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Abstract

The intent of incentive-based contracts – which tie compensation to performance
in professions like teaching – is to improve productivity. In practice, the effects of
such contracts have diverged markedly from predictions. The intent of this disser-
tation is to expand contract theory and provide empirical evidence from both the
laboratory and real-world incentive programs on how contracts in complex envi-
ronments, such as teaching, may be substantially improved. An innovation of this
work is to present a theoretical model that considers the effects of output-based
incentives when agents lack knowledge of the production function. In the context
of incentive contracts for teachers, I expand on contract theory by adding uncer-
tainty around the marginal productivity of inputs – such as different classroom
activities – towards student test outcomes. I test the theoretical predictions of this
model using variation in the implementation of evaluations in the Washington
DC teacher incentive program and in the setting of a laboratory experiment.

In my first paper, “Personnel Contracts under Production Uncertainty: The-
ory and Evidence from Teacher Performance Incentives,” I test the prediction
that, due to production uncertainty, teacher incentives based on in-class evalua-
tions may be substantially more effective than test-based incentives by separately
identifying how two types of teacher incentives affect student outcomes. In the
IMPACT program, teachers can be fired or receive large bonuses based on a com-
bination of observational measures in unannounced in-class evaluations – which
can be thought of as measures of teacher inputs – and test-based measures of the
effect of teachers on student outcomes. I measure how teachers modify their be-
havior when they have no threat of an evaluation, and how those changes affect
student test scores. Because the timing of in-class observations is random, the
assignment of treatment – how many days a teacher has the threat of an eval-
uation – is exogenous. I find that increasing the number of days without the
possibility of an evaluation leads to a decline in students’ tested scores, which
is inconsistent with a model in which agents know the production function, but
consistent with my model of production uncertainty. I demonstrate that all of the
positive effects of the IMPACT program can be explained entirely by the effect of
a possible in-class evaluation, suggesting the test-based incentive has little or no
effect. A takeaway from this analysis is that incentive-based compensation target-
ing production inputs may yield significant gains in the effectiveness of incentive
contracts.
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In my second paper, “Teacher Improvements in Windows of High-stakes Ob-
servation,” I look deeper at the specific behavioral changes caused by the IMPACT
incentive in Washington DC. I map how teachers modify specific components of
their practice, as measured on their evaluations, in response to the daily prob-
ability of an in-class evaluation. In so doing, I illustrate the predictions of the
Holmstrom-Milgrom multi-tasking model by showing teachers make the most
improvements on teaching practices that are easily adjusted first. In the standard
multi-tasking model, if employees devote all their attention on a single incentive,
overall productivity may fall. However, overall teacher responses to the possibil-
ity of an evaluation still induce meaningful improvements in student outcomes,
demonstrating the small cost of Holmstrom-Milgrom-style multi-tasking relative
to the large gains from reducing employee production uncertainty by using an
input-based incentive.

In my third paper, “Teacher Performance Pay through the Lens of Production
Uncertainty: Theory and Evidence from a Real-Effort Laboratory Experiment,” I
test theoretical predictions of the production uncertainty model in a laboratory
setting, which allows for controlled randomization in the production function in
order to causally identify the effects of production uncertainty. I imitate uncer-
tainty in the marginal value of inputs – analogous to inputs for student test scores
– by asking participants to solve easy or hard problems to earn financial rewards,
but the marginal payoffs are drawn from known distributions. Treatments vary by
changing the variance of the marginal payoff to each task. I find that, as predicted,
increased production uncertainty induces participants to favor inputs with lower
variance in marginal productivity, even while holding all other things constant
(including average marginal payoff).
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Chapter 1

Personnel Contracts under
Production Uncertainty: Theory and
Evidence from Teacher Performance
Incentives

Performance incentive mechanisms for teachers and other professionals typically
reward outcomes such as student test scores. Yet, incentive contracts may induce
inefficient effort allocation if agents are uncertain about the production function.
In such circumstances, incentives targeting production inputs may improve stu-
dent outcomes more effectively than those targeting only the outcomes. The
Washington DC teacher incentive program, IMPACT, provides a laboratory for
testing how input-based and output-based incentives for teachers affect student
test scores. Teachers face large incentives that are determined by their score on a
combination of test-based measures of the effect of teachers on student outcomes
and observational measures in unannounced in-class evaluations. Some teachers
randomly experience days in which they are guaranteed not to receive an unan-
nounced evaluation, which I use to identify how teacher behavior on these days
affects student test outcomes. I find that increasing the number of days without
the possibility of an evaluation leads to a decline in students’ tested scores. I argue
that my empirical results confirm the hypothesis that input incentives are more
effective because teachers are uncertain about the test score production function.
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1.1 Introduction

There is an apparent paradox in compensating teachers based on their perfor-
mance. If teachers are best informed about how to teach their students, bonuses
for improving student test outcomes should be more effective than those for ob-
served teacher behavior. Yet the available evidence demonstrates that, among
equally sized bonuses, only incentives which include rewards based on in-class
performance evaluations improve student test outcomes. I address this paradox
by expanding a principal-agent model to incorporate teacher uncertainty about
the marginal productivity of inputs (“production uncertainty”). Outcome-based
incentives can induce risk-averse teachers to inefficiently allocate their effort away
from effective teaching practices because of uncertainty about their marginal pro-
ductivity. How much students learn from conducting a science experiment may
vary considerably, making it a riskier teaching choice than directly lecturing on
material contained in the test, if compensation relies on student test scores. Re-
warding teachers for particular classroom practices, however, does not induce the
same uncertainty and may lead to greater improvements in student outcomes. I
demonstrate the theoretical result that in-class observations should be a key mech-
anism of successful teacher incentive programs. The structure of the DC Public
School (DCPS) teacher incentive program, called IMPACT, provides a natural ex-
periment in which teachers randomly experience more days with the possibility
of an unannounced evaluation. Using administrative data from IMPACT, I show
how teacher responses to the possibility of an in-class evaluation substantially
improve student test scores. I can also distinguish this from the positive feedback
effect following in-class evaluations.

Policy makers worldwide are turning to teacher performance incentives to
improve teacher quality. The motivation to improve teacher quality is a direct re-
sult of mounting evidence that good teachers matter. Good teachers measurably
improve student tested outcomes and a variety of life outcomes ranging from
decreasing the likelihood of teen pregnancy to increasing college attendance and
lifelong earnings (Rockoff, 2004; Rivkin et al., 2005; Kane and Staiger, 2008; Aaron-
son et al., 2007; Chetty et al., 2014). Yet traditional programs to improve teacher
quality, such as teacher training and increased teacher education, are largely in-
effective (Weisberg et al., 2009; Hanushek, 2007). Instead, new approaches to
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improving teacher quality often rely on economic theory to design incentives in-
tended to motivate and retain effective teachers. The US federal government has
spent $6.5 billion since 2010 on programs that reward teachers based on their per-
formance, though the measured effects of such programs are lackluster. Of the
effective programs, previous empirical studies are unable to identify the mecha-
nism of their success (Wellington et al., 2016).

In the US, performance pay programs typically reward teachers for their es-
timated contribution to student test score growth. Conventional principal-agent
models predict that outcome-based incentives should be more effective than re-
warding specific inputs because teachers have additional information about their
specific talents and the needs of their students. For the same reason, the educa-
tional community at large supports teacher autonomy in the classroom. Notwith-
standing, some performance incentive programs use teacher scores on unan-
nounced in-class observations to determine bonuses. Rigorous in-class evalua-
tions measure how well a teacher implements teaching best practices on a vari-
ety of dimensions such as her classroom management techniques or her use of
student assessment. In theory, if a teacher knows how these practices would im-
prove student test outcomes, an output-based incentive should improve student
test scores at least as much as input-based incentives. But the available empirical
evidence shows that without in-class observations, teacher incentive programs are
ineffective. This observation reveals a paradox: Why would incentives for specific
inputs be more effective than incentives for outputs?

I expand a standard principal agent model to show that output-based incen-
tive contracts may induce agents to allocate their effort inefficiently if they are
uncertain about the marginal productivity of inputs. In response to an incentive
based on student math scores, a teacher may resort to rote memorization instead
of using a more pedagogically sound approach, such as using a manipulative like
counting cubes. Even if using a manipulative is more effective on average, if its
effect appears more uncertain to the teacher, she would favor rote memorization.
In this case, rote memorization has a greater return in certainty equivalence terms.
Even though she may increase her overall effort, her students would improve con-
siderably more if she directed her increased effort towards the most productive
inputs. Incentives based on in-class observations would provide the motivation
to increase her effort but without inducing her to allocate it inefficiently.

The Washington DC IMPACT program provides a natural experiment to test
how input-based and output-based incentives for teachers affect student out-
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comes. Teachers face one-off bonuses of up to $25,000 and possible permanent
pay increases, while exceptionally low-performing teachers are dismissed. Re-
wards are determined by a teacher’s IMPACT score, which is the weighted aver-
age of their value-added score and the average of five in-class evaluations. The
structured time frame of evaluations means that some teachers randomly expe-
rience spells in which they are guaranteed no evaluation will occur. I use this
variation to causally identify how changes in teacher behavior on these days af-
fect student outcomes. However, teachers who experience more days without the
possibility of an evaluation likely had their evaluations earlier than their peers.
As a result, these teachers will also have more time than their peers to enact eval-
uation feedback, potentially improving their students’ test outcomes and masking
any observed effect from the incentive (Taylor and Tyler, 2012). I can separately
identify the effect of evaluation feedback by using the random variation in the
length of time between the day of an evaluation and the day a teacher discusses
her results with her evaluator.

I find that both the possibility of an evaluation and the feedback a teacher
receives substantially improve student test outcomes. For each additional day in
which it was possible for a teacher to be evaluated, her students scored up to
0.005 standard deviations higher in reading and math, depending on the season.
Overall, in a back-of-the-envelope calculation, I estimate the possibility of an eval-
uation improved student reading scores up to 0.074 standard deviations and math
scores up to 0.089 standard deviations, though these are upper bound estimates.
These are large effects relative to other teacher incentive programs, but they are
consistent with the estimated effect of in-class evaluations in high-demand charter
schools (Dobbie and Fryer, 2013).

While my empirical approach cannot specifically identify why teachers de-
crease their effectiveness during days without the possibility of an evaluation, I
argue my results support the narrative that teachers are uncertain about the test
score production function. The IMPACT program is unique because a teacher’s
in-class evaluation score and value-added score jointly determine her eligibility
for a reward, as opposed to having a separate bonus for each. Using a step-
wise incentive model similar to Lazear and Rosen (1981), I show how this feature
makes it likely that, if the teacher knows the production function, she would in-
crease her student test scores during no-risk days. However, with production
uncertainty, the uncertainty costs become more salient after her evaluation, de-
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creasing her overall effort and reducing the marginal benefit of inputs that would
improve student test scores.

1.2 Motivation and Research Context

Improving teacher quality is an effective tool for reaching a variety of policy ob-
jectives. A one standard deviation increase in teacher quality, as measured by
her contribution to student test score growth (value-added), increases lifetime
earnings by roughly $39,000 after a single year of school (Chetty et al., 2014).
Hanushek (1992) estimates that students with teachers in the 95th percentile gain
a full year’s worth more than students with teachers at the 5th percentile, mea-
sured by standard test scores. Over time, a student who consistently has low
quality teachers will be significantly behind her peers. The wide variation in
teacher quality motivates the effort to improve the pool of teachers. School dis-
tricts historically attempted to improve teacher quality by promoting more teacher
training and experience by using what is called a “steps and lanes” system (or
“single salary”), which makes salaries depend only on education, certification,
and teaching experience. The available evidence shows that these factors do not
translate into improved student outcomes (Rivkin et al., 2005). Such pay systems
are discouraging to young but effective teachers looking to distinguish themselves
in their career, and they provide no credible method for acknowledging and cele-
brating effective teachers.1

An alternative payment scheme would seek to identify effective teachers based
on their performance and reward them accordingly. This payment scheme, in
theory, would encourage high-quality teachers to self-select into teaching and
provide appropriate rewards for working being productive. A handful of school
districts in the US have attempted to create performance incentives throughout
the 20th century, but few of these programs survived for more than a couple
years, at least until recently (Murnane and Cohen, 1986). Programs implemented
in the last decade have had mixed effects on student outcomes, and there is little
empirical evidence to determine what makes some incentives effective. This paper
presents both theoretical and empirical arguments that in-class evaluations are a
key mechanism of effective teacher performance incentives.

1Hoxby and Leigh (2004) estimate that the share of teachers in the highest aptitude category
fell from 5% to 1% from 1963 to 2000, and they estimate that 80% of this decline can be attributed to
high quality teachers being pushed out of the profession because of the lack of pay differentiation.
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1.2.1 The Theory of Incentive Contracts as Applied to Teachers

The problem of creating optimal incentives for teachers falls within contract the-
ory. The basic intent of incentive contracts is to reduce employee moral hazard
given their asymmetric information about their own effort and talents. An in-
centive contract is intended to align the incentives of an employee such that they
choose the same level of effort and combination of inputs that the principal would,
which is the first-best solution. A variety of obstacles complicate optimal contract
design. One basic problem is that creating incentives for specific workplace be-
haviors (inputs) can create inefficiencies because of the differences in comparative
advantage. For example, an employer seeking to improve sales could reward a
salesperson for each call he makes instead of per sale. But such an incentive
may be inefficient because it is possible that the employee has an unusually high
marginal productivity per minute spent writing emails. The incentive to increase
calls will induce him to inefficiently spend his time on calls instead of emails. To
avoid this problem, the employer can instead reward the salesperson per sale.2

This basic conclusion motivates the paradox of teacher incentives: why would
incentives based on specific teacher behaviors lead to greater gains in student test
scores than rewarding teachers for improving test scores?

Theoretically it is not clear that incentives for teachers should be a feasible
means for improving student outcomes. Teaching has well-known characteristics
that complicate incentive design (Murnane and Cohen, 1986; Dixit, 2002). Teach-
ers are motivated agents, which makes their response to incentives more inelastic
(see Dixit, 2002; Francois, 2000, for example). Motivated teachers may prioritize
certain outcomes that do not necessarily align with those of the general public
(Neal, 2011). Teachers are also responsible for improving a variety of outcomes
that are hard to define, making it unclear which outcome should be used for
determining bonus payments, but rewarding teachers for multiple outcomes is
likely inefficient (Holmstrom and Milgrom, 1991). The most important teaching
outcomes could be measured, in theory, with well-designed student standardized
tests, but should teachers be paid for their individual contributions to student
outcomes or for their team’s contribution? Teachers often collaborate, which im-
plies individual, rank-based incentives could reduce collaboration, but a bonus

2This is a basic result discussed in the comprehensive contract theory reviews of Lazear and
Oyer (2012) and Prendergast (1999), which also highlight several concerns that are key for my
analysis: how well the measured output aligns with the desired outcome (Akerlof and Kranton,
2005; Neal, 2011; Benabou, 2016), potential gaming of the outcome measure (Baker, 1992), and the
use of subjective measures of employee output (Levin, 2003; MacLeod, 2003; Gibbs et al., 2004).
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for group achievement introduces moral hazard (Holmstrom, 1982; Kandel and
Lazear, 1992).3 A teacher’s contribution to student test scores (“value-added”) is
the average difference between her students’ predicted scores and realized scores.
Teacher value-added scores have inherent noise, which arises from random events
that affect students while taking their tests, such as illness or distractions. Teach-
ers may become less responsive to an incentive as measurement noise in tests
increases (Lazear and Rosen, 1981). Yet in spite of these concerns, some teacher
performance incentives have measurably improved student outcomes. The ques-
tion remaining is what was the driving difference between effective and ineffective
programs?

A common explanation for the ineffectiveness of some teacher incentive pro-
grams is that the incentive size was too small. In theory, increasing the incentive
size should eventually overcome the incentive design problems resulting from
noisy value-added scores and motivated agents. Yet incentive size does not ap-
pear to explain the variation in the observed effects of teacher incentive programs.
For example, the incentive size of the Denver ProComp teacher performance in-
centive is comparable to the possible bonuses in the Washington DC incentive
program, yet only the DC program measurably improved student outcomes (Dee
and Wyckoff, 2015; Briggs et al., 2014). Not only were the incentive sizes similar,
but both programs used value-added to assign bonuses. A key distinction in the
DC program is its use of in-class observations in addition to teacher value-added.

1.2.2 Teacher Performance Incentive Programs in the US and Their
Effects

Teacher performance incentives (also called “merit pay” or “performance pay”)
are an old idea that has reappeared several times since the early 20th century
(Murnane and Cohen, 1986). Recently, US and international policy makers have
actively encouraged public schools to use performance incentives with large-scale
federal programs like Race to the Top and the Teachers Incentive Fund. School
districts responded by implementing teacher performance incentives that vary
considerably in their implementation details. What follows is a discussion of the

3As evidence of the moral hazard of group incentives, Imberman and Lovenheim (2015) eval-
uate the effect of grade-based teacher incentives and find that increasing a teacher’s portion of the
students in a grade leads to higher test outcomes (to a point). In a randomized trial in New York,
Fryer (2013) found that a school-level incentive had no effect on any measured outcome.
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most recent developments in the empirical literature of incentives for individual
teacher performance.

Empirical evidence of the effects of teacher-level performance incentives has
been mixed, but there have been distinctly effective programs. Dee and Keys
(2004) exploit the random student assignment from the Tennessee STAR experi-
ment, which overlapped with the implementation of the Career Ladder. This pro-
gram awarded career advancement and bonuses to teachers for achieving mile-
stones in their in-class evaluations. The authors find that students of teachers
enrolled in the incentive program improved math and reading scores. Dee and
Wyckoff (2015) use a regression discontinuity approach around the sharp cutoffs
in the IMPACT program. They find that dismissal threat improved a teacher’s
effect on student test outcomes by up to 0.05 standard deviations when compared
to teachers just above the threshold in the previous year. Other work has found
some evidence that the Teacher Advancement Program (TAP), which is a com-
prehensive teacher review and reward system, improved student outcomes, but
these results are less robust (Mann et al., 2013).

Other programs had only minor positive effects, but in these cases the policy
analyzed did not dictate specifically how a school district was to create teacher in-
centives. For example, the Minnesota Quality Compensation (Q-Comp) program,
started in 2005 and still ongoing, only requires that school districts implement
an incentive program but the legislation enacted does not specify the structure.
Q-Comp had some small positive effects, but it is unclear what incentive design
elements lead to these positive effects (Sojourner et al., 2014). As for the results of
the many programs funded by the Teacher Incentive Fund (TIF), the Department
of Education’s Institute of Education Sciences produced a report that shows small
positive effects after three years, but like Q-Comp, there is no clear mechanism
(Wellington et al., 2016).

There have been other sizable programs that showed little or no effects on
student test scores. The Tennessee Project on Incentives in Teaching (POINT)
was a three-year experiment started in 2006. While selection into the experiment
was voluntary, assignment to treatment was randomized. Treated teachers would
receive bonuses based solely on the test score improvements of their students.
There were no significant positive effects from the incentive (Springer, 2010). The
Denver Professional Compensation program (ProComp), started in 2007, created
several routes for teachers to receive bonuses, but by far the largest bonus was
awarded to teachers with large gains in student test scores. A report from the
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University of Colorado, Boulder finds that this incentive had no positive effects
on student test scores (Briggs et al., 2014).

In all, these empirical studies provide mixed evidence of the effectiveness of
teacher performance pay. In other contexts, there is strong evidence that perfor-
mance incentives improve employee effort. For example, Lazear (2000) finds that
a piece-rate wage in the Safelite Glass Corporation led to significant improve-
ments in output. In a firm-level randomized experiment, Bandiera et al. (2007)
show that managers receiving a performance incentive increase the productivity
of their team.

In education, the successful application of performance incentives in some
school districts suggest that teaching can be an appropriate context for perfor-
mance incentives, but what element defines a program’s success? Of the incentive
programs described above, the incentive sizes are mostly comparable. The ineffec-
tive Denver ProComp and POINT programs both had bonuses ranging between
$5,000 and $15,000, and sometimes even more. Yet the effective Career Ladder
program, which did not use any test-based measures of teacher effectiveness, had
pay increases ranging from roughly $2,000 to $4,000 in 2017 dollars. These obser-
vations alone suggest a large disparity in how effective test-based incentives are
relative to input-based incentives.

The use of in-class evaluations is a distinguishing characteristic of effective
teacher performance pay. To illustrate, I divide up the teacher incentive programs
detailed above in Table 3.1 based on the use of incentives for in-class evaluation
scores and any measurable incentive effects.4 All of these incentive programs have
teacher-level measurements and incentives with minimal school-level incentives.
Other performance programs not included in Table 3.1 rely almost entirely on
group-level achievement.5 Six of the seven programs use measures of how a
teacher improves student test scores. While not a causal argument, Table 3.1
highlights a positive relationship between a performance incentive’s effect and
the use of in-class evaluations.

4The Denver ProComp program uses pass-fail in-class evaluations. Over 99 percent of teachers
pass these exams, making them perfunctory exercises at best (Briggs et al., 2014), which is why I
do not consider the ProComp program to have any rigorous or meaningful in-class evaluations.
Such pass-fail in-class evaluations are common, and are known to have no meaningful effects on
teacher behavior (Weisberg et al., 2009).

5Notable programs are the School-wide Bonus Program in New York (Fryer, 2013), the Dallas
School Accountability and Incentive Program (DSAIP) (Ladd, 1999), the Kentucky Instructional
Results Information System (KIRIS) (Koretz and Barron, 1998), the North Carolina ABC program
(Vigdor, 2008), the Chicago version of TAP (Glazerman and Seifullah, 2012), and Houston’s AS-
PIRE program (Imberman and Lovenheim, 2015)
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If teachers can predictably improve student test scores by engaging in behav-
iors measured by in-class evaluations, why not employ these techniques when
there is only a test-based incentive? One possible explanation is that the observed
effects are not driven by incentives at all: perhaps programs that utilize in-class
observations are effective because they provide valuable feedback that teachers
use to improve. In Ohio, evaluation feedback improved teacher quality in a dis-
trict which staggered the roll-out of a teacher evaluation program that had no
financial incentives (Taylor and Tyler, 2012). This result suggests that the effects
of the Career Ladder incentive program in Tennessee may have been driven in
large part by the positive effects of evaluation feedback. The analysis in Dee and
Keys (2004) is unable to identify the mechanism of teacher improvements. In my
empirical approach, I estimate both the incentive effects of in-class evaluations
and the positive effects from evaluation feedback.

This paper addresses the somewhat paradoxical results of teacher incentives
both theoretically and empirically. First, I present a theoretical argument why
input incentives may be more effective than output incentives in complex contexts
such as teaching. Second, I present empirical evidence identifying the substantial
positive effects of unannounced in-class observations. A distinctive feature of
my empirical approach is that it separates the effects of teacher improvements
as a result of the incentive from teacher improvements as a result of evaluation
feedback.

1.3 Agent Production Uncertainty

In what follows, I present a principal-agent model that expands on the multi-
tasking model in Holmstrom and Milgrom (1991), with two modifications. First,
to clarify the theoretical results, I remove measurement error. Second, I add un-
certainty about the marginal productivity of inputs for agents. The result is a
rich model with distinctive predictions. To preview, I show that even if all out-
puts are measured without noise, designing incentives around production inputs
can have substantially greater effects than designing incentives around the final
output when agents are uncertain about the production function. The intuition
is that, with production uncertainty, some inputs have low rewards in certainty
equivalent terms, even if they have high average productivity. As a result, agents
may favor inefficient inputs, or become unresponsive to an incentive based on
outputs.
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The theoretical results are consistent with a growing empirical literature in
teacher incentives. Incentives in other industries have been met with mixed results
as well, such as hospital and doctor incentives (Kristensen et al., 2014; Van Herck
et al., 2010; Flodgren et al., 2011). These incentives rely on measures of patient
outcomes and health measures, which effectively have no measurement error.
Without measurement error, these empirical findings are inconsistent with the
predictions of a standard principal-agent model, but consistent with my model of
production uncertainty.

1.3.1 Basic Piece-Rate Incentive with Production Uncertainty

Consider the teacher’s daily problem of allocating her time and effort both in
preparation and execution of the next day’s lessons.6 Assume there are n possi-
ble inputs. These can include different lesson types or instructional practices. The
teacher exerts xi effort and time for input i. Her effort vector is x = [x1, x2, . . . , xn]T.
Her effort comes at a cost, C(x), which I assume exhibits increasing marginal
costs. She receives a bonus that is proportional to the amount she has improved
her students’ test scores (her value-added), denoted y. Then her wage is defined
as W = A + B · y, where A is her guaranteed wage and B is the piece-rate bonus
for improving her value-added.

A teacher’s daily optimization problem requires her to allocate effort and im-
prove her value-added score, y(x).7 Value-added is a measure of how much a
teacher has improved her students’ test outcomes from the previous year, beyond
what was projected for each student. Let f (x) be the production function of value-
added scores, then assuming no measurement error, y(x) = f (x).8 To model a
teacher’s uncertainty about the test score production function, I use a Taylor Ex-
pansion around some reference input vector, x̃. From the teacher’s perspective,
the production function is as follows:

y(x) = f (x̃) + (x− x̃)T∇ f (x̃) + ξ(x− x̃) (1.1)

6This version of agent production uncertainty is meant to illustrate how an output-based
incentive may cause inefficient effort allocation. Many of the assumptions made are used to ease
the presentation, but the results are robust to a variety of realistic modifications. I will extend the
model to a step-wise incentive scheme in the next section.

7Because the teacher only observes her value-added score at the end of the year, her daily
effort allocation will be identical for every day throughout the year.

8This notation is similar to Holmstrom and Milgrom (1991). To make a multi-dimensional
incentive, allow y to be a vector of measured outcomes and εy a vector of measurement noise for
each, then the setup is identical to Holmstrom and Milgrom (1991): y(x) = f (x) + εy.
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where ξ(x − x̃) is a measure of her inaccuracy about the production function as
she considers input levels farther from her reference point, x̃, and is the usual
error term of a Taylor expansion.

Then introduce the teacher’s production uncertainty by allowing ∇ f (x̃) to be
a random variable with a normal distribution with mean µ = ∇ f (x̃). That is,
let ∇ f (x̃) = µ + γ where γ is a mean-zero normally distributed random vari-
able with covariance matrix Σ. Assuming an exponential utility function with
coefficient of risk aversion, r, her daily expected utility is

EU = E
[
− exp

{
−r
(

A + B · ( f (x̃) + (x− x̃)T(µ + γ) + ξ(x− x̃))− C(x)
)} ]

.

(1.2)
For now, let ξ(x − x̃) be negligible.9 For simplicity, I assume x̃ = 0, which can
be thought of as designating x̃ to be the amount of effort with no performance
pay. Then x is deviations from this “default” contract. The moment generating
function of a normal distribution simplifies Equation 1.2 considerably:10

EU = − exp
{
−r
(

A + B · ( f (x̃) + xTµ)− C(x)− 1
2

rB2xTΣx
)}

. (1.3)

The teacher’s maximization problem is then:

max
x

A + B · ( f (x̃) + xTµ)︸ ︷︷ ︸
Expected

Production

−C(x)− 1
2

rB2xTΣx︸ ︷︷ ︸
Uncertainty

Cost

. (1.4)

The teacher has uncertainty costs as highlighted, which increase as her uncer-
tainty in the marginal productivity of inputs increases, represented by Σ. Her
uncertainty costs are also increasing in her coefficient of risk aversion r, the size
of her bonus B, and her allocation of effort x. A key outcome is the uncertainty

9In other applications, the size of ξ(x− x̃) can be used to motivate aspects of prospect theory,
such as reference points and framing.

10The moment generating function for a random variable X is defined as M(t) = E[etX ]. The

multivariate normal moment generating function is M(t) = etT(µ+ 1
2 Σt). Then let t = −rB(x− x̃),

then the utility function can be rewritten as U = −e−r(A+B(y(x̃)−C(x)) · etTγ, where the only random
variable is γ in the last term. Substituting the moment generating function means

E[etTγ] = etTµ+ 1
2 tTΣt

= e−r(B(x−x̃)µ− 1
2 rB2(x−x̃)TΣ(x−x̃)).
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cost term highlighted. In the Holmstrom-Milgrom model, the uncertainty cost is
linear in x, whereas now it has increasing marginal costs in x.

The teacher’s first-order conditions show that increases in production uncer-
tainty, Σ, or the bonus size B, will affect her marginal effort choice:

Bµ− rB2Σx = ∇C(x). (1.5)

If there is negligible agent production uncertainty (Σ ≈ 0), then this is a first-best
solution for a risk-neutral principal: the teacher optimally picks her inputs such
that the marginal benefits, Bµ, equal the marginal costs, ∇C(x).11 However, as
elements of Σ become larger, production uncertainty will distort her effort choices
away from the first-best solution.

Equation 1.5 provides a number of practical implications. The structure of Σ
changes a teacher’s overall effort and how she allocates it. Suppose there are only
two inputs a and b, and suppose both have the same marginal cost. Let input
a be a math lesson using a manipulative like counting cubes, whereas input b
is using a worksheet that emphasizes information on the test. If using counting
cubes improves tests more on average than using a worksheet, this would be
the input preferred by the principal. Without production uncertainty, a piece-
rate incentive on test scores would provide encouragement to a teacher for using
counting cubes. But if the teacher is uncertain about the marginal product of
counting cubes, she may choose the worksheet instead. There are a number of
uncontrollable factors that may make the effect of one approach more uncertain
than another. There may be variation in how well students receive one approach,
or an approach may depend on how well students interact with each other.

Even if a teacher increases the intensity of her effort in response to an incentive,
she may allocate it inefficiently by preferring a worksheet. This distortion in her
allocation of effort is an effect I call “friction.” In essence, she is compensating for
her uncertainty about the counting cubes by increasing her use of the worksheet.
If she is uncertain about the marginal effect of both inputs, she cannot compensate
in this manner. In this case, the fact that all inputs have a highly variable effect on
student outcomes makes the teacher believe she has no control over her students’

11Even if y(x) is measured with noise such that y(x) = f (x) + ε, with a linear compensation
scheme, her optimal effort allocation is not affected if there are constant marginal costs. With a
step-wise reward, measurement noise will reduce ∑ xi, but it will not change how she allocates
total effort among her inputs. If instead of interpreting x as teacher effort, it is how she allocates
time within a fixed-length day, measurement noise will have no effect on how she allocates her
time throughout the day.
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outcomes. As a result, the incentive will not increase her effort on either teaching
style, an effect I call “futility.” Because an incentive based on an output with an
uncertain production function can induce friction and futility, it is possible that
an incentive based on an input will be more effective, in spite of the potential
inefficiencies caused by asymmetric information and Holmstrom-Milgrom style
multitasking.

In a principal-agent problem, the first-best outcome is defined as the effort
allocation the principal would choose if it were possible to dictate the agent’s
actions knowing the agent’s preferences over income and labor costs. When out-
put is measured perfectly, a linear payment scheme based on output achieves the
first-best (Lazear, 1986). Under production uncertainty, this is rarely true. Fur-
thermore, this result does not depend on differences in risk preferences between
the principal and the agent.

To illustrate, assume each class is a new draw of the marginal productivity
of inputs, γ, for a teacher. The assumption implies there are important inter-
actions between students and their peers that will influence the productivity of
different teaching styles, making γ depend on the classroom composition, not
just individual student characteristics. For example, some classrooms may func-
tion exceptionally well under peer-led group learning, while others certainly will
not. Principals oversee multiple classrooms, giving them multiple draws of γ

each year, effectively reducing its covariance. As a result, even if principals and
teachers completely agree on the average marginal effect of each input, µ, the
test-based incentive will still induce teachers to allocate their effort differently
than the principal would dictate if possible. The marginal benefit of inputs in
certainty equivalent terms is different between principals and teachers, but not
necessarily because of differences in risk preferences.

Alternatively, production uncertainty can be thought of as a measure of teacher
expertise, where more experienced teachers have smaller variance about the marginal
productivity of each input. Supposing the principal is a highly experienced
teacher, she would have less uncertainty about the marginal productivity of in-
puts. Yet even if the teachers in her school agreed on what constitutes “best prac-
tices” in teaching, their uncertainty about the marginal productivity of inputs
could still induce them to allocate their effort inefficiently from the principal’s
perspective. When paid based on student test outcomes, teachers’ lack of con-
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fidence in effective teaching practices can induce them to resort to less effective
teaching approaches.12

1.3.2 Extending to Step-Wise Incentive

In application, many teacher incentive programs use a step-wise reward system
instead of the piece-rate, linear reward described above. In order for the theoreti-
cal results to apply to the IMPACT incentive structure more readily, I modify the
model for a step-wise incentive and add measurement noise.

As before, a teacher chooses her daily effort vector, x, which produces f (x)
in student test scores. Then her observed contribution to student test scores is
S(x) = f (x) + ε with mean-zero measurement error ε. The teacher knows the
distribution of ε. She will receive her bonus B if her value-added score, S , passes
some threshold S∗.

Unlike before, I assume she is risk neutral.13 Then she choose her inputs to
solve the following maximization problem:

max
x

P(x)B− C(x). (1.6)

Her choice of inputs determine her probability of earning a bonus, which is P(x).
The probability depends on the measurement noise of test scores and evaluation
scores, as well as the presence of production uncertainty. The teacher’s first-order

12There is growing evidence that in some cases, teachers’ attempts to “teach to the test” are
less effective at improving test scores than other pedagogically sound approaches (Hill et al.,
2015; Blazar, 2015; Blazar and Kraft, 2016; Blazar and Pollard, 2017). This is not to suggest that
teaching to the test is always ineffective, but that teachers’ ineffective attempts demonstrate a lack
of confidence in established teaching best practices.

13As in Lazear and Rosen (1981), the step-wise payment function generates diminishing
marginal returns to effort because of measurement noise, which drives the theoretical results.
Allowing for risk aversion does not qualitatively change the results, though it does complicate the
model.
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condition for each input xi is as follows:14

dP
dxi

B =
dC
dxi

(1.7)

Her probability of earning a bonus will depend on the distribution of mea-
surement noise, ε, and whether or not there is production uncertainty.

Following a linear estimate of the test score production function, the teacher’s
value-added score is represented by:

S(x) = f (x̃) + (x− x̃)T(µ f + γ f ) + ε (1.8)

which includes both production function uncertainty and measurement error, ε,
with assumed zero mean and variance σ2. As before, γ f is a multivariate normal
random variable with covariance matrix Σ.

To simplify, again assume x̃ = 0. Let her expected score be S̄, which can
be expressed as S̄ = xTµ f . Her score, S, is a random variable that is normally
distributed and centered around S̄. That is, define the error term θ = S− S̄ = ε +

xTγ f , then her final score is a random variable that can be rewritten as S = S̄ + θ

and θ is normally distributed with mean zero and variance ρ(x). The functional
form of ρ(x) is:

ρ(x) = σ2 + xTΣx. (1.9)

If there is no correlation in the error term for the marginal productivity of inputs,
then the off-diagonal elements of Σ are zero.

Given that a teacher’s score is a normally distributed random variable with
mean S̄ and variance ρ(x), the probability of earning her bonus is

P(x) = Pr[ε + xTγ f > S∗ − S̄]

= 1−Φ

(
S∗ − S̄√

ρ(x)

)
(1.10)

14Allowing the teacher to be risk-averse with an exponential utility function changes Equa-
tion 1.7 only slightly. The term B is replaced with a weighting function that is increasing in B, call
it Γ(B):

dP
dxi

1
r

Γ(B) =
dC
dxi

For values of r and B such that rB > − ln
(

1
2

)
, the weighting function is greater than 1, Γ(B) > 1,

as expected. This means that increasing the bonus B will increase the weight placed on improving
the probability of earning the bonus.
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where Φ(·) is the standard normal distribution function.
The teacher’s first-order conditions for each input i, Equation 1.7, are deter-

mined by the marginal effect of xi on the probability of earning a bonus. Equa-
tion 1.10 previews how production uncertainty will change the first-order condi-
tions. If there is no production uncertainty, the variance of her score no longer
depends on her choice of inputs: ρ = σ2. The intuition is that, without production
uncertainty, a teacher is only shifting S̄ such that her marginal benefits equal her
marginal costs. However, with production uncertainty, her choice of x also influ-
ences the distribution’s shape. Increasing x increases the variance, ρ(x), which
flattens the distribution of S around S̄. To see this, the marginal effect of xi on the
probability of earning the bonus is

dP
dxi

= φ

(
S∗ − S̄√

ρ(x)

)
1√
ρ(x)

dS̄
dxi
− ψi(x, Σ) (1.11)

where φ(·) is the probability distribution function of the standard normal distri-
bution. The term ψi(x, Σ) is the cost of flattening the distribution and is a direct
result of production uncertainty. Before discussing ψi(x, Σ), note that the first

term in Equation 1.11, φ

(
S∗−S̄√

ρ(x)

)
1√
ρ(X)

, is decreasing in ρ(x) when S̄ is suitably

close to S∗.15 That is, the marginal benefit of increasing xi decreases as measure-
ment noise increases. As a result, increasing measurement noise will reduce a
teacher’s response to an incentive as in Lazear and Rosen (1981).

The function ψi(x, Σ) in Equation 1.11 is a “flattening cost” from increasing
input i.16 The flattening cost reflects the reduction in the marginal benefit of
increasing an input because doing so will increase the variance of S and stretch its
distribution. To understand the key properties of ψi, let the diagonal elements of
the covariance matrix, Σ, be labeled δi. The first key property is that the flattening
cost for input i is always zero if there is no production uncertainty for input i. That
is, ψi(x, Σ|δi = 0) = 0. Increasing an input that has no production uncertainty

15Intuitively, if S̄ = S∗, increasing the variance of S pushes the pdf down at the mean. Of
course, in the tails of the distribution, increasing the variance will increase φ. The exact condition

for φ(·) 1√
ρ(x)

to be decreasing in ρ(x) is that S∗ − S̄ <
√

1
2 ρ

16While some key properties are discussed here, the details about the properties of ψi(x, Σ) are
beyond the scope of this paper. The function is

ψi(x, Σγ) =
1
2

φ

(
S∗ − S̄
√

ρ

)
S̄

ρ
3
2

dρ

dxi
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will only shift the distribution but it will not add any variance to S. The second
key property is that for two inputs i and j, if the production uncertainty of i is
greater than that of j, then the flattening cost of i will be greater than that of j. In
short, if δi > δj then ψi > ψj, under reasonable conditions.17 The flattening cost is
continuous in xi and zero for xi = 0. This guarantees that there is always a value
xi such that dP

dxi
> 0. Under reasonable parameters, the flattening cost is smaller

than the first, positive term in Equation 1.11.18

The key result of the model with step-wise incentives and production uncer-
tainty is that production uncertainty will distort how a teacher responds to an
incentive. In general, Mirrlees (1971) shows that if x has a sufficiently large effect
on the outcome of interest around S∗, then a step-wise incentive will approximate
the first-best solution. My theoretical result is that if the principal is seeking to
maximize average productivity, an output with high production uncertainty will
not achieve the first-best allocation of effort.

1.4 Empirical Evidence of Production Uncertainty in
Personnel Contracts

This paper’s empirical contributions are twofold: I first establish that input teacher
incentives improve student tested outcomes. I then argue that the observed effects
are evidence of production uncertainty given the structure of the IMPACT pro-
gram. A secondary but distinguishing feature of my empirical approach is its
capacity to separately identify the incentive effect of high-stakes evaluations from
positive effect of evaluation feedback. This is possible because evaluations are
randomly timed and because there is random variation in when teachers received
feedback following their evaluation.

To preview, the activities teachers employ when concerned about a potential
unannounced in-class evaluation substantially improve student test scores. I also
find that evaluation feedback can significantly improve student outcomes. An-
other feature of my approach is that I can identify discontinuous changes in the
effect of teacher effort when the probability of an evaluation is zero. Discontinu-
ous changes in the effect of teacher effort are difficult to reconcile with a model in

17This latter result depends only on dρ(x)
dxi

> dρ(x)
dxj

, which is true assuming the off-diagonal

elements of Σ are zero and as long as δi
δj
>

xj
xi

.
18This result is driven by the fact that ψi(x, Σ) decreases in ρ by a factor of 1

ρ more than the
positive term.
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which the teacher knows the production function. If teachers know the produc-
tion function, then teachers with a very small probability of an evaluation should
have roughly the same daily effect on student test outcomes as a teacher with
no possibility of an evaluation. However, if teachers have uncertainty about the
test score production function, the uncertainty cost of test-directed effort becomes
more salient after an evaluation, causing a discontinuity in their effort allocation.
My results then function as test to demonstrate my hypothesis of production un-
certainty in teaching.

1.4.1 Setting and Data Source

The IMPACT program began in the 2009-10 school year and its structure was
unchanged for the first three years. Over this time period, DCPS has between 128
and 133 elementary, middle and high schools, with roughly 3,500 teachers each
year. Of these teachers, about 13 percent (475 each year) teach grades and subjects
for which a teacher’s value-added score can be calculated.19 Slightly less than half
(42 percent or 200 teachers) of these teach both math and reading. The remaining
275 teachers are evenly split between teaching only math and only reading.

As part of the IMPACT incentive program, teachers receive evaluations from
both principals and district employees called “Master Educators.” Principals con-
duct three evaluations throughout the year, and master educators conduct only
two. Principals are required to inform teachers a day in advance of their first
evaluation, but the remaining evaluations are unannounced. Similarly, master
educators must announce their first evaluation but not their second. The in-
class observation uses a well-defined observation rubric called the “Teaching and
Learning Framework” (TLF). TLF is a 9-dimensional grading rubric derived from
the Danielson Framework. For each dimension, teachers receive a score between
1 and 4. The final TLF score is the average of the scores for all 9 dimensions.

A teacher’s final IMPACT score is between 100 and 400. For teachers in grades
4 through 8, the IMPACT score assigns 50 percent weight to a teacher’s value-
added score and 35 or 45 percent weight to classroom evaluations, depending on
the year. The remaining score depends on a teacher’s rating on the “Commit-
ment to School and Community” rating determined by the principal. Based on

19Value-added scores require a teacher’s students have a prior test score available. These scores
are only available starting from grade 3 through grade 8, and are only available for Math and
English Language Arts (ELA). This means that only teachers in grades 4 through 8 in math and
reading will have value-added scores available.
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their numeric score, teachers receive a rating of “Ineffective” (score below 175),
“Minimally Effective” (between 175 and 250), “Effective” (between 250 and 350),
or “Highly Effective” (greater than 350). Teachers face large consequences based
on their IMPACT rating. Highly Effective teachers receive one-off bonuses rang-
ing from $5,000 to $25,000 depending on the school, grade, and subject taught. If
teachers are Highly Effective a second year in a row, they receive permanent pay
increases that range from $6,000 per year and possibly exceed $20,000 per year.20

If a teacher is rated Minimally Effective, she experiences a pay freeze, meaning
her salary does not increase as it normally would with each year of experience.
She must also improve to Effective in the next year or be dismissed. Receiving
a rating of Ineffective leads to immediate dismissal. Only 1.6 percent of teach-
ers received a final rating of Ineffective in the years studied, whereas 12 percent
received a Minimally Effective overall rating.

I observe a teacher’s final value-added score, the date of each of her in-class
performance evaluations, and the date on which she meets with her evaluator to
review her performance. I also observe her years of experience and her highest
degree earned. With this information, I calculate the number of days in which she
is guaranteed not to receive an evaluation. I also calculate the daily probability of
receiving an evaluation. The data are limited by the available teacher covariates.
The only reliable covariate available for the entire sample is a teacher’s years of
experience.

1.4.2 Empirical Approach

My empirical model builds on the version of production uncertainty for a step-
wise incentive. The first distinction is that, in DCPS, a teacher experience days in
which she may be evaluated (“threat days”) and days in which she is certain not
to be evaluated (“no-threat days”). I assume her effort allocation on threat days
will be different than her effort allocation on no-threat days. I also assume that
her value-added score at the end of the year is the cumulative effect of her daily
effort. Her choice of inputs is the solution to her utility maximization problem
represented in Equation 1.4. Let N be the total number of instruction days and
n be the number of no-threat days. Then let β(x) be her daily marginal effect
on student test scores as a function of her daily vector of inputs, x. An addi-

20Pay increases depend on a variety of factors, such as a teacher’s current base pay, whether
her school is a high-poverty school (60 percent or more of students receive free or reduced-price
lunch), or if she teaches a high need subject. See Dee and Wyckoff (2015) for more details.
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tional distinction from the theoretical model is that her choice of inputs before
her evaluation will change as the probability of an evaluation changes, making x
a function of pt. Then her value-added score at the end of the year is

Y = nβ(x′) +
N−n

∑
t=1

β(x(pt)) + ε (1.12)

Her individual score is measured with error ε, which I will assume is condition-
ally independent of the timing of her in-class evaluation. Equation 1.12 implicitly
assumes that the probability of an evaluation affects a teacher’s daily contribu-
tion, β(x(pt)) linearly. There is some minimum daily effect for a teacher’s choice
of x, even if pt is very small. Then I allow this effect to grow linearly with pt. This
assumption does not require that a teacher is modifying her effort linearly, only
that its effects on value-added are approximately linear in pt.21

When a teacher receives feedback, it may improve her daily effectiveness either
by making good teaching less costly or by increasing the marginal productivity of
her inputs. I can measure the cumulative effect of feedback on student outcomes.
To do so, let v be an indicator for each evaluation, where v = P1, P2, P3 for her
three principal evaluations and v = M1, M2 for her master educator evaluations.
For feedback on evaluation v, she has mv days in which her feedback affects her
teaching by αv per day. With this addition, her value-added is

Y = nβ(x′) +
N−n

∑
t=1

β(x(pt)) + ∑
v

mvαv + ε (1.13)

Then a teacher’s value-added at the end of the year is

Y = nβ(x′) + (N − n)β(x) + β(x)
N−n

∑
t=1

pt + ∑
v

mvαv + ε (1.14)

This model specification allows me to identify a discontinuity in the effect of
teacher effort at pt = 0. If the effect of her inputs is continuous in pt, then her
daily effect on value-added as pt approaches zero should be equal to her daily
effect when she has no threat of an evaluation. In my specification, this would
mean β(x) = β(x′).

21In other specifications, I allow the effect of evaluation probability to be quadratic or logarith-
mic, but neither specification alters my results qualitatively.
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Key measures include how the probability of an evaluation affects teacher
value-added and if there are discontinuous changes in her behavior after her
evaluation. The parameter β(x) represents the daily effect of an increase in pt on
student outcomes, and the difference β(x)− β(x′) is the discontinuous change in
effort when a teacher is guaranteed to not have an evaluation. I can estimate β(x),
β(x′), and αv using a standard OLS estimation.

1.4.3 Econometric Specification

In the simple case where a teacher receives only one evaluation in a year, iden-
tifying threat and no-threat days is straightforward. In the IMPACT program,
evaluations occur in multiple pre-specified time windows. The structure of these
windows provides two opportunities for no-threat time. This feature is useful be-
cause it provides two opportunities within the same year to measure how input
incentives affect student test outcomes. Over the year, the curriculum and teach-
ing priorities may change, potentially varying the observed effects of a pending
evaluation. I use the two possible no-threat windows to allow the effect of high-
stakes evaluation to change based on the season of the year.

My econometric specification builds directly off Equation 1.14. As before,
the outcome variable of interest is a standardized value-added score on student
reading and math tests, Yijs, for teacher i in year j at school s. I control for
school-level characteristics using school fixed effects φs. The variable Xij is a
vector of annual experience dummies, up to 15 years of experience. Let w = 1, 2
indicate the no-threat window. The number of no-threat days in window w is nw

ijs.
The number of days between when a teacher receives feedback on evaluation v
and student tests is mv for v ∈ {P1, P2, P3, M1, M2}. I estimate the following
equation:

Yijs = XijΓ + φs +
2

∑
w=1

(
βw(x′)− βw(x)

)
nw

ijs + ∑
v

mvαv +
2

∑
w=1

βw(x)
Nw−nw

∑
t=1

pw
t + εijs

(1.15)
The error term in Equation 1.15 consists of the measurement error of a teacher’s

value-added and other unobservable factors that affect a teacher’s value-added
score. I assume that εijs is conditionally independent of nw

ijs. That is, E[nw
ijsεijs|Xij, φs] =

0. The assumption is that there are no unobservable characteristics of a teacher
that are correlated with her value-added score and systematically change her
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number of no-threat days. If evaluators systematically target low-quality teachers
early in the year based on criteria that I cannot observe, then my results will be
negatively biased. If the timing of evaluations is independent of the error term,
the probability of an evaluation will be too. In order to separately identify the
positive effects of evaluation feedback from the effects of no-threat time, I also as-
sume that the space between when a teacher receives her evaluation and the day
she receives feedback is conditionally independent of εijs. Let dv

ijs be the number
of business days between when a principal received evaluation v and when she
received her feedback. I assume E[dv

ijsεijs|Xij, φs] = 0. This is assuming that eval-
uators do not systematically change how long they wait to meet with teachers
based on unobservable characteristics that correlate with teacher value-added. If
evaluators meet sooner with good teachers, my estimated positive effects of re-
ceiving feedback will be biased upwards.

I estimate Equation 1.15 using ordinary least squares with clustered errors at
the school-by-year level. I cluster at the school-by-year level because each year at
each school is effectively a new random assignment to treatment. As a result, the
error terms for individual teacher value-added scores are likely correlated within
school and year.

1.4.4 Description and Calculation of Treatment Measures

In-class evaluations must occur within pre-specified time frames as depicted in
Figure 1.1. The first principal evaluation must occur by December 1, the second
must occur before March 15, and the third must occur before the end of the school
year. The Master Educator evaluations split the school year: the first occurs before
February 1 and the second occurs afterwards.

Once a teacher has received all of her possible evaluations in the current win-
dow, it is guaranteed that she will not have an evaluation until the next window
begins. Figure 1.2 provides a simplified example. In the case depicted, a teacher
must only receive two Master Educator evaluations. Her no-threat time is defined
by the number of days from her first evaluation until the start of the next window.
She again will have more no-threat days after her second evaluation. Because I
am looking at how no-threat days affect student test outcomes, I only consider
no-threat days that occur before students begin taking their tests for the year.

The actual possible no-threat windows in IMPACT are more complicated than
Figure 1.2. No-threat time requires that both possible evaluations are completed,
and no-threat days are only counted until the next possible window begins. Fig-
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ure 1.3 provides an example of how no-threat time is calculated. Because the first
principal and Master Educator evaluations are announced before-hand, I do not
consider them to provide any evaluation threat. The first possible no-threat time
starts from the time of the second principal evaluation and lasts until the start
of the second Master Educator window. If a teacher does not receive her second
principal evaluation before the start of the second Master Educator window, she
will not have any no-threat days. The second no-threat window is possible from
the end of her second Master Educator evaluation until the start of the window
for the third principal evaluation. Because fewer than eight percent of teachers
receive their third principal evaluation before the start of student testing, I do
not consider the effects of possible no-threat time at this window. It is unclear
if teachers have any real expectation of receiving an evaluation in this short time
frame.

The probability of an evaluation changes throughout the school year. Teachers
are effectively drawn without replacement, making the daily probability of an
evaluation for a specific teacher increase as the school year progresses. I account
for this by estimating the teacher’s probability of being evaluated on each day t at
her school s. Intuitively, if a teacher has not been evaluated by the last day of the
window, she can be certain to receive her evaluation on the next day. I observe the
date of each observation for each teacher, which I use to calculate how likely the
remaining teachers are to be evaluated in each of the remaining days. Intuitively,
a teacher knows that if tomorrow is the last day of an evaluation window and she
has not been evaluated, she will be evaluated tomorrow. Two factors determine
a teacher’s estimate of the probability of being evaluated on any particular day:
the number of teachers that remain to be evaluated and how many evaluations a
teacher expects to be conducted. It is then straightforward to calculate evaluation
probability if each remaining teacher has an equal probability.

As before, let v be an evaluation indicator, where v is P1, P2, or P3 for the
principal evaluations and M1 or M2 for master educator evaluations. Then let a
teacher’s estimate of the number of evaluations to be conducted on day t at school
s be L̂v

ts. If Rv
ts is the number of teachers who still need evaluation v on day t at

school s, then each remaining teacher’s probability of being evaluated is

pv
ts =

L̂v
ts

Rv
ts

. (1.16)
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It is straightforward to determine the number of remaining teachers for an evalua-
tion, Rv

ts, but estimating how many evaluations a teacher expects to be conducted,
L̂v

ts, requires assumptions about what a teacher knows. If a teacher knew exactly
how many evaluations would be conducted on every day, then L̂v

ts = Lv
ts. This is

a strong assumption that is unlikely to be true, especially if evaluations are not
evenly distributed within a window.

Principals tend to cluster their evaluations near the last third of the time win-
dow, which changes the expected number of daily evaluations to change over time
as well. In the beginning of an observation window, teachers expect that princi-
pals will conduct few evaluations, but towards the end of the window, teachers
expect more each day. On the other hand, master educators distribute their evalu-
ations more evenly, so the expected number of evaluations remains constant. Fig-
ure 2.2 shows the overall distribution of evaluations across each window. While
the master educators maintain a fairly uniform distribution, principals are very
often conducting evaluations in the last third of the available time. The dip in
evaluations in M2 around day 45 is a result of student testing days in April.

Instead of assuming teachers know exactly how many evaluations will be con-
ducted on each day, I can allow a teacher to assume a uniform distribution of
evaluations, or assume she is broadly aware of the trend in evaluations. I ap-
proximate the information available to a teacher by estimating the distribution of
evaluations with a kernel density. The kernel smoothing approximates changes
in the trend of daily evaluations that teachers notice. I estimate the model under
both a uniform assumption and the kernel.

For many days in the year, a teacher has the possibility of either a principal
evaluation or a master educator evaluation (or both). The two events are inde-
pendent and in rare cases both occur on the same day for a single teacher. To
determine the probability of any evaluation, I use the sum of their individual
probabilities. For example, if a teacher has not yet had either P1 or M1 evalu-
ations, her probability of any evaluation the next day is pts = pP1

ts + pM1
ts , but if

she had already received her P1 evaluation, her probability is just pts = pM1
ts .22

Then in my specification, I use pts. Figure 1.5 shows the distribution of the cu-
mulative probability of receiving any evaluation for each of the five evaluations.
Two key features stand out. Because the measure is the cumulative probability
across many days, my measure of evaluation probability is often larger than one.

22These additive probabilities are capped at 1, though the cap was rarely needed (it applied to
0.38 percent of all observations).
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The other important feature is that the cumulative evaluation probability for prin-
cipal evaluations is larger on average, which is the result of principals lumping
evaluations near the end of the evaluation window.

1.5 Treatment Exogeneity

A primary object of the empirical analysis is to measure how ”no-threat time”
or the days without a potential evaluation affect teacher value-added. Central to
this question is the exogeneity of no-threat time. While the statutory design of
the policy would suggest that these measures should be exogenous, actual prac-
tice may produce variation in evaluation timing that is related to teacher qual-
ity. Targeted evaluation timing would invalidate the assumption that assignment
to no-threat days is conditionally independent of teacher quality. If low-quality
teachers systematically receive their evaluations early, assignment to no-threat
days will correlate with lower student test scores and bias my results.

The first step in my empirical analysis is to assess the extent to which eval-
uators may target teachers. Anecdotally, principals are somewhat haphazard in
determining when to evaluate each teacher, fitting in evaluations as time allows.
While this may suggest they are not purposefully targeting specific teachers, prin-
cipals may still do so inadvertently. Unlike principals, master educators are likely
more methodical because their primary job is to conduct evaluations.

I can observe potential targeting by estimating the correlation between eval-
uation timing and measures of a teacher’s quality, such as her previous year’s
value-added score. Even under a variety of tests, I find no evidence that either
principals or master educators target teachers based on quality. If evaluation tim-
ing is independent of teacher quality, my treatments of no-threat days and the
probability of an evaluation are exogenous.

My specification also identifies the positive effects of post-evaluation feedback
by using variation in how much time elapses between an evaluation and when a
teacher receives her feedback. If evaluators systematically provide prompt feed-
back to good teachers but are slow to give feedback to low-quality teachers, my
estimates of the effect of evaluation feedback will be biased upward. I find no
evidence of this form of targeting.

To test my identification assumptions, I use a variety of teacher characteristics
to assess whether or not evaluations are timed based on teacher quality. I regress
characteristics that are potentially observed by principals and master educators,
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Cijs, on the treatment variables, Tijs. The regression specification is

Tijs = β0 + φsj + βCijs + εijs . (1.17)

Because there may be school-by-year systematic differences in evaluation tim-
ing, φsj is a school-by-year fixed effect for school s. The characteristics I consider
are a teacher’s overall evaluation score in the previous year (calculated as the
mean of all five evaluations), the teacher’s value-added score in reading and math
in the previous year, an indicator for whether she is a first-year teacher, and then
observable scores from evaluations within the same year. The characteristics Cijs

are demeaned. The treatment variables Tijs I consider are, first, no-threat time in
the two possible windows. I also consider the specific principal and Master Edu-
cator evaluation timing, as well as targeting the space between an evaluation and
the conference in which a teacher receives her feedback. Finally, I consider the
treatment variable, the sum of the probabilities of evaluation across each window
w: ∑t pw

tijs.
The results in Table 2.4 show that there is no evidence that principals or master

educators are targeting specific teachers early. None of the coefficients have been
adjusted for multiple hypothesis testing. The exogeneity checks in Table 2.4 may
be limited by the relatively small sample size. My analysis is restricted to teachers
in math and reading in grades four through eight. Using the same administrative
data, Phipps and Wiseman (2017) conduct the same exogeneity checks on the full
range of Washington DC teachers and also find no targeting.

1.6 Results

Table 1.4 shows the estimated effects of evaluation probability, no-threat time,
and post-feedback time on student test outcomes for reading and math. The
outcome variable is standardized teacher value-added scores.23 The models vary
by the method used to calculate the probability of evaluation, either assuming

23It is possible to use student test outcomes instead, and the qualitative results are the same.
Using student test data introduces considerable measurement error in the independent variables,
however, due to students switching teachers. Roughly 20 percent of students switch teachers
within a year, but the exact timing of their switch is not known. In calculating no-threat days for a
specific student’s teacher, I am forced to loosely approximate when that student switched. Using
teacher value-added instead keeps measurement error in the dependent variable, which does not
introduce bias and unknown effects but it decreases my precision.
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evaluations are uniformly distributed or using a kernel density estimate of their
distribution.

Standardized teacher value-added scores are on a different scale than student
test scores. Value-added is calculated by first predicting each student’s test scores
based on their previous year performance and other observable characteristics,
and then calculating how much, on average, a teacher’s students’ performance
differed from their predicted score. In other words, value-added is an annual
estimation of a teacher’s fixed effect on student outcomes. These fixed effects
are then standardized, making the scale of teacher value-added different than the
scale of standardized student test scores. In Washington DC, I find that a one
standard deviation increase in teacher value-added corresponds to a 0.10 stan-
dard deviation increase in student reading and 0.13 standard deviation increase
in student math. This estimate agrees with the larger empirical literature, where a
one standard deviation increase in teacher value-added score usually corresponds
to an increase of 0.11 standard deviations in student reading test scores and 0.14
standard deviations in student math scores (Hanushek and Rivkin, 2010).

The effects of no-threat time are negative for reading in Window 2, but not
significant for Window 1. As seen in the second row of the first two columns
of Table 1.4, an increase in the number of no-threat days reduces teacher value-
added by 0.046 standard deviations, which is a 0.005 standard deviation decrease
in student reading scores per day of no-threat time. For math, Window 1 no-
threat days reduce teacher value-added by 0.036 standard deviations (row one
of columns three and four), which is a decrease of about 0.005 student standard
deviations. There is no statistically significant effect in math for Window 2.

The counterfactual for teachers with no-threat days is teachers with threat-
days, adjusted for the probability of an evaluation. This implies that the measured
effects of no-threat days will depend on the activities and effectiveness of teachers
with the possibility of an evaluation. A feature of my empirical approach is that it
allows the counterfactual teacher effects to differ between the two windows. The
different effects of Windows 1 and 2 likely reflect differences in the effect of cur-
riculum on test scores depending on the season. In mathematics, concepts build,
which could explain why Window 1 is more important for math preparation. For
reading, the proximity of Window 2 to the test may reflect the importance of the
time just before test taking.

Feedback from an evaluator has positive effects, though it is not always signif-
icant or meaningfully large. For reading, feedback from the last Master Educator
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evaluation has a significantly positive effect on student test scores, as seen in row
four of columns one and two in Table 1.4. Looking at Figure 1.3, the second
Master Educator evaluation is the evaluation that is most likely to distinguish
between threat and no-threat days. That is, all teachers will receive their second
principal evaluation by March 15, but many teachers will not receive their Master
Educator evaluation until after the start of the third principal evaluation window
(and possibly only after student tests). As a result, there is greater variation be-
tween no-threat time and Master Educator feedback in Window 2 than between
no-threat time and principal feedback. The increased variation may contribute to
the observed positive training effects by more clearly separating the two effects.
It is also possible that feedback from the Master Educator just a month before
students take their tests may have a particularly salient effect. For math, there is a
similar pattern. Feedback from a principal in the second principal evaluation has
a significant, positive effect on student math scores, which also happens to be the
evaluation that most distinguishes no-threat time in the first window.

The average teacher has 31 school days between when her students take their
standardized test and when she received feedback for her second principal eval-
uation. This implies a total increase of 0.068 student standard deviations in math
due to improvements teachers make after receiving detailed feedback from their
evaluation. In Taylor and Tyler (2012), the authors find that student math scores
improve by 0.064 standard deviations for the year in which teachers were evalu-
ated. Unlike much of the literature on teacher interventions, my results also show
a positive effect on student reading test scores.24 I find that the second master
educator evaluation feedback improves student reading scores. Not all teachers
receive their second master educator evaluation before their students take stan-
dardized tests. Among those that do, teachers receive their feedback 17 days
before the test date, on average. The overall improvement in student reading
scores is 0.031 standard deviations.

The cumulative probability of an evaluation has no significant effect on student
outcomes, regardless of the estimation method. To put the effects into perspective,
the median daily probability of any evaluation is 10 percent. An additional day
of threat time adds roughly 10 percentage points to the cumulative probability of
evaluation. A 10 percentage point increase in the cumulative probability of being
evaluated increases or decreases student reading scores by 0.0001 standard devi-

24Taylor and Tyler (2012) do not find positive effects in reading, which coincides with much of
the literature on teacher interventions.
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ations and decreases math scores by 0.0006 standard deviations, at most. In other
specifications, I allow the effect of cumulative probability to vary by evaluation,
but there is no meaningful difference from the results shown in Table 1.4.

The small effects that I observe from evaluation probability suggest that teach-
ers are responding to evaluation threat along an extensive margin, not necessarily
an intensive margin. If a teacher’s effectiveness varied based on the intensity of
her effort, the intensive margin would be sensitive to the probability of an eval-
uation. On the other hand, discontinuous changes in her effectiveness suggest
changes to the types of activities she employs in her classroom. The coefficient
for no-threat days is a discontinuity in the effect of a teacher’s effort bundle after
her evaluation.

It is possible to measure how teachers modify their practice in preparation
for an evaluation. Phipps and Wiseman (2017) use the same DCPS data to esti-
mate that a 10 percentage point increase in the probability of an evaluation leads
to a 0.03-0.06 standard deviation increase in a teacher’s evaluation score. This
result supports the notion that teachers are responding to the probability of an
evaluation, even though those responses have no measured effect on student test
outcomes. In all, I interpret these results to mean that teachers select a set of in-
puts when there is a possible evaluation, and then make minor improvements to
those inputs as the probability of an evaluation increases. When they are certain
there will be no evaluation, teachers modify their selection of inputs. The change
in their selection of inputs after their evaluation has a negative effect on student
tested outcomes.

The results presented are a within-year effect, which is a novel contribution to
the empirical literature on teacher incentives. My results imply that a teacher’s
daily behavior can have large within-year effects on student outcomes. For an
upper bound on what students gain per day, Goodman (2015) finds that a single
absence can cause a student’s test score to fall by 0.05 standard deviations. In a
nationally representative sample, Hill et al. (2008) estimate that, over the grades
in this sample, the average student gain in student math scores ranges between
0.32 to 0.52 standard deviations and between 0.24 and 0.40 in reading. There are
usually 122 school days before tests. If learning were uniformly distributed across
the school year, students should gain between 0.003 and 0.004 standard deviations
per day in math and 0.002 and 0.003 in reading. The students of a teacher with an
additional no-threat day will score 0.005 standard deviations less than their peers,
depending on the time of year.
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My results, combined with Hill et al. (2008), suggests potentially large fluctua-
tions in how a teacher’s daily activity affects student outcomes. These results also
touch on the potential effect of extending school years and school days; the wide
variation in daily learning implies school day and year extensions should be ap-
proached with caution and thought towards the quality of those time extensions
as well as their quantity.

The structure of IMPACT implies that some teachers face very severe conse-
quences for a Minimally Effective rating this year if they were Minimally Effective
in the previous year. Such differences in the implicit incentive for a teacher may
change her response to no-threat time. To test for this possibility, I could allow the
effect of no-threat days to vary based on the teacher’s IMPACT rating in the pre-
vious year. However, the small sample size and the relatively few treated teachers
prevents me from conducting meaningful heterogeneous effect tests.

In my preferred specification, experience is a vector of dummy variables for
each year of experience. Other literature uses a quadratic form (Taylor and Tyler,
2012). My results are not sensitive to either specification. I do not include other
teacher covariates because of fairly restrictive data limitations on other character-
istics like teacher race or highest degree obtained. It is also possible to estimate
the results by including a teacher fixed-effect. Doing so will control for unob-
served teacher characteristics that are persistent across years. The trade-off is that
my sample will only include teachers that appear at least twice. The results of
this specification are qualitatively the same and statistically significant, but the
magnitude of no-threat days increases slightly. The increase is not statistically
significant. I interpret these results as further evidence supporting my identi-
fication assumption. If evaluators were targeting teachers based on persistent
unobservable characteristics, the fixed-effect results would be zero. The fact that
my estimates do not meaningfully change supports the assumption that evalua-
tors are not targeting teachers based on characteristics that I cannot observe in the
data.

Most studies on teacher interventions consider the effect across the entire
school year. To facilitate a comparison with other work, I calculate the overall
effect of evaluations in DCPS by multiplying the number of days in which an
evaluation was possible in a window by the daily effect. The average teacher has
16.2 threat days in Window 2, which implies student reading test scores improved
by up to 0.074 standard deviations. For Window 1, the average teacher in an aver-
age year had 19 threat days, implying student math scores improved up to 0.089
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standard deviations. For comparison, Dobbie and Fryer (2013) find that among
high-demand charter schools, students in schools that use unannounced in-class
teacher evaluations scored 0.048 standard deviations higher in reading and 0.044
standard deviations higher in math.

My results and those of Dee and Wyckoff (2015) are complements. Using the
same administrative data, they find that teachers under the threat of dismissal
improve their students’ scores an average of 0.029 standard deviations relative to
similar teachers that were just above the Minimally Effective threshold in the pre-
vious year. However, their results are only statistically significant for the last year
of data, which is the 2011-12 school year. In the last year, the authors find that the
threat of dismissal improved student test scores by roughly 0.066 standard devi-
ations. This is also the only year in which the authors find that dismissal threat
caused an improvement in teacher in-class evaluation scores. These results are
consistent with the idea that as teachers learned how to improve their practice in
response to the in-class observation rubric, their student outcomes also improved.
Together with their analysis, my results imply that much of the observed effect of
IMPACT on student outcomes is driven by teacher responses to the possibility of
an in-class observation.

1.7 Production Uncertainty and Alternative Explana-
tions

My empirical results confirm the implication in the broader empirical literature
that in-class evaluations are a key mechanism for improving student test out-
comes. My empirical results also show a discontinuity in the effect of teacher
effort when the probability of an evaluation is zero. In what follows, I argue
that the discontinuity represents a shift in teacher inputs along the extensive mar-
gin. But given the design of IMPACT, where a teacher’s bonus still depends on
her value-added score, changes along the extensive margin should have a weakly
positive effect on student test outcomes if she knows the production function.
Without production uncertainty, what she does when there’s an extremely low
probability of an evaluation should not differ much from what she does when
there is zero probability of an evaluation.

I use the discontinuity of teacher effort and the design of the IMPACT program
to argue that my results support the narrative that teachers are uncertain about
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the test score production function. Using the theoretical model of a step-wise
incentive presented earlier, I show how a sudden change in the marginal benefit
of improving student test scores could explain the discontinuous jump in her
daily effectiveness. Before her evaluations, the possibility of a randomly good
evaluation effectively diminishes the marginal benefit of improving her test score.
But this effect is gone after her evaluation. If she knows the test score production
function, her effort after her evaluation would likely have either no effect or an
increased effect on student test scores. However, if she is uncertain about the
production function for test scores, no-threat time should have a negative effect
on student test outcomes. This argument would not be true if there were two
separate bonuses for in-class observation scores and value-added scores, as in
some performance pay programs.

1.7.1 Empirical Results as Evidence of Production Uncertainty

The results in Table 1.4 show that teacher responses to the probability of an evalu-
ation have no measurable effect on student outcomes except when the probability
is zero. Yet teachers modify their behavior in response to the probability of an
evaluation. Phipps and Wiseman (2017) use the same data and show that teach-
ers improve their in-class observation score when there is a higher probability
of an evaluation. Anecdotal evidence suggests that in preparation for a possi-
ble evaluation, teachers first select a teaching style that will perform well in an
in-class evaluation. As Phipps and Wiseman (2017) explain, teachers may then
make minor adjustments in their daily activities as an evaluation becomes more
likely. For example, it is common for teachers to spend some time in the morn-
ing with their students as they eat breakfast at school. If an evaluation is very
likely, teachers may forgo meeting students at breakfast and instead work to pre-
pare their classroom to meet specific components on the evaluation rubric, such
as clearly writing and stating the day’s objectives on the whiteboard. Or teachers
may spend additional time preparing specific questions to “check for understand-
ing,” a specific component of their evaluation score.

I consider adjustments that do not alter the teaching style or overall peda-
gogical approach to be adjustments along the intensive margin: teachers are not
altering their choice of inputs but only the intensity of an input. Adjustments
along the extensive margin are changes to the teaching style and approach that
reflect a fundamental change in which tools a teacher selects from her toolkit. My
empirical results show that changes along the intensive margin have no measur-
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able effect on student outcomes, but changes in teaching style when there is no
possibility of an evaluation have meaningful effects on student tested outcomes.
The majority of the effects I find are driven by teacher choices along the extensive
margin, not the intensive margin.

To be consistent with the empirical finding that teachers have a discontinuous
jump in their effect on student test scores after an evaluation, the theory needs
to have a discontinuous change in a teacher’s incentives. During no-threat days,
the incentive structure for a teacher changes in ways that change the marginal
benefit of an input i. In a model without production uncertainty, these changes
should cause teachers to switch to inputs that improve student test scores. To
see why, consider two teaching styles, a and b. Let a be “teaching to the test”
and b be “objective-based learning.” Before their evaluation, teachers choose their
inputs in order to improve their student test scores, f (a, b), and their in-class
observation score, g(a, b). Let fa and fb be the marginal effect of teaching to
the test and objective-based learning on student test scores, and ga and gb are
their effect on the teacher’s in-class observation score. Understandably, teaching
to the test does not improve an in-class evaluation score (ga = 0), but it does
improve student test outcomes by some amount fa. I also allow the marginal
benefit of objective-based learning to depend on the probability of an evaluation,
λ, where there is no marginal benefit if there is no possibility of an evaluation,
gb(λ = 0) = 0. Finally, assume her value-added and in-class observation are
measured with noise with variance σf and σg, respectively. Equation 1.7 provides

her first-order conditions. To simplify the expression, let α = φ

(
S∗−S̄√
σf +σg

)
, which

is the standard normal probability distribution function. Then each input affects
the probability of earning a bonus in the following way:

dP
da

=
α√

σf + σg
fa (1.18)

dP
db

=
α√

σf + σg
[ fb + gb(λ)] (1.19)

After her evaluation, there is no longer any measurement error about her in-
class observation score (σg = 0). In addition, her inputs no longer affect her
in-class observation score (gb = 0). The marginal effect of each input on the
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probability of earning a bonus is:

dP
da

=
α′
√

σf
fa (1.20)

dP
db

=
α′
√

σf
fb (1.21)

Under reasonable conditions, this represents an increase in the marginal benefit
of inputs that improve student test scores. That is, α√

σf +σg
< α′√

σf
.25 The reason

is that the measurement noise from her in-class evaluation score provided the
possibility that she would get a randomly high in-class observation score. After
her evaluation, this is no longer a possibility and increasing her student test scores
has a greater effect on the probability of earning a bonus.

Before her evaluation, changes in the probability of an evaluation (λ) would
have continuous changes on her choice of inputs. However, due to the abrupt
decrease in her uncertainty about her overall IMPACT score upon completing her
evaluation, there would be a discontinuous change in her effort, as observed. If
a teacher chooses to switch her inputs (i.e. changes along the extensive margin),
her input changes are likely to have a positive effect on student test scores, not
negative. Importantly, if there is no measurement noise for in-class observation
scores, there should be no discontinuous changes in a teacher’s daily effect on
student test scores. In the scenario provided, a teacher may choose objective-
centered teaching more than teaching to the test before her evaluation because
objective-centered teaching would have larger returns on her in-class evaluation.
After her evaluation, she is going to increase teaching to the test as long as it has
a better marginal effect on student test scores: fa > fb.26

25S̄ needs to be sufficiently close to S∗ as a function of σf for this condition to be true. If I
assume all teachers have the same skill, I can use estimates of the non-persistent randomness in
value-added scores to estimate how many teachers choose S̄ sufficiently close to S∗. Importantly,
this assumes no heterogeneity in teacher skill, which is extremely conservative. Yet even under
this conservative assumption, I estimate that at least 75 percent of teachers choose S̄ close enough
to the cutoff score for either “Minimally Effective” and “Highly Effective” such that the condition
is met.

26I have implicitly assumed that the marginal costs of teaching to the test and object-centered
teaching are the same in this discussion. Regardless of which approach a teacher uses, there will
be lesson preparation time. For veteran teachers, lesson preparation time is likely to be minimal,
and switching to a teach-to-the-test approach may even incur more planning costs. Barring ex-
tremely unhelpful teaching behaviors (like watching non-educational movies), the difference in
preparation costs will arguably be small. Furthermore, considering teachers as motivated agents,
they have an implicit desire to improve student knowledge. In general, teachers do not consider
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My empirical results show a discontinuous negative effect after a teacher’s
evaluation. This outcome is perfectly consistent with my model of production
uncertainty. To see why, suppose there is only production uncertainty for how
objective-centered teaching affects student test scores. Let δ be the variance in the
marginal effect of objective-centered teaching. Equation 1.7 provides her marginal
benefit for each input:

dP
da

=
α√

σf + σb + b2δ

(
fa
)

(1.22)

dP
db

=
α√

σf + σb + b2δ

[
fb + gb(λ)− S̄B

δ

σf + σg + b2δ

]
(1.23)

After her evaluation there is no measurement noise for her in-class observation
score. This has the same effect on α. The key difference is the abrupt change in the
flattening cost. After her evaluation, the uncertainty about how much objective-
oriented teaching improves test scores becomes more relevant: the second term
has a sharp increase. After her evaluation, her marginal benefit for each input is
now:

dP
da

=
α√

σf + b2δ

(
fa
)

(1.24)

dP
db

=
α√

σf + b2δ

[
fb − S̄B

δ

σf + b2δ

]
(1.25)

As B increases, the discontinuous effect after an evaluation is more pronounced.
Again, if there is no measurement noise for in-class evaluations, there should be
no discontinuous response after an evaluation.

The key insight from production uncertainty is that a teacher may switch to
an input that has lower marginal productivity. If teaching to the test has a smaller
average effect on student outcomes than objective-oriented teaching ( fa < fb), a
teacher may still choose to teach to the test after her evaluation because there
is little uncertainty in its marginal effect on student test outcomes. Before her

teaching to the test to be the right way to teach. For motivated agents, this would suggest that
teaching to the test has additional costs to a teachers sense of identity as a quality teacher.
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evaluation, as long as gb(λ) is sufficiently large, she will use the objective-oriented
style. But after her evaluation, when the only salient incentive is her students’
test scores, her uncertainty about the benefits of using the objective-oriented style
may induce her to switch to a less effective teaching style. This switch can occur
without decreasing her overall effort and without decreasing her own personal
costs, making the incentive’s effect unintentionally perverse.

The theoretical conclusion that post-evaluation effort should improve student
test scores when there is no production uncertainty is an outcome that is unique
to the structure of the IMPACT program. If there were two separate bonuses,
one for high value-added scores and another for high in-class observation scores,
the theoretical hypothesis would not be so clear. But because the IMPACT bonus
is jointly determined by a linear combination of value-added and in-class obser-
vation scores, the two measures become near-perfect substitutes in affecting the
probability of receiving a bonus. Without this feature, there would be no change
in the marginal benefit of inputs pre- and post-evaluation, and the theoretical
results above would not hold.

1.7.2 Alternative Explanations

While my results are consistent with my model of production uncertainty, there
are other potential reasons why in-class evaluations would have a disproportion-
ate effect on student outcomes. Outside the IMPACT context, even given the
demonstrated positive effects of in-class evaluations, there are a variety of al-
ternative explanations. I address the most common explanations both within
the context of IMPACT and more broadly. In general, the evidence appears to
support my hypothesis that uncertainty about the test production function is a
driving factor in the effectiveness of high-stakes in-class observations.

Differences in Measurement Noise:

More generally, the pattern observed in the empirical literature that incentive
programs improve test scores more when they include an in-class component
might be explained without production uncertainty if there is a large difference
in measurement noise between value-added and in-class observation scores. In
Washington DC and more generally, it is not clear that in-class evaluations are
measured with less noise than teacher value-added scores.
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To assess the reliability of in-class observation scores, psychometricians use
generalizability theory to deconstruct score variance into its contributing sources,
similar to analysis of variance (Cronbach, 1972). In an internal report on the relia-
bility of evaluation scores within DCPS, researchers found that a teacher accounts
for 20 to 30 percent of evaluation score variance, which implies a reliability rating
of 0.20 to 0.30 for each evaluation. This means that for the same teacher observed
on different days with a different evaluator, her scores will have a correlation of
0.20 to 0.30. With the same evaluator, the reliability increases to roughly 0.28 to
0.38 (Meyer, 2016).27 The reliability of in-class evaluations in DCPS is very similar
to other, larger studies in other school districts (Kane and Staiger, 2012).28

I use an approach similar to Chetty et al. (2014) to assess the reliability of
value-added scores within DCPS. I look at the autocorrelation in value-added
scores for each teacher across years and find that reading scores have a 35 percent
correlation with the previous year and 30 percent correlation with two years back.
In math, value-added correlates 33 percent within one year and 28 percent after
two years. In DCPS, the sample size is relatively small, but the results are similar
to what Chetty et al. (2014) find.29 Overall, value-added scores are not clearly a
noisier measure than in-class observations.

Salience and Commitment:

It is also possible that teachers struggle to follow through on their commitment to
improving student test scores. Relatedly, in-class evaluations may be more salient
to teachers – seeing other teachers receive evaluations or seeing the principal in
the halls – such that teachers are more responsive to the incentive. However, this

27The reliability ratings shown are for a single evaluation. It is also common to consider
the reliability of the year’s measures, which is the average of five evaluations. This provides a
between-year reliability measure. With five observations, the reliability between years increases
considerably. However, because each observation has equal weight on the final IMPACT score,
a teacher’s effort response depends on the noisiness of each evaluation, not the noisiness of the
average.

28The Measuring Effective Teaching (MET) project, funded by the Bill and Melinda Gates Foun-
dation, is a carefully designed, large-scale randomized experiment to test several in-class obser-
vation rubrics and how well their measures correlate with teacher value-added. The MET study
finds that only 15-30 percent of all score variation can be explained by teacher fixed effects (Kane
and Staiger, 2012). This implies a per-evaluation reliability rating of only 0.15-0.30.

29Chetty et al. (2014) use 20 years of student-level data in a large urban school district. They
predict the value-added for each teacher using test score data from other years to test the reliability
of value-added for a single teacher across years. For math, the authors estimate that value-added
scores from the previous year have a 0.45 correlation with the current year, and this correlation
decreases over time leveling off at 0.25 6-10 years out. In reading, the previous year value-added
scores have a 0.30 correlation with the current year, which plateaus at 0.15 after six years.
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does not explain why the observed effects of no-threat time occur in the months
just prior to tests. Teachers should be aware of upcoming standardized testing in
the months where my observed effects are strongest.

A detailed survey administered to teachers at DCPS asked about school-wide
efforts to use interim assessments (“formative assessments”) of student work
against district-wide standards.30 In response to the statement, “Teachers at my
school track the performance of their students toward measurable standards,” 75
percent of teachers said they agreed or strongly agreed, and 18 percent said they
somewhat agreed. Other questions asked if teachers have materials for formative
assessments and if they are provided time to conduct and analyze the results of
formative assessments. The responses to these questions are similarly positive.
The overall implication of the survey results is teachers are evaluating student
progress towards learning standards and they are provided the materials and
time to do so. It would seem unlikely that teachers lack appropriate reminders or
that student test scores are not sufficiently salient.31

Culture Effects:

Teachers may be sensitive to their ranking relative to other teachers, and it is possi-
ble that teachers give greater weight to in-class observations than to value-added
measures because it may represent a truer measure of their efficacy, something
commonly referred to as face validity. If this were the case, a school’s culture
could induce greater responses to in-class observations beyond the financial in-
centive. There are two reasons this seems unlikely. In-class observation scores are
noisy, meaning many events outside the teacher’s control affect their score. In a
DCPS survey, teachers largely disagreed with the statement “At my school, evalu-
ation ratings are accurate reflections of teacher effectiveness.” Roughly 40 percent
of teachers disagreed to some extent, which is indicative of a culture that does not
whole-heartedly consider in-class evaluations a reflection of teacher quality.

30The survey was administered in the 2015-16 school year. While I use data from the 2009-10
through 2011-12 years because changes to the IMPACT system make it infeasible to identify and
use no-threat time in years after 2012, formative assessments are a practice that have been used
for years in DCPS.

31Salience can refer to an inability to make the multiple calculations from daily activity to final
test scores, as when consumers fail to accurately account for sales tax when making purchasing
decisions (Chetty et al., 2009). In this regard, agent production uncertainty is a mathematical
representation of salience. The added steps in deciphering the production function of test scores
leads to uncertainty about the marginal productivity of inputs.
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The second reason culture effects do not seem to account for the dispropor-
tionate effect of in-class observations comes from a paper analyzing the same
DCPS data. In Phipps and Wiseman (2017), the authors find a significant de-
crease in teacher preparation for an evaluation when it is their last.32 This effect
is stronger for teachers with higher previous evaluation ratings, but does not ap-
pear for teachers who are under dismissal threat. Teachers appear to respond
strategically to their last evaluation depending on their success on prior evalua-
tions and depending on the stakes of the evaluation. This evidence suggests that
teacher responses to in-class observations are, to a measurable extent, driven by
incentives, not culture alone.

1.8 Conclusion

While teachers play an important role in student outcomes, improving teacher
quality through policy has proven difficult. As part of their TIF award agree-
ment, ten school districts randomly selected schools to implement a teacher per-
formance pay program. The characteristics of these programs differed by district,
potentially allowing researchers the opportunity to identify key characteristics of
effective performance pay. Wellington et al. (2016) compare programs along six
dimensions ranging from incentive size to teachers’ understanding of the per-
formance program. Notably, the use of high-stakes unannounced in-class obser-
vations was not a dimension they considered. They conclude that “...none of the
characteristics [they] examined could help explain observed differences in student
achievement impacts across districts.” If teacher performance incentives are to be
a viable policy solution, the research priority is to identify what actually works.

In general, the available evidence shows teacher performance incentives are
more effective when they include rigorous in-class observations. This result is
paradoxical when assuming teachers know the test score production function. By
relaxing this assumption, I provide theoretical evidence why incentives based on
in-class observations may be more effective than test-based incentives. In an inno-
vative approach, my empirical results show substantial gains in student learning
as a result of high-stakes unannounced in-class evaluations. A feature of my
approach is that it separately identifies the incentive effects of in-class evalua-

32The authors find no similar effect for earlier evaluations in the year, which is important for the
purposes of this paper. For the vast majority of teachers, the third principal evaluation is their last
evaluation of the year. As such, strategic responses do not appear to affect teacher preparations
or weight given to the evaluations that are part of this paper’s sample.
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tions from their training effects. In addition, while other policy initiatives rarely
measurably improve student reading test scores, I find significant effects in both
reading and math.

Overall, the theoretical argument and empirical evidence presented in this
study indicate high-powered incentives based on rigorous in-class evaluations are
effective tools for improving teacher quality. Yet the potential downsides of such
high-stakes teacher evaluation systems still remain. If poorly designed, teacher
evaluations can encourage gaming or over-emphasis on a single component of the
evaluation rubric. Teachers (and their unions) may be reticent to forfeit autonomy
over their teaching style, creating costly controversy. Rigorous evaluations can be
costly, as demonstrated in recent modifications to the IMPACT program reducing
the number of formal teacher evaluations. This study will aid policy makers in
deciding how to make such trade-offs.



42

Table 1.1: Teacher performance incen-
tives in the US by effectiveness and use
of in-class evaluations.

Differentiated In- Improved
Class Evaluations Student Scores

Yes Mixed No

Yes 3 0 0

Some 0 2 0

No 0 0 2

Notes - There is an apparent correlation between
effective teacher incentive programs and the use
of in-class evaluations. This is not a compre-
hensive review of teacher incentive programs in
the US. The programs in this table were selected
based on their emphasis on individual-level mea-
sures of teacher performance. Many other pro-
grams use large school-level bonuses, which I
have excluded. The analyses in the Yes/Yes cell
are Dee and Wyckoff (2015); Dee and Keys (2004);
Hudson (2010); in the Mixed/Some cell are So-
journer et al. (2014); Wellington et al. (2016); in
the No/No cell are Briggs et al. (2014); Springer
(2010).
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Table 1.2: Summary statistics of no-threat time and cumula-
tive evaluation probability.

n1 n2 ∑ ∑ pw
t ∑ pP2

t ∑ pP3
t ∑ pM2

t

Overall Mean 2.09 1.17 2.05 0.72 0.13 0.58
% > 0 21% 19% 100% 100% 81% 100%

If treatment > 0

Mean 9.87 6.23 2.05 0.72 0.16 0.58
Std Dev 7.49 3.96 1.10 0.59 0.20 0.40
Minimum 1 1 0.20 0.01 0.00 0.01
Median 8 5 1.88 0.56 0.08 0.54
Max 29 17 7 4 2 2

N 1182 1182 1182 1182 1182 1182

Notes - n1 indicates the number of no-threat days – days in which a
teacher is guaranteed no evaluation – in Window 1, which starts Decem-
ber 1 and ends February 1. The variable n2 is no-threat days in Window 2,
which starts February 1 and ends March 15. ∑ ∑ pw

t is the cumulative
probability of receiving an evaluation in both windows. Because it is cu-
mulative, this variable often exceeds 1. ∑ pP2

t , ∑ pP3
t , and ∑ pM1

t are the
cumulative probabilities for each evaluation. Because probability is only
counted before students take their tests, ∑ pP3

t is very small because its
window begins only days before students take their tests. Notice that
∑ pP2

t is larger than ∑ pM2
t because principal evaluations are often clus-

tered at the end of the window.
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Table 1.3: Estimates of potential targeting by principals and master educators in evaluation timing.

n1 n2 nP1 nP2 nM1 nM2 tP1 − tP1
con f tP2 − tP2

con f tM1 − tM1
con f tM2 − tM2

con f

Previous Evaluation Score 0.41 -0.005 -0.833 0.282 0.121 0.542 0.388 0.768 2.48 -0.443
(0.51) (0.25) (1.38) (1.02) (2.61) (1.34) (0.76) (0.93) (2.66) (0.52)

Previous Reading VA 0.497 -0.163 -0.617 0.186 0.2 0.948 0.241 -0.253 1.75 -0.46
(0.57) (0.32) (1.00) (0.84) (2.60) (1.69) (1.20) (0.63) (2.03) (0.87)

Previous Math VA 0.712 0.111 -1.078 0.38 1.365 0.67 -0.265 0.336 2.754 -0.278
(0.90) (0.42) (1.43) (1.12) (3.02) (1.87) (1.84) (0.71) (3.49) (1.03)

First-Year -0.368 -0.045 -0.571 -0.293 -0.39 -0.267 -0.61 -1.053 -1.034 -0.624
(1.06) (0.37) (1.25) (1.46) (3.32) (2.06) (0.69) (0.78) (0.83) (0.56)

1-3 years of experience -0.266 -0.239 1.172 0.127 -0.405 -0.639 0.006 0.499 -1.818* -0.299
(0.62) (0.27) (0.89) (0.98) (2.24) (1.47) (0.70) (0.51) (0.98) (0.48)

Score from 1st Principal Eval 0.619 -0.098 -0.197 0.681 0.868 0.388 0.107 0.105 1.036 -0.389
(0.79) (0.20) (0.72) (1.08) (1.82) (1.04) (0.58) (0.49) (0.79) (0.48)

Score from 2nd Prinicpal Eval -0.126 -0.102 -0.101 -0.745 1.999 0.973 -0.423 -0.732 1.911 -0.522
(0.48) (0.18) (0.67) (0.85) (1.80) (0.99) (0.45) (0.52) (1.54) (0.43)

Score from 1st ME Eval 0.754* 0.054 0.931 1.173 -2.147 0.317 0.998* 0.135 0.974 -0.644*
(0.44) (0.17) (0.58) (0.71) (1.59) (0.88) (0.54) (0.40) (1.25) (0.39)

Notes - The values shown are the correlation between the treatment variable (columns) and the observable characteristic (rows). All variables except First-Year are centered around the school mean to
control for school fixed effects. Significance levels do not make any multiple hypothesis corrections. n1 and n2 are the number of no-threat days in Windows 1 and 2. Window 1 starts December 1 and ends
February 1; Window 2 starts February 1 and ends March 15. nP1, nP2, nP3, nM1, and nM2 are proxies for the timing of each respective evaluation within its designated window. The differences variables,
tP1 − tP1

con f , are the time gap between an evaluation and its respective feedback conference.
*** Significant at the 1 percent level

** Significant at the 5 percent level
* Significant at the 10 percent level
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Table 1.4: Effect of the possibility of an evaluation and evaluation feedback
on teacher value-added in reading and math.

Reading Value-Added Math Value-Added

Window 1 No-Threat Days, n1 0.009 0.009 -0.036** -0.034*
(0.015) (0.015) (0.017) (0.017)

Window 2 No-Threat Days n2 -0.046** -0.0456** -0.0048 -0.0049
(0.0183) (0.0183) (0.0221) (0.0223)

Days after P2 feedback, mP2 0.002 0.0016 0.0171* 0.0167*
(0.0087) (0.0088) (0.0091) (0.0090)

Days after M1 feedback, mM1 0.0004 0.0002 0.0016 0.0019
(0.0017) (0.0017) (0.0019) (0.0019)

Days after M2 feedback, mM2 0.0143*** 0.0132** 0.0025 0.0044
(0.0055) (0.0053) (0.0059) (0.0059)

∑ ∑ pw
t 0.0148 -0.0107 -0.0633 -0.0261

(0.0490) (0.0407) (0.0467) (0.0416)

Probability Method Uniform Kernel Uniform Kernel

N 822 822 802 802

Notes - Effects are measured in standard deviations of teacher value-added scores,
which is different than standard deviations in student test scores. A standard devia-
tion increase in teacher value-added is roughly a 0.10 standard deviation increase in
student reading scores and 0.13 standard deviation increase in student math scores.
*** Significant at the 1 percent level

** Significant at the 5 percent level
* Significant at the 10 percent level
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Figure 1.1: Depiction of each evaluation window in DCPS.

Notes - One evaluation must occur within each window. For announced evaluations, teachers are
informed no later than the day before their evaluation

Figure 1.2: Simplified example of calculating no-threat time.

Notes - If teachers did not have overlapping windows, calculating no-threat time would be
straightforward: it would be the time after the first evaluation until the start of the next win-
dow, and the time after the second evaluation until student tests. Note that no-threat days after
student tests are not counted.
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Figure 1.3: Calculating no-threat time in DCPS.

Notes - Because evaluation windows in DCPS overlap, no-threat time is defined as days in which
there is no threat of an unannounced evaluation from either evaluator. Window 1 starts Decem-
ber 1 and ends February 1, and Window 2 starts February 1 and ends March 15. No-threat time is
not calculated for P3 because very few teachers receive their evaluation before student tests, and
there are selection concerns.
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Figure 1.4: Timing of evaluations within evaluation window.

Notes - Days are measured as instruction days, which excludes in-service days, weekends, and
holidays. Master educator evaluations, M1 and M2, are distributed uniformly across the window.
Principal evaluations – P1, P2 and P3 – are often clustered near the end of each window.
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Figure 1.5: Histograms of the cumulative probability of an evaluation.

Notes - For principal evaluations (P1, P2, P3), the probability is usually higher because these
evaluations occur late in their assigned window.
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Chapter 2

Teacher Improvements in Windows
of High-stakes Observation

Policy makers are turning to multiple measure teacher evaluation systems in
an effort to improve teacher practice. Yet, little evidence establishes the causal
link between the evaluation program and daily teacher responses. Teachers may
respond to such programs in ways not intended by the policy, such as over-
emphasizing unimportant elements on a teaching evaluation rubric at the expense
of more holistic teaching improvements, or using a perfectly prepared lesson-in-
a-box reserved for when an evaluator arrives. Using administrative data from the
Washington DC teacher incentive program, called IMPACT, we identify specific
teacher behavioral responses to a pending unannounced in-class evaluation. Ran-
dom variation in the probability of being observed identifies how teachers pre-
pare for an evaluation as it becomes more likely. Our key finding is that teachers
respond to possible in-class evaluations as predicted by a multi-tasking principal-
agent model, making incremental improvements across a variety of teaching prac-
tices but most notably within areas that are easiest to improve. This rules out the
possibility that the average teacher circumvents the intent of evaluations with
practices like a “lesson-in-a-box.”



52

2.1 Introduction

High quality teachers substantially improve student academic and life outcomes
(Aaronson et al., 2007; Rivkin et al., 2005; Rockoff, 2004; Chetty et al., 2014). In an
attempt to improve teacher quality, policy makers in the last decade are increas-
ingly using multiple measure teacher evaluation systems, which are comprehen-
sive in-class evaluations that measure a variety of teaching practices. Seminal
work highlights teacher evaluation as a major policy lever for affecting end-of-
year student and teaching outcomes (Dee and Wyckoff, 2015; Taylor and Tyler,
2012; Steinberg and Donaldson, 2016). Many of these new programs rely heav-
ily on standards-based classroom observations because of their potential to bridge
the gap between teacher training and practice through the provision of rich perfor-
mance information and cohesive instructional standards (Taylor and Tyler, 2012;
Papay, 2012; Cohen and Goldhaber, 2016). Yet, there exists little evidence demon-
strating how evaluation systems improve teacher practice across instructional do-
mains and throughout the year to achieve these effects. Teachers may respond
to such programs in ways not intended by the policy, such as over-emphasizing
unimportant elements on a teaching evaluation rubric at the expense of more
holistic teaching improvements, or using a perfect prepared lesson reserved for
when an evaluator arrives (a “lesson-in-a-box”). Our analysis unpacks the spe-
cific routes through which the evaluation program improves teacher performance
on evaluations and student outcomes. Using administrative data from the Wash-
ington DC teacher incentive program, called IMPACT, we find that the average
teacher improves her practice along multiple measured dimensions in response to
a pending observation, as intended. Our results uniquely demonstrate that class-
room observations in high-stakes systems encourage effective teaching through
the uptake of standards-based instructional practices.

A few studies demonstrate that teachers change their practice in response to
evaluation systems, but these studies cannot determine the mechanism by which
these improvements occur. For example, using the same administrative data used
in our analysis, Dee and Wyckoff (2015) show that low-performing teachers sub-
ject to dismissal threat in IMPACT improve their evaluation scores. However,
their approach does not unpack the nature of these improvements throughout the
year, nor does it teach us about the behavior of teachers whose ability put them far
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from critical incentive thresholds. Similarly, Taylor and Tyler (2012) find improved
student achievement as a result of a low-stakes observation system for mid-career
teachers in Cincinnati, OH, and Steinberg and Sartain (2015) find small student
achievement gains in a similar system in Chicago, IL. The authors hypothesize
that particular elements of these policies may have supported teacher develop-
ment, like peer evaluators or structured post-observation conferencing. However,
the research design allows just for the conclusion that teacher evaluation can im-
prove outcomes for teachers and students. Our work builds on this finding by
revealing the mechanisms by which these results occur in Washington, DC.

Our empirical approach identifies how a teacher modifies her practice as
an unannounced evaluation becomes more likely. Teachers in DC Public Schools
experience multiple classroom observations per year, which take place during pre-
determined windows of time. In each evaluation, teachers are scored along nine
different teaching practices, ranging from measures of classroom management to
student engagement. We observe teachers’ scores along all nine components for
each evaluation, which we use to identify improvements in teacher practice as a
response to the probability of an evaluation. Due to the structure of IMPACT,
there is random variation in the daily probability of an evaluation within each
window, allowing us to causally identify how the increased likelihood of an in-
class observation affects a teacher’s score. We show that teachers score higher
when an evaluation is more likely, providing unique evidence that they are cog-
nizant of observation standards and use that knowledge to enhance their practice
in a high-stakes program. These responses substantively improve student out-
comes (Phipps, 2017).

There is a substantial body of literature about the effective design of a
teacher evaluation system, ranging from the type of language to use in defin-
ing evaluation components and how they are scored (the rubric) to whether or
not principals are ideal evaluators. Our findings add needed empirical evidence
to this literature by showing that the IMPACT evaluation rubric guides teacher
behavior. The causal link between evaluation probability and teacher score estab-
lishes that teachers are aware of the practices required to improve their evalua-
tion score, using that knowledge to enact the rubric and improve their evaluation
score. A secondary finding in our analysis is that evaluations conducted by prin-
cipals appear less responsive to evaluation probability than those conducted by
outside observers. This adds to the empirical literature documenting the differ-
ences between principals and outside observers. Our results are consistent with



54

the literature, which shows principal evaluations have a more compressed dis-
tribution of teacher evaluation, particularly in high-stakes contexts (Kraft and
Gilmour, 2016b,a).

Our results uniquely demonstrate that teachers do not appear to circumvent
the purpose of the evaluation rubric. One way a teacher could do so would be to
use a lesson-in-a-box. To assess this possibility, we compare teacher responses to
announced evaluations with their responses to unannounced evaluations. When
teachers are warned at least a day in advance of their evaluation, we find that
increased evaluation probability has no effect on their score, which is not the case
for unannounced evaluations. We would expect the results to be the same if teach-
ers were able to prepare a lesson-in-a-box. It is also possible that a high-stakes
evaluation system could lead teachers to over-emphasize easily manipulatable
rubric components at the expense of more holistic teaching improvement, which
we rule out by demonstrating substantive effects across many teaching domains.

This paper provides unique quantitative evidence that multiple measure
teacher evaluation systems encourage instructional best practices, empirically val-
idating the theoretical link between information-rich observation rubrics and im-
proved teacher practice. In this paper, we review the DC context, provide an
economic framework for conceptualizing teacher responses, and review the ex-
isting literature about classroom observation in evaluation systems. Then, we
discuss our findings and the relevant policy questions that persist.

2.2 Study Setting

As part of the growing demand for increased school and teacher accountability,
Washington DC Public Schools (DCPS) implemented a high-stakes teacher evalu-
ation program called IMPACT starting in the 2009-2010 school year. All teachers
in DCPS have large financial incentives that depend on a weighted combination
of elements, which mirror many multiple measure teacher evaluation systems of
this decade. For most teachers, the largest component of their IMPACT score
comes from scored classroom observations based on the district’s Teaching and
Learning Framework (TLF). The TLF is intended to define criteria that establish
effective teaching, derived largely from the Danielson framework. The TLF ad-
dresses various domains, such as maximizing instructional time and checking for
student understanding. A teacher’s final TLF score is the average of five evalu-
ations conducted throughout the year. Where possible, IMPACT scores also in-
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clude a student test-based value-added score for tested subjects (Math and ELA)
in grades four through eight, which is only 18% of teachers in DCPS. For these
teachers, value-added scores make up 50 percent of the final IMPACT score, while
in-class evaluations comprise only 35 percent of their final IMPACT score. For the
remaining majority of teachers, classroom observation scores comprise 75 per-
cent of their final IMPACT score. The remaining components of a teacher’s final
IMPACT are small and include an overall school measure of student test score
growth, a principal-assessed score of commitment to the school and community,
and a teacher’s success in reaching instructional goals for grades and subjects
ineligible for value-added measures (for more details on the IMPACT program
structure, see Dee and Wyckoff, 2015).

The high-stakes nature of this system makes DC a unique context, and pre-
vious analyses have comprehensively attended to these program elements. Dee
and Wyckoff (2015) use the discontinuities in the IMPACT program’s reward
structure to show teachers facing dismissal threat significantly improve student
achievement gains and in-class evaluation scores. Adnot (2016) uses latent profile
analysis to identify components of the in-class evaluation rubric most sensitive
to adjustment when teachers face a dismissal threat. Her results suggest that
low-performing teachers adapt to highly specific language in the rubric to im-
prove, while high-performing teachers demonstrate more variety in their uptake
of rubric practices. Adnot et al. (2017) use a quasi-experimental differences-in-
differences approach to find statistically significant student achievement increases
of 0.14 standard deviations in reading and 0.21 standard deviations in math as a
result of low-performing teacher exits under the IMPACT evaluation policy.

A few other policy components make DCPS an interesting context for policy
analysis. In DCPS, the overall in-class evaluation score is the average of five in-
class evaluations conducted by principals and district employees called “master
educators,” each of which is weighted equally. In the first year of the program,
the first principal and master educator evaluations are announced at least a day
in advance, though this was changed in subsequent years so that only the first
principal evaluation was announced. The remaining three observations are con-
ducted without notice within a pre-defined time period, or observation window.
Each evaluation lasts roughly 30 minutes, and teachers are given a score from one
to four on each of nine equally weighted components. At the beginning of each
year, the rubric guidebook is published publicly for teacher review.
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A complementary analysis uses a similar identification strategy as ours to
disentangle the relative effects of the high-powered incentives and the feedback
provided on observation rubrics from principals and master educators. Phipps
(2017) shows that, by the structure of the IMPACT program, some teachers ran-
domly experience days in which they are guaranteed not to have an evaluation,
which the author uses to identify the effect of teacher responses to a potential
unannounced observation on student test outcomes. He finds that the possibility
of an evaluation has substantive effects on student test outcomes in both reading
and math. The author’s analysis is also able to separately identify the effects of
evaluation feedback and demonstrates that teachers who receive feedback earlier
have better student outcomes. This paper adds to the literature on the IMPACT
system by documenting the behavioral adjustments teachers make in preparation
for an evaluation.

2.3 Literature Review

Our analysis touches on a variety of classroom evaluation system design ques-
tions. In showing teachers enact the evaluation rubric as designed, our analysis
raises the question as to whether or not these behaviors improve student out-
comes. A related concern is, which of the elements measured during in-class
evaluations are most important, and how does the language and design of the
rubric effect teacher responses? In our results, we also identify significant dif-
ferences between the two types of evaluators, principals and master educators.
Whether or not principals are good candidates for conducting in-class observa-
tions remains an open question. Recent research addresses these questions in a
variety of contexts, which we review here.

2.3.1 Standards-Based Observations

Most evaluation systems in the US use standards-based observation as a pri-
mary measure largely due to the growing evidence that these standards are
linked to meaningful student achievement gains (Steinberg and Donaldson, 2016).
While several high-profile teacher performance incentive programs use value-
added measures, a survey of such programs in the US implies that without in-
class observations, these programs do not improve student outcomes (Phipps,
2017). Teacher improvements on an observation rubric correlate with student
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achievement, both in this context as well as others. Phipps (2017) shows that
teacher responses during observation windows in the IMPACT program causes
higher student achievement, suggesting that enacting the practices contained in
the Teaching and Learning Framework (TLF) causally improves teaching qual-
ity. Standards based observation rubrics in other contexts correlate with student
outcomes as well, namely the CLASS framework (Hamre and Pianta, 2001), the
Framework for Effective Teaching (Kane et al., 2013), and other content-specific
rubrics used in the Measures of Effective Teaching (MET) study (Kane and Staiger,
2012).

Given the variety of possible observation rubrics, scholars continue to en-
gage in a conceptual discussion regarding the content of observation rubrics. Yet
only a few empirical studies demonstrate the ways in which this content matters.
Two studies in particular tackle the notion that rubric specificity can influence
teacher practice. Adnot (2016) found that low performing teachers facing a dis-
missal threat in DCPS improved the most on highly specific rubric practices, rang-
ing from a statistically significant effect size of 0.22 to 0.62 standard deviations.
Another study found that “concrete suggestions for improvement” in the rubric
language correlated with teacher improvement on that rubric (Kane et al., 2010).
Our analysis enhances this literature by showing how teachers with varying de-
grees of skill employ the behaviors specified in the TLF evaluation rubric. We
find that teachers consistently improve in areas of the rubric with more concrete
language as well as other teaching domains.

Other studies highlight how rubric language may play a part in teacher im-
provement, but do not establish a causal link between rubric practices and teacher
development. In Cincinnati, OH, teachers improved student achievement in years
after receiving a detailed evaluation (Taylor and Tyler, 2012). Yet the authors do
not address the specific mechanism that led to these continued student achieve-
ment gains. They hypothesize that the improvements were driven, at least in part,
by the enhanced reflective discussions among teachers around a core set of prac-
tices introduced or solidified by the rubric, but it is not clear what role the rubric
design played. In New Haven, CT, researchers used surveys to show that the pro-
cess of designing the evaluation system had an effect related to teachers’ infor-
mation and awareness about the assessed practices (Donaldson and Papay, 2015).
Our results provide empirical evidence that causally links teacher responses to
particular evaluation rubric elements. Our results reinforce the notion that rubric
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language matters, as teachers are clearly cognizant of what the evaluation rubric
covers.

The effects of rubric language may also vary based on a teacher’s skill and
experience or the grade and subject she teaches. Hill and Grossman (2013) ar-
gues the evaluation rubric should be tailored based on grade and subject in or-
der to support teacher improvement. The alignment (or lack thereof) between
the observation rubric and the practices necessary for student achievement in a
particular subject or grade may create tension for teachers regarding how to allo-
cate time and resources (Cohen and Grossman, 2016; Hill and Grossman, 2013).
Highly-skilled teachers may more flexibly alternate between particular practices
as needed. We address part of this issue by examining how teachers of different
skill and experience levels respond to the evaluation rubric, showing that higher
skill teachers appear more adaptable to the rubric. Future empirical work can em-
ploy our analysis technique to examine the importance of designing evaluation
rubrics around specific subjects and grades.

2.3.2 Evaluation Observers

While teachers are effective at improving their evaluation score as an observation
becomes more likely, we find they are more effective at improving their score
when evaluated by an ME over a principal. We cannot provide additional ev-
idence indicating what causes this difference, but determining whether or not
principals are ideal observers is an open question relevant to all evaluation sys-
tems. Despite robust observation protocols with typically four or five perfor-
mance categories, principals still primarily rate teachers as effective (Kraft and
Gilmour, 2016a; Grissom and Loeb, 2017). There is evidence that principals tend
to inflate the distribution of teacher performance; that is, when the same lesson
is scored by an external evaluator, the principal rating tends to be higher (Sar-
tain et al., 2011). Compared to external or peer evaluators in the MET project,
administrators rated teachers 0.1 points higher on a four-point Framework for
Effective Teaching scale, a substantial difference given a compressed distribution
across the board (Ho and Kane, 2013). Even at the practice level, very few teach-
ers receive the second to lowest or lowest ratings. For example, just about 2.9
percent of teachers in Miami-Dade, FL, received these lowest category ratings on
any instructional standard (Grissom and Loeb, 2017).

There are a variety of reasons why principal ratings may produce less va-
riety than expected. Principals may have difficulty distinguishing between more
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granular practices, or lack the instructional expertise necessary to observe certain
skills (Kraft and Gilmour, 2016b). An exploratory factor analysis of both high and
low stakes evaluation ratings on similar rubrics found that principals essentially
rate teachers based on a singular perception of performance, which may be either
by design, as teacher practices are highly correlated with one another, or because
principals do not have the necessary instructional expertise to tease out perfor-
mance by individual dimensions (Grissom and Loeb, 2017). In New York, more
experienced teachers gave observation scores that correlated with student value-
added more than observation scores given by novice principals, suggesting that
this kind of evaluation expertise develops over time (Rockoff et al., 2012). Survey
evidence shows that time constraints due to the additional work associated with
assigning a low rating, motivating low-rated teachers, balancing roles as feed-
back provider and rater, and personal discomfort with assigning low categories
led principals to artificially rate fewer teachers in the lowest category (Kraft and
Gilmour, 2016b).

High stakes settings in which dismissal is tied to ratings exacerbate some of
these tensions for principals. Principals are keenly aware of labor market impli-
cations; administrator interviews reflected a sentiment about who would replace
the low performing teacher should they be “evaluated out” (Kraft and Gilmour,
2016b). In a recent study, low stakes principal evaluations were compared to high
stakes official evaluation scores, and the proportion of teachers rated in the low-
est two categories substantially increased in the low stakes category (Grissom and
Loeb, 2017).1 Principal perceptions of observation rubrics and the way they are
used are certainly a factor worth considering when designing teacher evaluation
systems. Our results contribute to the body of literature by highlighting differ-
ences in the malleability of evaluations conducted by principals and MEs in a
high-stakes setting.

1Interestingly, the observation standards most correlated with value-added differed by high
and low stakes contexts. In the high stakes context, Instructional Delivery and Engagement was
most highly correlated with value-added measures, while a researcher-developed construct called
Improving Critical Thinking was more associated with value-added measures in the low stakes
context (Grissom and Loeb, 2017). Strangely, the low stakes rating was more consistently as-
sociated with value-added measures in math but not in reading, where with the exception of
high school ELA, the high stakes ratings were more strongly associated with ELA value-added
(Grissom and Loeb, 2017).
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2.4 Model of Teacher Responses to Evaluations

In this study, we examine the extent to which multiple measure teacher evalu-
ation systems result in teachers shifting their practice, particularly in response
to classroom observation. Underlying this analysis is the assumption that teach-
ers will respond to evaluation policy. Our empirical result relies on the belief
that teachers will prepare more as an unannounced classroom evaluation become
more likely. In what follows, we present a economic model of behavior to describe
how teachers in a high-stakes environment would adjust their planning to fit the
observation rubric.

Given the many measures of teacher quality in a program like IMPACT,
teachers must choose among a variety of potential teaching styles and lesson
structures in order to improve their final rating. The multi-tasking model orig-
inating from Holmstrom and Milgrom (1991) describes the process of allocating
time and effort towards a variety of tasks, each of which is rewarded.2 Let teach-
ers have a set, call it K, of possible tasks or practices on which they can focus their
time and attention, both in lesson reparation and in the classroom. A teacher will
plan her lesson given the needs of her students, the standards on which they are
assessed, and the curriculum and resources available to her. She then enacts that
lesson using a breadth of instructional knowledge and skills, adjusting her plan
based on student mastery of the material. Then let xi be a teacher’s allocation of
time towards task i, and let x = [x1, x2, . . . , xn]T be a vector of all time allocation
across tasks, where n is the size of the set K. Then x has some utility cost c(x),
which has increasing marginal costs for each input. The teacher receives wage
w(x) as a result of her score, which is determined solely by x given no measure-
ment noise. Then with a standard exponential utility function with coefficient of
risk aversion r, a teacher’s utility is

U(x) = − exp {−r(w(x)− c(x))} . (2.1)

To maximize utility, the first-order conditions require that a teacher chooses x
such that the net marginal benefit of each input is zero.

If the bonus system only rewards certain behaviors, say K′ ⊂ K, then the
marginal benefit of those tasks increases, leading to an increase in how much

2Holmstrom and Milgrom (1991) include measurement noise on each individual component.
While it is likely that each TLF component is measured with noise, we ignore measurement noise
to facilitate simplicity. The qualitative expected responses are not different.
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time and effort a teacher allocates to those tasks. That is, xi for i ∈ K′ will
increase. If the elements in x are cost substitutes, there will also be a decrease in
xi for i /∈ K′. That is, a teacher will favor elements on the rubric that are easy
to adjust over elements that are difficult to adjust or do not earn rewards in the
evaluation rubric, a key result of the Holmstrom-Milgrom model. This reflects the
limited time available to teachers, where spending time on preparing one aspect
of a lesson or on a specific approach in class naturally requires reducing time
spent on another approach.

Because evaluations determine a teacher’s potential bonus, a teacher will
modify her choice of teaching practices, x, based on how likely she thinks an
evaluation is. When classroom observations have to be conducted once within
a pre-specified time frame, she can estimate the probability of being evaluated.
Intuitively, as the end of the evaluation window approaches, it becomes more
likely each day that a teacher who has not already had their observation will be
evaluated.

To incorporate the probability of evaluation into the utility function, allow a
teacher’s utility at the end of the day to be different depending on whether she
was evaluated or not. If she is not evaluated on a given day, her effort exerted
on activities that only improved her in-class observation score will not contribute
to her utility. In other words, if there is no in-class observation that day, effort
towards improving her observation score are wasted. For days in which she is
not evaluated, her utility is

U(x, m = 0) = − exp {−r(−c(x))} , (2.2)

where m = 0 indicates she was not evaluated. But if she is evaluated, her utility
is as before. To combine these two possible outcomes each day, let p be the
probability of an evaluation on the next day. Then in the evening, as a teacher
prepares for her next day, her expected utility is

EU(x) = pU(x, m = 1) + (1− p)U(x, m = 0). (2.3)

Equation 2.3 shows the intuition that as the probability of evaluation increases,
there are larger marginal returns to using evaluated practices, xi for i ∈ K′. As a
result, her use of evaluated practices should increase with the probability of an
evaluation, leading to an increase in her evaluation score. This result drives our



62

empirical approach: as p increases, teachers will shift their preparation and time
towards practices that will improve their evaluation score.

In theory, this incentive should lead to improved teacher practice, but there
are ways in which teachers may respond contrary to the policy’s intent. If there
are a few elements of the rubric that emphasize easily observable practices like
updating the daily objective board each morning, teachers may use valuable time
completing this task rather than engaging in other more pedagogically important
classroom preparation. Our model shows that a teacher will emphasize any prac-
tices that have low costs and still earn higher evaluation scores. If a teacher can
earn a sufficiently high evaluation score by simply adjusting a single TLF compo-
nent then the incentive has not achieved its purpose. We can observe if this is the
case by considering which of the nine TLF components a teacher adjusts most.
If she only adjusts one in response to a likely evaluation, the evaluation rubric
may not adequately measure and encourage holistic teacher practice. More cyn-
ically, it is also possible that teachers will circumvent the purpose of evaluations
altogether by preparing a perfect lesson-in-a-box, an issue we also address.

2.5 Data and Econometric Approach

Using administrative data from DCPS in the 2009-2010, 2010-2011, and 2011-2012
school years, we use the random timing of unannounced evaluations to identify
how teachers modify their behavior in preparation for an evaluation. This is done
by estimating the probability of being evaluated by either a principal or master
educator on any day in each school. We can then estimate how teachers modify
their behavior in preparation for an evaluation.

2.5.1 Description and Calculation of Treatment Measure

The probability of an evaluation is partly determined by how far into an evalu-
ation window a teacher gets without receiving her evaluation (see also Phipps,
2017). Figure 2.1 illustrates the window of each of the five evaluations. The
first principal evaluation occurs between mid-September and December 1st, the
second between December 1st and March 1st, and the third between March 1st
and the end of classes. The first master educator evaluation occurs between
mid-September and February 1st, and the second is conducted before the end
of classes.
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We observe the date of each observation for each teacher, which we use to
calculate how likely the remaining teachers are to be evaluated in each of the
remaining days. Intuitively, a teacher knows that if tomorrow is the last day of
an evaluation window and she has not been evaluated, she will be evaluated to-
morrow. Two factors determine a teacher’s estimate of the probability of being
evaluated on any particular day: the number of teachers that remain to be eval-
uated and how many evaluations a teacher expects to be conducted. It is then
straightforward to calculate evaluation probability if each remaining teacher has
an equal probability.

To be more formal, let k be an evaluation indicator, where k is P1, P2, or
P3 for the principal evaluations and M1 or M2 for master educator evaluations.
Then let a teacher’s estimate of the number of evaluations to be conducted on day
t at school s be N̂k

ts. If Rk
ts is the number of teachers who still need evaluation k on

day t at school s, then each remaining teacher’s probability of being evaluated is

pk
ts =

N̂k
ts

Rk
ts

. (2.4)

We can determine how many teachers remain to be evaluated, Rk
ts, but estimating

how many evaluations a teacher expects to be conducted, N̂k
ts, requires assump-

tions about a teacher’s knowledge of when evaluators will conduct more evalu-
ations. If a teacher knew exactly how many evaluations would be conducted on
every day, then N̂k

ts = Nk
ts. This is a strong assumption that is unlikely to be true,

especially if evaluations are not evenly distributed within a window.
Principals tend to bunch their evaluations near the last third of the time

window, which means the expected number of evaluations changes over time. In
the beginning of an observation window, teachers expect that principals will con-
duct few evaluations, but towards the end of the window, teachers expect more
each day. On the other hand, master educators distribute their evaluations more
evenly, so the expected number of evaluations remains constant. Figure 2.2 shows
the overall distribution of evaluations across each window. While the master edu-
cators maintain a fairly uniform distribution, principals are very often conducting
evaluations in the last third of the available time. The dip in evaluations in M2
around day 45 is a result of student testing days in April.

Instead of assuming teachers know exactly how many evaluations will be
conducted on each day, we assume they are broadly aware of the trend. That
is, we allow for a teacher to know that the number of evaluations conducted
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by a principal will increase towards the end of the window. We also allow for
a teacher to notice an increase in evaluations over the past few days. We can
approximate this information by estimating the distribution of evaluations with a
kernel density. The kernel smoothing approximates changes in the trend of daily
evaluations that we expect teachers notice. Our results are not sensitive to this
assumption.

For many days in the year, a teacher has the possibility of either a prin-
cipal evaluation or a master educator evaluation (or both). The two events are
independent and in rare cases both occur on the same day for a single teacher.
To determine the probability of any evaluation, I use the sum of their individual
probabilities. For example, if a teacher has not yet had either P1 or M1 evalua-
tions, her probability of any evaluation the next day is pts = pP1

ts + pM1
ts , but if she

had already received her P1 evaluation, her probability is just pts = pM1
ts .3 Then

in our specification, we use pts.
Given an estimate of the probability of any evaluation for each day in each

school, we know the probability of an evaluation on the day in which a teacher
was, in fact, evaluated. We use Pk in capital letters without the subscript t, to
indicate the probability of any evaluation on the day when evaluation k occurred.
For a teacher receiving evaluation P1 on day t at school s, the treatment variable
is PP1 = pP1

ts + pM1
ts , assuming she has not yet received her M1 evaluation.

2.5.2 Data Summary

Over the three years studied, DCPS has between 121 and 124 elementary, middle
and high schools, with roughly 3,500 teachers each year. Table 2.1 summarizes
school characteristics over the study period to show there were no meaningful
changes to school or student composition. The average classroom size was con-
stant at about 17.6 students, and the fraction of schools classified as high-poverty
schools ranged between 0.75 and 0.77.

Table 2.2 provides detailed information on how teacher evaluation scores
are distributed over evaluations and years. Because scores are bounded below
at 1 and above at 4, we have included percentile measures at the 10th percentile
and the 90th percentile instead of the minimum and maximum. Master educa-
tor scores are lower on average, but the difference is not statistically significant.
With a median score around 3.75, these are not normally distributed. The cut-

3These additive probabilities are capped at 1, though the cap was rarely needed (it applied to
0.38 percent of all observations).
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off for a Minimally Effective rating is 2.5, and slightly more than 10 percent of
teachers receive that rating. The cutoff for Highly Effective is 3.5, and about 65
percent of teachers have overall evaluation ratings above this threshold. Most of
the variation, however, occurs just at the Highly Effective threshold.

To understand the effect sizes, we have included a summary of each treat-
ment variable, evaluation probabilities, for each year in Table 2.3. The average
evaluation probability for principals is larger than for master educators, as ex-
pected given how clumped principal evaluations are at the end of each window.
We include the minimum probability and the 90th percentile, since probabilities
are bounded above at 1. The median treatment for principal evaluations is around
10 percent, meaning the median teacher had a 10 percent chance of being evalu-
ated on the day of their principal evaluation.

There are some exogenous factors that will affect teacher observation scores
that may have to do with school events. For example, the timing of an evaluation
within the school year may also matter regardless of evaluation probability. It
is possible that teachers are able to develop stronger classroom cultures as time
progresses, for example, which could improve their evaluation scores. In our anal-
ysis, we control for seasonal changes in teacher observation scores by including
the timing of an evaluation within each window.

Teachers also perform differently on evaluations after their students have
completed standardized tests, which is consistent with other research on DCPS
and suggests some teachers change their focus after tests are completed. The only
evaluations affected by this post-test change are the second master educator and
third principal evaluations. We control for this systematic response by including
an indicator for whether the evaluation occurred before or after standardized
testing for these estimates for evaluations M2 and P3.

2.5.3 Econometric Specification

The outcome variable of interest is the standardized evaluation score, Yk
ij, for

teacher i in year j on evaluation k, where k is P1, P2, or P3 for principal eval-
uations and M1 or M2 for master educator evaluations. Evaluation scores are
standardized within year. We control for school-level characteristics using school
fixed effects φs.

One complication in estimating treatment effects on teachers is how to ap-
propriately control for experience (see Taylor and Tyler, 2012, for example). It is
common in the literature to use a quadratic form, with experience capped at 15 or
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20 years, or to use experience-level fixed-effects for each year of experience. Our
results are unaffected by the specification of experience, but given the richness
of our data, we have opted to use experience level fixed-effects. We use Xit to
be a vector of experience level indicators. A set of controls Nk

ij is unique to each
evaluation k, and includes an indicator for whether the evaluation occurs after
standardized testing (for M2 and P3). We control for the timing of an evaluation
within the evaluation window k with Tk. Let Pk be the probability of any eval-
uation on the day of evaluation k. We then estimate a teacher’s evaluation score
with:

Yk
ijs = β0 + φs + βPk Pk

ij + βXXij + βTk Tk + βN Nij + εij. (2.5)

The errors are clustered at both the school by year level and by teacher. Because
our outcome variable is standardized at the year level, the measured effects of
Pk are in units of standard deviations. Crucially, we assume that the errors are
conditionally independent of any unobservable characteristics that correlate with
a teacher’s evaluation score.

The term Nk
ij also contains controls for classroom-specific characteristics and

a teacher’s ability by using the first principal evaluation as a control for the subse-
quent evaluations. Because P1 is announced, it is not affected by timing in the way
subsequent evaluations are. This evaluation also represents a baseline measure for
a teacher’s ability under the best evaluation circumstances. For example, in esti-
mating the effect of evaluation probability PP2 on the second principal evaluation
score YP2, we use the scores from the first principal evaluation, YP1, as a con-
trol. In addition to looking at the effect of evaluation probability on unannounced
evaluations, we also estimate the effect of evaluation probability for announced
evaluations. In this case, we use the first master educator evaluation as a control.4

Every specification includes a control Tk
ij for the evaluation timing. Because

the probability of being evaluated depends on how many other teachers have
been evaluated before, and by how much time remains in the evaluation window,
we want to separate out any effects caused by simply having an evaluation later
in the year. If there was only a single possible evaluation without overlapping
windows, evaluation probability would be defined by evaluation timing, though
nonlinearly. But given the overlapping windows and the non-uniform distribu-
tion of evaluations, evaluation timing and evaluation probability are separately
identified.

4In the 2009-2010 school-year, we also add the first master educator evaluation since it was
announced.
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2.5.4 Treatment Exogeneity

Our key identifying assumption is that the timing of evaluations is independent
of teacher characteristics that would affect their evaluation score, conditional on
observable characteristics. Principals may want to conduct evaluations of their
worst teachers first in order to provide feedback earlier in the year, which would
bias our results upwards since evaluation probability is low in the beginning of
each window. If evaluators target weaker teachers early using information we
cannot observe, our identification assumption is invalid.

To test for treatment selection bias, we regress characteristics that are ob-
served by principals and master educators on our treatment variables, Pk. We
estimate the following regression on the probability of each evaluation for each
observable characteristic Xij for teacher i in year j at school s:

Pk
ijs = β0 + φsj + βXijs + εij . (2.6)

Because there may be school-by-year systematic differences in the timing of
evaluations, φsj is a school-by-year fixed effect for school s in year j. The ob-
servable characteristics we consider are teacher value-added scores in reading
and math in the previous year, an indicator for first-year teachers, the final IM-
PACT rating a teacher received the previous year, and the final evaluation rating
a teacher received in the previous year. Because teacher selection into schools is
not random, we mean-center each observable characteristic around the school-by-
year mean. That is, Xijs = xijs − x̄js, where xijs is the raw, uncentered value for
teacher i and x̄js is the average at school s for year j.5

Table 2.4 shows the results of the exogeneity checks specified by Equa-
tion 2.6, with the treatment variables (Pk

ijs) across the columns and the observable
characteristics evaluators may use to target teachers (Xij) in each row. The cells
are the coefficient β in Equation 2.6. The statistical significance shown has not
been adjusted for multiple hypothesis testing.

The most important conclusion from Table 2.4 is that any potentially signif-
icant characteristics have effects in a direction that would bias our results down-
ward. For example, if principals target their second evaluation towards teach-
ers with a Highly Effective IMPACT rating from the previous year, then Highly
Effective teachers will have lower evaluation probability, reducing any positive

5 The results of our exogeneity checks are effectively unchanged when mean-centering is not
used on the independent variables.
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effect we observe from evaluation probability. No evaluations are timed relative
to whether a teacher is under the threat of dismissal or not, nor are they corre-
lated with a teacher’s evaluation score being “Minimally Effective” or “Highly
Effective” in the previous year.

Our exogeneity tests cannot be exhaustive since we are concerned with char-
acteristics observed by evaluators but not observed in the data. However, our
checks support our identifying assumption by showing that on a variety of ob-
servable characteristics we know correlate with teacher quality, evaluators are not
systematically targeting weak teachers early in the window.

2.6 Results

Our main results are presented in Table 2.5 for announced evaluations and Ta-
ble 2.6 for unannounced evaluations. For each evaluation, we have a simple over-
all treatment regression with the effect of evaluation probability (Pk) on the score
for that evaluation measured in standard deviations. The coefficients on probabil-
ity represent the effect of an increase in probability by one full unit. For example,
the interpretation of the coefficient in column four row one is that a teacher who
is certain she will be evaluated improves her score by 0.28 standard deviations
on P2 over a teacher who does not expect to be evaluated.6 Because the median
evaluation probability for P2 is about 0.10, the effect size is about a 0.03 standard
deviation increase for a teacher with the median probability of evaluation over a
teacher with zero probability.

To see how teachers with different previous evaluation ratings respond dif-
ferently to evaluation probability, we have broken out the effects by first-year
status and then by the rating received on the previous year’s in-class evaluations.
For the first master educator evaluation in the 2009-2010 school-year, we do not
have a prior year rating for teachers, so it is not possible to estimate the effect
separately by prior-year rating. Veteran teachers are consistently able to improve
their evaluations in response to increased evaluation probability. Among veteran
teachers, one with a 10 percent greater chance of an evaluation will improve her
score by 0.02 to 0.06 standard deviations, depending on the evaluator, as shown
in row one columns 2, 5, 8, and 11.

6While we have assumed linear effects, our results are not qualitatively different when using
a log specification.
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Rows three and four in both Table 2.5 and Table 2.6 show the average ef-
fect of having been rated a minimally effective teacher in the previous year or
a highly effective teacher in the previous year. As expected, teachers that were
rated highly effective in the previous year have higher evaluation ratings this year
when compared with a teacher rated effective in the previous year. The result is
robust for both announced and unannounced evaluations.

For the announced evaluations, probability is never a significant predictor
of evaluation score. The average effect of having a minimally effective rating last
year is significant across all evaluations. The average effect of being a low-rated
teacher is significantly different between announced and unannounced evalua-
tions, which is consistent with our hypothesis that higher performing teachers
are better able to prepare for evaluations.

Teachers improve their evaluation score for a more likely evaluation, espe-
cially for P2 and M2 (columns four through nine in Table 2.6). The effects are
statistically significant. A teacher that improves her TLF score by 0.6 standard de-
viations improves her TLF score by roughly 0.4 points on a scale from one to four.
The implication is that a teacher who is nearly certain of an evaluation improves
her TLF score by roughly half a point relative to a teacher who is very unlikely
to be evaluated. In this extreme case, the difference is large enough to bump a
teacher into a different IMPACT rating, but the extreme case is rare.

The effects of evaluation probability are concentrated among veteran teach-
ers, which is consistent with our hypothesis that veteran teachers are better po-
sitioned to showcase particular skills. When broken out by the previous year’s
evaluation rating, highly effective teachers appear very capable of improving their
scores in response to increased evaluation probability, except for P3. The effects
by previous-year rating are not significant for M1, though veteran teachers over-
all have a significant effect. The standard errors for effects on M1 are large. We
suspect that evaluations timed close to the winter break would explain the addi-
tional variation. Though we control for the timing of an evaluation, our control
assumes that time affects evaluation scores linearly (i.e. overall classroom behav-
ior improves over time). Within the M1 window, there is likely large non-linear
seasonal variation. Furthermore, for roughly 25 percent of teachers each year, the
M1 evaluation is their first of the year.

It appears that highly effective teachers respond differently to P3 depending
on whether or not it is the last evaluation. To test this notion, Table 2.7 divides
up the effect of evaluation probability on P3 by whether or not it is last. While
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last year’s minimally effective teachers appear strongly responsive to evaluation
probability regardless of whether or not P3 is last, last year’s effective and highly
effective teachers appear to have no response to evaluation probability if P3 is the
last evaluation of the year. We next turn our attention to consider how teachers
modify their behavior to improve their overall observation score.

With nine different separately scored components on each evaluation, our
basic multi-tasking model would predict that teachers will shift their attention
towards components that are easy to improve. The language describing how each
component is scored varies in specificity, where some provide specific examples
of teacher behaviors that will score better, while others have more general and
vague language. Similarly, some practices are more difficult to adjust within a
few days but rather require consistent development over weeks and months.

To identify which specific components teachers are able to adjust in response
to the increased probability of an evaluation, we look at how veteran teachers
improve each specific component. We use the same specification as before but
with the dependent variable changed to each of the nine Teach components. We
have also restricted our analysis to the average effect for veteran teachers without
breaking the effects out by a teacher’s previous rating.

As found in other studies (Adnot, 2016, see), these components are highly
correlated, making our hypotheses on observation components highly dependent.
We have adjusted the significance levels using a Bonferroni correction.7 While
Teach 2 through 4 are significant sometimes, Teach 8 is significant for all evalua-
tions except M1. No components are negatively affected by teacher preparations
for an evaluation. As with the overall results, we suspect that M1 is affected by
non-linear seasonal changes in classroom behavior and the fact that it is the first
evaluation for many teachers each year.

The fact that Teach 8 is consistently an area of improvement fits with our
prior expectations. Teach 8 is meant to evaluate classroom routines, procedures,
and behavior management. While routines and procedures in a classroom are
built over time and must be in place for students to respond appropriately, it
is possible to pay particular attention to this construct in planning for a given
day to obtain a higher score. For example, a teacher who ordinarily allows stu-
dents to work on a non-academic project after they’ve completed the lesson may
plan to provide students with a more academic-focused activity to satisfy the

7 For a hypothesis threshold α, the adjusted threshold for significance across m hypotheses is
α∗ = α

m .
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“idleness” component. Similarly, a teacher may employ additional patience and
de-escalation techniques when dealing with inappropriate or off-task student be-
havior to ensure it is efficiently addressed, or even spend additional time during
the week preparing a challenging student for an evaluation. A teacher may also
plan to pay additional attention to giving instructions before a class transition to
ensure minimal prompting, whereas in the absence of an anticipated observation
the teacher may have been comfortable relying on prompts to redirect student
behavior. These behaviors are not easily adjusted on-the-fly, but with some fore-
thought in lesson planning, they can be accomplished more easily.

2.7 Discussion

Our key finding is that teachers respond to the possibility of a high-stakes eval-
uation as intended by the IMPACT policy. We have shown that teachers are
cognizant of elements on the TLF evaluation rubric, and that they take steps to
improve their teaching practice as a result of unannounced evaluations. Unlike
previous research, we reveal the specific behavioral adjustments teachers make
throughout the year in response to unannounced evaluations. The value of our
findings is to unpack the mechanism through which teachers achieve the results
seen in Dee and Wyckoff (2015). Their analysis shows that teachers perform better
on in-class evaluations in response to high-powered incentives but it is silent on
how teachers achieve those gains. The key remaining question is, when teachers
face large incentives, do they improve measured outcomes by engaging in be-
haviors that are contrary to the intent of the policy? Our analysis answers this
question by mapping the incremental improvements teachers make as evaluations
become more likely.

There are two general ways in which a teacher could improve her evaluation
scores without truly improving her practice as intended by the policy. The first is
having a perfect, pre-planned lesson (sometimes called a “lesson in a box”) that
she can easily swap in if an evaluator enters her classroom. The second would be
to identify some TLF components that she can easily adjust, allowing her to con-
tinue with business as usual and only change a single component of her teaching
practice as an evaluation becomes more likely. There may be enough low-hanging
fruit that guarantees a good score without requiring any real teaching improve-
ments. For example, if she could easily boost her score by adding items to the
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whiteboard before class or by completing some checklist of classroom preparation
items, she may ignore the other more impactful TLF components.

Our results show that teachers likely do not use a lesson-in-a-box. If they
did, we would expect our results for unannounced evaluations to mirror our
results for announced evaluations. A perfect lesson-in-a-box would inoculate a
teacher against being unprepared, making her unresponsive to evaluation proba-
bility. Our results for announced evaluations support this notion: when teachers
are prepared, increased evaluation probability does not lead to higher scores.
For announced evaluations, the effect of evaluation probability is statistically in-
significant and substantively small. Yet for unannounced evaluations, teachers
meaningfully change their practice as an evaluation becomes more likely.

Our results also show that teachers improve their teaching practice across
multiple desired dimensions in preparation for a possible evaluation. A con-
cern with using behavior-based incentives is that, theoretically, an incentive based
on multiple measures can lead to inefficient activities as teachers may focus ex-
cessively on one dimension (Holmstrom and Milgrom, 1991). Quality teaching
requires skill across multiple dimensions, but if one measured practice is partic-
ularly easy to improve, teachers may become less effective along other important
practices. Table 2.8 shows teachers consistently improve Teach 8 when expect-
ing an evaluation, which we would expect. Teach 8 assesses specific classroom
management techniques that may be easy to implement in preparation for an
evaluation. However, the effect of evaluation probability on other Teach compo-
nents is statistically significant and larger in magnitude. In particular, Teach 3,
Teach 4, Teach 6 and Teach 7 all appear to be significantly affected by evaluation
probability. We interpret this as evidence that teachers do not simply cherry pick
a few easy practices for improving their evaluation score but rather make holistic
improvements that affect their score across a variety of domains.

As further evidence that teacher responses to an increasingly likely evalu-
ation are not excessively focused on a single dimension, we use a multivariate
regression to test whether evaluation probability has significantly different effects
across all nine components. In this test, we fail to reject the null hypothesis that
there is any heterogeneity in effect size across Teach components. This highlights
that the statistically significant effects seen for Teach 8 are driven by smaller vari-
ance in the coefficient, not by a significantly larger magnitude. Our results are
consistent with those of Adnot (2016), which found that the majority of variation
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in evaluation scores in the IMPACT program can be explained with a single factor
that encompasses all nine of the evaluation components.

Our results have secondary implications about the choice of evaluator. The
literature is increasingly concerned with who should conduct evaluations, par-
ticularly in high-stakes environments. Our main results in Table 2.6 show that
principal evaluations are more inert than master educators. The overall effect for
veteran teachers are statistically significantly different between P2 and M2, as well
as between P3 and M2, while the difference between P2 and P3 is not. However,
we are unable to determine why principal evaluation scores are less responsive to
evaluation probability, but we consider two possible explanations.

The broader literature shows that principals compress the distribution of
evaluation scores, suggesting they do not identify as much nuance in teaching
or they are less willing to make errors with strong consequences for teachers. If
this is the case, evaluation probability should have a smaller observed effect on
scores when principals conduct the evaluation, as we find. As further evidence
that principals compress the distribution of evaluation scores, we use Levene’s
test of homogeneity and confirm that there is a statistically significant difference
between the variance of principal evaluations and the variance of master educator
evaluations.

There is ample evidence that principals systematically evaluate their own
teachers differently than teachers from another school, suggesting a separate hy-
pothesis: teachers may incorporate additional information about students or the
teacher in their evaluation. This could be principals considering teacher char-
acteristics like collegiality, for example, or it is possible that principals are less
susceptible to teachers showcasing their skills. While our results cannot distin-
guish between the two hypotheses, these results suggest that the compression of
principal evaluation scores observed here (and elsewhere) may be a result of their
evaluations being more inert or less manipulatable, which may be a desirable
trait.

2.8 Conclusion

The rapid growth of multi-measure teacher incentive programs has progressed
with little evidence on how these programs affect daily teacher practice. While
seminal work has shown that these programs have the potential to improve stu-
dent outcomes and increase teacher ratings, no work has revealed how those out-
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comes are achieved. The intent of IMPACT is to provide guidance and encourage-
ment for teachers to engage in teaching best practices in multiple domains. Our
results demonstrate that teachers respond to the IMPACT evaluation program as
intended by improving their teaching practice along multiple dimensions.

Our results highlight the need to ensure that specific rubric constructs and
language encourages desired behavior. To this end, DCPS has continued to revise
and improve their evaluation rubric, moving to a more conceptual framework in
the most recent year (2016-2017). Our analysis suggests that other districts should
follow suit, reflecting on the ways in which rubric constructs and language en-
courage the desired teacher response. The results presented also caution against
ad hoc evaluation systems, which are unlikely to provide the needed guidance to
change behavior in desired directions.

The difference between master educator evaluations and principal evalua-
tions emphasizes the need to understand why principals as observers are differ-
ent than outside observers, both in terms of the evaluator quality and in terms
of how teachers respond to the evaluator. We are unable to clearly establish the
cause of the difference in evaluation malleability between master educators and
principals in DCPS. This is particularly salient as DCPS recently stopped using
master educators in order to reallocate funds to a greatly expanded professional
development program.

Multiple measure teacher evaluation systems have the potential to improve
teacher output by prioritizing behaviors in a production process known to be dif-
ficult and uncertain. Teachers cannot always know how a particular approach or
style will affect students relative to another approach. Phipps (2017) proposes a
theoretical model that allows for production uncertainty among employees. His
model shows how test-based incentives in such an uncertain context can lead to
inefficient effort allocation. A possible solution is to use structured in-class evalu-
ations to reduce teacher uncertainty about their daily practice. In this framework,
evaluations play an important role in guiding teaching priorities and in reward-
ing effective teaching practices. Evaluations then function both as direction and as
measurements of teacher quality. Our results demonstrate that multiple measure
teacher evaluation systems can satisfy both roles.
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Table 2.1: School-level summary statistics on enrollment, class size, and
school poverty status.

2009-2010 2010-2011 2011-2012

Number of Schools 124 121 123

Total Enrollment 44,035 45,004 45,013

Class Size
Mean 17.42 17.72 17.65
Std Dev 4.32 4.29 4.12

Fraction of Schools High Poverty 0.771 0.750 0.772
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Table 2.2: Summary information on teacher observation scores by year and ob-
server.

Observation Score on Scale of 1 to 4

Principal 1 Principal 2 Principal 3 Master Master
Educator 1 Educator 2

2009-2010

Mean 3.113 3.149 3.200 2.963 2.994
Std Dev 0.623 0.645 0.651 0.597 0.602
10th %ile 2.259 2.185 2.259 2.111 2.148
Median 3.185 3.259 3.333 3.074 3.074
90th %ile 3.852 3.889 3.889 3.667 3.704

2010-2011

Mean 2.980 3.083 3.156 2.877 3.002
Std Dev 0.618 0.589 0.596 0.647 0.584
10th %ile 2.110 2.330 2.380 2.000 2.220
Median 3.000 3.110 3.220 3.000 3.000
90th %ile 3.750 3.780 3.880 3.670 3.670

2011-2012

Mean 3.161 3.112 3.201 3.004 2.963
Std Dev 0.549 0.564 0.529 0.572 0.563
10th %ile 2.444 2.375 2.556 2.222 2.250
Median 3.222 3.222 3.250 3.000 3.000
90th %ile 3.778 3.778 3.778 3.667 3.625

Total

Mean 3.085 3.115 3.186 2.948 2.987
Std Dev 0.602 0.602 0.596 0.608 0.584
10th %ile 2.259 2.296 2.380 2.110 2.220
Median 3.125 3.220 3.250 3.000 3.000
90th %ile 3.780 3.815 3.880 3.667 3.670
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Table 2.3: Treatment Summary by Year

Probability of any evaluation on day of evaluation.

Principal 1 Principal 2 Principal 3 Master Master
Educator 1 Educator 2

2009-2010

Mean 0.156 0.117 0.139 0.064 0.068
Std Dev 0.140 0.114 0.141 0.079 0.077
Min 0.004 0.003 0.002 0.002 0.002
Median 0.113 0.087 0.096 0.043 0.044
90th %ile 0.419 0.325 0.398 0.179 0.203

2010-2011

Mean 0.143 0.186 0.129 0.059 0.065
Std Dev 0.127 0.189 0.127 0.061 0.068
Min 0.005 0.003 0.001 0.003 0.003
Median 0.108 0.124 0.089 0.040 0.041
90th %ile 0.368 0.619 0.348 0.173 0.196

2011-2012

Mean 0.128 0.167 0.156 0.052 0.070
Std Dev 0.126 0.159 0.157 0.049 0.076
Min 0.002 0.003 0.001 0.002 0.004
Median 0.092 0.125 0.108 0.039 0.045
90th %ile 0.341 0.477 0.438 0.147 0.209

Total

Mean 0.142 0.158 0.141 0.058 0.068
Std Dev 0.132 0.161 0.142 0.064 0.074
Min 0.002 0.003 0.001 0.002 0.002
Median 0.103 0.110 0.097 0.040 0.043
90th %ile 0.377 0.482 0.404 0.166 0.201

Notes: Treatment is the probability of being evaluated by either a principal or master educator on
the day of an evaluation. Treatment levels are higher for principal evaluations because these are
clustered in the last third of the evaluation window.
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Table 2.4: Checks for treatment exogeneity.

PP1 PP2 PP3 PM1 PM2

Previous Reading VA 0.0075 0.0128 0.0009 0.0004 -0.0041
(0.010) (0.011) (0.015) (0.005) (0.006)

Previous Math VA -0.0035 0.0043 -0.0161 -0.0036 -0.0006
(0.009) (0.011) (0.011) (0.004) (0.005)

First-Year -0.0014 0.0083 -0.0019 0.0028 0.0000
(0.004) (0.006) (0.005) (0.002) (0.002)

IMPACT ME Last Year 0.0051 -0.0017 0.0003 -0.0013 0.0002
(0.006) (0.007) (0.006) (0.002) (0.003)

IMPACT HE Last Year -0.0047 -0.0149** -0.0057 0.0004 -0.0025
(0.005) (0.007) (0.006) (0.002) (0.004)

Eval ME Last Year 0.0056 0.0039 0.0071 0.0002 0.0043
(0.006) (0.007) (0.006) (0.002) (0.004)

Eval HE Last Year 0.0020 0.0020 0.0016 -0.0011 0.0023
(0.003) (0.004) (0.004) (0.002) (0.002)

Notes - Each cell represents the estimated correlation between the row label (observable char-
acteristic) and the column label (treatment variable). Standard errors are in parentheses. All
variables except First-Year are centered around the school mean to control for school fixed effects.
Errors are clustered at the school by year level. Significance levels are not adjusted for multiple
hypothesis testing.

*** Significant at the 1 percent level
** Significant at the 5 percent level
* Significant at the 10 percent level
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Table 2.5: Effect of evaluation probability on announced evaluations.

Announced

Principal Eval 1 Master Educator Eval 1
All Years 2009-10 Only

TLF Score in Std Devs TLF Score in Std Devs

Evaluation 0.086 0.170 - -0.036 -0.045
Probability (Pk) (0.106) (0.138) (0.317) (0.280)

Pk X First-Year Teacher - 0.275 - - -0.212
(0.293) (0.937)

Minimally Effective - - -0.698*** - -
Last Year (ME) (0.082)

Highly Effective - - 0.317*** - -
Last Year (HE) (0.039)

Pk if ME Last Year - - 0.574 - -
(0.417)

Pk if Effective Last Year - - 0.130 - -
(0.133)

Pk if HE Last Year - - -0.176 - -
(0.155)

First-years Excluded X

N 9457 9457 5850 3035 3035
Notes - This table shows estimates of how a teacher’s in-class evaluation score improves as an an-
nounced evaluation becomes more likely. We estimate evaluation probability using an approximation
of how many teachers will be evaluated at each school on each day divided by the number of teachers
remaining to be evaluated. Standard errors are shown in parentheses. The probability of an evalu-
ation should not effect an announced evaluation score. Estimating effects by previous-year teacher
rating is only possible for 2010-11 and 2011-12.

*** Significant at the 1 percent level
** Significant at the 5 percent level
* Significant at the 10 percent level
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Table 2.7: Effect of evaluation probability on third
principal evaluation based on evaluation order.

Principal Eval 3
All Years

TLF Score in Std Devs

Not Last Last

Pk if ME Last Year 2.227** 0.335
(1.076) (0.214)

Pk if Effective Last Year 1.011*** 0.160
(0.283) (0.105)

Pk if HE Last Year 0.748* -0.175
(0.430) (0.146)

First-years Excluded X X

N 5562

Notes - This table shows estimates of how a teacher’s third
principal evaluation score improves as it becomes more
likely, broken out by whether or not the evaluation is the
last of the year. We estimate evaluation probability using
an approximation of how many teachers will be evaluated
at each school on each day divided by the number of teach-
ers remaining to be evaluated. Standard errors are shown in
parentheses.

*** Significant at the 1 percent level
** Significant at the 5 percent level
* Significant at the 10 percent level
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Table 2.8: Effect of evaluation probability on individ-
ual evaluation components.

Effect of Eval Probability on
Component Score (Std Devs)

M1 P2 M2 P3

Teach 1 0.001 0.108 0.362 0.287
(0.257) (0.101) (0.182) (0.219)

Teach 2 0.214 0.121 0.411 0.138
(0.249) (0.073) (0.183) (0.204)

Teach 3 0.048 0.492*** 0.424 0.543
(0.247) (0.095) (0.172) (0.218)

Teach 4 0.076 0.187 0.518** 0.475
(0.242) (0.095) (0.180) (0.211)

Teach 5 0.238 0.054 0.270 0.362
(0.250) (0.097) (0.183) (0.175)

Teach 6 0.149 0.298** 0.261 0.529
(0.454) (0.099) (0.256) (0.282)

Teach 7 -0.017 0.257** 0.246 0.371
(0.249) (0.092) (0.177) (0.225)

Teach 8 0.040 0.398*** 0.495** 0.492*
(0.242) (0.081) (0.152) (0.189)

Teach 9 0.100 0.086 0.141 0.026
(0.214) (0.074) (0.169) (0.219)

N 5960 7911 8332 8326

Notes - Teachers are scored along nine components (Teach 1
through Teach 9). All coefficients are in standard deviations.
Evaluations conducted by the principal are P2 and P3, while
evaluations conducted by the district employee are M1 and M2.
Results for M1 are for the 2010-11 and 2011-12 years only. All
significance levels have been adjusted using a Bonferroni correc-
tion factor. Sample excludes first-year teachers.

*** Significant at the 1 percent level
** Significant at the 5 percent level
* Significant at the 10 percent level
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Figure 2.1: Depiction of each evaluation window in DCPS.

Notes - Each shaded area represents the time-frame in which a teacher must receive an evaluation.
Teachers have 5 evaluations that occur in overlapping windows. P1, P2 and P3 are evaluations
administered by the principal or vice principal. M1 and M2 are evaluations administered by a
district employee called a master educator.
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Figure 2.2: Histograms of evaluatoin timing within evaluation windows.

Notes - Days are measured as instruction days, which excludes in-service days, weekends, and
holidays. Master educator evaluations, M1 and M2, are distributed uniformly across the window.
Principal evaluations – P1, P2 and P3 – are often clustered near the end of each window.



85



86

Chapter 3

Teacher Performance Pay through the
Lens of Production Uncertainty:
Theory and Evidence from a
Real-Effort Laboratory Experiment

Teacher performance incentives do not consistently improve student test out-
comes in the US. A necessary theoretical and empirical problem is how to de-
sign an incentive to induce the optimal allocation of effort among multiple tasks,
which is usually modeled by assuming agents know the production function. Un-
like some production processes in which output relies solely on worker skill and
effort, teaching is distinguished by its complexity and its dependence on the re-
ciprocal effort of students. As a result, individual teachers are uncertain about the
net marginal productivity of inputs. The innovation of this paper is to develop
a model that explicitly incorporates uncertainty about the production process in
student learning (“production uncertainty”) in the model of behavior, and then
to assess agent responses to a standard piece-rate performance pay scheme as
the variance of an input’s marginal payoff increases in a real-effort laboratory
experiment.
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3.1 Introduction

As it is well established that teacher experience and educational credentials are
largely uncorrelated with teacher productivity, compensation based on these fac-
tors alone is a poor tool for attracting, motivating and retaining a strong teaching
labor force (Rivkin et al., 2005). Yet, how to compensate teachers to reflect produc-
tivity differences and provide incentives that reward performance remains a prac-
tical challenge, as many alternative compensation schemes have not demonstrated
consistent efficacy (Dee and Wyckoff, 2015). Recent large-scale federal initiatives
in the United States, including Race to the Top and the Teacher Incentive Fund
place substantial emphasis on the development of compensation mechanisms to
link pay and performance. These programs have awarded a combined $6.4 billion
since 2010 to 92 districts in 32 states for proposals to fund new teacher perfor-
mance incentives or improve teacher accountability. Internationally, the United
Kingdom, India, Chile, Mexico, Israel, Australia, and Portugal are considering or
have implemented teacher incentive programs.

While large scale field experiments and policy innovations are surely needed
in the teacher labor market, the design challenge resides in the more general
space of models of incentive contracts (Lazear, 1986; Holmstrom and Milgrom,
1991; Prendergast, 1999). A necessary theoretical and empirical problem is how
to design an incentive to induce the optimal allocation of effort among multiple
tasks, which is usually modeled by assuming agents know the production func-
tion. Unlike some production processes in which output relies solely on worker
skill and effort, teaching is distinguished by its complexity and its dependence
on the reciprocal effort of students. As a result, teachers are uncertain about
the net marginal productivity of teaching inputs. An innovation of this paper is
to develop a model that explicitly incorporates uncertainty about the production
process in student learning (“production uncertainty”) in the model of behavior.
More importantly, this paper develops empirical evidence in a laboratory experi-
ment assessing agent responses to a piece-rate performance pay scheme as I vary
the variance of input payoffs without changing their average payoff.

In the model, the presence of production uncertainty reduces the effect of an
outcome-based incentive on a teacher’s overall effort level due to risk aversion, an
effect I label “futility.” Furthermore, an outcome-based incentive can induce pro-
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duction friction, which predicts that teachers will redistribute their effort to inputs
with lower variance in marginal productivity, potentially reducing average total
productivity without necessarily decreasing overall effort. For example, teach-
ers may teach to the test instead of using more pedagogically sound techniques,
resulting in lower average test scores (Blazar and Pollard, 2017). The initial em-
pirical test of these predictions is in a laboratory experiment, which is intended
to provide a controlled setting to isolate the potential effects of increasing pro-
duction uncertainty and should be seen as an opportunity to explore behavioral
mechanisms without the expense and implementation challenges of a field exper-
iment or policy change. Initial results of this experiment confirm the predictions
of my model, though additional study is necessary.

The experimental design itself is an innovation, allowing me to directly test
whether increases in production uncertainty induce inefficiency while holding
everything else constant. The policy innovation of this paper is to examine the
salience of production uncertainty in designing incentive contracts. For teach-
ers, this will provide direction on whether incentives should be based on in-class
evaluations or student test scores. This paper also contributes to the design of
future field experiments on teacher incentives by identifying the relevant features
that should be varied experimentally, an innovation given the tenuous theoreti-
cal basis for the design of most teacher performance incentives to date. In the
past, researchers have expended tens of millions of dollars on field experiments
that yielded no results without establishing a credible theoretical and empirical
design that addresses the key complications of performance incentives in a con-
text as complex as teaching. The theoretical innovation of this paper is important
to contract design in industries with well-defined output measures, but it also
creates a theoretical framework for modeling more complex professions, such as
health care provision, that have been neglected in contract theory.

This paper tests whether or not agent effort allocation among tasks is af-
fected by production uncertainty in a real-effort, multitask experiment, which
provides an empirical test for the distinctive predictions of my model. The fron-
tier of contract theory provides little guidance for fundamental teacher incen-
tive design questions, such as whether or not to use classroom observations, test
scores, or group-based incentives. The existing empirical work on teacher perfor-
mance incentives has a mixture of results that are not easily understood through
the lens of the existing personnel economics literature. The questions addressed
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in this paper are at the intersection of contract theory and education policy with
contributions to both.

3.2 Background

Good teachers have a meaningful effect on student outcomes immediately and
later in life, making teachers a possible public lever for increasing the human capi-
tal of a nation (Rockoff, 2004; Rivkin et al., 2005; Kane and Staiger, 2008; Aaronson
et al., 2007; Chetty et al., 2014). Because of the wide variation in teacher effective-
ness, policies that improve the lower tail of the teaching labor force would yield
meaningful improvements in overall student development.1 To this end, school
districts attempt to promote more teacher training and experience by using what
is called a “steps and lanes” system (or “single salary”), which makes salaries
depend only on education, certification, and teaching experience. But the avail-
able evidence establishes that these factors do not translate into improved student
outcomes (Rivkin et al., 2005). Such pay systems are discouraging to young but
effective teachers looking to distinguish themselves in their career.2 Steps and
lanes systems also lack any mechanism to motivate the creation and maintenance
of reliable measures of teacher quality, which leads to unfocused and ineffective
professional development.3 An alternative payment scheme would seek to iden-
tify effective teachers based on their performance and reward them accordingly,
a general policy idea I call performance incentives. A handful of school districts
in the US have attempted to create performance incentives throughout the 20th
century, but few of these programs survived for more than a couple years, at least
until recently.

1Hanushek (1992) finds that a teacher at the 95th percentile will improve student outcomes by
the equivalent of 1.5 academic years while a teacher at the 5th percentile improves outcomes by
only 0.5 years.

2Hoxby and Leigh (2004) estimate that the share of teachers in the highest aptitude category
fell from 5% to 1% from 1963 to 2000, and they estimate that 80% of this decline can be attributed to
high quality teachers being pushed out of the profession because of the lack of pay differentiation.

3Weisberg et al. (2009) examines the lack of differentiated teacher evaluation systems across the
country and then argues that professional development programs consistently have no measurable
effect on student outcomes as a result of being unfocused.
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3.2.1 Teacher Performance Incentive Programs in the US and Their
Effects

Rewarding teachers for performance (also called “merit pay” or “performance
pay”) is an old, recurring idea since at least the early 20th century (Murnane
and Cohen, 1986). The last 17 years have seen a strong resurgence of school and
teacher accountability, starting with the No Child Left Behind Act on through
the Teachers Incentive Fund and the Every Student Succeeds Act. In response,
school districts continue to implement a variety of incentive and accountability
initiatives, which I will briefly summarize.

Some districts pay bonuses to teachers based on group performance, requir-
ing the entire school to reach a graduation threshold or all teachers in a specific
grade range improve student test scores sufficiently.4 These programs introduce
a new set of theoretical design questions that complicate any effort to pinpoint
crucial teacher incentive elements. Some of these concerns are discussed and
evaluated empirically in Imberman and Lovenheim (2015). Moving forward, I
will focus on teacher incentives based on individual performance.

Empirical evidence of the effects of teacher-level performance incentives is
mixed. Dee and Keys (2004) found that an in-class evaluation based bonus im-
plemented at the same time as the Tennessee STAR classroom size experiment,
conducted in 1985, improved student math scores. The working paper Hudson
(2010) and a technical report Mann et al. (2013) use propensity score matching to
show that schools that implement the Teacher Advancement Program (TAP) had
higher math scores than the schools they are matched with, though the evidence
is less convincing. Dee and Wyckoff (2015) use discontinuities in bonus thresholds
in the Washington DC IMPACT program (started in 2009 and ongoing) to show
that teachers close to receiving large pay increases will improve their students’
test scores more in the following year than teachers just above the threshold.

Studies of other programs find some positive effects, but they were small
or not consistent across districts. Sojourner et al. (2014) find some small pos-
itive effects in the Minnesota Quality Compensation (Q-Comp) program, which
started in 2005 and is ongoing. The statewide program is notable because it allows
districts to design their own evaluation and professional development programs

4Notable examples of school-level incentive programs are the Kentucky Instructional Results
Information System (KIRIS) (Koretz and Barron, 1998), the North Carolina ABC program (Vigdor,
2008), Chicago’s modified implementation of the Teacher Advancement Program (Glazerman and
Seifullah, 2012), and the New York City School-Wide Bonus Program (SWBP) experiment analyzed
in Fryer (2013).
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within loose guidelines. As for the results of the many programs funded by the
Teacher Incentive Fund (TIF), the Department of Education’s Institute of Educa-
tion Sciences produced a report that shows small positive effects after three years,
although there is variation in some key components of program implementation
that makes the average results difficult to interpret (Wellington et al., 2016).

Other well-publicized, sizable programs showed little or no effects on stu-
dent test scores. The Tennessee Project on Incentives in Teaching (POINT) was a
three-year experiment started in 2006. While selection into the experiment was
voluntary, assignment to treatment was randomized. Treated teachers would re-
ceive bonuses based solely on the test score improvements of their students. There
were no significant positive effects from the incentive (Springer, 2010). The Denver
Professional Compensation program (ProComp), started in 2007, created several
routes for teachers to receive bonuses, but by far the largest bonus was awarded
to teachers with large gains in student test scores. A report from the University
of Colorado, Boulder finds that this incentive had no positive effects on student
test scores (Briggs et al., 2014).

In all, this body of empirical results is far from a conclusive endorsement
of teacher performance incentives. Each of these programs, except the Tennessee
STAR experiment, uses student test score improvements as part of their incentive,
and the incentive sizes are mostly comparable. The consistent element of effective
programs is their use of in-class evaluations.

To illustrate the importance of in-class evaluations, I divide up the teacher
incentive programs detailed above in Table 3.1 based on the use of incentives
for in-class evaluation scores and any measurable incentive effects.5 All of these
incentive programs have teacher-level measurements and incentives with minimal
school-level incentives. Six of the seven programs use value-added measures.
While not a causal argument, Table 3.1 highlights a positive relationship between
a performance incentive’s effect and the use of in-class evaluations.

Of course, no two teacher performance incentive programs are directly com-
parable. There are many local factors and implementation decisions that will
change the outcomes of a program. However, given the available evidence, there

5To assess the quality of in-class evaluations, I consider how much they differentiate among
teachers. Weisberg et al. (2009) documents a known issue with many in-class evaluation programs.
The majority of these systems to date have produced essentially no differentiation among teachers.
For the purposes of this back-of-the-envelope calculation, I’ve defined differentiation to mean that
fewer than 90% of teachers receive the same in-class evaluation score available. This rule is only
necessary to distinguish the Denver ProComp program, in which over 99 percent of teachers
receive a passing score.
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is a strong case that in-class evaluations are a key element of effective teacher
incentives. But if teachers can predictably improve student test scores by engag-
ing in behaviors measured by in-class evaluations, why are they not using these
behaviors in the absence of in-class evaluations to earn bonuses based on student
test scores? To illustrate the gap between these empirical results and existing
theory, I provide a brief overview of the relevant contract theory.

3.2.2 Incentive Contract Theory and Evidence in the Education
Context

Economists have created a rich set of models depicting incentive contracts that
address a variety of situations, not all of which are applicable in the teaching
context (Prendergast, 1999). There are a few key theoretical findings relevant to
teaching. Performance incentives should be based on measures of the final good,
not individual inputs or multiple outputs (Holmstrom and Milgrom, 1991). In the
teaching context, this implies that if policy makers ultimately want to improve stu-
dent test scores, incentives should be based on student test scores. Another the-
oretical prediction is that incentives have stronger effects as measurement noise
decreases (Lazear, 1986), which suggests test-based incentives will have limited
effects if test scores have a lot of unexplained variation. Baker (1992) provides
a concise model illustrating the importance of creating an incentive that is diffi-
cult to cheat, a prediction empirically validated by teachers cheating on student
tests in Chicago (Jacob and Levitt, 2003). Neal (2011) adds additional insights in
the context of teaching using a simplified two-input principal-agent model. He
shows that if the teacher’s input costs are separable, it is always optimal to have
some performance-based pay. If input costs are not separable, it is possible that a
test-based incentive will induce teachers to substitute towards teaching practices
that promote student test scores without improving the true desired outcome,
illustrating the fundamental importance of ensuring student tests accurately cap-
ture desired student outcomes. Secondly, his model demonstrates that setting
teacher performance standards too high will have essentially no effect on teacher
behavior.

There is strong evidence that performance incentives improve employee ef-
fort. For example, Lazear (2000) finds that a piece-rate wage in the Safelite Glass
Corporation led to significant improvements in output. In a firm-level experiment,
Bandiera et al. (2007) shows that managers receiving a performance incentive in-
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crease the productivity of their team. In education, the successful application
of performance incentives in some school districts suggest that teaching can be
an appropriate context for performance incentives, but contract theory does not
provide insight as to what distinguishes teaching from other industries, and it
cannot identify the common traits of effective teacher incentives. The consistent
element of effective teacher performance incentives is the use of in-class evalu-
ations, contrary to existing theory. If improving student test scores is the goal
of policy makers, paying teachers for improving test scores should be at least as
effective as paying teachers for improvements on in-class evaluations. Principal-
agent models determine optimal contracts based on output measurement noise
and cost, employee risk aversion, and complementarity between inputs. Yet none
of these dimensions accurately predict an effective incentive.

It is possible that the mixed results of teacher incentives are due to variation
in implementation, not design. To that end, ten school districts agreed to roll
out their incentive program in stages as part of their TIF agreement. In the first
stage, a random subset of schools would implement the new program, while
the other schools would not change their payment structure. Wellington et al.
(2016) evaluate these ten programs along six dimensions, including differentiation
of bonuses between teachers, the difficulty of earning a bonus, bonus timing,
and teachers’ understanding of the program and their own eligibility to receive
a bonus. None of these implementation characteristics correlated with incentive
effectiveness.

I argue that there is a more fundamental issue that has gone unexamined
in both the empirical and theoretical literature: the production function for im-
proving student test scores is full of uncertainty, dulling the effectiveness of a
test-based incentive and inducing inefficient time allocation. Fryer (2013) briefly
discusses the possibility that teachers do not know the education production func-
tion in the context of a large, group incentive in New York City. In his context,
teachers are unresponsive to the group incentive, which he argues is likely due
to the complexity of the incentive program, not teacher ignorance of the teach-
ing production function. However, the model I present creates a clear distinction
between teachers having an inaccurate understanding of the teaching production
function as opposed to having an imprecise understanding. While both are prob-
lematic, Fryer is largely arguing against the notion that teachers do not know
what good teaching looks like or which inputs lead to improved outcomes (in-
accuracy). Given the known correlation between effective teaching practices as
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measured through in-class observations and student outcomes (Kane and Staiger,
2012), I agree with Fryer that it seems unlikely that teachers are unaware of what
constitutes effective teaching. But I show, in theory and in this experiment, that
risk-averse teachers with a large test-based incentive may favor inefficient inputs
even if their understanding of the production function is accurate.

To advance this theory, I add a new dimension to the principal-agent prob-
lem by allowing teachers to have uncertainty about the marginal productivity of
each input, which I call production uncertainty. I can then divide programs into
two types: incentives based on student test score improvements and those based
on classroom observations of teacher performance. The key difference between
the two incentives is that, from a teacher’s perspective, the production function for
improving student test scores is considerably more uncertain than the production
function for improving in-class observation scores. The result is that incentives
based on in-class evaluations may be significantly more effective at improving
student test outcomes than incentives based on the outcomes themselves. The
purpose of this experiment, then, is to test the prediction that uncertainty about
the production function induces inefficient behavior, even when participants have
an accurate understanding of the average effect of each input.

My experiment builds on the well-established experimental literature using
real-effort tasks to examine participant responses to incentives (for example, see
Van Dijk et al., 2001; Oswald et al., 2015). An innovation of this experiment is
to create two real-effort tasks of varying difficulty that will have differing payoffs
based on the participant’s skill. A similar setup could be used to test predictions
of the Holmstrom-Milgrom multi-tasking model, yet I am unaware of any such
experiment. There are, however, experiments testing participant behavior un-
der group-based and individual-based incentives in a multi-tasking environment,
though the tasks vary only in how they affect individual earnings and group earn-
ings (Fehr and Schmidt, 2004; Hoppe and Kusterer, 2011; Oosterbeek et al., 2011;
Lynn Hannan et al., 2013). The other innovation of my experiment is to simulate
production uncertainty on multiple dimensions. Zubanov (2013) tests the effects
of inducing uncertainty about the marginal payoff of a single input, “multiplica-
tive noise,” but the predictions of his model and the outcomes of his experiment
are indistinguishable from adding measurement noise in a standard piece-rate
payment scheme. By examining uncertainty along multiple dimensions, my ex-
periment illustrates how participants, without reducing overall effort, become less
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productive as a result of differences in their uncertainty about the payoffs of two
inputs.

3.3 Theoretical Model

In a manner similar to the Holmstrom-Milgrom model, consider how a teacher
can distribute her total time τ, which includes both time in class and time spent
preparing for class, among N different tasks. Call this time allocation choice x,
which is an N-by-one vector such that ∑N

i=1 xi = τ. Example tasks could include
showing the class a movie, conducting an experiment with the class, or lecturing
with slides.6

Then suppose the teacher receives a wage that is based on her students’
test scores, which have production function f (x). The wage rule is w(x) =

w0 + w1 f (x), where w0 is a guaranteed salary and w1 is a piece-rate performance
incentive. For notational simplicity, I use 1̇ = [1, 1, . . . , 1]T, where the superscript
T indicates the transpose. Then assuming she is risk averse, her utility can be
expressed using the exponential utility function

U = − exp{−r
(

bw(w0 + w1 f (x)) + bl(1− 1̇Tx)
)
} . (3.1)

The parameter r indicates the teacher’s coefficient of risk aversion. The parame-
ters bw and bl weight the utility gains from wages and leisure time.7

My innovation is to relax the assumption that a teacher knows the produc-
tion process f (x). A teacher is likely uncertain about the marginal effect of one
teaching rubric or approach relative to another. Furthermore, because education
is a user-input production process, the effort of students and their parents ap-
pears as a random variable to the teacher. I model this by allowing the marginal
value of each input to be a random variable.

To model production uncertainty, I first assume teachers linearly approxi-
mate the production process. This can be accomplished mathematically by taking

6This model can easily be adapted to allow for effort intensity as well as time, where leisure
is some combination of quality and time, and each task is a combination of intensity of effort
and time. The cost function can also be made non-linear, but this is ignored for simplicity at the
moment.

7At this point, the model can easily be adapted to the Holmstrom-Milgrom model by making
f (x) a vector of measured outputs, each with some measurement error. I omit measurement error
for simplicity, but its inclusion does not fundamentally change the predictions of my model.
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a first-order, Taylor Expansion around some reference input value xr:

f (x) = f (xr) + [(x− xr)T∇ f (xr)] + ξ(x− xr) (3.2)

where ∇ f (xr) is the gradient of f (x) and ξ(x − xr) is a remainder function that
is increasing in the distance between x and the reference input level, xr. Then let
γ be a vector of random variables with mean ∇ f (xr) and a multivariate normal
distribution with covariance matrix Σγ. Then a rewriting the teacher’s approxi-
mation of the production function:

f (x) ≈ f (xr) + γtx, (3.3)

where I have omitted the remainder function.8 If the variance in γ is zero, the
teacher’s problem becomes fairly trivial, and she will devote all her non-leisure
time to the input with the highest net marginal productivity.

Substituting the approximated production process into the expected utility
function yields

EU = E
[
− exp

{
−r
(

bw(w0 + w1γTx) + bl(1− 1̇Tx)
)}]

(3.4)

Because γT has a multivariate normal distribution, I use the moment generating
function to simplify the expected utility:

EU = − exp
{
−r
(

bww0 + bl(1− xT1̇) + bww1xTµγ −
1
2

r(bww1)
2xTΣγx)

)}
.

(3.5)
The optimal choice of inputs x∗ is then

x∗ =
2

r(bww1)2 Σ−1
γ

(
bww1µγ − bl1̇

)
. (3.6)

To explore the properties of this model, consider the two-input case. Let σ11 and
σ22 denote the variances of γ1 and γ2, and let σ12 be their covariance. I can allow

8If the remainder function is instead considered a random variable with mean increasing
in x − xr, the final effect on the model’s predictions is similar to adding measurement noise,
except the noise’s negative effect depends on a teacher’s reference point xr. Notice also that
this specification assumes that the inputs are perfect substitutes in the traditional sense, but the
covariance between γi and γj allows for an idea of risk substitution. That is, if cov(γi, γj) > 0
then if xi has high marginal productivity, then xj is likely to also have high marginal productivity.
Taking a higher order Taylor Expansion will allow for complementarity in a more traditional
sense.
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for differentiated marginal costs of x1 and x2 by allowing c to be the marginal cost
of x2 relative to x1. Then the optimal choice of effort for input 1, x∗1 , is

x∗1 =

A︷ ︸︸ ︷(
2

r(bww1)2

) B︷ ︸︸ ︷(
1

σ11σ22 − σ2
12

)− C︷ ︸︸ ︷
(bww1µ2 − blc)σ12 +

D︷ ︸︸ ︷
(bww1µ1 − bl)σ22

 .

(3.7)
The terms labeled A and B are multiplicative constants that will affect all inputs.
Term A shows that a teacher will reduce effort in all tasks as her risk aversion r
increases. There is also an income effect where increases in bw or w1 will decrease
effort in all tasks, though this is partially offset by a substitution effect in terms C
and D.

Term B can be thought of as an uncertainty premium multiplier. If σ12 is pos-
itive, it provides a form of risk reduction. This is somewhat intuitive since positive
covariance increases the information about the distribution of the marginal pro-
ductivities of each input.9 Term C is the employee’s response to inputs being risk
substitutes or complements, depending on the sign of σ12. Assuming input 2 has
higher net marginal utility (i.e. (bww1µ2 − blc) > 0), then the employee will sub-
stitute effort towards input 2, other things constant. Intuitively, if two inputs have
highly positively correlated marginal productivities, there is less risk associated
with putting more effort into just one input, hence the inputs act as substitutes in
risk diversification.

Testable Predictions from Production Uncertainty

I now focus on the two simple predictions that I will test directly in my lab ex-
periment. To illustrate these, I further simplify the model by assuming σ12 = 0,
which allows me to rewrite the optimal input choices as

x∗1 =

(
bww1µ1 − cbl

r(bww1)2

)
2

σ11
, x∗2 =

(
bww1µ2 − bl

r(bww1)2

)
2

σ22
. (3.8)

The two main predictions I test with my experiment are Futility and Friction,
which I introduce with abbreviated proofs:

9The interpretation of Term B is aided by a more generalized interpretation of the determinant
of a matrix. In short, the determinant can be thought of as a volume measure of the covariance
matrix in n-dimensional space. If the covariance occupies a greater volume (higher determinant),
this will decrease overall effort.
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Proposition 1 (Futility). In the absence of covariance, an increase in the variance
of the marginal productivity of either input will reduce overall effort, ∑N

i=1 xi.

Proof. Follows immediately from Equation 3.8.

In the experiment, this will be tested by measuring participants’ overall ef-
fort in completing their tasks, and then varying the magnitudes of σ11 and σ22. I
measure participant effort by observing their speed and effectiveness in answer-
ing questions, as well as observing their decision to use up all the available time
in a round.

Proposition 2 (Friction). A performance incentive with production uncertainty
will induce employees to distribute their effort among tasks such that the expected
productivity is strictly less than the maximum expected productivity with the
same total effort.

Proof. Because the production function is linear, the maximum average produc-
tivity requires that ∑N

i=1 xi = xmax where xmax = {xi : µi > µj ∀j 6= i}. Under a
performance incentive with production uncertainty, it immediately follows from
Equation 3.8 that xi > 0 for all i, which implies that ∑N

i=1 xi 6= xmax, and therefore
expected productivity could be improved by re-allocating the same total amount
of effort.

I can test friction in my experiment by observing how participants re-allocate
their overall effort away from the task with the highest expected marginal pro-
ductivity as I change σ11 and σ22. Importantly, going from zero production un-
certainty to any production uncertainty is bound to have a negative effect on how
participants allocate their effort. The key prediction of production uncertainty is
that changing the variance of an input, without changing its average productivity,
will induce participants to use that input less.

Production uncertainty provides new insights into the salient issues of in-
centive design, particularly in complex production environments like teaching.
For comparison, the multi-task model in Neal (2011) summarizes the standard
theoretical concerns of teacher performance incentives well. In his model, teach-
ers increase human capital and are paid based on their score in a performance
review, say teacher value-added. Factors that will reduce the effect of a perfor-
mance incentive on both teacher value-added include noisy test scores, setting
the requirements to receive a bonus too high, or making bonuses too small. Yet
all available evidence suggests that these characteristics do not predict an effec-
tive program as measured by improvements in student test scores. Instead, test
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scores improve when an incentive uses in-class observations. To place this in the
context of Neal’s model, assume for the moment that test scores perfectly capture
increases in human capital. Then the question I am posing is, should incentives
be based on in-class evaluations or test scores? Neal’s model unequivocally con-
cludes that any test-based incentive is efficient, while there are many ways in
which an incentive based on in-class observations could be inefficient and have
no measured effect on test outcomes. In short, the incentive based on in-class
observations could never be more effective at improving test scores. Production
uncertainty bridges this gap between theory and the empirical literature.

Production uncertainty is an inherent trait of the production function. In the
teaching context, even if it were possible to measure with absolute accuracy how
much a student has learned throughout the year, the process of actually imparting
that knowledge still has uncertainty. My model illustrates unexplored, potentially
adverse effects of performance incentives. In particular, relative to an incentive
based on in-class evaluations, test-based incentives may induce an inefficient al-
location of effort, decreasing average productivity without even reducing overall
effort. To illustrate, consider a teacher with two possible inputs for teaching math:
she can use rote memorization (“teach to the test”) or use a more pedagogically
sound approach that employs counting cubes. While a teacher’s training and
well-known best practices suggest the counting cubes are a better approach on
average, its effect may have more variance than just rote memorization. As a
result, the teacher may favor rote memorization because, in certainty equivalent
terms, its marginal benefit is higher. Again, existing theory only predicts that
teachers switch to rote memorization if it improves test scores, while production
uncertainty shows it is possible that teachers switch even when it may be less
effective at improving test scores, on average. Indeed, recent research finds that
teachers’ attempts to teach to the test result in lower test scores on average (Blazar
and Pollard, 2017; Hill et al., 2015; Blazar, 2015).

3.4 Experimental Design

The goal of the experiment is to simulate production uncertainty in a multi-
tasking environment. Participants must allocate their time between two tasks
of varying difficulty and financial payoffs. This reduces the contract problem to a
key salient variable: the variance in the marginal productivity of inputs. The lab



100

has the advantage of treatment randomization and precise control over the degree
of production uncertainty.

To place the experiment in the context of the model, I compare how effi-
ciently participants allocate their time between easy and hard addition questions
(x∗1 and x∗2 in Equation 3.8) while holding the average marginal value of each
input constant (µ1 and µ2) and varying only the uncertainty about each input’s
marginal value (σ11 and σ22). The model predicts that as uncertainty about the
payoff of easy questions (σ11) increases, time spent on easy questions (x∗1) will de-
crease, all else constant. Such a shift reduces a participant’s average payoff even
though the average marginal value of an easy question remains unchanged.

If there were absolutely no uncertainty about the payoff of each input (σ11 =

σ22 = 0), participants would dedicate all their time to the input with the highest
payoff per minute. However, in a real-effort experiment, I can never truly make
the uncertainty about the marginal payoffs disappear entirely since there will
always be some variation in how long a question will take, even among questions
of the same difficulty rating. That is, even two easy questions will have variation
in how easy they turn out to be for the participant, which will subsequently create
uncertainty about the payoff per minute of an easy question. In the control group,
I minimize the payoff uncertainty by guaranteeing a fixed payoff for each question
type. Then, to induce additional uncertainty in the treatment group, I randomize
the payoff for each question type between rounds.

3.4.1 Experimental Procedures

Participants use a web browser to engage in the tasks while a proctor controls the
flow of the experiment in an administrative dashboard. The basic innovation is to
present participants with a choice of two possible tasks (inputs). In the allowed
time, they attempt to successfully complete either task as many times as possible.
The two tasks have different difficulty and financial payoffs.

Multi-task Session Description

Participants answer easy or hard addition problems, similar to those used in
Niederle and Vesterlund (2007) and Oswald et al. (2015). Easy questions require
participants to add up three two-digit numbers, while hard questions require
adding six two-digit numbers. There is no penalty for wrong answers and par-
ticipants can end a round at any time. Participants are told they can quietly visit
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other websites while they wait for the next section to begin, which is intended
to simulate a leisure outside option. Participants can also leave the experiment if
they finish early.

The activity is broken into three main sections – Fixed Wage, Random Co-
efficient, and Constant Coefficient – each consisting of a set of rounds. Sections
have different payment schemes, round lengths, and number of rounds. During
each round, participants can see their time remaining and how many questions
of each type they have attempted. They do not see their results until the end of
the round where a summary table displays all available information on questions
attempted, time to completion, and payoff per question.

Part 1: Tutorial

To ensure that all participants understand the mechanics of the activity, they are
led on an interactive guided tour. The tour individually highlights each element
of the display and requires participants select questions and answer them for
practice.

Part 2: Fixed Wage Session

As an introductory session, participants complete a Fixed Wage session. Here
participants are told they will earn a fixed wage regardless of their performance.
They are also told that, in this session, answering easy and hard questions will be
valuable to the researchers and that hard questions are even more valuable. This
is intended to provide non-monetary incentives to do well. This also is intended
to imitate the vague notion that harder questions are more productive than easy
questions.

Part 3: Random Coefficients and Constant Coefficients Sessions

In the final two sessions, participants are subject to two different incentive schemes
that imitate employment contracts with and without production uncertainty. In
order to compare an individual’s performance between both contract types, all
participants receive both treatments. The order in which the treatments are ad-
ministered is randomized accross participants to account for the possibility that
participants apply information gained in the first section to the second, a possi-
bility called sequence effects.
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In these rounds, participants are paid per successful completion of easy and
hard questions. In addition, participants are paid a small amount for each minute
remaining on the clock at the end of a round. This fixes a monetary value to
leisure time and acts to assure participants that ending a round early is acceptable.
The ability to visit other websites helps make leisure time less boring.

In the Constant Coefficients session, the value of easy and hard questions
is displayed prominently at the top of the screen. This simulates an input-based
incentive where the marginal payoff is known precisely. Participants should opti-
mize their earnings by identifying which input has the highest marginal produc-
tivity and dedicating all their time to this task. Specifically, participants identify
their earnings per minute for easy and hard tasks, and then dedicate all their time
to the task with the highest earnings per minute.

In the Random Coefficients session, the payoff amount per question type is
not known until the end of each round when it is randomly drawn. This simulates
an output-based incentive where the marginal payoff of each input is known only
after the output is measured. Because the distribution of payoffs remains constant
across rounds, participants can optimally mix their inputs between easy and hard
tasks as described in Equation 3.8.

3.4.2 Treatment Design

The treatment in this experiment is the variability of the payoff per minute of
easy and hard questions, which simulates production uncertainty. The input that
participants choose can best be thought of as the amount of time spent on easy
and hard questions, x1 and x2 in Equation 3.8. The marginal benefit of each input,
µ1 and µ2, is the payoff per minute of easy and hard questions. The payoff per
minute depends both on how fast a participant is as well as the financial payoff
set by the experiment.

To further understand how the treatment is designed, it is helpful to be
precise about how the marginal payoff per minute of each input varies by indi-
vidual and round. To that end, let pj + γjk be the random payoff for completing
a question of difficulty j ∈ (1, 2) in round k (remember that participants observe
the price at the end of each round), where pj is the average payoff and γjk is an
error term. In the Control Session, γjk = 0 for all rounds. Importantly, there
is variation between individuals in how long they need to successfully complete
easy and hard questions. Let rij + εijq be the amount of time individual i needs
to complete question q of difficulty type j. The term rij is the average amount of
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time participant i needs to complete a question of type j, and εijq is a mean-zero
noise term capturing an individual’s variation in the time required to complete
questions of the same difficulty rating. Then the marginal payoff of answering
question q of difficulty j for individual i is

µijkq =
pj + γjk

rij + εijq
. (3.9)

For each individual, I can observe rij and estimate the average payoff: µij =
pj
rj

.
By assuming that the distribution of εijq remains unchanged for an individual
between treatment and control, µij remains unchanged. Furthermore, the variance
of the marginal benefit, Var(µijq), only changes for an individual i if Var(γjk)

changes. That is, Var(rij + εijq) is the same in both treatment and control rounds,
and so all changes to Var(µijq) come through changes to Var(pj + γjk), providing
my identification strategy. Referring back to Equation 3.8, I am changing σ11 and
σ22 while holding everything else constant.

If the average marginal payoffs for time spent on different question types
are roughly equal (µi1 ≈ µi2), the variation in question completion times makes
participants mix their question types more. This is a straightforward prediction
of the production uncertainty model. The numerator in Equation 3.8 is the net av-
erage payoff for each input. If the net payoff for x1 is extremely high, participants
should dedicate nearly all their time to easy questions. As the net payoffs become
indistinguishable, participants should mix their inputs. Indeed, if σ11 = σ22 and
the net payoffs are equal, then participants should split their time evenly between
easy and hard questions.

Designing treatment rounds requires choosing a payoff distribution, pj +γjk.
The goal is to set the average payouts p1 and p2 such that for some individuals,
the average payoff per minute is greater for easy questions (µi1 > µi2), while for
other participants, the average payoff per minute is greater for hard questions
(µi1 < µi2). Otherwise all participants would essentially choose the same input.
In other words, if easy questions are overwhelmingly more profitable, there will
be few or no participants completing hard questions, and I would have insuffi-
cient information to determine if participants even know how to choose the right
input when production uncertainty is minimal; my control group would provide
little information. This is complicated by the fact that µij is individual specific.
While the identification of my treatment comes from changes in Var(pj + γjk), I
use different average payoffs for easy and hard questions, p1 and p2, between par-
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ticipants in order to force a more representative sample. However, I always hold
p1 and p2 constant between treatment and control for each individual participant.

As described before, participants complete a Control Session and a Treat-
ment Session. Each session is composed of multiple rounds. A round is usually
five minutes long, and in that time, participants complete as many easy or hard
questions as they like. During the Treatment Session, participants learn the actual
payoff at the end of each round. This means that, during the Treatment Session,
the participant receives one draw of the payoff for each round. To be more pre-
cise, the payoff for a round k is pj + γjk. For all rounds in a Control Session, the
payoff is simply pj. During the Treatment Session, the round payoffs, pj + γjk,
are drawn from a uniform distribution.10 A uniform distribution has two distinct
advantages. It allows me to avoid possibly negative payoffs and its parameters
and functionality are easier for participants to understand.

The goal of this experiment is to test how changes in payoff variation induce
inefficient behavior, all else constant. Equation 3.8 predicts that individuals will
decrease an input as its payoff variance increases. One simple way to test this
prediction would be to increase the payoff variance for one input while holding
the other constant. In this experiment, the Treatment Session could consist of
randomly drawing payoffs for one of the inputs, but having no randomness in
the other. However, moving from no randomness in payoffs to randomness in
only a single payoff may have unintended psychological effects. Subjects may
try to infer what the experimenter wants them to do based on which input pay-
off was randomized. Instead, I test the basic hypothesis that increasing payoff
uncertainty reduces efficiency by increasing the payoff variance for both inputs
simultaneously, but vary the relative magnitude of those increases. In order to
identify whether a greater increase in variance for an input leads to a greater de-
crease in its use, I have two treatment arms. In one, the easy questions have the
a greater variance (“Easy High Variance”), and in the other, hard questions have
the high variance (“Hard High Variance”).

Table 3.2 lists the distribution parameters for treatment rounds by treatment
arm. The variables a and b are the lower and upper bounds of the payoff distribu-
tion. Values are in cents. Note again that the average payoff for a subject, pj, was
unchanged between Treatment Session and Control Session, but pj was different
between subjects. However, the variance of payoffs in the Treatment Session is

10While the theoretical model derived earlier assumes uncertainty has a normal distribution,
the same general conclusions are provable using a uniform distribution.
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the same across all participants in a treatment arm. Given that the treatment is
to change the variance of payoffs, this preserves the magnitude of the treatment
across all participants in a treatment arm.

3.5 Empirical Results

The production uncertainty model predicts that as the payoff variance of an in-
put increases, subjects will reduce their use of that input. If subjects shift their
effort to a less effective input, they exhibit what I have called friction. If they
simply reduce overall effort, they exhibit futility. In the experiment, subjects may
manifest both friction and futility. Friction is shifting time away from the most
effective question type to the less effective, whereas futility appears as spending
more time on leisure (ending a round early) or reductions in question speed and
success rate.

I observe each participant under no payoff variance (control) and under pay-
off variance (treatment), allowing me to hold the average payoff per minute for
each question type constant between treatment and control sessions for an in-
dividual. While random assignment to treatment and control would make this
unnecessary on average, having all participants complete both treatment and con-
trol sessions is a useful tool for utilizing my limited sample size. As a result, I
can modify the payoff variance while holding everything else constant for each
individual, isolating the effects of production uncertainty. However, the crucial
assumption is that nothing systematically changes in a participant’s average re-
sponse time, rij in Equation 3.9, between the first and second sessions. On aver-
age, I overcome this possible identification threat by randomly assigning whether
the Control Session is first or second. But given my limited sample size, I still
provide evidence supporting the validity of my assumption that participants do
not change their response rates between the first and second sessions, except in
response to treatment.

There are five basic measures I use to evaluate subject behavior. The first
is the payoff ratio κi, which is the ratio of the average payoff per minute of easy
questions to the average payoff per minute of hard questions for an individual i.
Using the notation from Equation 3.9, this is simply

κi =
(price per easy)× (easy questions/minute)
(price per hard)× (hard questions/minute)

=
µi1

µi2
. (3.10)
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If κi > 1, easy questions are that individual’s most efficient input. The next
measure is how much time, on average, a participant spends on easy questions as
a fraction of total round time:

yi =
Time on Easy Questions

Time on Hard Questions + Time on Easy Questions
=

x∗1
x∗2 + x∗1

(3.11)

In general, subjects for whom easy questions are the most efficient input should
have more time spent on easy questions. That is, there should be a positive
relationship between the payoff ratio κi and the percent of time spent on easy
questions yi. The second measure I use is how much time, as a percent, a partic-
ipant spends on their most efficient input, which I call round efficiency. If hard
questions are the most efficient input for a participant, then round efficiency is
the percent time spent on hard questions. This allows me to compare the effects
of production uncertainty across all participants, regardless of which input is the
most efficient. To measure participant effort per question, I look at how long
an average question takes to successfully complete and the question success rate.
The question success rate is simply the number of correctly answered questions
divided by the number of attempted questions of each type.

In what follows, I first provide a summary of subject behavior. This is useful
for understanding the variation in participant skill and payoffs. I then examine
the possibility that subjects systematically change their response times and ques-
tion effectiveness from the first session to the second, showing that there are no
sequencing effects. In the last two sections, I show that subjects do exhibit friction
by shifting their time away from the most efficient input as the payoff variance in-
creases, but there is little evidence of futility. It does not appear that participants
increase their leisure time by ending rounds early as payoff variance increases,
nor do they change their response time or question success rate.

3.5.1 Data Summary

In all, 28 participants completed at least a full Treatment Session or a full Control
Session. The average total time for participants that completed both a treatment
and control session was a little more than 1 hour and 15 minutes. The average
earnings was $28.

Table 3.3 provides basic summary statistics of the average participant in
terms of how many questions they can answer per round, how long an average
question takes to complete, and how frequently participants answered questions
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correctly. While hard questions required participants to add twice as many num-
bers as easy questions, completing a hard question took 2.34 times longer than
completing an easy question for the average participant. Given the average payoff
of a hard question is only twice that of an easy question, the average participant
would maximize profit by completing only easy questions. There is, however, con-
siderable variation in question response rates. The average participant took 11.3
seconds to complete an easy question, while some participants could successfully
average 5.5 seconds per easy question. The range in times for completing hard
questions was considerably larger, with some participants taking only 16.5 sec-
onds and others using 42.9. The key takeaway is that there is sufficient variation
in skill to ensure there are participants for whom hard questions are the optimal
input. In fact, across all sessions, hard questions were the optimal choice for 8 of
the 28 participants (29 percent).

3.5.2 Sequencing Effects

Participants may need to experience a few rounds to understand their own abil-
ity. To foster this learning, all participants first completed a round with fixed
payoffs, regardless of performance. However, participants may still need addi-
tional experience under higher stakes before they understand their own ability.
As a result, a participant may do poorly in the first few rounds when they are
paid per question. Participants may also fatigue more by the end of their second
session. The net result is that the sequence of sessions may lead to systematic
differences unrelated to treatment status.

To circumvent sequencing bias, the sequence of treatment and control is ran-
domized across participants. Even if there are systematic differences that depend
on the order of sessions, these effects will be randomly distributed between treat-
ment and control sessions. Regardless, I check for the existence of sequencing
effects by comparing average session efficiency between the first session and the
second. Table 3.4 shows the results of a permutation test in which I compare the
average efficiency in the Control Session if it was first to the average efficiency
in the Control Session if it was second. I find that subjects who completed their
Control Session first had, on average, five percent less time dedicated to their ef-
ficient input. The permutation test provides a p-value of 0.73, which clearly fails
to reject the hypothesis that there is no difference between having your Control
Session first and having it second. Similarly, in Table 3.4, I find that participants
who received their treatment round first spent two percent more round time on
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their efficient input than participants who received treatment in their second ses-
sion. With a p-value of 0.86, again there appears to be no meaningful difference
between having the Treatment Session first or second.

It is valuable to observe the same individual in both treatment and control in
order to check for potential differences in an individual’s effort when production
uncertainty is introduced, but large sequencing effects could be problematic with
such a small sample size. On average, because the sequence of treatment and con-
trol is random, there is no identification threat. Perhaps most importantly, ruling
out sequencing effects allows me to assume that each session is an independent
draw, even though each participant completed two sessions. This significantly
improves the experiment’s power.

3.5.3 Testing for Friction

Friction, which is described in Proposition 2, predicts production uncertainty in-
duces inefficient deviations from the optimal allocation of inputs. The key ques-
tion, then, is how do participants change their input allocation? To understand the
optimal allocation of inputs in terms of average productivity, consider the scenario
in which there is no production uncertainty. If there is no production uncertainty,
the covariance matrix Σγ is the zero matrix, and the inputs for the utility function
in Equation 3.5 have constant marginal returns. The optimal choice of inputs for a
participant is to dedicate all time to the single input with the highest net marginal
return. Figure 3.1 depicts the optimal time allocation for participants as a function
of their payoff ratio. On the x-axis is the payoff ratio κ and on the y-axis is the
fraction of time spent on easy questions. If the ratio is less than one κ < 1, the
participant should spend all his time on hard questions. On the other hand, if the
ratio is greater than one κ > 1, all his time should be spent on easy questions.

Proposition 2 shows that with production uncertainty, participants should
immediately begin to mix their inputs, decreasing their average productivity. To
see how this would effect a subject’s time allocation as a function of κ, based on
Equation 3.8 the fraction of time spent on an easy question y is

y =
x∗1

x∗1 + x∗2
=

µ1
σ11

µ1
σ11

+ µ2
σ22

=
κ

κ + σ11
σ22

, (3.12)

where I have assumed leisure time has zero payoff and there are no meaningful
cost differences between time spent on easy and hard questions. As κ increases,
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a participant should spend more time on easy questions, but the rate at which
he switches to easy questions depends on the ratio of the payoff variances, σ11

σ22
.

Using κ removes the need to consider differences in participant risk aversion and
reduces participant responses to a question of payoff ratios and the ratio of payoff
variances.

To visualize how participants should respond as σ11
σ22

changes, Figure 3.2
charts the hypothetical relationship for different levels of the variance ratio. The
bounds on the payoff ratio κ were chosen to reflect the bounds observed in the
data. Figure 3.2 demonstrates graphically the two aspects of friction that I will
examine empirically: flattening out participant responses to κ and a downward
shift as easy question payoff variance increases relative to hard questions.

Compared to the maximally efficient time allocation in Figure 3.1, partici-
pant input allocation is considerably flatter with production uncertainty, demon-
strating that the utility-maximizing choice is to mix inputs. Mixing inputs should
reduce a participant’s average productivity. Notice also that as the variance ratio
deviates from σ11

σ22
= 1, the relationship flattens out even more. As the variance

of the payoff for one input overwhelms the other, participants will choose the
low-variance input always (except at extreme values of κ not graphed).

Another key takeaway from Figure 3.2 is that as easy question payoff vari-
ance σ11 increases relative to hard questions σ22, the curve shifts downward. If
easy question payoff variance increases relative to hard question payoff variance,
participants will avoid easy questions even when, on average, they may be more
profitable per minute.

Graphical Evidence of Friction

The Control Session minimizes a participant’s uncertainty about the payoff per
minute of each question type by fixing question prices ahead of time. Figure 3.3
plots participant time spent on easy questions during the Control Session by their
payoff ratio. Ideally, participant behavior would match Figure 3.1.

The line drawn is a probit regression of the time spent on easy questions as
a function of the the payoff ratio. While participants would ideally allocate their
time as in Figure 3.1, they are prone to make errors. The probit regression reflects
the probability of picking the right input given a payoff ratio κ. The specification
is to estimate the probability that an individual i chooses an easy question, which
is

Pr(Easy Question)i = Φ(β0 + β1κi) , (3.13)
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where Φ(·) is the standard normal distribution function. Based on the result,
participants clearly make errors in their time allocation. However, in general,
individuals with particularly high κ are much more likely to allocate their time
entirely to easy questions.

In calculating participant time allocation, I have included all rounds within
the Control Session. Alternatively, I could drop the first few rounds of the Control
Session since participants may still be learning which input is most productive
given their payoffs. By keeping all rounds, I have essentially allowed the learning
process to be factored into the overall participant error in their allocation choices.

In the Treatment Session, participants experience a considerable amount of
production uncertainty. Based on the hypothetical responses in Figure 3.2, there
are two key changes in participant response predicted by the model. First, partici-
pants should have a much flatter response curve than during the Control Session.
Second, the participant response curve should shift down during the treatment
arm in which easy questions have the higher payoff variance relative to the other
treatment arm.

Figure 3.4 plots participant time spent on easy questions by payoff ratio for
the two treatment arms. The line represents a regression of the log of payoff ratio
on the fraction of time spent on easy questions. Using the log allows for a concave
response curve. Because the anticipated response is not expected to be binary, I
have not used a probit regression. However, both probit and linear regressions
yield qualitatively similar results.

There are two key features of the participant reponse curve during the Treat-
ment Session in Figure 3.4. The first is that the fitted curve is much flatter than
the response curve during the Control Session in Figure 3.3. Intuitively, increas-
ing the payoff uncertainty for all question types should induce participants to
mix their inputs more than when there is very little uncertainty. Instead of simply
making errors about the efficient input, participants are now managing their risk
by mixing between inputs, matching the utility-optimizing allocation depicted in
Figure 3.2 fairly closely on average.

The second important feature of Figure 3.4 is the general shift towards hard
questions as the easy question payoff variance increases, represented as the shift
from the solid red line to the dotted blue line. On average, subjects in the “Easy
High Variance” treatment reduced their fraction of time spent on easy questions
by 0.09. The p-value of the permutation test was 0.38 (see Table 3.7), making
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the difference not statistically significant, which is not surprising given the small
sample size.

Quantitative Evidence

The two ways in which Friction will induce inefficiency are, first, to make partici-
pants less responsive to differences in the marginal benefit of each input (flatten-
ing), and second, to induce shifts towards the low-variance input regardless of its
marginal benefit. Having presented some graphical evidence of these two effects,
I now present quantitative evidence.

One way to quantitatively test how much the response curve flattens be-
tween control and treatment is to use a linear regression on participant responses
that allows for a slope change between treatment and control. The specification
for individual i is

yi = β0 + β1κi + β2Di + β12κi × Di + εi (3.14)

where Dis is a dummy for treatment status in session s. The coefficient of inter-
est is β12, which measures the change in slope from the Control Session to the
Treatment Session.

Table 3.5 shows the results of estimating Equation 3.14 as Model (1). Model (2)
adds an additional indicator variable to distinguish between the two treatment
arms. The first row of Table 3.5 shows the strong positive relationship between
payoff ratio κ and the fraction of time spent on easy questions during the Control
Session. Row two shows there is no statistically significant shift in the average
fraction of time spent on easy questions for the Treatment Session. The coefficient
of interest is in the third row, which shows a significant reduction in the slope
during treatment rounds, which is statistically significant and negative. Treat-
ment reduces the slope by nearly 0.4. In other words, during the Control Session,
increasing the payoff ratio by 0.10 would mean a participant increases the fraction
of his time spent on easy questions by 0.055. A similar increase in the payoff ratio
in the Treatment Session leads to only an increase of roughly 0.015. This result
confirms the basic prediction that participants will become less responsive to the
differences in the average payoff between the two inputs after adding production
uncertainty.

Another way to quantify the general flattening of participant responses to
the payoff ratio is to consider how much time they spend on their efficient input.



112

Without production uncertainty, participants should spend a greater proportion
of their time on the efficient input (as in Figure 3.3). The flattening out of the
response curve is a general reduction in efficiency, since subjects with κ < 1 will
inefficiently spend more time on easy questions during the Treatment Session,
and subjects with κ > 1 will inefficiently spend less time on easy questions.

In Table 3.6, I evaluate how participants reduce efficiency under production
uncertainty. In the first row, I compare the average fraction of time spent on
the efficient input during Treatment and Control Sessions. As shown, I find that
production uncertainty significantly reduces allocation efficiency. Participants in
the Treatment Session spend a full 21.5 percent less time on their efficient input.
Using a permutation test, I find that the p-value is 0.007, making the difference
statistically significant. In row two, I attempt to isolate how individuals with a
payoff ratio greater than one κ > 1 reduce their time spent on easy questions.
For this subsample, I find that they reduce the fraction of time spent on easy
questions by 0.20, which is statistically significant. Visually, this represents how
participants to the right of κ = 1 all reduce their use of easy questions by 20
percent, on average. Similarly, participants with a payoff ratio less than one κ < 1
inefficiently increase their use of easy questions by an average of 17 percent, which
is also statistically significant.

One concern with randomizing question payoffs as I have in the experiment
is that it may simply induce random behavior. In this case, the results I have
previously quantified may be the result of participants guessing which input to
use. To counter this notion, production uncertainty uniquely predicts a reduc-
tion in the use of easy questions as their payoff variance increases relative to the
payoff variance of hard questions, all else constant. This result is represented by
the downward shift of the response curve illustrated in the hypothetical case in
Figure 3.2.

To quantitatively test the significance of the downward shift observed be-
tween treatment arms in Figure 3.4, I first compare the average fraction of time
spent on easy questions between the two treatment arms. Table 3.7 shows that,
under the treatment arm with high easy payoff variance, participants reduce the
fraction of time spent on easy questions by 0.09. The difference, however, is not
statistically significant in a permutation test.

Table 3.7 also breaks out a comparison of treatment arms by whether a par-
ticipant is above or below a payoff ratio of one. Looking only at participants for
whom easy questions are the most efficient, simply increasing the variance of easy
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question payoffs reduced their use of easy questions by 10 percent. However, for
participants with a payoff ratio less than one, the results are inconclusive. Given
there were only six participants with payoff ratio below one in the Treatment
Sessions, this is unsurprising.

The results shown in Table 3.7 do not conclusively show the predicted down-
ward shift, but the coefficients have the right sign. However, more observations
are needed to identify whether there really is a downward shift. Given the errors
even in the control group, the subtle downward shift from increasing the relative
payoff variance of easy questions will be difficult to measure without increasing
the experiment’s power.

In all, there is clear evidence that introducing production uncertainty sig-
nificantly reduced participant efficiency. The evidence on the effect of increasing
payoff variance without changing the payoff means is less clear. Even still, the
results are generally consistent with the predictions of the production uncertainty
model. Among participants whose optimal input is easy questions, there ap-
pears to be a reduction in time spent on easy questions as the payoff variance of
easy questions increases. These results underscore the need to conduct additional
rounds of the experiment with some modifications to the parameters to ensure
more participants whose optimal input is hard questions.

3.5.4 Testing for Futility

While friction addresses the allocative inefficiencies induced by production un-
certainty, futility addresses reductions in effort. Futility can be measured by eval-
uating whether or not participants reduced their effort under treatment. There
are three ways I test to see if participants reduce their effort during the Treatment
Session. The first is to test if participants reduce their question completion speed,
and the second is to test if they reduce their question success rate. These two
measures look at how participants reduce their overall effort along the intensive
margin. The third measure is to look at how participants reduce their effort along
the extensive margin by ending their rounds early.

Measuring Futility along Intensive Margin

Figures 3.5a through 3.5d plot effort measures for each participant’s control rounds
against their treatment rounds with a 45 degree line included. For both easy and
hard questions, I plot participant effort between Treatment and Control Sessions
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as measured by question success rate and question completion time. If partici-
pants systematically reduced their effort intensity during the Treatment Session,
there would be a disproportionate number of observations below the 45 degree
line on each panel shown.

Figures 3.5a and 3.5b show participant success rates. In theory, participants
may reduce the care with which they answer questions, being discouraged by the
uncertainty during the Treatment Session. However, the graphical evidence to
that effect is underwhelming, and a statistical test comparing success rates con-
firms there is no statistically significant difference. Figures 3.5c and 3.5d plot the
average time to complete easy and hard questions for each participant. Partici-
pants may dedicate less attention to answering questions because of the induced
production uncertainty, and would then reduce their response times during the
Treatment Session. But again, the graphical evidence does not confirm this hy-
pothesis, and a quantitative analysis comparing question completion times be-
tween Treatment and Control Sessions finds no statistically significant difference.

Measuring Futility along Extensive Margin

Futility could also manifest as reductions in participant willingness to complete
rounds. Participants may favor other uses of their time and try to leave early.
They may also prefer to browse the Internet. The simplest measure of the ex-
tensive margin of effort is to evaluate whether or not participants leave rounds
earlier during the Treatment Session. I find no statistically significant or empir-
ically meaningful difference between Treatment and Control Sessions. However,
this is not entirely surprising. While the experiment script was careful to make
it clear that participants could end rounds early with no penalty whatsoever,
and that doing so would not negatively affect the experiment, only 6 percent of
participants ended a session with more than three minutes remaining. The vast
majority of participants used up all their time, suggesting that either the payoff
was sufficiently high to overcome potential futility effects, or participants had an
additional sense of obligation to the experimenter.

3.6 Conclusion

The ideas contained within the production uncertainty model create a lens through
which policy makers and researchers can understand the sometimes confusing re-
sults of teacher performance incentives. Because teaching is a complex production
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process, the uncertainties inherent in the production function create an environ-
ment in which output-based incentives are likely to have little or no effect. Even
worse, production uncertainty demonstrates how a test-based incentive may have
zero or even negative effects on test scores, without requiring teachers to reduce
their effort.

This paper demonstrates the results of a laboratory experiment that sup-
port the basic predicted behavioral responses to an uncertain production func-
tion. The results illustrate that while agents make some errors allocating their
effort when there is no induced production uncertainty, on average they favor the
most efficient input. Under production uncertainty, participants mix their inputs,
as predicted by the production uncertainty model. While this response is utility
optimizing for risk-averse agents, it is considerably less efficient on average. Fur-
thermore, as the variance of an input increases, participants shift away from that
input even though its average payoff remains unchanged, though the shift is not
statistically significant.

The experiment uses the same payment scheme between treatment and con-
trol sessions but introduces simulated production uncertainty during treatment.
In reality, when designing an incentive, policy makers are not deciding whether
or not to make the payoff uncertain. Instead, the analogy from the experiment to
actual policy is to consider the Treatment Session an outcome-based incentive like
teacher value-added, and then consider the Control Session an input-based incen-
tive, such as in-class teacher observations. In this analogy, policy makers do not
need to have a better understanding of the teaching production function – par-
ticipants know the average payoff during treatment rounds since they know the
distribution of payoffs. The inefficiency during the Treatment Session is not from
a lack of knowledge, but rather the result of risk management on the participant’s
part. Similarly, teachers may introduce inefficient behavior, even as measured by
test outcomes, if their incentive is based on student test scores.

One important concern with this experimental approach is how quickly par-
ticipants learn their own production function. If participants need a lot of time to
learn how quickly and accurately they can answer easy questions relative to hard
questions, it becomes considerably more difficult to do this when the payoffs are
randomized as well. This could make participants behave randomly during the
Treatment Session. I have tried to address this in several ways. First, by ran-
domly assigning the order of treatment and control, I am able to see how much
participants are learning about their own ability in the first session, regardless
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of treatment status. I find no meaningful difference in subject behavior during
the Control Session by whether it was first or second, and similarly for the Treat-
ment Session. Second, I have used all the rounds within a session to evaluate
participant behavior, which effectively incorporates all the error associated with
learning during the Control Session. As a result, the Control Session creates a
counterfactual that incorporates the allocative errors participants make as they
work through their rounds. Finally, I have also identified a unique theoretical
prediction of my production uncertainty model that does not depend on compar-
ing between treatment and control, but rather compares between two different
treatment arms. Unfortunately, the test is underpowered, but preliminary results
are consistent with the prediction that increasing the easy question payoff vari-
ance relative to hard questions will induce participants to dedicate less time to
easy questions. Another way to address this problem in future experiments is to
allow participants longer sessions.

In future experiments, there are three important improvements to make.
First, I need to make hard questions have a relatively higher average payoff for a
larger portion of participants. Second, I need to experiment with different meth-
ods of providing better performance information for participants. While partic-
ipants receive detailed information at the end of each round in a session, it is
not clear that they are using this information effectively to make their allocation
choices, even during the Control Session. Finally, I need to make the relative
variance of easy question payoffs more dramatic between treatment arms.

Production function uncertainty has several future extensions and gener-
alizable results that I plan to explore in future work. For example, expanding
the model to allow teachers to update their knowledge of the production func-
tion predicts an additional futility effect if the variance of the prior distribution
does not shrink sufficiently. It can also be shown that as the number of possible
inputs increases, an agent’s overall effort will decrease in a form of analysis paral-
ysis. Taken to infinity, this describes an infinite inputs dilemma in which agents
become paralyzed by too many options, requiring some form of rational inatten-
tion. There are also other applications in consumer choice theory that can be used
to explain unexpected consumer behavior when choosing health insurance plans
and pension plans.
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Table 3.1: Teacher performance incen-
tives in the US by effectiveness and use
of in-class evaluations.

Differentiated In- Improved
Class Evaluations Student Scores

Yes Mixed No

Yes 3 0 0

Some 0 2 0

No 0 0 2

Notes - There is an apparent correlation between
effective teacher incentive programs and the use
of in-class evaluations. This is not a compre-
hensive review of teacher incentive programs in
the US. The programs in this table were selected
based on their emphasis on individual-level
measures of teacher performance. Many other
programs use large school-level bonuses, which
I have excluded. The analyses in the Yes/Yes
cell are Dee and Wyckoff (2015); Dee and Keys
(2004); Hudson (2010); in the Mixed/Some cell
are Sojourner et al. (2014); Wellington et al.
(2016); in the No/No cell are Briggs et al. (2014);
Springer (2010).
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Table 3.2: Experiment parameters for two treatment arms.

a b Mean Variance

Easy High Variance
Easy Payoff [1, 2] [11, 12] [6, 7] 8.3
Hard Payoff [10.5, 11.5] [15.5, 16.5] [13, 14] 2.1

Hard High Variance
Easy Payoff [3.5, 4.5] [8.5, 9.5] [6, 7] 2.1
Hard Payoff [8, 9] [18, 19] [13, 14] 8.3

Notes - For each round in a Treatment Session, question payoffs are randomly drawn from a
uniform distribution with start and end values, a and b, as shown. Within a treatment arm,
the distance between a and b is always preserved, guaranteeing each subject in a treatment
arm had an identical variance in payoffs. Changing payoff means induces additional variation
between participants, but does not change the treatment parameter, which is payoff variance.
The mean payoff for the Treatment Session was always the same as the mean payoff for a
participants’s Control Session.

Table 3.3: Summary statistics of subject performance measures.

Mean Median St. Dev. Min Max

Correct Easy 8.00 6.84 5.46 1.00 26.07
Correct Hard 4.25 3.74 2.02 1.33 8.74
Seconds Per Easy 11.28 10.89 3.34 5.55 19.51
Seconds Per Hard 26.44 27.34 6.90 16.49 42.91
Success Rate - Easy 0.88 0.89 0.08 0.67 1.00
Success Rate - Hard 0.86 0.86 0.09 0.70 1.00

Notes - The averages shown are calculated at the individual level. The question
completion times shown are the average time in seconds required to correctly answer
a question. There was a considerably large range of average completion times for
hard questions, creating variation between participants as to which input was most
profitable.
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Table 3.4: Efficiency differences by session order.

E[Y|First]− E[Y|Second] P-value N

Control -0.0501 0.73 42

Treatment 0.0216 0.86 42

Notes - P-values are calculated using a permutation test. The differ-
ences shown are the average efficiency difference between subjects who
received the Control Session first and those who received it second. Simi-
larly for the treatment row. Efficiency is the fraction of time a participant
spends on their most profitable input. There are no observable differ-
ences based on session order.

Table 3.5: Correlation between percent time spent on easy questions and
Easy/Hard payoff ratio.

Fraction of Time Spent on Easy Questions

(1) (2)

Payoff Ratio 0.549∗∗∗ 0.549∗∗∗

(0.121) (0.122)

Treatment Round 0.393 0.406
(0.256) (0.260)

Payoff × Treatment Round −0.361∗ −0.395∗

(0.201) (0.213)

Include Treatment Arm Indicator X

N 54 54

Notes - Coefficients are from estimating the regression in Equation 3.14. The relationship be-
tween the Easy/Hard question payoff ratio and the amount of time spent on easy questions is
strong in the control group (row one). During the treatment, participants are more inefficient
and the relationship becomes much weaker (row three), which is demonstrated by the flat line
in Figure 3.4. When an indicator is added to allow for differences between treatment arms, the
slope change between treatment and control is even greater.
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Table 3.6: Nonparametric tests for inefficient time allocation un-
der production uncertainty.

Difference P-value N

E[Y|Treatment]− E[Y|Control]
% Time on Efficient Input -0.215 0.007 54
% Time on Easy | κ > 1 -0.201 0.023 38
% Time on Easy | κ < 1 0.168 0.068 16

Notes - The p-values shown are generated using permutation tests. Partici-
pants significantly reduced their efficiency during the Treatment Session (row
one). Participants for whom easy questions were the most profitable (κ > 1)
inefficiently reduce their time on easy questions. Similarly, participants for
whom hard questions were the most profitable (κ < 1) inefficiently increased
the time spent on easy questions.

Table 3.7: Nonparametric tests for reduction in time spent on easy questions due to
increased relative payoff variance between treatment arms.

Difference P-value N

E[Y|Easy Variance High]− E[Y|Hard Variance High]
% Time on Easy Input -0.091 0.384 28
% Time on Easy | κ > 1 -0.105 0.204 22
% Time on Easy | κ < 1 0.010 0.533 6

Notes - P-values shown are generated using permutation tests. The theoretical model predicts that the
“Easy Variance High” treatment arm should induce less time spent on easy questions for all participants
(first row). However, the effect was strongest among participants for whom easy questions were the most
profitable. Sample sizes for comparing between treatment arms are greatly reduced in large part because
individual ability largely determines if the payoff ratio κ is greater or less than one.
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Figure 3.1: Hypothetical subject time allocation if there is no uncertainty in the
payoff per minute of each input.

0.5 1.0 1.5 2.0

Easy/Hard Payoff Ratio

F
ra

ct
io

n 
of

 T
im

e 
on

 E
as

y

0.0

0.2

0.4

0.6

0.8

1.0

Notes - The payoff ratio κ is calculated as the ratio of (easy price) × (easy questions/minute) to
(hard price) × (hard questions/minute). In the hypothetical case in which there is no uncertainty
about the payoff per minute, participants with κ < 1 would dedicate all their time to hard ques-
tions, and participants with κ > 1 would dedicate all their time to easy questions.
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Figure 3.2: Hypothetical subject time allocation with production uncertainty by
payoff ratio κ across different variance ratios σ11

σ22
.
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Notes - The lines shown are the utility-maximizing values of time allocation as predicted in Equa-
tion 3.8, not the efficiency maximizing allocation (which are represented in Figure 3.1). The values
printed under each line are the payoff variance ratios, σ11

σ22
. The Easy/Hard payoff ratio κ is calcu-

lated as the ratio of (easy price)× (easy questions/minute) to (hard price)× (hard questions/minute).
The fraction of time spent on easy questions as a function of κ is y = κ

κ+
σ11
σ22

, from Equation 3.8.
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Figure 3.3: Subject time allocation in Control Session by Easy/Hard payoff ratio
κ.
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Notes - As the payoff ratio increases, subjects should dedicate all their time to easy questions.
However, individuals make errors in their time allocation, which are shown as deviations from the
optimal allocation depicted in Figure 3.1. The payoff ratio is calculated as the ratio of (easy price)×
(easy questions/minute) to (hard price)× (hard questions/minute)
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Figure 3.4: Subject time allocation in Treatment Session by Easy/Hard payoff ratio
κ.
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Notes - As the payoff ratio increases, subjects should dedicate all their time to easy ques-
tions. In contrast to Figure 3.3, subjects were far less efficient under production uncertainty.
Figure 3.1 shows the optimal time allocation from an efficiency perspective, while Figure 3.2
shows the utility maximizing time allocation. A key feature is that the relationship has a mean
shift downward when easy questions have higher payoff variance, even without changing the
average payoff. Even among participants for whom easy questions are the most efficient in-
put, increasing the variance of easy questions induces inefficient time allocation towards hard
questions. The payoff ratio is calculated as the ratio of (easy price) × (easy questions/minute) to
(hard price)× (hard questions/minute)
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Figure 3.5: Comparisons of subject effort between control and treatment rounds.
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(b) Hard Question Success Rate
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(c) Easy Question Time (seconds)
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(d) Hard Question Time (seconds)
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Notes - Question success rate is the number of correctly answered questions divided by the num-
ber of attempted questions. Question time is the average time to successfully complete a question.
Participants do not appear to have any changes in their question success rates or question com-
pletion times between control and treatment rounds.
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