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Abstract 
Landslides can result in devastating loss of life and property damage and are a growing concern 

from a local to global scale. In recent years, increased rainfall-triggered landslide events in the 

Lower Mekong River Basin (LMRB) have put communities at increased risk of damage from these 

disasters. This dissertation focuses on how remote sensing can be used to address landslide 

hazard at global scale and specifically in the Lower Mekong region. In the first part of this 

research, two satellite-based rainfall products, CHIRPS and TMPA, were compared with daily 

rain gauge observations from 2000 to 2014 in the Lower Mekong River Basin. Both products 

showed higher correlation with in-situ data during the wet season (June–September) as 

compared to the dry season (November–January). Our validation test showed TMPA to correctly 

detect precipitation or no-precipitation 64.9% of all days and CHIRPS 66.8% of all days, compared 

to daily in-situ rainfall measurements, indicating CHIRPS may be beMer at representing 

precipitation in this region. The second part of this research, the influence of land use and land 

cover (LULC) change and other causative factors of landslide susceptibility are evaluated in the 

LMRB using Frequency Ratio analysis and Logistic Regression models. Results indicate LULC 

change from agricultural land to forest have a positive correlation with landslide occurrence. 

However, the most statistically significant factors in the models are found to be slope and distance 

to roads. The third part of this research evaluates global paMerns in landslide reporting from 

events in the Global Landslide Catalog. The most notable landslide hotspots are in the Pacific 

Northwest of North America, High Mountain Asia, and the Philippines. More landslides are 

reported in areas with high population density compared to remote locations. A bias towards 

English-speaking countries was also discovered in the catalog reports. Finally, the last part of this 

research assesses how remotely sensed hydrological products can be used to improve rainfall-

triggered landslide monitoring and prediction in data-sparse regions like the Lower Mekong. 

High-resolution soil moisture is beMer able to capture the soil moisture profile than coarser 

resolutions. By incorporating high resolution soil moisture we can beMer investigate landslide 

hazard and prediction and evaluate landslide prone areas. The results of this dissertation can be 

used in local decision making and disaster preparation and mitigation in the Lower Mekong River 

Basin. 
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1. Chapter 1. Introduction 

The Lower Mekong River Basin (LMRB) in Southeast Asia is particularly susceptible to 

precipitation-based natural disasters and is heavily dependent on proper water resource 

management to adequately sustain the more than 60 million inhabitants in the region whose 

livelihoods depend on the food and agriculture provided by the Mekong River and its many 

tributaries (Trisurat et al., 2017). The portion of the Mekong River in the lower basin is 1,485 miles 

(2,390 km) in length and drains into northeastern Thailand, the western slopes of Laos and 

Vietnam, and the majority of Cambodia, before reaching the ocean through the delta in southern 

Vietnam as shown in Figure 1.1. (Owen et al., 2023). In this region, rainfall seasonality causes 

droughts and floods that can negatively affect local resources associated with fishing and 

agriculture (Simery & Kean, 2009). Encompassing multiple countries, the Mekong River arouses 

conflict and collaboration among Cambodia, Laos, Thailand, and Vietnam regarding water 

resources (Owen et al, 2023). Being the most important river in southeast Asia, the Mekong is a 

significant water source and provides renewable energy and food security to people in the region. 

Increasing development and population demand alongside changes in climate are threatening 

the important resources in this region as more extreme precipitation and subsequent natural 

disasters like flooding and landslides are predicted (Try et al., 2020). 

The climate of the LMRB is described as tropical monsoonal, and precipitation is dominated 

by the Southwest Monsoon. The monsoon season typically occurs from June to November, and 

the dry season ensues from December to May (Simery & Kean, 2009). The majority of rainfall 

occurs during the monsoon season, which is responsible for 80%–90% of the annual precipitation. 

The Northeastern monsoon wind, typically starting in November in southern regions, produces 

the dry season until May. Hence, the river flow is usually lowest in April and highest in October. 

Furthermore, the temperatures in the lower Mekong basin are generally warm throughout the 

year and exhibit little seasonal variation, with daily lows averaging 74 °F (23 °C) and highs 

averaging 89 °F (32 °C). However, the temperatures in the northernmost regions of Myanmar 

experience more seasonal variation (Owen et al., 2023). Precipitation in the lower basin follows 

an east to west gradient with the highest annual rainfall accumulation (3,000 mm) occurring in 
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the uplands of Laos and Cambodia and the least accumulation (1,300 mm) occurring in northeast 

Thailand (Simery & Kean, 2009).  

 

Figure 1.1. Topography and river networks of Southeast Asia (Figure from Owen et al., 2023) 
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Due to the varying topography and intense rainfall, the LMRB is one of the most 

landslide-prone areas on the globe (Biswas et al., 2021). Landslides have economic, societal, 

and environmental impacts, and climate change is causing increased landslide events 

throughout the LMRB (Liu et al., 2020). Landslides can cause loss of life, damage to property, 

and negatively affect natural resources. To understand these disasters and reduce risk in the 

LMRB, landslide susceptibility and hazard analysis must be performed. Efforts have been 

made to describe and map landslide susceptibility (Stanley et al., 2017; Hong et al., 2007) and 

predict landslides (Stanley et al., 2021; Farahmand & AghaKouchak, 2013) at global scale but 

the causative factors of landslides in the LMRB are still not completely understood, and there 

is gap in the existing literature regarding landslide hazard studies in this region. The research 

presented here aMempts to help fill that gap by addressing landslide hazard using novel 

applications of various satellite-based products with available in-situ data and statistical and 

empirical models t in the LMRB. 

The LMRB lacks important hydrologic in situ data, and the data available generally 

are affected by spatial and temporal variability. For example, landslide inventories are a vital 

component for understanding past and future landslide hazard (Amatya et al., 2022). 

However landslides are not uniformly recorded between the countries of the LMRB. Often 

landslides occurring in remote locations go unnoticed and fatal landslides occurring in areas 

with denser populations are reported more often (Dandridge et al., 2023). The lack of 

landslide inventories in this region hinders landslide prediction and susceptibility analysis. 

However, recent advances in landslide mapping techniques and high resolution satellite 

imagery provides a greater ability to collect landslide information in the LMRB (Amatya et al, 

2022). In addition to sparse landslide information, the region lacks altogether a consistent in 

situ soil moisture network, and limited in situ data is available regarding precipitation and 

streamflow (Dandridge et al., 2019). Soil moisture, rainfall, and streamflow are significant 

variables for hydrological modelling and analysis. To supplement the lack of in-situ 

measurements, remote sensing products can be used (Lakshmi et al., 2023). There have been 

numerous studies that have shown the benefits of using satellite data in data sparse regions 

like the LMRB (Fayne et al. 2017; Le et al. 2018; Mohammed et al. 2018; Mondal et al., 2022) 
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With recent advancements in remote sensing, basin characteristics can be beMer understood 

despite the lack of ground measurements and hence provide beMer management strategies 

for landslide mitigation. 

Near real-time landslide prediction is essential for assessing hazard potential and 

disaster mitigation (Manconi & Giordan, 2016). In the current literature, various methods and 

modelling techniques are used for landslide prediction efforts. However, recent advances in 

machine learning has provided the ability to more reliably and accurately predict landslides 

(MicheleMi et al., 2014). The machine learning algorithms are less susceptible to overfiMing to 

the training data and can handle nonlinear relationships between landslides and causative 

variables (Wang et al., 2021). Random forest, fuzzy logic, artificial neural network, and 

extreme gradient boosting (XGBoost) are a few of the common machine learning techniques 

used for modelling landslide prediction. Numerous studies have applied machine learning 

methods for landslide prediction in various study locations across the globe. For example, 

Sahin (2020) compared the ability of several regression tree-based ensemble methods to 

predict landslides in the Black Sea region of Turkey. The results of their study indicate the 

XGBoost algorithm to have lower prediction error and higher accuracy results compared to 

other model frameworks considering a variety of accuracy metrics. Another study by Zhang 

et al., (2023) applied the XGBoost algorithm to several areas in China and found the model 

accuracy to be high regarding the ability to predict landslide occurrence despite the varying 

geomorphology of the regions analyzed. Rabby et al., (2020) found XGBoost to have the best 

performance and the highest AUC compared to random forest and K-nearest neighbor 

algorithms. Additionally, the recently updated methodology for NASA’s global Landslide 

Hazard Assessment for Situational Awareness (LHASA) model incorporates the XGBoost 

machine learning framework for near real-time hazard awareness for landslide risk due to its 

ability to incorporate monotonicity and interaction constraints and its vast user community 

(Stanley et al., 2021). While these methods have been widely used, very few efforts have been 

made to apply machine learning for landslide prediction in the LMRB, a region that would 

benefit greatly from near real-time landslide assessment particularly during the monsoon 

season.  
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In this dissertation, the following broad questions will be addressed: 

i. How can remotely-sensed and modelled datasets be applied for landslide hazard 

assessment in the LMRB to supplement sparse in situ data?  

ii. What are the causative factors that contribute to landslide susceptibility in the LMRB? 

In particular, which dynamic land cover change scenarios influence landslide 

occurrence? 

iii. What are the spatial and temporal paMerns, biases, and limitations present in current 

landslide reporting? Specifically, to what extent are landslides in the LMRB 

represented in global catalogs? 

iv. How can machine learning be applied for landslide prediction in the LMRB? 
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2. Chapter 2. Evaluation of Satellite-Based Rainfall Estimates in 
the Lower Mekong River Basin  
 
Associated citations: 
(1)  Dandridge, C.; Lakshmi, V.; Bolten, J.; Srinivasan, R. Evaluation of Satellite-Based Rainfall 
Estimates in the Lower Mekong River Basin (Southeast Asia). Remote Sens. 2019, 11, 2709. 
h^ps://doi.org/10.3390/rs11222709 
(2) Dandridge, C., V. Lakshmi, J. Su^on and J. Bolten. (2017), Precipitation estimates and comparison 
of satellite rainfall data to in situ rain gauge observations to further develop the watershed-modeling 
capabilities for the Lower Mekong River Basin, H21E-1498  presented at 2017 Fall Meeting, AGU, 
December 11-15, New Orleans, LA 

2.1. Introduction 

Precipitation is one of the most important features in the global water and energy system and 

is vital to effective hydrology and climate research (Tang et al., 2016). Across the globe, 

precipitation is typically estimated via three methods—ground-based rain gauges, ground 

radars, and satellite remote sensing (Li et al., 2013). Traditionally, rain gauges are used to measure 

rainfall due to their accuracy and reliability. In this region, most of the rainfall used for decision-

making purposes is measured directly by a multitude of rain gauge stations that cannot 

effectively reflect the spatial variation of precipitation due to its uneven distribution and limited 

representation as point measurements (Figure 2.1). Even though rain gauge stations provide the 

most accurate precipitation measurements, several sub-basins in the LMRB do not contain any 

gauges. Most sub-basins have very few or no stations and within the basins that do have stations, 

some stations might only record data for certain years or have temporal gaps in the data 

recording. The quality of data and techniques for data collection vary throughout the basin, which 

leads to a precipitation data set with significant spatio-temporal gaps and high latency (Ayehu et 

al., 2017). With such high limitations, it can take years to obtain suitable data for research. Ground 

radar systems can be useful in providing the spatial distribution needed for effective precipitation 

estimates at the basin-scale but could also have shortcomings due to limited area coverage, high 

costs, and requirements of extensive equipment maintenance (Lou et al., 2015). Therefore, in this 

study no ground radar data were used. Several studies indicate that high resolution satellite 

products are an effective alternative to ground and radar methods (Gebremichael et al., 2014; 

Golian et al., 2015). Allowing for continuous and repetitive rainfall measurements, remotely 
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sensed satellite precipitation estimates are, thus, very useful in the LMRB due to its large 

geographic extent. Utilizing remote sensing products and models is essential for addressing 

hydrological issues in the Mekong region (Mohammed et al., 2018). To effectively utilize satellite-

observed precipitation products, their accuracies should be examined over various spatial extents 

and time periods. Uncertainties can rise from the retrieval algorithm, cloud contamination, and 

frequency of the satellite overpasses. Knowledge of their uncertainties over varied terrain will 

also help us to obtain a better understanding of their applications and limitations (Lu et al., 2018).  

 

Figure 2.1. Map of the Lower Mekong River Basin in Southeast Asia and the locations of 
the rain gauge stations within the basin. 
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The Climate Hazards group Infrared Precipitation with station observations (CHIRPS) and 

NASA’s Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis 

(TMPA) 3B42 v.7 were evaluated in this study (Funk et al., 2015; Huffman et al., 2016). It is 

important to note that the TRMM products applied in this study were phased out and replaced 

by Global Precipitation Mission (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) 

product which has improved spatial and temporal resolution, i.e., 0.1° by 0.1° and half-hourly 

temporal resolution (Huffman et al., 2015). The IMERG product has also improved upon the 

biases and uncertainty present in older products. Thus, the results shown here are not expected 

to correlate closely with GPM IMERG. However, an interesting caveat is that the TRMM 

combined product was used as a calibration standard for the GPM IMERG algorithm, thus, 

warranting this inspection of the TMPA product over the Lower Mekong River Basin. 

Being a relatively new precipitation product, CHIRPS has been involved in limited 

precipitation validation studies, but was found to correlate well with in-situ measurements (Xian 

et al., 2019; Tote et al., 2015; Kimani et al., 2017). These studies are different from our work 

presented here regarding methodology, study period, and region. For example, an evaluation of 

CHIRPS was performed by Guo et al. (2017) in the LMRB, but used only 38 rain gauge stations 

from the Global Summary of the Day (GSOD) for validation of the satellite-based product. They 

used the criteria of at having 30% or less missing values of the time-series record for considering 

individual rain gauges. This study found that CHIRPS was able to properly estimate periods of 

low rainfall that are associated with droughts in the region. An extensive comparison of CHIRPS 

was evaluated over mainland China by Bai et al. (2018) and used 2,480 stations for validation 

from 1981 to 2014. These authors evaluated the spatio-temporal aspects of CHIRPS and found it 

to perform better for large rainfall amounts than arid or semi-arid regions and found a strong 

relationship between CHIRPS and monsoon movement. Additionally, in this study, CHIRPS was 

found to perform better in the warm months than winter months due to its limited capability to 

detect snow. Similarly, several studies have found that TMPA was helpful in addressing a 

multitude of hydrological problems, such as predicting and monitoring precipitation (Hermance 

et al., 2018). A similar study by Wang et al. (2017) compared TMPA and GPM precipitation 

products over the entire Mekong basin, but only used data from 53 rain gauge stations over a 2-
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year period from 2014 to 2016. These authors found that both IMERG and TMPA overestimated 

light rainfall and underestimated large rainfall events, but IMERG performed better overall. 

Several studies have found TMPA and CHIRPS to be comparable to direct rain gauge 

measurements in various regions with complex terrains including South America (Blacutt et al., 

2015) and Africa (Dinku et al., 2008). Extensive validation studies have been done with TMPA, 

but these studies have not been conducted over the LMRB or with as many rain gauge stations as 

in this comparison. There were no previous studies that evaluated CHIRPS for as many years or 

against as many in-situ stations in the LMRB as the methodology presented here. Using a more 

extensive in-situ data set with 477 stations from the Mekong River Commission, this study aims 

to closely analyze TMPA and CHIRPS over the 15-year period from 2000 to 2014. The time period 

for this study is based on the availability of rain gauge data and satellite-based sensor operation. 

This research aims to determine the extent to which the satellite precipitation products TMPA 

and CHIRPS are able to estimate precipitation in the LMRB and, thus, show their validity for 

consideration in basin-scale water management decisions. Unlike previous studies in this region 

of the world, this research uses an extensive in-situ gauge network for validation, satellite 

estimates were compared against the rain gauge measurement(s) for the same pixel in order to 

assess the performance of the satellite products. Comparisons were performed based on 

classifications of the rain gauge locations with respect to rainfall accumulation and elevation to 

examine the extent to which the amount of rainfall and topography plays a role in their 

performance. Additionally, a spatial correlation analysis was applied to both the satellite-based 

products to visualize the geographical relationship with in-situ measurements and assess any 

spatial bias. The results of this validation study have the ability to improve estimation of water 

resources and benefit flood and drought forecasting systems in the LMRB by presenting the 

capabilities and limitations of TMPA and CHIRPS. It is important to note that the final goal of 

this work was not to estimate floods and extreme events, but to evaluate the performance of 

satellite precipitation estimates so that future studies can feel confident about using these 

estimates in their models. This study and further research applying in-situ observations to 

determine accuracy of satellite product can aid in the improvement of basin-wide decision-

making, flood prediction, and management of floodwaters and drought by providing validations 
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which suggest that satellite estimates can substitute for rain gauge measurements in areas with a 

sparse or absent in-situ network. 

2.2. Data 

2.2.1. In-Situ Measurements 

Daily precipitation totals were provided by the Mekong River Commission (MRC) from 481 

in-situ rain gauge stations located throughout the basin from 1920 to 2014 (Figure 2.1) and were 

available upon request. For the time period selected in this study, 2000 to 2014, 477 stations in the 

LMRB had available precipitation measurements for this time period. The rain gauge data set 

contained gaps where no precipitation measurements were taken during the extended time 

periods for some stations. Specifically, 21% of the total amount of days from 2000 to 2014 for all 

rain gauge stations had unavailable or missing rainfall measurements. Gauges were not available 

consistently across the basin, significantly limiting data availability over large areas of the basin, 

as a result (Figure 2.1). Additionally, the quantity of rain gauges did not satisfy the size of the 

LMRB (1 station per 1,580 km2). Therefore, the data gaps and gauge sparsity in the LMRB make 

it impractical to use rain gauge data alone for hydrological decision making (Oddo et al., 2018). 

Here, the available in-situ data served as a validation dataset for evaluating the accuracy of the 

TMPA and CHIRPS satellite products. 

2.2.2. Satellite Retrievals 

Launched in 1997, NASA’s TRMM Multi-Satellite Precipitation Analysis (TMPA) 3B42 v.7 is 

one of the most widely used satellite precipitation products and is very useful for 

hydrometeorological applications in data-sparse regions of the world (Prakash et al., 2013). 

TMPA combines information from the TRMM precipitation radar, passive microwave and 

infrared sensors from various satellites, and available rain gauge data to measure tropical rainfall 

for weather and climate research (Huffman et al., 2016). Monthly in-situ precipitation data were 

gathered from the Global Precipitation Climatology Project (GPCP) developed by the Global 

Precipitation Climatological Center (GPCC) and the Climate Assessment and Monitoring System 

(CAMS) developed by NOAA’s Climate Prediction Center (CPC), and were used for calibration 
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of the TMPA product (Huffman et al., 2007). For a full explanation of the TMPA input datasets 

and algorithms, please refer to Huffman et al. (2007). Estimates were available at 3-hour intervals 

with 0.25° by 0.25° spatial resolution for the region 50° S to 50° N. In this study, the final daily 

product (TRMM_3B42_Daily) derived from the 3-hourly estimate (TRMM_3B42) was used in the 

analysis. 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a quasi-global 

precipitation product that provides estimates for over 30 years (1981 to near-present) and is 

provided by the Climate Hazards Center (CHC) (Funk et al., 2015). CHIRPS uses a recently 

produced satellite rainfall algorithm that combines climatology data, satellite precipitation 

estimates, and in-situ rain-gauge measurements to produce a high resolution precipitation 

product. It utilizes 0.05° satellite imagery alongside in-situ station data to produce a gridded 

rainfall product. CHIRPS is widely used for rainfall trend analysis and seasonal drought 

monitoring. The climate data used in the CHIRPS methodology consists of two in-situ datasets, 

Agromet Group of the Food and Agriculture Organization of the United Nations (FAO) and 

Global Historical Climate Network (GHCN). These two data sets are long-term averages and 

were used to create the climate data used by CHIRPS. The station’s historical data were mostly 

used in the calibration for the CHIRPS method instead of data from this study period, 2000–2014. 

It was also important to note that the CHIRPS methodology uses the TMPA product to calibrate 

global Cold Cloud Duration (CCD) precipitation estimates. For full data description please refer 

to Funk et al., (2015). Although CHIRPS has a higher spatial resolution (0.05°) than TMPA (0.25°), 

this does not necessarily translate into a higher accuracy. However, higher spatial resolution 

helps in the characterization of the spatial variability. Here, daily estimates from CHIRPS 

(CHIRPS Daily Version 2.0 Final) were used in the analysis. 

2.3. Methodology 

In this study, rain gauge measurements provided by the Mekong River Commission were 

used as a validation dataset for two satellite-based precipitation products, TMPA and CHIRPS, 

in a point to pixel comparison via the methodology outlined in Figure 2. First, the measurement 

value of –9999 was removed from all in-situ data and those were treated as missing observations 
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and were excluded from analyses. To match the daily satellite-based estimates of rainfall with the 

rain gauge measurements, the satellite pixel encompassing each rain gauge location was 

identified. In each pixel, we extracted the satellite-based estimate and paired it with the 

corresponding rain gauge data at a daily scale from 2000 to 2014. If more than one station was 

present within a satellite pixel, the rain gauge measurements were averaged before being 

compared to the satellite-based precipitation estimate in that pixel. Additionally, a validation 

study was employed to assess the satellite-based product’s ability to correctly estimate 

precipitation (i.e., the rain–no-rain detection problem). This was done by determining the 

percentage that the satellite-based estimate and gauge measurement in a particular pixel were 

both wet (accumulating at least 0.06 mm of rainfall) or dry (below 0.06 mm of rainfall) and if one 

was wet and the other was dry.  

 

Figure 2.2. Methodology and workflow for this study. *Dry days are days where both 
satellite-based estimate and rain gauge measurement give a precipitation below the 
threshold of 0.06 mm. Dry days are excluded in some analyses but not all. 

Daily TMPA and CHIRPS estimates and in-situ measurements were separately aggregated 

to monthly and annual accumulation. Similarly, daily precipitation was aggregated to seasonal 
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accumulation for comparison. The wet season included accumulations from June through 

September and the dry season included accumulations from November through February. 

Additionally, the rain gauges were categorized based on the average annual accumulation in the 

following ranges—0 to 1,000 mm, 1,001 mm to 1,500 mm, 1,501 mm to 2,000 mm, 2,001 mm to 

2,500 mm, and greater than 2,500 mm. Classifying the rain gauges by monthly accumulation 

would reveal if and to what extent the amount of rainfall received could affect performance of 

the satellite-based product estimates. The rain gauges were also categorized based on elevation 

into the following ranges—0 to 100 m, 101 m to 300 m, 301 m to 500 m, 501 m to 1,000 m, and 

greater than 1,000 m. Classifying the rain gauges by elevation would determine the role 

topography plays in satellite-based product performance. For the monthly, annual, seasonal, and 

categorical analyses, dry days (days where the corresponding in-situ measurement and satellite-

based estimates were below the threshold of 0.06 mm) were excluded in order to evaluate only 

days where both the rain gauge and the satellite-based product indicated precipitation. However, 

the dry days were not excluded from the rain–no-rain validation study described previously so 

that the days where CHIRPS and TMPA correctly estimated no precipitation from a rain gauge 

measurement could be counted and evaluated. 

Several statistical metrics were employed for analyses between the satellite-based estimates 

and in-situ measurements. For the linear correlation analysis, the Pearson’s correlation coefficient 

(r-value) was examined. The closer the r-value was to 1, the more highly correlated the satellite-

based estimate was to the in-situ data. Bias was defined as the average of the difference between 

two quantities and showed the tendency of TMPA and CHIRPS to overestimate or underestimate 

corresponding in-situ measurements. The Root Mean Squared Error (RMSE) was used to assess 

the goodness of fit between the satellite-based and in-situ datasets. Lower RMSE values indicated 

a better fit between two variables, which here would imply a high correlation between satellite-

based estimates and in-situ data. The Mean Absolute Error (MAE) provided the average of the 

absolute errors and measured the difference between two continuous variables, mean absolute 

error was defined as the average of all absolute differences between the two quantities. MAE 

provides further insight into the correlation between in-situ and satellite-based products. Each of 
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these statistics was analyzed separately for the monthly, seasonal, and annual data, as well as the 

categorized data based on rain gauge elevation and rainfall accumulation. 

2.4. Results  

In the LMRB, there were large variations in precipitation intensity, duration, and 

accumulation particularly between the dry and wet seasons. We found that these variations were 

realized differently between the two satellite-based precipitation products, CHIRPS and TMPA. 

In-situ monthly rainfall accumulation ranged from 0.10 mm to 1,748.0 mm, TMPA measured 

monthly rainfall from 0.09 mm to 1,279.9 mm, and CHIRPS measured monthly rainfall from 0.06 

mm to 1256.0 mm. The dry season in-situ data produced anywhere from 0.30 mm to 612.07 mm 

per year were averaged over the 15-year study period. On the other hand, TMPA recorded the 

dry season range to be from 0.17 mm to 292.85 mm and CHIRPS from 1.07 mm to 692.93 mm. The 

wet season produced rainfall accumulation from 170.25 mm to 2,709.70 mm according to in-situ 

data, whereas TMPA estimated a range from 86.46 mm to 1,454.66 mm and CHIRPS estimated 

from 110.99 mm to 2,138.24 mm. In-situ cumulative annual rainfall ranged from 4.00 mm to 

4,551.50 mm, TMPA measured annual rainfall from 3.72 mm to 3,029.82 mm, and CHIRPS 

measured annual rainfall from 1,376.9 mm to 2,136.4 mm. While the elevation decreased from 

greater than 2,000 m in the Northern reaches of the basin to the Southern Vietnam Delta at sea 

level, the precipitation followed an East to West gradient, with most rainfall accumulation in 

Vietnam, Laos, and Eastern Cambodia. Western parts of Thailand and Cambodia received the 

least amount of rainfall. Figure 2.3. shows the rainfall distribution patterns geographically for the 

dry, wet, and annual datasets derived from 2000 to 2014. Both CHIRPS and TMPA were able to 

represent the rainfall distribution over the basin in the dry season that was indicated by the rain 

gauges in Figure 2.3., although CHIRPS estimated much more precipitation in the Western part 

of the basin in Vietnam. A similar trend appeared in the wet season and the annual maps in Figure 

2.3., such that TMPA and CHIRPS showed similar rainfall distributions over the LMRB with 

CHIRPS having slightly higher estimations. The annual distribution was very similar, aside from 

the satellite overestimating gauge measurements in several areas. Satellite-based estimates 

showed higher correlation with rain gauge measurements during the dry season and lower 
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correlation during the wet season where the in-situ data recorded much lower rainfall 

accumulation than the satellite-based estimation. Table 2.1 explains the rain–no-rain detection 

accuracy by CHIRPS and TMPA, when compared to the rainfall recorded by rain gauges. CHIRPS 

correctly detected rain 21.9% of the time and TMPA correctly detected rain 15.7% of the time, 

compared to the daily rainfall. CHIRPS agreed with the in-situ for no-rain days 44.9% of the time 

and TMPA agreed with in-situ for no-rain days 49.1% of the time. However, both TMPA and 

CHIRPS estimated rain for more than 20% of the days when the rain gauges did not measure any 

precipitation. CHIRPS agreed with in-situ 66.8% for rain or no-rain days and TMPA agreed with 

in-situ 64.9% for rain or no-rain days (Table 2.1). The validation study showed that CHIRPS was 

better able to estimate whether a dry or wet day was present. 

Table 2.1. Rain–no-rain validation study results for daily precipitation from 2000–2014. 

 CHIRPS - No Rain CHIRPS - Rain 
Rain Gauge - No Rain 44.9% 26.4% 
Rain Gauge - Rain 6.8% 21.9% 
 TMPA - No Rain TMPA - Rain 
Rain Gauge - No Rain 49.1% 22.3% 
Rain Gauge - Rain 13.0% 15.7% 
  Correct Detection Incorrect Detection 
CHIRPS 66.8% 33.2% 
TMPA 64.9% 35.1% 

 

For further analysis, the rain gauges were classified by the following ranges for annual 

accumulation—0 to 1,000 mm, 1,001 mm to 1,500 mm, 1,501 mm to 2,000 mm, 2,001 mm to 2,500 

mm, and greater than 2,500 mm. Table 2.2 shows the analysis based on monthly rainfall 

accumulation, which analyzes the r-value, bias, MAE, and RMSE. For stations receiving more 

than 2,500 mm of annual rainfall, CHIRPS had an r-value of 0.83 and TMPA had an r-value of 

0.65. Both CHIRPS and TMPA had better correlation with each subsequent accumulation 

category, indicating that the satellite-based products performed better in areas with high 

precipitation. There was no apparent relationship between the number of stations in each 

category in Table 2.2 and the correlation between in-situ and satellite-based estimates. CHIRPS 

detected rainfall in each class significantly better than TMPA. To visualize the monthly 
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correlations, Figure 2.4 shows a side-by-side boxplot comparison between the satellite-based and 

in-situ measurements of the average monthly rainfall accumulation from 2000 to 2014. The 

Figure 2.3. Rainfall Distribution in Lower Mekong River Basin. (a) Average (average over 2000 to 
2014) seasonal rainfall accumulation during the dry season (November to February) for Tropical 
Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), Climate 
Hazards Group InfraRed Precipitation with Station (CHIRPS), and in-situ. (b) Average seasonal 
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rainfall accumulation during the wet season (June to September) for TMPA, CHIRPS, and in-situ. 
(c) Average annual rainfall accumulation for TMPA, CHIRPS, and in-situ. 

seasonal data sets used in this study were configured from this plot using the four highest 

precipitation months (June, July, August, and September) for the wet season and the four lowest 

precipitation months (November, December, January, February) for the dry season. The satellite-

based estimates overestimated rain gauges during the peak of the wet season (July and August) 

(Figure 2.4.). Further, TMPA and CHIRPS both recorded July as the peak of the wet season (the 

month with the highest average rainfall accumulation), whereas the rain gauges showed August 

to be the peak of the wet season. Similarly, TMPA and CHIRPS indicated January as the lowest 

accumulation of precipitation, whereas the rain gauges showed February to be the month with 

lowest rainfall accumulation. In each of the three boxplots, October had the highest variance in 

cumulative precipitation from 2000 to 2014, denoted by the largest vertical black bars. To this end, 

the months receiving lower rainfall amounts showed higher correlation between the satellite-

based and in-situ measurements than the months receiving higher rainfall amounts. Figure 2.5. 

shows the time-series trend from the satellite-based estimates and provides a closer look of 

comparison on a monthly scale. From the time-series we conclude that the estimates from both 

CHIRPS and TMPA were closely correlated with the seasonal patterns of the in-situ 

measurements (Figure 2.5.).  

Table 2.2. Comparison statistic results between rain gauge measurements and satellite-
based precipitation estimates for monthly rainfall classes based on in situ accumulation 
from 2000 to 2014 for R, bias, mean absolute error (MAE), and RMSE. 

In-Situ Annual 
Accumulation 

Satellite-Based 
Product 

r-value 
Bias 

(mm) 
MAE 
(mm) 

RMSE 
(mm) 

0 – 1000 mm 
 

CHIRPS 0.72 -31.28 43.44 63.45 

TMPA 0.51 5.55 43.78 65.88 

1001 – 1500 mm 
 

CHIRPS 0.75 -36.28 52.52 76.49 

TMPA 0.56 9.82 59.48 91.72 

1501 – 2000 mm CHIRPS 0.79 -33.52 58.23 87.77 
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 TMPA 0.61 0.85 67.74 103.98 

2001 – 2500 mm 
 

CHIRPS 0.82 -31.01 72.28 117.38 

TMPA 0.64 -29.10 84.29 136.75 

> 2500 mm 
 

CHIRPS 0.83 -46.59 97.78 161.46 

TMPA 0.65 -88.51 129.40 208.06 

 
For further comparison of the data products, the correlation coefficient, bias, MAE, and 

RMSE were determined. During the wet season, TMPA underestimated the rain gauge 

measurements more than during the dry season. The correlation coefficient (r-value) between the 

rain gauge and TMPA estimates was 0.38 for dry the season comparison, 0.48 for the wet season 

comparison, 0.49 for the annual comparison (Table S2). The CHIRPS comparison showed an r-

value of 0.61 for the dry season comparison, 0.68 for the wet season comparison, and 0.58 for the 

annual comparison (Table S3). The average MAE for the comparison between in-situ and TMPA 

was 0.07 mm for the dry season comparison, –1.26 mm for the annual comparison, and –17.37 

mm for the wet season comparison (Table S2). The comparison between CHIRPS and in-situ 

produced average MAE values of –2.81 mm for the dry season comparison, –23.91 mm for the 

annual comparison, and –162.46 mm for the wet season comparison (Table S3). Overall, TMPA 

and CHIRPS both correlated better during the wet seasons than the dry seasons most likely due 

to the low variance in the estimates from the dry season. The correlation between TMPA satellite-

based estimates and rain gauge measurements in this study was ordered (from most correlation 

to least correlation) as follows—annual comparison, wet season comparison, monthly 

comparison, and lastly dry season comparison. However, CHIRPS correlated as follows—wet 

season, dry season, annual, and monthly.  

Table 3 shows that the rain gauges were categorized based on their elevation and were used 

for analysis at different rainfall accumulation classes. They were classified into the following 

categories—0 to 100 m, 101 m to 300 m, 301 m to 500 m, 501 m to 1,000 m, and greater than 1,000 

m subsets by quantile bins. From this table, we conclude that neither CHIRPS nor TMPA were 

significantly impacted by elevation nor was the correlation affected by the number of stations in 
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each category. CHIRPS was more highly correlated to in situ measurements for rain gauges at 

elevations between 101 m and 300 m, with an average r-value of 0.84 for these stations. TMPA 

also showed a better agreement with the in-situ data in this elevation category, but had an r-value 

of 0.69. At stations with elevations above 1,000 m, CHIRPS performed much better than TMPA, 

having an r-value of 0.81 as compared to TMPA which had an r-value of 0.54. It is important to 

note that as the elevation range increased, the number of rain gauges that fall within the 

subsequent category decreased. This could have affected the results of the study since each 

elevation category had unequal number of rain gage stations. 

For spatial correlation analysis, the r-value at each station was determined based on the 

monthly rainfall accumulation and was plotted at each station location. The r-values could be 

visualized for CHIRPS and TMPA in Figure 6 and Figure 7, respectively. When comparing these 

two figures, it was apparent that CHIRPS was more highly correlated for the majority of all rain 

gauge stations across the basin than TMPA. CHIRPS did not display a distinct spatial pattern of 

correlation (Figure 6). Most stations had an r-value between 0.6 and 1.0 and were distributed 

widely across the basin. There were only few stations with r-values between 0.4 and 0.6 in the 

areas of Cambodia and no stations with r-values between 0.0 and 0.4. CHIRPS had the highest 

correlation in the northern and central areas and the Vietnam delta and the least correlation in 

the southwestern regions of Cambodia. With significantly less r-values, the TMPA analysis 

showed more of a spatial pattern of correlation than the CHIRPS spatial analysis (Figure 7). 

Stations with r-values between 0.8 and 1.0 were mostly collected in the central region of the basin 

in Eastern Thailand and Vietnam and represented the highest correlation between TMPA and in-

situ measurements. Overall, CHIRPS had higher r-values than TMPA for the monthly rainfall 

spatial comparison, which indicated that CHIRPS might be able to better spatially represent 

precipitation in the LMRB. 
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Figure 2.4. (a) Boxplot analysis of each month using rain gauge measurements. (b) 
Boxplot analysis of each month using TMPA estimates. (c) Boxplot analysis of each 
month using CHIRPS estimates. Each analysis uses data from 2000 to 2014. Red 
horizontal bars represent the median rainfall amount. The blue boxes represent the data 
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that is within the 25th and 75th percentiles. The black horizontal bars above and below the 
blue boxes represent the maximum and minimum rainfall amounts, respectively. The 
red ‘+’ represent outliers in the data set. 

 
Figure 2.5. Time-series comparison of monthly averages from in-situ data and TMPA 
and CHIRPS satellite-based precipitation estimates from 2000 to 2014. 

Table 2.3. Comparison statistic results between rain gauge measurements and satellite-
based precipitation estimates for monthly rainfall categorized on the basis of elevation 
for R, bias, MAE, and RMSE. 

Rain Gauge 
Elevation 

Satellite-Based 
Product 

R-
value 

Bias 
(mm) 

MAE 
(mm) 

RMSE 
(mm) 

0 – 100 m 
 

CHIRPS 0.79  -36.91 56.71 85.41 

TMPA 0.54 15.52 66.36 107.11 

101 – 300 m 
 

CHIRPS 0.84  -42.82 63.03 101.58 

TMPA 0.69 -33.49 69.50 111.71 

301 – 500 m 
 

CHIRPS 0.80 -15.07 59.57 98.56 

TMPA 0.63 -19.79 70.62 119.10 

501 – 1000 m 
 

CHIRPS 0.81  -5.41 57.69 95.20 

TMPA 0.59 -8.69 73.25 120.21 

>1000 m  
 

CHIRPS 0.81 -22.47 56.99 103.75 

TMPA 0.54 23.35 92.33 152.24 
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Figure 2.6. Spatial correlation results of mean r-value for each rain gauge stations against 
CHIRPS precipitation estimates for monthly rainfall. 
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Figure 2.7. Spatial correlation results of mean r-value for each rain gauge stations against 
TMPA precipitation estimates for monthly rainfall. 

2.5. Discussion  

This study analyzed the performance of NASA’s TMPA satellite-based precipitation 

estimates (3B42 v.7) and Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS) in the Lower Mekong River Basin using an extensive rain gauge network for validation. 

A detailed comparison was performed between the satellite-based rainfall products and in-situ 

measurements from 477 rain gauge stations. A rain–no-rain detection analysis showed that 

TMPA made a correct detection of a wet or dry day 64.99% of total days and CHIRPS made a 

correct detection of a wet or dry day 66.8% of total days, when compared to all in-situ daily 
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measurements. With this validation study, we conclude that CHIRPS was better able to 

distinguish wet and dry days than TMPA. Satellite-based rainfall estimates were compared 

monthly, seasonally, and annually to in-situ data for the time period from 2000 to 2014. 

Additionally, rain gauges were categorized on the basis of elevation and mean rainfall 

accumulation and were compared to the corresponding TMPA and CHIRPS pixels to determine 

the effects of topography and amount of rainfall on satellite-based product estimation. When 

averaged over the entire LMRB, the satellite-based data mostly retained the overall annual 

precipitation patterns and geographic distributions. Overall, TMPA overestimated in-situ rainfall 

in the dry seasons, whereas CHIRPS underestimated rainfall in the dry seasons. Furthermore, 

both satellite-based estimates were more highly correlated to in-situ data during the wet season 

(June–September) than dry season (November–February). Similarly, the annual comparisons 

between in-situ and both satellite-based estimates showed higher correlations than the monthly 

comparisons when analyzed over the fifteen-year study period. The bias and false detections in 

the satellite-based estimates could be caused by topography, rain gauge data availability, or 

amount of precipitation received in certain locations. The r-values were determined at each 

station location based on monthly rainfall accumulation from in-situ measurements and both 

satellite-based products. CHIRPS was more highly correlated to the rain gauge stations across the 

basin than TMPA, with the majority of stations having r-values of 0.8 to 1.0, when compared to 

CHIRPS. Additionally, CHIRPS did not show a distinct spatial pattern of correlation, whereas 

TMPA did show a geographical pattern. The correlation dependence on geography and climate 

could be explained by TMPA being more affected by the annual monsoon movement. Overall, 

the spatial comparison showed CHIRPS to have a higher correlation than TMPA with rain gauge 

measurements in the LMRB, which indicated that CHIRPS might be able to better spatially 

represent rainfall. 

As stated previously, other precipitation comparisons have been implemented and vary by 

location, number of rain gauges, satellite-based product, and study period. The results of these 

studies also differ in whether satellite-based estimates overestimated or underestimated in-situ 

measurements. A study by Katsanos et al. (2004), found a higher bias in the satellite-based 

estimates during peak precipitation periods, and this study also found high biases during peaks 
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in the wet season. For example, the results from this comparison were similar to a study by 

Collischonn et al. (2008) over the Tapajos River Basin in Brazil, in which TMPA estimates were 

found to be very close to the in-situ measurements when averaged over the entire river basin and 

that TMPA mostly underestimated precipitation in their study. Additionally, a study by Su et al. 

(2008) over the La Plata Basin in South America found TMPA to be less accurate during high rain 

rates at a daily time scale and to overestimate rainfall, which was similar to the results of this 

study during the wet season that was represented by high rain rates. In their study, TMPA was 

able to represent low flows but had a positive bias during peak flows in satellite-driven model 

simulations. In order to use TMPA in the LMRB for similar satellite-driven watershed modeling, 

such biases would need to be accounted for and adjusted to more accurately estimate streamflow 

and capture flooding events. After comparing TMPA and CHIRPS to rain gauge measurements, 

the results of this research showed that CHIRPS might be better at representing precipitation in 

the LMRB than TMPA. However, Xian et al. (2018) found TMPA to be superior to CHIRPS in 

hydrological simulation using SWAT. Furthermore, spatial resolution did play a role in the 

validation of these precipitation products. CHIRPS had a spatial resolution of 0.05° and TMPA 

had a resolution of 0.25°. Generally, higher spatial resolution translates to higher accuracy, but 

this was dependent on the method used to generate this product. What we imply is an inferior 

method used to generate a high spatial resolution product that might have a lower accuracy than 

a superior method used to generate a lower spatial resolution product. In this study we find that 

the accuracy of TMPA and CHIRPS were very close, but the higher spatial resolution of CHIRPS 

might provide an advantage in the accuracy when compared to rain gauges. 

2.6. Conclusions 

This work was one of the first attempts at evaluating the satellite-based precipitation data 

products in the Lower Mekong River Basin with such an extensive in-situ dataset. The hydrologic 

significance of TMPA and CHIRPS in the LMRB could be assessed from the results of this study 

and other analogous validation studies. In addition, a similar methodology to the one described 

here could be applied to the GPM IMERG data to further assess the performance of satellite-based 

precipitation products in the region. The important broad impacts of this research are the 
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implications of remotely sensed products in hydrologic cycle modeling, specifically in the LMRB 

or similar un-gauged basins. For future validation studies of satellite-based estimates, this 

methodology could be applied to new, higher resolution products like GPM IMERG, to look at 

the progression and advancement in satellite-based estimation. With better temporal and spatial 

coverage, satellite-based inputs will serve as an improvement, compared to precipitation from 

rain gauges for various modeling in basins like LMRB where there is a sparse coverage of rain 

gauges. Additionally, evaluation of satellite-based products is essential for improvement upon 

satellite-based algorithms and equipment. Given the observed increase in accuracy of remotely 

sensed precipitation products (sensor configurations, improved spatial resolution, and temporal 

repeat), a careful comparison of the fidelity of each product, as shown here, is helpful for 

assessing their utility for basin-scale modeling capabilities, particularly for water resource 

management applications in poorly-gauged basins such as LMRB. This study undertook a unique 

approach at comparing TMPA and CHIRPS estimates with in-situ observations in the LMRB. We 

conclude that precipitation from TMPA and CHIRPS could be used reliably in hydrological 

applications in rain gauge sparse regions of the world. 
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3. Chapter 3. The Influence of Land Use and Land Cover Change on 
Landslide Susceptibility in the Lower Mekong River Basin 

 
Associated citations: 
(1)  Dandridge, C.; Stanley, T.A.; Kirschbaum, D.B.; Lakshmi, V. The influence of land use and land 
cover change on landslide susceptibility in the Lower Mekong River Basin. Natural Hazards 2022, 
115, 1499–1523, h^ps://doi.org/10.1007/s11069-022-05604-4 
(2) Dandridge, C.; Stanley, T.A.; Kirschbaum, D.B.; Lakshmi, V. The Influence of Land Use and Land 
Cover Change on Landslide Susceptibility in the Lower Mekong River Basin, H030-0023 presented at 
2020 Fall Meeting, AGU, December 1-17. 

 
3.1. Introduction 

A landslide encompasses a wide range of mass movements and can be defined as the 

downslope movement of soil, rock, or earth (Highland & Bobrowsky, 2008). The movements 

can be triggered by various external activities such as intense rainfall, earthquakes, changes 

in water level, waves, or stream erosion, which lead to a decrease in shear strength and an 

increase in shear stress on the slope (Dai et al., 2002). Landslides can also be caused by 

anthropogenic activities such as excavation, road construction, and land use changes. These 

factors often induce small, shallow landslides, but abrupt changes to the slope surface such 

as poor construction and planning can result in larger, more dangerous landslides 

(Jaboyedoff et al., 2016). Watersheds that have been recently affected by wildfires can be 

highly susceptible to rainfall-triggered landslides that usually occur within a short time 

following the burn (Degraff et al., 2015; Kean et al., 2011). This study focuses on rainfall-

triggered landslides as they are the most frequent and cause loss of life and destruction of 

property across the globe (Froude & Petley, 2018). Rapid urbanization can increase the risk 

for landslides, especially along poorly constructed roads and deforested areas in 

mountainous regions (Forbes et al,. 2012). However, beMer land management of forests and 

cultivated areas can produce a decrease in rainfall-triggered landslide occurrence (Pisano et 

al., 2017). 

In the Lower Mekong River Basin (LMRB) in Southeast Asia, the monsoon season 

brings an increase in flood and landslide disasters due to an increase in rainfall from large 

storms in combination with the complex topography of the region.  The LMRB has 
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experienced extensive changes from urban and agricultural expansion, deforestation, river 

damming, and natural disasters such as flood and drought. In this region, changes in Land 

Use and Land Cover (LULC) are largely influenced by agricultural prices, road accessibility, 

construction projects, and climate change. Spruce et al. (2020) assessed LULC changes in the 

Lower Mekong using two maps from 1997 to 2010. In their analysis, 2.5% of the total area of 

permanent agriculture decreased which could be associated with the abandonment of crops 

or converting cropland to forests. They also identified an 6.7% increase of the total area 

categorized by scrub/shrub/herbaceous which could be aMributed to abandoned cropland 

reverting back to forest. Looking at the changes between LULC classes, some cropland had 

changed to deciduous forest/scrub over time between 1997 and 2010. Changes in land cover 

can have variable impacts on landslide susceptibility. In some cases, human impacts such as 

deforestation and mining serve to exacerbate instability on slopes (Winter et al., 2010). In 

other examples, thoughtful engineering and planning can serve to stabilize slopes (Prastica 

et al., 2019). 

The preconditions for landslides vary, but changes in land use and land cover (LULC) 

have been shown to have local impacts (e.g., Glade 2003; Hewawasam 2010; Mugagga et al. 

2012; Reichenbach et al. 2014). Pisano et al. (2017) evaluated how land cover change affects 

slope stability over time in the Italian Southern Apennine Mountains by treating land cover 

as a dynamic variable, unlike many other landslides susceptibility studies that consider land 

cover as a static variable. This study found that a decrease in forest and cultivated land and 

increase in barren, pasture, and shrub land led to an increase in landslide susceptibility. A 

study by Persichillo et al. (2017) assessed shallow landslides in the northern Apennine 

Mountains in Italy in areas with land abandonment and changes in land management 

practices from 1954 to 2012. They found that cultivated lands that were abandoned and 

allowed to gradually recover naturally was the land cover change scenario most susceptible 

to landslides and land cover was the most predisposing factor in all study areas. Similarly, 

Deng et al. (2018) investigated landslide distribution and agricultural abandonment in 

several provinces in China’s mountainous areas. They concluded that more landslides 

occurred in areas with high incidence of agricultural abandonment. Furthermore, the effects 
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of land use changes on landslides were analyzed in a landslide-prone region in Northeast 

Turkey with mountainous topography and high rainfall frequency by Karsli et al. (2009). 

Land cover changes and landslides were identified using aerial images taken in 1973 and 

2002. Their results indicated that the land cover type played an important role in landslide 

occurrence as 95% of the landslides identified from the imagery were in areas with acidic 

soil weakened by fertilizer use in agriculture.  

The effects of LULC on landslide susceptibility vary based on geographical location 

of the study area and methodology used for analysis. Remondo et al. (2003) applied various 

validation techniques for landslide susceptibility maps in the Deba Valley in northern Spain 

and state that while intense rainfall is the main triggering mechanism for shallow landslides, 

human activity affecting land cover changes are also influential as these alterations increase 

the sensitivity of the area to intense precipitation. Kafy et al. (2017) evaluated the association 

between LULC changes and landslides in the ChiMagong Hill Tracts region, Bangladesh using 

a change detection technique to obtain the change over two decadal time periods from 1995 

to 2005 and 2005 to 2015. They classified LULC as baresoil, hill forest, built-up area, and 

waterbody and found a positive relationship between landslide occurrence and decreasing 

hill forest. A study by Hewawasam (2010) investigated landslides in the Upper Mahaweli 

Catchment, Sri Lanka and stated that human activities were the primary cause of the 

increased landslide activity in the area, many of which occurred in agricultural areas on 

hillslopes. After the decline of the coffee industry in this region, many coffee lands that were 

deforested were restored as tea plantations, and out of 200 landslides the largest percentage, 

35%, of landslides evaluated in their study occurred in LULC areas classified as tea plantation. 

Landslide occurrence in response to LULC change in New Zealand was assessed by Glade 

(2003), who found that forest clearance led to increased rates of landslides by evaluating 

sedimentation rates following land use modifications that triggered landslide activity. Lee 

and Sambath (2006) mapped landslide susceptibility in the Damrei Romel area in Cambodia 

and found higher landslide activity in areas with LULC classified as forest and shrubland 

than agriculture and grasslands due to landslides occurring in mountainous areas with steep 

slopes. Furthermore, Liu et al. (2021) examined changes in landslide susceptibility due to 
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LULC changes in Lixian County, China and also found that landslide-prone areas were 

aMributed to LULC classifications of rainfed cropland and rural land, and forested areas had 

low landslide susceptibility. The results of these studies show that LULC is an important 

influencing landslide activity, but the relationship varies between studies. 

Frequency Ratio (FR) analysis is a common method used to assess the relationship 

between susceptibility and the occurrence of a landslide event (Gariano et al., 2018, 

Pourghasemi et al., 2013). A study by Silalahi et al. (2019) used GIS mapping and FR analysis 

to assess the effects of contributing factors on landslides in Bogor, Indonesia. Their results 

indicated land cover as one of the most important factors contributing to landslides as well 

as lithology and soil type in this area. Additionally, Khan et al. (2019) used the FR to create a 

landslide susceptibility index which was used to produce a susceptibility map for northern 

Pakistan. Their study found barren land and irrigated agricultural land to have the highest 

FR values of the land cover classifications, however distance to roads was found to have the 

highest overall FR value. These and other studies use FR to assess conditioning factors and 

create susceptibility maps but however, rarely incorporate land cover as a dynamic variable. 

Additionally, statistical methods like Logistic Regression (LR) are effective in identifying 

input variable importance/significance and several studies have considered LULC within 

this framework (Reichenbach et al., 2018; Lee & Sambath, 2006; Das & Lepcha, 2019). LR has 

been an effective tool for developing landslide susceptibility maps and highlighting the 

significance of contributing variables however, few studies have considered how LULC can 

be considered dynamically in these models to explain changes over time in a region. 

Hemasinghe et al. (2018) analyzed susceptibility in mountainous regions predisposed to 

landslides in Sri Lanka. Their study examined slope, aspect, lithology, land cover, distance 

to rivers and roads as predictor variables. Land cover was determined to be the most 

influential factor in the study area. Known landslide locations were used to validate their 

susceptibility map, and a majority (76%) of the landslide points were in high and extremely 

high susceptibility areas. Land cover is similarly used as a static predictor variable in many 

other susceptibility studies, uniquely this study will treat land cover change as a dynamic 

variable that changes over time.  



 39 

 
Figure 3.3.1. Geographic locations of the landslide inventories in the LMRB 

 

The question posed in this study is - how do changes in land use and land cover (LULC) 

impact landslide susceptibility in the LMRB? We evaluate these interactions using several new 

landslide event inventories mapped between 2015 – 2018 that provide information within areas 

of Vietnam, Myanmar, and Laos (Amatya et al., 2021) (Figure 3.1.). Additionally, this study 

closely examines the effects of LULC change on landslide occurrence, a dynamic which is not 

completely understood in the LMRB. Our work seeks to understand the relationship of changing 

LULC over time and how this impacts susceptibility. The relationship between LULC changes 

and landslide occurrence will be analyzed using Frequency Ratio (FR) analysis and Logistic 

Regression (LR) modeling. The FR will be used to closely examine the frequency of landslides 

within the various LULC change scenarios present in each of the landslide inventory locations. 

This study will use the LR models to compare LULC changes with other contributing factors 

like slope, forest loss, soil properties described in Table 3.2. The FR and LR results will be 

compared to determine any similarities regarding the significance of LULC changes on landslide 
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occurrence. Results of this work are important as population expansion, road development and 

farming continue to increase (and hence changes in land cover) in the LMRB (Spruce et al., 

2018). This work is part of a broader effort to characterize landslide susceptibility, hazard, and 

exposure within the LMRB for decision making at the country and municipal level using satellite 

remote sensing products. 

 

3.2. Data 

3.2.1. Landslide Inventory 

The landslide inventories used in this research were mapped utilizing high-resolution 

satellite imagery from Planet using the modified framework of Semi-Automatic Landslide 

Detection (SALaD) system (Amatya et al., 2021). SALaD uses object-based image analysis and 

machine learning to map landslides. As we are focusing on rainfall event-based inventories, it is 

important we map landslides induced by that event only as pre-event landslides may have been 

triggered by phenomena such as earthquakes. A change detection-based approach was 

introduced to the SALaD  framework (SALaD-CD) utilizing pre- and post-event imagery 

(Amatya et al., 2021). The new framework incorporates image normalization, image co-

registration and change detection. The landslide polygons produced by SALaD-CD were 

manually corrected and converted to initiation points using NASADEM (NASA JPL, 2020). A 

total of 18 rainfall-triggered landslide inventories between 2015 and 2018 were used in this 

analysis: 13 in Vietnam, three in Myanmar, and two in Laos (Figure 3.1.). Details on the landslide 

inventories used in this study are provided in Table 3.1.  

Table 3.1. Data descriptions, resolutions, and sources 

Dataset Derived variables Spatial resolution Source 

DEM [raster] 
Slope 
Aspect 

30 m NASA JPL (2020) 

Land cover [raster] 
Land use/land cover change 
(LULC) 

30 m Saah et al., (2020) 

Roads [vector] Distance to roads — Meijer et al., (2018) 

Soil properties [raster] 
Bulk density 
Organic carbon 

250 m Hengl et al., (2017) 



 41 

 

3.2.2. Digital Elevation Model (DEM) 

NASADEM with 30 m spatial resolution was used to derive the input variables for slope 

and aspect [38]. NASA DEM is derived from SRTM, which was launched in 2000, with processing 

improvements, elevation control, void-filling and merging with data that was unavailable at the 

time of the mission. NASADEM also provides an improved spatial resolution from the original 

three-arcsecond SRTM DEM to one-arcsecond, making it the finest resolution, global, freely-

available DEM product.  Slope is one of the major influencers of landslide activity, and therefore 

was selected based on its likely correlation with landslide susceptibility (Indhanu et al., 2020). 

The aspect is derived using GIS and reclassified to represent North, South, East, and West facing 

slopes. Data is publicly available from  

hMps://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.  

Table 3.2. Landslide inventory description 

District Country Year Satellite Landslides Area [km2] 
Landslide 
Area [km2] 

(BX) Bat Xat Vietnam 2017 PlanetScope 99 255.96 0.26 
(DB) Da Bac Vietnam 2017 RapidEye 1086 1198.44 3.65 
(MC) Mu Chang Chai Vietnam 2017 RapidEye 1256 873.06 1.35 
(ML) Muong La Vietnam 2017 RapidEye 758 1002.56 1.14 

(PY) Phu Yen Vietnam 2017 RapidEye 1368 2500.00 5.47 
(TT) Tram Tau Vietnam 2017 RapidEye 1490 625.00 2.93 
(MT) Muong Lat Vietnam 2018 PlanetScope 1718 1354.85 5.47 
(NT) Nha Trang Vietnam 2018 PlanetScope 207 149.31 0.5 
(PT) Phong Tho Vietnam 2018 PlanetScope 302 150.01 0.58 

(SH) Sin Ho Vietnam 2018 RapidEye 707 3125.00 2.04 
(TD) Tam Duong Vietnam 2018 PlanetScope 159 188.02 0.75 
(TU) Than Uyen Vietnam 2018 PlanetScope 312 416.26 0.74 
(VX) Vi Xuyen Vietnam 2018 PlanetScope 157 333.34 0.17 

(FM) Falam Myanmar 2015 RapidEye 5086 3956.96 57.63 
(HK) Hakha Myanmar 2015 RapidEye 1737 2211.00 17.54 
(HA) Hpa-An Myanmar 2018 PlanetScope 992 679.59 2.07 

Forest Cover [raster] Forest cover loss 30 m 
Hansen et al., 
(2013) 
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(TB) Thaphabath Laos 2015 RapidEye 242 1250.00 0.97 

(XN) Xieng Ngeun Laos 2018 PlanetScope 1178 831.86 2.58 
 

3.2.3. Land Use/ Land Cover (LULC) 

Land use and land cover (LULC) data from the Regional Land Cover Monitoring 

System (RLCMS) is available via the SERVIR-Mekong Land Use Portal and is presented at 30 

m spatial resolution and yearly temporal resolution from 1987 to 2018 for the Lower Mekong 

River Basin (Saah et al., 2020). The RLCMS uses historical Landsat and MODIS data to create 

LULC maps. The methodology behind deriving the maps can be summarized, defining the 

classification typologies, creating the primitive layers using supervised classification and 

machine learning algorithms, combining the primitive layers into land cover maps, and 

lastly, an accuracy assessment. The typology classifications were determined by stakeholders 

from Cambodia, Laos PDR, Myanmar, Thailand, and Vietnam. LULC data from ten years 

prior to each landslide event, spanning from 2005 to 2018, were used for analysis in this 

study. Due to limited spatial representation of the original classifications, the land cover was 

reclassified into three categories shown in Table 3.3., similarly to the methodology in Chen et 

al. (2019). For more information on how this dataset was created and its details, please 

review Saah et al. (2020). Data is publicly available from hMps://landcovermapping.org.  

Table 3.3. Reclassification of land cover categories 

New classification Original classification 

Urban 
Urban and built up 
Mining 
Aquaculture 

Agriculture 
Cropland 
Grassland 
Shrubland 

Forest 

Forest 
Evergreen Broadleaf 
Mixed Forest 
Orchard or Plantation Forest 

3.2.4. Roads 
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Proximity to roads has been found influential on rainfall-triggered landslide 

occurrence in several areas in previous studies (Larsen & Parks, 1997; Penna et al., 2014; 

McAdoo et al., 2018).  The construction of roads changes the hydrologic response and surface 

and subsurface flow paths in the affected area which can influence landslide susceptibility. 

McAdoo et al., (2018) found that within 100m of a road rainfall-triggered landslides were 

more than two times as likely to occur in Nepal.  The Global Roads Inventory Project (GRIP) 

is compiled from publicly available national vector datasets from governments, research 

institutes, NGOs and crowd-sourcing initiatives and includes over 21 million km of roads. 

The GRIP dataset is  available as a vector dataset for each region of the world. The Southeast 

Asia GRIP dataset was used to derive a distance to roads raster which represents the distance 

to nearby roads for each pixel in the selected extent using GIS software for each landslide 

inventory location. For more information on how this dataset was created and its details, 

please refer to Meijer et al. (2018). Data is publicly available from 

hMps://www.globio.info/download-grip-dataset.  

3.2.5. Soil Properties 

The World Soil Information Service (WoSIS) provides standardized soil profile data 

for various environmental applications at global scale. The most current WoSIS snapshot is a 

compilation of nearly 200,000 soil profiles from locations across the globe. These profiles are 

standardized and distributed using a database model, SoilGrids, which uses machine learning 

methods to map the spatial distribution of soil properties based on the soil profile 

observations (Hengl et al., 2017). Soil data is available for six standard depth intervals at 250 

m spatial resolution. For a full description of this data, please refer to Batjes et al. (2020). Two 

soil layers representing bulk density and organic carbon were downloaded from SoilGrids for 

each study region at the at 0 – 5 cm depth. These variables were resampled to the resolution 

of the DEM at 30 m for model implementation. Data is publicly available from 

www.soilgrids.org.  

3.2.6. Forest Cover Loss 
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Global Forest Change data is created from Landsat imagery at 30 m spatial resolution 

and characterizes forest extent, loss, and gain and is available from 2000 to 2019. In this study, 

this data is used to estimate the Forest Loss over the past ten years for each landslide inventory 

extent. For more information on the methodology and details of this dataset, please review 

Hansen et al. (2013). Data is publicly available from 

hMp://earthenginepartners.appspot.com/science-2013-global-forest.  

3.3. Methodology 

3.3.1. LULC Analysis 

The landcover maps were reclassified from nine categories to three broader categories 

due to the limited spatial representation of the original land cover classifications in the small 

extents represented by the landslide inventory locations. These reclassification categories as 

well as the original categories represented in the study area described in Table 3.3. and 

shown in Figure 3.2. for the greater Lower Mekong region. The reclassified landcover maps 

were analyzed to estimate the amount and type of change over the 10-year time period prior 

to the landslide event in each study region as well as the overall LULC paMerns in the greater 

Lower Mekong region from 1998 to 2018. Overall, the time frame used to analyze LULC 

changes varies in the literature. Several studies chose time intervals that ranged from five to 

30 years due to the availability of aerial imagery (Persichillo et al., 2017; Deng et al., 2018; 

Karsli et al., 2009).  The 10-year time period was selected based on previous studies that 

assessed LULC changes over time. Chen and Huang (2013) compared LULC changes over 10 

years (1999 to 2009) to determine the relationship between LULC change and landslides 

triggered by Typhoon Morakot in Taiwan. They found that areas with a change in land cover 

had a higher frequency of landslides than non-changed areas. Here, the LULC change over 

the ten-year time-period was estimated by assigning a change scenario to each pixel based 

on its land cover classification in the two maps (i.e., map of landcover in 2018 compared to 

the map of landcover in 2008). There is a total of nine possible LULC scenarios for each pixel 

including three no-change scenarios where the type of land cover classification did not 

change. 
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Figure 3.2. (A) The original LULC classifications and (B) the reclassified LULC classifications for the 
LMRB region in 2018. 
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over the specified time-period. The percentage of total area of each LULC scenario is 

estimated and reported for each landslide inventory location and shown in Figure 3.3. (A) 

and averaged over all locations in Figure 3.3. (B). Land cover classified as urban represents 

less than 1% in each study area except for one inventory, Nha Trang (NH), which is 

composed of 16% urban area. Only three of the inventories are characterized by greater than 

25% agricultural area (Figure 3.3.A). Forests comprise over 50% of each area and 81% of the 

total area used for analysis. The LULC change scenario with the largest area represented in 

the study locations is from agriculture to forest, representing 2% of the total area and less 

than 5% in each inventory extent (Figure 3B).  
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Figure 3.3. (A) Percentage of area for each LULC change scenario over 10 years for each inventory location 
(B) Percentage of area of each LULC change scenario averaged over all locations. 

 

3.3.2. Frequency Ratio Analysis 

Frequency ratio (FR) was used in this study to quantitatively examine the relationship 

between landslide occurrence and each LULC change scenario. The FR is the ratio of the 

percentage of landslide occurrence in a factor class to the total percentage of that factor in 

the area, and the average FR value is one (Khan et al., 2019). Values greater than one indicate 

that landslides occur more frequently relative to the total distribution within the variable 

being considered over the study area. FR values lower than one indicate a lower amount of 

landslide occurrence (Gariano et al., 2018). The equation used to calculate FR is as follows: 

 

FR = !!/∑!!
$!/∑$!

	             (1) 

 
   

Where Mi = number of pixels containing landslides in LULC class i, ∑M" = total 

number of pixels containing landslides in the study area, Ni = total number of pixels in the 

study area for that particular LULC class, and ∑N" = total number of pixels in the study area. 

The FR of each LULC scenario is estimated for each study location. 

3.3.3. Logistic Regression 

A logistic regression model is used in this study to further assess the relationship 

between changes in LULC and landslide occurrence as well as determine any similarities 

with the results of the Frequency Ratio analysis. The model is outlined in the workflow 

diagram shown in Figure 3.4. Many susceptibility studies use logistic regression to evaluate 

binary response variables such as landslide occurrence (Pourghasemi et al. 2013; Lombardo 

& Mai, 2018; Horafas & Gkeki, 2017). Logistic regression models the probability of events 

based on the linear combination of independent contributing variables. The model produces 

coefficients for each input variable, which are used to predict the probability of landslides 

over the study area. Positive coefficients indicate that there is positive correlation with the 

presence of this conditioning factor and landslide occurrence, and negative coefficients 
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indicate a negative correlation between presence of the factor and landslide occurrence and 

there is an absence of this factor in locations where landslides occur. The predictions are 

used with raster data of each contributing variable to create a landslide susceptibility map. 

The equations used in logistic regression are as follows: 

               (2) 
 

Z = b# + b$x$ + b%x% +⋯+ b&x&            (3) 
 

Where P = probability of occurrence of the event occurring, Z = linear combination, b#	= 

intercept, b"	 = slope coefficients, and x"	 = independent variables (Lee & Sambath, 2006). To 

create training and testing datasets, an equal number of non-landslide points are generated. 

The logistic regression model is used to create landslide susceptibility maps for each of the 

18 study regions mapped in the landslide event inventory. The model is trained with 70% of 

the landslide inventory as well as randomly generated points that do not coincide with 

landslide locations. The following predictor variables are tested in the logistic regression 

model in this study: slope, aspect, LULC change, distance to roads, bulk density, organic 

carbon, and forest loss. These variables were selected based on their spatial and temporal 

availability and potential correlation with landslide occurrence as well as their significance 

in the logistic regression models determined by their corresponding p-values. A significance 

level of 0.01 implies there is less than 0.1 % chance that the coefficient may be equal to zero 

and therefore be insignificant in determining landslide susceptibility. A p-value less than 

0.05 is statistically significant and p-values greater than 0.05 are determined as not 

statistically significant. All of the model input variables were reclassified into categorical 

factors for simplified comparison between the categories. The classifications of each factor 

are shown in Table 3.4. These maps were validated using the Receiver Operating 

Characteristic (ROC) curve and Area Under the ROC Curve (AUC) analyses, common 

statistics for assessing the predictive capacity of susceptibility models (Felicísimo et al., 2013). 

The ROC was derived using a testing dataset that is comprised of 30% of the landslide 

inventory as well as randomly generated non-landslide points. These metrics are often 

* = 1
1 + ,() 
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considered to evaluate the performance of susceptibility models and the model with a larger 

AUC value is considered beMer predictive model (Gorsevski et al., 2006; Zhou et al., 2018). 

 

 
 
Figure 3.4. Workflow diagram for logistic regression modelling of landslide susceptibility  
 

3.4. Results  

Eighteen landslide inventories were used in this study to assess the relationship 

between land cover change and landslide occurrence. The percentage of total area 

represented by each LULC scenario averaged over all inventory locations is shown in Table 

3.5.  The number of total landslides occurring in each LULC scenario from the 18 inventories 

are shown in Table 3.6. The Frequency Ratio value averaged over all inventories for each 

LULC scenario is shown in Table 3.7. The category forest with no change in LULC over ten 

years prior to the landslide event made up about 82% of the total area when averaging over 

all 18 inventory locations (Table 3.5.). The majority of landslides (15,568) also occurred 

within this LULC category (Table 3.6.). The average FR for Forest with no change was 2.06 

(Table 3.7.). The category making up the second largest percentage of total area is agricultural 

land with no change over ten years prior to the landslide event, which composed about 15% 

of the total area (Table 3.5.). This LULC category experienced 2,530 landslides (Table 3.6.) 

and had an average FR of 1.64 when averaged over all locations (Table 3.7.). The category of 
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urban with no change represented about 1% of the total area within the 18 inventory 

locations (Table 3.5.) and experienced no landslides. The LULC change scenario from 

agriculture to forest in the ten years prior to the landslide event comprised only 2.1% of the 

total area within all inventory locations (Table 3.5.). However, this area experienced 614 

landslides (Table 3.6.) and had an average FR of 2.83 (Table 3.7.) for all locations. The results 

of the FR analysis could indicate that areas experiencing a change from agriculture to forest 

are more susceptible to landslides than other land cover change scenarios. 

Table 3.4. Classification of factors for model input variables 

Distance To Roads Forest Cover Slope Aspect Land Cover Change 

< 10 m no loss (0)   0° - 10° flat (-1) Urban (no change) 

  10 - 50 m loss (1) 20° - 25° north (0 - 22.5) Urban to Forest 

  50 - 100 m  25° - 40° northeast (22.5 - 67.5) Urban to Agriculture 

100 - 200 m  40° - 65° east (67.5-112.5) Forest to Urban 

200 - 1000 m  > 65° southeast (112.5 - 157.5) Forest (no change)  

> 1000 m   south (157.5 - 202.5) Forest to Agriculture 
   southwest (202.5 - 247.5) Agriculture to Urban 
   west (247.5 - 292.5) Agriculture to Forest 
   northwest (292.5 - 337.5) Agriculture (no change) 
   north (337.5 - 360)  

 

The Frequency Ratio (FR) aids in understanding location specific conditions for 

landslide occurrence by providing the ratio of the landslide area to the total area. Figure 3.5. 

shows a matrix diagram of the FR for each landslide inventory and LULC change scenario. 

FR values less than one are represented by dark blue. From Figure 3.5., we can see that all 

categories including urban produced FR values less than one. The scenario from forest to 

agriculture was only found significant in the Sin Ho, Vietnam with a FR of 1.63 and Hakha, 

Myanmar with a FR of 1.94. The scenario agriculture with no change in ten years prior to the 

landslide event had FR values greater than one for half of the inventory locations. Forests 

with no change had FR values greater than one for all but one location (Tam Duong, 

Vietnam). However, the highest FR values were for the LULC change scenario from 

agriculture to forest, ranging from 0 to 8.15 over the 18 landslide inventory locations. This 
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scenario had relatively high FR values of 5.14 for Nha Trang, Vietnam; 6.33 for Vi Xuyen, 

Vietnam; 6.72 for Muong La, Vietnam; and the highest FR value of 8.15 for the landslide 

inventory in Phu Yen, Vietnam. The change observed from agriculture to forest could be a 

representation of agricultural abandonment, where the agricultural fields are left to naturally 

recover and revegetate. Spruce et al. (2020) observed similar changes from agriculture to 

forest in the Lower Mekong between the period from 1997 to 2010. These high FR values 

could be explained by agricultural abandonment practices having an impact on landslide 

occurrence which would be consistent with the results found by Persichillo et al. (2017) and 

Deng et al. (2018).  

Table 3.5. Mean percentage of total area averaged over all locations  

LULC change scenario over 10 years 
 Urban Forest Agriculture 

Urban 0.93 % 0.003 % 0.05 % 

Forest 0 % 81.48 % 0.31 % 

Agriculture 0.03 % 2.11 % 15.05 % 

 

Table 3.6. Sum of landslides within all locations 

LULC change scenario over 10 years 
 Urban Forest Agriculture 

Urban 0 0 0 

Forest 0 15,508 60 

Agriculture 0 614 2,530 

 

Table 3.7. Mean Frequency Ratio averaged over all locations 

LULC change scenario over 10 years 
 Urban Forest Agriculture 

Urban NA NA NA 

Forest NA 2.06 0.20 

Agriculture NA 2.83 1.64 
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In addition to assessing the LULC within the extents of the 18 landslide event 

inventories, land cover changes were also analyzed over the greater Lower Mekong region 

from 1998 to 2018. The urban areas increased by 11.3% from 1998 to 2001 and increased 

constantly at an average rate of 1.2% per year. The area represented by forests decreased by 

5.5% of the total area from 1998 to 2001 with an average decrease of 0.3% per year. In 

contrast, the amount of agricultural area increased drastically by 11.6% from 1998 to 2001 

with an average increase of 0.6% per year. The percentage of total area represented by each 

of the three LULC categories from 1998 to 2018 are shown in Figure 3.7. From this figure we 

can observe that the amount of agricultural land increased by approximately the same area 

that of which the forests decreased from 1998 to 2001. Figure 3.7. shows that the majority of 

the Lower Mekong region is forested ranging from 67 – 63% of the total area for the time 

period from 1998 to 2018. About a third of the area is classified as agricultural land, ranging 

from 30 – 34%, and the smallest percentage of total area of the region is classified as urban, 

ranging from 0.9 – 1.1%. Figure 3.8. shows the percentage of total area represented by each 

LULC change scenario over the greater Lower Mekong region between 1998 and 2018. The 

LULC can be summarized as 62.1% forest unchanged, 29.1% agricultural area unchanged, 

5.8% changed from agriculture to forest, 1.7% changed from forest to agriculture, 0.9% urban 

unchanged, and the combined land cover change scenarios of urban to forest, urban to 

agriculture, and agriculture to urban constitute merely 0.3% of the total area.  
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Figure 3.5. Matrix diagram displaying the FR for each landslide inventory location and LULC 
change scenario. FR values < 1 are represented by dark blue and no data values by ‘NA’ in 
white. 
 

A logistic regression model was trained and validated for the extents of 18 landslide 

event inventories. Table 3.8. presents a summary of the logistic regression coefficients and p-

values of all models for the landslide inventory locations with greater than 1000 landslides to 

avoid potential overfiMing from the smaller observation counts. The logistic regression model 

results for each of the 18 inventories are provided individually in Online Resource 1. In Table 

3.8., the inventory abbreviations are shown next to the corresponding values for the minimum 

and maximum coefficient and p-value for each category within the factors. From this table, 

Muong Lat (MT) represents the highest coefficients in the land cover change corresponding 

to forest (no change), agriculture to forest, and agriculture (no change). When examining the 
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LULC over the inventory location, the landslides largely occur in a forested area with no 

variation in land cover. The land cover in the Muong Lat (MT) area is fairly homogenous with 

minimal area represented by the land cover change scenarios other than forest (no change). 

However, several landslides did occur within areas that underwent deforestation for 

agriculture and in invariable agricultural areas. The model trained with the Da Bac (DB) 

inventory produces minimum coefficients for all distance to roads categories which indicates 

that in this area, the presence of roads is not very influential on landslide occurrence. When 

examining the Da Bac (DB) location, there is an ample road network throughout the province, 

but the landslide distribution does not appear to be influenced by the presence or absence of 

roads and the landslides do not cluster around roads.  

 
Figure 3.6. Bar plot of the percentage of total area of each land cover classification within the 
Lower Mekong River Basin annually from 1998 to 2018. 
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Furthermore, Mu Chang Chai (MC) contributes to the minimum coefficients for the 

slope categories which could indicate that slope is less influential in this location, even though 

the p-values corresponding to the slope factor were not significant. The inventory mapped in 

Mu Chang Chai (MC) occurred in a mountainous forested area with varying slope. The 

inventory in Mu Chang Chai (MC) produced the highest coefficient for forest loss and the 

minimum p-value which could be explained by a large cluster of landslides occurring around 

an area that had experienced substantial forest loss in the years prior to the event. Mu Chang 

Chai (MC) also represents the maximum coefficients for proximity to roads indicating that 

roads are more influential on landslides in this location compared to other inventories. When 

looking closely at the area, the landslide distribution appears to be influenced by proximity 

to the road network. However, the p-values corresponding to distance to roads in the Mu 

Chang Chai (MC) inventory indicate this factor was not found to be statistically significant in 

the logistic regression model. Overall, the coefficients for distance to roads decrease with 

distance indicating that road proximity has an influence on landslide occurrence. This would 

agree with the findings of Larsen & Parks (1997) which identified that landslide frequency 

decreased as distance to roads increased in Puerto Rico.  
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Figure 3.7. Pie chart depicting the percentage of total area represented by each LULC change 
scenario over the greater Lower Mekong region between 1998 and 2018. 

 

The Logistic Regression models were validated using 30 % of the landslide inventories 

as well as randomly generated non-landslide points. The models were validated by ploMing 

the true positive rate versus the false positive rate (ROC) and calculating the area under the 

resulting curve (AUC). The AUC values from the validation of the Logistic Regression model 

and the number of landslides within each landslide inventory are presented in Table 3.9. The 

model validation results found all AUC values to be estimated above 0.7 except for one 

inventory in Hakha, Myanmar with an AUC value equal to 0.697. This was the lowest AUC 

amongst the model results indicating the model trained for Hakha, Myanmar did not perform 

as well compared to the other locations. The model trained for Thaphabath, Laos 

outperformed the other models based on having the highest AUC value of 0.958. The average 

AUC value of all 18 models is 0.82. Based on the model validation results in Table 3.9., the 

number of landslides and AUC values are not correlated indicating the number of landslides 

within each location used to train the models did not affect the model performance. 

  Table 3.8. Summary of Logistic Regression Coefficients and P-Values over all inventory locations 

  Factor   Category 
Coefficient P-value 

min max mean min max mean 
Intercept Intercept -21.78 MT -2.84 DB -13.02 1.99E-05 PY 9.83E-01 MC 6.24E-01 

Land Cover 
Change 

Urban to Forest -9.76 FM 0.71 MT -3.51 8.02E-02 PY 1.00E+00 MT 6.88E-01 
Forest to Urban -15.73 PY -9.11 FM -12.63 9.73E-01 PY 9.84E-01 HK 9.79E-01 
Forest (no change)  -0.61 DB 16.33 MT 5.48 6.71E-06 FM 9.87E-01 MT 4.29E-01 
Forest to Agriculture -13.65 XN 3.99 MT -5.41 4.39E-01 FM 9.98E-01 TT 8.83E-01 
Agriculture to Urban -13.12 PY -10.58 FM -12.02 9.71E-01 FM 9.91E-01 PY 9.82E-01 
Agriculture to Forest -15.46 MC 16.01 MT 0.26 3.39E-05 FM 9.87E-01 MT 5.03E-01 
Agriculture (no 
change) -1.29 DB 14.79 MT 3.76 2.20E-25 MC 9.88E-01 MT 3.19E-01 

Distance to 
Road 

20 - 50 m -2.06 DB 15.54 MC 4.15 5.20E-02 DB 9.86E-01 MC 6.50E-01 
50 - 100 m -1.04 DB 15.65 MC 2.73 1.67E-01 FM 9.86E-01 MC 6.05E-01 
100 - 200 m -1.30 DB 16.02 MC 4.21 1.77E-01 DB 9.86E-01 MT 6.76E-01 
200 - 1000 m -0.65 DB 16.30 MC 4.53 3.80E-01 FM 9.85E-01 MC 6.79E-01 
> 1000 m -1.19 DB 15.86 MC 5.45 2.20E-01 DB 9.87E-01 XN 6.39E-01 

60 - 100 cg/cm3 -1.13 PY -0.88 FM -1.01 1.12E-01 PY 3.61E-01 FM 2.36E-01 
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Soil Bulk 
Density 100-130 cg/cm3 -1.32 FM 1.28 MT -0.36 2.28E-18 MC 6.77E-01 DB 2.93E-01 
Forest Loss forest loss = 1 -0.77 FM 2.48 MC 0.67 4.13E-14 MC 4.73E-01 HK 6.47E-02 

Slope 

10 - 20 deg 0.58 DB 2.07 XN 1.41 1.26E-15 FM 1.95E-01 DB 2.76E-02 
20-25 deg 0.49 MC 3.17 MT 2.12 2.95E-24 FM 7.29E-02 MC 9.13E-03 
25 - 40 deg 0.22 MC 4.09 MT 2.70 5.15E-32 FM 3.93E-01 MC 4.92E-02 
40 - 65 deg 0.40 MC 4.42 DB 2.97 2.30E-27 FM 3.67E-01 MC 4.59E-02 
> 65 deg -15.52 MC 3.33 XN -9.60 2.41E-02 XN 9.93E-01 PY 8.33E-01 

Aspect 

North -2.20 TT -0.64 FM -1.24 9.32E-06 FM 1.34E-01 XN 3.20E-02 
East 0.35 HK 1.85 DB 1.16 1.69E-12 FM 3.09E-02 HK 3.87E-03 
Southeast 0.96 HK 2.90 DB 1.94 3.18E-26 FM 1.34E-09 HK 1.68E-10 
South 0.53 HK 3.12 DB 1.80 5.27E-21 DB 1.32E-03 HK 1.66E-04 
Southwest -0.12 HK 2.48 DB 1.27 4.77E-14 XN 5.11E-01 HK 6.39E-02 
West -0.53 HK 1.64 XN 0.24 1.70E-08 XN 4.43E-01 PY 1.51E-01 
Northwest -2.50 TT 0.98 XN -0.86 1.77E-06 HK 5.95E-01 MC 7.78E-02 

 
*Color coded abbreviations correspond to the landslide inventories in Table 3.9. 
**Red mean values represent the maximum within each factor and blue mean values represent the 
minimum within each factor 
 
 

Table 3.9. Model validation results (AUC) for each inventory location 

District Country Landslides Validation 
Landslides  

AUC 

(BX) Bat Xat Vietnam 99 33 0.820 
(DB) Da Bac Vietnam 1086 358 0.892 
(MC) Mu Chang Chai Vietnam 1256 414 0.854 
(ML) Muong La Vietnam 758 250 0.835 
(PY) Phu Yen Vietnam 1368 451 0.856 
(TT) Tram Tau Vietnam 1490 492 0.844 
(MT) Muong Lat Vietnam 1718 567 0.794 
(NT) Nha Trang Vietnam 207 68 0.853 
(PT) Phong Tho Vietnam 302 100 0.906 
(SH) Sin Ho Vietnam 707 233 0.816 
(TD) Tam Duong Vietnam 159 52 0.838 
(TU) Than Uyen Vietnam 312 103 0.713 
(VX) Vi Xuyen Vietnam 157 52 0.755 
(FM) Falam Myanmar 5086 1678 0.732 
(HK) Hakha Myanmar 1737 573 0.697 
(HA) Hpa-An Myanmar 992 327 0.869 
(TB) Thaphabath Laos 242 80 0.958 
(XN) Xieng Ngeun Laos 1178 389 0.740 
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* Colors correspond to landslide inventories highlighted in Table 3.8. 
 
3.5. Discussion 

The land cover of the inventories used in this study were dominated by forests with 

minimal LULC changes present. According to Table 3.5., the scenarios of LULC change from 

forest to urban, agriculture to urban, urban to forest, and urban to agriculture combined make up 

only 0.082 % of the total area averaged over the 18 inventory locations. Looking at the LULC 

analysis over the LMRB in Figure 3.7., the relatively small area occupied by urban areas may 

make it difficult to see any conclusive paMerns in landslide activity. The LULC scenarios involving 

urban activities were less prominent in the landslide inventories used in this study, but also 

occupy the lowest amount of total land area in the greater Lower Mekong region so this category 

is not only less represented in the 18 landslide inventory area locations, but overall in the Lower 

Mekong River Basin. The amount of area occupied by urban and built-up classification is not 

comparable to the amount of agricultural and forested areas in the LMRB. Additionally, the 

scenario involving urban activities did not experience any landslides within the 18 inventories 

used in this study. Therefore, the impact of LULC change scenarios to or from the urban 

classification cannot be fully determined using the 18 inventories presented in this study. 

The Frequency Ratio (FR) reveals potential correlation between landslide locations and 

causative factors in the area. Overall, the scenario from agriculture to forest had the highest 

average FR value followed by the scenario of forest with no change (Figure 3.5.). The forested 

areas that experienced no change had an average FR value of 2.06 when averaged over all 18 

study locations, and this is most likely due to the prevalence of forested mountainous regions 

with steep slopes where most landslides occur in this region. The results of this study indicate 

that the land cover change scenario from agriculture to forest could have an impact on landslide 

occurrence and that areas changing from agriculture to forest may be more susceptible to 

landslides in the years following the land cover change. This could indicate that abandoned 

agricultural lands left to naturally recover are more susceptible to landslide activity than other 

land cover change scenarios, which would be similar to the conclusions drawn by Persichillo et 

al. (2017) and Deng et al. (2018). Agricultural areas on mountainous slopes have a higher 
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probability of being abandoned, and dense forests following agricultural abandonment have been 

shown to increase landslide susceptibility (Mantero et al., 2020; Faccini et al, 2017; Pisano et al., 

2017). 

Further evaluation of land cover change from agriculture to forest with landslide 

inventories where this LULC change scenario is more prevalent than the inventories used here 

needs to be executed to further understand the impact of land use changing from agriculture to 

forest as invariable forests dominate the areas used in this study. Additionally, the FR being a 

univariate analysis must be taken into consideration. The areas where landslides occurred that 

were deforested for agricultural purposes could be influenced by additional factors. Other 

limitations include the spatial resolution and the availability of remotely-sensed datasets for the 

region. For example, the finest resolution for publicly available DEM data for the Lower Mekong 

River Basin is 30 meters, which is much coarser than other regions such as USA with one-meter 

DEM available. With landslides ranging in size, coarser spatial resolutions may not accurately 

represent the environment of very small, shallow slope failures. Enhanced spatial resolution of 

remotely sensed data would greatly benefit modelling efforts for landslide susceptibility in the 

Lower Mekong River Basin. 

We can make generalized conclusions for the 18 inventory locations and models regarding 

landslide causative factors using the coefficients and p-values from Table 3.8. When averaged 

over all 18 models the causative factors associated with distance to roads, forest loss, and slope 

display positive coefficients, which is expected considering these variables are known to be 

influential on landslide occurrence. Overall, the most significant variables based on the mean p-

values were slope and aspect. The high significance of aspect could be explained by the models 

using flat as the basis factor. When considering all 18 inventories, the logistic regression models 

did not indicate that areas changing from agriculture to forest were as influential on landslide 

occurrence as the FR analysis did, which could be explained by the FR being a univariate analysis 

and the Logistic Regression being multivariate. However, the average coefficient for the LULC 

change category of agriculture to forest has the only positive coefficient of any of the change 

scenarios besides forest and agriculture with no change.  Forest with no LULC change had the 
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highest and only positive average coefficient relative to the other land cover change scenarios 

which is most likely due to the majority of landslides in this study occurring in steep forested 

areas and the considerable amount of forested area throughout the study locations. Areas that 

changed from forest to urban have the lowest average coefficient which could be explained by 

the limited number of landslide points within the area represented by this scenario in the 

inventories. Alternatively, this could mean that areas being developed are not susceptible to 

landslides due to other factors such as low slope which could indicate informed land 

management decisions in the region. 

3.6. Conclusions 

Land use and land cover (LULC) changes can affect slope stability and geological 

conditions that may influence the occurrence of landslide activity. This study assessed the 

influence of LULC changes on landslide susceptibility for 18 locations throughout the Lower 

Mekong River Basin (LMRB). The majority of landslides occurred in the LULC change scenario 

with the largest land coverage percentage, which is forested areas that did not experience any 

change in land cover. However, the LULC change scenario from agriculture to forest had the 

highest FR values overall. Both the FR analysis and LR models indicated that the LULC change 

scenario from agricultural land to forest could positively correlate with landslide occurrence. 

However, for real-time analysis the LULC data available on the SERVIR-Mekong Land Cover 

Portal would be needed to be updated each year as currently, maps are only available only up to 

2018. 

There were data limitation issues regarding the representation of land cover changes in 

the extent of the landslide inventories. Not all land cover change scenarios are represented in 

these study areas, more locations with landslide inventories that experienced land cover changes 

are needed to fully analyze the influence of LULC on landslide susceptibility. This method can 

further be applied to new landslide inventories for other locations in the Lower Mekong River 

Basin as the data becomes available to discover more consistent correlations between LULC 

change and landslide susceptibility. Specifically, the relationship between agricultural 

abandonment and landslide occurrence could be further analyzed to determine how this LULC 
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change influences susceptibility in the Lower Mekong Region. The inclusion of dynamic LULC 

in landslide susceptibility models could greatly improve hazard assessment and should be 

investigated as the combination of land use changes over time due to population expansion and 

disturbances caused by climate change. This analysis is done primarily using remote sensing 

products, making it transferable to other landslide-prone regions around the world. Additional 

research efforts could further investigate the role of agricultural abandonment and natural 

recovery on rainfall-triggered shallow landslides. 
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4. Chapter 4. Spatial and Temporal Analysis of Global Landslide 
Reporting 
 
Associated citations: 
(1)  Dandridge, C.; Stanley, T.A.; Kirschbaum, D.B.; Lakshmi, V. Spatial and Temporal Analysis of 
Global Landslide Reporting Using a Decade of the Global Landslide Catalog. Sustainability, 2023, 15, 
3323. h^ps://doi.org/10.3390/su15043323 
(2) Dandridge, C.; Stanley, T.A.; Kirschbaum, D.B.; Lakshmi, V. A Decade of the Global Landslide 
Catalog: Spatial and Temporal Analysis, Applications, and Limitations, NH35E-0501 presented at 
2021 Fall Meeting, AGU, December 13-17. 

4.1.      Introduction 

 
Rainfall-triggered landslides are a mounting global concern due to increased frequency of 

extreme precipitation due to climate change (Crozeir, 2010; Gariano & Guzzetti, 2016; Marc et al., 2022). 

Quality landslide inventories are necessary for assessing landslide risk and hazard (Froude & 

Petley, 2018; Emberson et al., 2022). NASA’s global landslide catalog (GLC) compiles a record of 

rainfall triggered landslides globally from news reports, academic papers, and pre-existing 

databases at NASA Goddard Space Flight Center. Landslides are not recorded consistently across 

the globe, with that being said the GLC represents a minimum number of landslide reports from 

2007 to 2018. The original framework and collection methods for the GLC are detailed in 

Kirschbaum et al. (2010). Comprehensive analyses of the GLC database were also undertaken in 

Kirschbaum et al. (2012) and Kirschbaum et al. (2015). Single event entries in the GLC may consist 

of multiple landslides near one another triggered by the same rainfall event. The GLC is 

published along with other landslide inventories in the Cooperative Open Online Landslide 

Repository (COOLR), which contains landslides reported by citizen scientists and other 

inventories from the broader research community (Juange et al., 2019). Even though the GLC is 

no longer being compiled, landslides can still be reported using the Landslide Reporter 

application and added to the COOLR collection. The GLC represents all landslides triggered by 

rainfall including mudslides, rockslides, and debris flows. Each event includes location 

information (nominal and geographic), time of event, triggering mechanism, type of landslide, 

relative size, location accuracy, impacts such as estimated economic damage, casualties, and 
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fatalities. The location accuracy is based on a qualitative radius of confidence in kilometers. 

Location accuracy provided in the GLC is affected by the capability of the news reports to convey 

the location information and preciseness. Additionally, the GLC may not be complete for non-

English-speaking countries due to the collection method and most reports originating from 

English-language media (Kirschbaum et al., 2015). The year 2010 yielded the highest number of 

annually recorded events in the GLC, which can be attributed to unusually high precipitation and 

increased landslide events globally compared to other years. A detailed analysis of the anomalies 

in 2010 has been performed and discussed by Kirschbaum et al., (2012). 

Historically, there have been few efforts to compile landslides at global scale (Petley, 2012). 

Detailed landslide inventories are more commonly found at regional or national scale (Abella & 

Van Westen, 2007; Chau et al., 2004, Guzzetti, 2000; Mirus et al., 2020; Hughes & Schulz, 2020) or 

are event-based after a significant rainfall event (Bhandary et al., 2013; Amatya et al., 2022; Marc 

et al., 2018). However, Froude and Petley (2018) present a global database of fatal landslides from 

2004 to 2016, but it does not include non-fatal events. There are several methods to produce 

landslide inventories and most are event-based or region-specific. For example, Bessette-Kirton 

et al. (2019) present landslides triggered by Hurricane Maria in 2017 in Puerto Rico that were 

mapped using post-storm satellite and aerial imagery. From their mapping, an estimated 40,000 

landslides occurred as a result of the hurricane event. The national landslide inventory for Cuba 

only represents landslides that cause major damage and does not reveal qualitative information 

for most of the landslides in the inventory or represent the entire country (Abella & Van Westen, 

2007). The AVI project is the most extensive database for landslides and floods in Italy with events 

manually gathered from historical news articles and scientific reports from 1918 to 1990 (Guzzetti 

et al., 1994). Alternatively, Amatya et al. (2019) utilized high-resolution imagery from 2012 and 

2018 with object-based image analysis to map a landslide inventory along the Karnali Highway 

in Nepal, and then several inventories in Southeast Asia in Amatya et al., (2021). This method 

was able to identify almost 60% of the landslides identified manually. The Fatal Landslide Event 

Inventory of China (FLEIC) is a record of 1911 landslides from 1950 to 2016. Each entry represents 

a single landslide gathered from geological records, media reports, and literature (Lin & Wang,, 
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2018). The GLC can be used to supplement existing inventories that may be limited temporally 

or spatially.  

Several landslide studies have used the GLC in their creation of landslide databases and to 

assess global patterns of landslides. Lin and Wang (2018) used events in the GLC to analyze fatal 

landslides in China and create the Fatal Landslide Event Inventory of China (FLEIC). They also 

used the same methodology to determine the location and radius of confidence for additional 

landslides in China. This study noted that the short time period available in the GLC (less than 

ten years) limited temporal trend analysis. Chandrasekaran et al. (2013) investigated damages to 

infrastructure in Nilgiris, India caused by rainfall-induced landslides using the GLC. They found 

that roughly ten percent of global landslide fatalities occurred in India. Benz and Blum (2019) 

proposed an algorithm to detect global landslide clusters triggered by the same rainfall event and 

applies it to events reported in the GLC. They found that more than 40% of events can be related 

to another event, and 14% of events are part of a cluster with more than ten landslides triggered 

by the same rainfall event with results varying greatly geographically. Culler et al. (2021) 

evaluates post-fire landslide susceptibility in different regions across the globe using the GLC for 

landslide events and comparing antecedent precipitation at burned and unburned locations from 

MODIS. They found that wildfires increase landslide susceptibility, but post-fire landslides are 

not uniform and vary geographically. This study noted that the GLC was chosen because it 

offered the largest spatial and temporal range of any landslide inventory. Whiteley et al. (2019) 

included the GLC in their review of geophysical monitoring of global rainfall-triggered landslides 

to draw the conclusion that landslide distribution is not uniform across the globe. Additionally, 

Froude and Petley (2018) used the GLC in their analysis of global fatal landslides from 2004 to 

2016. They found that most fatal landslide clusters occur around cities in countries with lower 

gross national income.  

Furthermore, the GLC has been used in several studies to train and validate landslide 

models. Lin et al. (2017) used landslides from the GLC and the World Geological Hazard 

Inventory as training and validation data for a logistic regression model for global landslide 

susceptibility. Farahmand and Aghakouchak (2013) used 581 events from 2003, 2007, 2008, and 

2009 in the GLC as training and validation data for a support vector machines machine learning 
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algorithm to predict global landslides. This study noted that the GLC is composed of major 

landslides and therefore, the model is not calibrated for small landslides. The model reliably 

predicted historical landslides. Liao et al. (2010) proposed an early warning system for rainfall-

triggered landslides over Java Island, Indonesia using events in the GLC from 2003 and 2007 and 

the SLIDE (slope infiltration distributed equilibrium) model with NASA’s Tropical Rainfall 

Measurement Mission (TRMM) precipitation estimates. Kirschbaum et al. (2015a) used the GLC 

within the LHASA framework for Central America and Hispaniola. This study related GLC 

events to long-term precipitation from TMPA from 2001 to 2013. The LHASA model was able to 

correctly identify the potential for most GLC events. This study noted that the GLC is the only 

event-based database for landslides across all countries within Central America and the 

Caribbean region. Furthermore, Kirschbaum et al. (2012) compared GLC events from Hurricane 

Mitch in Central America in 1998 to the susceptibility maps globally and regionally, and all the 

nine landslides occurred in high susceptibility zones in the regional map, and eight landslides 

occurred in high susceptibility zones in the global map.  

Following the analysis of the GLC by Kirschbaum et al. (2015b), this research further 

examines various attributes and limitations associated with the landslide information reported 

by the GLC using a longer time period of recorded events. Global patterns of landslides and 

associated fatalities are examined both geographically and temporally. Fatality and landslide 

hotspots are assessed at global and continental scale. The GLC has not previously been compared 

against other landslide inventories. Here, we evaluate twenty-seven region-specific event 

inventory databases and their similarities and differences against events reported in the GLC. A 

quantitative spoken language analysis has yet to be performed with the GLC reports. To 

determine if there is any bias regarding the language of reported events in the GLC, the 

relationship between spoken language and landslide reporting is investigated. The economic 

status of varying regions could affect the amount and method of landslide reporting, thus 

economic variables are compared against landslide activity reported in the GLC to determine the 

effect of economic status on landslide event reporting. The results of this study give a deeper 

understanding of the global patterns of landslide reporting, and are also useful for applying the 

GLC in rainfall-triggered landslide analysis.  
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4.2.      Data 

This section lists and describes the datasets used for analysis in this research and organizes 

the information in Table 4.1. 

Table 4.1. Data descriptions and source information. 

Name Description Source 

Global Landslide Catalog 
Global compilation of rainfall-triggered 
landslides from 2007 to 2018 [6] 

Area (km2) A country’s total area [32] 

Population Density (people/km2) Midyear population divided by land area 
in square kilometers 

[33] 

GDP per Capita (USD) 
Gross Domestic Product (GDP) divided by 
the midyear population [34] 

Landslide Hazard Global landslide susceptibility map [5, 35] 

Landslide Inventories 

Landslide event inventories from 2008 to 
2018 

[3, 17, 36–38] 

Region-specific landslide inventory for the 
Apulian region of southern Italy collected 
from 2008 to 2016 

[39] 

4.2.1. GLC 

The Global Landslide Catalog (GLC) is a record of landslides collected from news reports, 

academic articles, and pre-existing inventories. The GLC is compiled and maintained at NASA 

Goddard Space Flight Center. However, the GLC is no longer active and no additional years 

beyond 2018 will be added. There are a total of 11,334 landslides in the GLC that occur between 

2007 and 2018, which are publicly available as geospatial point or tabular data (Kirschbaum et al., 

2010). 

4.2.2. Land Area 

The land area data from World Bank is defined as a country’s total area, excluding area under 

inland water bodies, national claims to continental shelf, and exclusive economic zones. The land 

area estimates are reported in km2. A full data description and download information are 

available from https://data.worldbank.org/indicator/AG.SRF.TOTL.K2. 

4.2.3. Population Density 
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The population density data from World Bank is defined as the midyear population divided 

by land area in square kilometers. A full data description and download information are available 

from https://data.worldbank.org/indicator/EN.POP.DNST. 

4.2.4. Gross Domestic Product per Capita 

The Gross Domestic Product (GDP) data from World Bank is the sum of gross value added 

by all resident producers in the economy plus any product taxes and minus any subsidies not 

included in the value of the products. The GDP per capita is the GDP divided by the midyear 

population. Values are collected from the latest year available for each country. A full data 

description and download information are available from 

https://data.worldbank.org/indicator/NY.GDP.PCAP.CD. 

4.2.5. Landslide Susceptibility 

The global landslide susceptibility map has a spatial resolution of roughly 1 km and covers 

most of the world’s land surface, but not Antarctica. The susceptibility model combines slope, 

geology, road networks, faults, and forest loss using a heuristic fuzzy methodology (Emberson et 

al., 2022; Stanley & Kirschbaum, 2017). Susceptibility is classified by increasing severity as very 

low, low, medium, high, and very high. The receiver operating characteristic (ROC) curve and 

area under the curve (AUC) is used to assess the performance of the global susceptibility map. 

The AUC ranges from 0.61 to 0.85 when compared against local landslide inventories from 

varying locations across the globe, and the AUC when compared against the GLC is 0.82. Further 

explanation on the quality of the map can be found in Stanley and Kirschbaum (2017). In this 

research, the global susceptibility rating is extracted for each point representing an event in the 

GLC. 

4.2.6. Landslide Inventories 

Twenty-seven landslide event inventories from 2008 to 2018 were created via object-based 

image analysis, developed by Amatya et al. (2022); Chang et al. (2014); Chen et al. (2013); Marc et 

al. (2018); and Van Westen and Zhang, (2018). These inventories consist of landslides mapped 

after considerable rainfall events in various locations. Most landslides are able to be detected 
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using object-based image analysis, but the areas are not always accurate and manual correction 

is often necessary. Additionally, a landslide database for the Apulian region of southern Italy was 

collected from 2008 to 2016 by Vennari et al. (2022) and used for comparison in this study. The 

event inventories are provided as point or polygon shapefiles which are compared directly to the 

points provided in the GLC using GIS to determine how many GLC points lie within the 

inventories mapped extent.  

4.3. Results  

4.3.1. Geographic and Temporal Distribution 

A global landslide susceptibility map produced by Emberson et al. (2020) and Stanley and 

Kirschbaum (2017) is overlaid with landslide events and hotspot estimation and shown in Figure 

4.1.A. The susceptibility map is used to allocate a susceptibility rating for each point in the GLC 

by extracting the susceptibility map pixel value at each event location. The most notable landslide 

hotspots, which are highlighted in red, are in the Pacific Northwest, High Mountain Asia, and 

the Philippines. Figure 4.1.B shows the number and percentage of events as well as the number 

of fatalities for each susceptibility class. Regarding all GLC events from 2007 to 2018, 77% of 

reports occur in medium or higher susceptibility areas, and 32% of reports occur in very high 

susceptibility areas. Furthermore, areas described as having very low susceptibility are reported 

to have the least number of events with only 6.8% of all landslides and have the least number of 

fatalities associated with landslides. Overall, the number of fatalities increases with susceptibility 

as shown by the blue line. Figure 4.1.C shows the average number of events in black and the 

average number of fatalities in blue by month. On average, most events are reported in the 

months July, August, and September, and the least reports occur in February and November. 

Most fatalities are reported in June and August, and like the number of reports, the least number 

of fatalities are reported in February and November. 
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Figure 4.1. (A) Global susceptibility map overlaid with landslide events and hotspot 

estimation (red); (B) Total and percentage of reports and number of fatalities for each 

landslide susceptibility class; (C) Average number of reports and fatalities for each 

month. 

 

The landslide susceptibility map and reported events as well as the distribution of fatalities 

throughout Asia are shown in Figure 4.2.A. Many reported events in Asia and fatalities in the 

GLC occur near the Himalayan Arc. Another landslide hotspot in Asia is the Philippines, 

reporting 769 events between 2007 and 2018. The largest fatal event in the GLC was reported to 

have a death toll of 5000 people and occurred after the highest 24 h rainfall in city history 

triggered a very large landslide near Kedarnath, India in 2013. Oddly, only 22 total events were 
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reported in the Russian Federation from 2007 to 2018 despite the presence of large areas 

susceptible to landslides. This may indicate that landslide events in the Russian Federation are 

underrepresented. Figure 4.2.B shows the largest portion (38%) of reports and the most fatalities 

occurred in very high susceptibility areas. Generally, the amount of fatalities reported increases 

with susceptibility. Looking at the average number of reports and fatalities by month in Figure 

4.2.C, most landslides were reported in June–October with most fatalities being reported in June 

and August. This trend correlates with the monsoon season experienced in Southeast Asia which 

lasts approximately May to October (Loo et al., 2015; Petley et al., 2007). 

 

Figure 4.2. (A) Susceptibility map of Asia overlaid with landslide events and fatalities; 

(B) Total and percentage of reports and number of fatalities for each landslide 
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susceptibility class over Asia; (C) Average number and percentage of reports and 

fatalities for each month over Asia. 

3.2. Spoken Language Analysis 

The reporting language of GLC events was assessed to determine the extent of bias regarding 

the language of reported events in the GLC. The relationship between spoken language and 

landslide reporting is investigated and reported in Figure 4.3. The spoken language for each event 

was designated by the official language of the country reported in the GLC. The total number and 

percentage of reports by language are shown in Figure 4.3.A, and the number of fatal events and 

associated fatalities are shown in Figure 4.3.B. While the plurality (41%) of total events reported 

in the GLC are from English-speaking countries, the number of fatal events and total fatalities are 

highest for Hindi-speaking countries. The large number of fatalities reported in Hindi is a result 

of the 5000 fatalities associated with a single event in India. When excluding this outlier event, 

Chinese followed by English and Spanish have more total fatalities reported than Hindi. Hindi, 

Spanish, Chinese, and Nepali-speaking countries report more fatal events than English. 

Furthermore, India, China, Nepal, and the Philippines make up the countries with the highest 

number of fatal landslide events in the GLC, reporting 321, 258, 220, and 209 fatal events, 

respectively. This shows a reporting bias towards English-speaking countries and bias in the 

collection methods of the reports. More fatal landslides are reported more often than non-fatal 

landslides regardless of the language spoken in that location.  
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Figure 4.3. (A) Total number and percentage of total events by language; (B) Number of 

fatal events, percentage of total events, and number of fatalities by language. 
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4.3.3. Attribute Assessment 

A general assessment of the GLC event attribute information is performed to observe trends 

in the event data. The known versus unknown values of several important attributes that are 

reported for each event are compared. The landslide category, location accuracy, size, and 

triggering mechanism attributes were mostly complete with known values for 90% or greater of 

reported events. However, the event time and landslide setting attributes were reported with 

more unknown values than known. Over 50% of events in the GLC are known within a five 

kilometer radius of confidence as shown in Table 4.2. Only 6.8% of events did not report a radius 

of confidence, and less than 20% of events have a radius of confidence greater than 25 km. This 

shows that generally, the location of the landslide reported from GLC events is relatively known 

within a small radius. The location accuracy is beneficial when using the GLC events for 

application in model training or validation. Furthermore, the distribution of the event size 

reported in the GLC is evaluated and the results are displayed in Table 4.3., which shows 72% of 

GLC events as medium size, and less than 9% of events are classified as large or very large. As 

the GLC is a collection of rainfall-triggered landslide events, we evaluated the triggering 

mechanism reported for each event. The distribution of triggering mechanisms are shown in 

Table 4.4., and 83% of events from 2007 to 2018 are in response to some type of precipitation. This 

attribute can be used to filter events for rainfall-triggered landslide studies that implement the 

use of the GLC. The reported events in the GLC per year are assessed and a cumulative sum per 

year is shown in Figure 4.4. The first three years on record, 2007–2009, consist of less reported 

events compared to later years, which could indicate that the first several years of landslide event 

collection are incomplete. The cumulative sum was also assessed by continent and similarly 

showed fewer reports for the first few years of record. No other regional patterns were discernible 

from the annual analysis. Furthermore, the reporting of events in the GLC by day of the week per 

year was evaluated in this study, and no distinct pattern was observed. The year 2010 holds the 

highest number of landslide events, and as mentioned, this anomaly year has been investigated 

and justified by extreme and prolonged precipitation in several landslide prone regions by 

Kirschbaum et al. (2012) [8]. This year also experienced greater numbers of fatal landslides and 

fatalities associated with landslides.  
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Table 4.2. Distribution of the radius of confidence of the reported location for all events. 

Location Accuracy Number of Events Percentage of Total Events (%) 
Exact 1386 12.7 
1 km 2185 19.8 
5 km 3178 28.8 
10 km 1435 13.0 
25 km 1470 13.3 
50 km 794 7.2 
100 km 25 0.2 
250 km 16 0.1 
Unknown 542 4.8 

Table 4.3. Distribution of reported landslide size for all events. 

Size Number of Events Percentage of Total Events (%) 
Small 3199 28.2 
Medium 6880 60.7 
Large 900 7.9 
Very large 118 1.0 
Catastrophic 8 0.1 
Unknown 229 2.0 

 

Table 4.4. Distribution of triggering mechanism for reported events in the GLC. 

Triggering Mechanism Number of Events Percentage of Total Events (%) 
downpour 4836 42.68 
rain 2874 25.37 
unknown 1174 10.36 
continuous rain 839 7.41 
tropical cyclone 601 5.30 
monsoon 245 2.16 
snowfall snowmelt 155 1.37 
mining 117 1.03 
construction 102 0.90 
earthquake 99 0.87 
flooding 92 0.81 
no apparent trigger 73 0.64 
freeze–thaw 41 0.36 
other 41 0.36 
dam embankment collapse 19 0.17 
Leaking pipe 17 0.15 
volcano 4 0.04 
vibration 1 0.01 
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Figure 4.4. The cumulative sum of reported events in the GLC for each year from 2007 
to 2018. 

4.3.4. Inventory Comparison 

There are landslide inventories available at global scale as well as focused on individual 

countries or states. These inventories vary in terms of source, mapping method, and attribute 

information. To compare the GLC against other landslide inventories, we look at several region-

specific inventory databases and their similarities and differences against the GLC methodology. 

The location, number of points in the inventory, rainfall event date, number of points represented 

in the GLC, and source of each inventory are shown in Table 4.5. Only 9 out of the 27 event 

inventories are represented in the GLC by at least one point. A total of 25 points in the GLC 

coincide with the extent of the event inventories, which collectively report 17,893 landslides. One 

small, twelve medium, eight large, and four very large landslides represent the sizes reported by 

the GLC points and are shown in the reported size column in Table 4.5. Additionally, the location 

accuracy reported by the GLC was evaluated using the event inventories and are reported in the 
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location accuracy column of Table 4.5. Of the 25 points, 22 contained event inventory landslides 

reported within the location accuracy radius, 3 were near the landslide inventory area but 

exceeded the reported location accuracy radius, and 1 GLC point that was 5 km from the event 

inventory reported the location as unknown. These event inventories consist of between 131 and 

21,379 points or polygons, and the GLC consists of at most 16 points for the corresponding event 

in Teresópolis, Brazil, which provides 7268 landslide polygons. Additionally, we compared the 

GLC events to a local landslide inventory from Vennari et al. (2022) for the Apulian region of 

southern Italy collected from 2008 to 2016. We found that no landslides are reported in the GLC 

in the extent of the Apulian region, while the local inventory reports 107 landslide points. While 

the GLC does not provide as many points as the event inventories evaluated here, one point in 

the GLC could be representative of all the landslide activity in that region for the specific event. 

However, the number of landslides represented in event inventories is up to several orders of 

magnitude greater than the number of reported landslides in the GLC for the same date and 

location as the landslide event mapped. This comparison shows that the GLC is less 

representative of small regions and event-specific landslides. Of the 19 inventories mapped in the 

Lower Mekong region, only five are represented in the GLC by one point, and one is represented 

by two points. This landslide inventories are mapped in primarily forested mountainous areas 

and the lack of representation in the GLC indicates that events occurring in remote locations are 

largely underreported.  

Table 4.5. Rainfall-induced landslide event inventories used in this study. 

Location Number of 
Points 

Rainfall Event 
Date 

Points in 
GLC Size Location 

Accuracy Source 

Khao Phanom, 
Thailand 225 30 March 2011 2 

Large (1) 
5 km (2) [17] 

Medium (1) 

Falam, Myanmar 5086 30–31 July 
2015 

1 Medium 5 km [17] 

Hakha, 
Myanmar 1737 30–31 July 

2015 1 Small 5 km [17] 

Thaphabath, 
Laos 

242 11 September 
2015 

0   [17] 

Mu Chang Chai, 
Vietnam 1256 2–3 August 

2017 0   [17] 
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Muong La, 
Vietnam 758 2–3 August 

2017 0   [17] 

Bat Xat, Vietnam 99 23–28 August 
2017 1 Large 25 km [17] 

Da Bac, Vietnam 1086 10–11 October 
2017 1 Large 5 km  [17] 

Phu Yen, 
Vietnam 1368 10–11 October 

2017 0   [17] 

Tram Tau, 
Vietnam 1490 10–11 October 

2017 0   [17] 

Sin Ho, Vietnam 707 23–24 June 
2018 0   [17] 

Tam Duong, 
Vietnam 159 23–24 June 

2018 0   [17] 

Than Uyen, 
Vietnam 312 23–24 June 

2018 0   [17] 

Vi Xuyen, 
Vietnam 157 23–24 June 

2018 0   [17] 

Hpa-An, 
Myanmar 992 28–30 July 

2018 0   [17] 

Phong Tho, 
Vietnam 302 3 August 2018 0   [17] 

Xieng Ngeun, 
Laos 1178 30 August 2018 0   [17] 

Muong Lat, 
Vietnam 1718 

27 August – 1 
September 
2018 

0   [17] 

Nha Trang, 
Vietnam 207 18 November 

2018 1 Medium 5 km [17] 

Blumenau, Brazil 597 20–25  
November 2008 

0   [18] 

Teresópolis, 
Brazil 7268 11–13 January 

2011 16 
Medium (8) 1 km (1) 

[18] Large (4) 5 km (9) 
Very Large (4) 10 km (6) 

Salgar, Colombia 131 17–18 May 
2015 0   [18] 

Dominica 1756 25–28 August 
2015 1 Large 5 km [38] 

Dominica 21,379 18–22 September 
2017 

0   [38] 

Kii Province, 
Japan 1901 2–5 September 

2011 0   [18] 

South Taiwan 429 15–18 July 
2008 

1 Medium 10 km [18, 37] 
 

Taiwan 10,236 6–9 August 
2008 0   [18, 36–37] 



 78 

4.3.5. Economic Status Assessment 

Economic variables are compared against landslide activity reported in the GLC to determine 

the effect of a country’s economic status on landslide event reporting. The income status of each 

country is classified as low, lower middle, upper middle, or high and compared against the 

number of reported landslide events as well as landslide density. The landslide density is 

determined by the number of events in the GLC per land area of each country. The comparisons 

are shown in Figure 4.5.A,B, respectively. The largest percentage of events (40.8%) was reported 

in lower middle income status countries, which is slightly higher than the percentage of events 

reported in high income status countries (39.9%), and interestingly, only 18.1% of events were 

reported in countries associated with upper middle income status (Figure 4.5.A). In both income 

status comparisons with number of events and landslide density, countries considered to have 

low income status represent much less landslide activity (less than 2%) compared to higher 

income statuses. However, countries classified as having high income status experienced greater 

landslide density than countries with lesser income statuses, and an increase in landslide density 

with increasing economic status is apparent in Figure 4.5.B. Furthermore, the gross domestic 

product (GDP) per capita is compared against landslide event density for countries represented 

in the GLC and is shown in Figure 4.6., which reveals a positive correlation between the two 

variables. The countries shown represent the top 25% of countries with the highest GDP per 

capita to highlight outliers within the comparison. A log transformation of the data was used for 

better visualization. Similarly, the population density of each country represented in the GLC is 

compared against landslide density in Figure 4.7. This comparison reveals a positive correlation 

between population density and landslide reporting, which can be explained by increased 

landslide exposure near dense populations. However, the trend of increased GLC events in 

wealthier or more populated countries suggests that more landslides are reported but does not 

necessarily indicate that more landslide events occur in these countries. 
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Figure 4.5. (A) Total reported events per income status classification; (B) Landslide density 
(events per km2) per income status classification. The income status represents the reported 
income status of each country represented in the GLC. 
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Figure 4.6. The log of the Gross Domestic Product (GDP) per capita in US dollars versus the log 
of the landslide density (events per km2) for countries reported in the GLC with the highest 
reported GDP per capita. 
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Figure 4.7. The log of the Population density (people per km2) versus the log of the landslide 
density (events per km2) for each country reported in the GLC. 

4.4. Discussion 

This study evaluates the spatial and temporal distribution of global landslide events and 

global patterns of landslides represented in this dataset including hotspot location and 

investigation of fatalities associated with landslides. The most notable landslide event hotspots 

at global scale appear to be in the Pacific Northwest, High Mountain Asia, and the Philippines as 

reported in the GLC. The GLC contains several outlier events that lead to large spikes in the data 

trend lines representing fatalities and number of events per month (Figures 1C–7C). For example, 
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the average number of fatalities in August for the continent of Africa is 133, almost twice as high 

as any other month (Figure 4.2.C). The large number of August fatalities can be attributed to one 

outlier event that occurred during this month and reported 1141 fatalities. Similar spikes in 

fatalities can be seen in other geographic locations due to anomaly events with large fatality 

counts. While the accuracy of these descriptors is not analyzed in depth, important attributes such 

as landslide category, location accuracy, landslide size, and triggering mechanism reported with 

each landslide event were assessed and found mostly complete, which further supports the 

application of the GLC in rainfall-triggered landslide studies. Furthermore, the most landslide 

events were reported in English-speaking countries, but the most fatal landslide events were 

reported in India, China, and Nepal. This indicates a clear reporting bias in the GLC towards 

English-speaking countries.  

A positive correlation was discovered between the economic status of countries and the 

landslide density present in that country’s borders, which indicates that richer countries are more 

prone to reporting landslides than poorer regions with less available resources. Countries with 

higher economic status have advanced natural disaster mitigation and more detailed landslide 

recording than low-income countries with less effort to prevent landslide disasters. This does not 

indicate that low-income countries have fewer landslides within their borders than high-income 

countries, but landslide events are reported more often and more precisely. Similarly, a positive 

relationship was found between population density and landslide reporting, which indicates that 

more landslides are reported in populated areas versus remote locations. Landslides are more 

likely to be reported in populated locations rather than remote areas due to greater risk of 

economic damage and casualties. These biases should be considered when applying the GLC. 

While the GLC shows a level of bias in regards to reporting language and underrepresentation of 

landslide activity in certain regions, it still can be beneficial for rainfall-triggered landslide 

research including landslide prediction and hazard awareness. 

4.5. Conclusions 

The research presented here evaluates the spatial and temporal distribution of global rainfall-

triggered landslide reporting using NASA’s Global Landslide Catalog (GLC), which presents a 
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minimum number of events and is recorded from 2007 to 2018. The collection of this dataset is no 

longer active and will not be updated past 2018. However, the GLC covers one of the largest 

spatiotemporal ranges of any landslide inventory. Hotspot analysis of global landslide reports 

and fatalities associated with landslides as well as temporal trends in reporting can be visualized 

using the GLC and show that most landslides occur in High Mountain Asia and the Pacific 

Northwest and more landslides occur globally from July to September. The majority of event 

locations reported in the GLC are known within a small radius of confidence and coincide with 

NASA’s global landslide susceptibility map. The GLC also contains various attributes that 

describe each event in terms of size, impact, location, and casualties. However, the GLC has 

several limitations that should be considered when using this dataset. The GLC represents global 

landslides with less spatial precision than local landslide inventories and inventories mapped via 

image analysis. Outliers in fatalities associated with landslide events make it difficult to assess 

temporal trends in global landslide casualties. Additionally, landslide reporting is geographically 

biased towards English-speaking populations largely due to the method of compiling the GLC. 

Landslide reporting also occurs more regularly and consistently in areas with high economic 

status compared to low economic regions. Similarly, this study reveals greater landslide reporting 

in areas with high population density, which can be attributed to increased landslide exposure 

near dense populations. Despite its limitations and biases, the GLC is shown to be a useful tool 

for rainfall-triggered landslide research. 
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5.1. Introduction 

Soil moisture content affects the shear strength of a soil body and plays an important role 

in slope stability (Li et al., 2021). Changes in subsurface hydrological conditions such as increased 

pore water pressure after precipitation can result in slope failure and thus induce landslides 

(Whiteley et al., 2019). Obtaining soil moisture measurements can be achieved using a variety of 

remote sensing instruments or ground-based systems.  In situ measurements can provide very 

accurate moisture information, but the cost of maintenance is high and usually the network is not 

dense enough for effective applications over large areas (Zhao et al., 2021) In large river basins 

where in situ data are limited or absent, satellite-based soil moisture estimates can be used to 

supplement ground measurements for land and water resource management solutions 

(Dandridge et al., 2020). Consistent soil moisture estimation can aid in monitoring droughts, 

forecasting floods, monitoring crop productivity, and natural hazard monitoring. Satellite-based 

radars can measure soil moisture at high resolution but are limited in spatial coverage and 

temporal frequency (Dandridge et al., 2020). Recent advances in available soil moisture products 

are able to provide high resolution soil moisture estimates that can be applied directly to improve 

landslide hazard mitigation. Unfortunately, the LMRB does not have a consistent in situ soil 

moisture measuring system, which makes satellite-derived soil moisture estimates appealing for 

application in watershed-scale hydrological modelling in this region. However, the lack of 

ground measurements for soil moisture also complicates validation of remotely-sensed estimates 
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over the LMRB (Naeimi et al., 2013). This study compares the applicability of four satellite-based 

soil moisture products available over the LMRB to assess how soil moisture products can be used 

for landslide hazard assessment and to estimate landslide susceptibility. These products vary by 

not only spatial and temporal resolution, but assimilation methodology and depth of the soil 

profile estimated. By comparing these products, we can gain beMer insights into the relationship 

between satellite and modelled soil moisture and landslide hazard in the LMRB. 

There have been several aMempts at landslide prediction at regional (Wilkinson et al., 

2002; Ponziani et al., 2012; Luo et al., 2016) and global scale (Farahmand &  AghaKouchak, 2013; 

Stanley et al., 2021). Biswas et al., (2021) successfully implemented a version of the LHASA model 

in the LMRB. The model was able to capture the seasonal variability of the region with low 

probabilities during the dry season with low seasonal rainfall and higher probabilities during the 

monsoon season. However, there is still a gap in the literature regarding comparisons of soil 

moisture products in the LMRB and their applications in landslide prediction and monitoring. 

The Landslide Hazard for Situational Awareness (LHASA) has been updated from version 1 to 

version 2 at global scale (Stanley et al., 2021). The updated structure utilizes an XGBoost machine 

learning framework, a methodology that is now widely used for landslide applications. With the 

innovative model framework, LHASA version 2 was found to be able to predict historical 

landslides twice as much as version 1. The full methodology behind LHASA is described in 

Stanley et al., 2021. Due to the successful performance of this methodology in the literature, and 

its application in the global LHASA model, the XGBoost framework was selected for this research 

study to predict landslide potential using a similar framework to the global model but catered to 

the LMRB region. This research aims to further reveal the ability of machine learning to provide 

enhanced landslide prediction.  

 

5.2. Data 

5.2.1. Landslide Inventory 

The landslide inventories used in this study were mapped by Amatya et al., (2021) using 

the Semi-Automatic Landslide Detection (SALaD) system and high resolution satellite imagery 

from Planet. This framework uses object-based image analysis of pre- and post-event imagery to 
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detect landslides. A total of  22 inventories (2 in Laos, 4 in Myanmar, 1 in Thailand, and 15 in 

Vietnam) from 2015 – 2020 were used in the training and validation of the models presented here.  

Of these inventories, 19 were mapped from 2015-2019 and used for training the models, and three 

inventories were mapped in 2020 and used for validation of the models. 

5.2.2. CFS Soil Moisture 

The Climate Forecast System (CFS) version 2 soil moisture is derived from a fully coupled 

land-atmosphere-ocean model representative of Earth’s land and atmosphere interactions (Saha 

et al., 2011). This data was developed in March 2011 by the National Centers for Environmental 

Prediction (NCEP). The spatial resolution of this product is 0.25° x 0.25 ° (approximately 27 km x 

27 km), and the temporal resolution is 6-hourly. This product represents the volumetric soil 

moisture content from 0 to 150 cm below the surface layer. For a full description of the 

methodology please refer to Saha et al., (2011). CFS soil moisture was selected in this study as it 

has been implemented successfully in the LMRB by Biswas et al., (2022). This product was 

selected for their study due to its public availability, minimized lag time, and accessibility in 

Google Earth Engine. It is used in this study to determine if current modelling efforts could be 

improved using various soil moisture products for comparison. 

5.2.3. SMAP Soil Moisture 

The Soil Moisture Active Passive (SMAP) was launched in January 2015 with the goal of 

combining radar and radiometer at L-band frequencies to record high resolution soil moisture 

measurements and freeze/thaw detection at global scale (Entekhabi et al., 2010). Unfortunately, 

shortly after the launch a hardware failure caused the radar to stop working, leaving the 

radiometer as the only operational mechanism to record data (Chan et al., 2018). SMAP uses lower 

frequency microwave radiometry (L Band) to map soil moisture at Earth’s land surface because 

at lower frequencies the atmosphere is less opaque, vegetation is more transparent, and the 

results were more representative of the soil below the skin surface than when higher frequencies 

were used (Panciera et al., 2013; Colliander et al., 2017). The product used in this study is the 

SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical 

Data version 7, which uses SMAP L-band brightness temperature for data assimilation in a land 

surface model. Data is available from 2015 to present with a spatial resolution of 9 km x 9 km and 
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3-hourly temporal resolution. This product represents the volumetric soil moisture content from 

0 to 100 cm below the surface layer. For a full description of the methodology please refer to 

Reichle et al., (2022). SMAP L4 was selected due to it being one of the most recent efforts to 

estimate global soil moisture via remote sensing and is currently being used in the operational 

global version of LHASA. 

5.2.4. RHEAS Soil Moisture 

The Regional Hydrologic Extremes Assessment System (RHEAS) is a software framework 

designed for hydrologic modeling and data assimilation. The RHEAS framework is used to 

assimilate soil moisture and other variables for the entire LMRB for applications by the Mekong 

River Commission for drought and agricultural monitoring at hMps://mdcw-servir.adpc.net. This 

product was developed under the SERVIR-Mekong program by the Asian Disaster Preparedness 

Center (ADPC), NASA Jet Propulsion Laboratory, and local technical partners in the LMRB. 

RHEAS utilizes a software framework for hydrologic modeling and data assimilation that 

automates the deployment of water resources nowcasting and forecasting applications (MDCW, 

2020). Its methodology uses multiple satellite-based products for data assimilation, including 

precipitation, soil moisture, evapotranspiration, and vegetation indices. The spatial resolution of 

this dataset is 5 km x 5 km at daily temporal resolution. This product represents the volumetric 

soil moisture content from 0 to 10 cm below the surface layer. For a full description of the 

methodology please refer to Andreadis et al., (2017). This product was selected due to it being 

assimilated by local agencies in the LMRB and is readily available for use in the LMRB. 

5.2.5. UVA Soil Moisture 

The University of Virginia (UVA) 1 km SMAP Downscaled Soil Moisture was developed 

by Fang et al., (2022) and is based on thermal inertia theory. The algorithm uses the relationship 

between soil moisture and temperature difference which was determined using outputs from the 

Global Land Data Assimilation System–Noah (GLDAS) Land Surface Model and the Advanced 

Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI) data and then 

applied to the Aqua Moderate Resolution Imaging Spectroradiometer land surface 

temperature/NDVI data to produce a downscaled 1-km daily SM product, at 6:00 a.m. and 6:00 

p.m. at global scale from 2015 to 2020. This algorithm uses soil moisture estimates from SMAP L2 
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9 km radiometer product. Validation aMempts of this product have been performed using various 

in situ networks from the International Soil Moisture Network (ISMN) and results indicate that 

the 1 km downscaled product is more accurate than 9 km SMAP data (Fang et al., 2022). For a full 

description of the methodology please refer to Fang et al., (2022). This product was selected as it 

has yet to be applied in a landslide hazard assessment or landslide prediction study in existing 

literature and data availability.   

 

5.2.6. IMERG Precipitation 

The Global Precipitation Measurement (GPM) satellite provided Integrated Multi-

satellitE Retrievals for GPM (IMERG) version 6 product uses an algorithm that provides rainfall 

estimates by combining data from microwave and infrared instruments and uses precipitation 

gauge data for calibration (Huffman et al., 2019). The spatial resolution of this product is 0.1° x 

0.1° (approximately 10 km x 10 km) at half-hourly temporal resolution. In this study, the 

precipitation is converted into a 3-day accumulated rainfall estimate (mm) and from the 3-day 

accumulations, the 99th percentile of accumulated precipitation is estimated (mm). IMERG was 

selected for precipitation data due to its current usage in the operational global version of LHASA 

as well as its data availability from 2000-present. Information regarding the dynamic variables 

used in this study are shown in Table 5.1. 

 
 

Table 5.1. Description of dynamic variables used in this study. 

Data Product Description* Source 

Climate Forecast System 
(CFS) Soil Moisture V2 

0 – 150 cm 
0.25° 
6-hourly 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., 
Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., 
Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., 
Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & 
Becker, E. (2014). The NCEP climate forecast system 
version 2. Journal of Climate, 27(6), 2185–2208. 
https://doi.org/10.1175/JCLI-D-12-00823.1 
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Soil Moisture Active 
Passive (SMAP) L4 

0 – 100 cm 
9 km 
3-hourly 

Reichle, R., G. De Lannoy, R. D. Koster, W. T. Crow, J. 
S. Kimball, Q. Liu, and M. Bechtold. (2022). SMAP L4 
Global 3-hourly 9 km EASE-Grid Surface and Root 
Zone Soil Moisture Geophysical Data, Version 7 
[SPL4SMGP]. Boulder, Colorado USA. NASA National 
Snow and Ice Data Center Distributed Active Archive 
Center. 

Regional Hydrologic 
Extremes Assessment 
System  (RHEAS) Soil 
Moisture 

0 – 10 cm 
5 km 
Daily 

Mekong Drought and Crop Watch (MDCW), (2020), 
ADPC/SERVIR Mekong, https://mdcw-servir.adpc.net 

University of Virginia 
(UVA) 1 km SMAP 
Downscaled Soil Moisture 

0 – 5 cm 
1 km 
Twice-daily 

Fang, B., Lakshmi, V., Cosh, M., Liu, P. W., Bindlish, R., 
& Jackson, T. J. (2022). A global 1-km downscaled 
SMAP soil moisture product based on thermal inertia 
theory. Vadose Zone Journal, 21(2). 
https://doi.org/10.1002/vzj2.20182 

Global Precipitation 
Measurement satellite 
provided Integrated Multi-
satellitE Retrievals for GPM 
(IMERG) Precipitation V6 

0.1° 
Half-hourly 

Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, 
Jackson Tan (2019), GPM IMERG Final Precipitation L3 
Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, 
MD, Goddard Earth Sciences Data and Information 
Services Center (GES DISC), Accessed: [Data Access 
Date], doi:10.5067/GPM/IMERG/3B-HH/06 

*Description includes depth, spatial resolution, and temporal frequency for soil moisture 
products and spatial resolution and temporal frequency for the precipitation product. 
 

5.2.7. Static Variables 

Several static variables were used in this study alongside the dynamic products for soil 

moisture and precipitation. These static variables include distance to faults, lithology, slope, 

relief, topographic wetness index (TWI), distance to rivers, distance to roads, and forest loss. 

These variables are held constant as they are assumed to change very slowly over time unlike 

precipitation and soil moisture conditions. Information regarding the sources of the static 

variables can be found in Table 5.2. 
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Table 5.2. Static variables and their data sources used in this study 

Variable Source 

Distance to Faults 
Styron, R., & Pagani, M. (2020). “The GEM Global 
Active Faults Database.”Earthquake Spectra, vol. 36, no. 
1_suppl, pp. 160–180. 

Lithology  

Hartmann, J., & Moosdorf, N. (2012). The new global 
lithological map database GLiM: A representation of 
rock properties at the Earth surface. Geochemistry, 
Geophysics, Geosystems, 13(12). 

Slope 
Relief 
Topographic Wetness Index (TWI) 

Farr, T. G., & M. Kobrick, (2000). Shuttle Radar 
Topography Mission produces a wealth of data. Eos 
Trans. AGU, 81:583-583. 

Distance to Rivers 

 
Lehner, B., & Grill G. (2013). Global river hydrography 
and network routing: baseline data and new 
approaches to study the world’s large river systems. 
Hydrological Processes, 27(15): 2171–2186.  

Distance to Roads 

Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J., 
& Schipper, A. M. (2018). Global patterns of current 
and future road infrastructure. Environmental 
Research Letters, 13(6).  

Forest Loss 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., 
Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, 
S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., 
Egorov, A., Chini, L., Justice, C. O., & Townshend, J. 
R. G. (2013). High-resolution global maps of 21st-
century forest cover change. Science, 342(6160), 850–
853.  

 

5.3. Methodology 

5.3.1. Precipitation Scaling 

To normalize the precipitation data, the 99th percentile of 3-day accumulation is estimated 

from 2000-2020. The 99th percentile is used to represent extreme precipitation events. The log-

normal distribution was then fiMed to the 99th percentile precipitation as it fits remotely sensed 

rainfall well (Stanley et al., 2021). The fiMed distribution is used to rescale the 3-day accumulated 
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precipitation, which is used to train the model framework (Biswas et al., 2022). Transforming 

using the log-normal distribution of extreme rainfall is often performed as it reduces skewness in 

the data distribution (Mohita Anand & Jai Bhagwan, 2010). 

 

5.3.2. XGBoost Model 

Two dynamic variables, precipitation and soil moisture, and eight static variables were 

incorporated in model training. A total of four models were trained varying only by the soil 

moisture product implemented in training and validation. The landslide inventory points from 

2015 – 2019 were used for training and points from 2020 were used for validation of the model 

predictions. A ratio of 1:100 of landslide to non-landslide points was applied to avoid overfiMing 

to landslide points during model training. A workflow diagram of the model methodology is 

shown in Figure 5.1. The XGBoost python library was utilized for training of the models as this 

machine learning approach is able to provide interaction and monotone constraints that are 

appropriate for landslide prediction (Biswas et al., 2022). The interaction constraints control the 

variables used in the same trees, and the monotone constraints determine which direction 

(positive or negative) the variables contribute to the predictions. Precipitation is the only variable 

allowed to interact with other variables during model training. The algorithm builds an ensemble 

of trees by creating a single tree at each iteration. Then, each subsequent tree corrects the 

deficiencies of the existing trees. These trees alone are considered “weak learners” as they are 

poorly predictive as individual trees but as a collective, they can be very effective. The algorithm 

was trained to detect binary (0 or 1) classification of presence or absence of  landslides. The model 

parameters are defined in Table 5.3. Benefits of this machine learning methodology is that it has 

vast documentation and is accessible in multiple programming languages (Stanley et al., 2021).  

 

Table 5.3. XGBoost model parameters 

Model parameters Tuned value 

Maximum depth 2 

Objective Binary: logistic 
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Monotone constraints 
Distance to Roads, Distance to Faults, 
Distance to rivers have inverse relationship, 
all others have a linear relationship 

Interaction constraints Only precipitation can interact with other 
variables 

 

 

Figure 5.1. Workflow diagram for Landslide Hazard Assessment for Situational Awareness 
(LHASA) Model V2 
 
 
5.3.3. Model Validation 

The three event-based landslide inventories from 2020 were used for model validation. 

These landslide events occurred on October 12, October 18, and October 28. The prediction from 

each model on the day of the event was extracted at each landslide point. If the probability is 

higher than the threshold, it is considered a true positive, and if it is lower than the threshold, it 

is considered a false negative. From the true positives and false negatives, we can derive a true 

positive rate (TPR) by Equation 5.1. 

 

TPR	=	 true	positives
true	positives	+	false	negatives   (Equation 5.1) 

 

Precipitation

Soil Moisture

Slope

TWI

Rivers

Lithology

Forest loss

Rescale

Model 
training

70% 30% Random 
split

2020 
inventory

Landslide 
inventory

Temporal 
split

Spatial 
validation

Temporal 
validation

Deployment

2015-2019 
inventory

Roads
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5.4. Results 

The completeness of each soil moisture product was examined to determine the presence 

and extent of any potential data gaps. The missing values present in each dataset were calculated 

and shown in Figure 5.2. The UVA 1 km soil moisture data consisted of spatial and temporal 

variability in its daily estimates due to cloud contamination and the temporal variability in the 

overpasses of the satellite platforms. The percentage of missing pixel coverage ranged from 0.32% 

to 37.8%. Since the CFS, SMAP, and RHEAS products are all assimilated, they display no missing 

values. The RHEAS soil moisture pixels without estimates present were not considered as missing 

values as the number of missing pixels were consistent for each daily soil moisture profile 

estimate due to the product masking water bodies. To determine the ability of each soil moisture 

product to capture seasonal trends, the products are compared to rainfall estimates from IMERG 

with 0.1° spatial resolution at daily scale. The time series is shown in Figure 5.3 with precipitation 

represented in blue bars and the four soil moisture products represented below. The values 

represent daily soil moisture and precipitation averaged over the entire region from 2015 – 2020, 

the time period used for training (2015-2019) and validation (2020). Each of the soil moisture 

products were able to capture the seasonal trends present in precipitation, with higher values 

during the monsoon season and lower soil moisture during the dry season. 
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Figure 5.2. Boxplots showing the percentage of missing values in each product from 2015-2020. 

As expected, the surface products, UVA and RHEAS,  show higher variations in soil moisture 

values over time compared to the products estimating the total soil profile, CFS and SMAP. SMAP 

demonstrates lower soil moisture values than the other products all year but the difference is 

greater during the wet season. Overall, the soil moisture products used in this study are able to 

represent the seasonal paMerns affected by precipitation over the LMRB. 

 

 

Figure 5.3. Time series of soil moisture products averaged over entire basin for 2015 – 2020. 

 

Soil moisture at high resolution should show standard deviation ranges closer to in situ 

than coarser resolution soil moisture. The number of pixels, minimum, maximum, and standard 

deviation for the soil moisture profiles from each product over the area of a rainfall-triggered 
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landslide event on October 28, 2020 were determined and are shown in Table 5.3.  The maximum 

values are much higher for RHEAS and UVA soil moisture than CFS and SMAP and this is most 

likely explained by the varying depths that the soil profiles are estimated, and UVA and RHEAS 

soil moisture estimating surface soil moisture within the top 5 or 10 cm, respectively. The 

standard deviation for the UVA 1 km soil moisture is greater than coarser resolution products, 

indicating it is beMer able to represent surface fluctuations more similar to in situ than the other 

products, which can also be explained by the greater number of pixels representing soil moisture 

estimates over the landslide area.  

The soil moisture was examined alongside the occurrence of landslide events with the 

purpose of examining the drying of soil over time in response to a rainfall event. By evaluating 

the time series during a precipitation event triggering a landslide we are able to observe the near-

surface soil moisture observations and whether they transition from saturated to dry conditions. 

However, it’s important to note that surface soil moisture is more sensitive to rainfall than deeper 

soil layers, and a lag in soil moisture in response to rainfall at deeper layers (80-100 cm) may be 

present in the CFS or SMAP products (Dai et al., (2022). Figure 5.4. shows the time series 

comparison of the soil moisture estimates leading up to and immediately after the landslide event 

on October 28, 2020. The UVA 1 km soil moisture was interpolated to reduce data gaps and beMer 

observe dry down paMerns centered around the landslide event date.  Of all the products, RHEAS 

soil moisture was best able to capture the observed paMern typical of soil moisture during a 

landslide, however both RHEAS and UVA products indicate an increase in soil moisture prior to 

the landslide event. We expect a large increase in moisture right before or during the landslide 

and then a decrease in moisture content after the event. The CFS and SMAP products did not 

reflect any significant paMerns and show liMle variation in soil moisture reflecting a rainfall-

triggered landslide event. However, SMAP seems to capture the dry down paMern after the event 

represented by the peak in moisture conditions on October 31, 2020 followed by a dry down 

trend. The spatial resolution and variability of the daily soil moisture profiles from CFS, SMAP, 

RHEAS, and UVA for the same event are shown in Figure 5.5. Overall, the surface products beMer 

captured fluctuations in soil moisture due to precipitation that are present for the shallow 

landslide event on October 28, 2020 in Quang Nam, Vietnam.  
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Figure 5.4. Time series of precipitation and soil moisture over landslide area in Quang Nam, 

Vietnam on 2020-10-28. 

 

 

 

 

Table 5.3. Soil moisture product statistics for a landslide event on 2020-10-28 

SM product number of 
pixels 

min mean max 
standard 
deviation 

CFS (0.25°) 12 0.390 0.393 0.394 0.001 

SMAP (9 km) 40 0.430 0.437 0.441 0.003 

RHEAS (5 km) 140 0.476 0.558 0.608 0.023 

UVA (1 km) 4473 0.387 0.529 0.644 0.058 
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Figure 5.5. Spatial resolution and variability of the daily soil moisture profiles from CFS, SMAP, 
RHEAS, and UVA overlayed with landslide points from a landslide event on October 28, 2020. 
 

SHAP (Shapley Additive Explanations) are commonly used to increase the 

interpretability of machine learning models. Figure 5.6. displays the SHAP values for each of the 

trained models using CFS, SMAP, RHEAS, and UVA soil moisture, respectively. Regarding the 

order of feature importance, models trained with CFS, SMAP, and RHEAS indicate soil moisture 

to be the second most important feature after precipitation. However the model trained with UVA 

data indicate slope and relief to both be more important than soil moisture. The SHAP plots 

display each feature value and its impact on the model output. For example, we would expect to 

see high values of precipitation and soil moisture to correlate with higher prediction estimates 

and lower values to produce a lower prediction estimate. Alternatively we expect to see variables 

such as distance to roads reduce prediction values as their values increase (i.e. the further a 

location is from a road, the less likely a landslide will occur in that location). All of the models 

found distance to rivers or forest loss to be the least important feature, meaning this variable did 
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not contribute to the model predictions compared to other variables used to train the models. The 

small differences in feature importance between models are to be expected as the only variation 

in model training is soil moisture. 

 

Figure 5.6. SHAP Values for each model trained with CFS, SMAP, RHEAS, and UVA soil 

moisture, respectively. 

 

Table 5.4. shows the validation results for the three event inventories used for validation 

in 2020. The event on October 12, 2020 had 116 landslide points, the event October 18, 2020 had 

1138 landslides, and the event on October 28, 2020 had 6515 landslide points for reference. The 

model with the UVA soil moisture data had the highest TPR on two dates, and RHEAS had the 

highest TPR for the event on October 18, 2020. Overall, the model trained with CFS performed 

the worst in terms of TPR. However, the results of this study indicate that the use of either of the 
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four of these soil moisture products could be useful for monitoring landslide hazard in the LMRB 

using the LHASA model based on the TPR. Higher resolution surface layer soil moisture is able 

to more closely resemble variations in moisture content for shallow landslides. However, 

considering moisture profiles that estimate soil conditions at deeper soil layers may be able to 

beMer represent the subsurface processes that contribute to slope failure and landslides deeper 

than the top few centimeters. 

 

Table 5.4. True Positive Rates (TPR) % for each event inventory in 2020 
 Soil Moisture Product 

Validation date CFS SMAP RHEAS UVA 
10/12/20 TPR = 60.8 TPR = 93.9 TPR = 71.5 TPR = 95.7 
10/18/20 TPR = 83.7 TPR = 86.8 TPR = 93.8 TPR = 92.3 
10/28/20 TPR = 69.6 TPR = 60.1 TPR = 72.8 TPR = 78.0 

 

 
5.5. Conclusions 

In this study, four soil moisture products are compared in the LMRB and specifically there 

applicability for landslide monitoring are assessed. For two of these products, UVA 1 km soil 

moisture and RHEAS 5 km soil moisture this is a novel application of their effectiveness in 

landslide prediction. The UVA 1 km soil moisture was beMer able to capture dry down paMerns 

regarding surface soil moisture, while RHEAS was beMer able to capture dry down paMerns 

regarding total soil profile. High resolution soil moisture is beMer able to estimate antecedent soil 

moisture conditions than coarse resolution due to the relatively small area affected by a landslide. 

However, varying spatio-temporal availability limits the use of the UVA 1 km soil moisture due 

to inaccuracy of the model prediction where data gaps exist. In all models evaluated, low soil 

moisture conditions impacted landslide prediction in all models more so than high soil moisture 

values. The results of this research warrant a near-real time soil moisture product at 1 km that 

represents soil moisture and varying depths representing surface soil moisture as well as total 

soil profile is warranted for increased landslide prediction in the LMRB. 

There are several limitations associated with this study that should be noted. First, only three 

event-based inventories in October 2020 were available to validate the LHASA models, and these 
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inventories were all located within the borders of Vietnam. Therefore, validation of the model 

predictions in other areas of the LMRB is unable to be performed. Additional inventories are 

needed to validate both spatially and temporally for a full understanding of how the soil moisture 

is affecting the models. The topography and climate varies throughout the LMRB, and model 

performance can’t be fully determined without additional landslide inventories that represent a 

broader variety of locations. Another limitation involves the uncertainty associated with satellite-

based estimations of soil moisture and the inability to validate the products with ground 

measurements due to the lack of an in-situ soil moisture network in the LMRB. Future research 

related to this study could apply a gap-filling method to the 1 km soil moisture to address the 

spatio-temporal variability it maintains at present. Additionally, this methodology can be applied 

as landslide inventory information becomes available. However, applying remotely sensed 

products in the LHASA framework has the ability to provide important insights into landslide 

hazard for regions lacking sufficient ground measurements like the LMRB. The methodology of 

this research can be applied to other data-sparse regions to estimate landslide hazard and risk as 

the datasets used in this study are publicly available or are available upon request. Insights into 

the applications and limitations of various soil moisture products can aid landslide hazard 

mitigation as antecedent soil moisture conditions play an important role in landslide occurrence.  
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Chapter 6. Conclusions 
 

This dissertation includes the execution and planning of four projects with the broad goal 

of applying remote sensing and modelled data to address increasing rainfall-induced landslide 

hazards in the Lower Mekong River Basin (LMRB) due to climate change and human expansion. 

Using satellite-based products can supplement the sparse ground data available in this region 

and provide a beMer understanding of landslide susceptibility and risk that decision-makers 

require for disaster mitigation and prevention. The major findings of this dissertation are: 

• Satellite-based estimates can be used in data sparse regions like the LMRB as they 

are able to represent the seasonality of the climate similar to rain gauges and 

correlate well with ground measurements where available for comparison. 

• Dynamic land cover changes can influence landslide susceptibility especially in 

mountainous terrain. Natural revegetation after agricultural abandonment 

showed to contribute to landslide susceptibility more so than other alterations in 

land use, indicating these areas could be at more risk for landslide occurrence. 

• Landslides are not reported uniformly globally or between the countries in the 

LMRB, despite it being one of the most landslide prone areas on the globe. Global 

landslide catalogs represent a minimum estimate of landslides that occur, and the 

LMRB is underestimated in global reporting especially in mountainous, remote 

regions with low population density. 

• The inclusion of satellite-based soil moisture products can aid landslide 

monitoring in regions like the LMRB that lack an in situ soil moisture network. 

Satellite-based and modelled soil moisture are able to represent the variations and 

seasonality in antecedent moisture conditions necessary for landslide prediction. 

 

 Approaching landslide hazard in the LMRB with novel applications of datasets and 

methodology we can further understand landslide hazards and potential mitigation strategies in 

the region.  The hydrologic significance of satellite-based products in the LMRB can be assessed 
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from the results of this study and other validation studies. The important broad impacts of this 

research are the implications of remotely sensed products for landslide hazard monitoring, 

specifically in the LMRB or similar un-gauged basins. Assessing the available remotely sensed 

products in data sparse regions is essential to look at the progression and advancement in 

satellite-based estimation in regions like the LMRB. With increasing temporal and spatial 

coverage, satellite-based inputs will serve as an improvement, compared to precipitation from 

ground measurements for landslide hazard modeling in basins like LMRB.  
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