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i

One of the fundamental goals of nuclear physics is understanding the structure of each

type of subatomic particles that comprise matter and radiation. The two most basic

types of components for these particles are quarks and gluons, which act to bind the

quarks together in the form of a force called the strong interaction. [This is the short

caption]This is the long caption The most fundamental composite particles in nuclear

physics are hadrons, which can be composed of two or three quarks. Hadrons which

consist of three quarks are Baryons; two notable types of Baryons are protons and

neutrons which are the fundamental particles that comprise atomic nuclei and therefore

are the fundamental building blocks of matter. Hadrons which consist of two quarks

are mesons; this type of hadron forms from interactions in matter occurring at very

high energies. Currently, nuclear scattering experiments are used to probe the structure

of hadrons. The experiments consist of beams of leptons fired at designated target

hadrons; leptons are a type of spin 1
2 particle that like quarks and gluons has an unknown

substructure. The leptons used in the scattering experiments of interest for this analysis

are electrons and muons. Deep inelastic scattering (DIS) collisions are a critical example

of scattering experiments that use leptons fired at high enough energies at the target

hadrons to enable the user to determine the structure of these hadrons; the goal of

these computations is to create theoretical models based on DIS data. The DIS between

leptons and target hadrons can be probed using Quantum Chromo Dynamics, or QCD.

QCD is a field theory used to describe and analyze strong interactions which occur

among partons within the hadron. QCD provides a framework for separating the cross

section of DIS into components that can be computed by expansions of the strong

couplings and components that can only be computed by experiment, or the “soft”

parts. Artificial neural networks (ANNs) provide a novel method for modeling the

“soft” parts of DIS that eliminate user bias in making these models fit the experimental

data. ANNs are sets of data organized into nodes, referred to as neurons, that take input

data models and use layers of neurons containing computational algorithms to transform

them into final sets of data neurons. Previous attempts to use ANNs to model DIS data

have used supervised networks, where the final data set was used as a guidance step

each time the ANN algorithm is used; this has led to success in eliminating bias in

theoretical models but has not made it possible to visualize and classify these models.

A new type of neural network, capable of dimensional reduction of data, without the

supervising process of the previous networks is needed to effectively model functions

describing nuclear scattering for a range of kinematics and to enable us to analyze the

models formed during the ANN algorithm based on their behaviors and quality of fit to

experimental data sets. The Self Organizing Map (SOM) is an ANN, using unsupervised

learning, that was successfully used to create such desired, unbiased theoretical models of

the Parton Distribution Functions, or PDFs. In addition, the SOM successfully showed

the relationship between how well the generated models fit data sets and the models’



ii

behavior by making it possible to observe how the PDFs cluster on two dimensional

maps. The SOM was particular useful in probing DIS models because this procedure

made it possible to analyze various conditions placed upon the models, in terms of

qualitative and quantitative analysis of the resulting cluster formation, and to determine

errors in model formations based on these clusters.
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1 Introduction: Self Organizing Maps and their Intent

1.1 Introduction

Nuclear scattering has been probed for decades in attempts to analyze interactions

among fundamental particles and the hadrons they comprise. In particular, developing

models for the strong interactions among components of hadrons through inelastic scat-

tering has been an ongoing process. Inelastic scattering cross sections, which provide us

the scattering rates and the likelihood of a scattering event occurring for a given tar-

get hadron, have components for which numerous attempts to create theoretical models

for have been made. These components are the structure functions of inelastic scat-

tering. These structure functions in turn are made up of individual components called

Parton Distribution Functions (PDFs). Articifial Neural Networks (ANNs) represent

a novel method for creating theoretical models for determining the PDFs. Currently,

the structure functions can only be determined though scattering experiments; numer-

ous collaborations have looked to extract the PDFs from structure function data sets

obtained from experimentation. Previous extraction attempts have relied on analytical

parametric functional PDF forms in order to obtain their PDFs. This has led to inherent

bias in the PDF extraction because these attempts required theoretical assumptions for

determining the shape of the PDF curves. The Neural Network PDFs (NNPDFs) are a

notable set of PDF parametrizations because they successfully used supervised learning

in order to eliminate user’s bias. The neural network the NNPDF collaboration used

contained a set of 37 free parameters given by the ANN weights. These PDFs were then

fitted to experimental data and the differences between the resulting structure functions

and the structure function values taken from experimental measurements were mini-

mized using a Genetic Algorithm (GA) approach [1]. The user’s bias was eliminated

because any information about the behavior of the PDFs was obtained directly from ex-

perimental data. However, because the process was dependent on the experimental data

sets in order to extract PDF behavior, its use was particularly limited in kinematical

regions where experimental data was not available.

The validity of the ANN has been analyzed in previous studies [2],[1],[3] by methods

including a “convergence condition” or “stopping criterion”. This refers to the point in

the training phase of over-learning, or when the training steps produce only statistical
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fluctuations of data, thereby setting the length of the training phase. This supervised

learning, however, is limited by its inability to extrapolate or predict the behavior of the

functions in kinematic regions where no experimental data exist. This is particularly

problematic when it comes to extrapolation and prediction of function behavior for

newer sets of high energy experiments. These new experiments will include polarized and

unpolarized semi-inclusive and exclusive high energy scatterings off of hadronic targets

[4] [5]. The number of kinematics and observables measured over these kinematics

will be larger and the kinematic coverage will be smaller than in previous high energy

experiments. This has created a strong incentive to develop an ANN that has the same

capabilities as the NNPDF to perform unbiased fits and can also make extrapolations

and predictions on the scattering functions for which it creates models. These new

sets of ANNs will use weighted combinations of previous attempts to create models for

the PDFs in order to come up with proper initial functions than can be fed into the

ANNs. The ANNs will then look to generate a unique set of models for these structure

functions. These networks will then fit the theoretical models to the structure function

data provided by the SLAC [6], BCDMS [7], NMC [8], Fermi Lab E665 [9], H1 [10],

ZEUS [11] and Jefferson Lab experiments [12] in an attempt to come up with a reliable

theoretical way to model the PDFs at all kinematical values.

The specific type of neural network used is the Self Organizing Map (SOM). This use

of the SOM was influenced by previous attempts to use this network type to probe high

energy physics [13]. This network will use a new type of parametrization for the PDFs

called the SOMPDF method [14]. The SOM used will take variations of previously

created theoretical models, perform semi random variations of them and take random

combinations and create a resulting set of PDFs that will be entered into the SOM iter-

ations. The fit between each PDF in the set and the full set of experimental data points

will be used as the best fit on which the learning process will be based. The SOM relies

on unsupervised learning, a competitive learning process that enables the network to

extract the PDFs from the experimental structure function data without the structure

function experimental data or any models of the data being used in a continuous feed-

back mechanism. The SOM is unique in its ability to visualize multidimensional data

sets such as those presented by the structure functions and the PDFs. This network’s

ability to convert multidimensional data into two dimensional maps makes it especially

advantageous in recognizing patterns in specific regions of these maps, or clusters, for
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PDFs in various kinematic ranges and for observables taken from these PDFs. This

property of the SOM map can be used in tandem with the GA. This GA functions in

the same manner as the NNPDF GA and so seeks to generate theoretical structure func-

tions whose values for a set of kinematics are as close as possible to the corresponding

experimental measurements of these functions.

The SOM and GA used together can enable us categorize the PDFs and their fits to

experimental data in various cluster sizes within a two dimensional map. The NNPDFs

also use a GA in order to make the neural network generated functions’ fit to experimen-

tal data sets as ideal as possible by optimizing a function of the differences between the

generated functions and the experimental sets. However, the NNPDF method does not

allow for two dimensional observation of the clustering properties of the generated func-

tions over kinematic ranges of interest nor enable us to see how incorporation of physics

processes into the network affects the behaviors of the generated sets of functions during

fitting. The first attempt to use the SOM to solve the case for unpolarized functions

are in [15] [16] The remainder of Section 1 is dedicated to thorough explanations of

the neural network methodology; Section 1.1 details the purpose and procedure behind

ANNs as well as the different types of learning ANNs can utilize. Section 1.2 covers the

physics processes that the ANNs will probe. Section 2 will be based on the methodology

behind the SOM and how it will be utilized in conjunction with the GA to fit the PDFs

to the data. Section 3 will describe how the SOMPDF code is designed and explain how

the PDFs are initialized. Section 4 will show how the PDF errors will be determined.

Section 5 will show the fit results of the SOM method. This section will also show how

the SOMPDF network can enable us to visualize how the effects occurring when the

constituent components of the hadron carry large momentum fractions during scatter-

ing affect the behavior of the generated functions and the possible ranges of observables.

Clustering analysis and errors of the generated functions will also be analyzed. Section

6 will discuss the future possibilities resulting from the SOM extractions and analysis.

1.2 Artificial Neural Networks

ANNs are an information neural network based on the workings of an animals’ central

nervous system. The term neural network traditionally refers to models utilized in

cognitive psychology, statistics and artificial intelligence (AI). These neural networks
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consist of sets of nodes that are classified as neurons because they can take sets of

numerical input parameters and use learning algorithms to adapt them and because

they can estimate non-linear functions of input data. These parameters can be referred

to as adaptive weights; these weights are essentially the connection strengths between

neurons in a generated network activated during the network’s training. An ANN in

its fundamental form has three layers; the first layer contains sets of of input neurons,

the second layer, or the “hidden” layer, has a set of neurons which contain a process by

which the input data are evolved and trained and the third layer of neurons contains

a resulting set of output data. In a complex ANN the hidden layer can be a series of

numerous layers, each of which takes the data neurons generated by the previous layer

and transforms them into a new network of data neurons. A visualization of a supervised

ANN is shown in Figure 1.1.

Figure 1.1: An example of a supervised neural network.

Although neural networks have an aforementioned traditional usage, in modern times

there have been various important applications for them. The primary categories of ANN

applications are function approximation, classification [17], data processing, robotics and

control. Within these categories there exists a wide array of real life applications. They

have been vital towards progress in understanding how biological neural systems work.

The field of theoretical and computational neuroscience is centered around the analysis

and computational modeling of neural networks found in various biological environments.

The goal of this field is to create neural networks modeled after biological systems in

order to gain a fundamental understanding of how biological systems operate. In order

to do this, neuroscientists look to link together biological observables, biological neural

networks and statistical learning and information theory. The types of neural network



Introduction: Self Organizing Maps and their Intent 3

models used for this include models of short-term behavior of individual neurons, models

of the formation of neural circuits from interactions among neurons and models how

how behavior of neural networks can arise from abstract neural models of biological

subsystems. These can be models of short term or long term plasticity of neural systems

and their relationships towards learning and memory of systems ranging from those of

individual neurons to complete neural networks. Researchers currently utilize ANNs in

system identification and control, for example in controlling vehicle paths and predicting

the trajectory of vehicles and other objects and pattern recognition, which has uses in

radar systems analysis, face identification and object recognition. Additionally, ANNS

have practical applications in directing manipulators, handwritten text and other speech

recognitions, financial systems and control engineering. In medicine, they have also been

notable for their use in radiology and in particular in their use in improving the accuracy

and speed of various types of cancer diagnosis methods.

The ANNs have established themselves as an invaluable method for pattern recognition

and data visualization since Warren McCullough and Walter Pitts [18] first designed

in the 1940s. Donald Hebb, in developing his Hebbian Theory of how neurons in the

brain connect to form engrams and adapt to chances, developed the first kind of un-

supervised neural network [19]. In the past twenty years they have been widely used

as computational tools in high energy, nuclear and computational physics analysis. In

recent years there have been vast improvements on the capabilities of ANNs; the re-

current neural networks developed by the Jurgen Schmidhruber group [20], which have

been internationally recognized for their abilities in pattern recognition, are a notable

example.

Neural networks are, in essence, simply sets of models based on a function f such

that f : X → Y ; X and Y are the input and output data maps in the networks.

ANNs can also consist of distributions over X or over X and Y . An ANN has three

parameters which it relies on to fit the input data sets. The first parameter is the

interconnection pattern between different layers of neurons, the second parameter is the

learning process for updating the weights of the interconnections between the layers and

the third parameter is the activation function that transforms the data in the input

neurons into the desired data in the output neurons. The function that maps input data

to output data in neural networks can be written as a composition of other functions;

a frequent description of this function is as a nonlinear weighted sum of functions that
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directly produce the values for the output neurons using the input values from the first

neuron layer. These functions are referred to as the activation functions.

Neural networks are used in modeling in physics, robotics and other fields because they

can utilize the principle of learning with regards to data sets and models. The possibility

of networks to perform learning is in fact what has generated the most interest in their

applications. Learning is a process in which pattern recognitions are used to find a

set of models that can be used to solve a task while minimizing the cost function.

The learning process computes the cost of using the models to accomplish the task;

learning entails taking a set of functions F , which can be used to solve a given task,

and finding a set of functions f∗ ∈ F that form the optimal solution to the task. In

order to achieve this, the learning procedure uses a cost function C to attempt to find

the optimal solution. The learning process looks to find the optimal solution f∗ by

ensuring that C(f∗) ≤ C(f)∀f ∈ F . The cost function effectively computes how closely

a model created to solve a given task compares to the most optimal model for that task;

minimizing this function is a fundamental goal of learning. Because learning is designed

to create models for a set of observables, the cost function must be a function of those

observables as well. For a neural network with a very large number of data samples,

machine learning becomes necessary. Machine learning in the late 1980s replaced AI

networks based on systems using if-then rules; this network method is defined by its

use of information contained in variable parameters of dynamical systems. In machine

learning, the cost function is partially minimized every time it is computed from an

input data sample taken from a distribution. Machine learning can be supervised or

unsupervised. In supervised learning, pairs of data x and y are given with the goal of

finding a function that can make the transformation X → Y for all data sets Y and Y

that x and y could be taken from. In this learning type, the cost function is related to the

mismatch between the data sets and the results obtained by attempting to map one set

of data to another. In reinforcement learning, the data set x is nor provided at the start

of the network procedure but rather generated from the network’s interactions with a

specific environment over a period of time. In this learning type, after a given time t the

network performs an action yt with an associated cost ct. The goal of this learning type

is to select a policy for performing actions that leads to the slowest cost over an extended

period ttot; the total cost can be the cumulative costs ct for all actions yt performed in

time ttot. In unsupervised learning, there is a set of data x and a neural network that
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creates a final output f , dependent on both x and f , without another set of data used to

supervise the mapping. In this method, the cost function to be minimized is dependent

on the observables that the ANN is trying to model and the parameters and variables of

the ANN models themselves. A simple form of unsupervised learning involves the case

where the data model is simply f(x) = a for some constant a. By minimizing the cost

function C = E[(x− f(x))2] we would obtain a value a equal to the mean of data set

x. The neural network used to generate DIS models will require a more complex cost

function. ANNs can be categorized based on their capacity, or their ability to model

a given function accurately, their computational power and their convergence. The

convergence, however, can be difficult to categorize since it is dependent on a multitude

of different factors. These include the number of local minima, which is dependent on

the cost function, the number of variable parameters within the models generated and

how far the initial models are from the desired observable to which we wish to fit them.

ANNs also allow for classification of data models based on their features and observables

computed from these models and for two (or higher) dimensional pattern recognition

among the output network of data values generated from the hidden layers. The patterns

identified by the ANNs are referred to as clusters. Clustering is the facet of unsupervised

learning that provides one of the primary motivations for using this particular network

to probe DIS and its composite functions. In the case of models of structure functions

and their component functions, the SOM can treat these models as data sets and iden-

tify clusters which form when the network generates an output map from an initial

distribution of data models. These clusters can come from the properties of the models

themselves and from their computed fits to experimental data sets. These properties of

ANNs make them ideal for generating models based on inelastic scattering observables.

An example of an unsupervised network is shown in Figure 1.2.

SOMs, as noted previously, are an unsupervised network that uses a two dimensional

grid for mapping and fitting a multi dimensional set of input data. The map was first

proposed as a type of neural network by Finnish researcher Tuevo Konohen [21]; its ap-

plications for problem solving in numerous physics, biological, mathematical and medical

fields has made Konohen the most cited researcher in his nations’ history. Researchers

define the algorithm as a “map” because results using unsupervised learning are most

often represented as 2D geometrical configurations. The ability of the SOM to project

high dimensional input data onto lower dimensions representations while preserving the
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Figure 1.2: An example of an unsupervised neural network.

topological features present in the training data allows us to use this neural network in

order to fit input models to final data sets generated from scattering experiments. This

visualization allows us to isolate the individual properties of the input data functions we

use and create more accurate models of them. It additionally allows us to observe how

the cost functions of the input data sets adapt over time through the learning process

and assists us in determining how to lower the cost function for a given number of iter-

ations of the learning process. The SOM has the ability to preserve topological features

of data units on a two dimensional map; the SOM when completed will feature sets of

local neighborhoods of data units with essential common features preserved throughout

the iterations of the SOM. This ensures that the SOM is one of the most useful networks

in existence for visualizing complex, nonlinear sets of data units. A SOM network is

shown in Figure 1.3.

The method by which the SOM works allows us to use experiments conducted for a given

physics process to train input sets of data consisting of attempts to create functions of

these processes. The SOM places a set of n dimensional data vectors on an NxN map,

placing one data vector in each of the N2 cells and uses a competitive learning process
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Figure 1.3: A visualization of the SOM showing how data units in the neural network
are positioned on a two dimensional map.

to train the data. The competitive learning process has each of the data vectors on the

map competing with each other to be the best fit for an outside set of training data, with

the set of data vectors on the map undergoing evolution after each use of the competitive

process to more closely fit the training data. Each data vector on the map will have a

cost function, which for this map can also be called a discriminant function, and the aim

is to find the map vector with the lowest cost function. We classify the map vector with

the lowest cost function as the one having the best fit to the training data and declare

it the winner in the competitive process. This process allows us to model functions that

describe various processes in physics using only previous attempts to make theoretical

models and known experimental results.

1.3 Deep Inelastic Scattering

The self organizing map is used to probe the cross section of Deep Inelastic Scattering

(DIS). DIS is the inelastic scattering between a lepton and a hadron, which in the specific

case of the SOMPDF experiments is a proton or a deuteron. A lepton is ’scattered’, or

deflected, off of a hadron at high energies, which give the leptons a short wavelength

that allows the scattering process to probe the insides of the hadron. The ability of

the process to probe the inside of the hadron this way is where the ’deep’ part of

deep inelastic scattering comes from. The first of such inelastic scattering experiments
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were performed at the Standford Linear Accelerator Center in 1968 using procedures

similar to the Rutherford scattering experiments. Electrons were fired at proton and

neutron targets and observations of the inelastic scattering that resulted led to several

key conclusions. In particular, when high intensity electron beams were fired at nucleons,

the rate of scattered electrons was far higher than expected [22]; Feynman concluded

that this was because when the electrons collided with the nucleons, they were probing

these targets at small enough distances to where the targets had to be treated as having

a set of components with their own coupling forces. Thus, these experiments revealed

that hadrons have internal structure; protons, neutrons and other baryons consist of

three quarks and that the quarks within these hadrons consist of point-like charges

with charge ratios later predicted by the Standard Model along with neutral point-like

elements. These point-like elements are referred to as partons [23]. The scattering

rates of the electron beams when fired at nucleon targets were a result of the scattering

of electrons off of these partons, which each had momentum fraction x of the target

hadron. Conservation of momentum for these elastic collisions naturally required that

Σ
x

= 1. This parton model described the distribution of constituent partons in terms of

functions that could be called parton density functions. The parton theory was further

developed by the classification of quarks as spin 1
2 particles with six types and two

possible charges for them; charges of 2
3 for up, charm and top quarks and −1

3 for down,

strange and bottom quarks. The up and down quarks were the key quarks that led

to classification of nucleons according to the parton model; protons consisted of two

up and one down quark and neutrons consisted of two down and one up quark. The

quarks which determine the hadron type can be identified as valence quarks. The parton

model also includes the existence of quark anti quark pairs which are referred to as “sea”

quarks. In the DIS between electrons and hadrons, a virtual photon or other type of

boson is also exchanged which allows us to further probe the structure of the hadron.

An example of a Deep Inelastic Collision is shown in Figure 1.4.

A lepton scatters off of a hadron, which originally has momentum p, with initial mo-

mentum k and final momentum k
′
, while the momentum q of the virtual photon γ′

produced in the exchange is given by q = k − k
′
. The hadron in the scattering process

breaks apart with each parton within the hadron carrying its own momentum fraction x

after the collision. Q2 is defined as an explicitly positive quantity related to the virtual

photon momentum by −Q2 = q2. For Q2 < 103 GeV2, the electromagnetic interaction
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Figure 1.4: A visualization a Deep Inelastic Scattering interaction is shown. γ∗ is the
virtual photon exchanged and q is the momentum transfer as a result of the photon

exchange.

dominates the cross section enabling us to focus on the photon exchange in evaluating

it. In the scattering experiments, only the leptons with momentum k
′
are detected.

The scattering experiments begin with the electron beams fired towards a nucleus that

contains the designated target set of hadrons. For low Q2 values, defined such that

Q2 << M2 where M is the mass of the target hadron, the struck nucleons recoil as

a whole when struck by the electron and so there is no probing of the constituent

particles within the hadron. The recoil energy is ν = Q2

2MA
where ν = E − E′ is the

energy transfer of the virtual photon in the exchange, E and E′ are the initial and

final energies of the scattered electron and MA is the mass of the nucleus that contains

the target hadron. The nucleus can also move to an excited state containing energy

ν = Q2

2MA
− (M2

A∗−M2
A)

2MA
. In the electron nucleus collisions, the variable xA = Q2

2Maν ,

which for elastic collisions goes to 1, should be introduced to quantify the properties

of the collisions. In higher energy limits, the resolving power of the probing from the

collisions increases, the elastic scattering cross section decreases and the probability of

the electron scattering off of an individual nucleon within the nucleus as opposed to

the whole nucleus increases. As Q2 increases towards a typical hadronic scale, which

corresponds to Q2 being above 0.5 GeV2 the target hadron behaves increasingly less as a

pointlike particle and the component particles of the nucleus are increasingly involved in

the scattering. Therefore, it becomes more practical to introduce the kinematic x = Q2

2Mν .

The proton and neutron have magnetic moments that reflect their construction as well;

these moments are described in terms of the constituent quarks within the proton uud

and neutron udd. The quark charges are Qu = 2
3 for the up quark and Qd = −1

3 for the
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down quark. The magnetic moments for the up and down quarks are given in terms of

the proton and neutron moments below in relation 1.1 and equation 1.2. µ0 = ~
2Mc is

the proton’s Dirac moment.

µu =
1
5
(4µp + µn)µ0 (1.1)

µd =
1
5
(4µn + µp)µ0 (1.2)

Feynman’s development of the picture of the parton model along with the results of the

first inelastic scattering experiments [24] [25] led to a fundamental understanding of the

scaling in x of the structure functions proposed by Bjorken. In the context of Deep

Inelastic Scattering (DIS), the point-like partons within the hadron interacted with the

electrons and the photons exchanged during the electron scattering process. When the

electron hadron inelastic scattering occurred, the virtual photons exchanged scattered

inelastically off the partons with the DIS cross-section being the incoherent sum of the

cross sections of the virtual photon scatterings. In the high momentum limit of the

proton, the Bjorken scaling x variable for a given quark is the fraction of the proton

momentum contained in the parton during the inelastic scattering of the electron. The

size of the elastic cross section of the elastically scattered parton is directly proportional

to the probability qi(x) of finding a parton of type i with momentum fraction x in the

proton.

The electron, muon, neutrino and anti neutrino scattering experiments made it possible

to get a full picture of the quark and anti quark distributions inside the hadrons. The

u and d valence quark probability distributions were shown to approach 0 in the large

x limit and the x = 0 limit. The small x region was shown to be dominated by sea

quarks; the total momentum of the quarks was shown to only contain half the total

momentum of the hadron target. Another critical factor in the quark gluon model

is that in the small time frame over which the electron hadron scattering occurs, the

quarks act as free particles without any fundamental interactions occurring between

them. Therefore, in the limit Q2 → ∞ the elastic scattering of the photons off of the

partons has an increasingly small cross section. The Q2 →∞ limit thus corresponds to

a set of scattering interactions over which all the partons in the hadron behave as free
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particles. The field theory of the parton model dictates that in the asymptotic limit

of Q2 all the partons act as free particles [26] [27] [28]. The principle of asymptotic

freedom in the parton quark model, as a crucial part of the field theory behind the

development of the quark gluon models, completed the picture. Asymptotic freedom

predicts a weakening in the coupling of the strong interactions as the energy transfer in

the interactions increases.

Feynman and Bjorken introduced the parton model, which was capable of successfully

separating the long distance physics from the short distance physics in the processes

within the parton, in the late 1960s [29] [30]. The short distance, high energy processes

could be computed through perturbative expansions of the strong coupling and the lower

energy, long distance processes which could only be computed by the creation of phe-

nomenological models. These models are the Parton Distribution Functions, or PDFs.

The parton model is understood to be the lowest order approximation of perturbative

QCD. The separation of QCD determinations of scattering cross sections into the hard

and soft parts requires the PDFs to be dependent on x and Q2. The data from HERA

experiments, among others, has confirmed the PDF dependence on Q2 [31]. The phys-

ical meaning of the Q2 dependence comes from the production of additional partons

from a given set of partons upon being probed by the exchanged vector photons. This

Q2 dependence is predicted by perturbative QCD and quantified by the PDF evolution

equations.

The quark parton model indicates that gluons are a crucial component of the hadrons,

however it only enters the quark parton model through their interactions with the sea

quarks. As a result, since virtual photons do not scatter off of gluons as they do for

quarks, the scattering cross sections cannot be used to determine gluon distributions

they way they can for quark distributions. Only indirect measurements of the gluon

distributions can be made. The gluons contribute to the total momentum of the hadron

in the DIS; containing roughly fifty percent of the hadron’s total momentum. The gluons

also are more prevalent in the small x region of the hadron. However, beyond this there

is relatively little that is know about the gluons other than the expected normalized

moments of their probability distributions over x. The electron proton scatterings and

proton proton interactions will need to be more extensively probed at very small x

values, ideally in the range x < 10−4, where gluon gluon interactions dominate. This

will be needed to obtain further information about the gluon distributions.
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Quantum Chromodynamics, or QCD, is used to probe and determine the strong in-

teractions among the partons within the hadrons; in the inelastic scattering collisions

probed, perturbative QCD is utilized since interactions among quarks and gluons within

the hadron are analyzed. QCD is a type of quantum field theory, introduced in 1973,

specifically centered around strong interactions in which its Lagrangian is invariant under

transformations around the SU(3) symmetry group [32] [33] [34]. Gell-Mann, Ne’eman

and Zweig first brought forth a model in 1963, in an attempt to understand the effects of

hadron production in nuclear scattering, where the hadrons were to be governed by this

symmetry type. This led to quarks being introduced as the most fundamental element

of QCD; the quarks and gluons constitute the elementary fields in this field theory type

[35] [36] [37] [38]. Currently, perturbative QCD cannot be used to determine the full

cross section of the collisions since color charged particles within the hadron cannot be

isolated and observed. Therefore the cross section is divided into a hard part that can

be determined through the use of perturbative QCD, and a “soft part” that currently

can only be reliably found through experimentation. The soft part’s dependence on x

and Q2 is what allows us to separate the hadronic cross sections and composite Feynman

amplitudes into these hard and soft parts. In our computations, ANNs are utilized in

attempt to determine the cross section for DIS processes where electrons are scattered

off of protons and neutrons. The classical Lagrangian that corresponds to the QCD field

theory is given in equation 1.3.

Lclass = Σ
quarks

Ψa(iγµD
µ −m)abΨb −

1
4
TrGA

µνG
µν
A (1.3)

In the QCD lagrangian, Ψa are the quark vector fields, A is the gluon vector field, Gµν
A

is the corresponding gluon field strength tensor and Dµ is the covariant derivative.

In QCD there is a basic coupling g regarding the subatomic interactions is dimension-

less. However, the quark gluon interactions within deep inelastic scattering contain loop

corrections to the quark gluon coupling and so a new scale to the effective coupling is

added. The coupling is now given below for αs(Q2) in Next to Leading Order (NLO)

in equation 1.4 with Λ as the associated scale for the Q2 values and β0 and β1 as posi-

tive constants obtained from expansions of Beta functions whose values depend on the

number of quark flavors included in the coupling.
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αs

4π
=

1

(β0 ln Q2

Λ2 )
− β1

β0

ln(ln(Q2

Λ2 ))

(β0 ln Q2

Λ2 )

2

(1.4)

Our knowledge of the quark distributions in the parton today is still only reliably ob-

tained from DIS experiments. The starting point for the separation of the unpolarized

cross section for the inelastic scattering interactions is given in expression 1.5. This

expression for the cross section allows us to begin to extract the hadronic tensors and

subsequently the structure functions due to parity conservation and electromagnetic

current conservation. This results in invariance of the Feynman amplitude T .

dσ =
1

flux
d3k

′

2k′0

1
4

Σ
σλλ′

|T 2| (1.5)

λ and λ′ are the helicities of the lepton before and after it scatters and σ is the spin of

the proton. k
′
is given by k

′
= q−k. The flux refers to the flux of the incoming neutron

beam, defined to be flux =
√
ν2 +Q2 where ν in terms of the kinematics M , W 2 and

Q2 can be written as ν = 1
2M (W 2 + Q2 −M2). k

′
0 is the 0th component among the 4

momentum components of k
′
. The scattering amplitude T is given in expression 1.6.

T = e2u(k
′
, λ′)γµµ(k, λ)

1
q2

< X||Jem
µ |p, σ > (1.6)

X is the hadronic state after scattering and Jem
µ is the electromagnetic current. The

cross section can now be expressed in terms of the structure functions, allowing us to

evaluate the structure functions in order to determine them. This is shown below in

expression 1.7.

k′0
dσ

d3k′
=

2M
s−M2

α2

Q4
lµνWµν (1.7)

s in terms of the initial hadron and lepton momenta defined previously is s = (p+ k)2.

The leptonic tensor is given below in equation 1.8.
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lµν(k, k
′
) =

1
2
Tr(/k

′
γµ/kγν) =

2(kµk
′
ν + k′µkν −

1
2
Q2gµν)

(1.8)

The Hadronic tensor is given in equation 1.9.

Wµν(p, q) =
1

4M
Σ
σ

∫
d4η

2π
eiq·η < p, σ|T (Jem

µ (η)Jem
ν (0))|p, σ > (1.9)

The leptonic and hadronic tensors can be combined as shown in equation 1.10.

lµνWµν = 2W1Q
2 +

1
M2

W2[(s−M2)(s−W 2 −Q2)−M2Q2] (1.10)

W 2 in terms of the other kinematics is given by W 2 = Q2( 1
x − 1) +M2. The resulting

cross section is given below in relation 1.11.

d2σ

dQ2dW 2
=

2πα2M

s−M22Q2

[
2W1(W 2, Q2)

+W2(W 2, Q2)
{

(s−M2)(s−W 2 −Q2)
M2Q2

− 1
}] (1.11)

The Mott Cross Section is given in expression 1.12.

dσ

dQ2
MOTT

=
4πα2

Q4

[
(s−M2)(s−W 2 −Q2)

M2Q2
− 1
]

(1.12)

The combined result of these cross sections is in expression 1.13.

d2σDIS

dQ2dW 2
=

1
2M

[
2W1(W 2, Q2)

{
(s−M2)(s−W 2 −Q2)

M2Q2
− 1
}−1

+W2(W 2, Q2)
]
dσ

dQ2
MOTT

(1.13)
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The structure functions W1 and W2 can also be expressed terms of each other in the limit

Q2 →∞ by the Callan Gross relation [39] in relation 1.14. Because the quark currents

coupled to the photon consisted of spin 1
2 particles, Callan and Gross [39] were able to

relate the two scaling structure functions F1 and F2 using the relation in formula 1.15.

Given the relationship between W1 and F1 shown in formula 1.16, this leads directly to

equation 1.17 for relating W2 to F2.

2xMW1 = W2 (1.14)

F2(x) = 2xF1(x) (1.15)

MW1 = F1 (1.16)

1
2M

(W 2 +Q2 −M2)W2 = F2 (1.17)

The equations for the scattering cross section use only Lorentz scalars; therefore they

can be computed in any frame. As an example, the following kinematics, shown in

equation 1.18 for the target nucleon rest frame, can be used in order to compute the

cross section. The kinematic y is given by y = W 2+Q2−M2

(s=M2)
and is related to x and s by

Q2 = sxy . At higher scattering energies s >> M and the scaling of x becomes closer

to Bjorken scaling.

E =
(s−M2)

2M
,E′ =

(s−M2)
2M

(1− y)

(sin
θ

2
)2 =

M2xy

(s−M2)(1− y)
,
dΩdE′

dxdy
=

2πMy

1− y

(1.18)

These terms enable us to rewrite the inelastic cross section as follows in expression 1.19.
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d2σ

dΩdE′
=

α2M

8E2Eh(sin θ
2)

4 [2W1(sin
θ

2
)
2

+W2
4E2

h

M2
(cos

θ

2
)
2

(1.19)

E′ and E are the initial and final energies of the scattered electron, Eh is the target

hadron energy and θ is the scattering angle. In terms of the computation of the PDFs

and the PDF moments, to be used in normalizing the PDFs, the input variables Q2,

where q2 = (k − k
′
)
2

= −Q2, and x are utilized. These scattering energies, momentum

transfers and momentum fractions can additionally be written in terms of each other

through the relations Q2 = 4EE′(sin θ
2)

2
and x = Q2

2Mν . In the process of determining

the valence quark PDFs, the variables y = ν
E and z = x

y are also introduced, with

integration being done over z to compute the PDFs. W 2 is an invariant which can also

be written as W 2 = pX
2 where pX

2 is the momentum of the hadronic system in the

inelastic scattering process.

The kinematics for the inelastic collision can also be written in terms of the the mo-

mentum p of the target nucleon. The variable ν can be written, for example, in the

form ν = p·q
M = W 2+Q2−M2

2M . In terms of the momenta of the leptons and nucleons

and hadronic systems, the kinematics of the momentum fractions are x = −(k−k
′
)
2

2P ·(k−k′ )
and

y = p·(k−k
′
)

p·k .

The flexibility of the inelastic cross section expressions finally allows us to use the HERA

frame, or the lab frame of an electron with energy E colliding with a proton (or other

target nucleon) of energy Ep with E′ and θ referring to the same kinematics used in the

other frames. In this frame, the inelastic cross section can be written in terms of the

electron and proton kinematics as follows in expression 1.20 and expression 1.21.

(1− y) =
E

E′
cos(

θ

2
)2, xy =

E′

Ep
sin(

θ

2
)2

dΩdE′

dxdy
=

4πEsin( θ
2)2

x

(1.20)
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d2σdΩdE′ =
α2M

8E2Epsin( θ
2)4

[
2W1sin(

θ

2
)2 +W2

4E2
p

M2
cos(

θ

2
)2
]

(1.21)

The first set of inelastic scattering experiments indicated how the structure functions W1

and νW2 are scaled according to the kinematic x. Bjorken predicted that in the high

energy limit ν,Q2 → ∞ the structure functions approach the limits MW1(x,Q2) →

F1(x) and νW2(x,Q2) → F2(x) [40].

The elastic contributions to the cross sections can also be determined in terms of the

elastic structure functions. These structure functions are computed chiefly in terms of

the electromagnetic form factors G2
M and G2

E . These elastic contributions W el
1 and W el

2

are below in expression 1.22.

W el
1 (W 2, Q2) = δ(W 2 −M2)

Q2

2M
G2

M (Q2)

W el
2 (W 2, Q2) = δ(W 2 −M2)2MG(Q2)

(1.22)

The electromagnetic form factor G(Q2) can also be expressed in terms of the individual

electric and magnetic form factors seen in expression 1.23.

G(Q2) =
[
G2

E +
Q2

4M2
G2

M

](
1 +

q2

2m2

)
(1.23)

The elastic scattering cross section expression can now be completed, shown in expres-

sion 1.24.

dσel

dQ2
=

2πα2

(s−M2)2
[
G2

M (Q2) +
2(s−M2)2 − sQ2

Q4
G(Q2)

]
(1.24)

The electromagnetic form factors approach 1
Q2 for larger values of Q2; however, for

Q2 < 5 GeV2 the cross sections and structure functions of partonic, hadronic and parton

hadron interactions must include the elastic components.
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The structure functions W1 and W2 can also be computed in terms of each other using

their relationships to the cross sections for the transverse and longitudinal boson ex-

changes in DIS. This computation begins with the standard photon polarization vectors

eν whose individual 4 momentum and transverse components meet conditions e · q = 0,

e2T = −1 and e20 = 1. The transverse and longitudinal scattering cross sections σT

and σ0 can now be written as follows in terms of the electromagnetic flux shown in

equation 1.25.

σT =
4πα2W1

flux

σT + σ0 = 4πα2(1 +
ν2

Q2
)
W2

flux

(1.25)

The structure functions W1 and W2 can now be expressed in terms of the longitudinal

and transverse cross sections σ0 and σT as shown in relation 1.26.

W1(ν,Q2) =

√
ν2 +Q2

4πα2
σT

W2(ν,Q2) =
Q2

4πα2
√
ν2 +Q2

(σ0 + σT )
(1.26)

Given the ratio of longitudinal to transverse cross sections R = σ0
σT

the structure func-

tions can now be written in terms of each other as follows in expression 1.27 and equa-

tion 1.28.

W1(ν2, Q2)
W2(ν2, Q2)

= (1 +R)−1(1 +
ν2

Q2
) (1.27)

The polarization vector ε of the virtual photon with a cross section proportional to

σT + εσ0 can be written below in formula 1.28.

ε−1 = 1 + 2(1 +
ν2

Q2
)
[(s−M2)(s− 2Mν −M2)

M2Q2
− 1
]−1

(1.28)

The total cross section can now be written as (equation 1.29)
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d2σ

dQ2dW 2
=
α

π

M

Q2

√
ν2 +Q2

(s−M2)2
σT

1− ε
(1 + εR) (1.29)

and since the longitudinal and transverse cross sections, representing scattering rates,

must by their definition be positive, we obtain the following inequality (equation 1.30 ).

0 ≤W1 ≤ (1 +
ν2

Q2
)W2 (1.30)

In a Deep Inelastic Experiment, when the scattered particle is an electron or muon the

kinematics above allow us to determine Q2, x and y from the observables E′ and θ. In

order to extract W1 and W2 from the differential cross section, this observable can be

obtained for varying values of θ and E. This can be used to extract the value of R for

individual values of ν and Q2 or the average value of R can be computed for a full range

of x and Q2 for an experimental data set. In collaborations that determine the structure

function, an average R value for the full range of kinematic variables is obtained and

used to extract the structure functions from observable cross sections. This method is

shown below in expression 1.31.

νW2(x,Q2) =
[ d2σ

dΩdE′

( dσ
dΩ)Mott

][
νε(1 +R)

1 + εR

]
(1.31)

A collaboration such as SLAC can therefore extract structure function values for a

substantial x and Q2 range once the differential cross section is found for a given set of

E′ and Θ values .

The hadron structure functions can be separated in terms of the Parton Distribution

Functions, or PDFs, and the charges on each of the parton types in the hadron. The

PDFs define the probability that a parton type will be found with at a specific x value

for an input Q2. Since QCD dictates that free quarks do not exist when a hadron is

struck by an electron, it is necessary to know the values of the PDFs for all quarks

within a hadron in a collision.
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1.4 Quark Parton Model

A fundamental understanding of the quark parton model is needed in order to evaluate

the quark and gluon PDFs and to determine the scaling of the kinematics of which these

PDFs are dependent. In this model, the partons within the hadrons probed by high

energy leptons behave as collections of scattering components. The hadrons probed in

high energy DIS reactions have a dependency not on the energy of all components in

the scattering but on the specific kinematics discussed previously, for example Θ and

ν. This dependency is referred to as Bjorken scaling. In addition, the partons within

the hadron are governed by asymptotic freedom. This refers to the principle that the

strength of the coupling constant αs(Q2), which is given in Next to Leading Order in

1.4, weakens for the strong interactions at increasing energies. In the Deep Inelastic

Scattering model, if we use the target rest frame with the virtual photon emitted along

the z axis, we have p = (M, 0, 0, 0) and q = (ν, 0, 0,−
√
ν2 +Q2). In terms of these

4 momentum kinematics, the light cone variables a+ = a0+a3
√

2
and a− = a0−a3

√
2

can be

introduced, which give us the scalar product a · b = a+b+ + a−b− − aT · bT resulting in

equation 1.32.

q+ = −Mx√
2
, q− =

(2ν +Mx)√
2

(1.32)

q+ and q− represent the previously defined light cone variables for 4 momentum q. In

the limit Q2 → ∞, q− → ∞ and q+ is a constant. The space time interval centered

around the points where the currents Jµ(ξ) and Jµ(0) affect the DIS are space time scales

of interest. ξ is the space time interval between the points at which the eletromagnetic

currents Jµ(ξ) and Jµ(0) act on the scattering process. In the Bjorken limit, the space

time intervals can be approximated as ξ+ → 0 and ξ− <
√

2
Mx . Because all of the space

time components in which the electromagnetic current act, except for ξ−, approach 0,

the characterization of DIS is shown to be light cone dominated physics.

In order to derive the Q2 → ∞ limits of the structure functions, we start with con-

structing the previously determined hadronic tensor Wµν that describes the physics in

the hadron parton model. This tensor is given below in expression 1.33.
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Wµν(q, p) = Σ
i
Σ
s

∫
d4kf i

s(p, k)w
i
µν(q, k)δ[k + q2]dx (1.33)

This tensor sums the individual tensors wi
µν(q, k), describing the interactions between

quarks and virtual photons, and the structure functions f i
s(p, k) which are dependent on

the scalar p·k. The kinematics of the parton model can be used to show that the fraction

of light cone momentum carried by quark xi = k+

p+ is the same as the Bjorken momentum

fraction x. This is because we have the kinematic relations k2 = 2k+k− − k2
T = 0 and

k− = k2
T

2xip+ , leading to k · q = k+q− + k−q+ = xip
+q− = xip · q = xiMν. Now, we

note that k + q2 = k2 + 2k · q + q2 = 2xiMν − Q2 = 2xiMν − 2xMν = 2Mν(xi − x).

From here, we see that the delta function becomes δ[k + q2] = 1
2Mν δ[xi − x]. The new

structure function tensor that comes from this change in variables is written below in

expression 1.34.

Wµν(q, p) = Σ
i
e2i

∫
d4k

2Mν
[f i

+(p · k) + f i
−(p · k)]δ(xi − x)

×[2kµkν + kµqν + qµkν − gµνk · q]
(1.34)

This expression for the hadronic tensor can be used to determine how structure functions

relate to each other in the Bjorken limit. In the condition ν = µ = 0 the tensor is written

below in expression 1.35.
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W00 = Σ
i
e2i

∫
d4k

2Mν
[f i

+(p · k) + f i
−(p · k)]δ(xi − x)

×[2k0k0 + k0q0 + q0k0 − g00k · q] =

Σ
i
e2i

∫
d4k

2Mν
[f i

+(p · k) + f i
−(p · k)]δ(xi − x)

×[2k0k0 + 2q0k0 − g00xiMν] =

Σ
i
e2i

∫
d4k

2Mν
[f i

+(p · k) + f i
−(p · k)]δ(xi − x)

×[2k0(k0 + q0)− xiMν] =

Σ
i
e2i

∫
d4k

2Mν
[f i

+(p · k) + f i
−(p · k)]δ(xi − x)

×ν(2k0 − xM)

(1.35)

The condition ν = µ = 0 also gives the following relation (equation 1.36 ) for the

corresponding structure function tensor.

W00 =
ν2

MQ2
[−MW1 +

1
2x
W2] (1.36)

These two expressions for the hadronic tensor W00 can be reduced, since W00 → 0 in the

target rest frame, to the structure function relations νW2 = 2xMW1 and νW2 → F2(x),

the latter the result of the Bjorken limit. In addition, the structure functions can now

be expressed in terms of the individual quark distributions as well. This relation is

described in 1.37.

F2 =
∑

i

e2ixqi(x) (1.37)

qi(x) in terms of the quark flavor distributions f i
+ and f i

− is given in expression 1.38.

qi(x) =
π

4

∫
dk2

T [f i
+(p · k) + f i

−(p · k)] (1.38)
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ei is the charge of each parton according to the Standard Model and qi(x) is the sub-

sequent PDF for that parton. f i
+(p · k) and f i

−(p · k) are the quark functions for +1
2

and −1
2 helicities. The conventional interpretation of qi(x) is the probability of finding a

quark type i that function is associated with containing a fraction of parton momentum

x in the inelastic scattering interaction. The singlet and nonsinglet quark distributions

must also be defined as well. The singlet distribution is Σ(x) = iΣ(qi(x) + iq) and the

nonsinglet distribution is NSx = iΣ(qi(x) − iq) = uv(x) + dv(x), with uv(x) as the up

valence quark distribution and dv(x) as the down valence quark distributions. In terms

of the total up and down quark distributions u(x) and d(x), the valence quark distribu-

tions are uv(x) = u(x)−u(x) and dv(x) = d(x)− d(x). The total sea quark distribution

is then S(x) = 2(u(x) + d(x) + s(x) + c(x)).

The parton distributions in the quark model exhibit unique characteristics in the limit

x → 1, the elastic limit for the DIS. The structure function W1, from which the other

structure functions can be computed, takes the following form ( equation 1.39 ).

W1(ν,Q2) = δ(W 2 −M2)
Q2

2M
G2

M (Q2) (1.39)

This form factor dominates the Q2 behavior of the structure functions in the resonance

region of the parton model. The effect of the form factors in the resonance region for

the parton model, where M2 < W 2 < 4 GeV2, means that values for these form factors

in these regions affect the Q2 behavior of the structure functions at sufficiently small

Q2 values and for large x values. In order to isolate these contributions, the structure

functions can be rewritten in terms of the rescaled variable x′ with x′ = x[1 + m2
0x

Q2 ]−1

with m0 ≈ 1.1 GeV. The structure function in this rewritten scaling kinematic is below

in expression 1.40.

∫
dx′F1(x′) ∝ Σ

res

Q2

2M
G2

M,res(Q
2) (1.40)

We can approximate the corresponding structure function F1(x) ∝ 1− x′n and approx-

imate the electromagnetic form factor as GM (Q2) ∝ QN . This leads to Q2 for this

form factor for N = 2. Then, in the resonance region we also have the approximation

(1− x) ∝ 1
Q2 from which we get the relations n = 2N − 1 and so we get the resonance
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region approximations F1(x), F2(x) ∝ 1− x3 for the large x limit. The Q2 dependence of

the form factors and subsequent structure functions, dictated by the exponents within

the form factors, are dictated by the constituent rules for these exponents [41] [42] .

These rules state that the exponents in these factors are dependent only on the number

of elementary constituents that exist in a hadronic bound state. These rules are based

on the assumption that within this state at least one of the components is involved in

a hard scattering process. For the F2(x) behavior the large x limit under these rules

is F2(x) ∝ 1− x2ns−1. In this estimate, ns = nH − 1 where nH is the total number of

types of quarks found within the hadron.

The PDFs currently obtained at large x limits can be estimated from experimental

results by noting the relationships between the different structure function types and

the PDFs that comprise them. For example, in the large x limit, the quark distributions

are valence dominated and sea quarks are negligible. Therefore, the estimation of the

up and down valence quark distributions from the experimentally determined structure

functions can be determined as follows in equation 1.41.

Fn
2

F p
2

=
1 + 4 dv(x)

uv(x)

4 + dv(x)
uv(x)

(1.41)

If SU(6) symmetry were exact, we would have for large x dv(x)
uv(x) →

1
2 . However, the

experimental data from the SLAC and EMC collaborations show that for large x, F un
2

F up
2
→

1
4 which suggests that the limit for dv(x)

uv(x) for large x is (1− x).

αs(Q2) as a function of Q2 is in Leading Order approximated by αs ∝ 1

ln(Q2

Λ2 )
and so

for very large Q2 values αs becomes very small. This approximation is the focus of

Perturbative QCD. For smaller Q2 values αs becomes larger and different methods need

to be used to probe these strong interactions. Lattice QCD is a primary example of the

techniques that are used. The SOMPDF code will use QCD computations to determine

the moments for Q2 values ranging from 1.0 GeV2 to 30000 GeV2. These Q2 values are

taken from experimental measurements of the structure functions at specific kinematics.
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1.5 Perturbative QCD

The perturbative regime of QCD treats quarks in the target hadron as being very weakly

bound for lower scattering energies and approaching free point-like particles in their

behavior for larger energies. This theory of asymptotic freedom should be derived from

QCD field theories in order to fundamentally understand DIS.

QCD is symmetric relative to the colors of the quarks in question. Its Lagrangian is in

expression 1.42.

L =
1
2
Gα

µνG
νµ
α +

Nf

Σ
k
qk(Dµ −mk)qk (1.42)

In the above Lagrangian, qk is the 4-vector propagation of the quark k in the target

hadron, where k is one of the Nf types of quarks that are taken into account in the

hadron. G is the 4 vector propagation of gluons in the hadron. The gluon propagation

vectors Gα
µν and Dµ can be written as follows in expression 1.43.

Gα
µν = ∂µA

α
ν − ∂νA

α
µ + gfabcA

b
µA

c
ν

Dµ = ∂µ − igTαAα
µ

(1.43)

In the gluon vector component expressions, Aα
µ is the µth component of the ath gluon

propagation vector. The gluons in a hadron are confined by SU(3) symmetry. Therefore,

the matrices Tα describing the gluon 4 vectors must obey the relation [Tα, T β] = ifabcT
c.

Gluon loops are associated with color factors that are needed to normalize the dimension-

less quark gluon coupling factor g and the vector fields associated with gluon gluon and

quark quark interaction loops. T2(F ) = 1
2 is the color factor normalizing g, C2(F ) = 4

3

is the color factor associated with the quark quark interactions and C2(A) = 3 is the

color factor for the gluon gluon interactions. The quark gluon coupling g needs to mod-

ified to include all the higher order loop corrections to quark gluon interactions. Given

quark gluon interactions with momentum Q, the gluon and quark loop corrections to

the coupling result in the coupling being expressed in equation 1.44 as
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g = g(Q2) = g − β0
g3

32π2

[
ln
Q2

Λ2
+ κ
]
+

3
2
β0

2 g5

(32π2)2
ln2Q

2

Λ2
(1.44)

This is a Green’s function which is non convergent for Λ2 → ∞. In order to solve the

problem of divergence of this modified coupling, a scaling choice µ, where Q2 = µ2 which

can renormalize the coupling needs to be introduced. Then, when the coupling is fixed at

this introduced scaling parameter the coupling at any other Q2 value could be expressed

in terms of this fixed coupling quantity. This leads to the modified coupling now being

independent of the wavelength Λ; however, the dependence on the renormalization scale

µ is the necessary trade-off to achieve this independence.

The Green’s functions in the QCD can be renormalized from here using the modified

group equation. To provide an example of this equation, we can start with a simply

scalar field ω0 which represents a field theory with interactions quantified by coupling

g0. The renormalized field ω can be introduced in terms of the initially defined scaling

parameter µ and the scale factor Z as ω0 = Zω(g0, Λ
µ )ω. These fields have Lagrangians

that describe the same types of parton loop propagation’s; therefore, the Green’s func-

tions for the QCD fields can be written as Γ(n)(p, g, µ) = Zω(g0, Λ
µ )Γ(n)

0 (p, g0,Λ). This

Green’s function’s dependence has been taken away from the momentum scaling value

Λ and in the process it has become necessary to use the renormalization scaling µ. This

normalization constraint µdΓ/dµ = 0 gives the following constraint in expression 1.45 on

the renormalized Green’s function in terms of how it must vary relative to the coupling

and remormalization scaling.

[
µ
∂

∂µ
+ β(g)

∂

∂g
− nγω(g)

]
Γ(n)(p, g, µ) = 0

γω(g) = µ
∂

∂µ

[
Zω(g0,

Λ
µ

)
]

β(g) = µ
∂

∂µ
g(µ)

(1.45)

For each type of coupling among quarks and gluons, there is typically a single β field,

which is needed to determine the behavior of the effective couplings within the target

hadron in the high energy limit. The quark and vector propagation vectors are associated

with anomalous dimensions γF (g) and γA(g). The RGE equation solutions can first
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be analyzed with a solution where the total propagation of the hadron components

is zero, i.e. γω(g) = 0. Let’s also take the variable t, with t being the solution to

t =
∫ dg

β(g) . Changing the external momentum p to the hadronic system to p → etp

requires the renormalization scaling factor µ to change to µ → e−tµ. In this case, the

coupling value g must change to g → g(µ). The Green’s function, as a result of the

renormalization, changes to Γ(etp, g, µ) = Γ(p, g(t), µ). If the propagation vectors of

the quarks and gluons are not conserved, the Green’s functions changes by the factor

Γ(etp, g, µ) = Γ(p, g(t), µ)exp
{
−n

∫
dt′γ(g(t′))

}
. The β function can also be computed

from an independent Green’s function [43]; the result is shown in equation 1.46.

β(g)− γA(g)g − 2γF (g)g = − g3

16π2

[(3
2

+
η

2
)
C2(A) + 2ηC2(F )

]
(1.46)

resulting in β(g) = −β0( g3

16π2 ) with β0 defined as β0 = 11 − 2
3Nf . The solution to the

rescaled coupling factor is now dg(t)
dt = −β0

g3

16π2 .

The rescaled coupling, including all the quark and gluon interactions during DIS, is

related to the strong coupling constant by αs = g(Q2)/4π. The strong coupling factor

αs can also be written as ln Q2

µ2 = −
∫

4π
β0

dαs
αs

2 . The resulting expression for the strong

coupling is now in formula 1.47. Both sides of 1.47 must be set to a constant in order

to satisfy it. When this constant is set to − β0

4π lnΛ2, 1.47 produces the Leading Order

term in 1.4.

1
αs(Q2)

− β0

4π
lnQ2 =

1
αs(µ2)

− β0

4π
lnµ2 (1.47)

The fact that β0 > 0 results in the relation αs(Q2) → 0 for Q2 → ∞. It is also

dependent on the scaling factor Λ which can only be determined from experimentation.

For perturbative expansions in QCD to be effective αs(Q2 must also be sufficiently small

relative to the loop expansion terms to the coupling so that Taylor series expansions are

still applicable.

The inelastic scattering cross section needs to be factored into the parts where the princi-

ples of perturbative QCD apply and where they do not apply as noted in subsection 1.3.

In order to do this, the components of the inelastic scattering governing the virtual

photon exchange must be split into their subsequent perturbative and non perturbative
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parts. The factoring of the virtual Compton scattering amplitude in DIS is where the

application of QCD becomes fully understood. The first part of the Compton scattering

is in terms of interactions among the hadronic and leptonic components. Specifically,

this part is the amplitude section describing long distance interactions involving low and

high energy exchanges; for this part the techniques of perturbative QCD do not apply.

The second part involves exchanges of high energy values and has singularities for large

Q2 values that can be handled by perturbative QCD; its computation is done by higher

order series expansions of the coupling αs which are increasingly accurate for αs → 0.

We start with the forward scattering amplitude of the virtual photon Tµ,ν(q2, ν), making

it scalar instead of a 4 vector for further simplification. The scalar amplitude is given

in expression 1.48 by

T (q2, ν) = iΣ
σ

∫
d4ηeiq·η < p, σ|T (J(η)J(0))|p, σ > (1.48)

This complex plot has a pole relative to ν at ν = −q2

2M and a cut of simple poles from ν =
(2Mmπ−q2)

2M to ν = ∞ and a cut of poles resulting from the process p→ γX. These cuts

have discontinuities at the ν and Q2 values where the hadronic tensors, reduced now to

a hadronic scalar, and the Compton amplitudes are related by ImT (q2, ν) = 2πW (q2, ν)

and T (q2, ν) = 4
∫

dν
′
ν
′

ν
′2−ν2W (q2, ν). In order to obtain the structure functions from these

tensors, we use a technique referred to as operator product expansion (OPE). It begins

with writing out the time ordered products of the Compton scattering amplitude as

follows in expression 1.49.

iT (J(η)J(0)) →
∞
Σ

τ=2

∞
Σ

n=0
Cτ,n(η2, µ2)ηµ1 ....ηµnOτ

µ1...µn
(µ2) (1.49)

µ is the renormalization scale as was used earlier in reevaluating the Green’s functions,

Oτ is a set of traceless operators, τ is the twist number for the structure functions and

Cτ,n represents the Wilson coefficients in the structure function expansions. The OPE

results in the Compton scattering amplitude being expressed as follows in equation 1.50.

T (q2, ν) → Σ
τ,n

∂

∂µ1

...
∂

∂µn

[ ∫
d4ηeiq·ηC ′τ,n(η2, µ2)

( 1
η2

)1− τ
2 ]
× pµ1 ...pµnO

τ
n(µ2) (1.50)
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with ( equation 1.51 )

Cτ,n(η2, µ2) = C ′τ,n(η2, µ2)
( 1
η2

)1− τ
2

(1.51)

and also ( equation 1.52 )

< p|Oτ
µ1...µn

(µ2)|p >= Oτ
n(µ2)pµ1...µn (1.52)

The Compton amplitude can now be written ( equation 1.53 ) as a straightforward

expression based on the Q2 dependence of the Wilson coefficient functions and the

renormalization scale dependence of the accompanying operators.

T (q2, ν) = Σ
τ,n
Cτ,n(Q2, µ2)Oτ

n(µ2)(
1
x

)n(
1
Q2

)
τ
2
−1 (1.53)

Due to the symmetry of the Compton scattering amplitude, odd terms for n vanish.

Therefore, the relation between the Compton scattering amplitude and the structure

function tensors can be written below in expression 1.54.

∫ 1

−1
dxxn−1W (q2, x) =

1
4

∞
Σ

τ=2
Cτ,n(Q2, µ2)Oτ

n(µ2)(
1
Q2

)
τ
2
−1 (1.54)

The same OPEs applied to the electromagnetic current ( equation 1.55 ) yield a similar

result for F1.

∫ 1

−1
dxxn−1F1(q2, x) =

1
4

∞
Σ

τ=2
Cτ=2,n(Q2, µ2)Oτ=2

n (µ2) (1.55)

Since F2 is the next highest moment structure function, the expression for this function

changes to n− 2 in the structure function integral. This application of the OPEs shows

that all of the Q2 dependence in the structure functions is contained in the Wilson co-

efficients. Defining the functions f(y, µ2) and σ(z,Q2, µ2) so that
∫
dyyn−1f(y, µ2) =

O
τ=2
n (µ2) and

∫
dzzn−1σ(z,Q2, µ2) = Cτ=2,n(Q2, µ2) make the expansion of the struc-

ture functions in terms of their Wilson Coefficient and tensor components clearer in the
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physical sense. This expansion in terms of the functions relevant to the parton physics

are below in expression 1.56.

F1(x.Q2) =
∫ 1

x

dy

y
f(y, µ2)σ(z,Q2, µ2) (1.56)
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2 SOMPDF

The goal of the neural network we use is to create reliable theoretical models for the

PDFs which also produce structure functions which sufficiently fit the experimental data

and allow for various types of clustering of these models. The quality of fit is defined

using the observable χ2. The χ2 is evaluated according to equation 2.1 [44] [45].

χ2 = Σiexpχ
2
iexp

= ΣiexpΣjdata

(
D

iexp

jdata − T
iexp

jdata

σ
iexp

jdata

)2

(2.1)

For each i,Diexp

jdata is the structure function measurement from the data set, T iexp

jdata is the

theoretically determined structure function value for the same kinematic and σ
iexp

jdata is

the uncertainty of each structure function measurement from an experimental data set

at a given kinematic.

For our SOMPDF code, the self organizing process can be used to analyze and separate

how the individual PDFs contribute to the χ2 values and how the χ2 values are affected

by attempts to fit the structure functions at large x vs small x. They can also potentially

be used to separate the effects of large x corrections, particularly from dividing out the

χ2 components by another arbitrarily chosen parametrized structure function, using

the Target Mass Corrections (TMC) and the large x Resummations (LxR). The SOM

places the PDFs that are rescaled upwards and downwards by a preset range of possible

magnitudes, or ’wiggled’, on an n × n grid and organizes them around local regions.

The organization is completed by finding the best fitting PDFs and matching the PDFs

within a surrounding radius to the best matching PDF. By adjusting PDFs in local

regions towards the best fitting PDF, the SOM process can allow us to determine how

each of the individual PDFs is wiggled in order to produce the best possible generated

PDF and how the PDFs are wiggled in the small x and large x regions to produce

the best possible functions. It could also allow us to separate the effects of the large x

physics corrections, chiefly the TMC and the LxR, by seeing how adding these corrections

results in the structure functions being wiggled to form the structure functions most

comparable to experimentalal data. Other supervised networks, in contrast, fit the

structure functions to final data sets by using the PDF distributions without analysis

of the specific aspects of these distributions and without visualizing how they affect
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the overall fit. Self organizing maps allow for isolation and proper visualizations of the

various components of the structure functions, corrections to the structure functions

and their composite PDFs. The SOM can also be used to determine how the χ2 values

from the generated PDFs are organized and thereby allow us to see how these χ2 values

are decreased over a set number of iterations. A map of the PDFs and the structure

functions for large and small x could also be shown in order to determine how these

plots cluster in local regions around the best fitting structure functions and component

PDFs.

The basic SOM algorithm can be defined as a non linear extension of Principal Compo-

nent Analysis (PCA) [46]. In PCA one applies an orthogonal transformation to convert a

set of data that are possibly correlated into sets of values that are linearly uncorrelated,

and which constitute the principal components. The first principal component exhibits

the largest variance, i.e. it is a straight line that minimizes the sum of the squared

distances from the data points (least squares approximation) of the data set by a line.

The second principal components is by subtracting from the original data vectors their

projections onto the first principal component and by finding a new straight line ap-

proximation. The procedure is applied to the following components recursively. PCA is

useful for interpreting the behavior of high dimensional data because, by allowing one to

represent the dominant data sets in a linear form, and by simultaneously discarding the

sub-dominant components, PCA can reduce the number of dimensions of the problem.

PCA, however, cannot account for nonlinear relationship among data. Furthermore, it

has poor visualization properties in cases where more than two dimensions are impor-

tant [47]. The essential feature that sets the SOM algorithm a part from PCA and

similar data reduction methods is that the lines resulting from PCA can be effectively

replaced by lower dimensional manifolds in the SOM method. Because of their flexibil-

ity, these can detect features of the data that the PCA would not. In this procedure

SOM essentially identifies two dimensional clusters which form among the generated

map of functions and observables computed from these functions. These clusters would

not be identifiable using PCA. In addition, SOMs have enhanced visualization features

to represent higher dimensional data, while visualization for more than four components

becomes an impossible task for PCA [47].

Finally, from the theoretical point of view, SOMs are particularly relevant algorithms

in systems theory, as they model the emergence of a collective ordering in a composite
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system through the competition of its constituents. We anticipate that the SOM method

of neural network analysis will have future applications to complex nuclear and high

energy data. [48].

2.1 PDFs

The structure functions that the SOMs will be fitting to experimental data are in equa-

tion 2.2 - equation 2.3 where Ci are the coefficient functions, and qi(x) as defined in

equation 1.38 are the quark flavor PDFs. As noted in the DIS section, PDFs, the func-

tions fi(x,Q2), with i = q or g, comprise the structure functions of inelastic processes

in QCD. Three attempts to make theoretical models for the PDFs are the GRV model,

[49] [50], the MSTW model, [51] and the ABM model [52]. The SOMPDF procedure

will use weighted mixings of semi-randomized variations of these PDF models as input

PDFs for the SOM process.

F (x,Q2) =
∑

i

∫ 1

x

dy

y
Ci(y, αS) fi(x/y,Q2), (2.2)

∂

∂ lnQ2
fi(x,Q2) =

αS

2π

∫ 1

x

dy

y
Pqq

(
x

y
, αS

)
fi(y,Q2)

(2.3)

In the above expressions, Pqq(z), the splitting function, is the probability for a quark in

DIS scattering emitting a new quark that reduces its momentum by a fraction of z. The

splitting functions can also be formed for other vertices. PGq(z) describes the probability

for emission of a gluon in a quark gluon vertice. PG→qq(z) gives the probability of a

quark and an antiquark being emitted from an annihilation vertex. PGG(z) applies to

a three gluon vertex, providing the probability of a gluon being emitted from an initial

gluon. This function is given in Leading Order in formula 2.4

Pqq(z) = C2(F )
1 + z2

1− z
(2.4)
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PDFs are extracted from experimental data on deep inelastic lepton-nucleon scattering

and from related hard scattering processes in a continuously increasing range of x and

Q2 data values taken from the multiGeV region using fixed target measurements at

Jefferson Lab and others [53][54][55] [56] . A summary of PDFs and uncertainties is

given in [57]. LHC precision measurements of W±, tt̄ will be extracted in the future.

The continuously increasing experimental data set which needs to be included in the

analysis while simultaneously attacking the various theoretical open questions in PQCD

render global fits a challenging enterprise. Currently, numerous collaborations have

determined the parametrization for the unpolarized PDFs. CT [58], CJ [59],[60],[49],[50]

and ABM [61] use a parametric form for the PDFs with 4−5 free parameters per parton

distribution type, at an input scale, Q2
o, which varies for the different fitting forms.

NNPDF [1], [3],[62] utilize neural networks to create unbiased initial distributions. All

parametrization except for CTEQ use the perturbative QCD evolution equations to

Leading Order (LO), Next to Leading Order (NLO), and Next to Next to Leading

Order (NNLO) in terms of αs.

2.2 SOM algorithm

The SOM is formed by a two dimensional grid of neurons, or nodes. The nodes are

presented with a stimulus in the form of a parametrized vector of dimension n; this is

called the input vector and it describes the set of data to be processed. Each element of

the vector is presented to all nodes on the map with a synapse or weight, w. Each node

corresponds to the weight vector w containing n weights (same dimension as the input

vector).

The SOM algorithm consists of three stages: i) Initialization; ii) Training; iii) Mapping.

2.2.1 Initialization

The SOM learning process, as discussed previously, is defined as unsupervised. During

the initialization procedure weight vectors of dimension n are associated with each cell

i:

Vi = [v(1)
i , ..., v

(n)
i ]
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Vi are given spatial coordinates. This means that the geometry and topology of a 2D

map that gets populated randomly is defined to be the Vi values. Typically each of these

vectors consist of a randomized value of the data unit type to be placed on the map.

The data for these initial vectors are defined to be the map vectors.

2.2.2 Training

Next, an input vector is presented to the grid. The node whose map vector is most

similar to the input vector is defined as the best matching unit or BMU. The weights,

w, of the BMU and of the surrounding nodes form a neighborhood, N , of some specified

radius r.

For the training, a set of input data

ξ = [ξ(1)i , ..., ξ
(n)
i ],

(isomorphic to Vi) is then presented to Vi, or compared using a quantity called the

similarity metric that is chosen to be

L2(x, y) =
∑
i=1,2

√
x2

i − y2
i

This is the ordinary Euclidean norm for vectors x and y.

As noted in Section 1.1, SOMs are based on unsupervised and competitive learning as

opposed to previously used supervised networks. For the map, this means that the cells

that are closest to the BMU activate each other in order to “learn” from ξ. In order to

complete this learning, data units in the neighboring cells adjust their values according

to the following relation ( 2.5).

Vi(n+ 1) = Vi(n) + hci(n)[ξ(n)− Vi(n)], (2.5)

where n is the iteration number, and hci(n) is the neighborhood function defining a radius

on the map which decreases with both n, and the distance between the BMU and node i.

In our case we use square maps of size LMAP , and the value of hci(n) is in equation 2.6.
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hci(n) = 1.5
(
ntrain − n

ntrain

)
LMAP (2.6)

Here, ntrain is the number of iterations. At the end of a properly trained SOM, cells that

are topologically close to each other will contain data which are similar to each other. In

the final phase the data units to be used for analysis are positioned on the map and the

cluster formation is completed. For this neural network type, the clustering properties

are particularly important for analysis of the data contained in the maps.

Once the learning process is complete, the newly generated set of data will be associated

with the location of its BMU.

2.2.3 Mapping

SOMs are built as two dimensional arrays whose cells get adjusted towards a specific

set of input signals according to a given order. Since each map vector now represents a

specific type of information, the SOM is an ideal tool to visualize N -dimensional data. It

visualizes these data sets by projecting them onto an n-dimensional map, where n < N ,

with the data units clustered according to a designated common attribute.

2.3 Representing PDFs as SOMs

The envelopes of theoretical generated curves that are used in the SOM are formed

from PDFs using semi randomly varied parameters for each of the parton PDFs that

comprise them. The curves are referred to as an envelope of curves because the resulting

structure functions from the PDFs are designed to encircle the experimental data, with

generated curves forming above and below the data values. The details of this method

are in Section 3. We select PDFs from the envelope to: i) form our training data, which

are defined as the code PDF vectors; ii) place vectors on the map, which are defined

as the map vectors. An iteration is defined as the process where the entire set of code

vectors, or input PDFs, is presented to the map vectors, the most closely matching the

input PDFs being declared the “winning” PDFs. The SOMPDF code generates map

vectors of PDFs. The map PDFs are grouped around the winning PDF according to the

neighborhood radius function. The parameters in the PDFs that comprise the SOM are

used to regulate their x and Q2 dependence. Wiggling these parameters up and down
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semi-randomly by a given scaling factor creates a set of generated PDFs which comprise

the ξ vectors which can be used in the Self Organizing process. The n dimensions of the

ξ vector in this case are the differences between the PDFs at large and small x values

for an array of Q2 values, with the Q2 values taken from the available quantities given

by the experimental data. This means that the experimental data sets for the structure

function are read into the SOMPDF code and all the resulting Q2 ranges from these data

sets represent the Q2 values for which the differences amongst the map PDFs will be

determined. These differences between these PDFs represent the quantity [ξ(n)−Vi(n)]

in the adjustment function equation 2.5 for the neighboring PDFs surrounding the best

matching PDF. The map PDF with the smallest differences relative to the code training

PDFs represents the BMU for the PDF map.

2.4 Genetic Algorithm

Finally, we use a GA whereupon the new map PDFs or the input PDFs are analyzed

relative to known experimental data for the F2 values and PDFs with the lowest χ2

values are used as seeds for the next set of input PDFs. This process is repeated for 250

iterations; over the course of these iterations the χ2 values eventually asymptotically

approach a given value, which is referred to as the saturation value. The number of

PDFs depends on the size of the map; for an n × n map there are n2 PDFs for each

envelope. The PDF maps will be done using two different types of maps. The first type

will use a 6× 6 map and the second type will use a 1× 1 map with 36 PDFs. These two

different methods of using the SOMPDF code will allow us to isolate the efficiency and

other possible effects of using the Self Organizing process.

In the genetic algorithm, the PDFs are generated from an previous attempt to parametrize

them and then they are wiggled upwards or downwards to create a set of PDFs for each

cell in the n × n map. Of the generated PDFs, those with the best fit, defined here

as the PDFs whose values most closely match those of the experimental data structure

function values, are chosen for each cell. From here, the PDF from all the n2 number

of PDFs with the closest fit to the experimental data are chosen as the best PDF. This

PDF is then used as a seed vector from which the next set of PDFs are generated. This

process is repeated a given number of times for each iteration and the SOMPDF code

runs this process for a select number of iterations. Each iteration uses the GA along
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with the Self Organizing Process to evolve the PDFs from initial to final stages. The

PDFs from each cell, from which the best fitting PDF is used, form an envelope of PDFs

and a subsequent envelope of structure function values. An example of the initial and

final PDFs are shown in Figure 2.1 and Figure 2.2. We aim to initialize the formation

of this PDF envelope so that it sufficiently encircles the experimental structure func-

tion values from above and below these values. This is done to eliminate any biases

in evolving the best fitting PDFs by creating a sufficiently randomized set of generated

PDF curves. This formation is also done to fit the experimental data closely enough

to ensure that future SOM and GA iterations produce the structure functions with the

best possible fit to data. The need to eliminate bias in fitting the data arises because if

the envelope of SOM generated PDFs does not encompass the data on both sides, when

the PDF sets are trained and evolved with the SOP and the GA, the PDFs in future

iterations will remain above or below the experimental data and the processes will not

sufficiently be able to learn from χ2 values to form PDFs for subsequent iterations. A fit

to the experimental data is no longer feasible if the initial envelopes do not encompass

the data.
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Figure 2.1: An example of an envelope formed for the first iteration, for Q2 = 150
GeV2, for the valence quark PDFs relative to the valence quark PDFs determined by

other collaborations.
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Figure 2.2: An example of an envelope formed for the 250th iteration, for Q2 = 150
GeV2, for the valence quark PDFs relative to the valence quark PDFs determined by

other collaborations.

3 SOMPDF as a quantitative parametrization of DIS data

The previous two sections ANNs as a whole and the SOM, the specific type of ANN

used in our procedure, were explained in detail along with the nuclear physics processes

this network was designed to probe and how the SOM network would successfully probe

them. The first section discussed the need to create, visualize and classify unbiased

parametrized theoretical models of scattering cross section observables. From there, the

case was made for the unsupervised SOM as an ideal network to achieve this. The

nuclear and high energy physics that generated the observables we look to model were

analyzed in order to to show the full scope of applications of the generated theoretical

models. The second section provided a step by step of the workings of the SOM so that

the process by which the theoretical models are generated could be fully understood.

In this Section we give a detailed report of the major changes that were applied to

the initial approach in Ref.[63]. The initialization procedure is now based on a new

criterion which we describe below. The new freedom of variation allowed by the updated

initialization procedure enabled us to introduce also a new, more flexible criterion to take

into account Q2 evolution. Although our current attempts to apply the SOM to DIS

are limited to PQCD at NLO, our new method allows us to naturally take into account
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other sources of Q2 dependence. These sources include TMC,LxR and nuclear effects

which all affect the large x behavior of the structure functions.

Before proceeding with the detailed description it is important to underline the difference

between the experimental data and the training data. This distinction forms the basis of

the unsupervised learning process. The training data constitute an envelope of generated

theoretical PDF curves which are built in the initialization procedure. These theoretical

curves encompass the measured observable data values. The envelope of data sets forms

the input data vectors for the SOM fitting process. The experimental scattering data

sets are structure function observables to which the nuclear models formed from the

SOM and GA are designed to be fitted.

3.1 Main program SOMPDF

The input SOM parameters are read in from the input file ’Sompdfparameters.txt’ using

the subroutines Setparamfile and Readparams.

The experimental data files are read in using the subroutine Getf2data and the total

number of x and Q2 values to be used in PDF computations, based on the experimental

data files, are obtained with the subroutine Uniquevals. The experimental data files

may contain duplicate points for the same x and Q2 values. In order to ensure that

these duplicate values do not get used in the structure function fitting procedure, the

Uniquevals subroutine creates a set of points containing only one structure function

value for each x and Q2 value. The subroutines SOMgridcreate and L2DistArr create

the actual SOM that the map PDF vectors are placed on and enables us to determine

the total number of map cell units on which the map vectors will be placed.

To start the training of the PDF envelopes there are the three previously mentioned

three types of PDF sets declared that will be set up in later subroutines: GRV [49] [50],

MSTW [51] and ABM[52] . The PDF envelopes that are used in the SOM training and

the GA will be weighted combinations of these three PDF types. The Initweight and

Initgpd subroutines construct the initial weight vectors and PDF envelopes, the ones to

be used in the first iteration of the GA and SOM. GPDcreate sets up the PDF arrays,

based on the number of x and Q2 values previously determined, in order to fill them

with values computed from the three PDF sets used. The Mixvecs subroutine creates
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combinations of the three different types of PDFs used in the SOM/GA computations,

filling the arrays set up in GPDcreate, and subsequently utilizes them to train the map

vectors in the Self Organizing Process and for the first step of the GA. The subroutine

Writemapvecs calls a series of subroutines in the Printutils module that prints out the

initial envelope of PDF map vectors used in the first iteration of the SOM and GA

methods. The Train subroutine is where the SOM procedure is utilized; the placement of

training PDF vectors on the map, finding the best fitting PDF map vectors and adjusting

the neighboring factors using a neighborhood radius dependent function are all done in

this section. The next set of subroutines comprise the GA method for maximizing the

fit of the theoretical generated PDFs to scattering data. The training PDF vectors are

then normalized with the Processweights subroutine. The normalization is done by first

completing the integral of all of the PDF types. From there, the normalization factors

for each PDF type are computed such that when the PDF integrals are redone, the

valence quark PDFs satisfy the Baryon number constraint, the sea quarks satisfy the

Mellin moment normalizations and the quark and qluon PDFs satisfy the conservation

of momentum constraint. The Baryon number, Mellin moment and conservation of

momentum constraints are explained in detail in later subsections. The PDF vectors

in this set with the lowest χ2 values, which designate the best fitting PDF vectors

to the experimental data, are found using the Findbestvecs subroutine. From there,

the Createseedgpds subroutine sets up PDF seed vectors using the best fitting vectors

found in the Findbestvecs subroutine. These set vectors are then used to generate

the PDF vectors for the next iteration of the SOM and GA. This process is repeated

for a designated number of iterations and the best fitting PDF and the accompanying

generated envelope of PDFs that contain the best fitting PDF are printed out in the

Writebestmapvec and Writemapvecs subroutines.

3.2 Module Gpd Init

This module contains the Initweight and Initgpd subroutines that set up the array size

for the PDFs and make calls to generate PDFs for use in the SOM.
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3.3 Module Gpd Gen

This module contains the Mixvecs and Processweights subroutines that generate the

map and training PDFs for each iteration of the SOM and the GA.

3.4 Module Generators

This module contains the subroutines that produce semi randomly generated PDFs, for

the SOM and for the training vectors, using the functions constructed in the Module

Gpd Functions.

3.5 Module Gpd Utils

This Module reads in the experimental data files and sets up the allocatable arrays x

and Q2 values as well as for the quark and gluon PDFs. The module uses the number

of different Q2 values contained in the data files read in to set up the array for Q2 used

to set up the PDFs. The module uses Bjorken scaling to set up the x arrays. The Q2

and x arrays are then used to set up the PDF arrays.

3.6 Module Gpd Parameters

This module sets up groups of parameters, some of which are scaled by constants in

order to ensure that a proper envelope forms, for the three PDF types, GRV, FMRST

and ABM.

3.7 Module Gpd Functions

This Module computes three types of PDF sets using Bjorken x values and the Q2

values read in from the data sets: GRV, FMRST and ABM. The parameters that are

semi randomly wiggled provide the Q2 dependence for each PDF type.
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3.8 Module Gpd Perturbs

This Module wiggles a subset of the parameters in each PDF set semi randomly by a

predetermined scaling factor. For the parameters set at a given value Po the module

determines a new value for this parameter in the range [Po −∆, Po + ∆] where ∆ is the

scaling factor used for the parameter subset.

3.9 Module Somkit

This Module contains the Train subroutine where the actual SOP process is performed.

The aforementioned subroutine takes given set of training PDF data vectors and finds

the best matching unit, or bmu, on the SOM of PDF vectors relative to each data vector

in the training set training PDF vectors. After the bmu is determined, the neighboring

SOM PDF vectors are adjusted using the functional form Le
L
2R where L is the distance

between the bmu and a neighboring map vector and R is the neighborhood radius for

the SOM. The bmu among the SOM PDF vectors is also determined for the data vectors

after the map training step is complete.

3.10 Module Som Utils

This module contains the SOMgridcreate subroutine that set up the size of the SOM

and the neighborhood radius used in the SOM. It also contains the Getextrmmetric

subroutine that find the PDFs in a generated set with the lowest χ2 value for use to

generate a set of seed PDFs in the next GA iteration.

3.11 Module Gpd Eval

This Module takes in the PDFs formed from the semi random parameter wigglings in

the gpd functions module and forms the proton and deuteron structure functions. It

also calculates the χ2 value for each Bjorken x and Q2 value read in relative to the

experimental data point closest to that x and Q2 value for the appropriate structure

function. From here, the Module determines a total χ2 value for each PDF set in a

generated envelope of PDFs to be used in the SOM and GA.
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3.12 Module Gpd Norm

This module performs the integrations of the PDFs over the Bjorken x values for each

Q2 value read in and normalizes them to a set of conditions read in after the integration

routine. The integrals of uv and dv are computed so that the normalization constant

satisfying the conditions below can be met as specified by the Baryon number constraints.

Nu

∫
Uvdx = 2 (3.1)

Nd

∫
Dvdx = 1 (3.2)

The u,d, s and c quark PDFs are normalized according to their designated Mellin Mo-

ments, which will be provided in detail in later sections. These moments are determined

from quark non singlet and singlet combinations. The Gluon moment is then normalized

so that the momentum sum rule is satisfied.

∫
xUv + xDv + x2u+ x2d+ xs+ xc+ xGdx = 1 (3.3)

3.13 MPI

The SOMPDF code uses MPI in order to run a set of processes in parallel to ensure

that the generation of the required map and code PDFs occurs in a timely manner.

The map vector and a set of code vectors are generated for one process and then the

code information is broadcast to the other parallel processes so that the map and code

vectors can be generated in the same manner. The code is currently on the University

of Virginia Rivanna coding system. The code currently runs 36 parallel processes, one

for each map cell unit, and the Rivanna script for running the code with MPI is shown

below. This script allocates 6 nodes with 6 processes for each node in order to obtain

the full 36 processes.

1

2 #! / b in / bash

3 #SBATCH −−nodes=6

4 #SBATCH −−ntasks−per−node=6
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5 #SBATCH −−time =90:00:00

6 #SBATCH −−output=outputLARGENN6

7 #SBATCH −−pa r t i t i o n=economy

8 #SBATCH −−mem=4000

9

10 module load openmpi/ gcc

11

12

13 mpirun −−mca b t l sm , tcp , s e l f −−mca b t l t c p i f i n c l u d e eth1 . / sompdf

Listing 1: MPI code
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Table 3.1: Code Module For Each Step

Step Number Code Section
1 module fileutils.f90
2 subroutine setfunctionnames
3 f2utils.f90
4 SLURM Script
5 module mpivars.F90
6 module mathfuncs.f90
7 module gpdinit.F90
8 module gpdinit.F90
9 module gpdinit.F90
10 module gpdgen.F90
11 module gpdgen.F90
12 module gpdfunctions.f90 + gpdperturbs.f90 + gpdparameters.f90
13 module gpdnorm.f90
14 module gpdeval.f90andsomutils.f90
15 module somkit.f90
16 module somkit.f90
17 module somkit.f90
18 module somkit.f90
19 module somkit.f90
20 module somkit.f90
21 module printutils.f90

3.15 New Initialization Method

We start by describing the construction of the initial envelope for the SOM training.

When we subsequently apply the GA, we construct new envelopes which contain sets of

PDFs that are generated from each previous iteration, and that are selected based on

their χ2 values so that, after a number of iterations we minimize it.

As discussed in subsection 2.4, the challenge one meets in forming an initial envelope is

that on the one hand it must be constructed randomly in order to meet the criterion of

unbiased formation, and on the other hand it must be adjusted enough to sufficiently

follow the experimental data.

Our envelope is formed with randomly weighted combinations of three distinct paramet-

ric forms of PDFs, GRV, FMRST, and ABM, at an initial Q2 = Q2
o. We then introduce

Q2 dependent parameters by using the procedure from previous parametrization [49]

[50] [52] [51] . Q2 dependent parameters were introduced for all three parametric forms

we used.
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The observables we want to use in constructing the initial envelopes are shown in equa-

tion 3.4 and equation 3.5 .

FP
2 = x

4
9

(uv + 2ū) +
1
9
(
dv + 2d̄

)
+

2
9
s+

2
9
c+

2
9
b (3.4)

FD
2 = x

1
9

(uv + 2ū) +
4
9
(
dv + 2d̄

)
+

2
9
s+

2
9
c+

2
9
b (3.5)

In forming the initial envelopes of these functions, there were a set of fundamental

observations to take into account in varying the parameters. One was that certain

parameters that were adjusted either did not have fundamental effects on the nature of

the best fitting and envelope PDFs when varied or aqdjusted to a large enough extent

as to make varying these parameters unproductive. For the remaining parameters, it

was discovered, for a given parameter Pi, that varying that parameter by the factor

Pi +∆P where ∆P was a predetermined shifting factor, was ideal for creating envelopes

enclosing the data.

In order to illustrate how the parameters were varied in order to form an envelope we

take the quark distributions, starting with the valence distributions uv and dv in the

GRV parametric form [49], which are shown in expression 3.6 and equation 3.7. The

gluon and sea quark distributions are shown in expression 3.8 -equation 3.11.

uv = AU (t)xBU
1 (t)(1− x)BU

2 (t)(1 + CU
1 (t)

√
x+ CU

2 (t)x) (3.6)

dv = AD(t)xBD
1 (t)(1− x)BD

2 (t)(1 + CD
1 (t)

√
x+ CD

2 (t)x) (3.7)
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g = (xALG(t)(AG(t) +BG(t)x+ CG(t)x2)(− lnx)BLG(t)

+((tAAG(t)) exp (−EG(t)) +
√
−(EPG(t))(tβDB(t)) ln(x)))

(1− x)DG(t)

(3.8)

u = (xALUB(t)(AUB(t) +BUB(t)x+ CUB(t)x2)(− lnx)BLUB(t)

+((tAAUB(t)) exp (−EUB(t)) +
√
−(EPUB(t))(tβDB(t)) ln(x)))

(1− x)DUB(t)

(3.9)

d = (xALDB(t)(ADB(t) +BDB(t)x+ CDB(t)x2)(− lnx)BLDB(t)

+((tAADB(t)) exp (−EDB(t)) +
√
−(EPDB(t))(tβDB(t)) ln(x)))

(1− x)DDB(t)

(3.10)

s = (
(t− SS(t))AAS(t)

(− ln(x))ALS(t)
)

(1 + (AS(t))( 2
√
x) +BS(t)x)((1− x)DS(t))

exp(−ES(t) + 2

√
−EPS(t)(tβS(t)) ln(x))

(3.11)

For the GRV functions, the parameters used in determining the Q2 dependence of the

uv quark PDF are in 3.2. For the dv quark PDF the are in 3.3. For the gluon PDF

they are in 3.4. For the u quark PDF they are in 3.5, for the d quark PDF they are in

3.6 and for the s quark PDFs they are in 3.7. The free parameters used to set up the

parton parameters in 3.2 - 3.7 are initialized as shown in 3.8.

with t shown in formula 3.12 [64].

t = ln
lnQ2/Λ2

lnQ2
o/Λ2

(3.12)
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uv parameter Expression
AU (t) au11 + au12t+ au13(t2) + au14(t3)
BU

1 (t) 0.285
BU

2 (t) bu21 + bu22t+ bu23(t2) + bu24(t3)
CU

1 (t) cu11 + cu12t+ cu13(t2) + cu14(t3)
CU

2 (t) cu21 + cu22t+ cu23(t2) + cu24(t3)

Table 3.2: Parameter Set for uv PDF Equations

dv parameter Expression
AD(t) ad11 + ad12(

2
√
t) + ad13t

BD
1 (t) bd11 + bd12t

BU
2 (t) bd21 + bd22t+ bd23(t2) + bd24(t3)

CD
1 (t) cd11 + cd12(

2
√
t) + cd13t

CD
2 (t) cd21 + cd22(

2
√
t) + cd23t

Table 3.3: Parameter Set for dv PDF Equations

gluon parameter Expression
ALGLUON (t) alg1 + alg2t
BLGLUON (t) blg1 + blg2t
aGLUON (t) ag1t+ ag2(t

2)
bGLUON (t) bg1 + bg2t
cGLUON (t) cg1 + cg2t
dGLUON (t) dg1 + dg2t
EGLUON (t) eg1 + eg2t
EPGLUON (t) 2.466
AAGLUON (t) 1.128
βGLUON (t) 1.575

Table 3.4: Parameter Set for gluon PDF Equations

The PDFs enter the observable, F2, as was shown in equation 2.2 - equation 2.3. The

quantitative analysis of the PDFs is shown in [49]. In equation 3.13, C1, C2 and C3 are

the uniform, randomized weighting factors that gauge how much each of the structure

function types contributes to the formation of the function used in the GA. fGRV , fMSTW

and fABM are the generated structure functions generated from the input models using

semi randomized parameter variations.

F env
i = C1fGRV + C2fMSTW + C3fABM (3.13)
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ū parameter Expression
ALūB (t) alū1 + alū2t
AūB (t) aū1 + aū2t
BūB (t) bū1t+ bū2(t

2)
CūB (t) cū1 + cū2t
DūB (t) dū1 + dū2t
EūB (t) eū1 + eū2t
EPūB (t) epū1 + epū2t
blūB (t) 0.0
AAūB (t) 0.594
βū(t) 0.614

Table 3.5: Parameter Set for u PDF Equations

d̄ parameter Expression
ALd̄B

(t) ald̄1
+ ald̄2

t

Ad̄B
(t) ad̄1

+ ad̄2
t

Bd̄B
(t) bd̄1

t+ bd̄2
(t2)

Cd̄B
(t) cd̄1

+ cd̄2
t

Dd̄B
(t) dd̄1

+ dd̄2
t

Ed̄B
(t) ed̄1

+ ed̄2
t

EPd̄B
(t) epd̄1

+ epd̄2
t

bld̄B
(t) 0.0

AAd̄B
(t) 0.594

βd̄(t) 0.614

Table 3.6: Parameter Set for d PDF Equations

Notice that whether the PDFs given above are able to fit quantitatively all, or a subset

of the existing data is not important for constructing the envelope. The parametriza-

tion provide functional forms that are sufficiently close to the data so that by properly

varying some of their parameters one can construct a bundle of curves whose envelope

encompasses all of the available data. This step of our analysis can be challenging in

that by using some of the baseline parametrization formulas it is nearly impossible to

bracket newer data.

3.16 Description of Structure Function Fit

The structure functions shown in equation 2.2 - equation 2.3 can be used to determine

the χ2 values for the PDFs in each of the n2 sets and also to plot and analyze the

behavior of the generated structure function values relative to the experimental data.
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s parameter Expression
ALSB

(t) als1 + als2t
EPS(t) 8.12
AS(t) as1 + as2t
BS(t) bs1 + bs2t
DS(t) ds1 + ds2t+ ds3t

2

ES(t) es1 + es2t
SS(t) 0.0
AAS(t) 0.756
βS(t) 0.101

Table 3.7: Parameter Set for s PDF Equations

Once the given number of iterations is complete and the best fitting PDFs are chosen

from the final evolved PDF set, we can evaluate not only if the χ2 value is sufficiently

low but also of the structure function behavior matches that of the experimental data

for the full x range. These structure functions are plotted, for a 6 × 6 and a 10 × 10

map, alongside the experimentally generated structure function values in Figure 3.1.

The results show that the SOMPDF generated structure functions were able to fit the

experiments in terms of function behavior at large and small x. There were difficulties

for the 6× 6 map in fitting the SOMPDF structure function values to the experimental

values for small as well as large x and these difficulties were profoundly more apparent for

the lowest two Q2 values. The 10×10 map showed a marked improvement in fitting the

generated structure functions to the experimental values and showed the use of the SOM

in fitting the data. Increasing the map size therefore led to substantial improvements

in the ability of the SOMPDF code to fit its theoretical models to the scattering data

due to its use of the Self Organizing Process and increased number of theoretical input

models to use for the GA. Ultimately, 6× 6 maps were chosen for creating the final sets

of generated theoretical PDF and structure function sets. This was because this size was

sufficient to make effective use of the GA and the network’s self organizing abilities and

cluster formation properties while simultaneously maintaining a level of practicality.

3.17 PQCD Evolution: Moments

When the PDF sets are generated, for use in the SOM and the GA, they must be

normalized in accordance to the principles of QCD; each time a PDF, whether for use as

a map or training PDF, is generated from semi randomly generated combinations of the
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free parameter Expression free parameter Expression free parameter Expression
au11 0.330 bu21 3.17 cu11 -2.28
au12 0.151 bu21 1.17 cu12 15.73
au13 -0.059 bu21 -0.47 cu13 -4.58
au14 0.027 bu21 0.09 cu14 0.0
cu21 56.7 ad11 0.459 bd12 -0.031
cu22 -53.6 ad12 0.315 bd21 3.98
cu23 11.21 ad13 0.515 bd22 1.04
cu24 0.0 bd11 0.624 bd23 -0.3
bd24 0.0 cd11 8.13 cd12 -6.77
cd13 0.46 cd21 6.59 cd22 -12.83
cd23 5.65 alg1 0.323 alg2 1.653
blg1 0.811 blg2 2.044 ag1 1.963
ag2 -0.519 bg1 0.078 bg2 0.624
cg1 30.77 cg2 -24.19 dg1 3.188
dg2 0.720 eg1 -0.881 eg2 2.687
als1 2.942 als2 -1.016 as1 -4.60
as2 1.167 bs1 9.31 bs2 -1.324
ds1 11.49 ds2 -1.198 ds3 0.053
es1 2.630 alū1 0.636 alū2 -0.084
es2 1.729 aū1 1.121 aū2 -0.193
bū1 0.751 bū2 -0.785 cū1 8.57
cū2 -1.763 dū1 10.22 dū2 0.668
eū1 3.784 eū2 1.280 epū1 1.808
epū2 0.980 ald̄1

0.636 ald̄2
-0.084

ad̄1
1.121 ad̄2

-0.193 epd̄2
0.980

bd̄1
0.751 bd̄2

-0.785 cd̄1
8.57

cd̄2
-1.763 dd̄1

10.22 dd̄2
0.668

ed̄1
3.784 ed̄2

1.280 epd̄1
1.808

Table 3.8: Free Parameters for the PDFs

three PDF types, a normalization factor allowing the integrated PDFs to satisfy three

requirements must be computed. These conditions are the momentum sum rule, Baryon

conservation and the individual Mellin Moments. Perturbative evolution was taken into

account by requiring that the various PDFs reproduce the momentum fractions evolution

predicted by NLO pQCD. The PDF theoretical curves were generated through variations

of the Q2 dependent parameters that comprise the quark PDFs in order to fit them to

data sets. Subsequently, it was not necessary to have all the quark and gluon PDF types

be subjected to Perturbative QCD evolution.

The current work for the SOMPDF project has been centered around first normalizing

the values of and the parton distribution functions (ūx, d̄x, sx ...) over x, where x is

the momentum fraction carried away by the partons during the deep inelastic collision
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Figure 3.1: Structure function FP
2 plotted vs x at Q2 values of 2.5,10,150 and 800

GeV2

of the hadron with an electron, over the range of 0 to 1. Each of the individual PDFs

are normalized to values satisfying the conditions outlined in Section 3.12 by their own

specified factors. These normalization factors are determined by the Mellin Moments

for Q2 evolution.

Prior to determining the normalization moments for the PDFs, the normalization rules

for partons must be established; these rules will constrain the formation of the PDFs

when the SOM and GA are used. This is because for a proton there must be two up

quarks and one down quark, and the momentum of the partons in the proton must

be conserved during the collision. Subsequently, the up and down quark PDFs are con-

strained by their Baryon numbers and the partons are all constrained by the momentum

sum rule. The conditions for the PDF constraints are in relation 3.14-equation 3.16.
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∫
uvdx = 2 (3.14)

∫
dvdx = 1 (3.15)

∫
xUv +Dv + 2u+ 2d+ 2s+ 2c+Gdx = 1 (3.16)

The Mellin Moments are taken from non singlet, or NS, and singlet structure functions

[65]. The NS combination of quarks is given through the sets of valence quarks; uv = u−u

and dv = d−d are the NS quark combinations used in the Mellin Moment computations.

The singlet quark combination is given in terms of the sum of quark combinations; the

singlet distribution can be written as uv +dv +2u+2d+2s+2c when strange and charm

quarks are included. For NS PDF combinations, the Q2 dependent Mellin Moments are

in relation 3.17 [65].

MNS
n (Q2) = MNS

n (Q2
0)
(
αs(Q2

Λ2 )

αs(
Q2

0
Λ2 )

)dNS
n

(3.17)

In this NS evolution, dNS
n refers to the non singlet constants of asymptotic freedom given

in Roberts [65].

The Q2 dependence of the singlet quark combinations must be computed in terms of the

mixing of quarks and gluons. Therefore, it requires two sets of operators as opposed to

one set for the NS moments. The operators are ( equation 3.18 )

OS
n =

in−1

n!
[qγµ1Dµ2 ...+Dµnq + permutations] (3.18)

and ( equation 3.19 )

OG
n =

in−2

n!
Tr[Dµ2 .....+Dµn−1Gµn

ν + permutations] (3.19)
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Given i = Q, g we now have the singlet and gluon coefficient functions ( equation 3.20 ).

Ci
n(
Q2

µ2
) = Σ

j=q,G
Cj

n(1, g2(t))exp
[
− γn,ji

0

2β0
ln t
]

(3.20)

with ( equation 3.21 )

γn,ij(g) = γn,ji
0

g2

16π2
(3.21)

The dimensions γn,ji
0 are calculated form one loop gluon corrections [66] [67]. For the

singlet dimensions, in LO γn,qq
0 = γn,NS

0 and the anomalous gluon dimensions are given

below in expression 3.22.

γn,GG = 2C2(A) =
[
1
3
− 4
n(n− 1)

− 4
(n+ 1)(n+ 2)

+
n
Σ

j=2

1
j

]
+

8
3
NfT2(F )

(3.22)

The eigenvalues of the anomalous dimension matrix can be defined as γ±0 resulting in

3.23.

γ±0 =
1
2

{
(γn,qq

0 − γn,GG
0 )±

[
(γn,qq

0 − γn,GG
0 )

2
+ 4γn,gG

0 γGq
0

] 1
2

}
(3.23)

The final expressions for the quark and singlet moments are written below in expres-

sion 3.24 .

MS
n (Q2) = ((1− an)r+n + anr

−
n )MS

n (Q2
0) + bn(r+n − r−n )MG

n (Q2
0)

MG
n (Q) = an

(1− an)(r+n − r−n )
bn

MS
n (Q2

0) + ((1− an)r−n + anr
+
n )MG

n (Q2
0)

(3.24)

with 3.25

an =
γn,qq

0 − γn,+
0

γn,−
0 − γn,+

0

, bn =
−γn,qG

0

γn,−
0 − γn,+

0

(3.25)
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and 3.26

r±n =
[αs(Q2

αs(Q2
0

d±n ]
, d±n =

γn,±
0

2β0
(3.26)

The singlet moments evolve, shown in equation 3.27, relative to Q2
0 over Q2 the same

way the NS quark moments do.

M s
n(Q2) =

∫
dxxn−2Σ(x,Q2) (3.27)

The gluon moments are not physical quantities the way the non singlet and singlet quark

moments are. However, the gluon moments need to be normalized such that the total

moments of the quarks and gluons satisfy conservation of momentum independent of

Q2. To do this, we need to switch to the Gross and Wilzek [66] convention shown in

equation 3.28.

γn,qG
0 = −8NfT2(F )

n2 + n+ 2
n(n+ 1(n+ 2)

γn,Gq
0 = −4C2(F )

n2 + n+ 2
n(n2 − 1)

(3.28)

For the second quark and gluon moments the result is shown in expression 3.29

γ2,qq
0 + γ2,Gq

0 = 0

γ2,GG
0 + γ2,qG

0 = 0
(3.29)

The pair of singlet and gluon evolution moment equations now give the following result

shown in expression 3.30.

MS
2 (Q2) +MG

2 (Q2) = MS
2 (Q2

0) +MG
2 (Q2

0) (3.30)

The Q2 dependent evolution of the singlet quark PDF combination is in formula 3.31.
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[
MS

2 (Q2)− 3Nf
16 + 3Nf

]
=
[(

αs(Q2)
αs(Q2

0)

)d+
2
][
MS

2 (Q2
0)−

3Nf
16 + 3Nf

]
(3.31)

d+
2 refers to the non singlet constants of asymptotic freedom given in Roberts [65].

In these singlet structure forms, the value of Q2
0 is set to be Q2

0 = 0.55 GeV2. The

initial values of the Mellin Moments are set so that for the u and d moments, they are

approximately equal to each other and roughly twice the moment value of the s quark.

When determining theQ2 dependent evolution of the PDFs, the strong coupling constant

is also evolved past its Leading Order value. The αs to NLO needs to be determined to

account for the corrections to Λ from the rescaling of the quark normalizations in the

hadron absorbed to second order and higher corrections to the NS moment.

The two-loop correction to the coupling constant results in a new expression (equa-

tion 3.32 ) for αs where the two loop term β1 is given by β1 = 102− 38
3 Nf .

d

d lnQ2

(αs(Q2)
4π

)
= β0

(αs(Q2)
4π

)2
+ β1

(αs(Q2)
4π

)3
+ ... (3.32)

The algebraic terms a, b and t can be introduced, where a = β0αs(Q2)/4π, b = β1/β0
2

and t = ln(Q2/µ2). The evolution term ln Q2

Λ2 can be written in terms of the combined

algebraic expressions in formula 3.33.

1
a
− b ln

(1 + ba

a

)
− lnQ2 =

1
a(µ2)

− b ln
(1 + ba

a

)
− lnµ2 (3.33)

Setting each side equal to − lnΛ2 gives us equation 3.34 for lnQ2 in terms of αs.

ln
Q2

Λ2
=

4π
β0αs

− β1

β0
2 ln

[ 4π
β0αs

+
β1

β0
2

]
(3.34)

The NLO αs is given in expression 3.35 as an approximation for small αs. For the

computation of the moments the values of αs(Mz) are allowed to vary within the range

αs(Mz) = 0.1135 − 0.1195, which is consistent with other PDF collaborations. This

results in the computation of the theoretical models implicitly taking into account the

correlations between αs and PDF uncertainty.
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αs

4π
=

1

(β0 ln Q2

Λ2 )
− β1

β0

ln ln Q2

Λ2

(β0 ln Q2

Λ2 )

2

(3.35)

In order to set up the Altarelli-Parisi equations [68], the total set of contributions to

the Q2 dependence of the non singlet quark, singlet quark and gluon structure functions

must be computed. This begins with the fundamental expression for the quark density

from which non singlet quark, singlet quark and gluon distribution functions can be

obtained. This desired density can be given in expression 3.36.

dq(x) =
∫
dyq(y)

[αs

2π
Pqq(z)d lnL2

Tdz
]
δ(zy − x) (3.36)

As Q2 in the scattering gets larger, gluons are emitted in the quark quark annihilation

vertex that governs parton splitting. This emission also governs the size of the proton

transverse momentum L2
T . When Q2 increases, the quark density in the hadron target

changes due to two factors. The first one is a second quark emerging with momentum

fraction x when the first quark, with momentum fraction y > x, emits a gluon. This is

the source of the quark distribution dq(x). In addition, the hadron will contain other

quarks with momentum fraction x that emit gluons which contain momentum fraction

x′ with x′ < x. The splitting function for both contributions is the same and results

in a new expression, shown in expression 3.37 for the non singlet, or valence, quark

distribution.

dqNS(x,Q2)
d lnQ2

=
αs(Q2)

2π∫
dydzqNS(y,Q2)Pqq(z)[δ(zy − x)− δ(y − x)]

(3.37)

From here, we can work towards deriving the more conventional form of the AP equa-

tions. The first step is bringing the delta functions into the splitting functions to give

us equation 3.38.

Pqq(z) = C2(F )
[

1 + z2

(1− z)+
− 3

2
δ(1− z)

]
(3.38)
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(1− z)+ is defined in equation 3.39

∫
dz

f(z)
(1− z)+

=
∫
dz
f(z)− f(1)

(1− z)
(3.39)

This definition comes from the standard definitions of the plus function given in equa-

tion 3.40.

(F (x))+ = lim
β→0

{
F (x)θ(1− x− β)− δ(1− x− β)

∫ 1−β

0
F (y)dy

}
(3.40)

This function must vanish quickly enough as x → 1 for the + function to satisfy the

following distribution integral (equation 3.41 ).

∫ 1

0
(F (x))+dx = 0 (3.41)

The quark gluon splitting term Pqq(z) contains a + function of the form f(z)
(1−x)+

. This

type of + function has a limit shown in equation 3.42

f(z)
(1− x)+

= lim
β→0

{
f(z)

(1− x)
θ(1− x− β)− f(z)δ(1− x− β) ln(β)

}
(3.42)

When a function f(z)
(1−x)+

is evaluated over the (0 : 1) range, the first term on the rhs of

the expansion in equation 3.42 yields the integral
∫
dz f(z)

(1−z) and the second term vanishes

everywhere except z = 1 yielding
∫
dz f(1)

(1−z) . The integral on the rhs of equation 3.39

vanishes at the endpoints, yielding, with integration by parts, equation 3.43.

∫
dz
f(z)− f(1)

(1− z)
=
∫
dz ln(1− z)

df(z)
dz

(3.43)

This allows us to write the non singletQ2 dependent moment equation in expression 3.44.

dqNS(Q2)
d lnQ2

=
α

2π

∫ 1

x

dy

y
qNS(y,Q2)Pqq(

x

y
) (3.44)

This non singlet moment becomes, given MNS(Q2) =
∫
dxxn−1qNS(x, q2), equation 3.45
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Q2dM
NS
n (Q2)
dQ2

=
αs(Q2)

2π

∫
dzzn−1Pqq(z) (3.45)

We can from here relate the splitting function to the anomalous dimensions for valence

quark combinations (equation 3.46 ).

∫
dzzn−1Pqq(z) = −1

4
γn,NS

0 (3.46)

The above is the valence moments for one quark type. Factoring in all the valence quark

types and adding in the contributions from the emitted gluon loops gives us the relations

for the quark and gluon distribution functions shown in expression 3.47 - equation 3.48.

dqi(x,Q2)
d lnQ2

=
αs(Q2

2π

×
∫
dy

y

[
Σ
j
qj(y,Q2)Pqiqj (

x

y
) +G(y,Q2PqiG(

x

y
)
] (3.47)

dG(x,Q2)
d lnQ2

=
αs(Q2

2π

×
∫
dy

y

[
Σ
j
qj(y,Q2)PGqj (

x

y
) +G(y,Q2PGG(

x

y
)
] (3.48)

In the above quark and gluon distributions, i and j run over every quark type found

within the target hadron. At this level, the quark gluon interactions cannot lead to

changes in quark type, the probability of a quark emitting a gluon is independent of

the type of quark and the emission of a gluon creates a quark anti quark pair whose

probability of formation is also independent of that quark type. This gives us the

relations Pqiqj = δijPqq, PGqj = PGq and PqiG = PqG.

From here, we can expand the splitting function Pqq(z) from a specific quark type to all

quark types included in the NS moments as
∫
dzzn−1Pij(z) = −1

4γ
n,ij
0 . Then, we have

for the quark and gluon AP equations, equation 3.49



SOMPDF as a quantitative parametrization of DIS data 63

dqs(x,Q2)
d lnQ2

=
αs(Q2

2π

∫
dz

z
Pqq(z)qs(

x

z
,Q2) +NfPqG(z)G(

x

z
,Q2)

dG(x,Q2)
d lnQ2

=
αs(Q2

2π

∫
dz

z
PGq(z)qs(

x

z
,Q2) + PGG(z)G(

x

z
,Q2)

(3.49)

The splitting equations, since they describe the probability of quark and gluon emission

from an initial set of quarks and gluons within the target hadron, are also governed by

conservation of momentum. The quark gluon vertices and the combination of annihila-

tion and three gluon vertices, which produce quark and gluon pairs, must each result in

zero net momentum added to the hadron. This allows us to relate the splitting functions

as shown in relation 3.50.

∫
dzz
[
Pqq(z) + PGq(z)

]
= 0∫

dzz
[
2NfPqG(z) + PGG(z)

]
= 0

(3.50)

The splitting functions are also related, for z < 1, by the expressions Pqq(z) = PGq(1−z),

PqQ(z) = PqG(1 − z) and PGG(z) = PGG(1 − z). Then, the splitting functions for the

quark gluon vertex for quark gluon interactions, the annihilation vertex and the gluon

pair production vertex can be given as well, in relation 3.51 - equation 3.53.

PGq(z) = C2(F )
1 + (1− z)2

z
(3.51)

PqQ(z) = T2(F )
[
z2 + (1− z)2

]
(3.52)

PGG(z) = C2(A)
[ z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1
2β0

δ(1− z) (3.53)

The full Q2 dependence of the Mellin Moments for the PDFs can from these conditions

be determined from integration of the AP Equations, given in expression 3.54 - equa-

tion 3.56 The AP equations describe the evolution of densities for every parton type and

combination present in a hadron.
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d

dlogQ
Fg(x,Q) =

αs(Q2

Λ2 )
π

∫
dz
z

[
Pg←qΣ

f

(
Ff (

x

z
,Q) + Ff̄ (

x

z
,Q)

)
+ Pg→q(z)Fg(

x

z
,Q)

]
(3.54)

d

dlogQ
Ff (x,Q) =

αs(Q2

Λ2 )
π

∫
dz
z

[
Pg←qFf̄ (

x

z
,Q) + Pg→qFg(

x

z
,Q)

]
(3.55)

d

dlogQ
Ff̄ (x,Q) =

αs(Q2

Λ2 )
π

∫
dz
z

[
Pg←qFf (

x

z
,Q) + Pg→qFg(

x

z
,Q)

]
(3.56)

We can also express using the non singlet moment evolution in LO using the (1− z)+

term and taking into account z behavior at the endpoints. The (1− z)+ expansion term

is evaluated in expression 3.57.

∫ 1

x
dzf(

x

z
)(1− z)−1

+ =
∫ 1

0
dzf(

x

z
)(1− z)−1

+

−
∫ x

0
dzf(

x

z
)(1− z)−1

+ =∫ 1

x
dz
[
f(
x

z
)− f(x)

]
(1− z)−1

−f(x)
∫ x

0
dz(1− z)−1

(3.57)

The non singlet structure function FNS , where FNS(x,Q2) = xqNS(Q2), can be ex-

panded by noting that (equation 3.58)
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dxqNS(x,Q2)
d lnQ2

=
αs(Q2)

2π

∫ 1

x

dy

y
yzqNS(y,Q2)Pqq(

x

y
) =

C2(F )
{
αs(Q2)

2π

∫ 1

x

dy

y
yzqNS(y,Q2)

[ 1 + z2

(1− z)+
− 3

2
δ(1− z)

]}
=

C2(F )
αs(Q2)

2π

∫ 1

x
dy
[
(1 + z2)FNS(

x

z
,Q2)− (1 + z2)|z=1F

NS(x,Q2)
]
(1− z)−1−

FNS(
x

z
,Q2)(1 + z2)|z=1

∫ 1

x
dz(1− z)−1 +

3
2
FNS(x,Q2)

(3.58)

Using these expansion terms and completing the integrals of the + function expansion

terms in equation 3.58 at the z = 1 endpoint gives us the expression for the non singlet

structure functions in equation 3.59.

dFNS(x,Q2)
d lnQ2

=
αs(Q2)

2π
C2(F )

{
[
3
2

+ 2 ln(1− x)]FNS(x,Q2)+∫ 1

x

dz

1− z
[(1 + z2)FNS(

x

z
,Q2)− 2FNS(x,Q2)]

} (3.59)

The NS moments can be evolved to NLO by expanding the dimensionless terms γn,NS
1

[69]and BNS
n which are an integral part of the NLO expansions of the coefficient func-

tions. They can be written in equation 3.60.

γn,NS = γn,NS
0

(αs

4π
)

+ γn,NS
1

(αs

4π
)2

+ ...

C
NS
n (1, g2) = 1 +BNS

n

(αs

4π
)

+ ...
(3.60)

The results for BNS
n in x and n space [70] are shown in expression 3.61 - equation 3.62.
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BNS
2 = C2(F )[−3

2
1 + x2

(1− x)+
+

1
2
(9 + 5x)

−2 lnx
1 + x2

1− x
+ 2(1 + x2)

[
ln(1− x)

1− x

]
+

− (9 +
2
3
π2)δ(1− x)]

(3.61)

BNS
2 = C2(F )[3

n
Σ

j=1

1
j
− 4

n
Σ

j=1

1
j2
− 2
n(n+ 1)

n
Σ

j=1

1
j

+4
n
Σ

s=1

1
s

s
Σ

j=1

1
j

+
3
n

+
4

n+ 1
− 2
n2
− 9

(3.62)

This allows us to express the NLO evolution of the non singlet moment in terms of the

above dimensionless terms as shown in equation 3.63.

MNS
n (Q2) = MNS

n (Q2
0)
(
αs(Q2

Λ2 )

αs(
Q2

0
Λ2 )

)dNS
n

×
[
1 + CNS

n

(as(Q2)− as(Q2
0)

4π
)] (3.63)

The quantities dn and CNS
n can be written in terms of the other quantities as dn = γn,NS

0
2β0

and CNS
n = BNS

n + γn,NS
1
2β0

− β1γn,NS
0

2β0
2 .

For the NLO non singlet moment equations the resulting logarithmic derivative is now

shown in relation 3.64.

dF (x,Q2)
dInQ2

=
∫ 1

x

αs(Q2

Λ2 )
2π

P (0)
qq F (

x

z
,Q2) dz

+
∫ 1

x

(
αs(Q2

Λ2 )
2π

)2

[P (1)
qq − β/4BNS

n (z)]F (
x

z
,Q2) dz

(3.64)

The splitting function can be integrated to the resulting form shown in expression 3.65.

∫
dzzn−1Pij(z) = −1

4
γn,ij −

[
β0C

NS
n +

β1γ
n,NS
0

2β0

](
αs

4π

)
(3.65)
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where ( equation 3.66 )

γn,ij = 2βod
NS
n (3.66)

The non singlet moment is now displayed in equation 3.67.

d(lnMNS
n (Q2))

d(ln(Q2)
= −γ

n,NS
0

2

(
αs(Q2

Λ2 )
4π

)
−
[
β0C

NS
n +

β1γ
n,NS
0

2β0

](αs(Q2

Λ2 )
4π

)2
(3.67)

The singlet moments can be written using the terms in equation 3.68. In addition, the

sea quark moments in terms of the NS and singlet moments determined previously are

written in equation 3.73 - equation 3.75 (equation 3.73 is the strange quark moment,

equation 3.74 is the up antiquark moment and equation 3.75 is the down antiquark

moment). The moments for the SOMPDF generated theoretical PDFs and the collabo-

ration PDFs for Q2 = 2.5 GeV2andQ2 = 150 GeV2 are in 3.9.

Table 3.9: Moment Values

Collaboration Mval
2 M sea

2 MG
2

Q2 = 2.5 GeV2

ABM [52] 0.4644 0.0849 0.4226
CT10 [58] 0.4482 0.0873 0.4263

MSTW [51] 0.4416 0.0900 0.4322
NNPDF [1] 0.4601 0.0790 0.4378

SOMPDF 6× 6 0.4269 0.086 0.3852
Q2 = 150 GeV2

ABM [52] 0.3407 0.0995 0.5098
CT10 [58] 0.3276 0.1010 0.4793

MSTW [51] 0.3177 0.1050 0.4844
NNPDF [1] 0.3340 0.0965 0.4861

SOMPDF 6× 6 0.3248 0.0986 0.4601

T3 = (uv(Q2
0) + 2u(Q2

0))− (dv(Q2
0) + 2d(Q2

0)) (3.68)

T8 = (uv(Q2
0) + 2u(Q2

0)) + (dv(Q2
0) + 2d(Q2

0))− 4s(Q2
0) (3.69)

T15 = (uv(Q2
0) + u(Q2

0)) + (dv(Q2
0) + 2d(Q2

0)) + 2s(Q2
0)− 6c(Q2

0) (3.70)

T24 = (uv(Q2
0) + 2u(Q2

0)) + (dv(Q2
0) + 2d(Q2

0)) + 2s(Q2
0) + 2c(Q2

0) (3.71)

T35 = (uv(Q2
0) + 2u(Q2

0)) + (dv(Q2
0) + 2d(Q2

0)) + 2s(Q2
0) + 2c(Q2

0) (3.72)
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1
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−T8

3
MNS

n (Q2)+

T15
12

MNS
n (Q2)+
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Nf

4Cf
)(gluon1+

uv(Q2
0) + dv(Q2

0) + 2u(Q2
0)+

2d(Q2
0) + s(Q2

0) + c(Q2
0))

−(uv(Q2
0) + dv(Q2
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0) + 2d(Q2

0)+

s(Q2
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4Cf
)
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αs(Q2

0)
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4Cf
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4

)

(3.73)

u =
1
4
(MNS

n (Q2)T3 +
T8
3
MNS

n (Q2)+

T15
6
MNS

n (Q2)+

((
Nf

4Cf
)(gluon1+

uv(Q2
0) + dv(Q2

0) + 2u(Q2
0)+

2d(Q2
0) + s(Q2

0) + c(Q2
0))

−(uv(Q2
0) + dv(Q2

0) + 2u(Q2
0) + 2d(Q2

0)+

s(Q2
0) + c(Q2

0)− gluon1
Nf

4Cf
)

(
αs(Q2)
αs(Q2

0)
)Y f )(

Nf

4Cf
+ 1)−1)(

T24
2

)

−2MNS
n (Q2)uv(Q2

0)

(3.74)
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(3.75)

3.18 Map Features

The SOMPDF procedure uses a list of map parameters than can be adjusted each time

the code is run. Below we list the values that represent the best possible choices in terms

of speed of convergence and flexibility of results, and which as a result we used in the

final SOMPDF run.

• number of PDF types to be used for mixing nfuncs = 1− 3;

• number of PDFs per cell ncell = 2;

• number of PDFs to be generated during each cycle in training, ngen = 4;

• number of new PDFs to be generated each cycle, nNEW = 10;

• number of steps to be used in training each SOM, nstep = 5;

• type of norm (e.g.L1orL2) to use for calculating distances between map and code

PDFs

• initial learning rate, L0
R

• maximum number of iterations regardless of the fitting method, NMAX = 200
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• slope parameters based on the number of previous χ2 values to look at when checking

whether the χ2 curve had flattened out yet, sflat = 2× 10−3.

The results for the χ2 for each map size attempted are in 3.10.

Size Minimum χ2

4× 4 1.05202
5× 5 1.0463
6× 6 1.02279
7× 7 1.0648

Table 3.10: Fit Results for Various Dimensions

3.19 Experimental Data

The experimental data that the SOMPDF code uses to fit the generated PDFs to comes

from a set of numerous collaborations. The experimental data sets used come strictly

from proton and deuteron DIS “highest quality” data along with collider data. The

collaborations are, as noted previously, SLAC, BCDMS, E665, H1, ZEUS and NMC.

Only DIS and collider data are used because it is required to determine the capability of

the Self Organizing process in fitting parametrized curves to data for isolated processes.

The kinematic range of the DIS experimental data is in Figure 3.2 and the kinematic

range of the large x data is in Figure 3.3. The corresponding table is in 3.12.

Table 3.11: Scattering Data Kinematics

Experiment Measurement Usable Points x range Q2 range
BCDMS FP

2 350 7.0 × 10−2 - 0.75 7.50 - 2.3 × 102

H1 FP
2 364 1.0 × 10−4 - 0.65 2.0 - 3.0 × 104

ZEUS FP
2 240 1.0 × 10−4 - 0.65 2.7 - 3.0 × 104

NMC FD
2 145 8.0 × 10−3 - 0.5 1.75 - 6.5 × 101

SLAC FP
2 194 7.0 × 10−2 - 0.85 1.12 - 29.2 × 101

E66 FP
2 46 1.2 × 10−2 - 0.39 1.0 - 6.5 × 101

Table 3.12:

3.20 Error Analysis

For our error analysis we used the Statistical Error method and then, for the final set of

results, the Lagrange multiplier method. We started with the Statistical Error method
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so that we could determine the extent to which the PDF envelopes fluctuate and to

determine how capable the Statistical Error method is at calculating the error band

relative to the Lagrange Multiplier Method. The Statistical Error method also enabled

us to determine the extent to which the Self Organizing Process and the GA generated a

set PDF curves, at the end of the final iteration, that had significant fluctuations relative

to one another. In the Statistical Error method, each of the n2 PDFs generated in the

final iteration of the SOMPDF code is treated as its own experiment. The standard

deviation of these PDFs is used as the error band and the mean value of the PDFs is

taken to be the central band.

The results of the Lagrange and Statistical Error band are shown in Figure 3.4. The

Statistical Error Band is significantly larger than the Lagrange Error band. This result

suggests that the curves that comprise the PDF envelope after the final iteration are not

sufficiently precise for determining the PDF errors, using the Statistical Error method, as

effectively as the Lagrange Multiplier method can. The central bands for the Statistical

Error method and the Lagrange multiplier method are also distinctly different. This

shows that the mean value of the PDF curves for the final iteration does not give the

same measurement as the best fitting PDFs resulting from the GA. A fundamental issue

of the PDF fitting procedure is that the best fit of the structure functions is done relative

to a global data set that contains data points from a variety of experiments, each with

their own level of precision. The number of parameters involved in the fitting procedure

further complicate the error determination.

As a result of these complications, the Lagrange Multiplier method is more ideal for

determining the error bands as shown by the generated error bands for each method.

The reason that the Lagrange method for determining the error band more effectively

incorporates the number of parameters and variation of experimental sets is because

the Statistical method incorporates all generated PDF curves regardless of how well

or poorly they fit and the Lagrange method does not. Consequently, the Statistical

method incorporates the parameter variations that do not lead to effective fits and so

becomes increasingly less reliable when the number of variable parameters used and the

number of different experimental sets, each with their own precision level as noted above,

increase in the computations. In contrast, the Lagrange Multiplier method is based on

using variations of the best fitting PDFs relative to the free parameters. For varied

free parameters, setting up Hessian matrixes of their derivates to determine PDF errors
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cannot be done so the Lagrange Error Method presents an alternative way to determine

PDF errors based on the observables χ2 sand F2. This method’s use of the best fitting

PDFs and their dependence on parameter wiggling significantly improves the precision

of this error computation relative to the Standard Error method. It also makes it more

ideal for taking into account the different precision levels of the various experimental

sets used.

This method evaluates the variation of the χ2 along a specific direction defined by the

maximum variation of a given physical variable. In our case the physical variables are

the proton (deuteron) structure functions FP (D)
2 . However, at variance with previous

analysis that used this method [44] , we do not have at our disposal sets of individual

parameters for each given PDF, that can be varied. In order to overcome this problem

we devised a strategy that we describe below, based on another error method calculation

[45], which uses SOMPDFs on appropriately rescaled data to determine the PDFs error.

Because the Lagrange multiplier method does not rely on basic statistical variations, it

requires an input value for the χ2 tolerance for the best fitting PDFs.

We apply the Lagrange Multiplier Method to PDF analysis where one uses a function

ψ determined by equation 3.76 for which the minimum for a given λ, x and Q2 can be

found relative to the parameters a. The parameters a are the wiggled Q2 dependent

parameters whose variations generate the desired envelope of theoretical PDF curves.

ψ(λ, a) = χ2
0(a) + λF

P (D)
2 (a) (3.76)

where λ is a series of Lagrange multipliers. χ2
0(a) is the absolute minimum of ψ; this

minimum is the standard χ2 used in 2.1, for a specific x and Q2, to determine the fit

of the generated structure functions to experimental data. The designated minimum

of χ2 is the minimum of χ2 for all x and Q2 values used in the SOMPDF procedure

summed together. For each λ value there is a singular minimum value of ψ as a function

of a. Subsequently, each minimum of ψ has a resulting F
P (D)
2 and χ2 value that can

be extracted. Then, when the minimum of ψ is computed for a sufficient number of

λ values, χ2 as a function of FP (D)
2 can be plotted. The extraction is completed by

determining the parameters a that resulted in the minimum value of ψ and calculating

the resulting FP (D)
2 and χ2.
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The Lagrange Multiplier Method is based on using the χ2 values of the structure func-

tions relative to experimental data at specific Q2 and x values in order to determine

the errors on F
P (D)
2 for these Q2 and x values. This method depends on using the ex-

perimental data sets in order to find corresponding errors in F2. The error is therefore

calculated only in x and Q2 regions where experimental data points are defined. In

the x and Q2 regions where experimental data points do not exist, the PDFs are not

constrained by the data points and therefore the error bands are not constrained by the

Lagrange error. This means that the Lagrange error method is dependent on having a

sufficient number of experimental data points in order for it to work properly.

The method first depends on computing the χ2 as a function of FP
2 or FD

2 , for a given Q2

[ for example Q2 = 150 GeV2 ] for the x values that the experimental data cover for this

input Q2 value. This was done for Q2 = 150 and Q2 = 2.5 since those were the Q2 values

that were used to determine the error bands plotted for the PDFs. The λ values were

chosen to be multiples of 25 and the function determined for each λ is ψ as written in

expression 3.76 for λ = 25, 50, 75.... For each λ, the minimum value of ψ is determined

and this set of minimum values forms a parabola. This is because minimum values of ψ

for all the λ values will create a parametric relationship between χ2 and F
P (D)
2 (a); the

determining of the variations ∆χ2 will then create the error ∆FP (D)
2 (a). The parabola

is calculated around a confidence level of 10 percent around χ2 = 1.0 which was found to

be the global minimum χ2 when all data sets were used. The difference in corresponding

F2 values for χ2 = 1.0 and χ2 at the 10 percent confidence level, which in this case is

χ2 = 1.0+0.1∗1.0 = 1.1, is the resulting Lagrange error on F2. This resulted in very low

Lagrange values for F2 because the Lagrange method is using the χ2 values in relation

to F2 values for specific x and Q2 values and not using measurements on observables

which are independent of x and Q2 or are taken over all of these values instead of one

value at a time. In order for the Lagrange multiplier method to work properly, the

errors in χ2 and F2 must be completely independent of our Lagrange multiplier spacing

choice. The parameters a within the PDFs do not explicitly appear in the Lagrange

error computations; however the size of the Lagrange error band will depend on the

extent of the parameter variation and the freedom to wiggle the parameters in obtaining

the best fitting PDFs.

We represent the χ2 obtained for our choice of interval and λ values plotted as a function

of FP (D)
2 in Figure 3.5. As one can see, for each λ value, there is a singular minimum
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value of χ2 (Eq.(??)) as a function of FP (D)
2 . The curve around this minimum follows

a parabolic shape. The minima of ψ were calculated for a sufficeint number of λ values

to ensure that the χ2 range of the resulting parabola, after the χ2 and F2 values for

each minima of ψ were extracted, included the global minimum χ2 and the χ2 for a 10

percent confidence level. The differences between the corresponding F
P (D)
2 values for

the global minimum χ2 and the χ2 at 10 percent confidence level were used to determine

the Lagrange error in FP (D)
2 , denoted here by ∆F .
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Figure 3.4: Illustration of the difference between the PDF uncertainty calculated with
the Lagrange multipliers method and the statistical error analysis. Analogous results

are obtained for other PDFs.

So far, we followed closely the analysis of Ref.[44]. In order to apply the Lagrange

multiplier method to our SOM approach we proceeded as follows. We generate sets of

“pseudo experimental data” by shifting F exp
2 for given x and Q2 values by ±∆F , and we

repeat the SOMPDF fit for each new data set. The new structure functions are defined

by a corresponding set of new individual PDFs, F exp, NEW
2 . The difference between the

individual PDFs from the limiting upper and lower F exp, NEW
2 values define then the

Lagrange error for each of the individual PDFs for the original F (D)
2 .
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Figure 3.5: Illustration of the behavior of the minimum fit value for the observable FP
2

using the Lagrange Multiplier method. The dots correspond to λ = 0, +- 25,+- 50,+-
75. The minimum fit value was evaluated here in one kinematical bin : x = 0.0032,
Q2 = 150 GeV2, corresponding to equation 2.1 for that specific kinematic. Similar

graphs are obtained for all the other x and Q2 bins.

3.21 Lagrange Error

The error bands for the individual PDFs are the result of using the Lagrange Multiplier

method. In this method, the Lagrange error, δF2 is determined and the F2 structure

functions are fitted to an experimental data set. The F2 structure functions are then

fitted, using the same self organizing process, to a new data set determined by taking

each experimental data value FEXP
2 and shifting it by FEXP

2 +δF2 and then the process

is repeated a third time fitting the structure function to a data set determined by shifting

the FEXP
2 values to FEXP

2 − δF2. The differences between the PDFs determined from

fitting F2 to FEXP
2 and the PDFs determined from fitting F2 to FEXP

2 + δF2 are taken

and this forms the upper Lagrange error. The differences between the PDFs determined

from fitting F2 to FEXP
2 and the PDFs determined from fitting F2 to FEXP

2 − δF2 are

taken and this forms the lower Lagrange error. The Lagrange multiplier method relies

on using the self organizing, unsupervised fitting methods for fitting the F2 structure

functions to all three of the different experimental data sets

The individual PDFs comprise the structure functions that are fitted as shown in expres-

sion 2.1. The PDF error bands therefore depend directly on the methods by which the
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structure functions they comprise are fitted. The lack of using the final experimental

data sets as a reinforcement for fitting the PDFs resulted in the SOMPDF Lagrange

error bands being more similar to each other for each of the PDFs than they were to

the error bands determined by the other collaborations.
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4 SOMPDF PDF Fit Results

After the PDF envelope is formed, the Self Organizing map is initialized and run through

the training process. The initial and final maps can be plotted so that their clustering

properties can be observed. These clustering properties for the 6 × 6 are shown in

Figure 4.1, 4.2 and 4.3. Figure 4.1 and Figure 4.2 show the clustering properties

of the global χ2 values for the initial and final map. The global χ2 does not have any

clustering patterns in the initial map. The neighborhood radius function used in the

SOM, with its ability to preserve the topology of the best fitting theoretical PDFs,

enables us to make note of multiple local minimal χ2 values that result from fitting

generated sets of theoretical curves. In the final map, the lowest values of the global χ2,

representing the best fits to the experimental data sets, are clustered in the lower and

upper left hand corners and in the center of the map as well. The structure functions

that are used to form these χ2 values can be positioned on a map so that the properties

of these structure functions over small and large x that contribute to this χ2 clustering

can be analyzed. The actual curves are shown in Figure 4.3.

The Self Organizing Process is designed to minimize the global χ2 values of the generated

PDFs and disentangle the components of the DIS and deeply virtual exclusive and semi-

inclusive processes. Specifically, the task is to identify pattern formation in the structure

functions and composite PDFs in terms of local χ2 values and function behavior for a

range kinematics. The map in Figure 4.3 reveals the generated theoretical SOMPDF

curves along with the experimental data sets, for Q2 = 2.5 GeV2, that correspond to the

PDF χ2 map in Figure 4.2. Figure 4.2 and Figure 4.3 reveal that the PDFs’ clustering

properties are based on the quality of their fit to the data and on their behavior at small

and large x. The Self Organizing Process depicted in Figure 4.3 shows how the PDFs,

which are formed as a result of this process’s evolution over various iterations, and their

individual properties can be visualized. This visualization also demonstrates the ability

of the Self Organizing process to determine how to make the structure functions fit

the data ideally without outside supervision. The Self Organizing process has shown

to be effective in clustering recognition for the fit attempt using proton and deuteron

Structure Functions using DIS data sets. This process can also be used, as will be shown

in Section 5, to isolate and disentangle the properties of the DIS and other processes

when large x physics corrections are factored in as well.
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Figure 4.1: χ2 values from the fit on a 6 × 6 map for the initial GA iterations. The
χ2 values are lower for darker squares.

The results of the χ2 values for the final iteration for the 6×6 and 1×1 map are in Figure

4.4. The 6× 6 map has two PDFs used per map cell and four PDFs generated per cycle

as per the original map conditions. The 1 × 1 map is designed to be the equivalent of

the 6× 6 map without self organizing features. Therefore, it uses one cell with 72 PDFs

in the cell and 144 PDFs generated for that cell in a given cycle. The 6× 6 map shows

the effects of the GA and the Self Organizing Process while the 1 × 1 map shows the

effects of using only the GA. The 6 × 6 map shows a somewhat faster rate of decrease

in the χ2 values, revealing the effects the Self Organizing process has on the ability of

the SOMPDF method to fit parametrized PDFs to experimental data sets. The Self

Organizing process also results in a lower overall χ2 at the end of the final iteration.

This effect is not particularly large. However, the local neighborhoods showing multiple

χ2 minima have proven to be a critical asset in observing how the PDFs are computed

as the neural network tries to fit them to data. Therefore, the Self Organizing process is
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Figure 4.2: χ2 values from the fit on a 6 × 6 map for the final GA iterations. The
χ2 values are lower for darker squares. The clustering properties of the χ2 values are
clearly visible. In addition, the decrease of the values relative to those in Fig. 4.1

illustrates the effectiveness of the GA.

critical in allowing us to analyze the clustering properties of the structure functions and

the PDFs that comprise them. In addition, the SOM shows nonlinear correlations among

the generated functions that form during the fitting process as it reveals multiple local

minima as opposed to a single local minima that forms from the GA. These nonlinear

correlations are visualized through the two dimensional groupings of generated PDF

curves with similar χ2 values. The heights of the data units can be contrasted to each

other to see where on the map the non linear correlations occur. These groupings are

formed by local neighborhood radii during the Self Organizing Procedure. Subsequently,

multiple ways in which the procedure can be used to improve the fit can be visualized.

Therefore, the χ2 measurement is not the sole factor in determining the success of the

Self Organizing process.
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Figure 4.3: The SOM for a 6×6 map representing the SOMPDF generated structure
function, F2, for Q2 = 2.5 GeV2, compared to the experimental values. The visual-
ization properties of the map in forming the clusters structure at small and large x
ranges are also shown. The blue curves are clusters of structure functions which have
both a low χ2 (dark squares in Fig. 4.2) and a selected particular behavior in x. The
red points are corresponding the experimental structure function values. The Bjorken
x range (the x axis) is (0.05 : 1.0) and the Structure Function range (the y axis) is

(0 : 0.5).

In Figure 4.5- 4.9, the results for PDFs using the SOMPDF fitting method are shown

for Q2 = 150 GeV2 and in Figure 4.10- 4.12 they are shown for Q2 = 2.5 GeV2 .

The PDFs are shown along with the CTEQ, MSTW, ABM and NNPDF collaborations

and with the Lagrange error bands for the SOMPDF and the four other collaboration

PDFs. The PDF curves show a fit with the collaboration PDFs, within the errors of

the SOM and Collaboration PDFs, for the quark PDFs, for the majority of possible x

values used in the data fitting. However, there was difficulty getting the valence quark

PDFs to fit the collaboration PDFs for Q2 = 150 GeV2 for x in the range (0.1 : 0.3)

and the d − u and strange quarks at this same Q2 value for small x. This was largely
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due to the lack of experimental constraints in forming the PDFs at low x. The DIS

experimental data points in this x range are not sufficient to restrict the resulting PDF

behaviors, particularly if no previous theoretical assumptions about these behaviors are

made. The lack of experimental restrictions at small x also explains the relatively large

error bands obtained by the collaborations for their strange quark PDF computations.

The gluon quark PDFs were also not as accurate of a fit at Q2 = 150 GeV2; however,

that is largely because the values of the gluon PDFs are not factored into the structure

functions and so are not part of the determination of the χ2 values.

To better study the error determination, we construct the “pull” graphs which show the

ratio of our PDFs to various collaborations. In Figure 4.13- 4.16, the ratios of the

SOMPDF curves to each of the four other collaboration curves are shown along with

the relative Lagrange error on the SOMPDF curves. For the fits, the ratio of the valence

quark PDFs to the collaboration PDFs for both Q2 values used fell within the relative

error range relative to one for the majority of the x values, with the exception of the

0.2− 1.0 range and the 0.0001− 0.001 range for Q2 = 150 GeV2 and the 0.0001− 0.009

and 0.02− 0.05 range for Q2 = 2.5 GeV2. The gluon quark ratio for Q2 = 150 GeV2 did

not fall within the relative error range for all collaborations for x values less than 0.008

or greater than 0.15. For Q2 = 2.5 GeV2 the gluon quark ratio did not fall within the

error range for all collaborations for x values less than 0.04 or greater than 0.2. As a

whole, however, the ratios were reasonable close to one for the majority of x values.

There are multiple possible reasons for the fact that the SOMPDF generated PDFs did

not fit the collaboration PDFs for all x values and for the sizes of the error bands. There

are many different free parameters that were semi randomly varied to create proper

initial envelopes of generated curves and eliminate theoretical bias. The tradeoff was

an increased difficulty in computing the error bands for each PDF type. The SOMPDF

code tries to fit the PDFs to both small and large x data. As a result of this, when

the code scales the PDF parameters to fit the small x data, it can decrease the quality

of the fit to the large x data and vice versa. Another possible factor is that there are

an insufficient number of restrictions on the the quark PDF behavior for the full range

of permissible x and Q2 values. Subsequently, simply fitting the structure functions to

the experimental values for the structure functions is not by itself constraining enough.

Finding the best fit values using the lowest possible χ2 results for all the possible Q2

values could also lead to difficulties in fitting the PDFs for the full Q2 and x range. This
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is because the contributions of the PDFs at various x values to the χ2 results could be

partially dependent on the input Q2 points used in the PDF computation. The valence

quarks are also constricted by the Baryon number sum rule, allowing their quark PDFs

less freedom of variance for all x ranges, limiting the ability to make the SOMPDF

valence quark PDFs fit those of the Collaboration PDFs and also restricting their error

bands. There are also more available data points for lower x ranges where sea quarks

dominate using the DIS data; this results in the error bands for the strange quarks to

more consistently correlate with uncertainties in the structure function data points for

the low x region. For the valence quark distributions, the lack of available DIS data

points in the region 0.05 ≤ x ≤ 0.45, resulting in fewer restrictions for these quark

distributions in that x range for the SOMPDF code, also explains why the quark model,

for both large and small Q2 values, is not as consistent with the collaborations’ model

as it is for lower x values. In the SOMPDF code the χ2 values are computed using the

relation shown in equation 4.1.

χ2 =
∑

i

[
F2

SOMPDF (xi, Q
2
i )− F2

EXP (xi, Q
2
i )
]2

(∆F2
EXP )2

(4.1)

The F2 values are proportionally much larger for smaller x than for larger x. This means

that the SOM PDFs that comprise the structure functions will not be as effected by the

GA and the Self Organizing process at larger x. The reason for this is because the GA

and the Self Organizing process use the χ2 values in order to evolve the PDFs from

their starting point to the final iteration result and the magnitude of the χ2 values that

determine the extent to which these processes evolve the PDFs are smaller at larger

x. The lack of consistency for the gluon PDFs to the collaboration PDFs and the

relatively weak gluon fit at lower Q2 is due to the fact that the gluon PDFs, as noted

previously, do not contribute to the structure functions and so the GA does not play a

direct role in evolving the gluon PDFs they same way it does for the quark PDFs. The

evolution of the gluon PDFs are more dependent on the self organizing process than the

evolution of the quark PDFs are since the gluon PDFs do not evolve in accordance to

the Self Organizing process and the GA in conjunction as the quark PDFs do. This also

leads to more fluctuations in the gluon PDFs, including fluctuations across different Q2

values. An additional factor in explaining the size of the error bands for the strange

quarks is the total set of experimental data used by the SOMPDF code relative to the
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experimental data used by the collaborations the code PDFs are contrasted against.

In the SOMPDF code and in the Alekhin [61] collaboration, only the Deep Inelastic

scattering data sets are used. The NNPDF [1] collaboration uses DIS data along with

HERA Charm structure function, Fixed Target Drell Yan production, Collider Vector

Boson and Collider Jet Production data. The CTEQ [58] collaboration uses DIS data

along with Drell Yan, Jet Production, γ and Jet Production, W Asymmetry and Z

Rapidity production data. The CJ collaboration [59] [60] uses DIS, Drell Yan and W -

asymmetry data. The more limited data sets used for fitting the structure functions

in the SOMPDF code and the Alekhin collaboration result in smaller error bands for

the strange quarks relative to those of the other collaborations analyzed because the the

increased amount of experimental data sets leads to an increased number of conditions for

the fitting procedures which leads to an increase on sources of statistical and systematic

uncertainties.
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Figure 4.4: The SOMPDF fit results for number of iterations for a 6× 6 map and a
1× 1 map with the equivalent PDFs generated per cycle and used in training.
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Figure 4.5: SOMPDF generated valence quark PDF (uv + dv) at Q2 = 150 GeV2

along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [58].
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Figure 4.6: SOMPDF generated difference between the up and down sea quark quark
PDF (u− d ) at Q2 = 150 GeV2 along with the following collaboration PDFs: CJ Mid

[59] [60] NNPDF [1] ABM [61] CT10 [58].
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Figure 4.7: SOMPDF generated up sea quark PDF u at Q2 = 150 GeV2 along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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Figure 4.8: SOMPDF generated gluon PDF at Q2 = 150 GeV2 along with the
following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].



SOMPDF PDF Fit Results 87

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.0001  0.001  0.01  0.1  1

P
D

F
s

x

NNPDF
CT10
ABM
6x6

CJMid

Figure 4.9: SOMPDF generated strange quark PDF at Q2 = 150 GeV2 along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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Figure 4.10: SOMPDF generated strange quark PDF at Q2 = 2.5 GeV2 along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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Figure 4.11: SOMPDF generated valence quark PDF (uv + dv) at Q2 = 2.5 GeV2

along with the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61]
CT10 [58].
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Figure 4.12: SOMPDF generated up sea quark PDF u at Q2 = 2.5 GeV2 along with
the following collaboration PDFs: CJ Mid [59] [60] NNPDF [1] ABM [61] CT10 [58].
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Figure 4.13: The pull of the SOMPDF generated Valence Quark PDF (uv + dv)
relative to collaboration PDFs is shown at Q2 = 150 GeV2 alongside the relative error
of the Valence Quark PDF. The collaboration PDFs are CJ Mid [59] [60] NNPDF [1]

ABM [61] and CT10 [58].
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Figure 4.14: The pull of the SOMPDF generated Valence Quark PDF (uv + dv)
relative to collaboration PDFs is shown at Q2 = 2.5 GeV2 alongside the relative error
of the Valence Quark PDF. The collaboration PDFs are CJ Mid [59] [60] NNPDF [1]
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Figure 4.15: The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at Q2 = 150 GeV2 alongside the relative error of the gluon Quark PDF.
The collaboration PDFs are CJ Mid [59] [60] NNPDF [1] ABM [61] and CT10 [58].
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Figure 4.16: The pull of the SOMPDF generated gluon PDF relative to collaboration
PDFs is shown at Q2 = 2.5 GeV2 alongside the relative error of the gluon PDF. The

collaboration PDFs are CJ Mid [59] [60] NNPDF [1] ABM [61] and CT10 [58].
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5 Large x Corrections

5.1 Target Mass Corrections

The fundamental issue about the large x data calculations was modifying the gpd eval-

uation code, designated here as the gpdeval.f90 module, so that it took into account

TMC and LxR.

The previous moment calculations were done using the NS spin operator and using

terms (M2

Q2 )n, which are negligible for Q2 � M2 but not for Q2 in the intermediate

range closer to M2. Nachtmann [71] accounted for this correction by writing the NS

moment relative to the structure function as shown in expression 5.1. These corrections

are applied specifically to the NS moments in 3.17. This is the Nachtmann moment;

this new moment represents the correction to the previous computation of the moments

accounting for TMC. Here, r is given in expression 5.2 and ζ is given in equation 5.3.

The relationship between the resulting Nachtmann moment µn(Q2) and Cornwall Norton

moment Mn(Q2), to NLO for the nth moment, is in expression 5.4. The TMC for the

structure functions are [72] equation 5.5. In the computation of the TMC the n = 2

moment was used.

Mn(Q2) =
∫ 1

x

ζn+1

x3
(
3 + 3(n+ 1)r + n(n+ 2)r2

(n+ 2)(n+ 3)
)dx (5.1)

r =

√
(1 +

4M2x2

Q2
) (5.2)

ζ =
2x

1 + r
(5.3)

µn(Q2) = Mn(Q2) +
n(n− 1)
n+ 2

M2

Q2
Mn+2(Q2) (5.4)

F TMC
2 (x,Q2) =

x2

r3
F2(ζ,Q2) +

6x3M2

Q2r4

∫ 1

ζ
dζ

′
F2(ζ

′
, Q2) (5.5)
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5.2 Large x Resummations

The next step is combining the target mass corrections with the large x Resummations.

As noted previously in subsection 3.17 the Q2 dependent parameters are wiggled during

the SOM and GA processes which is how we account for Perturbative QCD evolution.

However, there are still NLO corrections to the PDF computations consisting of (lnn)2

terms that result from the formation of virtual and real gluon emission mismatches.

These real and virtual gluon emissions are the two types of gluon corrections to the

deep inelastic scattering processes. For x values sufficiently far away from 1, the real

and virtual gluon emissions cancel each other out. However, in the limit x→ 1.0 there

is less phase space for real gluon emissions and they no longer cancer out virtual gluon

emissions. This results in terms of order (lnn)2 in the NLO corrections to the moments

of the structure functions. The method of renormalizing the moments of the structure

functions lacks the ability to properly resum these terms with powers of (lnn) with the

power 2 or higher and so the large x resummation is used to pick up the (lnn)2 terms so

that they can be used in the renormalization of the moments. The gpdeval.f90 module

is modified so that these Resummations are taken into account below. The large x

resummation starts with equation 5.6.

dF (x,Q2)
d lnQ2

=
∫ 1

x

αs(Q2)
2π

P (0)
qq F (

x

z
,Q2) dz (5.6)

The NLO corrections are formula 5.7.

dF (x,Q2)
d lnQ2

=
∫ 1

x

αs(Q2)
2π

P (0)
qq F (

x

z
,Q2) dz+

∫ 1

x
(
αs(Q2)

2π
)2[P (1)

qq −β/4BNS
n (z)]F (

x

z
,Q2) dz

(5.7)

The large x resummation technique uses the simple and eloquent solution of replacing

Q2 with Q2 (1−z)
z , which can be approximated to Q2(1− z) in the strong coupling αs in

the limit z → 1. This replacement results in the αs expansion given in equation 5.8.

dF (x,Q2)
d lnQ2

=
∫ 1

x

αs(Q2(1− z))
2π

P (0)
qq F (

x

z
,Q2) dz (5.8)
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The αs(Q2(1 − z)) term can be Taylor expanded while keeping terms up to order

(αs(Q2))2. This expansion is given in relation 5.9.

αs(Q2(1− z)) = αs(Q2)− β0 ln(1− z)(αs
2(Q2)) (5.9)

The resulting non singlet structure function with this newly expanded αs is expres-

sion 5.10.

dF (x,Q2)
d lnQ2

=
∫ 1

x

(
αs(Q2)

2π
P (0)

qq (z)− (
αs(Q2)

2π
)
2

(
β0

4
)2 ln(1− z)(P (0)

qq )(z)
)
F (
x

z
,Q2) dz

(5.10)

Switching on the NLO corrections to the non singlet structure functions, without using

the large x resummations, gives us, second order in αs, equation 5.11. In this expression,

P
(0)
qq is the Leading Order splitting function and P

(1)
qq is the next to Leading Order

splitting function. By observing the z dependent components in the expansion of BNS
n

in expression 3.61, and recalling the Leading Order splitting function formula in 2.4,

we can verify that that the structure function in expression 5.10 picks up the resulting

NLO expansion term expected in 5.11 from the ln(1− z) term in BNS
n .

dF (x,Q2)
d lnQ2

=
∫ 1

x

αs(Q2)
2π

P (0)
qq F (

x

z
,Q2) + (

αs(Q2)
2π

)2[P (1)
qq − β/4BNS

n (z)]F (
x

z
,Q2) dz

(5.11)

The terms from equation 5.10 can then be transformed from z space to N space using

the Mellin transform relative to the z variable. These Mellin transforms are given in

expression 5.12.

d

d lnQ2
(
αs(Q2)

4π
) = −β0((

αs(Q2)
4π

)2)− [β0
BNS

n

dNS
n

+
γn,NS

1

2dNS
n

]((
αs(Q2)

4π
)3) (5.12)

Similarly, we can take BNS terms, including those of order (lnn)2, in x space in equa-

tion 3.61 for the F2 structure function and transform them to N space.

The individual mellin transforms of each term in BNS are in formula 5.13.
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BNS
2 = C2(F )[3

n
Σ

j=1

1
j
−4

n
Σ

j=1

1
j2
− 2
n(n+ 1)

n
Σ

j=1

1
j

+4
n
Σ

s=1

1
s

s
Σ

j=1

1
j

+
3
n

+
4

n+ 1
− 2
n2
−9 (5.13)

equation 5.13 is the NLO moment to order (lnn)2 once the large x Resummations are

applied.

The scaling for αs(Q2) can further be changed to αs(Q2) → αs(Q2 1−z
z ).

The expansion of αs(Q2) can then be completed in expression 5.14.

αs(Q2 1− z

z
) =

4π

β0 ln
(Q2

Λ2
1−z

z

)
=

4π

β0

(
ln
(Q2

Λ2

)
+ ln

(
1−z

z

))
4π

β0 ln(Q2

Λ2 )

(
1

1 + ln( 1−z
z

)

ln(Q2

Λ2 )

) (5.14)

Given the mathematical approximation in 5.15, 5.14 can be reduced to an expansion

around αs(Q2).

1
1 + x

≈ 1− x (5.15)

Using the replacement x → ln( 1−z
z

)

ln(Q2

Λ2 )
in 5.15, the resulting expansion of αs(Q2 1−z

z ) is

5.16.

αs(Q2 1− z

z
) =

4π

β0 ln(Q2

Λ2 )

(
1−

ln(1−z
z )

ln(Q2

Λ2 )

)
=

4π

β0 ln
(Q2

Λ2

) − ln
(1− z

z

)β0

4π

(
4π

β0 ln(Q2

Λ2 )

)2

αs(Q2)− β0

2
ln
(1− z

z

) 1
2π

(αs(Q2))2
(5.16)

In this rescaling, when z gets large enough perturbative expansions are not sufficient

when evaluating the structure functions. When this rescaling is used, it is particularly
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useful to introduce a parameter zmax which can be used to split the structure function

integral into two sections. The first section, where perturbative expansions are sufficient,

is x < z < zmax and the second section, where perturbative expansions are not sufficient,

is zmax < z < 1.

With αs(Q2) replaced with αs(Q2 1−z
z ) the non singlet Structure Function distribution

can be rewritten as shown in 5.17.

dxq(x,Q2)
d lnQ2

=
∫ 1

x

dy

y

(
αs

2π
P (0)

qq (z) + (
αs

2π
)
2
[
P (1)

qq (z)− P (1)
qq (z)− β0

2
ln
(

ln
1− z

z

)
P (0)

qq (z)
])

(z)yq(y,Q2) =∫ 1

x

dy

y

(
αs

2π
P (0)

qq (z) + (
αs

2π
)
2
[
P (1)

qq (z)− P (1)
qq (z)− β0

4
BNS

n
ln z(z)− β0

4
BNS

n
divergent(z)

])
(z)yq(y,Q2)

(5.17)

The convergent and divergent components of BNS
n are equation 5.18 and equation 5.19.

BNS
ln z (z) = −2 ln(z)P (0)

qq (z) (5.18)

BNS
divergent(z) = 2 ln(1− z)P (0)

qq (z) (5.19)

The non singlet Altarelli-Parisi equations in 5.17 can also be converted to structure

function form as 5.20. This expression comes from using a new scaling parameter

(θ(z)) in the coupling constant, which can be set to (θ(z)) = W 2, so that the non singlet

expansion in NLO can be expressed in terms of the Wilson Coefficient BNS
2 . Because

the coupling αs is cut at the endpoints, they can be computed from the + function

computation can then be computed separately from the z integral of the non singlet

terms. The coupling constant also undergoes the shift αs(Q2z) → αs(Q2 1−z
z ), with W

2

set to W
2

= Q2 1−z
z .
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FNS
2 (x) = qNS(x) +

∫ 1

x
dz
αs(ln(θ(z)))

4π
Bq(z)qNS(

x

z
) =

qNS(x) +
∫ 1

x
dz
αs(W

2
)

4π
[
P 0

qq(z)
(
ln(1− z)− ln z − 3

2
)

+
1
2
(9 + 5z)

]
qNS(

x

z
) =

qNS(x) +
∫ 1

x
dz
αs(Q2) + δαs(z,Q2)

4π
[
P 0

qq(z)
(
ln(1− z)− ln z − 3

2
)

+
1
2
(9 + 5z)

]
qNS(

x

z
)

(5.20)

The logarithmic terms in equation 5.20 can be expressed as equation 5.21.

αs(Q2)
4π

ln(1− z) =
1
2

∫ Q2

Q2
0

d lnQ2αs(W
2
)− αs(Q2)
2π

=
1
β0

ln
(

1 +
ln(1− z)
lnQ2/Λ2

)
(5.21)

The ln(1− z) expansion terms can be rewritten [73] in formula 5.22.

ln(1− z) =
1

αs,LO(Q2)

∫ Q2

Q2
0

d lnQ2[αs,LO(Q2(1− z))− αs,LO(Q2)]

→ 1
αs,LO(Q2)β0

ln
(

1 +
ln(1− z)
lnQ2/Λ2

) (5.22)

This gives a new expression for the non singlet structure functions in equation 5.23.

FNS
2 (x) = qNS(x) +

∫ 1

x
dz
αs(Q2)

4π

[
P 0

qq(z)
(
− ln z − 3

2

)
+

1
2
(9 + 5z)+

P 0
qq(z)

4π
β0αs,LO(Q2)

ln
(

1 +
ln(1− z)
lnQ2/Λ2

)]
qNS(

x

z
)

(5.23)

Once the NS structure function has been rewritten in this manner, the integrals should

be split according to a given zmax endpoint using the + functions to split the integral

into two ranges, one for z < zmax and the other for z > zmax in equation 5.24.
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∫ 1

x
dz

[
Θ(−z + zmax) ln

(
1 +

ln(1− z)
lnQ2/Λ2

)[
1

1− z

]
+

+ Θ(z − zmax) ln
(

1 +
ln(1− zmax)

lnQ2/Λ2

)
1

1− z

]
(5.24)

Evaluating the step functions in expression 5.24 results in expression 5.25.

∫ zmax

x
dz

[
ln
(

1 +
ln(1− z)
lnQ2/Λ2

)[
1

1− z

]
+

+
∫ 1

zmax

dz ln
(

1 +
ln(1− zmax)

lnQ2/Λ2

)
1

1− z

]
(5.25)

A new set of splitting functions is equation 5.26.

∫ 1

0
dz

[
f(z)
1− z

]
+

=
∫ 1

a
dz

[
f(z)
1− z

]
+

+
∫ a

b
dz

[
f(z)
1− z

]
+

+
∫ b

0
dz

[
f(z)
1− z

]
+∫ 1

a
dz

[
f(z)
1− z

]
+

=
∫ 1

0
dz

[
f(z)
1− z

]
+

−
∫ a

b
dz

[
f(z)
1− z

]
+

−
∫ b

0
dz

[
f(z)
1− z

]
+∫ 1

a
dz

[
f(z)
1− z

]
+

∫ 1

0
dz =

∫ 1

0
dz
f(z)− f(1)

1− z
−
∫ a

0
dz

f(z)
1− z∫ 1

a
dz

[
f(z)
1− z

]
+

∫ 1

a
dz =

∫ 1

a
dz
f(z)− f(1)

1− z
+
∫ a

0
dz
f(z)− f(1)

1− z
−
∫ a

0
dz

f(z)
1− z

(5.26)

A resulting form for
∫ 1
zmax

dz

[
f(z)
1−z

]
+

is equation 5.27.

∫ 1

zmax

dz

[
f(z)
1− z

]
+

=
∫ 1

zmax

dz
f(z)− f(1)

1− z
− f(1)

∫ zmax

0

dz

1− z
(5.27)

This means equation 5.25 can be written using the expression in equation 5.28.
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∫ zmax

x
dz ln

(
1 +

ln(1− z)
lnQ2/Λ2

)
1 + z2

1− z

∼
qNS(

x

z
)

+
(∫ 1

zmax

[
1 + z2

1− z

]
+

∼
qNS(

x

z
)
)
× ln

(
1 +

ln(1− zmax

lnQ2/Λ2

)
∫ zmax

x
dz ln

(
1 +

ln(1− z)
lnQ2/Λ2

)
1 + z2

1− z

∼
qNS(

x

z
)

+
∫ 1

zmax

dz
(1 + z2)

∼
qNS(x

z )− 2
∼
qNS(x)

1− z
× ln

(
1 +

ln(1− zmax)
lnQ2/Λ2

)
−2
∼
qNS(x)

∫ zmax

0

dz

1− z
× ln

(
1 +

ln(1− zmax)
lnQ2/Λ2

)
∫ zmax

x
dz ln

(
1 +

ln(1− z)
lnQ2/Λ2

)
1 + z2

1− z

∼
qNS(

x

z
)

+
∫ 1

zmax

dz
(1 + z2)

∼
qNS(x

z )− 2
∼
qNS(x)

1− z
× ln

(
1 +

ln(1− zmax)
lnQ2/Λ2

)
−2
∼
qNS(x) ln(1− zmax)× ln

(
1 +

ln(1− zmax)
lnQ2/Λ2

)

(5.28)

The endpoints of equation 5.28 are equation 5.29.

P = r

∫ zmax

0
dz

1 + z2

1− z
ln
(

1 +
ln(1− z)
lnQ2/Λ2

)
1

αs,LO(q2)

+
(∫ 1−Λ2/Q2

zmax

dz(−)(1 + z)
)
× ln

(
1 +

ln(1− zmax)
lnQ2/Λ2

)
1

αs,LO(q2)

(5.29)

The large x corrections are implemented in the SOMPDF procedure by using the new

expression for In(1− z) written equation 5.22 and performing the subsequent integrals

over x for the structure function FNS
2 (x). The large x experimental data sets and PDF

computations are centered on the regions of x and Q2 that are defined in terms of

W 2 such that 1.0 ≤ W 2 ≤ 4.0 with W 2 being the same kinematic defined in Chapter

1, W 2 = Q2(1 − 1
x) + M2, and with M being the mass of the target hadron. The

experimental structure functions at these x and Q2 values comprise the resonance data

sets which the SOMPDF code needs to fit the structure functions to at large x.
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5.3 Averaging the Resonance Region with the Bernstein Moments

For large x data values, the Deuteron Structure Function FD
2 and the Proton Structure

Function FP
2 are taken from sets of resonance data sets for each of these structure

function types. The generated theoretical structure functions are fitted to resonance data

from [74] and [75]. The resonance region data, for FD
2 and FP

2 , needs to be averaged

over the resonance region so that the SOM and GA procedure can fit the generated

theoretical structure functions to smooth curves of data sets. The Mellin Moment was

the first attempt to average out the resonance region and form a continuous set of large

x data. However, these moment computations did not sufficiently factor in the behaviors

at large x where the resonance phenomena occurs. To address this, a new attempt was

made use integrated moments that could form a continuous large x data set with the

non resonance data; this attempt was the Bernstein polynomials.

The x values and the error values on the x values are given by the corresponding Bern-

stein polynomials. The specific polynomials are given in relation 5.30- equation 5.32 for

x and equation 5.33 for the error in x.

pN,k(x) = xk(1− x)N−kCN,k (5.30)

CN,k =
Γ(N + 2)

Γ(k + 1)Γ(N − k + 1)
(5.31)

xN,k =
∫ 1

0
dx x pN,k(x) =

k + 1
N + 2

(5.32)

(∆x)2 =
N − k + 1

(N + 2)2 (N + 3)
(5.33)

In relation 5.30- equation 5.33, x is the Bjorken x value over which the Bernstein integral

is being done, F x
2 is the structure function for a specific Q2 value at a given x value, N

is the total number of Bernstein Moments used and i is the ith Bernstein Moment being

computed. The constant CN,k is a Gamma Function related constant that is given in

relation 5.31. In the above equations, N is the total number of Bernstein Moments being
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used in the Bernstein integrals and i is the specific Bernstein Moment being calculated.

For our computations, there are 16 Bernstein moments being used so N is set at 15 and

i ranges from 0 to 15; in this case, i = 3 as an example would be used to determine the

4th Bernstein integral moment in the computation of x in expression 5.32 and the 4th

Bernstein integral moment of the error on x in expression 5.33.

The Bernstein Moment is shown in relation 5.34. The Bernstein error on F2 is cal-

culated by using the Bernstein integrals with the error in F2 in the same manner as

the Bernstein errors on the F2 values themselves are calculated. The Bernstein error is

shown in relation 5.35. The Proton and Deuteron structure functions for which the Res-

onance Bernstein values and the extrapolated functions are plotted are in formula 5.36

- equation 5.38.

F
(exp)
N,k (Q2) =

∫ 1

0
dx pN,k(x) F

(exp)
2 (x,Q2) (5.34)

(
∆F (err)

N,k (Q2)
)2

=
∑

i

[
pN,k(xi)F

(err)
i (xi, Q

2)∆xi

]2

(5.35)

In table 5.1, a functional form is determined for the proton structure functions based

on the Bernstein Moment values. In table 5.2, the integrals of the structure functions

are shown when they are computed by integration of the resonance and extrapolation

regions, the Bernstein points and the functional forms shown in table 5.1. These integral

tables are computed as a check on the Bernstein integration method to demonstrate that

this technique can be used with reasonable accuracy to compute the Bernstein Moments

of resonance data points. The integrations from the resonance data, Bernstein Moments

and the functional forms all show agreement with each other within 15% error; the

reliability of the Bernstein technique is therefore verified. In the tables 5.3 - 5.20, the

Bernstein integrals for F2(xk) were computed in the x range (xmin, xmax) where xmin

and xmax are the minimum and maximum x values of the resonance region in x for each

Q2 value where resonance F2 data points exist. In addition, the Bernstein integrals in

the x ranges (0, xmin) are calculated using the extrapolated F2 values computed from the

CT10 PDFs in these regions. The CT10 PDF extrapolation is performed in the region

(0, xmin) with the PDF combinations
∑

i e
2
i qi(Q

2, x) where ei is the parton charge and

qi(Q2, x) is the PDF value for a given parton.
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In Figure 5.1 - 5.4, the resonance data figures and their Bernstein averages are shown

along with a series of Bernstein integrands used to compute the averages. This is done by

computing the value of F2 using the combinations of PDFs for the proton and deuteron

structure functions shown in expression 5.36 and equation 5.38, with the neutron struc-

ture function given in equation 5.37. For the deuteron structure function, the smearing

factor Sp is included in the computation of the deuteron structure function. The smear-

ing factor comes from the deuteron structure functions being smeared with the momen-

tum of the nucleons in the deuteron. The resulting binding, Fermi motion and off shell

structure corrections result in the deuteron structure function being dependent on the

smearing factors. These integrands are the Bernstein functions pN,k(x) F
(exp)
2 (x,Q2)

over the total range (0, xmax) calculated in order to find each of the k Bernstein points

for each Q2 range. The figures indicate that the Bernstein integration moments pick

up resonance peaks as the cover greater regions of x where the resonance regions are

located. The closer they align with the x ranges of the resonance regions, the more

they pick up the values of the resonance peaks. In Figure 5.5 - 5.40, the computed

Bernstein averages along with the extrapolated curves are shown for all Q2 values for x

and W 2 values inside and outside the resonance regions. In Figure 5.41 an example of

a resonance curve in the in the Q2 interval (2.9 : 3.9) (GeV2) to show how the resonance

curve changes as a result of an increased value of N . In Figure 5.42 an envelope of F D
2

F P
2

curves for Q2 = 3.4 GeV2 is shown to illustrate the ability of the SOMPDF procedure

to create unbiased fits for large x data as well as DIS data. In Figure 5.43 a generated

curve for Q2 = 7 GeV2 for d
u for a 6× 6 and a 1× 1 map is displayed with the lagrange

error.

FP
2 (Q2, x)
x

=
4
9
(uv(Q2, x) + 2u(Q2, x)) +

1
9
(dv(Q2, x) + 2d(Q2, x)) +

1
9
s(Q2, x) (5.36)

FN
2 (Q2, x)

x
=

4
9
(dv(Q2, x) + 2d(Q2, x)) +

1
9
(uv(Q2, x) + 2u(Q2, x)) +

1
9
s(Q2, x) (5.37)

FD
2 (Q2, x)

x
=

1
2
SpF

N
2 (Q2, x) + SpF

P
2 (Q2, x) (5.38)
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Table 5.1: Functional Form Approximating the Bernstein Moment Curve for various
Q2 values

Q2 GeV2 Functional Form a b c
0.55 (a(1− x)4 + bx4 ) 0.777285 1.19712 0.0
1.0 ( a(1− x)− bx+ c(1− x)x ) 0.46873 0.0774563 0.0283069
1.8 ( a(1− x)3 + bx2 ) 1.26009 0.0699836 0.0
2.5 ( a(1− x)0.5 − bx0.5 − c(1− x)x ) 0.7408 0.165159 0.841746
3.4 ( a(1− x)− bx− c(1− x)x ) 0.567944 0.00827568 0.406153
5.7 ( a(1− x)4 + bx3 ) 5.0532 0.0205239 0.0
7.0 ( a(1− x)− bx− c(1− x)x ) 0.369392 0.00113869 0.306584
8.2 ( a(1− x)5 + bx6 ) 20.1298 0.0155009 0.0
9.6 ( a(1− x)2.+ b(1− x)x− cx2 ) 0.303746 0.0384961 0.000667997

Table 5.2: Integral values of Resonance Data Points with Errors, Bernstein Moments
with Errors and Functional forms for various Q2 values

Q2 GeV2 Resonance Bernstein Functional Resonance Unc Bernstein Unc
0.55 0.097286 0.1079 0.09735 4.2264E-04 2.6210E-04
1.0 0.11494 0.120381 0.121119 2.7484E-04 1.9697E-04
1.8 7.4188E-02 6.7255E-02 7.1065E-02 2.0064E-04 1.2309E-04
2.5 5.0253E-02 5.0650E-02 5.5433E-02 2.2534E-04 1.5350E-04
3.4 2.7969E-02 2.4721E-02 2.9112E-02 1.1580E-04 8.1337E-05
5.7 8.5448E-03 8.0573E-03 8.3974E-03 2.1821E-04 7.3200E-05
7.0 4.5377E-03 3.8151E-03 5.2264E-03 2.01616E-04 8.0562E-05
8.2 3.4128E-03 3.4724E-03 3.2301E-03 3.2299E-04 4.1881E-05
9.6 1.8364E-03 1.4628E-03 2.1553E-03 2.8876E-04 2.6195E-05
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Figure 5.1: The FP
2 resonance moment integrands and corresponding Bernstein mo-

ment points, for Q2 = 0.55 GeV2, are shown for the 5th, 6th, 7th, 8th and 9th moments.
The filled squares are the Bernstein moment points and the crosses are the correspond-

ing Bernstein moment resonance integrands.
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Figure 5.2: The FP
2 resonance moment integrands and corresponding Bernstein mo-

ment points, for Q2 = 2.5 GeV2, are shown for the 6th, 7th, 8th and 9th moments. The
filled squares are the Bernstein moment points and the crosses are the corresponding

Bernstein moment resonance integrands
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Figure 5.3: The FP
2 resonance moment integrands and corresponding Bernstein mo-

ment points, for Q2 = 3.4 GeV2, are shown for the 9th, 10th,11th and 12th moments.
The filled squares are the Bernstein moment points and the crosses are the correspond-

ing Bernstein moment resonance integrands
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Figure 5.4: The FP
2 resonance moment integrands and corresponding Bernstein mo-

ment points, for Q2 = 8.2 GeV2, are shown for the 13th,14th and 15th moments. The
filled squares are the Bernstein moment points and the crosses are the corresponding

Bernstein moment resonance integrands
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Figure 5.5: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 0.55 GeV2.
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Figure 5.6: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the W 2

range that constitutes the resonance region for Q2 = 0.55 GeV2.
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Table 5.3: Table of Q2 = 0.55 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist, which for this Q2

value is (0.17, 0.58).

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3627 0.3908E-02 0.0374 0.9592
1.00 0.1176 0.0537 0.3676 0.3666E-02 0.1605 0.8289
2.00 0.1765 0.0519 0.3503 0.3017E-02 0.3667 0.6168
3.00 0.2353 0.0500 0.3176 0.2064E-02 0.6007 0.3827
4.00 0.2941 0.0480 0.2813 0.1289E-02 0.7953 0.1929
5.00 0.3529 0.0460 0.2484 0.9720E-03 0.9161 0.0777
6.00 0.4118 0.0438 0.2180 0.9930E-03 0.9723 0.0252
7.00 0.4706 0.0416 0.1837 0.1072E-02 0.9924 0.0068
8.00 0.5294 0.0392 0.1410 0.1032E-02 0.9982 0.0016
9.00 0.5882 0.0367 0.9387E-01 0.8270E-03 0.9996 0.0004
10.0 0.6471 0.0340 0.5191E-01 0.5330E-03 0.9999 0.0001
11.0 0.7059 0.0310 0.2294E-01 0.2680E-03 1.0000 0.0000
12.0 0.7647 0.0277 0.7743E-02 0.1010E-03 1.0000 0.0000
13.0 0.8235 0.0240 0.1871E-02 0.2700E-04 1.0000 0.0000
14.0 0.8824 0.0196 0.2880E-03 0.5000E-05 1.0000 0.0000
15.0 0.9412 0.0139 0.2100E-04 0.000 1.0000 0.0000

Table 5.4: Table of Q2 = 0.55 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist, which for this Q2

value is (0.17, 0.58).

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3468 0.3571E-02 0.0362 0.9604
1.00 0.1176 0.0537 0.3429 0.3355E-02 0.1571 0.8318
2.00 0.1765 0.0519 0.3210 0.2785E-02 0.3612 0.6213
3.00 0.2353 0.0500 0.2868 0.1879E-02 0.5945 0.3876
4.00 0.2941 0.0480 0.2514 0.1078E-02 0.7909 0.1962
5.00 0.3529 0.0460 0.2214 0.7030E-03 0.9143 0.0789
6.00 0.4118 0.0438 0.1960 0.7460E-03 0.9720 0.0253
7.00 0.4706 0.0416 0.1691 0.9100E-03 0.9925 0.0067
8.00 0.5294 0.0392 0.1357 0.9880E-03 0.9983 0.0015
9.00 0.5882 0.0367 0.9677E-01 0.8910E-03 0.9996 0.0003
10.0 0.6471 0.0340 0.5894E-01 0.6490E-03 0.9999 0.0001
11.0 0.7059 0.0310 0.2954E-01 0.3730E-03 1.0000 0.0000
12.0 0.7647 0.0277 0.1164E-01 0.1640E-03 1.0000 0.0000
13.0 0.8235 0.0240 0.3377E-02 0.5200E-04 1.0000 0.0000
14.0 0.8824 0.0196 0.6400E-03 0.1100E-04 1.0000 0.0000
15.0 0.9412 0.0139 0.5900E-04 0.1000E-05 1.0000 0.0000
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Figure 5.7: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 0.55 GeV2.
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Figure 5.8: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(0.53 : 0.63) and blue points are the Bernstein averages for those points in the W 2

range that constitutes the resonance region for Q2 = 0.55 GeV2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

F
2P

Q2 = 1 GeV2

x

Res
Bernstein

Figure 5.9: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1 GeV2.
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Figure 5.10: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 1 GeV2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

F
2D

Q2 = 1 GeV2

x

Res
Bernstein

Figure 5.11: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1 GeV2.
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Figure 5.12: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(0.8 : 1.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 1 GeV2.
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Figure 5.13: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1.8 GeV2.
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Table 5.5: Table of Q2 = 1 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3646 0.3914E-02 0.0193 0.9778
1.00 0.1176 0.0537 0.3770 0.3744E-02 0.0979 0.8909
2.00 0.1765 0.0519 0.3721 0.3276E-02 0.2565 0.7222
3.00 0.2353 0.0500 0.3504 0.2444E-02 0.4694 0.5044
4.00 0.2941 0.0480 0.3182 0.1543E-02 0.6800 0.2969
5.00 0.3529 0.0460 0.2821 0.9010E-03 0.8398 0.1449
6.00 0.4118 0.0438 0.2466 0.6230E-03 0.9343 0.0579
7.00 0.4706 0.0416 0.2142 0.5470E-03 0.9781 0.0188
8.00 0.5294 0.0392 0.1855 0.5380E-03 0.9941 0.0049
9.00 0.5882 0.0367 0.1576 0.5590E-03 0.9987 0.0010
10.0 0.6471 0.0340 0.1260 0.5580E-03 0.9998 0.0002
11.0 0.7059 0.0310 0.8944E-01 0.4960E-03 1.0000 0.0000
12.0 0.7647 0.0277 0.5267E-01 0.3790E-03 1.0000 0.0000
13.0 0.8235 0.0240 0.2377E-01 0.2380E-03 1.0000 0.0000
14.0 0.8824 0.0196 0.7263E-02 0.1070E-03 1.0000 0.0000
15.0 0.9412 0.0139 0.1129E-02 0.2500E-04 1.0000 0.0000

Table 5.6: Table of Q2 = 1 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3477 0.3577E-02 0.0175 0.9797
1.00 0.1176 0.0537 0.3482 0.3440E-02 0.0915 0.8976
2.00 0.1765 0.0519 0.3347 0.3070E-02 0.2450 0.7338
3.00 0.2353 0.0500 0.3082 0.2317E-02 0.4557 0.5176
4.00 0.2941 0.0480 0.2746 0.1446E-02 0.6681 0.3079
5.00 0.3529 0.0460 0.2396 0.7850E-03 0.8321 0.1517
6.00 0.4118 0.0438 0.2069 0.4720E-03 0.9305 0.0611
7.00 0.4706 0.0416 0.1783 0.3890E-03 0.9768 0.0199
8.00 0.5294 0.0392 0.1534 0.3800E-03 0.9937 0.0052
9.00 0.5882 0.0367 0.1297 0.3850E-03 0.9986 0.0011
10.0 0.6471 0.0340 0.1042 0.3690E-03 0.9998 0.0002
11.0 0.7059 0.0310 0.7570E-01 0.3150E-03 1.0000 0.0000
12.0 0.7647 0.0277 0.4682E-01 0.2380E-03 1.0000 0.0000
13.0 0.8235 0.0240 0.2284E-01 0.1520E-03 1.0000 0.0000
14.0 0.8824 0.0196 0.7747E-02 0.7000E-04 1.0000 0.0000
15.0 0.9412 0.0139 0.1361E-02 0.1700E-04 1.0000 0.0000
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Table 5.7: Table of Q2 = 1.8 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3664 0.3892E-02 0.0009 0.9987
1.00 0.1176 0.0537 0.3770 0.3763E-02 0.0078 0.9887
2.00 0.1765 0.0519 0.3745 0.3519E-02 0.0348 0.9522
3.00 0.2353 0.0500 0.3606 0.3188E-02 0.1024 0.8671
4.00 0.2941 0.0480 0.3376 0.2793E-02 0.2239 0.7250
5.00 0.3529 0.0460 0.3062 0.2239E-02 0.3914 0.5438
6.00 0.4118 0.0438 0.2682 0.1573E-02 0.5765 0.3591
7.00 0.4706 0.0416 0.2272 0.9900E-03 0.7442 0.2049
8.00 0.5294 0.0392 0.1871 0.6280E-03 0.8687 0.0989
9.00 0.5882 0.0367 0.1504 0.4530E-03 0.9440 0.0396
10.0 0.6471 0.0340 0.1178 0.3640E-03 0.9805 0.0130
11.0 0.7059 0.0310 0.8790E-01 0.3070E-03 0.9945 0.0034
12.0 0.7647 0.0277 0.5918E-01 0.2490E-03 0.9987 0.0008
13.0 0.8235 0.0240 0.3273E-01 0.1700E-03 0.9998 0.0002
14.0 0.8824 0.0196 0.1282E-01 0.8400E-04 1.0000 0.0000
15.0 0.9412 0.0139 0.2609E-02 0.2200E-04 1.0000 0.0000

Table 5.8: Table of Q2 = 1.8 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.2772 0.3358E-02 0.0073 0.9927
1.00 0.1176 0.0537 0.1727 0.2346E-02 0.0933 0.9067
2.00 0.1765 0.0519 0.1248 0.1403E-02 0.4864 0.5136
3.00 0.2353 0.0500 0.1626 0.1817E-02 0.8809 0.1191
4.00 0.2941 0.0480 0.2427 0.2776E-02 0.9817 0.0183
5.00 0.3529 0.0460 0.3000 0.3191E-02 0.9974 0.0026
6.00 0.4118 0.0438 0.2992 0.2787E-02 0.9996 0.0004
7.00 0.4706 0.0416 0.2505 0.1895E-02 1.0000 0.0000
8.00 0.5294 0.0392 0.1866 0.1037E-02 1.0000 0.0000
9.00 0.5882 0.0367 0.1322 0.5120E-03 1.0000 0.0000
10.0 0.6471 0.0340 0.9350E-01 0.2980E-03 1.0000 0.0000
11.0 0.7059 0.0310 0.6659E-01 0.2180E-03 1.0000 0.0000
12.0 0.7647 0.0277 0.4642E-01 0.1650E-03 1.0000 0.0000
13.0 0.8235 0.0240 0.3132E-01 0.1270E-03 1.0000 0.0000
14.0 0.8824 0.0196 0.2306E-01 0.1090E-03 1.0000 0.0000
15.0 0.9412 0.0139 0.2327E-01 0.1510E-03 1.0000 0.0000
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Figure 5.14: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 1.8 GeV2.
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Figure 5.15: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 1.8 GeV2.
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Figure 5.16: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(1.5 : 2.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 1.8 GeV2.
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Figure 5.17: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 2.5 GeV2.
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Figure 5.18: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 2.5 GeV2.
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Figure 5.19: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 2.5 GeV2.
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Table 5.9: Table of Q2 = 2.5 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3822 0.3736E-02 0.0001 0.9998
1.00 0.1176 0.0537 0.3785 0.3594E-02 0.0009 0.9981
2.00 0.1765 0.0519 0.3664 0.3346E-02 0.0059 0.9891
3.00 0.2353 0.0500 0.3446 0.3092E-02 0.0241 0.9586
4.00 0.2941 0.0480 0.3170 0.2939E-02 0.0717 0.8866
5.00 0.3529 0.0460 0.2864 0.2780E-02 0.1650 0.7596
6.00 0.4118 0.0438 0.2537 0.2461E-02 0.3073 0.5874
7.00 0.4706 0.0416 0.2190 0.1948E-02 0.4815 0.4021
8.00 0.5294 0.0392 0.1830 0.1354E-02 0.6570 0.2396
9.00 0.5882 0.0367 0.1474 0.8480E-03 0.8038 0.1221
10.0 0.6471 0.0340 0.1143 0.5160E-03 0.9055 0.0520
11.0 0.7059 0.0310 0.8508E-01 0.3280E-03 0.9627 0.0180
12.0 0.7647 0.0277 0.5933E-01 0.2250E-03 0.9881 0.0050
13.0 0.8235 0.0240 0.3621E-01 0.1640E-03 0.9970 0.0011
14.0 0.8824 0.0196 0.1674E-01 0.1060E-03 0.9993 0.0002
15.0 0.9412 0.0139 0.4250E-02 0.4100E-04 1.0000 0.0000

Table 5.10: Table of Q2 = 2.5 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3644 0.3418E-02 0.0001 0.9999
1.00 0.1176 0.0537 0.3481 0.3315E-02 0.0008 0.9984
2.00 0.1765 0.0519 0.3259 0.3188E-02 0.0052 0.9903
3.00 0.2353 0.0500 0.2969 0.3018E-02 0.0218 0.9623
4.00 0.2941 0.0480 0.2653 0.2843E-02 0.0664 0.8938
5.00 0.3529 0.0460 0.2336 0.2577E-02 0.1560 0.7702
6.00 0.4118 0.0438 0.2026 0.2144E-02 0.2952 0.5996
7.00 0.4706 0.0416 0.1717 0.1578E-02 0.4680 0.4136
8.00 0.5294 0.0392 0.1411 0.1010E-02 0.6443 0.2487
9.00 0.5882 0.0367 0.1118 0.5780E-03 0.7940 0.1281
10.0 0.6471 0.0340 0.8515E-01 0.3300E-03 0.8991 0.0553
11.0 0.7059 0.0310 0.6215E-01 0.2080E-03 0.9594 0.0195
12.0 0.7647 0.0277 0.4346E-01 0.1420E-03 0.9872 0.0054
13.0 0.8235 0.0240 0.2998E-01 0.1000E-03 0.9971 0.0011
14.0 0.8824 0.0196 0.2329E-01 0.8800E-04 0.9996 0.0001
15.0 0.9412 0.0139 0.2247E-01 0.1260E-03 1.0000 0.0000
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Figure 5.20: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(2.3 : 2.5) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 2.5 GeV2.
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Table 5.11: Table of Q2 = 3.4 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3949 0.3624E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3799 0.3468E-02 0.0000 0.9999
2.00 0.1765 0.0519 0.3611 0.3209E-02 0.0004 0.9995
3.00 0.2353 0.0500 0.3332 0.2953E-02 0.0026 0.9970
4.00 0.2941 0.0480 0.2987 0.2792E-02 0.0112 0.9875
5.00 0.3529 0.0460 0.2613 0.2640E-02 0.0369 0.9593
6.00 0.4118 0.0438 0.2247 0.2397E-02 0.0969 0.8953
7.00 0.4706 0.0416 0.1911 0.2041E-02 0.2060 0.7810
8.00 0.5294 0.0392 0.1604 0.1591E-02 0.3627 0.6204
9.00 0.5882 0.0367 0.1315 0.1101E-02 0.5434 0.4391
10.0 0.6471 0.0340 0.1037 0.6680E-03 0.7140 0.2715
11.0 0.7059 0.0310 0.7750E-01 0.3750E-03 0.8472 0.1431
12.0 0.7647 0.0277 0.5372E-01 0.2350E-03 0.9324 0.0626
13.0 0.8235 0.0240 0.3305E-01 0.1830E-03 0.9758 0.0221
14.0 0.8824 0.0196 0.1614E-01 0.1410E-03 0.9931 0.0063
15.0 0.9412 0.0139 0.4626E-02 0.6600E-04 0.9985 0.0015

Table 5.12: Table of Q2 = 3.4 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3766 0.3316E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3491 0.3201E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3209 0.3061E-02 0.0003 0.9996
3.00 0.2353 0.0500 0.2868 0.2888E-02 0.0021 0.9975
4.00 0.2941 0.0480 0.2494 0.2722E-02 0.0092 0.9894
5.00 0.3529 0.0460 0.2119 0.2511E-02 0.0309 0.9649
6.00 0.4118 0.0438 0.1769 0.2217E-02 0.0828 0.9081
7.00 0.4706 0.0416 0.1457 0.1847E-02 0.1800 0.8044
8.00 0.5294 0.0392 0.1180 0.1417E-02 0.3251 0.6539
9.00 0.5882 0.0367 0.9314E-01 0.9650E-03 0.5009 0.4764
10.0 0.6471 0.0340 0.7080E-01 0.5620E-03 0.6767 0.3036
11.0 0.7059 0.0310 0.5135E-01 0.2810E-03 0.8224 0.1641
12.0 0.7647 0.0277 0.3524E-01 0.1370E-03 0.9206 0.0722
13.0 0.8235 0.0240 0.2256E-01 0.8800E-04 0.9727 0.0245
14.0 0.8824 0.0196 0.1324E-01 0.8700E-04 0.9935 0.0057
15.0 0.9412 0.0139 0.7927E-02 0.1930E-03 0.9992 0.0006
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Figure 5.21: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 3.4 GeV2.
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Figure 5.22: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 3.4 GeV2.
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Figure 5.23: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 3.4 GeV2.
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Figure 5.24: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(2.9 : 3.9) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 3.4 GeV2.
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Table 5.13: Table of Q2 = 5.7 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4148 0.3466E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3815 0.3286E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3541 0.3011E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.3207 0.2756E-02 0.0000 0.9999
4.00 0.2941 0.0480 0.2818 0.2593E-02 0.0002 0.9995
5.00 0.3529 0.0460 0.2396 0.2438E-02 0.0013 0.9974
6.00 0.4118 0.0438 0.1972 0.2220E-02 0.0058 0.9893
7.00 0.4706 0.0416 0.1578 0.1964E-02 0.0212 0.9639
8.00 0.5294 0.0392 0.1240 0.1726E-02 0.0628 0.9014
9.00 0.5882 0.0367 0.9681E-01 0.1523E-02 0.1505 0.7823
10.0 0.6471 0.0340 0.7504E-01 0.1298E-02 0.2925 0.6096
11.0 0.7059 0.0310 0.5647E-01 0.9890E-03 0.4716 0.4171
12.0 0.7647 0.0277 0.3960E-01 0.6270E-03 0.6541 0.2463
13.0 0.8235 0.0240 0.2457E-01 0.3430E-03 0.8082 0.1221
14.0 0.8824 0.0196 0.1239E-01 0.2160E-03 0.9143 0.0486
15.0 0.9412 0.0139 0.3950E-02 0.1140E-03 0.9706 0.0149

Table 5.14: Table of Q2 = 5.7 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.3958 0.3173E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3503 0.3036E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3141 0.2878E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.2756 0.2697E-02 0.0000 0.9999
4.00 0.2941 0.0480 0.2351 0.2525E-02 0.0002 0.9996
5.00 0.3529 0.0460 0.1948 0.2315E-02 0.0011 0.9977
6.00 0.4118 0.0438 0.1566 0.2054E-02 0.0052 0.9903
7.00 0.4706 0.0416 0.1227 0.1791E-02 0.0189 0.9672
8.00 0.5294 0.0392 0.9427E-01 0.1583E-02 0.0558 0.9104
9.00 0.5882 0.0367 0.7161E-01 0.1424E-02 0.1336 0.8017
10.0 0.6471 0.0340 0.5355E-01 0.1226E-02 0.2617 0.6414
11.0 0.7059 0.0310 0.3852E-01 0.9200E-03 0.4300 0.4558
12.0 0.7647 0.0277 0.2583E-01 0.5570E-03 0.6140 0.2801
13.0 0.8235 0.0240 0.1580E-01 0.2680E-03 0.7851 0.1404
14.0 0.8824 0.0196 0.8917E-02 0.1260E-03 0.9151 0.0498
15.0 0.9412 0.0139 0.5163E-02 0.6300E-04 0.9841 0.0083
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Figure 5.25: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 5.7 GeV2.
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Figure 5.26: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 5.7 GeV2.
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Figure 5.27: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 5.7 GeV2.
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Figure 5.28: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(5.3 : 6.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 5.7 GeV2.
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Figure 5.29: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 7 GeV2.
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Table 5.15: Table of Q2 = 7 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4220 0.3414E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3819 0.3224E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3515 0.2945E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.3164 0.2690E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2765 0.2526E-02 0.0000 0.9999
5.00 0.3529 0.0460 0.2338 0.2368E-02 0.0002 0.9996
6.00 0.4118 0.0438 0.1907 0.2150E-02 0.0013 0.9980
7.00 0.4706 0.0416 0.1500 0.1893E-02 0.0057 0.9916
8.00 0.5294 0.0392 0.1141 0.1644E-02 0.0204 0.9713
9.00 0.5882 0.0367 0.8445E-01 0.1418E-02 0.0607 0.9192
10.0 0.6471 0.0340 0.6152E-01 0.1203E-02 0.1488 0.8131
11.0 0.7059 0.0310 0.4422E-01 0.1029E-02 0.2990 0.6456
12.0 0.7647 0.0277 0.3080E-01 0.9280E-03 0.4966 0.4424
13.0 0.8235 0.0240 0.1978E-01 0.7860E-03 0.6968 0.2528
14.0 0.8824 0.0196 0.1060E-01 0.5460E-03 0.8531 0.1160
15.0 0.9412 0.0139 0.3682E-02 0.3140E-03 0.9457 0.0407

Table 5.16: Table of Q2 = 7 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4027 0.3125E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3505 0.2980E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3117 0.2815E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.2717 0.2632E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2306 0.2459E-02 0.0000 0.9999
5.00 0.3529 0.0460 0.1900 0.2248E-02 0.0002 0.9996
6.00 0.4118 0.0438 0.1515 0.1988E-02 0.0012 0.9981
7.00 0.4706 0.0416 0.1168 0.1722E-02 0.0053 0.9921
8.00 0.5294 0.0392 0.8730E-01 0.1491E-02 0.0197 0.9724
9.00 0.5882 0.0367 0.6377E-01 0.1292E-02 0.0604 0.9202
10.0 0.6471 0.0340 0.4611E-01 0.1090E-02 0.1515 0.8114
11.0 0.7059 0.0310 0.3322E-01 0.8860E-03 0.3090 0.6373
12.0 0.7647 0.0277 0.2349E-01 0.7160E-03 0.5143 0.4275
13.0 0.8235 0.0240 0.1552E-01 0.5410E-03 0.7168 0.2364
14.0 0.8824 0.0196 0.8891E-02 0.3180E-03 0.8719 0.1012
15.0 0.9412 0.0139 0.4347E-02 0.1410E-03 0.9664 0.0253
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Figure 5.30: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 7 GeV2.
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Figure 5.31: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 7 GeV2.
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Figure 5.32: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(7.0 : 7.35) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 7 GeV2.
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Table 5.17: Table of Q2 = 8.2 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4272 0.3378E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3821 0.3181E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3496 0.2898E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.3133 0.2643E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2728 0.2479E-02 0.0000 1.0000
5.00 0.3529 0.0460 0.2299 0.2319E-02 0.0001 0.9997
6.00 0.4118 0.0438 0.1868 0.2102E-02 0.0006 0.9986
7.00 0.4706 0.0416 0.1463 0.1848E-02 0.0031 0.9937
8.00 0.5294 0.0392 0.1105 0.1606E-02 0.0123 0.9766
9.00 0.5882 0.0367 0.8116E-01 0.1392E-02 0.0407 0.9294
10.0 0.6471 0.0340 0.5860E-01 0.1181E-02 0.1094 0.8273
11.0 0.7059 0.0310 0.4179E-01 0.9260E-03 0.2368 0.6605
12.0 0.7647 0.0277 0.2878E-01 0.6180E-03 0.4165 0.4570
13.0 0.8235 0.0240 0.1802E-01 0.3230E-03 0.6139 0.2674
14.0 0.8824 0.0196 0.9233E-02 0.1340E-03 0.7875 0.1283
15.0 0.9412 0.0139 0.3000E-02 0.5200E-04 0.9080 0.0480

Table 5.18: Table of Q2 = 8.2 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4078 0.3092E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3507 0.2940E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3099 0.2771E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.2690 0.2587E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2274 0.2412E-02 0.0000 1.0000
5.00 0.3529 0.0460 0.1867 0.2200E-02 0.0001 0.9997
6.00 0.4118 0.0438 0.1484 0.1942E-02 0.0006 0.9986
7.00 0.4706 0.0416 0.1140 0.1681E-02 0.0029 0.9935
8.00 0.5294 0.0392 0.8475E-01 0.1456E-02 0.0116 0.9758
9.00 0.5882 0.0367 0.6150E-01 0.1265E-02 0.0387 0.9271
10.0 0.6471 0.0340 0.4406E-01 0.1071E-02 0.1041 0.8229
11.0 0.7059 0.0310 0.3123E-01 0.8340E-03 0.2255 0.6555
12.0 0.7647 0.0277 0.2136E-01 0.5600E-03 0.3985 0.4537
13.0 0.8235 0.0240 0.1336E-01 0.3070E-03 0.5963 0.2648
14.0 0.8824 0.0196 0.7197E-02 0.1380E-03 0.7857 0.1205
15.0 0.9412 0.0139 0.3287E-02 0.4900E-04 0.9331 0.0319
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Figure 5.33: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 8.2 GeV2.

 0

 0.05

 0.1

 0.15

 0.2

 1  2  3  4  5  6  7

F
2P

Q2 = 8.2 GeV2

W2 GeV2

Res
Bernstein

Figure 5.34: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 8.2 GeV2.
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Figure 5.35: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 8.2 GeV2.
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Figure 5.36: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(7.8 : 8.8) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 8.2 GeV2.
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Figure 5.37: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 9.6 GeV2.
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Figure 5.38: The FP
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FP
2 resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 9.6 GeV2.
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Table 5.19: Table of Q2 = 9.6 GeV2 FP
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4324 0.3342E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3822 0.3138E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3476 0.2852E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.3103 0.2598E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2692 0.2433E-02 0.0000 1.0000
5.00 0.3529 0.0460 0.2260 0.2271E-02 0.0000 1.0000
6.00 0.4118 0.0438 0.1829 0.2054E-02 0.0001 0.9998
7.00 0.4706 0.0416 0.1424 0.1803E-02 0.0006 0.9990
8.00 0.5294 0.0392 0.1062 0.1563E-02 0.0032 0.9954
9.00 0.5882 0.0367 0.7596E-01 0.1348E-02 0.0135 0.9817
10.0 0.6471 0.0340 0.5240E-01 0.1142E-02 0.0461 0.9404
11.0 0.7059 0.0310 0.3532E-01 0.9180E-03 0.1274 0.8437
12.0 0.7647 0.0277 0.2336E-01 0.6620E-03 0.2779 0.6757
13.0 0.8235 0.0240 0.1459E-01 0.3960E-03 0.4813 0.4641
14.0 0.8824 0.0196 0.7691E-02 0.1920E-03 0.6866 0.2663
15.0 0.9412 0.0139 0.2587E-02 0.6800E-04 0.8469 0.1233

Table 5.20: Table of Q2 = 9.6 GeV2 FD
2 Bernstein Moment Values. The Resonance

Region here refers to x values for which Resonance Data points exist.

k x ∆ x F
(exp)
N,k (Q2) ∆F (err)

N,k (Q2) Res DIS

0.00 0.0588 0.0555 0.4128 0.3059E-02 0.0000 1.0000
1.00 0.1176 0.0537 0.3507 0.2901E-02 0.0000 1.0000
2.00 0.1765 0.0519 0.3080 0.2728E-02 0.0000 1.0000
3.00 0.2353 0.0500 0.2662 0.2542E-02 0.0000 1.0000
4.00 0.2941 0.0480 0.2243 0.2366E-02 0.0000 1.0000
5.00 0.3529 0.0460 0.1835 0.2154E-02 0.0000 1.0000
6.00 0.4118 0.0438 0.1452 0.1898E-02 0.0001 0.9998
7.00 0.4706 0.0416 0.1108 0.1641E-02 0.0006 0.9991
8.00 0.5294 0.0392 0.8132E-01 0.1419E-02 0.0031 0.9956
9.00 0.5882 0.0367 0.5732E-01 0.1232E-02 0.0130 0.9825
10.0 0.6471 0.0340 0.3905E-01 0.1048E-02 0.0451 0.9424
11.0 0.7059 0.0310 0.2605E-01 0.8430E-03 0.1262 0.8467
12.0 0.7647 0.0277 0.1713E-01 0.6010E-03 0.2788 0.6774
13.0 0.8235 0.0240 0.1081E-01 0.3440E-03 0.4902 0.4587
14.0 0.8824 0.0196 0.6078E-02 0.1370E-03 0.7127 0.2460
15.0 0.9412 0.0139 0.2784E-02 0.3800E-04 0.8973 0.0837
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Figure 5.39: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the x range
that constitutes the resonance region for Q2 = 9.6 GeV2.

5.4 Large x Fit SOM

The SOM is particularly useful for extracting d
u values from the ratio of the Deuteron

Structure Functions to the Proton Structure Functions in the large x limit, where d is

the total down quark distribution d = dv + 2d and u is the total up quark distribution

u = uv + 2u. d
u values, particularly at large x, are a notable example of how QCD

methods, including Generalized Parton Distributions, and low energy non perturbative

QCD models for nucleon spin structure and flavor can provide clear predictions [76]. The

u quark behavior at large x is taken primarily from proton data and so therefore is largely

independent of nuclear corrections; this allows us to use d
u to extract d quark values.

Currently, the overall behavior of d
u for x ≥ 0.2 is not well known despite the theoretical

models that have been made for this function as x→ 1. In addition, measurements of the

d quark and gluon PDFs at large x, the former of which the d
u determinations can assist

in, are also needed to compute QCD cross sections in collider experiments. The large

x effects discussed previously, the TMC, LxR and smearing factors, further complicate

the extraction of the d
u behavior at large x from the structure functions. In addition,

nuclear corrections in the extraction of neutron structure functions lead to uncertainties
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Figure 5.40: The FD
2 values for the resonance region and the Bernstein moments are

shown here. The green points are all of the FD
2 resonance points in the Q2 interval

(9.2 : 10.2) and blue points are the Bernstein averages for those points in the W 2 range
that constitutes the resonance region for Q2 = 9.6 GeV2.
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Figure 5.41: The FP
2 values for the resonance region and the Bernstein moments are

shown here along with a computation of 169 Bernstein resonance points to show how
the Bernstein functions behave for larger numbers of chosen resonance points.
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Figure 5.42: The initial generated envelope of F D
2

F P
2

theoretical curves for Q2 = 2.5

GeV2 relative to the Bernstein moment points for the same Q2 value. The blue curves
are the initial envelope of theoretical generated F D

2
F P

2
curves. The green points are the

computed F D
2

F P
2

values taken from the Bernstein moment integrals of resonance F D
2 and

F P
2

data. This shows the ability of the SOMPDF procedure to generate unbiased theoreti-
cal fits to experimental scattering sets when the ratios of Deuteron to Proton structure
functions are plotted as opposed to the Deuteron and Proton structure functions
separately.

in d quark calculations [77]. The BONUS collaboration has used tagging measurements

to reduce the uncertainty due to these corrections for x ≤ 0.7 [78]; however more work

is needed to understand the uncertainty within the resonance region. The SOM is ideal

for using pattern recognition among clusters that form from mapping the PDFs in order

to identify the physics behind the large x d
u behavior. These SOM χ2 and d

u values are

shown on a lego plot in Figure 5.45 - 5.46.

The SOM for the ratio of the total up and down quarks has been done with and without

the combined TMC and LxR. The map of χ2 values without large x Corrections is in

Figure 5.44 and the χ2 with these large x corrections is in Figure 5.45. For the Maps

of d
u values, Figure 5.46 shows them without the large x Corrections and Figure 5.47

shows this map with the large x Corrections. The results can be analyzed in terms of

the size and the location of the clusters for which, in the limit x → 1.0, d
u → 0 or d

u
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Figure 5.43: This is a generated best fitting d
u curve fitting generated F D
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values to

the large x data sets.

is in the range (0.05 : 0.5) and additionally for the clusters for which d
u becomes close

to one. For quarks in a proton or neutron, SU(6) symmetry predicts that the quarks

will exhibit flavor, or SU(3) and spin, or SU(2), symmetry in terms of the interactions

among the quarks. For the large x region, SU(6) symmetry can be broken; if the spin

of the quark pairs in the hadron is zero this refers to the S = 0 qq model and if the

spin projection of quark pairs is zero then this refers to the Sz = 0 qq model. For a

proton, SU(6) symmetry predicts two up quarks for one down quark and so the d
u limit

is predicted to be 0.5. The S = 0 qq model predicts a limit of zero and the Sz = 0

qq model predicts a limit of 0.2. The quark hadron duality model predicts a limit of

roughly 0.42 and if d
u >> 1 for large x that corresponds to a heavy prevalence of down

quarks over up quarks. The clusters for d
u → 0 for one or both dimensions correspond

to the S = 0 qq dominated limit for large x.

The comparison of these clusters can inform us about the strength of the effects of the

TMC and LxR. Without the large x corrections, large clusters of data units where d
u

is close to zero form throughout the map. For the d
u data unit clusters, with the large

x corrections the clusters become more distinct in the upper left corner for d
u values

in the range (0.05 : 0.5) and in the center for d
u values greater than one. Essentially,

clusters of data units for which the d
u values are greater than zero but less than one
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Figure 5.44: A χ2 lego plot for a 6×6 map is shown without Target Mass Corrections
and large x Resummations added for Q2 = 2.5 GeV2. An example of a cluster of

neighboring χ2 units is shown in the colored region.

form to an extent that does not occur without large x Corrections. Therefore, the large

x Corrections leading to the PDF fitting procedure divide the d
u neural network units

into new patterns of fundamentally different values as opposed to the more uniform

map of very low d
u values without the large x corrections. This shows that the large

x corrections lead to distinct sets of possible values for the prevalence of up and down

quarks with large hadron momentum fractions that are not present when the corrections

are not applied.

The SOM can also be used to show correlations between the individual PDFs and the

Structure Functions they comprise. Previous attempts to show the correlations among

the different PDFs are in [79]. This can be done by observing the relationships between

the χ2 clusters and any clusters that form for any of the individual PDFs during the

training process. Without the TMC and LxR, the χ2 map shows clustering of the
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Figure 5.45: A χ2 lego plot for a 6 × 6 map is shown with Target Mass Corrections
and large x Resummations added for Q2 = 2.5 GeV2. An example of a cluster of

neighboring χ2 units is shown in the colored region.

Structure functions with the lowest χ2 value in the lower left hand corner, around the

map vector with the lowest χ2 value. With the TMC and LxR added, the χ2 map

illustrates a cluster of functions around the map vector with the smallest χ2 value,

which is located in the first entry in the fourth row. Therefore, cluster formation around

the map vector unit with the lowest χ2 value occurred regardless of the large x conditions

implemented. With the large x corrections, however, more distinct clusters around the

larger χ2 values form in the lower left and right hand corners and in the upper right

hand corner.
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Figure 5.46: A d
u lego plot for a 6×6 map is shown without Target Mass Corrections

and large x Resummations added for Q2 = 2.5 GeV2. An example of a cluster of
neighboring d

u units is shown in the colored region.

5.5 Large x d
u

Cluster Analysis

The clusters for the full plots of d
u are shown in Figure 5.48 - 5.49. The data units,

representing plots of d
u , can be classified according to the quark models the represent

in the limit x→ 1. This enables us to take full advantage of the ability of the SOM to

group neural network units into easily visualized two dimensional representations and

identify key common futures of PDFs in these data network units. The clusters for d
u

are organized according to the possible limits predicted by various conditions outlined

previously.

Without TMC and LxR added, the range of d/u values is approximately the same as the

range with the corrections added. As a result of this, the clustering and classification of

the data units based on appropriate quark models occurs with the same possible values
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Figure 5.47: A d
u lego plot for a 6 × 6 map is shown with Target Mass Corrections

and large x Resummations added for Q2 = 2.5 GeV2. An example of a cluster of
neighboring d

u units is shown in the colored region.

of data units for both conditions. For the map vectors without TMC and LxR added,

shown in Figure 5.48, the d/u value map shows clustering of the upper left and right

corners as well as in the center for the lowest d/u values. For the map vectors with TMC

and LxR added, shown in Figure 5.49, clusters of d/u >> 1 data units form along the

upper right hand corner. In the left side of the map, clusters data units corresponding

to the S = 0 qq, Sz = 0 qq and quark hadron duality conditions form around data

units with a d/u >> 1 limit. With large x corrections added, the number of PDF units

corresponding to the Sz = 0 qq and quark hadron duality conditions also increases;

there are 14 PDF data units corresponding to one of these two quark models when large

x corrections are added and only 8 PDF data units corresponding to these conditions

without large x Corrections. This reveals the capability of the SOM and the GA, in

conjunction with the large x corrections, to produce neighborhood regions of PDFs that
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Figure 5.48: Shown is a plot of d
u functions, without Target Mass Corrections and

large x Resummations added for Q2 = 2.5 GeV2, for the Bjorken x range (the x axis)
(0 : 0.95) and the d

u range (y axis) (0 : 1.0). The curves are colored according to the
d
u values in the limit x → 1. The red curves represent d

u functions such that d
u →

1
2 ,

which approximates to SU(6) symmetry, or d
u > 0.5. The green curves represent d

u

functions such that d
u → 0, which approximates to S = 0 qq model. The purple curves

represent d
u functions such that d

u →
1
5 , which approximates to Sz = 0 qq model. The

blue curves represent d
u functions such that d

u → 0.42, which approximates to quark
hadron duality.

conform to specific physical models.

The clustering for the full d/u PDF ratios illustrates how the fitting procedure influences

their formation; the size of these clusters with and without TMC and LxR can also aid

in visualizing the strength of the large x corrections in PDF formation. The size of the

cluster of d/u values less than 0.2 with TMC and LxR is zero map units. Without the

TMC and LxR, the largest cluster for the lowest d/u values is 15 map vector units in size.

Therefore, for data units d/u values less than 0.2, adding large x corrections eliminates

clusters of this data type, although clusters corresponding to d/u values less than 0.5
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Figure 5.49: Shown is a plot of d
u functions, with Target Mass Corrections and large x

Resummations added for Q2 = 2.5 GeV2, for the Bjorken x range (the x axis) (0 : 0.95)
and the d

u range (y axis) (0 : 1.0). The curves are colored according to the d
u values

in the limit x → 1. The red curves represent d
u functions such that d

u → 1
2 , which

approximates to SU(6) symmetry, or d
u > 0.5. The green curves represent d

u functions
such that d

u → 0, which approximates to the S = 0 qq model. The purple curves
represent d

u functions such that d
u →

1
5 , which approximates to the Sz = 0 qq model.

The blue curves represent d
u functions such that d

u → 0.42, which approximates to
quark hadron duality.

are still visible. In addition, in terms of the total number of map vector units with a d/u

value greater than 0.47, regardless of cluster formation, there are 6 such units on the

d/u grid without large x corrections added where as there are 18 such units on the grid

with the large x corrections added. This helps to determine the effects of the TMC and

LxR on the ranges of d/u ratios. Furthermore, the size of the clusters for various d/u

values with the large x corrections relative to the size of the clusters without such large

x corrections enables us to visualize how adding the large x corrections directly affects

PDF formation throughout the GA procedure. In particular, it reveals that when large x
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Figure 5.50: Shown are plots of uv PDFs without large x Corrections added for
Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the uv range (the
y axis) is (0 : 1). The PDF curves are in green with the clusters, identified based on
visualization of PDFs with common behaviors for large and small x regions, shown as

blue curves.

corrections are added, d/u data units are split between those corresponding to S = 0 qq,

Sz = 0 qq and quark hadron duality conditions and units where down quarks with large

momentum fractions are far more prevalent than up quarks. d/u values do not form

large clusters corresponding to the S = 0 qq condition the way they do without large

x corrections. This suggests that when large x corrections are added, multiple types

of physics conditions, including a heavy prevalence of down quarks over up quarks, are

possible when the PDFs are run through the SOM network to fit scattering data. Adding

the large x corrections also results in the creation of patterns of data units following the

Sz = 0 qq and quark hadron duality models that are not present when these corrections

are not added. Subsequently, the maps show the necessity of adding TMC and LxR

along with nuclear corrections in order to maximize the ability of the SOMPDF code to
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Figure 5.51: Shown are plots of dv PDFs without large x Corrections added for
Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the dv range (the
y axis) is (0 : 1). The PDF curves are in green with the clusters, identified based on
visualization of PDFs with common behaviors for large and small x regions, shown as

blue curves.

achieve these models.

5.6 Large x quark and gluon Cluster Analysis

The map vector grids for the valence quark, sea quark and gluon PDFs are shown

without large x Corrections in Figure 5.50 - 5.56. Without the large x Corrections, the

uv map is in Figure 5.50, the dv map is in Figure 5.51, the u quark map is in Figure

5.52, the d quark map is in Figure 5.53, the gluon Map is in Figure 5.54, the strange

map is in Figure 5.55 and the charm map is in Figure 5.56. When there is no TMC or

LxR factored in, The uv vectors form clusters based on their similar behavior for small

and large x values in the upper right hand corner. The dv vectors form clusters based
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Figure 5.52: Shown are plots of u = uv + 2u, or up quark, PDFs without large x
Corrections added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1)
and the u range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,
identified based on visualization of PDFs with common behaviors for large and small

x regions, shown as blue curves.

on similar relations in x behavior in the upper and lower right corner and upper left

corner. The u quark map vector grid shows clusters of PDFs based on similar behaviors

for small and large x in the upper half of the map. The d quark map vector grid showed

a clustering of the vectors in the upper right corner for small and large x values as well

as a clustering in the lower left corner based on PDF behavior for various x values. The

relationship between clusters of the gluon map vector grid and the d quark vector grid

can be seen as well. The gluon PDFs in fact cluster in the same regions as the d quarks.

The strange quark map vector grid shows clusters based on the PDF behavior in the

upper right and lower left corner as well. The charm quark map vector grid additionally

shows clustering in the same regions as the strange and gluon PDFs. However the range

of charm quark values is substantially smaller than for the map vectors of the other
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Figure 5.53: Shown are plots of d = dv + 2d, or down quark, PDFs without large x
Corrections added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1)
and the d range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,
identified based on visualization of PDFs with common behaviors for large and small

x regions, shown as blue curves.

PDFs. The maps of the PDFs for each parton type effectively showed how the possible

behaviors of each PDF type can create the most ideal fit for the generated structure

functions.

We can also observe the effects of the PDF clusters when TMC and LxR are added; the

maps with these effects added are in Figure 5.57 - 5.63. With the large x Corrections,

the uv map is in Figure 5.57, the dv map is in Figure 5.58, the u quark map is in Figure

5.59, the d quark map is in Figure 5.60, the gluon Map is in Figure 5.61, the strange

map is in Figure 5.62 and the charm map is in Figure 5.63. The uv map vectors show

the clustering in the upper left and lower right hand corners. The dv map vectors show

clustering in the upper right corner and the lower left corner. The u quark map vector

grid shows clustering in the lower left corner and in the right side of the map. The d
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Figure 5.54: Shown are plots of gluon PDFs without large x Corrections added for
Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the gluon range
(the y axis) is (0 : 50). The PDF curves are in green with the clusters, identified based
on visualization of PDFs with common behaviors for large and small x regions, shown

as blue curves.

quark map vector grid shows clustering in the lower left and right corners. The gluon

map vector grid reveals clusters of gluon vectors in the upper left section and lower left

section, in a similar vein to how the d quark PDFs form clusters, in the map. The

strange quark map shows clustering in the upper right and lower left corners of the map

and the charm quark map shows clustering in the upper left corner. These PDF maps

illustrate how the large x corrections affect the relationship between the quality of fit of

the PDF clusters and the PDF behavior over various x ranges.
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Figure 5.55: Shown are plots of s, or strange quark, PDFs without large x Corrections
added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the s
range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified
based on visualization of PDFs with common behaviors for large and small x regions,

shown as blue curves.

5.7 d
u

Cluster Quantification

The sizes of the clusters with and without the large x corrections can be analyzed by

using the maps of the d
u values with and without these corrections. Clusters for the

purpose of this formulaic analysis are defined as groups of map vectors that contain a

uniting element and connected to each other by neighboring units to the left or right

or upwards or downwards. The cluster sizes can be analyzed for the plot of d
u values

for x in the range (0.0001 : 1.0). Without the large x corrections, the largest cluster

in Figure 5.48 consists of 15 map vector units conforming to the physical S = 0 qq

model, located in the upper left side and the center of the map vector grid. With the

large x corrections added, the largest cluster in Figure 5.49 consists of 8 map vectors,
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Figure 5.56: Shown are plots of c, or charm quark, PDFs without large x Corrections
added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the c
range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified
based on visualization of PDFs with common behaviors for large and small x regions,

shown as blue curves.

consisting of data units where for large x d
u ≥ 1. So the rate of change R of clustering

due to the corrections, a measurement of the large x correction effects, can be written

equation 5.39.

R =
Cc

Cn
(5.39)

In this formula, Cn is the size of the largest continuous cluster without the corrections

and Cc is the largest size with corrections. In this case, we have Cc = 8.0 and Cn = 15.0.

Cc also defines the cluster size for the largest cluster with the large x corrections added

with either d
u → 1 or d

u >> 1. Without the large x corrections added, Cn is also the size

of the clusters for which d
u → 0. Both of these clusters contain data units with PDFs that
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Figure 5.57: Shown are plots of uv PDFs with large x Corrections added for Q2 = 2.5
GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the uv range (the y axis) is
(0 : 1). The PDF curves are in green with the clusters, identified based on visualization
of PDFs with common behaviors for large and small x regions, shown as blue curves.

break SU(6) symmetry, therefore they can be classified as symmetry breaking clusters.

These cluster sizes give us Cc
Cn

= 0.533 for the effects of TMC and LxR on the broken

symmetry clustering. Relative to the size of the clusters without TMC and LXR, the

percent error can be determined to be Cn−Cc
Cn

× 100 = 87.5% for the cluster change.

Essentially, the cluster sizes and types enable us to analyze the extent to which the

addition of large x Corrections effectively broke up clusters of S = 0 qq data units and

led to formation of clusters with new types of physical models for the data units.

5.8 d
u

Dimensional Clusters and Error Extraction

The SOM PDFs can be clustered in two dimensional plots where each of the two di-

mensions represents an observable value under a specific set of conditions. The two
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Figure 5.58: Shown are plots of dv PDFs with large x Corrections added for Q2 = 2.5
GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the dv range (the y axis) is
(0 : 1). The PDF curves are in green with the clusters, identified based on visualization
of PDFs with common behaviors for large and small x regions, shown as blue curves.

dimensions can be cluster plots of d
u or χ2 with various combinations of large x cor-

rections. In Figure 5.64, the d
u values with TMC and large x corrections, which are

displayed in dimension two, are shown relative to d
u values with no corrections, which is

designated dimension one. In Figure 5.65, the two dimensions are d
u with large x Re-

summations for dimension two and d
u with TMC for dimension one. Figure 5.66 - 5.67

show the same results with the 25th and 50th iterations omitted for clarity so that the

iterations with better fit values can be displayed in the cluster regions. The clusters are

grouped based on the possible large x conditions outlined previously: S = 0 qq, Sz = 0

qq, quark hadron duality and SU(6) symmetry. The grouping of the SOM values into
d
u clusters based on physical limits enables us to visualize how the large x corrections

directly influenced PDF formation during the Self Organizing and fitting procedures. A

black line equivalent to y = x on the x and y axis is drawn in all the dimensional plots
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Figure 5.59: Shown are plots of u = uv + 2u, or up quark, PDFs with large x
Corrections added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1)
and the u range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,
identified based on visualization of PDFs with common behaviors for large and small

x regions, shown as blue curves.

in order to enable us to visualize the extent to which the clusters show linear and non

linear correlations.

The relationship between the d
u values in a cluster one dimension and the corresponding

d
u values in a second dimension reveal the strength of the effects of large x corrections in

terms of altering the x → 1 limit for a given dimensional cluster. The number of data

points present in dimension two relative to dimension one follows linear as well as non

linear trends which illustrate how large x corrections affect the resulting nuclear models

for the up and down quarks when they are carrying close to the full hadron momentum.

For a given value in dimension two, as the value of dimension one increases there is no

uniform pattern or trend for the number of data units that exist in the dimension two

value. In Figure 5.64, the clusters such that d
u → 0 for dimension one show that a
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Figure 5.60: Shown are plots of d = dv + 2d, or down quark, PDFs with large x
Corrections added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1)
and the d range (the y axis) is (0 : 1). The PDF curves are in green with the clusters,
identified based on visualization of PDFs with common behaviors for large and small

x regions, shown as blue curves.

significant of the cluster points are also in the region d
u → 0 for dimension two and that

the majority of points exist in clusters for the other limit ranges. For d
u →

1
5 , 0.42 and

for d
u limits greater than 0.47 there are also more points in the clusters where dimension

one and dimension two are not equal. Furthermore, this difference is small for the data

units where d
u >> 1 showing that the large x corrections make less of an impact on

the data units when down quarks are more prevalent for large momentum fractions.

Therefore, the two dimensional plot for d
u values under the conditions in Figure 5.64

shows significant linear as well as non linear clustering. To measure this effect, we can

define Ns as the number of points on the two dimension plot that are in the same d
u

range for dimension two as they are for dimension one and Nd as the number of points

that are in one of three possible different ranges. We can then quantify the strength of
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Figure 5.61: Shown are plots of gluon PDFs with large x Corrections added for
Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the gluon range
(the y axis) is (0 : 50). The PDF curves are in green with the clusters, identified based
on visualization of PDFs with common behaviors for large and small x regions, shown

as blue curves.

the large x corrections, Sc in breaking up the clusters of d
u values that formed without

these corrections with equation 5.40.

Sc =
Nd

Ns
(5.40)

In the d
u → 0 range, there are 36 points in dimension two in the d

u → 0 range and 81

points in dimension two located in one of the other three regions, so we have Ns = 36

and Nd = 81 giving us Sc = Nd
Ns

= 81
36 = 2.25 For dimension one in the d

u →
1
5 range,

there are Ns = 2 points in dimension two that are in the same range and Nd = 13 points

in dimension two in the other three ranges, so Sc = Nd
Ns

= 13
2 = 6.5. For dimension one

in d
u → 0.42 range, there are Ns = 7 points in the same range for dimension two and
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Figure 5.62: Shown are plots of s, or strange quark, PDFs with large x Corrections
added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the s
range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified
based on visualization of PDFs with common behaviors for large and small x regions,

shown as blue curves.

Nd = 13 points in one of the other three ranges giving a ratio of Sc = Nd
Ns

= 13
7 = 1.86.

For dimension one in the d
u range such that d

u is greater than or equal to 0.47, there are

Ns = 22 points in dimension two in the same range and Nd = 42 points in dimension

two in different ranges giving a value of 1.09 for Nd
Ns

. This illustrates that the large x

corrections used together have a level of influence on cluster formation for all possible d
u

limits, an effect which is weaker for higher d
u limits and stronger for the quark hadron

duality,S = 0 qq, Sz = 0 qq and SU(6) symmetry models. In Figure 5.65, the number

of points in dimension two for a given dimension one show similar results. In this figure,

for dimension one in the d
u → 0 range, there are Ns = 36 points in the same range for

dimension two and Nd = 108 points in one of three different ranges giving Sc = Nd
Ns

= 3.

In the d
u range greater than or equal to 0.47 for dimension one, there are Ns = 19
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Figure 5.63: Shown are plots of c, or charm quark, PDFs with large x Corrections
added for Q2 = 2.5 GeV2. The Bjorken x range (the x axis) is (0.0001 : 1) and the c
range (the y axis) is (0 : 1). The PDF curves are in green with the clusters, identified
based on visualization of PDFs with common behaviors for large and small x regions,

shown as blue curves.

points in the same region for dimension two and Nd = 13 points in different regions;

the strength is now Sc = Nd
Ns

= 0.68. Therefore, the clusters in a physical sense reveal

the effects of various conditions imposed for specific quark types when they are carrying

various fractions of the hadron’s momentum in inelastic scattering. d
u in the large x limit

is equivalent to the prevalence of up valence quarks relative to down valence quarks with

nearly all of the hadron’s momentum. Therefore, the clusters for this SOM also reveal

that the large x corrections have a smaller effect on the distribution of the valence quarks

when down valence quarks are more prevalent at large momentum fractions relative to

up valence quarks such that the x→ 1 limit for d
u is significantly larger than zero. The

two dimensional groupings of d
u provide an in depth analysis of how the theoretical PDFs

are formed that could not have been achieved with the previously utilized supervised
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networks or with PCA.

Figure 5.64 and Figure 5.65 also show how the x → 1 limit for d
u for the generated

theoretical curves increasingly approach the physical limits as the number of SOM and

GA iterations increases as well. For the curves in Figure 5.64, for example, from the

25th and 50th iteration, for instance, roughly half of the total of 36 in the map have

the generated curves had a d
u limit within zero and one. When the SOMPDF process

hits the 100th and afterwards the 250th iteration, there are still roughly half of the map

curves with a d
u limit between one and zero. Similar trends are observed for Figure

5.65, when the effects of the LxR and TMC are isolated in the dimensional SOM plot.

Therefore, non linear correlations of d
u values among data units are preserved as the

neighborhood radius for the fitting procedure is implemented for the PDFs in the data

units. In Figure 5.68 and Figure 5.69 the dimensional plots are shown with each section

of d
u values given a separate color to highlight the formation of dimensional clusters.

The PDF errors can also be extracted from the SOMs using clusters of closely related d
u

and χ2 values that form from the fitting procedure and the neighborhood radius function.

For the 250th iteration without large x corrections, the cluster from 5.44 with χ2 a range

of 1.35 : 2.75 : and a d
u range of (0.05 : 0.35) was taken. For the 250th iteration with

large x corrections, the cluster from 5.45 with a χ2 range of (1.5 : 2.5) and a d
u range

of (0.1 : 0.5) was used. The cluster of data units for the generated map of theoretical

curves without large x corrections was taken from the first and third data units in the

first row and the first four data units in the second row. The cluster of data units with

large x corrections was taken from the second element of the first row, the first and

third element of the second row and the first three elements of the third row. The error

bands for each of the two theoretical PDF sets was taken from the standard deviation

of the curves. This resulted in an error uniquely based on the clustering of the curves

based on the neighborhood radius function in the Self Organizing procedure. These

curves bundles with errors for the best fitting curves are in Figure 5.70 without large x

corrections and in Figure 5.71 with large x corrections. The error band is shown along

with the curve among the generated bundle with the lowest χ2 value. Without the large

x corrections, the relative error at x = 0.93, the largest x value for the generated curve

bundles, was 1.25; when the large x corrections were added the relative error at x = 0.93

was 0.27. For the previous 6 × 6 d
u curve in 5.43, for the 6 × 6 map the relative error

was 0.67 for the upper band and 1.31 for the lower band. For the previous 1× 1 curve
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Figure 5.64: The ratios d
u for Q2 = 2.5 GeV2, where d is the distribution of down

quarks (sea and valence) and u is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. d

u is computed for 36 PDFs per iteration, corre-
sponding to the number of PDFs produced on a 6×6 map, with large x Resummations
and Target Mass Corrections for a given number of iterations. d

u is then computed
without these corrections for the same number of iterations. Dimension one is the d

u
values when neither large x Resummations or Target Mass Corrections are added. Di-
mension two is the d

u values when these large x corrections are added. The x axis is
dimension one and the y axis is dimension two. The black line corresponsing to y = x
along the y and x axis is drawn to highlight the extent of the linear and non linear
correlations. The cluster points in different dimension one and two regions represent

non linear correlations.
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Figure 5.65: The ratios d
u for Q2 = 2.5 GeV2, where d is the distribution of down

quarks (sea and valence) and u is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. d

u is computed for 36 PDFs per iteration, correspond-
ing to the number of PDFs produced on a 6× 6 map, with only large x Resummations
for a given number of iterations. d

u is then computed with only Target Mass Corrections
for the same number of iterations. Dimension one is the d

u values when Target Mass
Corrections are added. Dimension two is the d

u values when large x Resummations are
added. The x axis is dimension one and the y axis is dimension two. The black line
corresponsing to y = x along the y and x axis is drawn to highlight the extent of the
linear and non linear correlations. The cluster points in different dimension one and

two regions represent non linear correlations.
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Figure 5.66: The ratios d
u for Q2 = 2.5 GeV2, where d is the distribution of down

quarks (sea and valence) and u is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. The 25th and 50th iterations are omitted for clarity. d

u
is computed for 36 PDFs per iteration, corresponding to the number of PDFs produced
on a 6 × 6 map, with large x Resummations and Target Mass Corrections for a given
number of iterations. d

u is then computed without these corrections for the same number
of iterations. Dimension one is the d

u values when neither large x Resummations or
Target Mass Corrections are added. Dimension two is the d

u values when these large
x corrections are added. The x axis is dimension one and the y axis is dimension two.
The black line corresponsing to y = x along the y and x axis is drawn to highlight the
extent of the linear and non linear correlations. The cluster points on the black line
represent strictly linear correlations. The cluster points in different dimension one and

two regions represent non linear correlations.
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Figure 5.67: The ratios d
u for Q2 = 2.5 GeV2, where d is the distribution of down

quarks (sea and valence) and u is the distribution of up quarks (sea and valence), are
shown on a two dimensional plot. The 25th and 50th iterations are omitted for clarity. d

u
is computed for 36 PDFs per iteration, corresponding to the number of PDFs produced
on a 6× 6 map, with only large x Resummations for a given number of iterations. d

u is
then computed with only Target Mass Corrections for the same number of iterations.
Dimension one is the d

u values when Target Mass Corrections are added. Dimension two
is the d

u values when large x Resummations are added. The x axis is dimension one and
the y axis is dimension two. The black line corresponsing to y = x along the y and x axis
is drawn to highlight the extent of the linear and non linear correlations. The cluster

points in different dimension one and two regions represent non linear correlations.

in 5.43, the relative errors were 0.50 for the upper band and 1.07 for the lower band.

So the relative error based on clustering of the PDF units was successfully reduced. For

a comparison to the statistical error when all 36 PDFs are generated in a 6 × 6 map

iteration without looking for specific clusters, the PDF curve bundles with an error band

formed from their standard deviation are in Figure 5.72 without large x corrections and

in Figure 5.73 with large x corrections.
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Figure 5.68: Dimensional plots of d
u values are shown with each of the possible d

u

regions color coded to represent different d
u sections. The ratios d

u for Q2 = 2.5 GeV2,
where d is the distribution of down quarks (sea and valence) and u is the distribution
of up quarks (sea and valence), are shown on a two dimensional plot. d

u is computed
for 36 PDFs per iteration, corresponding to the number of PDFs produced on a 6× 6
map, with large x Resummations and Target Mass Corrections for a given number
of iterations. d

u is then computed without these corrections for the same number of
iterations. Dimension one is the d

u values when neither large x Resummations or Tar-
get Mass Corrections are added. Dimension two is the d

u values when these large x
corrections are added. The x axis is dimension one and the y axis is dimension two.
The black line corresponsing to y = x along the y and x axis is drawn to highlight the
extent of the linear and non linear correlations. The cluster points on the black line
represent strictly linear correlations. The cluster points in different dimension one and

two regions represent non linear correlations.
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Figure 5.69: Dimensional plots of d
u values are shown with each of the possible d

u

regions color coded to represent different d
u sections. The ratios d

u for Q2 = 2.5 GeV2,
where d is the distribution of down quarks (sea and valence) and u is the distribution of
up quarks (sea and valence), are shown on a two dimensional plot. d

u is computed for
36 PDFs per iteration, corresponding to the number of PDFs produced on a 6×6 map,
with only large x Resummations for a given number of iterations. d

u is then computed
with only Target Mass Corrections for the same number of iterations. Dimension one is
the d

u values when Target Mass Corrections are added. Dimension two is the d
u values

when large x Resummations are added. The x axis is dimension one and the y axis is
dimension two. The black line corresponsing to y = x along the y and x axis is drawn
to highlight the extent of the linear and non linear correlations. The cluster points in

different dimension one and two regions represent non linear correlations.
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Figure 5.70: The bundle of theoretical d
u curves, taken from a cluster of six PDF

units with similarly χ2 and d
u values, at Q2 = 2.5 GeVth generated from the 6 × 6

map is shown. Large x Resummations and Target Mass Corrections are not included
in these computations. The curve with the lowest χ2 value among this bundle is shown

with an error band calculated using the standard deviation of the curve bundle.

6 Conclusion

The cross sections of inelastic nuclear scattering reactions have hard components, calcu-

lable by perturbative expansions around the strong coupling constant, and “soft” com-

ponents for which there is a need to create reliable theoretical models. These models

come from composite parton models, dependent on parton momentum fraction x, which

contain a set of Q2 dependent parameters. Previous attempts to create these theoretical

models have not used the type of networks that we have used. There has not previously

been a method to generate these nuclear theoretical models that eliminates bias in fitting

them to scattering data and allows for visualization, analysis and classification of the

subsequent generated theoretical models. Therefore, the use of unsupervised Artificial
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Figure 5.71: The bundle of theoretical d
u curves, taken from a cluster of six PDF

units with similarly χ2 and d
u values, at Q2 = 2.5 GeVth generated from the 6× 6 map

is shown. Large x Resummations and Target Mass Corrections are included in these
computations. As a result, the effects of adding the large x corrections on SOM error
size is shown with the error band here relative to that of Figure 5.70. The curve with
the lowest χ2 value among this bundle is shown with an error band calculated using

the standard deviation of the curve bundle.

Neural Networks represented an unexplored procedure for probing inelastic scattering

reactions and creating reliably generated theoretical parton models. This method of cre-

ating the parton models and attempt to maximize the structure functions they comprise

to scattering data sets represented a practical and useful way to create unbiased parton

models and structure functions.

The SOM and the GA were also proven to be uniquely successful in creating an un-

biased set of theoretical PDF curves whose composite structure functions are capable

of fitting experimental data. Therefore, this Artificial Neural Network was capable of

achieving the same fundamental task as the supervised NNPDF network. The SOM and



Conclusion 169

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

d/
u

x

Figure 5.72: The bundle of theoretical d
u curves, without Large x Resummations and

Target Mass Corrections added, for Q2 = 2.5 GeVth generated from the 6 × 6 map
is shown for all of the PDFs the 6 × 6 map generates. The curve with the lowest χ2

value among this bundle is shown with an error band calculated using the standard
deviation of the curve bundle. The large error band, which results from using all the
generated PDF curves regardless of how well they fit the data, reveals the necesseity of

using clusters to generate a viable statistical error band.

GA method could also be applied simultaneously with the Lagrange Multiplier method

to get an error determination that depended uniquely on the formation of the best fit-

ting PDFs from semi random free parameter variation. In addition, the SOM network

enabled us to identify clusters based on critical features that the generated PDFs had

in common with each other. The values of the PDFs, for various kinematical ranges,

that most effectively illustrated the effects of physical corrections for specific kinematics

formed clusters according to how well they fit the scattering data and their behaviors

in these kinematic ranges of interest. Due to the large number of varying free param-

eters and possible behaviors of the PDFs at various kinematics, the theoretical PDFs,

when generated and assigned to map units, represented data with substantially more
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Figure 5.73: The bundle of theoretical d
u curves, with Large x Resummations and

Target Mass Corrections added, for Q2 = 2.5 GeVth generated from the 6 × 6 map is
shown for all of the PDFs the 6× 6 map generates. Therefore, the effects of adding the
large x corrections on statistical error size is shown with the error band here relative to
that of Figure 5.72. The curve with the lowest χ2 value among this bundle is shown
with an error band calculated using the standard deviation of the curve bundle. The
large error band, which results from using all the generated PDF curves regardless of
how well they fit the data, reveals the necesseity of using clusters to generate a viable

statistical error band.

than two dimensions. The SOM enabled us to reduce these PDFs to two dimensional

representations with non linear relationships among data units which grouped together

in map clusters.

These clusters could be identified based on the quality of fit of resulting structure func-

tions to experimental data results, behaviors of PDF types for smaller values of x or for

their values in the limit x→ 1. When PDF clusters based around the quality of their fit

to data were formed, this enabled us to identify multiple local minima in the PDF fitting

procedure that would not have been made apparent without using the SOM to group
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the fit values into two dimensional arrays of data units. The PDFs at an x range from

zero to one could also be placed as data units on a SOM to see how the fitting procedure

and use the neighborhood radius function forms non linear PDF clusters based on their

behaviors over small x and large x values. The formation of clusters as a result of the

fitting algorithm and neighborhood function could be observed for every type of quark

and gluon PDF.

The large x physics in particular, as a result of the SOMs, could be quantified based on

groups of large x PDF values under various conditions. When the ratios of down valence

and sea quarks to up valence and sea quarks were plotted, they could be grouped into

clusters of data units based on physical quark models that correspond to these ratios in

the large x limit. This map could be set up with large x PDF data units corresponding

to the conditions placed on the quarks at large x and without these corrections added.

When the physics effects on quarks with large momentum fractions were added in,

the SOM provided a way to determine how the structure function fitting procedure

and the large x corrections applied together resulted in the formation of PDFs with

fundamentally different quark models. The SOM also allowed us quantify how the

cluster formations based on physical models were effected as a result of adding large x

corrections. The result was a visualization and determination of how adding the physics

corrections for quarks with large parton momentum fractions led to the best fitting PDFs

conforming to various physical models. With the addition of large x Corrections, clusters

of d
u data units for which d

u → 0 or d
u → 0.2 without the Corrections added were broken

up at a much higher rate than d
u data units with higher d

u values before the Corrections

were added. This showed how adding the physics Corrections for large quark momentum

fractions lead to a particularly strong breakup of clusters for the S = 0 qq and Sz = 0

qq conditions. This essentially showed the capability of the SOMPDF fitting procedure,

using various large x conditions, to obtain desired physical models. In addition, the Self

Organizing Process and GA could be used to extract errors of the PDFs, which resulted

in a reduced relative error when used in tandem with large x corrections.

Since the PDFs and their fit to experimental scattering points represented data units

with many different dimensions, the SOM provided a way to reduce these data units

into two dimensional map representations so they could be clustered and subsequently

classified in a manner that would be impossible with previously used supervised networks

or with PCA. Therefore, the SOM and the GA combined represented a novel method to
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probe complex theoretical models of nuclear scattering components for which complete

theoretical solutions do not yet exist.

This method has shown to be an invaluable method for probing more complicated theo-

retical nuclear models, in particular the Generalized Parton Distributions, or GPDs, in

the future. This is largely because of how the SOM and GA allowed for extrapolation

of the models to kinematical regions where experimental data are scarce. The GPDs

will depend on a greater number of kinematics than the PDFs that were analyzed with

this SOM. Subsequently, these distributions will have an even higher number of possible

dimensions and parameters to analyze then the PDFs that have currently been probed

with the SOM and GA methods. There will be an even greater need with the GPDs

for a procedure that generates unbiased theoretical models of these curves that can be

analyzed in terms of their quality of fit and the GPD behavior for various kinemat-

ics. Therefore, the use of the Self Organizing Process and the GA in tandem to reduce

their dimensions, cluster and classify their properties and extract GPD errors will be of

greater interest in future computations.
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7 Appendix A

The following is the gpdeval.f90 code used for evaluating the χ2 values of the structure

functions after the theoretical PDFs are generated.

1 module gpd eva l

2 use prec

3 use cons tant s

4 use errmsg

5 use gpd evo l

6 use gpd u t i l s

7 use gpd norm

8 use s om ut i l s

9 use p r i n t u t i l s

10 use f 2 u t i l s

11 ! When a l l compi l e r s suppor t the F2K3 IEEE module , change to

12 ! use i e e e a r i t hme t i c

13 use i e e e

14

15 implicit none

16

17 ! This module con ta ins the rou t i n e s t ha t compare the GPDs to

18 ! exper imenta l data . I t i s in a separa t e module so t ha t the user

19 ! may change them in a s e l f −conta ined manner .

20

21 !

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

22 ! I n t e r f a c e rou t i n e s ( t a l k to the ou t s i d e world )

23

24 contains

25

26

27 subroutine e v o l e v a l ( gpd in , ok , f2 , f 2 xva l s , f 2 qva l s , f 2 z v a l s , f 2 t v a l s )

28 type (GPD type ) , intent ( in ) : : gpd in

29 real ( rk ) , dimension ( : ) , intent ( in ) : : f 2 xva l s ,

f 2 q v a l s

30 real ( rk ) , dimension ( : ) , optional , intent ( in ) : : f 2 z v a l s ,

f 2 t v a l s

31 type ( obs data ) , intent ( in ) : : f 2

32 log ica l , intent (out ) : : ok
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33

34 type (GPD type ) : : gpd out

35

36 ! e v a l ua t e gpd determines the s t r u c t u r e func t i on va l u e s f o r the i n d i v i d u a l

pd f

37 ! v a l u e s read in from g p d u t i l s and then e v a l u t e s the ch i ˆ2 va lues ,

38 ! which prov ide the f i t o f the s t r u c t u r e func t i on va l u e s to exper imenta l

data .

39

40 ca l l eva luate gpd ( gpd in , f2 , ok , gpd out , f 2 xva l s , f 2 qva l s ,

&

41 f 2 z v a l s , f 2 t v a l s )

42

43 ! gpd copy cop i e s the s t r u c t u r e func t i on data read in to new

44 ! gpd data s e t s f o r use in ch i ˆ2 e v a l u a t i on s .

45

46 ca l l GPD copy( gpd out , gpd in )

47

48 ! d e l e t e s the copy o f the o ld gpd data s e t s t h a t were p r e v i o u s l y read in .

49

50 ca l l gpd de l e t e ( gpd out )

51

52 end subroutine e v o l e v a l

53

54

55 subroutine eva luate gpd ( gpd in , f2 , ok , gpd out , f 2 xva l s , f 2 qva l s ,

&

56 f 2 z v a l s , f 2 t v a l s )

57

58 type (GPD type ) : : gpd in , gpd out

59 real ( rk ) , dimension ( : ) : : f 2 xva l s ,

f 2 q v a l s

60

61 real ( rk ) , dimension ( : ) , optional : : f 2 z v a l s ,

f 2 t v a l s

62 type ( obs data ) : : f 2

63 real ( rk ) , dimension ( nmets ) : : f 2met r i c

64

65 real ( rk ) , dimension ( s ize ( f 2 x v a l s ) , s ize ( f 2 q v a l s ) ) : : g p d f i t f 2

66 real ( rk ) , dimension ( s ize ( f 2 x v a l s ) , s ize ( f 2 q v a l s ) ) : : g p d f i t f 2 2

67 log ica l : : ok
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68

69 type (GPD type ) : : gpd db

70 real ( rk ) , dimension ( : , : , : ) , allocatable : : f2pred , f3pred ,

f4pred

71

72 real ( rk ) , dimension ( : , : , : ) , allocatable : : f5pred , f6pred ,

f7pred , f8pred

73

74

75 real ( rk ) , dimension ( : , : ) , allocatable : : c s i , c s i 2 , c s i 3 , c s i 4 ,

WW2

76

77 real ( rk ) , dimension ( : , : , : , : ) , allocatable : : gpd partons

78 real ( rk ) , dimension ( nxva l s qcd ) : : b xva l s

79 real ( rk ) , dimension ( : ) , allocatable : : gpd xva l s

80 real ( rk ) , dimension ( : ) , allocatable : : gpd qva l s

81

82 real ( rk ) , dimension ( ncomps , 2 ) : : f2terms

83

84 integer : : N1 ,N2

85 integer : : pkind

86 integer : : nxva l s

87 integer : : nqva l s

88 integer : : nzvals , n tva l s

89 integer : : n t r i e s

90 integer : : i , j

91 log ica l : : f i r s t c a l l =. t rue

.

92

93 ! Normalizes a cand ida te PDF at an i n i t i a l s ca l e , e v o l v e s i t v i a DGLAP,

94 ! i n t e r p o l a t e s i t , and computes i t s goodness−of− f i t metr ic . Returns the

95 ! e vo l v ed GPD eva lua t ed at the exper imenta l x and q va l u e s and i t s metr ic .

96 !

97 ! We l e a v e t h i n g s vague to a l l ow the user the p o s s i b l i t y o f l a t e r r e p l a c i n g

98 ! ch i s quared wi th some other s t a t i s t i c a l t e s t .

99

100 ! Note t ha t the exper imenta l data can have mu l t i p l e va l u e s f o r the same x

and q .

101

102 nxvals=s ize ( gpd in%x)

103 allocate ( gpd xva l s ( nxvals ) )
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104 gpd xva l s=gpd in%x

105

106 i f ( use dg lap ) then

107

108 ! Se t s up input gpd f o r dg lap code and computes the Bjorken x va l u e s .

109 ! and c r ea t e s new gpd data s e t s based on the dg lap e v o l u t i on

110

111 i f ( nxvals . eq . nxva l s qcd ) then

112 ca l l GPD copy( gpd in , gpd db )

113 b xva l s=gpd db%x

114 else i f ( nxvals . l t . nxva l s qcd ) then

115 i f ( f i r s t c a l l ) then

116 ca l l s e t b j o r k e n xva l s ( b xva l s )

117 endif

118 ca l l GPD create ( gpd db , nxva l s qcd )

119 gpd db%x=b xva l s

120

121 ! I n t e r p o l a t e the coarser g r i d to the f i n e r QCD gr i d .

122 do i =1, num f lavors

123 ca l l l i n e a r ( gpd in%x , gpd in%gpd ( : , 1 , 1 , 1 , i ) , b xva l s ,

&

124 gpd db%gpd ( : , 1 , 1 , 1 , i ) )

125 enddo

126 endif

127

128 ! This dg lap can use any s p e c i f i e d q v a l s ; i t does not prov ide i t s own .

129 ! Here we a l l o c a t e the s i z e o f the s t r u c t u r e func t i on va l u e s

130 ! t h a t w i l l be f i l l e d in the gpd 2 par tons sub rou t ine . The

131 ! c s i v a r i a b l e , the s c a l i n g f a c t o r from

132 ! t he Bjorken x va lues , are a l s o a l l o c a t e d here .

133

134 i f ( . not . a l l o c a t e d ( gpd qva l s ) ) allocate ( gpd qva l s ( s ize ( f 2 q v a l s ) ) )

135 gpd qva l s=f 2 q v a l s

136

137 i f ( . not . a l l o c a t e d ( gpd partons ) )

&

138 allocate ( gpd partons ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , num flavors , 2 ) )

139 i f ( . not . a l l o c a t e d ( f2pred ) )

&

140 allocate ( f2pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

141 i f ( . not . a l l o c a t e d ( f3pred ) ) &
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142 allocate ( f3pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

143 i f ( . not . a l l o c a t e d ( f4pred ) ) &

144 allocate ( f4pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

145

146 i f ( . not . a l l o c a t e d ( f5pred ) )

&

147 allocate ( f5pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

148 i f ( . not . a l l o c a t e d ( f6pred ) ) &

149 allocate ( f6pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

150 i f ( . not . a l l o c a t e d ( f7pred ) ) &

151 allocate ( f7pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

152

153 i f ( . not . a l l o c a t e d ( f8pred ) ) &

154 allocate ( f8pred ( s ize ( b xva l s ) , s ize ( gpd qva l s ) , 2 ) )

155

156

157 i f ( . not . a l l o c a t e d ( c s i ) ) &

158 allocate ( c s i ( s ize ( b xva l s ) , s ize ( gpd qva l s ) ) )

159

160 i f ( . not . a l l o c a t e d ( c s i 2 ) ) &

161 allocate ( c s i 2 ( s ize ( b xva l s ) , s ize ( gpd qva l s ) ) )

162

163 i f ( . not . a l l o c a t e d ( c s i 3 ) ) &

164 allocate ( c s i 3 ( s ize ( b xva l s ) , s ize ( gpd qva l s ) ) )

165

166 i f ( . not . a l l o c a t e d ( c s i 4 ) ) &

167 allocate ( c s i 4 ( s ize ( b xva l s ) , s ize ( gpd qva l s ) ) )

168

169 i f ( . not . a l l o c a t e d (WW2) ) &

170 allocate (WW2( s ize ( b xva l s ) , s ize ( gpd qva l s ) ) )

171

172

173 ! Make sure i n t e r p o l a t e d PDF s t i l l obeys sum ru l e s a c cu ra t e l y

174 ca l l normal ize gpd ( gpd db , ok )

175 i f ( . not . ok ) return

176

177 ! Performs dg lap e v o l u t i o n s o f the computed s t r u c t u r e func t i on va l u e s .

178 ! There i s no 5d−gpd e va l ua t i on / norma l i za t ion at t h s time

179

180 ca l l evo l v e pd f ( gpd db , b xvals , gpd qvals , gpd out , f2pred , f3pred , f4pred )

181
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182 else

183

184

185 ! Determines the number o f Qˆ2 , z and t va l u e s used in computing s t r u c t u r e

f unc t i on s us ing the exper imenta l data f i l e s . There are no z or t

186 ! v a l u e s at t h i s time because we are not at t h i s time us ing 5d computat ions .

187

188 nqvals=s ize ( gpd in%q2 )

189 nzva l s=s ize ( gpd in%z )

190 ntva l s=s ize ( gpd in%t )

191

192

193

194 i f ( a l l o c a t e d ( f2pred ) ) deallocate ( f2pred )

195 allocate ( f2pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

196

197

198 i f ( a l l o c a t e d ( f3pred ) ) deallocate ( f3pred )

199 allocate ( f3pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

200

201

202 i f ( a l l o c a t e d ( f4pred ) ) deallocate ( f4pred )

203 allocate ( f4pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

204

205

206 i f ( a l l o c a t e d ( f5pred ) ) deallocate ( f5pred )

207 allocate ( f5pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

208

209

210 i f ( a l l o c a t e d ( f6pred ) ) deallocate ( f6pred )

211 allocate ( f6pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

212

213

214 i f ( a l l o c a t e d ( f7pred ) ) deallocate ( f7pred )

215 allocate ( f7pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

216

217 i f ( a l l o c a t e d ( f8pred ) ) deallocate ( f8pred )

218 allocate ( f8pred ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ,2 ) )

219

220

221
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222

223

224 i f ( a l l o c a t e d ( c s i ) ) deallocate ( c s i )

225 allocate ( c s i ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ) )

226

227 i f ( a l l o c a t e d ( c s i 2 ) ) deallocate ( c s i 2 )

228 allocate ( c s i 2 ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ) )

229

230

231 i f ( a l l o c a t e d ( c s i 3 ) ) deallocate ( c s i 3 )

232 allocate ( c s i 3 ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ) )

233

234 i f ( a l l o c a t e d ( c s i 4 ) ) deallocate ( c s i 4 )

235 allocate ( c s i 4 ( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ) )

236

237 i f ( a l l o c a t e d (WW2) ) deallocate (WW2)

238 allocate (WW2( s ize ( gpd in%x) , s ize ( gpd in%q2 ) ) )

239

240

241 ! Make sure i n t e r p o l a t e d PDF s t i l l obeys sum ru l e s a c cu ra t e l y

242 ca l l normal ize gpd ( gpd in , ok )

243 i f ( . not . ok ) then

244

245 ! Empty out the computed GPD va lu e s and terminate and t r y again

246 ! to genera te the s t r u c t u r e f unc t i on s and c a l c u l a t e t h e i r f i t

247

248

249

250 ! Se t s up the GPD va lue s t ha t w i l l comprise the s t r u c t u r e f unc t i on s .

251

252 ca l l GPD create ( gpd out , nxvals , nqvals , nzvals , n tva l s )

253

254 ! Set the s t r u c t u r e f unc t i on s to zero so the proces s can s t a r t over

255

256 f2pred =0.0 rk

257 return

258

259

260

261 else

262



Appendix A 180

263 ! gpd copy cop i e s the s t r u c t u r e func t i on data read in to new

264 ! gpd data s e t s f o r use in ch i ˆ2 e v a l u a t i on s .

265 ca l l GPD copy( gpd in , gpd out )

266

267 ! Eva lua tes the proton s t r u c t u r e func t ion , deuteron s t r u c t u r e f unc t i on s

268 ! and s t r u c t u r e func t i on r a t i o s us ing the Bjorken x va l u e s

269 ! and the qˆ2 va l u e s frm exper imenta l data f i l e s

270

271 ca l l gpd 2 partons ( gpd out , f2pred , f3pred , f4pred , f5pred , f6pred ,

f7pred , f8pred , c s i , c s i 2 , c s i 3 , c s i 4 ,WW2)

272 endif

273

274 endif

275

276 !DZP EDITED

277 ! This dg lap doesn ’ t d i s t i n g u i s h proton and deuteron pdfs , j u s t o b s e r v a b l e s

278

279 ! I n i t i a l i z e components o f s t r u c t u r e f unc t i on s f o r computing and

c a l c u l a t i n g the f i t

280 N1=0

281 N2=0

282 f2terms =0.0 rk

283

284 i f ( u s e p ro ton on ly . or . use both ) then

285 do j =1, s ize ( f 2 q v a l s )

286

287

288 ! Trans la t e s the x va l u e s from the f2 pred s t r u c t u r e f unc t i on s

289 ! to Bjorken x va l u e s f o r ch i ˆ2 e va l ua t i on

290

291 ca l l l i n e a r ( gpd out%x , f2pred ( : , j , 1 ) , f 2 xva l s , g p d f i t f 2 ( : , j ) )

292 ca l l l i n e a r ( gpd out%x , f2pred ( : , j , 2 ) , f 2 xva l s , g p d f i t f 2 2 ( : , j ) )

293

294 enddo

295

296 ! Compares the s t r u c t u r e func t i on va l u e s to

297 ! Experimental data f o r the proton

298 ! s t r u c t u r e func t i on

299

300 ca l l compare gpd 2 f2 ( f 2 xva l s , f 2 qva l s , g p d f i t f 2 , g pd f i t f 2 2 , f2 ,

&
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301 f2terms ( : , 1 ) ,N1 , pkind=1)

302

303 ! Compares the s t r u c t u r e func t i on va l u e s to

304 ! Experimental data f o r the deuteron

305 ! s t r u c t u r e func t i on

306

307 ca l l compare gpd 2 f2 ( f 2 xva l s , f 2 qva l s , g p d f i t f 2 , g pd f i t f 2 2 , f2 ,

&

308 f2terms ( : , 2 ) ,N2 , pkind=2)

309

310

311

312

313

314

315

316 endif

317

318 i f ( debug ) then

319 ca l l wr i t e f 2 ( ”Computed F2 . dat” , g pd f i t f 2 , f 2 xva l s , f 2 q v a l s )

320 endif

321

322 ! Determines the ch i ˆ2 terms to be used in the g en e t i c a l gor i thm

computat ions .

323

324 ca l l normal ize compar i son (N1 ,N2 , f2terms , f2metr i c , ok )

325

326 i f ( . not . ok ) return

327

328 ! Checks t ha t the metr ic d e f i n i n g the q u a l i t y o f the f i t i s a c c ep t a b l e

329

330 gpd out%metr ic=f2met r i c

331 i f ( a l l ( f 2met r i c . l t . 1000 .0∗ me t r i c c u t o f f ) ) then

332

333 endif

334

335 i f ( any ( f 2met r i c . gt . 1000 .0∗ me t r i c c u t o f f ) ) then

336

337 ok=. f a l s e .

338 return

339 else i f ( a l l ( f 2met r i c . eq . 0 . 0 rk ) ) then
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340 ok=. f a l s e .

341 return

342 endif

343

344 return

345 end subroutine eva luate gpd

346

347

348 subroutine gpd 2 partons ( gpd , f2pred , f3pred , f4pred , f5pred , f6pred , f7pred ,

f8pred , c s i , c s i 2 , c s i 3 , c s i 4 ,WW2)

349 type (GPD type ) : : gpd

350 real ( rk ) , dimension ( : , : , : ) : : f2pred , f4pred , f3pred , f5pred ,

f6pred

351

352 real ( rk ) , dimension ( : , : , : ) : : f7pred , f8pred

353

354

355

356 real ( rk ) , dimension ( s ize ( gpd%gpd , 1 ) , s ize ( gpd%gpd , 2 ) ,

&

357 s ize ( gpd%gpd , 3 ) , s ize ( gpd%gpd , 4 ) ) : : G,Uv,Dv, S ,Ub,Db,C,

B

358 real ( rk ) : : fo r9th , one9th , c f , MProton

359 integer : : nxvals , nqvals

360 integer : : nzvals , n tva l s

361 integer : : i , j , j j , jk , j j j , j j j j , j j j j j

362 real ( rk ) , dimension (5000) : : wv ,wq

363 real ( rk ) : : x s ta r t , yppp , ypoint , x jacob ian

364 real ( rk ) : : fuv , fdv , z , alpha1 , alpha0

365 real ( rk ) : : cns , cns l , cns 1 , f z l , alpha , beta0

366 real ( rk ) : : dl , arg , xlam , alphaz , fz , argx

367 real ( rk ) : : extra , extra2 , zmax , e x t r a l

368 real ( rk ) : :YPP,xPOINT, fac2z , extra2z , argz1

369 real ( rk ) : : argz2 , zmax1

370 real ( rk ) : : G1,Uv1 ,Dv1 , S1 ,Ub1 ,Db1 ,C1 ,B1

371 real ( rk ) : : uv f2 , dv f2 , extraz , ez

372 real ( rk ) : : bv , cv , dvv , aq , bq , cq , dq

373 real ( rk ) , dimension (5000 ,5000) : : Gamma

374 real ( rk ) , dimension ( : , : ) : : c s i , c s i 2 , c s i 3 , c s i 4 ,WW2

375

376
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377

378 ! F2003 f e a t u r e to i n i t i a l i z e wi th an i n t r i n s i c

379 real ( rk ) , parameter : : p i=acos (−1.)

380

381

382 ! Se t s the maximum number o f x ,Qˆ2 , z and t va l u e s used

383

384 nxvals=s ize ( gpd%x)

385 nqvals=s ize ( gpd%q2 )

386 nzva l s=s ize ( gpd%z )

387 ntva l s=s ize ( gpd%t )

388

389 ! Def ines the cons tan t s f o r computing the s t r u c t u r e f unc t i on s f o r f i t

c a l c u l a t i o n s

390 zmax=0.75

391 f o r9 th =4./9.

392 one9th =1./9.

393 c f = 4 . / 3 .

394 ! be ta0 f o r 4 f l a v o r s

395 beta0 = 25 . / 3 .

396 XLAM=.326 !CTEQ5 parameters

397 MProton=0.938

398 argz1 = 1.0−zmax

399 zmax1 = 0.65

400 argz2 = 1.0−zmax1

401 ! Gets S t ruc tu re Values generated f o r each o f the quarks and g luons

402 ! Generated in g p d u t i l s module

403

404 ca l l g e t f l a v o r s ( gpd ,G,Uv,Dv, S ,Ub,Db,C,B)

405

406 do j =1, nqvals

407

408 ! We Define the LO Alpha Constant to use in determining the S t ruc tu re

Functions

409

410 alpha1 =4./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

411 alpha0 =4./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

412

413

414 do i =1, nxvals

415
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416 ! Def ine the PDF va lu e s in the l a r g e x reg ion to account f o r Target Mass

Correc t ions

417 ! and l a r g e X Resummations

418

419 WW2( i , j ) = gpd%q2 ( j ) ∗ ( ( 1 . 0 / gpd%x( i ) ) − 1) + MProton∗∗2

420

421 i f (WW2( i , j ) . l e . 4 . 0 ) then

422

423 !We de f i n e the v a r i a b l e t r a n s l a t i o n from

424 ! Bjorken x to c s i to account f o r Target Mass Correc t ions

425

426 c s i ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

427

428

429 ! I n i t i a l i z e the va l ence quark PDFs t ha t w i l l be computed over the z

i n t e g r a l .

430

431

432 fuv=0.d0

433 fdv=0.d0

434

435 ! Computes the z i n t e g r a l over which the va l ence quark PDFs w i l l be

436 ! e va l ua t ed and computes the jacob ian x va l u e s used in t h i s i n t e g r a t i o n .

437 ! S p l i t s the z i n t e g r a l i n t o l im i t s from zmax to 1 and from 0 to zmax

438

439 j j =0

440

441 do jk=i +1 ,390

442

443 IF ( Jk .LE.290 )THEN

444 YPP=LOG(1 .E+4)∗(330.−FLOAT(Jk ) +1.) /330 .

445 xPOINT=EXP(−YPP)

446 i f ( gpd%x( i ) / xpoint . ge . zmax) j j=jk

447 i f ( gpd%x( i ) / xpoint . l t . zmax) then

448 j j= j j

449

450 goto 677

451 endif

452 ELSE

453 XSTART=EXP(−LOG(1 . E4) ∗41 . / 330 . )
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454 xPOINT=XSTART+(FLOAT(Jk ) −290.) ∗(1.−XSTART) /301 .

455 i f ( gpd%x( i ) / xpoint . ge . zmax) j j=jk

456 i f ( gpd%x( i ) / xpoint . l t . zmax) then

457 j j=j j

458

459

460 goto 677

461 endif

462 END IF

463 677 continue

464

465 end do

466

467 ! This i n t e g r a l i s from zmax to x decreas ing over the computation

468

469

470 do j j j j=j j +1, nxvals

471 i f ( j j j j . l e . nx knee ) then

472 yppp=log ( x s c a l e ) ∗( xb1−f l o a t ( j j j j ) +1.) /xb1

473 ypoint=exp(−yppp )

474 x jacob ian=ypoint ∗ l og ( x s c a l e ) /xb1

475 else

476 x s t a r t=exp(− l og ( x s c a l e ) ∗xb2/xb1 )

477 ypoint=x s t a r t+( f l o a t ( j j j j )− f l o a t ( nx knee ) ) ∗(1.0− x s t a r t ) /xb3

478 x jacob ian =(1.0− x s t a r t ) /101 .

479 endif

480

481

482 !We de f i n e the v a r i a b l e t r a n s l a t i o n from

483 ! Bjorken x to c s i to account f o r Target Mass Correc t ions

484 ! i n s i d e the z i n t e g r a t i o n loop

485

486

487 c s i 2 ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

488

489

490 z = c s i 2 ( i , j ) / ypoint

491

492 ! Def ine the LxR co r r e c t i on s to the a lpha va lue in the F2 c a l c u l a t i o n

493 i f ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗((1− z ) /z ) . ge . 1 . 000 ) then
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494 ! Defined as a cons tant

495

496 alpha = 4 ./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

497

498 else

499 !Or de f ined as the same alpha f o r sma l l e r x wi th NLO LxR co r r e c t i on s

500 alpha = alpha1 − ( 1 . 0 rk /(4∗ pi ) ) ∗( l og ((1− z ) /z ) ) ∗ ( ( alpha1 ) ∗∗2)

501

502 endif

503

504

505

506

507 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

508 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

509 ! ∗∗ Coe f f i c i e n t o f (1−z )

510 cns = c f ∗1 .5∗ (1 .+ z ∗∗2)

511

512 ! ∗∗ Coe f f i c i e n t o f ln (1−z )/(1− z )

513 cn s l = c f ∗2 .∗ (1 .+ z ∗∗2)

514

515 ! ∗∗ Non d i v e r g en t f o r z−>1 term

516 cns 1= c f ∗( ( 4 . 5 +2.5∗ z ) − 2 .∗ (1 .+ z ∗∗2) /(1.− z ) ∗dlog ( z ) )

517

518 ! ∗∗ Non d i v e r g en t term in z−dependent a lpha case

519 ! cns 2= c f ∗ (4 .5 +2.5∗ z )

520

521 ! i f ( d l . g t . 0 . r k ) arg=1.0 r k + d log ( ( 1 . rk−z ) ) / d l

522

523 ! f z l = l o g (1 .0 rk−z )

524

525 ! Here we de f i n e the c u t o f f c ond i t i on s f o r the non d i v e r g en t z terms

526

527 i f ( gpd%q2 ( j ) . gt . 0 . 05 ) then

528 d l= dlog ( gpd%q2 ( j ) /xlam/xlam )

529 else

530 d l =0.d0

531

532 i f ( d l . gt . 0 . 0 rk ) arg =1.0 rk + dlog ( ( 1 . 0 rk−z ) ) / d l

533 i f ( d l . l e . 0 . 0 rk ) arg =1.0 rk + dlog ((1.− z ) /z ) / dlog ( gpd%q2 ( j )

/xlam/xlam )
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534

535

536 i f ( alpha0 . ne . 0 . d0 ) then

537 i f ( gpd%x( i ) . l t . 1 . d0−xlam∗xlam/gpd%q2 ( j ) ) then

538 f z l = log ( 1 . 0 rk−z )

539 f z =(4.0 rk ∗ pi /beta0 ) ∗dlog ( arg ) /( alpha0 ∗ pi )

540 else

541 f z l =0.d0

542 f z =0.d0

543 endif

544 else

545 f z l =0.d0

546 f z =0.d0

547 endif

548

549 ! Read in the va l ence quark PDFs generated from g p d u t i l s module

550

551

552 ! G1 =gpd%gpd ( j j , j , 1 , 1 , 1 )

553 Uv1=gpd%gpd ( j j j j , j , 1 , 1 , 2 )

554 Dv1=gpd%gpd ( j j j j , j , 1 , 1 , 3 )

555 ! S1 =gpd%gpd ( j j , j , 1 , 1 , 4 )

556 ! Ub1=gpd%gpd ( j j , j , 1 , 1 , 5 )

557 ! Db1=gpd%gpd ( j j , j , 1 , 1 , 6 )

558 ! C1 =gpd%gpd ( j j , j , 1 , 1 , 7 )

559 ! B1 =gpd%gpd ( j j , j , 1 , 1 , 8 )

560

561

562 ! Def ines the new va l ence quark PDFs from p r e v i o u s l y genera ted PDFs

563 !By i n t e g r a t i n g the va l ence quark PDFs over z .

564

565 fuv = fuv + ( ( cn s l ∗Uv1) ∗ f z /(1.− z ) &

566 ) ∗z/ ypoint ∗ xjacob ian

567

568 fdv = fdv + ( ( cn s l ∗Dv1) ∗ f z /(1.− z ) &

569 ) ∗z/ ypoint ∗ xjacob ian

570

571

572 enddo

573

574 ! This i n t e g r a l i s from 1 to zmax decreas ing over the computation
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575

576 do j j j j=i +1, j j ! +1,390

577 IF ( JJJJ .LE.290 )THEN

578 YPP=LOG(1 .E+4)∗(330.−FLOAT( JJJJ ) +1.) /330 .

579 xPOINT=EXP(−YPP)

580 XJACOBIAN=xPOINT∗LOG(1 . E4) /330 .

581 ELSE

582 XSTART=EXP(−LOG(1 . E4) ∗41 . / 330 . )

583 xPOINT=XSTART+(FLOAT( JJJJ ) −290.) ∗(1.−XSTART) /301 .

584 XJACOBIAN=(1.−XSTART) /301 .

585 END IF

586

587 !We de f i n e the v a r i a b l e t r a n s l a t i o n from

588 ! Bjorken x to c s i to account f o r Target Mass Correc t ions

589 ! i n s i d e the z i n t e g r a t i o n loop

590

591

592 c s i 2 ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

593

594 ! Def ine the z va lue r e l a t i v e to the new c s i va lue used in TMC

595

596

597

598 z = c s i 2 ( i , j ) / xpoint

599

600

601

602 ! Def ine the LxR co r r e c t i on s to the a lpha va lue in the F2 c a l c u l a t i o n

603 i f ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗((1− z ) /z ) . ge . 1 . 000 ) then

604 ! Defined as a cons tant

605

606 alpha = 4 ./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

607

608 else

609 !Or de f ined as the same alpha f o r sma l l e r x wi th NLO LxR co r r e c t i on s

610 alpha = alpha1 − ( 1 . 0 rk /(4∗ pi ) ) ∗( l og ((1− z ) /z ) ) ∗ ( ( alpha1 ) ∗∗2)

611

612 endif

613

614
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615

616

617 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

618 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

619 ! ∗∗ Coe f f i c i e n t o f (1−z )

620 cns = c f ∗1 .5∗ (1 .+ z ∗∗2)

621

622 ! ∗∗ Coe f f i c i e n t o f ln (1−z )/(1− z )

623 cn s l = c f ∗2 .∗ (1 .+ z ∗∗2)

624

625 ! ∗∗ Non d i v e r g en t f o r z−>1 term

626 cns 1= c f ∗( ( 4 . 5 +2.5∗ z ) − 2 .∗ (1 .+ z ∗∗2) /(1.− z ) ∗dlog ( z ) )

627

628 ! ∗∗ Non d i v e r g en t term in z−dependent a lpha case

629 ! cns 2= c f ∗ (4 .5 +2.5∗ z )

630

631

632 ! i f ( d l . g t . 0 . r k ) arg=1.0 r k + d log ( ( 1 . rk−z ) ) / d l

633

634 ! f z l = l o g (1 .0 rk−z )

635

636

637 ! Here we de f i n e the c u t o f f c ond i t i on s f o r the non d i v e r g en t z terms

638

639 i f ( gpd%q2 ( j ) . gt . 0 . 05 ) then

640 d l= dlog ( gpd%q2 ( j ) /xlam/xlam )

641 else

642 d l =0.d0

643 endif

644

645 i f ( d l . gt . 0 . 0 rk ) arg =1.0 rk + dlog ( ( 1 . 0 rk−zmax) ) / d l

646

647 i f ( alpha1 . ne . 0 . d0 ) then

648 i f ( gpd%x( i ) . l t . 1 . d0−xlam∗xlam/gpd%q2 ( j ) ) then

649 f z l = log ( 1 . 0 rk−z )

650 f z =(4.∗ pi /beta0 ) ∗dlog ( arg ) /( alpha0 ∗ pi )

651 else

652 f z l =0.d0

653 f z =0.d0

654 endif

655 else
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656 f z l =0.d0

657 f z =0.d0

658 endif

659

660 ! Read in the va l ence quark PDFs generated from g p d u t i l s module

661

662

663 ! G1 =gpd%gpd ( j j , j , 1 , 1 , 1 )

664 Uv1=gpd%gpd ( j j j j , j , 1 , 1 , 2 )

665 Dv1=gpd%gpd ( j j j j , j , 1 , 1 , 3 )

666 ! S1 =gpd%gpd ( j j , j , 1 , 1 , 4 )

667 ! Ub1=gpd%gpd ( j j , j , 1 , 1 , 5 )

668 ! Db1=gpd%gpd ( j j , j , 1 , 1 , 6 )

669 ! C1 =gpd%gpd ( j j , j , 1 , 1 , 7 )

670 ! B1 =gpd%gpd ( j j , j , 1 , 1 , 8 )

671

672

673 ! Def ines the new va l ence quark PDFs from p r e v i o u s l y genera ted PDFs

674 !By i n t e g r a t i n g the va l ence quark PDFs over z .

675

676 fuv = fuv + ( ( cn s l ∗Uv1−16./3.∗Uv( i , j , 1 , 1 ) ) ∗ f z /(1.− z ) ) ∗ c s i 2 ( i , j )

/

677 & xpoint ∗∗2 ∗ xjacob ian

678

679 fdv = fdv + ( ( cn s l ∗Dv1−16./3.∗Dv( i , j , 1 , 1 ) ) ∗ f z /(1.− z ) ) &

680 ∗ c s i 2 ( i , j ) / xpoint ∗∗2 ∗ xjacob ian

681

682 enddo

683

684

685

686

687 ! Determines c s i dependant parameters used in the va l ence quark

688 !PDF computation r e l a t i v e to Bjorken x va l u e s .

689 ! Se t s parameters to zero in endpoint l im i t s .

690

691 i f ( gpd%q2 ( j ) . ge . 0 . 0 ) then

692 IF ( i .EQ. 390 )THEN

693 extra =0.d0

694 extra2 =0.d0

695 ELSE
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696 e x t r a l= dlog ( argz1 )

697 extra=dlog (1−gpd%x( i ) )

698 extra2 = extra ∗∗2/2 .

699 ! LxR

700 i f ( gpd%x( i ) . l t . ( 1 . d0−xlam∗xlam/gpd%q2 ( j ) ) ) then

701 argx=1.+ ex t r a l / dlog ( gpd%q2 ( j ) /xlam/xlam )

702 fac2z =(4.∗ pi /beta0 ) /( alpha1 ∗ pi )

703 ext ra2z=fac2z ∗( e x t r a l ∗dlog ( argx ) )

704

705 ! b e f o r e cut ( d l ∗ d log ( argx ) + ex t ra ∗ d log ( argx )

706 ! & −ex t ra )

707 else

708 ext ra2z =0.d0

709 extra2 =0.d0

710 endif

711

712 endif

713 else

714

715 extra =0.d0

716 extra2 =0.d0

717 ext raz =0.d0

718 ext ra2z =0.d0

719 endif

720

721

722 IF ( i .LE. 290 )THEN

723 XJACOBIAN=gpd%x( i ) ∗LOG(1 . E4) /330 .

724 ELSE

725 ! IF ( I .LE.390)THEN

726 XJACOBIAN=(1.−XSTART) /301 .

727 ! ELSE

728 ! XJACOBIAN=−x ( i , iw )∗LOG(0 . 8 ) /200.

729 ! END IF

730 END IF

731

732

733 ! Eva lua tes the va l ence quark PDFs based on the i n t e g r a t i o n computed over z

734 i f ( gpd%q2 ( j ) . ge . 0 . 0 ) then

735

736 ez =2.0∗ qe i ( qqqq2 ( j ) , xlam , zmax)
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737 else

738 ez=0.d0

739 endif

740

741

742 uv f2 = Uv( i , j , 1 , 1 )+fuv ∗( alpha0 /4)+ &

743 Uv( i , j , 1 , 1 ) ∗( c f ∗(−8.+(2.5− ez −2./3.∗ pi ∗ pi ) ) &

744 − 4 . ∗ extra + 16 . / 3 .∗ ext ra2z+ &

745 44 . / 3 . / c s i ( i , j ) ∗ xjacob ian ) ∗( alpha0 /4)

746

747

748 dv f2 = Dv( i , j , 1 , 1 ) + fdv ∗( alpha0 /4) &

749 +( Dv( i , j , 1 , 1 ) ∗( c f ∗(−8.+(2.5− ez −2./3.∗ pi ∗ pi ) ) &

750 −4.∗ extra +44./3./ c s i ( i , j ) ∗ xjacob ian &

751 + 16 . /3 .∗ ext ra2z ) ) ∗( alpha0 /4)

752

753

754

755

756 i f ( gpd%x( i ) . l t . 0 . 5 ) then

757

758 ! Def ine the Deuteron S t ruc tu re Function f o r Bjorken va l u e s

759 ! l e s s than 0.5

760

761 f4pred ( i , j , 1 ) =(0.5∗( ( f o r 9 th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

762 +one9th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

763 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) ) &

764 + ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

765 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

766 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

) )

767 ! Def ine the Proton S t ruc tu re Function f o r Bjorken va l u e s

768 ! l e s s than 0.5

769

770 f5pred ( i , j , 1 )= ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&
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771 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

772 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

773

774

775 else i f ( gpd%x( i ) . ge . 0 . 5 ) then

776

777 ! Def ine the Deuteron S t ruc tu re Function f o r Bjorken va l u e s

778 ! in the l a r g e x Region , de f ined as x >=0.5

779

780

781 f4pred ( i , j , 1 ) =(0.5∗( (B( i , j , 1 , 1 ) ) ∗( f o r 9 th ∗( Dv f2+2.∗Db( i , j , 1 , 1 )

) &

782 +one9th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

783 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) ) &

784 + (B( i , j , 1 , 1 ) ) ∗( f o r 9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) ) &

785 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

786 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

) )

787

788

789 ! Def ine the Proton S t ruc tu re Function f o r Bjorken va l u e s

790 ! in the l a r g e x Region , de f ined as x >=0.5

791

792

793

794 f5pred ( i , j , 1 )= ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

795 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

796 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

797

798

799

800

801 end i f

802

803 else

804
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805 ! De f in te the S t ruc tu re Values when l a r g e X Correc t ions are not added

806

807 ! I n i t i a l i z e the va l ence quark PDFs be f o r e the are computed by i n t e g r a t i n g

808 ! p r e v i o u s l y genera ted va l ence PDFs over the z va lue

809

810

811 fuv=0.d0

812 fdv=0.d0

813

814 ! Computes the z i n t e g r a l over which the va l ence quark PDFs w i l l be

815 ! e va l ua t ed and computes the jacob ian x va l u e s used in t h i s i n t e g r a t i o n .

816 ! S p l i t s the z i n t e g r a l i n t o l im i t s from zmax to 1 and from 0 to zmax

817

818 j j =0

819 do jk=i +1 ,390

820

821 IF ( Jk .LE.290 )THEN

822 YPP=LOG(1 .E+4)∗(330.−FLOAT(Jk ) +1.) /330 .

823 xPOINT=EXP(−YPP)

824 i f ( gpd%x( i ) / xpoint . ge . zmax1 ) j j=jk

825 i f ( gpd%x( i ) / xpoint . l t . zmax1 ) then

826 j j=j j

827 goto 678

828 endif

829 ELSE

830 XSTART=EXP(−LOG(1 . E4) ∗41 . / 330 . )

831 xPOINT=XSTART+(FLOAT(Jk ) −290.) ∗(1.−XSTART) /301 .

832 i f ( gpd%x( i ) / xpoint . ge . zmax1 ) j j=jk

833 i f ( gpd%x( i ) / xpoint . l t . zmax1 ) then

834 j j=j j

835 goto 678

836 endif

837 END IF

838 678 continue

839 end do

840

841 ! This i n t e g r a l i s from zmax to x decreas ing over the computation

842

843 do j j j j=j j +1, nxvals

844 i f ( j j j j . l e . nx knee ) then

845 yppp=log ( x s c a l e ) ∗( xb1−f l o a t ( j j j j ) +1.) /xb1
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846 ypoint=exp(−yppp )

847 x jacob ian=ypoint ∗ l og ( x s c a l e ) /xb1

848 else

849 x s t a r t=exp(− l og ( x s c a l e ) ∗xb2/xb1 )

850 ypoint=x s t a r t+( f l o a t ( j j j j )− f l o a t ( nx knee ) ) ∗(1.0− x s t a r t ) /xb3

851 x jacob ian =(1.0− x s t a r t ) /101 .

852 endif

853

854 !We de f i n e the v a r i a b l e t r a n s l a t i o n from

855 ! Bjorken x to c s i to account f o r Target Mass Correc t ions

856 ! i n s i d e the z i n t e g r a t i o n loop

857

858

859 c s i 2 ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

860

861 ! Def ine the z va lue r e l a t i v e to the new c s i va lue used in TMC

862

863 z = gpd%x( i ) / ypoint

864

865

866 ! Def ine the LxR co r r e c t i on s to the a lpha va lue in the F2 c a l c u l a t i o n

867 i f ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗((1− z ) /z ) . ge . 1 . 000 ) then

868 ! Defined as a cons tant

869

870 alpha = 4 ./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

871

872 else

873 !Or de f ined as the same alpha f o r sma l l e r x wi th NLO LxR co r r e c t i on s

874 alpha = alpha1 − ( 1 . 0 rk /(4∗ pi ) ) ∗( l og ((1− z ) /z ) ) ∗ ( ( alpha1 ) ∗∗2)

875

876 endif

877

878

879

880

881 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

882 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

883 ! ∗∗ Coe f f i c i e n t o f (1−z )

884 cns = c f ∗1 .5∗ (1 .+ z ∗∗2)

885
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886 ! ∗∗ Coe f f i c i e n t o f ln (1−z )/(1− z )

887 cn s l = c f ∗2 .∗ (1 .+ z ∗∗2)

888

889 ! ∗∗ Non d i v e r g en t f o r z−>1 term

890 cns 1= c f ∗( ( 4 . 5 +2.5∗ z ) − 2 .∗ (1 .+ z ∗∗2) /(1.− z ) ∗dlog ( z ) )

891

892 ! ∗∗ Non d i v e r g en t term in z−dependent a lpha case

893 ! cns 2= c f ∗ (4 .5 +2.5∗ z )

894

895

896 ! Here we de f i n e the c u t o f f c ond i t i on s f o r the non d i v e r g en t z terms

897

898 i f ( gpd%q2 ( j ) . gt . 0 . 05 ) then

899 d l= dlog ( gpd%q2 ( j ) /xlam/xlam )

900 else

901 d l =0.d0

902 endif

903

904

905

906

907

908 i f ( d l . gt . 0 . 0 rk ) arg =1.0 rk + dlog ( ( 1 . 0 rk−z ) ) / d l

909 i f ( d l . l e . 0 . 0 rk ) arg =1.0 rk + dlog ((1.− z ) /z ) / dlog ( gpd%q2 ( j )

/xlam/xlam )

910

911

912 i f ( alpha0 . ne . 0 . d0 ) then

913 i f ( gpd%x( i ) . l t . 1 . d0−xlam∗xlam/gpd%q2 ( j ) ) then

914 f z l = log ( 1 . 0 rk−z )

915 f z =(4.0 rk ∗ pi /beta0 ) ∗dlog ( arg ) /( alpha1 ∗ pi )

916 else

917 f z l =0.d0

918 f z =0.d0

919 endif

920 else

921 f z l =0.d0

922 f z =0.d0

923 endif

924

925
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926

927 ! Read in the va l ence quark PDFs generated from g p d u t i l s module

928

929

930 ! G1 =gpd%gpd ( j j , j , 1 , 1 , 1 )

931 Uv1=gpd%gpd ( j j j j , j , 1 , 1 , 2 )

932 Dv1=gpd%gpd ( j j j j , j , 1 , 1 , 3 )

933 ! S1 =gpd%gpd ( j j , j , 1 , 1 , 4 )

934 ! Ub1=gpd%gpd ( j j , j , 1 , 1 , 5 )

935 ! Db1=gpd%gpd ( j j , j , 1 , 1 , 6 )

936 ! C1 =gpd%gpd ( j j , j , 1 , 1 , 7 )

937 ! B1 =gpd%gpd ( j j , j , 1 , 1 , 8 )

938

939

940 ! Def ines the new va l ence quark PDFs from p r e v i o u s l y genera ted PDFs

941 !By i n t e g r a t i n g the va l ence quark PDFs over z .

942

943

944

945 fuv = fuv + ( ( cn s l ∗Uv1) ∗ f z /(1.0− z ) ) ∗z/ xpoint ∗ xjacob ian

946

947 fdv = fdv + ( ( cn s l ∗Dv1) ∗ f z /(1.0− z ) ) ∗z/ xpoint ∗ xjacob ian

948

949

950 enddo

951

952 ! This i n t e g r a l i s from 1 to zmax decreas ing over the computation

953

954 do j j j j=i +1, j j ! +1,390

955 IF ( JJJJ .LE.290 )THEN

956 YPP=LOG(1 .E+4)∗(330.−FLOAT( JJJJ ) +1.) /330 .

957 xPOINT=EXP(−YPP)

958 XJACOBIAN=xPOINT∗LOG(1 . E4) /330 .

959 ELSE

960 XSTART=EXP(−LOG(1 . E4) ∗41 . / 330 . )

961 xPOINT=XSTART+(FLOAT( JJJJ ) −290.) ∗(1.−XSTART) /301 .

962 XJACOBIAN=(1.−XSTART) /301 .

963 END IF

964

965 !We de f i n e the v a r i a b l e t r a n s l a t i o n from

966 ! Bjorken x to c s i to account f o r Target Mass Correc t ions



Appendix A 198

967 ! i n s i d e the z i n t e g r a t i o n loop

968

969

970 c s i 2 ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

971

972 ! Def ine the z va lue r e l a t i v e to the new c s i va lue used in TMC

973

974 z =gpd%x( i ) / xpoint

975

976

977 ! Def ine the LxR co r r e c t i on s to the a lpha va lue in the F2 c a l c u l a t i o n

978 i f ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗((1− z ) /z ) . ge . 1 . 000 ) then

979 ! Defined as a cons tant

980

981 alpha = 4 ./ beta0 / log ( gpd%q2 ( j ) /xlam ∗∗2)

982

983 else

984 !Or de f ined as the same alpha f o r sma l l e r x wi th NLO LxR co r r e c t i on s

985 alpha = alpha1 − ( 1 . 0 rk /(4∗ pi ) ) ∗( l og ((1− z ) /z ) ) ∗ ( ( alpha1 ) ∗∗2)

986

987 endif

988

989

990

991

992 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

993 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

994 ! ∗∗ Coe f f i c i e n t o f (1−z )

995 cns = c f ∗1 .5∗ (1 .+ z ∗∗2)

996

997 ! ∗∗ Coe f f i c i e n t o f ln (1−z )/(1− z )

998 cn s l = c f ∗2 .∗ (1 .+ z ∗∗2)

999

1000 ! ∗∗ Non d i v e r g en t f o r z−>1 term

1001 cns 1= c f ∗( ( 4 . 5 +2.5∗ z ) − 2 .∗ (1 .+ z ∗∗2) /(1.− z ) ∗dlog ( z ) )

1002

1003 ! ∗∗ Non d i v e r g en t term in z−dependent a lpha case

1004 ! cns 2= c f ∗ (4 .5 +2.5∗ z )

1005

1006
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1007 ! Read in the va l ence quark PDFs generated from g p d u t i l s module

1008

1009

1010 ! G1 =gpd%gpd ( j j , j , 1 , 1 , 1 )

1011 Uv1=gpd%gpd ( j j j j , j , 1 , 1 , 2 )

1012 Dv1=gpd%gpd ( j j j j , j , 1 , 1 , 3 )

1013 ! S1 =gpd%gpd ( j j , j , 1 , 1 , 4 )

1014 ! Ub1=gpd%gpd ( j j , j , 1 , 1 , 5 )

1015 ! Db1=gpd%gpd ( j j , j , 1 , 1 , 6 )

1016 ! C1 =gpd%gpd ( j j , j , 1 , 1 , 7 )

1017 ! B1 =gpd%gpd ( j j , j , 1 , 1 , 8 )

1018

1019

1020 ! Def ines the new va l ence quark PDFs from p r e v i o u s l y genera ted PDFs

1021 !By i n t e g r a t i n g the va l ence quark PDFs over z .

1022

1023 fuv = fuv + ( ( cn s l ∗Uv1−16./3.∗Uv( i , j , 1 , 1 ) ) ∗ f z /(1.− z ) ) ∗gpd%x( i ) / &

1024 xpoint ∗∗2∗ xjacob ian

1025

1026 fdv = fdv + ( ( cn s l ∗Dv1−16./3.∗Dv( i , j , 1 , 1 ) ) ∗ f z /(1.− z ) ) &

1027 ∗gpd%x( i ) / xpoint ∗∗2∗ xjacob ian

1028

1029

1030

1031

1032 enddo

1033

1034

1035

1036 ! Determines c s i dependant parameters used in the va l ence quark

1037 !PDF computation r e l a t i v e to Bjorken x va l u e s .

1038 ! Se t s parameters to zero in endpoint l im i t s .

1039

1040 i f ( gpd%q2 ( j ) . ge . 0 . 0 ) then

1041 IF ( i .EQ. 390 )THEN

1042 extra =0.d0

1043 extra2 =0.d0

1044 ELSE

1045 e x t r a l= dlog ( argz2 )

1046 extra=dlog (1−gpd%x( i ) )

1047 extra2 = extra ∗∗2/2 .
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1048

1049 i f ( gpd%x( i ) . l t . ( 1 . d0−xlam∗xlam/gpd%q2 ( j ) ) ) then

1050 argx=1.+ ex t r a l / dlog ( gpd%q2 ( j ) /xlam/xlam )

1051 fac2z =(4.∗ pi /beta0 ) /( alpha1 ∗ pi )

1052 ext ra2z=fac2z ∗( e x t r a l ∗dlog ( argx ) )

1053

1054 else

1055 ext ra2z =0.d0

1056 extra2 =0.d0

1057 endif

1058

1059 endif

1060 else

1061

1062 extra =0.d0

1063 extra2 =0.d0

1064 ext raz =0.d0

1065 ext ra2z =0.d0

1066 endif

1067

1068

1069

1070 IF ( i .LE. 290 )THEN

1071 XJACOBIAN=gpd%x( i ) ∗LOG(1 . E4) /330 .

1072 ELSE

1073 ! IF ( I .LE.390)THEN

1074 XJACOBIAN=(1.−XSTART) /301 .

1075 ! ELSE

1076 ! XJACOBIAN=−x ( i , iw )∗LOG(0 . 8 ) /200.

1077 ! END IF

1078 END IF

1079

1080 ! Eva lua tes the va l ence quark PDFs based on the i n t e g r a t i o n computed over z

1081

1082 i f ( gpd%q2 ( j ) . ge . 0 . 0 ) then

1083

1084 ez =2.0∗ qe i ( qqqq2 ( j ) , xlam , zmax)

1085 else

1086 ez=0.d0

1087 endif

1088
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1089 !

1090

1091 uv f2 = Uv( i , j , 1 , 1 )+fuv ∗( alpha0 /4)+ &

1092 Uv( i , j , 1 , 1 ) ∗( c f ∗(−8.+(2.5− ez −2./3.∗ pi ∗ pi ) ) &

1093 − 4 . ∗ extra + 16 . / 3 .∗ ext ra2z+ &

1094 44 . / 3 . / gpd%x( i ) ∗ xjacob ian ) ∗( alpha0 /4)

1095

1096

1097 dv f2 = Dv( i , j , 1 , 1 ) + fdv ∗( alpha0 /4) &

1098 +( Dv( i , j , 1 , 1 ) ∗( c f ∗(−8.+(2.5− ez −2./3.∗ pi ∗ pi ) ) &

1099 −4.∗ extra +44./3./ gpd%x( i ) ∗ xjacob ian &

1100 + 16 . /3 .∗ ext ra2z ) ) ∗( alpha0 /4)

1101

1102

1103 i f ( gpd%x( i ) . l t . 0 . 5 ) then

1104

1105 ! Def ine the Deuteron S t ruc tu re Function f o r Bjorken va l u e s

1106 ! l e s s than 0.5

1107

1108 f4pred ( i , j , 1 ) =(0.5∗( ( f o r 9 th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

1109 +one9th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

1110 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) ) &

1111 + ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

1112 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

1113 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

) )

1114

1115 ! Def ine the Proton S t ruc tu re Function f o r Bjorken va l u e s

1116 ! in the l a r g e x Region , de f ined as x >=0.5

1117

1118 f5pred ( i , j , 1 )= ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

1119 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

1120 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

1121 else i f ( gpd%x( i ) . ge . 0 . 5 ) then

1122
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1123 ! Def ine the Deuteron S t ruc tu re Function f o r Bjorken va l u e s

1124 ! l e s s than 0.5

1125

1126 f4pred ( i , j , 1 ) =(0.5∗( (B( i , j , 1 , 1 ) ) ∗( f o r 9 th ∗( Dv f2+2.∗Db( i , j , 1 , 1 )

) &

1127 +one9th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

1128 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) ) &

1129 + (B( i , j , 1 , 1 ) ) ∗( f o r 9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) ) &

1130 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

1131 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

) )

1132

1133 ! Def ine the Proton S t ruc tu re Function f o r Bjorken va l u e s

1134 ! in the l a r g e x Region , de f ined as x >=0.5

1135

1136

1137 f5pred ( i , j , 1 )= ( f o r9 th ∗( Uv f2+2.∗Ub( i , j , 1 , 1 ) )

&

1138 +one9th ∗( Dv f2+2.∗Db( i , j , 1 , 1 ) )

&

1139 +one9th ∗ ( 2 .∗S( i , j , 1 , 1 ) )+fo r9 th ∗ ( 2 .∗C( i , j , 1 , 1 ) ) )

1140

1141

1142 end i f

1143

1144

1145

1146 endif

1147

1148

1149

1150 enddo

1151 enddo

1152

1153

1154

1155 ! s e t s up the va l u e s o f s c i f o r i n t e g r a t i n g F2 over c s i

1156 ! f o r second order TMC

1157
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1158 do j =1, nqvals

1159

1160 do i =1, nxvals

1161

1162 c s i 3 ( i , j ) =(2.0∗gpd%x( i ) /(1 .0+(1 .0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j )

∗∗1) ) ∗∗0 .5 ) )

1163

1164 enddo

1165 enddo

1166

1167

1168

1169 ! performs the F2 i n t e g r a l over c s i

1170 ! f o r the second order TMC

1171 do j =1, nqvals

1172

1173 do i =1, nxvals

1174

1175

1176

1177 f3pred ( i , j , 1 ) = 0 .0 rk

1178

1179 f3pred ( i , j , 2 ) = 0 .0 rk

1180

1181

1182 do j j j j j = i +1, nxvals−1

1183

1184

1185

1186

1187 f3pred ( i , j , 1 ) =f3pred ( i , j , 1 ) + ( ( f4pred ( j j j j j , j , 1 ) ) ∗ &

1188

1189 abs ( c s i 3 ( j j j j j +1, j ) −c s i 3 ( j j j j j , j ) ) )

1190

1191

1192 f6pred ( i , j , 1 ) =f6pred ( i , j , 1 ) + ( ( f5pred ( j j j j j , j , 1 ) ) ∗ &

1193

1194 abs ( c s i 3 ( j j j j j +1, j ) −c s i 3 ( j j j j j , j ) ) )

1195

1196

1197
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1198 f3pred ( i , j , 2 ) =f3pred ( i , j , 2 ) + ( ( f4pred ( j j j j j , j , 2 ) ) ∗ &

1199

1200 abs ( c s i 3 ( j j j j j +1, j ) −c s i 3 ( j j j j j , j ) ) )

1201

1202

1203 f6pred ( i , j , 2 ) =f6pred ( i , j , 2 ) + ( ( f5pred ( j j j j j , j , 2 ) ) ∗ &

1204

1205 abs ( c s i 3 ( j j j j j +1, j ) −c s i 3 ( j j j j j , j ) ) )

1206

1207

1208 enddo

1209

1210

1211

1212

1213

1214 enddo

1215

1216 enddo

1217

1218

1219 ! App l i e s f i r s t order and second order TMC to F2

1220

1221 do j =1, nqvals

1222 do i =1, nxvals

1223

1224 ! i n i t i a l i z e s c s i and Gamma fo r the c o r r e c t i on s

1225

1226 Gamma( i , j )= (1 . 0+4 .0∗ ( ( gpd%x( i ) ∗MProton ) ∗∗2) /( gpd%q2 ( j ) ∗∗1) ) ∗∗0 .5

1227

1228

1229 ! S p e c i f i e s the x range over which to app ly

1230 ! t he f i r s t and secodn order TMC

1231 i f (WW2( i , j ) . l e . 4 . 0 ) then

1232

1233

1234

1235 f7pred ( i , j , 1 ) =( f4pred ( i , j , 1 ) ) ∗ ( ( gpd%x( i ) ) ∗∗2) / ( (Gamma( i , j ) ∗∗3) ) &

1236

1237 + (6 . 0∗ ( gpd%x( i ) ∗∗3) ∗(MProton∗∗2) ) / ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗ ( (Gamma( i , j ) ) ∗∗4) ) &

1238
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1239 ∗( f3pred ( i , j , 1 ) )

1240

1241 f7pred ( i , j , 2 ) = ( f4pred ( i , j , 2 ) ) ∗ ( ( gpd%x( i ) ) ∗∗2) / ( (Gamma( i , j ) ∗∗3) ) &

1242

1243 + (6 . 0∗ ( gpd%x( i ) ∗∗3) ∗(MProton∗∗2) ) / ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗ ( (Gamma( i , j ) ) ∗∗4) ) &

1244

1245 ∗( f3pred ( i , j , 2 ) )

1246

1247

1248

1249

1250

1251 f8pred ( i , j , 1 ) =( f5pred ( i , j , 1 ) ) ∗ ( ( gpd%x( i ) ) ∗∗2) / ( (Gamma( i , j ) ∗∗3) ) &

1252

1253 + (6 . 0∗ ( gpd%x( i ) ∗∗3) ∗(MProton∗∗2) ) / ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗ ( (Gamma( i , j ) ) ∗∗4) ) &

1254

1255 ∗( f6pred ( i , j , 1 ) )

1256

1257 f8pred ( i , j , 2 ) = ( f5pred ( i , j , 2 ) ) ∗ ( ( gpd%x( i ) ) ∗∗2) / ( (Gamma( i , j ) ∗∗3) ) &

1258

1259 + (6 . 0∗ ( gpd%x( i ) ∗∗3) ∗(MProton∗∗2) ) / ( ( ( gpd%q2 ( j ) ) ∗∗1) ∗ ( (Gamma( i , j ) ) ∗∗4) ) &

1260

1261 ∗( f6pred ( i , j , 2 ) )

1262

1263

1264 f2pred ( i , j , 1 )=f7pred ( i , j , 1 ) / f8pred ( i , j , 1 )

1265

1266

1267 f2pred ( i , j , 2 )=f7pred ( i , j , 2 ) / f8pred ( i , j , 2 )

1268

1269

1270 else

1271

1272 ! i f x i s not in the s p e c i f i e d range than l e a v e F2 unchanged

1273

1274 f7pred ( i , j , 1 ) =f4pred ( i , j , 1 )

1275 f7pred ( i , j , 2 ) =f4pred ( i , j , 2 )

1276

1277 f8pred ( i , j , 1 ) =f5pred ( i , j , 1 )

1278 f8pred ( i , j , 2 ) =f5pred ( i , j , 2 )

1279
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1280 f2pred ( i , j , 1 )=f7pred ( i , j , 1 ) / f8pred ( i , j , 1 )

1281

1282

1283 f2pred ( i , j , 2 )=f7pred ( i , j , 2 ) / f8pred ( i , j , 2 )

1284

1285

1286

1287 endif

1288

1289 enddo

1290 enddo

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308 return

1309 end subroutine gpd 2 partons

1310

1311

1312 subroutine compare gpd 2 f2 ( xvals , qvals , g p d f i t f 2 , g pd f i t f 2 2 , f2 , f2comp ,N,

pkind )

1313 real ( rk ) , dimension ( : ) : : xvals , qva l s

1314 real ( rk ) , dimension ( : , : ) : : g p d f i t f 2

1315 real ( rk ) , dimension ( : , : ) : : g p d f i t f 2 2

1316 type ( obs data ) : : f 2

1317 real ( rk ) , dimension ( ncomps ) : : f2comp

1318 integer : : N

1319 integer , optional : : pkind
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1320

1321 ! Returns a vec t o r o f comparisons between exper imenta l and p r ed i c t e d va l u e s

.

1322 ! Can be a func t i on o f parton kind .

1323

1324 ca l l ch i square ( xvals , qvals , g p d f i t f 2 , g pd f i t f 2 2 , f2 , f2comp ,N, pkind )

1325

1326 return

1327 end subroutine compare gpd 2 f2

1328

1329

1330 subroutine normal ize compar i son (N1 ,N2 , f2terms , f2metr i c , ok )

1331 integer : : N1 ,N2

1332 real ( rk ) , dimension ( ncomps , 2 ) : : f2terms

1333 real ( rk ) , dimension ( nmets ) : : f 2met r i c

1334 log ica l : : ok

1335

1336 ! This doesn ’ t r e a l l y need to do much f o r chi−squared . I t sums the two

1337 ! k inds ( i f one i s to be ignored i t w i l l be a l l z e roe s ) .

1338

1339 ! Requires the a v a i l a b i l i t y o f an isnan func t i on ( not s tandard in F95)

1340

1341 ok = . t rue .

1342

1343 i f (N1 . eq . 0 . and . N2 . eq . 0) then

1344 ca l l e r r o r ( ”No va lue s s e t f o r comparison” )

1345 endif

1346

1347

1348

1349 f2met r i c (1 ) = ( f2terms (1 , 1 ) ) /(N1)

1350

1351 i f ( i e e e i s n a n ( f 2met r i c (1 ) ) . or . ( f 2met r i c (1 ) . ge . huge ( 1 . 0 rk ) ) . or .

&

1352 ( f 2met r i c (1 ) . l e . t iny ( 1 . rk ) ) ) then

1353 ok = . f a l s e .

1354 endif

1355

1356

1357 return

1358 end subroutine normal ize compar i son
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1359

1360

1361

1362 ! The ch i s quare sub rou t ine t ha t c a r r i e s out the comparison

1363 ! between the genera ted s t r u c t u r e f un c t i i o n va l u e s and

1364 ! t he exper imenta l data s e t s read in

1365

1366

1367 subroutine ch i square ( xvals , qvals , g p d f i t f 2 , g pd f i t f 2 2 , f2 , f2comp ,N, pkind )

1368 real ( rk ) , dimension ( : ) : : xvals , qva l s

1369 real ( rk ) , dimension ( : , : ) : : g p d f i t f 2

1370 real ( rk ) , dimension ( : , : ) : : g p d f i t f 2 2

1371 type ( obs data ) : : f 2

1372

1373 real ( rk ) , dimension ( ncomps ) : : f2comp

1374 integer : : N

1375 integer , optional : : pkind

1376

1377 real ( rk ) : : q r e l t o l , term

1378

1379 integer : : pk

1380 integer : : n f2xva l s , ncf2 , nxvals , nqval s

1381 integer : : i , i i , j

1382 integer : : counter

1383

1384 log ica l : : p r i n t ch i t e rms , ch i opened

1385 integer : : ch iun i t , f i d

1386 real ( rk ) : : l a s t c h i 2

1387 real ( rk ) ,dimension ( : , : ) , allocatable : : ch i2 te rms

1388 character ( len=32) : : fname

1389 character ( len=32) ,dimension ( : ) , allocatable : : f i l e n

1390 log ica l : : f i r s t =. t rue .

1391 save l a s t c h i 2

1392

1393 ! Def ine the metr ic s f o r proton and deuteron s t r u c t u r e func t i on comparisons

.

1394 ! Pkind=1 i s proton s t r u c t u r e func t ion , pkind=2 i s deuteron s t r u c t u r e

func t i on comparisons .

1395 !When we f i t the r a t i o s o f s t r u c t u r e func t ions , pkind=1 i s

1396 ! used to f i t the r a t i o s and pkind=2 i s not used .

1397
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1398

1399 i f ( pre sent ( pkind ) ) then

1400 i f ( pkind . eq . 1 ) then

1401 pk=1

1402 endif

1403 i f ( pkind . eq . 2 ) then

1404 pk=2

1405 endif

1406 else

1407 pk=0

1408 endif

1409

1410 ! This i s the naive Xˆ2 t e s t as d e s c r i b ed in the CTEQ 2008 paper .

1411

1412 n f2xva l s=s ize ( f 2%data va l s , 1 )

1413 nc f2 =f2%nc

1414 nxvals =s ize ( xva l s )

1415 nqvals =s ize ( qva l s )

1416

1417 q r e l t o l=x r e l t o l

1418

1419 ! When comparing theory to data , sometimes we must p r i n t out the Xˆ2

1420 ! c on t r i b u t i o n s from each po in t . S e t t i n g the f o l l ow i n g f l a g to t rue w i l l

1421 ! do t ha t f o r the f i n a l i t e r a t i o n . Note t ha t t h i s r e q u i r e s recompi l ing

1422 ! to change .

1423

1424 i f ( f i r s t ) l a s t c h i 2=me t r i c c u t o f f

1425

1426

1427 p r i n t c h i t e rms =. f a l s e .

1428 i f ( p r i n t c h i t e rms ) then

1429 i f ( rank . eq . root ) then

1430 allocate ( ch i2 te rms ( n f2xva l s ∗nqvals , 5 ) )

1431 allocate ( f i l e n ( n f2xva l s ∗nqvals ) )

1432 ch i2 te rms =0.0 rk

1433 f i l e n = ’ ’

1434 endif

1435 endif

1436

1437 ! We need to compare comparable o b s e r va t i on s .

1438
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1439 f2comp=0.0 rk

1440

1441 counter=0

1442

1443 do i i =1, nxvals

1444 do i =1, n f 2xva l s

1445 i f ( abs ( ( f 2%data va l s ( i , 1 )−xva l s ( i i ) ) / f 2%data va l s ( i , 1 ) ) . l e .

&

1446 x r e l t o l ) then

1447 do j =1, nqvals

1448 i f ( abs ( ( f 2%data va l s ( i , 2 )−qva l s ( j ) ) ) / f 2%data va l s ( i , 2 ) . l e .

&

1449 q r e l t o l ) then

1450

1451

1452

1453 i f ( pk . ne . 0 ) then

1454 i f ( i n t ( f 2%data va l s ( i , ncf2 −1) ) . eq . pk ) then

1455

1456

1457

1458 counter=counter+1

1459

1460

1461 i f ( pk . eq . 1 ) then

1462

1463 ! Computation o f proton s t r u c t u r e f unc t i on s to comparable data .

1464 !When we f i t the ra t i o , t h i s becomes the comparison o f the computed r a t i o s

1465 ! to exper imenta l data and pkind=2 i s not used .

1466

1467 term= ( g p d f i t f 2 ( i i , j )−f 2%data va l s ( i , ncf2 −3) ) ∗∗2 &

1468 / f2%data va l s ( i , ncf2 −2)∗∗2

1469

1470

1471

1472

1473 else i f ( pk . eq . 2 ) then

1474

1475

1476 ! Computation o f deuteron s t r u c t u r e f unc t i on s to comparable data .

1477
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1478 term= ( g p d f i t f 2 2 ( i i , j )−f 2%data va l s ( i , ncf2 −3) ) ∗∗2 &

1479 / f2%data va l s ( i , ncf2 −2)∗∗2

1480

1481 end i f

1482

1483 f2comp (1)=f2comp (1)+term

1484

1485 !We prov ide the opt ion o f p r i n t i n g ch i ˆ2 comparisons i f we choose to do so .

1486

1487

1488 i f ( p r i n t c h i t e rms ) then

1489 i f ( i ter number . eq . num iter ) then

1490 f i d=in t ( f 2%data va l s ( i , nc f2 ) )

1491 ch i2 te rms ( counter , 1 )=xva l s ( i i )

1492 ch i2 te rms ( counter , 2 )=qva l s ( j )

1493 ch i2 te rms ( counter , 3 )=g p d f i t f 2 ( i i , j )

1494 ch i2 te rms ( counter , 4 )=f2%data va l s ( i , ncf2 −3)

1495 ch i2 te rms ( counter , 5 )=term

1496 f i l e n ( counter )=f2%f i l enames ( f i d )

1497 endif

1498 endif

1499

1500 endif

1501

1502 endif

1503 endif

1504 enddo

1505 endif

1506 enddo

1507 enddo

1508

1509 N=counter

1510 i f ( p r i n t c h i t e rms ) then

1511 i f ( ( f2comp (1) / f l o a t (N) ) . l t . l a s t c h i 2 ) then

1512 inquire ( f i l e=fname ,opened=chi opened )

1513 i f ( . not . ch i opened ) then

1514 ca l l g e t un i t ( ch i un i t )

1515 open( ch iun i t , f i l e=fname )

1516 else

1517 rewind ( ch i un i t )

1518 endif



Appendix A 212

1519 i f ( rank . eq . root ) then

1520 ca l l wr i t e ch i 2 h eade r ( ch i un i t )

1521 do i =1, counter

1522 ca l l wr i t e ch i 2 t e rm ( ch iun i t , ch i2 te rms ( i , 1 ) , ch i2 te rms ( i , 2 )

, &

1523 ch i2 te rms ( i , 3 ) , ch i2 te rms ( i , 4 ) , ch i2 te rms ( i , 5 ) ,

&

1524 f i l e n ( i ) )

1525 enddo

1526 endif

1527 endif

1528 endif

1529 l a s t c h i 2=f2comp (1) / f l o a t (N)

1530

1531

1532 return

1533 end subroutine ch i square

1534

1535

1536 end module gpd eva l

Listing 2: Code1

The following is the gpdnorm.f90 code used for normalizing the theoretical PDFs after

they are generated.

1

2 module gpd norm

3 use prec

4 use cons tant s

5 use params

6 use gpd u t i l s

7 use gpd func t i ons

8 use f i l e u t i l s

9 use math funcs

10 use cons tant s

11 use errmsg

12 use gpd evo l

13 use gpd u t i l s

14 use s om ut i l s

15 use p r i n t u t i l s

16 use f 2 u t i l s
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17 implicit none

18

19 ! U t i l i t i e s f o r us ing s t r u c t u r e f unc t i on s ( f unc t i on s o f q as w e l l as x ,

wi th

20 ! or wi thout combination in t o hadron s t r u c t u r e f unc t i on s ) .

21

22 ! The standard d i s c l a imer :

23 ! A l l o c a t a b l e arrays in de f ined t ype s in modules i s an F2003

24 ! standard , but an ex t ens ion suppor ted by most F95 compi l e r s .

25

26 integer , private : : n f l a v o r s=num flavors

27

28 !

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

29

30 contains

31

32 !

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

33

34 subroutine normal ize gpd (gpd , ok , momentum)

35 type (GPD type ) : : gpd

36 log ica l : : ok

37 real ( rk ) , optional : : momentum

38

39 type (GPD type ) : : temp

40 real ( rk ) : : momtm, uvc1 , dvc1 ,

udb1 , ddb1 , nmoment ,Nm

41 real ( rk ) : : gluon1 , gammay ,

A11 , A12 , A13 , A14

42 real ( rk ) : : B11 , B12 , B13 , B14 ,

gammay2 , ss1 , cc1

43 real ( rk ) : : lambda3 , lambda4 ,

lambda5 , Cns4 , dns4

44

45 real ( rk ) : : dns , Cns , S1 , SS2 , SS4 , SS14

46

47 real ( rk ) : : SS24 , SS44 ,Y1 , Y14 ,Y0 , Y04

48
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49

50 real ( rk ) : : SQ,GQ,UbQ,DbQ

51 real ( rk ) : : T3 ,T8 , T15 , T24 , T35

52 real ( rk ) , dimension ( s ize ( gpd%gpd , 1 ) , s ize ( gpd%gpd , 2 ) ,

&

53 s ize ( gpd%gpd , 3 ) , s ize ( gpd%gpd , 4 ) ) : : G,Uv,Dv, S ,Ub,Db,C

,B

54 real ( rk ) : : bn uv , bn dv

55 real ( rk ) : : Nf , Cf , B1 ,B0

56 real ( rk ) : : pi , Yf , Oplus , B2p

57 real ( rk ) , dimension ( s ize ( gpd%gpd , 1 ) ) : : f cn

58 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : Uvx , Dvx , q2 ,D,

FirstOrder , SecondOrders

59 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : SecondOrderub ,

SecondOrderdb , Ominus

60 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : SecondOrdergluon

61 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : pqG, pqUv , pqDv ,

pqS

62 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : pqUb , pqDb , pqC ,

pqB

63 real ( rk ) , dimension ( s ize ( gpd%gpd , 2 ) ) : : coe f , coe f2 , coe f3 ,

coe f4 , coe f 5

64 real ( rk ) : : c ond i t i on

65

66 integer : : i , j , n

67

68 ! Def ines the i n i t i a l cond i t i on f o r the sum of the i n t e g r a l

69 ! moments o f the quark and g luon PDFs accord ing to

70 ! conserva t i on o f momentum.

71

72 i f ( . not . p re sent (momentum) ) then

73 momtm=1.0 rk

74 else

75 momtm=momentum

76 endif

77

78 ok=. t rue .

79

80 ! Se t s up the number o f va l u e s f o r Qˆ{2} so t ha t

81 ! Normal izat ion computat ions can be c a l c u l a t e d in a loop

82 ! f o r a l l Qˆ{2} va l u e s .
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83 n = s ize ( gpd%gpd , 2 )

84

85

86 ! Def ine the baryon−number cons tan t s

87 bn uv = 2 .0 rk

88 bn dv = 1 .0 rk

89

90 ! Performs the numerical i n t e g r a t i o n o f Uv/x and Dv/x

91 ! f o r va l ence quark PDF norma l i za t ion purposes

92

93 ca l l g e t f l a v o r s ( gpd ,G,Uv,Dv, S ,Ub,Db,C,B)

94

95 do i = 1 ,n

96 fcn = Uv( : , i , 1 , 1 ) /gpd%x

97 Uvx( i ) = trap ( gpd%x , f cn )

98 fcn = Dv( : , i , 1 , 1 ) /gpd%x

99 Dvx( i ) = trap ( gpd%x , f cn )

100 enddo

101

102 ! Normalize up va l ence and down va l ence quark PDFs

103 ! According to the Baryon Numbers . bn uv/Uvx( i ) i s

104 ! t he norma l i za t ion cons tant .

105 do i = 1 ,n

106 Uv ( : , i , : , : ) = Uv( : , i , : , : ) ∗bn uv/Uvx( i )

107 Dv( : , i , : , : ) = Dv( : , i , : , : ) ∗bn dv/Dvx( i )

108 enddo

109

110

111

112 ! I n t e g r a t e s the remaining quark and g luon PDFs so t ha t t h e i r norma l i za t ion

113 ! According to LO and NLO cond i t i on s can be computed .

114

115 do i = 1 ,n

116

117 nmoment = 2 .0

118 pqG( i ) = trap ( gpd%x ,G( : , i , 1 , 1 ) )

119

120 pqUv( i ) = trap ( gpd%x ,Uv ( : , i , 1 , 1 ) )

121 pqDv( i ) = trap ( gpd%x ,Dv( : , i , 1 , 1 ) )

122

123
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124

125 pqS ( i ) = trap ( gpd%x , ( gpd%x) ∗∗(−3.0) ∗( ( 2 . 0∗ gpd%x/(1 .0+(1 .0+4 .0∗ ( ( gpd%x

∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1) ) ∗∗0 .5 ) ) ∗∗ &

126 (nmoment+1) ) ∗ ( (3 . 0+3 .0∗ (nmoment+1)∗ &

127 ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) + nmoment∗(nmoment

+2.0)∗ &

128 ( ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) ) ∗∗2 .0 ) &

129 /( (nmoment+2.0) ∗(nmoment+3.0) ) ) ∗S ( : , i , 1 , 1 ) )

130

131

132 pqUb( i ) = trap ( gpd%x , ( gpd%x) ∗∗(−3.0) ∗( ( 2 . 0∗ gpd%x/(1 .0+(1 .0+4 .0∗ ( ( gpd%x

∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1) ) &

133 ∗∗0 .5 ) ) ∗∗(nmoment+1) ) ∗ ( (3 . 0+3 .0∗ (nmoment+1)∗ &

134 ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) + nmoment∗(nmoment

+2.0) ∗ ( ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) &

135 /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) ) ∗∗2 .0 ) &

136 /( (nmoment+2.0) ∗(nmoment+3.0) ) ) ∗Ub( : , i , 1 , 1 ) )

137

138 pqDb( i ) = trap ( gpd%x , ( gpd%x) ∗∗(−3.0) ∗( ( 2 . 0∗ gpd%x/(1 .0+(1 .0+4 .0∗ ( ( gpd%x

∗0 .938) ∗∗2) / &

139 ( gpd%q2 ( i ) ∗∗1) ) ∗∗0 .5 ) ) ∗∗(nmoment+1) ) ∗ ( (3 .0+3 .0∗ &

140 (nmoment+1) ∗ ( ( 1 . 0+4 .0∗ ( ( gpd%x ∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) + &

141 nmoment∗(nmoment+2.0) ∗ ( ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) / &

142 ( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) ) ∗∗2 .0 ) / ( (nmoment+2.0) ∗(nmoment+3.0) ) ) ∗Db( : , i , 1 , 1 ) )

143

144

145 pqC( i ) = trap ( gpd%x , ( gpd%x) ∗∗(−3.0) ∗( ( 2 . 0∗ gpd%x/(1 .0+(1 .0+4 .0∗ ( ( gpd

%x ∗0 .938) ∗∗2) &

146 /( gpd%q2 ( i ) ∗∗1) ) ∗∗0 .5 ) ) ∗∗(nmoment+1) ) ∗((3.0+ &

147 3 . 0∗ ( nmoment+1) ∗ ( ( 1 . 0+4 .0∗ ( ( gpd%x ∗0 .938) ∗∗2) /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) &

148 + nmoment∗(nmoment+2.0) ∗ ( ( ( 1 . 0+4 . 0∗ ( ( gpd%x ∗0 .938) ∗∗2) &

149 /( gpd%q2 ( i ) ∗∗1 ) ) ∗∗0 .5 ) ) ∗∗2 .0 ) / ( (nmoment+2.0) ∗(nmoment+3.0) ) ) ∗C( : , i , 1 , 1 ) )

150

151 pqB( i ) = trap ( gpd%x ,B( : , i , 1 , 1 ) )

152 enddo

153

154

155 do i = 1 ,n

156

157 !We f i r s t s e t the cond i t i on s f o r Qˆ2 be ing l e s s than the mass o f the charm

quark
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158 i f ( gpd%q2 ( i ) . l e . 1 . 6641) then

159

160

161 ! Normalizes the pd f s G,Ub ,Db ,C and S to the Me l l in Moment

162 ! f o r the f i r s t 21 a d d i t i o n a l Qˆ2 va l u e s read in by the code

163 ! The cons tan t s be low de f i n e the f i r s t order and second order co r r e c t i on

parameters

164 ! lambda3 i s the mass s c a l e f o r nf = 3

165

166 lambda3 = 0.125 rk

167 p i = 3.14159 rk

168 Nf = 3 .0 rk

169 Cf = 1.333 rk

170 B0 = 11 − 0.6667∗Nf

171 B1 = B0/(4 . 0∗ pi )

172 B2p = 102 − ( 38 . 0 rk /3 .0 rk ) ∗Nf

173 Yf = (1 .3333∗Cf + 0.3333∗Nf ) / (2 . 0∗ pi ∗B1)

174 uvc1 = 0.310 rk

175 dvc1 = 0.109 rk

176 udb1 = 0.0300 rk

177 ddb1 = 0.0400 rk

178 s s1 = 0.013 rk

179 cc1 = 0.0065

180 gluon1 = 0.42 rk

181 T3 = ( uvc1 + 2.0∗ udb1 ) − ( dvc1 + 2.0∗ ddb1 )

182 T8 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) − 4 .0∗ s s1

183 T15 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 − 6 .0∗ cc1

184 T24 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

185 T35 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

186 gammay = 32 .0 rk / (3 . 0 rk ∗ (33 . 0 rk − 2 .0∗Nf ) )

187 gammay2 = 0.7467 rk

188 A11 = 0.5714 rk

189 A12 = 6.893 rk

190 A13 = −3.125 rk

191 A14 = 0.4286 rk

192 B11 = 5.17 rk

193 B12 = −7.114 rk

194 B13 = −4.34 rk

195 B14 = 1.865 rk

196 SQ = 0.062 rk

197 UbQ = 0.3995 rk
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198 DbQ = 0.6450 rk

199 GQ = 0.44 rk

200 Nm = 2.0 rk

201 S1 = 1.50 rk

202 SS2 = 1.25 rk

203 SS4 = 1.75 rk

204 SS14 = 2.0833 rk

205 SS24 = 1.4236 rk

206 SS44 = 2.8819 rk

207 Y0 = 7.111 rk

208 Y04 = 13.955 rk

209 Y1 = 4 .28∗2 . 0∗B0

210 Y14 = 7 .21∗2 . 0∗B0

211 dns= gammay

212 dns4 = (Y04) / (2 . 0 rk ∗B0)

213

214

215 Cns = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS1 −4.0∗(SS2 ) −(2.0/(Nm∗(Nm+1.0) ) ) &

216 ∗SS1+4.0∗SS4 &

217 + 3 . 0/ (Nm) +4.0/(Nm+1.0) + 2 . 0/ (Nm∗∗2 .0 ) − 9 . 0 ) +(Y1) / (2 . 0 rk ∗B0) &

218 − B2p∗( dns/B0) )

219 Cns4 = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS14 −4.0∗(SS24 ) −(2.0/((Nm+2.0) ∗(Nm+2.0+1.0) ) ) &

220 ∗SS14+4.0∗SS44 &

221 + 3 . 0/ (Nm+2.0) +4.0/(Nm+2.0+1.0) + 2 . 0 / ( (Nm+2) ∗∗2 .0 ) − 9 . 0 ) + (Y14) / (2 . 0

rk ∗B0) &

222 − B2p∗( dns4/B0) )

223

224 !D( i ) i s the NLO va lue o f a lpha s t rong f o r nf = 3

225

226 D( i ) =4.0 rk ∗ pi ∗( (1/(B0∗( l og ( gpd%q2 ( i ) / lambda3 ) ) ) ) − &

227

228 (B2p∗ l og ( l og ( gpd%q2 ( i ) / lambda3 ) ) /(B0∗(B0∗ l og ( gpd%q2 ( i ) / lambda3 ) ) ∗∗2) ) )

229

230

231 ! The NLO Non s i n g l e t moment i s c a l c u l a t e d to determine the sea quark

Moments

232

233

234 Fir s tOrder ( i ) = ( (D( i ) /D(1) ) ∗∗dns − (Cns/( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns

&

235
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236 + (Cns/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns ) − &

237

238 ( (Nm∗(Nm−1) ) /(Nm+2) ) ∗ ( ( 0 . 938∗∗2 ) /( gpd%q2 ( i ) ) ) ∗ ( (D( i ) /D(1) ) ∗∗dns4 − &

239

240 (Cns4 /( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns4 &

241

242 + (Cns4/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns4 )

243

244

245 ! Below are the moment va l u e s f o r each o f the sea quark pd f s t h a t are

normal ized

246

247

248 ! Normal izat ion cond i t i on f o r the Strange quark PDFs

249

250 SecondOrders ( i ) = 0 .5 rk ∗( F i r s t o r d e r ( i )∗(−T8/3 .0 rk ) + &

251

252 F i r s t o r d e r ( i ) ∗(T15/12 .0 rk ) + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+ &

253

254 uvc1+dvc1+2.0∗udb1+ &

255

256 2 .0∗ ddb1+ss1 +0.45∗ s s1 ) &

257

258 − ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

259

260 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/4 .0 rk ) )

261

262

263 ! Normal izat ion cond i t i on f o r the up Antiquark PDFs

264

265

266 SecondOrderub ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(T3) + &

267

268 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

269

270 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

271

272 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

273

274 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

275
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276 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( uvc1 ) )

277

278

279

280 ! Normal izat ion cond i t i on f o r the down Antiquark PDFs

281

282 SecondOrderdb ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(−1.0 rk ∗T3) + &

283

284 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

285

286 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

287

288 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

289

290 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

291

292 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( dvc1 ) )

293

294

295 ! c a l c u l a t e s the Mellim Moment t ha t each o f the pd f s i s normal ized to us ing

LO and NLO co r r e c t i on s

296

297 S ( : , i , : , : )= ( (0 . 1032 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqS ( i ) ) ) ∗S ( : , i , : , : )

298

299 Ub( : , i , : , : )= ( ( 0 . 0 62 + SecondOrderub ( i ) ) / ( 2 . 0 rk ∗pqUb( i ) ) ) ∗Ub( : , i , : , : )

300

301 Db( : , i , : , : )= ( ( 0 . 0 70 + SecondOrderdb ( i ) ) / ( 2 . 0 rk ∗pqDb( i ) ) ) ∗Db( : , i , : , : )

302

303 C( : , i , : , : ) = 0 . 33∗ ( ( 0 . 1 032 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqC( i ) ) ) ∗C( : , i , : , : )

304

305

306

307 !We then s e t the cond i t i on s f o r Qˆ2 be ing g r ea t e r than the mass o f the

charm quark

308 ! but l e s s than the mass o f the bottom quark

309 else i f ( gpd%q2 ( i ) . l e . 21 .6225 . and . gpd%q2 ( i ) . gt . 1 .6641 ) then

310

311 ! normal i zes the pd f s G,Ub ,Db ,C and S to the Me l l in Moment

312 ! f o r the f i r s t 14 a d d i t i o n a l Qˆ2 va l u e s read in by the code

313
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314 ! The cons tan t s be low de f i n e the f i r s t order and second order co r r e c t i on

parameters

315 ! lambda4 i s the mass s c a l e f o r nf=4

316 p i = 3.14159 rk

317 Nf = 4 .0 rk

318 Cf = 1.333 rk

319 B0 = 11 − 0.6667∗Nf

320 dns=0.4267

321 dns4 = 0.8373

322 B2p = 102 − ( 38 . 0 rk /3 .0 rk ) ∗Nf

323 B1 = B0/(4 . 0∗ pi )

324 Yf = (1 .3333∗Cf + 0.3333∗Nf ) / (2 . 0∗ pi ∗B1)

325 uvc1 = 0.310 rk

326 dvc1 = 0.109 rk

327 udb1 = 0.0300 rk

328 ddb1 = 0.0400 rk

329 s s1 = 0.013 rk

330 cc1 = 0.0065

331 gluon1 = 0.42 rk

332 T3 = ( uvc1 + 2.0∗ udb1 ) − ( dvc1 + 2.0∗ ddb1 )

333 T8 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) − 4 .0∗ s s1

334 T15 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 − 6 .0∗ cc1

335 T24 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

336 T35 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

337 gammay = 32 .0 rk / (3 . 0 rk ∗ (33 . 0 rk − 2 .0∗Nf ) )

338 gammay2 = 0.7467 rk

339 lambda4 = 0.0990 rk

340 A11 = 0.5714 rk

341 A12 = 6.893 rk

342 A13 = −3.125 rk

343 A14 = 0.4286 rk

344 B11 = 5.17 rk

345 B12 = −7.114 rk

346 B13 = −4.34 rk

347 B14 = 1.865 rk

348 SQ = 0.062 rk

349 UbQ = 0.5156 rk

350 DbQ = 0.6656 rk

351 GQ = 0.44 rk

352 Nm = 2.0 rk

353 S1 = 1.50 rk
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354 SS2 = 1.25 rk

355 SS4 = 1.75 rk

356 SS14 = 2.0833 rk

357 SS24 = 1.4236 rk

358 SS44 = 2.8819 rk

359 Y0 = 7.111 rk

360 Y04 = 13.955 rk

361 Y1 = 4 .28∗2 . 0∗B0

362 Y14 = 7 .21∗2 . 0∗B0

363 dns= gammay

364 dns4 = (Y04) / (2 . 0 rk ∗B0)

365

366

367

368 Cns = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS1 −4.0∗(SS2 ) −(2.0/(Nm∗(Nm+1.0) ) ) &

369 ∗SS1+4.0∗SS4 &

370 + 3 . 0/ (Nm) +4.0/(Nm+1.0) + 2 . 0/ (Nm∗∗2 .0 ) − 9 . 0 ) +(Y1) / (2 . 0 rk ∗B0) &

371 − B2p∗( dns/B0) )

372 Cns4 = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS14 −4.0∗(SS24 ) −(2.0/((Nm+2.0) ∗(Nm+2.0+1.0) ) ) &

373 ∗SS14+4.0∗SS44 &

374 + 3 . 0/ (Nm+2) +4.0/(Nm+2+1.0) + 2 . 0 / ( (Nm+2) ∗∗2 .0 ) − 9 . 0 ) + (Y14) / (2 . 0 rk ∗

B0) &

375 − B2p∗( dns4/B0) )

376

377 !D( i ) i s the NLO va lue o f a lpha s t rong f o r nf = 4

378

379 D( i ) =4.0 rk ∗ pi ∗( (1/(B0∗( l og ( gpd%q2 ( i ) / lambda4 ) ) ) ) − &

380

381 (B2p∗ l og ( l og ( gpd%q2 ( i ) / lambda4 ) ) /(B0∗(B0∗ l og ( gpd%q2 ( i ) / lambda4 ) ) ∗∗2) ) )

382

383

384 ! The NLO Non s i n g l e t moment i s c a l c u l a t e d to deter ime the sea quark Moments

385

386

387 Fir s tOrder ( i ) = ( (D( i ) /D(1) ) ∗∗dns − (Cns/( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns

&

388

389 + (Cns/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns ) − &

390

391 ( (Nm∗(Nm−1) ) /(Nm+2) ) ∗ ( ( 0 . 938∗∗2 ) /( gpd%q2 ( i ) ) ) ∗ ( (D( i ) /D(1) ) ∗∗dns4 − &

392
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393 (Cns4 /( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns4 &

394

395 + (Cns4/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns4 )

396

397 ! Below are the moment va l u e s f o r each o f the sea quark pd f s t h a t are

normal ized

398

399 ! Normal izat ion cond i t i on f o r the Strange quark PDFs

400

401 SecondOrders ( i ) = 0 .5 rk ∗( F i r s t o r d e r ( i )∗(−T8/3 .0 rk ) + &

402

403 F i r s t o r d e r ( i ) ∗(T15/12 .0 rk ) + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+ &

404

405 uvc1+dvc1+2.0∗udb1+ &

406

407 2 .0∗ ddb1+ss1 +0.45∗ s s1 ) &

408

409 − ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

410

411 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/4 .0 rk ) )

412

413

414 ! Normal izat ion cond i t i on f o r the up Antiquark PDFs

415

416

417 SecondOrderub ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(T3) + &

418

419 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

420

421 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

422

423 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

424

425 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

426

427 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( uvc1 ) )

428

429

430 ! Normal izat ion cond i t i on f o r the down Antiquark PDFs

431

432
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433 SecondOrderdb ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(−1.0 rk ∗T3) + &

434

435 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

436

437 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

438

439 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

440

441 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

442

443 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( dvc1 ) )

444

445

446 ! c a l c u l a t e s the Mellim Moment t ha t each o f the pd f s i s normal ized to us ing

LO and NLO co r r e c t i on s

447

448 S ( : , i , : , : )= ( (0 . 0948 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqS ( i ) ) ) ∗S ( : , i , : , : )

449

450 Ub( : , i , : , : )= ( ( 0 . 0 62 + SecondOrderub ( i ) ) / ( 2 . 0 rk ∗pqUb( i ) ) ) ∗Ub( : , i , : , : )

451

452 Db( : , i , : , : )= ( ( 0 . 0 70 + SecondOrderdb ( i ) ) / ( 2 . 0 rk ∗pqDb( i ) ) ) ∗Db( : , i , : , : )

453

454 C( : , i , : , : ) = 0 . 45∗ ( ( 0 . 0 948 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqC( i ) ) ) ∗C( : , i , : , : )

455

456

457

458

459

460 !We f i n a l l y s e t the cond i t i on s f o r Qˆ2 be ing g r ea t e r than the mass o f the

bottom quark

461 else i f ( gpd%q2 ( i ) . gt . 21 .6225) then

462

463 ! Normalizes the pd f s G,Ub ,Db ,C and S to the Me l l in Moment

464 ! f o r the f i r s t 21 a d d i t i o n a l Qˆ2 va l u e s read in by the code

465 ! The cons tan t s be low de f i n e the f i r s t order and second order co r r e c t i on

parameters

466 ! lambda5 i s the mass s c a l e f o r nf = 5

467

468

469

470 p i = 3.14159 rk
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471 Nf = 5 .0 rk

472 Cf = 1.333 rk

473 B0 = 11 − 0.6667∗Nf

474 B1 = B0/(4 . 0∗ pi )

475 dns=0.4267

476 dns4 = 0.8373

477 B2p = 102 − ( 38 . 0 rk /3 .0 rk ) ∗Nf

478 Yf = (1 .3333∗Cf + 0.3333∗Nf ) / (2 . 0∗ pi ∗B1)

479 uvc1 = 0.310 rk

480 dvc1 = 0.109 rk

481 udb1 = 0.0300 rk

482 ddb1 = 0.0400 rk

483 s s1 = 0.013 rk

484 cc1 = 0.0065

485 gluon1 = 0.42 rk

486 T3 = ( uvc1 + 2.0∗ udb1 ) − ( dvc1 + 2.0∗ ddb1 )

487 T8 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) − 4 .0∗ s s1

488 T15 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 − 6 .0∗ cc1

489 T24 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

490 T35 = ( uvc1 + 2.0∗ udb1 ) + ( dvc1 + 2.0∗ ddb1 ) + 2.0∗ s s1 + 2.0∗ cc1

491 gammay = 32 .0 rk / (3 . 0 rk ∗ (33 . 0 rk − 2 .0∗Nf ) )

492 gammay2 = 0.7467 rk

493 lambda5 = 0.0515 rk

494 A11 = 0.5714 rk

495 A12 = 6.893 rk

496 A13 = −3.125 rk

497 A14 = 0.4286 rk

498 B11 = 5.17 rk

499 B12 = −7.114 rk

500 B13 = −4.34 rk

501 B14 = 1.865 rk

502 SQ = 0.064 rk

503 UbQ = 0.608 rk

504 DbQ = 0.688 rk

505 GQ = 0.44 rk

506 Nm = 2.0 rk

507 S1 = 1.50 rk

508 SS2 = 1.25 rk

509 SS4 = 1.75 rk

510 SS14 = 2.0833 rk

511 SS24 = 1.4236 rk
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512 SS44 = 2.8819 rk

513 Y0 = 7.111 rk

514 Y04 = 13.955 rk

515 Y1 = 4 .28∗2 . 0∗B0

516 Y14 = 7 .21∗2 . 0∗B0

517 dns= gammay

518 dns4 = (Y04) / (2 . 0 rk ∗B0)

519

520

521 Cns = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS1 −4.0∗(SS2 ) −(2.0/(Nm∗(Nm+1.0) ) ) &

522 ∗SS1 + 4.0∗ SS4 &

523 + 3 . 0/ (Nm) +4.0/(Nm+1.0) + 2 . 0/ (Nm∗∗2 .0 ) − 9 . 0 ) +(Y1) / (2 . 0 rk ∗B0) &

524 − B2p∗( dns/B0) )

525 Cns4 = ( ( 4 . 0 / 3 . 0 ) ∗ (3 . 0∗ SS14 −4.0∗(SS24 ) −(2.0/((Nm+2.0) ∗(Nm+2.0+1.0) ) ) &

526 ∗SS14 + 4.0∗ SS44 &

527 + 3 . 0/ (Nm+2) +4.0/(Nm+2+1.0) + 2 . 0 / ( (Nm+2) ∗∗2 .0 ) − 9 . 0 ) + (Y14) / (2 . 0 rk ∗

B0) &

528 − B2p∗( dns4/B0) )

529

530 !D( i ) i s the NLO va lue o f a lpha s t rong f o r nf = 5

531

532 D( i ) =4.0 rk ∗ pi ∗( (1/(B0∗( l og ( gpd%q2 ( i ) / lambda5 ) ) ) ) − &

533

534 (B2p∗ l og ( l og ( gpd%q2 ( i ) / lambda5 ) ) /(B0∗(B0∗ l og ( gpd%q2 ( i ) / lambda5 ) ) ∗∗2) ) )

535

536 ! The NLO Non s i n g l e t moment i s c a l c u l a t e d to determine the sea quark

Moments

537

538

539 Fir s tOrder ( i ) = ( (D( i ) /D(1) ) ∗∗dns − (Cns/( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns

&

540

541 + (Cns/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns ) − &

542

543 ( (Nm∗(Nm−1) ) /(Nm+2) ) ∗ ( ( 0 . 938∗∗2 ) /( gpd%q2 ( i ) ) ) ∗ ( (D( i ) /D(1) ) ∗∗dns4 − &

544

545 (Cns4 /( p i ∗4 .0 rk ) ) ∗D(1) ∗(D( i ) /D(1) ) ∗∗dns4 &

546

547 + (Cns4/( p i ∗4 .0 rk ) ) ∗(D( i ) ) ∗(D( i ) /D(1) ) ∗∗dns4 )

548

549



Appendix A 227

550 ! Below are the moment va l u e s f o r each o f the sea quark pd f s t h a t are

normal ized

551

552 ! Normal izat ion cond i t i on f o r the Strange quark PDFs

553

554 SecondOrders ( i ) = 0 .5 rk ∗( F i r s t o r d e r ( i )∗(−T8/3 .0 rk ) + &

555

556 F i r s t o r d e r ( i ) ∗(T15/12 .0 rk ) + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+ &

557

558 uvc1+dvc1+2.0∗udb1+ &

559

560 2 .0∗ ddb1+ss1 +0.45∗ s s1 ) &

561

562 − ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

563

564 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/4 .0 rk ) )

565

566

567 ! Normal izat ion cond i t i on f o r the up Antiquark PDFs

568

569 SecondOrderub ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(T3) + &

570

571 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

572

573 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

574

575 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &

576

577 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

578

579 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( uvc1 ) )

580

581 ! Normal izat ion cond i t i on f o r the down Antiquark PDFs

582

583 SecondOrderdb ( i ) =0.25 rk ∗( F i r s t o r d e r ( i ) ∗(−1.0 rk ∗T3) + &

584

585 F i r s t o r d e r ( i ) ∗(T8/3 .0 rk ) + F i r s t o rd e r ( i ) ∗(T15/6 .0 rk ) &

586

587 + ( ( (Nf / (4 . 0∗Cf ) ) ∗( gluon1+uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 ) &

588

589 + ( uvc1+dvc1+2.0∗udb1+2.0∗ddb1+ss1 +0.45∗ s s1 − gluon1 ∗(Nf / (4 . 0∗Cf ) ) ) &
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590

591 ∗(D( i ) /D(1) ) ∗∗Yf ) ∗( (Nf / (4 . 0∗Cf ) ) + 1) ∗∗(−1.0) ) ∗(T24/2 .0 rk ) &

592

593 − 2 .0 rk ∗ F i r s t o r d e r ( i ) ∗( dvc1 ) )

594

595

596

597 ! c a l c u l a t e s the Mellim Moment t ha t each o f the pd f s i s normal ized to us ing

LO and NLO co r r e c t i on s

598

599 S ( : , i , : , : )= ( (0 . 0872 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqS ( i ) ) ) ∗S ( : , i , : , : )

600

601 Ub( : , i , : , : )= ( ( 0 . 0 62 + SecondOrderub ( i ) ) / ( 2 . 0 rk ∗pqUb( i ) ) ) ∗Ub( : , i , : , : )

602

603 Db( : , i , : , : )= ( ( 0 . 0 70 + SecondOrderdb ( i ) ) / ( 2 . 0 rk ∗pqDb( i ) ) ) ∗Db( : , i , : , : )

604

605 C( : , i , : , : ) = 0 . 9∗ ( ( 0 . 0 872 + SecondOrders ( i ) ) / ( 4 . 0 rk ∗pqC( i ) ) ) ∗C( : , i , : , : )

606

607

608

609 endif

610

611 enddo

612

613 ! I n t e g r a t e s the non va l ence quark PDFs so t ha t g luon PDFs

614 !Can be normal ized accord ing to momentum conserva t i on

615

616 do i = 1 ,n

617 pqG( i ) = trap ( gpd%x ,G( : , i , 1 , 1 ) )

618 pqUv( i ) = trap ( gpd%x ,Uv ( : , i , 1 , 1 ) )

619 pqDv( i ) = trap ( gpd%x ,Dv( : , i , 1 , 1 ) )

620 pqS ( i ) = trap ( gpd%x , S ( : , i , 1 , 1 ) )

621 pqUb( i ) = trap ( gpd%x ,Ub( : , i , 1 , 1 ) )

622 pqDb( i ) = trap ( gpd%x ,Db( : , i , 1 , 1 ) )

623 pqC( i ) = trap ( gpd%x ,C( : , i , 1 , 1 ) )

624 pqB( i ) = trap ( gpd%x ,B( : , i , 1 , 1 ) )

625 enddo

626

627 ! Se t s the g luon norma l i za t ion cond i t i on so t ha t the momentum

628 ! o f va l ence quark , sea quark and g luon PDFs sums to 1

629
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630 do i = 1 ,n

631 co e f ( i ) = (momtm−(pqUv( i )+pqDv( i ) + 2 .0 rk ∗pqS ( i ) + 2 .0 rk ∗pqUb( i ) + 2 .0

rk ∗pqDb( i ) + 2 .0 rk ∗pqC( i ) ) ) /(pqG( i ) )

632

633 enddo

634

635 ! Makes sure t ha t the g luon PDFs are normal ized to a po s t i v e va lue

636

637 i f ( any ( co e f . l e . 0 . 0 rk ) ) then

638 ok=. f a l s e .

639 return

640 endif

641

642 ! Normalizes the g luon PDF to the necessary va lue to enure

643 !momentum conserva t i on

644

645 do i = 1 ,n

646 G( : , i , : , : ) = coe f ( i ) ∗G( : , i , : , : )

647

648 enddo

649

650 ! Creates a GPD from the newly normal ized quark and GLuon PDFs

651

652 ca l l GPD create ( temp , gpd%x , gpd%q2 , gpd%z , gpd%t ,G,Uv,Dv, S ,Ub,Db,C,B)

653

654 ! Ensures t ha t no nega t i v e GPD va lu e s occur during the computation

655 where( temp%gpd . l t . 0 . 0 rk ) temp%gpd=0.0 rk

656 temp%parameters=gpd%parameters

657 temp%gpd func=gpd%gpd func

658

659 ca l l GPD copy( temp , gpd )

660 ca l l GPD delete ( temp)

661

662 return

663 end subroutine normal ize gpd

664

665

666 end module gpd norm

Listing 3: Code2
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