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Introduction 

The rise of autonomous vehicles (AVs) has become a major discussion in both 

technological and political spheres. As the technology has developed, safety concerns became 

more prevalent to match the severity of the consequences posed by a crash. And because an 

algorithm is handling a crash scenario, defining the correct behavior in these scenarios is a part 

of these safety concerns. Part of the problem with defining safety concerns stems from trying to 

understand the standards surrounding AVs. Here, standards refers not just to safety requirements 

but also to the general set of requirements and expectations associated with an autonomous 

vehicle. Varying definitions of automation, varying implementations, and a range of governing 

approaches have left some potential future consumers, investors, and regulators wary of joining 

the space (Marshall, 2020). 

Standards are a powerful tool for understanding new technologies and in turn, limiting 

the variation that has caused wariness. Challenges facing AVs can be broken down into 

technological, ethical, environmental, and legal challenges where the most controversial topic 

relates to the technological problem of designing the vehicle decision-making process. 

Furthermore, standards analysis of a decision-making system can be categorized by the sensing 

system, client system, action system, and human-machine interface (Martínez-Díaz & Soriguera, 

2018). Due to the nature of standards analysis, in this paper, the categories of challenges, ethical, 

environmental, and legal, are first briefly explored. This context is used to explore the technical 

aspects of a vehicle decision-making process from a standards perspective, both in terms of the 

standards it faces and the ones created by it. This includes breaking down the analysis based on 

each component of the decision-making system. 
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Standards as a Framework 

Before analyzing literature, the standards analysis framework needs to be defined. The 

framework for standards analysis is provided in “Standards and Their Stories” (Star & 

Lampland, 2009). Standards are described as being an attempt to simplify what is often a 

‘messy’ reality. As a result, they are often necessary. Beyond necessity, they tend to have a set of 

commonalities as well. First, they are nested inside of other standards. The standardization of 

placing an order on Amazon is linked to the standard of owning a credit or debit card which is 

linked to the standard of having a bank account. Second, they can be distributed unevenly. The 

ability to prepay a speeding ticket means a rich person might bear less risk when speeding than a 

poorer person. Third, their impact depends on context. Making hiring decisions based on a 

college degree will by design impact some differently than others. They tend to be integrated into 

the sociotechnical systems we face daily. The standard of having a phone number or an email 

address is depended on by each of the online accounts we have (e.g. Facebook). Finally, 

standards can be a manifestation  of the ethics and values of the system they are standardizing 

(Star & Lampland, 2009). 

With these properties in mind, using standards as an analysis framework for research of a 

sociotechnical system requires placing the standards inside of some sort of context. This starts 

with defining the infrastructure under which the sociotechnical system and its standards are 

developed. Infrastructure is defined as the parts of a sociotechnical system that is invisible to the 

user. A key point is that the infrastructure for one system might itself be a sociotechnical system 

(e.g. highways). This suggests that infrastructure might be nested similar to standards. 
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Additionally, depending on the system, the infrastructure can be hard to define, and once 

defined, determining how it affects the use and standards will still depend on context. Blind and 

deaf people face street infrastructure in a sometimes completely different way from the average 

person on a sidewalk. Thus, to analyze a sociotechnical system based on its standards, we need 

to place it in some sort of relevant context, define how actors interact with the system to define 

the infrastructure and then in turn, define the standards for the system. From here, the standards 

are applied to a system to see how they influence decisions in and around the system. 

 

Literature Review 

The Society of Automotive Engineers (SAE), a standards setting organization that defines 

technical and engineering standards, first defined five levels of automation in 2014 (“J3016: 

Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving 

Systems”, 2014). Furthermore, the National Highway Traffic Safety Administration (NHTSA) 

has adopted this definition as it has become a standard way to understand levels of automation 

(“Preparing for the Future of Transportation: Automated Vehicle 3.0”, 2018). These definitions 

pertain to what the system is able to do without driver input with no reference to actual 

implementation. 

Challenges Facing Automation 

Many of the challenges facing automation in vehicles, as defined by the literature 

reviewed here, can be broken down into the categories of technical, legal, environmental, and 

ethical. In this section, the latter three categories are explored for use in the analysis of a 

decision-making system. Not every challenge cleanly fits into one category, nor are these 
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categories comprehensive. Rather, they are adequate for capturing the essence of where AVs 

deviate from traditional systems, as well as providing relevant context for the analysis of the 

technical part. Additionally, in this context, challenge does not refer only to problems AVs must 

overcome to be viable, but also opportunities for improvement over current systems. As an 

example, consider the claim that the most controversial challenge facing this technology today 

pertains to the vehicle decision-making process (Martínez-Díaz & Soriguera, 2018). This relates 

to three of the categories of challenges, where there is a technical challenge of implementing a 

decision-making process, the ethical challenge of defining the process, and the legal challenge of 

standardizing and enforcing a justified approach. 

Regarding legal challenges, in 2014, a revision was made to Article 8 of the 1968 

Convention on Road Traffic, an international treaty aimed to improve traffic safety. The change 

removed a requirement for a driver to be active at all times and allowed for autonomy in the 

driving process (Barabás, Todoruţ, Cordoş, & Molea, 2017). This change shows legal bodies’ 

awareness of AVs, but is not the whole picture. Ambiguity in the true decision-making process 

for an AV poses a challenge for defining legal requirements, as does the legal issue of liability in 

the event of a crash (Martínez-Díaz & Soriguera, 2018). Additionally, challenges such as how 

strict to be relative to human drivers, licensing, and data privacy all need to be given definitions 

under law (Zhao, Liang, & Chen, 2017). 

In an attempt to understand the current state of safety standards for AVs, I expand upon 

the legal attempts that have been made to reconcile automation with existing traffic 

infrastructure. A report from RAND from 2018 suggests that there is no industry-wide standard 

definition of safety with regard to AVs (Fraade-Blanar, Blumenthal, Anderson, & Kalra, 2018). 
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This does not mean work has not been done in this space, however. That same report, as well as 

another from University of Michigan, make independent attempts to define frameworks for 

measuring safety of an autonomous vehicle (Peng, & McCarthy, 2019). Furthermore, the U.S. 

Department of Transportation published a report in late 2018 that describes how communities 

can prepare for the future of transportation, particularly concerning AVs (“Preparing for the 

Future of Transportation: Automated Vehicle 3.0”, 2018). Finally, we have seen states begin 

implementing legislation pertaining to AVs in 2017 and 2018, with twenty-nine states and 

Washington D.C. passing some sort of legislation (“Autonomous Vehicles | Self-Driving 

Vehicles Enacted Legislation”, 2019). 

Looking at the current state of safety standards, as of 2019, in California, 52 companies 

hold testing permits for self-driving cars on roads (Hancock, Nourbakhsh, & Stewart, 2019). 

Unfortunately, it’s hard to gather significant statistical information on the testing that happens on 

these vehicles. AV field tests still underway have not had statistics published and DMVs do not 

publish separate crash statistics themselves, making it difficult to build a large enough data set 

for statistical analysis in an area where total volume of testing is dwarfed by daily human hours 

driven (Wang, & Li, 2019). A report from this year gives statistics on 113 crashes to try and 

understand the current safety of these systems (Wang, & Li, 2019). Another problem is that 

safety testing has minimal standardization outside of the permission and crash reporting process 

due to the wide variation in degree of automation across autonomous vehicles (Hancock et al., 

2019). This is part of why a black box approach is often chosen when evaluating AVs from both 

a legal and ethical standpoint. 

Environmental challenges reflect the sentiment that if there is an opportunity to be 
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efficient for the environment, it might as well be made a requirement. When considering the 

problem of congestion on roads, there is environmental motivation for solving the problem, 

where additional congestion on roads could lead to increased emissions (Bagloee et al., 2016). 

Other environmental opportunities include limiting the intensity of fossil fuels due to more 

control of the vehicle’s usage on the manufacturing end, lighter vehicles due to optimizing safety 

through avoidance over damage control, and general fuel efficiency, as an algorithm should be 

much better at maximizing miles per gallon than a human (Bagloee et al., 2016). 

Finally, consider the ethical challenges. Closely tied to the legal challenge of providing a 

legal definition for the requirements of a decision-making algorithm, when considering the ethics 

of an AV, scholars often look to the “trolley problem” as a way to find a moral dilemma in the 

design of an AV (Martínez-Díaz & Soriguera, 2018). Attempts to resolve ethical, as well as 

legal, challenges almost invariably are approached by treating the car and its algorithms as a 

black box (Martínez-Díaz & Soriguera, 2018). 

 

The Infrastructure of Trust for Self Driving Vehicles 

To conclude the literature review, we begin to unpack part of the infrastructure these 

standards operate in. At a most basic level, this includes physical infrastructure defined by the 

likes of roads and traffic signs, but the more relevant is the infrastructure of trust surrounding 

transportation. When navigating some sort of sociotechnical system, trust is what allows a user to 

simplify many complex decisions, some of which rely on missing data. In the case of driving, 

one example of trust is that the vehicle will stop when the brakes are applied, or accelerate when 

the gas pedal is pressed (Tong, 2016). Furthermore, few complex systems can be used without 
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some level of trust. Now, considering road traffic, there is trust built into the road safety laws and 

regulations that allow drivers to avoid worrying about whether a nearby driver will stop at a red 

light. 

With this idea of trust in mind, we can look to other literature to understand how the trust 

infrastructure built into existing traffic systems has translated to self-driving technology. Tong 

argues that what defines a safe car for a specific person depends on the degree of trust they have 

in the black box vehicle and driving safety networks. Furthermore, this trust is in part defined by 

being able to control the result, where someone is able to gain trust through predictability and 

control over the system (Tong, 2016). Through this framework, the intuition is then that 

self-driving technology begins to break down what was able to build up this infrastructure of 

trust in the first place. A study on user acceptance and experience with self-driving cars 

suggested with survey data that automation has a negative correlation with acceptance and 

experience. This correlation is reversed if a driver had experience with Advanced Driver 

Assistance Systems (ADAS) however (Rödel, Stadler, Meschtscherjakov, & Tscheligi, 2014). 

Additionally, a more recent study on Austrian consumers surveyed consumers on their feelings 

towards various aspects of AVs. They were able to show the opposite; positive correlation 

between a feeling of safety and the level of automation.  They showed a negative correlation 

between concerns about AVs and a willingness to use the technology as well (Wintersberger, 

Azmat, & Kummer, 2019).  

 

Vehicle Decision-Making 

Focusing now on the problem of vehicle decision-making, Martínez-Díaz and Soriguera 
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define four main technical elements that most self-driving car designs comprise: the sensing 

system, client system, action system, and human-machine interface, where each of these parts 

pertain to a set of technical challenges. The list of technical challenges includes environment 

perception, short term path planning, longer term path planning/map integration, and vehicle 

control mechanisms (e.g. speed, direction) (Zhao et al., 2017). Each of these challenges relate to 

the elements of an autonomous system, and each one has multiple solutions. For example, radar 

perception vs. laser perception are both possible solutions to the problem of environment 

perception (Zhao et al., 2017). In addition to the challenges pertaining to proper driving, there is 

a challenge related to communications between autonomous vehicles. The previous technical 

challenges were internal challenges to allow integration with human drivers, but if every vehicle 

on the road were significantly less aggressive than a human driver, as early prototypes have 

been, an estimated 600 vehicles per hour per lane would be lost (Martínez-Díaz & Soriguera, 

2018). This congestion problem is estimated to be an opportunity for improvement, however, 

through reduced congestion from accidents, enhancing vehicle throughput, and reducing total 

miles traveled per trip (Bagloee, Tavana, Asadi, and Oliver, 2016). This challenge manifests as a 

technical challenge of inter-car communication. 

In the following sections, each of the components of a vehicle decision-making system is 

analyzed. It is important to note that the functionality of each component varies based on the 

level of automation in the vehicle. As a result, automation levels as defined by the SAE are part 

of the standards for each of the following components. Additionally, we will see that the 

challenges discussed in the literature review are a standardization of the functionality of each 

part. Furthermore, applying the infrastructure of trust to each of the components allows us to 
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break down how wariness has manifested in the space of autonomous vehicles. 

Sensing Systems 

A sensing system is responsible for collecting the necessary environment data. Among 

the most frequently used sensing technologies are LiDAR or laser perception systems, radar, and 

camera systems (Zhao et al., 2017). Combinations of these sensors are often used based on the 

strengths of each technology in terms of accuracy and range. Fundamentally, however, all of 

these sensor types are attempting to solve the same problem: collecting data on the surrounding 

environment for the other parts of the decision-making system to output vehicle actions and 

possibly information for the driver, depending on the level of automation. The accuracy required 

by the complete sensing system increases directly with the level of automation, but the standard 

for sensing systems is well-defined by this problem. 

With this in mind, how do we map this standard onto wariness. When considering human 

drivers, the “sensing system” equivalent are the human sensory systems, primarily vision and 

hearing. Legally, drivers licenses represent that a specific individual’s senses are acceptable for 

safe driving. This, however poses a challenge for regulators, as designing safety thresholds for 

drivers licenses depends on an expectation that the experience with visual and auditory 

information is similar between people. Furthermore, people are willing to trust their own senses, 

hence an added layer of trust is required due to the automation of sensory systems. This gives a 

natural interpretation of how wariness is affected by sensory systems, and for both regulators and 

drivers that should be a question of accuracy and reliability. This goes beyond simple vision 

distance testing done at the DMV and is closer to testing highly varied environments in an 

industrial setting. 
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Client Systems 

The client system is required to take and process the information from the sensing system 

(perception task) and transform it into an action for the vehicle to perform (decision task). This 

component of the decision-making process is the most complex, the least standardized, and the 

most controversial. Both tasks are naturally computation intensive, especially if employing deep 

learning techniques. As a result, there is some variation in the hardware approaches considered 

by some manufacturers. Full compute boxes with processors and accelerators, system-on-chip 

solutions, and cloud computing based solutions all either exist in some capacity or are possible 

extensions of existing hardware (Martínez-Díaz & Soriguera, 2018). In reality, client system 

hardware can be effectively black-boxed as all solutions can be modeled with an internet 

connection and a representation of compute power. This is useful as representing compute 

power, both in terms of a quantitative measure and in terms of the tasks that can be performed 

(e.g. video playback), has already been standardized in other computer systems. 

Moving on to the perception task, there are two main methods that have been developed 

for visual perception: Simultaneous Localization and Mapping (SLAM) and machine learning 

based image recognition and environment reconstruction (Zhao et al., 2017). In short, SLAM 

reconstructs the environment by comparing incremental changes in sensor data over time. The 

details are out of the scope of this paper, but the important point is that both methods are 

designed to produce a representation of the environment for use in the decision task. If we take 

this to be a standard, we can effectively isolate the decision task as the major cause of wariness 

in AVs. This is in part due to the fact that there is a measurable level of accuracy in this, as well 

as the other components discussed. From a consumer, investor, or regulator’s perspective, 
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measurable accuracy translates nicely into existing engineering processes and allows for testing 

to be well-defined. Safety ratings are based on minimizing risk by black-boxing a system and 

defining an acceptable range of outputs. The standards described here show that outside of the 

decision task, no component or solution prevents that approach. 

This leaves the decision task. Martínez-Díaz & Soriguera describe it as one of the most 

challenging tasks an AV must perform. It encompasses prediction, path planning, and obstacle 

avoidance. A key point is that this is where the correct action in “awkward” situations needs to 

be defined. This ties into the ethics problems highlighted in the literature review and shows why 

the decision task likely is the greatest cause for wariness with regard to AVs. 

Action Systems and the Human-Machine Interface 

The action system takes an action from the client system and physically performs it. The 

action system is to a client system what a steering wheel and pedals is to a human driver. 

Because this system has such a direct analog in a non-autonomous vehicle, the standards for this 

system are much better defined than for a client system. As a result, the action system doesn’t 

contribute to the wariness of regulators, drivers, or investors any more than similar systems do in 

conventional vehicles. 

The human-machine interface (HMI), however, is a critical part of the experience with an 

AV for the consumer. In the same way drivers are willing to trust that pressing the brake will 

slow the car down, as well as putting trust in the accuracy of the speedometer, the interface in an 

AV is closely tied to the trust of the driver. The degree of input from the driver decreases with 

the level of automation, but the kind of information displayed to the driver is not necessarily 

well-defined, especially when considering level 5 automation. What we see is that because SAE 
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level-4 vehicles and beyond are generally unavailable (Martínez-Díaz & Soriguera, 2018), 

current autonomous vehicles retain the necessary equipment and displays for normal vehicle 

operation. Thus, it can be reasoned that the familiarity of standard HMI elements serves to break 

down the wariness faced by consumers. 

 

Conclusion 

By many accounts, self-driving cars are the future of transportation. How we transition to 

this future while feeling safe is another question entirely. What can be seen through this research 

is that while people might be wary of AVs as they stand today, the standards for the most 

controversial part of these vehicles, the decision-making process, is generally not far removed 

from non-autonomous vehicles. Sensing systems, action systems, and the HMI all either have a 

direct analog for a human driver or represent a machine version of what a human normally does. 

For the client system, the perception task still fits into existing safety standardization methods, 

isolating the decision task as the largest cause of wariness in AVs. It should be noted that there 

are a number of other technical factors in the development of AVs, such as path planning, that 

wasn’t covered in depth in this research but likely does play into the hesitation consumers, 

regulators, and investors exhibit when it comes to autonomous vehicles. 
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