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Abstract 

 DMD is a devastating X-linked recessive musculoskeletal disorder that effects 1 in 

3500 boys [1].  DMD is caused by the lack of a functional dystrophin protein, a structural 

protein that mechanically links muscle fibers to the extracellular material. Without 

dystrophin,  muscle fibers are more susceptible to contraction induced damage [2], 

[3].Therefore, everyday movements such as walking, talking, and breathing result in cycles 

of muscle degeneration and regeneration, ultimately leaving affected individuals 

wheelchair users by their early teens, and at high risk for respiratory or cardiac failure in 

their second or third decade of life [4]. Muscle fibers, the central cellular unit of muscle, 

change their morphologies and geometric arrangements in ways visibly discernable using 

immunofluorescence microscopy in response to external stimuli or changing functional 

demands.  Therefore, analysis of these geometrical differences can provide insight into the 

structure-function relationships present in skeletal muscle. 

  Computational models provide a powerful paradigm to understand muscle 

degeneration and explore possible treatment approaches for Duchenne muscular dystrophy 

(DMD).  This thesis contains two sections. First, I designed, developed, and validated a new 

skeletal muscle image processing algorithm to detect muscle fiber boundaries in skeletal 

muscle histological cross-sections. The algorithm is capable of whole muscle cross-section 

microstructure analysis, and was validated against a standard muscle histological manual 

analysis and two open-sourced currently available skeletal muscle analysis software 

programs. Then, I utilized this algorithm to build micromechanical finite element models of 

real skeletal muscle microstructures of both dystrophic and healthy full muscle-cross-

sections to explore how muscle fiber morphologies and geometric arrangements affect the 
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susceptibility of dystrophic and healthy muscles to contraction induced-damage. The models 

predicted that decreased muscle fiber cross-sectional areas, increased muscle fiber 

circularity and increased variability of muscle fiber cross-sectional areas, increase the 

susceptibility to contraction-induced damage of a given muscle.  

  Ultimately, I have developed in this thesis a skeletal muscle image analysis tool that 

outperforms the current available programs and has already been adapted by two other 

research groups at UVA and developed micromechanical models that can be used to 

investigate the role of muscle microstructure in DMD pathogenesis.  This work provides a 

framework to determine micro-scale damage from microstructure images and could be used 

to model the effect of pharmacological treatments on DMD damage susceptibility and 

therefore lays the groundwork for future work in in silico testing of therapeutics for DMD. 
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Chapter 1 

Introduction 

 Skeletal muscle function is fundamentally important for human health and ability, 

accounting for approximately 40 percent of total body mass in the human adult [5], [6].  

Daily life activities such as speech, breathing, and movement are facilitated by healthy 

muscle function. Loss of skeletal muscle function can lead to disability, impaired quality of 

life, and death. Skeletal muscle is organized in a complex hierarchical structure, wherein 

the predominant cell is the muscle fiber. Muscle fibers are highly adaptable to external 

stimuli and changing functional demands, changing their shapes, sizes, and geometrical 

arrangements in response. Injury, exercise, disease, spaceflight, and aging can alter skeletal 

muscle microstructure composition in ways that are visually discernible using 

immunofluorescence microscopy (Figure 1.1) [7], [8].  As muscle fibers adapt to external 

stimuli, numerous research groups seek to measure fiber-morphology as part of their 

muscle analyses to better understand muscle microstructure adaptation. 

 Muscle microstructures are altered by many diseases, including Duchenne muscular 

dystrophy. Duchenne muscular dystrophy (DMD) is a genetic X-linked disorder that causes 

progressive muscle degeneration and weakness, affecting 1 in 3500 boys [9]. It is caused 

by the incomplete translation of the dystrophin protein, resulting in absent or damaged 

dystrophin linkage protein, which links the muscle fiber membrane to the surrounding 

ECM [10]. Without the dystrophin protein, muscle is more susceptible to contraction-
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induced damage, and as a result everyday movements such as walking and breathing result 

in cycles of muscle degeneration and regeneration, ultimately resulting in chronic 

inflammation, fibrosis, and muscle wasting [11]. 

 

Figure 1.1: Skeletal Muscle Structure and Varying Muscle Fiber Morphologies in the 

Transverse View.  Skeletal muscle is organized in a hierarchical structure consisting of 

highly organized repeating structures, with the muscle fiber the central cellular unit of 

muscle tissue. The top row displays images of murine muscle fibers morphologies. Images 

are confocal images of Laminin2 and DAPI stained muscle cross sections. Muscle fibers are 

outlined in red, with nuclei shown in blue. Scale: 420 µm by 564 µm. Figure adapted from 

Encyclopedia Britannica 2015. 

  Computational models provide a powerful paradigm to understand muscle 

degeneration and explore possible treatment approaches for DMD. The hierarchical 

structure of skeletal muscle lends itself to computational modeling. Computational models 

Bone 

Tendon 

Whole Muscle 

Fascicle 

Muscle 
Fibers 



Chapter 1      |      Introduction                                                                                                                     3 
 

3 
 

of muscle have been built at many scales, from simplified multiple muscle models, to finite 

element models of whole muscle, muscle fascicles, or fibers, to models of the interactions of 

individual proteins [12]–[16]. While the microstructure of skeletal muscle has been 

extensively studied at different levels, many questions remain regarding the relationship 

between muscle microstructure properties and muscle function. Disease, ageing, exercise, 

and other environmental factors can alter the shapes and geometrical arrangement of 

muscle fibers and their connective tissues in ways that vary significantly across muscles. 

How these variations affect the macroscopic properties of muscle and muscle’s 

susceptibility to damage is not well understood. 

  Recently, finite element (FE) models of skeletal muscle microstructure were 

developed to explain the susceptibility of DMD muscles to contraction-incurred damage 

[4], [17]–[19]. However, these works explored muscle microstructure at a scale of 

approximately 30 or fewer muscle fibers.   Full muscle cross sections, as seen in Figure 1.2 

consist of many hundreds of muscle fibers. Therefore, building upon this previous work, 

the purpose of this thesis is to create finite element models of based on real images of 

skeletal muscle microstructures in both dystrophic and healthy full muscle-cross-sections 

consisting of hundreds of muscle fibers to explore how real microstructure variations 

affect the susceptibility of dystrophic and healthy muscles to contraction induced-damage. 

To facilitate the creation of the image-based full-muscle cross-section FE models, this 

thesis also presents a novel semi-automatic segmentation algorithm to detect muscle fiber 

boundaries in skeletal muscle histological cross-sections. The utilization of the skeletal 

muscle analysis algorithm allows for the micromechanical FE modeling of whole muscle 
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cross-sections consisting of several hundred muscle fibers, a far larger scale than 

previously attempted.  

Figure 1.2: Images of mouse skeletal muscle cross-sections in the transverse view. 
Mouse whole muscle cross-sections consist of many hundreds of muscle fibers. Due to the 
small size of mouse muscles, fascicle structures are not present. All three muscles are 
murine extensor digitorum longus (edl) muscles. Fiber boundaries (green) were stained 
and visualized with Laminin-2α.  
 
 This thesis contains four subsequent chapters. Chapter 2 presents background 

sections describing Duchenne muscular dystrophy, the existing approaches to modeling 

skeletal muscle, the constitutive model used in chapter 4 to represent muscle fibers and 

extracellular material, the micromechanical modeling approach employed in Chapter 4, 

and existing approaches to image processing of skeletal muscle histology. Chapter 3 

presents the design of the semi-automatic skeletal muscle analysis algorithm, the 

validation of the algorithm, and analysis of algorithm segmentation performance and 

operation time. In Chapter 4, finite element models of skeletal muscle microstructures 

were developed to study the effect of muscle fiber geometries on the susceptibility of 

dystrophic and healthy muscles to contraction-incurred damage. Chapter 5, the conclusion, 

discusses the contributions of this thesis to the understanding of muscle structure and 

function and describes further applications of the work presented here. 
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Chapter 2 

Background 

2.1 Skeletal muscle structure 

Skeletal muscle has a complex hierarchical structure where at each scale contractile, 

force-producing muscle tissue is surrounded by a network of structurally supportive 

extracellular material (Figure 2.1). The smallest force producing unit of muscle is the 

sarcomere. Muscle sarcomeres are the contractile units of muscle and are composed of 

thick and thin filament proteins called myosin and actin respectively, as well as titin, which 

acts as a spring as well as to provide passive stiffness to the sarcomere [20], [21]. As shown 

in Figure 2.2, when actin and myosin slide with respect to one another, using adenosine tri-

phosphate as a source of energy, the sarcomere contracts [22]. This overlap of thick and 

thin filaments gives rise to the force-length and force-velocity relationships that define the 

force-generating capacity of muscle [23]. Sarcomeres stack to form long multi-nucleated 

muscle cells, incased by the cell membrane (also called the sarcolemma), that are also 

known as muscle fibers [21]. A muscle fiber contraction is caused by the simultaneous 

contraction of all of its sarcomeres. Muscle fibers are bundled together in multi-fiber 

groups called fascicles and fascicles are bundled together to form the whole muscle. Muscle 

fibers and fascicles are embedded in an intramuscular connective tissue matrix called the 

extracellular matrix (ECM) [24]. ECM consists of two connective tissues, known as the 
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endomysium and perimysium [25]. ECM is thought to play a critical role in enabling force 

transmission from fibers to tendon and in protecting muscle cells from excessive damage 

during muscle contractions. The shapes and geometries of muscle fibers, fascicles, and 

connective tissues vary significantly across muscles [7]. These geometries are altered by 

disease, ageing, exercise, as well as environmental exposures [7], [8], [26]. Therefore, 

analysis of these geometrical differences can provide insight into the structure-function 

relationships present in skeletal muscle. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1: The Hierarchical Structure of Skeletal Muscle. Skeletal muscle has a complex 
hierarchical structure where at each scale contractile, force-producing muscle tissue is 
surrounded by a network of structurally supportive extracellular material. Muscle fiber 
membranes (also called sarcolemna) contain transmembrane protein complexes containing 
the dystrophin protein that links sarcomeres to the cell membrane and extracellular material 
(ECM).  
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Figure 2.2: The contractile sarcomere is the smallest force producing unit in muscle. 
Sarcomeres are the basic unit of striated muscle tissue. The basic repeating unit occurs 
between two z-disks (also called z-lines).  
 

2.2 Duchenne muscular dystrophy 

  Skeletal muscle accounts for approximately 40 percent of a human body mass and is 

a facilitator of daily life activities [6]. Skeletal muscle enables movement of the human body, 

from walking to talking to breathing. Therefore, diseases that disrupt healthy muscle 

function can have a devastating effect on quality of life. Duchenne muscular dystrophy 

(DMD) is a devastating X-linked recessive musculoskeletal disorder that effects 1 in 3500 

boys [1]. Symptoms of DMD manifest around ages 3-5 when boys exhibit changes in walking 

patterns. Muscle function progressively degenerates until most affected individuals are 

wheelchair users by their early teens, and die due to respiratory or cardiac failure in their 

second or third decade of life [1], [4]. The current standard of care for DMD is corticosteroid 
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injections, which is only palliative and prescribed to delay the use of a wheelchair [9]. While 

the cause of DMD, a hereditary biochemical defect of muscle tissue, has been known since 

the 1980s, there is no cure for DMD despite extensive experimental research [1].  

DMD is caused by the lack of a functional dystrophin protein, a structural protein that 

mechanically links muscle fibers to the extracellular material [27]. The dystrophin gene is 

the largest gene in the human genome, spanning roughly 2200 kb and 0.1 percent of the 

human genome [28]. The most common causes of DMD are exon deletions and point 

mutations within the dystrophin gene [10]. These genetic mutations cause the dystrophin 

protein to have premature stop-codons, and the protein is then truncated to be shorter than 

its functional length. These truncated proteins are unstable and subject to degradation, 

leaving little to no dystrophin protein left within cells [10]. Individuals with DMD either lack 

the dystrophin protein completely, or the protein is present in small quantities. Lacking the 

mechanical link between muscle fibers and ECM, dystrophic muscle is more susceptible to 

contraction induced damage [2], [3]. Therefore, everyday movements such as walking, 

talking, and breathing result in cycles of muscle degeneration and regeneration. DMD muscle 

biopsies have shown necrotic or degenerating muscle fibers even before muscle weakness is 

clinically observed [29]. Following muscle fiber necrosis, in the early stages of DMD, active 

regeneration of muscle fibers will occur to repair damaged muscle fibers. These cycles of 

degeneration and regeneration occur until the muscle tissue loses its regenerative capability 

[29]. When the regenerative capability of the muscle tissue is lost, muscle fibers are replaced 

by adipose and fibrotic tissues. The combination of progressive muscle loss with fibrosis and 

fat infiltration leads to muscle wasting and weakness [29]. 
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2.3 Modeling of skeletal muscle 

Computational models provide a powerful paradigm to understand muscle 

degeneration and explore possible treatment approaches for Duchenne muscular dystrophy 

(DMD). In the past two decades, computational models of skeletal muscle have advanced 

significantly and these simulations provide a powerful tool for understanding human 

movement and its disorders. Biomechanical simulations have been used to test and predict 

the effect of disease, injury, exercise intervention, and surgical treatments [13], [14], [30]–

[33]. In muscle, the purpose of computational modelling is to simulate the active force 

generation and passive properties that are inherent characteristics [22], [34]. The first 

computational models of skeletal muscle were Hill-type models that describe, in a 

phenomenological manner, the active force-length velocity behavior of whole muscles [23], 

[35]. Hill type models have been most often used in computer models involving several 

muscles, representing each muscle as line-segment. In these lumped-parameter models (i.e. 

OpenSim), the active force-length velocity behavior of muscle is represented by a contractile 

(active) element governed by the force-length and force-velocity relationships described by 

Hill, as well as series and parallel passive stiffness components [16], [35]–[37]. While these 

models are useful for multi-muscle simulations used in the study of human movement 

because they reduce the computational complexity required for simulation of movement, 

they neglect to account for non-uniform sarcomere shortening, and are poor at representing 

the behavior of muscles with complex geometries [20]. To more accurately model the 

distribution of strains within muscle tissue, three-dimensional continuum models of muscle 

were developed to address these limitations. 
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 Continuum models of muscle represent the nonlinear anisotropic mechanical 

behavior of muscle in a continuum mechanics-based framework [38]. Advances in MRI have 

allowed for the realistic three-dimensional representation of muscles with complex 

geometries to be possible [31], [39]. Models using these advanced geometrical 

representations of muscle and treating muscle as a continuum have been used to study non-

uniform stress distributions, myofascial force transmission, and intramuscular pressure. 

However, these constitutive models of muscle lump the properties of muscle fibers and the 

intramuscular extracellular material into one constitutive relationship that assumes a 

transversely isotropic material microstructure [40]. The constitutive relationship is not 

derived from the muscle microstructure properties, it is phenomenological. While these 

models do an excellent job at accounting for macroscopic muscle properties, as muscle cells 

and connective tissues are not explicitly defined in the model, they are limited in their 

capacity to relate disease-related muscle changes to biomechanical changes at the molecular 

and cellular level. To remedy these limitations, recently micromechanical models of muscle 

have been developed to better study the relationship between muscles complex hierarchical 

microstructure and macroscopic function [4], [17]–[19] 

2.3.1 Micromechanics 

 Micromechanics is the study of composite materials made up of heterogeneous 

constituents, at the level of the individual constituents that make up the materials [41]. 

Skeletal muscle can be thought of as a fibrous composite composed of intramuscular 

connective tissue playing the role of the matrix and muscle fibers as the fibrous 

reinforcements [25], [42], [43]. The purpose of micromechanical analysis is to predict the 

macroscopic properties of the composite material, given the material properties and 
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geometry of the constituent elements of the microstructure. In this work, we have applied 

the methods used in micromechanical analysis to the study of skeletal muscle. 

Micromechanical models of skeletal muscle allow us to explicitly represent the 

microstructure of muscle fibers and fascicles and are necessary to explore how the complex 

structure of muscle fibers affects muscle function. 

 Various analytical and computational methods have been used to solve 

micromechanics problems, included finite elements. The advantages of the finite element 

approach are that the actual geometries can be modeled and stress and strain distributions 

can be predicted. The micromechanical muscle modeling framework utilizes the concepts of 

repeating unit cells (RUCs) and periodic boundary conditions to examine damage 

susceptibility from finite element (FE) models of muscle microstructures [17]. This method 

assumes that the composite material, skeletal muscle, is spatially periodic and can be thought 

of as many repetitions of a periodic unit cell that remains periodic while deforming. Due to 

the hierarchical structure of muscle, consisting of long multinucleated muscle fibers, each 

consisting of multiple sarcomeres, this assumption holds. 

 Through micromechanical modeling we can investigate the mechanisms through 

which DMD disease-related changes to muscle fiber geometries alter whole level muscle 

properties. At the fascicle level, Sharafi et al. used micromechanical models that separate 

muscle fibers and ECM to investigate how changes in muscle microstructure affect tissue 

level material properties [17]. Building upon that work, Virgilio et al used micromechanical 

models to probe how DMD related disease changes would alter tissue level properties and 

damage susceptibility[4] . However, the micromechanical models built by Virgilio et al. were 

not based upon real muscle cross-sections, they were based upon pseudo-muscle cross 
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sections generated from an agent-based model. Furthermore, the micromechanical models 

built by both Sharafi et al. and Virgilio et al. both consisted of less than thirty muscle fibers 

per model. Therefore, we have used the works of both Sharafi et al. and Virgilio et al. to build 

micromechanical models based upon based upon real whole muscle cross-sections, each 

consisting of several hundred muscle fibers to probe how DMD-related changes in real 

muscle microstructure affect the damage susceptibility of muscle. 

2.3.2 Constitutive model for muscle fibers and intramuscular 

connective tissue 

The muscle fibers and intramuscular connective tissues in the finite element models 

presented here have been modeled as transversely isotropic, hyperelastic, nearly 

incompressible materials [44]. These assumptions are common in the modeling of both 

muscle tissue and connective tissues [40]. In hyperelastic materials, stress and strain are 

related by: 

 

(1) 

where stresses are derived from the strain energy density function W, the second Piola-

Kirchoff stress tensor S, and the right Cauchy-Green strain tensor C. The deformation 

gradient F, and right Cauchy-Green deformation tensor C, are respectively defined as, 

 

(2) 

(3) 

where x represents the deformed vector and X represents the reference vector. The 

constitutive model uses an uncoupled form of the strain energy density function to simulate 

the near incompressible behavior of both the muscle tissue and intramuscular connective 
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tissue. The strain energy density function separates the dilatational (volumetric) and 

deviatoric (distortional) responses of the muscle tissue, resulting in the following strain 

energy density function: 

 (4) 

where λ is the along-fiber stretch, ψ is the along-fiber shear, β is the cross-fiber shear and J 

is the relative change in volume of the tissue. The fiber direction is defined along the axis of 

transverse isotropy. In this model it is assumed to run along the path of the muscle for both 

ECM and muscle fibers. Physically based strain invariants (Figure 2.3) were used to relate 

material parameters to experimentally quantifiable measurements [45].  

 

 

 

 

 

 

 

 

 

Figure 2.3: Physically-based strain invariants. The above strain invariants were used as 
part of the constitutive model for muscle. They characterize the along fiber stretch, along-
fiber simple shear strain, and cross fiber pure shear strain [40]. 
 

Wλ(λ) is a piece-wise function representing the passive material properties of the tissue, 

dependent on the fiber length. Wψ(ψ), Wβ(β), and WJ(J) were defined as follows: 
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(5) 

(6) 

(7) 

where Gψ is the along-fiber shear modulus, Gβ is the cross-fiber shear modulus and K is the 

bulk modulus and J is the relative change in volume [40]. FE simulations are quasi-static and 

do not account for viscoelasticity [46]. 

2.4 Analysis of skeletal muscle cross section images 

The ability to create finite-element models from images of muscle cross-section fiber 

geometries for the finite element models requires a semi-automatic image segmentation 

algorithm that performs a high content analysis of skeletal muscle immunohistochemical 

images. Analysis of skeletal muscle cross sections is an important experimental technique in 

muscle biology. Muscle fibers adapt to external stimuli and changing functional demands and 

many different conditions modulate skeletal muscle fibers in ways that are visually 

discernible using immunofluorescence microscopy. Numerous research groups, besides our 

own, seek to measure fiber-morphology as part of their muscle analyses. In particular, 

muscle fiber cross-sectional areas (CSA) are commonly used as a metric for muscle 

regeneration in experiments studying disease or injury pathologies [7]. 

However, most image quantification techniques still require extensive and time 

consuming human supervision, which can increase variability of results and introduce the 

possibility for user bias in results. Traditionally, the quantification of muscle fiber CSA is 

done manually in software such as ImageJ by outlining each and every fiber [7]. This 

introduces variability due to limits on manual dexterity and the possibility of user bias. 

Furthermore, in studies with full-muscle cross-sectional images consisting of hundreds to 
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thousands of muscle fibers, a manual segmentation is a painstaking, inefficient, and tedious 

endeavor. While manual segmentation is considered to be the gold-standard in the field, in 

large experimental studies it is not an easily viable solution. 

Two groups have created open-source computer software that can expedite the process 

of skeletal muscle cross-section analysis by measuring muscle fiber numbers and areas. Both 

SMASH software, written by Smith and Barton, and Myovision, written by Wen and Campbell, 

can expedite these analyses, however both still require extensive user interaction [47], [48]. 

Both software programs require many manual inputs, extensive human supervision, and are 

unable to batch process images due to this manual input. Both software programs are also 

interactive GUIs, at times requiring the user to move a slider bar to threshold an image, 

thereby introducing user bias. Additionally, by presenting their muscle analysis software 

programs as GUIs, these programs make it difficult to alter the program to perform other 

desired analyses.  While both software programs are faster than a manual segmentation or 

count, they still require roughly five minutes per image to segment. Lacking the ability to 

batch process images significantly inhibits analysis in large experimental studies, usually 

producing several hundred images for analysis. The novel skeletal muscle fiber 

segmentation algorithm presented in chapter 3 seeks to remedy these limitations. 

2.4.1 Overview of image segmentation techniques 

Image segmentation is a technique that partitions an image into multiple regions of 

interest (ROI). In general segmentation techniques can be classified into four types [49]: 

1. Thresholding (Pixel-based segmentation), is the simplest method of segmentation, in 

which regions are extracted from an imaged based upon the intensity of each pixels 

color [50]. 
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2. Edge-based segmentation, searches for edges in the image, using either the gradient 

and/or the Hessian of the image to define contours. This technique can be used to 

detect changes in color or texture, and its most common method is edge-detection 

[51]. 

3. Region-based segmentation, looks at relationships between connected pixels and 

classifies areas based upon common characteristics to homogeneous groups of pixels. 

The most commonly used techniques are region growing and the watershed 

algorithm [52]. 

4. Model-based segmentation, assigns labels to pixels based upon an a priori knowledge 

of a known object model in the image data [49]. Model-based segmentations imposes 

constraints on image segmentation, based upon a priori knowledge that the 

object/objects of interest have a tendency towards a certain shape or color [53]. 

The segmentation techniques presented here are not comprehensive and are each subject to 

limitations such as noise and limits on specifying criteria for classification. As a result many 

dynamic segmentation strategies combine multiple segmentation techniques to analyze 

complicated image data sets. As such, the algorithm presented in chapter 2 is a dynamic 

solution that combines the four techniques listed above. 
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Chapter 3 

Semi-automatic muscle image 

quantification algorithm 

  Skeletal muscle is a highly plastic tissue that undergoes adaptation in response to a 

variety of external stimuli, including disease, exercise, and injury. The most commonly used 

metric to quantify muscle adaptation is muscle fiber size. Muscle fibers hypertrophy in 

response to exercise or resistance training, and atrophy as a response to disuse, disease, or 

injury. As such, experimental studies evaluating muscle injury or regeneration often seek to 

measure muscle fiber size using fixed muscle tissue cross-sections and histological 

assessments.  Fiber outlines are often visualized using laminin immunostaining, and may 

also be visualized using hematoxylin and eosin staining. Using histology, muscle fiber cross-

section areas, fiber type, fiber geometries, and number of centrally nucleated fibers are all 

commonly quantified.  

  While staining allows for the visualization of muscle fiber boundaries, quantification 

of fiber cross-sectional areas (segmentation) is often performed by manually outlining the 

boundaries of each fiber within a cross-section (Figure 3.1). This process is extraordinarily 

time-consuming for scientists, and its accuracy is also limited by the scientists’ own manual 

dexterity. Image quantification that requires extensive human input slows the progress of 

experimental analysis and also introduces the possibility for user bias.  
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Figure 3.1: Example of Manual Image Segmentation. Confocal image of Laminin-2α and 
DAPI stained tibialis anterior muscle cross section from mdx mouse. Fiber boundaries are 
red (Laminin-2α), nuclei are blue (DAPI), and the manual image segmentation is yellow 
(outlined by hand using ImageJ).  
 
Image processing software programs that can expedite muscle histological analysis will 

greatly accelerate experimental studies of muscle plasticity. While there are several 

software programs available to perform muscle fiber segmentation, they are expensive, do 

not allow batch processing, and require considerable manual thresholding adjustment 

during image processing [47], [48].  Automating muscle histology analysis makes it feasible 

to efficiently process data from large experimental studies as well as process whole muscle 

cross-sections, thereby reducing the chance of variability when only a portion of the image 

is manually segmented. Furthermore, algorithmic determination of muscle fiber cross-

sectional-areas reduces variability due to manual dexterity and the possibility of user bias. 

The purpose of this study was to develop an automatic skeletal muscle image processing 

software, capable of whole muscle cross-section analysis, and validate the program against 
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a standard muscle histological manual analysis and two open-sourced currently available 

skeletal muscle analysis software programs.  

3.1 Experimental data collection 

The images used for estimating algorithm accuracy were obtained during previous 

studies of both wild-type and dystrophic mouse tibialis anterior, soleus, and extensor 

digitorum longus (edl) muscle tissues. No mice were sacrificed specifically for the 

development or validation of this software. 10 µm thick cryosections of cross-sections of 

mouse muscle were fixed in 4% PFA, permeabilized with 0.3% triton as needed, blocked 

with 10% serum, and incubated with Laminin-2-α antibody to define fiber sarcolemmal 

membranes. Soleus and edl muscles were incubated with the fluorescent dye procion 

orange before sectioning to assess the algorithms accuracy in determining fiber procion 

orange dye uptake. Damaged muscle fibers that uptake procion orange dye through leaky 

muscle fiber sarcolemna is often used as an index of membrane damage. Therefore 

quantifying the uptake of procion orange dye was of interest. Images were taken of whole 

muscle cross sections of the soleus and edl muscles, and at 20x for the tibialis anterior 

muscles.   

3.2 Segmentation algorithm design 

 The software interface flows as follows.  Initially, the user inputs the location of the 

images, and the desired outputs of the algorithm are also specified by the user. While fiber 

areas are output automatically into a Matlab structure file, optional outputs include spatial 

statistics for each fiber, number of central nuclei per fiber, presence or absence of procion 

orange dye within each muscle fiber, and images of the final image segmentation. Procion 
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orange dye uptake is a common histological measure used as an index of membrane 

damage as dye is only taken in by muscle fibers with leaky or damaged fiber membranes.  

The user also defines the object channel that muscle fiber membranes, nuclei, and procion 

orange dye were imaged using (for example green channel for fiber membranes, red 

channel for procion orange dye, blue channel for nuclei, etc…).  The pixel size in µm/pixel 

can also be optionally set before image processing begins. Once these initial parameters 

are set the object channel with the muscle fibers is selected and a mask image is created.  

To improve contrast within the mask, contrast limited adaptive histogram equalization is 

applied and the image is binarized using a global threshold determined using Otsu’s 

method [54] (Figure 3.2).  An active contour algorithm with 10 iterations was then applied 

to the original image, using the mask as a guide. 10 iterations were used to create the initial 

segmentation and to reduce computational complexity. Following the active contour 

algorithm, the watershed transformation was applied to determine fiber images. The 

watershed transform can lead to errors in segmentation due to noise within an image.  

Therefore, prior to the transformation, the image was smoothed to suppress local minima 

below a specific threshold. Following the watershed transformation, the active contour 

algorithm was applied once more, with a total of 100 iterations to produce the final image 

segmentation. 100 iterations were used to produce a smoother final segmentation. 

Following this segmentation, incomplete muscle fibers at the borders of the image are 

detected  by determining the muscle fibers that are not completely bounded by ECM and 

excluded from further analysis. An image of the final segmentation is then produced for a 

visual check (Figure 3.2).  
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Figure 3.2: Image Segmentation Algorithm Workflow. Major steps in the muscle fiber 
detection and segmentation algorithm and example segmentations for both 20x and full 
muscle cross section images. 
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Following segmentation, spatial statistics of the muscle fibers can also be gathered.  

Area, perimeter length, centroid, minimum ferret, convexity, extent, shape factor, 

eccentricity, and deviation properties can be obtained for each fiber (Figure 3.4).  To 

determine centrally nucleated fibers, k-nearest neighbor color clustering algorithm is then 

used to determine the number of outer or central nuclei within each fiber (Figure 3.3).   

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Determination of central and outer nuclei in one representative muscle 
fiber. Representation of K-nearest neighbor color segmentation algorithm to determine 
central and outer nuclei for one representative muscle fiber. Muscle fiber boundaries are 
shown in white, central nuclei outlined in purple, and outer nuclei outlined in green.  

 

 Another optional feature of the algorithm is the identification of muscle fibers with 

the presence of procion orange dye inside the sarcolemmal fiber membrane. If this feature 

is desired, the object channel used to image procion orange dye is isolated, thresholded, 

and fibers wherein dye is above fifty percent of the area content are identified as positive 

for procion orange dye. While fifty percent dye area content is the default percentage to  
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Figure 3.4: Spatial Statistics for each muscle fiber. Convexity, extent, shape factor, 
minimum ferret, eccentricity, and deviation can be optionally found for each segmented 
muscle fiber. 
 
identify fibers positive for procion orange dye, this number can be adjusted manually 

before segmentation begins (Figure 3.5). Additionally, an optional feature of the algorithm 

at this stage removes the outer two layers of muscle fibers for analysis, as this is a common 

procedure to eliminate the bias due to sectioning errors at the edge of a whole muscle-

cross-section. The outer two layers of fibers can be removed by finding the center of each 
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fiber within the image, and iteratively removing the fibers with centroids at the outer edge 

of the whole muscle cross-section.  

 

Figure 3.5: Example of identification and segmentation of muscle fibers containing 
procion orange dye. Original image shown at left and segmented image shown at right. 
 

3.3 Comparison of segmentation performance 

The accuracy of muscle fiber counts and muscle fiber areas was determined by 

comparison with manual count and manual segmentation. Two open-sourced software 

applications, Myovision and SMASH, were also downloaded to evaluate the current 

algorithm’s accuracy to the currently available open-source techniques. Detailed 

descriptions of both the SMASH and Myovision software programs have been published 

[47], [48]. To compare algorithm segmentation accuracy, we used the dice similarity 

coefficient. The dice similarity coefficient is a statistical validation metric to evaluate the 

performance of automated segmentations, comparing to a manual segmentation set as a 

gold standard (Figure 3.6). The dice similarity coefficient, also called the overlap index, is 

the most commonly used metric in validating medical segmentations [55]. When 
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calculating the dice similarity coefficient, two binary segmentations are needed, one 

representing the “ground truth” image and the other the automated segmentation that is 

being evaluated. Euclidean distance and the following equation are used to calculate the 

dice similarity coefficient between segmentations A (Ground truth) and B (automatic).  

 
(8) 

Dice coefficients range from 0 to 1, with 1 being a perfect segmentation (Figure 3.6). Any 

segmentation above a 0.75 dice similarity coefficient, is considered to be a good 

segmentation [56]. 

 

Figure 3.6: Schematic of Dice Similarity Coefficient. A representative diagram comparing 
two segmentations, A and B, using the dice similarity coefficient. The dice similarity 
coefficients compares segmentations on a scale of 0 to 1, with 0 representing no overlap in 
segmentation, and 1 representing segmentations that are identical. 
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3.3.1     Methods for Validating the Segmentation Algorithm 

The algorithm was validated in two ways: 

1. Mdx and wt images (20x) of tibialis anterior murine muscle cross-sections were 

manually segmented using the outline tool of ImageJ (n = 13). The time to manually 

segment each image was recorded.  The manual segmentation was then compared 

to segmentations produced by the algorithm presented above, Smash open-source 

software, and Myovision open source software using the dice similarity coefficient. 

These segmentations were timed as well. Segmentation performance was evaluated 

using the dice similarity coefficient to compare to the manual segmentation set as 

the gold standard. Segmentation time was also evaluated and compared. 

2. Whole muscle cross sectional images of mdx and wild-type (wt) edl and soleus 

muscles (n = 14) were evaluated by a team of five trained muscle physiologists. The 

samples were stained with Laminin-2α to visualize muscle fiber boundaries and 

incubated with procion orange dye to visualize dye uptake.  As each whole muscle 

cross-section contains several hundred muscle fibers, a manual segmentation was 

not performed due to time constraints. Instead, each technician counted the total 

number of muscle fibers present in each sample, as well as the total number of 

fibers with procion orange dye uptake, to evaluate the accuracy of that feature of the 

new software.  The algorithms total number of fibers and percent of fibers with 

procion orange dye uptake were then compared back to the manual counts to 

evaluate accuracy. 
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3.3.2     Results of Segmentation Algorithm Validation 

The algorithm segmentations of the 20x tibialis anterior wt images displayed a significant 

increase in segmentation quality (as compared to the manual segmentation using the dice 

similarity coefficient) compared to those produced using Smash software (Figure, 3.7, p < 

0.05) [47]. Furthermore, the algorithm segmentations were significantly better than both 

Smash and Myovision software programs on the DMD 20x tibialis anterior muscle images 

software (Figure 3.7, p < 0.05) [47], [48]. DMD muscle is difficult to segment due to an 

increase in interstitial space between fibers, leading to over classification of extracellular 

material as muscle. Additionally, the fibers are less uniform in shape, leading to challenges 

in image processing. While the all segmentations produced by the new algorithm, Smash, and  

 

Figure 3.7: Accuracy of Segmentation of Dystrophic and Healthy Muscle. Segmentation 
accuracy was compared using the dice similarity coefficient on groups of Wild-Type (n = 6) 
and dystrophic (n = 7) cross sections. Error bars represent the standard deviation from the 
mean. Significance was calculated using ANOVA and Tukey post-hoc tests at the p = 0.05 
level. 
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Figure 3.8: Comparison of algorithm segmentation to a human manual count.  A team of five trained technicians performed 
a manual muscle fiber count on 14 whole muscle cross-sections. Muscle fibers positive for procion orange dye uptake were also 
counted.  The number of total fibers counted and the percent of fibers displaying dye uptake was then calculated using the 
algorithm and compared to the manual counts. 
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Myovision were above the standard 0.75 cutoff to mark a “good” segmentation, the new 

algorithm dice similarity coefficient average across all samples was 0.91, which is 

indicative of a high quality segmentation across all samples. 

The whole muscle cross-section image analysis indicates that the algorithm compares 

favorably with human measurements conducting a whole-muscle cross-section count. As 

shown in Figure 3.8, there is considerable variability among humans conducting a manual 

count of muscle fibers in muscle cross-sections consisting of several hundred fibers, with 

counts varying as much as 75 percent between the minimum and maximum human counts. 

Across 14 samples, there was an average of 3.7 percent error between the algorithm muscle 

fiber count and the manual human count (Figure 3.8).  Furthermore, the results indicate that 

the algorithm counting of procion orange dye uptake by individual muscle fibers compares 

favorably with a human manual count. Across 14 samples there was an average of 2.1 

percent error in the counting of muscle fibers out of the total with procion orange dye uptake 

(Figure 3.8). 

3.4 Operating time discussion 

Operating time was evaluated by timing the manual segmentation, the open source 

software segmentations, and the algorithm segmentation for each image. As both 

SMASH and Myovision open source software require human involvement in the setting of 

parameters for segmentation and are unable to batch process images, they had significantly 

higher average operating times per image. The algorithm significantly decreases 

segmentation time compared to the manual segmentation (p < 0.001). Furthermore, the 

algorithm significantly decreases segmentation time compared to both the Smash and 

Myovision software programs (p < 0.05, Figure 3.9). As the algorithm both increases the 
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accuracy of muscle image segmentation and is more efficient in its use of time, the algorithm 

is a much needed improvement over previously available methods.  

 

Figure 3.9: Efficiency of Image Segmentation Algorithm.  13 20x tibialis anterior images 
were segmented using the new algorithm, open-source software programs Smash and 
Myovision, and  manually segmented using ImageJ. Segmentations were timed and 
compared. Error bars represent standard deviation from the mean. Significance was 
calculated using ANOVA and Tukey post-hoc tests at the p = 0.05 level.  *  indicates 
significance at the p<0.05 level, ** indicates significant at the p <0.001 level.
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  3.5 Application of algorithm to a case study on 

contraction-induced injury in Duchenne muscular 

dystrophy 

 Following validation of the algorithm, it was applied to study contraction-induced 

injury in Duchenne muscular dystrophy (DMD).  In DMD it remains unclear why some lower 

limb muscles degenerate at a different pace than other muscles, despite the fact that 

dystrophin is absent or deficient in all lower limb muscles. Eccentric contraction movements 

are one of the most damaging activities to dystrophic muscle. All lower limb muscles are 

exposed to eccentric contraction movements during walking, albeit at differing muscle-

dependent levels. Therefore, it has been hypothesized that the selective degeneration of 

muscles in DMD is due to differing levels of eccentric contraction during walking. However, 

it has been difficult to generalize animal studies to humans as muscle function during gait 

varies greatly between biped humans and quadruped mouse models [57].  

While previous work has demonstrated that mdx mouse muscles are more 

susceptible to contraction-induced injury than wild-type muscles, many of these studies 

imposed arbitrary contraction or injury conditions that do not replicate the function of 

lower-limb muscles during movement [58]–[60]. Therefore, a protocol mimicking the 

conditions that occur during human movements was developed to test the mouse muscles 

under more human-like contraction conditions. Healthy human soleus and edl force and 

length change profiles during a single walking step were simulated using OpenSim. Time 

dependent force and length change profiles form the simulation were then programmed 

using an Aurura Scientific Inc 300B dual mode servo motor to create a gait-mimicking 

eccentric contraction protocol.  Wild-type and mdx mice at ages 5-7 weeks were euthanized, 

muscles were dissected, and left lower limb soleus and edl muscles were fixed and exposed 

to the gait mimicking protocol. The gait mimicking protocol was run for either 200 or 25 
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steps. Right lower limb muscles were kept as a control and not exposed to the protocol. All 

muscles were then mounted in OCT and stored at -80°C for subsequent sectioning. Muscles 

were then bathed in procion orange dye to determine sarcolemmal damage and laminin-2α 

to visualize fiber boundaries. Dye uptake was quantified using the previously validated 

algorithm.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.10: Effect of Gait Protocol on Procion Orange Dye Uptake in mdx and wt 
Muscle. Horizontal bars represent the median, lower and upper box boundaries represent 
the first and third quartiles, lines represent 1.5 times the interquartile range, dots represent 
individual muscle cross-sections. Based upon a 2-way ANOVA there are no significant 
differences in the means of all groups.  
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Dye uptake was variable across mdx and wt muscles. While there were no significant 

differences between groups (2 – way anova, p > 0.05, n = 102), the mdx muscles exposed to 

the gait-injury protocol had the most variability in dye uptake, ranging from 4 percent of 

fibers with procion orange dye uptake, to 56 percent of fibers with dye uptake (Figure 3.10). 

There were also no significant differences in dye uptake, regardless of the number of gait 

cycles the muscle underwent. Furthermore, there were different trends in dye uptake 

between the soleus and edl muscles (Figure 3.11). Overall the majority of mdx soleus muscles 

showed less dye uptake than the wild-type soleus muscles. However, there were 4 soleus 

muscle samples that were clearly outliers and were several standard deviations above the 

mean for the mdx-gait injury protocol group. Across EDL muscles there were no significant 

differences in the means based upon either genotype or gait cycle. However, the mdx-injury 

group again showed the greatest variability of all groups.  

 The heteroscedasticity in muscle sarcolemmal damage in response to a gait-

mimicking eccentric contraction injury protocol leads to more questions on the effect of 

muscle microstructure on damage susceptibility.  Are some muscles more predisposed to 

damage than others, regardless of the presence or absence of dystrophin? If so, is that 

predisposition a function of muscle microstructure or other cellular processes? Can we use 

microstructures to predict damage? Were there subject to subject differences in activity 

prior to testing that lead to a greater muscle damage susceptibility? Previous 

micromechanical FE modeling work has shown that microstructural elements such as 

adipose infiltration do not effect  membrane strain, and a similar approach could be used to 

determine if muscle microstructures are predisposed to damage [4]. 

 The image processing algorithm presented here provides a new tool for muscle 

analysis and for determining muscle microstructural properties in a time-efficient manner. 

The application of this algorithm to a case study investigating Duchenne muscular dystrophy 
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allowed for the analysis of 102 whole muscle cross-sections, saving months of time that 

would have been required for the manual analysis.  
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Figure 3.11:  Effect of Gait Mimicking Protocol on Procion Orange Dye Uptake in Soleus and EDL Muscles. Horizontal bars 
represent the median, lower and upper box boundaries represent the first and third quartiles, lines represent 1.5 times the 
interquartile range, dots represent individual muscle cross-sections. Based upon a 2-way ANOVA there are no significant 
differences in the means of all groups.   
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Chapter 4 

Modeling the Effect of Muscle 

Microstructure on Damage 

Susceptibility in Duchenne muscular 

dystrophy 

  Recently, FE models of skeletal muscle microstructure have been used to understand 

how DMD-related changes in muscle influence the susceptibility for muscle to induce 

damage during contraction [4]. In section 3.5 we found that damage susceptibility in both 

DMD and wt muscle varies greatly between muscles and there were no significant differences 

in muscle damage before and after gait-mimicking eccentric contraction injury protocols in 

both dystrophic and wild-type muscle.  Therefore, in order to better understand how muscle 

microstructure variation effects damage susceptibility, we applied the aforementioned 

micromechanical modelling technique to a selection of muscle cross sections previously 

analysed in section 3.5.  

4.1 Methods 

4.1.1     Conversion of image to finite element model 

  Fifteen cross-sectional muscle cross-sectional images were selected to convert to 

finite element models. Images were selected of both healthy and dystrophic muscle, as well 

as muscles that underwent the 200 cycle gait protocol and no gait protocol.  Selection 

criteria for images required that images were of complete cross-sections with no sectioning 

errors. The segmentation algorithm was applied to each cross-sectional image to identify 
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muscle fibers, and the outer border of the cross-section (Figure 4.1). Each material element 

from the segmentation was then mapped onto an initialized finite element mesh to 

represent the whole-muscle cross-section. Each pixel was mapped to one hexahedral mesh 

element. Finite element meshes consisted of approximately 350,000 elements, and were 

one element thick. Previously published micromechanical modeling work has determined 

that calculated shear moduli and strains are within 0.5% of each other when geometries 

are modeled with a one element thick mesh or a three element thick mesh [4]. Therefore, to 

reduce computational time, a one-element-thick mesh was used. 

  Boundary conditions were assigned to the finite element models to prescribe a 

simple shear deformation that is experienced during an eccentric muscle contraction. As 

muscle fiber force is transmitted laterally through the shearing of the endomysium, the 

prescribed shear deformation represents the shear displacement of muscle fibers and 

relative to each other. To prescribe the shear deformation, the elements on the -x face were 

constrained in all directions, and the elements on the opposing face (+x) were displaced in 

the -z direction creating a shear displacement in the xz direction (Figure 4.3). All elements 

were constrained in the x and y directions. Max displacement was set at one-third of the 

width of the muscle cross-sections widest point in the x direction. Simulations were also 

run fixing the (-y) face, constraining the (+y) face, and setting displacements to one-third 

the width of the widest point of the cross-section in the y direction,  creating shear 

displacements in the yz direction. Outputs from both simulations were then averaged 

before calculating strains. 
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Figure 4.1: Image to Finite Element Model Workflow for Two Representative Images. 
Muscle fiber segmentations are outlined in blue, with whole muscle boundaries outlined in 
red. A representative muscle fiber is mapped to a hexahedral mesh where pink indicates the 
muscle fiber and blue the extracellular material. Two finite element models are shown based 
upon the initial segmentations.  
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4.1.2     Transmembrane protein inclusion 

  The absence of transmembrane proteins in DMD was modeled in FE models based 

upon dystrophic cross-sections, and alternatively the presence of dystrophin was modeled 

in the FE models based upon wild-type muscle cross-sections. The transmembrane protein 

was modeled as a nonlinear elastic spring [4], [61], [62]. All nodes connecting the muscle 

fibers and extracellular matrix were identified, a node was added at that location, and the 

two nodes were connected with the nonlinear elastic spring (Figure 4.2). Wild-type muscle 

was modeled with a spring at one-hundred percent of the muscle fiber – ECM junctions. As 

the absence of dystrophin in DMD leads to an approximately 80-90% reduction in all 

components of the dystrophin associated glycoprotein complex (Figure 2.1), a random 

number generator was used to randomly delete 90% of the springs in the FE models of 

dystrophic muscle [63]. 

 

 

Figure 4.2: Components of finite-element micromechanical model. Image-based 
geometries were mapped to finite element meshes, and a boundary layer was defined.  
Nonlinear elastic springs were incorporated into the models to represent both the presence 
(in wt) and loss (in mdx) of transmembrane proteins 
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4.1.3     Inclusion of Boundary Material 

  Building upon the work of Virgilio et al., the muscle cross-sections were surrounded 

by a boundary layer with pre-allocated properties that were adjusted to simulate the 

macroscopic shear properties of the muscle cross section [4].  The boundary layer was 

included to model the irregular boundaries of the muscle cross-section and allow for 

multiple real muscle cross-section geometries to be modeled. In order to prevent the 

boundary layer from adversely affecting the model, the material properties of the boundary 

were adjusted so that its behavior simulated the macroscopic shear properties of the muscle 

cross section. Using the rule of mixtures, a homogenized macroscopically representative 

material was used to define the boundary layer. The boundary material’s along-fiber shear 

properties were defined as follows where Vfiber is defined as the volume fraction of muscle 

fibers within the muscle cross-section.  

 
(9) 

 

 

 

Figure 4.3: Representative finite-element model in shear. Boundary conditions were 
assigned to the FE models to prescribe a simple shear deformation experienced during 
eccentric muscle contraction that occur during gait. 
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4.1.4     Constitutive model and material parameters 

  The constitutive model and material properties used were as described in section 

2.3.2.  Although there are few known measurements of the along-fiber shear moduli of 

muscle and ECM, previous work has shown that the ratio of these shear moduli has an impact 

on tissue-level properties. This ratio was kept at one in which muscle is 75 times stiffer than 

the ECM [17].  

4.1.5    Determination of Membrane Strain 

  Simulations were run using the nonlinear finite element analysis software suite, 

FEbio. Due to the size of the simulations (approximately 350,000 elements) for efficiency 

simulations were run on an 8 core, 240 GB computing cluster. Average simulation time was 

45 minutes, when simulations were run on the computing cluster. Membrane strain was 

calculated by determining the change in length between fiber and ECM nodes at both the 

spring locations and the muscle-ECM junctions missing springs, normalized by the 

displacement of the cross-section. Cross-section displacement was calculated by  

 

Figure 4.4: Calculation of membrane strain. Membrane strain, a measure of the strain in 
the proteins and indicative of muscle susceptibility to damage,  is calculated after micro-level 
eccentric contraction simulation 
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determining displacement in the z direction and dividing by the width of the cross-section. 

Membrane strains across the entire cross-section were averaged to determine average 

cross-sectional membrane strain for each sample. Percent dye uptake was calculated for 

each muscle cross-section by determining the percentage of muscle fibers positive for 

procion orange dye in the original histological image, and dividing that number by the total 

number of muscle fibers present in the cross section. The percent procion orange dye uptake 

served as the experimental index of muscle damage [64]. 

4.3 Results 

 There was a positive correlation between FE model average predicted membrane 

strain and procion orange dye uptake (p = 0.006, R2 = 0.41, Figure 4.5A). The results suggest 

that membrane strain predicted by the micromechanical muscle models are predictive of 

membrane damage in both healthy and dystrophic muscles. When grouped according to 

whether the muscle had undergone the gait mimicking protocol (Figure 4.5B,C), the samples 

that underwent the gait protocol had a smaller correlation coefficient (slope of the linear 

regression). Meaning that for equal strains, samples that underwent the gait protocol 

displayed higher dye uptake.  

To examine how the microstructure variations affect cross-sectional membrane strain 

(and thus damage susceptibility), minimum feret’s diameters, areas, and shape factors were 

calculated for each fiber within each cross section. Minimum feret’s diameter is the 

minimum distance of parallel tangents at opposing borders of the muscle fiber and is often 

used to quantify muscular degeneration in DMD [64]. Shape factor is a dimensionless 

measure of circularity defined as the perimeter of the muscle fiber divided by the perimeter 

of a circle with perfect area. Therefore, a perfect circle has a shape factor of 1, and circularity 
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decreases as shape factor increases from 1. To get holistic measures of each cross-sections 

microstructure, the average, median, range, and coefficient of variance was found for each 

of these quantities for each cross-section. Coefficient of variance is defined as the ratio of the 

standard deviation to the mean. It is a commonly used statistic to measure dispersion of a 

dataset. The coefficient of variance for the minimum feret’s diameter had the most 

significant impact on FE model membrane strain (p = 0.0014, Figure 4.6). Other significant 

predictors for membrane strain included the average shape factor (p = 0.02, Figure 4.6), 

median fiber area (p = 0.047, Figure 4.6), median minimum feret’s diameter (p = 0.049, 

Figure 4.6), and the coefficient of variance for muscle fiber size (p = 0.0042, Figure 4.6). 

These predictions are consistent with recent studies determining the impact of muscle fiber 

size on susceptibility to damage [4], [65]. 
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Figure 4.5: Relationship between histological dye uptake, average membrane strain, 
and exposure to gait mimicking protocol. (A) Correlation between model-derived 
membrane strain and experimentally measured muscle damage. (B) Correlation between 
model-derived membrane strain and experimentally measured muscle damage for the 
subsection of muscles not exposed to the gait-mimicking protocol. (C) Correlation between 
model-derived membrane strain and experimentally measured muscle damage for the 
subsection of muscles exposed to the gait-mimicking protocol. 
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Figure 4.6: Membrane Strain is affected by Cross-Sectional Median Fiber Area, average shape factor, median minimum 
feret’s diameter, fiber area coefficient of variance and shape factor coefficient of variance. Spatial statistics were 
calculated for each muscle cross-section and compared to the average membrane strain in each cross-section.
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Figure 4.7: EDL cross-sections display greater variability and higher average 
membrane strains than Soleus cross-sections. Membrane strain was calculated as 
described in Section 4.1.5. Although there is no significant difference between the means (t-
test, p > 0.05), the general trend of the EDL muscle displaying greater strains than the 
soleus, is consistent with findings in the literature. 
 

  Additionally, our findings are consistent with literature that shows that the EDL is 

more susceptible to eccentric contraction-induced damage than the soleus [66], [67] (Figure 

4.7) . Previous research has suggested that the EDL is more susceptible to contraction 

induced damage due having smaller and less rounded fibers in those muscles than in the 

soleus.  Multiple regression analysis was used to test if these microstructural variations 

significantly predict FE model membrane strain (Table 4.1). The results of the regression 

indicate that 3 predictors (Muscle, Variance of Minimum Feret’s Diameter, and Median Shape 
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Factor) explain 77 percent of the variance of FE model membrane strain (R2 = 0.811, F(7,8) 

= 3.93, p = 0.03692, Table 4.1). 

 

FE Model Membrane Strain 

Predictors Estimates CI p 
(Intercept) -31.74 -70.41 – 6.92 0.146 
Coefficient of Variance – minimum feret’s diameter 
(variance_minferet) 

48.49 -9.35 – 106.34 0.139 

Muscle type  109.99 -2.18 – 222.16 0.091 
Median Shape Factor 31.41 -8.24 – 71.07 0.159 
variance_minferet:Muscle -189.84 -375.51 – -4.18 0.080 

variance_minferet:median_shape_factor -47.22 -106.68 – 12.24 0.158 
Muscle:median_shape_factor -113.72 -232.23 – 4.79 0.097 
variance_minferet:Musclesol:median_shape_factor 196.48 0.50 – 392.46 0.085 
Observations 16 
R2 / R2 adjusted 0.775 / 0.578 
F-statistic 3.93 on 7 and 8 DF 
p-value 0.03692 

Table 4.1: Multiple Regression predicting membrane strain 

 

4.4 Discussion 

  The goal of this work was to create a new skeletal muscle image processing software 

that accurately and efficiently create finite-element models based on muscle cross sectional 

images, and to use that software to develop image-based micromechanical models of muscle 

to determine the effects of variations in muscle microstructure on the macroscopic behavior 

and muscle damage susceptibility. By utilizing a custom novel-image segmentation software 

and mapping each pixel within the image to a unique hexahedral element, writing custom 

matlab code to automatically generate the Febio finite element models, and running the 

models on an 8 core 240 GB computing cluster, this modeling framework has allowed for the 

simulation of an unprecedented number of large finite element models. While previous work 

has built micromechanical models of muscle ranging from 7-25 fibers, to our knowledge no 
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other work has built micromechanical models of whole muscle cross-sections containing 

hundreds of muscle fibers. 

  It is important to consider a number of limitations to the models presented here. First, 

both sectioning of muscles and image processing can introduce errors into the model. While 

we excluded from analysis any muscle cross-sections with sectioning artifacts or holes, we 

acknowledge that errors at either of these stages could propagate error throughout the 

modeling framework. Furthermore, the ECM was considered to be a continuous structure 

throughout the micromechanical model with the same constitutive model used for both the 

endomysium and perimysium components. However, previous research has indicated that 

these layers may have different collagen compositions, and therefore different material 

behaviors.  Additionally, our constitutive model of ECM did not account for the varying 

collagen directions seen in ECM. Preliminary research from the Blemker lab has indicated 

that collagen may display orientations perpendicular to muscle fibers. If so, both more 

research quantifying the direction of collagen in ECM as well as material behaviors would be 

needed to more accurately replicate the behavior of ECM within the micromechanical 

models. Additionally, we represented the mechanical properties of the sarcolemma 

transmembrane proteins using a continuous nonlinear curve, whereas other physiological 

models of transmembrane proteins have used a piecewise function due to the unfolding of 

the protein [61], [62]. Sensitivity analysis of the coefficient term used in the nonlinear spring 

equation to represent dystrophin showed that a 10 percent change in coefficient term, 

changed the average membrane strain for each cross section by an average of 2.1 percent 

(Figure 4.7).   

  The micromechanical models presented in this chapter focused on the behavior of 

dystrophic and wild-type muscle in simple shear as the shearing of the muscle cross-

section is the dominant mode of lateral force transmission in muscle, and the shear 

behavior can be inferred from muscle’s microstructure. However, we acknowledge that our 
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models are limited by the fact that simple shear does not fully represent physiological 

loading patterns of muscle. 

 

Figure 4. 8: Sensitivity Analysis of Dystrophin Spring Constant. The dystrophin spring 
constant was altered by both positive and negative percent and FE simulations were rerun. 
Error bars represent the change in membrane strain based upon the sensitivity analysis 
simulations. 
 

  Ultimately, our results suggest that micromechanical muscle models are predictive of 

membrane damage in both healthy and diseased muscles. Furthermore, our results suggest 

that muscle fiber circularity, area, minimum feret’s diameter, and the variance of muscle 

fiber sizes and minimum feret’s diameters within a muscle may contribute to a given 

muscle’s susceptibility to damage. This model-experiment integration provides a framework 

to determine micro-scale damage from microstructure images and could be used to 

ultimately predict the effects of pharmacological treatments on the susceptibility of DMD 

muscles to damage.
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Chapter 5 

Thesis Discussion and Future Directions 

  This thesis was originally motivated by my desire to create an image 

processing tool that greatly speeds up the process of skeletal muscle image analysis. 

Following the creation of the algorithm, I realized that there was an opportunity to couple 

the image processing algorithm to micromechanical finite element modeling to investigate 

the role of microstructure variations on the damage susceptibility of both wild-type and 

dystrophic muscles. Duchenne muscular dystrophy is a complex disorder wherein multiple 

confounding factors contribute to disease progression. By coupling and automating a 

framework to move from skeletal muscle cross-sectional images to micromechanical finite 

element models, I have created more realistic and larger scale micromechanical finite 

element models than has been previously attempted. Computational models such as these 

have the power to answer questions such as: how does variation of muscle fiber sizes affect 

the damage susceptibility of muscle and does fiber circularity affect damage. Ultimately, this 

model-experiment integration provides a framework to determine micro-scale damage from 

microstructure images and could be used to ultimately predict the effects of pharmacological 

treatments on the susceptibility of DMD muscles to damage. 

5.1   Contributions 

  I have created the first micromechanical models of full skeletal muscle cross-sections, 

based upon real muscle histological images. While previous work has created 

micromechanical models to derive tissue level constitutive properties from muscle 



Chapter 5      |     Thesis Discussion  52 
 

 

microstructures and understand how disease adaptations in Duchenne muscular dystrophy 

affect tissue level function, neither of these models were based upon full muscle cross-

sections. My work coupling an automatic skeletal image analysis algorithm to an automated  

approach to generated finite element models provides an integrated experiment-modeling 

framework for relating real muscle microstructure to muscle function. While this work built 

from the micromechanical modeling work from Virgilio et al., Virgilio used an agent-based 

model to generate small muscle fascicles (consisting of few muscle fibers), as opposed to 

directly creating the models from real images [4]. I have created a more accessible 

framework for micromechanical modeling by coupling my Matlab image proceeding 

algorithm to a custom Matlab algorithm that generates and outputs Febio finite element 

micromechanical models. By automating the generation of FE micromechanical models from 

muscle-cross-sectional images, it is possible for other users to generate their own 

micromechanical models with very little effort, as analysis of membrane strain after FE 

simulation has also been automated.  

  Using micromechanical models, we can predict strains experienced by the fibers at 

the micro-scale level to provide insight into the likelihood of fiber damage and the initiation 

of injury. From our models’ results, we found that membrane strain in micromechanical 

modeling correlates with an experimental index of muscle damage, thereby supporting the 

use of micromechanical modeling to establish a direct link between muscle microstructures 

and changes in macro-scale muscle function. Our results also showed that susceptibility to 

damage varies widely across muscles, even within the same mouse strain. Muscles that were 

more susceptibility to damage displayed increases in the variation of muscle fiber areas and 

minimum feret’s diameters within a cross-section. 

  An additional contribution of this work is the novel skeletal-muscle analysis 

algorithm that significantly improves upon the efficiency of previously open-sourced 

algorithms. In particular, the most valuable aspect of the algorithm is its ability to batch 
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process images. Current muscle analyses software programs require a user to sit a computer 

and input an image for each analysis that is desired. Allowing for batch processing allows for 

a user to run analyses overnight or when doing other things, thereby saving researchers 

hours of analysis time that would otherwise be required.  

5.1   Future Work 

For the skeletal muscle analysis imaging algorithm, future improvements could 

involve the generation of a convolutional neural network. Combining the algorithm with a 

manual adjustment of segmentations could allow for a training set of “perfect” muscle 

segmentations to be created of muscle in various injured or healthy states. Using this training 

set, a convolutional neural net could be created and evaluated using a portion of that set to 

train the convolutional neural net, and another portion to test accuracy and robustness.  

As this thesis provides a tool to automate the generation of micromechanical finite 

element models, it can serve as a platform for future studies to build off of and suggest new 

insights into muscle structure-function relationships at the microscopic level. The long-term 

goal of the work presented in this thesis is to better understand the role that muscle 

microstructure plays in the chronic degeneration that occurs in DMD. Furthermore, this 

work has laid the foundations to quantify the relationship between membrane strain and 

muscle damage. This work could be used to create a computational model that couples image 

analysis, agent-based modeling, and finite element modeling to simulate muscle 

degeneration over time in the mdx mouse. Agent-based models of muscle degeneration have 

previously been published that predict the dynamic regenerative response of muscle fibers, 

fibroblasts, SSCs, and inflammatory cells as a result of a single acute contraction-induced 

injury in dystrophic muscle. Future work could modify this algorithm to predict muscle 
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degeneration throughout the lifespan of the mdx mouse by utilizing the skeletal muscle 

image analysis algorithm for validation.  

Future iterations to the micromechanical modeling approach presented here could 

involve recapitulating the behavior of ECM in a more realistic way.   To do so, experiments 

quantifying both the direction of collagen in ECM as well as ECM stiffness are needed. 

Ongoing work within our lab by Ridhi Sahani hopes to quantify collagen direction in ECM 

utilizing scanning electron microscopy. Additional experiments could quantify collagen 

stiffness utilizing biaxial mechanical testing experiments to determine the shear passive 

properties of the tissue. The ultimate goal of the work presented here would be to generate 

computational models that could in silico test therapeutics for DMD. As DMD is a complex, 

multifaceted disease in silico testing will most likely involve a coupling of a model predicting 

cell regenerative and inflammatory behavior to a finite element model of muscle 

degeneration. The micromechanical models and image-analysis software presented in this 

thesis are the ground work need for future work in in silico testing of therapeutics for 

Duchenne muscular dystrophy. I believe that computational models provide a powerful 

paradigm to understand muscle degeneration and explore possible treatment approaches 

for Duchenne muscular dystrophy (DMD) and hope that this work lays a foundation for the 

creation of future treatments for boys living with DMD today. 
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