based on the neighborhood radius function in the Self Organizing procedure. These
curves bundles with errors for the best fitting curves are in Figure 5.70 without large x
corrections and in Figure 5.71 with large = corrections. The error band is shown along
with the curve among the generated bundle with the lowest x? value. Without the large
x corrections, the relative error at x = 0.93, the largest « value for the generated curve
bundles, was 1.25; when the large x corrections were added the relative error at x = 0.93
was 0.27. For the previous 6 X 6 % curve in 5.43, for the 6 x 6 map the relative error

was 0.67 for the upper band and 1.31 for the lower band. For the previous 1 x 1 curve
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FIGURE 5.64: The ratios % for Q% = 2.5 GeV?, where d is the distribution of down
quarks (sea and valence) and w is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. % is computed for 36 PDFs per iteration, corre-
sponding to the number of PDFs produced on a 6 x 6 map, with large x Resummations
and Target Mass Corrections for a given number of iterations. % is then computed
without these corrections for the same number of iterations. Dimension one is the %
values when neither large * Resummations or Target Mass Corrections are added. Di-
mension two is the % values when these large x corrections are added. The z axis is
dimension one and the y axis is dimension two. The black line corresponsing to y = x
along the y and =z axis is drawn to highlight the extent of the linear and non linear
correlations. The cluster points in different dimension one and two regions represent
non linear correlations.
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FIGURE 5.65: The ratios 4 for Q? = 2.5 GeV?, where d is the distribution of down
quarks (sea and valence) and w is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. % is computed for 36 PDFs per iteration, correspond-
ing to the number of PDFs produced on a 6 x 6 map, with only large x Resummations
for a given number of iterations. % is then computed with only Target Mass Corrections

for the same number of iterations. Dimension one is the % values when Target Mass

Corrections are added. Dimension two is the % values when large £ Resummations are
added. The z axis is dimension one and the y axis is dimension two. The black line
corresponsing to y = x along the y and x axis is drawn to highlight the extent of the
linear and non linear correlations. The cluster points in different dimension one and

two regions represent non linear correlations.
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FIGURE 5.66: The ratios % for Q% = 2.5 GeV?, where d is the distribution of down
quarks (sea and valence) and w is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. The 25" and 50" iterations are omitted for clarity. g
is computed for 36 PDFs per iteration, corresponding to the number of PDFs produced
on a 6 X 6 map, with large z Resummations and Target Mass Corrections for a given
number of iterations. % is then computed without these corrections for the same number
of iterations. Dimension one is the % values when neither large x Resummations or
Target Mass Corrections are added. Dimension two is the % values when these large
x corrections are added. The x axis is dimension one and the y axis is dimension two.
The black line corresponsing to y = = along the y and x axis is drawn to highlight the
extent of the linear and non linear correlations. The cluster points on the black line
represent strictly linear correlations. The cluster points in different dimension one and
two regions represent non linear correlations.
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FIGURE 5.67: The ratios % for Q% = 2.5 GeV?, where d is the distribution of down
quarks (sea and valence) and w is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. The 25" and 50" iterations are omitted for clarity. %
is computed for 36 PDFs per iteration, corresponding to the number of PDFs produced
on a 6 X 6 map, with only large z Resummations for a given number of iterations. % is
then computed with only Target Mass Corrections for the same number of iterations.
Dimension one is the % values when Target Mass Corrections are added. Dimension two
is the % values when large  Resummations are added. The x axis is dimension one and
the y axis is dimension two. The black line corresponsing to y = x along the y and x axis
is drawn to highlight the extent of the linear and non linear correlations. The cluster
points in different dimension one and two regions represent non linear correlations.

in 5.43, the relative errors were 0.50 for the upper band and 1.07 for the lower band.
So the relative error based on clustering of the PDF units was successfully reduced. For
a comparison to the statistical error when all 36 PDFs are generated in a 6 x 6 map
iteration without looking for specific clusters, the PDF curve bundles with an error band
formed from their standard deviation are in Figure 5.72 without large x corrections and

in Figure 5.73 with large « corrections.
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FIGURE 5.68: Dimensional plots of g values are shown with each of the possible %
regions color coded to represent different g sections. The ratios g for Q? = 2.5 GeV?,
where d is the distribution of down quarks (sea and valence) and wu is the distribution
of up quarks (sea and valence), are shown on a two dimensional plot. % is computed
for 36 PDFs per iteration, corresponding to the number of PDF's produced on a 6 x 6
map, with large x Resummations and Target Mass Corrections for a given number
of iterations. % is then computed without these corrections for the same number of
iterations. Dimension one is the % values when neither large * Resummations or Tar-
get Mass Corrections are added. Dimension two is the g values when these large x
corrections are added. The z axis is dimension one and the y axis is dimension two.
The black line corresponsing to y = x along the y and x axis is drawn to highlight the
extent of the linear and non linear correlations. The cluster points on the black line
represent strictly linear correlations. The cluster points in different dimension one and

two regions represent non linear correlations.
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FI1GURE 5.69: Dimensional plots of g values are shown with each of the possible %
regions color coded to represent different g sections. The ratios g for Q? = 2.5 GeV?,
where d is the distribution of down quarks (sea and valence) and u is the distribution of
up quarks (sea and valence), are shown on a two dimensional plot. % is computed for
36 PDF's per iteration, corresponding to the number of PDF's produced on a 6 x 6 map,
with only large  Resummations for a given number of iterations. % is then computed
with only Target Mass Corrections for the same number of iterations. Dimension one is
the % values when Target Mass Corrections are added. Dimension two is the % values
when large © Resummations are added. The z axis is dimension one and the y axis is
dimension two. The black line corresponsing to y = x along the y and x axis is drawn
to highlight the extent of the linear and non linear correlations. The cluster points in
different dimension one and two regions represent non linear correlations.
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F1GURE 5.70: The bundle of theoretical % curves, taken from a cluster of six PDF
units with similarly y? and % values, at Q% = 2.5 GeV'" generated from the 6 x 6
map is shown. Large x Resummations and Target Mass Corrections are not included
in these computations. The curve with the lowest x2 value among this bundle is shown
with an error band calculated using the standard deviation of the curve bundle.

6 Conclusion

The cross sections of inelastic nuclear scattering reactions have hard components, calcu-
lable by perturbative expansions around the strong coupling constant, and “soft” com-
ponents for which there is a need to create reliable theoretical models. These models
come from composite parton models, dependent on parton momentum fraction x, which
contain a set of Q2 dependent parameters. Previous attempts to create these theoretical
models have not used the type of networks that we have used. There has not previously
been a method to generate these nuclear theoretical models that eliminates bias in fitting
them to scattering data and allows for visualization, analysis and classification of the

subsequent generated theoretical models. Therefore, the use of unsupervised Artificial
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FIGURE 5.71: The bundle of theoretical % curves, taken from a cluster of six PDF

units with similarly x2 and % values, at Q2 = 2.5 GeV*" generated from the 6 x 6 map

is shown. Large x Resummations and Target Mass Corrections are included in these

computations. As a result, the effects of adding the large = corrections on SOM error

size is shown with the error band here relative to that of Figure 5.70. The curve with

the lowest x? value among this bundle is shown with an error band calculated using
the standard deviation of the curve bundle.

Neural Networks represented an unexplored procedure for probing inelastic scattering

reactions and creating reliably generated theoretical parton models. This method of cre-

ating the parton models and attempt to maximize the structure functions they comprise

to scattering data sets represented a practical and useful way to create unbiased parton

models and structure functions.

The SOM and the GA were also proven to be uniquely successful in creating an un-

biased set of theoretical PDF curves whose composite structure functions are capable

of fitting experimental data. Therefore, this Artificial Neural Network was capable of

achieving the same fundamental task as the supervised NNPDF network. The SOM and
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FIGURE 5.72: The bundle of theoretical % curves, without Large x Resummations and

Target Mass Corrections added, for Q? = 2.5 GeV'" generated from the 6 x 6 map

is shown for all of the PDFs the 6 x 6 map generates. The curve with the lowest x?

value among this bundle is shown with an error band calculated using the standard

deviation of the curve bundle. The large error band, which results from using all the

generated PDF curves regardless of how well they fit the data, reveals the necesseity of
using clusters to generate a viable statistical error band.

GA method could also be applied simultaneously with the Lagrange Multiplier method
to get an error determination that depended uniquely on the formation of the best fit-
ting PDF's from semi random free parameter variation. In addition, the SOM network
enabled us to identify clusters based on critical features that the generated PDFs had
in common with each other. The values of the PDFs, for various kinematical ranges,
that most effectively illustrated the effects of physical corrections for specific kinematics
formed clusters according to how well they fit the scattering data and their behaviors
in these kinematic ranges of interest. Due to the large number of varying free param-
eters and possible behaviors of the PDFs at various kinematics, the theoretical PDF's,

when generated and assigned to map units, represented data with substantially more
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FiGURE 5.73: The bundle of theoretical % curves, with Large x Resummations and
Target Mass Corrections added, for Q% = 2.5 GeV*" generated from the 6 x 6 map is
shown for all of the PDF's the 6 x 6 map generates. Therefore, the effects of adding the
large x corrections on statistical error size is shown with the error band here relative to
that of Figure 5.72. The curve with the lowest x? value among this bundle is shown
with an error band calculated using the standard deviation of the curve bundle. The
large error band, which results from using all the generated PDF curves regardless of
how well they fit the data, reveals the necesseity of using clusters to generate a viable

statistical error band.
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than two dimensions. The SOM enabled us to reduce these PDFs to two dimensional

representations with non linear relationships among data units which grouped together

in map clusters.

These clusters could be identified based on the quality of fit of resulting structure func-

tions to experimental data results, behaviors of PDF types for smaller values of = or for

their values in the limit x — 1. When PDF clusters based around the quality of their fit

to data were formed, this enabled us to identify multiple local minima in the PDF fitting

procedure that would not have been made apparent without using the SOM to group
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the fit values into two dimensional arrays of data units. The PDFs at an z range from
zero to one could also be placed as data units on a SOM to see how the fitting procedure
and use the neighborhood radius function forms non linear PDF clusters based on their
behaviors over small x and large x values. The formation of clusters as a result of the
fitting algorithm and neighborhood function could be observed for every type of quark
and gluon PDF.

The large x physics in particular, as a result of the SOMs, could be quantified based on
groups of large x PDF values under various conditions. When the ratios of down valence
and sea quarks to up valence and sea quarks were plotted, they could be grouped into
clusters of data units based on physical quark models that correspond to these ratios in
the large = limit. This map could be set up with large x PDF data units corresponding
to the conditions placed on the quarks at large x and without these corrections added.
When the physics effects on quarks with large momentum fractions were added in,
the SOM provided a way to determine how the structure function fitting procedure
and the large x corrections applied together resulted in the formation of PDFs with
fundamentally different quark models. The SOM also allowed us quantify how the
cluster formations based on physical models were effected as a result of adding large x
corrections. The result was a visualization and determination of how adding the physics
corrections for quarks with large parton momentum fractions led to the best fitting PDF's
conforming to various physical models. With the addition of large x Corrections, clusters
of % data units for which % — Oor % — 0.2 without the Corrections added were broken
up at a much higher rate than % data units with higher % values before the Corrections
were added. This showed how adding the physics Corrections for large quark momentum
fractions lead to a particularly strong breakup of clusters for the S =0 qq and S, =0
qq conditions. This essentially showed the capability of the SOMPDF fitting procedure,
using various large z conditions, to obtain desired physical models. In addition, the Self
Organizing Process and GA could be used to extract errors of the PDF's; which resulted

in a reduced relative error when used in tandem with large = corrections.

Since the PDF's and their fit to experimental scattering points represented data units
with many different dimensions, the SOM provided a way to reduce these data units
into two dimensional map representations so they could be clustered and subsequently
classified in a manner that would be impossible with previously used supervised networks

or with PCA. Therefore, the SOM and the GA combined represented a novel method to
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probe complex theoretical models of nuclear scattering components for which complete

theoretical solutions do not yet exist.

This method has shown to be an invaluable method for probing more complicated theo-
retical nuclear models, in particular the Generalized Parton Distributions, or GPDs, in
the future. This is largely because of how the SOM and GA allowed for extrapolation
of the models to kinematical regions where experimental data are scarce. The GPDs
will depend on a greater number of kinematics than the PDFs that were analyzed with
this SOM. Subsequently, these distributions will have an even higher number of possible
dimensions and parameters to analyze then the PDFs that have currently been probed
with the SOM and GA methods. There will be an even greater need with the GPDs
for a procedure that generates unbiased theoretical models of these curves that can be
analyzed in terms of their quality of fit and the GPD behavior for various kinemat-
ics. Therefore, the use of the Self Organizing Process and the GA in tandem to reduce
their dimensions, cluster and classify their properties and extract GPD errors will be of

greater interest in future computations.
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7 Appendix A

The following is the gpdeval.f90 code used for evaluating the x? values of the structure

functions after the theoretical PDF's are generated.

© 00 ~J O Ot ks W N

NN = = e e e e e R e
_ O © 0 N O Ot ks W NN = O

* % kK %k
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Listing 2: Codel

The following is the gpdnorm.f90 code used for normalizing the theoretical PDF's after

they are generated.

© 00 J O Ut ok~ W N =

e S T o e T
S Ot e W NN = O
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Listing 3: Code2
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