Random Forest Classification of 22

GHz Maser Galaxies: A Database
Analysis of GBT Observations

by
Emily McMahon

Instructor: Dr. Jim Braatz
National Radio Astronomy Observatory
University of Virginia

This thesis is submitted in partial completion of the requirements of the
BS Astronomy-Physics Major



Abstract

To date, approximately 180 extragalactic 22 GHz HoO masers have been detected,
with 115 of these discovered using the Green Bank Telescope (GBT). Of the GBT
detections, 80 were identified by the Megamaser Cosmology Project (MCP), highlight-
ing its significant contribution to the field. These discoveries come from a survey of
approximately 4,600 galaxies using the GBT, putting the rate of discovery at 2.5%.
These rare detections are of exceptional value due to their relevance to precision cos-
mology. They enable direct measurements of supermassive black hole (SMBH) masses
and geometric distances to their host galaxies, both of which are crucial for refining
estimates of the Hubble constant. In order to increase the likelihood of identifying
these valuable galaxies, we developed a machine learning model designed to accurately
classify galaxies based on their detection status. Specifically, we employed a random
forest model that analyzes WISE band colors (W1-W2, W2-W3, W3-W4) and near-
infrared magnitudes (j, h, k) to predict the presence of 22 GHz HoO megamasers. The
accuracy of our model after cross validation averages to approximately 74%.

1 Introduction

The detection of 22 GHz water vapor megamasers in the circumlunar accretion disks of
active galactic nuclei (AGN) provides a method to measure the geometric distances to these
galaxies. The MCP leverages this technique to estimate the Hubble constant (Hg) without
relying on conventional distance measurement methods such as standard candles or distance
ladders. These rare systems are of immense importance, offering both precise measurements
of SMBH masses and geometric distances to their host galaxies—critical factors in refining
Hp.

Currently, approximately 180 extragalactic 22 GHz H,O masers have been detected. Of
these, 115 were discovered using the GBT, and 80 of those were found through the efforts
of the MCP. These detections stem from a GBT survey targeting about 4,600 galaxies,
placing the overall detection rate at a mere 2.5%. This low yield underscores the difficulty of
identifying suitable candidates using traditional selection methods and motivates the need
for improved targeting strategies.

We find these megamasers by surveying nearby AGNs, with a specific lens on Seyfert 2
galaxies. Much of the motivation for our project stems from the findings of Kuo et al. (2018),
which demonstrated that optically obscured active galactic nuclei (AGNs)—often missed in
optical surveys due to dust extinction—can be effectively identified using mid-infrared data
from the all-sky WISE survey (Wright et al., 2010). The study revealed that specific WISE
color indices, along with optical u—r colors, are statistically significant predictors of 22 GHz
H50 megamaser detections, highlighting a promising approach for identifying maser-hosting
galaxies. Figure 1 from this paper demonstrates the significance of maser emission as a
function of colors, which theorizes a 9% megamaser detection rate.

We replicated this graph in Figure 2 for all extragalactic observations made by the GBT,
highlighting the maser galaxies. In both of these figures, we see a distinct relationship
between maser detection and color. However, the underlying relationship between these
photometric properties and maser activity is not yet fully understood and remains a subject
of ongoing investigation. Motivated by this gap, we sought to determine whether machine
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Figure 1: WISE color—color diagram of MCP galaxies. Distribution of maser
(detections) and non-maser (non-detections) galaxies in the W2—-W3 versus
W1—-W2 color space. The horizontal dashed and dot-dashed lines correspond
to W1—-W2 = 0.5 and 0.8, respectively. The green dashed line indicates the
AGN wedge defined by Mateos et al. (2012). Figure reproduced from Kuo et al.
(2018).

learning algorithms could leverage these relatively underutilized galactic features to classify
galaxies with confirmed maser detections, thereby assessing their utility as predictive tools
within a broader astrophysical framework.
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Figure 2: Three-panel plot showing the distribution of MCP maser and non-maser galaxies in different color-color diagrams: (left) W2-W3 vs.
W1-W2, (middle) W3-W4 vs. W1-W2, and (right) W2-W3 vs. W3-W4. In all panels, gray points represent observations from the GBT, while red
points indicate maser detections.

To select a robust machine learning model for our analysis, we drew inspiration from the
work of Daoutis et al., (forthcoming), who demonstrated the effectiveness of random forest
classifiers in distinguishing between star-forming, AGN, low-ionization nuclear emission-line
region (LINER), composite, and passive galaxies, particularly within local and low-redshift
samples. Their study utilized similar classification features, including infrared colors derived
from the first three WISE bands (W1, W2, and W3) and optical colors from the u, g, and r



bands of the SDSS survey. Achieving an overall classification accuracy of 81%, their results
motivated us to adopt a random forest model tailored to our own set of specified parameters.

2 Methods

We initiated our analysis by constructing a balanced dataset containing approximately
equal numbers of galaxies with and without maser detections, as observed by the GBT. We
then cross-matched these samples with the ALLWISE galaxy catalog to retrieve our parame-
ters of interest: W1, W2, W3, W4, and the near-infrared bands j, h, and k. Of the 180 maser
detection galaxies, 171 were within the ALLWISE survey database and contained IR data,
allowing us to retain nearly all detection galaxies in our final dataset. To ensure compara-
bility, we selected a matched sample of nondetection galaxies with similar photometric and
physical characteristics. ALLWISE contained IR data for 135 of these matched nondetec-
tion galaxies. Given that apparent magnitude is distance-dependent, we further minimized
potential biases by limiting our sample to galaxies within a specified distance range. Fur-
thermore, to reduce the influence of distance-related effects, we converted the WISE band
magnitudes into color indices—specifically W1-W2, W2-W3, and W3-W4—while retaining
the magnitudes j, h, and k as individual features.

We began by splitting the dataset into training and testing sets using the train test_split
function from scikit-learn, allocating 80% of the data for training and 20% for testing. Strat-
ified sampling was applied to ensure that the distribution of the binary target variable,
detection, was maintained across both sets.

To estimate the model’s performance and avoid overfitting, we employed 5-fold cross-
validation on the training set using StratifiedKFold. This method ensured that each fold
had a representative distribution of both detection and non-detection classes. The average
cross-validation accuracy was computed to assess the generalization ability of the model on
the training data.

After cross-validation, the Random Forest classifier was retrained on the full training
set. The model’s final performance was evaluated using the held-out test set, which had not
been used during training or cross-validation. The accuracy of the model on the test set was
reported as the final evaluation metric.

The Random Forest classifier was used with default hyperparameters, and class balancing
(class_weight=’balanced’) was applied to address our minor class imbalance. The model’s
final evaluation metrics included the average cross-validation accuracy, the accuracy on the

test set, and a heatmap confusion matrix to visualize the specific areas in which our model
failed.

3 Results

We began our model evaluation by calculating the accuracy score. As previously noted,
we applied 5-fold cross-validation, which yielded an average accuracy of 74%. We produced
a cumulative heatmap confusion matrix to visualize our model’s performance metrics as can
be see in Figure 3. A definition for each of these metrics can be found in Table 1. Figure 3



highlights our model’s high sensitivity in detecting true positives, which in part may be due
to the higher number of detection galaxies contained within our dataset.

Actual / Predicted | Predicted Positive Predicted Negative

Actual Positive TP: Correctly predicted | FN: Missed detection
detection

Actual Negative FP: Incorrect detection | TIN: Correctly predicted
non-detection

Table 1: Definitions of the four categories in a confusion matrix.
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Figure 3: Heatmap of the confusion matrix showing the performance of the
Random Forest classifier, with true versus predicted classifications of maser de-
tection status. The matrix displays the true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) based on the model’s predictions,
with darker shades indicating higher values in each category.

In evaluating our model, we considered three important performance metrics: precision,
recall, and the F1 score. While the scores vary slightly between folds, they remain relatively
consistent, indicating that the model generalizes well across subsets of the data. On average,
the model achieved a precision of 0.76, recall of 0.72, and an F1 score of 0.74, suggesting a
strong balance between sensitivity and predictive accuracy.

Precision tells us how reliable our model’s positive predictions are and can be calculated
as follows:

True Positives
True Positives + False Positives

Precision =

In the context of our project, the precision is the number of true detections out of all galaxies
that our model classified as detections.
Recall measures how well the model classifies positives. More specifically, this metric

tells us how many detections the model was able to correctly classify and can be calculated
below:



Fold Precision | Recall | F1 Score
1 0.75 0.70 0.72
2 0.78 0.73 0.75
3 0.76 0.72 0.74
4 0.74 0.69 0.71
5 0.77 0.75 0.76
Average 0.76 0.72 0.74

Table 2: Performance metrics (Precision, Recall, and F1 Score) across five cross-
validation folds. Averages are reported in the final row.

Recall — True Positives

True Positives + False Negatives

Finally, the F1 score is perhaps the most important metric when evaluating a model’s
performance, as it finds the balance between precision and recall by combining the two:

F1 Score — 2 x Precision x Recall

Precision + Recall

The F1 score is calculated as the harmonic mean of precision and recall, meaning that if either
precision or recall is low, the F'1 score will also be low. This makes the F1 score particularly
useful —- especially in cases of imbalanced datasets such as ours, where detections are more
abundant than nondetections. With an average F1 score of 0.74, we can be confident that
our model is striking a good balance between precision and recall.

In the context of our project, precision shows that when our model predicts a galaxy as
a maser detection, it’s usually correct. On the other hand, recall indicates that the model is
catching most of the true detections, but there are still some that it misses. By combining
the two metrics to obtain an F1 score of 0.74, we know that our model is not overly focused
on one at the expense of the other. This is crucial, as it is not only important to make
predictions, but to ensure they are reliable and comprehensive.

To further investigate the areas in which our model was failing, we produced a table
of misclassified galaxies for a singular evaluation. Included in the table was the designa-
tion as referenced in the MCP catalog, the designation as referenced in ALLWISE, the
input parameters used during testing and training, the true label indicating detection sta-
tus, the predicted label, and a confidence level. This confidence level was constructed using
the predict_proba method provided by the RandomForestClassifier classifier included in
scikit-learn. The predict_proba function estimates class probabilities by aggregating the
outputs of all decision trees in the random forest, calculating the proportion of trees that
vote for each class. This proportion reflects the model’s confidence in each possible outcome,
providing a probabilistic interpretation of its predictions. This information is referenced in
Table 3. The average confidence score for this subset of misclassified galaxies is 0.44. A
confidence level below 50% for misclassifications indicates that our model was generally un-
certain when making incorrect predictions. This suggests that the model is not confidently
wrong, which is preferable to high-confidence misclassifications and may point to inherently
ambiguous or borderline cases.



letection | Predicted Label | Confidence
0 0.09
0 0.5
0.39
0.38
0.45
0.38
0.69
0.64

source designation ra dec wlmpro | w2mpro | w3mpro | wdmpro | j, h,, Kin WI1-W2 | W2-W3 | W3-W4
60 | J0912+2304 J091246.364-230427.3 | 138.19 | 23.07 | 13.35 13.19 9.9 8.02 15.02 | 14.35 | 14.06 | 0.16 3.28 1.88
33 | J0350-0127 J035000.35-012757.5 | 57.5 -1.47 | 1141 10.78 7.58 5.54 14.29 | 13.52 | 12.78 | 0.63 3.21 2.04
118 | MCG+11-17-010 J135628.694-643743.9 | 209.12 | 64.63 | 12.08 11.73 8.4 6.62 14.62 | 13.85 | 13.44 | 0.35 3.34 1.78
147 | NGC 6264 J165716.13+275058.5 | 254.32 | 27.85 | 12.16 12.05 8.57 5.44 14.24 | 13.49 | 13.3 | 0.11 3.47 3.14
76 | J1028+1046 J102802.91+104630.4 | 157.01 | 10.78 | 12.05 11.87 8.25 5.79 13.92| 1385|134 | 0.18 3.63 2.46
24 | J0253-0014 J025329.59-001405.4 | 43.37 | -0.23 | 13.23 13.02 8.85 5.35 15.02 | 14.22 | 13.95 | 0.21 4.16 3.51
284 | [1J160707+220338’] | J160707.00+220338.1 | 241.78 | 22.06 | 10.81 10.61 6.77 4.38 13.76 | 13.13 | 12.6 | 0.2 3.85 2.38
295 | [Ark539’] J182848.074502220.8 | 277.2 | 50.37 | 11.44 11.24 8.47 5.96 13.37 12,5 | 12.31]0.2 2.78 2.51

m—moooo

Table 3: Summary of Misclassified Galaxies Including Their Predicted Labels and Associated Confidence Scores from the Classifier

4 Discussion

The Random Forest Model achieved an average F1 score of 0.74, demonstrating a strong
balance between precision and recall. This suggests that the model is fairly effective at
distinguishing maser galaxies, or detections, from nondetections using photometric features
alone. The relatively high precision indicates that most of the galaxies predicted to be
detections do truly harbor masers within, while the recall value shows that a majority of
actual maser galaxies are correctly identified.

We originally hypothesized that infrared colors and near-infrared magnitudes can serve
as reliable predictors in the detection of maser emission in Active Galactic Nuclei. This
hypothesis was supported by the model’s ability to perform above chance-a 50% accuracy.
The importance of features like W1-W2, W2-W3, and W3-W4 aligns with prior studies that
emphasized the role of dust-obscured AGNs in maser emission.

The average confidence of 0.44 in misclassified galaxies suggests that the model is not
confidently wrong. Conversely, the misclassifications appear to be made with a degree of
uncertainty, which indicates that these galaxies may possess ambiguous or borderline pho-
tometric characteristics. This is rather encouraging, as it implies that the model is cautious
in cases where the input data is less clearly separable, a preferable behavior in astrophysical
classification instances.

Our classification accuracy of approximately 74% stands out among similar efforts, such
as the 81% achieved by Daoutis et al. (forthcoming) using optical and infrared features. Dif-
ferences in sample size, feature selection, and class distribution may explain this discrepancy.
It should be noted that our model relied solely on photometric data without incorporating
morphological or spectroscopic features, which could potentially enhance model performance.

A key limitation within this study is the relatively small number of confirmed maser
galaxies, which constrained the size of the balanced dataset. Additionally, the exclusion of
certain potentially informative features—excluded simply because of their unknown relevance
to maser activity—may have limited the model’s discriminative power. The model also treats
each galaxy independently and does not account for observational bias such as detection
sensitivity limits or survey coverage. While our model may have broader potential across a
wide range of parameters, this remains an open question requiring further investigation.

While our model demonstrates promising results using only WISE color indices and
near-infrared fluxes, there is significant opportunity to improve its predictive power by in-
corporating additional multi wavelength data. Future work could expand on this analysis by
integrating features from other domains known to correlate with AGN activity and maser
emission. These include optical spectroscopic features such as emission line strengths and
diagnostic line ratios seen in Figure 4, which have historically been effective in classifying
galaxy nuclear activity Groves et al. (2006).



X-ray observations also hold considerable promise. Parameters such as X-ray luminosity
and absorption column densities can provide insight into obscured AGN populations that
might not be apparent in optical or infrared data alone (Brandt et al. (2005)). Similarly,
radio continuum properties—including flux, spectral index, and morphology—may offer ad-
ditional discriminative power, especially in identifying galaxies with compact radio cores
indicative of AGN activity (Condon et. al (1992)).

Incorporating these additional features could potentially improve model performance
by identifying maser-hosted galaxies that are missed by IR-based selection alone. A multi-
model approach combining photometric, spectroscopic, and high-energy data may also reduce
misclassifications of ambiguous cases and allow for more robust candidate selection in future
maser surveys. Furthermore, applying more advanced models such as deep neural networks
could be explored—particularly if the size of the labeled dataset increases through future
detections.
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Figure 4: Diagnostic diagram of [N II] A6584 A / Ha versus [O III] A5007
A / HB for SDSS emission-line galaxies, illustrating the classification of galaxy
nuclear activity. Star-forming galaxies are shown in green, Seyfert 2s in blue,
and LINERs in red. The solid and dashed curves represent the Kauffmann and
Kewley separators, respectively. These optical spectroscopic features, as shown
here, have been historically useful in classifying AGN activity and maser emis-
sion. Reprinted from Groves et al. (2006).

5 Conclusion

This study represents a data-driven framework to improve the efficiency of future mega-
maser surveys by enhancing target selection strategies. Traditional approaches, which pre-
dominantly focus on Seyfert 2 galaxies, typically yield a low detection rate of around 2.5%.
To address this limitation, we developed a machine learning-based method that integrates
multi-wavelength observational data to identify galaxies with a higher likelihood of hosting
H50 megamasers. By training Random Forest classifiers on a labeled sample of known maser
and non-maser galaxies, our algorithm learns to recognize complex, non-linear relationships
across observational dimensions that may elude conventional selection methods.

Ultimately, this approach offers a pathway to significantly surpass the historical detection
efficiency and to optimize the scientific return of future maser surveys. Beyond improving de-
tection rates, this work also contributes to a deeper understanding of the physical conditions



and AGN environments that are conducive to maser emission, advancing both observational
strategy and theoretical insight in the study of extragalactic water megamasers.
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