
Probabilistic Modeling and Analysis Methods for
Large-scale Data Compression

Hao Lou

Department of Electrical and Computer Engineering
University of Virginia, Charlottesville, USA

haolou@virginia.edu

A dissertation presented to
the Faculty of the School of Engineering and Applied Sciences

at the
University of Virginia

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

in
Electrical Engineering



Contents

I Introduction 5

I-A Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I-B Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

II An Information-theoretic Analysis and Methods Development for Data Deduplication 6

II-A Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II-B Models & Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II-B1 Source model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II-B2 Source models with random substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II-B3 Deduplication Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

II-C Performance of Algorithms over Source Model I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II-D Performance of algorithms over source Ib(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II-D1 Deduplication in the fixed-length scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II-D2 Deduplication in the variable-length scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II-E Deduplication over source If (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II-E1 Variable-length deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II-E2 Multi-chunk deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II-F Data deduplication from the point of view of universal compression . . . . . . . . . . . . . . . . . . . . . . . 39

II-F1 The general universal compression framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II-F2 Universal compression of iid sources over patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

II-F3 Universality of constrained compressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

II-F4 Universal compression of patterns under constraint C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II-F5 Universal compression of patterns under constraint C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

II-F6 A Low-complexity sequential compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II-G Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II-G1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II-G2 Rabin-based chunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II-G3 Encoding schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

II-G4 Experiment results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III Analysis of Genomic Sequence Data via an Evolutionary Model 53

III-A Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III-B Stochastic String System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III-C Stochastic Approximation for Duplication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1



2

III-C1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III-C2 Stochastic Approximation in Duplication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

III-D Asymptotic Analysis of k-mer Frequencies and Entropy in Tandem Duplication and Substitution Systems . . . 58

III-D1 Frequencies of 1-mers in the TDS system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

III-D2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

III-D3 Evolution of k-mer Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III-D4 ODE and the Limits of Substring Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

III-D5 Bounds on Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

III-E Finite-time Analysis of k-mer Frequencies and Waiting Time in Noisy Tandem Duplication Systems . . . . . 66

III-E1 Evolution of k-mer frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III-E2 First-moment trajectories of k-mer frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III-E3 Second-moment trajectories of k-mer frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

III-E4 Bounding waiting times by first- and second-moment trajectories . . . . . . . . . . . . . . . . . . . . . 69

IV Conclusion 72

Appendix 77

A Deduplication over Ib(δ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A1 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A2 Proofs of Lemma 9 and Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A3 Proofs of Lemma 19 and Lemma 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A4 Proof of Lemma 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A5 Proofs of Lemma 22 and Lemma 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A6 Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B Additional experiments on deduplication algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Asymptotic Analysis of k-mer Frequencies and Entropy in TDS systems . . . . . . . . . . . . . . . . . . . . . 89

C1 Proof of Theorem 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C2 Proofs of Lemmas 47, 48 and 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

C3 Proof of Theorem 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C4 Proof of Theorem 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C5 Proof of Theorem 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D Finite-time Analysis of k-mer Frequencies and Waiting Time in NTD Systems . . . . . . . . . . . . . . . . . 98

D1 Proof of Theorem 55 (sketched) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

D2 Proof of Theorem 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D3 Bounds on the eigenbasis representation coefficients when Ak is undiagonalizable . . . . . . . . . . . 100

D4 Proof of Lemma 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



3

D5 Proof of Theorem 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

D6 Proofs of equations (393) and (394) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



4

Abstract

As a result of the rapid increase in the size of digital data, addressing current data storage needs
and provisioning for future growth have become challenging tasks. Data stored in computing
systems however is redundant, with blocks that are repeated one or more times, such as an image
embedded in multiple documents. Data deduplication, which eliminates redundant data at the file
or subfile level, has gained increasing attention and popularity in large-scale storage systems.

However, there are significant shortcomings in the current approaches to deduplication, which
are mainly due to the lack of a mathematical framework and analytical methods. In particular,
our knowledge of the fundamental limits of data deduplication is severely limited. Information-
theoretic analysis of data deduplication has only been considered by a limited number of works.
Moreover, in these works, deduplication algorithms are evaluated over information sources with
known statistical properties. While in reality, given a particular data sequence, we rarely know the
specific distribution of the source producing it. In this dissertation, we study data deduplication
theoretically by developing and analyzing different models for information sources and various
deduplication algorithms as well as their performance evaluated over source models. Moreover, we
extend the study of data deduplication to the context of universal compression, where we assume
only a family of distributions to which the source distribution belongs is known, by drawing
equivalence between encoding chunks and the problem of encoding pattern sequences.

One of the significant contributors to the increase in the size of digital data is genomic sequenc-
ing data, which is growing at a rate much faster than the decrease in the cost of storage media due
to development of high-throughput sequencing methods. Hence, developing compression methods
tailored to genomic data can be effective in addressing data storage challenges. Developing and
leveraging models for biological processes that generate this type of data are also crucial steps
in this direction. Biological sequences are created over billions of years by mutation processes
that shape their statistical properties. In this dissertation, we present a framework of modeling
biological sequences as outcomes of such evolutionary processes driven by random mutations.
The statistics k-mer frequencies are studied both asymptotically and in finite-time. Based on these
findings, the entropy of evolutionary processes is bounded, thus providing an lower bound for
compression tasks. Additionally, estimates for waiting times problems, with potential applications
to study of diseases such as cancer, are derived.



5

I. Introduction

A. Motivation and Overview

The ubiquity of mobile and embedded devices with a multitude of sensors and the universal integration of computing devices
in personal life and corporate workflows have substantially increased our ability to produce and collect data. The amount of
data created or copied globally in 2020 is estimated to be around 60 Zettabytes (1 ZB = 1012 GB), and predicted to double
every three years [88]. Storage of such vasts amount of data is costly and resource-intensive. For example, data centers alone
account for about 1% of the world’s electricity usage [68], which demonstrates the large scale of the problem. As a result of
this ‘data deluge’, addressing current data storage needs and provisioning for future growth have become challenging tasks.

It is however estimated that only a tenth of digital data is unique and the rest are all duplicates. On a single desktop computer,
the amount of unique data is found to be between 1/10 and 1/3 of the total amount of data [70]. Data deduplication, which
is part of the focus in this dissertation, is a particular form of data compression used in large-scale storage systems to reduce
redundancy [75], [85]. Data deduplication divides the input data stream into chunks and compresses the data by replacing
repeated chunks with pointers to their earlier occurrences. Compared to conventional data compression, which usually applies
to a single file, deduplication is especially effective for handling large volumes of data. Deduplication gain, i.e., the factor by
which deduplication reduces the size of the data, is found to be between 3 and 10 for data stored on desktop computers [70].

While extensively studied in practice, data deduplication is considered from an information-theoretic point of view by only
a limited number of works [62], [64], [77], where [62] and [64] are our prior works. Without mathematical frameworks and
analytical methods, our knowledge of the fundamental limits of data deduplication is severely limited. Given a probabilistic
representation of the data, we do not know what the best possible deduplication gain is. We thus cannot evaluate deduplication
algorithms against what may be achieved and lack the road map for designing optimal algorithms with performance guarantees.
Therefore, in this dissertation, we aim to develop a flexible mathematical modeling framework for data deduplication. In
Section II, a detailed discussion about the existing works [62], [64], [77] will be presented, where varieties of source models
are proposed and deduplication algorithms are evaluated over the source models with the source entropy being the baseline.

In addition to developing general models for repeat-rich data, this dissertation focuses on tailor-made modeling of a specific
form of data: genomic sequence data. In the past two decades, genomic sequence data is also growing at a fast rate with
the development and the increasing availability of high-throughput sequencing tools. The cost of sequencing a human-sized
genome has fallen from $100M in 2001 to just over a $1000 in 2015 [76]. At the same time, the utility of DNA sequence data
has become more evident in various fields, from phylogenetics to immunology to precision medicine. A single genetics study
can produce TBs of genome sequencing data [39]. Compression and storage of biological data also benefit from developing
and leveraging models of biological processes that generate this type of data. Biological sequences are created over billions of
years by mutation processes, including substitution, insertion, deletion, and duplication, which fuel evolution. These processes
shape the statistical properties of sequence data and play a critical role in determining the efficacy of compression algorithms.
In Section III, we present results from prior works [61], [63] where genomic sequences are modeled as outcomes of random
evolutionary processes driven by mutations. In particular, among various types of mutations, duplication is particularly interested
as it is hypothesized to be the primary mechanism that initiates the creation of new genetic material [79]. Through the study
of the statistics k-mer frequencies, results about the evolutionary process entropy and string waiting times are derived in [61]
and [63], respectively.

B. Background

Reducing the size of data is an old problem that arises both in communications and data storage. One of the most common
approaches to this problem is lossless data compression, which we will discuss first in order to introduce fundamental concepts
from information theory. Data compression decreases the size of the data by representing common elements with short bit strings
and uncommon elements with longer ones. As an example, consider English text, which for simplicity we assume to consist
only of capital letters and space. Since there are 27 possible symbols, we can represent each with a unique binary sequence
of length 5 (there are 32 binary sequences of length 5). However, this is not efficient. If we assign shorter representations to
more common letters, e.g., represent ‘e’ by ‘10’ and ‘q’ by ‘000101’, on average, we can use a smaller number of bits per



6

alphabet symbol. The central question of data compression is that, given a source of information such as text, speech, or data
collected by a sensor, what is the shortest possible representation?

A framework for finding the answer to this question is provided by information theory, founded by Claude Shannon [97].
Mathematically, the information source is viewed as a random process. For example, a simple model of English text can be
obtained by repeatedly choosing letters of the alphabet at random, with probabilities determined by their frequencies [97]. In
other words, text is modeled as a sequence of independent and identically distributed random variables. For a random variable
X with distribution p, the entropy H(X) is defined as

H(X) =
∑
x

p(x) log
1

p(x)
.

One of the major results in information theory, called the source coding theorem, states that the average number of bits required
to represent each of the outcomes in a sequence of trials cannot be less than the entropy. Furthermore, there exists an encoding
scheme, i.e., a mapping between outcomes and binary sequences, that achieves the entropy lower bound. Based on this simple
model, the entropy of English is approximately 4 bits/letter and no compression method can achieve a better average rate.
(This model is of course too simple to provide accurate results. More accurate models based on Markov processes provide
estimates of about 2 bits/letter.)

In practice, it is often the case that we do not know the distribution of the information source that generates data. What
we are given is just an individual outcome, e.g., text or music. If we do not put any restrictions on the class of algorithms,
then we can always compress a particular sequence to just one bit and this is clearly ‘overfitting’. A common assumption
in such situations is to assume a family P of distributions to which the information source belongs. For instance, P can
be the collection of iid [21], [82], [95], [96] or Markov [20], [45], [46] sources. The question ‘how well can we compress
the sequence’ thus becomes how many bits will we waste if our guess about the true distribution is not correct. This is the
universal compression framework. A good compressor needs to have ‘universality’ over every possible source in the family,
unlike the extreme case where only a particular sequence is compressed to 1 bit. Another challenge that we face in practice is
the unknown/large alphabet. Given information sources like texts, the underlying alphabet can be of large size. In applications
like data deduplication, the number of possible units is even infinity. Computational issues occur in such large alphabet scenario
and conventional results assuming fixed alphabet size often do not apply. A solution is to consider compressing the pattern
sequences under the universal compression framework. Formal notions and definitions about universal compression and patterns
will be introduced in Section II-F.

II. An Information-theoretic Analysis and Methods Development for Data Deduplica-
tion

Data deduplication is an efficient data reduction approach that reduces storage space by eliminating duplicate data [70], [99],
[111]. It is usually used in large-scale storage systems, e.g., LBFS (low-bandwidth network file system) [75] and Venti [85].
A typical chunk-level data deduplication system uses a chunking scheme to parse the data stream (e.g., backup files, database
snapshots, virtual machine images, etc) into multiple data ‘chunks’ that are each associated with a hash signature, also called
a fingerprint. These chunks can be fixed in size [85] or of variable sizes determined by the content itself [75]. Deduplication
only stores the unique chunks on disk. It also records the list of constituent chunks in metadata that will be used to reconstruct
the original file. A typical mathematical abstraction of data deduplication algorithms can be described as follows [77]. After
parsing the data stream into chunks, a sequential processing scheme is performed over them. If a chunk is new, then it is
encoded by a bit 1 followed by the chunk itself. If a chunk has appeared before, it will be replaced by a bit 0 followed by a
pointer to its first appearance. For example, if the data stream 0100001011 is parsed as 01, 000, 01, 011, then it is encoded by
101|1000|00|1011.

Conventional data compression approaches, such as LZ77/LZ78 [117], [118], LZW [113], LZO [78] and DEFLATE [22],
only identify redundancy for short strings (e.g., 16B) and compress data in a much smaller region, e.g., a single file or multiple
small files, due to their time and space complexity. For large-scale storage systems, data deduplication is more scalable and
efficient than traditional compression algorithms. Deduplication eliminates redundancy at the chunk- (e.g., 8KB) or file-level.



7

Deduplication systems identifies duplicate content (files or chunks) by its hash-based fingerprints which is of size order of
magnitude smaller than that of the original data and thus saves storage space.

As mentioned, files or data streams are divided into small data chunks so that each can be fingerprinted. The simplest
chunking approach is to cut the file/data stream into equal, fixed-sized chunks, referred to as fixed-size chunking (FSC). In
FSC, if a part of a file or data stream, no matter how small, is modified by the operation of insertion or deletion, not only
is the data chunk containing the modified part changed but also all subsequent data chunks will change. This is because the
boundaries of all these chunks are shifted. This can cause identical chunks (before modification) to be completely different,
resulting in a significantly reduced duplicate identification ratio of FSC-based data deduplication. To address this boundary-shift
problem [52], [85], the content-defined chunking (CDC) is more widely adopted. CDC uses a sliding-window technique on
the content of files and computes a hash value. A chunk breakpoint is determined if the hash value of this sliding window
satisfies some predefined condition and hence modification does not affect subsequent chunks. An an example, the Rabin
algorithm [86] is currently widely used in computing the hash value of the sliding window for CDC.

Data chunks are fingerprinted and this technique largely simplifies the process of duplicate identification. In conventional
data reduction approaches (such as LZ compression [118] and Xdelta [65]), the duplicates are first matched by their calculated
weak hash digest and then further confirmed by a byte-by-byte comparison. In data deduplication systems, the duplicates are
completely represented by their cryptographic hash-based fingerprints (e.g., SHA1, SHA256) and the matched fingerprints
mean that their represented contents are, with high probability, identical to each other. The probability of a hash collision
when data deduplication is carried out in an EB-scale storage system, based on the average chunk size of 8 KB and finger
prints of SHA1, is smaller than 10−20 [114]. In contrast, in computer systems, the probability of a hard disk drive error is
about 10−12 ∼ 10−15 [93], which is much higher than the aforementioned probability of SHA1-fingerprint collisions in data
deduplication. Consequently, SHA1 has become the most wildly used finger- printing algorithm for data deduplication because
most existing approaches, such as LBFS [75], Venti [85], and DDFS [115]. More recently, stronger hash algorithms, such
as SHA256, have been considered for fingerprinting in some data deduplication systems to further reduce the risk of hash
collision.

Data deduplication has been studied extensively practically. Microsoft [70], [99] and EMC [98], [111] analyzed workloads
of primary and secondary storage systems and showed that deduplication schemes effectively reduced redundancy. Varieties of
chunking methods are proposed and studied [32], [52], [75]. Methods for efficient indexing of fingerprints are studied in [7],
[58], [115]. Applications of data deduplication in cloud storage to save network bandwidth and accelerate synchronization are
discussed in [24], [25], [110].

However, due to the lack of a mathematical framework and analytical methods, our knowledge of the fundamental limits of
data deduplication is severely limited. Given a probabilistic representation of the data, we do not know what the best possible
deduplication gain is. We thus cannot evaluate deduplication algorithms against what may be achieved and lack the road map
for designing optimal algorithms with performance guarantees. Therefore, an information-theoretic analysis of deduplication
algorithms is important.

The first information-theoretic analysis of data deduplication was conducted by Niesen [77]. The performances of three
deduplication algorithms FLD, VLD and MCD, with formal definitions given in Section II-B3, were studied over a source
model which produces data streams that are composed of blocks with each block being an exact copy of one of the source
symbols, where the source symbols are pre-selected strings. We state Niesen’s results as a preliminary in Section II-C.

It is often the case, however, that the copies of a block of data that is repeated many times are approximate, rather than
exact. This may occur, for example, due to edits to the data, or in the case of genomic data1, due to mutations. Therefore,
in [64] and [62], the problem of deduplication when the repeats are approximate is was considered. In particular, in [62], data
deduplication algorithms are analyzed over source models with probabilistic edits. For the fixed-length chunking scheme, three
algorithms: a generalization of FLD [77] named modified fixed-length deduplication (mFLD), a variant of mFLD named
adaptive fixed-length deduplication (AFLD), and the edit-distance deduplication (EDD), are presented and analyzed. Due
to the boundary-shift problem, algorithms in the fixed-length scheme are studied over the source model where all source
symbols have the same length. It was shown that for mFLD, if the chunk length is not properly chosen, the average length
of the compressed strings is greater than source entropy by an arbitrarily large multiplicative factor for small enough edit

1Repeats are common in genomic data. For example, a majority of the human genome consists of interspersed and tandem repeated sequences [53].



8

probability. Meanwhile, AFLD and EDD take source model parameters into account and are shown to have performances
within a constant factor of optimal. For the variable-length scheme, a general scenario where source symbols are of random
lengths are considered. It is shown that VLD can achieve large compression ratios relative to the length of the uncompressed
strings. Results derived over this probabilistic edit model are presented in Section II-D

While [62] extended the information-theoretic analysis of data deduplication to approximate repeats, the studied model has
entropy linear in the length of the uncompressed string and the gain in compression is at best a constant factor. This makes
compression less challenging and the distinction between the performance of compression methods less clear. In [64], each
source block is assumed to contain a constant number of substitutions (randomly distributed) instead of iid bit flips, leading to
the entropy being of smaller order than the length of the uncompressed string and thus high compression ratio can be achieved.
Moreover, [64] also studied the MCD algorithm proposed by [6], which has not studied before in models with edits. Results
derived over the source model with a constant number of substitutions are presented in Section II-E.

In Section II-F, we present a study of data deduplication under the framework on universal compression. Classic universal
compression [81], [90], [95], [101], [103] considers encoding sequences generated by sources with a known alphabet. In
particular, In

k , the class of iid distributions of length-n sequences over an alphabet of size k is considered. The worst case
and average case redundancy were determined for different values of k, e.g., when k = o(n), it was shown that R̂(In

k ) and
R̄(In

k ) are both dominated by k−1
2 log

(
n
k

)
. However, in applications like language modeling, alphabets can be very large or

even unknown. To address this problem, [82] took an approach of describing the sequences in two separate parts: the symbols
appeared and the pattern they form. The pattern of a sequence is the sequence of integers representing orders in which the
symbols appear. For example, the pattern of the sequence “lossless” is “12331433”. The encoding of sequence “lossless” thus
consists of the encoding of appeared symbols ‘l’, ‘o’, ‘s’, ‘e’ (ordered), and the pattern “12331433”.

Data deduplication is an application of this encoding scheme [58], [115]. Recall that if a chunk is new, then it is encoded
by a bit 1 followed by the chunk itself; if a chunk has appeared before, it will be replaced by a bit 0 followed by a pointer
to its first appearance. The above algorithm adopts the separate encoding scheme with chunks viewed as new unit ‘symbols’.
Unique chunks are stored in full, corresponding to storage of symbols. The one-bit indicators and pointers are independent
of the actual content of chunks, corresponding to encoding of the pattern. Due to the scale of data, encoding schemes in
deduplication algorithms are of low complexity. As described, every chunk is encoded by an indicator followed by a pointer if
it has appeared before. To keep the whole process simple, the pointer is encoded by number of bits equal to log of the number
of distinct chunks seen before. Therefore, the only information needs to be kept in memory is the collection of chunks that
have previously appeared and the computation is simple as all chunks appeared before are viewed as equally likely. However,
pattern compressors that were shown in [82], [96] to have performance close to optimal need to store how many times symbols
appear so that frequent integers get short representation. So relatively higher computation complexity is required.

A. Preliminaries and Notation
We consider the binary alphabet {0, 1}, denoted Σ. The set of all finite strings over Σ (including the unique empty string)

is denoted Σ∗. A j-(sub)string is a (sub)string of length j. For a non-negative integer m, let Σm be the set of all strings of
length m over Σ. For strings u,v ∈ Σ∗, the concatenation of u and v is denoted uv, and the concatenation of i copies of u
is denoted ui. We denote the substring of length ℓ starting from the j-th symbol of u by uj,ℓ, which is also referred to as the
j-th ℓ-substring of u. The length of u is denoted |u|. The cardinality of a set S is also denoted |S|. For a set T of strings, u
is said to be a substring of T if u is a substring of one or more strings in T .

All logarithms are to the base 2. For 0 ≤ p ≤ 1, H(p) denotes the binary entropy function: p log
(

1
p

)
+ (1− p) log

(
1

1−p

)
.

For 0 ≤ p, q ≤ 1, H(p, q) denotes the cross entropy function: p log
(

1
q

)
+ (1 − p) log

(
1

1−q

)
. For an event E , we use Ē to

denote its complement and use IE to denote the indicator variable for E , which takes value 1 when E is true, and 0 otherwise.
The following inequalities are used frequently: for x ∈ (0, 1) and a positive integer n,

1

2
min(1, nx) ≤ 1− (1− x)n ≤ min(1, nx). (1)

A binary string is k-runlength-limited (k-RLL) [67] if it does not contain k consecutive zeros, i.e., all runs of zeros in the
string are of lengths less than k. We denote the set of binary k-RLL strings by Rk and denote the set of binary k-RLL strings
of length n by Rn

k . The following lemma provides bounds on the size of Rn
k .



9

Lemma 1. Let k be a positive integer. The number of binary k-RLL strings of length n, |Rn
k |, satisfies

(2− 1

2k−2
)n ≤ |Rn

k | ≤ 2(2− 1

2k
)n. (2)

Proof: Clearly, if 0 ≤ n ≤ k− 1, then any string of length n is a k-RLL string (we consider the empty string as the only
string of length 0). Therefore, for all 0 ≤ n ≤ k − 1,

|Rn
k | = 2n ≥ (2− 1

2k−2
)n, (3)

and

|Rn
k | = 2n = 2n+12−1 ≤ 2n+1(1− 1

2k+1
)k−1 ≤ 2n+1(1− 1

2k+1
)n = 2(2− 1

2k
)n. (4)

For n ≥ k, we prove the lemma by induction on n. Suppose the desired results hold for all n′ < n. It is shown in [94,
Chapter 8] that

∣∣RN
k

∣∣ =∑k
i=1

∣∣RN−i
k

∣∣ for all N ≥ k. Therefore,

|Rn
k | =

k∑
i=1

∣∣Rn−i
k

∣∣ ≥ k∑
i=1

(2− 1

2k−2
)n−i =

(2− 1
2k−2 )

n − (2− 1
2k−2 )

n−k

1− 1
2k−2

(5)

=

(
2− 1

2k−2

)n

+
(2− 1

2k−2 )
n−k2k

2k−2 − 1

(
(1− 1

2k−1
)k − 1

4

)
≥ (2− 1

2k−2
)n, (6)

and

|Rn
k | =

k∑
i=1

∣∣Rn−i
k

∣∣ ≤ k∑
i=1

2(2− 1

2k
)n = 2

(2− 1
2k
)n − (2− 1

2k
)n−k

1− 1
2k

(7)

= 2(2− 1

2k
)n +

2(2− 1
2k
)n−k

1− 1
2k

(2− 1
2k

2

)k

− 1

 ≤ 2(2− 1

2k
)n. (8)

By Lemma 1, we bound the number of binary k-RLL strings of lengths at most 2k in the following corollary.

Corollary 2. The number of binary k-RLL strings of lengths at most 2k satisfies

2k∑
n=0

|Rn
k | ≥

2k∑
n=0

(
2− 1

2k−2

)n

≥ 22
k−2. (9)

Sequences and patterns
Let xn = x1x2 · · ·xn be a sequence of n symbols. We use |xn| to denote the length and use N(xn) to denote the number

of distinct symbols in xn. We define the index ι(x) of x to be one more than the number of distinct symbols preceding x’s
first appearance in xn. The pattern of xn is defined as the sequence of indexes, i.e.,

Ψ(xn) = ι(x1)ι(x2) · · · ι(xn). (10)

As an example, in the sequence “abacbbc”, ι(a) = 1, ι(b) = 2, ι(c) = 3, and hence,

Ψ(abacbbc) = 1213223. (11)

In the following, we use ψ to denote a generic pattern. Elements in patterns are referred to as index integers.
We consider a discrete alphabet A of size k. Let An denote the set of all sequences of length n over A and let Ψ(An)

denote the set of patterns of all sequences in An, i.e,

Ψ(An) = {Ψ(xn) : xn ∈ An}. (12)

It is clear that Ψ(An) is the same for any alphabet A of size k. It contains all patterns of length n and at most k distinct



10

index integers. So we will write Ψn
≤k instead. For example, if k = 2 and n = 3, then

Ψ3
≤2 = {111, 112, 121, 122}. (13)

Let Ψn
k denote the set of patterns of length n and with exactly k distinct index integers. It follows that

Ψn
≤k = ∪k

m=1Ψ
n
m. (14)

For a pattern sequence ψ, the profile of ψ is a vector of length |ψ|, defined as

Φ(ψ) =
(
φ1, φ2, . . . , φ|ψ|

)
, (15)

where φj is the number of index integers that appear j times in ψ. For example, in pattern 12131, one integer (which is 1)
appears 3 times and two integers (which are 2 and 3) appear once, so Φ(12131) = (2, 0, 1, 0, 0).

Moreover, we define the innovation vector Λ(ψ) of ψ to be the vector containing indexes of new symbols. Formally,

Λ(ψ) = (λ1, λ2, . . . , λN(ψ)), (16)

where λj is the index of the first occurrence of integer j. For example, in pattern 12131, integers 2 and 3 first appear at
positions 2 and 4, respectively. So Λ(12131) = (1, 2, 4). Note that we always have λ1 = 1. We use Λn

k to denote the set of
innovation vectors of all patterns in Ψn

k , i.e.,

Λn
k = {Λ(ψ) : ψ ∈ Ψn

k}, (17)

and write Λn
≤k = ∪k

m=1Λ
n
m.

B. Models & Algorithms
In this section, we introduce source models and algorithms for data deduplication.
1) Source model I
In [77], data in storage systems is modeled as a concatenation of blocks with each block being an exact copy of one of

the source symbols, where the source symbols are pre-selected strings. Specifically, the information source I is modeled as
follows. From a fixed distribution Pl over positive integers, A iid numbers are first drawn, denoted L1, . . . , LA. A source
alphabet X = {X1, . . . ,XA} which contains A binary strings is then generated: starting from a = 1, Xa is uniformly randomly
chosen from the set {0, 1}La \ {X1, . . . ,Xa−1}. The output data string S is then a concatenation of B iid samples from X ,
i.e., S = Y1 · · ·YB , where each Yb is selected uniformly from X and independent from the others. Strings Y1, . . . , YB are
referred to as source blocks. The entropy of source I is denoted H(I). For simplicity, the length distribution Pl is assumed
to be concentrated around the mean, specifically, PL(L/2 ≤ l ≤ 2L) = 1 where L is the mean.

Example 1. Assume the source alphabet is randomly generated as X = (1, 00, 01100, 001100). From this, B = 2 elements
are drawn iid uniformly at random, say Y1 = 10 and Y2 = 01100. The resulting source sequence is then s = Y1Y2 = 1001100.
Note that given s alone, the boundary between 10 and 01100 can not be observed.

2) Source models with random substitution
The source model Ib(δ) proposed in [62] extends I by allowing probabilistic substitutions. The output data stream s is a

concatenation of approximate copies of source symbols. The A source symbols, denoted X1,X2, . . . ,XA, are iid binary strings
generated in the following way. Again, fix a length distribution Pl over positive integers with mean L. For each 1 ≤ a ≤ A,
we draw La from Pl and draw Xa uniformly from ΣLa . It is important to note that, as a result of sampling with replacement,
the source symbols are distributed uniformly and independently. The probability that (X1, . . . ,XA) = (x1, . . . ,xA) given the
lengths La is

∏A
a=1

1
2La

, for any set of strings (xa) where xa has length La. So the same sequence can be drawn multiple
times as source symbols. The draws are treated as separate symbols, but with the same content. We use X to denote the source
symbol alphabet, i.e., X = {X1,X2, . . . ,XA}. The alphabet is thus a multiset. To simplify some of the derivations, we adopt
the same assumption that Pl is concentrated around its mean, specifically, Pl(

L
2 ≤ l ≤ 2L) = 1.

After generating the source symbols X1,X2, . . . ,XA, we generate an iid sequence of length B, denoted Y1, . . . , YB , where
each Yb is an approximate copy of a randomly chosen source symbol. Specifically, for each 1 ≤ b ≤ B, we first pick Jb



11

uniformly at random from {1, 2, . . . , A}. Next, we generate Yb by flipping each bit of XJb
independently with probability δ, as

a way of simulating edits and other changes to the data in a simple manner. The bit flipping process is referred to as a δ-edit.
The data stream s will be a concatenation of Y1, Y2, . . . , YB , i.e., s = Y1Y2 · · ·YB . The approximate copies Y1, Y2, . . . , YB

are referred to as source blocks. The real number δ is referred to as the edit probability. The entropy of this source is denoted
H(Ib(δ)).

Example 2. Following Example 1, X = (1, 00, 01100, 001100) and B = 2. Source strings 10 and 01100 are first chosen and
δ-edits are applied. Possible outcomes could be 11 and 11000, with probabilities δ(1− δ) and δ2(1− δ)

3, respectively. The
output data string s is therefore 1111000.

While Ib(δ) studied probabilistic substitution edits where the total number of edits is linear in the sequence length, [64]
considered the source model If (t) where a fixed number of substitutions occur in each block Yb. After generating the source
alphabet X , we sample B times from X uniformly at random with replacement and get XJ1

,XJ2
, . . . ,XJB

in order. For every
XJb

, we then flip t (t ≤ L/2) symbols uniformly at random. The number of flipped symbols t will be referred to as the
substitution number. The flipped version of XJb

is denoted Yb. The source string s is again constructed to be the concatenation
of source blocks, i.e., s = Y1Y2 . . . YB . The entropy of this source is denoted H(If (t)).

Example 3. Following Example 1, X = (1, 00, 01100, 001100) and B = 2. Source strings 001100 and 01100 are chosen and
t = 2 edits are applied. Possible outcomes could be 101101 and 00000, with probabilities 1/

(
6
2

)
and 1/

(
5
2

)
, respectively. The

output data string s is therefore 00110000000.

Note that in the three source models, the boundaries between source blocks are not known given s. Moreover, the source
models are studied over the asymptotic regime in which B,A,L → ∞ while the edit probability δ and substitution number
t remain constants. The following Lemmas bounds the source entropy of Ib(δ) and If (t), which will serve as fundamental
lower bounds on the performance of deduplication algorithms.

Lemma 3 ([62]). As B → ∞, the entropy of the source model Ib(δ) satisfies

H(δ)BL ≤ H(Ib(δ)) ≤ H(δ)BL+B logA+A(2L+ 1). (18)

Proof: For the lower bound,

H(Ib(δ)) ≥ H(Ib(δ)|XJ1 , . . . ,XJB
) =

B∑
b=1

H(Yb|XJb
) = H(δ)BL. (19)

For the upper bound,

H(Ib(δ)) ≤H(Ib(δ)|XJ1
, . . . ,XJB

) +H(XJ1
, . . . ,XJB

|X ) +H(X ) (20)

≤H(δ)BL+B logA+A(2L+ 1), (21)

where H(X ) ≤ A(2L + 1) follows from the fact that for each Xa, there are at most 22L+1 different possibilities since we
assume La ≤ 2L.

Lemma 4 ([64]). The entropy of the source model If (t) satisfies

B log

(
L/2

t

)
≤ H(If (t)) ≤ B log

(
A

(
2L

t

))
+ (2L+ 1)A.

Proof: For the lower bound,

H(If (t)) ≥ H(If (t)|XJ1
, . . . ,XJB

) = H(Y B
1 |XJ1

, . . . ,XJB
)

=

B∑
b=1

H(Yb|XJb
) ≥ B log

(
L/2

t

)
.



12

For the upper bound,

H(If (t)) ≤ H(Y1, . . . , YB) ≤ H(Y1, . . . , YB |X ) +H(X )

≤ B log

(
A

(
2L

t

))
+ (2L+ 1)A,

where H(X ) ≤ (2L+ 1)A follows from the assumption that Pl(La ≤ 2L) = 1.
3) Deduplication Algorithms
In this section, we formally state the deduplication algorithms which are studied as mathematical abstractions of real-world

deduplication systems. All algorithms are dictionary-based and composed of two stages: chunking and encoding. In particular,
the conventional fixed-length deduplication (FLD), variable-length deduplication (VLD) and multi-chunk deduplication
(MCD) were formalized in [77]. The modified fixed-length deduplication (mFLD) and edit-distance deduplication (EDD) were
proposed and discussed in [62].

In FLD, a chunk length ℓ is fixed. Source string s is parsed into segments of length ℓ, i.e., s = z1z2 · · · zC+1, where |z1| =
|z2| = · · · = |zC | = ℓ, C = ⌊|s|/ℓ⌋. The substrings {zc}C+1

c=1 are collected as deduplication chunks. The encoding process
starts with encoding the length of s by a prefix-free code for the positive integers (such as an Elias gamma code [27]), to
ensure that the whole scheme is prefix-free. The chunks are then encoded sequentially. Starting with c = 1, if chunk zc appears
for the first time, i.e., zc ̸= zi for all i < c, then it is encoded as the bit 1 followed by zc itself and is entered into the
dictionary. Otherwise, when there already exists an entry in the dictionary storing the same string as zc, it will be encoded as
the bit 0 followed by a pointer to that entry. The pointer is an index of the dictionary entries and thus can be encoded by at
most log

∣∣T c−1
∣∣ + 1 bits, where T c−1 denotes the dictionary just after zc−1 is processed. The number of bits FLD takes to

encode s is denoted LF (s). This encoding process is referred to as the dictionary encoding.

Example 4. For s = 0111010 and ℓ = 2, the chunks generated by fixed-length chunking are z1 = 01, z2 = 11, z3 =

01, z4 = 0. The encoding of length |s| = 7 by Elias gamma coding is 00111. Chunks z1, z2 and z4 are new chunks and thus
are encoded as 101, 111, 10, respectively. Chunk z3 is a duplicate of z1. When z3 is processed, the dictionary contains two
strings 01 and 11. So z3 is encoded as 00, where the second 0 represents the first entry of the dictionary. Concatenating all
components, the final encoding of s is 001111011110010. Note that after encoding terminates, the dictionary is the ordered
set {01, 11, 0}.

The modified fixed-length deduplication (mFLD) has the same encoding process as FLD but with a two-stage chunking
process. In mFLD, first, the source string s is parsed into segments of length D, and then, each segment is parsed into chunks
of length ℓ, where ℓ ≤ D. Specifically, the source string s is parsed as

s = x1x2 · · ·xK+1, |x1| = |x2| = · · · = |xK | = D, (22)

where K = ⌊|s|/D⌋ and

xk = z1kz
2
k · · · zN+1

k ,
∣∣z1k∣∣ = ∣∣z2k∣∣ = · · · =

∣∣zNk ∣∣ = ℓ, (23)

with 1 ≤ k ≤ K, N = ⌊D/ℓ⌋ (xK+1 is also parsed in the same way). The number of bits mFLD takes to encode s is denoted
LmF (s).

Note that mFLD is a generalization of FLD since with D = ℓ, mFLD is equivalent to FLD with the same chunk length ℓ.
For FLD to perform well, the source symbols must all have the same length L and the chunk length ℓ must also be chosen
equal to L to maintain synchronization between the chunks and symbols. The generalization to mFLD allows us to maintain
synchronization by setting D = L and frees us to choose other values for ℓ. This flexibility enables us to study the effect of
chunk length, which as we will see, will provide important intuitions for more practical algorithms such as VLD. We will
focus on analyzing the performance of mFLD and report that of FLD as a corollary.

The adaptive fixed-length deduplication (AFLD) is a specialization of mFLD for the source model Ib(δ). Source model
parameters are taken into account by AFLD. Given A,B,L, δ, AFLD is the version of mFLD with chunk length specified as
ℓ =

⌈
log(B/A)
H(γ,δ)

⌉
(ℓ = D if D <

⌈
log(B/A)
H(γ,δ)

⌉
) for some γ ∈ (δ, 1/2). AFLD thus contains two parameters D and γ. Note that

in practice, source model parameters can be estimated from data. We will show later that AFLD is an optimized version of



13

mFLD. The distinction in names is made to emphasize the optimality and also for the convenience of referring to this version
of the algorithm. The number of bits AFLD takes to encode s is denoted LAF (s).

The edit-distance deduplication (EDD) extends FLD by encoding chunks by representing differences compared to chunks
that have appeared before. EDD also takes the source model parameters into account and is only defined for source models
with edit probability δ < 1/4. EDD contains two parameters, chunk length ℓ and mismatch ratio β, where δ < β ≤ 1/4. The
chunking scheme is the same as in FLD, i.e., parsing source string s into chunks of length ℓ, denoted z1, z2, . . . ,zC+1. The
encoding starts with a prefix-free code representing the length of the source string. Next, for each chunk zc, it is encoded as
the bit 1 followed by itself if no chunk has appeared before whose Hamming distance from zc is at most 2βℓ. Otherwise, let
c′ be the smallest index such that the Hamming distance between zc′ and zc is less than or equal to 2βℓ. Chunk zc will be
encoded as the bit 0 followed by a pointer to the dictionary entry where zc′ is stored in addition with the bits describing the
mismatches between zc and zc′ . The mismatches are the indexes of positions in which zc′ and zc differ. Since we restrict the
number of mismatches to be no larger than 2βℓ, the mismatches can be encoded in at most log

(∑⌊2βℓ⌋
i=0

(
ℓ
i

))
+1 ≤ H(2β)ℓ+1

bits. The number of bits EDD takes to store s is denoted by LED(s).
In variable-length deduplication (VLD), a string of length M (we assume 0M ) is fixed to be the marker string. Source string

s is parsed into chunks that end with the marker string. Specifically, the source string s is parsed as s = z1 · · · zC , where each
zc (except for perhaps the last one) contains a single appearance of 0M at the end. We again use z1, . . . ,zC to represent the
chunks. After splitting s into the chunks {zc}Cc=1, the same dictionary encoding process as in FLD is conducted. The number
of bits variable-length deduplication takes to encode s is denoted LV L(s).

Example 5. Consider s = 01101101. VLD, with marker length M = 1, parses s as chunks 0, 110, 110, 1. The length of s is
still encoded by 0001000. Chunks 0, 110, 1 are new and are encoded with 10, 1110, 11, respectively. The second occurrence
of 110 is encoded by a 0 followed by the pointer 1. The final encoding of s is thus 00010001011100111.

In multi-chunk deduplication (MCD), the source string s is again split into chunks by the marker 0M , but with an additional
requirement that chunk lengths are at least 2M−1. We call the chunking process multi-chunking. With an abuse of notation, we
still denote the chunks by Z1, . . . , ZC . The encoding starts with a prefix-free code representing the length of s. Chunks are
encoded sequentially with a growing dictionary. Consider the chunk Zc. We assume first that Zc is new, i.e., it is different from
any previously appeared chunk. Let Vc be the largest integer such that chunks Zc, Zc+1, . . . , Zc+Vc−1 are also new. These new
chunks are bundled up and encoded as the bit 1, followed by an encoding of Vc using a prefix-free code for the positive integers,
followed by the binary string ZcZc+1 · · ·Zc+Vc−1. Moreover, Zc, . . . , Zc+Vc−1 are entered into the dictionary in order. Note
that each of them is identifiable because they end with the marker 0M . On the other hand, assume Zc is not new. Let c̃ < c

be the smallest integer satisfying Zc̃ = Zc. Consider the dictionary entry containing Zc̃ and the list of subsequent entries. Let
Wc be the largest integer such that the first Wc entries in this list are equal to Zc, Zc+1, . . . , Zc+Wc−1. Then the chunks Zc

through Zc+Wc−1 are bundled up and encoded together as the bit 0, followed by an encoding of Wc using a prefix-free code
for the positive integers, followed by a pointer into the dictionary entry containing chunk Zc̃. The expected number of bits for
multi-chunk deduplication to encode s is denoted LMC(s).

C. Performance of Algorithms over Source Model I
In [77], algorithms FLD, VLD and MCD were studied over the source model I. The fixed-length deduplication was analyzed

over a constant source-symbol length , i.e., Pl(l = L) = 1.

Theorem 5 ([77]). Consider the source model I with B source blocks drawn with replacement from the A source symbols of
constant length L. The performance of VLD with chunk length ℓ = L satisfies

1 ≤ E[LF (s)]

H(I)
≤ 1 + 7

B + logL

min{A,B}(L− 1) + max(B −A, 0) log(A/2)
(24)

for B large enough.

In particular, as long as ω(1) ≤ A ≤ (1− ϵ)B for some ϵ > 0, the upper bound in Theorem 5 becomes E[LF (s)] ≤
(1 + o(1))H(I) as B grows, showing the asymptotic optimality of FLD with known and constant source-symbol lengths.



14

However, the assumption that source symbols are of a known fixed length is unrealistic. As soon as this assumption is
relaxed, FLD can be substantially suboptimal, due to the loss of synchronization between source blocks and deduplication
chunks.

Example 6 ([77]). Consider the scenario with A = 2, B = 3, and let the source symbol length distribution Pl assigns equal
mass to the values L and L+ 1. The fixed-length deduplication with chunk length ℓ = L has rate

E[LF (s)]

H(I)
≥ Ω(B) (25)

as B → ∞.

Unlike fixed-length chunking, variable-length chunking utilizes marker sequences to achieve the synchronization of dedu-
plication chunks and source blocks and performs better.

Theorem 6 ([77]). Consider the source model with B source blocks drawn with replacement from the A source symbols of
expected length L. The performance of the variable-length deduplication scheme with optimized marker length M satisfies

1 ≤ E[LV L(s)]

H(I)
≤ 1 +

5B(1 + L) log(BL)(
0,min(A,B)(L− 1) + (B −A)

+
log(A/2)− 2B log(2L)

)+ . (26)

The preceding result is illustrated in the following two examples.

Example 7 ([77]). Following Example 6, consider again the scenario with A = 2 source symbols with symbol-length
distribution Pl assigning equal mass to the values L and L+1, and with B = 3L source blocks. The rate of the variable-length
deduplication satisfies

E[LV L(s)]

H(I)
≤ O

(
log3 B

)
. (27)

Thus, VLD is only suboptimal by at most a polylogarithmic as opposed to a linear factor for FLD.

Example 8 ([77]). Consider the scenario with A = 105 source symbols and with B = 106 source blocks. Let the expected
value of source symbol length be L = 106 bits as well. Theorem 6 shows that VLD has performance

E[LV L(s)]

H(I)
≤ 3. (28)

i.e., is within a factor of 3 of optimal.

Note that performance bounds on VLD in Theorem 6, Examples 7 and 8 are obtained for the optimal choice of the marker
length M . Value M governs the expected chunk length of VLD and balances two competing requirements: On the one hand,
for each already encountered chunk, we need to encode a pointer into the dictionary. A smaller chunk length increases both
the number of chunks that need to be encoded and the size of the pointers. On the other hand, a larger chunk length increases
the lengths of unique chunks which are inefficiently encoded.

Unfortunately, even with the optimal choice of marker length, VLD can be asymptotically significantly suboptimal perfor-
mance, as shown in the following example.

Example 9 ([77]). Consider the scenario with A =
√
B source symbols of constant length L =

√
B. It can be shown that

Ω
(
B1/4 log−2(B)

)
≤ E[LV L(s)]

H(I)
≤ O

(
B1/4

)
. (29)

The multi-chunk deduplication (MCD) circumvents this trade-off by encoding multiple chunks jointly. This allows to choose
the expected chunk length to be quite small, thereby limiting the effect of the boundary chunks, without the penalty of increased
number of dictionary points. The next theorem bounds the performance of MCD.

Theorem 7 ([77]). Consider the source model with B source blocks drawn with replacement from the A source symbols of



15

expected length L. The performance of MCD with optimized marker length M satisfies

1 ≤ E[LMC(s)]

H(I)
≤ 1 +O

 B log(ABL)(
min{A,B}(L− 1) + (B −A)

+
log(A/2)− 2B log(2L)

)+
 (30)

as B → ∞.

By the preceding theorem, if BΩ(1) ≤ A ≤ (1− ϵ)B and L ≤ Aϵ/3 for some constant ϵ > 0, MCD is asymptotically within
a constant factor of optimal. Further, if A ≤ B ≤ o(AL/ log(AL)), then multi-chunk deduplication is asymptotically optimal
as B → ∞.

Example 10 ([77]). Following Example 9, consider again the scenario with A =
√
B source symbols of constant length

L =
√
B. Theorem 7 shows that the rate of MCD satisfies

E[LMC(s)]

H(I)
≤ O(1) (31)

as B → ∞. Thus MCD is order optimal in this case, as opposed to the polynomial loss factor of VLD.

D. Performance of algorithms over source Ib(δ)

In this section, we study performances of various algorithms over the source model Ib(δ). We consider the asymptotic
scenario where A,L are functions of B with A ≤ B1−k2 for some 0 < k2 < 1 and L = Θ

(
Bk1

)
for some k1 > 0. We allow

A to grow large because it is reasonable to assume that as the dataset gets larger, the number of unique blocks is also higher.
This necessitates L to also grow large. The assumption A ≤ B1−k2 ensures that, on average, every source symbol has repeats.
The polynomial relationship between L and B ensures that B is much smaller than 2Θ(L). So only a small fraction of all
possible strings of length Θ(L) can appear as source symbols, or edited versions of the source symbols, in the datastream.
This is compatible with our intuition that only a small number of all possible strings are valid data, e.g., an image, or a piece
of text or code. Furthermore, the polynomial relationship between B and L appears to agree with results from experiments
in [99] (also referred to in [77]) suggesting that the reasonable range for L is from a few KB to a few MB (≈ 104 to 107

bits) and for B is on the order of 105 to 109. Nevertheless, other asymptotic regimes may also be appropriate but are left to
future work for simplicity.

A deduplication algorithm is said to (asymptotically) achieve a constant factor of optimal if there exists a constant c

(independent of δ) such that E[L(s)] ≤ cH(Ib(δ)), for all 0 < δ < 1
2 and all sufficiently large B, where L(s) is the length

of the encoding produced by the algorithm. Given our assumptions on A,B,L, and the result from Lemma 3, the entropy
H(Ib(δ)) is dominated by the term H(δ)E[|s|]. If δ is close to 1

2 , H(Ib(δ)) is close to the length of the uncompressed sequence
(s is close to an iid Bernoulli(1/2) process), while if δ is close to 0, there is large gap between the two. Hence, to determine
whether an algorithm achieves a constant factor of optimal, the case of small δ is especially important, which is also the case
where compression is more beneficial.

We also define the compression ratio R = E[|s|]
E[L(s)] . Note that if there exists a constant c1 independent of δ such that R ≤ c1,

then the algorithm uses more bits than the entropy by an arbitrarily large multiplicative factor as δ goes to 0. While if R → ∞
as δ → 0, then the algorithm can achieve arbitrarily large compression ratios as entropy decreases. Finally, if there exists a
constant c2 such that R ≥ c2

H(δ) for all valid δ, then the algorithm achieves a constant factor of optimal.
Before presenting results on performances of various deduplication algorithms, we discuss some strategies for computing

E[L(s)]. We say XJb
is the ancestor of Yb and Yb is a descendant of XJb

. For each a, we use Y (a) to denote the set
{1 ≤ b ≤ B : Jb = a} and use Y1/2(a) to denote the set {1 ≤ b ≤ ⌈B/2⌉ : Jb = a}. In other words, Y (a) is the set of source
block indexes of the descendants of Xa and Y1/2(a) is the set of source block indexes of the descendants of Xa among the
first half of source blocks.

Note that E[|Y (a)|] = B/A and E[|Y1/2(a)|] = B/(2A). We use Eu to denote the event that |Y (a)| ≤ 3B
2A for all 1 ≤ a ≤ A,

and use El to denote the event that
∣∣Y1/2(a)

∣∣ ≥ B
4A for all 1 ≤ a ≤ A. Since |Y (a)| =

∑B
b=1 IJb=a, where all summands are

iid with expected value 1
A , by the Chernoff bound [72] and the union bound,

Pr(Eu) ≥ 1−Ae−
B

10A , Pr(El) ≥ 1−Ae−
B

16A . (32)



16

Given our assumption that A ≤ B1−k2 , asymptotically B
16A − logA goes to infinity. So the probability of Eu goes to 1 (also

true for El). In the performance analysis of deduplication algorithms, we generally only need to consider the case in which El
or Eu holds. Specifically, we use the following inequalities as bounds on E[L(s)]:

E[L(s)] ≤ E[L(s)|Eu] + E[L(s)|Ēu] · Pr(Ēu), (33)

E[L(s)] ≥ E[L(s)|El] · Pr(El) = E[L(s)|El] ·
(
1− Pr(Ēl)

)
. (34)

To find E[L(s)], we compute the terms E[L(s)|Eu], E[L(s)|El] and show that the terms E[L(s)|Ēu] · Pr(Ēu) and E[L(s)|El] ·
Pr(Ēl) are asymptotically negligible, using trivial bounds on L(s).

1) Deduplication in the fixed-length scheme
It is pointed out by [77] that when all source symbols have the same length and there are no edits, FLD with knowledge of

the symbol length can parse data strings in a way that chunk boundaries align with source block boundaries (by setting the
chunk length equal to source block length) and achieve asymptotically optimal performance under mild conditions. However,
when symbols have different lengths, the loss of synchronization leads to poor performance. For instance, [77] considered the
scenario in which there are A = 2 source symbols, with the source symbol length distribution Pl assigning equal probability
to L and L + 1 (here L is an independent parameter rather than the expected value of Pl) and with B = 3L source blocks.
FLD with chunk length ℓ = L was shown to satisfy E[LF (s)]

H(Ib(δ))
≥ Ω(B). In the case where copies are not exact, the question of

interest is then whether fixed-length deduplication can still perform well when chunk boundaries align with repeat boundaries.
To answer this question, we need to ensure that the two groups of boundaries are aligned. So we consider only source models
where source symbols all have the same length L (Pl is degenerate). The first-stage parsing length of mFLD (including AFLD)
and the chunk length of EDD are both assumed to be equal to L.

We present a lemma that will be used frequently. For positive integers m, ℓ and δ ∈
(
0, 1

2

)
, define

Sδ(ℓ,m) =

ℓ∑
t=0

(
ℓ

t

)
min

(
1,mδt(1− δ)ℓ−t

)
. (35)

Lemma 8. Let r be a string drawn uniformly at random from Σℓ. Let r1, r2, . . . , rm be m iid descendants of r by δ-edit
and let r[m] = {r1, r2, . . . , rm}. For any w ∈ Σℓ, let w ∈ r[m] denote the event that w = ri for some i. Then

1

2

Sδ(ℓ,m)

2ℓ
≤ Pr

(
w ∈ r[m]

)
≤ Sδ(ℓ,m)

2ℓ
, (36)

and thus the expected number of unique strings in r[m] is bounded between 1
2Sδ(ℓ,m) and Sδ(ℓ,m).

Furthermore, Sδ(ℓ,m) takes the following values for different values of ℓ and m:

• If ℓ ≥ logm
H(δ) , then

Sδ(ℓ,m) ≥ 1

4
m. (37)

In particular if ℓ ≥ logm
log( 1

1−δ )
, then

Sδ(ℓ,m) = m. (38)

• If ℓ ≤ logm
H( 1

2 ,δ)
, then

Sδ(ℓ,m) ≥ 2ℓ−1. (39)

In particular if ℓ ≤ logm
log( 1

δ )
, then

Sδ(ℓ,m) = 2ℓ. (40)

• For any δ < δ′ < 1
2 ,

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ). (41)



17

In particular if ℓ = logm
H(δ′,δ) , then

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ) = 2ℓH(δ′)+1. (42)

• For any values of ℓ and m,

Sδ(ℓ,m) ≤ min
(
2ℓ,m

)
. (43)

The proof of Lemma 8 is presented in Appendix A1.
Modified and adaptive fixed-length deduplication
We show that, even with knowledge of the source symbol length, if the chunk length is not properly chosen, mFLD encodes

s with a constant number of bits per symbol regardless of δ. Therefore, the ratio E[LmF (s)]
H(Ib(δ))

can be arbitrarily large for small

δ. Meanwhile for AFLD, with the adaptive chunk length ℓ =
⌈
log(B/A)
H(γ,δ)

⌉
, the ratio E[LAF (s)]

H(Ib(δ))
is shown to be upper bounded

by a constant for all δ and for γ properly chosen.
Consider the two-stage parsing of s with D = L. The length-D segments after the first-stage parsing are exactly the source

blocks Y1, Y2, . . . , YB . Let C = ⌊L/ℓ⌋ and r = L − Cℓ. Each Yb, 1 ≤ b ≤ B, is then parsed into chunks Zb
1, Z

b
2, . . . , Z

b
C+1

with
∣∣Zb

c

∣∣ = ℓ for all c ≤ C and
∣∣Zb

C+1

∣∣ = r (see Figure 1). If we also divide each source symbol Xa into substrings of length
ℓ as Xa = Ua

1U
a
2 · · ·Ua

C+1, then for all 1 ≤ c ≤ C + 1, {Zb
c}b∈Y (a) are iid δ-edit descendants of Ua

c .

Y1

...

Yb

YB

...

Z1
1 Z1

2 · · · Z1
C Z1

C+1

Zb
1 Zb

2 · · · Zb
C Zb

C+1

ZB
1 ZB

2 · · · ZB
C ZB

C+1

ℓ r

Figure 1: Modified fixed-length chunking with segment length D = L and chunk length ℓ.

Before performing a detailed evaluation of the algorithm, let us first provide a rough analysis for a special case, which
will provide some insights into the general problem. Suppose the alphabet X only has a single symbol X of length L, whose
ℓ-prefix is denoted by U1. We consider encoding only the set Z1

1 , Z
2
1 , . . . , Z

B
1 , where each Zb

1 is a descendant of U1 by δ-edit.
The expected size of the dictionary, i.e., the number of distinct ℓ-strings in {Z1

1 , Z
2
1 , . . . , Z

B
1 }, by Lemma 8 is approximately

S := Sδ(ℓ, B) =

ℓ∑
t=0

min

((
ℓ

t

)
,

(
ℓ

t

)
Bδt(1− δ)ℓ−t

)
. (44)

We can interpret (44) as follows. At a given distance t from U1, there are
(
ℓ
t

)
sequences of length ℓ. Further, if we generate

B sequences, the expected number of sequences at distance t is
(
ℓ
t

)
Bδt(1− δ)ℓ−t. The number of sequences in the dictionary

at distance t is then approximated by the minimum of the two terms. (This analysis of S is helpful whenever Sδ(·, ·) appears
in the sequel as well.)

We would like S to be small enough that logS ≪ ℓ (so that pointers to the dictionary have much smaller lengths than the
sequences being encoded) and S ≪ B (so that each sequence in the dictionary is repeated many times).2 As t ranges from 0

to ℓ in the sum in (44), the term
(
ℓ
t

)
attain its maximum at t ≃ ℓ/2 while the second term inside the min attains its maximum

at t ≃ ℓδ. We investigate which term determines the behavior of the sum. Let ℓ = logB
H(γ,δ) for a constant 0 ≤ γ ≤ 1. Note that

since δ < 1
2 , H(γ, δ) and ℓ are increasing and decreasing functions of γ, respectively. With this choice, Bδt(1 − δ)ℓ−t ≥ 1

for t ≤ ℓγ and Bδt(1− δ)ℓ−t ≤ 1 for t ≥ ℓγ.

• If γ < δ, then Bδδℓ(1− δ)
(1−δ)ℓ

< 1, and S ≥
∑ℓ

t=⌈γℓ⌉
(
ℓ
t

)
Bδt(1− δ)ℓ−t ≥ B(1− 2−ℓD(γ||δ)). In this case, almost all

Zb
1 are distinct and thus not compressible.

2Note that the size of the dictionary, and hence the length of the pointers, vary as the encoding progresses; we ignore this fact for now and approximate
pointer lengths based on the final size of the dictionary.



18

• If γ = δ, then ℓ = logB
H(δ) , and S ≥ B

4 by (37). In this case, a constant fraction of Zb
1 are distinct and thus not compressible.

• If γ ≥ 1/2, then ℓ ≤ logB
H( 1

2 ,δ)
, and S ≥ 2ℓ−1 by (39). In this case, due to the fact that ℓ is chosen too small, the dictionary

is so large that pointers to the dictionary are as long as the chunks and there is no compression gain.
• If δ < γ < 1/2, then by (42),

S ≤ 2ℓH(γ)+1. (45)

Hence, pointers have an approximate length of ℓH(γ) and are smaller than ℓ by a factor of 1
H(γ) . Furthermore, each

sequence is repeated approximately 2ℓD(γ||δ) times since B = 2ℓH(γ,δ). The number of bits required to encode the
dictionary is 2ℓ2ℓH(γ), which is negligible compared to Bℓ, the length of the uncoded sequences since γ ̸= δ. Hence, we
can encode {Z1

1 , . . . , Z
B
1 } using essentially BℓH(γ) bits, achieving a compression ratio of 1

H(γ) .

This analysis highlights that ℓ should be chosen appropriately to avoid a large dictionary or a situation in which there are no
repetitions in the sequence. If these conditions are satisfied, then we can successfully deduplicate the data, as shown rigorously
in Theorem 15 for AFLD.

Now we return to the general setting. It can be seen from the description of mFLD that the compressed string is composed
of two parts: the bits used to encode the chunks at their first occurrences and the bits used to encode repeated chunks by
pointers to the dictionary. For both parts, our first step is to compute the expected size of the dictionary, i.e., the number of
distinct chunks, for which we present Lemma 9 and Lemma 10.

Lemma 9. Suppose K strings of length n are chosen independently and uniformly from Σn. Assume each string produces at
least m1 and at most m2 descendants by δ-edits. For any string w with |w| = n, let Gw denote the event that w equals one
or more descendants. Then

1

2
min

(
1,

1

2
K

Sδ(n,m1)

2n

)
≤ Pr(Gw) ≤ min

(
1,K

Sδ(n,m2)

2n

)
. (46)

The proof of Lemma 9 is presented in Appendix A2. This lemma considers the probability of observing a string w when
multiple random strings produce δ-edit descendants simultaneously. This setting models exactly our source string generation
process where the A source symbols correspond to K random strings, and the source blocks correspond to the δ-edit descendants.
In particular, Eu being true corresponds to m2 = 3B

2A and El being true corresponds to m1 = B
4A .

Let T 1
F (s) denote the dictionary after all chunks of s are processed, i.e., T 1

F (s) contains all distinct strings in {Zb
c}b,c. Let

T
1/2
F (s) denote the dictionary immediately after all chunks in the first half of s, i.e., Y1Y2 · · ·Y⌈B/2⌉, are processed. We apply

Lemma 9 to find bounds on the sizes of T 1
F (s) and T

1/2
F (s) in the following lemma.

Lemma 10. Consider the two-stage fixed-length chunking process with first-stage parsing length D = L and chunk length ℓ.
The dictionary sizes T 1

F (s) and T
1/2
F (s) satisfy

E
[∣∣T 1

F (s)
∣∣|Eu] ≤ min

(
2ℓ, ACSδ

(
ℓ,
3B

2A

))
+B, (47)

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,

B

4A

))
. (48)

The proof of Lemma 10 is presented in Appendix A2.
Next, we show using Lemma 10 that if ℓ is chosen too small relative to the scale of the system, then mFLD spends a

constant number of bits per symbol. The proof strategy is as follows: with ℓ small enough, the term min
(
2ℓ, 1

2ACSδ

(
ℓ, B

4A

))
in (48) equals 1, which makes E

[∣∣∣T 1/2
F (s)

∣∣∣|El] greater than 2ℓ−1. Therefore, when encoding duplicated chunks using pointers,
each pointer takes approximately ℓ bits and there is no compression gain.

Theorem 11. Consider the source model in which source symbols have the same length L. For mFLD with first-stage parsing
length D = L and chunk length ℓ, if ℓ2ℓ = O(AL) or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, then

E[LmF (s)] ≥
1

12
BL(1 + o(1)), as B → ∞, (49)

where the o(1) term is independent of δ.



19

Proof: We first claim, to be proved later, that if ℓ2ℓ = O(AL) or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, then

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 2ℓ−1. (50)

It follows from Markov’s inequality that

Pr

(
2ℓ −

∣∣∣T 1/2
F (s)

∣∣∣ ≥ 3

4
· 2ℓ|El

)
≤

1
2 · 2ℓ
3
4 · 2ℓ

=
2

3
, (51)

which is equivalent to

Pr

(∣∣∣T 1/2
F (s)

∣∣∣ ≥ 2ℓ

4
|El
)

≥ 1

3
. (52)

Next, we consider the second half of s, Y⌈B/2⌉+1 · · ·YB . There are ⌊B/2⌋C chunks of length ℓ, and encoding each of them
takes at least either ℓ or log

∣∣∣T 1/2
F (s)

∣∣∣ bits plus an additional bit indicating whether the chunk is stored in full or represented
by a pointer. So in total, we need at least (

min
(
ℓ, log

∣∣∣T 1/2
F (s)

∣∣∣)+ 1
)
·
⌊
B

2

⌋
C (53)

bits. It follows that for B sufficiently large,

E[LmF (s)|El] ≥ E
[(

min
(
ℓ, log

∣∣∣T 1/2
F (s)

∣∣∣)+ 1
)
·
⌊
B

2

⌋
C|El

]
(54)

≥ 1

3

(
min

(
ℓ, log

2ℓ

4

)
+ 1

)
·
⌊
B

2

⌋
C (55)

≥ BL

12
(1 + o(1)), (56)

where the second inequality follows from (52).
Finally, since (32) gives that Pr(El) = 1 + o(1), we get

E[LmF (s)] ≥ E[LmF (s)|El] Pr(El) ≥
BL

12
(1 + o(1)). (57)

It remains to prove the claim: E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 2ℓ−1 when ℓ2ℓ = O(AL) or ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

. Consider the case when

ℓ2ℓ = O(AL). For sufficiently large B (and thus A and L), B
4A ≥ 4ℓ2ℓ

AL . Therefore, by Lemma 10,

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,

B

4A

))
≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,
4ℓ2ℓ

AL

))
, (58)

where the last inequality follows from the fact that Sδ(ℓ,m) is non-decreasing in m. By (38), if m(1 − δ)ℓ ≤ 1, then
Sδ(ℓ,m) = m. Since asymptotically 4ℓ2ℓ

AL (1− δ)ℓ ≤ 1,

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 2ℓ−1 min

(
1,

4ℓC

2L

)
≥ 2ℓ−1, (59)

where the last step follows from the fact that C ≥ L
2ℓ .

When ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, again by Lemma 10,

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,

B

4A

))
(60)

≥ 2ℓ−1 min

(
1,

AC

4

)
≥ 2ℓ−1, (61)

where the second inequality follows from (39) that when ℓ ≤ logm
H( 1

2 ,δ)
, Sδ(ℓ,m) ≥ 2ℓ−1.

The preceding theorem shows that when ℓ is chosen too small, the size of the dictionary will be of order 2ℓ. Specifically,
if ℓ2ℓ = O(AL), the number of distinct ℓ-substrings in the source alphabet is already of order 2ℓ. If ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

, then the
δ-edits are able to produce almost all ℓ-strings instead of only producing strings that are on the δℓ Hamming sphere.

In the next theorem, we show that if ℓ is chosen too large, then mFLD again spends a constant number of bits per symbol.



20

The proof strategy is to show that if ℓ is chosen too large, then almost every chunk is distinct, thus making the source string
incompressible.

Theorem 12. Consider the source model in which source symbols have the same length L. For mFLD with first-stage parsing
length D = L and chunk ℓ, if ℓ ≥ log(B/A)−2

H(δ) , then

E[LmF (s)] ≥
1

128
BL(1 + o(1)), as B → ∞, (62)

where the o(1) term is independent of δ.

Proof: When ℓ ≤ log(B/A)−2

H( 1
2 ,δ)

,

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,

B

4A

))
≥ 2ℓ−1 min

(
1,

1

2
AC · 1

4
· B

4A2ℓ

)
(63)

= 2ℓ−1 min

(
1,

BC

32 · 2ℓ

)
, (64)

where the first inequality follows from Lemma 10 and the second from (37).
In the case where 1 ≤ BC

32·2ℓ and hence E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 2ℓ−1, the proof follows from the discussion that follows (50). So

it remains to consider the case when BC
32·2ℓ ≤ 1, i.e.,

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 2ℓ−1 · BC

32 · 2ℓ
=

BC

64
. (65)

Since it takes ℓ+ 1 bits to store distinct chunks in the dictionary,

E[LmF (s)|El] ≥ (ℓ+ 1)E
[∣∣∣T 1/2

F (s)
∣∣∣|El] = ℓ

B⌊L/ℓ⌋
64

(66)

≥ 1

64
Bmax(ℓ, L− ℓ) ≥ 1

128
BL. (67)

The desired result thus follows again from E[LmF (s)] ≥ E[LmF (s)|El] Pr(El) and the fact that Pr(El) = 1 + o(1).
Theorems 11 and 12 imply Corollaries 13 and 14, shown as follows.

Corollary 13. Consider the source model in which source symbols all have length L. For mFLD with D = L, if the chunk
length ℓ = o(logB) ∪ ω(logB), the compression ratio E[|s|]

E[LmF (s)] is upper bounded by a universal constant for any edit
probability δ > 0.

Corollary 13 characterizes the performance of mFLD when the chunk length ℓ is chosen too small or too large. With the
chunk length improperly chosen, the average length of the compressed strings is always at least a constant factor of the original
length, regardless of the edit probability δ. This is not desirable for small δ since, as δ goes to 0, the entropy gets smaller and
the ratio E[LmF (s)]

H(Ib(δ))
grows unboundedly. It can be seen from the proofs of Theorems 11 and 12 that when the chunk length is

chosen too small, the dictionary becomes so large that the pointers become of similar lengths to the chunks. On the other hand,
when the chunk length is chosen too large, repeats can not be identified and deduplication thus fails. It is therefore important
to pick a suitable chunk length when implementing deduplication algorithms in practice.

If we pick ℓ = L, mFLD becomes FLD with chunk length equal to source symbol length, which was shown in [77] to
be asymptotically optimal on sources with fixed symbol length and no edits. However, in the case when edit probability δ

is nonzero, since we assume L = Θ
(
Bk1

)
, Corollary 13 implies that the compression ratio of FLD is bounded and the gap

between FLD and entropy can be arbitrarily large.

Corollary 14. Consider the source model in which source symbols all have length L. For FLD, with chunk length L, the
compression ratio E[|s|]

E[LF (s)] is upper bounded by a universal constant for any edit probability δ > 0.

Next, we show that with the adapted chunk length, AFLD can achieve performance within a constant factor of optimal.

Theorem 15. Consider the source model in which source symbols have the same length L. The performance of AFLD with



21

D = L and ℓ =
⌈
log(B/A)
H(γ,δ)

⌉
satisfies

1 ≤ E[LAF (s)]

H(Ib(δ))
≤ 1 + k1

k2
· H(γ, δ)

H(δ)
· (1 + o(1)), (68)

as B → ∞, for any γ ∈ (δ, 1
2 ).

Proof: We first note that the length of s can be encoded in at most 2 log(|s|) + 3 bits with Elias gamma coding.
The number of bits used to encode chunks at their first occurrences is upper bounded by

∣∣T 1
F (s)

∣∣(ℓ + 1) since chunks
are all of lengths less than or equal to ℓ. Consider the upper bound on E

[∣∣T 1
F (s)

∣∣|Eu] in Lemma 10. Note that by (41) and
B
A ≤ 2ℓH(γ,δ) with our choice of ℓ,

Sδ

(
ℓ,
3B

2A

)
≤ 2ℓH(γ) +

3B

2A
2−ℓD(γ||δ) ≤ 5

2
· 2ℓH(γ). (69)

It follows that

E
[∣∣T 1

F (s)
∣∣|Eu](ℓ+ 1) ≤

(
min

(
2ℓ, ACSδ

(
ℓ,
3B

2A

))
+B

)
(ℓ+ 1) (70)

≤ min

(
2ℓ,

5AC

2
· 2ℓH(γ)

)
(ℓ+ 1) +B(ℓ+ 1) (71)

≤ 5AL

2ℓ
· 2ℓH(γ) · (ℓ+ 1) +B(ℓ+ 1) (72)

=
5

2
AL

(
B

A

)H(γ)/H(γ,δ)(
1 + Θ

(
1

log(B/A)

))
+Θ(B logB) (73)

= o(BL), (74)

where the last equality follows from H(γ)
H(γ,δ) < 1 and thus B

H(γ)
H(γ,δ)A1− H(γ)

H(γ,δ) = o(B).
Next, we derive an upper bound on the number of bits used by pointers for encoding repeated chunks. There are (C +1)B

chunks and the number of bits needed for encoding one pointer is at most log(BL) + 1. So in total, the number of bits we
need is at most

(C + 1)B(log(BL) + 1) ≤ (L+ ℓ)B
log(BL) + 1

ℓ
≤ BL

ℓ
log(BL)

(
1 +O

(
1

logB

))
(75)

≤ H(γ, δ)BL · log(BL)

log(B/A)
. (76)

Combining (74), (76), and including the number of bits used for encoding the length of s by Elias coding, we get

E[LAF (s)|Eu] ≤ H(γ, δ)BL · log(BL)

log(B/A)
+ o(BL) (77)

≤ H(γ, δ)BL
1 + k1
k2

(1 + o(1)), (78)

by noting that log(BL)
log(B/A) ≤

1+k1

k2
(1 + o(1)).

On the complement of Eu, the number of bits needed for storing the dictionary is at most 2BL since the lengths of chunks
in total is at most BL and there are at most BL chunks. The number of bits for encoding repeated chunks by pointers is at
most BL(log(BL) + 1). It follows that

E
[
LAF (s)|Ēu

]
Pr
(
Ēu
)
≤ (2ABL+ 2 log(BL) + 3) log(BL)e−

B
10A = o(1). (79)

The desired result thus follows from

E[LAF (s)] = E[LAF (s)|Eu] Pr(Eu) + E
[
LAF (s)|Ēu

]
Pr
(
Ēu
)
, (80)

and the fact that Pr(Eu) = 1 + o(1).
For any δ < 1

2 and a > 1, we can find γ in the range (δ, 1
2 ) such that H(γ, δ)/H(δ) ≤ a. It thus follows from Theorem 15 that

adaptive fixed-length deduplication can compress the sequence within a constant factor of the entropy, as stated in Corollary 16.



22

Corollary 16. For any edit probability δ ∈ (0, 1
2 ) and any a > 1, there exists δ < γ < 1

2 such that

E[LAF (s)]

H(Ib(δ))
≤ a(1 + k1)

k2
(1 + o(1)). (81)

With k1, k2 being fixed constants, the preceding corollary states that AFLD achieves a constant factor of optimal for any
edit probability δ. Thus, to achieve high compression ratio, deduplication algorithm parameters, especially the chunk length,
should be chosen based on the data. In practice, it can thus be beneficial to first obtain an estimate of the parameters of the data
and then apply deduplication with algorithm parameters properly chosen. A fixed chunk length is unlikely to be universally
effective for all datasets.

Edit-distance deduplication
Next, we study the edit-distance deduplication algorithm. EDD identifies positions in which the current chunk and previously

observed similar chunks differ. We show that with chunk length being equal to source symbol length, EDD can achieve a
constant factor of optimal.

Theorem 17. Consider the source model in which source symbols have the same length L and the edit probability is δ < 1
4 .

The performance of edit-distance deduplication with chunk length ℓ = L and mismatch ratio β satisfies

1 ≤ E[LED(s)]

H(Ib(δ))
≤ H(2β)

H(δ)
(1 + o(1)), as B → ∞, (82)

for any δ < β ≤ 1
4 .

Proof: With ℓ = L, the B source blocks, Y1, . . . , YB , are parsed as chunks. We know that each Yb is a descendant of one
of the source symbols. Let Ed denote the event that every source block Yb is within Hamming distance βL from its ancestor.
By the Chernoff bound, the probability that more than βL symbols of a source symbol are flipped in a δ-edit is at most
2−D(β||δ)L. We then apply the union bound and get Pr(Ed) ≥ 1−B2−D(β||δ)L.

When Ed holds, the source blocks are covered by A Hamming balls of radius βL. Therefore, with mismatch ratio β, the
dictionary is of size at most A, and takes A(L + 1) bits to store. The pointer length is thus upper bounded by logA + 1.
The difference with the referenced chunk can be encoded in at most H(2β)L + 1 bits. Including the 2 log(BL) + 3 bits for
encoding |s| at the beginning, we get

E[LED(s)|Ed] ≤ 2 log(BL) + 3 +A(L+ 1) + (1 + logA+ 1 +H(2β)L+ 1)B (83)

= H(2β)BL+ o(BL). (84)

When the complement of Ed holds, we trivially upper bound dictionary size by B. It follows that

E[LED(s)|Ēd] ≤ 2 log(BL) + 3 +B(L+ 1) + (1 + logB + 1 +H(2β)L+ 1)B (85)

≤ 2BL. (86)

Thus,

E[LED(s)] = Pr(Ed)E[LED(s)|Ed] + Pr(Ēd)E[LED(s)|Ēd] (87)

≤ H(2β)BL(1 + o(1)) + 2B2L2−D(β||δ)L (88)

= H(2β)BL(1 + o(1)), (89)

where the term 2B2L2−D(β||δ)L is absorbed into the o(1) term since D(β||δ) > 0.
Note that for any δ < 1

4 , we can always find β larger than but close enough to δ such that H(2β)
H(δ) is upper bounded by a

constant value. With such choices of β, the preceding theorem states that E[LED(s)] is at most a constant factor of H(Ib(δ)).
As an example, let β = min

(
3δ
2 , 1

4

)
. The ratio H(2β)

H(δ) is upper bounded by

H(2β)

H(δ)
≤ H(min(3δ, 1/2))

H(δ)
≤ 3, (90)



23

where the last inequality follows from the fact that H(3p)
H(p) ≤ 3 for all p ≤ 1

3 and H( 16 ) ≤ 1
2 . Hence, EDD also achieves a

constant factor of optimal, as formalized in the following corollary.

Corollary 18. Consider the source model in which source symbols have the same length L and edit probability δ < 1
4 . There

exists a mismatch ratio β such that the performance of EDD with chunk length ℓ = L satisfies

E[LED(s)]

H(Ib(δ))
≤ H(3δ)

H(δ)
(1 + o(1)) ≤ 3(1 + o(1)). (91)

We note however that EDD is more complex than AFLD as it identifies chunks that are within a certain Hamming distance.
2) Deduplication in the variable-length scheme
In this section, we study the variable-length deduplication algorithm, which is more widely applicable than the algorithms in

the fixed-length scheme and does not require the source symbol lengths to be the same or known. In the previous section, we
saw that for AFLD to achieve optimality, the chunk length should be adapted to the source. Similarly for VLD, the performance
depends on chunk lengths which in turn depend on the length of the marker M .

Before presenting the detailed analysis, we provide some insights on how the marker length M affects the distribution of
chunk contents. In variable-length chunking, the chunks (except perhaps the last one) end with the marker string 0M . We
write s = U10

MU20
M · · · 0MUN , where each Un, n < N , is either empty or of the form u1 for some M -RLL string u. We

can approximately treat s as a Bernoulli(1/2) process for now. The lengths of strings Un are thus equivalent to the stopping
time in an infinite-length Bernoulli(1/2) process untill the beginning of the first occurrence of 0M , which is of expected length
approximately 2M . The behavior of VLD with marker length M is thus similar to that of mFLD with chunk length 2M . When
M is chosen so small that the number N of chunks becomes much larger than the total number of strings of lengths around
2M , the dictionary becomes exhaustive and pointers have similar lengths to chunks. When M is chosen too large, most of
U1, . . . , UN are distinct and thus not compressible. In the following, we study in detail how E[LV L(s)] varies for different
values of M .

Similar to the fixed-length schemes, the dictionary size is an essential first-step in computing E[LV L(s)]. To determine
the expected dictionary size, we again start with the probability of occurrences of chunks. However, now the chunks are of
different lengths and the occurrences are not restricted to a fixed set of positions. So we bound the probability of occurrences
of a chunk by the probability of occurrences of certain substrings. Specifically, we consider strings of the forms 10Mu10M

or 0Mu10M (u ∈ RM ): Except the first and the last chunks, the probability of occurrence of chunk u10M is greater than
the probability of occurrence of a substring 10Mu10M since the prefix 10M always marks an ending of the previous chunk;
similarly, the probability of occurrence of chunk u10M is less than or equal to the probability of occurrence of a substring
0Mu10M since any occurrences of chunk u10M must follow a 0M which is the ending marker of the previous chunk.

Let w ∈ Y B
1 denote the event that w appears as a substring of Yb for some 1 ≤ b ≤ B and let w ∈ Y

B/2
1 denote the event

that w appears as a substring of Yb for some 1 ≤ b ≤ ⌈B/2⌉.3 We first present in Lemmas 19, 20 and 21 two lower bounds
on w ∈ Y

B/2
1 and an upper bound on w ∈ Y B

1 .

Lemma 19. Suppose K strings of length n are chosen independently and uniformly from Σn. Assume each string produces
at least m1 and at most m2 descendants by δ-edits. For any string w with |w| ≤ n, let Hw denote the event that w appears
as a substring of one or more descendants. Then,

1

2
min

(
1,

1

2

⌊
n

|w|

⌋
K

Sδ(|w|,m1)

2|w|

)
≤ Pr(Hw) ≤ min

(
1, (n− |w|+ 1)K

Sδ(|w|,m2)

2|w|

)
. (92)

The proof of Lemma 19 is presented in Appendix A3. Similar to Lemma 9, the setting described in Lemma 19 matches
the model for the generation of source strings. This time, we allow string w to be any substring of the descendants because
chunks can now be in any position of the source string. Note that Lemma 19 is also a generalization of Lemma 9.

Next, we use Lemma 19 to bound the probability of w ∈ Y
B/2
1 and w ∈ Y B

1 .

3Here we only consider string/chunk occurrences inside source blocks and leave the study of strings/chunks that occur across the boundaries of source
blocks for later.



24

Lemma 20. Consider the source model with edit probability δ. For any string w ∈ Σ∗ with |w| ≤ 2L,

Pr(w ∈ Y B
1 |Eu) ≤ min

(
1, 2AL

Sδ

(
|w|, 3B

2A

)
2|w|

)
. (93)

For any string w ∈ Σ∗ with |w| ≤
⌈
1
2L
⌉
,

Pr
(
w ∈ Y

B/2
1 |El

)
≥ 1

2
min

(
1,

AL

8|w|
Sδ

(
|w|, B

4A

)
2|w|

)
. (94)

The proof of Lemma 20 is presented in Appendix A3. Although Lemma 20 holds for any string w, we will later restrict w
to be of the forms 10Mu10M or 0Mu10M .

Next, we consider another lower bound as an alternative to (94) for the cases when w is of larger lengths. From the proofs
of Lemmas 19 and 20, the lower bound (94) is obtained by only taking into account the possibilities of w appearing in
non-overlapping positions of each Yb. Lemma 21 considers every possible substring of Yb to be equal to w and gets the lower
bound by the inclusion-exclusion principle and turns out to be more accurate for w with large lengths. Note that Lemma 21
directly considers w to be of the form 10Mu10M and the bound is given in the form of a summation.

Lemma 21. Consider the source model with edit probability δ < 1
2 . For any n such that log(B/A)−2

H(δ) ≤ n+ 2M + 2 ≤ L
4 ,

∑
u∈Rn

M

Pr
(
10Mu10M ∈ Y

B/2
1 |El

)
≥ BL

27 · 22M+2
·
(
1− 1

2M−1

)n

− 3B2L2

2n+2M+2
. (95)

The proof of Lemma 21 is presented in Appendix A4.
After characterizing the probabilities of strings (and thus chunks) occurring, we consider in Lemma 22 the number of chunks.

Let CM
VL(s) denote the number of chunks of length over 2M−4 in Y⌈B/2⌉+1 · · ·YB for variable-length chunking with marker

length M . We show that when 2M = o(L), with high probability, CM
VL(s) is of order |s|/2M .

Lemma 22. Consider the source string s = Y1Y2 . . . YB . When 2M = o(L), for B,L sufficiently large,

Pr

(
CM

VL(s) ≥
1

4
·
⌊
B

2

⌋(
L

2M+8
− 1

))
≥ 5

6
. (96)

The proof of Lemma 22 is presented in Appendix A5. It can be seen from the proof that Lemma 22 can be extended to
the case when El holds since each source block Yb by itself is still a Bernoulli(1/2) process. Therefore, the following corollary
holds.

Corollary 23. When 2M = o(L), for B,L sufficiently large,

Pr

(
CM

VL(s) ≥
1

4
·
⌊
B

2

⌋(
L

2M+8
− 1

)
|El
)

≥ 5

6
. (97)

Next, we use Lemmas 20, 21 and Corollary 23 to bound E[LV L(s)] from below. As marker length M takes different values,
different lower bounds of E[LV L(s)] are presented in Theorems 24, 25 and 27. Let T 1

V L(s) denote the dictionary when all
chunks in s are processed and let T

1/2
V L(s) denote the dictionary immediately after chunks in Y1 · · ·Y⌈B/2⌉ are processed.

We first show in Theorem 24 that similar to the fixed-length schemes, small values for M lead to an oversized dictionary.

Theorem 24. Consider the source model with edit probability δ and the variable-length deduplication algorithm with marker
length M . If 2M = o(logB), then

E[LV L(s)] ≥
1

3 · 216
BL(1 + o(1)), as B → ∞, (98)

where the o(1) term is independent of δ.

Proof: We show that with high probability,
∣∣∣T 1/2

V L(s)
∣∣∣ is of the order 22

M

. So encoding each chunk in Y⌈B/2⌉+1 · · ·YB

takes number of bits either equal to the chunk length or pointer length 2M . We then show using Lemma 22 that the length of
the compressed string is a constant fraction of BL.



25

If a string w of the form w = 10Mu10M , u ∈ RM , occurs as a substring of some data block Yb, b ≤
⌈
B
2

⌉
, then u10M

must be contained in T
1/2
V L(s). For any w = 10Mu10M with |u| ≤ 2M , by Lemma 20,

Pr
(
w ∈ Y

B/2
1 |El

)
≥ 1

2
min

(
1,

AL

8|w|
Sδ

(
|w|, B

4A

)
2|w|

)
(99)

≥ 1

2
min

(
1,

AL

8|w|

)
≥ 1

2
, (100)

where the second inequality follows from |w| ≤ 2M + 2M + 2 = o(logB) and the property that Sδ(ℓ,m) = 2ℓ if mδℓ ≥ 1.
Denote the set of all M -RLL strings of lengths less than 2M by R≤2M

M . Let ζ =
∣∣∣{u ∈ R≤2M

M : 10Mu10M ∈ Y
B/2
1

}∣∣∣. Then

(100) gives E[ζ|El] ≥ |R≤2M

M |/2 and thus E[|R≤2M

M |−ζ|El] ≤
|R≤2M

M |
2 . By Markov inequality, Pr(|R≤2M

M |−ζ ≥ 3|R≤2M

M |/4) ≤
2
3 and thus Pr(ζ > |R≤2M

M |/4) ≥ 1
3 . Noting that |T 1/2

V L| ≥ ζ and |R≤2M

M | ≥ 22
M−2 by Corollary 2, we get

Pr
(∣∣∣T 1/2

V L(s)
∣∣∣ ≥ 22

M−4|El
)
≥ 1

3
. (101)

For each chunk in Y⌈B/2⌉+1 · · ·YB of length at least 2M−4, we need at least either 2M−4 or log
∣∣∣T 1/2

V L(s)
∣∣∣ bits. So by

Corollary 23 and inequality (101),

E[LV L(s)|El] ≥ E
[
min

(
2M−4, log

∣∣∣T 1/2
V L(s)

∣∣∣) · CM
VL(s)|El

]
(102)

≥
(
1− 2

3
− 1

6

)
min

(
2M−4, 2M − 4

)
· 1
4

⌊
B

2

⌋(
L

2M+8
− 1

)
(103)

≥ BL

3 · 216
(1 + o(1)). (104)

The desired result follows from
E[LV L(s)] ≥ E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
We then show in Theorems 25 and 27 that an oversized M leads to a large number of distinct chunks, each of which needs

to be encoded in full and thus compression becomes ineffective. In particular, Theorem 25 covers the case when 2M is of
larger order than logB but still much smaller than the expected source symbol length L. Theorem 27 considers the case when
2M = Ω(L), and therefore a large number of chunks can be of lengths close to or even larger than the expected source symbol
length.

Theorem 25. Consider the source model with edit probability δ and the variable-length deduplication algorithm with marker
length M . If 2M = ω(logB) ∩ o(L), then

E[LV L(s)] ≥
1

210e2
BL(1 + o(1)), as B → ∞, (105)

where the o(1) term is independent of δ.

Proof: We show that if 2M is in ω(logB) and o(L), the sum of the lengths of distinct chunks is a constant fraction of
|s|.

Each new chunk is encoded as a bit 1 followed by itself. Given El, the expected number of bits needed for encoding distinct
chunks is greater than or equal to

E

 ∑
v∈T 1

V L(s)

(|v|+ 1)|El

 =
∑
v∈Σ∗

Pr
(
v ∈ T 1

V L(s)|El
)
(|v|+ 1) (106)

≥
∑
u∈RM

Pr
(
10Mu10M ∈ Y

B/2
1 |El

)
(|u|+M + 2). (107)

As a lower bound, we consider M -RLL strings with lengths in the range
[
2M ,

⌈(
2ML

)1/2⌉]
. Since asymptotically we have



26

2M ≥ log(B/A)−2
H(δ) , we apply Lemma 21 on (107) and get

⌈
(2ML)

1/2
⌉∑

ℓ=2M

∑
u∈Rℓ

M

Pr
(
10Mu10M ∈ Y

B/2
1 |El

)
(ℓ+M + 1) (108)

≥

⌈
(2ML)

1/2
⌉∑

ℓ=2M

(
BL

27 · 22M+2

(
1− 1

2M−1

)ℓ

− 3B2L2

2ℓ+2M+2

)
· (ℓ+M + 1) (109)

≥

⌈
(2ML)

1/2
⌉∑

ℓ=2M

(
BL

27 · 22M+2

(
1− 1

2M−1

)ℓ

ℓ

)
− 3B2L4

22M
(110)

≥ BL

27 · 22M+2
22(M−1)

(
2M − 1

2M−1
+ 1

)
e−2(1 + o(1)) (111)

− 3B2L4

22M
(112)

≥ BL

210e2
(1 + o(1))− 3B2L4

22M
(113)

=
BL

210e2
(1 + o(1)), as B → ∞, (114)

where the second inequality follows from
(
2ML

)1/2
+M +1 ≤ L and the equality follows from 2M = ω(logB). The second

to last inequality follows from applying summation (513) in Appendix A6 with a = 2M , b =
⌈(
2ML

)1/2⌉
, β = 2M−1 and

noting that 1
2M−1

⌈(
2ML

)1/2⌉
= ω(1).

Thus,

E[LV L(s)|El] ≥ E

 ∑
v∈T 1

V L(s)

(|v|+ 1)|El

 ≥ BL

210e2
(1 + o(1)), (115)

and the desired result follows from
E[LV L(s)] ≥ E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
Next, we present a lemma that will be used in the proof of Theorem 27.

Lemma 26. Consider the source string s = Y1Y2 · · ·YB , with each Yb being a descendant of source symbol XJb
. For any

integer h and any pairs of integers (b1, b2), (i1, i2), the probability of Yb1 and Yb2 having identical substrings of length h

starting at positions i1 and i2, respectively, is

Pr
(
(Yb1)i1,h = (Yb2)i2,h

)
=

1

2h
, (116)

if Jb1 ̸= Jb2 or i1 ̸= i2.

The proof of Lemma 26 is presented in Appendix A5.

Theorem 27. Consider the source model with edit probability δ and the variable-length deduplication algorithm with marker
length M . If 2M = Ω(L), then

E[LV L(s)] ≥
1

360
BL(1 + o(1)), as B → ∞, (117)

where the o(1) term is independent of δ.

Proof: Let q = min
(
2M−5, L/2

)
. We find a set of distinct M -RLL q-substrings of s that are encoded in full. In other

words, any two such q-substrings are contained in two distinct chunks, or in two chunks that are duplicates, or in a single
chunk without overlapping with each other. The total length of these q-substrings thus provides a lower bound on LV L(s).



27

Let L1, . . . , LA be given and assume El holds. We consider the first ⌈B/(4A)⌉ descendants of each source symbol. Let Ga

denote the set of the first ⌈B/(4A)⌉ descendants of Xa. Let Qa be the set containing all non-overlapping q-substrings of Ga,
i.e., Qa = {x1+(c−1)q,q : x ∈ Ga, 1 ≤ c ≤ ca}, where ca = ⌊La/q⌋ and let Q = ∪A

a=1Qa. For w ∈ Σq , let w ∈ Q denote the
event that one of the substrings in Q equals w. Applying Lemma 9 on Q (with substring length equal to descendant length)
yields

Pr(w ∈ Q) ≥ 1

2
min

(
1,

1

2

(
A∑

a=1

ca

)
Sδ

(
q,
⌈

B
4A

⌉)
2q

)
(118)

=
1

4

⌈
B

4A

⌉∑A
a=1 ca
2q

, (119)

where the equality follows from q = Ω(L) and the property that Sδ(ℓ,m) = m if m(1− δ)ℓ ≤ 1. So the expected number of
distinct M -RLL strings in Q is at least∑

w∈Rq
M

1

4

⌈
B

4A

⌉∑A
a=1 ca
2q

≥ 1

4

(
2− 1

2M−2

)q⌈
B

4A

⌉∑A
a=1 ca
2q

(120)

≥ 1

5
·
⌈
B

4A

⌉ A∑
a=1

ca, (121)

for all M > 5. Since the size of Q is
⌈

B
4A

⌉∑A
a=1 ca, by the Markov bound, with probability at least 1

9 , the number of distinct
M -RLL q-strings in Q is at least 1

10

⌈
B
4A

⌉∑A
a=1 ca.

Let q′ = ⌈q/2⌉. Consider the q′-substrings of source blocks Y1, . . . , YB , i.e., (Yb)i,q′ for all b ∈ [B], i ∈ [|Yb|]. Define Ed to
be the following event: for every two source blocks Yb1 and Yb2 , the substring of Yb1 starting at position i1 is different from
the substring of Yb2 starting at position i2, i.e., (Yb1)i1,q′ ̸= (Yb2)i2,q′ , as long as Jb1 ̸= Jb2 or i1 ̸= i2. Since there are at most
(2BL)2 pairs of such substrings, by the union bound and Lemma 26, Ed holds with probability at least

1− (2BL)2/2q
′
. (122)

When Ed holds, the distinct M -RLL q-substrings in Q are then non-overlapping substrings of the dictionary and it takes
q-bits to encode each of them. To see this, we consider the first time such q-strings appear in the source string. Let (Yb)j,q

be one of the M -RLL strings in Q. Given Ed, the only possible substrings of s that equal (Yb)k,q are (Y1)k,q, . . . , (YB)k,q .
Let b′ be the smallest integer such that (Yb′)j,q = (Yb)j,q . By the M -RLL property, (Yb′)j,q must be fully contained in a
chunk. Moreover, this chunk must be a new chunk by the minimality of b′ and is entered into the dictionary. Similarly, every
distinct M -RLL q-substring corresponds to a q-substring in the dictionary. Since strings in Q do not overlap with each other,
the corresponding q-substrings in the dictionary also do not overlap, and each takes q bits to store.

Combining the two arguments, with probability at least 1
9 − (2BL)2

2q′
, there are 1

10

⌈
B
4A

⌉∑A
a=1 ca distinct non-overlapping

RLL substrings of length q, and each needs q bits to be encoded. It sums up to

q · 1

10

⌈
B

4A

⌉ A∑
a=1

ca ≥ B

40A

A∑
a=1

(La − q) (123)

bits. Therefore,

E[LV L(s)|El] ≥
(
1

9
− (2BL)2

2q′

)
B

40A

A∑
a=1

(L− q) (124)

≥ BL

360
(1 + o(1)). (125)

The desired result thus follows from (32).
As a summary of Theorems 24, 25, and 27, the following corollary shows that an inappropriate choice of M leads to poor

performance.

Corollary 28. Consider the source model with edit probability δ and variable-length deduplication with marker length M . If
2M = o(logB)∪ω(logB), the compression ratio E[|s|]

E[LV L(s)] is upper bounded by a universal constant for any edit probability



28

δ > 0.

In the next theorem, we give our upper bound on E[LV L(s)]. We consider the case when 2M is of order Θ(logB) and
show that variable-length deduplication achieves high compression ratios.

Theorem 29. Consider the source model with edit probability δ < 1
2 . For any γ ∈ (δ, 1/2), the performance of variable-length

deduplication with marker length M such that 2M = Θ(log(B/A)) satisfies

E[LV L(s)] ≤
(
12e−cM (cM + 1) + 4H(γ, δ)

(1 + k1)

k2
cM

)
BL(1 + o(1)), (126)

as B → ∞, where cM = log(B/A)
H(γ,δ)2M+1 .

Proof: First, encoding the length |s| takes 2 log|s|+ 3 ≤ 2 log(BL) + 5 bits. We study next the encoding of chunks. We
adopt the same strategy as [77]: dividing chunks into two categories, interior chunks and boundary chunks. Consider all chunks
whose first symbols are in Yb (see Figure 2). Some chunks depend on the values of the neighboring source blocks Yb−1 and
Yb+1, i.e., it is possible to alter the chunk by replacing Yb−1 or Yb+1 with other strings. We call these the ‘boundary’ chunks
of Yb. Other chunks are independent of the values of the neighboring source blocks. We call these the ‘interior’ chunks of
Yb. Denote the set of interior chunks in s by C◦(s). Note that we consider the first chunk and the last chunk of the whole
data stream as boundary chunks. It is pointed out in [77] that the number of boundary chunks is upper bounded by 3(B + 1)

and the expected total length of boundary chunks is upper bounded by B2M+2.4 Therefore, encoding unique boundary chunks
takes at most 3(B + 1) +B2M+2 bits.

0M 0M 0M0M

boundary interior boundary

Yb−1 Yb Yb+1

Figure 2: Occurrences of boundary chunks and interior chunks of Yb in variable-length chunking.

We consider next encoding unique interior chunks. Clearly, every interior chunk follows a 0M , i.e., the ending marker of
the previous chunk. Moreover, this 0M must also fully lie in the same source block as the chunk since otherwise this chunk
is not an interior chunk. Therefore, the probability of occurrence of an interior chunk u10M is at most the probability of the
occurrence of 0Mu10M as a source block substring. It follows that

E

 ∑
w∈C◦(s)

(|w|+ 1)|Eu

 ≤ (M + 1) +
∑
u∈RM

Pr
(
u10M ∈ C◦(s)|Eu

)
(|u|+M + 2) (127)

≤ (M + 1) +
∑
u∈RM

Pr
(
0Mu10M ∈ Y B

1 |Eu
)
(|u|+M + 2), (128)

where the term M+1 accounts for the chunk 0M . We compute the summation in (128). Fix γ ∈ (δ, 1/2) and let ℓγ = log(B/A)
H(γ,δ) .

• For all u such that
∣∣0Mu10M ∣∣ ≤ logB, we trivially bound Pr

(
0Mu10M ∈ Y B

1 |Eu
)

from above by 1. It follows that

⌊logB⌋−2M−1∑
ℓ=0

∑
u∈Rℓ

M

Pr
(
0Mu10M ∈ Y B

1 |Eu
)
(ℓ+M + 2) ≤

⌊logB⌋−2M−1∑
ℓ=0

∑
u∈Rℓ

M

(ℓ+M + 2) (129)

≤
⌊logB⌋−2M−1∑

ℓ=0

2ℓ(ℓ+M + 2) (130)

≤ (⌊logB⌋ −M + 1)2logB−2M (131)

≤ B logB

22M
. (132)

4Although in [77], the upper bounds are derived for source strings produced by an edit-free source, the same upper bounds hold when edits exist since
every source block is still a Bernoulli(1/2) process by itself.



29

• For u such that
∣∣0Mu10M ∣∣ ≥ ℓγ , we apply Lemma 20 and find

Pr
(
0Mu10M ∈ Y B

1 |Eu
)
≤ 2AL

Sδ

(∣∣0Mu10M ∣∣, 3B
2A

)
2|0Mu10M | ≤ 3BL

2|0Mu10M | . (133)

It follows that
2L∑

ℓ=⌈ℓγ⌉−2M−1

(ℓ+M + 2)
∑
u∈Rℓ

M

Pr
(
0Mu10M ∈ Y B

1 |Eu
)

(134)

≤
2L∑

ℓ=⌈ℓγ⌉−2M−1

∑
u∈Rℓ

M

3BL

2ℓ+2M+1
(ℓ+M + 2) (135)

≤
2L∑

ℓ=⌈ℓγ⌉−2M−1

2

(
2− 1

2M

)ℓ
3BL

2ℓ+2M+1
(ℓ+M + 2) (136)

=
3BL

22M

 2L∑
ℓ=⌈ℓγ⌉−2M−1

(
1− 1

2M+1

)ℓ

(M + 2) (137)

+

2L∑
ℓ=⌈ℓγ⌉−2M−1

(
1− 1

2M+1

)ℓ

ℓ

 (138)

= (1 + o(1))
3BL

22M

(
2M+1 · e−

⌈ℓγ⌉−2M−1

2M+1 (139)

+ 22(M+1) · e−
⌈ℓγ⌉−2M−1

2M+1

(
⌈ℓγ⌉ − 2M − 1

2M+1
+ 1

))
(140)

= 12BL · e−
ℓγ

2M+1

(
ℓγ

2M+1
+ 1

)
(1 + o(1)), (141)

where the second equality follows by applying summations (505) and (513) in Appendix A6 with a = ⌈ℓγ⌉ − 2M − 1,
b = 2L, β = 2M+1 and noting that 2L

2M+1 = ω(1).
• If logB ≤ ℓγ , then there are additional terms corresponding to string u such that logB ≤

∣∣0Mu10M ∣∣ ≤ ℓγ . Again by
Lemma 20,

Pr
(
0Mu10M ∈ Y B

1 |Eu
)
≤ 2AL

Sδ

(∣∣0Mu10M ∣∣, 3B
2A

)
2|0Mu10M | (142)

≤ 5BL2−|0
Mu10M |(1+D(γ||δ)), (143)

where the second inequality follows from (41) and the fact that 2nH(γ) ≤ B
A2−nD(γ||δ) if n ≤ log(B/A)

H(γ,δ) .



30

Thus,

⌊ℓγ⌋−2M−1∑
ℓ=⌈logB⌉−2M−1

∑
u∈Rℓ

M

Pr
(
0Mu10M ∈ Y B

1 |Eu
)

(144)

· (ℓ+M + 2) (145)

≤
⌊ℓγ⌋−2M−1∑

ℓ=⌈logB⌉−2M−1

∑
u∈Rℓ

M

5BL2−(ℓ+2M+1)(1+D(γ||δ)) (146)

· (ℓ+M + 2) (147)

≤5BL

22M

⌊ℓγ⌋−2M−1∑
ℓ=⌈logB⌉−2M−1

(
1− 1

2M+1

)ℓ

2−(ℓ+2M+1)D(γ||δ) (148)

· (ℓ+M + 2) (149)

≤
5BLℓ2γ
22M

(
1− 1

2M+1

)logB−2M−1

2−D(γ||δ) logB (150)

=Θ
(
B1−D(γ||δ)L

)
(151)

=o(BL), (152)

where the first equality follows from the fact that
ℓ2γ
22M

and
(
1− 1

2M+1

)logB−2M−1
are both Θ(1) since 2M and ℓγ are

Θ(log(B/A)).

Plugging (132), (141) and (152) in (128), we find that as B → ∞ (also A,L → ∞),

E

 ∑
w∈C◦(s)

(|w|+ 1)|Eu

 ≤ 12e−cM (cM + 1)BL+ o(BL), (153)

where cM =
ℓγ

2M+1 .
If the complement of Eu holds, then the number of bits needed for encoding interior chunks at their first occurrences is at

most 4BL, since the total length of interior chunks is at most 2BL and the total number of chunks is at most 2BL. By noting
that Pr

(
Ēu
)
≤ Ae−

B
10A ,

E

 ∑
w∈C◦(s)

(|w|+ 1)

 ≤ 12e−cM (cM + 1)BL+ o(BL) + 4BLAe−
B

10A (154)

= 12e−cM (cM + 1)BL(1 + o(1)). (155)

The number of bits needed for encoding pointers of repeated chunks can be bounded from above in a trivial way. Note that
there are at most |s|

M + 1 strings in the dictionary T . So a pointer takes at most log
(

|s|
M + 1

)
+ 1 ≤ log|s| bits. Moreover,

the total number of chunks is less than the number of occurrences of 0M plus 1 since every chunk except possibly the last
one ends with 0M . On average, the number of occurrences of 0M in Yb is at most |Yb|

2M
. So given |s|, the expected number of

chunks in s is at most |s|
2M

+B + 1. Therefore the expected number of bits used by pointers is at most

E
[
(log|s|+ 1) ·

(
|s|
2M

+B + 1

)]
≤ log(2BL+ 1)

(
2BL

2M
+B + 1

)
(156)

≤ 2BL
log(BL)

2M
(1 + o(1)) (157)

≤ 4H(γ, δ)
(1 + k1)

k2
cM ·BL(1 + o(1)), (158)

where the last inequality follows from log(BL)
log(B/A) ≤

1+k1

k2
(1 + o(1)).

The desired result follows from summing (155) and (158) and noting that the number of bits used for encoding the length
of s and the unique boundary chunks are o(BL).



31

We perform the following analysis for minimizing the upper bound given by Theorem 29. For any given c > 0, there exists
an integer value for M such that c ≤ cM ≤ 2c. For this M , (126) is upper bounded by(

12e−c(c+ 1) + 8H(γ, δ)
(1 + k1)

k2
c

)
BL(1 + o(1)), (159)

since e−c(c+ 1) is decreasing in c when c > 0. We can always find γ such that H(γ, δ) ≤ 2H(δ). Such γ gives

E[LV L(s)] ≤
(
12e−c(c+ 1) + 16H(δ)

(1 + k1)

k2
c

)
BL(1 + o(1)). (160)

Let h = 4H(δ) (1+k1)
3k2

. Upper bounding the above expression is equivalent to upper bounding the function f(c) = e−c(c+1)+hc,
c ∈ (0,+∞). If h < e−1, then f(c) has a local minimum at c = −W−1(−h), where W−1 is the lower branch of the Lambert
W function. If h ≥ e−1, then f(c) is monotonically increasing in (0,+∞). Therefore, c = −W−1(−min

(
e−1, h

)
) provides

an upper bound on f(c). As an example, for A = L = B1/2 (i.e., k1 = k2 = 1
2 ), Figure 3 shows the upper bound given by

(160) with c = −W−1(−min
(
e−1, h

)
), as well as H(δ), as δ ranges from 10−5 to 10−1.

Note that h ≤ e−1 holds for small enough δ. When this holds, the upper bound (160) can be rewritten as

E[LV L(s)] ≤
(
12e−c(c+ 1) + 16H(δ)

(1 + k1)

k2
c

)
BL(1 + o(1)) (161)

≤ 12e−c
(
c2 + c+ 1

)
BL(1 + o(1)), (162)

where c = −W−1(−4H(δ)(1 + k1)/(3k2)). Hence the upper bound on the normalized expected compressed length approaches
0 as δ approaches 0. This means that as the entropy becomes smaller, the compression ratio grows if the length of the marker
is chosen appropriately. In particular, it can be seen that the proper length of the marker depends on δ, which represents the
degree of variability between the copies.

Large compression ratios when entropy is small is desirable and variable-length deduplication achieves this. However, it
can be shown and also observed in Figure 3 that the upper bound of the ratio E[LV L(s)]/H(Ib(δ)) given by Theorem 29
increases as δ decreases. Therefore, despite the large compression ratios, the gap to entropy may become large for small δ.
Determining whether this is indeed the case or the bound provided here is loose is left to future work.

10-5 10-4 10-3 10-2 10-1
10-4

10-3

10-2

10-1

100

101

Figure 3: Upper bound on E[LV L(s)]
BL and H(δ) vs the edit probability δ with A = L = B1/2, as δ ranges from 10−5 to 10−1.

E. Deduplication over source If (t)

While [62] extended the information-theoretic analysis of data deduplication to approximate repeats, the studied model has
entropy linear in the length of the uncompressed string (shown in Lemma 3) and the gain in compression is at best a constant
factor. This makes compression less challenging and the distinction between the performance of compression methods less
clear. In [64], we assume each source block only contains a constant number of substitutions (randomly distributed) instead of
iid bit flips, leading to the entropy being of smaller order than the length of the uncompressed string and thus high compression
ratio can be achieved.



32

The asymptotic regime that we are particularly interested in is when the source string uncertainty mainly results from
substitution edits, i.e., the entropy H(If (t)) is dominated by the term B log

(
L
t

)
. Therefore, we assume that asymptotically

logA = O(logL) and AL = O(B logL).
In the following, we study the performance of variable-length and multi-chunk deduplication algorithms over source model

If (t).
1) Variable-length deduplication
We start with a lower bound on the expected length of the compressed strings by variable-length deduplication.

Theorem 30. If B ≤ A
(
L/2
t

)
, then the average length of the compressed strings by variable-length deduplication with optimal

marker length M satisfies

E[LV L(s)] ≥ Ω

(
BL

1
t+1

logL

)
. (163)

Proof: In this proof, we lower bound LV L(s) by the total length of the distinct chunks, denoted W , plus the number
of chunks C since each chunk needs one bit indicating if it has appeared before. We have C is greater than the number of
non-overlapping marker strings in s. So E[C] ≥ BL

M2M
. It follows that

E[LV L(s)] ≥ E[W ] +
BL

M2M
. (164)

We lower bound E[W ] in the following.
For each source symbol Xa, we use na to denote the number of its descendants among the source blocks. Moreover, we fix

the positions where substitutions occur in each of its descendants. Let M contain the information about {na}Aa=1, the positions
of substitutions, and the lengths of source symbols {La}Aa=1.

We first compute the expected value of LV L(s) conditioned on M. Let ℓ = min
(
2M−5, L/4

)
. Partition each Xa into

segments of length ℓ, i.e., for each Xa, we write

Xa = xa,1xa,2 · · ·xa,caxa,ca+1, (165)

where |xa,1| = · · · = |xa,ca | = ℓ, ca+1 = ⌈La/ℓ⌉. We consider the substrings of the descendants of Xa that correspond to
xa,j , denoted h1

a,j , . . . ,h
na
a,j (see Figure 4). Each of h1

a,j , . . . ,h
na
a,j results from xa,j through at most t substitutions. For each

1 ≤ j ≤ ca, we assume without loss of generality that h1
a,j , . . . ,h

ma,j

a,j are distinct, where ma,j denotes the total number of
distinct strings among h1

a,j , . . . ,h
na
a,j .

Xa

1

na

...
...

xa,1 xa,2 · · · xa,ca xa,ca+1

h1
a,1 h1

a,2 · · · h1
a,ca h1

a,ca+1

hna
a,1 hna

a,2 · · · hna
a,ca hna

a,ca+1

ℓ = min
(
2M−5, L/4

)

Figure 4: A partition of Xa and its na descendants into segments of length ℓ.

We consider the event E1 that any two ℓ/2-substrings of the source alphabet are of Hamming distance at least 2t+ 1 from
each other. For any two ℓ/2 substrings of the source alphabet, regardless of whether they overlap or not, the probability of
their Hamming distance being less than or equal to 2t is at most∑2t

m=0

(
ℓ/2
m

)
2ℓ/2

≤
(
ℓ/2

2t

)
ℓ/2− 2t+ 1

ℓ/2− 4t+ 1
· 1

2ℓ/2
≤ (ℓ/2)2t

2ℓ/2
, (166)

when ℓ ≥ 12t, where the first inequality follows from ( N
k−i)
(Nk)

≤
(

k
N−k+1

)i
for i ≤ k. Since there are less than (2AL)2 pairs



33

of ℓ/2-substrings in the source alphabet, by the union bound, It can be shown by the union bound that

Pr(E1) ≥ 1− (2AL)2
(ℓ/2)2t

2ℓ/2
≥ 3

4
, (167)

when t/3 ≤ ℓ/2
12 log(ℓ/2) and log(AL) ≤ ℓ/8− 2.

Assume E1 holds. Then different source alphabet ℓ/2-substrings have different descendants. Consider h1
a,j . The only

substrings that are possible to be the same as h1
a,j are h2

a,j , . . . ,h
na
a,j . Note that if we have defined E1 to be the event

that any two ℓ-substrings of the source alphabet are of Hamming distance at least 2t+1 from each other, then when E1 holds,
h1
a,j is still possible to be the same as ℓ-substrings that sit across boundaries of source blocks. Therefore, we can assume

without loss of generality that h1
a,j , . . . ,h

ma,j

a,j are the first time such strings appear. For any hn
a,j , 1 ≤ n ≤ ma,j , if hn

a,j

is M -RLL, then it is fully contained in some chunk, denoted Z. So Z must have not appeared before and takes |Z| bits to
encode since its substring hn

a,j has not appeared before. Now that consider the set of distinct descendants of all ℓ-segments in
the source alphabet, i.e.,

H = {hn
a,j : 1 ≤ a ≤ A, 1 ≤ j ≤ ca, 1 ≤ n ≤ ma,j}. (168)

Every M -RLL string in H is contained in a chunk that has not appeared before. To enter these chunks into the dictionary, it
takes ℓ bits for each M -RLL string in H since strings in H do not overlap.

Since the source symbol Xa is a Ber(1/2) process, each hn
a,j is M -RLL with probability at least 1−2M−5 ·2−M = 1−2−5.

Since it holds for every element in H, by Markov’s inequality that with probability at least 3/4, over 7/8 of the strings in H
are M -RLL.

Combining the two arguments, with probability at least 1/2, there are 7|H|/8 distinct M -RLL substrings in H, which
contribute

7

8
|H|ℓ = 7

8
ℓ

A∑
a=1

ca∑
j=1

ma,j (169)

bits to the total length of distinct chunks W . It follows that when ℓ ≥ 8(2 + log(AL)),

E[W |M] ≥ 7

16
ℓ

A∑
a=1

ca∑
j=1

ma,j , (170)

and we further have

E[W ] = E[E[W |M]] ≥ E

 7

16
ℓ

A∑
a=1

ca∑
j=1

ma,j

 (171)

=
7

16
ℓ

A∑
a=1

ca∑
j=1

E[ma,j ]. (172)

Next, we compute the expected value of ma,j . Note that ma,j is independent of the source alphabet. The probability of k

substitutions occurring at a fixed set of positions in xa,j is
(
La−ℓ
t−k

)
/
(
La

t

)
. Hence,

E[ma,j ] ≥
t∑

k=0

(
ℓ

k

)
·

1−

(
1−

(
La−ℓ
t−k

)
A
(
La

t

) )B
 ≥ 1

2

t∑
k=0

(
ℓ

k

)
·min

(
1,

B
(
La−ℓ
t−k

)
A
(
La

t

) ) (173)

≥ 1

2

((
ℓ

0

)
·min

(
1,

B
(
La−ℓ
t−0

)
A
(
La

t

) )+

(
ℓ

t

)
·min

(
1,

B
(
La−ℓ
t−t

)
A
(
La

t

) )) (174)

=
1

2

(
1 +

B
(
ℓ
t

)
A
(
La

t

)) ≥ 1

2

(
1 +

B
(
ℓ
t

)
A
(
2L
t

)), (175)



34

where the second equality follows from

B
(
La−ℓ

t

)
A
(
La

t

) ≥ B

A

(
L/4
t

)(
2L
t

) =
B

A

(
1

8

)t

(1 + o(1)) ≥ 1. (176)

Thus, by (175), (172) and (164), E[LV L(s)] is lower bounded by

7

16
ℓ

(
1 +

B
(
ℓ
t

)
A
(
2L
t

))( A∑
a=1

⌊
L/2

ℓ

⌋)
Iℓ≥8(2+log(AL)) +

BL

M2M
(177)

≥ 7

64

(
AL+BL

(
ℓ

2L

)t

(1 + o(1))

)
Iℓ≥8(2+log(AL)) +

BL

M2M
, (178)

where the last inequality follows from
⌊
L/2
ℓ

⌋
≥ L

4ℓ , (ℓt)
(2Lt )

=
(

ℓ
2L

)t
(1 + o(1)).

When 2M = O(L
t

t+1 ),

E[LV L(s)] ≥
BL

M2M
= Ω

(
BL

1
t+1

logL

)
. (179)

When 2M = ω
(
L

t
t+1

)
,

E[LV L(s)] ≥
7

64

(
AL+BL

(
ℓ

2L

)t

(1 + o(1))

)
(180)

=Θ(AL) + ω
(
BL

1
t+1

)
. (181)

By the preceding theorem, if Ω
(

AL
logL

)
≤ B ≤ A

(
L/2
t

)
, then E[LV L(s)] is greater than H(If (t)) by at least an order of

L
1

t+1

log2 L
.

In the following, we derive an upper bound on the performance of variable-length algorithm.

Theorem 31. The average length of the compressed strings by variable-length deduplication with optimal marker length M

satisfies

E[LV L(s)] ≤ 2AL+Θ
(
BL

1
2 log

1
2 (BL)

)
. (182)

Proof: The variable-length deduplication partitions the source string s as a random number C of chunks, denoted
Z1, . . . , ZC . The length of s can be encoded in at most 2 log|s| + 1 bits by Elias gamma coding. Let T c

V L denote the
dictionary right after chunk Zc is processed (T 0

V L denotes the initial empty dictionary). We can write

LV L(s) ≤
C∑

c=1

(
IZc∈T c−1

V L

(
1 + log

∣∣T c−1
V L

∣∣+ 1
)
+ IZc /∈T c−1

V L
(1 + |Zc|)

)
+ 2 log|s|+ 1. (183)

We next consider a partition of s into a random number of “edit blocks”. We first split s at all the boundaries of source
blocks. Each source block Yb is further split in the following way. For all 1 ≤ a ≤ A, we let the first descendant of Xa be
Yg(a), i.e., g(a) is the smallest index such that Jg(a) = a (we define g(a) only for source symbols that have at least one
descendant). For any other descendant Yb of Xa, we consider the mismatches between Yb and Yg(a). Suppose Yb differs from
Yg(a) in positions c1, c2, . . . , cm, 0 ≤ cm ≤ 2t. We break Yb into cm + 1 segments at these points. Specifically, for each
1 ≤ j ≤ m, we split between the (cj − 1)-th symbol and the cj-th symbol. The first segment is set to be empty if c1 = 1.
These segments are referred to as edit blocks. As an example, if c1 = 2, c2 = 5 and

Yb = 01000101, (184)

then the edit blocks are 0, 100, 0101.
Thus, conditioned on the differences between each Yb and its corresponding “first descendant” source block YhJb

, we can
partition the source string s = Y1Y2 · · ·YB into a random number K of edit blocks, denoted D1, . . . , DK (the boundaries of



35

source blocks are also breakpoints). Note that each Yg(a) has no mismatch with itself, so they are edit blocks by themselves,
i.e., there exist k1, . . . , kA such that Dk1 = Yh1 , . . . , DkA

= Yg(a).
We define a similar notion of interior chunks and boundary chunks as in [77, Theorem 3] but with respect to edit blocks and

the substitutions. Consider chunks whose first symbols are in edit block Dk. Some of them are invariant of the neighboring
source blocks and the first bit of Dk. In other words, by replacing Dk−1, Dk+1 or the first bit of Dk by any other strings, the
existence or content of these chunks do not change. They are referred to as “interior” chunks. We denote the set of indexes
of interior chunks in Dk by C◦

k . The chunks that are not interior chunks are referred to as “boundary” chunks. Their content
depend on neighboring edit blocks Dk−1, Dk+1 and the first bit of Dk, which corresponds to a substitution. We denote the set
of indexes of all boundary chunks that start in Dk by ∂Ck. We give examples in the following of boundary chunks (indicated
by underbrackets) and interior chunks (indicated by overbrackets) when marker length M = 3 in various cases. Vertical bars
indicate the boundaries of edit blocks. Different rows are independent examples.

· · ·000 10110|00 0101000 010 · · · (185)

· · · 101100|0 000 00101000 010 · · · (186)

· · ·000 10|11000 0101000 010 · · · (187)

· · ·000 1011000 | 0101000 010 · · · (188)

· · ·000 101100|0 1000 11000 10 · · · (189)

· · ·000 1011000 | 1000 11000 10 · · · (190)

By (183),

E[LV L(s)] ≤ E


K∑

k=1

 ∑
c∈C◦

k

Zc /∈T c−1
V L

|Zc|+
∑

c∈∂Ck

Zc /∈T c−1
V L

|Zc|

+ C +
∑

Zc∈T c−1
V L

(
1 + log

∣∣T c−1
V L

∣∣)
. (191)

We first consider the interior chunks that appear for the first time. Consider the edit block Dk and the source block Yb that
contains Dk. If Yb is not the first source block among the descendants of XJb

, then Dk equals to the substring of YhJa
at the

same location with the first bit flipped. It follows from the definition of interior chunks that any interior chunk of Dk must
have already appeared in that substring of YhJa

. Thus, any interior chunk of s that has not appeared in the dictionary is a
substring of one of Yh1

, . . . , Yg(a). The total length of these chunks is hence less than the sum of lengths of Yh1
, . . . , Yg(a).

Hence,

E


K∑

k=1

∑
c∈C◦

k

Zc /∈T c−1
V L

|Zc|

 ≤ 2AL. (192)

Secondly, we upper bound the lengths of boundary chunks. We adopt a similar approach as [77]. We call an occurrence
of 10M internal to an edit block D if it starts in D but after its first (substituted) bit. For edit block D, we use head(D)

to denote the prefix of D which ends at the last zero of the first internal 10M in D. We use tail(D) to denote the suffix
of D which starts at the first zero of the rightmost 0M in D. Head or tail is defined to be D itself if D does not contain
corresponding patterns. Consider a boundary chunk Z with starting position in edit block Dk and ending position in edit
block Dk+j , j ≥ 0. If j = 0, then at least one of the following two event must hold: i) the starting position of Z is in
tail(Dk), ii) the ending position of Z is in head(Dk). This can be seen by noting that any chunk after the first internal 10M

is invariant of Dk−1 and the first bit of Dk, and the rightmost 0M contains the end of an interior chunk. For a similar reason,
when j > 0, the starting position of Z must be in tail(Dk) and the ending position of Z must be in head(Dk+j). Thus, the
total length of boundary chunks that start in or after Dk and end in or before Dk+j is upper bounded by the total length of



36

head(Dk), . . . ,head(Dk+j), tail(Dk), . . . , tail(Dk+j). It follows that

K∑
k=1

∑
c∈∂Ck

|Zc| ≤
K∑

k=1

(|head(Dk)|+ |tail(Dk)|). (193)

Note that every Dk by itself is a Bernoulli(1/2) process. The expected number of bits forwards until the end of the first internal
10M is 2M+1 + 1 and the expected number of bits backwards until the beginning of the rightmost 0M is 2M+1 − 2 [94,
Chapter 8]. It follows that

E


K∑

k=1

∑
c∈∂Ck

Zc /∈T c−1
V L

|Zc|

 ≤ E

[
K∑

k=1

∑
c∈∂Ck

|Zc|

]
(194)

≤ E

[
K∑

k=1

(
2M+1 + 1 + 2M+1 − 2

)]
(195)

≤ (2t+ 1)B
(
2M+2 − 1

)
. (196)

Finally, we upper bound the remaining terms in (191). The number of chunks C is less than the number of occurrences of
marker 0M plus 1 (the last chunk). The expected number of occurrences of 0M inside source blocks is BL

2M
. It follows that

E[C] ≤ BL
2M

+B, where B accounts for possible occurrences of 0M across the boundaries of source blocks. Therefore,

E

C +
∑

Zc∈T c−1
V L

(
1 + log

∣∣T c−1
V L

∣∣) ≤ E[C + C(1 + logC)] ≤ E[C](3 + log(BL)) (197)

≤ B

(
1 +

L

2M

)
(3 + log(BL)), (198)

where the second inequality follows from C ≤ 2BL.
Thus, by plugging (192), (196) and (198) in (191), we find that E[LV L(s)] is upper bounded by

2AL+B

(
(2t+ 1)2M+2 + 3 + log(BL)− (2t+ 1) +

(3 + log(BL))L

2M

)
(199)

= 2AL+B

(
(2t+ 1)2M+2 +

(3 + log(BL))L

2M

)
+Θ(B log(BL)). (200)

The preceding upper bound is minimized at 2M =
(

(3+log(BL)L)
4(2t+1)

) 1
2

with minimum value

2AL+ 4B((2t+ 1)(3 + log(BL))L)
1
2 = 2AL+Θ

(
BL

1
2 log

1
2 (BL)

)
. (201)

Note that the expected length of the source string is BL. When logB = o(L), BL
1
2 log

1
2 (BL) = o(BL). Therefore, under

this condition, the variable-length deduplication can achieve asymptotically arbitrarily large compression ratio.
By Theorem 30 and 31, the variable-length deduplication can achieve arbitrarily large compression ratio but may also spend

number of bits larger than entropy by an arbitrarily large factor over the proposed source model.
2) Multi-chunk deduplication
In the following, we derive an upper bound on the performance of multi-chunk algorithm.

Theorem 32. The average length of the compressed strings by multi-chunk deduplication with optimal marker length M

satisfies

E[LMC(s)] ≤ Θ(AL) +O(B log(ABL)). (202)

Proof: Same as the proof of Theorem 31, we consider the differences between each Yb and YhJb
, and break s into edit

blocks D1, D2, . . . , DK .



37

Next, we consider boundary chunks and interior chunks but with respect to multi-chunking. We give examples in the following
about boundary chunks (indicated by underbrackets) and interior chunks (indicated by overbrackets) in multi-chunking when
marker length M = 3 in various cases. Vertical bars indicate the boundaries of edit blocks. Different rows are independent
examples.

· · ·000 10110|00 0101000 010 · · · (203)

· · · 101100|0 0000 0101000 010 · · · (204)

· · ·000 10|11000 0101000 010 · · · (205)

· · ·000 1011000 | 0101000 010 · · · (206)

· · ·000 101100|0 1000 11000 10 · · · (207)

Further, in the multi-chunk deduplication algorithm, reducing the number of jointly encoded chunks and encoding them
separately increase the length of the compressed string. With this observation, we compute an upper bound on LML(s) in the
following by assuming that every boundary chunk is encoded individually.

Let Ein denote the event that any two source alphabet substrings of length 2M−2 are of Hamming distance at least 2t+ 1

from each other. Given Ein, since chunk lengths are at least 2M−1, repeated chunks may only occur at the same position of
source blocks that have the same ancestor.

Assume Ein holds. We first consider the interior chunks. For all 1 ≤ a ≤ A, in the edit block Dka = Yg(a), all interior chunks
are distinct and different from any other chunk that appeared previously. Thus, they are encoded jointly and take number of
bits

4 + log(
∣∣C◦

ka

∣∣) + ∣∣∣ZcaZca+1 · · ·Zca+|C◦
ka
|−1

∣∣∣, (208)

where Zca is the first interior chunk in Dka .
For any Dk that lies in some Yb with Jb = a and b ̸= hJb

, all of its interior chunks must have appeared in the corresponding
positions in Yg(a). Moreover, those are the first times these chunks appeared and entered into the dictionary. Suppose the
interior chunks in Dk are Zck , Zck+1, . . . , Zck+|C◦

k|−1, they jointly take

5 + 2 log|C◦
k |+ log

∣∣T ck−1
MC

∣∣ (209)

bits, where T ck−1
MC denotes the dictionary right after chunk Zck−1 is encoded.

For the boundary chunks, as mentioned, we assume they are encoded individually. If a boundary chunk Zc is new, then it
takes at most 4+ |Zc| bits. If Zc has appeared before, it takes at most 5+ log(

∣∣T c−1
MC

∣∣) bits. If we consider 2M−1 ≥ log(2BL),

5 + log(
∣∣T c−1

MC

∣∣) ≤ 5 + log(2BL) ≤ 5 + |Zc|. (210)

Next, if the complement of Ein holds, then by the same argument as (210), every chunk Zc can be encoded with at most
5 + |Zc| bits. It follows that

LML(s) ≤
∑
c

(5 + |Zc|) ≤ 5 · 2BL

2M−1
+ 2BL ≤ 12BL, (211)

where the term 2BL
2M−1 bounds the number of chunks in s from above.



38

Thus, by combining (208), (209) (210), (211), we get

LML(s) ≤
A∑

a=1

(
4 + log(

∣∣C◦
ka

∣∣) + ∣∣∣Zca · · ·Zca+|C◦
ka
|−1

∣∣∣) (212)

+

K∑
k=1

(
5 + 2 log|C◦

k |+ log
∣∣T ck−1

ML

∣∣) (213)

+

K∑
k=1

∑
c∈∂Ck

(5 + |Zc|) + I
(
Ēin
)
· 12BL (214)

≤ A(4 + log(2L) + 2L) (215)

+B(2t+ 1)(5 + 2 log(2L) + log(2BL)) (216)

+

K∑
k=1

∑
c∈∂Ck

(5 + |Zc|) + I
(
Ēin
)
· 12BL, (217)

where we upper bound both |C◦
k | and

∣∣∣Zca · · ·Zca+|C◦
ka
|−1

∣∣∣ by 2L, upper bound K by B(2t + 1) since there are at most

(2t+ 1) edit blocks in each source block, and upper bound the dictionary size
∣∣T ck−1

MC

∣∣ by 2BL.
It remains to bound the lengths of boundary chunks. For edit block D, we similarly define head(D) and tail(D) as the proof

of Theorem 31 but with respect to multi-chunking. We define tail(D) to be the suffix of D backwards until the beginning of
the rightmost occurrence of 0M plus an additional 2M−1 −M − 1 bits, head(D) to be the prefix of D forwards until the end
of the first occurrence of the string u10M such that u is an M -RLL string of length 2M−1 −M − 1, i.e., u ∈ R2M−1−M−1

M

after (exclusive) the first bit of D. Head and tail denote the whole edit block if no such pattern appears. The total length of
boundary chunks is again upper bounded by the total length of head and tail strings:

K∑
k=1

∑
c∈∂Ck

(5 + |Zc|)≤
K∑

k=1

(5|∂Ck|+|head(Dk)|+|tail(Dk)|). (218)

Thus, E[LML(s)] is less than

A(4 + log(2L) + 2L) (219)

+B(2t+ 1)(5 + 2 log(2L) + log(2BL)) (220)

+

K∑
k=1

(5E[|∂Ck|] + E[|head(Dk)|] + E[|tail(Dk)|]) (221)

+P
(
Ēin
)
· 12BL. (222)

By [77, Appendix F],

E[|head(Dk)|] ≤ 2M+2 + 1,E[|tail(Dk)|] ≤ 2M+2. (223)

Moreover,

K∑
k=1

E[|∂Ck|] ≤ E

[∑K
k=1(|head(Dk)|+ |tail(Dk)|)

2M−1

]
. (224)

It follows that
K∑

k=1

(5E[|∂Ck|] + E[|head(Dk)|] + E[|tail(Dk)|]) (225)

≤B(2t+ 1)2M+4 + 5 · 25 · (2t+ 1)B. (226)



39

On the other hand, by a similar argument as (167),

P
(
Ēin
)
≤ (2AL)2

∑2t+1
m=0

(
2M−2

m

)
22M−2 ≤ (2AL)2

(2M−2)2t+1

22M−2 (227)

≤ (2AL)2
1

22M−3 , (228)

for all M ≥ 3 + 2 log(2t+ 1).
Thus, by plugging (226) and (228) into (222), we get

E[LML(s)] ≤A(5 + logL+ 2L) + 48A2BL32−2M−3

(229)

+(2t+ 1)B
(
2M+4 + 168 + 2 logL+ log(BL)

)
, (230)

subject to the condition that 2M−1 ≥ log(2BL).
Pick

M =
⌈
log log

(
max

(
4A2L3, 2BL

))
+ 1
⌉
. (231)

Then 2M−1 ≥ log(2BL) is satisfied. With this choice of M , (230) is further upper bounded by

A(5 + logL+ 2L) + 48B + (2t+ 1)B
(
32 log

(
4A2L3 + 2BL

)
(232)

+168 + 2 logL+ log(BL)) (233)

=Θ(AL) +O(B log(ABL)). (234)

By the preceding theorem, when logB = O(logL),

E[LML(s)]

E[|s|]
≤ O(1). (235)

Note that the O(1) term depends on the substitution number t. Therefore, with the existence of substitutions, the multi-chunk
algorithm can achieve a constant factor of optimal with respect to the entropy.

F. Data deduplication from the point of view of universal compression
Existing theoretic analysis of data deduplication presented in Sections II-C, II-D and II-E assume known sources and compare

the expected length of the compressed strings with source entropy since entropy is the fundamental limit for any uniquely
decodable representation. However, in practice the specific probability distribution underlying the data is usually unknown.
For example, given a large chunk of texts or a set of images, the distribution of words/pixels is not observable. Similarly, for
data storage systems, it is often hard to do estimation about the underlying distribution given the scale. Instead, a common
assumption in these situations is to assume that there is a class of distributions P to which the true distribution belongs, but
the precise distribution is unknown. Thus, analysis and evaluation of compressors must take all possible sources into account.
A good compressor should have ‘universality’ over all possible sources instead of just having performance approaching the
entropy of a certain source distribution.

Motivated by applications like data deduplication, we study compressors under low-complexity constraints in the framework
of universal compression in this section. We assume that due to the complexity restriction, there are groups of input data
that compressors can not distinguish. As a result, the whole data space X is partitioned into groups uniquely defined by the
constraint and compressors must assign elements in the same group with the same probability. General results on the worst
and average cases redundancies with respect to the constrained compressors are derived. In particular, we consider universal
compression of patterns generated by iid sources over an alphabet of size k but with constrained compressors. We consider the
constraint that compressors are only allowed to use the information about how many distinct symbols (integers) are there in the
pattern sequence. In other words, patterns with the same number of distinct integers are assigned with the same probability. We
compute the worst and average case redundancies for such compressors. It is shown that under this constraint, the per-symbol
redundancies are at least a constant number of bits while diminishing redundancy can be achieved without any constraint. We
also show that the encoding scheme presented in [77] is optimal up to the first-order term under constraint.



40

1) The general universal compression framework
We first give an introduction to the general universal coding framework, where the metric ‘redundancy’ for compressors is

defined. Let a source X be distributed over a discrete support set X according to a distribution p. Every compressor of X

corresponds to a probability distribution q over X where x ∈ X is represented by roughly log(1/q(x)) bits. Shannon’s source
coding theorem states that the optimal way of compressing a source X is to represent each outcome x with log(1/p(x)) bits.
The extra number of bits required to represent x when q is used instead of p is therefore

log
1

q(x)
− log

1

p(x)
= log

p(x)

q(x)
. (236)

The worst case redundancy of q with respect to P is defined as the largest number of extra bits used for any possible x and
any distribution p, i.e.,

R̂(P, q) = sup
p∈P

sup
x∈X

log
p(x)

q(x)
= sup

x∈X
log

p̂(x)

q(x)
, (237)

where p̂(x) = supp∈P p(x), the maximum probability of x assigned by any p ∈ P .
Let Q be the set of all compressors (distributions) over X . The worst case redundancy of P is defined as

R̂(P,Q) = R̂(P) = inf
q∈Q

R̂(R, q) = inf
q∈Q

sup
x∈X

log
p̂(x)

q(x)
, (238)

the lowest number of extra bits in the worst case required by any compressor.
Similarly, one can define the average case redundancy of P as

R̄(P,Q) = R̄(P) = inf
q∈Q

sup
p∈P

(∑
x∈X

p(x) log
p(x)

q(x)

)
, (239)

the lowest number of extra bits on average required by any compressor. It can also be shown [17, Theorem 13.1.1] that

R̄(P) = sup
π∈Π

inf
q∈Q

Ep∼π

[∑
x∈X

p(x) log
p(x)

q(x)

]
, (240)

where Π is the set of all distributions over P . Note that it is always true that R̄ and R̂ are nonnegative and R̂ is an upper
bound on R̄.

2) Universal compression of iid sources over patterns
The class of iid sources that generate length-n sequences over A is denoted In

k . Let Θk = {(θ1, θ2, . . . , θk) :
∑k

i=1 θi =

1, 0 ≤ θi ≤ 1}. Each pθ ∈ In
k is then parameterized by a vector θ ∈ Θk.

Each pθ induces a distribution over Ψn
≤k as

pθ(ψ) =
∑

xn:Ψ(xn)=ψ

pθ(x
n). (241)

For example, let k = 2, n = 2. For θ = (0.4, 0.6), the induced pattern distribution is

pθ(11) = 0.42 + 0.62 = 0.52, (242)

pθ(12) = 2× 0.4× 0.6 = 0.48. (243)

Note the dual use of pθ that pθ(xn) denotes the probability of sequence xn and pθ(ψ) denotes the induced probability of
pattern ψ.

As mentioned, we are interested in universal compression of patterns generated by iid sources over alphabets of size k. Let
In,k
Ψ denote the set of pattern distributions over Ψn

≤k induced by In
k . From (237), the worst case redundancy of the class In,k

Ψ

with respect to a compressor q equals

R̂
(
In,k
Ψ , q

)
= sup
ψ∈Ψn

≤k

log
p̂θ(ψ)

q(ψ)
, (244)

where p̂θ(ψ) = supθ∈Θk
pθ(ψ). Let Q denote the set of all distributions over Ψn

≤k. the worst case redundancy of In,k
Ψ with



41

respect to a set Q of compressors equals

R̂
(
In,k
Ψ ,Q

)
= R̂

(
In,k
Ψ

)
= inf

q∈Q
sup

ψ∈Ψn
≤k

log
p̂θ(ψ)

q(ψ)
, (245)

where p̂θ(ψ) = supθ∈Θk
pθ(ψ).

Let Π denote the set of all distributions over Θk. From (240), the average case redundancy of In,k
Ψ with respect to Q equals

R̄
(
In,k
Ψ ,Q

)
= sup

π∈Π
inf
q∈Q

Eθ∼π

 ∑
ψ∈Ψn

≤k

pθ(ψ) log
pθ(ψ)

q(ψ)

. (246)

Universal compression of patterns was first introduced in [1], which leads to a lower bound on the worst case pattern
redundancy over In,k

Ψ of

R̂
(
In,k
Ψ

)
≥ (1− ϵ)(k − 1) log

n

k3
(1 + o(1)), (247)

where ϵ > 0 can be made arbitrarily small. Note that this bound is useful only when k = o(n
1
3 ). Later In [82], compression

of patterns generated by the class of iid sources of arbitrarily large alphabet size, i.e., In
Ψ = ∪∞

k=1I
n,k
Ψ = In,n

Ψ , is considered.
Upper and lower bounds on the worst case redundancy with respect to In

Ψ are shown as(
3

2
log e

)
n1/3(1 + o(1)) ≤ R̂(In

Ψ) ≤

(
π

√
2

3
log e

)
n1/2. (248)

More recently, [2] gave the upper bound

R̂(In
Ψ) ≤ n1/3(log n)

4
, (249)

and thus showed together with (248) that R̂(In
Ψ) is Θ̃

(
n1/3

)
.

Upper and lower bounds on the average case redundancy of In,k
Ψ was given in [96]. In particular, lower bounds were shown

as

R̄
(
In,k
Ψ

)
≥


k−1
2n log n(1−ϵ)

k3 (1 + o(1)), for k ≤
(

πn(1−ϵ)

2

)1/3
(
π
2

)1/3( 3
2 log e

)
n(1−ϵ)/3(1 + o(1)), for k >

(
πn1−ϵ

2

)1/3
.

(250)

Papers [2], [3], [9], [38] considered the average case redundancy for encoding patterns with arbitrarily large alphabet size, i.e.,
R̄(In

Ψ). The tightest bounds are given in [2], [3] as

0.3n1/3 ≤ R̄(In
Ψ) ≤ n1/3(log n)

4/3
. (251)

3) Universality of constrained compressors
In this section, we present general results for computing the redundancies of constrained compressors.
We consider constraints resulting from complexity restrictions. Compressors thus do not have enough resources to fully

process the information, thus causing some data inputs to be indistinguishable. With this intuition, we assume that every
constraint C uniquely defines a partition of the support set X as

X = ∪K
j=1Cj . (252)

Under C, elements in the same partition set are indistinguishable, i.e., they must be assigned with the same probability. So we
use

Qc = {q : q(x1) = q(x2) if x1 ∼ x2} (253)

to denote the set of allowed compressors under C, where ∼ denotes the equivalence relation that x1 and x2 belong to the same
partition set.



42

For a generic distribution p over X , we use p̃ to denote the distribution over the partition sets {Cj}Kj=1 induced by p, i.e.,

p̃(j) =
∑
x∈Cj

p(x), j = 1, 2, . . . ,K. (254)

For a family of distributions P , let P̃ = {p̃ : p ∈ P}.
Moreover, if we distribute p̃(j) back evenly to all x ∈ Cj , we get the flatten distribution of p, denoted p̄, as

p̄(x) =
p̃(j)

|Cj |
=

∑
x∈Cj

p(x)

|Cj |
, for x ∈ Cj . (255)

In the following, we present two lemmas about the minimum redundancy that compressors in Qc can achieve, in both worst
and average cases.

Lemma 33. The worst case redundancy of P with respect to the set of constrained compressors Qc satisfies

R̂(P,Qc) = log

 K∑
j=1

(
|Cj | · sup

x∈Cj

p̂(x)

), (256)

where p̂(x) = supp∈P p(x).

Proof: From (238),

R̂(P,Qc) = inf
q∈Qc

sup
x∈X

log
p̂(x)

q(x)
. (257)

Since every q ∈ Qc assigns the same probability to elements in the same partition set, we replace q(x) with qj for all
x ∈ Cj .

For any q,

sup
x∈X

log
p̂(x)

q(x)
= sup

j=1,...,K
sup
x∈Cj

log
p̂(x)

qj
(258)

= sup
j=1,...,K

log
supx∈Cj

p̂(x)

qj
. (259)

Similar to Shtarkov’s result [100], (259) is minimized at q∗j ∝ supx∈Cj
p̂(x), i.e.,

q∗j =
supx∈Cj

p̂(x)∑K
j=1

∑
x∈Cj

supx∈Cj
p̂(x)

. (260)

The redundancy thus equals log of the normalizer, i.e.,

log

 K∑
j=1

∑
x∈Cj

sup
x∈Cj

p̂(x)

 = log

 K∑
j=1

(
|Cj | · sup

x∈Cj

p̂(x)

). (261)

It can be seen from the proof that the lowest redundancy in worst case is achieved by assigning each x with probability
proportional to the largest maximum probability in the same partition set. Note that when there is no constraint, i.e., the
corresponding partition of X is X = ∪x{x}, R̂(P,Q) is thus reduced to log(

∑
x p̂(x)), which was given in [100].

Lemma 34. The average case redundancy of P with respect to the set of constrained compressors Qc satisfies

L(P,Qc) ≤ R̄(P,Qc) ≤ U(P,Qc), (262)

where

L(P,Qc) = max

(
sup
p∈P

D(p||p̄), R̄
(
P̃
))

, (263)

U(P,Qc) = sup
p∈P

D(p||p̄) + R̄
(
P̃
)
. (264)



43

Proof: From (240),

R̄(P,Qc) = sup
π∈Π

inf
q∈Qc

Ep∼π

[∑
x∈X

p(x) log
p(x)

q(x)

]
(265)

inf
q∈Qc

sup
p∈P

(∑
x∈X

p(x) log
p(x)

q(x)

)
. (266)

Let Π be the set of probability distributions over P . It can be shown [17, Theorem 13.1.1] that

inf
q∈Qc

sup
p∈P

(∑
x∈X

p(x) log
p(x)

q(x)

)
= sup

π∈Π
inf

q∈Qc

Ep∼π

[∑
x∈X

p(x) log
p(x)

q(x)

]
. (267)

Further,

sup
π∈Π

inf
q∈Qc

Ep∼π

[∑
x∈X

p(x) log
p(x)

q(x)

]
(268)

= sup
π∈Π

inf
q∈Qc

Ep∼π

 K∑
j=1

∑
x∈Cj

(
p(x) log

p(x)

p̄(x)

)
+

K∑
j=1

p̃(j) log
p̃(j)

q̃(j)

 (269)

= sup
π∈Π

(
Ep∼π[D(p||p̄)] + inf

q∈Qc

Ep∼π[D(p̃||q̃)]
)
, (270)

where the second equality follows from p̄(x)
p(x) =

p̃(j)
q̃(j) for all x ∈ Cj .

Further, we have

sup
π∈Π

Ep∼π[D(p||p̄)] = sup
p∈P

D(p||p̄), (271)

and by definition,

sup
π∈Π

inf
q∈Qc

Ep∼π[D(p̃||q̃)] = R̄
(
P̃, Q̃c

)
= R̄

(
P̃
)
. (272)

The desired inequalities thus follow from the fact that for any set Y ,

sup
y∈Y

(f1(y) + f2(y)) ≥ max

(
sup
y∈Y

f1(y), sup
y∈Y

f2(y)

)
, (273)

sup
y∈Y

(f1(y) + f2(y)) ≤ sup
y∈Y

f1(y) + sup
y∈Y

f2(y). (274)

Lemma 34 shows that the lowest average case redundancy under constraint is determined by two terms, supp∈P D(p||p̄)
and R̄

(
P̃
)

. The former is the maximum KL-divergence between source p and its flattened distribution p̃ for all p ∈ P . The

latter is the average case redundancy of the set of induced distribution P̃ . Note that when there is no constraint, p, p̄ and p̃ are
identical, so both upper and lower bounds are reduced to R̄

(
P̃
)
= R̄(P).

4) Universal compression of patterns under constraint C1
In this section, we consider a specific set of constrained pattern compressors and present lower bounds on the worst and

average case redundancies for encoding patterns generated by iid sources over an alphabet of size k. The constraint C1 is
motivated by data deduplication algorithms and it requires that compressors encode patterns only according to the number of
distinct integers. In other words, patterns that contain the same number of distinct integers should be assigned with the same
probability.

We find lower bounds on redundancies for compressing patterns only according to the number of distinct index integers.
The partition of Ψn

≤k defined by C1 is

Ψn
≤k = ∪k

m=1Ψ
n
m. (275)



44

The set of allowed compressors is

Q1 = {q : q(ψ1) = q(ψ2) if N(ψ1) = N(ψ2)}. (276)

Theorem 35. As n → ∞, R̂
(
In,k
Ψ ,Q1

)
is greater than or equal to(n log k − k log n)(1 + o(1)), for k ≤ n

lnn ,

n(log n− log log n)(1 + o(1)), for k > n
lnn .

(277)

Proof: By Lemma 33,

R̂
(
In,k
Ψ ,Q1

)
= log

(
k∑

m=1

(
|Ψn

m| · sup
ψ∈Ψn

m

p̂Ψ(ψ)

))
, (278)

where p̂Ψ(ψ) = supθ∈Θk
pθ(ψ) is the maximum probability of pattern ψ.

For a pattern ψ with profile Φ(ψ) = (φ1, . . . , φn), it was pointed out in [82] that the maximum probability assigned by
any iid distribution satisfies

p̂Ψ(ψ) ≥
n∑

µ=1

φµ!
(µ
n

)µφµ

. (279)

Consider any m < n. Let ψ̄m be any pattern sequence in Ψn
m such that integer 1 appears n−m+ 1 times and each of the

integers 2, 3, . . . ,m appears only once.
We lower bound supψ∈Ψn

m
p̂Ψ(ψ) by p̂Ψ

(
ψ̄

m). The profile of ψ̄m equals Φ
(
ψ̄

m)
= (φ̄m

1 , . . . , φ̄m
n ) where

φ̄m
n−m+1 = 1, φ̄m

1 = m− 1, (280)

and φ̄m
i = 0 for all other values of i. By (279),

p̂Ψ
(
ψ̄

m) ≥ (m− 1)!
(n−m+ 1)

n−m+1

nn
(281)

≥
√

2π

m

mm

em
nn−m+1

(
1− m−1

n

)n−m+1

nn
(282)

=
(m
n

)m−1
√
2πm

em

(
1− m− 1

n

)n−m+1

, (283)

where the second inequality follows from Feller’s bounds on Stirling’s approximation [37] that for any m ≥ 1,

m! ≥
√
2πm

(m
e

)m
. (284)

Next, we compute |Ψn
m|. There is a one-to-one correspondence between Ψn

m and the set of unordered m-partitions of [n].
The number of m-partitions of [n] is known as the stirling number of the second kind and is lower bounded in [89] by

1

2

(
m2 +m+ 1

)
mn−m−1 − 1, (285)

for 1 ≤ m ≤ n− 1.



45

Plugging (283) and (285) into (278) gives

R̂
(
In,k
Ψ ,Q1

)
= log

(
k∑

m=1

(
|Ψn

m| · sup
ψ∈Ψn

m

p̂Ψ(ψ)

))
(286)

≥ log

min(n−1,k)∑
m=1

|Ψn
m| · p̂Ψ

(
ψ̄

m) (287)

≥ log

(
min(n−1,k)∑

m=1

((
1

2

(
m2 +m+ 1

)
mn−m−1 − 1

)
(288)

·
(m
n

)m−1
√
2πm

em

(
1− m− 1

n

)n−m+1))
(289)

≥ log

((
1

2

(
m2 +m+ 1

)
mn−m−1 − 1

)
(290)

·
(m
n

)m−1
√
2πm

em

(
1− m− 1

n

)n−m+1
)∣∣∣∣∣

m=min(⌊ n
lnn⌋,k)

(291)

= (n logm−m log n)(1 + o(1))
∣∣
m=min(⌊ n

lnn⌋,k) (292)

=

(n log k − k log n)(1 + o(1)), for k ≤ n
lnn

n(log n− log log n)(1 + o(1)), for k > n
lnn .

(293)

Theorem 36. Fix an arbitrarily small ϵ > 0. As n → ∞, R̄
(
In,k
Ψ ,Q1

)
is greater than

(
n log k − (loge)k(lnn)

2
)
(1 + o(1)), for k<

(
n

lnn

)1−ϵ
,

(1− ϵ)n(log n− log logn)(1 + o(1)), for k≥
(

n
lnn

)1−ϵ
.

(294)

Proof: By Lemma 34, R̄
(
In,k
Ψ ,Q1

)
is lower bounded by5

max

(
sup
θ∈Θk

D(pθ||p̄θ), R̄
(
Ĩn,k
Ψ

))
≥ sup
θ∈Θk

D(pθ||p̄θ). (295)

Recall that p̄θ is the flattened distribution of pθ with respect to the partition ∪k
m=1Ψ

n
m and Ĩn,k

Ψ is the set of distributions over
[k] induced by In,k

Ψ .
To find a lower bound on supθ∈Θk

D(pθ||p̄θ), we write

D(pθ||p̄θ) =
∑

ψ∈Ψn
≤k

pθ(ψ) log
pθ(ψ)

p̄θ(ψ)
(296)

=

k∑
m=1

∑
ψ∈Ψn

m

pθ(ψ) log
pθ(ψ)

1
|Ψn

m|
∑
ψ′∈Ψn

m
pθ
(
ψ′) (297)

=

k∑
m=1

∑
ψ∈Ψn

m

(
pθ(ψ) log pθ(ψ) + pθ(ψ) log|Ψn

m|+ pθ(ψ) log
1∑

ψ′∈Ψn
m
pθ
(
ψ′)) (298)

= −Hθ(ψ) +

k∑
m=1

pθ(m) log|Ψn
m|+

k∑
m=1

pθ(m) log
1

pθ(m)
, (299)

where Hθ(ψ) is the entropy of the pattern distribution parameterized by θ and pθ(m) =
∑
ψ∈Ψn

m
pθ(ψ) = Pr(ψ ∈ Ψn

m|θ).

5R̄
(
Ĩn,k
Ψ

)
can be shown to be upper bounded by log k, which can be seen later to be negligible. So it suffices to only consider supθ∈Θk

D(pθ ||p̄θ).



46

Consider J = min
(
k,
⌊(

n
lnn

)1−ϵ
⌋)

for a small ϵ > 0 and vector θJ = (θ1, θ2, . . . , θk) ∈ Θk where

θj =


1− (J − 1) lnn

n , j = 1,

lnn
n , j = 2, 3, . . . , J,

0, otherwise.

(300)

Note that since J ≤
(

n
lnn

)1−ϵ
, θ1 ≥ 1−

(
n

lnn

)−ϵ
.

We bound supθ∈Θk
D(pθ||p̄θ) from below by D(pθJ

||p̄θJ
), which by (299) equals

−HθJ
(ψ) +

k∑
m=1

pθJ
(m) log|Ψn

m|+
k∑

m=1

pθJ
(m) log

1

pθJ
(m)

. (301)

Since the distributions over patterns are induced by the iid distributions over sequences,

HθJ
(ψ) ≤ HθJ

(xn) = n

((
1− (J − 1)

lnn

n

)
log

1

1− (J − 1) lnn
n

(302)

+ (J − 1)
lnn

n
log

n

lnn

)
(303)

< J lnn log
ne

lnn
, (304)

where the last inequality follows (1− x) log 1
1−x < x log(e) for all 0 < x < 1.

For the second term in (301), we show that in the original sequence xn, all of the J symbols with positive probabilities
will appear with high probability, i.e., pθJ

(J) ≈ 1, thus leading to a lower bound approximately log|Ψn
J |. Rigorously, given

θJ , in the original sequence xn, the probability that any symbol does not appear is less than or equal to(
1− lnn

n

)n

≤ 1

n
. (305)

By the union bound, the probability that all J symbols appear is greater than or equal to

1− J

n
≥ 1−

( n

lnn

)−ϵ 1

lnn
. (306)

So pθJ
(J) ≥ 1−

(
n

lnn

)−ϵ 1
lnn and

k∑
m=1

pθJ
(m) log|Ψn

m| ≥
(
1−

( n

lnn

)−ϵ 1

lnn

)
log|Ψn

J | (307)

≥
(
1−

( n

lnn

)−ϵ 1

lnn

)
log

(
1

2

(
J2 + J + 1

)
Jn−J−1 − 1

)
, (308)

where the last inequality follows again from (285).
Combining (301), (304), (308) and trivially lower bounding the last term in (301) by 0 give

sup
θ∈Θk

D(pθ||p̄θ) ≥ D(pθJ
||p̄θJ

) (309)

> −J lnn log
ne

lnn
(310)

+

(
1−

( n

lnn

)−ϵ 1

lnn

)
log

(
1

2

(
J2 + J + 1

)
Jn−J−1 − 1

)
(311)

=
(
− log e · J(lnn)2 + (n− J + 1) log J

)
(1 + o(1)) (312)

=


(
n log k − (loge)k(lnn)

2
)
(1 + o(1)), for k<

(
n

lnn

)1−ϵ
,

(1− ϵ)n(log n− log log n)(1 + o(1)), for k≥
(

n
lnn

)1−ϵ
.

(313)

Theorems 35 and 36 show that if compressors can only use the information about the number of distinct integers in the



47

pattern sequence, the worst and average redundancies are close and greater than Θ
(
n log

(
min

(
k, n

logn

)))
. The per-symbol

redundancy thus goes to infinity as the alphabet size k increases. On the other hand, it was shown in [2] that the redundancies
are upper bounded by Θ

(
n1/3

)
for all k ≤ n when there is no constraint, i.e., diminishing per-symbol redundancy can be

achieved. The discrepancy results from the fact that pattern probabilities is determined by its profile, but under C1, compressors
do not know this information. Therefore, to compress only knowing the number of distinct integers is not efficient.

5) Universal compression of patterns under constraint C2
In this section, we consider another constraint C2 and present lower bounds on the worst and average case redundancies

for encoding patterns generated by iid sources over an alphabet of size k. Notice that sequential compressors are often more
favorable and they perform encoding one symbol at a time. The encoding of i-th symbol is determined by the content of
the previous i − 1 symbols that have appeared. Therefore, we extend C1 in a natural sense. We consider constraint C2 that
compressors only know how many distinct index integers are there in the first i symbols, for all i. In other words, for two
patterns, if their length-i prefixes have the same number of distinct integers for all i, then they should be assigned with the same
probability. It is clear that C1 is more restrictive than C2 and any compressor that satisfies C2 must also satisfies C1. We will
show later C2 is equivalent of encoding by innovation vectors. Note that although C2 is motivated by sequential compression
algorithms, compressors that satisfy C2 are not necessarily sequential.

The number of distinct integers is determined by the occurrences of new symbols. Therefore, if the corresponding prefixes
of two patterns have the same number of distinct integers, then the innovation vector of the two patterns must be the same.
The partition of Ψn

≤k defined by C2 is thus

Ψn
≤k = ∪λ∈Λn

≤k
Ψn(λ), (314)

where Ψn(λ) = {ψ : Λ(ψ) = λ}. The set of allowed compressors is

Q2 = {q : q(ψ1) = q(ψ2) if Λ(ψ1) = Λ(ψ2)}. (315)

Theorem 37. The worst case redundancy of In,k
Ψ with respect to Q2 is the same as that with respect to Q1, i.e.,

R̂
(
In,k
Ψ ,Q2

)
= R̂

(
In,k
Ψ ,Q1

)
(316)

Proof: The proof simply follows from the fact that for each λ ∈ Λn
m, there exists a pattern ψ◦ that Λ(ψ◦) = λ and

p̂Ψ(ψ
◦) = supψ′∈Ψn

m
p̂Ψ
(
ψ′).

The preceding theorem states that although C2 allows compressors to acquire more information compared with C1, the worst
case redundancy does not decrease. This also is as expected since the compressors do not have the information about profiles.

Theorem 38. Fix arbitrarily small real numbers ϵ, δ > 0. As n → ∞, R̄
(
In,k
Ψ ,Q2

)
is greater than

(
(1− δ)n log k − log e

δ k(lnn)
2
)
(1 + o(1)), for k <

(
n

lnn

)1−ϵ
,

(1− δ − ϵ)n(log n− log log n)(1 + o(1)), for k ≥
(

n
lnn

)1−ϵ
.

(317)

Proof: Fix some small ϵ, δ > 0. Let T = min
(
k,
⌊(

n
lnn

)1−ϵ
⌋)

and let the vector θT = (θ1, θ2, . . . , θk) ∈ Θk be

θt =


1− (T − 1) lnn

δn , t = 1,

lnn
δn , t = 2, 3, . . . , T,

0, otherwise.

(318)

Similar to the proof of Theorem 36, we can write

R̄
(
In,k
Ψ ,Q2

)
≥ max

(
sup
θ∈Θk

D(pθ||p̄θ), R̄
(
Ĩn,k
Ψ

))
(319)

≥ sup
θ∈Θk

D(pθ||p̄θ) ≥ D(pθT
||p̄θT

) (320)

= −HθT
(ψ) +

∑
λ∈Λn

≤k

pθT
(λ) log|Ψn(λ)|. (321)



48

The pattern entropy is at most the sequence entropy, i.e.,

HθT
(ψ) ≤ HθT

(xn) (322)

= n

(
(T − 1)

lnn

δn
log

δn

lnn
(323)

+

(
1− (T − 1)

lnn

δn

)
log

1

1− (T − 1) lnn
δn

)
(324)

< T
lnn

δ
log

eδn

lnn
. (325)

For the second term in (321), we show that in the original sequence, the T symbols with positive probabilities will all appear
with high probability in the first δn positions. The probability that any symbol does not appear is less than or equal to(

1− lnn

δn

)δn

≤ 1

n
. (326)

Therefore, by the union bound, the probability that all T symbols appear is greater than or equal to

1− T

n
≥ 1−

( n

lnn

)−ϵ 1

lnn
. (327)

If there are T distinct symbols in the first δn positions, then the innovation vector λ = (λ1, λ2, . . . , λk) must satisfy λT ≤ δn.
Moreover, the number of patterns whose innovation vector satisfies this condition is greater than or equal to

Tn−δn = T (1−δ)n. (328)

It follows that
∑
λ∈Λn

≤k
pθT

(λ) log|Ψn(λ)| is greater than or equal to(
1−

( n

lnn

)−ϵ 1

lnn

)
log
(
T (1−δ)n

)
(329)

= (1− δ)n(log T )(1 + o(1)). (330)

Summing up (325) and (330) gives

sup
θ∈Θk

D(pθ||p̄θ) > (1− δ)n(log T )(1 + o(1))− T
lnn

δ
log

eδn

lnn
(331)

≥


(
(1− δ)n log k − log e

δ k(lnn)
2
)
(1 + o(1)), for k <

(
n

lnn

)1−ϵ
,

(1− δ − ϵ)n(log n− log log n)(1 + o(1)), for k ≥
(

n
lnn

)1−ϵ
.

(332)

6) A Low-complexity sequential compressor
In this section, we consider the data deduplication algorithms in [77] which encode patterns as follows. For a pattern

ψ = ι1ι2 · · · ιn, the compressor QD ∈ Q2 assigns probability sequentially as

QD(ψ) =

n∏
i=1

QD

(
ιi|ιi−1

1

)
, (333)

where

QD

(
ιi|ιi−1

1

)
=

 1
|Mi−1| ·

1
2 if ιi ∈ Mi−1,

1
2 if ιi /∈ Mi−1,

(334)

where Mi−1 is the set of all index integers in ιi−1
1 , i.e., Mi−1 = {ι1, ι2, . . . , ιi−1}. It is clear that QD satisfies constraint 2

(and thus also constraint 1).

Lemma 39. For any length-n pattern ψ with m distinct index integers, the maximum probability assigned by any iid source



49

satisfies

p̂Ψ(ψ) ≤
√

2πm(n−m+ 1)

n

(n−m+ 1)
n−m+1

mm

nn
. (335)

Proof: For a pattern ψ with profile Φ(ψ) = (φ1, φ2, . . . , φn), it was shown in [82] that the maximum probability assigned
by any iid distribution satisfies

p̂Ψ
(
ψ̄
)
≤
∏n

µ=1(µ!)
φµ · φµ!

n!
. (336)

Note that if ψ contains exactly m distinct index integers, then
∑n

µ=1 φµ = m, and

n∏
µ=1

(µ!)
φµ =

m∏
i=1

ni, (337)

where ni denotes the number of times integer i appears in ψ. It follows that∏n
µ=1(µ!)

φµ · φµ!

n!
≤ (n−m+ 1)!m!

n!
(338)

≤
√
2πm(n−m+ 1)(n−m+ 1)

n−m+1
mm

√
nnn

, (339)

where the second inequality follows from that if a1 + a2 + · · ·+ as = t, then

s∏
i=1

ai! ≤

t! if 0 ≤ ai ≤ t,

(t− s+ 1)! if 1 ≤ ai ≤ t,
(340)

and the last inequality follows from Feller’s bounds on Stirling’s approximation [37] that for any m ≥ 1,

m! ≤
√
2πm

(m
e

)m
e

1
12m . (341)

Theorem 40. Let n → ∞. The compressor QD satisfies

R̂
(
In,k
Ψ , QD

)
≤


(
n log k − k log n+ n+ (log e)k2

n−k

)
(1 + o(1)), for k < n

logn ,(
n log n

logn + (log e)n

(logn)2

)
(1 + o(1)), for k ≥ n

logn .
(342)

Proof: Let ψ be a pattern in Ψn
m with profile

Φ(ψ) = (φ1, φ2, . . . , φn) (343)

and innovation vector

Λ(ψ) = (λ1, λ2, . . . , λm). (344)

Let νm+1 = n+ 1. The compressor QD assigns ψ with probability

QD(ψ) =

n∏
i=1

QD

(
ιi|ιi−1

1

)
(345)

=

(
1

2

)n m∏
i=1

(
1

i

)λi+1−λi−1

(346)

≥
(
1

2

)n(
1

m

)n−m

, (347)

where the equality holds when λi = i for all i = 1, 2, . . . ,m.



50

By Lemma 39, for any pattern ψ with m distinct index integers,

log
1

QD(ψ)
− log

1

p̂Ψ(ψ)
≤ log

(
2nmn−m

)
(348)

+ log

(√
2πm(n−m+ 1)

n

(n−m+ 1)
n−m+1

mm

nn

)
(349)

= n logm−m log n+ n log

(
1− m− 1

n

)
(350)

−m log

(
1− m− 1

n

)
+ n+

1

2
log

(
2πm

n

)
(351)

+
3

2
log(n−m+ 1) (352)

≤ n logm−m log n+ n+ (log e)

(
m(m− 1)

n−m+ 1
−m+ 1

)
(353)

+O(log n). (354)

Therefore, the worst case redundancy for encoding patterns generated by iid sources using QD equals

max
ψ∈Ψn

≤k

(
log

1

QD(ψ)
− log

1

p̂Ψ(ψ)

)
(355)

= max
m∈[k]

max
ψ∈Ψn

m

(
log

1

QD(ψ)
− log

1

p̂Ψ(ψ)

)
(356)

≤ max
m∈[k]

(
n logm−m log n+ n+ (log e)

(
m(m− 1)

n−m+ 1
−m+ 1

)
+O(log n)

)
(357)

=


(
n log k − k log n+ n+ (log e)k2

n−k

)
(1 + o(1)), for k < n

logn ,(
n log n

logn + (log e)n

(logn)2

)
(1 + o(1)), for k ≥ n

logn .
(358)

G. Experiments
In this section, we present experimental results related to deduplication algorithms. In our experiment, we consider a real-

world dataset and several synthetic datasets. The variable-length chunking scheme is used to split the datasets into multiple
chunks. After that, we apply several simple encoding schemes to the chunks and compute the size of the datasets after
compression. By setting different marker lengths in the chunking process, we are able to control the average length of the
chunks and thus study experimentally how chunk lengths affect the compression ratio. Further, we also compare the effectiveness
of different encoding schemes for compressing patterns.

1) Datasets
In our experiment, we consider both real-world and synthetic datasets.
For the real-world dataset, we choose the source code of the GNU program bash6. It contains the source code of the bash

shell from version 1.14.0 to version 5.2, with an uncompressed total size of 940MB. This dataset serves as a representative of
backup/primary storage that contains multiple edited versions of the same file.

We also synthesize datasets according to the source models Ib(δ). In particular, we pick a set of values A = 210, B = 215

and L = 215 bytes. The values of A,B,L are chosen based on the observation made in [77] that experiments suggested
reasonable numbers for L range from a few kB to a few MB. Further, we choose the values of B such that the whole data file
is of size approximately 1GB. Our synthetic dataset can be viewed as a small sample from a larger and more general dataset.
It is also suggested by [77] that the number of distinct source symbols A should be somewhere in the range 0.01B to B.
Therefore, in our experiment, we pick A to be B/25. In the Ib(δ) model, we pick the edit probability δ ∈ {0, 10−5} to simulate
situations where we have no edit and small edit probability. Given A,B,L and δ, we use the entropy upper bound provided
in 3 as an approximate. For both δ = 0, 10−5, the entropy is approximately 32.8MB. Note that in our analysis, we consider

6https://ftp.gnu.org/gnu/bash/

https://ftp.gnu.org/gnu/bash/


51

δ to be a constant and let B,L increase. There, entropy is dominated by the term BLH(δ) determined by the uncertainty
from edits. However, in our experiment, the 32.8MB of entropy is almost fully contributed by the A distinct source symbols.
It therefore leaves us an interesting open problem that if our assumption is reasonable for real-world datasets. The actual size
of the synthetic dataset is approximately 1.34GB.

2) Rabin-based chunking
The files are split according to the “Rabin-fingerprint” [10], [86], with a sliding window of size 64 bytes. In this method,

the sliding window will move from the beginning of the file to the end, one byte at a time. For every 64 bytes in the current
window, a “Rabin-fingerprint” will be computed, and if it satisfies a certain condition, a chunk breaking point is made. In our
experiment, we set the fingerprint to be of length 53 bits. The fingerprint is obtained by modulo the degree-255 polynomial
obtained from the sliding window by a fixed degree-53 polynomial. The polynomials are with coefficients in Z2. A common
way of checking for chunk breaking point is to see whether the least significant bits of the fingerprint are all zero. If the
input bytes are random, the fingerprints can also roughly be viewed as random. Therefore, if we check for the least a bits of
the fingerprint, then every time we move the sliding window, there is a roughly 2−a probability that a chunk break point is
found, i.e., the expected length of the chunks is approximately 2a bytes. Furthermore, we also set upper and lower limits on
the chunk lengths to reduce chunk length variance.

Table 1 shows the average length of chunks in the bash dataset and in the synthetic dataset with edit probability δ = 0.

number of check bits 3 4 5 6 7 8 9 10 11 12
synthetic with δ = 0 7.8 15.6 31.2 62.4 124.8 251.0 500.4 997.1 1,999.4 4,019.2

bash dataset 7.6 15.5 28.0 64.5 129.7 251.2 493.2 965.1 1,860.5 3,449.5

Table 1: Average length of chunks (bytes) of the bash and synthetic datasets under different number of check bits. The upper
and lower bound on chunk lengths are not specified.

3) Encoding schemes
In our experiment, we consider several types of dictionary-based encoding methods after splitting data files into chunks.
The simple fixed-size pointer encoding is adopted by the fixed-length and variable-length deduplication algorithms provided

in Section II-B3. When a chunk has appeared before, it is encoded using a pointer whose length approximately equals log of
the total number of distinct chunks processed so far. We denote this encoding scheme by FX. The FX encoding also belongs to
the set of pattern compressors that satisfy constraint C2 in Section II-F. It was shown there that if all iid sources are considered,
then the compression is very limited. Given this fact, we also explore a variant of the FX encoding scheme by allowing our
dictionary to store not only the chunks that have appeared before, but also the frequency of the appeared chunks. In [80], it
is shown that by taking into account the frequencies of symbols/chunks, o(1) per-symbol redundancy can be achieved. We
denote this encoding by VL. In the VL scheme, if a chunk zc has appeared before, it will be replaced by a pointer of length
at most − log(nzc/Nzc) + 1 bits, where nzc is the number of times zc has appeared so far, and Nzc is the total number of
chunks appeared so far.

Furthermore, in deduplication, some chunks frequently appear together, i.e., if chunk z1 is followed by chunk z2, then the
next time z1 appears, z2 might also follow. This is due to the fact that a repeating content can be partitioned into several
chunks. Based on this observation, we also consider encoding chunks based on the context. In particular, we consider an order-1
Markov model, which encodes the chunk z2 following z1 in the following way (ignoring indicator bits): i) z2 is encoded in full
if it has not appeared before, ii) z2 is encoded by a pointer of length at most − log(nz2/Nz2)+1 bits if it has appeared before
but the chunk pair z1z2 has not appeared before, iii) else, z2 is encoded by a pointer of length at most − log(nz1z2/nz1) + 1

bits, i.e., the number of times z1 is followed by z2 divided by the total number of times z1 appears. We denote this encoding
scheme MK.

Note that to apply MK, we need to store the number of times every chunk pair zc1zc2 appears. Therefore, the memory
consumed will be roughly squared in the worst case. To avoid such a large memory overhead, we consider a simplification of
the MK encoding scheme. Fix k. For every chunk zc, we store the first k distinct chunk pairs zczc′ . The encoding of a chunk
z2 following z1 is given by: i) z2 is encoded in full if it has not appeared before, ii) z2 is encoded by a pointer of length at
most − log(nz2/Nz2) + 1 bits if it has appeared before but the chunk pair z1z2 is not one of the k chunk pairs associated
with z1, iii) z2 is encoded by a pointer of length at most − log(nz1z2/

∑k
i=1 nz1zc′

i
) + 1 bits, where chunks zc′i are the first



52

no limit on chunk lengths 2a−2 ≤chunk length ≤ 2a+2

2a−1 ≤ chunk length≤ 2a+1

Figure 5: Compressed file sizes of the bash dataset vs. number of check bits a for different encoding schemes and chunk
length (bytes) constraints.

k chunks that appear right after z1. We denote this encoding scheme by MK-k. In out experiment, we consider k = 1 and
k = 2. Note that with this simplification, the memory consumption reduces to be linear in the number of distinct chunks.

4) Experiment results and discussion
We first show our experiment on the real-world bash dataset. Figure 5 shows the compressed file sizes of the bash dataset for

the five different encoding schemes, different number of check bits a and different upper and lower bounds on chunk lengths.
Experiment results for more general settings can be found on Appendix B.

The performance of the deduplication algorithms depends on the number of check bits, i.e., the average length of the chunks.
The performance of the FX scheme, which is also the variable-length deduplication algorithm, achieves the optimal when check
bits equal to 7. This is consistent with our analysis in Section II-D that the chunk lengths can not be chosen too large or
too small. Furthermore, we can observe that by utilizing the frequency information of the chunks, the VL encoding scheme
does not show a big advantage over the simple FX encoding scheme. One possible reason could be due to the chunking
method, different chunks appear for a similar number of times. The encoding schemes MK, MK-1, MK-2 achieve a much
higher compression ratio compared with FX and VL when chunk lengths are small. This is due to the fact that pointers play
a more important role when chunk length is small. We thus observe that at the cost of complexity, Markov models provide
more robustness in terms of the choice of the expected chunk length. We can also notice that encoding schemes MK-1 and
MK-2 have similar performance, which implies that in most cases, chunks are followed by the same chunks.

Figure 6 shows the size of pointers when applying different encoding schemes to the bash dataset. The chunks are limited
to lengths between 2a−1 and 2a+1 bytes. As we can see, as the number of check bits, i.e., the chunk lengths, gets larger, there
are more distinct chunks and pointers become less significant. The encoding schemes MK, MK-1 and MK-2 show advantage
over the simple encoding schemes FX and VL only for small values of a.

Next, we consider the synthetic dataset, for which the entorpy is known and given in the plots. Figure 7 shows the size



53

Figure 6: Pointer sizes of the bash dataset vs. number of check bits for different encoding schemes. The chunk lengths are
limited to [2a−1, 2a+1] bytes, where a is the number of check bits.

of the compressed file after applying different encoding schemes to the synthetic data with δ = 10−5. Similar to the bash
dataset, we can also observe that for encoding schemes FX and VL, the compression ratio first increases and then decreases
as the number of check bits increases. This again agrees with our theoretical analysis that neither small chunk lengths nor
large chunk lengths can provide good deduplication. Further, for encoding schemes MK, MK-1 and MK-2, both Figures 5
and 7 show that the best compression is achieved with chunk length. One of the reasons could be that after considering the
context information, as long as we can identify the first chunk in every repeating block, we can identify all subsequent ones.
It can also be observed that MK-2 has almost the same performance as MK, which suggests that on the synthetic dataset, it
is enough to store the first two chunks that appear following every chunk. It can also be seen that all deduplication schemes
can get close to entropy with the proper choice of the parameters.

III. Analysis of Genomic Sequence Data via an Evolutionary Model
Due to advances in DNA sequencing, vast amounts of biological sequence data are available nowadays. Developing efficient

methods for the analysis and storage of this type of data will benefit from gaining a better mathematical understanding of
the structure of these sequences. Biological sequences are formed by genomic mutations, which alter the sequence in each
generation to create a new sequence in the next generation. These processes can be viewed as stochastic string editing operations
that shape the statistical properties of sequence data.

To gain a better understanding of the evolution of sequences under random mutations, we represented the evolutionary
process as a stochastic system in which an arbitrary initial string evolves through random mutation events [61], [63]. In such
systems, we studied the evolution of the frequencies of words of length k, i.e., k-mers, as the sequence evolves. The analysis
of k-mers has various applications, including identifying functions and evolutionary features [102]. Alignment-free sequence
comparison also relies on k-mer frequencies [116]. Their analysis is also of interest because other statistical properties can be
computed from k-mer frequencies.

In [61], we studied the asymptotic behavior of k-mer frequencies of the string under mutation, through which we also
provided bounds on the entropy of the stochastic evolution system. From an information-theoretic point of view, stochastic
sequence generation process through mutation can be viewed as a source of information. The entropy determines how well
the sequences it produces can be compressed, which is an increasingly important problem given the growth of biological
data. Entropy also represents the complexity of sequences generated by the source. Sequence complexity measures, including
entropy, have been used to determine the origin and/or the role of DNA sequences [33], [83], [112], for example to classify
protein-coding and non-coding regions of a genome.

In previous work, the related problem of finding the combinatorial capacity of duplication systems has been studied. The
combinatorial capacity is related to entropy but is defined based on the size of the set of sequences that can be generated by
the system, without considering their probabilities. The combinatorial capacity is studied by [36], [48], for duplication systems



54

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2

2a−1 ≤ chunk lengths ≤ 2a+1

Figure 7: Compressed file size of the synthetic dataset with δ = 10−5 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

(without allowing other types of mutations) and by [47] for systems with both tandem duplication and substitution. Compared to
combinatorial capacity, entropy provides a more accurate measure of the complexity and compressibility of sequences generated
by the system. For duplication systems and duplication/substitution systems, entropy has been studied by [28]. While this work
considers a wider range of systems, it only allows duplications involving single symbols. Furthermore, it does not study k-mer
frequencies. The stochastic-approximation framework has been used for estimation of model parameters in tandem duplication
systems [35]. Estimating the entropy of DNA sequences has been studied in [33], [60], [92]. However these works focus on
estimating the entropy from a given sequence, rather than computing the entropy of a stochastic sequence generation system
that models evolution. Duplication systems have also been studied in the context of designing error-correcting codes [14], [23],
[49], [55].

In [63], we focused on the finite-time behavior of the k-mer frequencies. We studied the first and second moment trajectories
of k-mer frequencies, and provided bounds on the waiting time of the k-mers. The waiting time for a given string u in an
evolutionary system is the first time index in which u appears as a substring of the evolving sequence. Waiting time problems
are of interest since appearances of new patterns in DNA sequences lead to new biological functions and changes in physical
attributes [105]. Furthermore, accumulated alterations in certain types of genes, including oncogenes, tumor suppressor genes
and genetic instability genes, are known to be responsible for tumorigenesis [109]. Thus, understanding the time scales in
which such events take place is of importance in explaining evolutionary trends and the study of diseases such as cancer [26].

Several types of mutations exist in genomic data, including substitution, duplication, insertion, and deletion. Substitution
refers to changing a symbol in the sequence, e.g., ACGTCT → ACGCCT. Duplication mutations refer to the process where a
segment of DNA (called the template) is copied and inserted elsewhere in the genome. In the models studied in [61], [63], only
tandem deduplication and substitution are included. In tandem duplication, the copy is inserted immediately after the template.
For example, from ACGTCT, we may obtain ACGTGTCT, where the template is overlined and the copy is underlined. Tandem



55

duplication is generally thought to be caused by slipped-strand mispairings [74], where during DNA synthesis, one strand in
a DNA duplex becomes misaligned with the other. Tandem duplications and substitutions, along with other mutations, lead to
tandem repeats, i.e., stretches of DNA in which the same pattern is repeated many times. Tandem repeats are known to cause
important phenomena such as chromosome fragility [106].

From a broader perspective, information theory has natural applications in biology since the processing and transmission of
information are ubiquitous in living organisms, from genetic to ecological inheritance mechanisms [108]. Research towards
the intersection of information theory and biology can be traced back to the paper "The information content and error rate
of living things" [18] in 1949 (just one year after Shannon’s seminal paper on information theory). Since then, efforts have
been made to address many problems in biology with information-theoretic methods, and have been successful in areas such
as predicting the correlation between DNA mutations and disease, identifying protein binding sequences in nucleic acids, and
analyzing neural spike trains and higher functionalities of cognitive systems [71]. Recently, due to the symbolism of biological
sequences, information theory has found various applications in molecular biology, regarding which [4], [6], [42] serve as
excellent surveys. For example, [57] introduced a universal sequence distance based on the information theoretical concept
of Kolmogorov complexity and applied it in constructing genome phylogeny; [42] studied the possibility of using mutual
information for gene mapping and marker clustering; and [73] studied the the minimum number of reads required for an
assembly DNA sequencing algorithm to reconstruct the original sequence. Moreover, two essential areas of information theory,
data compression and channel coding, both have direct and practical applications in biology. Compressing biological data
has become an inevitable need as the amount of biological sequencing data grows explosively. Many compression algorithms
have been designed targeting DNA/RNA sequences [12], [13], [15], [16], [51], [84]. On the other hand, DNA storage is also
attracting increased attention due to the longevity and enormous information density of DNA. With challenges arising from
the existence of diverse error types in DNA synthesis, replication, and sequencing, many techniques in information theory,
especially coding schemes, have been studied and used to enhance the reliability of DNA storage system [43], [50], [54], [56],
[87], [104].

In the following, we first give notation and formally define the string evolution system and k-mer frequencies. After that,
we present results that are derived in [61] and [63].

A. Preliminaries and Notation
For a positive integer m, let [m] = {1, . . . ,m}. For a finite alphabet Σ, the set of all finite strings over Σ is denoted Σ∗,

and the set of all finite non-empty strings is denoted Σ+. Also, let Σk denote the set of k-mers, i.e., length-k strings, over Σ.
We let Σk be alphabetically ordered, where k-mer u has index iu. For instance, let Σ = {0, 1}, then the 2-mers 00, 01, 10, 11

have orders i00 = 1, i01 = 2, i10 = 3, i11 = 4. For a string u ∈ Σ∗, the elements in u are indexed starting from 1, e.g.,
u = u1u2 · · ·um, where |u| = m is the length of u. We use ui,j to denote the length-j substring of u starting at ui. For
two positive integers a and b, ub

a denotes the substring uaua+1 · · ·ub. Furthermore, the concatenation of two strings u and v
is denoted by uv. For a non-negative integer j, and u ∈ Σ∗, uj is a concatenation of j copies of u. Vectors and strings are
denoted by boldface letters such as x, while scalars and symbols by normal letters such as x. We use τu(m) to denote the
smallest n such that the sequence sn contains m occurrences of u and, as shorthand, let τu = τu(1).

The set of strings at Hamming distance d from w is denoted Bd(w), e.g., B1(00) = {01, 10}. For u,v ∈ Σ∗, we define the
indicator function I(u,v) as,

I(u,v) =

1, if u = v

0, otherwise
.

We also provide an informal review of some concepts from probability theory that will be of use. For further detail, we refer
readers to [19]. For a sequence of random variables yn, n = 0, 1, 2, . . ., the filtration Fn associated with the process represents
the information provided by y0, . . . , yn. Formally, Fn is the sigma-algebra σ(y0, . . . , yn). The process yn is a martingale if
E[yn+1|Fn] = yn. Intuitively, this says that given knowledge of what has happened so far, the expected value of y in the
future is equal to its current value. The process yn is called a martingale difference sequence if E[yn+1|Fn] = 0. Moreover,
we introduce two important results about martingales in the following, Doob’s convergence theorem and the Hoeffding-Azuma
inequality. Doob’s martingale convergence theorem states that if a martingale yn satisfies supn E[|yn|] < ∞, then almost



56

surely y∞ = limn yn exists and is finite in expectation. The Hoeffding-Azuma inequality states that for a martingale yn, if
|yn − yn−1| ≤ cn almost surely, then for all positive integers N and all positive reals λ,

Pr(|yn − y0| ≥ λ) ≤ 2 exp

(
−λ2

2
∑N

n=1 c
2
n

)
.

B. Stochastic String System
A stochastic string system is composed of an initial string s0 and a discrete-time process where in each step a random string

edit operation, or ‘mutation’, is applied to sn, resulting in sn+1. To avoid the complications arising from boundaries, we assume
the strings sn are circular, with a given origin and direction. Let the length of sn be denoted by Ln and let ℓn = Ln −Ln−1.
For a string u ∈ Σ∗, denote the number of appearances of u in sn as µun , and its frequency as xun , where xun = µun/Ln. For
example, if sn = ACGAC, then µAC

n = 2, xAC
n = 2

5 . Furthermore, we define µn(k) = (µun)u∈Σk , and xn(k) = (xun)u∈Σk , with
a lexicographic ordering over Σk. We will omit k and directly write µn and xn when there is no ambiguity. Thus µn is a
vector representing the number of appearances of k-mers in the string s at time n and xn is the normalized version of µn.

In [61], we considered the tandem duplication and substitution (TDS) system, i.e., in each step, the possible mutations
are limited to tandem duplications of different lengths or a substitution. In a tandem duplication, a randomly chosen substring
of the sequence is duplicated and inserted in tandem. Formally, for ℓ > 0, the tandem duplication Tℓ : Σ∗ → Σ∗ is defined as

Tℓ(w) = uaav, for all w ∈ Σ∗, (359)

where a is a substring of w of length ℓ chosen uniformly at random and w = uav. We assign Tℓ with probability qℓ. In a
substitution, a position is chosen at random and the symbol in that position is changed to one of the other symbols. We use
T0 to denote the substitution, defined as

T0(w) = ua′v, for all w ∈ Σ∗, (360)

where a′ is uniformly chosen at random from Σ \ a and a is a symbol in w chosen also uniformly at random with w = uav.
We denote the probability of substitution with q0. We assume there exists M such that qℓ = 0 for all ℓ ≥ M . Hence, we have∑M−1

ℓ=0 qℓ = 1. Therefore in TDS systems, the length increment ℓn is random, specifically, ℓn equals k with probability qk.
In [63], we considered the noisy tandem duplication (NTD) system. Noisy tandem duplication is a variant of tandem

duplication and substitution, where a randomly chosen substring of the sequence is duplicated with substitution errors and the
approximate copy is inserted in tandem. For integers d ≥ 0 and ℓ ≥ 1, the noisy duplication N d

ℓ : Σ∗ → Σ∗ is defined as

N d
ℓ (w) = uaa′v, for all w ∈ Σ∗,

where a is a substring of w of length ℓ chosen uniformly at random, u and v are strings such that w = uav, and a′ ∈ Bd(a),
chosen uniformly at random. In an NTD system with duplication length ℓ, the set of permitted mutations is M = {T d

ℓ : 0 ≤
d ≤ ℓ}, where ℓ ∈ Z>0. In step n, T d

ℓ occurs with probability pd, independently of other steps. Hence we have
∑ℓ

d=0 pd = 1.
In NTD systems, the length increment ℓn in each step is fixed and equals ℓ.

C. Stochastic Approximation for Duplication Systems
In this section, we present an overview of the application of stochastic approximation in the analysis of duplication systems.

By using stochastic approximation, our goal is to study how the k-mer frequencies vector xn changes with n by finding a
differential equation whose solution approximates xn.

1) Preliminaries
We start by providing the definitions used in this section. For any positive integer d, a subset of Rd is said to be closed if

it contains its boundary, and is said to be compact if it is both closed and bounded. Moreover, a subset of Rd is connected if
it is not a union of two nonempty separated sets [91]. A set A is an invariant set of an ODE dzt/dt = f(zt) if it is closed
and zt′ ∈ A for some t′ ∈ R implies that zt ∈ A for all t ∈ R. The invariant set A is internally chain transitive with respect
to the ODE dzt/dt = f(zt), provided that for every y ,y′ ∈ A and positive reals T and ϵ, there exist N ≥ 1 and a sequence



57

y0, . . . ,yN with yi ∈ A, y0 = y , and yN = y′ such that for 0 ≤ i < n, if z0 = yi, then for some t ≥ T , zt is in the
ϵ-neighborhood of yi+1 [8].

We will also make use of the following theorem, which enables studying the behavior of a discrete dynamical system through
a system of differential equations.

Theorem 41. (Stochastic Approximation Theorem [8, Theorem 2].) Let {zn, n ≥ 0} be a bounded discrete stochastic process
in Rd with

zn+1 = zn + a(n)[h(zn) +Mn+1], n ≥ 0,

where {Mn, n ≥ 0} is a bounded martingale difference sequence in Rd with E[Mn+1|zm,Mm,m ≤ n] = 0 almost surely,
h : Rd → Rd is a Lipschitz map, and {a(n), n ≥ 0} are positive scalars satisfying

∑
n a(n) = ∞,

∑
n a(n)

2 < ∞. Then
{zn, n ≥ 0} converges almost surely to a compact connected internally chain transitive invariant set of the ODE

żt = h(zt), t ≥ 0.

Note the dual use of the symbol z; the meaning is however clear from the subscript.
2) Stochastic Approximation in Duplication Systems
We present a set of conditions that will allow us to adapt duplication systems to the stochastic approximation framework,

described in Theorem 41. Let Eℓ[ · ] denote the expected value conditioned on the fact that the length of the duplicated
substring is ℓ and let δℓ = Eℓ

[
µn+1|Fn

]
−µn. In the case of substitution, we let ℓ = 0. We consider the following conditions.

(A1) There exists M ∈ N such that qi = 0 for i ≥ M .

(A2) µn+1 − µn, and thus δℓ, are bounded.

(A3) xn is bounded.

(A4) For each ℓ, δℓ is a function of xn only, so we can write δℓ = δℓ(xn).

(A5) The function δℓ(xn) is Lipschitz.

(A1) holds by assumption. From this follows (A2) since for each k-mer, a mutation can create or eliminate a bounded
number of occurrences. Additionally, (A3) holds because each element of xn is between 0 and 1. The correctness of (A4) and
(A5) will be shown for each system.

To understand how xn varies, our starting point is its difference sequence xn+1 − xn. We note that

xn+1 − xn = E[xn+1 − xn|Fn] + (xn+1 − E[xn+1|Fn]).

For the first term of the right side of (III-C2), we have

E[xn+1 − xn|Fn] =

M−1∑
ℓ=0

qℓ(Eℓ[xn+1|Fn]− xn)

=

M−1∑
ℓ=0

qℓ

(
µn + δℓ(xn)

Ln + ℓ
− µn

Ln

)

=

M−1∑
ℓ=0

qℓ
Lnδℓ(xn)− ℓµn

Ln(Ln + ℓ)

=

M−1∑
ℓ=0

qℓ
δℓ(xn)− ℓxn

Ln + ℓ

=
1

Ln

M−1∑
ℓ=0

qℓhℓ(xn)
(
1 +O

(
L−1
n

))
=

1

Ln
h(xn)

(
1 +O

(
L−1
n

))
, (361)

where hℓ(xn) = δℓ(xn)−ℓxn, h(xn) =
∑M−1

ℓ=0 qℓhℓ(xn), and where we have used 1/(Ln + ℓ) =
(
1 +O

(
L−1
n

))
/Ln, which

follows from the boundedness of ℓ (see (A1)).



58

Furthermore, for the second term of the right side of (III-C2), we have

xn+1 − E[xn+1|Fn] =
µn+1

Ln+1
− E

[
µn+1

Ln+1

∣∣∣∣Fn

]
=

1 +O
(
L−1
n

)
Ln

(
µn+1 − E

[
µn+1|Fn

])
=

1

Ln

(
1 +O

(
L−1
n

))
Mn+1, (362)

where Mn+1 = µn+1 − E
[
µn+1|Fn

]
. Note that Mn is a bounded martingale difference sequence.

From (III-C2), (361), and (362), we find

xn+1 = xn +
1

Ln

(
h(xn) +Mn+1 +O

(
L−1
n

))
,

where we have used the fact that h(xn)
(
1 +O

(
L−1
n

))
= h(xn) + O

(
L−1
n

)
. This follows from the boundedness of h(xn),

which in turn follows from the boundedness of δℓ(xn) for all 0 ≤ ℓ < M . We note that h determines the overall expected
behavior of the system.

In the following, the element of δℓ(xn) that corresponds to u is denoted by δuℓ (xn). More precisely, δuℓ (xn) = Eℓ[µ
u
n+1 −

µun |Fn]. This notation also extends to h.
An additional condition requires

∑
n 1/|sn| = ∞ and

∑
n 1/|sn|

2
< ∞, which can be proven using the Borel-Cantelli

lemma [41] if q0 < 1. Given these and our discussion above, the following theorem, which relates the discrete system
describing xn to a continuous system, follows directly from Theorem 41.

Theorem 42. The vector of k-mer frequencies xn converges almost surely to a compact connected internally chain transitive
invariant set of the ODE dxt/dt = h(xt).

D. Asymptotic Analysis of k-mer Frequencies and Entropy in Tandem Duplication and Substitution
Systems

In this subsection, we present the results derived in [61]. The analysis starts with considering the evolution of k-mer
frequencies in TDS systems. The k-mer frequency vector sn is formulated in the form of a recurrence. Stochastic-approximation
method was then applied on the recurrence, converting the discrete string system to a corresponding continuous system described
by an ordinary differential equation (ODE). With this approach, it was shown that k-mer frequencies converge to a limit
point which is a function of model parameters. These results then provide bounds on the entropy of sequences generated in
the TDS systems.

1) Frequencies of 1-mers in the TDS system
Before proceeding to the analysis of k-mer frequencies, we present two results for the evolution of symbol frequencies

(1-mers) in the TDS system. These results can be viewed as extensions of results for Pólya urn models [66]. In such models,
a random ball is chosen from an urn containing balls of different colors. The chosen ball is returned to the urn, along with a
predetermined number of balls of the same color. It is known that, conditioned on the present state, the expected ratio of the
balls of each color (equivalent to symbol frequencies) in the future is equal to the present value and therefore by definition is
a martingale and converges almost surely. While strings are more complex objects than urns, we describe similar results that
are valid for any duplication process in which for each i, all i-substring of s have the same chance of being duplicated.

Theorem 43. In a TDS system with q0 = 0, the random variables xa
n, a ∈ Σ, are martingales and converge almost surely.

Proof: Suppose a ∈ Σ. We have

E
[
xa
n+1|Fn

]
= E

[
µa
n+1

Ln+1

∣∣∣∣Fn

]
= E

[
E
[
µa
n+1

Ln+1

∣∣∣∣Fn, ℓ

]∣∣∣∣Fn

]
= E

[
µa
n + ℓxa

n

Ln + ℓ

∣∣∣∣Fn

]
= xa

n.

We thus have E
[
xa
n+1|Fn

]
= xa

n and so xa
n is a martingale. Since it is nonnegative, by the martingale convergence theorem,

it converges almost surely.



59

Remark 44. The above theorem does not in fact require the distribution q to be constant and bounded. Under our assumption
that q is so, we can in addition obtain the following result on the probability of xa

n deviating from its starting value.

Theorem 45. For all a ∈ Σ and n ≥ 1 we have

Pr(|xa
n − xa

0 | ≥ λ) ≤ 2e−λ2L0/(2M
2) .

Theorem 45 is proved in Appendix C1. The preceding theorem implies that it is unlikely for the composition of a long
DNA sequence to change dramatically through random duplication events of bounded length. Such changes, if observed, are
likely the result of context-dependent duplications or other biased mutations. Unfortunately, this simple martingale argument
does not extend to xun when |u| > 1. Therefore, for analyzing such cases, we use the more flexible technique of stochastic
approximation as described in the sequel.

Next, we study in detail the behavior of a system that allows tandem duplication and substitution mutations. First, we will
determine the limits of the frequencies of k-mers. Then, after presenting a theorem relating the limits to entropy, we find
bounds on the entropy of these systems.

Let U = Σk, so µn is the vector of all k-mer occurrences, and xn is the vector of all k-mer frequencies. From Section III-C
we know that we can use the differential equation dxt/dt = h(xt) to determine the limit of k-mer frequencies. To find the
differential equation, in Theorem 50, we determine δuℓ (xn) for ℓ with qℓ > 0 and u ∈ U , where it can be observed that (A.4)
and (A.5) hold in our model

In the next subsection, we will give some necessary definitions. We will then prove that δuℓ (xn) is a linear function of
xn, which leads to a linear first-order differential equation. This linear form facilitates determining the asymptotic behavior
of the k-mer frequencies. We will then show that the entropy of stochastic string systems can be related to the capacity of
semiconstrained systems defined by the limit set of the k-mer frequencies. Leveraging the simple form of the limits for systems
with tandem duplications and substitutions, we will provide bounds on the entropy of these systems.

2) Definitions
The following definitions will be useful for finding δℓ(xn).

Definition 1. For u ∈ Σ∗ and m ∈ N+, define φm(u) to be a sequence of length |u| whose i-th element is determined by
whether the symbol in position i of u equals the symbol in position i−m. More specifically, the i-th element of φm(u) is

φm(u)i =

0, m+ 1 ≤ i ≤ |u|, ui = ui−m

X, otherwise

where X is a dummy variable. Let the lengths of the maximal runs of 0s immediately after the initial Xm and at the end of
φm(u) be denoted by lum and rum, respectively.

Note that either of lum or rum may be equal to 0. If φm(u) = Xm0|u|−m, then lum = rum = |u| −m. Otherwise, we have
φm(u) = Xm0l

u
mY 0r

u
m , for some Y that starts and ends with X.

Example 11. For Σ = {A,C,G,T}, we have

u =ACAACCACCAACAAC,

φ3(u) =XXX 0 0X 0 0 0 0X 0 0 0 0,

and lum = 2, and rum = 4.

Remark 46. A duplication of length m is equivalent to inserting m zeros into φm(u). In the above example, u may come
from u′ = ACAACCAACAAC after a length 3 tandem duplication with the overlined substring as the template and φ3(u) can
be viewed as the result of inserting 3 zeros into φ3(u

′) = XXX00X0X0000 between the two overlined symbols.

To enable us to succinctly represent the results, we then define several functions. These functions relate u to the frequencies of
other substrings that can generate u via appropriate duplication events. For example, consider the sequence u = ACACAGAG,
for which φ2(u) = XX000X00. This sequence can be created through duplications of length 2 from ACAGAG (in two ways)
and from ACACAG. These correspond to runs of 0 of length 2 in φ2(u).



60

Definition 2. For a sequence u and positive integers m, z with m+ z ≤ |u|+ 1, define

Dz,m(u) = u1,z−1uz+m,|u|+1−z−m,

the sequence obtained from u by removing the subsequence uz,m, i.e., by removing symbols in positions z, . . . , z +m− 1.

Example 12. For u = ACGTA, z = 3,m = 2, we have u3,2 = GT and D3,2(ACGTA) = ACA.

Definition 3. For a string u and positive integers m, z with m+ z ≤ |u|+ 1, define

Gum(x) =
∑
z

xDz,m(u), (363)

where the sum is over all z that are the indices of the start of (not necessarily maximal) runs of 0s in φm(u), i.e., (φm(u))z,m =

0m.

Example 13. For u = GACCACCA,m = 3, we have φ3(u) = XXXX0000 and (φ3(u))5,3 = (φ3(u))6,3 = 03. Therefore
Gu3 (x) = 2xGACCA.

There is a slight abuse of notation in the definition of G above (as well as the definitions of F and M below). While the
argument of G is x = (xv)v∈Ak , on the right side of (363), xw for sequences w with |w| < k may appear. We note however
that xw can be obtained from x by summing over the elements of x corresponding to strings that include w as a prefix.

New occurrences of u can also be generated from strings that are not of the form Dz,m(u). For example, consider the
sequence u = ACGACTG, for which φ3(u) = XXX00XX. This sequence can be created through a length-3 tandem duplication
from CGACTG and GACTG, where the part that is to be duplicated is overlined. The following definitions will be of use in
the analysis of this type of duplication.

Definition 4. For a sequence u and a positive interger m, define

Fum,l(x) =

min(lum,m−1)∑
i=1

xui+1,|u|−i ,

Fum,r(x) =

min(rum,m−1)∑
i=1

xu1,|u|−i .

In the special case where φm(u) = Xm0|u|−m and |u| ≤ 2m− 2, we will benefit from the following definition.

Definition 5. For a sequence u and a positive integer m s.t. φm(u) = Xm0|u|−m and |u| ≤ 2m− 2, define

Mu
m(x) =

m−1∑
b=|u|−m+1

xub+1,m−bu1,b .

We define Mu
m(x) = 0 if φm(u) ̸= Xm0|u|−m.

3) Evolution of k-mer Frequencies
We first find δℓ(x) = (δuℓ (x))u∈U for ℓ > 0 (duplication) and then for ℓ = 0 (substitution). When analyzing δuℓ (x), we

only consider substrings u of length |u| > ℓ, which simplifies the derivation. The frequencies of shorter substrings can be
found by summing over the frequencies of longer substrings.

We first analyze the case in which ℓ > 0. We present three lemmas and then use them to prove a general form for δℓ(x), ℓ > 0.
Suppose a duplication of length ℓ occurs in sn, resulting in sn+1. The number of occurrences of u may change due to the
duplication event. To study this change, we consider the k-substrings of sn that are eliminated (do not exist in sn+1) and the
k-substrings of sn+1 that are new (do not exist in sn). Any new k-substring must intersect with both the template and the
copy in sn+1. Likewise, an eliminated k-substring must include symbols on both sides of the template in sn, i.e., the template
must be a strict substring of the k-substring that includes neither its leftmost symbol nor its rightmost symbol. As an example,



61

sn+1

Case 1 u

Case 2 u

Case 3 u

Case 1 u

Case 2 u

Case 3 u

Figure 8: Possible cases for new occurrences of u in sn+1. Cases above and below sn+1 correspond to ℓ+ 1 ≤ k < 2ℓ and
k ≥ 2ℓ, respectively. The hatched boxes, from left to right, are the template and the copy.

suppose

sn = vACGTAGATw, (364)

sn+1 = vACGTAGTAGATw, (365)

where ℓ = 3, the (new) copy is underlined and the template is overlined, and v,w ∈ Σ∗. Let k = 5, the new 5-substrings are
GTAGT, TAGTA, AGTAG, GTAGA and the eliminated substring is GTAGA. Note that here the two GTAGA substrings are
counted as different. Formally, let

sn = a1 · · · aiai+1 · · · ai+ℓai+ℓ+1 · · · a|sn|,

sn+1 = a1 · · · aiai+1 . . . ai+ℓai+1 . . . ai+ℓai+ℓ+1 . . . a|sn|,

where the substring ai+1 · · · ai+ℓ is duplicated. The new k-substrings created in sn+1 are

yb = ai+ℓ+1−bai+ℓ+2−b . . . ai+ℓai+1ai+2 . . . ai+k−b,

for 1 ≤ b ≤ k − 1. Note that we have defined yb such that the first element of the copy, ai+1, is at position b+ 1 in yb. The
k-substrings eliminated from sn are ai−c+1 · · · ai+k−c, for 1 ≤ c ≤ k − ℓ− 1.

For a given u, let Yb denote the indicator random variable for the event that yb = u, that is, the duplication creates a
new occurrence of u in sn+1 in which the first symbol of the copy is in position b + 1. In example denoted by (365), if
u = TAGTA, then y3 = u and thus Y3 = 1.

Furthermore, let W denote the number of occurrences of u that are eliminated. We have

δuℓ (x) =
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− Eℓ[W |Fn]

=
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− (k − ℓ− 1)xu, (366)

where the second equality follows from the fact that each of the k−ℓ−1 eliminated k-substrings are equal to u with probability
xu.

To find δuℓ , it suffices to find Eℓ[Yb|Fn], or equivalently, Pr(Yb = 1|Fn, ℓ). We consider different cases based on the value of
b, which determines how u overlaps with the template and the copy. These cases are illustrated in Figure 8 and are considered
in Lemmas 47–49, whose proofs are given in the Appendix C2.

Lemma 47 (Case 1). For 1 ≤ b < min(ℓ, k − ℓ+ 1),

Eℓ[Yb|Fn] = xub+1,k−bI(u1,b,u1+ℓ,b).

Lemma 48 (Case 2). Suppose min(ℓ, k − ℓ+ 1) ≤ b < max(k − ℓ+ 1, ℓ). If k ≥ 2ℓ, then

Eℓ[Yb|Fn] = xu1,b−ℓub+1,k−bI(ub−ℓ+1,ℓ,ub+1,ℓ),



62

and if ℓ+ 1 ≤ k ≤ 2ℓ− 2, then
Eℓ[Yb|Fn] = xub+1,ℓ−bu1,bI(u1,k−ℓ,uℓ+1,k−ℓ).

Lemma 49 (Case 3). For max (k − ℓ+ 1, ℓ) ≤ b ≤ k − 1,

Eℓ[Yb|Fn] = xu1,bI(ub−ℓ+1,k−b,ub+1,k−b).

Based on Lemmas 47–49, we then prove the following Theorem. We will use the three lemmas above to break the summation
of (366) into three parts and then simplify them to get a generalized expression.

Theorem 50. For an integer ℓ > 0 and a string u = u1u2 · · ·uk, if ℓ+ 1 ≤ k < 2ℓ, then

δuℓ (x) = Fuℓ,l(x) + Fuℓ,r(x) +Mu
ℓ (x)− (k − 1− ℓ)xu,

and if k ≥ 2ℓ,

δuℓ (x) = Fuℓ,l(x) + Fuℓ,r(x) +Guℓ (x)− (k − 1− ℓ)xu. (367)

Theorem 50 is proved in Appendix C3.
In the case of ℓ = 0, δℓ(x) is given by the following theorem.

Theorem 51. For a string u of length k, we have

δu0 (x) =
1

|Σ| − 1

∑
v∈B1(u)

xv − kxu. (368)

Before proving the theorem, we give an example for Σ = {1, 2, 3}:

δ1230 (x) =
1

2
(x223 + x323 + x113 + x133 + x121 + x122)− 3x123

Proof: A new occurrence of u results from an appropriate substitution in some v ∈ B1(u), which has probability
xv/(|Σ| − 1). On the other hand, an occurrence of u is eliminated if a substitution occurs in any of its k positions. So the
expected number occurrences that vanish is kxu.

4) ODE and the Limits of Substring Frequencies
Theorems 50 and 51 provide expressions for δℓ(x) for 0 ≤ ℓ ≤ M − 1. With these results in hand, we can formulate an

ordinary differential equation (ODE) whose limits are the same as those of the substring frequencies of interest, x = (xu)u∈Σk ,
where k ≥ M .

We first show that δuℓ (x) can be written as a linear combination of the elements of x, i.e., a linear combination of xv,v ∈ Σk.
To see this, note that on the right side in expressions for δuℓ in Theorems 50 and 51, terms of the form xw appear where
|w| ≤ k. We can replace xw with

∑
v x

v , where the summation is over all strings v of length k such that w is a prefix of v.
For example, consider the alphabet {1, 2, 3} and k = 3. From Theorem 50, we have

δ1212 (x) = x12 + x21

= x121 + x122 + x123 + x211 + x212 + x213.

For 0 ≤ ℓ < M , let Aℓ be the matrix satisfying δℓ(x)− ℓx = Aℓx. Based on the argument above, such a matrix exists and
can be computed from Theorems 50 and 51. Furthermore, let

A =

M−1∑
ℓ=0

qℓAℓ. (369)

Note that hℓ(x) = Aℓx and h(x) =
∑

ℓ qℓhℓ(x) = Ax.
For example, consider q0 = α, q1 = 1− α, Σ = {0, 1}, and x = (x00, x01, x10, x11). From Theorems 50 and 51, it can be



63

shown that

A0 =


−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

, A1 =


0 1 0 0

0 −1 0 0

0 0 −1 0

0 0 1 0

.

and

A =


−2α 1 α 0

α −(1 + α) 0 α

α 0 −(1 + α) α

0 α 1 −2α

. (370)

Theorem 52. Consider a tandem duplication and substitution system with distribution q = (qℓ)0≤ℓ<M over these mutations,
with q0 < 1, and let A be the matrix defined for this system by (369). The frequencies of substrings u of length k ≥ M ,
(xu)u∈Σk , converge almost surely to the null space of the matrix A.

Theorem 52 is proved in Appendix C4.
For the matrix A of (370), for 0 < α < 1, the vector in the null space whose elements sum to 1, and thus the limit of xn, is

1

2(1 + 3α)
(α+ 1, 2α, 2α, α+ 1)

T
. (371)

If we let α = 1
4 as an example, the limit of xn then is

lim
n→∞

(x00
n , x01

n , x10
n , x11

n )T = (
5

14
,
1

7
,
1

7
,
5

14
)T . (372)

Figure 9: 2-mer frequencies vs the number of mutations in a tandem duplication and substitution system, with Σ = {0, 1}, s0 =
0100010, q0 = 1

4 , and q1 = 3
4 .

Figure 9 shows the result of simulation of the above TDS system, where Σ = {0, 1}, s0 = 0100010, q0 = 1
4 and q1 = 3

4 .
As the number n of mutations increases, the frequency vector xn converges to the analytical result (372). Note that the limits
do not depend on the initial sequence s0.

Let us consider the two extreme cases. As α → 1, all four 2-substrings become equally likely, each with probability 1/4.
Note however that our analysis is not applicable to q0 = α = 1 since the condition

∑
n 1/|sn|2 < ∞ is not satisfied. On the

other hand, for a small probability of substitution, 0 < α ≪ 1, almost all 2-substrings are either 00 or 11, as expected. For
α = 0, the null space is spanned by z1 = (1, 0, 0, 0)T and z2 = (0, 0, 0, 1)T and the limit set is {az1+(1−a)z2 : 0 ≤ a ≤ 1}.
In this case, the asymptotic behavior of k-mer frequencies will depend on the initial sequence s0.



64

5) Bounds on Entropy
We now turn to provide upper bounds on the entropy. We first formally define the entropy, and then argue that the entropy

is upper bounded by the capacity of an appropriately defined semiconstrained system [29]–[31].
Consider the string sn, obtained from s0 by n rounds of mutations, as described previously. Its expected length is E[|sn|] =

|s0|+ n
∑M−1

ℓ=1 ℓqℓ. We define the entropy after n rounds as

Hn =
1

E[|sn|]
·H(sn)

= − 1

E[|sn|]
∑
w∈Σ∗

Pr(sn = w) log|Σ| Pr(sn = w), (373)

and the entropy H∞ = lim supn→∞ Hn. We note that H(sn) is the usual entropy of sn (except for the fact that we use
base-|Σ| logarithms instead of the usual base-2 logarithms).

It is common to define the entropy of DNA sequences based on the limit of block entropies [44], [59], [92]. Specifically,
let hk = −

∑
u∈Σk pu log pu, where pu is the probability of observing u. Entropy is then obtained as hk+1 − hk for k → ∞.

This definition may lead to misleading results. For example, consider a string system in which sn is the De Bruijn sequence
of order n (which contains all strings of length n precisely once), obtained according to some deterministic algorithm. Based
on block entropies, the entropy of the system can be shown to equal log |Σ|, while the system is in fact deterministic. The
definition in (373) gives the correct entropy, i.e., 0, since there is only one possibility for sn for each n.

Let us recall some definitions concerning semiconstrained systems (see [30]). Fix k and let P(Σk) denote the set of all
probability measures on Σk. A semiconstrained system is defined by Γk ⊆ P(Σk). The set of the admissible words of the
semiconstrained system, denoted B(Γk), contains exactly all finite words over the alphabet Σ whose k-mer distribution is in
Γk. Let Bn(Γk) = B(Γk) ∩ Σn. An expansion of Γk by ϵ > 0 is defined as

Bϵ(Γk) =

{
ξ ∈ P(Σk) : inf

ν∈Γk

∥ν − ξ∥TV ≤ ϵ

}
,

where ∥·∥TV denotes the total-variation norm. Thus, Bϵ(Γk) contains all the measures in Γk as well as those which are ϵ-close
to some measure in Γk. The capacity of Γk is then defined as

cap(Γk) = lim
ϵ→0+

lim sup
n→∞

1

n
log|Σ||Bn(Bϵ(Γk))|,

which intuitively measures the information per symbol in strings whose k-mer distribution is in (or “almost” in) Γk.

Theorem 53. For the mutation process described above, for k ∈ N+, if the vector of the frequencies x of strings of length k

converges almost surely to a set Γk, then H∞ ≤ cap(Γk).

Theorem 53 is proved in Appendix C5.

Remark 54. We comment that if Γk = {ξk}, i.e., Γk contains a single shift-invariant measure7, then cap(Γk) has a nice form
for all k ∈ N+ (see [30], [31]):

cap(Γk) = −
∑

a1...ak∈Σk

ξa1...ak

k log|Σ|
ξa1...ak

k

ξ̄
a1...ak−1

k

,

where ξ̄k is the marginal of ξk on the first k−1 coordinates, i.e., ξ̄a1...ak−1

k =
∑

b∈Σ ξ
a1...ak−1b
k . Furthermore, for all k ∈ N+,

cap(Γk) ≥ cap(Γk+1),

which follows from the fact that cap(Γk) can be viewed as the conditional entropy of a symbol given the k − 1 previous
symbols in a stationary process.

Using the preceding remark and Theorem 53, we can find a series of upper bounds on a given system:

cap(Γ1) ≥ cap(Γ2) ≥ · · · ≥ cap(Γk) ≥ · · · ≥ H∞,

7A shift-invariant measure ξk ∈ P(Σk) is a measure that satisfies
∑

a∈Σ ξawk =
∑

a∈Σ ξwa
k for all w ∈ Σk−1. The k-mer distributions of cyclic strings

are always shift invariant, and thus a converging sequence of such measures also converges to a shift-invariant measure.



65

Figure 10: Entropy bound vs the probability of substitution, with Σ = {0, 1}.

Figure 11: Contour plot of entropy bounds, with Σ = {0, 1}, k = 3, q0 = 1− α− β, q1 = α, q2 = β.

with Γk being the limit of (xu)u∈Σk .
In particular, for the system whose limit is given by (371), we have ξ0 = ξ1 = 1/2, ξ00 = ξ11 = (α+1)/2(1+3α), ξ01 =

ξ10 = α/7. It then follows that for this system H∞ ≤ H2

(
2α

1+3α

)
= cap(Γ2). We can also compute cap(Γk) for k = 3, 4, . . ..

Figure 10 shows the entropy bound we find using 2-mer and 3-mer frequencies. The two bounds are close, which suggests that
we may be close to the exact entropy values. However, in the absence of a lower bound, this conjecture cannot be verified.
The figure shows that when there is only one possible duplication length, the source of diversity is substitution, as may be
expected. As α → 1, the relative number of substitutions increases, causing Γk to be close to the uniform distribution, and
the entropy tends to 1. On the other hand, as α → 0, only duplications occur. This leads to the generation of low complexity
sequences that consists of long runs of 0s and 1s, and thus entropy that is close to 0.

Figure 11 shows the entropy bound computed using 3-mer frequencies for the case in which Σ = {0, 1}, q1 = α, q2 = β

and q0 = 1 − α − β. So in this system, duplications of lengths 1 and 2 are both possible. It can be seen that similar to
Figure 10, even a small probability of substitution leads to relatively high values of entropy. Furthermore, we note that, as
may be expected, longer duplications lead to a smaller value of entropy.



66

E. Finite-time Analysis of k-mer Frequencies and Waiting Time in Noisy Tandem Duplication
Systems

In this subsection, we present the results derived in [63]. In contrast with the results in the previous section, finite-time
behavior of k-mer frequencies in NTD systems is studied. Bounds on the expected trajectories of k-mers are established and
the rate of convergence is provided. The analysis then extends to the second-moment of the k-mer trajectories, characterizing
the variation around expected paths, with which waiting times are estimated.

1) Evolution of k-mer frequencies
We first provide a simple analysis of how a noisy duplication T d

ℓ affects the occurrences of k-mers. Consider the evolution
from sn to sn+1 under a noisy duplication T d

ℓ :

sn = · · · aiai+1 · · · ai+ℓai+ℓ+1 · · · (374)

sn+1 = · · · aiai+1 · · · ai+ℓbi+1 · · · bi+ℓai+ℓ+1 · · · , (375)

where ai is the i-th symbol of sn and bi+1 · · · bi+ℓ is the approximate copy of ai+1 · · · ai+ℓ created by T d
ℓ . Assume k ≤ |sn|.

From sn to sn+1, a number ℓ+ k− 1 of k-substrings in sn+1 are newly created, denoted y1,y2, . . . ,yℓ+k−1. Specifically, yj

is the k-substring of sn+1 whose last symbol is bi+j if j ≤ ℓ, and is ai+j if j > ℓ. Similarly, a number k−1 of k-substrings in
sn are eliminated and do not appear in sn+1. We denote them z1, z2, . . . ,zk−1, where zl is the k-substring of sn whose last
symbol is ai+ℓ+l. For instance, consider sn = GATAC. A noisy duplication T 1

3 on sn could result in sn+1 = GATACTAC,

where the duplicated 3-mer is overlined and the copy is underlined with the first symbol substituted. For k = 2, the altered
(created or eliminated) 2-mers are y1 = AC,y2 = CT,y3 = TA,y4 = AC, z1 = AC.

Thus, given T d
ℓ , the number of occurrences of a k-mer u changes by

µun+1 − µun =

ℓ+k−1∑
j=1

I
(
yj ,u

)
−

k−1∑
l=1

I(zl,u). (376)

We will refer to equation (376) frequently in the rest of the paper.
The following theorem puts E[xn] in the form of a recurrence equation similar to the TDS system.

Theorem 55. Consider the noisy duplication string system S(s0, ℓ, q). If the length L0 of the initial string s0 is greater than
ℓ, then for any ℓ < k ≤ L0, the k-mer frequency vector xn satisfies8

E[xn+1]− E[xn] =
Ak

Ln+1
E[xn] (377)

for some constant matrix Ak ∈ R|Σ
k|×|Σk| determined by q, k, ℓ and independent of any other quantities. Further, all

eigenvalues of Ak have non-positive real parts.

With a little abuse of notation, we redefine matrix Ak as the characteristic matrix of the NTD system for k-mers. In
Section III-D and [34], this theorem is used as part of a stochastic approximation framework to find almost-sure limit sets/points
for xn as n → ∞. The proof and the construction of matrix Ak were provided in Section III-D for TDS systems and we give
a sketched proof for NTD systems in Appendix D1.

2) First-moment trajectories of k-mer frequencies
In this section, we study the expected trajectories of k-mer occurrences µn and frequencies xn as sn evolves under noisy

duplications. The k-mer frequency vector xn will be represented in a basis composed of eigenvectors of the characteristic
matrix Ak. The coefficients of this basis representation are bounded from below and above. Our analysis in this paper is limited
to cases in which Ak has only real eigenvalues. In all examples that we have studied, the eigenvalues of Ak are indeed real.
We conjecture that these hold for all noisy duplication systems. Recall that eigenvalues of Ak all have non-positive real part,
so they are non-positive real numbers.

8Note that it suffices to consider k > ℓ since substring frequencies of smaller lengths are linear functions of substring frequencies of larger lengths. The
assumption k ≤ L0 is to avoid complications of defining k-substrings in strings of lengths less than k.



67

Let m = |Σ|k. When Ak is diagonalizable, we choose an eigenbasis V of Ak, i.e., V contains m linearly independent
eigenvectors that form a basis for Rm. Write V = {vs : 1 ≤ s ≤ m} and let λs be the corresponding eigenvalue of vs,

1 ≤ s ≤ m. For every n ≥ 0, we represent the k-mer frequency vector xn as xn =
m∑
s=1

αs
nvs. The next theorem provides

bounds on the expected values of coefficients αs
n.

Theorem 56. Consider the noisy duplication system S(s0, ℓ, q) with characteristic matrix Ak and k-mer frequency vectors
xn =

∑m
s=1 α

s
nvs. If Ak is diagonalizable, and all eigenvalues of Ak are real and no smaller than −L0

2 ,

1) For 1 ≤ s ≤ m such that λs = 0 or αs
0 = 0,

E[αs
n] = αs

0 for all n ∈ N.

2) For 1 ≤ s ≤ m such that λs ̸= 0 and αs
0 ̸= 0,

T s
n <

E[αs
n]

αs
0

< Us
n, (378)

where

Us
n =

(
λs + Ln

λs + L1

)λs
ℓ

eλ
2
s/(L1ℓ)

(
1 +

λs

Ln

)
,

T s
n =

(
λs + Ln

λs + L1

)λs
ℓ

e−λ2
s/(Lnℓ)

(
1 +

λs

L1

)
,

and Ln = L0 + nℓ.

The proof of Theorem 56 is reported in Appendix D2. Recall that λs ≤ 0 for all s. The preceding theorem states that the
behaviors of both Us

n and T s
n are dominated by the factor (λs+Ln

λs+L1
)

λs
ℓ , which is of order Θ(n

λs
ℓ ). This implies that when

E[xn] is represented in the eigenbasis, for an eigenvector whose corresponding eigenvalue λ is not 0, its component in E[xn]

converges to 0 at the rate of nλ/ℓ, while for eigenvectors whose corresponding eigenvalues are 0, their components remain
unchanged and determine the expected value of the limit of xn. Among all nonzero eigenvalues, the largest one determines
the convergence rate, since its corresponding components vanish at the slowest rate.

Example 14. We demonstrate the bounds provided in Theorem 56 for a simple noisy duplication system over the alphabet
{0, 1} with ℓ = 1 and q = (q01 , q

1
1) = (1− δ, δ). Specifically, in each step, a random symbol a is chosen uniformly from the

evolving string, and a symbol b is inserted immediately after a, where q01 = Pr(b=a) = 1 − δ and q11 = Pr(b ̸=a) = δ. The
vector xn = (x00

n , x01
n , x10

n , x11
n )T denotes the frequencies of 2-mers. The characteristic matrix of this system for 2-mers can

be shown to be

A2 =


−2δ 1− δ δ 0

δ −1 0 δ

δ 0 −1 δ

0 δ 1− δ −2δ

. (379)

For δ < 1/2, A2 is diagonalizable with four distinct eigenvalues: λ1 = 0, λ2 = −2δ, λ3 = −1, λ4 = −2δ − 1. So we pick a
basis of R4 which is composed of 4 eigenvectors vi, 1 ≤ i ≤ 4, corresponding to λi, 1 ≤ i ≤ 4, respectively:

[
v1 v2 v3 v4

]
=


1/(2 + 4δ) −1 −1 1

δ/(1 + 2δ) 0 1 −1

δ/(1 + 2δ) 0 −1 −1

1/(2 + 4δ) 1 1 1

. (380)

Since λ1 = 0, the limit of E[xn] is v1 (it can be shown that xn converges to v1 almost surely) and the other components
vanish at the corresponding rates. Figure 12 shows the vanish of the coefficient α2

n when q11 = 0.1, q01 = 0.9, and s0 =

1101100111. The figure illustrates the trajectory of the ratio between the expected value of α2
n and α2

0 as well as the upper
and lower bounds given in Theorem 56 as n ranges from 0 to 50. The average value for α2

n/α
2
0 from 5000 independent trials

of the process is also given.



68

0 10 20 30 40 50

0.7

0.8

0.9

1

Figure 12: Vanish of the coefficient of v2 in E[xn] vs the number of mutations in a noisy duplication string system with Σ = {0, 1},
s0 = 1101100111, q11 = 0.9, q01 = 0.1.

Theorem 56 characterizes the k-mer frequencies for cases when Ak is diagonalizable. In all examples considered in this
paper, the characteristic matrices are indeed diagonalizable. When Ak is not diagonalizable, similar but more complex results
can be obtained. We provide this analysis in Appendix D3.

3) Second-moment trajectories of k-mer frequencies
In this section, we provide a second-moment analysis of the k-mer frequencies. We show that similar to Theorem 55, the

expected values of products of k-mer frequencies, i.e., E[xvnxwn ], v,w ∈ Σk, can also be expressed as a recurrent equation.
To show this, we first present the following lemma, which expresses the difference between E[xvnxwn ] and E

[
xvn+1x

w
n+1

]
as a

linear function of k-mer and (2k − 2)-mer frequencies.

Lemma 57. Consider the noisy string system S(s0, ℓ, q) with characteristic matrix Ak for k-mers. For any two k-mers v,w
(not necessarily distinct),

E[xvn+1x
w
n+1]−

(
Ln

Ln+1

)2

E[xvnxwn ] =
dTv,w

(Ln+1)2
E[xn(2k − 2)] (381)

+
Ln

(Ln+1)2
(E[xwn ·Hiv · xn(k)] + E[xvn ·Hiw · xn(k)]), (382)

where H is the matrix Ak+ℓI|Σk| and Hm denotes the m-th row of H , dv,w is a constant vector of length |Σ|2k−2 determined
by v, w, q, k, ℓ and independent of any other quantities. Note that xn(0) is defined to be the zero vector for all n.

The proof of Theorem 57 is reported in Appendix D4.
We next consider the vector containing all products of the form xvnx

w
n . Let Σk

2 denote the set of all unordered pairs of
k-mers, i.e.,

Σk
2 = {(v,w) : v,w ∈ Σk}.

Define rn(k) = (xvnx
w
n )(v,w)∈Σk

2
, i.e., the vector of products of frequencies of every two k-mers in sn. The elements in rn(k)

are lexicographically ordered according to the 2k-mer vw.

Theorem 58. In the noisy string system S(s0, ℓ, q) with characteristic matrix Ak for k-mers and characteristic matrix A2k−2

for (2k − 2)-mers, (
E[rn+1(k)]

E[xn+1(2k − 2)]

)
=

( Ln

Ln+1

)2(
I + G

Ln

)
D

(Ln+1)2

0 I + A2k−2

Ln+1

( E[rn(k)]
E[xn(2k − 2)]

)
, (383)

where G,L are both constant matrices determined by q, k, ℓ and independent of any other quantities.



69

Proof: Consider the matrix H given by Lemma 57. For any two k-mers v and w,

xwn ·Hivxn(k) = xwn ·
∑
u∈Σk

Hiv,iux
u
n =

∑
u∈Σk

Hiv,iu · xwn xun , (384)

xvn ·Hiwxn(k) = xvn ·
∑
u∈Σk

Hiw,iux
u
n =

∑
u∈Σk

Hiw,iu · xvnxun , (385)

where Hm1,m2 denotes the element in the m1-th row and m2-th column of matrix H .
It follows that

E
[
xvn+1x

w
n+1

]
=

(
Ln

Ln+1

)2
E[xvnxwn ] +

1

Ln

∑
u∈Σk

Hiv,iu · E[xwn xun ] +
∑
u∈Σk

Hiw,iu · E[xvnxun ]

 (386)

+
dTv,w

(Ln+1)2
E[xn(2k − 2)] (387)

=

(
Ln

Ln+1

)2
E[xvnxwn ] +

1

Ln

∑
(u,u′)∈Σk

2

(
g1u,u′ + g2u,u′

)
E
[
xunx

u′

n

]+

(
1

Ln+1

)2

dTv,wE[xn(2k − 2)] (388)

=

(
Ln

Ln+1

)2(
E[xvnxwn ] +

1

Ln
gTv,wrn(k)

)
+

(
1

Ln+1

)2

dTv,wE[xn(2k − 2)], (389)

where g1u,u′ follows from the term
∑
u∈Σk Hiv,iu · E[xwn xun ], g

2
u,u′ follows from the term

∑
u∈Σk Hiw,iu · E[xvnxun ] and

g1u,u′ =


Hiv,iu′ if u = w,

Hiv,iu if u ̸= w,u′ = w,

0, otherwise,

g2u,u′ =


Hiw,iu′ if u = v,

Hiw,iu if u ̸= v,u′ = v,

0, otherwise,

(390)

gv,w is the vector
(
g1u,u′ + g2u,u′

)
(u,u′)∈Σk

2

.
Since rn(k) is the vector containing xvnx

w
n for all (v,w) in Σ2

k, we can write (389) in the matrix form and get

E[rn+1(k)] =

(
Ln

Ln+1

)2(
E[rn(k)] +

G

Ln
rn(k)

)
+

D

(Ln+1)
2E[xn(2k − 2)], (391)

where G is the matrix with rows gTv,w and D is the matrix with rows dTv,w for all (v,w) ∈ Σ2
k. The remaining of the desired

result thus follows by applying Theorem 55 on the (2k − 2)-mers.
Similar to the characteristic matrix Ak, matrices G and D characterize the second-moment behavior of the k-mer frequencies.

Specifically, Theorem 58 provides a way of computing expected values of products of k-mer frequencies, which can be used
to find variances of k-mer frequencies together with the expected values.

Example 15. Figure 13 compares the variance of x12
n computed using (383) with the sample variance of 10000 independent

trials in the system with parameters ℓ = 1, q =
(
q01 , q

1
1

)
= (1− δ, δ), Σ = {0, 1, 2}, s0 = 0000000000, and δ = 0.2. Note

that since x12
n is bounded, the variance cannot increase unbounded. Indeed, if xun converges to a single point, the variance

vanishes.

4) Bounding waiting times by first- and second-moment trajectories
In this section, we study applications of the first- and second-moment trajectories on estimating the waiting times. This

analysis also enables us to quantify the effect of mutation probabilities on waiting times.
Let u be the string of interest and let n̂u be such that E[µun ] ≃ 1 for n = n̂u. If the expected frequency E[xun ] is increasing,

for n ≪ n̂u, the probability of the existence of u in sn is small and thus we can view n̂u as a rough estimate for the waiting
time τu.

Example 16. Consider a noisy duplication system with parameters ℓ = 1 , q = (q01 , q
1
1) = (1 − δ, δ) and over the alphabet

Σ = {0, 1, 2}. Let s0 be 0000000000. We show a comparison of the expected waiting times E[τu] and n̂u for 2-mers 11 and
12 in Figure 14, where expected waiting times are obtained by averaging over 1000 independent simulation trials and n̂11 and
n̂12 are calculated using (377). It can be seen that n̂12 is a better estimate for τ12 and n̂11 has a larger relative error. This is



70

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5
10

-4

Figure 13: Variance of x12
n vs the number of mutations.

due to the higher variance of µ11
n , which is discussed further in this section.

0.05 0.1 0.15 0.2
10

1

10
2

10
3

Figure 14: Expected waiting times for 11 and 12 and n̂11, n̂12 vs δ for Σ = {0, 1, 2}, s0 = 0000000000, q01 = 1− δ, q11 = δ.

More generally, the cdf of τu(m), the first time u appears m times, can be shown to be upper bounded by a constant times
E[µun ] in the next theorem.

Theorem 59. Consider the noisy string system S(s0, ℓ, q). For u ∈ Σk, if E[xun ] is non-decreasing in n,

Pr(τu(m) ≤ n) ≤
(

1

m
+

max(|u| − ℓ− 1, 0)

ℓ
+
(
1− q0ℓ

))
E[µun ].

The proof of Theorem 59 is reported in Appendix D5. We demonstrate an application of the theorem via the following
example.

Example 16 (continued). We study analytically how the waiting times for 11 and 12, i.e, τ11 and τ12, vary as δ → 0 with the
help of Theorem 56 and 59. After finding the characteristic matrix A2 for this system, it can be shown by a similar proof to
Theorem 56 that the expected frequencies of 11, 12 are non-decreasing. Theorem 59 then gives that for u = 11, 12,

Pr(τu ≤ n) ≤ (1 + δ)E[µun ]. (392)



71

By the eigenbasis analysis and bounding coefficients of the eigenbasis representation using Theorem 56, we can get

E[x11
n ] <

1

3
+

2L1δ

n
− 1

12
n− 3

2 δ, (393)

E[x12
n ] <

δ

3
+

2L1

n
δ2 − 1

12
δn− 3

2 δ. (394)

The derivation processes are reported in Appendix D6.
For any constant M > 1, let n̂ = τ̂11M = c

aW
(

ce−b/a

a

) , where a = 3
2δ, b = log 1

4 , c = 3
(

1
M − 2L1δ

)
and W (·) denotes the

Lambert W function. As δ → 0,

1

4
n̂− 3

2 δ = elog(
1
4 )+(−

3
2 δ) log n̂ = e−

3
n̂ (

1
M −2L1δ) =

(
1− 3

n̂

(
1

M
− 2L1δ

))
(1 + o(1)). (395)

It then follows that

E
[
µ11
n̂

]
= Ln̂E

[
x11
n̂

]
< (L0 + n̂)

(
1

3
+

2L1δ

n̂
− 1

12
n̂− 3

2 δ

)
=

1

M
(1 + o(1)). (396)

Thus by (392), for any constant M > 1, Pr(τ11 ≤ τ̂11M ) ≤ 1+o(1)
M as δ → 0. Hence, τ̂11(M) is a lower bound for τ11 that

holds with probability at least 1− 1
M .

Similarly, τ̂12M = c′

aW
(

c′e−b/a

a

) where c′ = 3
(

1
Mδ − 2L1δ

)
is a lower bound for τ12 that holds with probability at least

1− 1
M .

Next, we study the waiting time in further detail by the second-order analysis discussed in Section III-E3. We derive a lower
bound on the cdf of τu(m) and show its application with an example.

Let σun be the standard deviation of µun . By Chebyshev’s inequality,

Pr(E[µun ]− γσun ≤ µun ≤ E[µun ] + γσun ) > 1− 1

γ2
, (397)

for any γ > 0. Therefore, by computing the expected value and variance of µun using Theorems 55, 56 and 58, we can bound
µun in a range that contains most of the probability mass.

Example 17. Consider the same noisy duplication system as Example 16 and let δ = 0.2. Figure 15 shows intervals computed
using (397) for µ11

n and µ12
n that have probability at least 8/9, i.e., γ = 3. We can observe that the variance of µ11

n is
much larger than that of µ12

n . This is in agreement with Figure 14, where it is observed that n̂u, obtained based on average
trajectories, better matches the waiting time for u = 12 compared to u = 11. The higher variance of µ11

n is likely due to
its high autocorrelation, which means that as soon as an instance of 1 is created, many instances of 11 can be produced by
duplicating it. When variance is high, (397) will lead to loose or trivial bounds.

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

+3
n

11 E[
n

11
] -3

n

11

+3
n

12

E[
n

12
]

-3
n

12

Figure 15: Expected values and ±3σ range for µ12
n and µ11

n , which contain 8/9 of the probability. Σ = {0, 1, 2}, s0 =
0000000000, q11 = 0.8, q01 = 0.2.



72

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Figure 16: Bounds on Pr(τ12(m) ≤ n) for m = 1, 100. LB and UB stand for lower and upper bounds. Σ = {0, 1, 2},
s0 = 0000000000, q11 = 0.8, q01 = 0.2.

Note that for any positive integer n, µun ≥ m is a sufficient (but not necessary) condition for τu(m) ≤ n. Hence, from (397),

Pr(τu(m) ≤ n) ≥ Pr(µun ≥ m) > 1− 1

γ2
, (398)

where γ = (E[µun ] − m)/σun . This tells us that we are likely to see m occurrences of u in the sequence not long after the
expected number of occurrences of u hits m, thus providing a lower bound on the CDF Pr(τu(m) ≤ n) and a probabilistic
upper bound on τu(m).

Example 17 (continued). Figure 16 illustrates lower and upper bounds on the CDF of τ12(m) for m = 1 and 100, where the
upper bounds are based on Theorem 59. The sharpness of the curves in the figure implies that in fact, most of the probability
of τ12(m) is concentrated in a small interval. In particular, the bounds provide the order of magnitude of the waiting times.

IV. Conclusion
The performances of deduplication algorithms on data streams with approximate repeats, a situation that is common in

practice. For simplicity, the process producing approximate repeats is modeled as independent bit-wise Bernoulli substitutions.
Correctly choosing the chunk lengths is critical to the success of deduplication. With chunk lengths improperly chosen, it was
shown that deduplication algorithms can be substantially suboptimal. With optimally chosen chunk lengths, deduplication in
the fixed-length scheme is shown to achieve performance within a constant factor of optimal for a specific family of source
models and with the knowledge of source parameters. Additionally, appropriately choosing the length of the marker leads to
suitable chunk lengths for variable-length deduplication, resulting in arbitrarily large compression ratios as source entropy gets
smaller. From the perspective of universal compression, Theorems 37, 38 show that the dictionary-based pattern compressor
in deduplication algorithms has high pattern redundancy. Deduplication algorithms, although effective in practice, are far from
optimal and the saving mainly results from removing duplicate chunks. Thus, finding constraints on pattern compressors that
can achieve low redundancies while keeping time and memory costs affordable can benefit the performance of deduplication
algorithms.

While shedding light on certain important aspects of the problem of deduplication, the information-theoretic analysis of data
deduplication provides a wealth of open problems. For example, while VLD was shown to achieve high compression ratios, it
is not known whether it is order optimal. Moreover, the source models proposed only included substitution edits. However, in
practice, insertions, deletions and substitutions of single symbols, as well as longer strings, occur frequently. The probabilistic
description of the source models can also be further refined based on experiments. Therefore, to gain a fuller understanding,
it is important to study deduplication algorithms under more general source models and edit processes. Pattern compressors
being of high redundancy also provides an intriguing direction for future work, which may benefit from Lemmas 33 and 34
(general ways for computing redundancies are derived). Another direction of interest is determining families of distributions



73

for which common constraints, such as C2, lead to low redundancy. Such families would represent suitable applications for
existing deduplication algorithms.

The limiting behavior of the stochastic duplication system, tandem duplication with substitution, is studied. Stochastic
approximation framework is used to compute the limits of k-mer frequencies for tandem duplications and substitutions. A
method is also provided for determining upper bounds on the entropy of these systems. The finite-time behavior of noisy
duplication string systems is also studied by representing the average trajectories of the frequencies of k-mers in an eigenbasis
of the characteristic matrix of the system. It is shown that the coordinate corresponding to eigenvalue λ ̸= 0 converges to 0
with rate approximately nλ/ℓ. We also provided a method for computing the second moment of k-mer frequencies, as well
as bounds on the CDFs of waiting times, which are the first such bounds for any type of mutation other than independent
substitution.

References
[1] J. Aberg, Y. M. Shtarkov, and B. J. Smeets, “Multialphabet coding with separate alphabet description”, in Proceedings.

Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), IEEE, 1997, pp. 56–65.
[2] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, and A. T. Suresh, “Tight bounds for universal compression of large

alphabets”, in 2013 IEEE International Symposium on Information Theory, IEEE, 2013, pp. 2875–2879.
[3] J. Acharya, H. Das, and A. Orlitsky, “Tight bounds on profile redundancy and distinguishability”, in Proceedings of

the 25th International Conference on Neural Information Processing Systems-Volume 2, 2012, pp. 3257–3265.
[4] C. Adami, “Information theory in molecular biology”, Physics of Life Reviews, vol. 1, no. 1, pp. 3–22, 2004.
[5] T. M. Apostol, Introduction to analytic number theory. Springer Science & Business Media, 2013.
[6] G. Battail, “Biology needs information theory”, Biosemiotics, vol. 6, no. 1, pp. 77–103, 2013.
[7] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge, “Extreme binning: Scalable, parallel deduplication for chunk-

based file backup”, in 2009 IEEE International Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, IEEE, 2009, pp. 1–9.

[8] V. S. Borkar, Stochastic Approximation. Cambridge University Press, 2008.
[9] S. Boucheron, A. Garivier, and E. Gassiat, “Coding on countably infinite alphabets”, IEEE Transactions on Information

Theory, vol. 55, no. 1, pp. 358–373, 2008.
[10] A. Z. Broder, “Some applications of rabin’s fingerprinting method”, in Sequences II, Springer, 1993, pp. 143–152.
[11] R. Bronson, Matrix methods: An introduction. Gulf Professional Publishing, 1991.
[12] M. D. Cao, T. I. Dix, L. Allison, and C. Mears, “A simple statistical algorithm for biological sequence compression”,

in 2007 Data Compression Conference (DCC’07), IEEE, 2007, pp. 43–52.
[13] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, and T. Weissman, “Spring: A next-generation compressor for fastq

data”, Bioinformatics, 2018.
[14] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding the confusability of words under tandem repeats”,

arXiv preprint arXiv:1707.03956, 2017.
[15] X. Chen, S. Kwong, and M. Li, “A compression algorithm for DNA sequences and its applications in genome

comparison”, Genome informatics, vol. 10, pp. 51–61, 1999.
[16] B. Chern, I. Ochoa, A. Manolakos, A. No, K. Venkat, and T. Weissman, “Reference based genome compression”, in

2012 IEEE Information Theory Workshop, IEEE, 2012, pp. 427–431.
[17] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[18] S. Dancoff and H. Quastler, “The information content and error rate of living things”, Essays on the Use of Information

Theory in Biology, 1953.
[19] David Williams, Probability with Martingales. Cambridge: Cambridge University Press, 1991.
[20] L. Davisson, “Minimax noiseless universal coding for markov sources”, IEEE Transactions on Information Theory,

vol. 29, no. 2, pp. 211–215, 1983.
[21] L. Davisson, R. McEliece, M. Pursley, and M. Wallace, “Efficient universal noiseless source codes”, IEEE Transactions

on Information Theory, vol. 27, no. 3, pp. 269–279, 1981.
[22] P. Deutsch, “Deflate compressed data format specification version 1.3”, IETF RFC 1951, 1996.



74

[23] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions and prefixing methods”, SIAM
Journal on Discrete Mathematics, vol. 23, no. 4, pp. 2120–2146, 2010.

[24] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, “Benchmarking personal cloud storage”, in Proceedings of
the 2013 conference on Internet measurement conference, 2013, pp. 205–212.

[25] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras, “Inside dropbox: Understanding personal
cloud storage services”, in Proceedings of the 2012 Internet Measurement Conference, 2012, pp. 481–494.

[26] R. Durrett and D. Schmidt, “Waiting for Two Mutations: With Applications to Regulatory Sequence Evolution and the
Limits of Darwinian Evolution”, Genetics, vol. 180, no. 3, pp. 1501–1509, Nov. 2008.

[27] P. Elias, “Universal codeword sets and representations of the integers”, IEEE transactions on information theory, vol. 21,
no. 2, pp. 194–203, 1975.

[28] O. Elishco, F. Farnoud, M. Schwartz, and J. Bruck, “The entropy rate of some Pólya string models”, IEEE Trans.
Information Theory, 2019, to appear.

[29] O. Elishco, T. Meyerovitch, and M. Schwartz, “On encoding semiconstrained systems”, IEEE Transactions on Infor-
mation Theory, 2017.

[30] O. Elishco, T. Meyerovitch, and M. Schwartz, “On independence and capacity of multidimensional semiconstrained
systems”, IEEE Transactions on Information Theory, vol. 64, no. 10, pp. 6461–6483, 2018.

[31] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained systems”, IEEE Transactions on Information Theory,
vol. 62, no. 4, pp. 1688–1702, 2016.

[32] K. Eshghi and H. K. Tang, “A framework for analyzing and improving content-based chunking algorithms”, Hewlett-
Packard Labs Technical Report TR, vol. 30, no. 2005, 2005.

[33] M. Farach, M. Noordewier, S. Savari, L. Shepp, A. Wyner, and J. Ziv, “On the entropy of DNA: Algorithms and
measurements based on memory and rapid convergence”, in Proceedings of the Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, ser. SODA ’95, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1995,
pp. 48–57.

[34] F. Farnoud, M. Schwartz, and J. Bruck, “Estimation of duplication history under a stochastic model for tandem repeats”,
en, BMC Bioinformatics, vol. 20, no. 1, 2019.

[35] F. Farnoud, M. Schwartz, and J. Bruck, “Estimation of duplication history under a stochastic model for tandem repeats”,
BMC Bioinformatics, vol. 20, no. 1, p. 64, 2019.

[36] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-duplication systems”, IEEE Trans. Information Theory,
vol. 62, no. 2, pp. 811–824, Feb. 2016.

[37] W. Feller, “An introduction to probability theory and its applications”, 1957,
[38] A. Garivier, “A lower-bound for the maximin redundancy in pattern coding”, Entropy, vol. 11, no. 4, pp. 634–642,

2009.
[39] X. Gou, Z. Wang, N. Li, et al., “Whole-genome sequencing of six dog breeds from continuous altitudes reveals

adaptation to high-altitude hypoxia”, Genome research, vol. 24, no. 8, pp. 1308–1315, 2014.
[40] S. Greenberg and M. Mohri, “Tight lower bound on the probability of a binomial exceeding its expectation”, Statistics

& Probability Letters, vol. 86, pp. 91–98, 2014.
[41] B. Hajek, Random processes for engineers. Cambridge university press, 2015.
[42] P. Hanus, B. Goebel, J. Dingel, et al., “Information and communication theory in molecular biology”, Electrical

Engineering, vol. 90, no. 2, pp. 161–173, 2007.
[43] R. Heckel, I. Shomorony, K. Ramchandran, and N. David, “Fundamental limits of DNA storage systems”, in 2017

IEEE International Symposium on Information Theory (ISIT), IEEE, 2017, pp. 3130–3134.
[44] H. Herzel, W. Ebeling, and A. O. Schmitt, “Entropies of biosequences: The role of repeats”, Physical Review E, vol. 50,

no. 6, p. 5061, 1994.
[45] N. Iri and O. Kosut, “Third-order coding rate for universal compression of markov sources”, in 2015 IEEE International

Symposium on Information Theory (ISIT), IEEE, 2015, pp. 1996–2000.
[46] P. Jacquet and W. Szpankowski, “Markov types and minimax redundancy for markov sources”, IEEE Transactions on

Information Theory, vol. 50, no. 7, pp. 1393–1402, 2004.



75

[47] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Noise and uncertainty in string-duplication systems”, in IEEE Int.
Symp. Information Theory (ISIT), Aachen, Germany, Jun. 2017.

[48] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of genomic tandem duplication”, IEEE Trans. Infor-
mation Theory, vol. 63, no. 10, Oct. 2017.

[49] S. Jain, F. F. Hassanzadeh, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data storage in the DNA of
living organisms”, IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 4996–5010, 2017.

[50] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA storage channels”, in 2015 IEEE Information Theory
Workshop (ITW), IEEE, 2015, pp. 1–5.

[51] G. Korodi and I. Tabus, “Normalized maximum likelihood model of order-1 for the compression of DNA sequences”,
in 2007 Data Compression Conference (DCC’07), IEEE, 2007, pp. 33–42.

[52] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal content defined chunking for backup streams.”, in Fast, 2010,
pp. 239–252.

[53] E. S. Lander, L. M. Linton, B. Birren, et al., “Initial sequencing and analysis of the human genome”, Nature, vol. 409,
no. 6822, pp. 860–921, 2001.

[54] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over sets for DNA storage”, in 2018 IEEE International
Symposium on Information Theory (ISIT), IEEE, 2018, pp. 2411–2415.

[55] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Bounds on codes correcting tandem and palindromic duplications”, arXiv
preprint arXiv:1707.00052, 2017.

[56] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA storage”, IEEE Transactions on Information Theory,
2018.

[57] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang, “An information-based sequence distance and its
application to whole mitochondrial genome phylogeny”, Bioinformatics, vol. 17, no. 2, pp. 149–154, 2001.

[58] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezis, and P. Camble, “Sparse indexing: Large scale, inline
deduplication using sampling and locality.”, in Fast, vol. 9, 2009, pp. 111–123.

[59] P. Liò, A. Politi, M. Buiatti, and S. Ruffo, “High statistics block entropy measures of DNA sequences”, Journal of
Theoretical Biology, vol. 180, no. 2, pp. 151–160, May 1996.

[60] D. Loewenstern and P. N. Yianilos, “Significantly Lower Entropy Estimates for Natural DNA Sequences”, Journal of
Computational Biology, vol. 6, no. 1, pp. 125–142, 1999.

[61] H. Lou, M. Schwartz, J. Bruck, and F. Farnoud Hassanzadeh, “Evolution of k-mer frequencies and entropy in duplication
and substitution mutation systems”, IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 3171–3186, 2020.

[62] H. Lou and F. Farnoud, “Data deduplication with random substitutions”, IEEE Transactions on Information Theory,
2022.

[63] H. Lou and F. Farnoud, “Finite-time behavior of k-mer frequencies and waiting times in noisy-duplication systems”,
in Proc. Asilomar Conference on Signals, Systems and Computers, 2019.

[64] H. Lou and F. F. Hassanzadeh, “Asymptotic analysis of data deduplication with a constant number of substitutions”,
in 2021 IEEE International Symposium on Information Theory (ISIT), 2021, pp. 3296–3301.

[65] J. MacDonald, “File system support for delta compression”, Ph.D. dissertation, Citeseer, 2000.
[66] H. Mahmoud, Pólya urn models. Chapman and Hall/CRC, 2008.
[67] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding for constrained systems”, Lecture notes, 2001.
[68] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey, “Recalibrating global data center energy-use estimates”,

Science, vol. 367, no. 6481, pp. 984–986, 2020. eprint: https://science.sciencemag.org/content/367/6481/984.full.pdf.
[69] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 71.
[70] D. T. Meyer and W. J. Bolosky, “A study of practical deduplication”, ACM Transactions on Storage (ToS), vol. 7,

no. 4, pp. 1–20, 2012.
[71] O. Milenkovic, G. Alterovitz, G. Battail, et al., “Introduction to the special issue on information theory in molecular

biology and neuroscience”, Institute of Electrical and Electronics Engineers, 2010.
[72] M. Mitzenmacher and E. Upfal, Probability and computing: randomization and probabilistic techniques in algorithms

and data analysis. Cambridge university press, 2017.

https://science.sciencemag.org/content/367/6481/984.full.pdf


76

[73] A. S. Motahari, G. Bresler, and N. David, “Information theory of DNA shotgun sequencing”, IEEE Transactions on
Information Theory, vol. 59, no. 10, pp. 6273–6289, 2013.

[74] N. Mundy and A. J. Helbig, “Origin and evolution of tandem repeats in the mitochondrial DNA control region of
shrikes (lanius spp.)”, Journal of Molecular Evolution, vol. 59, no. 2, pp. 250–257, 2004.

[75] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth network file system”, in ACM SIGOPS Operating
Systems Review, ACM, vol. 35, 2001, pp. 174–187.

[76] National Human Genome Research Institute (NHGRI), The Cost of Sequencing a Human Genome.
[77] U. Niesen, “An information-theoretic analysis of deduplication”, IEEE Transactions on Information Theory, vol. 65,

no. 9, pp. 5688–5704, Sep. 2019.
[78] M. Oberhumer, “Lzo-a real-time data compression library”, http://www. oberhumer. com/opensource/lzo/, 2008.
[79] S. Ohno, Evolution by Gene Duplication. Springer-Verlag, 1970.
[80] A. Orlitsky, N. Santhanam, K. Viswanathan, and J. Zhang, “Limit results on pattern entropy”, IEEE Trans. Information

Theory, vol. 52, no. 7, pp. 2954–2964, 2006.
[81] A. Orlitsky and N. P. Santhanam, “Speaking of infinity”, IEEE Transactions on Information Theory, vol. 50, no. 10,

pp. 2215–2230, 2004.
[82] A. Orlitsky, N. P. Santhanam, and J. Zhang, “Universal compression of memoryless sources over unknown alphabets”,

IEEE Transactions on Information Theory, vol. 50, no. 7, pp. 1469–1481, 2004.
[83] Y. L. Orlov and V. N. Potapov, “Complexity: An internet resource for analysis of DNA sequence complexity”, Nucleic

Acids Research, vol. 32, no. Web Server issue, W628–W633, Jul. 2004.
[84] D. S. Pavlichin, T. Weissman, and G. Yona, “The human genome contracts again”, Bioinformatics, vol. 29, no. 17,

pp. 2199–2202, 2013.
[85] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage”, in FAST, vol. 2, 2002, pp. 89–101.
[86] M. O. Rabin, “Fingerprinting by random polynomials”, Technical report, 1981.
[87] N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-modulation codes for DNA storage with shotgun sequencing”, IEEE

Transactions on Information Theory, vol. 65, no. 1, pp. 50–64, 2018.
[88] D. Reinsel, J. Rydning, and J. Gantz, “Worldwide global datasphere forecast, 2020–2024: The covid-19 data bump and

the future of data growth”, Int. Data Corp.(IDC), Framingham, MA, USA, Tech. Rep. US44797920, 2020.
[89] B. C. Rennie and A. J. Dobson, “On stirling numbers of the second kind”, Journal of Combinatorial Theory, vol. 7,

no. 2, pp. 116–121, 1969.
[90] J. Rissanen, “Universal coding, information, prediction, and estimation”, IEEE Transactions on Information theory,

vol. 30, no. 4, pp. 629–636, 1984.
[91] W. Rudin et al., Principles of mathematical analysis. McGraw-hill New York, 1964, vol. 3.
[92] A. O. Schmitt and H. Herzel, “Estimating the entropy of DNA sequences”, Journal of Theoretical Biology, vol. 188,

no. 3, pp. 369–377, Oct. 1997.
[93] B. Schroeder and G. A. Gibson, “Understanding disk failure rates: What does an mttf of 1,000,000 hours mean to

you?”, ACM Transactions on Storage (TOS), vol. 3, no. 3, 8–es, 2007.
[94] R. Sedgewick and P. Flajolet, An introduction to the analysis of algorithms. Pearson Education India, 2013.
[95] G. I. Shamir, “On the mdl principle for iid sources with large alphabets”, IEEE transactions on information theory,

vol. 52, no. 5, pp. 1939–1955, 2006.
[96] G. I. Shamir, “Universal lossless compression with unknown alphabets—the average case”, IEEE Transactions on

Information Theory, vol. 52, no. 11, pp. 4915–4944, 2006.
[97] C. E. Shannon, “A mathematical theory of communication”, The Bell system technical journal, vol. 27, no. 3, pp. 379–

423, 1948.
[98] P. Shilane, M. Huang, G. Wallace, and W. Hsu, “Wan-optimized replication of backup datasets using stream-informed

delta compression”, ACM Transactions on Storage (ToS), vol. 8, no. 4, pp. 1–26, 2012.
[99] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and S. Sengupta, “Primary data deduplication—large scale study

and system design”, in Presented as part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), 2012,
pp. 285–296.



77

[100] Y. M. Shtar’kov, “Universal sequential coding of single messages”, Problemy Peredachi Informatsii, vol. 23, no. 3,
pp. 3–17, 1987.

[101] J. Shtarkov, “Coding of discrete sources with unknown statistics”, Topics in information theory, pp. 559–574, 1977.
[102] A. Sievers, K. Bosiek, M. Bisch, et al., “K-mer content, correlation, and position analysis of genome DNA sequences

for the identification of function and evolutionary features”, Genes, vol. 8, no. 4, Apr. 2017.
[103] W. Szpankowski and M. J. Weinberger, “Minimax pointwise redundancy for memoryless models over large alphabets”,

IEEE transactions on information theory, vol. 58, no. 7, pp. 4094–4104, 2012.
[104] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correction for duplication and

substitution channels”, in Proc. IEEE Int. Symp. Information Theory (ISIT), 2019.
[105] D. Tautz and T. Domazet-Lošo, “The evolutionary origin of orphan genes”, en, Nature Reviews Genetics, vol. 12,

no. 10, Oct. 2011.
[106] K. Usdin, “The biological effects of simple tandem repeats: Lessons from the repeat expansion diseases”, Genome

Research, vol. 18, no. 7, pp. 1011–1019, Jul. 2008.
[107] R. S. Varga, Geršgorin and his circles. Springer Science & Business Media, 2010, vol. 36.
[108] S. Vinga, “Information theory applications for biological sequence analysis”, Briefings in bioinformatics, vol. 15, no. 3,

pp. 376–389, 2013.
[109] B. Vogelstein and K. W. Kinzler, “Cancer genes and the pathways they control”, Nature medicine, vol. 10, no. 8, 2004.
[110] M. Vrable, S. Savage, and G. M. Voelker, “Cumulus: Filesystem backup to the cloud”, ACM Transactions on Storage

(TOS), vol. 5, no. 4, pp. 1–28, 2009.
[111] G. Wallace, F. Douglis, H. Qian, et al., “Characteristics of backup workloads in production systems.”, in FAST, vol. 12,

2012, pp. 4–4.
[112] H. Wan, L. Li, S. Federhen, and J. C. Wootton, “Discovering simple regions in biological sequences associated with

scoring schemes”, eng, Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, vol. 10,
no. 2, pp. 171–185, 2003.

[113] T. A. Welch, “A technique for high-performance data compression”, Computer, no. 6, pp. 8–19, 1984.
[114] W. Xia, H. Jiang, D. Feng, et al., “A comprehensive study of the past, present, and future of data deduplication”,

Proceedings of the IEEE, vol. 104, no. 9, pp. 1681–1710, 2016.
[115] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck in the data domain deduplication file system.”, in

Fast, vol. 8, 2008, pp. 269–282.
[116] A. Zielezinski, S. Vinga, J. Almeida, and W. M. Karlowski, “Alignment-free sequence comparison: Benefits, applica-

tions, and tools”, Genome Biology, vol. 18, no. 1, p. 186, Oct. 2017.
[117] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression”, IEEE Transactions on information

theory, vol. 23, no. 3, pp. 337–343, 1977.
[118] J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate coding”, IEEE transactions on Information

Theory, vol. 24, no. 5, pp. 530–536, 1978.

Appendix
A. Deduplication over Ib(δ)

1) Proof of Lemma 8
Lemma 8. Let r be a string drawn uniformly at random from Σℓ. Let r1, r2, . . . , rm be m iid descendants of r by δ-edit
and let r[m] = {r1, r2, . . . , rm}. For any w ∈ Σℓ, let w ∈ r[m] denote the event that w = ri for some i. Then

1

2

Sδ(ℓ,m)

2ℓ
≤ Pr

(
w ∈ r[m]

)
≤ Sδ(ℓ,m)

2ℓ
, (36)

and thus the expected number of unique strings in r[m] is bounded between 1
2Sδ(ℓ,m) and Sδ(ℓ,m).

Furthermore, Sδ(ℓ,m) takes the following values for different values of ℓ and m:



78

• If ℓ ≥ logm
H(δ) , then

Sδ(ℓ,m) ≥ 1

4
m. (37)

In particular if ℓ ≥ logm
log( 1

1−δ )
, then

Sδ(ℓ,m) = m. (38)

• If ℓ ≤ logm
H( 1

2 ,δ)
, then

Sδ(ℓ,m) ≥ 2ℓ−1. (39)

In particular if ℓ ≤ logm
log( 1

δ )
, then

Sδ(ℓ,m) = 2ℓ. (40)

• For any δ < δ′ < 1
2 ,

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ). (41)

In particular if ℓ = logm
H(δ′,δ) , then

Sδ(ℓ,m) ≤ 2ℓH(δ′) +m2−ℓD(δ′||δ) = 2ℓH(δ′)+1. (42)

• For any values of ℓ and m,

Sδ(ℓ,m) ≤ min
(
2ℓ,m

)
. (43)

Proof: We first prove inequality (36). Given r, the probability of a δ-edit descendant being equal tow is δdw,r (1−δ)ℓ−dw,r ,
where dw,r denotes the Hamming distance between w and r. Therefore,

Pr
(
w ∈ r[m]

)
= 1− Pr

(
w /∈ r[m]

)
(399)

= 1−
∑
r∈Σℓ

Pr(r) Pr(w ̸= r1|r)m (400)

= 1−
∑
r∈Σℓ

Pr(r)
(
1− δdw,r (1− δ)ℓ−dw,r

)m
(401)

= 1−
ℓ∑

t=0

((
ℓ
t

)
2ℓ
(
1− δt(1− δ)ℓ−t

)m)
, (402)

where the second equality follows from the fact that r1, r2, . . . , rm are iid given r and the last equality follows from the fact
that there are

(
ℓ
t

)
strings of length ℓ that are at Hamming distance t from w. The desired inequalities then follow directly from

applying inequalities (1) on 1−
(
1− δt(1− δ)

ℓ−t
)m

.
The expected number of unique strings in r[m] equals

E

 ∑
w∈Σℓ

Iw∈r[m]

 =
∑
w∈Σℓ

Pr
(
w ∈ r[m]

)
. (403)

So the upper bound Sδ(ℓ,m) and the lower bound 1
2Sδ(ℓ,m) follow from replacing Pr

(
w ∈ r[m]

)
with its upper and lower

bounds, respectively.
We show that Sδ(ℓ,m) takes the given values for different m and ℓ:



79

• When ℓ ≥ logm
H(δ) , mδδℓ(1− δ)

(1−δ)ℓ ≤ 1. It follows that

Sδ(ℓ,m) ≥
ℓ∑

t=⌈δℓ⌉

(
ℓ

t

)
min

(
1,mδt(1− δ)ℓ−t

)
(404)

=

ℓ∑
t=⌈δℓ⌉

(
ℓ

t

)
mδt(1− δ)ℓ−t ≥ 1

4
m, (405)

where the equality follows from the fact that mδt(1− δ)ℓ−t is decreasing in t so mδt(1− δ)
ℓ−t ≤ 1 for all t ≥ δℓ and

the second inequality follows from the result shown in [40] that for a binomial random variable X with parameters n and
p, Pr(X ≥ np) > 1

4 if p ≥ 1/n.
Moreover, when ℓ ≥ logm

log( 1
1−δ )

, mδt(1− δ)
ℓ−t ≤ 1 for all t. Hence,

Sδ(ℓ,m) =

ℓ∑
t=0

(
ℓ

t

)
mδt(1− δ)ℓ−t = m. (406)

• When ℓ ≤ logm
H( 1

2 ,δ)
, mδ

ℓ
2 (1− δ)

ℓ
2 ≥ 1. It follows that

Sδ(ℓ,m) ≥
⌊ ℓ

2⌋∑
t=0

(
ℓ

t

)
min

(
1,mδt(1− δ)ℓ−t

)
=

⌊ ℓ
2⌋∑

t=0

(
ℓ

t

)
(407)

≥ 2ℓ−1, (408)

where the first inequality follows from the fact that mδt(1− δ)
ℓ−t ≥ 1 for all t ≤ ℓ

2 .
Moreover, when ℓ ≤ logm

log( 1
δ )

, mδt ≥ 1 for all t. Hence,

Sδ(ℓ,m) =

ℓ∑
t=0

(
ℓ

t

)
· 1 = 2ℓ. (409)

• For any δ < δ′ < 1/2,

Sδ(ℓ,m) ≤
⌊δ′ℓ⌋∑
t=0

(
ℓ

t

)
+

ℓ∑
t=⌈δ′ℓ⌉

(
ℓ

t

)
mδt(1− δ)ℓ−t (410)

≤ 2ℓH(δ′) +m2−ℓD(δ′||δ), (411)

where the second inequality follows from applying the Chernoff bound on a binomial distribution with parameters ℓ and
δ.
When ℓ = logm

H(δ′,δ) , 2ℓH(δ′) = m2−ℓD(δ′||δ). So 2ℓH(δ′) +m2−ℓD(δ′||δ) = 2ℓH(δ′)+1 and

Sδ(ℓ,m) ≤ 2ℓH(δ
′)+1. (412)

• The upper bounds 2ℓ and m follow from:

Sδ(ℓ,m) ≤
ℓ∑

t=0

(
ℓ
t

)
2ℓ

= 1, (413)

Sδ(ℓ,m) ≤
ℓ∑

t=0

(
ℓ
t

)
2ℓ

mδt(1− δ)
ℓ−t

=
m

2ℓ
. (414)

2) Proofs of Lemma 9 and Lemma 10
Lemma 9. Suppose K strings of length n are chosen independently and uniformly from Σn. Assume each string produces at
least m1 and at most m2 descendants by δ-edits. For any string w with |w| = n, let Gw denote the event that w equals one



80

or more descendants. Then

1

2
min

(
1,

1

2
K

Sδ(n,m1)

2n

)
≤ Pr(Gw) ≤ min

(
1,K

Sδ(n,m2)

2n

)
. (46)

Proof: Let the K strings be denoted y1,y2, . . . ,yK . Let Gw(i) denote the event that w equals one of the descendants
of yi. Clearly, Gw(1), Gw(2), . . . , Gw(K) are independent and

Gw = ∪K
i=1Gw(i). (415)

Note that by Lemma 8 and the fact that Sδ(n,m) is non-decreasing in m,

1

2

Sδ(n,m1)

2n
≤ Pr(Gw(i)) ≤

Sδ(n,m2)

2n
. (416)

Applying the union bound on (415) gives

Pr(Gw) ≤
K∑
i=1

Pr(Gw(i)) ≤ K
Sδ(n,m2)

2n
. (417)

The desired upper bound follows by noting that 1 is a trivial upper bound.
We then prove the lower bound. By independence,

Pr(Gw) = Pr
(
∪K
i=1Gw(i)

)
(418)

= 1−
K∏
i=1

(1− Pr(Gw(i))) (419)

≥ 1−
(
1− 1

2

Sδ(n,m1)

2n

)K

(420)

≥ 1

2
min

(
1,

1

2
K

Sδ(n,m1)

2n

)
, (421)

where the last inequality follows from inequality (1) that 1− (1− x)n ≥ 1
2 min(1, nx) for x ∈ (0, 1) and integer n.

Lemma 10. Consider the two-stage fixed-length chunking process with first-stage parsing length D = L and chunk length ℓ.
The dictionary sizes T 1

F (s) and T
1/2
F (s) satisfy

E
[∣∣T 1

F (s)
∣∣|Eu] ≤ min

(
2ℓ, ACSδ

(
ℓ,
3B

2A

))
+B, (47)

E
[∣∣∣T 1/2

F (s)
∣∣∣|El] ≥ 1

2
min

(
2ℓ,

1

2
ACSδ

(
ℓ,

B

4A

))
. (48)

Proof: The size of T 1
F (s) equals the number of distinct strings among chunks Zb

c , 1 ≤ c ≤ C + 1, 1 ≤ b ≤ B. Clearly,
chunks of length ℓ are δ-edit descendants of the AC source symbol substrings Ua

c , 1 ≤ c ≤ C, 1 ≤ a ≤ A, which are
independent and uniformly distributed in Σℓ. Given Eu, each Ua

c has at most 3B
2A descendants. Moreover, since we assume

that the source symbols X1, . . . ,XA are chosen uniformly and independently, it follows directly from Lemma 9 that for any
ℓ-string w,

Pr
(
w ∈ T 1

F (s)|Eu
)
≤ min

(
1, AC

Sδ

(
ℓ, 3B

2A

)
2ℓ

)
. (422)

Hence

E
[∣∣T 1

F (s)
∣∣|Eu] ≤ ∑

w∈Σℓ

Pr
(
w ∈ T 1

F (s)|Eu
)
+B (423)

≤ min

(
2ℓ, ACSδ

(
ℓ,
3B

2A

))
+B, (424)

where the addend B accounts for the chunks of lengths less than ℓ at the end of each source block, if any.
The lower bound on

∣∣∣T 1/2
F (s)

∣∣∣ given El follows similarly from Lemma 9.



81

3) Proofs of Lemma 19 and Lemma 20
Lemma 19. Suppose K strings of length n are chosen independently and uniformly from Σn. Assume each string produces
at least m1 and at most m2 descendants by δ-edits. For any string w with |w| ≤ n, let Hw denote the event that w appears
as a substring of one or more descendants. Then,

1

2
min

(
1,

1

2

⌊
n

|w|

⌋
K

Sδ(|w|,m1)

2|w|

)
≤ Pr(Hw) ≤ min

(
1, (n− |w|+ 1)K

Sδ(|w|,m2)

2|w|

)
. (92)

Proof: Let the K strings be denoted y1,y2, . . . ,yK . We use Di to denote the set of δ-edit descendants of yi. Let Hw(i, j)
denote the event that w = xj,|w| for some x ∈ Di. Clearly,

Hw = ∪K
i=1 ∪

n−|w|+1
j=1 Hw(i, j). (425)

Note that the strings {xj,|w|}x∈Di
are iid δ-edit descendants of (yi)j,|w|. Hence by Lemma 8

1

2

Sδ(|w|,m1)

2|w| ≤ 1

2

Sδ(|w|, |Di|)
2|w| ≤ Pr(Hw(i, j)) ≤

Sδ(|w|, |Di|)
2|w| ≤ Sδ(|w|,m2)

2|w| . (426)

where the first and the last inequalities follow from m1 ≤ |Di| ≤ m2.
Applying the union bound on (425) gives

Pr(Hw) ≤ ∪K
i=1 ∪

n−|w|+1
j=1 Pr(Hw(i, j)) ≤ (n− |w|+ 1)K

Sδ(|w|,m2)

2|w| . (427)

The desired upper bound follows by noting that 1 is a trivial upper bound.
We next prove the lower bound. For each i, non-overlapping substrings of ri are independent and so are their descendants.

Hence, events Hw(i, j), j = 1, 1 + |w|, . . . , 1 + (p− 1)|w|, where p =
⌊

n
|w|

⌋
, are mutually independent. It follows that

Pr
(
∪K
i=1 ∪

p
a=1 Hw(i, 1 + (a− 1)|w|)

)
(428)

= 1−
K∏
i=1

p∏
a=1

(1− Pr(Hw(i, 1 + (a− 1)|w|))) (429)

≥ 1−
(
1− 1

2

Sδ(|w|,m1)

2|w|

)Kp

(430)

≥ 1

2
min

(
1,

1

2
Kp

Sδ(|w|,m1)

2|w|

)
, (431)

where the last inequality follows from inequality (1) that 1−(1−x)n ≥ 1
2 min(1, nx) for x ∈ (0, 1) and integer n. The desired

lower bound thus follows by noting that

∪K
i=1 ∪

p
a=1 Hw(i, 1 + (a− 1)|w|) ⊆ Hw. (432)

Lemma 20. Consider the source model with edit probability δ. For any string w ∈ Σ∗ with |w| ≤ 2L,

Pr(w ∈ Y B
1 |Eu) ≤ min

(
1, 2AL

Sδ

(
|w|, 3B

2A

)
2|w|

)
. (93)

For any string w ∈ Σ∗ with |w| ≤
⌈
1
2L
⌉
,

Pr
(
w ∈ Y

B/2
1 |El

)
≥ 1

2
min

(
1,

AL

8|w|
Sδ

(
|w|, B

4A

)
2|w|

)
. (94)

Proof: Recall that we assume every source symbol (and thus every source block) is of length at least 1
2L and at most

2L. So we can get a lower bound on Pr
(
w ∈ Y

B/2
1 |El

)
by assuming every source block is of length L

2 . Similarly, we get an
upper bound on Pr

(
w ∈ Y B

1 |Eu
)

by assuming every source block is of length 2L.
Now that the B source blocks are independent and each is a δ-edit descendant of one of the A source symbols. Moreover,



82

each random string (source symbol) has at most 3B
2A descendants given Eu. Therefore, by directly applying Lemma 19,

Pr
(
w ∈ Y B

1 |Eu
)
≤ min

(
1, (2L− |w|+ 1)A

Sδ

(
|w|, 3B

2A

)
2|w|

)
(433)

≤ min

(
1, 2LA

Sδ

(
|w|, 3B

2A

)
2|w|

)
. (434)

The lower bound can be obtained similarly:

Pr
(
w ∈ Y

B/2
1 |El

)
≥ 1

2
min

(
1,

1

2

⌊
L/2

|w|

⌋
A
Sδ

(
|w|, B

4A

)
2|w|

)
(435)

≥ 1

2
min

(
1,

1

8

L

|w|
A
Sδ

(
|w|, B

4A

)
2|w|

)
. (436)

4) Proof of Lemma 21
Lemma 21. Consider the source model with edit probability δ < 1

2 . For any n such that log(B/A)−2
H(δ) ≤ n+ 2M + 2 ≤ L

4 ,

∑
u∈Rn

M

Pr
(
10Mu10M ∈ Y

B/2
1 |El

)
≥ BL

27 · 22M+2
·
(
1− 1

2M−1

)n

− 3B2L2

2n+2M+2
. (95)

Proof: Let w = 10Mu10M . By assumption, |w| = |u|+ 2M + 2 ≥ log(B/A)−2
H(δ) .

For definiteness, we assume
∣∣Y1/2(a)

∣∣ = B
4A for all a and all source symbols are of length L

2 . With these assumptions, we
have a similar setting to that in Lemma 19. So we adopt the same notation. Let Hw denote w ∈ Y

B/2
1 and Hw(a, j) denote

the event that w = xj,|w| for some x ∈ Y1/2(a). Similar to (425):

Hw = ∪A
a=1 ∪

⌈L/2⌉−|w|+1
j=1 Hw(a, j). (437)

Moreover,

1

2

Sδ

(
|w|, B

4A

)
2|w| ≤ Pr(Hw(a, j)) ≤

Sδ

(
|w|, B

4A

)
2|w| . (438)

In Lemma 20, an upper bound on Pr
(
w ∈ Y

B/2
1 |El

)
is obtained by applying the union bound on (437). Here, we get a

lower bound by the inclusion-exclusion principle:

Pr(Hw) ≥
A∑

a=1

⌈L/2⌉−|w|∑
i=1

Pr(Hw(a, i)) (439)

−
∑

1≤a1 ̸=a2≤A

⌈L/2⌉−|w|∑
j=1

⌈L/2⌉−|w|∑
k=1

Pr(Hw(a1, j) ∩Hw(a2, k)) (440)

−
A∑

a=1

∑
1≤j,k≤⌈L/2⌉−|w|

j ̸=k

Pr(Hw(a, j) ∩Hw(a, k)). (441)

We compute the three terms on the right-hand side of the inequality above as follows.
For the term in (439), since |w| ≥ log(B/A)−2

H(δ) ,

Pr(Hw(a, i)) ≥
1

2

Sδ

(
|w|,

⌈
B
4A

⌉)
2|w| ≥ 1

2

Sδ

(
|w|, B

4A

)
2|w| ≥ B

32A · 2|w| , (442)

where the last inequality follows from (37). It follows that

A∑
a=1

⌈L/2⌉−|w|∑
i=1

Pr(Hw(a, i)) ≥ A(⌈L/2⌉ − |w|) B

32A · 2|w| ≥
BL

27 · 2|w| . (443)



83

For the term in (440), since for all a1 ̸= a2, ya1
and ya2

are independent and so are their descendants, we get

∑
1≤a1 ̸=a2≤A

⌈L/2⌉−|w|∑
j=1

⌈L/2⌉−|w|∑
k=1

Pr(Hw(a1, j) ∩Hw(a2, k)) (444)

=
∑

1≤a1 ̸=a2≤A

⌈L/2⌉−|w|∑
j=1

⌈L/2⌉−|w|∑
k=1

Pr(Hw(a1, j)) Pr(Hw(a2, k)) (445)

≤
∑

1≤a1 ̸=a2≤A

⌈L/2⌉−|w|∑
j=1

⌈L/2⌉−|w|∑
k=1

(
Sδ

(
|w|,

⌈
B
4A

⌉)
2|w|

)2

(446)

≤
∑

1≤a1 ̸=a1≤A

B2L2

A222|w| (447)

≤ B2L2

22|w| , (448)

where the second inequality follows from (43) that Sδ(ℓ,m) ≤ m and the inequalities ⌈L/2⌉ − |w| ≤ L,
⌈

B
4A

⌉
≤ B

A .
We then consider the term in (441), where the two occurrences of w are among the descendants of a single source symbol,

and thus might not be independent. Unlike the previous two terms, we consider lower bounding the sum of probabilities
Pr(Hw(a, j) ∩Hw(a, k)) over all w of the form 10Mu10M ,u ∈ Rn

M . For clarity of presentation, we first claim (to be proved
later) that for any a, ∑

w:w=10Mu10M

u∈Rn
M

∑
1≤j,k≤⌈L/2⌉−|w|

j ̸=k

Pr(Hw(a, j) ∩Hw(a, k)) ≤
B2L2

A22|w|

(
1 +

n+M + 1

L

)
. (449)

It follows that ∑
w:w=10Mu10M

u∈Rn
M

A∑
a=1

∑
1≤j,k≤⌈L/2⌉−|w|

j ̸=k

Pr(Hw(a, j) ∩Hw(a, k)) ≤
B2L2

A2|w|

(
1 +

n+M + 1

L

)
. (450)

Thus, combining (441), (443), (448) and (450) gives∑
w:w=10Mu10M

u∈Rn
M

Pr(Hw) ≥
∑

w:w=10Mu10M

u∈Rn
M

(
BL

27 · 2|w| −
B2L2

22|w|

)
− B2L2

A2|w|

(
1 +

n+M + 1

L

)
(451)

≥ BL

27 · 2|w| · |R
n
M | − B2L2

22|w| · |Rn
M | − B2L2

A2|w|

(
1 +

n+M + 1

L

)
(452)

≥ BL

27 · 2|w| · |R
n
M | − 3B2L2

2|w| , (453)

where the last inequality follows from |Rn
M | ≤ 2|w|, n+M+1

L ≤ 1 and A ≥ 1. The desired lower bound thus follows from
bounding |Rn

M | by Lemma 1.
Finally, we prove inequality (449). Fix a. That Hw(a, j) and Hw(a, k) both hold means there exist descendants x1,x2

(possibly the same one) of ya such that (x1)j,|w| = (x2)k,|w| = w. Assume j < k without loss of generality. We compute
Pr(Hw(a, j) ∩Hw(a, k)) for different values of (j, k):

• |j − k| ≥ |w|. The two occurrences of w in x1 and x2 are plotted in Figure 17. In this case, they are produced by two
non-overlapping substrings of ya and thus are independent. It follows that∑

|j−k|≥|w|

Pr(Hw(a, j) ∩Hw(a, k)) =
∑

|j−k|≥|w|

Pr(Hw(a, j)) Pr(Hw(a, k)) (454)

≤ L2

(
Sδ

(
|w|,

⌈
B
4A

⌉)
2|w|

)2

(455)

≤ L2B2

A222|w| . (456)



84

ya

x1 10M u 10M

x2 10M u 10M

j k

w

w

Figure 17: Relative position of the two occurrences of w at position j and k when |j − k| ≥ |w|.

• 1 ≤ |j − k| < |u|. The two occurrences of w in x1 and x2 are plotted in Figure 18. In this case, the two occurrences
of w are descendants of two overlapping substrings of ya. Recall that w = 10Mu10M . We write the string u in x1 as
u1u2, and write the string u in x2 as u′

2u3, so that u2 and u′
2 have the same ancestors, denoted r2. Denote the ancestor

of u1 and u3 by r1 and r3, respectively. Denote the ancestor of 10M at the beginning of w in x1 by r0, and the ancestor
of 10M at the end of w in x2 by r4. We have |r1| = |u1| = |r3| = |u3| = k − j, |r2| = |u2| = |u′

2| = |u| − (k − j).
Write r = r0r1r2r3r4.

ya r0 r1 r2 r3 r4

x1 10M u1 u2 10M

x2 u′
2 u3 10M10M

j k

w

w

Figure 18: Relative position of the two occurrences of w at position j and k when 1 ≤ |j − k| < |u|.

For a single descendant x of ya, x can not have w as substrings at positions j and k simultaneously since u is M -RLL.
In other words, either exactly one of xj,|w| and xk,|w| equals w or none of them does. So given r, we can get an upper
bound on the probability of Hw(a, j) ∩Hw(a, k) by assuming they are independent, i.e.,

Pr(Hw(a, j) ∩Hw(a, k)|r) ≤ Pr(Hw(a, j)|r) Pr(Hw(a, k)|r). (457)

We prove (457) rigorously by Lemma 60 at the end of this section.
Denote the Hamming distance between r0 and 10M by d0, r1 and u1 by d1, r2 and u2 by d2, r2 and u′

2 by d′2, r3 and
u3 by d3, and r4 and 10M by d4. Let wl = 10Mu and wr = u10M . The probability of occurrences increases if we
only consider substrings wl or wr. We have

Pr(Hw(a, j)|r) ≤ Pr(Hwl
(a, j)|r) (458)

= 1−
(
1− δd0+d1+d2(1− δ)|w|−M−1−(d0+d1+d2)

)⌈ B
4A⌉

(459)

≤ B

A
δd0+d1+d2(1− δ)|w|−M−1−(d0+d1+d2), (460)

and

Pr(Hw(a, k)|r) ≤ Pr(Hwr
(a, k +M + 1)|r) (461)

= 1−
(
1− δd

′
2+d3+d4(1− δ)|w|−M−1−(d′

2+d3+d4)
)⌈ B

4A⌉
(462)

≤ B

A
δd

′
2+d3+d4(1− δ)|w|−M−1−(d′

2+d3+d4). (463)



85

It follows from (457) that Pr(Hw(a, j) ∩Hw(a, k)) is less than or equal to∑
r∈Σ|w|

Pr(r) Pr(Hw(a, j)|r) Pr(Hw(a, k)|r) (464)

=

(
B

A

)2

·

 ∑
r0∈ΣM+1

1

2|r0|
δd0(1− δ)|r0|−d0

 (465)

·

 ∑
r1∈Σk−j

1

2|r1|
δd1(1− δ)|r1|−d1

 (466)

·

 ∑
r3∈Σk−j

1

2|r3|
δd3(1− δ)|r3|−d3

 (467)

·

 ∑
r4∈ΣM+1

1

2|r4|
δd4(1− δ)|r4|−d4

 (468)

·

 ∑
r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2)

 (469)

=

(
B

A

)2

· 1

22M+2+2(k−j)
(470)

·

 ∑
r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2)

. (471)

Let d◦ denote the Hamming distance between u2 and u′
2. Among the |u2| − d◦ positions where u2 and u′

2 are the same,
suppose u2 differs from r2 in v of them. Among the d◦ positions where u2 differs from u′

2, suppose u2 differs from r2

in t of them. It follows that d2 = v + t and d′2 = d◦ + v − t. Thus, we further have∑
r2∈Σ|u|−(k−j)

1

2|r2|
δd2+d′

2(1− δ)2|r2|−(d2+d′
2) =

∑
r2∈Σ|u|−(k−j)

1

2|r2|
δ2v+d◦

(1− δ)2|r2|−2v−d◦
(472)

=

|r2|−d◦∑
v=0

(
|r2| − d◦

v

)
2d

◦

2|r2|
δ2v+d◦

(1− δ)2|r2|−2v−d◦
(473)

=
(2δ(1− δ))

d◦

2|r2|

|r2|−d◦∑
v=0

(
|r2| − d◦

v

)(
δ2
)v(

(1− δ)2
)(|r2|−d◦)−v

(474)

=
1

2|r2|
(2δ(1− δ))

d◦(
δ2 + (1− δ)2

)|r2|−d◦

. (475)

Since |r2| = |w| − (k − j),

Pr(Hw(a, j) ∩Hw(a, k)) ≤
(
B

A

)2 (2δ(1− δ))
d◦(

δ2 + (1− δ)2
)|r2|−d◦

2|w|+(k−j)
. (476)

Note that u2 is the |r2|-suffix of u and u′
2 is the |r2| prefix of u. With |u| = n, the number of n-strings whose |r2|-suffix

and |r2|-prefix are at Hamming distance d◦ is 2n−|r2|
(|r2|
d◦

)
since an n-string can be uniquely determined by its |r2|-prefix



86

and the mismatches. Therefore, ∑
w:w=10Mu10M

u∈Rn
M

∑
1≤|j−k|<|u|

Pr(Hw(a, j) ∩Hw(a, k)) (477)

≤
∑

1≤|j−k|<|u|

∑
w:w=10Mu10M

u∈Σn

Pr(Hw(a, j) ∩Hw(a, k)) (478)

≤ L|u| ·
|r2|∑
d◦=0

2|r1|
(
|r2|
d◦

)
·
(
B

A

)2

(479)

·
(2δ(1− δ))

d◦(
δ2 + (1− δ)2

)|r2|−d◦

2|w|+k−j
(480)

=

(
B

A

)2
Ln

2|w| . (481)

• |u| ≤ |j − k| < |w|. The two occurrences of w in x1 and x2 are plotted in Figure 19.

ya

x1 10M u 10M

x2 10M u 10M

j k

w

w

Figure 19: Relative position of the two occurrences of w at position j and k when |u| ≤ |j − k| < |w|.

It can be seen that the prefix 10Mu of w in x1 and w in x2 are descendants of non-overlapping substrings of ya and
thus independent. We can write

Pr(Hw(a, j) ∩Hw(a, k)) ≤ Pr(Hwl
(a, j) ∩Hw(a, k)) (482)

= Pr(Hwl
(a, j)) Pr(Hw(a, k)) (483)

≤
Sδ

(
|wl|,

⌈
B
4A

⌉)
Sδ

(
|w|,

⌈
B
4A

⌉)
2|wl|+|w| (484)

≤
(
B

A

)2
1

22|w|−M−1
. (485)

It follows that ∑
|u|≤|j−k|<|w|

Pr(Hw(a, j) ∩Hw(a, k)) ≤
(
B

A

)2
L · 2(M + 1)

22|w|−M−1
. (486)



87

Thus, combining (456), (481), (486) gives∑
w:w=10Mu10M

u∈Rn
M

∑
1≤j,k≤⌈L/2⌉−|w|

j ̸=k

Pr(Hw(a, j) ∩Hw(a, k)) (487)

≤
∑

w:w=10Mu10M

u∈Rn
M

 ∑
|j−k|≥|w|

Pr(Hw(a, j) ∩Hw(a, k)) (488)

+
∑

1≤|j−k|<|u|

Pr(Hw(a, j) ∩Hw(a, k)) (489)

+
∑

|u|≤|j−k|≤|w|

Pr(Hw(a, j) ∩Hw(a, k))

 (490)

≤ L2B2

A2 · 22|w| · |R
n
M |+ B2Ln

A2 · 2|w| +
2B2L(M + 1)

A2 · 22|w|−M−1
· |Rn

M | (491)

≤ B2L2

A22|w|

(
1 +

n+M + 1

L

)
. (492)

We present a lemma from which inequality (457) follows directly.

Lemma 60. Let r be any string of length n with m iid δ-edit descendants. For a string v, |v| < n and 1 ≤ j < k ≤ n−|v|+1,
let J (v),K(v) denote the events that there exists a descendant of r whose j-th, k-th |v|-substring equal v, respectively. We
have

Pr(J (v) ∩ K(v)) ≤ Pr(J (v)) Pr(K(v)), (493)

if the (|v| − (k − j))-suffix and (|v| − (k − j))-prefix of v are not the same.

Proof: If the (|v| − (k − j))-suffix and (|v| − (k − j))-prefix of v are not the same, then in any descendant x, v can not
be both the j-th and the k-th substring. Therefore, in x, exactly one of the following three mutually exclusive events holds:
i) xj,|v| = v, ii) xk,|v| = v, iii) xj,|v| ̸= v and xk,|v| ̸= v. Let pj denote the probability of xj,|v| = v and pk denote the
probability of xk,|v| = v. We have

Pr
(
xj,|v| ̸= v ∩ xk,|v| ̸= v

)
= 1− pj − pk. (494)

Therefore, among the m iid descendants of r,

Pr(J (v) ∩ K(v)) = Pr(J (v)) + Pr(K(v)) + Pr
(
J̄ (v) ∩ K̄(v)

)
− 1 (495)

= (1− (1− pj)
m
) + (1− (1− pk)

m
) (496)

+ (1− pj − pk)
m − 1 (497)

= 1− (1− pj)
m − (1− pk)

m
+ (1− pj − pk)

m
. (498)

On the other hand,

Pr(J (v)) Pr(K(v)) = (1− (1− pj)
m
)(1− (1− pk)

m
) (499)

= 1− (1− pj)
m − (1− pk)

m
+ (1− pj)

m
(1− pk)

m
. (500)

The desired inequality thus follows by noting that 1− pj − pk ≤ (1− pj)(1− pk).
Inequality (457) can be obtained by replacing J (v) and K(v) with Hw(a, j) and Hw(a, k), respectively.
5) Proofs of Lemma 22 and Lemma 26

Lemma 22. Consider the source string s = Y1Y2 . . . YB . When 2M = o(L), for B,L sufficiently large,

Pr

(
CM

VL(s) ≥
1

4
·
⌊
B

2

⌋(
L

2M+8
− 1

))
≥ 5

6
. (96)



88

Proof: Equally parse each of Y⌈B/2⌉+1, . . . , YB into segments of length 2M+7. So that every Yb contains
⌊

|Yb|
2M+7

⌋
segments.

We show that among these
∑B

b=⌊B
2 ⌋+1

⌊
|Yb|
2M+7

⌋
segments, a constant fraction of them contain a chunk of length over 2M−4.

Pick an arbitrary segment, denoted z. Consider the two halves of z. The second half of z, which is of length 2M+6, is by
itself a Bernoulli(1/2) process going forward. We study the first time a run of M 0’s appears in this process. By the union
bound, with probability at least 1− 2M−5

2M
, there exist no runs of M 0s in the first 2M−5 bits. Moreover, the average position

of the end of the first run of M 0s in a Bernoulli(1/2) process is 2M+1 − 2 [94]. Therefore, by Markov’s inequality, with
probability at least 1− 2M+1−2

2M+6 , there is a 0M within the first 2M+6 bits. So the first time we see 0M is after 2M−5 bits and
before 2M+6 bits (i.e., the first 0M is within the last 2M+6 − 2M−5 bits) with probability at least

1− 2M−5

2M
− 2M+1 − 2

2M+6
≥ 1− 1

24
.

Similarly, the first half of z can be regarded as a reversed Bernoulli(1/2) process. So we also have with probability at least
1 − 1

24 , the first 0M (counting backwards) is within the first 2M+6 − 2M−5 bits. Clearly, a chunk exists between these two
occurrences of 0M . So with probability at least 1− 1

23 , z contains a chunk of length at least 2M−4. Since this property holds
for all such segments of length 2M+7, by the Markov inequality, with probability at least 1− 1

6 , at least 1
4 of the segments in

Y⌈B/2⌉+1 · · ·YB contain a chunk of length at least 2M−4. The desired result is derived by noting |Yb| ≥ L/2.

Lemma 26. Consider the source string s = Y1Y2 · · ·YB , with each Yb being a descendant of source symbol XJb
. For any

integer h and any pairs of integers (b1, b2), (i1, i2), the probability of Yb1 and Yb2 having identical substrings of length h

starting at positions i1 and i2, respectively, is

Pr
(
(Yb1)i1,h = (Yb2)i2,h

)
=

1

2h
, (116)

if Jb1 ̸= Jb2 or i1 ̸= i2.

Proof: We compute Pr((Yb1)i1,h = (Yb2)i2,h) as (b1, b2), (i1, i2) take different values in the following three cases:

• Jb1 ̸= Jb2 or |i1 − i2| ≥ h. If Jb1 ̸= Jb2 , then Yb1 and Yb2 have different ancestors and are thus independent. It follows
that their substrings are also independent. If |i1 − i2| ≥ h, then (Yb1)i1,h and (Yb2)i2,h are descendants of non-overlapping
substrings of the source alphabet and are thus also independent. The desired result follows from the fact that (Yb1)i1,h

and (Yb2)i2,h are both Bernoulli(1/2) processes by themselves.
• b1 = b2, |i1 − i2| < h. In this case, (Yb1)i1,h and (Yb2)i2,h are overlapping substrings of a single source block. Again,

Yb1 is Bernoulli(1/2) by itself. So the probability of (Yb1)i1,h = (Yb2)i2,h is the same as that when (Yb1)i1,h and (Yb2)i2,h

are independent.
• Jb1 = Jb2 , b1 ̸= b2, |i1 − i2| < h. Let Jb1 = Jb2 = a. Assume i1 < i2 without loss of generality. In this case, (Yb1)i1,h

and (Yb2)i2,h are two independent δ-edit descendants of (Xa)i1,h and (Xa)i2,h, respectively. So Pr((Yb1)i1,h = (Yb2)i2,h)

is uniquely determined by the Hamming distance between (Xa)i1,h and (Xa)i2,h. Moreover, the distribution of the
Hamming distance between (Xa)i1,h and (Xa)i2,h is the same as the distribution of the Hamming distance between
two independent Bernoulli(1/2) process of length h. Therefore, we can assume (Yb1)i1,h and (Yb2)i2,h are independent
and thus Pr((Yb1)i1,h = (Yb2)i2,h) =

1
2h

.

6) Summations

For integers b ≥ a and β > 1, summations of the forms
∑b

n=a

(
1− 1

β

)n
and

∑b
n=a n

(
1− 1

β

)n
appear in the proofs of

Theorem 25 and Theorem 29. Let x = 1− 1
β . The limits of these sums in a certain asymptotic regime is discussed below.

1) Asymptotic behavior of
∑b

n=a x
n:

We have
b∑

n=a

xn =
xa
(
1− xb−a+1

)
1− x

(501)

= β

(
1− 1

β

)a
(
1−

(
1− 1

β

)b−a+1
)
. (502)



89

If b− a = ω(β), then as β → ∞, (
1− 1

β

)b−a+1

=

((
1− 1

β

)β
) b−a+1

β

= o(1). (503)

It follows that
b∑

n=a

(
1− 1

β

)n

= β

(
1− 1

β

)a

(1 + o(1)) (504)

= βe−
a/β(1 + o(1)). (505)

2) Asymptotic behavior of
∑b

n=a nx
n:

We have

b∑
n=a

nxn = x

b∑
n=a

nxn−1 = x

(
b∑

n=a

xn

)′

(506)

= x

(
xa
(
1− xb−a+1

)
1− x

)′

(507)

= x

(
axa−1 − (b+ 1)xb

)
(1− x) +

(
xa − xb+1

)
(1− x)

2 (508)

= β2

((
a− 1

β
+ 1

)(
1− 1

β

)a

+

(
b

β
+ 1

)(
1− 1

β

)b+1
)
. (509)

If b
β = ω(1), then as β → ∞,

(
b

β
+ 1

)(
1− 1

β

)b+1

=

(
b

β
+ 1

)((
1− 1

β

)β
) b+1

β

(510)

= o(1). (511)

It follows that
b∑

n=a

n

(
1− 1

β

)n

= β2

((
a− 1

β
+ 1

)(
1− 1

β

)a

+ o(1)

)
(512)

= β2

(
a− 1

β
+ 1

)
e−

a/β(1 + o(1)). (513)

B. Additional experiments on deduplication algorithms
In this section, we show additional experiments in more detail. Figures 20, 25, 24, 23, 22 and 21 shows the performances

of the five different encoding methods on the synthetic data with different edit probabilities. We can observe that as the edit
probability gets larger, the optimal number of check bits decreases. This is in accordance with our theoretic result proved for
the AFLD algorithms, where the optimal chunk length is in inverse of H(δ).

C. Asymptotic Analysis of k-mer Frequencies and Entropy in TDS systems
1) Proof of Theorem 45

Theorem 45. For all a ∈ Σ and n ≥ 1 we have

Pr(|xa
n − xa

0 | ≥ λ) ≤ 2e−λ2L0/(2M
2) .

Proof: Since qi = 0 for i ≥ M or i ≤ 0, µa
n−1

Ln−1+M ≤ µa
n

Ln
≤ µa

n−1+M

Ln−1+M . Thus

−
Mµa

n−1

Ln−1(Ln−1 +M)
≤ µa

n

Ln
−

µa
n−1

Ln−1
≤

M(Ln−1 − µa
n−1)

Ln−1(Ln−1 +M)
,



90

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 20: Compressed file size of the synthetic dataset with δ = 0 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 21: Compressed file size of the synthetic dataset with δ = 10−8 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

implying that ∣∣xa
n − xa

n−1

∣∣ ≤ M max
{
Ln−1 − µa

n−1, µ
a
n−1

}
Ln−1(Ln−1 +M)

≤ M

Ln−1 +M
≤ M

L0 + n− 1 +M
≤ M

L0 + n
.

Let cn = M
L0+n so that

∣∣xa
n − xa

n−1

∣∣ ≤ cn and note that

n∑
i=1

c2i = M2
n∑

i=1

1

(L0 + i)
2 ≤ M2

ˆ n

0

dt

(L0 + t)
2

=
M2

L0
− M2

L0 + n
=

M2n

L0(L0 + n)
≤ M2

L0
.

By the Hoeffding-Azuma inequality [41], since {xa
n : n = 0, 1, 2, . . .} is a martingale and

∣∣xa
n − xa

n−1

∣∣ ≤ cn, we have

Pr(|xa
n − xa

0 | ≥ λ) ≤ 2 exp

(
−λ2

2
∑n

i=1 c
2
i

)
≤ 2 exp

(
−λ2L0

2M2

)
.

2) Proofs of Lemmas 47, 48 and 49
(a) In case 1, we have 1 ≤ b < min(ℓ, k− ℓ+1) (regardless of whether k ≥ 2ℓ or k < 2ℓ), the new occurrences of u always

contain some (but not all) of the template and all of the new copy. This scenario is labeled as Case 1 in Figure 8.
Suppose Yb = 1. Since the copy and the template are identical, elements of u that coincide with the same positions in



91

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 22: Compressed file size of the synthetic dataset with δ = 10−5 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 23: Compressed file size of the synthetic dataset with δ = 10−4 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

these two substrings must also be identical. So a necessary condition for Yb = 1 is

u1,b = u1+ℓ,b.

Assume this condition is satisfied. Then Yb = 1 if and only if the sequence starting at the beginning of the template in
sn is equal to ub+1,k−b, which has probability xub+1,k−b .
As an example for k ≥ 2ℓ, consider

sn = v1234567w,

sn+1 = v1231234567w, where Yb = 1 for b = 1,

u1 = u4 = 3,

where v,w ∈ A∗, u is overlined, and the copy is underlined. Note that sn contains ub+1,k−b = 123456. For k < 2ℓ,
consider

sn = v1234w,

sn+1 = v1231234w, where Yb = 1 for b = 1,

u1 = u4 = 3.

(b) In Case 2, u either i) contains both the template and the copy completely, or ii) intersects with both but contains neither.
Note that this case cannot occur if k = 2ℓ− 1.
First, assume k ≥ 2ℓ. The condition on b translates to ℓ ≤ b < k− ℓ+1 and the new occurrence of u contains both the
template and the copy. This is labeled as Case 2 in Figure 8 (below sn+1). With the same logic as in Case 1, it is clear
that we need



92

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 24: Compressed file size of the synthetic dataset with δ = 10−3 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

no limit on chunk lengths 2a−2 ≤ chunk length≤ 2a+2 2a−1 ≤ chunk lengths ≤ 2a+1

Figure 25: Compressed file size of the synthetic dataset with δ = 10−2 vs. number of check bits for different encoding schemes
and different constraints on chunk lengths.

ub−ℓ+1,ℓ = ub+1,ℓ,

Assuming this condition is satisfied, we have Yb = 1 if and only if the substring u1,b−ℓub+1,k−b occurs in sn at a certain
position, which occurs with probability xu1,b−ℓub+1,k−b .
For example, consider

sn = v412356w,

sn+1 = v412312356w, where Yb = 1 for b = 4,

u2,3 = u5,3 = 123.

Now suppose ℓ+ 1 ≤ k ≤ 2ℓ− 2. The condition on b from the statement of the lemma is k − ℓ+ 1 ≤ b < ℓ. The new
occurrence of u contains some (but not all) of the elements of the template and some (but not all) of the elements of
the copy, as illustrated in Figure 8, Case 2, above sn+1. The following constraint on u must hold

u1,k−ℓ = uℓ+1,k−ℓ,

implying that ϕℓ(u) = Xℓ0k−ℓ. For example, consider

sn = v123w,

sn+1 = v123123w, where Yb = 1 for b = 2,

u1 = u4 = 2.

We have Yb = 1 iff the sequence starting at the beginning of the template in sn is equal to ub+1,ℓ−bu1,b, which has
probability xub+1,ℓ−bu1,b .

(c) In case 3, we have max (k − ℓ+ 1, ℓ) ≤ b ≤ k − 1 (regardless of whether k ≥ 2ℓ or k < 2ℓ), the new occurrence of
u contains the template and some (but not all) of the elements of the copy. This is labeled as Case 3 in Figure 8. The



93

constraint on u is

ub−ℓ+1,k−b = ub+1,k−b.

As examples, consider

sn = v456123w,

sn+1 = v456123123w, where Yb = 1 for b = 6,

u4 = u7 = 1,

for k ≥ 2ℓ, and

sn = v4123w,

sn+1 = v4123123w, where Yb = 1 for b = 4,

u2 = u5 = 1,

for ℓ < k < 2ℓ.
We have Yb = 1 if and only if u1,b occurs in sn at a certain position, which has probability xu1,b .

3) Proof of Theorem 50
Theorem 50. For an integer ℓ > 0 and a string u = u1u2 · · ·uk, if ℓ+ 1 ≤ k < 2ℓ, then

δuℓ (x) = Fuℓ,l(x) + Fuℓ,r(x) +Mu
ℓ (x)− (k − 1− ℓ)xu,

and if k ≥ 2ℓ,

δuℓ (x) = Fuℓ,l(x) + Fuℓ,r(x) +Guℓ (x)− (k − 1− ℓ)xu. (367)

Proof: From (366), we can write

δuℓ (x) =
( k−1∑

b=1

Eℓ[Yb|Fn]
)
− (k − ℓ− 1)xu

=

min(ℓ−1,k−ℓ)∑
b=1

Eℓ[Yb|Fn] +

max(k−ℓ,ℓ−1)∑
b=min(ℓ,k−ℓ+1)

Eℓ[Yb|Fn] +

k−1∑
b=max(k−ℓ+1,ℓ)

Eℓ[Yb|Fn]− (k − ℓ− 1)xu. (514)

By Lemma 47, we have

min(ℓ−1,k−ℓ)∑
b=1

Eℓ[Yb|Fn] =

min(ℓ−1,k−ℓ)∑
b=1

xub+1,k−bI(u1,b,u1+ℓ,b)

=

min(ℓ−1,k−ℓ)∑
b=1

xub+1,k−bI(φℓ(u)ℓ+1,b, 0
b)

=

min(ℓ−1,k−ℓ,luℓ )∑
b=1

xub+1,k−b

=

min(ℓ−1,luℓ )∑
b=1

xub+1,k−b

= Fuℓ,l(x), (515)

where the fourth equality follows from the fact that luℓ ≤ k − ℓ.



94

Similarly, using Lemma 49, it can be shown that

k−1∑
b=max (k−ℓ+1,ℓ)

Eℓ[Yb|Fn]

=

k−1∑
b=max (k−ℓ+1,ℓ)

xu1,bI(ub−ℓ+1,k−b,ub+1,k−b)

=

k−1∑
b=max (k−ℓ+1,ℓ)

xu1,bI(φℓ(u)b+1,k−b, 0
k−b)

=

k−1∑
b=max (k−ℓ+1,ℓ,k−ruℓ )

xu1,b

=

k−1∑
b=max (k−ℓ+1,k−ruℓ )

xu1,b

=

min (ruℓ ,ℓ−1)∑
i=1

xu1,k−i

= Fuℓ,r(x), (516)

where the fourth equality follows from ruℓ ≤ k − ℓ and the fifth equality comes from setting i = k − b.
To complete the proof, we need to show that Eℓ[Yb|Fn] summed over the range min(ℓ, k− ℓ+1) ≤ b ≤ max(k− ℓ, ℓ− 1)

reduces to Guℓ (x) or Mu
ℓ (x) as appropriate.

From Lemma 48, if ℓ+ 1 ≤ k ≤ 2ℓ− 2, then

max (k−ℓ,ℓ−1)∑
b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] =

ℓ−1∑
b=k−ℓ+1

Eℓ[Yb|Fn]

=

ℓ−1∑
b=k−ℓ+1

xub+1,ℓ−bu1,bI(u1,k−ℓ,uℓ+1,k−ℓ)

=

ℓ−1∑
b=k−ℓ+1

xub+1,ℓ−bu1,bI(φℓ(u)ℓ+1,k−ℓ, 0
k−ℓ)

= Mu
ℓ (x), (517)

and if k = 2ℓ− 1, also

max (k−ℓ,ℓ−1)∑
b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] = 0 = Mu
ℓ (x). (518)

Finally, if k ≥ 2ℓ, from the same lemma, we find

max (k−ℓ,ℓ−1)∑
b=min (ℓ,k−ℓ+1)

Eℓ[Yb|Fn] =

k−ℓ∑
b=ℓ

Eℓ[Yb|F ]

=

k−ℓ∑
b=ℓ

xu1,b−ℓub+1,k−bI(ub−ℓ+1,ℓ,ub+1,ℓ)

=

k−ℓ∑
b=ℓ

xu1,b−ℓub+1,k−bI(φℓ(u)b+1,ℓ, 0
ℓ) = Gk(u), (519)

where the last step follows from the definition of Gk.
Summing over the expressions provided by (515)-(519) provides the desired result.



95

4) Proof of Theorem 52
Theorem 52. Consider a tandem duplication and substitution system with distribution q = (qℓ)0≤ℓ<M over these mutations,
with q0 < 1, and let A be the matrix defined for this system by (369). The frequencies of substrings u of length k ≥ M ,
(xu)u∈Σk , converge almost surely to the null space of the matrix A.

Proof: We first show that the resulting ODE is stable by showing that every eigenvalue of matrix A is either 0 or has
a negative real part. This is done by applying the Gershgorin circle theorem [107] to the columns of A (see e.g., (370)).
According to the Gershgorin circle theorem, every eigenvalue of A lies within at least one of the closed discs D1, . . . , D|Σ|k

in the complex plain, where the i-th disc centers at the i-th diagonal entry of A with radius equal to the sum of the absolute
values of the non-diagonal entries in the i-th column. Since in each column, the diagonal element is the only element that can
be negative, it suffices to show that each column of A sums to 0, which then implies that the rightmost point of each circle
is the origin. Thus, each eigenvalue of A is either 0 or has a negative real part.

We now show that each column of Aℓ sums to zero for any ℓ. Fix v ∈ U and consider the column in Aℓ that corresponds to
xv . We denote this column by Avℓ for simplicity. To identify the element in Avℓ that corresponds to u (i.e., the element in A in
the column corresponding to v and the row corresponding to u), we must consider expressions for huℓ (x) = δuℓ (x)− ℓxu and
check if xv appears on the right side. The coefficient of xv in δuℓ (x)−ℓxu is exactly the entry of Avℓ in the row corresponding
to xu. For ℓ > 0, from (366) and Lemmas 47–49, we can see that the only term with a negative coefficient is −(k − 1)xu,
and the terms with nonnegative coefficients are

∑k−1
b=1 Eℓ[Yb|Fn]. Therefore the case in which xv appears in δuℓ (x) − ℓxu

with negative coefficient happens only when u = v, which implies that Avℓ has exactly one negative entry, which equals
−(k − 1). Then we study the case in which xv appears in δuℓ (x) − ℓxu with a nonnegative coefficient. By Lemmas 47–49,
this happens if and only if xv = Eℓ[Yb|Fn] for some 1 ≤ b ≤ k − 1. Note that Eℓ[Yb|Fn] has different forms when b has
different values. Inspecting the proofs of Lemmas 47–49 shows that for each value of b ∈ [k − 1], there is precisely one u
such that xv = Eℓ[Yb|Fn]. Hence, for each b ∈ [k − 1], xv appears in huℓ with a nonnegative coefficient, and the coefficient
is 1. For example, for b = 1, from Lemma 47, this u is equal to vℓv1,k−1. Since there are k − 1 possible choices for b, the
sum of all nonnegative coefficients is k − 1, which is also the sum of all nonnegative entries in Avℓ . Therefore the sum of all
entries in Avℓ , and thus every column in Aℓ, is 0, as desired. For ℓ = 0, we have huℓ (x) = δuℓ (x), where δuℓ (x) is given in
Theorem 51. The column corresponding to xv has a negative term equal to −k and k(|Σ| − 1) positive terms, where each of
the positive terms is equal to 1

|Σ|−1 , so the sum is again 0.
We have shown that all eigenvalues are either 0 or have negative real parts. For any valid initial point x0, the sum of the

elements must be 1. Furthermore, each element must be nonnegative. The fact that the columns of A sum to 0 shows that the
sum of the elements of any solution xt also equals 1 as dxt/dt = Axt. Furthermore, since only diagonal terms in A can be
negative, each element of xt is also nonnegative. Thus xt is bounded.

By the Jordan canonical from theorem [69], any square matrix over C can be decomposed into the form QBQ−1 for some
invertible matrix Q. Here

B =


B1

B2

. . .

Bm


is a block diagonal matrix consisting of Jordan blocks, and the Jordan blocks have the form

Bi =



λi 1

λi 1
. . . . . .

λi 1

λi

, for all i,

where λi is one of the eigenvalues of the original matrix. So we can write A = PJP−1 for some invertible matrix P , where

J =

(
J ′ 0

0 J ′′

)
and J ′ and J ′′ are square matrices corresponding to the eigenvalue λ = 0 and other eigenvalues respectively.



96

Let yt = P−1xt, so that ẏt = Jyt, which we can write in the form u̇t = J ′ut and ẇt = J ′′wt with yt = (ut,wt)
T . Let

C be any compact internally chain transitive set of the ODE ẏt = Jyt. We first show that if y = (u,w) ∈ C, then w = 0.
Consider the flow starting from y0 = (u0,w0)

T ∈ C with w0 ̸= 0. We have wt = eJ
′′
w0. Since J ′′ has only eigenvalues

with negative real parts, ∥wt∥ ≤ c0e
−c1t∥w0∥ for t ≥ 0 and some constants c0, c1 > 0. If y = (u,w) ∈ C, then w is also in

an internally chain transitive set of lower dimension. For T, ϵ > 0, let w(1), . . . ,w(n) = w(1) be a chain of points such that
the flow of ẇt = J ′′wt starting at w(i) meets the ϵ-neighborhood of w(i+1) after a time ≥ T . We thus have

∥w(i+1)∥ ≤ c0e
−c1T ∥w(i)∥+ ϵ. (520)

Since T, ϵ are arbitary, we choose them such that c0e−c1T < 1/2 and c0e
−c1T ∥w(1)∥ < ϵ < ∥w(1)∥/2 if ∥w(1)∥ > 0. Hence,

∥w(2)∥ ≤ c0e
−c1T ∥w(i)∥+ϵ < 2ϵ and by induction ∥w(i+1)∥ ≤ c0e

−c1T ∥w(i)∥+ϵ < 2ϵ for i > 1. This leads to a contraction
since it implies that ∥w(n)∥ = ∥w(1)∥ < 2ϵ. Thus ∥w(1)∥ = 0 and for any y = (u,w)T ∈ C we must have w = 0.

Next, note that since xt is bounded, so is yt. Hence for y = (u,0)T ∈ C, eJ
′tu must be a constant since it contains no

exponential terms (λ = 0) and cannot contain a polynomial term in t with degree ≥ 1 (because of boundedness). So all flows
initiated in C are constant. The same must hold for all flows in D, for any D that is an internally chain transitive invariant
set of the ODE ẋt = Axt. Hence, any point in x ∈ D must be in the null space of A, that is, Ax = 0.

5) Proof of Theorem 53
Theorem 53. For the mutation process described above, for k ∈ N+, if the vector of the frequencies x of strings of length k

converges almost surely to a set Γk, then H∞ ≤ cap(Γk).

Proof: Fix some positive real number ϵ > 0. Denote by X the indicator random variable defined by

X =

0 ||sn| − E[|sn|]| ≥ ϵn,

1 otherwise.

By Hoeffding’s inequality,

Pr(X = 0) ≤ 2 exp

(
− 2ϵ2

(M − 1)2
n

)
.

We also note that |sn| ≤ |s0|+ (M − 1)n for all n.
Now, let Y be the indicator random variable defined by

Y =

0 xn ̸∈ Bϵ(Γk),

1 otherwise.

We know that xn converges almost surely to some point in Γk as n → ∞, and thus, there exists N(ϵ) such that for all
n ≥ N(ϵ),

Pr(Y = 0) ≤ ϵ.

We combine X and Y by defining the indicator random variable,

Z = X · Y.

By the union bound,

Pr(Z = 0) ≤ ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

)
. (521)

Using standard bounds on the joint entropy and conditional entropy,

H(sn) ≤ H(sn, Z) = H(sn|Z) +H(Z).

By (521), for large enough n, we have

H(Z) ≤ H2

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|Σ| 2,

where H2(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.



97

We also have
H(sn|Z) = H(sn|Z = 0) +H(sn|Z = 1).

For the first summand, by the definition of conditional entropy, and after replacing the unknown distribution with a uniform
one to obtain an upper bound, we get

H(sn|Z = 0) ≤
(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|Σ|

∣∣∣∣∣∣
|s0|+(M−1)n⋃

i=1

Σi

∣∣∣∣∣∣
≤
(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|Σ|(|s0|+ (M − 1)n+ 1).

Similarly, for the second summand,

H(sn|Z = 1) ≤
(
1− ϵ− 2 exp

(
− 2ϵ2

(M − 1)2
n

))

· log|Σ|

 E(|sn|)+ϵn∑
i=E(|sn|)−ϵn

|Bi(Bϵ(Γk))|


≤ log|Σ|

 E(|sn|)+ϵn∑
i=E(|sn|)−ϵn

|Bi(Bϵ(Γk))|

.

However, by the definition of the capacity of semiconstrained systems, for all large enough n,

|Bi(Bϵ(Γk))| ≤ |Σ|i·cap(Bϵ(Γk))+ϵ
.

It follows that
H(sn|Z = 1) ≤ log|Σ|

(
2ϵn|Σ|(E(|sn|)+ϵn)(cap(Bϵ(Γk))+ϵ)

)
.

Combining all of these together,

Hn =
1

E(|sn|)
·H(sn)

≤ 1

E(|sn|)
log|Σ|

(
2ϵn|Σ|(E(|sn|)+ϵn)(cap(Bϵ(Γk))+ϵ)

)
+

ϵ+ 2 exp
(
− 2ϵ2

(M−1)2n
)

E(|sn|)
(|s0|+ (M − 1)n+ 1)

+
1

E(|sn|)
H2

(
ϵ+ 2 exp

(
− 2ϵ2

(M − 1)2
n

))
log|Σ| 2.

Taking lim supn→∞ of both sides we obtain

H∞ ≤

(
1 +

ϵ∑M−1
i=1 iqi

)
· (cap(Bϵ(Γk)) + ϵ)

+
ϵ(M − 1)∑M−1

i=1 iqi
+H2(ϵ) log|Σ| 2.

Finally, taking limϵ→0+ of both sides, we obtain the claim.



98

D. Finite-time Analysis of k-mer Frequencies and Waiting Time in NTD Systems
1) Proof of Theorem 55 (sketched)

Theorem 55. Consider the noisy duplication string system S(s0, ℓ, q). If the length L0 of the initial string s0 is greater than
ℓ, then for any ℓ < k ≤ L0, the k-mer frequency vector xn satisfies9

E[xn+1]− E[xn] =
Ak

Ln+1
E[xn] (377)

for some constant matrix Ak ∈ R|Σ
k|×|Σk| determined by q, k, ℓ and independent of any other quantities. Further, all

eigenvalues of Ak have non-positive real parts.

sketched: With xn and µn being shorthand of xn(k) and µn(k),

E[xn+1 − xn] = E
[
µn+1

Ln+1
− µn

Ln

]
(522)

= E
[

1

Ln+1

(
µn+1 − µn − (Ln+1 − Ln)xn

)]
(523)

= E
[
E
[

1

Ln+1

(
µn+1 − µn − (Ln+1 − Ln)xn

)
midFn

]]
(524)

= E
[

1

Ln+1

(
E
[
µn+1 − µn|Fn

]
− ℓxn

)]
. (525)

Thus, to prove the desired result (377), it suffices to prove that E
[
µn+1 − µn|Fn

]
equals

E
[
µn+1 − µn|Fn

]
= Hkxn, (526)

for some constant matrix Hk determined by q, k and ℓ. The characteristic matrix Ak then equals H+ℓI|Σk|, where Im denotes
the identity matrix of size m×m.

For any k-mer u, it can be shown that E
[
µun+1 − µun |Fn

]
is a linear function of xn. By (376),

E
[
µun+1 − µun |Fn

]
=

ℓ+k−1∑
j=1

Pr
(
yj = u|Fn

)
−

k−1∑
l=1

Pr(zl = u|Fn), (527)

where substrings yj are the newly created k-mers in sn+1 and substrings zl are the eliminated k-mers in sn, as demonstrated
in Section III-E1.

Summands Pr
(
yj = u|Fn

)
,Pr(zl = u|Fn) in (527) can be shown to be linear functions of xn. For instance, consider the

term Pr(y1 = u|Fn). Write u = u1u2 · · ·uk. Since y1 = ai+ℓ−k+2ai+ℓ−k+3 · · · ai+ℓbi+1, y1 equals u if and only if

ai+ℓ−k+2ai+ℓ−k+3 · · · ai+ℓ = u1u2 · · ·uk−1, bi+1 = uk. (528)

Since the position i of the noisy duplication is uniformly distributed, Pr
(
ai+ℓ
i+ℓ−k+2 = uk−1

1 midFn

)
= x

uk−1
1

n by the definition
of substring frequency. It follows that

Pr(y1 = u|Fn) = Pr
(
ai+ℓ
i+ℓ−k+2 = uk−1

1 , a′i+1 = uk|Fn

)
(529)

= x
uk−1

1
n Pr

(
a′i+1 = uk|Fn,a

i+ℓ
i+ℓ−k+2 = uk−1

1

)
. (530)

Given ai+ℓ
i+ℓ−k+2 = uk−1

1 and mutation T d
ℓ , the probability of a′i+1 = uk equals (ℓ−1

d )
(ℓd)

(corresponding to that ai+1 is not

flipped during T d
ℓ ) if ai+1 = uk, and equals 1

|Σ|−1

(ℓ−1
d−1)
(ℓd)

(corresponding to that ai+1 is flipped to be uk during T d
ℓ ). It follows

9Note that it suffices to consider k > ℓ since substring frequencies of smaller lengths are linear functions of substring frequencies of larger lengths. The
assumption k ≤ L0 is to avoid complications of defining k-substrings in strings of lengths less than k.



99

that

Pr
(
a′i+1 = uk|Fn,a

i+ℓ
i+ℓ−k+2 = uk−1

1

)
=


∑ℓ

d=0

(
qd

(ℓ−1
d )
(ℓd)

)
if u1 = uk,

1
|Σ|−1

∑ℓ
d=0

(
qd

(ℓ−1
d−1)
(ℓd)

)
if u1 ̸= uk.

(531)

Since we can represent xu
k−1
1

n as a sum of frequencies of k-mers, Pr(y1 = u|Fn) is a linear function of xn and the coefficients
only depend on q, ℓ and k, as shown in (531).

Every summand in (527) can be shown similarly to be a linear function of xn and the existence of Hk follows immediately.

2) Proof of Theorem 56
Theorem 56. Consider the noisy duplication system S(s0, ℓ, q) with characteristic matrix Ak and k-mer frequency vectors
xn =

∑m
s=1 α

s
nvs. If Ak is diagonalizable, and all eigenvalues of Ak are real and no smaller than −L0

2 ,

1) For 1 ≤ s ≤ m such that λs = 0 or αs
0 = 0,

E[αs
n] = αs

0 for all n ∈ N.

2) For 1 ≤ s ≤ m such that λs ̸= 0 and αs
0 ̸= 0,

T s
n <

E[αs
n]

αs
0

< Us
n, (378)

where

Us
n =

(
λs + Ln

λs + L1

)λs
ℓ

eλ
2
s/(L1ℓ)

(
1 +

λs

Ln

)
,

T s
n =

(
λs + Ln

λs + L1

)λs
ℓ

e−λ2
s/(Lnℓ)

(
1 +

λs

L1

)
,

and Ln = L0 + nℓ.

Proof: From (377), we have for all n ≥ 1,

E[xn] = E[xn−1] +
Ak

Ln
E[xn−1]. (532)

Replacing E[xn] with
∑m

s=1 α
s
nvs gives

m∑
s=1

E[αs
n]vs =

m∑
s=1

E[αs
n−1]vs +

m∑
s=1

E[αs
n−1]

A

Ln
vs (533)

=
m∑
s=1

E[αs
n−1]vs +

m∑
s=1

E[αs
n−1]

λs

Ln
vs. (534)

Since v1, . . . ,vm are a basis, for a given s, we thus find

E[αs
n] =

(
1 +

λs

Ln

)
E
[
αs
n−1

]
= αs

0e
∑n

i=1 f(i), (535)

where
f(i) = log

(
1 +

λs

L0 + iℓ

)
.

It is clear that if λs = 0 or αs
0 = 0, then E[αs

n] = αs
0. It remains to prove the bounds on E[αs

n] when αs
0 ̸= 0 and λs < 0. We

note that f ′(i) = ℓ( 1
L0+iℓ+λs

− 1
L0+iℓ ), which is positive and continuous for i ∈ [1,∞) since λs < 0. It can thus be shown

by applying Euler’s summation formula [5] that

f(1) <

n∑
i=1

f(i)−
ˆ n

1

f(x)dx < f(n). (536)



100

For the integral, we have
ˆ n

1

f(x)dx =
1

ℓ

[
λs log

(
λs + Ln

λs + L1

)
+Ln log

(
1+

λs

Ln

)
− L1 log

(
1+

λs

L1

)]
. (537)

Since x− x2 ≤ log(1 + x) ≤ x for −1/2 ≤ x ≤ 0, we obtain

log

(
1 +

λs

Ln

)
≤ λs

Ln
,− log

(
1 +

λs

L1

)
≤
(
λs

L1

)2

− λs

L1
,

and therefore ˆ n

1

f(x)dx ≤ λs

ℓ

[
log

(
λs + Ln

λs + L1

)
+

λs

L1

]
. (538)

The summation
∑n

i=1 f(i) is upper bounded by

n∑
i=1

f(i) <

ˆ n

1

f(x)dx+ f(n) (539)

≤ λs

ℓ

[
log

(
λs + Ln

λs + L1

)
+

λs

L1

]
+ log

(
1 +

λs

L0 + nℓ

)
. (540)

The desired upper bound for E[αs
n]

αs
0

thus follows from (535).
Similarly, we have

log

(
1 +

λs

Ln

)
≥ λs

Ln
−
(
λs

Ln

)2

,− log

(
1 +

λs

L1

)
≥ − λs

L1
, (541)

and ˆ n

1

f(x)dx ≤ λs

ℓ

[
log

(
λs + Ln

λs + L1

)
− λs

Ln

]
. (542)

The desired lower bound thus follows from f(1) = log(1 + λs/L1) and
∑n

i=1 f(i) > f(1) +
´ n
1
f(x)dx.

3) Bounds on the eigenbasis representation coefficients when Ak is undiagonalizable
We give bounds on the coefficients of the eigenbasis representation when Ak is not necessarily diagonalizable. In this

case, we consider the canonical eigenbasis V composed entirely of Jordan chains [11, Section 9.6]. Specifically, we can find
V = ∪k

i=1Vi as a union of non-overlapping Jordan chains, where each Vi = {vji : 1 ≤ j ≤ di} contains a chain of generalized
eigenvectors corresponding to eigenvalue λi with (Ak −λiI)

divdi
i = 0 and vji = (Ak −λiI)v

j+1
i , j = 1, . . . , di−1. Note that

the number of Jordan chains corresponding to an eigenvalue λ equals the geometric multiplicity of λ. We use αi,j
n to denote

the coefficient of vji in representing the k-mer frequency vector xn in the eigenbasis V , i.e., xn =
k∑

i=1

di∑
j=1

αi,j
n v

j
i .

Theorem 61. Consider the noisy duplication system S(s0, ℓ, q) with characteristic matrix Ak and k-mer frequency vectors

xn =
k∑

i=1

di∑
j=1

αi,j
n v

j
i . If all eigenvalues of Ak are real and no smaller than −L0/2, then for n ≥ maxi{di},

E[αi,j
n ] =

( n∏
u=1

(
1 +

λi

Lu

))
·
di−j∑
c=0

αi,j+c
0 B

[n]
i (c), (543)

where ∏
t∈[n]

1

Lt + λi

 c
n(

n

c

)
<B

[n]
i (c)<

1
n

∑
t∈[n]

1

Lt + λi

c(
n

c

)
. (544)

Proof: Similar to the proof of Theorem 56, since Ln = L0 + nℓ for all n ≥ 0, we have E[xn] =
(∏n

u=1

(
I + Ak

Lu

))
x0.



101

It follows that

E[xn] =

(
n∏

u=1

(
I +

Ak

Lu

)) k∑
i=1

di∑
j=1

αi,j
0 v

j
i (545)

=

k∑
i=1

di∑
j=1

αi,j
0

(
n∏

u=1

(
I +

Ak

Lu

))
vji . (546)

Fix an eigenvalue λi and a Jordan chain v1i , . . . ,v
di
i of λi. We first claim (to be proved later) that for any 1 ≤ j ≤ di and

any set H = {a1, . . . , am} of m positive integers such that m ≥ j,(
m∏

u=1

(
I +

Ak

Lau

))
vji =

(
m∏

u=1

(
1 +

λi

Lau

)) j−1∑
c=0

vj−c
i BH

i (c), (547)

where

BH
i (c) =


∑

S⊆H
|S|=c

∏
t∈S

1
Lt+λi

, c ≥ 1,

1, c = 0.

It then follows from (546) that if n ≥ di for all i,

E[xn] =

k∑
i=1

(
n∏

u=1

(
1 +

λi

Lu

)) di∑
j=1

j−1∑
c=0

vj−c
i αi,j

0 B
[n]
i (c)

, (548)

=

k∑
i=1

di∑
j=1

((
n∏

u=1

(
1 +

λi

Lu

)) di−j∑
c=0

αi,j+c
0 B

[n]
i (c)

)
vji , (549)

which leads to

E[αi,j
n ] =

(
n∏

u=1

(
1 +

λi

Lu

)) di−j∑
c=0

αi,j+c
0 B

[n]
i (c). (550)

We further use Maclaurin’s inequality to prove following bounds on B
[n]
i (c): for positive real numbers 1

Lt+λi
,(

n

c

)
(Sn)

c
n ≤ B

[n]
i (c) =

∑
S⊆[n]
|S|=c

∏
t∈S

1

Lt + λi
≤
(
n

c

)
(S1)

c, (551)

where

S1 =
1

n

∑
t∈[n]

1

Lt + λi
, Sn =

∏
t∈[n]

1

Lt + λi
. (552)

It remains to prove the claim (547). For simplicity, we drop the subscript i in the following. Note that by definition of the
Jordan chain

(Ak − λI)v1 = 0, (553)

and

Akv
j+1 = λvj+1 + vj , 1 ≤ j ≤ d− 1. (554)

We run an induction on the pair (m, j).
When j = 1, v1 is an eigenvector of Ak. By (553), for any m ≥ 1,

m∏
u=1

(
I +

Ak

Lau

)
v1 =

m∏
u=1

(
1 +

λ

Lau

)
v1. (555)

It is clear that (547) holds.
Next, assume (547) holds for (m, j) = (p, q), p ≥ q. We show (547) also holds for (m, j) = (p+ 1, q + 1). For any set of



102

positive integers H = {a1, . . . , ap+1},(
p+1∏
u=1

(
I +

Ak

Lau

))
vq+1 (556)

=

(
p+1∏
u=2

(
I +

Ak

Lau

))((
1 +

λ

La1

)
vq+1 +

1

La1

vq
)

(557)

=

(
1 +

λ

La1

) p+1∏
u=2

(
I +

Ak

Lau

)
vq+1 +

1

La1

p+1∏
u=2

(
I +

Ak

Lau

)
vq (558)

=

(
1 +

λ

La1

) p+1∏
u=3

(
I +

Ak

Lau

)((
1 +

λ

La2

)
vq+1 +

1

La2

vq
)
+

1

La1

p+1∏
u=2

(
I +

Ak

Lau

)
vq (559)

=

(
1 +

λ

La1

)(
1 +

λ

La2

) p+1∏
u=3

(
I +

Ak

Lau

)
vq+1 +

(
1 +

λ

La1

)
1

La2

p+1∏
u=3

(
I +

Ak

Lau

)
vq +

1

La1

p+1∏
u=2

(
I +

Ak

Lau

)
vq (560)

=

(
p+1∏
u=1

(
1 +

λ

Lau

))
vq+1 +

p+1∑
t=1

(
t−1∏
v=1

(
1 +

λ

Lav

))
1

Lat

(
p+1∏

y=t+1

(
I +

Ak

Lay

))
vq, (561)

where the first and the third equality follows from (554), and the last equality follows from continuing expanding the product(
I + Ak

Lau

)
vq+1.

Since we assumed that (547) holds for (m, j) = (p, q),

p+1∑
t=1

(
t−1∏
v=1

(
1 +

λ

Lav

))
1

Lat

(
p+1∏

y=t+1

(
I +

Ak

Lay

))
vq (562)

=

p+1∑
t=1

(
t−1∏
v=1

(
1 +

λ

Lav

))
1

Lat

(
p+1∏

y=t+1

(
1 +

λ

Lay

))(q−1∑
c=0

vq−cBHt(c)

)
(563)

=

(
p+1∏
u=1

(
1 +

λ

Lau

))(q−1∑
c=0

p+1∑
t=1

1

Lat
+ λ

BHt(c)vq−c

)
(564)

=

(
p+1∏
u=1

(
1 +

λ

Lau

))(q−1∑
c=0

BH(c+ 1)vq−c

)
(565)

=

(
p+1∏
u=1

(
1 +

λ

Lau

))( q∑
c=1

BH(c)vq+1−c

)
, (566)

where Ht = {at+1, . . . , ap+1}.
Plugging (566) in (561) gives(

p+1∏
u=1

(
I +

Ak

Lau

))
vq+1 =

(
p+1∏
u=1

(
1 +

λ

Lau

))
vq+1 +

(
p+1∏
u=1

(
1 +

λ

Lau

))( q∑
c=1

BH(c)vq+1−c

)
(567)

=

(
p+1∏
u=1

(
1 +

λ

Lau

))( q∑
c=0

vq+1−cBH(c)

)
. (568)

Hence, (547) also holds for (m, j) = (p+ 1, q + 1).
Note that B[n]

i (c) <
(

1
n

∑
t∈[n]

1
Lt+λi

)c(
n
c

)
=
(

logn
n

)c
nc

c! (1 + o(1)) = O((log n)
c
). Since αi,j

0 are constants determined

by the initial state of the system, the behavior of E[αi,j
n ] is again dominated by

∏
u∈[n](1 +

λi

Lu
), which as can be seen from

the proof of Theorem 56 and the discussion that follows, is Θ(n
λi
ℓ ). So as xn converges to the limit, the largest nonzero

eigenvalue determines the rate of the convergence of the average trajectories.



103

4) Proof of Lemma 57
Lemma 57. Consider the noisy string system S(s0, ℓ, q) with characteristic matrix Ak for k-mers. For any two k-mers v,w
(not necessarily distinct),

E[xvn+1x
w
n+1]−

(
Ln

Ln+1

)2

E[xvnxwn ] =
dTv,w

(Ln+1)2
E[xn(2k − 2)] (381)

+
Ln

(Ln+1)2
(E[xwn ·Hiv · xn(k)] + E[xvn ·Hiw · xn(k)]), (382)

where H is the matrix Ak+ℓI|Σk| and Hm denotes the m-th row of H , dv,w is a constant vector of length |Σ|2k−2 determined
by v, w, q, k, ℓ and independent of any other quantities. Note that xn(0) is defined to be the zero vector for all n.

Proof: For any two k-mers v and w,

E
[
µvn+1µ

w
n+1|Fn

]
= E

[(
µvn+1 − µvn + µvn

)(
µwn+1 − µwn + µwn

)
|Fn

]
(569)

= E
[(
µvn+1 − µvn

)(
µwn+1 − µwn

)
|Fn

]
+ E

[(
µvn+1 − µvn

)
µwn |Fn

]
(570)

+ E
[(
µwn+1 − µwn

)
µvn|Fn

]
+ E[µvnµwn |Fn]. (571)

We first show that E
[(
µvn+1 − µvn

)(
µwn+1 − µwn

)
|Fn

]
is a linear function of xn(2k− 2). Consider again the evolution from

sn to sn+1 given by (374) and (375), in which noisy duplication inserts ℓ-substring a′i+1 · · · a′i+ℓ. For each type of mutation
T d
ℓ , there are

(
ℓ
d

)
ways of choosing d symbols out of ℓ for substitution. Moreover, each symbol can be substituted by the other

|Σ| − 1 alphabet symbols. So it adds up to totally
(
ℓ
d

)
(|Σ| − 1)

d mutation events, and they are all equally likely. We index the
mutation events by T d

ℓ (t), t = 1, . . . ,mℓ,d, mℓ,d =
(
ℓ
d

)
(|Σ| − 1)

d. During noisy duplication, the created and the eliminated
k-mers y1, . . . ,yℓ+k−1, z1, . . . ,zk−1 are determined by the (2k − 2)-substring ai+ℓ−k+2 · · · ai+ℓ+k−1 of sn and the inserted
noisy copy a′i+1 · · · a′i+ℓ. Moreover, the inserted symbols a′i+1 · · · a′i+ℓ are uniquely determined by d, t and ai+1, . . . , ai+ℓ.
Thus, given T d

ℓ (t) and ai+ℓ+k−1
i+ℓ−k+2 = g for some g ∈ Σ2k−2, µun+1 − µun =

∑ℓ+k−1
b=1 I(yb,u) −

∑k−1
c=1 I(zc,u) is a constant,

denoted δud,t,g , for any k-mer u. Let ai+ℓ+k−1
i+ℓ−k+2 = hi. It follows that

E
[(
µvn+1 − µvn

)(
µwn+1 − µwn

)
|Fn

]
(572)

=

ℓ∑
d=0

mℓ,d∑
t=1

∑
g∈Σ2k−2

E
[(
µvn+1 − µvn

)(
µwn+1 − µwn

)
|T d

ℓ (t),ai+ℓ+k−1
i+ℓ−k+2,Fn

]
Pr
(
T d
ℓ (t),ai+ℓ+k−1

i+ℓ−k+2|Fn

)
(573)

=

ℓ∑
d=0

mℓ,d∑
t=1

∑
g∈Σ2k−2

δvd,t,gδ
w
d,t,g · Pr

(
ai+ℓ+k−1
i+ℓ−k+2 = g|Fn

)
· Pr
(
T d
ℓ (t)|Fn

)
(574)

=
∑

g∈Σ2k−2

(
ℓ∑

d=0

mℓ,d∑
t=1

δvd,t,gδ
w
d,t,g

qdℓ(
ℓ
d

)
(|Σ| − 1)d

)
· xgn, (575)

where the second equality follows from that given Fn, ai+ℓ+k−1
i+ℓ−k+2 = g is independent of T d

ℓ (t), and the last equality follows
from that

Pr
(
ai+ℓ+k−1
i+ℓ−k+2 = g|Fn

)
= xgn, (576)

and T d
ℓ (1), . . . , T d

ℓ (mℓ,d) are equally likely with total probability qdℓ . The equality

E
[(
µvn+1 − µvn

)(
µwn+1 − µwn

)
|Fn

]
= dTv,w · xn(2k − 2) (577)

thus follows immediately from (575) with the ig-th element of dTv,w equal to
∑ℓ

d=0

∑mℓ,d

t=1 δvd,t,gδ
w
d,t,g

qdℓ
(ℓd)(|Σ|−1)d

.
Moreover, equation (526) gives

E
[(
µvn+1 − µvn

)
µwn |Fn

]
= µwn ·Hivxn(k), E

[(
µwn+1 − µwn

)
µvn|Fn

]
= µvn ·Hiwxn(k). (578)

The desired result thus follows by noting that µun = Lnx
u
n .



104

5) Proof of Theorem 59
Theorem 59. Consider the noisy string system S(s0, ℓ, q). For u ∈ Σk, if E[xun ] is non-decreasing in n,

Pr(τu(m) ≤ n) ≤
(

1

m
+

max(|u| − ℓ− 1, 0)

ℓ
+
(
1− q0ℓ

))
E[µun ].

Proof: Fix n,m. We first write

Pr(τu(m) ≤ n) = Pr(τu(m) ≤ n, µun ≥ m) + Pr(τu(m) ≤ n, µun < m). (579)

For the first term on the right-hand side of (579), since µun ≥ m directly implies that u appears m times before or at step
n, i.e., τu(m) ≤ n, we have

Pr(τu(m) ≤ n, µun ≥ m) = Pr(µun ≥ m) ≤ E[µun ]
m

, (580)

where the inequality follows from the Markov bound.
For the second term on the right-hand side of (579), we note that events τu(m) ≤ n and µun < m imply that there must

exist n◦ ≤ n− 1 such that µun◦ ≥ m and µun◦+1 < m. By the union bound that

Pr(τu(m) ≤ n, µun < m) ≤
n−1∑
n◦=0

Pr
(
µun◦ ≥ m,µun◦+1 < m

)
(581)

=

n−1∑
n◦=0

Pr
(
µun◦+1 < m|µun◦ ≥ m

)
Pr(µun◦ ≥ m). (582)

Consider the event that µun◦ ≥ m but µun◦+1 becomes less than m. For a noisy tandem duplication to eliminate an occurrence
of u, the duplicated substring must be either fully contained by some occurrence of u (see Figure 26), or it overlaps with the
beginning of some occurrence of u and the duplicate is not exact (see Figure 27). Focusing on any m occurrences of u at step
n◦, there are at most m ·max(|u| − ℓ− 1, 0) positions for the noisy duplication where the former case can happen and there
are at most m · ℓ positions where the latter case can happen. Since the position of noisy duplication is uniformly distributed,

Pr
(
µun◦+1 < m|µun◦ ≥ m

)
≤ m ·max(|u| − ℓ− 1, 0)

Ln◦
+

m · ℓ
Ln◦

(
1− q0ℓ

)
, (583)

where q0ℓ is the probability that the duplication is exact.
Thus, (582) is upper bounded by

n−1∑
n◦=0

(
m ·max(|u| − ℓ− 1, 0)

Ln◦
+

m · ℓ
Ln◦

(
1− q0ℓ

))E[µun◦ ]

m
(584)

=
(
max(|u| − ℓ− 1, 0) + ℓ

(
1− q0ℓ

)) n−1∑
n◦=0

E[xun◦ ] (585)

≤
(
max(|u| − ℓ− 1, 0) + ℓ

(
1− q0ℓ

))
· nE[xun ] (586)

≤
(
max(|u| − ℓ− 1, 0)

ℓ
+
(
1− q0ℓ

))
E[µun ], (587)

where the second inequality follows from E[xun ] is increasing in n, the last inequality follows from Ln ≥ nℓ.
The desired result thus follows from combining equations (580) and (587).

sn◦

sn◦+1

u

a a′

Figure 26: A noisy duplication with a′ being an approximate copy of a and a is fully contained in u.



105

sn◦

sn◦+1

u

a a′

Figure 27: A noisy duplication with a′ being an approximate copy of a and a overlaps with the beginning of u.

6) Proofs of equations (393) and (394)
The characteristic matrix for 2-mers of the system in Example 16 can be found as

A2 =



−2δ 1− δ 1− δ δ/2 0 0 δ/2 0 0

δ/2 −δ/2− 1 δ/2 0 δ/2 0 0 δ/2 0

δ/2 δ/2 −δ/2− 1 0 0 δ/2 0 0 δ/2

δ/2 0 0 −δ/2− 1 δ/2 δ/2 δ/2 0 0

0 δ/2 0 1− δ −2δ 1− δ 0 δ/2 0

0 0 δ/2 δ/2 δ/2 −δ/2− 1 0 0 δ/2

δ/2 0 0 δ/2 0 0 −δ/2− 1 δ/2 δ/2

0 δ/2 0 0 δ/2 0 δ/2 −δ/2− 1 d/2

0 0 δ/2 0 0 δ/2 1− δ 1− δ −2δ


. (588)

The matrix A2 is diagonalizable with an eigenbasis [v1,v2, . . . ,v9] =

−1 −1 1 1 1 1 1 (δ − 2)/δ 0

1 0 −(2δ)/(δ − 2) −1 0 −1 0 0 δ/(δ − 2)

0 1 −(2δ)/(δ − 2) 0 −1 0 −1 −1 −δ/(δ − 2)

−1 −1 −(2δ)/(δ − 2) −1 −1 0 0 0 δ/(δ − 2)

1 0 1 1 0 0 0 −(δ − 2)/δ −1

0 1 −(2δ)/(δ − 2) 0 1 0 0 1 0

−1 −1 −(2δ)/(δ − 2) 0 0 −1 −1 −1 −δ/(δ − 2)

1 0 −(2δ)/(δ − 2) 0 0 1 0 1 0

0 1 1 0 0 0 1 0 1


, (589)

and corresponding eigenvalues λ1 = λ2 = −1, λ3 = 0, λ4 = λ5 = λ6 = λ7 = − 3
2δ − 1, λ8 = λ9 = − 3

2δ.
Consider the vector of 2-mer frequencies xn =

(
x00
n , x01

n , x02
n , x10

n , x11
n , x12

n , x20
n , x21

n , x22
n

)
and its eigenbasis representation

xn =

9∑
i=1

αi
nvi. (590)

The frequencies of 11 and 12 thus equal

x11
n = α1

n · 1 + α3
n · 1 + α4

n · 1 + α8
n ·
(
−δ − 2

δ

)
+ α9

n · (−1), (591)

x12
n = α2

n · 1 + α3
n ·
(
− 2δ

δ − 2

)
+ α5

n · 1 + α8
n · 1. (592)

With s0 being an all-zero sequence, we have x0 = (1, 0, 0, 0, 0, 0, 0, 0, 0) and

α0 =
(
α1
0, α

2
0, α

3
0, α

4
0, α

5
0, α

6
0, α

7
0, α

8
0, α

9
0

)T
(593)

=

(
0, 0,

2− δ

3(3δ + 2)
,
−δ2 + 2δ

2(3δ + 2)
,

δ2

3δ + 2
,

δ2

3δ + 2
,
−δ2 + 2δ

2(3δ + 2)
,
−δ

3
,
δ

6
− 1

3

)T

. (594)

We then use Theorem 56 to bound the expected value of αn, which can further lead to the k-mer frequency xn.



106

For s = 1, 2, 3, Theorem 56 states that E[αs
n] = αs

0. So E
[
α1
n

]
= E

[
α2
n

]
= 0,E

[
α3
n

]
= 2−δ

3(3δ+2) .
Further, for s = 4, 5, since λ4 = λ5 = − 3

2δ − 1, Theorem 56 gives that if L1 ≥ 10 and n ≥ 2,

E[αs
n]

αs
0

<

(
λs + Ln

λs + L1

)λs
ℓ

eλ
2
s/(L1ℓ)

(
1 +

λs

Ln

)
(595)

=

((
− 3

2δ − 1
)
+ Ln(

− 3
2δ − 1

)
+ L1

)(− 3
2 δ−1)

e(−
3
2 δ−1)

2
/L1

(
1 +

(
− 3

2δ − 1
)

Ln

)
(596)

<

(
1 +

Ln − L1

− 3
2δ − 1 + L1

)−1

e5/8 (597)

<
2L1

n− 1
. (598)

Similarly, for s = 8, 9, if L1 ≥ 10 and n ≥ 2,

E[αs
n]

αs
0

>

(
λs + Ln

λs + L1

)λs
ℓ

e−λ2
s/(Lnℓ)

(
1 +

λs

L1

)
(599)

=

(− 3
2δ + Ln

− 3
2δ + L1

)− 3
2 δ

e−(−
3
2 δ)

2
/Ln

(
1 +

− 3
2δ

L1

)
(600)

>
1

2
n− 3

2 δ. (601)

It thus follows from (591) and (592) that

E
[
x11
n

]
= E

[
α1
n

]
+ E

[
α3
n

]
+ E

[
α4
n

]
+ E

[
α8
n

]
·
(
2− δ

δ

)
+ E

[
α9
n

]
· (−1) (602)

=
2− δ

3(3δ + 2)
+

E
[
α4
n

]
α4
0

· α4
0 +

E
[
α8
n

]
α8
0

·
(
(2− δ)α8

0

δ

)
+

E
[
α9
n

]
α9
0

·
(
−α9

0

)
(603)

<
2− δ

3(3δ + 2)
+

L1δ(2− δ)

(n− 1)(3δ + 2)
− 1

12
n− 3

2 δ(2− δ) (604)

<
1

3
+

L1δ

n− 1
− 1

12
n− 3

2 δ, (605)

E
[
x12
n

]
= E

[
α2
n

]
+ E

[
α3
n

]
·
(
− 2δ

δ − 2

)
+ E

[
α5
n

]
+ E

[
α8
n

]
(606)

=

(
2− δ

3(3δ + 2)

)
·
(
− 2δ

δ − 2

)
+

E
[
α5
n

]
α5
0

· α5
0 +

E
[
α8
n

]
α8
0

· α8
0 (607)

<
2δ

3(3δ + 2)
+

2L1

n− 1
· δ2

3δ + 2
+

1

2
n− 3

2 δ

(
−δ

3

)
(608)

<
δ

3
+

L1

n− 1
δ2 − 1

12
δn− 3

2 δ. (609)


	Introduction
	Motivation and Overview
	Background

	An Information-theoretic Analysis and Methods Development for Data Deduplication
	Preliminaries and Notation
	Models & Algorithms
	Source model I
	Source models with random substitution
	Deduplication Algorithms

	Performance of Algorithms over Source Model I
	Performance of algorithms over source Ib(  )
	Deduplication in the fixed-length scheme
	Deduplication in the variable-length scheme

	Deduplication over source If( t )
	Variable-length deduplication
	Multi-chunk deduplication

	Data deduplication from the point of view of universal compression
	The general universal compression framework
	Universal compression of iid sources over patterns
	Universality of constrained compressors
	Universal compression of patterns under constraint C1
	Universal compression of patterns under constraint C2
	A Low-complexity sequential compressor

	Experiments
	Datasets
	Rabin-based chunking
	Encoding schemes
	Experiment results and discussion


	Analysis of Genomic Sequence Data via an Evolutionary Model
	Preliminaries and Notation
	Stochastic String System
	Stochastic Approximation for Duplication Systems
	Preliminaries
	Stochastic Approximation in Duplication Systems

	Asymptotic Analysis of k-mer Frequencies and Entropy in Tandem Duplication and Substitution Systems
	Frequencies of 1-mers in the TDS system
	Definitions
	Evolution of k-mer Frequencies
	ODE and the Limits of Substring Frequencies
	Bounds on Entropy

	Finite-time Analysis of k-mer Frequencies and Waiting Time in Noisy Tandem Duplication Systems
	Evolution of k-mer frequencies
	First-moment trajectories of k-mer frequencies
	Second-moment trajectories of k-mer frequencies
	Bounding waiting times by first- and second-moment trajectories


	Conclusion
	Appendix
	Deduplication over Ib()
	Proof of Lemma 8
	Proofs of Lemma 9 and Lemma 10
	Proofs of Lemma 19 and Lemma 20
	Proof of Lemma 21
	Proofs of Lemma 22 and Lemma 26
	Summations

	Additional experiments on deduplication algorithms
	Asymptotic Analysis of k-mer Frequencies and Entropy in TDS systems
	Proof of Theorem 45
	Proofs of Lemmas 47, 48 and 49
	Proof of Theorem 50
	Proof of Theorem 52
	Proof of Theorem 53

	Finite-time Analysis of k-mer Frequencies and Waiting Time in NTD Systems
	Proof of Theorem 55 (sketched)
	Proof of Theorem 56
	Bounds on the eigenbasis representation coefficients when Ak is undiagonalizable
	Proof of Lemma 57
	Proof of Theorem 59
	Proofs of equations (393) and (394)



