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Introduction
Medical error is the third leading cause of death in the United States. This equates to

250,000 deaths every year (Rodziewicz et al., 2022). It is safe to assume that hundreds of

thousands more have suffered needlessly or have become permanently disabled due to

preventable mistakes in diagnosis and care. This paper explores diagnostic error, which causes

more harm than all other medical errors combined according to Johns Hopkins professor Makary

(2016) in “Medical error—the third leading cause of death in the US”. One technological

solution to widespread diagnostic error is computer-aided diagnosis (CAD). CAD, for the

purposes of this paper, is a software tool that automates the diagnostic process. Due to recent

developments in deep learning, CAD has begun to surpass human radiologist performance for an

increasing number of pathologies. In addition to better accuracy, CAD has other major benefits

over human radiologists. CAD produces a diagnosis nearly instantly, compared to 5-15 minutes

for a radiologist, and since CAD is software, it can be deployed at any hospital, allowing for

even the most rural facilities access to the best diagnosis available. However, CAD faces one

major roadblock that will take decades to overcome at the current pace: Adoption. The

technology to diagnose many diseases exists, the national digitization of medical data is nearly

complete, but nearly every diagnosis is still done by un-aided radiologists (Taylor, 2019). In

order to connect the engineering of CAD to the human reality of medical care, an STS

perspective is imperative. In this paper specifically, a technical case study of a blood stream

infection detection model will lead into an STS discussion of how to bring a CAD from the lab

into widespread clinical adoption.

Deep Learning for Bloodstream Infection Detection



Bloodstream infections (BSI) are a common and deadly occurrence in intensive care units

worldwide. A major factor in their deadliness is the difficulty of detecting an infection, as they

manifest very quickly. BSIs cause about 85,000 deaths per year (Ring, 2018). In the intensive

care unit (ICU) of major hospitals, about six percent of patients acquire a BSI (Ring, 2018).

About a quarter of BSI patients die due to the infection. This means BSI takes more lives than

heart attacks or breast cancer (Ring, 2018). The reason BSI is so deadly is that it can kill an

otherwise healthy person in as little as 12 hours, with very few effective treatments. BSI has very

few understood warning signs, and requires near-immediate use of antibiotics as the risk of death

increases drastically as the hours pass. One promising technical solution to BSI deaths in the ICU

is to create a model or metric that can help doctors predict the onset of BSI based on

continuously recorded vital signs. The model would then notify doctors as early as possible of a

potential BSI and antibiotics can be administered to eliminate the infection before it reaches a

critical level. The current state of the art for this problem has an AUC, a measure of the tradeoff

between true positive and false positive where closer to 1 is better, of 0.83 (Zoabi et al., 2021).

Improvement over the state-of-the-art may require a deep-learning approach.

The UVA-BSI research team at UVa, led by Dr. Nguyen, attempts to improve over Zoabi

et al. (2021). UVA-BSI aims to improve over prior art by increasing the amount of data used to

create the model, applying a deep-learning approach, while allowing for a better understanding

of the reasoning behind the diagnosis. The UVA-BSI team works closely with doctors from the

ICU at UVA’s Hospital, as well as the division for infectious diseases. UVA-BSI uses data from

UVa, Pitt, and other institutions in order to create a larger and more diverse dataset than previous

efforts. The deep learning model-type of greatest interest is based on the idea of a “long

short-term memory” (LSTM) module. LSTM models have performed excellently on other



complex problems that involve continuous, time-related data like vital signs. Additionally,

LSTM research by Gau et al. (2019) provides a method for transparency into the reasoning that

takes place in traditionally opaque deep learning models. All of these improvements may result

in a new state of the art for bloodstream infection detection.

The Lab to Clinic Roadmap for Computer Aided Diagnosis
Machine learning and large scale medical data has allowed computer-aided diagnostics to

take massive technical strides, yet clinical adoption remains nearly non-existent (Cai, 2019). The

patient data exists on hospital servers, the diagnostic models to process this data exist in research

labs, but the journey from the lab to the clinical setting seems to never quite happen. The major

inhibitors are regulation, incentives, and trust (Pinto, 2018). The FDA is the regulatory authority

for medical devices, including medical software like CAD. In the past, the FDA has had little

issue with evaluating medical software that automates simple tasks. However, deep learning has

presented a new issue for the FDA reviewers; there is typically no way to get to the root of the

reasoning behind a deep learning model’s diagnosis. Deep learning models are black boxes;

medical data is provided as input, a diagnosis is output, but the steps in-between are an

inscrutably complex math equation, akin to a plinko board with millions of pegs. A small change

in the input, like a few pixels of difference in an X-ray, can drastically change the output. With

few exceptions—see Grzybowski’s (2021) work with diabetic retinopathy—black-box models

have been rejected by FDA review.

The dynamics of ideation, development, and deployment of AI powered CAD are highly

technical as well as highly interpersonal and social. Actor network theory (ANT) gives us a lens

to view the issue by breaking down the dynamic into a more understandable format (Law, 1992).

When we look at the issue with a broad ANT lens, we see our actors are developers, regulators,



doctors, and patients. This paper takes on the perspective of a developer who wants to create a

medical AI software product that is widely used and improves patient outcomes. However, to

create such a product, the developer must understand the perspectives of each other actor, as well

as how their own perspective may introduce bias into the work. Developers are typically

unfamiliar with the intricacies of medicine. While a developer may be very familiar with the

technicalities of creating a deep learning diagnostic model, medical diagnosis is not

straightforward, and as such, a medical professional who is practiced in whatever diagnosis is

being automated is crucial to creating a useful piece of software. Without a developer-doctor

relationship during the development stage, a product may be solving a problem that does not

exist, or potentially worse, solving a real problem incorrectly. Further connections between

actors at different stages of the development process all contribute to a complete ANT

understanding of creating and deploying an AI medical device.

Medical students, who represent the first class of doctors who are arriving into hospitals

at the same time as automated diagnostic software, are also not completely sold on the idea.

Pinto et al. (2018) investigatigation of medical student attitude toward AI medical devices found

that medical students have little to no understanding of medical AI devices. Amann et al. (2020)

acknowledge the power of AI models and their approaching superiority over human physicians,

but warn that such systems need to be developed with great care for transparency and openness,

or they will be rejected by doctors, patients, and regulators.

On top of FDA hesitation, doctors are understandably unwilling to offload life-critical

decisions to a black box. Even though radiologists are understaffed and overworked compared to

diagnostic demand, surveys show they are still largely against the adoption of AI in their practice

(Ahuja, 2019). The solution to both FDA and doctor hesitancy is to provide sufficient diagnostic



explainability as well as demonstration of performance. One idea to build trust with radiologists

is to run a CAD model on a radiologist’s prior diagnosis to demonstrate missed cases.

Trust is discussed as one of the “Three Ghosts of Medical AI” by Quinn et al. (2021). The

three ghosts represent three major challenges that blackbox models have in the medical space.

The authors point out that the main issues preventing adoption by regulators and doctors are that

blackbox models “(1) lack quality assurance, (2) fail to elicit trust, and (3) restrict

physician-patient dialogue” (Pinto, 2018, p. 1). The only software that can successfully traverse

the road from the lab to successful implementation is software that can overcome the above

listed shortcomings of medical AI products.

This psychological approach to trust building is just one example of using STS thinking

to bring an engineering solution to a wider audience. The result of this STS research will be an

outline of a realistic pathway that a deep learning engineer could take to bring a deep learning

model from concept to life-saving clinical adoption.

Conclusion
The steady march of technological progress in medicine is beginning to break into an all

out sprint. However, the high stakes involved in medical care have fostered an appropriately

hesitant attitude towards the increased pressure to adopt new technologies. Doctors rely heavily

on their own senses and intuition, as well as established and peer reviewed methods to carry out

care. Now that deep learning powered computer aided diagnostics are surpassing human

diagnostic ability, medical practice has no choice but to begin adopting these technologies. But

accuracy is not the only metric that matters. In the end, patient wellbeing is at stake, and

non-technical metrics like patient-doctor communication, explanation of the reasoning behind a



diagnosis, as well as repeated and provable quality are just as important to the successful

integration of CAD technologies.
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