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Abstract—In scores of vehicle fleets, telematic tracking 

systems provide fleet managers with information regarding 

energy consumption, compliance with safety regulations, and 

driver performance. For a University’s Facilities Management 

(FM) Fleet to take the next step towards an elevated 

Sustainable Fleet accreditation and overall team performance, 

the management has recognized the importance of safety 

tracking methods combined with data analytics and a 

comprehensive systems analysis to aid the reinforcement 

training and maintenance of safe and sustainable driving 

practices by fleet drivers. This paper demonstrated an effective 

method of identifying safety hotspots by analyzing safety 

surrogate measures, such as harsh braking, harsh cornering 

and speeding from vehicular telematics data and combining 

them with their geo-location information to enhance the safety 

of the University of Virginia’s facilities management vehicles 

and common drivers in the area. Instances of safety surrogate 

measure violations were first mapped onto a cluster map and 

were then normalized and combined to pinpoint which spots on 

campus were most prone to accidents. We then validated the 

cluster maps with crash data from both Facilities Management 

vehicles and the state of Virginia to identify safety hotspots. 

From the investigations, we considered a list of comprehensive 

safety countermeasures to address the safety infractions 

identified at each hot spot. These safety countermeasures were 

recommended based on their likelihood of reducing safety 

violations. 

 
 

*Research supported by UVA Facilities Management. 
H. V. Nguyen, is with the Systems Engineering Department, University of 

Virginia, Charlottesville, VA 22903 USA. (e-mail: 

hvn9qwm@virginia.edu). 
S. C. Oh, is with the Systems Engineering Department, University of 

Virginia, Charlottesville, VA 22903 USA. (e-mail: sco9cdq@virginia.edu). 

G.Saha, is with the Systems Engineering Department, University of 
Virginia, Charlottesville, VA 22903 USA. (e-mail: gs8wa@virginia.edu). 

T. L. Blunt, is with the Computer Science Department, Virginia State 

University, Petersburg, VA 23806 USA. (e-mail: 
tblu4982@students.vsu.edu). 

M. J. Ball, is with Facilities Management, University of Virginia, 

Charlottesville, VA 22903 USA. (e-mail: mjb2mw@virginia.edu). 
M. E. Duffy, is with Facilities Management, University of Virginia, 

Charlottesville, VA 22903 USA. (e-mail: med7p@virginia.edu). 

A. F. Abdelzaher, is with the Computer Science Department, Virginia State 
University, Petersburg, VA 23806 USA. (e-mail: amohammed@vsu.edu). 

B. Brian Park, is with the Civil Engineering and the Systems Engineering 

Departments, University of Virginia, Charlottesville, VA 22903 USA. (e-
mail: bp6v@virginia.edu). 

 

I. INTRODUCTION 

In the realm of fleet management, the integration of 
telematic tracking systems has become pivotal in enhancing 
operational efficiency, ensuring compliance with regulations, 
and promoting safety among fleets. Telematics offers fleet 
managers data pertaining to energy consumption, adherence 
to safety protocols, and driver performance, which helps to 
facilitate informed decision-making [1]. At the University of 
Virginia (UVA), the Facilities Management (FM) Fleet Team 
oversees over 280 vehicles, striving to maintain a fleet that is 
both safe and efficient, thus enabling staff to fulfill their 
responsibilities effectively [2].  

Currently, UVA FM is dedicated to serving as a leader in 
safety and sustainability in alignment with UVA’s 2030 
Sustainability Plan [3]. With safety as a paramount concern 
due to UVA’s sprawling campus and substantial presence of 
drivers, the objective of this research is to identify and 
validate safety hotspots based on FM fleets’ telematics and 
geolocation data and recommend countermeasures aimed at 
improving the safety at these hotspots. Currently, crash data 
are scarce within the university campus, which accentuates 
the significance of identifying safety hotspots. Through these 
efforts, we aim not only to reduce the frequency of crashes 
but also to cultivate a culture of safe driving practices among 
all road users. Ultimately, these initiatives align with the 
university’s commitment to fostering a secure and conducive 
environment for learning, working, and living. 

This paper proceeds as follows: The second section 
outlines the background of this study, which succeeds 
previous studies. Subsequent sections present a literature 
review, our analytic methods, the results, a discussion of the 
results, a conclusion, and suggestions for future research. 

II. BACKGROUND 

From 2019-2024, FM had a total of 114 reported crashes. 
Over the course of two years, FM has partnered with the 
UVA Systems Engineering Research team to improve safety 
and sustainability to support UVA’s 2030 Sustainability Plan 
[3].  While past research has been performed on mindful 
driving and training, FM determined the importance of 
minimizing these crashes to attain its goal of safety and 
sustainability among its fleet. Similarly to this paper, these 
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past studies utilized telematics data from GeoTab, a third-
party data monitoring platform used by FM.  

In 2021, a research team developed an agency-specific 
mindful driving program to reduce compliance and fuel 
consumption-related fleet incidents. Safety measures, 
including harsh braking and speeding, were like those in this 
paper. The study compared metrics before and after training 
implementation on drivers with poor habits, but the short 
timeframe limited meaningful analysis [4]. In 2022, the team 
proposed two reinforcement training courses, reactive and 
proactive, using in-vehicle sensor data to reinforce safe 
driving lessons. Results showed a significant decrease in 
speeding with reactive training [5]. Last year, in 2023, a new 
research team aimed to quantify safety and mobility benefits 
from mindful driving training, intending to incorporate it into 
a new employee’s orientation. Findings suggested long-term 
benefits for the fleet vehicles, including reduced safety 
violations and fuel costs [6]. 

III. LITERATURE REVIEW  

This section discusses geofencing, crash surrogates, and 

countermeasures, which are relevant to identifying safety 

hotpots using vehicular telematics data. 

A. Geofencing 

Identifying vehicle safety violations in extensive datasets 
is complex due to overlapping data points. Previous studies 
have employed geofencing to efficiently identify and 
compare hotspots. Desai and his research team demonstrated 
this in their study correlating harsh braking events and crash 
occurrences at Interstate Highway construction sites in 
Indiana. They used geofences to delineate crash-prone work 
zones, enabling size and distance-independent comparisons 
[7]. Shen and his research team also utilized geofencing, 
using 500ft by 500ft section of roadways as areas of analysis 
to predict motor vehicle crash occurrences based on 
aggregated fine geo-resolution vehicle telematics data. Their 
study compared geo-sports using a normalized metric of 
acceleration, braking, and cornering events, identifying high-
risk areas [8]. Both studies highlight the benefits and 
feasibility of geofencing for comparing potential crash 
hotspots. In contrast, this research extends geofencing to 
smaller, mainly one-lane roads.  

B. Crash Surrogate Measures 

In prior research, surrogate measures for car crashes have 
been used using different thresholds and metrics due to the 
inadequacy in motor crash data [9]. Traffic conflicts have 
historically served as a comprehensive surrogate measure for 
crashes, defined as events involving road users necessitating 
evasive maneuvers to avoid collisions [10]. However, 
measuring traffic conflicts relies on observational data, 
posing challenges for data generation. Vehicular telematics 
data, particularly harsh acceleration, braking, and cornering 
has been utilized to predict crashes [8]. Zhang and her team 
identified crash hotspots in Ann Arbor, Michigan, using 
sudden braking events on freeways [11], while Desai found a 
correlation between harsh braking with crash occurrences on 
interstate construction projects [7]. Both studies found a 
significant correlation between harsh braking and crashes. 
Gupta and his team affirmed this connection but found 
cornering to be less indicative. These surrogate measures 

offer promise in pinpointing safety hotspots, including those 
around the University of Virginia [12].   

C. Countermeasures 

Countermeasures are essential for enhancing safety in 
identified hotspots, especially considering the University of 
Virginia’s predominantly low-posted speed limit roads with 
numerous crosswalks. Previous research categorized effective 
countermeasures into four groups: speed management, 
temporal and spatial separation of pedestrians and vehicles, 
and improving pedestrian visibility. These four defined 
groups of countermeasures can be obtained through the 
addition of traffic signs, speed bumps, pedestrian crossing, 
visibility of traffic signs, and the narrowing of roads [1]. 
Chen et al. in 2012, evaluated the effectiveness of these 
countermeasures in New York City, observing reductions in 
crash rates following implementation. Significant crash rate 
reductions were noted with measures such as pedestrian 
fencing, increased visibility of signs, extension of crossing 
times, and traffic signal installation [13]. 

Based on the literature review, we combined geofencing 
techniques and surrogate safety measures to identify safety 
hotspots and place countermeasures to improve safety at the 
University of Virginia campus. 

IV. METHODS 

To determine the hotspots for safety, an empirical analysis 

with five steps was performed: gathering and cleaning of 

surrogate measure and crash data, mapping of the events’ 

geolocations, correlation analysis of three surrogate 

measures and crash data, ranking of the hotspots using Z-

scores, and qualitative validation of derived hotspots using 

state accident data. Subsequent subsections explain each 

step-in depth. 

A. Baseline Vehicle Data Collection and Analysis   

GeoTab is an onboard device installed on each of the 280 
plus facilities management (FM) vehicles and reports various 
vehicular statuses, including harsh braking, speeding, hard 
acceleration, harsh cornering. Every surrogate measure event 
that is violated by an FM vehicle is recorded onto the Geotab 
platform. Upon analysis and deep consideration based on our 
literature review, our team decided to focus on harsh braking, 
harsh cornering, and speeding as surrogate measures that 
contribute to crashes. Therefore, from the Geotab platform, 
we pulled all instances of harsh braking, harsh cornering, and 
speeding by FM vehicles from the years 2019-2024 and put 
them into respective datasets for each measure. Harsh 
braking takes place when a driver neglects proper following 
distance or is inattentive to current environmental conditions 
like the presence of pedestrians. Harsh cornering occurs 
when a vehicle turns sharply or abruptly. Speeding occurs 
when a vehicle is traveling at a speed of 5 mph greater than 
the posted speed limit. For this study, an event for each 
metric for different types of vehicles was specified when 
exceeding the thresholds, as defined in Geotab and seen in 
Table I.  

TABLE I.  THRESHOLD FOR EACH EVENT FOR TYPES OF VEHICLES 
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Each violation event provided us with data on the time, 
date, latitude, and longitude, and the speed the vehicles were 
going. However, we realized that we had to do some data 
cleaning. There were harsh braking and harsh cornering 
events that had speeds of zero or speeds that were not fast 
enough to exceed each respective threshold (from zero to five 
mph). Many of these events were caused by dangling events, 
caused when the Geotab device is not installed correctly onto 
the vehicle. This was confirmed through testing where we 
manually hit the device. Dangling events also occur during 
the testing phase of the device, as many events were seen to 
occur in FM headquarters or testing centers.  To address 
these instances, we queried the data to only include events 
that occurred above five miles per hour speed. We chose this 
speed because it is the lowest speed limit within the campus 
of UVA, so it would theoretically be the lowest speed a car 
drives around the school.  

To cross-reference the surrogate measure map to 
determine the safety hotspots on campus, we needed to find 
data on the crashes in Charlottesville. We incorporated crash 
data from the Facilities Management fleet vehicles from 2019 
to 2024. On top of this, we pulled data from the Traffic 
Roads Electric Data in Virginia (TREDS) [14], which 
contained its own cluster map of all crashes in the 
Charlottesville area. In the TREDS Virginia data, there were 
datasets for both Albemarle County, where Charlottesville is, 
and for Charlottesville City itself from 2019 to 2024. Since 
there were no overlaps between crashes in both data sets, 
they were both used. 

B. Mapping Safety Surrogate Measure Violations 

Using the provided latitude and longitude coordinates for 

each surrogate measure event and FM vehicle crashes, we 

were able to generate maps showing each event using 

Python and C# programs. We first created a Python file that 

queried surrogate measure data from each FM vehicle from 

GeoTab and stored all instances from each vehicle into their 

own log files. From there, we had a C# file that traversed 

each log file to map all instances into a cluster map. This 

provided the initial information needed to identify safety 

hotspots. These cluster maps were implemented to ensure 

accurate hotspot identification and group events together 

based on proximity to an area. Colors were incorporated into 

the cluster map to identify key areas of each cluster. The 

greater the proportion of events in relation to other clusters, 

the redder the cluster appears. Green clusters denote low 

event areas, while yellow clusters denote medium event 

areas, and red clusters denote high event areas, as seen in 

Figure 1. As the clusters expand, areas with a greater density 

of events are more easily identifiable. The data on FM 

crashes were also transformed into a cluster map the same 

way the surrogate measures were. 

Figure 1.  Cluster Map of Harsh Cornering Events from 2019 to 2024 

 

C. Identifying Hotspots on Campus 

After obtaining the cluster maps, we identified the 
hotspots at UVA. We did this by first dividing UVA into 
twenty different cluster zones based on roadway segments, as 
seen in Figure 2. To determine these zones, we evaluated 
trends from the cluster maps, looking at popular forming 
clusters, marking each as a potential hotspot. From there, we 
viewed routes from FM vehicles on GeoTab to determine 
which segments are commonly used. Potential hotspots that 
were on commonly used routes were chosen for our zones. 
With these zones, we counted how many violations from 
each of the three surrogate measures occurred in each zone 
by referencing each respective cluster map. After obtaining 
the counts of events for harsh braking, harsh cornering, and 
speeding for all twenty of the zones, we also collected the 
number of crashes, both reported by FM and TREDS, that 
occurred in each zone. The first ten zones and their event and 
crash counts are shown in Table II.   

Figure 2.  Twenty Defined Zones on UVA Campus 

 

TABLE II.  A SNIPPET OF CLUSTER ZONES WITH SURROGATE MEASURE 

COUNT AND CRASH COUNT 

 

From our list of twenty zones, we had to remove the zone 
containing the headquarters of UVA Facilities Management. 
When looking at the FM crash, it was found that all the 
crashes in this zone were minor parking lot incidents, thus 
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lacking the genuineness of safety risk associated with the 
crashes. Other low-speed collisions, those occurring with 
speeds less than 5 mph, were removed to be consistent with 
surrogate measure event data. 

To find the surrogate measure with the highest correlation 
to crashes, we performed three separate correlation analyses 
for each of the measures. We only incorporated the FM crash 
data for this step because the surrogate measure violations 
were only based on FM fleet vehicles. 

After obtaining the surrogate measure with the highest 
correlation to FM crashes, we determined that the low 
correlations found were due to the low number of crashes 
from FM. Thus, we decided to incorporate a Z-score analysis 
as it normalizes the measures and allows us to aggregate 
these normalized measures for identifying safety hotspots. 
For each surrogate measure, we calculated the Z-score (z) for 
each of the events by subtracting the surrogate measure mean 
(x̄) from the event count (x) and then dividing that by the 
measure’s standard deviation (S.D.) (1). 

  () 

For each zone, we added up the z-score for its harsh 
braking, harsh cornering, and speeding count to constitute a 
final score. This accounted for normalizing the surrogate 
measure event numbers, as some surrogate measure events 
occurred more than others. In addition, this approach differs 
from the study Shen and his research team performed, as they 
added up the raw surrogate measure event number [8]. After 
calculation, we ranked the zones based on the final score.  
With our final ranked list of cluster zones, we took the three 
highest-scoring zones and analyzed each area. In addition, we 
qualitatively validated these three zones by verifying that 
they had VA crashes recorded. The reasoning for taking the 
top three is that selecting high-frequency crash zones can 
exhibit patterns that are less discernible in lower-frequency 
crash zones. After analyzing the three areas, we were able to 
come up with a list of potential countermeasures that FM 
could implement to improve safety at the University of 
Virginia. 

V. RESULTS  

A. Surrogate Measure and Crash Analysis 

Using R Studio, the results of the correlation analysis for 
all three of the surrogate measures and FM crashes are shown 
below in Table III. For FM crashes, the highest correlated 
surrogate measure is speeding, with a correlation of 0.29, 
indicating a weak positive correlation. Harsh braking had an 
even weaker correlation at 0.01. On the other hand, harsh 
cornering shows weak and negative correlations with crashes 
with a correlation coefficient of -0.03, implying that the 
harsher cornering, the fewer the accidents. This fact 
contradicts the literature review above, which stated that 
harsh cornering and harsh braking are strongly correlated 
with crashes [7] [12]. 

TABLE III.   CORRELATION COEFFICIENTS FOR SURROGATE MEASURES 

AGAINST FM CRASHES 

 

After deducting low correlation due to low crash data, we 
calculated the mean and standard deviation for each of the 
surrogate measures as shown in Table IV. Harsh braking had 
the lowest event mean at 2.11, while harsh cornering had the 
highest at 258.58, highlighting a need for normalization. 
Thus, we incorporated the means and standard deviations to 
calculate the z-scores for each of the events, eventually 
adding these up for a final score and then ranking the zones 
based on the final score, as seen in Table V. Based on the 
table, Carruthers, Alderman Rd at AFC, and McCormick Rd. 
(Old Dorms) were the identified hotspots that we deduced to 
be the most prone to crashes, with the highest three final 
scores of 3.58, 2.96, and 2.50 in that order. The next highest 
zone was Massie Rd, with a final score of 0.94, as shown in 
Table V.  All three of these hotspots have VA crashes, 
McCormick Rd having eight, Alderman by AFC having 5, 
and Emmet St N by Carruthers Hall having 2 crashes.  

TABLE IV.  MEAN AND STANDARD DEVIATION FOR SURROGATE 

MEASURES 

 

TABLE V.  TOP FIVE HOTSPOTS BASED ON FINAL Z-SCORES 

 

B. Hotspot Crash Surrogate Measures 

After identifying the safety hotspots through the method 
listed above, we visited these areas. At each location, we 
noted the surrounding area and looked for potential indicators 
of why there was a high risk of crashes. Indicators include the 
speed limit, traffic signs like pedestrian crossing signs, traffic 
lights, sharp corners, speed bumps, and others. We also took 
note of the lack of these indicators, which could be the cause 
of crashes or a high rate of surrogate measure violations, 
specifically speeding. Our findings are shown in Table VI.  

TABLE VI.  ANALYSIS OF PROPOSED HOTSPOTS WITH ASTERICK* 

INDICATING BOTH SIDES OF THE ROAD 
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With the list of these safety hotspots and the notes 
regarding potential indicators and lack of indicators, we 
researched different countermeasures that could help reduce 
the risk of crashes in those locations. Further discussion of 
the lack of indicators and the proposed countermeasures is 
followed in the next section. 

C. Countermeasures 

Countermeasures are essential for enhancing safety in 
identified hotspots, especially considering the University of 
Virginia’s predominantly low-posted speed limit roads with 
numerous crosswalks. Previous research categorized effective 
countermeasures into four groups: speed management, 
temporal and spatial separation of pedestrians and vehicles, 
and improving pedestrian visibility. These four defined 
groups of countermeasures can be obtained through the 
addition of traffic signs, speed bumps, pedestrian crossing, 
visibility of traffic signs, and the narrowing of roads [1]. 
Chen et al. evaluated the effectiveness of these 
countermeasures in New York City, observing reductions in 
crash rates following implementation. Significant crash rate 
reductions were noted with measures such as pedestrian 
fencing, increased visibility of signs, extension of crossing 
times, and traffic signal installation [13]. 

Based on the literature review, we combined geofencing 
techniques and surrogate safety measures to identify safety 
hotspots and place countermeasures to improve safety at the 
University of Virginia campus. 

VI. DISCUSSION 

Our analysis and results differ from our literature review 
of past studies. Harsh braking, harsh cornering, and speeding 
were thought to be strong surrogate measures for crashes 
before the study; yet all displayed weak correlations close to 
zero with FM crashes in our study. This can be explained by 
the limited amount of crash data available, as many of the 
zones had zero FM crashes reported. With small counts of 
crashes, there is a higher likelihood of fluctuations having a 
disproportionate impact on the calculated correlation 
coefficient. This can lead to varying conclusions about the 
strength and direction of the relationship between our 
variables.  

Due to the uncertainty of our correlation analysis, we 
shifted our focus to a Z-score analysis in order to determine 

our safety hotspots. As shown earlier, our surrogate measures 
had widely varying means and standard deviations, with a 
much greater number of harsh cornering and speeding events 
when compared to harsh braking events. To avoid bias due to 
surrogate measure volume, we used z-score normalization. 
The results gave us the zones that deviated the most from the 
mean, which indicates the zones most prone to safety 
violations.  

Shifting the focus to countermeasures, our analysis 
includes several recommendations based on identified risk 
factors at different hotspots. 

Figure 3.  Picture of Emmet St. N (Carruthers Hall) 

 

Emmet St N (Carruthers Hall): We noticed that the turn 
into Carruthers Hall comes without a warning and is 
positioned awkwardly just before a stoplight, as seen in 
Figure 3. With a speed limit of 40 mph, FM drivers often 
corner harshly to navigate the turn (1841 events). To counter 
this, we propose the addition of a right turn lane into 
Carruthers Hall, which, according to past studies, can reduce 
crash occurrences by 30% at similar intersections [15]. We 
believe this implementation would significantly decrease 
both the number of harsh cornering events and the risk of 
crashes in this zone. 

McCormick Rd (old dorms): Harsh cornering, harsh 
braking, and speeding violations are all present at this zone. 
However, recent upgrades, including two-speed humps and 
enhanced pedestrian crosswalks, were introduced, in the 
summer of 2023 to counter the violations. Preliminary data 
from FM indicates these measures are reducing these 
surrogate measure events, though more analysis and data are 
needed for confirmation. Figure 4, showing the before and 
after of harsh braking events on McCormick Rd., shows no 
harsh braking events since the upgrades added. 

Figure 4.  Before and After of McCormick Rd (Old Dorms) 

        

Alderman Rd (AFC): This location is prone to violations 
of harsh braking and cornering associated with its multiple 
sharp turns. The widening of roads around these turns can 
reduce harsh cornering events. The current pedestrian 
crossing set up with two parallel pedestrian crossings in 
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proximity, with only one of them having pedestrian crossing 
lights, as seen in Figure 5, contributes to the harsh braking, 
based on student experience. Simplifying this into a single, 
well-signaled crosswalk could enhance both driver and 
pedestrian safety.  

Figure 5.  Picture of the Alderman at AFC Zone 

 

VII. CONCLUSIONS 

With the increase in vehicle technology and drivers on the 
road, the number of safety infractions and the potential for 
motor vehicle crashes increases. This study sought to 
enhance the safety of roads at UVA by identifying and 
addressing safety hotspots most prone to crashes through the 
analysis of geo-location and telematics data. An approach to 
reducing the occurrence of motor vehicle crashes was used 
by utilizing FM’s Geotab data to identify safety hotspots and 
prescribe evidence-backed countermeasures to reduce the 
potential for safety violations and crashes at these spots. Our 
methods, backed up by literature review, first incorporated a 
correlation analysis between the safety surrogate measures 
harsh braking, harsh cornering, speeding to FM crashes, and 
then a Z-score analysis which normalized and combined the 
surrogate measure events. This allowed us to pinpoint these 
areas of high risk of accidents and underscored a need to set 
countermeasures aimed at reducing surrogate measure events. 
Upon visiting the three identified hotspots, Carruthers Hall, 
McCormick Rd (Old Dorms), and Alderman Rd at AFC, we 
observed potential risk indicators and absent 
countermeasures, leading to the suggestion of creating a right 
turn lane for Carruthers Hall, widening of roads, as well as 
simplifying crosswalks for Alderman Rd. We also established 
a baseline for evaluating the effectiveness of recent 
countermeasures put in place to improve the safety of 
McCormick Rd.  

Our research contributes to the vehicular safety field by 
providing a framework for identifying hotspots and 
implementing countermeasures using Z-score analysis. Our 
findings contribute to UVA Facilities management’s goal of 
ensuring safety and sustainability in their Fleet vehicles, 
assisting them in their commitment to the UVA 2030 
Sustainability plan. 

VIII. FUTURE WORK 

Additional work can be done to identify different hotspots 

on the campus further beyond utilizing cluster maps. Firstly, 

geofencing can evolve beyond a simple area division, to 

account for vehicles' miles traveled. This would refine 

hotspot normalization by accounting for traffic density and 

time of day variations. Different telematic technologies can 

be incorporated for telematics technologies to capture more 

granular location data, as Geotab’s location data is only 

pinged for 15 seconds. Options such as the Internet of 

Things (IoT) technology like LoRa Gateway nodes can be 

used for real-time tracking. Further analysis could explore 

alternative data normalization methods. While this research 

incorporated Z-scores to normalize the data, other general 

options, such as ranked-based normalization and quantile 

normalization can be incorporated. Additionally, more 

specific to this example, the total number of events and 

crashes could be divided by the total number of vehicles that 

drive through the area. This method may offer a more 

standardized comparison of the surrogate measure counts, 

accounting for varying traffic volumes across zones. 

Temporal patterns of surrogate measure events also should 

be considered, especially during high pedestrian traffic times 

related to university schedules. A detailed temporal analysis 

can reveal when certain surrogate measures are at their peak 

and can open the door for time-sensitive countermeasures. 

This tailored approach can further assist FM with its goal of 

enhancing road safety by extending beyond currently 

provided recommendations. Finally, because FM has many 

different types of vehicles, from trucks to sedans, research 

looking into which type of vehicles causes more surrogate 

measure events and is most prone to accidents.  
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