
Design and Implementation of a Data Filtering and Sorting Interface in React

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Calvin Kuo

Spring 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Design and Implementation of a Data

Filtering and Sorting Interface in React

CS 4991 Capstone Report, 2022

Calvin Kuo

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia, USA

clk3sx@virginia.edu

Abstract

The Neonatal Antibiotic Stewardship at the

University of Virginia provides a web form

to help clinicians prescribe the appropriate

dosage and type of antibiotics. Although the

system collects the inputted data into a

MongoDB database, there was no user-

friendly way to access the data. Using an

agile development methodology, my

internship team designed and implemented a

user interface with the React framework to

display this data. This enabled the user to

specify an arbitrary number of filters and

sorts, allowing a non-technical user to easily

view the desired subset of the data. In

addition, we also designed the interface to

allow later extension and customization with

additional features and visualizations of the

relevant data.

1. Introduction

Antibiotics have saved millions of lives

since the discovery of the first antibiotic,

penicillin, almost a century ago. They work

by killing bacteria, which prevents

infections from progressing and causing

further illness. However, in recent decades,

biologists have found an increasing number

of strains of bacteria have evolved so that

they can survive antibiotic treatment. This

phenomenon is known as antibiotic

resistance.

To prevent this development from undoing

the past century of medical advances,

clinicians need to use a treatment that meets

two criteria. First, it should be a narrow-

spectrum antibiotic, which affects only the

type of bacteria at issue. This minimizes the

collateral damage caused by killing good

bacteria, such as the ones that aid digestion

in the gut. Second, the dosing regimen

should ensure that all of the bacteria of

interest are killed. Otherwise, the bacteria

which survive treatment may continue to

multiply, causing an infection resistant to

the previous treatment used.

2. Related Works

The concept of a relational database in the

context of a computer system dates back to

the late 1960s (Codd, 1970). The concept of

a graphical interface based on entities was

introduced in 1980, and a user interface that

could also express generic queries was

introduced in 1982 (Cattell, 1980; Wong and

Kuo, 1982).

Spreadsheet programs such as VisiCalc,

Lotus 1-2-3, and Microsoft Excel have their

origins in the late 1970s and 1980s (Grad,

2007). Software like these brought the

concept of organizing data on computers in

a tabular format to the masses, and as such,

have had a significant influence on how

users expect to interact with data. Microsoft

Excel, Numbers, and Google Sheets are the

major players in the spreadsheet software

market today.

Dzafic et al. (2013) also considered the user

interface design implications of an object-

oriented database. They also discuss how

this approach affects the development life

cycle and continued maintenance.

3. Process Design

Under the supervision of David Kaufman,

MD, of the University of Virginia School of

Medicine, the Neonatal Antibiotic

Stewardship and the University of Virginia

Development Hub developed the Clinical

Decision Support Tool (Figure 1), a web

form which helps neonatal clinicians

determine which course of antibiotics would

be the most appropriate based on a number

of factors.

3.1 Task Description

For the tool to provide the most useful

information, all inputted queries are saved

into a database. However, at the beginning

of my internship, there was no way to access

the data without logging into the database

backend and viewing the raw inputs. My

internship team was tasked with designing

and implementing a web application that

would allow a non-technical user to view

this information.

3.2 System Architecture

The primary technologies used in both the

Clinical Decision Support Tool and the Data

Trends app was the React framework and

the MongoDB data platform. React is an

open-source frontend JavaScript library,

originally developed by Facebook, that

allows developers to build user interfaces

out of reusable components. MongoDB is a

JavaScript-based document-oriented web

platform that served as the database backend

for this project. JavaScript is a programming

language that runs in browsers and is what

makes many websites interactive.

As we were designing the Data Trends app

from scratch, the design challenges we faced

Figure 1: The web form portion of

the Clinical Decision Support Tool.

It consists of nine questions, with

the provided answers being used

to query the backend database.

included implementing the functionality of

filters, sorts, graphs, and results in an easy-

to-use manner so that the client would be

able to view and analyze the collected data.

In order for the Data Trends app to better

integrate with the Clinical Decision Support

Tool, we also used React and MongoDB to

build it.

3.3 Key Components

The Data Trends app consists of four main

functionalities: filtering, sorting, displaying

results, and importing/exporting.

3.3.1 Filters Component

The filters component allows the user to

specify an arbitrary number of filters for

their query (Figure 2). Each row of the

component describes a single filter. It

consists of three parts: a dropdown to select

a column of the database, a dropdown to

select a condition to apply to that column,

and any number of arguments to that

condition. Because the attribute values can

be one of several data types, the available

options change to only show the ones that

are relevant (Figure 3). For numerical values

such as Birth Weight, the available

conditions include >, <, and is between. For

text values such as Site of Infection, the

available conditions include regular

expressions.

To implement this, the React component

stores the current list of filters in a state as

an array of objects. In these, the values for

the column and condition are used to index

into dictionaries indicating how the form

fields should be displayed (Figure 4). To

allow for behaviors to be changed without

having to make modifications to the

SearchFilter component, they are described

in a separate file rather than implemented

within the rendering logic.

3.3.2 Sorting Component

The sorting interface is largely a pared-down

version of the filters interface (Figure 5).

The main difference is the addition of

buttons to move up and down individual

sorts. This is useful because the order the

sorts are applied in can change the order of

Figure 2: The filters portion of the Data

Trends app.

Figure 3: The dropdown menus from the

inputs shown in Figure 2 when expanded.

Figure 4: Dictionaries specifying the

behavior of a column (top) and condition

(bottom).

Figure 5: The sorting portion of the Data

Trends app.

the results. This issue does not occur with

filters, since AND is a commutative operator.

3.3.3 Results Component

When the Apply button is clicked, the filters

and sorts are converted into a format that

can be understood by MongoDB, and the

query is sent to the database. Once the app

receives a response, it passes the data into

the Visualizations component, which

renders various graphs and charts, and into

the View component, which renders a table

of the results (Figure 6).

3.3.4 Import/Export

Queries can be saved to and loaded from a

file on disk using the JSON format. It

includes the current state of the SearchFilter

and SearchSort components, and allows the

form to be repopulated in the exact same

state as when it was saved. This is the same

format that is saved to local storage to

remember queries between sessions and

when navigating using the back/forward

buttons.

4. Results

The Data Trends app was approved by the

client and succeeded in allowing non-

technical users to view the data inputted into

the database. Additionally, the graphs will

allow the client to see at a glance what kinds

of queries users are making and where to

improve the recommendations that the tool

provides.

One of the limitations of the filters interface

is that it does not allow users to create

queries of arbitrary complexity. For example,

any queries that require the Boolean OR

operator, such as “(gestational age < 25) OR

(gestational age > 30),” cannot be entered.

Only queries of the form “a AND b AND c

AND …” can be entered.

To allow queries that use OR and NOR, I

implemented a dropdown that would let the

user choose how they would like the

conditions they specified to be combined

(Figure 7). However, one of my supervisors

rejected this idea as being unnecessarily

confusing for most use cases. Because of

this, I did not spend any time working on an

interface for nested queries.

Currently, the calculations required for the

graphs and the pagination of the results is all

handled in the browser on the client side.

This allows changing the number of items

per page and jumping between pages to

occur without the latency from making an

additional HTTP request. This may not work

with larger data sets, however.

5. Conclusion

The development of the Data Trends app

shows that React is a good framework for

producing a dynamic application. The three

of us had minimal exposure to React before

this internship, but learned it fairly quickly.

By the time we started developing the Data

Trends app, we had only one month of

experience with developing with React.

Over the course of two weeks, we managed

Figure 6: The results portion of the Data

Trends app.

Figure 7: A rejected feature that would

have allowed users to specify how the

conditions should be combined.

to create a minimum viable product with all

of the requested features, including filtering

and sorting, using an agile development

methodology. Ultimately, it will help the

Neonatal Antibiotic Stewardship gather

more data about how to best treat newborn

babies with antibiotics.

6. Future Work

The development phase of the application is

now complete. However, it is likely that

additional support work will be done on the

existing codebase until the project is

completely rewritten or abandoned.

Although the application works for small

datasets, we did not test it on larger datasets.

These might take up a significant amount of

memory or bandwidth, making it impossible

for the client to process the data efficiently.

In this case, some functionality may need to

be moved to the server side instead.

Additionally, very few tests were written for

the application. If the application were to be

used in an environment with more stringent

code standards, these would need to be

written to ensure the program’s correctness.

7. Acknowledgments

I would like to thank Nadim El-Jaroudi,

Morgan Hale, and William Bigger from the

University of Virginia Development Hub for

their valuable guidance, as well as my

fellow interns Scott Hong and Steven Song

for their assistance and insight.

References

E. F. Codd. 1970. A relational model of data

for large shared data banks. Commun. ACM

13, 6 (June 1970), 377–387. https://doi.org/

10.1145/362384.362685

R. G. G. Cattell. 1980. An entity-based

database user interface. In Proceedings of

the 1980 ACM SIGMOD international

conference on Management of data

(SIGMOD '80). Association for Computing

Machinery, New York, NY, USA, 144–150.

https://doi.org/10.1145/582250.582273

I. Dzafic, J. Sofo, E. Halilovic, N. Lecek and

M. Music. 2013. Object-oriented database

and user interface design. Eurocon 2013,

558-563. https://doi.org/10.1109/EUROCON

.2013.6625036.

B. Grad. 2007. The Creation and the Demise

of VisiCalc. In IEEE Annals of the History

of Computing, 29, 3 (July-Sept. 2007), 20-31.

https://doi.org/10.1109/MAHC.2007.433843

9.

Harry K. T. Wong and Ivy Kuo. 1982.

GUIDE: Graphical User Interface for

Database Exploration. In Proceedings of the

8th International Conference on Very Large

Data Bases (VLDB '82). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA,

22–32. https://www.vldb.org/conf/1982/

P022.PDF

https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/582250.582273
https://doi.org/10.1109/EUROCON.2013.6625036
https://doi.org/10.1109/EUROCON.2013.6625036
https://doi.org/10.1109/MAHC.2007.4338439
https://doi.org/10.1109/MAHC.2007.4338439
https://www.vldb.org/conf/1982/P022.PDF
https://www.vldb.org/conf/1982/P022.PDF

