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 Abstract 

 Lymphoma  is  a  type  of  blood  cancer,  affecting  roughly  80,000  individuals  annually  in  the  United 
 States.  However,  the  current  method  of  lymph  node  examination  for  lymphoma  diagnosis  is  manual  and 
 relies  on  the  radiologist’s  discretion.  To  this  end,  an  introduction  of  a  more  automated  method  of  scan 
 analysis  would  allow  the  radiologists  more  time  to  review  the  scan  as  a  whole,  reducing  fatigue  and  error 
 rates.  This  work  first  aimed  to  develop  an  algorithm  that  will  quickly  process  the  input  scan  and  output 
 the  results  of  the  analysis,  showing  the  numerical  change  in  tumor  burden  as  well  as  what  was  identified 
 as  tumors.  The  finalized  interface  will  require  minimal  steps  for  implementation,  allowing  a  seamless 
 integration  into  the  radiologists  existing  workflow.  Additionally,  the  primary  objective  of  any  medical  tool 
 or  technology  is  to  ensure  patient  safety.  Thus,  assessing  the  safety  of  this  tool,  while  minimizing 
 potential  risks,  such  as  misdiagnosis,  and  enhancing  the  overall  well-being  of  patients  was  another  aim. 
 To  begin,  methods  for  malignancy  classification  were  identified,  and  machine  learning  capabilities  and 
 radiomics  were  explored.  Various  EfficientNet  models,  a  Keras  image  classification  model,  were  trained, 
 utilizing  lymph  node  data,  while  also  identifying  potential  features  for  malignancy  classification  via 
 radiomics,  an  image  feature  extraction  method  using  data  characterization  algorithms.  Radiomics  analysis 
 was  performed  on  features  and  integrated  into  scikit-learn  machine  learning  models  to  be  trained  and 
 tested.  2D  EfficientNet  models  hold  great  potential  in  breast  cancer  classification,  but  improvements  need 
 to  be  made  before  considering  it  reliable.  For  lung  nodule  testing,  our  2.5D  model  achieved  77% 
 validation  accuracy.  Our  model  using  radiomics  analysis  achieved  79%  testing  accuracy,  identifying 
 substantial  features  for  lung  nodule  classification.  These  results  demonstrate  the  potential  of  artificial 
 intelligence in malignancy classification, and lays the framework for its application in clinical practice. 

 Keywords: Radiology, Artificial Intelligence, Lymph Nodes, Malignancy Classification 

 Introduction 

 Significance 
 Cancer  is  a  group  of  diseases  caused  by  the 

 uncontrolled  growth  and  spread  of  irregular  cells  that  can 
 ultimately  lead  to  death  if  not  treated  properly.  In  the 
 United  States,  cancer  is  the  second  highest  cause  of  death 
 with  heart  disease  being  the  leading  cause.  The  American 
 Cancer  Society  has  estimated  that  in  the  US  alone, 
 approximately  2  million  cancer  cases  are  expected  to  be 
 diagnosed  in  2024  while  over  610,000  cancer-related 
 deaths are expected  1  . 

 Lymphoma  is  a  type  of  blood  cancer  that  starts  in 
 the  white  blood  cells.  It  is  distinguished  as  a  heterogeneous 
 group  of  malignant  tumors  and  is  characterized  by  the 
 abnormal  proliferation  of  mature  lymphoid  cells  2  .  The 
 abnormal  proliferation  leads  to  complications  within  the 
 lymphatic  system,  compromising  the  defense  against 
 harmful  substances  and  leading  to  serious  illness.  The 
 most  important  contributor  to  the  system's  immune  defense 
 against  these  substances  are  lymph  nodes  (Figure  1). 
 Lymph  nodes  play  a  vital  role  within  the  body’s  immune 
 system,  filtering  substances  which  travel  through  the 
 lymphatic  fluid.  Figure  1  depicts  the  lymph  node  structure, 
 where  lymphatic  fluid  enters  the  node  through  the  afferent 
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 lymphatic  vessels  and  exits  through  the  efferent  lymphatic 
 vessel.  There  are  hundreds  of  lymph  nodes  throughout  the 
 human  body  which  are  connected  to  one  another,  with  each 
 node  containing  lymphocytes  that  constantly  help  fight 
 infection  and  various  diseases  by  destroying  harmful 
 substances  3  .  Lymph  nodes  can  become  enlarged  due  to 
 several  reasons,  including  infection  or  malignancy. 
 Recognizing  processes  in  which  lymph  nodes  increase  in 
 size  is  crucial  for  the  understanding  of  lymphoma 
 pathology  and  diagnosis.  Enlarged  lymph  nodes  can  also 
 display  unique  characteristics  in  lymphoma  since  they  can 
 be  rubbery,  painless,  and  may  feel  fixed  in  their  position. 
 The  size  and  location  of  swollen  nodes  can  vary  based  on 
 the  type  and  stage  of  lymphoma.  So,  depending  on  the 
 stage  of  cancer,  time  frame,  and  dimensions  of  the  node,  it 
 can  have  a  profound  effect  on  the  process  of  diagnosis  and 
 results. 

 Figure 1.  The figure above is a diagram of a lymph  node. Green arrows 
 indicate flow of lymphatic fluid entering the lymph node, with valves to keep 
 fluid direction constant. The red arrow shows flow of lymphatic fluid exiting 
 the lymph node  4  . 

 Current Detection and Measurement Methods 
 A  variety  of  indicators  point  towards  the 

 development  of  lymphoma,  a  common  one  being 
 enlargement.  Identification  and  assessment  of  the  change 
 in  tumor  burden  (size)  is  considered  an  important  feature 
 in  the  clinical  evaluation  of  cancer  therapeutics,  however, 
 there  is  still  room  for  improvement.  Imaging  methods  for 
 finding  these  indicators  include  utilizing  X-rays,  computed 
 tomography,  magnetic  resonance  imaging,  ultrasound  and 
 positron  emission  tomography.  Radiologists  and  certified 
 clinicians  use  these  tools  to  recognize  different  cell  types 
 by  looking  at  the  shape,  size,  orientation,  and  arrangement 
 of  cells  within  lymphoid  tissue.  Furthermore,  tissue 
 samples  from  biopsies  assist  in  cancer  diagnosis  and 
 lymphoma  subtype  determination.  More  specifically, 
 radiologists  measure  lymph  nodes  using  the  length, 

 volume,  width,  and  thickness  as  an  indicator  for  diagnosis 
 in  combination  with  other  indicators.  Response  Evaluation 
 Criteria  in  Solid  Tumors  (RECIST)  is  the  current 
 methodology  to  evaluate  and  assess  changes  in  tumor 
 burden.  It  is  a  guideline  that  provides  a  standard  approach 
 for  solid  tumor  measurement  and  provides  definitions  for 
 the  assessment  of  tumor  size  changes  5  .  To  calculate  the 
 change  in  tumor  burden  between  images  from  distinctive 
 time  points,  the  dimension  of  the  select  lesions,  referred  to 
 as  target  lesions,  are  used.  This  calculation  is  then 
 categorized  as  complete  response  (CR),  partial  response 
 (PR),  stable  disease  (SD),  or  progressive  disease  (PD).  CR 
 is  complete  disappearance  of  tumor  (-100%),  PR  is  a 
 change  between  -100%  and  -30%,  SD  is  a  change  between 
 -30%  and  +20%,  and  PD  is  an  increase  of  20%  or  greater  6  . 
 Currently,  radiologists  must  manually  measure  and  analyze 
 these changes in order to determine the tumor burden. 

 Issues with Current Methods 
 Tumor  burden  identification  is  entirely  dependent 

 on  the  radiologists  experience  and  ability,  leaving  space  for 
 human  error  as  shown  in  a  study  which  cites  a  day-to-day 
 average  error  rate  of  3-5%  as  well  as  a  retrospective  error 
 rate  of  30%  from  radiological  studies  7  .  In  the  United  States 
 alone,  diagnostic  errors  are  responsible  for  roughly  40,000 
 to  80,000  deaths  annually  8  .  In  addition,  close  to  75%  of 
 medical  malpractice  claims  against  radiologists  are 
 associated  with  diagnostic  errors  9  .  Even  with  these  errors, 
 The  average  cost  for  lymphoma  treatment  of  these 
 complications  can  reach  $200,000  for  patients  without 
 health  insurance  10  .  This  current  process  is  also  heavily  time 
 consuming.  A  study  by  Alexander  et.  al.  states  that  an 
 average  MRI  scan  generates  over  1000  images  and  within 
 a  normal  work  day,  leaving  radiologists  with  less  than  1 
 second to read each image  11  . 

 Solution 
 Early  detection  of  lymphoma  can  significantly 

 increase  the  chances  of  successful  treatment  and  improve 
 longitudinal  quality  of  life.  Our  solution  utilized  an 
 AI-based  tool  to  automate  the  image  analysis  process  and 
 provide  for  the  radiologist  to  view.  This  would  enhance  the 
 current  existing  workflow  by  decreasing  the  amount  of 
 manual  analysis  required  and  increasing  the  amount  of 
 time  radiologists  can  analyze  each  set  of  scans,  resulting  in 
 a  more  thorough  analysis.  This  work  has  the  potential  to  be 
 integrated  into  any  radiologist  clinical  workflow.  In 
 addition,  this  work  would  advance  the  field  of  radiology 
 by:  1)  Improving  the  efficiency  of  lymph  node  detection 
 while  matching  or  improving  the  results  of  current 
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 methodologies,  2)  Improving  the  quality  of  life  for 
 radiologists,  reducing  mental  fatigue  and  exhaustion  from 
 manual  image  analysis,  and  3)  Enhancing  the  existing 
 clinical  workflow  and  setting  a  new  standard  for  medical 
 image  analysis.  Specifically,  there  were  two  major  aims:  1) 
 Develop  an  AI-based  lymph  node  detection  measurement 
 tool  and  2)  Evaluate  the  safety  and  effectiveness  of  the  tool 
 in a radiological workflow. 

 Results 

 2D Network Structure for Breast Cancer Application 
 The  results  of  the  EfficientNetB0  model  are  poor, 

 yet  promising.  As  seen  in  the  confusion  matrix  shown  in 
 Figure  2A,  the  true  negatives  are  high,  which  is  good.  The 
 false  positives  are  also  relatively  high,  which  is  not  great, 
 but  most  importantly,  the  number  of  false  negatives  is  too 
 large  (29)  and  true  negatives  is  low  (3).  The  model  failed 
 to  predict  29  out  of  the  32  total  cancer  patients,  which  is 
 not  acceptable.  Additionally,  as  seen  in  Figure  2B,  the 
 accuracies  are  high,  but  since  the  data  is  quite  imbalanced, 
 metrics  such  as  F1  score  are  more  important.  The  high  F1 
 scores  for  the  normal  class  and  low  F1  scores  for  the 
 cancer  class  show  that  the  model  is  much  better  at 
 predicting  the  normal  class,  which  further  supports  the 
 findings from the confusion matrix. 

 Similarly,  when  looking  at  the  results  from  the 
 EfficientNetB5  model,  notice  how  it  is  predicting  all  cases 
 to  be  normal,  as  seen  in  the  confusion  matrix  shown  in 
 Figure  2C.  Therefore,  it  failed  to  predict  all  cases  of 
 cancer,  which  is  debatably  worse  than  the  first  model  with 
 several  false  positives.  Figure  2D  might  make  it  seem  like 
 the  model  performs  well  in  classifying  this  data  due  to  the 
 high  accuracy.  However,  the  additional  metrics  say 
 otherwise.  The  validation  and  test  loss  are  both  high,  0.631 
 and  0.632  respectively.  Breaking  it  down  further,  the 
 model  performs  very  well  for  the  normal  class.  The 
 precision  is  approximately  97.70%,  recall  is  100%,  and  F1 
 score  is  98.84%.  For  the  cancer  class,  the  precision,  recall, 
 and  F1  score  are  all  0,  suggesting  that  the  model  failed  to 
 correctly  identify  any  instances.  Thus,  the  overall  F1  score 
 is  0,  indicating  that  the  model  is  poor  at  identifying  the 
 minority class (cancer). 

 Figure 2.  A) The confusion matrices for EfficientNetB0  B) Evaluation 
 metrics for EfficientNetB0 C) The confusion matrices for EfficientNetB5 D) 
 Evaluation metrics for EfficientNetB5 

 2.5D Network for Lung Nodule Classification 
 This  task  aimed  to  develop  a  2.5D  model  for 

 malignancy  classification.  After  preprocessing  steps  were 
 taken  for  lung  nodule  data  to  create  the  training  data,  the 
 EfficientNet  model  was  trained  and  performance  was 
 monitored.  K-folds  cross  validation  was  utilized  when 
 evaluating  model  performance  due  to  the  minimal  number 
 of  samples  available  for  model  training.  K-folds  cross 
 validation  was  performed  for  five  folds,  with  the  best 
 model  performance  for  each  fold  being  shown  in  Figure  3. 
 Validation  accuracy  is  the  metric  which  displays  the 
 performance  of  the  model  when  tested  on  unseen  data. 
 Five  folds  of  K-folds  cross  validation  displayed  an  average 
 validation  accuracy  score  of  77%.  The  highest  validation 
 accuracy  of  87%  was  displayed  in  fold  one  52%  while  the 
 lowest was observed in fold four. 

 Figure 3.  Training and Validation accuracy results  after each fold. Average 
 training percentage was 97% while average validation percentage was 77%. 
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 Radiomics Analysis for Lung Nodule Classification 
 In  this  task,  radiomic  image  feature  testing  of  lung 

 nodule  datasets  was  explored.  Preprocessed  Lung  Nodule 
 Data  from  2.5D  Network  Model  approach  were  evaluated 
 using  radiomics  to  calculate  various  image  features  such  as 
 voxel  volume,  least  axis  length,  gray  level  emphasis,  and 
 surface  area.  Threshold  testing  was  performed  for  each 
 image  feature  to  manually  classify  lung  nodules.  Plotting 
 of  Receiver  Operating  Characteristic  (ROC)  curves 
 determined  the  best  image  features  for  classification,  as 
 shown  in  Figure  4.  Run  entropy  ended  up  being  the  most 
 accurate  predictor  of  lung  nodule  type  with  an  area  under 
 the  curve  of  approximately  0.690.  Large  Dependence 
 Emphasis  and  Low  Gray  Level  and  High  Gray  Level 
 features  were  ranked  lowest  in  accuracy  of  detection  with 
 an  area  of  about  0.660.  It’s  also  worth  noting  the  minimal 
 difference  of  0.03  between  areas  for  the  most  and  least 
 accurate  feature,  indicating  that  altering  extracted  features 
 is  insensitive  in  predictive  performance.  These  radiomics 
 image  features  were  extracted  and  integrated  into  logistic 
 regression  and  random  forest  models  to  be  trained  and 
 tested.  Unfortunately,  the  random  forest  model  was  only 
 able  to  reach  an  accuracy  of  roughly  65%.  On  the  other 
 hand,  the  logistic  regression  model  showed  greater 
 promise, yielding an accuracy of approximately 79%. 

 Figure 4.  Area under Curve for Image Features used  in Logistic Regression 
 Model indicating detection accuracy. The y-axis indicates the feature name 
 and x-axis indicates the area under the curve extracted from ROC curves. 

 Safety and Effectiveness in Radiological Workflow 
 This  project  aimed  to  monitor  and  evaluate  the 

 safety  and  effectiveness  of  a  tool  developed  in  Aim  1.  Due 
 to  the  sequential  nature  of  Aims  1  and  2,  implementation 
 of  a  tool  within  a  radiological  workflow  was  not  conducted 
 because  the  tool  proposed  in  Aim  1  was  not  entirely 
 completed.  Thus,  Aim  2  is  a  piece  of  the  future  work  that 
 needs to be done. 

 Discussion 

 The  2D  network  breast  cancer  application 
 indicated  incomplete  results.  The  EfficientNetB0  model 
 suggested  that  it  has  significant  potential  to  be  utilized  in 
 classification,  but  there  are  still  several  opportunities  for 
 improvement.  Additional  data,  as  well  as  refining  the 
 model  architecture,  hyperparameter  tuning,  and  optimizing 
 the  training  strategies,  are  important  things  to  consider 
 when  working  with  this  model  in  the  future.  The 
 EfficientNetB5  model’s  inability  to  identify  any  instances 
 of  the  cancer  class  is  a  significant  issue.  Similar  to  the 
 other  model,  there  are  improvements  that  can  be  made. 
 Due  to  the  increased  complexity  of  this  model,  the  training 
 time  (number  of  epochs)  might  need  to  be  increased. 
 Allowing  the  model  to  train  longer  could  potentially 
 increase  the  learning  of  the  model,  preventing  it  from 
 predicting  just  the  normal  class  and  achieving  more 
 reliable evaluation metrics. 

 The  2.5D  model  task  of  the  project  showed  an 
 average  validation  accuracy  of  77%  which  was  achieved 
 by  K-folds  cross  validation.  This  result  is  likely  due  to  the 
 small  dataset  available  for  model  training  as  research  states 
 that  model  performance  is  directly  related  to  training  set 
 size  8  .  The  limitation  to  the  dataset  was  due  to  the  lack  of 
 time  for  the  data  to  be  formatted  and  shared  with  the  team. 
 Future  studies  should  explore  methods  that  allow  for  high 
 model  performance  with  smaller  datasets.  Additional  steps 
 in  data  augmentation  can  increase  the  quantity  of  data 
 available  for  model  training.  In  addition,  it  is  encouraged 
 to  continue  using  K-folds  cross  validation  or  a  similar 
 method  as  the  procedure  is  commonly  utilized  in  analysis 
 involving small sample sizes. 

 The  task  using  a  radiomics  approach  showed  a 
 testing  and  validation  accuracy  of  79%.  Since  this  task 
 utilized  the  same  data  set  for  training  and  testing  as  the 
 2.5D  network  model  task,  the  model  accuracy  can  be 
 attributed  for  the  same  reasons  such  as  a  limited  data  set 
 and  the  time  constraint.  In  the  future,  more  research  and 
 testing  should  be  conducted  on  various  feature  selection 
 and  modeling  using  different  methods  for  the  logistic 
 regression  model.  For  example,  procedures  like  recursive 
 feature  elimination  and  deep  learning-based  feature 
 extraction  can  alleviate  issues  with  low  training  accuracy  12  . 
 Furthermore,  integrating  more  layers  for  model  design  and 
 implementing  more  image  features  can  give  the  model 
 further  predictive  parameters  and  improve  the 
 classification performance of the model. 
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 Next Steps 
 To  reiterate  the  recommended  steps  mentioned  for 

 each  task  previously,  a  larger  quantity  of  data  should  be 
 collected  and  utilized  to  train  each  task  in  order  to  improve 
 model  performance.  Afterwards,  it  is  recommended  that  all 
 three  tasks  are  incorporated  into  the  development  of  a 
 model  for  lymph  node  detection  and  measurement. 
 Incorporating  a  balanced  model,  identifying  ideal  features 
 for  malignancy  detection,  and  implementing  an  effective 
 method  for  training  and  model  development  will  result  in  a 
 ready-model  to  be  implemented  within  a  clinical 
 workflow. 

 To  evaluate  the  safety  and  effectiveness  of  the  AI 
 tool  in  radiology,  a  retrospective  study  should  be 
 conducted.  The  hybrid  design  of  a  retrospective  approach 
 involves  selecting  a  group  of  patients  who  have  already 
 been  exposed  to  a  radiological  tool  (MRI  and/or  CT),  and 
 whose  lymph  nodes  have  been  manually  detected  and 
 measured  using  the  preexisting  method  (control).  The 
 results  of  the  existing  process  should  then  be  compared  to 
 those  using  the  experimental  AI  tool.  The  outcomes  and 
 safety  measures  for  both  the  control  and  experimental  tools 
 should  be  compared,  such  as  diagnostic  accuracy,  patient 
 outcomes,  or  safety  profiles.  The  null  hypothesis  used  for 
 this  experiment  would  be  that  there  is  no  difference 
 between  the  two  diagnostic  techniques.  Statistical  analysis 
 should  be  performed  to  determine  if  there  is  a  significant 
 difference  in  analysis  between  the  two  techniques.  Based 
 on  the  statistical  results,  a  cost-effectiveness  analysis  can 
 be  performed  to  evaluate  the  financial  implication  of  using 
 the experimental tool. 

 Materials and Methods 

 Data Description 
 Breast  and  lung  lymph  nodule  scans  were 

 provided  by  Xue  Feng  and  Carina  Medical.  The  breast 
 cancer  nodule  data  consisted  of  over  54,706  images  where 
 each  nodule  was  isolated  as  multiple  2D  dcm  images.  See 
 Figure  5  to  the  right  for  training  images  for  both  a  normal 
 patient  and  a  cancer  patient.  Additional  data,  including 
 patient  id,  views,  lateralities,  age,  and  class  labels  (benign 
 or  malignant)  were  provided  in  a  csv  (Figure  S2),  which 
 was later mapped to the images. 

 Figure 5.  Shown here are two dcm breast images. The  cancerous nodule is on 
 the left and normal on the right. Notice the bright white spec in the cancerous 
 image. 

 For  the  Lung  Nodule  data,  each  nodule  was 
 isolated  as  a  64x64  pixel  3D  image  consisting  of  48  slices. 
 Training  data  set  consisted  of  37  nodule  samples  and  the 
 testing  set  consisted  of  18  lung  nodule  samples.  Nodule 
 Mask  data  was  provided  within  a  numpy  array,  consisting 
 of  nodule  area  per  slice  as  well  as  a  numpy  array  of 
 malignancy  indicators.  Indicators  were  labeled  as  “0”  or 
 “1”,  “0”  indicating  a  benign  lung  nodule  and  “1” 
 indicating a malignant nodule. 

 2D Network Structure for Breast Cancer Application 
 Data Exploration and Processing 

 Digital  Imaging  and  Communications  in  Medicine 
 (DICOM)  images  were  loaded  in  by  batches  from  a 
 specified  images  folder  and  underwent  several 
 transformations,  including  normalization  of  pixel  values 
 from  0  to  1,  inverting  monochrome  pixel  values,  resizing 
 (256  x  256  pixels),  and  converting  to  PNG  format.  A 
 subset  of  the  original  data,  2000  patients,  was  selected 
 randomly  by  patient  ID  and  split  into  training,  validation, 
 and  testing  sets  using  a  70-15-15  split  respectively. 
 Splitting  by  patients  rather  than  images  was  crucial  for 
 maintaining  the  independence  between  the  sets.  For  each 
 of  these  sets,  they  were  further  split  by  their  class  labels 
 (i.e.,  “normal”  and  “cancer”)  which  facilitated  separate 
 analysis  during  model  training  and  evaluation.  Lastly,  data 
 to  image  mapping  ensured  that  each  row  in  the  csv  (Figure 
 S2)  corresponds  to  the  correct  PNG  file  in  the  class 
 folders. 
 Model Training and Testing 

 Images  were  resized  for  each  model  based  on  the 
 target  resolutions  shown  below  in  Figure  6.  For  each 
 EfficientNet  model,  the  script  creates  a  CSV  file  for 
 storing  the  model  metrics,  loads  the  split  data  with  the 
 specific  input  shape,  and  computes  class  weights  for  the 
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 training  data  for  handling  class  imbalance.  The 
 EfficientNet  model  is  then  initialized  with  the  ImageNet 
 weights,  layers  are  added,  and  compiled.  Data 
 augmentation  techniques  and  callbacks  (Early  Stopping 
 and  Reduce  Learning  Rate  om  Plateau)  were  utilized,  and 
 the  model  was  trained  using  the  ‘model.fit’  function  in 
 Jupyter Notebook. 

 Figure 6.  The figure here shows the desired resolutions  for each model 
 complexity. These are not required, but are recommended for optimal model 
 performance  13  . 

 Model Evaluation 
 The  model  was  evaluated  on  validation  and  test 

 sets,  which  consisted  of  accuracy  and  loss  metrics. 
 Precision,  recall,  and  F1  score  of  the  test  set  were  included 
 for  each  class,  “normal”  vs  “cancer”,  and  for  the  overall 
 model  performance.  In  addition  to  these,  confusion 
 matrices  were  generated  to  provide  a  visual  of  the  models 
 performance  in  terms  of  true  positives,  false  positives,  true 
 negatives, and false negatives. 

 2.5D Network for Lung Nodule Classification 

 Figure 7.  Shown here is the conversion of lung nodule  slices to a 2.5D image. 

 Data Exploration and Preprocessing 
 HDF5  files  containing  the  3D  images  were  loaded 

 in  by  batches  into  48  image  slices  per  sample  of  64x64 
 pixel  size  from  a  specified  images  folder  and  were 
 normalized  to  an  intensity  range  of  0  to  255  pixels.  Images 
 were  then  resized  to  300x300  pixels  and  converted  to  PNG 
 format. 
 2.5D Image Stacking 

 For  the  slices  of  each  nodule  data,  any  slice  that 
 did  not  contain  a  part  of  the  nodule  was  removed.  Each 
 remaining  slice  was  processed  into  grayscale  format,  in 

 which  there  is  only  one  channel  of  image  information. 
 RGB  images  contain  three  channels,  therefore  three 
 consecutive  image  slices  were  placed  into  one  of  three 
 channels  within  an  RGB  image,  allowing  for  an  image  that 
 contains  more  information  compared  to  a  standard 
 grayscale  image  slice.  This  process  continued  until  all 
 image  slices  of  the  available  grayscale  nodule  data  were 
 converted into the RGB images (Figure 7). 
 Model Training and K-fold Cross Validation 

 Model  training  generally  followed  the  outline 
 shown  in  Figure  S1,  however  there  were  slight  deviations. 
 Transfer  learning  was  utilized  to  create  the  base  model  to 
 be  trained.  The  model  used  for  transfer  learning  was 
 EfficientNetV2  B3.  Due  to  the  small  quantity  of  data 
 available  for  model  training,  K-fold  cross  validation  was 
 implemented.  K-fold  cross  validation  allows  the  data  to  be 
 divided  into  smaller  sets,  with  one  of  the  divided  sets 
 being  isolated  from  the  others.  The  divided  set  is  used  as  a 
 validation  set,  being  utilized  after  one  fold  of  training  to 
 evaluate  performance  of  the  single  training  split.  For  the 
 next  split,  a  different  isolated  set  is  selected  and  the 
 process  continues  as  indicated.  For  this  research,  the 
 training  was  conducted  for  five  folds,  or  splits,  with  each 
 training  split  operating  for  10  epochs  each.  The  model  was 
 trained  upon  the  RGB  images  created  in  the  previous  step. 
 The  best  validation  accuracy  of  each  split  was  recorded 
 and  then  once  the  K-fold  cross  validation  was  completed, 
 the  average  of  the  validation  accuracies  was  calculated  to 
 display model performance. 

 Radiomics Analysis for Lung Nodule Classification 
 Data Exploration and Preprocessing 

 Similar  preprocessing  steps  for  the  2.5D  Network 
 approach  were  taken.  HDF5  files  were  loaded  in  by 
 batches  and  normalized  to  a  similar  intensity  range  of  0  to 
 255  pixels.  Contrary  to  the  2.5D  Network  task,  images 
 were  not  resized  or  converted  to  PNG  format.  Maintaining 
 HDF5  file  format  allowed  for  greater  resolution  and  image 
 quality for radiomics analysis. 
 Threshold Testing 

 Using  PyRadiomics  library  in  Jupyter  notebook, 
 image  features  were  extracted  from  lung  nodule  scans 
 indicating  features  like  voxel  volume,  surface  area  of 
 nodule,  least  axis  length,  and  HU  intensity.  Quantitative 
 analysis  was  performed  to  evaluate  the  average  value  of 
 each  feature  for  both  malignant  images  and  for  benign 
 images.  Next,  a  threshold  range  was  determined  for 
 statistically  significant  differences  in  averages  for  benign 
 and  malignant  data  sets.  Thresholds  were  tested  for 
 success  rate  under  each  threshold  in  this  range  to  create  the 
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 ROC  curve  for  each  feature.  Areas  under  these  curves 
 were  calculated  and  plotted  against  respective  image 
 features  to  determine  which  features  were  most  accurate  in 
 distinction,  with  larger  areas  indicating  better  performance 
 and classification. 
 Model Training and Improvement 

 Image  features  from  threshold  testing  were 
 implemented  into  random  forest  and  logistic  regression 
 models  based  on  features  that  had  higher  areas  under  the 
 ROC  curve.  The  structure  of  the  logistic  regression  model 
 involved  weight  estimation  using  coefficients  for  each 
 image  feature  and  using  an  intercept  as  a  bias  term, 
 creating  a  linear  estimation.  A  sigmoid  function  is  used  for 
 prediction  metrics  between  0  and  1  for  this  model.  Trial 
 and  error  with  various  feature  combinations  were  used  to 
 examine  any  improvements  with  accuracy  for  the  model. 
 Plots  of  benign  and  malignant  threshold  classification  for 
 each  feature  on  testing  data  sets  were  created.  This 
 indicated  any  clear  difference  in  features  for  malignant  and 
 benign  nodules  that  could  be  potentially  utilized  in  the 
 model.  These  features  were  tested  and  implemented  into 
 the model, consequently increasing its performance. 
 Model Evaluation 

 The  random  forest  and  logistic  regression  models 
 were  tested  using  the  lung  nodule  testing  data  set 
 consisting  of  18  lung  nodule  samples,  each  either  benign 
 or  malignant.  Success  rates  were  determined  by  calculating 
 the  ratio  of  total  correctly  diagnosed  lung  nodules  to  the 
 total number of testing image files. 

 Detection and Measurement Tool Performance Testing 
 After  the  development  of  a  lymph  node  detection 

 and  measurement  tool,  the  tool  was  to  be  integrated  into  a 
 radiological  workflow  to  observe  performance  within  a 
 workflow  and  to  gauge  user  satisfaction.  Accuracy  and 
 measurement  values  were  to  be  compared  to  the 
 radiologists  assessment  and  a  survey  was  to  be  conducted 
 afterwards.  However,  this  step  was  not  implemented  due  to 
 the  incomplete  development  of  the  detection  and 
 measurement  tool.  The  recommended  approach  can  be 
 seen in the Next Steps section of the Discussion. 

 End Matter 
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 Supplemental Information 

 Figure S1.  The above supplementary figure outlines  the general 
 approach carried out to train a deep learning model. 

 Figure S2.  Shown here is the csv file containing the  breast nodule 
 training data that was mapped to the images. 
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