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Abstract

Lymphoma is a type of blood cancer, affecting roughly 80,000 individuals annually in the United
States. However, the current method of lymph node examination for lymphoma diagnosis is manual and
relies on the radiologist’s discretion. To this end, an introduction of a more automated method of scan
analysis would allow the radiologists more time to review the scan as a whole, reducing fatigue and error
rates. This work first aimed to develop an algorithm that will quickly process the input scan and output
the results of the analysis, showing the numerical change in tumor burden as well as what was identified
as tumors. The finalized interface will require minimal steps for implementation, allowing a seamless
integration into the radiologists existing workflow. Additionally, the primary objective of any medical tool
or technology is to ensure patient safety. Thus, assessing the safety of this tool, while minimizing
potential risks, such as misdiagnosis, and enhancing the overall well-being of patients was another aim.
To begin, methods for malignancy classification were identified, and machine learning capabilities and
radiomics were explored. Various EfficientNet models, a Keras image classification model, were trained,
utilizing lymph node data, while also identifying potential features for malignancy classification via
radiomics, an image feature extraction method using data characterization algorithms. Radiomics analysis
was performed on features and integrated into scikit-learn machine learning models to be trained and
tested. 2D EfficientNet models hold great potential in breast cancer classification, but improvements need
to be made before considering it reliable. For lung nodule testing, our 2.5D model achieved 77%
validation accuracy. Our model using radiomics analysis achieved 79% testing accuracy, identifying
substantial features for lung nodule classification. These results demonstrate the potential of artificial
intelligence in malignancy classification, and lays the framework for its application in clinical practice.
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Introduction Lymphoma is a type of blood cancer that starts in
the white blood cells. It is distinguished as a heterogeneous
Significance group of malignant tumors and is characterized by the

Cancer is a group of diseases caused by the
uncontrolled growth and spread of irregular cells that can
ultimately lead to death if not treated properly. In the
United States, cancer is the second highest cause of death
with heart disease being the leading cause. The American
Cancer Society has estimated that in the US alone,
approximately 2 million cancer cases are expected to be
diagnosed in 2024 while over 610,000 cancer-related
deaths are expected'.

abnormal proliferation of mature lymphoid cells®>. The
abnormal proliferation leads to complications within the
lymphatic system, compromising the defense against
harmful substances and leading to serious illness. The
most important contributor to the system's immune defense
against these substances are lymph nodes (Figure 1).
Lymph nodes play a vital role within the body’s immune
system, filtering substances which travel through the
lymphatic fluid. Figure 1 depicts the lymph node structure,
where lymphatic fluid enters the node through the afferent
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lymphatic vessels and exits through the efferent lymphatic
vessel. There are hundreds of lymph nodes throughout the
human body which are connected to one another, with each
node containing lymphocytes that constantly help fight
infection and various diseases by destroying harmful
substances®. Lymph nodes can become enlarged due to
several reasons, including infection or malignancy.
Recognizing processes in which lymph nodes increase in
size is crucial for the understanding of lymphoma
pathology and diagnosis. Enlarged lymph nodes can also
display unique characteristics in lymphoma since they can
be rubbery, painless, and may feel fixed in their position.
The size and location of swollen nodes can vary based on
the type and stage of lymphoma. So, depending on the
stage of cancer, time frame, and dimensions of the node, it
can have a profound effect on the process of diagnosis and
results.

Afferent lymphaticvessles

Yalves to prevent backflow

Module

Sinus

Efferent Lymphatic Vessel

Figure 1. The figure above is a diagram of a lymph node. Green arrows
indicate flow of lymphatic fluid entering the lymph node, with valves to keep
fluid direction constant. The red arrow shows flow of lymphatic fluid exiting
the lymph node*.

Current Detection and Measurement Methods

A variety of indicators point towards the
development of lymphoma, a common one being
enlargement. Identification and assessment of the change
in tumor burden (size) is considered an important feature
in the clinical evaluation of cancer therapeutics, however,
there is still room for improvement. Imaging methods for
finding these indicators include utilizing X-rays, computed
tomography, magnetic resonance imaging, ultrasound and
positron emission tomography. Radiologists and certified
clinicians use these tools to recognize different cell types
by looking at the shape, size, orientation, and arrangement
of cells within lymphoid tissue. Furthermore, tissue
samples from biopsies assist in cancer diagnosis and
lymphoma subtype determination. More specifically,
radiologists measure lymph nodes using the length,

volume, width, and thickness as an indicator for diagnosis
in combination with other indicators. Response Evaluation
Criteria in Solid Tumors (RECIST) is the current
methodology to evaluate and assess changes in tumor
burden. It is a guideline that provides a standard approach
for solid tumor measurement and provides definitions for
the assessment of tumor size changes’. To calculate the
change in tumor burden between images from distinctive
time points, the dimension of the select lesions, referred to
as target lesions, are used. This calculation is then
categorized as complete response (CR), partial response
(PR), stable disease (SD), or progressive disease (PD). CR
is complete disappearance of tumor (-100%), PR is a
change between -100% and -30%, SD is a change between
-30% and +20%, and PD is an increase of 20% or greater®.
Currently, radiologists must manually measure and analyze
these changes in order to determine the tumor burden.

Issues with Current Methods

Tumor burden identification is entirely dependent
on the radiologists experience and ability, leaving space for
human error as shown in a study which cites a day-to-day
average error rate of 3-5% as well as a retrospective error
rate of 30% from radiological studies’. In the United States
alone, diagnostic errors are responsible for roughly 40,000
to 80,000 deaths annually®. In addition, close to 75% of
medical malpractice claims against radiologists are
associated with diagnostic errors’. Even with these errors,
The average cost for lymphoma treatment of these
complications can reach $200,000 for patients without
health insurance'. This current process is also heavily time
consuming. A study by Alexander et. al. states that an
average MRI scan generates over 1000 images and within
a normal work day, leaving radiologists with less than 1
second to read each image''.

Solution

Early detection of lymphoma can significantly
increase the chances of successful treatment and improve
longitudinal quality of life. Our solution utilized an
Al-based tool to automate the image analysis process and
provide for the radiologist to view. This would enhance the
current existing workflow by decreasing the amount of
manual analysis required and increasing the amount of
time radiologists can analyze each set of scans, resulting in
a more thorough analysis. This work has the potential to be
integrated into any radiologist clinical workflow. In
addition, this work would advance the field of radiology
by: 1) Improving the efficiency of lymph node detection
while matching or improving the results of current
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methodologies, 2) Improving the quality of life for
radiologists, reducing mental fatigue and exhaustion from
manual image analysis, and 3) Enhancing the existing
clinical workflow and setting a new standard for medical
image analysis. Specifically, there were two major aims: 1)
Develop an Al-based lymph node detection measurement
tool and 2) Evaluate the safety and effectiveness of the tool
in a radiological workflow.

Results

2D Network Structure for Breast Cancer Application

The results of the EfficientNetBO model are poor,
yet promising. As seen in the confusion matrix shown in
Figure 2A, the true negatives are high, which is good. The
false positives are also relatively high, which is not great,
but most importantly, the number of false negatives is too
large (29) and true negatives is low (3). The model failed
to predict 29 out of the 32 total cancer patients, which is
not acceptable. Additionally, as seen in Figure 2B, the
accuracies are high, but since the data is quite imbalanced,
metrics such as F1 score are more important. The high F1
scores for the normal class and low F1 scores for the
cancer class show that the model is much better at
predicting the normal class, which further supports the
findings from the confusion matrix.

Similarly, when looking at the results from the
EfficientNetB5 model, notice how it is predicting all cases
to be normal, as seen in the confusion matrix shown in
Figure 2C. Therefore, it failed to predict all cases of
cancer, which is debatably worse than the first model with
several false positives. Figure 2D might make it seem like
the model performs well in classifying this data due to the
high accuracy. However, the additional metrics say
otherwise. The validation and test loss are both high, 0.631
and 0.632 respectively. Breaking it down further, the
model performs very well for the normal class. The
precision is approximately 97.70%, recall is 100%, and F1
score is 98.84%. For the cancer class, the precision, recall,
and F1 score are all 0, suggesting that the model failed to
correctly identify any instances. Thus, the overall F1 score
is 0, indicating that the model is poor at identifying the
minority class (cancer).
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Figure 2. A) The confusion matrices for EfficientNetB0 B) Evaluation
metrics for EfficientNetB0 C) The confusion matrices for EfficientNetB5 D)
Evaluation metrics for EfficientNetB5

2.5D Network for Lung Nodule Classification

This task aimed to develop a 2.5D model for
malignancy classification. After preprocessing steps were
taken for lung nodule data to create the training data, the
EfficientNet model was trained and performance was
monitored. K-folds cross validation was utilized when
evaluating model performance due to the minimal number
of samples available for model training. K-folds cross
validation was performed for five folds, with the best
model performance for each fold being shown in Figure 3.
Validation accuracy is the metric which displays the
performance of the model when tested on unseen data.
Five folds of K-folds cross validation displayed an average
validation accuracy score of 77%. The highest validation
accuracy of 87% was displayed in fold one 52% while the
lowest was observed in fold four.

Training and Validation Accuracy

7%

50

25

Accuracy (Percentage)

== Training Accuracy == Validation Accuracy

1 2 3 4 5
Fold

Figure 3. Training and Validation accuracy results after each fold. Average
training percentage was 97% while average validation percentage was 77%.
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Radiomics Analysis for Lung Nodule Classification

In this task, radiomic image feature testing of lung
nodule datasets was explored. Preprocessed Lung Nodule
Data from 2.5D Network Model approach were evaluated
using radiomics to calculate various image features such as
voxel volume, least axis length, gray level emphasis, and
surface area. Threshold testing was performed for each
image feature to manually classify lung nodules. Plotting
of Receiver Operating Characteristic (ROC) curves
determined the best image features for classification, as
shown in Figure 4. Run entropy ended up being the most
accurate predictor of lung nodule type with an area under
the curve of approximately 0.690. Large Dependence
Emphasis and Low Gray Level and High Gray Level
features were ranked lowest in accuracy of detection with
an area of about 0.660. It’s also worth noting the minimal
difference of 0.03 between areas for the most and least
accurate feature, indicating that altering extracted features
is insensitive in predictive performance. These radiomics
image features were extracted and integrated into logistic
regression and random forest models to be trained and
tested. Unfortunately, the random forest model was only
able to reach an accuracy of roughly 65%. On the other
hand, the logistic regression model showed greater
promise, yielding an accuracy of approximately 79%.

Plot of Area under the ROC Curve against Best Features
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Figure 4. Area under Curve for Image Features used in Logistic Regression
Model indicating detection accuracy. The y-axis indicates the feature name
and x-axis indicates the area under the curve extracted from ROC curves.

Safety and Effectiveness in Radiological Workflow

This project aimed to monitor and evaluate the
safety and effectiveness of a tool developed in Aim 1. Due
to the sequential nature of Aims 1 and 2, implementation
of a tool within a radiological workflow was not conducted
because the tool proposed in Aim 1 was not entirely
completed. Thus, Aim 2 is a piece of the future work that
needs to be done.

Discussion

The 2D network breast cancer application
indicated incomplete results. The EfficientNetBO model
suggested that it has significant potential to be utilized in
classification, but there are still several opportunities for
improvement. Additional data, as well as refining the
model architecture, hyperparameter tuning, and optimizing
the training strategies, are important things to consider
when working with this model in the future. The
EfficientNetB5 model’s inability to identify any instances
of the cancer class is a significant issue. Similar to the
other model, there are improvements that can be made.
Due to the increased complexity of this model, the training
time (number of epochs) might need to be increased.
Allowing the model to train longer could potentially
increase the learning of the model, preventing it from
predicting just the normal class and achieving more
reliable evaluation metrics.

The 2.5D model task of the project showed an
average validation accuracy of 77% which was achieved
by K-folds cross validation. This result is likely due to the
small dataset available for model training as research states
that model performance is directly related to training set
size®. The limitation to the dataset was due to the lack of
time for the data to be formatted and shared with the team.
Future studies should explore methods that allow for high
model performance with smaller datasets. Additional steps
in data augmentation can increase the quantity of data
available for model training. In addition, it is encouraged
to continue using K-folds cross validation or a similar
method as the procedure is commonly utilized in analysis
involving small sample sizes.

The task using a radiomics approach showed a
testing and validation accuracy of 79%. Since this task
utilized the same data set for training and testing as the
2.5D network model task, the model accuracy can be
attributed for the same reasons such as a limited data set
and the time constraint. In the future, more research and
testing should be conducted on various feature selection
and modeling using different methods for the logistic
regression model. For example, procedures like recursive
feature elimination and deep learning-based feature
extraction can alleviate issues with low training accuracy'?.
Furthermore, integrating more layers for model design and
implementing more image features can give the model
further predictive parameters and improve the
classification performance of the model.
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Next Steps

To reiterate the recommended steps mentioned for
each task previously, a larger quantity of data should be
collected and utilized to train each task in order to improve
model performance. Afterwards, it is recommended that all
three tasks are incorporated into the development of a
model for lymph node detection and measurement.
Incorporating a balanced model, identifying ideal features
for malignancy detection, and implementing an effective
method for training and model development will result in a
ready-model to be implemented within a clinical
workflow.

To evaluate the safety and effectiveness of the Al
tool in radiology, a retrospective study should be
conducted. The hybrid design of a retrospective approach
involves selecting a group of patients who have already
been exposed to a radiological tool (MRI and/or CT), and
whose lymph nodes have been manually detected and
measured using the preexisting method (control). The
results of the existing process should then be compared to
those using the experimental Al tool. The outcomes and
safety measures for both the control and experimental tools
should be compared, such as diagnostic accuracy, patient
outcomes, or safety profiles. The null hypothesis used for
this experiment would be that there is no difference
between the two diagnostic techniques. Statistical analysis
should be performed to determine if there is a significant
difference in analysis between the two techniques. Based
on the statistical results, a cost-effectiveness analysis can
be performed to evaluate the financial implication of using
the experimental tool.

Materials and Methods

Data Description

Breast and lung lymph nodule scans were
provided by Xue Feng and Carina Medical. The breast
cancer nodule data consisted of over 54,706 images where
each nodule was isolated as multiple 2D dcm images. See
Figure 5 to the right for training images for both a normal
patient and a cancer patient. Additional data, including
patient id, views, lateralities, age, and class labels (benign
or malignant) were provided in a csv (Figure S2), which
was later mapped to the images.
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Figure 5. Shown here are two dcm breast images. The cancerous nodule is on
the left and normal on the right. Notice the bright white spec in the cancerous
image.

For the Lung Nodule data, each nodule was
isolated as a 64x64 pixel 3D image consisting of 48 slices.
Training data set consisted of 37 nodule samples and the
testing set consisted of 18 lung nodule samples. Nodule
Mask data was provided within a numpy array, consisting
of nodule area per slice as well as a numpy array of
malignancy indicators. Indicators were labeled as “0” or
“1”, “0” indicating a benign lung nodule and “1”
indicating a malignant nodule.

2D Network Structure for Breast Cancer Application
Data Exploration and Processing

Digital Imaging and Communications in Medicine
(DICOM) images were loaded in by batches from a
specified images folder and underwent several
transformations, including normalization of pixel values
from 0 to 1, inverting monochrome pixel values, resizing
(256 x 256 pixels), and converting to PNG format. A
subset of the original data, 2000 patients, was selected
randomly by patient ID and split into training, validation,
and testing sets using a 70-15-15 split respectively.
Splitting by patients rather than images was crucial for
maintaining the independence between the sets. For each
of these sets, they were further split by their class labels
(i.e., “normal” and “cancer”) which facilitated separate
analysis during model training and evaluation. Lastly, data
to image mapping ensured that each row in the csv (Figure
S2) corresponds to the correct PNG file in the class
folders.

Images were resized for each model based on the
target resolutions shown below in Figure 6. For each
EfficientNet model, the script creates a CSV file for
storing the model metrics, loads the split data with the
specific input shape, and computes class weights for the
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training data for handling class imbalance. The
EfficientNet model is then initialized with the ImageNet
weights, layers are added, and compiled. Data
augmentation techniques and callbacks (Early Stopping
and Reduce Learning Rate om Plateau) were utilized, and
the model was trained using the ‘model.fit’ function in
Jupyter Notebook.

Base model resolution

EfficientNetBO 224

EfficientNetB1 240

EfficientNetB2 260

EfficientNetB3 300

EfficientNetB4 380

EfficientNetB5 456

EfficientNetB6 528

EfficientNetB7 600

Figure 6. The figure here shows the desired resolutions for each model
complexity. These are not required, but are recommended for optimal model
performance".

Model Evaluation

The model was evaluated on validation and test
sets, which consisted of accuracy and loss metrics.
Precision, recall, and F1 score of the test set were included
for each class, “normal” vs “cancer”, and for the overall
model performance. In addition to these, confusion
matrices were generated to provide a visual of the models
performance in terms of true positives, false positives, true
negatives, and false negatives.

2.5D Network for Lung Nodule Classification

Lung Nodule Data Slices

2.5D Image

Figure 7. Shown here is the conversion of lung nodule slices to a 2.5D image.

Data Exploration and Preprocessing

HDFS files containing the 3D images were loaded
in by batches into 48 image slices per sample of 64x64
pixel size from a specified images folder and were
normalized to an intensity range of 0 to 255 pixels. Images
were then resized to 300x300 pixels and converted to PNG
format.
2.5D Image Stacking

For the slices of each nodule data, any slice that
did not contain a part of the nodule was removed. Each
remaining slice was processed into grayscale format, in

which there is only one channel of image information.
RGB images contain three channels, therefore three
consecutive image slices were placed into one of three
channels within an RGB image, allowing for an image that
contains more information compared to a standard
grayscale image slice. This process continued until all
image slices of the available grayscale nodule data were
converted into the RGB images (Figure 7).

Model Training and K-fold Cross Validation

Model training generally followed the outline
shown in Figure S1, however there were slight deviations.
Transfer learning was utilized to create the base model to
be trained. The model used for transfer learning was
EfficientNetV2 B3. Due to the small quantity of data
available for model training, K-fold cross validation was
implemented. K-fold cross validation allows the data to be
divided into smaller sets, with one of the divided sets
being isolated from the others. The divided set is used as a
validation set, being utilized after one fold of training to
evaluate performance of the single training split. For the
next split, a different isolated set is selected and the
process continues as indicated. For this research, the
training was conducted for five folds, or splits, with each
training split operating for 10 epochs each. The model was
trained upon the RGB images created in the previous step.
The best validation accuracy of each split was recorded
and then once the K-fold cross validation was completed,
the average of the validation accuracies was calculated to
display model performance.

Radiomics Analysis for Lung Nodule Classification
Data Exploration and Preprocessing

Similar preprocessing steps for the 2.5D Network
approach were taken. HDFS5 files were loaded in by
batches and normalized to a similar intensity range of 0 to
255 pixels. Contrary to the 2.5D Network task, images
were not resized or converted to PNG format. Maintaining
HDFS5 file format allowed for greater resolution and image
quality for radiomics analysis.

Threshold Testing

Using PyRadiomics library in Jupyter notebook,
image features were extracted from lung nodule scans
indicating features like voxel volume, surface area of
nodule, least axis length, and HU intensity. Quantitative
analysis was performed to evaluate the average value of
each feature for both malignant images and for benign
images. Next, a threshold range was determined for
statistically significant differences in averages for benign
and malignant data sets. Thresholds were tested for
success rate under each threshold in this range to create the
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ROC curve for each feature. Areas under these curves
were calculated and plotted against respective image
features to determine which features were most accurate in
distinction, with larger areas indicating better performance
and classification.
Model Training and Improvement

Image features from threshold testing were
implemented into random forest and logistic regression
models based on features that had higher areas under the
ROC curve. The structure of the logistic regression model
involved weight estimation using coefficients for each
image feature and using an intercept as a bias term,
creating a linear estimation. A sigmoid function is used for
prediction metrics between 0 and 1 for this model. Trial
and error with various feature combinations were used to
examine any improvements with accuracy for the model.
Plots of benign and malignant threshold classification for
each feature on testing data sets were created. This
indicated any clear difference in features for malignant and
benign nodules that could be potentially utilized in the
model. These features were tested and implemented into
the model, consequently increasing its performance.
Model Evaluation

The random forest and logistic regression models
were tested using the lung nodule testing data set
consisting of 18 lung nodule samples, each either benign
or malignant. Success rates were determined by calculating
the ratio of total correctly diagnosed lung nodules to the
total number of testing image files.

Detection and Measurement Tool Performance Testing

After the development of a lymph node detection
and measurement tool, the tool was to be integrated into a
radiological workflow to observe performance within a
workflow and to gauge user satisfaction. Accuracy and
measurement values were to be compared to the
radiologists assessment and a survey was to be conducted
afterwards. However, this step was not implemented due to
the incomplete development of the detection and
measurement tool. The recommended approach can be
seen in the Next Steps section of the Discussion.

End Matter
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Figure S1. The above supplementary figure outlines the general
approach carried out to train a deep learning model.
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Figure S2. Shown here is the csv file containing the breast nodule
training data that was mapped to the images.
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