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Abstract

This dissertation documents the implementation of a dual Sagnac interferometer

using atoms confined to a magnetic trap at the University of Virginia. This matter-

wave interferometer serves as a proof-of-principle system for rotation sensing appli-

cations. The trap provides cylindrical symmetry to a 87Rb Bose-Einstein condensate.

We use Bragg laser pulses to split the condensate, and we are able to use the oscil-

latory motion of the atoms afterwards to characterize the trap in an effort to make

it suitable for interferometry. We split the condensate such that two conjugate inter-

ferometers are implemented simultaneously to provide common-mode noise rejection,

which isolates the rotation signal. Finally, we were able to demonstrate gyroscope

operation by rotating the optical table on which the experiment was performed.



1 � Introduction

“Go back? No good at all!
Go sideways? Impossible!

Go forward? Only thing to do!
On we go!”

— J. R. R. Tolkien, The Hobbit

This year marks the 25th year since the first Bose-Einstein Condensates (BECs)

were produced at NIST-JILA, MIT, and Rice University [1–3]. Atomic physicists

have used these ultracold gasses to study numerous phenomena, including super-

fluidity, condensed matter analogues with optical lattices, atom interferometry, and

various others [4–6]. The quantum properties of a macroscopic coherent state makes

condensates attractive for the development of practical applications with ultracold

atoms. We have developed a BEC machine to measure small, physical rotations, with

an eye towards inertial navigation technologies.

1
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1.1 Inertial navigation

Accuracy and precision are crucial to any navigation technique for moving vehicles.

The global positioning system (GPS) was groundbreaking for military and industry

applications, and has certainly changed the way we navigate the world in our day-

to-day lives. But GPS requires line-of-sight signals from four or more satellites, so

it becomes confused by mountains and bad weather [7]. It is also vulnerable to

interference by bad actors, who can “jam” GPS signals or trick the system such

that the user believes she is in a different location than she is in reality. GPS is

also less useful for vehicles like submarines, which have poor signal below sea level.

Submarines are able to revert to a form of navigation known as dead reckoning, where

the navigator uses the speedometer, compass heading, and an estimate of the effects

of water currents, to make time-indexed measurements and map the vessel’s location

from the initial known position. With each measurement, the accuracy of the user’s

location is reduced, as the error is integrated over time.

Inertial navigation systems are a refinement of dead reckoning. With an accurate

measurement of the vehicle’s acceleration as a function of time, a(t), the user can

determine her position with respect to an initial location. These systems require three

components: a linear accelerometer, a rotation sensor, and an accurate clock. With

increased accuracy and precision of these tools, such inertial navigation systems begin

to look like reasonable alternatives to GPS.

This work focuses on the rotational component of an inertial navigation system.

So far, systems have used mechanical gyroscopes or optical gyroscopes. Mechanical

gyroscopes allow the user to read off the device’s angle with respect to a fixed frame,
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as the system remains at a constant global orientation. The drawback of mechanical

systems is that the moving parts create friction, which causes drift. Optical gyro-

scopes are used in many modern inertial systems. These use the interference of light

to measure rotation. The mechanism by which interference occurs is known as the

Sagnac effect. The drawback of optical gyroscopes is their sensitivity and drift. The

work described here is an effort towards a matter-wave rotation sensor. Matter-wave

interferometers are intrinsically more sensitive and have demonstrated superior gyro-

scope performance [8–10], but the benefits have not been large enough to offset the

substantial increase in apparatus size and complexity that atomic systems require.

Our efforts are part of a program to demonstrate both improved performance and

lower requirements in terms of size, weight, and power.

1.2 The Sagnac effect

Atom interferometry (AI) exploits the wave properties of matter. In the same way

optical interferometers operate, a phase shift develops between two waves traveling

along different paths, and can be measured as an interference pattern. AI has been

used to probe numerous things, including measurements of the gravitation constant,

the fine-structure constant, and has been proposed as a mechanism for detecting

gravitational waves [11–13]. In optical interferometers, the output phase is measured

by observing the intensity of the interfering fields. In AI systems, the phase shift

determines the atom number. We use Bose-condensed atoms confined to a weak

magnetic trap.

One effective technique used for rotation sensing is Sagnac interferometry, in which
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a wave is split, traverses two paths that enclose an area, and then is recombined. The

resulting interference signal depends on the rotation rate of the system and the area

enclosed by the paths [14]. Some of these interferometers use atoms in free fall. These

systems have impressive rotation sensitivity, but have several limitations that make

that impractical for navigation applications. First and foremost, these systems are

too large. Some operate in drop towers as high as 10 meters tall [15, 16], which is

obviously not ideal if it is to be placed on a moving vehicle. Second, since the atoms

are in free fall, if the moving vehicle has a large enough linear acceleration the atoms

will run into the wall of the vacuum chamber and the measurement is lost. It has

long been hoped that these problems might be overcome using atoms confined in

a guiding potential or trap, as opposed to atoms falling in free space [17–19]. The

trapping potential itself can also be an advantage if it can help control the trajectory

of the atoms. With a highly-symmetric, tunable trap, the atoms can be manipulated

to move in circular loops that enclose a large area [20]. That motivated the design

and construction of our magnetic waveguide, which traps atoms in a cylindrically

symmetric trap. The atoms can be made to move back and forth across the trap over

distances up to 0.5 mm.

First, we should develop how the Sagnac effect produces a phase shift in an in-

terferometer [21]. Consider the cartoon in Fig. 1.1. If the system is at rest, the two

waves travel the same path length, and recombine constructively at the output. If

the system is rotating in a direction perpendicular to the enclosed area, then the

clockwise and counterclockwise path lengths are different, and a resulting phase shift

will be observed on the output, as first demonstrated by Sagnac in 1913 in the search

for ether [14].

The time required for the wave to travel an infinitesimal distance d` is d`/v, where
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Figure 1.1: A cartoon depiction of a Sagnac interferometer. A wave is split
at the top of the circle in opposite directions with equal speed. If the ring is rotating
at Ω ≠ 0, the path length traversed by the yellow and green waves will be different.
That causes a phase shift, which is proportional to the enclosed area of the ring and
the angular speed, Ω.

v is the speed of the wave. With the system rotating at Ω, the component of the

velocity due to rotation is

(Ω × r) ⋅ ˆ̀, (1.1)

where r is the position and ˆ̀ is a unit vector pointing along the path. If Ω ≠ 0, the

change in the path length for the wave traveling clockwise is

∆` =
1

v ∮ring
(Ω × r)d`. (1.2)

We can apply Stoke’s theorem to rewrite the integral in terms of an area differential,

dA,

∆` =
1

v ∫ring
∇× (Ω × r)dA. (1.3)

Equation (1.3) can be evaluated with an identity,

∇× (Ω × r) = Ω(∇ ⋅ r) − r(∇ ⋅Ω) + (r ⋅ ∇)Ω − (Ω ⋅ ∇)r. (1.4)
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The second and third terms are zero, since Ω has no spatial dependence. Since ∇⋅r = 3,

the first term is 3Ω. The last term is

(Ω ⋅ ∇)r = (Ωx∂x +Ωy∂y +Ωz∂z)(x x̂ + y ŷ + z ẑ) = Ω (1.5)

Returning to Eq. (1.3) with these simplifications,

∆` =
2

v ∫ring
Ω ⋅ dA =

2Ω ⋅A

v
. (1.6)

The wave propagating counterclockwise has an oppositely-signed area vector, so the

path length is −∆`. Therefore the overall phase is

∆Φ = 2k∆`, (1.7)

where k is the wavevector. In terms of the wavelength, λ,

∆Φ =
8πΩ ⋅A

λv
. (1.8)

In order to detect small rotations using laser light, the area enclosed has to be

quite substantial, as the speed v = c. To measure the rotation rate of the Earth,

for example, Michelson and Gale made an interferometer enclosing over 640 acres

(1 square mile). Fiberoptic gyroscopes are made by coiling very long single-mode

fibers around a cylinder to increase the enclosed area. First demonstrated in 1976 [22],

these have developed enough to find practical applications in inertial navigation. In

fiberoptic gyroscopes, the phase shift is internally converted to a frequency shift,

which can be precisely measured. The advantage to matter-waves is that the velocity
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is significantly lower. For the same rotation rate and enclosed area, the phase is 108

times larger than for an optical interferometer. This is certainly an advantage when

measuring very small rotations.

A small number of trapped-atom Sagnac interferometers have been demonstrated

in the past [23–27], but only recently have groups started making quantitative ro-

tation measurements. The largest enclosed areas have been achieved using a linear

interferometer that is translated along a direction perpendicular to the interferometer

axis [24, 27], but this approach may not be well-suited for inertial measurements in

a moving vehicle. The work in this thesis includes results from the first true two-

dimension interferometer configuration in which atoms travel in circular trajectories

through a static confining potential. This is one of a few experiments of its kind, but

we report the largest enclosed Sagnac area of any such system to date [28], which we

argue is easily scalable to larger areas and higher rotational sensitivities.

One key advance in this work is the use of dual counter-propagating interferometer

measurements. Here, two Sagnac interferometers are implemented at the same time

in the same trap, using atoms traveling with opposite velocities over the same paths.

This technique was developed for free-space interferometers [9] and allows common-

mode rejection of phase noise that can otherwise mask the rotation signal. The

Sagnac effect itself is differential and can be extracted by comparing the two individual

measurements. This technique is likely to be essential for a practical rotation-sensing

system.



CHAPTER 1. INTRODUCTION 8

1.3 Scope

This thesis entails the summary of the experimental procedures for characterizing

the magnetic potential in order to achieve a dual-Sagnac interferometer for rotation

sensing, followed by details of our initial rotation measurement.

Chapter 2: Experimental setup: An overview of BEC production of 87Rb, from

laser cooling in a magneto-optical trap through evaporatively cooling to a condensate.

Major changes that have been made to the system are described in more detail, such

as a new imaging system and new laser setups, though much of the experimental pro-

cedure remains the same from previous accounts [29]. Bragg splitting, the mechanism

we use to split the condensate and achieve interferometry, is described.

Chapter 3: The magnetic waveguide: This chapter describes the atom trap

used in this experiment, starting with an analytical development of the system. By

examining the magnetic fields, the confining potential is calculated and non-idealities

are considered. An account of the waveguide design is given, along with trajectory

measurements used to characterize the trap and compare it with the analytical case.

The chapter concludes with a description of how the condensate can be split into four

clouds that propagate around the trap in a circle, which is the foundation for the

Sagnac interferometer.

Chapter 4: Interference measurements: The penultimate chapter describes the

atom interferometry work done in this experiment. Starting with a simple develop-

ment of atom interferometry, several experimental test results are included to study

how certain parameters impact the interference signal. The chapter concludes with

dual-Sagnac interferometry, in which two sets of waves interfere in concert, revealing
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a differential phase. That phase can be used to measure small rotations, which we

were able to do by rotating the experiment.

Chapter 5: Future work: In the last chapter, some suggested improvements to

this system are included. Much of the work here serves as proof-of-principle for a

new lab venture, which aims to make a smaller, semi-portable version of this system.

Some of the preliminary efforts towards that goal are included.



2 � Experimental setup

This chapter summarizes the experimental apparatus used for the results presented

here. A brief overview of BEC production is provided through the dc TOP trap, with

a more detailed discussion of the trap used for interferometry to follow in the next

chapter. This chapter concludes with an overview of some improvements made to the

imaging system, as well as an introduction to Bragg splitting.

2.1 Bose-Einstein Condensates

Before delving into a discussion of atom interferometry, it is worth reviewing our

procedure for making a BEC. Most of the system remains unchanged from previous

work [29, 30] so many of the details need not be recounted here. Significant changes

will be discussed more at length.

2.1.1 Laser system

This BEC machine was developed by Robert Horne and Robert Leonard, with some

minor changes implemented by Oat Arpornthip. The original laser system included

10
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three separate lasers: a Toptica diode laser (DLPro) and tapered amplifier (TA)

provided the main laser cooling system, a home-built distributed feedback (DFB) was

used as a repump laser, and a home-built diode laser served as the Bragg laser [29,30].

The work in this thesis was carried out with this original laser system, but since then

several changes have been made recently to improve stability and reliability. Since

those changes are substantial, they will be documented here. Adapted from Horne

[29], Fig. 2.1 summarizes the whole laser system as it presently stands. The home-

built saturated absorption setup used previously was replaced with a fiber coupled

Toptica CoSy saturated absorption module. This requires the laser lock to modulate

laser current, instead of an external magnetic field as before. The laser lock signal

and feedback is now controlled with a Toptica Digilock. A small amount of power

from the DLPro, about 3 mW of a total 50 mW, is taken from the DLPro output to

provide the locking signal. The beam is sent through a double-pass AOM, used to

modulate the laser frequency during the experiment. This is in parallel with the TA

and in series with the lock signal. Arranging the elements this way maximizes the

power available for the TA. The output of the double-pass AOM is sent to the CoSy

and lock via a single-mode optical fiber. The fiber is a 2×2 single mode fiber splitter;

the second output will be used for the new Bragg laser’s offset lock, briefly described

later on.
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AOM AOM frequency (MHz) f2× ∆f
MOT +71.8 0 V −20

Pumping −160 1.0 V −234.6
Probing 91.6 0 ∼ 0

Table 2.1: AOM frequencies and laser detuning for different experimental
stages. The double pass AOM frequency, f2×, is set with an analog voltage to give
continuous adjustment of the laser frequency. The offset frequency, ∆f , is given with
respect to the lock.

A repump laser is required to move atoms out of the dark state, ∣52S1/2 F = 1⟩.

Until recently, this was achieved with a separate repump laser locked using a second

saturated absorption setup. To simplify the experiment, we now generate the repump

light with a electro-optic modulator (EOM, AdvR WPM-K0780-P78P78AL3). The

DLPro is now fiber coupled into the EOM, which adds side bands to the frequency

spectrum, one of which is resonant with the reump transition 6.68 GHz blue-detuned

from the cooling transition. The laser light leaving the EOM then seeds the TA,

providing roughly 1.4 W of total power. A laser box encloses the whole system in

order to eliminate unwanted stray light and to keep dust off the optics.

With different steps of the experiment requiring unique laser frequencies, the

beam passes through several acousto-optic modulators (AOMs), each of which is

associated with an experimental step. The AOMs also function as optical switches, in

combination with mechanical shutters to block unwanted leakage light when the AOM

is off. There are three AOMs associated with an experimental step: the MOT, optical

pumping, and probing. Details of each step will follow this section chronologically;

here we only characterize the laser states during each stage. The AOMs are included

in the block diagram in Fig. 2.1, and the AOM setup and laser detuning from the

cooling transition are detailed in Table 2.1.

It is also important that we can manipulate the EOM such that the repump tran-
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State Digital state Frequency (GHz) Relative power
MOT ↑↓ 6.68 0.05
CMOT ↑↑ 6.627 0.07
Pumping ↓↑ 6.823 0.07
Probing ↓↓ off 0.00

Table 2.2: A summary of the states of the EOM throughout the experiment.
The EOM is toggled between states with a multiplexer, controlled by two digital
inputs. The relative power is measured against the power in the main carrier, and
these are measured using the TA output’s signal on a spectrum analyzer. The relative
power are experimentally optimized for producing a BEC.

sition remains on resonance as the laser frequency is changed during the experiment.

The EOM driver is documented in Fallon [31]. The driver allows the EOM to be

switched between four unique states, each with a different frequency and power. The

EOM can produce side bands with relative power from the main peak up to 15%. The

four states are controlled by an internal multiplexer controlled by two digital inputs,

and are summarized in Table 2.2.

The new Bragg laser is a Vescent D2-100-DBR, replacing our home-built system.

The laser is locked using the D2-135 offset lock, using the DLPro as a reference

frequency. About 0.5 mW of laser light from each laser is sent to an optical beat note

detector, which provides feedback to the laser current. The offset lock is set up such

that the Bragg laser is locked at the repump transition, around 7 GHz red-detuned

from the main laser.

2.1.2 Magneto-optical trap

We start with 87Rb atoms loaded into a magneto-optical trap (MOT). Atoms are

loaded from a background thermal vapor provided by rubidium dispensers in a vacuum

at 10−9 torr. We define the coordinate system such that ẑ points up, and x̂ and ŷ
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Figure 2.2: A 3D CAD drawing of the MOT, with light delivered through
optical fibers. Each MOT beam has a steering mirror to account for all degrees of
freedom. The optics for the beam coming from above are modified to accommodate
the cage system for the 50 mm elliptical mirror. The quadrupole trap coils translate
from the MOT to the science side along a linear translator (not shown). A detailed
exploded view of the MOT fiber launch is shown in Fig. 2.3. [32,33]

define the horizontal plane, with ŷ along the long axis of the vacuum chamber.

A dc electromagnetic coil in an anti-Helmholtz configuration provides a spherical

quadrupole field of 10 G/cm along ẑ, which is the direction of symmetry of the

coils. Three counter-propagating lasers, 20 MHz red-detuned from the ∣52S1/2F =

2⟩ → ∣52P3/2F ′ = 3⟩ cooling transition provide Doppler cooling to atoms near the

trap center. The magnetic field strength increases linearly away from the field zero,

which produces a spatially-dependent Zeeman shift to the atomic energy levels. The

combination of the laser fields and the quadrupole field provide confinement. A 3D

CAD drawing of the MOT is shown in Fig. 2.2.

The output of the TA is coupled into the MOT AOM, which deflects the laser into

the fibers delivering light to the six MOT beams. With the MOT AOM turned off, the
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Figure 2.3: An exploded view of the MOT fiber launch optics. From left to
right: An optical fiber is launched in a 16 mm cage system. A zero-order quarter-wave
plate (yellow) is mounted in a rotation mount to change the polarization from linear
to circular. A lens tube adapter connects the cage to the threaded tip-tilt mount.
The light passes through ∅25 mm f = −25 mm bi-concave lens (blue) to shorten the
overall length of the system. The light is collimated with a ∅25 mm f = 75 mm
doublet (red). A profile of the collimated beam waist is shown in Fig. 2.4 [32–34].

TA light is sent instead to the pump and probe optics, which are described later on.

The MOT light is split into three beams using half-wave plates and polarizing beam

splitters (PBSs). Each beam is fiber coupled into a 1×2 polarization maintaining fiber

(Thorlabs PN780R5A1). The outputs of each pair face one another at the MOT. The

output collimation package is pictured in Fig. 2.3. After leaving the fiber adapter,

MOT light passes through a quarter-wave plate to make the requisite circularly-

polarized light. The beam passes through a telescope to collimate the light with a 1/e

beam waist of 19 mm, as shown in a 1D profile in Fig. 2.4. The system is mounted

to a tip-tilt kinematic mount for adjustment.

The MOT shutter needs to have a relatively fast closing time because leakage light

through the MOT AOM can spoil optical pumping. We use a Uniblitz LS2, which

is positioned near the focus of the MOT light before it is split and coupled into the

three optical fibers. The closing time is about 1 ms. A home-built shutter with a 5 ms
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Figure 2.4: A 1D profile of a MOT beam collimated out of the fiber. Data
are taken using the razor blade method to find the error function, from which the
beam’s profile is extracted [35]. The 1/e beam waist w = 19 mm.

closing time is also included in the beam path further upstream, before the light leaves

the laser box. In the older setup, this slower shutter was the only MOT shutter. The

increase in MOT light intensity spoils optical pumping, so a faster shutter is needed.

Both shutters remain in use and are turned on or off together, with the slower shutter

eliminating the possibility of stray light scattering off of optics outside the laser box.

A photodiode is set up to measure the fluorescent light scattered by atoms in the

MOT, giving us a rough estimation of the atom number. The photodiode is also used

for testing the performance of the MOT and subsequent experimental steps. Finally,

the photodiode can be used to trigger the start of the experiment, such that each time

the experiment begins with roughly the same number of atoms. A microcontroller

repeatedly measures the voltage on the photodiode, and cues the computer when to

start the experiment. A temporary switch can be used to reset the acceptable MOT

level to 90% of its current value, and the interlock can be overridden if the user prefers

a set time between runs.
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2.1.3 Transfer to the magnetic trap

The MOT reaches a steady state after roughly 10 seconds with about 2 × 109 atoms,

at which point the atoms are transferred to the magnetic quadrupole trap. The

subsequent experimental sequence is given in Appendices A.2.1 and A.2.2. First,

the cooling laser is detuned 60 MHz further red from the transition line, allowing

photons to penetrate further into the cloud and making the volume smaller, forming

a compressed MOT (CMOT). The magnetic field is then turned off and the atoms

undergo an 8 ms optical molasses phase, which reduces the temperature of the atoms

further. A full discussion of polarization gradient cooling can be found in Dalibard

[36]. The performance of the optical molasses phase can be characterized with the

MOT photodiode by measuring the decay time, i.e. measuring the fluorescence from

atoms leaving the MOT after turning off the magnetic field. If the beam intensity

balance is poor or there is a background magnetic field, then atoms are pushed more

quickly from the region near the magnetic trap center. We have found the molasses

easier to optimize with the beams fiber coupled, likely because the spatial mode of the

fibered beams is better. A better spatial mode means the molasses beams are more

uniform over the capture volume, reducing unwanted forces from gradients in the laser

intensity. The beam balance between each counter-propagating pair is not adjustable,

but all fiber splitters were measured to have outputs within the 7% margin of error

specified by the manufacturer. The beam balance between the pairs can be adjusted

on the inputs using the half-wave plates controlling the transmission through each

PBS. These should be adjusted while measuring the power transmission through two

different fibers, and should agree to within 5%. With the photodiode, we measure 1/e

molasses decay times of 1 second with the fiber MOT; the old laser setup typically
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had decay times around 250 ms.

After cooling to this point, the atoms are in different Zeeman sub-levels of the

∣52S1/2, F = 2⟩ ground state. We require atoms in the ∣F = 2,mF = 2⟩ ground state for

the magnetic trap. To pump atoms into this state, we apply σ+ light to the atoms

to impart angular momentum. The light is tuned to the F = 2 → F ′ = 2 transition,

which is roughly 267 MHz redder than the cooling transition. To create the σ+ light,

a circularly polarized pump beam with intensity 8 mW/cm2 is incident on the MOT

along ŷ, concentric with a bias coil near the MOT. The pump light is switched on

using an 80 MHz AOM. As shown in Fig. 2.1, we use the second-order output beam

from the AOM. The bias coil is switched on 2 ms before the pump AOM is activated,

and both remain on for 500 µs. Selection rules require the atoms absorbing a photon

from the laser to change mF by +1. The atoms return to the ground state with mF

unchanged, or ±1. After several cycles, atoms begin building up in the ∣F = 2,mF = 2⟩

sub-level, which is dark to the σ+ light. During this optical pumping phase, the MOT

light is turned off.

After the atoms have undergone optical pumping, they are loaded into the mag-

netic quadrupole trap. The atoms are trapped via the Zeeman shift, i.e. U = −µ ⋅B,

where µ is the atom’s magnetic moment and B is the applied magnetic field. The

energy depends on the amplitude of the magnetic field,

U = gFµBmF ∣B∣, (2.1)

where gF = 2 is the Landé g-factor for the given state.

The magnetic coils are turned on to roughly 60 G/cm for 40 ms before being
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ramped up to 388 G/cm over 200 ms to limit heating, which can cause atom losses.

We can measure the efficiency of the transfer to the magnetic trap using the MOT

photodiode by loading the trap and then flashing on MOT light for 50 ms. The

photodiode measures both the original MOT level and the signal from successfully

trapped atoms. We typically require at least 40% of the atoms in the MOT be

transferred to the magnetic trap to make a condensate. At this efficiency, there are

about 109 atoms at about 1 mK in the tight magnetic trap.

2.1.4 Evaporative cooling

Once the atoms are in the magnetic trap, the coils are mechanically transported

500 mm along ŷ from the MOT vacuum chamber to the science vacuum chamber. To

lower the temperature of the system further, we use radio frequency (RF) evaporation.

A circular antenna with a 10 mm diameter is positioned around 5 mm from the atoms.

The RF field drives a transition with ∆mF = −1, as shown in Fig. 2.5. The field is

ramped down from ω = 2π × 90 MHz. The hottest atoms in the trap will absorb

the higher frequency photons because they are able to move further from the trap

center and thus experience the largest Zeeman shift. With each scattered RF photon,

hotter atoms can transition to uptrapped or anti-trapped Zeeman states. As hotter

atoms leave the trap, the remaining trapped atoms rethermalize and the sample’s

temperature is decreased. The RF frequency is exponentially decreased with a 12-s

time constant, which roughly matches the rethermalization rate.
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Figure 2.5: Evaporative cooling in the dc quadrupole trap. The quadrupole
trap can hold mF = 1 and mF = 2 atoms, shown here in blue. RF photons with
frequency ω are couple the sub-levels, with energy spacing 0.7 MHz/Gauss. Gravity
is included here, making the potential asymmetric along ẑ, with a field gradient of
approximately 10 Gauss/cm. Figure from [29].

2.1.5 The TOP Trap

There is a limit to how cold the atoms can get in the quadrupole trap. As atoms get

colder, they have less energy and therefore spend more time near the center of the

trap, where the magnetic field is zero, as shown along ẑ in Fig. 2.5. As an atom passes

through the field zero of the trap, it can reorient its spin state and become untrapped,

in what is called a Majorana loss [37]. The colder the atoms get, the larger the loss

rate becomes. There are several methods to avoid Majorana losses and continue to

reduce the energy of the ensemble in order to make a BEC. In our experiment, we

add a rotating magnetic bias field, which moves the field zero around the atoms faster

than they are able to follow, but not so fast that the atomic spins lose their alignment

to the field. This is called a time-orbiting potential (TOP) trap [38].
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The TOP trap uses the dc quadrupole field described earlier, which is generated

by two coils such that

Bdc = B
′
dc (

1

2
x x̂ +

1

2
y ŷ − z ẑ) , (2.2)

where B′
dc is the field gradient and ẑ points up. In the simplest configuration, the

additional bias field rotates the field zero around the atoms in a circle in the horizontal

plane. In our implementation, the bias field rotates on a sphere. This will be useful

for our subsequent atom interferometry experiments. The bias field rotates along the

longitude lines of a sphere at Ω1, with the plane of rotation precessing at a frequency

Ω2. Mathematically, the bias field is given by

Bbias = B0[ sin(Ω1t) cos(Ω2t) x̂ + sin(Ω1t) sin(Ω2t) ŷ + cos(Ω1t) ẑ]. (2.3)

Again, the atoms are trapped by the Zeeman effect as they were in the quadrupole

trap, with a potential energy U = −µ ⋅ B. With the field rotating fast enough, the

atoms experience the time average of the potential, so

U = gfmFµB⟨∣B∣⟩. (2.4)

The time average of the total magnetic field is simple to calculate as a second-order

Taylor expansion, and gives the total potential in the TOP trap

Utot = µ0B0 +mgz +
1

2
mω2

0x
2 +

1

2
mω2

0y
2 +

1

2
mω2

zz
2, (2.5)

where the horizontal trap frequencies are

ω0 = [
2µB
m

(
3

32

B′2
dc

B0

)]

1/2

(2.6)
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and the vertical trap frequency is

ωz = [
2µB
m

(
1

4

B′2
dc

B0

)]

1/2

. (2.7)

After the preliminary stage of RF evaporation in the quadrupole trap, the atoms

are put into the TOP trap by quickly turning on the bias field at full strength, 23 G.

At this point, we are able to continue evaporative cooling using the field zero of the

TOP trap to expel the hottest atoms in the system. By reducing the strength of the

bias fields, the magnetic field zero can be moved closer to the center of the trap. More

energetic atoms will be able to move the furthest from the center and will encounter

the field zero and become untrapped through Majorana loss. The strength of the bias

field is ramped from 23 G to 7 G over nine seconds. This reduces the temperature of

the cloud further, and also increases the TOP trap frequencies. After a second RF

sweep from 30 MHz to 4.3 MHz over 12 seconds, the condensate is formed.

After producing the BEC, it is subsequently transferred to a purely ac TOP trap,

or “waveguide,” which is described in detail in Chapter 3. Transferring the condensate

is simple: an ac quadrupole field is ramped on while the dc quadrupole field is ramped

off over the course of nine seconds. As with any adiabatic process, this handoff has

to be done smoothly to avoid adding energy to the system. The centers of the dc

TOP trap and the waveguide are not automatically coincident since the fields are

produced from different coils. Therefore loading the atoms into the waveguide can

result in excitations in the form of residual oscillations, which is problematic for

AI applications. A step-by-step optimization of the transfer process is required to

ensure each segment of the ramp is long enough to minimize residual oscillations.

The experimental sequence is provided in Appendix A.2.5.
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2.1.6 Imaging

The last step of each experiment is imaging. We use absorption imaging, where an

on-resonant laser is directed onto the condensate. Multiple images are needed for

each measurement. First, the condensate absorbs laser light, causing a shadow on

the camera’s CCD in the “atoms image.” The absorbed light heats the atoms, causing

the destruction of the condensate. A second “no atoms” image is taken shortly after

this, which has only the probe laser light. After subtracting background light (a third

image taken without probe light) from both images, they are mathematically divided

giving the final divided image,

divided =
atoms − background

no atoms − background
, (2.8)

providing images such as those in Fig. 2.6. Two cameras are set up to image the xy

plane from above, and the yz plane from the side.

Because absorption imaging requires multiple images, the divided image can be

noisy. If the probe beam drifts, or there are vibrations in the imaging optics, that

introduces noise into the divided image. If the probe beam has an unstable Poynting

vector, that can cause erroneous absorption in the divided image. This sort of effect

can occur if the beam free space propagates over a long path, but can easily be solved

with the addition of an optical fiber. Mechanical vibrations, i.e. from the camera’s

shutter opening and closing, also add noise. Small changes in the camera optics cause

the probe beam to move on the CCD, resulting in what looks like diffraction in the

divided image. An optomechanical consideration for the xy (top) camera is that the

camera optics all need to be fixed above the vacuum chamber. In previous versions of
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Figure 2.6: Absorption images of a condensate and associated x profiles. The
left use the static imaging technique, and the right use the kinetic imaging technique.
Kinetics imaging has an improved pixel noise value to four times lower than statics.

this experiment, the camera optics were put together in a 16 mm cage system, which

was mounted to the optics table with a ∅1.5" post. To improve the system’s stability,

all of the imaging optics were moved to a breadboard mounted 10" above the optics

table, which is less susceptible to vibrations.

The new top camera imaging system is shown in Fig. 2.7. The system magnifies

the image of the condensate twice. A pair of lenses magnifies the primary image by

a factor of 2, then a microscope objective makes an image on the camera with 2.5×

magnification. The first telescope is needed to provide a large working distance with

the lenses we use, which allows us to easily focus the final image onto the camera.

The microscope objective (Mitutoyo MY5X-802) provides further magnification with

low aberrations, and has the added advantage of being easily interchangeable if we

prefer a different field of view. With two telescopes, there are two imaging planes: the
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Figure 2.7: A 3D CAD rendering of the updated top camera imaging optics,
with kinetics imaging. The path of the probe beam and image is shown in red. To
help reduce vibrations, a lens tube clamp was added to the camera’s lens tube. The
imaging system is mounted to a 12′′ × 36′′ breadboard. Some optical mounts were
omitted for simplicity. A CAD drawing of the camera (Apogee Alta U6) provided by
Andor. [32, 33]

primary plane located 34 mm from the front of the microscope objective, the working

distance of the objective, and the secondary plane on the CCD.

The top probe beam propagates upwards into a ∅25 mm, f = 100 mm achromatic

collection lens. After reflecting off of a cage-mounted mirror, the image propagates

parallel to the table to the ∅25 mm, f = 200 mm collimation lens, which is in a

cage-mounted translation stage (Thorlabs CT1). A pair of ∅50 mm dielectric mirrors

enable the image to be centered on the CCD. An iris is located near the primary

imaging plane to clip the probe beam, preventing it from scattering off of the lens

tubes downstream. The 5× microscope objective and a f = 200 mm achromatic lens

inside the lens tube make the second telescope, imaging the condensate onto the

CCD. The lens tube connected to the camera is clamped to the breadboard to reduce

vibrations from the camera shutter opening and closing.

The quality of an absorption image can be degraded because two separate images

are used in each shot because the probe beam is non-uniform and can change in

time. The time between the two pictures can cause noise in the divided image, which
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is limited by the time to transfer the image from the camera to the computer. In

previous experiments, the two frames needed for each image were taken over 4 seconds

apart. This led to significant diffraction and blurring in the divided image. Ideally,

the time between these two images should be on the order of a few milliseconds, just

long enough for the atoms in the first image to be eliminated from the second so those

atoms do not contribute to the “no atoms” image. To get closer to this target, we

switched to a “kinetics” imaging scheme. The top half of the CCD is blocked, using

a razor blade mounted near the primary imaging plane. The first image is taken on

the bottom half of the CCD, and is then translated up to the top half of the CCD.

The second image is taken 100 ms later, again, on the bottom half. After the image

is downloaded, the background is subtracted and the two images are divided to make

a final image. This technique was adapted from previous work by Leonard [39].

The improvement over the old “static” imaging system used before is significant.

To compare them, a representative square region of the divided images not containing

the condensate was analyzed. The standard deviation over that region was measured

statistically using ImageJ [40], σ, and was then divided by the typical area of a

condensate to get a measure of how accurately condensate number can be determined,

σc =
σ

wxwy
, (2.9)

where wx and wy are the waists of the condensate along the two axes of the camera.

A typical static image had pixel value noise σc = 0.086, which is reduced to σc = 0.02

with kinetics imaging. A comparison between the old imaging technique and our new

kinetics imaging with more stable optics is shown in Fig. 2.6.

The yz (side) camera is a similar optical setup to the top camera’s. Fortunately,
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Figure 2.8: Block diagram of the side imaging and x Bragg beam sharing
an axis. The Bragg beam, shown in blue, is launched from an optical fiber. The
probe beam, shown in red, is launched from an independent fiber and some upstream
optics are not shown here, for simplicity. The two beams are joined on a PBS. The
following half-wave plate sends the probe light to the camera and the Bragg light to
the retro-reflecting mirror, and can be used to send the Bragg laser to the side camera
for alignment. The first 75 mm achromatic lens is the collection lens of the imaging
system. The second 75 mm lens in the Bragg beam path serves to keep the beam
collimated in a 1 ∶ 1 telescope.

this camera system need not meet the same noise requirements as the top camera

because it is not used for any AI measurements. It is used in this system to help

to optimize BEC production, transferring the condensate from the dc trap to the

waveguide, and can be used to measure the cloud’s temperature. The system is

similar to the top camera’s with two telescope pairs, the first with ∅25 mm doublet

lenses (f1 = 75 mm and f2 = 300 mm), and the second combines a 2× microscope

objective with a ∅25 mm doublet lens (f = 100 mm). Several steering mirrors are

included to direct the image onto the CCD.

The complication comes into the side camera’s imaging optics because it shares

an optical axis with the x Bragg beam. Combining the two beams efficiently requires
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polarizing optics. Since optical fibers are used in this setup, the polarizing optics

can introduce power drifts, so care must be taken to stabilize the beams’ polarization

states. A block diagram of the optical system is shown in Fig. 2.8. The probe beam

and Bragg beam are joined on the output of a PBS, making their polarization states

perpendicular to one another. A half-wave plate is included to direct the Bragg beam

either to the side camera or to the retro-reflecting mirror. With the light directed onto

the CCD, we are able to take an image of the laser and ensure the laser is incident

on the atoms. After propagating through the vacuum chamber and being absorbed,

probe light passes through the 75 mm collection lens before being reflected through

another PBS, which directs the image and probe light to the subsequent side camera

optics. A second 75 mm lens in the Bragg beam path is needed to collimate the Bragg

laser in a 1 ∶ 1 telescope.

2.2 Bragg Splitting

Like optical interferometers, matter-wave interferometers require reliable methods for

splitting a coherent wave and then recombining it on the output. For optical systems,

it is easy enough to understand how beamsplitters and mirrors operate. These are

trickier both conceptually and in practice with matter-waves. In our experiment,

it requires the brief application of the Bragg laser, an off-resonant standing wave,

which creates two counter-propagating condensates traveling along the direction of

the Bragg laser field [41,42].

An atom in a standing laser field is able to absorb a photon from the field coming

from the left, and be stimulated to emit a photon into the field coming from the right.
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Figure 2.9: A cartoon of Bragg
scattering. From top to bottom, an
atom initially at rest absorbs a photon
from the field incident from the left.
The atom moves to a virtual excited
state (yellow), picking up a momen-
tum kick h̵k. The atom emits a photon
into the field incident from the right,
moving back to the ground state, with
another momentum kick to the right.

Figure 2.10: An energy diagram of
Bragg scattering. An off-resonant
standing wave is applied to atoms
starting in the rest state, ∣0⟩. Atoms
absorb from one beam and emit into
the other, changing their momentum
by ±2h̵k. In this two-photon transi-
tion, atoms move through a virtual ex-
cited state, ∣e⟩.

Each photon imparts momentum h̵k onto the atom, so the atom travels to the right

with momentum 2h̵k after this process. The opposite is equally likely, resulting in

the atom traveling left with the same momentum. As a result, we observe two wave

packets traveling away from each other, each with 2h̵k momentum, which we typically

express in terms of the Bragg velocity kick vB = 2h̵k/m, or about 12 mm/s. Higher

momentum kicks are also possible by increasing the intensity of the Bragg light. We

use 4h̵k kicks in some of the work described in Chapter 3.

The Bragg laser used for the work in this thesis was a home-built diode laser,

not to be confused with the new Vescent laser described earlier in this chapter. The

laser operates around 780.233 nm without frequency stabilization. An 80 MHz AOM

is used to switch the laser on quickly, on the order of 50 ns. There are two Bragg
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Figure 2.11: A Bragg split along x. The condensate is split into a superposition
of momentum states ∣ ± 2h̵k⟩. The motion of each wave packet is roughly sinusoidal
because the atoms are confined in a nominally harmonic trap. The size of each cloud
is about 15 µm. This image was taken 20 ms after the Bragg split was applied.

beams, one aligned along x̂ and the other along ŷ. Each Bragg beam is delivered

to the experiment through an optical fiber, and their beam paths can be adjusted

with a 2-axis translation stage and a tip-tilt steering mirror, each with micrometer

adjusters. Each beam is retro-reflected back into the fiber to create a well-aligned

standing wave. The beam paths are shown in a 3D CAD model of the experiment

in Fig. 2.13. The beams are independently shuttered such that each can be applied

to the atoms independently. The x Bragg beam has a larger waist than the y Bragg

beam in order to split two clouds separated by almost 0.5 mm, which is discussed in

Chapter 4.

Both Bragg beams have their share of optomechanical challenges. The x Bragg

beam’s arise because it shares an optical axis with the side camera’s probe beam,

which is explained in the previous section and illustrated in Fig. 2.8. The drawback

is the introduction of polarizing optics. If the output polarization of the optical fiber

is unstable, the transmission through the PBS upstream of the condensate is unstable

and subject to drift, which is problematic for consistent splitting operations. Careful

alignment of the input polarization to the optical fiber is necessary to keep the power
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Figure 2.12: Block diagram of the y Bragg beam and pump optics sharing
an axis. The Bragg beam, shown in blue, is launched from an optical fiber. The
beam propagates through the long axis of the chamber, which is 4’ long. Because
of the polarization requirements of the pump beam, the y Bragg beam propagates
through a quarter-wave plate and PBS, so it loses half its power. The 2000 mm lens
in the Bragg beam path gently focuses the y Bragg beam, so the retro-reflected beam
remains roughly collimated at the condensate. The half-wave plate in the pump beam
acts as modulation along with the PBS.

through the PBS stable.

The y Bragg beam has a different set of challenges, as it propagates up the vacuum

chamber and is retro-reflected near the pump optics. As shown in Fig. 2.12, the Bragg

beam shares an optical axis with the pump laser. On the MOT side where the pump

beam enters the vacuum, a PBS separates the Bragg laser and sends it to the retro-

reflecting mirror. A quarter-wave plate is required to make the pump light circular,

while the Bragg polarization must be linear. Consequently, the Bragg laser loses half

its power as it passes through the PBS.

Coarse alignment of the Bragg beams is simple. After producing a condensate, the

Bragg beam is applied with the retro mirror blocked for 10 ms, which is much longer

than in the splitting operation. If the beam is partially incident on the condensate, the

atoms will absorb light and the subsequent absorption image will have a degraded
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absorption signal. The Bragg launch translation stage is then adjusted until the

condensate is completely destroyed by the Bragg beam, and then repeated to more

precisely align the beam with Bragg pulses of 1 ms. If coarse alignment proves

difficult, the Bragg detuning can be reduced to scatter more photons. Once the beam

is sufficiently aligned on the condensate, the retro mirror is unblocked. The retro

mirror is adjusted until light propagates back through the optical fiber, ensuring the

best overlap in the standing wave. This gives us a starting point for work discussed

in the next chapters, which requires very precise alignment of the Bragg beams along

the principle axes of the trap.
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Figure 2.13: A 3D rendering of the vacuum system. Atoms from the MOT on the right are transferred to the
science side to make a BEC within the waveguide cube. The Bragg beams are shown in green, starting at fiber collimators
in the bottom left before passing through shutters. The x Bragg beam points across the chamber, and the y Bragg beam
propagates the length of the vacuum chamber. The side camera’s probe beam is shown in blue, the pump beam is shown
in yellow, and wave plates are shown in pink. The y Bragg beam shares access with the pump beam. To accommodate
the circularly polarized pump light, the y Bragg beam has to pass through a λ/4 wave plate twice, reducing the power
by half.



3 � The magnetic waveguide

In order to build a trapped-atom Sagnac interferometer, we need a stable and tunable

trap. With a clearer picture of the potential, U(r), we are able to make adjustments

such that the atoms propagate in closed loops during interferometer measurements.

Because we know the coil geometry and are able to measure the currents producing

the trapping fields, we can learn about the potential through analytical analysis.

That gives us information about the influence of higher-order terms, as well as trap

inhomogeneities.

We are also able to use the atoms themselves to learn about the trap. Using the

Bragg beams, we can split the atoms and allow them to oscillate freely along x and y.

We can also induce oscillations along z by making rapid non-adiabatic changes to the

trapping fields. These tests allow us to monitor the trajectories of the atoms as they

move through the trap. We can treat the center-of-mass motion of the condensate as

classical, so if we have an accurate picture of r(t), we can easily find the acceleration

a(t). This is directly proportional to the force, and from there the potential can

be determined by integration. This last step is likely to produce large errors, so we

instead use a model of the potential and find the best fit of the trajectories.

35
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3.1 Time-orbiting potential trap

First, we can calculate the potential based on the coil geometry. This helps us under-

stand the data further down the road, and paints a picture of the impact non-idealities

have on the atoms trajectory when we try to make an interferometer. The principle

of the TOP trap is to combine a spherical quadrupole magnetic field with a rotat-

ing bias magnetic field such that the zero of the quadrupole is displaced and orbits

around the trap center. The rotation rate is fast compared to the motional frequency

of the atoms, but slow compared to the Larmor frequency of the atomic spins. The

atoms therefore maintain their spin state and experience a time-averaged potential

U = −µ ⟨∣B∣⟩, where µ is the magnetic moment of the spin state. Our implementation

has a few special features [43]. First, the quadrupole field oscillates synchronously

with the bias rotation, which generates a constant force at the trap center. We set

this force to cancel gravity. Second, our bias field rotates in three dimensions, which

allows us to better control the symmetry of the trap.

In the simplest case, the bias field has the form

B0 = B0 (cos Ω1t cos Ω2 x̂ + cos Ω1t sin Ω2t ŷ + sin Ω1t ẑ) , (3.1)

which traces over the surface of a sphere. The frequencies Ω1 and Ω2 are nominally

incommensurate. The quadrupole is

Bq = −B
′
1 (−

1

2
x x̂ −

1

2
y ŷ + z ẑ) sin Ω1t. (3.2)
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The time-dependent amplitude of the field is given by

∣B∣(t) =
√
B2
x +B

2
y +B

2
z , (3.3)

or

∣B∣(t) = B0

⎡
⎢
⎢
⎢
⎢
⎣

1 +
1

2
κx sin(2Ω1t) cos Ω2t +

1

2
κy sin(2Ω1t) sin Ω2t

− 2κz sin2 Ω1t +
1

4
κ2 (ρ2 + 4z2) sin2 Ω1t

⎤
⎥
⎥
⎥
⎥
⎦

1/2

(3.4)

for κ ≡ B′
1/B0 and ρ2 = x2 + y2. The field oscillates faster than the atoms can follow,

so we consider the time average of the field,

⟨f(t)⟩ = lim
T→∞

1

T ∫
T

0
f(t) dt. (3.5)

To evaluate the integral, we can Taylor expand Eq. (3.4) in the small dimensionless

quantities (κx,κy, κz) using the Taylor approximation for ε≪ 1,

√
1 + ε ≈ 1 +

1

2
ε −

1

8
ε2 +

1

16
ε3 −

5

128
ε4 + ... (3.6)

Terms up to fourth order are included, and we find the time-averaged magnetic field

to be

⟨∣B∣⟩ = B0 [1 −
1

2
κz +

7

128
κ2ρ2 +

1

16
κ2z2

+
1

32
κ3z3 +

9

256
κ3ρ2z −

237

131072
κ4ρ4 +

17

1024
κ4z4 +

93

4096
κ4ρ2z2] . (3.7)

Taking z vertical, the total potential in gravity g is U = µ ⟨∣B∣⟩ +mgz, and we set
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Figure 3.1: The TOP trap potential, as a function of x and z. Here V0 =

mω2
0/2κ

2 = (7/128)µB0. The solid black curve is an exact numerical calculation and
the dashed red curve is the polynomial expansion of Eq. (3.8). In (b), the two curves
are indistinguishable.

µB0κ = 2mg to place the potential minimum at the origin. We can then express the

potential as

U(r) =mω2
0 [

1

2
ρ2 +

λ2

2
z2 +

1

3
az3 +

1

2
bρ2z +

1

4
cρ4 +

1

4
fz4 +

1

2
hρ2z2] (3.8)

with horizontal frequency

ω0 = (
7

64

µ

m

B2
1

B0

)

1/2

(3.9)

and

λ2 =
8

7
a =

6

7
κ b =

9

14
κ

c = −
237

3584
κ2 f =

17

28
κ2 h =

93

224
κ2. (3.10)

Clearly this potential is non-harmonic. The length scale 1/κ = B0/B1 ≈ 0.6 mm−1

also defines the size of the trap, since atoms with κz > 1 will encounter the moving

magnetic field zero and be ejected by Majorana spin flips [37]. Figure 3.1 compares

this fourth-order expansion to a calculated time average of Eq. (3.4).
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In reality, the bias field components will not be perfectly uniform and the gradient

field will not be perfectly linear, and these variations will modify the trap potential.

We address this point in the next section.

3.2 Field inhomogeneities

We suppose that each of the x, y, and z bias field components is established by a

set of coils aligned to the corresponding axis and symmetric about the origin. The

bias fields can be derived from a Legendre polynomial expansion of the magnetic

scalar potential about the origin [44]. We consider a set of axial coils with cylindrical

symmetry and finding the scalar potential’s multipole expansion,

ψ =∑
l

Alr
lPl(cos θ). (3.11)

For now, the coefficients Al are considered arbitrary constants. With z = r cos θ and

ρ2 = x2 + y2 = r2 − z2, the scalar potential to fourth-order is

ψ = A0 +A1z +
1

2
A2(2z

2 − ρ2) +
1

2
A3(2z

3 − 3ρ2z) +
1

8
A4(8z

4 − 24ρ2z2 + 3ρ4). (3.12)

The field from the coils is found by taking the gradient in Cartesian coordinates,

B = ∇ψ, and relabeling the coefficients,

B = B0 ẑ +B1 (z ẑ −
1

2
x x̂ −

1

2
y ŷ) +B2[(2z

2 − x2 − y2) ẑ − 2xz x̂ − 2yz ŷ]

+B3 [(z
2 −

3

2
x2 −

3

2
y2) z ẑ −

3

2
(z2 −

1

4
x2 −

1

4
y2)x x̂ −

3

2
(z2 −

1

4
x2 −

1

4
y2) y ŷ] . (3.13)
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The trap is made up of three such coil pairs. The bias fields are even functions since

they are produced by symmetric coil pairs, so the fields are

Bx = B0[(1 + α) sin(Ω1t) cos(Ω2t + β)]
⎛

⎝
x̂ + γ [(x2 −

1

2
y2 −

1

2
z2) x̂ − xy ŷ − xz ẑ]

+ η {[x4 − 3x2(y2 + z2) +
3

8
(y2 + z2)2] x̂ + [

3

2
x(y2 + z2) − 2x3] (y ŷ + z ẑ)}

⎞

⎠
,

(3.14)

By = B0[(1 − α) sin(Ω1t) sin(Ω2t − β)]
⎛

⎝
ŷ + γ [(y2 −

1

2
x2 −

1

2
z2) x̂ − xy x̂ − yz ẑ]

+ η {[y4 − 3y2(x2 + z2) +
3

8
(x2 + z2)2] ŷ + [

3

2
y(x2 + z2) − 2y3] (x x̂ + z ẑ)}

⎞

⎠
,

(3.15)

and

Bz = B0[ cos(Ω1t)]
⎛

⎝
ẑ + γ [(z2 −

1

2
x2 −

1

2
y2) ẑ − xz x̂ − yz ŷ]

+ η {[z4 − 3z2(x2 + y2) +
3

8
(x2 + y2)2] ẑ + [

3

2
z(x2 + y2) − 2z3] (x x̂ + y ŷ)}

⎞

⎠
,

(3.16)

The constants γ, η are set by the coil geometry. We assume here that all the fields

are produced by similar coils, but if not then we can introduce different parameters

(γx, γy, γz) and (ηx, ηy, ηz). The time-dependent terms include amplitude and phase

adjustments, α and β. These are not set by geometry, but by the driving signals,

and are easily adjustable parameters. The term α is an adjustment to the amplitudes

of the horizontal bias fields, and the angle β is the phase between the horizontal
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bias fields. These are both set by the function generators driving the coils. For the

moment, we take α = β = 0.

We take the quadrupole field to be cylindrically symmetric around the z axis, and

antisymmetric along z. We can then obtain a general expansion from Eq. (3.13),

Bq = κB0

⎧⎪⎪
⎨
⎪⎪⎩

z ẑ −
1

2
x x̂ −

1

2
y ŷ

+ ξ [(z2 −
3

2
x2 −

3

2
y2) z ẑ −

3

2
(z2 −

1

4
x2 −

1

4
y2) (x x̂ + y ŷ)]

⎫⎪⎪
⎬
⎪⎪⎭

. (3.17)

The constant ξ is again set purely by the coil geometry. Note that since the Bz and

Bq fields have the same time dependence in Eqs. (3.16) and (3.2), the symmetric and

antisymmetric components of Eqs. (3.16) and (3.17) can be combined to accommodate

a non-symmetric geometry for the z coils.

If the various fields are produced by a circular current loop, the geometrical pa-

rameters can be obtained using the fourth-order Taylor expansion of the field from a

loop along its axis. We take the loop radius to be a and the distance from the loop

center to the coordinate origin to be s,

B(z) =
µ0I

2a

1

(1 + (z+s)
2

a2 )
3/2
. (3.18)

Here I is the current and µ0 is the permittivity of free space. We define ζ ≡ s/a, and
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expand in the parameter u = (z/a)/(1 + ζ2) to obtain

B(z) =
µ0I

2a

1

(1 + ζ2)3/2

⎡
⎢
⎢
⎢
⎢
⎣

1 − 3ζu +
3

2
(4ζ2 − 1)u2+

5

2
ζ (3 − 4ζ2)u3 +

15

8
(1 − 12ζ2 + 8ζ4)u4

⎤
⎥
⎥
⎥
⎥
⎦

. (3.19)

Using this, we can read off the parameters

γ =
3

2a2

4ζ2 − 1

(1 + ζ2)2
ξ =

5

6a2

4ζ2 − 3

(1 + ζ2)2
η =

15

8a4

1 − 12ζ2 + 8ζ4

(1 + ζ2)4
. (3.20)

In principle, an analytical polynomial expansion of the TOP trap potential such

as in Eq. (3.8) could be calculated using the inhomogeneous fields of this section. We

numerically calculate the potential at a given point r as

U(r) =mgz +
µ

τ ∫
τ

0
∣Bx cos Ω1t cos Ω2t+

By cos Ω1t sin Ω2t + (Bz +Bq) sin Ω1t∣dt, (3.21)

where the averaging time τ can be a common multiple of the field oscillation periods

T1 = 2π/Ω1 and T2 = 2π/Ω2. Numerical derivatives can then be used to obtain an

expansion as in Eq. (3.8). This model is used to inform the design of the magnetic

waveguide.
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3.3 Trap design

Our interferometer apparatus uses a magnet design detailed by Horne et al. [43] The

fields are produced by six coils mounted on the surface of a cube that is centered on

the origin. Each individual coil consists of two planar spirals with seven turns each.

The inner radius is 4.96 mm and outer radius is 10.24 mm. The spirals are located

at distances of 10.56 mm and 11.32 mm from the cube center. A drawing of the cube

trap and its mount is shown in Fig. 3.2. If we approximate the spirals as current

loops at their average radii and distances, we obtain γ = 2.01 cm−2, ξ = 0.81 cm−2,

and η = 0.66 cm−4. In comparison, numerically calculating the field from the true

spiral geometry gives an axial Taylor expansion about the origin of

B(z) = B0 (1 − 1.81z + 1.94z2 − 1.48z3 + 0.76z4) (3.22)

where B0 is the field at z = 0 and z is in cm. From this we can read off the field coeffi-

cients γ = 1.94 cm−2 and η = 0.76 cm−4, and we obtain ξ = (−1.48 cm−3)/(−1.81 cm−1) =

0.82 cm−2. These differ from the single-loop approximation by less than 15%.

Using the exact coefficients to calculate the TOP potential at a bias B0 = 1.85 G

yields an oscillation frequency ω0 = 2π × 9.46 Hz and geometrical parameters

λ2 = 1.19 a = 0.80κ b = 0.64κ

c = −0.077κ2 f = 0.61κ2 h = 0.43κ2, (3.23)

with κ = B′
1/B0 and B′

1 = 2mg/µ as above. In comparison, the ideal results of
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Figure 3.2: A 3D drawing of the cube trap and its mount. The waveguide is
generated at the center of six coils mounted to a cube. The cube has 21 mm length
sides, and ∅10 mm aperture for optical access. The cube is mounted on a 100 mm
long Boron Nitride structure, which is fixed to the vacuum feedthrough flange by a
25 cm aluminum arm [29,33].

Eq. (3.10) give ω0 = 2π × 9.52 Hz and

λ2 = 1.14 a = 0.857κ b = 0.643κ

c = −0.0661κ2 f = 0.607κ2 h = 0.415κ2. (3.24)

The impact of the real coil geometry in this trap, including the spiral components, is

only modest. If we increased the bias field to operate in a weaker trap, the impact of

the geometry would be more significant.

3.4 Electronics

We now consider the current source electronics. Since the trap drive circuit was

first built, we have made some small but significant changes to give the user easier

control over the fields. For a comprehensive account of the original drive circuit,

see [29]. Here, I will give a brief overview and explain the changes that were made.
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See Fig. 3.3 for an up-to-date circuit diagram.

The original circuit used two function generators, one operating at f1 = 1 kHz and

the second at f2 = 10 kHz. To make the quadrupole field, the 10 kHz field drove the z

coils. To make the bias fields, the circuit mixes the two signals to drive the horizontal

bias fields using a multiplier integrated circuit. A phase shift between the x and y

bias coils is required, and that can be adjusted using a phase shifter op amp circuit.

Analog input voltages control the amplitude of the bias and quadrupole fields, and

these can be changed dynamically during the experiment. The signals are supplied

to the coils through an audio amplifier, and a sense coil is used in a negative feedback

loop such that the current supplied to the coils is stabilized with respect to variations

in the amplifier gain and the load impedance [45].

The first change made to the drive circuit was to eliminate the analog phase shift

component of the circuit, and add a third function generator. The three function

generators are digitally phase locked. This change allows for easier control over the

phase between the horizontal bias fields. It also improves stability introduced by that

op amp, as phase locked oscillators are more stable than the phase shifter circuit.

A second change made is also related to the third function generator. With the

original circuit, the amplitude of the bias fields are controlled with potentiometers.

Any adjustment to the bias amplitudes must be made in between experimental runs,

and requires measuring the signal on an oscilloscope. Now we are able to control the

amplitude through the function generators’ amplitude modulation. Using the analog

input on the new function generator gives dynamic control over the current providing

the x bias field. We also find this configuration to be more stable.
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φ= 90

Σ

ΣV0

V1

Vz+ = (V0 − V1) cos(Ω1t)

Vz− = (V0 + V1) cos(Ω1t)

Vx = V0 sin(Ω1t) cos(Ω2t)

Vy = V0 sin(Ω1t) sin(Ω2t)

cos(Ω2t)

sin(Ω2t)

cos(Ω1t)

+

+
+

−

Figure 3.3: A block diagram of the waveguide drive circuit. The triangular
elements are buffer amplifiers. The ⊗ elements are multipliers. Circles with Σ inside
are summing amplifiers. Drive circuit inputs are on the left of the diagram, and out-
puts are on the right. This diagram does not include certain trap control parameters,
like α and β. Vz± are the signals for the top and bottom z coils, respectively. This
figure reflects changes made to the circuit to include a third function generator. This
figure was adapted from [29].
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Figure 3.4: Trajectories of atoms oscillating in the magnetic trap. In (a) and
(c), red and black data correspond to 2h̵k and 4h̵k, respectively, and blue data are
residual oscillations in the trap, tracked by the rest packet in the split. In (b), the
trap is used to kick the condensate along z, with varying amplitude. In (c) the motion
along both y and z are shown.

3.5 Oscillation measurements

We can experimentally characterize the trapping potential by using the atoms’ oscil-

latory motion. This is the most direct method for characterizing the potential, and

is a useful tool for reaching our goal of a Sagnac interferometer. Horizontal oscilla-

tory motion can be induced with the Bragg beams. Recording the path of the atoms

after a Bragg split is applied is relatively simple. Absorption images of the xy or yz

plane are taken after allowing the atoms to oscillate for a range of propagation times.

Momentum kicks of 2h̵k and 4h̵k can be applied, as shown in the data in Fig. 3.4.

We have no Bragg beam along ẑ, so instead we induce motion along this direction

with a magnetic kick. This is achieved by changing the quadrupole amplitude B′
1

adiabatically, which vertically displaces the trap center and the condensate. The field

is then rapidly switched back to its original amplitude, causing the condensate to

oscillate along ẑ. The size of the quadrupole field change controls the amplitude of

the motion, as shown in Fig. 3.4(b).
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For a one-dimensional oscillation, it is possible to develop an analytical perturba-

tive series for the motion in terms of the anharmonic coefficients [46]. While motion

in higher dimensions is more complicated, the trajectories considered here can be

approximated as one-dimensional to the extent that the amplitude in one direction is

much larger than the amplitude in the others. For instance, when we kick the atoms

along y we see from Fig. 3.4(c) that the amplitude in y remains four times larger

than that along z. When kicking along z, the excitation along x and y is smaller yet.

The leading order effect of the anharmonicity scales as the amplitude squared, so we

expect that treating the different motions as one-dimensional will lead to errors of

less than 10%.

We seek to characterize the perturbation anharmonic terms introduced to the

system, specifically how those terms might influence the horizontal oscillation fre-

quencies. We start by deriving the equations of motion from the Langrangian for

x,

L =
1

2
mẋ2 −

1

2
mω2

0x
2 −

1

3
mγx3 −

1

4
mηx4. (3.25)

The equations of motion are of the form

ẍ + ω2
0x = −γx

2 − ηx3. (3.26)

Following Landau’s development [47], we can find the effects of non-zero perturba-

tions. For the horizontal motion, the only relevant anharmonicity is the quartic term

cρ4/4. The perturbation analysis predicts this to cause the oscillation frequency to

vary with amplitude A, as

ωρ = ω0 +
3cω0

8
A2. (3.27)

We do observe such a shift as seen in Fig. 3.5. From the slope and intercept of the
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linear fit, we obtain ω0 = 2π×(9.5±0.2) Hz and c = −0.31±0.03 mm−2. The uncertainty

in c is comparable to the limits of the one-dimensional model.

Because the vertical motion is asymmetric, we expect both a cubic term az3/3

and a quartic term fz4/4. The cubic term will shift the center of oscillation by an

amount

∆z = −
a

2λ2
A2, (3.28)

where λ = ωz/ω0. We do observe such a shift, as seen in Fig. 3.5, although the

effect is not large compared to the measurement accuracy. The fit shown gives a

value for a/λ2 of 1.0 ± 0.2 mm−1, and the frequency measured at low amplitudes is

ωz = 2π × (11.2 ± 0.1) Hz. This gives λ = 1.18 ± 0.02 and thus a = 1.4 ± 0.2 mm−1.

Both the cubic and quartic terms contribute to a shift in the oscillation frequency,

as

∆ωz = ωz (
3f

8λ2
−

5λ2a2

12
)A2. (3.29)

We find ∆ωz to be consistent with zero, with a relative accuracy of 10−2 up to A =

0.17 mm. This indicates that the two contributions cancel so f ≈ (10/9)λ4a2. Based

on the uncertainty in a, λ and ∆ωz, we find f = 4.5 ± 1.5 mm−2.

We are not aware of an analytical method to determine the coefficients b and h,

which couple the horizontal and vertical motions. To determine these values, we fit

data such as in Fig. 3.4(c) to calculated trajectories in a model potential with the

form of Eq. (3.8). We fix all parameters except b and h to the values determined

above. The b and h parameters are then adjusted to provide the best fits to the

data set. This yields b = 1.0 ± 0.3 mm−1 and h = 3 ± 1 mm−2. The uncertainties are

determined from the quality of the fit, as the variations needed to increase χ2 by
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Figure 3.5: Data showing the asymmetry along ẑ. The frequency decreases as
A2 as shown in (a), where a harmonic trap would remain constant. (b) shows the
center of the oscillation depends on the size of the oscillation. Points are data fitted
to the form of Eq. (3.28). Error bars are based off of sinusoidal fits.

about a factor of 1.5. These uncertainties are larger than the changes observed when

the fixed parameters in the potential are varied by their own uncertainty. We also

used this model to verify that the horizontal frequency shift depends only on c: if we

allow c as a free parameter in the trajectory fit, we get a value consistent with the

frequency-shift result but with a larger uncertainty.

Our results are summarized and compared to predictions in Table 3.1. While most

of the observed values are consistent with the predictions, the values of λ and c differ

by more than three standard deviations. The reason for this is not clear, but one

possibility is that the bias field amplitude in the z direction differs from that along x

and y. We have observed that this affects λ.

Ultimately, we hope to improve the accuracy with which the anharmonic coef-

ficients can be measured. This might be achieved by driving motion with larger

amplitudes, measuring the trajectories for longer times, and improving the stability

of the trap fields. It may also be possible to find different trajectories that allow the
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Parameter Predicted value Observed value
ω0/2π (Hz) 9.46 9.5(2)
λ 1.09 1.18(2)
a (mm−1) 1.33 1.4(2)
b (mm−1) 1.06 1.0(3)
c (mm−2) -0.21 -0.31(3)
f (mm−2) 1.68 4.5(1.5)
h (mm−2) 1.18 3(1)

Table 3.1: Trap potential parameters as in Eq. (3.8). Predicted values are from
Eq. (3.24) with κ = 1.66. The corresponding bias field B0 = 1.85 G was chosen to make
the predicted and observed ω0 values agree, and is consistent with the experimental
calibration B0 = 2.0 ± 0.1 G.

coupling parameters like b and h to be more clearly distinguished.

3.6 Circular trajectories

In our Sagnac interferometer experiment, we send the atoms around the trap along

a ring. Because this is a dual-Sagnac interferometer, we require two separate pairs

of wave packets to propagate along a ring, starting at opposite sides of the trap.

After completing one complete orbit, each pair of clouds needs to be well-overlapped

to exhibit interference. Therefore before implementing interferometry, we worked to

make the trajectories as circular as possible (instead of, say, elliptic), and also worked

to ensure the trajectories remained as flat as possible along z.

Figure 3.6(a) illustrates the ideal procedure. First, the BEC, initially at rest at

the origin, is split by applying the Bragg beam along y. This generates two wave

packets with velocities v = ±vB ŷ. The wave packets move in the trap, with their

centers of mass following the ordinary trajectory for a harmonic oscillator, x(t) = 0
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Figure 3.6: Overview of circular trajectory procedure. (a) A schematic of the
circle splitting procedure. The initial condensate (center) is split into two packets
that move along ±y. When the packets reach their turning points at y = ±R, they are
split along x, generating four packets which move in circular orbits (green and orange
traces). (b) Experimental data showing the path of one packet, starting at the red
square and moving counterclockwise in 5 ms increments. The scales are in mm.

and y(t) = ±(vB/ω0) sinω0t. After a time t1 = π/(2ω0), the atoms come to rest near the

classical turning point at a radius R = vB/ω0. The Bragg beam along x is then applied

to both packets, providing velocity kicks ±vB x̂ and generating a total of four packets.

Each of these packets now travels in a circle with radius R, as x(t) = ±R sinω0t

and y(t) = ±R cosω0t. In the interferometer, the atoms propagate for time t2 = 2π/ω0,

completing one full orbit around the trap. Here, however, we aim to study the circular

trajectory of the clouds. Similarly to the 1D oscillation measurements, we image the

system for different times t2 in order to get a complete picture. A video summarizing

the experiment can be found in the supplemental material of [53].

An example of one of these measurements is shown in Fig. 3.6(b). It is obviously

not a perfectly circular trajectory as it strays from the circular best-fit line, but

this was sufficient to see interference. Some of the key factors that determine the
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path traversed by the atoms include the degeneracy of the x and y trap frequencies,

the presence of certain anharmonicities, and the Bragg beams’ incident angles on

the atoms. With a thoughtful experimental setup, it is relatively simple to make

adjustments to one of these parameters and measure its effect on the trajectory. In

some cases, the effect is characterized not with the circular trajectory, but with 1D

linear oscillations instead. The effects on the circular trajectory can be measured by

fitting the path of one cloud to an ellipse, focusing on achieving a ratio of the major

and minor axes equal to unity.

3.6.1 Bias field adjustments

The first step in achieving closed circular loops is ensuring the horizontal trap frequen-

cies are equal, and that the phase between the horizontal bias fields is not introducing

undesirable cross terms. Here, we assume the higher-order effects are small, and con-

sider just the fundamental oscillation frequencies. The bias fields are

Bx(t) = B0[(1 + α) sin(Ω1t) cos(Ω2t + β)], (3.30)

and

By(t) = B0[(1 − α) sin(Ω1t) sin(Ω2t − β)]. (3.31)

The parameters α and β are controlled with the drive circuit’s function generators.

To adjust α, we adjust the ratio of the bias currents, Ix and Iy. These can be scaled

together during the experiment by adjusting the amplitude of the parameter B0,

controlled through an analog voltage. This allows for simple rough adjustment of

the trap tightness. The parameter α allows us to control the relative amplitude of
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the horizontal bias fields by an independent amplitude modulation on the function

generator controlling Bx. The phase parameter β is also adjusted with the function

generators. We set the angle between the bias signals roughly equal to 90○ so β

is nominally zero, and can be adjusted to 1 mdeg. Assuming the Bragg beams are

aligned with the principle axes of the trap, we can consider how these small parameters

impact the potential,

U = U0 −
1

2
µB1z +

1

2
mω2

zz
2 +

1

2
mω2 [(1 +

α

7
)x2 + (1 −

α

7
) y2 +

2

7
βxy] . (3.32)

We can see from Eq. (3.32) that the amplitude adjustment α will impact the trap

frequencies along x and y. To symmetrize the trap to first order, we first measure ωy

by taking trajectory measurements, like those shown in Fig. 3.4(c). We split along

ŷ with 2h̵k momentum kicks, since higher-order terms effect the larger momentum

kicks. The trajectories are measured over the course of a few oscillation periods, and

the data can be fit to a first-order sine wave. The same procedure is used to measure

ωx, which can then be adjusted to match ωy with the bias amplitude adjustment, α.

The frequency scales linearly with the amplitude of the signal.

The ratio of the bias current amplitudes, Ix/Iy = 0.75 to symmetrize the trap. The

reason for the large discrepancy in the field amplitudes is not clear because the coil

geometries are nominally the same, with similar electronic characteristics. Obviously,

a more complete approach includes considerations beyond first-order terms, and is

likely required in a more robust effort to make circular trajectories. Unfortunately,

accessing these terms is not simple with the trap drive circuit.

We can also see from Eq. (3.32) that the phase between the horizontal bias fields,

β, gives rise to a coupling between the two spatial axes. Effectively, this rotates
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the principle axes of the potential away from the spatial axes, which on its own can

break the overlap of the clouds when they pass each other. We found that setting the

function generators with ∣β∣ ≤ 1○ was sufficient to maintain the overlap in the circular

trajectories.

3.6.2 Bragg angle adjustments

The Bragg optics allow for precise adjustment of the pitch and yaw of the beams with

respect to the trap. We define x y and z to be the lab coordinates. There are several

things to consider about the angles of the Bragg beams, viz. the angles between the

beams and the lab frame, and the angle between the Bragg beams themselves. The

wave vector of each beam can be written in the lab frame coordinates,

kx = cosψx x̂ + sinψx cos ξx ŷ + sinψx sin ξx ẑ, (3.33)

and

ky = sinψy cos ξy x̂ + cosψy ŷ + sinψy sin ξy ẑ. (3.34)

We assume the Bragg beams are retro-reflected without error. Because of the cur-

vature of the x Bragg beam wavefront, the atoms at y = ±R experience non-parallel

momentum kicks, but this effect is small. Ideally, of course, kx = x̂ and ky = ŷ. The

ẑ component of the beams can be controlled with the tilt of the mirror in each Bragg

beam path. We also need to ensure the Bragg beams are perpendicular to each other,

which we can do by comparing the position of the clouds shortly after being split

along x̂ and shortly after being split along ŷ. The two clouds in each 1D split form

a line, and we can measure the angle between those two lines.
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Figure 3.7: Images of the yz plane after one orbital period. The pitch of the
y Bragg beam is adjusted such that the clouds are coincident. The size of one of the
clouds is 15 µm. In the image on the left, the clouds pass over and other each other
at one period. The right image shows the two clouds coincident at one period.

Following the procedure to split the condensate into four wave packets traveling

in a circle, we observe the clouds using the side camera to determine whether the

clouds pass through each other or whether they miss. This requires two conditions

to be met. The first is that the pitch of the y Bragg beam is level enough as to not

change the z value of the two clouds as they propagate to their turning points. The

second condition is on the x Bragg beam. The pitch of the x Bragg beam determines

the trajectories as the clouds propagate around a circle.

We require the atoms to be well-overlapped in phase space, i.e. to be physically

coincident, with anti-parallel velocity vectors. The extent to which the clouds need

to be overlapped is given by the Thomas-Fermi approximation [48], which gives the

size of the clouds as

L =

√
2µ

mω2
0

= 15 µm, (3.35)

where m is the mass of a rubidium atom, ω0 is the horizontal trap frequency. The

chemical potential µ = 2πh̵×40 Hz. Assuming an ideal potential, the atoms propagate

over a distance of 4πR ≈ 2.5 mm before they should overlap. To maintain a reasonable

1/e overlap of the clouds, that limits the angular deviation of the Bragg beams to be

less than 0.13○. This is large compared to the angular resolution of the Bragg steering
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Figure 3.8: The distance between the
two clouds, δz, after one orbit is mea-
sured as a function of the y Bragg
beam’s pitch. The horizontal axis is
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Figure 3.9: To ensure the pitch of the
x Bragg beam can be adjusted fully,
the height of the condensate needs to
be adjusted with the quadrupole am-
plitude.

mirrors, which is about 0.02○, but this is also an upper limit to the allowable angular

range.

Experimentally, it is simple to verify the overlap of the clouds. We ensured the

overlap of the clouds by probing the atoms at exactly one period. We adjusted the

x pitch until we saw the pairs of clouds coalesce. The sizes were consistent with an

image taken before the atoms are split the second time along x. This also gives a

good estimate for the interferometer time, t2. Using the side camera, we are able

to verify the clouds are overlapped along z. Using the same procedure of taking an

image when the clouds pass by each other, we observe either two clouds passing over

and under each other, or one cloud, like the absorption images shown in Fig. 3.7.

Because the Bragg steering mirrors have micrometers, we are able to measure the

vertical displacement of the clouds, δz, as a function of the Bragg’s angular pitch.

Those results are shown in Fig. 3.8.
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A consideration when adjusting the pitch of the x Bragg beam is the optical access.

We found that Bragg beam could be adjusted over a wide range while maintaining

overlap between the clouds, but found that the waveguide cube structure would clip

the beam. It was necessary to adjust the height of the cloud, z0, to better center

the cloud on the cube openings. We achieved this by adjusting the quadrupole field

amplitude. Without a significant effect on the trajectories, we were able to relocate

the cloud such that it was more central in the structure, giving us the largest range

of optical access. The height’s dependence on the quadrupole strength is shown in

Fig. 3.9.

To summarize, we were able to make adjustments to the experiment to produce two

pairs of clouds that propagate in a circle. The trapping potential must be adjusted

such that the horizontal trapping frequencies are in agreement, which is achieved

with amplitude modulation on the x bias field. Note that this procedure also gives

rough estimates of the timings, t1 and t2. The Bragg beams must be adjusted such

that the angles between the two beams is normal, and that their relative angles to

the trap’s principle axes are sufficiently small. We experimentally verify that the

overlap is achieved at one period using both the side and top imaging systems. A

comprehensive study of how these can influence the interferometer’s performance will

not be included here, but is well-summarized in a recent paper by West [49].



4 � Interference measurements

The efforts discussed in the previous chapter were undertaken in order to make the

trap suitable for atom interferometry measurements. In this chapter, some of those

interferometry measurements will be discussed, including the first measurement of a

physical rotation using confined atoms. With our setup used to create circular orbits,

we produce two simultaneous interfering signals. The beauty of this approach is that

common-mode noise, such as vibrations, can be canceled. By rejecting such sources

of noise, we are able to use this system to measure small physical rotations. This is

the culmination of a ten-year-long effort, beginning with the adaptation of our linear

magnetic waveguide to a cylindrical trap. A few other measurements are included,

which illuminate how the interferometer responds to experimental parameters other

than a physical rotation.

4.1 Interferometer operation

As mentioned previously, we use the Bragg beams to create four wave packets traveling

around the trap in a circle. A step-by-step of the experiment is included in Appendix

A.2. To recap the procedure: first, the condensate is split along ŷ. The two clouds

59
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are allowed to oscillate freely for a time t1, which is nominally when the clouds come

to rest at one-quarter period. After that, they are split again, this time along x̂.

They now have the requisite momentum kicks to travel in circles. The four clouds

are allowed to propagate along their circular path for the interferometer time, t2,

which is nominally one full period. Before considering how the pair of interferometers

work together to measure rotations, we consider just one measurement independently.

Before the atoms are split along x̂, we consider them to be in the zero-momentum

state, ∣0⟩. The ideal splitting operation couples this state with the superposition of

the two momentum states, ∣±vB⟩, with the indicated velocity along x̂. We can define

a unitary operator that describes this process,

Usplit∣0⟩ = ∣split⟩ ≡
1

√
2
(∣+vB⟩ + ∣−vB⟩), (4.1)

and the reverse operation also holds,

Usplit∣split⟩ = ∣0⟩. (4.2)

After propagating through the trap for one period, the pair of clouds is overlapped

again. Their wave function can be expressed as

∣ψ⟩ =
1

√
2

(eiΦ/2∣+vB⟩ + e
−iΦ/2∣−vB⟩) , (4.3)

where Φ is the phase developed between the packets. After the recombination pulse is

applied, the fraction of atoms returned to rest depends on Φ. The even superposition

(∣+vB⟩+ ∣−vB⟩) is coupled back to the zero-momentum state ∣0⟩, as defined in Eq. (4.2),

while the odd superposition (∣+vB⟩−∣−vB⟩) remains unchanged (up to an overall phase).

Projecting the wave function ∣ψ⟩ onto this basis, we find that a fraction of the atoms
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are brought back to rest [50,51],

N0

N
≡ S = ∣⟨split∣ψ⟩∣2

=
1

4
∣1 + eiΦ∣2

= cos2 (
Φ

2
) . (4.4)

Using a trigonometric identity, the output signal S can be expressed as

S =
1

2
(1 + cos Φ). (4.5)

The atoms that return to ∣0⟩ now oscillate along ŷ. The remaining atoms stay in

∣ ± vB⟩, so they continue along their circular path. We wait 12 ms for these clouds to

separate, and then we turn off the trap and image the system with the top camera. A

typical absorption image is shown in Fig. 4.1(a). Each of the six clouds is fit to a 2D

Gaussian to determine their populations, such that S can be determined. Because

there are two interfering pairs, we define S± to be the signal at y = ±R, respectively.

The phase that develops between the two clouds has several different sources.

Some phase contributions can be classified as noise. Because the atoms are held

in a trap, noise can come from the trapping fields themselves or from mechanical

vibrations, which cause a small shift between the Bragg split and recombination

pulses. Because such sources of noise are present, we expect an interferometer signal

S to also be noisy. In fact, we use this noise as an indicator that the interferometer

is working.

When two clouds are not well-overlapped, the applied Bragg beams actually split
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Figure 4.1: An illustration of interference. (a) An absorption image in the
xy-plane taken 12 ms after the recombination pulse was applied. Atoms that were
brought back to rest now oscillate along ŷ, while the remaining atoms continue to
move along the dashed circle. Here, the fraction of atoms brought to rest is small in
both interferometers, indicating that both interferometers measure a phase close to
π. (b) The standard deviations of the interferometer output signals, σ±, are plotted
as the interferometer time t2 is varied. The waists of the Gaussian fits agree with the
expected interaction time predicted by the Thomas-Fermi approximation.

each cloud again instead of recombining them. We can rewrite the two momentum

states as a superposition of the symmetric and antisymmetric wave functions,

∣ + vB⟩ =
1

2
((∣ + vB⟩ + ∣ − vB⟩) + (∣ + vB⟩ − ∣ − vB⟩)) (4.6)

and

∣ − vB⟩ =
1

2
((∣ + vB⟩ + ∣ − vB⟩) − (∣ + vB⟩ − ∣ − vB⟩)). (4.7)

Since Usplit couples the symmetric state back to the rest state ∣0⟩, and has no effect

on the antisymmetric state,

Usplit∣ + vB⟩ =
1

2
(∣0⟩ + (∣ + vB⟩ − ∣ − vB⟩)), (4.8)

Usplit∣ − vB⟩ =
1

2
(∣0⟩ − (∣ + vB⟩ − ∣ − vB⟩)). (4.9)
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Figure 4.2: An image showing poor recombination. Instead of interfering with
each other, the applied Bragg pulse splits the two traveling wave packets again, cre-
ating a total of six clouds in each of the interferometers.

So projected back onto the three-state basis, we find that after applying the recom-

bination pulse the population in ∣0⟩ is 1/2, and each of the momentum states is 1/4.

This happens to both clouds, so there are six total clouds per interferometer. These

nominally track together, so we see the outputs S± ≈ 0.50, with σ± ≲ 0.05, which is

non-zero because of imaging noise. Given enough time to separate, the six clouds are

clearly visible, which is shown in Fig. 4.2.

To characterize the performance of interference, we measure the signal several

times for both interferometers. We calculate the standard deviation of the output

signals, σ±, between each set of data. This is simply the spread in S. The performance

of interferometers is often measured by visibility V , which is mathematically related

to the standard deviation:

σ2 = ∆S2 = ⟨(S − S̄)2⟩Φ

= ⟨(V /2 cos Φ)2⟩Φ

=
V 2

8
. (4.10)

We typically see peak visibilities around 0.5; in this thesis we report the interfer-

ometer performance in terms of the standard deviation. When a pair of clouds is

well-overlapped, we see the random noise sources begin to write noise onto the in-
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terferometer signals, seen as a spike in σ±. This is illustrated in Fig. 4.1(b). The

interferometer time t2 was adjusted and the standard deviation was measured for ten

data. The two interferometers exhibit optimal interference around t2 = 107.7 ms.

Referring back to Eq. (3.35), we reconsider the issue of overlap in the context of

the interferometer. The clouds are all approximately 15 µm wide. With the speed

of the condensates, vB = 12 mm/s, defined by the Bragg split, they should maintain

an overlap of one cloud width for 230 µs, which agrees with the measured interaction

time in Fig. 4.1(b) of 260 µs and 234 µs for the top and bottom interferometers,

respectively.

4.2 Dual Sagnac interferometer

The sequence described above produces two independent interferometer measure-

ments. Following the same naming convention, we define Φ+ as the Sagnac phase

measured for atoms at y = +R, and Φ− as the phase measured at y = −R. In this im-

plementation, with two simultaneous counter-propagating interferometers, the sources

of random phase noise are common to both measurements. While one interferome-

ter operating alone appears to have a random output, the pair of interferometers

work in concert to reveal other sources of phase. The interferometers experience the

same noise, making sources of differential phase stable, such as rotation. To see how,

consider the system rotating with angular velocity Ω. The Sagnac phases,

Φ± = ±
1

h̵ ∮
∆L ⋅Ωdt = ±

4mΩA

h̵
, (4.11)
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will have the opposite sign. Here ∆L = r2 × p2 − r1 × p1 is the difference in angular

momentum between the two packets, and A = πR2 is the area of a single packet’s

orbit. The sign of the phase depends on whether ∆L has the same or opposite sign

as Ω. The rotation is then revealed in the differential phase,

∆Φ = Φ+ −Φ− = ±
8mΩA

h̵
. (4.12)

Now we consider how to extract the differential phase. Returning to the output

signal in Eq. (4.5), we can be more specific about the argument of the cosine by

separating the random phase from sources that are not common-mode. We can rewrite

that expression as

S± = C± +A± sin(ΦN ±
∆Φ

2
) , (4.13)

where C± are the centers of the output signals, and A± are the amplitudes of the

oscillations, roughly related to the visibility. Here, ΦN incorporates all forms of

common-mode phase noise, and will fluctuate from shot to shot. We can define

X =
S+ −C+

A+

= sin(ΦN +∆Φ/2) (4.14)

and

Y =
S− −C−

A−

= sin(ΦN −∆Φ/2) (4.15)

These terms can be combined in a specific way,

1

2
(X2 + Y 2) = sin2(ΦN) cos2(∆Φ/2) + cos2(ΦN) sin2(∆Φ/2), (4.16)
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and

XY = sin2(ΦN) cos2(∆Φ/2) − cos2(ΦN) sin2(∆Φ/2). (4.17)

The common phase ΦN can be eliminated using sin2 ΦN + cos2 ΦN = 1, and the equa-

tions can be combined to make the characteristic equation for an ellipse [28],

X2 + Y 2 − 2XY cos(∆Φ) = sin2(∆Φ). (4.18)

Therefore we expect to see an ellipse in a plot of S− against S+, such as the simulated

data in Fig. 4.3. The ellipse is centered at (C+,C−), with semi-major and semi-minor

axes A+ and A−, respectively. So in order to extract the differential phase from our

data, we fit the plot of S− vs. S+ to an ellipse in order to find ∆Φ.

We can also look at this through the lens of limiting cases for more clarity, referring

back to Eq. (4.13). For simplicity, assume the centers of the signals are both 0.50, as

we expect the signals to have a mean nominally equal to one half. We can also assume

the signals have the same amplitude of 0.50, which is true for an interferometer with

perfect visibility. For all limiting cases, we assume ΦL is random, as we observe in

the experiment. If the differential phase ∆Φ = 0, then the two interferometers will

have correlated outputs, i.e. the data will lie along a line with S+ = S−. In the case

where ∆Φ = π, we observe anti-correlated outputs. In this case, the data also lie

along a line, S+ = 1 − S−. The last limiting case is for ∆Φ = π/2, where the signals

can be written down as sine and cosine of the same argument. In this case, the data

lie along a circle. For a differential phase not equal to 0, π/2, or π, the data lie along

an ellipse. In all cases, ΦN distribute the data randomly around the ellipse, while

the shape and orientation of the ellipse is defined by the differential phase between

the two interferometers. The sensitivity of the interferometer is higher near π
2 than
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Figure 4.3: Simulated data are fitted to a rotated ellipse. The differential
phases are increasing from left to right. All plots range from 0 to 1 on both axes.
When ∆Φ = 0 or π, the data lie randomly along a line. When ∆Φ = π/2, the data lie
along a circle.

it is near 0 and π. Using simulated data with similar noise to what we see in the

experiment suggests the interferometer is five times more sensitive for a phase of π
2

than for one close to zero.

4.3 Trap sensitivities

Before covering the rotation measurements, it is important to consider some of the

other sources of differential phase. As with the trap symmetry, there are several pa-

rameters that play a role here. While much of the computational analysis of these

effects was not completed for this thesis, it was studied in parallel with the experi-

mental research by my lab partner, Zhe Luo [52], whose thesis should be consulted

for a more comprehensive picture. Even so, it is important to include these experi-

mental findings, and characterize the influence of things like the Bragg beam angles,

and the trapping field phases. In particular, we examined how these can influence

the measured phase, ∆Φ, as well as the interferometer’s contrast. For the latter, it is

certainly important to document what sort of dynamic range the interferometer has,

since diminished contrast results in lower phase sensitivity and inferior interferometer
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Figure 4.4: The differential phase, ∆Φ, is measured as the pitch of the x
Bragg mirror is adjusted. Error bars are from the best-fit of the phase ellipse.

performance. But it is also important to understand how the differential phase can

be adjusted, either to be zeroed out or to ensure the interferometer operates with an

output near π/2.

4.3.1 Bragg beam angles

The Bragg beam optics were designed to give the user very fine control over their

position and angle. Of course, the first concern is that the Bragg beams are aligned

such that the clouds overlap after one orbit. That is, as described in the previous

chapter, done by measuring their overlap on the top and side cameras. In an ideal

trap, the Bragg beams should be able to operate in a range as large as 0.13○; outside

that range the clouds will fail to overlap well enough to interfere. This is an upper

limit, but is consistent with large operational range of the x Bragg beam.

The angle of the Bragg beams changes how the clouds traverse through the trap.
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The differential phase’s dependence on the x Bragg angle is shown in Fig. 4.4, which

reveals a linear dependence, as we expect. The angular dependence is

d

dθxpitch

(∆Φ) = 3.49 × 10−4. (4.19)

We were not able to produce a similar measurement for the dependence on the y

Bragg beam. The two Bragg beams behaved very differently. The x Bragg beam was

forgiving, and could be adjusted over a wide range of angles and still exhibit interfer-

ence. In fact, a plot of the contrast as a function of the Bragg pitch is not included

here because the Bragg beam’s optical access was obscured before the interferometer’s

contrast became sufficiently diminished. The opposite is true with the y Bragg beam.

We were unable to measure any interfering signal after a small adjustment was made

to the beam’s angle, and was not easily recoverable. We believe the reason is related

to the geometry of the beam path, as opposed to the behavior of the atoms in the

trap.

4.3.2 Bias field adjustments, revisited

Another consideration is the trapping fields themselves, which influence the paths

traversed by the clouds. We refer back to Section 3.6.1, specifically Eqs. (3.30) and

(3.31). As a reminder, the parameter α controls the relative amplitude of the bias

fields, and is set such that the horizontal trap frequencies are in agreement to first-

order. The small parameter β is the phase angle between the horizontal bias fields,

and gives rise to an xy cross-term in the potential. Those parameters are set such

that the circular trajectories are closed loops, but we can also adjust them more finely

to introduce an offset to the phase.
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Figure 4.5: The interference contrast is optimized in the bias phase, β. Each
datum here is the standard deviation over ten measurements with the same bias
phase. Colors correspond to the cartoon in Fig. 4.1.

The first consideration is the interferometer’s contrast as a function of the bias

phase. By simply adjusting the β, we can see the operational range of the bias

phase, which is shown in Fig. 4.5. Those data are taken without adjusting any

other experimental parameter, and shows an operational range around 0.1○. As β is

adjusted, the additional cross-term in the potential causes the wave packet trajectories

to lose their overlap in position and velocity, which diminishes the contrast when the

clouds are recombined.

The interference peak can be restored by adjusting other experimental parameters.

One example we studied was adjusting the interferometer time, t2. The results are

summarized in Fig. 4.6. If β is changed, the interferometer contrast can be restored

with compensating changes in t2. We observed that complementary adjustments of

β and t2 were able to restore interference over a range of 1.0○ in β, with a range of

0.5 ms in t2. That is shown in the main plot of Fig. 4.6. We also measured how



CHAPTER 4. INTERFERENCE MEASUREMENTS 71

89.00 89.25 89.50 89.75 90.00

0

2

4

6

90 + β (deg)
d

d
t 2

(∆
Φ

)
(
ra

d
m

s
)

107.6 107.9

1

2

3

φxy = 90◦

t2 (ms)

∆
Φ

(r
a
d

)

0

1
107.6 ms

S
−

107.7 ms

0 1
0

1
107.8 ms

S+

S
−

0 1

107.9 ms

S+

Figure 4.6: For different bias phase shifts, ∆Φ is measured as a function of
t2. The red datum in the main plot corresponds to the inset, which is the compiled
results from the raw data shown on the left.

the phase changes as a function of adjustments to β and t2. For a given value of β,

we measured ∆Φ at several different interferometer times, as shown in the inset of

Fig. 4.6, which shows a linear dependence on t2. The slope of that line is dependent

on the bias phase, and we were able to measure a zero-crossing in that time derivative.

From the main plot, we find the dependence to be

d2

dβ dt2
(∆Φ) = 6.0(5)

rad

deg ms
. (4.20)

This measurement will be useful in a comparison with theoretical models of the phase

evolution. Since we were able to measure a zero-crossing in the time derivative of the

phase, we have shown that β can be set such that the phase has little or no time

dependence, which makes this technique more suitable for sensor applications.

These derivatives are calculable, but that they appear to depend also on details

of the trap anharomonicity. These will be a topic of future study. We will need

to understand and have good control over these parameters in order to isolate the
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Sagnac phase; however, as long as the additional differential phase is stable, it can

be subtracted out for a rotation measurement.

4.4 Rotation measurements

Lastly, we return to the big picture of inertial navigation. The work described so

far are steps towards the larger goal of building a rotation sensor. To reiterate a

point made in Chapter 1, we are optimistic that matter-wave interferometers can

outperform their optical gyroscope counterparts. To that end, we attempted to test

the interferometer’s performance at measuring rotations. However, this experiment

sits on a large optics table and was not designed on a rotation stage, nor did we

anticipate any need to miniaturize the apparatus for environmental testing. Therefore

our efforts to test the sensor in a rotating frame gave rise to several engineering

challenges. Since we have yet to fully characterize sources of differential phase other

than rotation, we can measure only changes in the rotation rate instead of absolute

rotations.

During the interferometry measurement, the experiment needs to be rotated with

a constant and repeatable angular speed that can be adjusted between measurements.

Because we have no built-in rotational system, we improvised a simple addition using

a linear actuator. We chose to rotate the system by floating the optical table on

air legs and pushing on a magnetic base fixed underneath it with the actuator (PI

M-228), as shown in Fig. 4.7. The actuator has a travel distance of a few millimeters,

and can travel at speeds up to 1 mm/s. With the table floating, the static required

force to displace the table 3 mm was measured with a force gauge to be 10 N. The
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Figure 4.7: The experiment is rotated using a linear actuator fixed under-
neath the table. The linear actuator pushes on a magnetic base, fixed upside down
to the optical table. A position sensor is mounted opposite the linear actuator to
confirm that the translation speed and confirm the linear displacement during the
interferometer measurement. The position sensor and linear actuator are mounted
on the small breadboard shown here, which is fixed to a cross brace between a pair
of the optical table’s legs with C-clamps.

table can be allowed to rotate freely, or a fixed point can be introduced with a second

magnetic base near a different leg.

For each interferometer measurement, the actuator is activated prior to the initial

Bragg split along ŷ, and continues at a constant speed v until after the clouds are

recombined and imaged. Before the next experiment is run, the actuator retracts to

its initial position. To confirm the motion is linear throughout the measurement, a

position sensor is fixed opposite the actuator, and is monitored on an oscilloscope.

This is also used to confirm the speed calibration of the actuator. We are also able

to measure negative velocities by running the actuator in the other direction. The

experimental sequence is summarized by the timing diagram in Fig. 4.8.

For a given speed of the linear actuator v, no fewer than ten measurements are

taken, which are then fit to an ellipse, as described earlier in this chapter. The results

of this experiment are shown in Fig. 4.9, which shows a clear sensitivity to rotation.

The slope of the trend line is Ω/v = 162(15) rad/mm/s.
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Figure 4.8: A timing diagram summarizing the rotation experiment’s se-
quence. The orange line is position of the linear actuator, which can be monitored
with the position sensor. The rectangular pulses represent the Bragg splitting pulses
and the imaging step. The figure is not to scale.

Because the rotation measurements were not made using a dedicated rate table,

accurate calibration of the rotation rate is difficult. Applying the Sagnac formula to

the data in Fig. 4.9 indicates a rotation calibration v/Ω of 0.5 m. Initial tests using a

dial gauge suggested the table rotated about a point 1 m from the translation stage,

which is a larger discrepancy than expected.

In an effort to measure the table rotation more accurately, a HeNe laser was fixed

to the optical table and split three ways so it was incident on four four-quadrant

photodiodes, mounted in the lab along the coordinate axes of the table. The table

was rotated in the same way it is during the experiment. This confirmed the rotation

point was about 1.0(1) m from the translation stage, as we measured using a dial

gauge. We also determined the table did not remain level during the rotation. By

changing the weight distribution on the optical table, we were able to verify that the

interferometer phase is insensitive to static tilts, and numerical calculations indicate

no significant sensitivity to dynamic tilting at the level observed. The discrepancy

between the mechanical measurement and the Sagnac formula will require further



CHAPTER 4. INTERFERENCE MEASUREMENTS 75

0 1
0

1

∆Φ = 3.4(1) rad

S+

S
−

0

1

∆Φ = 5.0(3) rad
S
−

−0.3 0 0.3 0.6
π/2

π

3π/2

2π

v (mm/sec)

∆
Φ

(r
ad

)

Figure 4.9: Results from the rotation sensor experiment. Left: Points corre-
spond to the two interferometer output signals S+ and S− from a given measurement.
Curves are ellipses fitted to the points. The orientation and eccentricity of the ellipse
reveals the differential phase ∆Φ between the interferometers. Right: Dependence of
the differential phase on the experimental rotation velocity of the system v, illustrat-
ing the Sagnac effect. The offset at v = 0 mm/s indicates the trap is not perfectly
symmetric. The shaded points correspond to the matching data on the left.

investigation.

The one-sigma error bars in the plot correspond to a rotation sensitivity of 8 ×

10−5 rad/s, comparable to the rotation rate of the Earth, ΩE = 7.3 × 10−5 rad/s [53].

This rotation sensitivity is not exceptional, being about what a careful observer might

obtain by watching the shadow of a sundial. An attractive sensitivity for inertial

navigation applications is 10−7 (rad/s)/
√
Hz , corresponding to an angle random walk

of 3 × 10−4 deg/
√
hr [54]. Possible improvements to this technique are discussed in

Sec. 5.1.

In summary, we have implemented a trapped-atom Sagnac sensor with the largest

enclosed area to date, which for the first time uses simultaneous counter-rotating

interferometers for common-mode noise rejection and demonstrates actual rotation

sensing. The rotation sensitivity is comparable to Earth’s rate, and we expect that
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substantial improvements are feasible. We also note that our interferometer scheme

could be of interest for fundamental physics. For example, it could be used to in-

vestigate the phase evolution of the trapped atoms themselves, which can exhibit

nontrivial behavior such as phase diffusion [55] and squeezing [23].



5 � Future work

The main goal of this work was to implement a trapped-atom dual Sagnac inter-

ferometer. After the design and construction of the magnetic waveguide, several

years of work were spent devising methods for characterizing the trapping potential.

Several improvements were made to make the trap more tunable. This dissertation

summarizes the final experimental realization of the main goal. This is significant

achievement, but is only a preliminary result. There are several areas of improve-

ment we would like to explore, which are discussed in the next section. The lab will

also continue work with an upgraded apparatus, as part of the DARPA A-Phi pro-

gram. That new apparatus seeks to build a smaller and semi-portable rotation sensor

based on the same principles of atom interferometry. Since this is the first experimen-

tal realization of a trapped-atom rotation sensor, there are several changes we believe

would improve the experiment. Some of these changes are simple to implement with

only minor changes, while other limitations are inherent to the experiment’s geom-

etry and timing limitations. We hope to rectify these more significant issues in the

experimental design for our work in the APhi program.
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5.1 Improvements to the rotation sensor

With the goal of the implementing an interferometer in this magnetic waveguide

achieved, work should continue to build on this result by improving the rotational

sensitivity of system. There are two simple ways to increase rotational sensitivity,

d
dΩ(∆Φ), both of which effectively increase the enclosed area. One way to double the

sensitivity is to double the interferometer time and allowing the clouds to propagate

twice around the trap. This will increase the precision required on the trap and

Bragg beam alignment, but should be within reach. One might worry about the

atom-atom interactions when the clouds pass through each other, which can reduce

the interferometer contrast and also cause atom losses. In the weak trap, however,

the density is low, around 10−4 cm−1, so interactions are negligible.

We are also able to increase the sensitivity by changing the trap frequency. The

trap frequency used in this work was about 10 Hz, but can be as low as 1 Hz. With

a lower trap frequency, the Bragg kicks push the atoms further out in the trap.

The sensitivity scales with R2, so reducing the trap frequency can increase the trap

sensitivity by orders of magnitude.

We chose to work with a 10 Hz trap mainly because of limits on Bragg laser

power. In the circle split operation, the x Bragg beam splits the two clouds into four

to induce circular motion. Because the two clouds are far apart, the laser is positioned

such that the intensity is highest at the origin, with the two clouds located near the

edges of the beam. That becomes trickier when the atoms are moved even further

apart, as the beam profile needs to be made wider. One solution would be to use an

astigmatic beam, with the profile focused down along ẑ. The laser can also be tuned
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closer to resonance, but that reduces the splitting operation’s stability. It is expected

that with the new Bragg laser we will have more power available, so this should not

be an issue if the trapping frequency are reduced to 1 Hz.

Another area of improvement is the operational duty cycle of this experiment.

With such weak magnetic traps, the adiabatic ramp from the initial dc TOP trap to

the waveguide takes a considerable amount of time, about 12 seconds. In principle,

this time can be optimized to achieve the same trap load without significant residual

oscillations in about half that time. When the MOT loading and evaporation time

is added on, the duty cycle is at least 40 seconds. Unfortunately, we determined the

time limitations on the experiment are actually longer because of trap heating.

As determined by Horne [29] and investigated by Arpornthip [30], the waveguide

heats up over time, and we saw this impact the trap frequencies. This effect is

small over the course of one oscillation period; after the trap is kept running for

20 seconds the oscillation frequencies ωx and ωy changed by 2%. Because of this, the

trap frequencies can become unstable, making it impossible to get the interferometer

time t2 correct, which we need to be within 0.1% of the true period. While we did not

use such long hold times in the current experiments, we did observed the interference

signal to degrade over the course of multiple runs. The effect is easy to see using

the interferometer contrast. If the experiment is run with a short MOT loading

time of 10 seconds, the contrast will be reduced to small and unmeasurable after 20

experimental runs. To fix this, we increased the MOT loading time to 60 seconds to

allow the trap time to cool down.

It is worth noting that we expected the long-term thermal effects to be an order

of magnitude smaller than this based on the thermal characterization when the trap
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was constructed. We believe the most likely candidate for the discrepancy is the

waveguide support structure becoming loose as the trap heats up. This might be

avoided by attaching the coil chips to the cube in a different way, such as using

vacuum-compatible epoxy. It is also possible this is related to thermal instability in

the current sources themselves, or a change in copper resistance changes the current.

Finally, we can consider ways to reduce the effects of anharmonic terms in the

potential. One promising approach is the addition of harmonic terms in the bias

drive signals. Adding the third harmonic, 3Ω2, to the field gradient allows for dynamic

control over the condensate oscillations. We are also considering adjustments to the

coil geometry, and altering the confinement strength during t1.

5.2 A-Phi program

Work will continue with a new project called Bragg Interferometer Gyroscope in a

Time-Orbiting Potential (BIGTOP) in DARPA’s Atomic-Photonic Integration (A-

PhI) program.

The ultimate goal of BIGTOP is to realize a Sagnac interferometer with an en-

closed area of 100 mm2 using multiple orbits in an ωρ = 2π ×2 Hz TOP trap. While a

compact and semi-portable system is being developed offsite, we are working towards

implementing improvements and making a BEC and Sagnac interferometer with a

new system, an upgraded version of the present apparatus. We refer to this version

as V1. Much of the current setup will remain unchanged from the work described so

far. The biggest change will be replacing the cube trap geometry we use in this work

with a “chip” trap, where strong magnetic fields are produced with a micro-fabricated
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Figure 5.1: A 3D CAD rendering of the V1 chip holder. A bias coil is cutaway
here along x̂ and ŷ to better show the assembly. A z coil is mounted below the chip,
shown here transparently. The other z coil is mounted above the chip (not shown).
The assembly is suspended underneath a water-cooled flange to improve temperature
stability. Bragg beams and horizontal imaging axes lie within the horizontal bias
coils.

coils that is mounted above the atoms. The chip is complemented by six cm-scale

coils oriented orthogonally around the chip, which produce the same kind of bias

fields used for the present work. The new version should allow for a tighter trap,

which should allow for faster evaporative cooling and better thermal stability.

While progress towards achieving an improved interferometric rotation measure-

ment in V1 continue at UVA, BIGTOP collaborators work on A-PhI Phase 2 goals.

ColdQuanta, Inc. (CQ) is constructing a smaller semi-portable vacuum system to

meet the size limitations imposed by the program. Northrop Grumman Missile Sys-

tems (NGMS) is developing the trap drive electronics, and will validate the perfor-

mance of CQ’s miniature system. Space Dynamics Laboratory (SDL) is developing

models of the Bragg interferometer, and will analyze experimental results, and gen-

erate algorithms for improved performance. Additionally, Air Force Research Lab is
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Figure 5.2: A 3D CAD drawing of the planned science-side vacuum. The
top water-cooled flange is partially cutaway here to show the alumina chip and coil
mounts. The octagonal vacuum chamber is displayed in blue to differentiate it from
other components. Bragg beams cross the condensate diagonally through the 1.33 inch
windows. All of the coils and chip signals enter through a feedthrough via the conical
adapter, where the ion pump and TSP are also housed. The RF antenna comes
in through the T on the right and is positioned with its axis of symmetry pointing
towards the MOT (to the right here), fixed with a Kimball Physics Groove Grabber.
The yellow component is a SAES NEG pump to improve vacuum. We expect V1 to
eclipse the accuracy and stability of the cube trap. A few things are most important,
and I will go through them now.
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contributing with the fabrication of the chip.

For V1, the experiment will remain unchanged until the atoms are translated

from the MOT side to the science side. To house the chip and the six additional

coils, a mount was designed and machined from aluminum nitride. The chip and coils

are mounted to a water-cooled flange. The flange is mounted to a circular vacuum

chamber with eight symmetric optical access points. A window is fitted to the bottom

of the vacuum, giving us imaging access of the xy plane using a silicon mirror glued

to the chip. The V1 chip assembly is shown in Fig. 5.1. At the time of this writing,

thermal tests on the constructed assembly shown in Fig. 5.2 are underway, after which

the full vacuum will be assembled and put under ultra-high vacuum.

5.3 Thermal management and duty cycle

As discussed in the previous chapter, trap heating can cause headaches. Interfer-

ometry becomes challenging if the trap frequencies change as the experiment runs,

especially when the parameter space has to be very well-optimized to see interference.

Simple tasks like trap characterization also become difficult as the trap changes in

time. With the lessons from the cube trap, care is being taken to ensure the chip

trap will not suffer from similar problems.

The aluminum nitride (Shapal Hi-M Soft) support structure has good thermal

conductivity, with enough surface area to keep the trap heating to under 10 K running

at full power in a 60 second duty cycle. The support structure is mounted to a

steel flange with air-side water cooling. The aluminum nitride coil mounts are glued

together to help dissipate thermal energy. We will use new current sources for the
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trap drive circuit, which were constructed by NGMS. With the thermal improvements

and more stable electronics, we expect the long-term amplitude drifts to be less than

10−4.

5.4 Optical access

One of the most significant problems with the old trap was optical access along the

y direction. Because the Bragg beam passed through the full length of the chamber,

it was difficult to align and retro-reflect. One of the big advantages to the x Bragg

beam was that it shared its axis with the side camera imaging system. The compli-

cations from having these beam paths collinear were discussed in Chapter 2, but the

advantages far outweighed these concerns. As described in Chapter 2, we are able to

use the camera to align the Bragg beam onto the atoms. In the V1 apparatus, we

will be able to easily align both Bragg beams using this technique, and the problems

arising from the long y Bragg beam path will not be an issue. The bias coils are

oriented such that the Bragg axes are diagonal to the track, and it will be convenient

to set up imaging axes along both x̂ and ŷ. We will be able to swap the side camera

between the xz plane and the yz plane.

Figure 5.3 shows the new side imaging configuration. Both the Bragg and probe

beams will be delivered to the experiment on the same optical fiber, so there will be no

need for polarizing optics that can introduce power fluctuations and instability. The

system is designed to be able to swap the side camera from x̂ to ŷ, with removable

probe optics downstream of the BEC so the Bragg retro mirror can remain in place.

This system should help in a few ways. The first is alignment, which will be similar
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Figure 5.3: An overhead view of the V1 side imaging and Bragg optics. The
Bragg beams are shown in green, and the probe beam is shown in pink. The side
camera is mounted on a movable base (Newport BKL-4) to be swapped between the
two side imaging planes. The optics redirecting the probe beam towards the camera
are also on a magnetic base (Thorlabs KBM1) Here, the system is setup to image the
xz plane with the x Bragg beam unblocked.
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along the horizontal directions since we can image the condensate and the Bragg

beams. The second is the shorter beam path. The retro-mirror will now both be

around 20 cm behind the condensate, similar to the distance to the x retro-mirror in

the cube trap.

With the chip oriented above the atoms, the Apogee camera will be repositioned

to image from below the vacuum chamber. We expect this should also cut down

further on vibrational noise in the imaging system. To make room for the camera

optics and to give users much-needed room underneath the experiment, we will lift the

experiment 4.5" off the table. That also gives more room underneath the translating

dc coils. In the original system, the bottom MOT beam clipped on the magnetic

coils, which we will now be able to avoid.

Good progress towards the complete V1 apparatus is being made. We expect to

have a working interferometer in the next few months. With that setup, we expect

the phase sensitivity to be 100 mrad ⋅ s1/2. In the next twelve months we expect

to have the compact CQ system in-hand, which should provide phase sensitivity of

30 mrad ⋅ s1/2. In conclusion, the work described in this thesis was the first step

towards a matter-wave rotation sensor with useful performance standards.
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A � Twitch routines

This chapter is included for readers interested in a detailed understanding of the ro-

tation measurement. Twitch is the name of Casslab’s homebuilt GUI, which compiles

all experimental scripts. Compiled routines are then run by the Adwin II computer,

which controls a number of experimental hardware, with the ability to simplify scripts

with precompiled subroutines. Other experimental hardware, viz. the two cameras

and the RF function generator, are controlled by a different program called Comman-

der via rs232 commands in Twitch. Commander routines are all contained in a file

named “evap.txt,” which lives in the same directory as Commander. These are called

by Twitch as “rs232 x," where x is a roman letter. Twitch also has the three inputs,

which are used to interlock the beginning of the experiment to the MOT level, and

to sync the experiment with the rising edge of the bias field to ensure the trap fields

are consistent run-to-run.

The structure of each Twitch file has three components. From left to right, each

line of the experiment has the duration of the step, the digital channels, then eight

analog channels. For subroutines, rs232 commands, and digital inputs, the line simply

lists the name of step. For analog channels, quotation marks (") are used when there

is no change from the previous line. Quotation marks are also used in the digital
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channels for the same purpose, but digital channels can be added or subtracted. If

the duration of the experimental step includes r, that indicates there is an analog

voltage that is ramped linearly from its previous value.

A.1 ADWIN

There are 24 digital channels with BNC outputs. Each channel has a three-position

switch. When left in the center position, the output is controlled by the Twitch

file. The other two positions are used to override Twitch to force the channel low or

high. Note that all shutters listed are set such that high corresponds to the shutter

being open to allow light through. There are eight analog outputs, labeled here as

V1 through V8. They can supply a voltage ∣V ∣ ≤ 10. There are three digital inputs.

Those are used to trigger the experiment with three different external timebases.
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A.1.1 Digital inputs

a Track Low: MOT side, high: Science side
b Bias field
c DC quadrupole IGBT
d MOT shutters
e General trigger
f (Broken)
g Pump AOM
h Master shutter
i MOT AOM Normally high
j EOM digital 1 j = MOT, jk = CMOT, k = pumping
k EOM digital 2
l Pump shutter
m
n Linear actuator trigger
o
p Probe shutter
q
r
s x Bragg shutter
t y Bragg shutter
u
v Waveguide digital control
w Camera triggers
x rs232 TX transmits rs232 data
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A.1.2 Analog outputs

1 2× AOM frequency 19.5 MHz/V/pass; 0 V ↔ 45.9 MHz
2 Quadrupole current control -0.02 V ↔ 0 A, 10 V ↔ 750 A
3 Bragg AOM
4 Probe AOM
5 x Bias amplitude modulation -5 V ↔ off, 5 V ↔ on
6
7 Waveguide bias amplitude
8 Waveguide quadrupole amplitude

A.1.3 Inputs

Event in loadMOT interlock resets to 90% of the current MOT level
DIO 24 rs232 rx receives rs232 data
DIO 25 sync25 60 Hz sync
DIO 26 sync26 x bias field sync

A.2 Dual Sagnac interferometer

This is the full routine for dual Sagnac interference measurement. Variables are listed
as they are in the text of this thesis in lieu of experimental values. In particular, the
time between the splits, t1, and the interferometer time t2, are spread across two or
three steps. That is done to ensure the shutters are closed for as long as possible to
avoid leakage light. The last step, twait, is the time between runs, which is normally
around 60 seconds to allow the waveguide to cool down. Note that the linear actuator
causing the table to rotate is triggered in the Loadguide subroutine.
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Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

loadMOT
Setup
MOT
Pumping
Magtrap
Movetrap_BEC
Evaporate
Loadguide
5 "+t " " 0 " " " " "
Y_split
t1 − 5 "+t " " 0 " " " " "
5 "+s-e " " " " " " " "
X_split
t2 − 15 "-s " " 0 " " " " "
10 "+w " " " " " " " "
5 "+s " " " " " " " "
X_split
7 "-s " " 0 " " " " "
Imaging
MOT_reset
twait " " " " " " " " "

A.2.1 Pumping

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

1 cdhije 0 0.25 0 0 0 0 0 0
10r "+k 1.2 " " " " " " "
0.001 " " " " " " " " "
8 "-c " 0 " " " " " "
2 "-d+l " " " " " " " "
0.5r "+b-j 0.1 " " " " " " "
0.5 bghlk " " " " " " " "
0.001 "-g-l-k " " " " " " " "
1r " 0 " " " " " " "
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A.2.2 Magtrap

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

40 cb 0 2.5 0 0 5.0 0 0 0
0.01 "+i " " " " " " " "
200r " " 10 " " " " " "

A.2.3 Movetrap_BEC

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

2000 cai " " " " " " " "

A.2.4 Evaporate

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

rs232 b
rs232 O
sync25
sync26
100 "+v " " " " 4.5 " " "
1000 "+i " " " " " " 10 "
300r " " " " " " " 8 "
4993r " " " " " " " 3.05 "
rs232 c
rs232 O
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A.2.5 Loadguide

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

sync25
sync26
0.001 " 0 10 0 0 4.5 0 3.05 0
200r " " 8 " " 2.0 " " 7.5
200r " " 5 " " " " " 7.5
400r " " 1.5 " " " " " 7.5
1500r " " 1 " " " " " 8
2000r " " 0.7 " " " " 1 8.25
2000r " " 0.1 " " " " " 8.5
3000r " " 0.01 " " " " " 8.75
3000r " " -0.02 " " " " " "
150 "+n " " " " " " " "
10 "-n " " " " " " " "

A.2.6 X_split

This is the subroutine that is used to split the condensate along x̂, following the
three-step splitting procedure in [42]. The fidelity of the split is adjusted with Vx1

and Vx2 such that all the atoms in are moved into the momentum states. The x Bragg
shutter is opened and closed in the main routine.

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

0.02168 " " " Vx1 " " " " "
0.03644 " " " Vx2 " " " " "
0.02168 " " " Vx1 " " " " "

A.2.7 Y_split

This is largely the same as the previous subroutine. The AOM voltages Vy1 and Vy2

are different from those for the x-split, but are optimized for ideal splitting along ŷ.
Again, the shutter is opened and closed in the main routine.
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Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

0.02168 " " " Vy1 " " " " "
0.03644 " " " Vy2 " " " " "
0.02168 " " " Vy1 " " " " "

A.2.8 Imaging

This is the imaging subroutine. After the waveguide is turned off, the cloud undergoes
ballistic expansion on the fifth line, which is normally set to zero. On lines seven and
ten, the atoms image and the no-atoms image are taken, respectively. The Probe
AOM voltage Vprobe sets the amount of light in each image.

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

0 " 0 -0.02 0 0 2 0 1 8.75
0.05r " 0.5 " " " 2.0 " " 0
0.05r " 0.5 " " " 2.0 " 0 "
0.1 "-c-v 0.5 " " " 2.0 " " "
0 " " " " " " " " "
5 "+h-i+p " " " " " " " "
0.05 " " " " Vprobe " " " "
100 "-h+i-p " " " 0 " " " "
5 "+h-i+p " " " " " " " "
0.05 " " " " Vprobe " " " "
5 "-h-i-p+j " " " 0 " " " "
4000 " " " " " " " " "

A.2.9 MOT_reset

Time /
Routine Digitals V1 V2 V3 V4 V5 V6 V7 V8

40 cb 0 2.5 0 0 5.0 0 0 0
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