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Abstract

Secure 2PC (Two-Party Computation) is a research problem that abstracts a wide class of real-

world applications with privacy concerns. In this problem, two parties want to collaboratively

compute an objective function over their private inputs while the inputs are too valuable

or sensitive to share with each other. For example, competing insurance companies may be

interested in finding out the statistics of their aggregated client database but reluctant to reveal

their own databases; drivers on the road may want to query the nearest gas station but hesitate

to disclose their GPS coordinates.

In this thesis, we constructed a framework for secure 2PC. This framework consists of a

two-party interactive protocol and a few cryptographic building blocks. More specifically, the

former comes from applying the cut-and-choose technique to the Yao protocol with the support

of the latter, which are formally defined to capture the security properties needed in order to

tackle the known attacks. We first proved that the main protocol indeed securely computes

any single-output objective function even in the presence of malicious adversaries. Next, to

demonstrate the power of this framework, we explicitly instantiated the building blocks by

using number-theoretic assumptions and the technique of auxiliary circuits. We also presented

techniques that allow our framework to handle from any single-output to any two-output

objective functions. Finally, we implemented the framework to demonstrate its performance

empirically. In particular, this implementation benefits from the embarrassingly parallelizable

nature of our framework.
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Chapter 1

Introduction

In this thesis, we explore the research topic that is inspired by the seminal problem—the

Millionaire Problem—asked by Andrew Yao [Yao82]:

Two millionaires wish to know who is richer; however, they do not want to [unduly

give away] any additional information about [their own] wealth. How can they

carry out such a conversation?

This original problem soon inspired a general scenario, in which two mutually distrustful parties

want to securely compute a function on their private inputs so that in the end, they both get

their desired outputs but learn nothing more about each other’s input.

To solve the problem of secure 2PC (two-party computation), we need to construct a protocol

so that given the description of any function (called the objective function), this protocol satisfies

two security properties—correctness and privacy. Loosely speaking, the correctness property

guarantees that the protocol output is indeed the output of the objective function, and the

privacy property ensures that in the course of the protocol execution, neither party can learn

more than necessary, that is, more than that derivable from its own input and output. A trivial

solution is have both parties hand their private inputs to a trusted third party who performs the
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work and later distributes the computation result. However, the solution that we desire needs

to achieve the effect of a trusted third party without one.

In particular, what we are seeking in this thesis is not just a solution but one that is efficient

enough for real-world applications. Yao proposed an efficient protocol that allows two parties—

one (called the generator) with secret input x and the other (called the evaluator) with secret

input y—to jointly compute objective function f so that both parties receive f (x , y) in the

end [Yao86]. His idea is to express f as a boolean circuit (called the objective circuit) and

devise a way for the generator to garble the circuit and then for the evaluator to obliviously

compute the value of each wire in this garbled circuit. The Yao protocol is arguably one of the

most efficient solutions in the literature.

Unfortunately, the Yao protocol assumes both parties to be honest-but-curious, that is, the

correctness and privacy properties hold only when both parties follow the protocol honestly.

This assumption is too strong to be applicable to most real-world applications. Later, Goldreich,

Micali, and Wigderson formulated a stronger notion, the malicious model, in which either

(but not both) participant is allowed to cheat arbitrarily [GMW87]. An elegant solution

was also suggested. Note that a solution in the presence of malicious adversaries ensures

that if both participants are honest, they receive their outputs with two security properties

satisfied; otherwise, a cheater is caught with high probability. However, Goldreich, Micali, and

Wigderson’s solution uses zero-knowledge proofs that are prohibitive in practice.

This thesis aims to provide efficient solutions to secure 2PC problem in the presence of

malicious adversaries. We next outline each chapter as follows.
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Chapter 3: Secure 2PC Framework.

The biggest vulnerability of the Yao protocol when dealing with malicious adversaries is that a

malicious generator could cheat in the garbling process. In particular, a malicious generator

could construct a faulty circuit that reveals the evaluator’s input purposely. Since the circuit is

“garbled,” the evaluator cannot determine whether or not it is an honestly garbled version of

the objective circuit and should not proceed without a guarantee of its correctness.

The cut-and-choose technique is one of the most efficient methods that prevent a malicious

generator from cheating with faulty circuits. Loosely speaking, this technique instructs the

generator to prepare multiple copies of the garbled circuit, each with independent randomness.

The evaluator is then instructed to choose a random fraction of the garbled circuits whose

randomness is then revealed. If any of the chosen garbled circuits is not consistent with the

revealed randomness, the evaluator detects the generator cheating and aborts; otherwise, the

evaluator starts to evaluate the remaining garbled circuits. After the evaluation is finished, the

evaluator takes the majority output as the final output.

However, the cut-and-choose technique is not a cure-all. There are issues that this technique

does not cover such as the evaluator’s Input Polluting Attack and the evaluator’s Input Key

Inconsistency Attack (also known as the Selective Failure Attack), not to mention that it brings

its own issues such as the generator’s Input Inconsistency Attack. These issues naturally lead to

an important question:

Question: Under the cut-and-choose paradigm, what are the fundamental crypto-

graphic primitives needed in order to transform the Yao protocol into one that is

secure in the presence of malicious adversaries?

To answer this question, we propose a framework. This framework contains a two-party

interactive protocol—the Main protocol—and a few cryptographic primitives. In particular,

the former comes from applying the cut-and-choose technique to the Yao protocol with the
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support of the latter, which are formally defined to capture the security properties needed in

order to address the known attacks. Most importantly, we prove that the Main protocol securely

computes any single-output objective function even in the presence of malicious adversaries.

This framework brings benefits to both theoretical research and practical systems.

In theory, this framework basically reduces the solving of secure 2PC problem to instantiating

the underlying cryptographic primitives. We understand that the development of a full-fledged

secure 2PC protocol could sometimes be a tedious process, the writing of a full hybrid argument

for security in particular. To the best of our knowledge, a full description of the hybrid argument

is rarely presented [LP07, sS11]. In fact, a few prior works have tackled the known security

issues individually and taken the rest as a straightforward integration only to find out later that

the full protocol is not clear to enjoy the simulation security [MF06, KS08a]. This framework

allows future researchers to conquer sub-problems one at a time. Once those building blocks

are instantiated, the simulation security follows automatically.

In practice, this framework provides a blueprint for implementations. Its well-modularized

nature allows easy plug-and-play for the building blocks. Moreover, the framework is designed

to introduce as little overhead as possible, by building the Main protocol on top of a fast 2PC

protocol, the Yao protocol, with an efficient technique, the cut-and-choose. A system developer

can focus on optimizing primitive instantiations, which are smaller and easier to manage.

Furthermore, we study the fundamental limit of our framework and suggest optimal

parameters for the needed security level as follows.

Informal Lemma (Optimal Parameters). Under our framework, the optimal

checked-to-unchecked ratio is roughly 3:2, which results in the need of at least

(25/8) · k copies of the garbled circuit in order to achieve security level 2−k.
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Chapter 4: Secure 2PC Instantiations

In order to demonstrate the power of our framework, we instantiate the building blocks by

following two directions—using number-theoretic assumptions and auxiliary circuits.

Secure 2PC via Number-Theoretic Assumptions

Number-theoretic assumptions have been a powerful tool for cryptography since the very first

public key encryption scheme was proposed [DH76]. Tractability of factoring large numbers,

calculating discrete logarithms, and determining quadratic residues has endured decades of

intense study without reaching a decisive answer. Most cryptographers are comfortable with

building their work on top of these unproven but very likely hard assumptions. Moreover, these

mathematical objects have well-understood structures and are often useful to manipulate with.

We therefore use them as a stepping stone. In particular, we instantiate the needed building

blocks with the malleable claw-free collections and committing oblivious transfers, the existence

of which can be implied by the Decisional Diffie-Hellman assumption.

Informal Theorem (Instantiation using the DDH Assumption). Assume the exis-

tence of oblivious transfers secure in the malicious model. The Decisional Diffie-

Hellman assumption implies the existence of a Yao-based protocol that securely

computes any single-output function even in the presence of malicious adversaries.

Remark 1.1. The existence of maliciously secure oblivious transfers in this theorem is actually

redundant since it is implied by the DDH assumption as well. However, we choose to specify both in

order to emphasize the fact that the transformation itself relies on the DDS assumption too.

Remark 1.2. This theorem is the partial result in our paper published in EUROCRYPT’11 [sS11].

Prior to that paper, the state-of-the-art approach utilized O(k2) symmetric cryptographic operations

to defeat all the known attacks [LP07], where k is the security parameter. The communication
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overhead was soon discovered to be the bottleneck [LPS08, PSSW09]. We were able to reduce the

overhead to O(k) elliptic-curve operations, which incurs a comparable computation cost but much

less communication cost with reasonable security parameter k.

The use of the number-theoretic objects, however, becomes less appealing as the security

level increases. For the purpose of practicality, it would be the best to use only O(k) symmetric

cryptographic operations. We therefore consider the second direction.

Secure 2PC via Auxiliary Circuits

To detect a certain attack, the standard technique requires a participant to provide a proof that

it has behaved honestly during the collaboration. We observe that the Yao protocol is itself a

powerful tool to provide such a proof. So we propose that in addition to the objective circuit,

both participants jointly work on a few auxiliary circuits, whose output is exactly the proof of

honest behavior that the other party expects. In particular, we instantiate the building blocks

needed in the framework with a 2-universal hash circuit and a probe-resistant matrix circuit.

It is worth-mentioning that the use of auxiliary circuits is not new [Gol04, LP07], but it was

not taken into serious consideration previously. The main reason is that many auxiliary circuits

were considered too costly. Indeed, back in 2009, Pinkas et al. were able to report a system

that barely handles a circuit of 33,880 gates at the rate of 40 gates per second [PSSW09]. It

was not until recently that our work reported a system that is capable of handling a circuit

of billions of gates at the rate of hundreds of thousands of gates per second [KsS12]. So the

burden of those auxiliary circuits is no longer unbearable.

Informal Theorem (Instantiation using Minimal Assumptions). Assume the exis-

tence of oblivious transfers secure in the malicious model. There exists a Yao-based

protocol that securely computes any single-output function even in the presence of

malicious adversaries.
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The result of this chapter shows that secure 2PC is possible in the malicious model as long

as maliciously secure oblivious transfers exist, which is the minimal assumption needed.

Chapter 5. Secure 2PC over Two-Output Functions

For many real-world applications, both parties want to learn an output from the secure

computation. In the Yao protocol, it is easier for the evaluator to learn its output. The challenge

is for the generator to learn its output securely. In particular, a solution needs to achieve the

generator’s output privacy and output authenticity. The former requires that the generator’s

output is kept only to itself, and the latter requires that the generator gets either an authentic

output or no output at all, in which case the evaluator is caught cheating. We stress that the

two-output protocols we consider are not fair, that is, the evaluator may learn its own output

but refuse to send the generator’s back—but if so, the evaluator is caught cheating.

Similarly, we start with using number-theoretic assumptions to extend our objective func-

tions from single-output to two-output. In particular, we use a zero-knowledge proof for the

evaluator to prove the generator’s output authenticity. Furthermore, we achieve the same goal

with a witness-indistinguishable proof that uses only symmetric cryptographic operations.

Chapter 6: Secure 2PC in Practice.

The goal of this chapter is to demonstrate the power of our framework empirically. We present

a high performance secure 2PC system that implements our framework (Protocol 3.2) plus two

proposed building block instantiations (Protocol 4.4 and Protocol 4.5). We also implement our

witness-indistinguishable proof for the generator’s output authenticity (Protocol 5.1).
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Our system also incorporates the state-of-the-art techniques for dealing with malicious adver-

saries efficiently. We first use Ishai et al.’s Oblivious Transfer Extension technique, which has low

amortized computation overhead for oblivious transfers secure in the malicious model [IKNP03].

For circuit garbling and evaluation, we incorporate Kolesnikov and Schneider’s Free-XOR tech-

nique, which minimizes the computation and communication cost for XOR gates in the objective

circuit [KS08b]. We adopt Pinkas et al.’s Garbled-Row-Reduction technique, which reduces the

communication cost for k-fan-in non-XOR gates by 1/2k, which means at least 25% communi-

cation saving in our system since we only have 2-fan-in gates [PSSW09]. Finally, we propose a

novel optimization technique that reduces the communication cost of a cut-and-choose-based

Yao protocol by transferring the random seeds used to produce the checked circuits rather than

the circuits themselves [sS13]. This technique provides at least 50% saving in communication.

Although these techniques exist individually, our work is the first system to incorporate all of

these mutually compatible state-of-the-art techniques.

Besides the improvements by the algorithmic means, our system utilizes the latest hardware

instruction sets. In particular, we use the SSE2 (Streaming SIMD 2) to speed up bit-wise

operations such as 128-bit XOR, 128-bit AND, and we utilize AES-NI (Advanced Encryption

Standard New Instructions) to improve the speed of circuit garbling and evaluation.

The most important new technique that we use is to exploit the embarrassingly parallelizable

nature of our secure 2PC framework. Exploiting this, however, requires careful engineering in

order to achieve good performance while maintaining security. We parallelize all computation-

intensive operations such as oblivious transfers and circuit garbling by splitting the generator-

evaluator pair into hundreds of slave pairs. Each of the pairs works on an independently

generated copy of the circuit in a parallel but synchronized manner as synchronization is

required for our framework to be secure.

Experimental Results (Secure 2PC in Parallel) In the environment where there

are poly(k) processors and poly(k) bandwidth, our system is able to achieve the
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computation ratio 1+ ε, in terms of wall clock time, between the malicious model

and the honest-but-curious model, where ε is close to 0.
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Chapter 2

Preliminaries

2.1 Notations

General Notations

Integer and String Representation: We denote by N the set of natural numbers {1,2, . . .},

by R the set of real numbers, and by R+ the set of non-negative real numbers. For any n ∈ N,

we denote by [n] the set of {1,2, . . . , n}, by 1n the concatenation of n 1s, by {0,1}n the set of

n-bit strings, and by {0,1}∗ the set of binary strings. If x and y are binary strings, we denote

by x ||y (or simply x y) their concatenation and by |x | the bit length of x .

Bit Operations: If x , y ∈ {0,1}, we denote by x ∧ y the output of AND(x , y), by x ∨ y the

output of OR(x , y), and by x ⊕ y the output of XOR(x , y).
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Cryptographic Notations

For convenience, we present the notations of cryptographic primitives needed without much

detail here. These notations will be mentioned again later when their formal definitions are

introduced.

Two-Output Functions: For any x , y ∈ {0,1}∗, we denote by f (x , y) 7→ ( f1(x , y), f2(x , y))

a two-output function, where the first party has input x and gets output f1(x , y), and the

second party has input y and gets output f2(x , y). For simplicity, f1(x , y) and f2(x , y) are

often simplified as f1 and f2, respectively. For some function, we use fb =⊥ to indicate that the

b-th party gets no output, where b ∈ {1, 2}.

Encryption Scheme (Cipher): For some proper m, e, c, d ∈ {0, 1}∗, we denote by ence(m) the

encryption (or ciphertext) of message (or plaintext) m with encryption key e and by decd(c)

the decryption of ciphertext c with decryption key d (cf. Definition 2.7).

Commitment Scheme: For some proper m, r ∈ {0,1}∗, we denote by com(m; r) a com-

mitment to m with randomness r (cf. Definition 3.1). For simplicity, the randomness may

sometimes be omitted.

Probabilistic Notations

We focus on probability distributions D : S→ R+ over some finite set S.
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Probabilistic assignments: If D : S→ R+ is a probability distribution, we denote by x
R← D

the elementary procedure that x is chosen from S according to distribution D. We denote by

x
R← S the procedure that x is chosen from S according to a uniform distribution.

Probabilistic Experiments: Let p be a predicate and D1, D2, . . . be probability distributions.

We denote by Pr[x1
R← D1; x2

R← D2; · · · : p(x1, x2, . . .)] the probability that p(x1, x2, . . .) is true

after the ordered execution of probability assignments x1
R← D1, x2

R← D2, and so on.

New Probability Distributions: If D1, D2, . . . are probability distributions, we denote by

{x1
R← D1; x2

R← D2; · · · : (x1, x2, · · · )} the new probability distribution over (x1, x2, · · · ) gener-

ated by the ordered execution of probabilistic assignments x1
R← D1, x2

R← X2, and so forth.

Probability Ensemble: Let I be a countable index set. We denote by X = {X i}i∈I a probability

ensemble indexed by I , which is is a sequence of random variables indexed by I .

2.2 Basic Notions

Negligible Functions: Negligible functions are those asymptotically smaller than the inverse

of any fixed polynomial. The formal definition is as follows.

Definition 2.1. A function µ(·) from N to R+ is called negligible if for every constant c > 0 and

all sufficiently large k ∈ N, it holds that µ(k)< k−c.

Polynomial-Time Algorithms: By an algorithm we mean a Turing machine, hence we will

use both terms interchangeably. We only consider finite algorithms, the machines that have

some fixed upper bound on their running time, polynomial-time algorithms in particular.
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Definition 2.2. Let STEPS(M , x) represent the number of computational steps taken by machine

M on input x before M halts. Algorithm M is polynomial-time if there exists some polynomial

p(·) such that for all x ∈ {0, 1}∗ it holds that STEPS(M , x) = O(p(|x |)).

Security Parameter: It is a convention in modern cryptography that security is defined with

respect to computationally bounded machines. Since computing power advances with the time,

it is well-accepted that cryptographic protocols are designed with a security parameter as an

auxiliary input so that their computational strength can change easily as technology improves.

At the time this writing, it is generally considered sufficient to have security parameter 80, or

equivalently, security level 2−80, which means that an adversary either needs to perform at least

280 operations or has probability at most 2−80 to break the security.

Indistinguishability

Definition 2.3 (Indistinguishability). Two ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computa-

tionally indistinguishable, denoted by X
c
≈ Y , if for every probabilistic polynomial-time algorithm

D, every auxiliary input z ∈ {0, 1}poly(n), there exists a negligible function µ(·) such that

|Pr[x ← Xn : D(x , z) = 1]− Pr[y ← Yn : D(y, z) = 1]|< µ(n).

X and Y are said to be statistically indistinguishable, denoted by X
s
≈ Y , if the above condition

holds for all (possibly unbounded) algorithms D.

Remark 2.1. The auxiliary input z given to the distinguishing algorithm D implicitly implies that

the two ensembles are indistinguishable to any non-uniform machine.
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2.3 Secure 2PC Notions

A secure 2PC (secure two-party computation) problem is specified by first identifying an objective

function f : {0, 1}n1 ×{0, 1}n2 7→ {0, 1}m1 ×{0, 1}m2 which maps a pair of inputs (x , y) to a pair

of outputs ( f1(x , y), f2(x , y)). The first party supplies input x and obtains output f1(x , y), and

the second supplies y and obtains f2(x , y).

Next, a security notion for protocols needs to be formally defined. A standard approach is

to follow the “ideal/real” paradigm in which we compare what an adversary can accomplish

in the proposed protocol versus what an adversary can accomplish in an idealized setting in

which a trusted third party aids in the computation. Here we summarize the two well-accepted

definitions for secure 2PC suggested by Goldreich [Gol04]—the honest-but-curious model and

the malicious model.

2.3.1 The Honest-but-Curious Model

In this model, both parties behave almost like an honest party, who always follows protocol

instructions faithfully. The only difference is that an honest-but-curious adversary would

attempt to extract useful information out of its own transcript of a proper execution. Loosely

speaking, the security notion defined here captures the idea that for either party, whatever can

be obtained from an execution of the protocol could be essentially obtained from the input and

output available to that party. We now formally introduce this security notion.

Ideal Model: Let S̄ = (S1, S2) be a pair of non-uniform expected polynomial-time machines. S1

on input x and S2 on input y engage in an ideal execution of f as follows. Both S1(x)

and S2(y) send their inputs to an oracle O honestly. O computes ( f1, f2)← f (x , y), and

sends f2 to S2 and then f1 to S1. An honest party always outputs the message received

from O, whereas an honest-but-curious adversary determines its output based on its own
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input and the message from O. Let variable Ideal f ,S̄(x , y, 1k) represent the joint output

of S1(x) and S2(y) from the above experiment with security parameter k as a common

input. If at least one of S1, S2 is honest, then S̄ is admissible.

Real Model: We now consider the real model in which a real two-party protocol Π = (Π1,Π2)

consisting of a pair of interactive non-uniform probabilistic polynomial-time machines

is executed without any oracle. In particular, if P̄ = (P1, P2) is a pair of non-uniform

probabilistic polynomial-time machines, in the real experiment, P1 on input x and P2 on

input y begin exchanging messages until one party halts. Both parties follow protocol

instructions honestly. An honest party outputs what the protocol instructs, whereas

an honest-but-curious adversary computes its output based on its entire view of the

execution. Let variable RealΠ,P̄(x , y, 1k) represent the final joint output of P1(x) and

P2(y) with security parameter k as a common input. Again, if at least one Pi is the same

as the honest protocol Πi, then P̄ is called admissible.

Definition 2.4 (Security in the Honest-but-Curious Model). A protocol Π is said to securely

compute function f : {0, 1}n1×{0, 1}n2 7→ {0, 1}m1×{0, 1}m2 in the presence of honest-but-curious

adversaries if for every pair of admissible non-uniform probabilistic polynomial-time machines

P̄ = (P1, P2) for the real model, there exists a pair of admissible non-uniform probabilistic expected

polynomial-time machines S̄ = (S1, S2) for the ideal model such that

¦

RealΠ,P̄(x , y, 1k)
©

x∈{0,1}n1 ,y∈{0,1}n2 ,k∈N

c
≈
¦

Ideal f ,S̄(x , y, 1k)
©

x∈{0,1}n1 ,y∈{0,1}n2 ,k∈N
.

2.3.2 The Malicious Model

In this model, a malicious party may refuse to participate in the protocol, may use a different

input than it is given, or may perform extra instructions or instructions different from those

specified in the protocol. In our case, we allow “unfair” protocols in which the malicious party
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may be able to learn its output and prevent the honest party from doing so. The malicious

party, however, is fixed before the protocol begins, that is, the static corruption model.

Ideal Model: Let S̄ = (S1, S2) be a pair of non-uniform expected polynomial-time machines. S1

on input x and S2 on input y engage in an ideal execution of f as follows. Both S1(x) and

S2(y) send their inputs to an oracle O. An honest party always sends x (or y) to O, and

a malicious party may send any n1-bit (or n2-bit) string or the special message ⊥ (abort).

If O does not receive two valid inputs, then O responds to both parties with the special

message ⊥. If O receives a valid input pair (x ′, y ′), it computes ( f1, f2)← f (x ′, y ′). It

then sends f2 to S2 and waits for a one-bit response. If S2 responds with 1, then O sends f1

to S1; otherwise, S1 receives ⊥ as output. If S2 is honest, it always sends 1 to O if queried

after receiving f2. At the end, an honest party always outputs the message received from

O. Let variable Ideal f ,S̄(x , y, 1k) represent the joint output of S1(x) and S2(y) from the

above experiment with security parameter k as a common input. If at least one of S1, S2

is honest, then S̄ is admissible.

Real Model: We now consider the real model in which a real two-party protocol Π = (Π1,Π2)

consisting of a pair of interactive non-uniform probabilistic polynomial-time machines

is executed without any oracle. In particular, if P̄ = (P1, P2) is a pair of non-uniform

probabilistic polynomial-time machines, in the real experiment, P1 on input x and P2

on input y begin exchanging messages until one party halts. An honest party Pi follows

protocol instructions Πi and outputs what the protocol instructs. A dishonest party may

output an arbitrary string. Let variable RealΠ,P̄(x , y, 1k) represent the final joint output

of P1(x) and P2(y) with security parameter k as a common input. Again, if at least one Pi

is the same as the honest protocol Πi, then P̄ is called admissible.

Definition 2.5 (Secure two-party computation). A protocol Π is said to securely compute

function f : {0, 1}n1 ×{0, 1}n2 7→ {0, 1}m1 ×{0, 1}m2 in the presence of malicious adversaries if for

every pair of admissible non-uniform probabilistic polynomial-time machines P̄ = (P1, P2) for the
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real model, there exists a pair of admissible non-uniform probabilistic expected polynomial-time

machines S̄ = (S1, S2) for the ideal model such that

¦

RealΠ,P̄(x , y, 1k)
©

x∈{0,1}n1 ,y∈{0,1}n2 ,k∈N

c
≈
¦

Ideal f ,S̄(x , y, 1k)
©

x∈{0,1}n1 ,y∈{0,1}n2 ,k∈N
.

Remark 2.2. We assume that we are given the objective circuit that is indeed functionally equivalent

to the objective function. Among all the boolean circuits functionally equivalent to the objective

function, the smaller the size of the circuit, the better. Conceivably, optimizations will be performed

over the objective circuit for real-world applications. Note that deciding whether an optimized

circuit is functionally equivalent to the objective function is NP-hard, which is out of the scope of

this thesis. As a result, we preclude the possibility of corrupted objective circuits.

2.4 Cryptographic Primitives

Symmetric Cipher (Private-Key Encryption Scheme): One of the classic problems in cryp-

tography is to communicate secretly over an insecure or eavesdropped channel. One of the

possible solutions, which is also heavily used in this thesis, is before their communication, both

parties agree on a secret key and a pair of (potentially public) algorithms—encrypting and

decrypting algorithms. Later, one party can use the key to encrypt a message, and send the

resulting ciphertext to the other party, who upon receiving a ciphertext, uses the same key to

decrypt the ciphertext and retrieve the original message. The formal definition is as follows.

Definition 2.6. A triplet of algorithms (gen,enc,dec) is called a private-key encryption scheme

over messages spaceM and key spaces K if the following holds:

• gen (called the key generation algorithm) is a randomized algorithm that on input security

parameter k outputs key K ∈K. We denote by K
R← gen(1k) the process of generating key K.
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• enc (called the encryption algorithm) is an (potentially randomized) algorithm that on

input key K ∈K and message m ∈ M, outputs ciphertext c. We denote by c← encK(m) the

process of encrypting message (plaintext) m with encryption key K.

• dec (called the decryption algorithm) is a deterministic algorithm that on input key K ∈K

and ciphertext c and outputs message m. We denote by m← decK(c) the process of decrypting

ciphertext c with decryption key K.

• In particular, for all m ∈M, Pr[K
R← gen(1k) : decK(encK(m)) = m] = 1.

Remark 2.3. All the above definition requires is that all the involved algorithms are efficient and

that the original message can be fully recovered to anyone with the key. It does not at all restrict

what those without the key can learn from a ciphertext.

Semantic Security:

Definition 2.7. Symmetric cipher (gen,enc,dec) is said to have semantic security if for any

non-uniform probabilistic polynomial-time machine A= (A1, A2), there exists negligible function

µ(·) such that for all k ∈ N, it holds that

Pr





















K
R← gen(1k);

(m0, m1, s)← A1(1k);

b
R← {0, 1};

b′← A2(encK(mb), s)

: b = b′





















< µ(k).

Remark 2.4. Technically speaking, semantic security, proposed by Goldwasser and Micali, requires

that whatever information an adversary can deduce after seeing a ciphertext can be computed by

the adversary itself without seeing the ciphertext in the first place [GM82]. The definition given

above is in fact commonly known as the ciphertext indistinguishability. However, it is also well

known that both security notions are equivalent. While the semantic security is better known, the
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ciphertext indistinguishability is more intuitive. We therefore slightly abuse the definition here in

order to enjoy the benefits of both without being technically inaccurate.

1-out-of-2 Oblivious Transfers: This primitive is a simple secure 2PC, in which two parties,

sender S on input (m0, m1) ∈ {0, 1}k×{0, 1}k for some k ∈ N and receiver R on input b ∈ {0, 1},

jointly computes function
�2

1

�

-OT : ((m0, m1), b) 7→ (⊥, mb).
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Chapter 3

Secure 2PC Framework

3.1 The Yao Protocol

3.1.1 The High-Level Construction

We first describe our starting point—the Yao protocol. This protocol begins with a clever way

of evaluating a boolean gate in an oblivious manner. Let us take a NAND gate with two input

wires w1 and w2 and one output wire w3 as an example. Each wire wi is first assigned a pair of

random keys (Ki,0, Ki,1). The idea is to associate random keys Ki,0 and Ki,1 with the semantics

that wire wi is of bit value 0 and 1, respectively, and to garble the truth table accordingly, as

shown in Table 3.1.

w1 w2 w3

0 0 1
0 1 1
1 0 1
1 1 0

(a) NAND(w1, w2) = w3















encK1,0
(encK2,0

(K3,1))

encK1,0
(encK2,1

(K3,1))

encK1,1
(encK2,0

(K3,1))

encK1,1
(encK2,1

(K3,0))















(b)

Table 3.1: (a) The truth table of a NAND gate and (b) its garbled version.
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Under this design, anyone given the garbled truth table and exactly one key for each input

wire is able to decrypt one of the entries and retrieve exactly one key for the output wire. For

instance, anyone given Table 3.1(b) and keys K1,0 and K2,1 is able to retrieve key K3,1. This is

equivalent to looking up in Table 3.1(a) with wire w1 of value 0 and wire w2 of value 1 and

deciding that wire w3 is of value 1. Observe that this evaluation does not require the semantics

of input keys. In other words, it is possible for the evaluator to complete a correct computation

but remain oblivious to the input and output. To develop this single gate oblivious evaluation

into a full-fledged solution, researchers have made the following observations:

• Two Parties: It is natural that this oblivious evaluation is jointly performed by two

independent parties. Conceivably, the semantics of random keys Ki,bs is necessary for

garbling a truth table, whereas the same information is not needed for evaluating a

garbled gate. In fact, the semantics has to be kept secret from the evaluator for the

evaluation to be oblivious. As a consequence, one of the two parties (denoted by GEN

hereafter) will be garbling boolean gates, whereas the other party (denoted by EVAL) will

be evaluating the resulting garbled gates.

• Garbling the Whole Circuit: The garbling technique is in fact applicable to all boolean

gates, not just NAND gates, since the garbling is independent of the content of a truth

table. Moreover, this technique applies to the entire circuit, not just a single gate. The

output key from a gate can be the input key for a next-level gate. The same oblivious

evaluation can propagate from circuit-input wires all the way to circuit-output wires.

• Exactly One Key Learned per Wire: It is of paramount importance to maintain the

invariant that EVAL learns exactly one random key for each wire during the course of the

evaluation. If this invariant is violated, GEN’s privacy could be compromised. For example,

if EVAL learns both random keys assigned to its input wires, it gets to evaluate f (x , y ′) for

an arbitrary y ′. This obviously reveals more information about x than what EVAL could

learn when using a trusted third party.
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The single gate oblivious evaluation described above shows that if the invariant holds

for all gate-input wires, it holds for the gate-output wire, like the inductive step of

an induction argument. Therefore, it remains to ensure that the invariant holds for

circuit-input wires, just like the base case of the induction.

Without loss of generality, let us assume x , y ∈ {0, 1}. For the wire corresponding to GEN’s

input, GEN could simply reveal the key corresponding to x since the key looks random to

EVAL. For the wire corresponding to EVAL’s input, both parties could run a sub-protocol

of a secure 1-out-of-2 oblivious transfer, denoted by
�2

1

�

-OT. In this sub-protocol, GEN

provides as input both random keys (K0, K1) assigned to EVAL’s input wire, and EVAL

provides as input its private input y. Upon completion, two conditions need to hold:

(1) GEN learns nothing about y and (2) EVAL learns Ky but nothing about K1−y . We can

see that the former security property ensures EVAL’s input privacy, and the latter ensures

that the invariant holds for wires corresponding to EVAL’s input.

In summary, the Yao protocol works as follows: GEN and EVAL first agree upon an objective

circuit. GEN then garbles the circuit and sends it to EVAL along with the random keys corre-

sponding to GEN’s input. Next, GEN and EVAL jointly run a
�2

1

�

-OT so that EVAL receives the

random keys corresponding to its input. Finally, EVAL obliviously evaluates the garbled circuit

and learns the output. In Figure 3.1, we visualize the Yao protocol.

3.1.2 A Fast Construction

We next elaborate on some security issues of the Yao protocol and give a complete description

of a fast construction at the end.

It is necessary to randomly permute the entries in the garbled truth table. If the entries are

in a fixed order, EVAL would learn the semantics of the output key just by the location of the

correctly decrypted entry. Even more importantly, there needs to be a mechanism for EVAL to
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f
input

internal

output

(a) Agree upon the circuit computing f

10 10

10

(b) Garble the circuit (e.g. a NAND gate)

(c) The garbled circuit and GEN’s input keys

1

(d) Retrieve EVAL’s input keys via
�2

1

�

-OTs

1

(e) Evaluate an input gate obliviously (f) Evaluate an internal gate obliviously

0

0

(g) Evaluate an output gate obliviously

0

1
(h) Information learned by EVAL

Figure 3.1: Visualization of the Yao protocol: (a) Both parties agree upon an objective boolean
circuit that computes f . (b) GEN assigns a pair of random keys to each wire and garbles each
boolean gate according to its truth table. This example shows a garbled NAND gate. (c) EVAL is
oblivious to the received garbled circuit and GEN’s input keys. (d) EVAL receives its input keys
via
�2

1

�

-OT. (e)-(g) EVAL obliviously evaluates each gate while maintaining the invariant that
exactly one out of the two random keys for each wire is retrieved. (h) What EVAL learns during
the course of the evaluation includes the output and exactly one random key for each wire,
which is close to what it would learn when delegating the computation to a trusted third party.
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distinguish a wrong entry from a right one. Indeed, a wrong entry results in a mismatched

decryption, in which EVAL decrypts encK(m) with some key K ′ 6= K, whereas a correct entry

gives EVAL an output key. A mismatched decryption can look just as random as an output key.

There are simple ways to get around this problem. For example, the output key is always

appended with 0k for some k ∈ N before it is doubly encrypted. Later, EVAL could identify a

mismatched decryption if the decrypted message does not end with 0k. However, this solution

could require EVAL to examine up to all entries in a garbled truth table, which is wasteful for

real-world applications.

Here, we adopt a trick that requires examining only one entry in a garbled truth table. This

trick, also known as the point and permute technique in the literature [MNPS04], satisfies the

above properties that it randomly permutes the entries but in a way that the right entry can be

easily identified by EVAL. The idea is to assign each wire an extra random bit. This bit, on one

hand, determines a random order for the garbled entries, and on the other hand, helps EVAL

locate the right entry deterministically.

In particular, this random bit indicates whether the corresponding pair of random keys

need to be “swapped” while used as encryption keys. Let us consider the NAND gate example

again. Suppose now each wire wi is assigned (Ki,0, Ki,1,πi), where πi ∈ {0,1}. The base

case for the garbled version of this gate is [〈0, 0〉, 〈0,1〉, 〈1,0〉, 〈1, 1〉] , where 〈d1, d2〉 denotes

encK1,d1
(encK2,d2

(K3,d1⊕d2
)). When π1 = 1 and π2 = 0, GEN constructs the garbled truth table the

same as the base case except that K1,0 is replaced with K1,1, and vice versa, but K2,0 and K2,1

stay the same because π1 indicates to “swap” K1,0 and K1,1 but π2 does not. The garbled truth

table in this case therefore becomes [〈1,0〉, 〈1, 1〉, 〈0, 0〉, 〈0,1〉] . In Table 3.2, we list the four

possible swapping patterns.

Observe that in Table 3.2, regardless of what (π1,π2) is,

1. the ordered entries are always [〈π1,π2〉, 〈π1, 1−π2〉, 〈1−π1,π2〉, 〈1−π1, 1−π2〉];
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(π1,π2) Ordered Entries

(0, 0) [〈0, 0〉, 〈0,1〉, 〈1, 0〉, 〈1,1〉]

(0,1) [〈0, 1〉, 〈0,0〉, 〈1, 1〉, 〈1,0〉]

(1,0) [〈1, 0〉, 〈1,1〉, 〈0, 0〉, 〈0,1〉]

(1,1) [〈1, 1〉, 〈1,0〉, 〈0, 1〉, 〈0,0〉]

Table 3.2: All possible swapping patterns for a four-entry garbled truth table, where 〈d1, d2〉
denotes encK1,d1

(encK2,d2
(K3,d1⊕d2

)).

2. 〈d1, d2〉 is always the (2 · (d1⊕π1)+(d2⊕π2))-th entry in the table (assuming entry index

starts with 0).

The first observation shows that if permutation bit πi is independently and randomly picked

for each wire, the order of the garbled entries becomes independent even for gates of the

same type. So this trick solves the entry permuting problem. Note that this observation also

suggests an algorithm for GEN to construct garbled gates. The second observation shows that

if EVAL learns Ki,b along with locator b⊕πi, it could locate the right entry regardless of what

(π1,π2) is. In other words, if EVAL learns (K1,δ1) and (K2,δ2), where Ki ∈ {Ki,0, Ki,1} is the

random key and δi ∈ {0,1} is the corresponding locator for wire wi, it could simply use K1

and K2 to decrypt the (2 · δ1 + δ2)-th entry in the table. Hence, this trick ensures that EVAL

deterministically locates the right entry.

With this trick, the invariant now becomes that EVAL learns exactly one key-locator pair (or

called the label) for each wire during the course of the evaluation. To maintain this invariant, it

remains for GEN to (1) always append K3,b with locator b⊕π3 before it is doubly encrypted

when computing an entry in a garbled truth table, and (2) provide keys for circuit-input wires

with the corresponding locators, too.

The last missing link for EVAL to complete the oblivious evaluation is to let it retrieve output

f (x , y). Recall that the invariant ensures that EVAL retrieves a key-locator pair for each wire,

and each retrieved key-locator pair is of format (Ki,b,δi) = (Ki,b, b⊕πi), where Ki,b indicates
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that wire wi is of value b and πi is the random bit picked independently for wi. Locator δi is

in fact an encryption of wire value b with one-time pad πi. The fact that EVAL does not get a

second encryption with the same πi suggests that on one hand, this key-locator trick is not

leaking extra information about b to EVAL; on the other hand, the random bit (the one-time

pad of the retrieved value) assigned to each circuit-output wire can be disclosed for EVAL to

retrieve the circuit output.

The complete description of the Yao protocol is presented in Protocol 3.1. Note that we

assume both parties agree in advance upon symmetric encryption scheme (enc,dec) that enjoys

semantic security.
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Protocol 3.1. The Yao Protocol

Common Input: security parameter 1k and boolean circuit C that computes f (x , y).

Private Input: GEN has x = x1 x2 · · · xn1
and EVAL has y = y1 y2 · · · yn2

, where x i and yi

denote the i-th bit of x and y , respectively.

Output: Both GEN and EVAL receive f (x , y) at the end.

1. (Garble Circuit) GEN garbles C as follows:

(a) For each wire wi, GEN randomly picks (Ki,0, Ki,1,πi)
R← {0, 1}k ×{0, 1}k ×{0, 1}.

Let Wi,b denote the key-locator pair (Ki,b, b⊕πi). Wi,b is called the label corre-

sponding to wire wi of value b from now on.

(b) For each gate g : {0, 1}×{0, 1} 7→ {0, 1} with input wires wa and wb and output

wire wc, GEN garbles g by computing

G(g)← (〈πa,πb〉, 〈πa, 1−πb〉, 〈1−πa,πb〉, 〈1−πa, 1−πb〉),

where 〈d1, d2〉= encKa,d1
(encKb,d2

(Wc,g(d1,d2))).

Let {wi}i∈O be the circuit-output wires. GEN sends garbled circuit G(C) to EVAL, where

G(C) = ({G(g)}g∈C , {πi}i∈O).

2. (Retrieve Input Labels) Let {wi}i∈[n1] be the wires corresponding to GEN’s input,

and let {wn1+i}i∈[n2] be the wires corresponding to EVAL’s input.

(a) (GEN’s Input Labels) GEN sends its input labels {Wi,x i
}i∈[n1] to EVAL.
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(b) (EVAL’s Input Labels) For each i ∈ [n2], GEN and EVAL jointly execute

�2
1

�

-OT : ((Wn1+i,0, Wn1+i,1), yi) 7→ (⊥, Wn1+i,yi
).

Remark 3.1. The above
�2

1

�

-OTs could all be run in parallel if they provide security for

parallel execution.

3. (Evaluate Circuit) EVAL has now obtained garbled circuit G(C) and (n1+ n2) labels

corresponding to the (n1+ n2) circuit-input wires. EVAL then evaluates the circuit as

follows:

(a) For each gate g with retrieved input labels Wa = (Ka,δa) and Wb = (Kb,δb),

EVAL picks the (2 ·δa+δb)-th entry T in garbled gate G(g) and computes output

label Wc ← decKb
(decKa

(T )).

(b) For each circuit-output wire wi with corresponding label Wi = (Ki,δi), EVAL

computes its value bi ← δi ⊕πi. Recall that πi for circuit-output wire wi comes

with G(C).

4. EVAL interprets {bi}i∈O as f (x , y) and outputs f (x , y), whereas GEN outputs ⊥.

Proposition 3.1 (Security of the Yao Protocol [LP09]). Assume that the
�2

1

�

-OT protocol is secure

in the presence of honest-but-curious adversaries and there exists a symmetric encryption scheme

that enjoys the semantic security. Protocol 3.1 securely computes function f : {0, 1}n1 × {0, 1}n2 7→

{⊥}× {0, 1}∗ in the presence of honest-but-curious adversaries.

3.2 Attacks in the Presence of Malicious Adversaries

Next, we proceed to discuss potential vulnerabilities of the Yao protocol in the malicious model,

in which either participant is allowed to cheat in an arbitrary way. We stress that we do not
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consider the case in which both parties deviate the protocol arbitrary since we only care about

honest people’s privacy not getting compromised.

3.2.1 Attacks Regarding OTs

When dealing with malicious adversaries, it is natural that a protocol that securely computes
�2

1

�

-OT in the presence of malicious adversaries is needed. Nonetheless, it is known that such a

protocol is insufficient. Suppose for now that both parties have access to an oracle that does
�2

1

�

-OTs perfectly, that is, when invoked, this oracle gets (K0, K1) from GEN and gets σ ∈ {0, 1}

from EVAL, and then this oracle returns Kσ to EVAL as its output. We show that even with access

to such an oracle, a malicious GEN is still capable of the following two attacks:

• EVAL’s Input Key Inconsistency Attack: This attack, also known as the Selective Failure

Attack in the literature [KS06], is that a malicious GEN uses inconsistent random keys

for EVAL’s input wire and the corresponding
�2

1

�

-OT so that EVAL’s input can be inferred

according to EVAL’s reaction. Indeed, a malicious GEN could assign (K0, K1) to EVAL’s input

wire during circuit garbling while using (K0, K∗1) instead in the corresponding
�2

1

�

-OT

such that K1 6= K∗1 . As a consequence, if EVAL’s input is 0, it learns K0 and is able to

complete the evaluation without complaints; otherwise, it learns K∗1 and is doomed to an

evaluation failure, and as a result, GEN learns that EVAL’s input must have been 1.

• EVAL’s Input Polluting Attack: Instead of entering (K0, K1) as input to the oracle, a

malicious GEN could enter a swapped random key pair (K1, K0) or repeated key pairs

(K0, K0) or (K1, K1). Recall that Kb has the semantics that EVAL’s input bit is b. Such a

deviation implies that EVAL’s input is modified without its awareness, and as a result,

the final output becomes f (x , y ′), where y ′ is a polluted version of EVAL’s input. This

attack clearly allows GEN to achieve something that it could not when delegating the
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computation of f to a trusted third party. In particular, the correctness property is

compromised.

We stress that refusing to share the computation outcome (either unreasonable output or

evaluation failure) to GEN could indeed minimize the potential damages caused by the above

two attacks. Nevertheless, this quick remedy fails to provide any guarantee of correctness over

EVAL’s output. What is even worse is that there are cases in which GEN is supposed to learn the

output too. In those cases, not only is refusing to share not helping, an honest EVAL could be

accused of cheating for not cooperating while being cheated.

3.2.2 Attacks Regarding Circuit Garbling

The biggest vulnerability of the Yao protocol against malicious adversaries is that a malicious

GEN could cheat in the garbling process. In particular, a malicious GEN could construct a faulty

circuit that reveals EVAL’s input purposely. Since a garbled circuit is “garbled,” EVAL cannot

determine whether or not it is a correct garbled version of the objective circuit and should not

proceed without a guarantee of its correctness.

The cut-and-choose technique is one of the most efficient methods that prevent a malicious

GEN from cheating with faulty circuits. Briefly, this technique instructs GEN to prepare multiple

copies of the garbled circuit, each with independent randomness. EVAL is then instructed to

choose a random fraction of the garbled circuits whose randomness is then revealed. If any

of the chosen garbled circuits (called the check circuits) is not consistent with the revealed

randomness, EVAL detects GEN cheating and aborts; otherwise, EVAL starts to evaluate the

remaining garbled circuits (called the evaluation circuits). Upon completion, EVAL takes the

majority of the outputs as its final output.
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At a high level, the cut-and-choose technique ensures that the final output actually comes

from the pre-agreed objective function. Indeed, if a malicious GEN wants to manipulate the

final output, it needs to create a faulty majority among the evaluation circuits, but the chance

that none of the faulty circuits is chosen and checked will be negligible. Therefore, in order

to pass the check, a malicious GEN is allowed to sneak in only a few faulty circuits, and these

(supposedly minority) circuits will have no influence on the final output at the end. In other

words, if a malicious GEN attempts to cheat with faulty circuits, it either constructs many of

them and gets caught with high probability, or constructs only a few and has no influence on

the final output at all.

Unfortunately, although the cut-and-choose technique effectively deters the threat of faulty

circuits, it brings a few new security issues that need to be addressed:

• GEN’s Input Inconsistency Attack: It is conceivable that a malicious GEN could provide

inconsistent inputs to different evaluation circuits. Lindell and Pinkas showed that for

some objective function, it is not difficult for a malicious GEN to extract extra information

about EVAL’s input [LP07]. For instance, suppose both parties agree upon objective

function f (x1 x2 x3, y1 y2 y3) 7→ (
∑3

i=1 x i · yi,⊥), where x i and yi is GEN’s and EVAL’s i-th

input bit, respectively. Instead of providing x1 x2 x3 consistently to all evaluation circuits,

a malicious GEN could provide 100, 010, and 001 to different evaluation circuits. In the

end, GEN can learn the majority bit of EVAL’s input, which is some information about y

that GEN is not supposed to learn when using a trusted third party.

• GEN’s Output Attack: In most real-world applications, GEN also needs to receive an

output from the computation, and this could be quite involved in the presence of malicious

adversaries. Recall that GEN’s output security needs both the privacy and correctness

properties to be satisfied. The privacy property requires that EVAL does not learn GEN’s

output, and the correctness property here requires that EVAL cannot trick GEN into accepting

an arbitrary output.
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The privacy property is the easy part. Both parties could agree in advance to convert

objective function f (x , y) 7→ ( f1, f2) into new objective function g((x , r), y) 7→ (⊥, ( f1⊕

r, f2)) (and the objective circuit changes accordingly). After the completion of evaluating

the new objective circuit, EVAL sends f1⊕ r back for GEN to recover f1 with one-time pad

r that it enters as input in the first place. The one-time pad encryption’s perfect privacy

guarantees that EVAL does not learn f1 from f1⊕ r.

However, the non-trivial part is to guarantee the correctness property, which is equivalent

to asking EVAL for a proof of GEN’s output authenticity. Note that when in the presence of

honest-but-curious adversaries, random key Kb corresponding to a circuit-output wire of

bit value b suffices to be the proof. This is because if the circuit-output wire is of value b,

the invariant ensures that EVAL does not learn K1−b, and thus EVAL cannot provide a proof

of output value 1− b, except with negligible probability. Nevertheless, this idea does not

automatically apply to the malicious model.

3.3 The Cut-and-Choose Methodology

In this section, we will go through the cryptographic primitives used in our main protocol and

explain at a high level their purposes. The formal definitions are also presented.

We stress that from now on, we denote by σ the statistical security parameter, namely,

the repetition factor in the cut-and-choose technique. More importantly, we assume that

statistical security parameter σ is some polynomial in security parameter k. This is a reasonable

assumption since polynomial repetition is what polynomial-time parties are capable of handling.
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3.3.1 Cut-and-Choose Circuit Garbling

Unlike dealing with honest-but-curious adversaries, trust is no longer free when the other party

could be cheating in an arbitrary way. In the presence of malicious adversaries, there always

has to be some proof on an action so that a potentially malicious party could not have done

anything different. The cut-and-choose technique is a great method of providing such proofs as

we briefly described earlier. In particular, there is a very important property needed for this

technique to work. We will explain the reason of this property and show that commitments are

a good supplementary tool. Next, we will show how this technique and commitments work in

our main protocol. At the end, we will give a formal definition of commitment schemes.

Let us first recap the cut-and-choose technique. The cut-and-choose technique is a generic

proof methodology and is particularly useful in the following scenario:

Suppose there is a probabilistic algorithm F (e.g., circuit garbling). What can we

do to force Alice to run an honest execution of F with randomness ρ of her choice

to produce output object O (e.g., a garbled circuit) while we are not allowed to

learn randomness ρ?

As we mentioned earlier, the cut-and-choose technique suggests the following:

1. Ask Alice to run the algorithm multiple times using independent randomness.

2. Pick a random fraction of the objects and ask for their randomness.

3. Check the consistency of the input randomness and output object. If any of the revealed

randomness does not match the corresponding object, Alice must have cheated; otherwise,

with high probability, the majority of the unchecked objects must have been produced

honestly.

4. Use this honest majority to simulate the one originally requested.
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However, there is an exploit of which a malicious party could take advantage. In particular,

F may not be binding. There could be easy ways for Alice to compute multiple pre-images of

object O. Consider now that F is the garbling function of the Yao protocol, whose input has

two parts—objective circuit C and randomness ρ. It is possible that a malicious GEN could

efficiently come up with malicious circuit C ′ and efficient conversion function c such that

for every randomness ρ, it holds that F(C ,ρ) = F(C ′, c(ρ)). Therefore, after GEN generates

multiple garbled circuits F(C ,ρ(1)), F(C ,ρ(2)), . . ., GEN could still cheat by providing innocent

input (C ,ρ(i)) for the checked circuits and using malicious input (C ′, c(ρ( j))) to work with the

unchecked circuits. This attack clearly refutes the claim that the cut-and-choose technique

ensures an honest majority among the unchecked objects.

Fortunately, this vulnerability can be fixed by using commitments. A commitment is best

explained as a locked box in the physical world. A commitment scheme involves two parties—

the committer and the receiver. Let us first consider the following scenario:

Commit Stage: When the committer commits to a value, it writes the value on a piece of

paper, locks the paper in a box, and sends the box to the receiver.

Reveal Stage: Upon request, the committer sends over a key, and this key allows the receiver

to unlock the box and learn the value inside.

In this scenario, the locked box captures two important properties of a commitment—the

hiding and binding properties. The hiding property requires that the receiver cannot learn the

committed value prior to the reveal stage (since the value is inside the box), and the binding

property requires that the committer cannot magically change the committed value while the

commitment is revealed (since the box was already delivered in the commit stage).

With the help of commitment, let us now give an improved cut-and-choose algorithm that

forces Alice to provide an honest execution of probabilistic algorithm F :
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1. Ask Alice to run F σ times using independent randomness ρ(1),ρ(2), . . . ,ρ(σ).

2. Ask Alice to commit to all randomness and provide all computation results, that is, ask

Alice to provide commitment-object pairs (c(1), O(1)), (c(2), O(2)), . . . , (c(σ), O(σ)).

3. Pick a random fraction E ⊂ [σ], and for all j ∈ [σ]\E, do the following checks:

• Ask for the decommitments for c( j). If c( j) fails to decommit, Alice must have cheated.

Let ρ′( j) denote the decommitted value from c( j).

• Check whether O( j) is indeed from an honest execution of F . If any of the objects

does not match the revealed randomness ρ′( j), that is, O( j) 6= F(ρ′( j)), Alice must

have cheated.

If none of the checks fails, with high probability, set E of unchecked objects has an honest

majority, which can be used to simulate the one originally requested.

At a high level, this improved version endows F with the binding property without leaking

extra information about ρ. It basically converts the probabilistic algorithm from F to F ′ such

that F ′(ρ) = (com(ρ), F(ρ)) for some commitment scheme com. The binding property of

commitment scheme com ensures that F ′ is also binding. More specifically, an adversary

capable of providing distinct randomness ρ,ρ′ such that F ′(ρ) = (c, O) = F ′(ρ′) has in fact

broken the binding property of the commitment scheme since com(ρ) = c = com(ρ′) but

ρ 6= ρ′. Furthermore, the hiding property ensures that c does not reveal information about ρ,

or equivalently, F ′(ρ) = (c, F(ρ)) does not reveal more information about ρ than F(ρ) does.

Now let us have a closer look at how the improved cut-and-choose technique works in our

main protocol:

• Ensuring Correct Garbling: Naturally, the most important task of our protocol is ask

GEN to honestly garble the objective circuit. In other words, the probabilistic algorithm
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in this case is the Yao protocol’s garbling function. Note that the garbling function is not

binding. Thus, we will have to do something to ensure this, which will be covered later.

• Ensuring Correct Input Keys: In order to successfully evaluate a garbled circuit, the

correctness of input keys is just as important as the correctness of the garbled circuit. The

input key correctness has two aspects:

1. for each of the wires corresponding to GEN’s input, the input key EVAL retrieves has

to be one out of the two random keys that GEN assigned, and its semantics has to be

oblivious to EVAL;

2. for each of the wires corresponding to EVAL’s input, the input key EVAL retrieves has

to be one out of the two random keys that GEN assigned, and its semantics has to

match EVAL’s input.

To ensure the “one out of the two” property, the idea is to have GEN commit to both

random keys assigned to a circuit-input wire. After GEN passes the cut-and-choose check,

GEN will reveal one of the two commitments corresponding to a circuit-input wire. If the

commitment is successfully decommitted, EVAL then knows that the retrieved key must

be valid and could proceed to the circuit evaluation. In other words, the probabilistic

algorithm that GEN needs to do in this case is to commit to all pairs of random keys assigned

to circuit-input wires. Note that since this probabilistic algorithm (committing to pairs of

random keys) is itself binding, the commitments to randomness are unnecessary.

Next, we need to handle the semantics issue. Previously, we let GEN commit to both

random keys assigned to a circuit-input wire. We did not specify the order of the two

commitments, but the truth is: this commitment order matters! Recall that the cut-and-

choose technique requires GEN to commit to multiple pairs of random keys assigned to

the same circuit-input wire, and some of the commitment pairs will be checked.
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GEN’s Input Key Obliviousness: Let us consider one of the wires corresponding to GEN’s

input. Apparently, if all the commitment pairs follow the same commitment order,

EVAL would learn this order from the checked pairs, and then compromise GEN’s

input privacy when GEN decommits to its input keys for the unchecked pairs. To fix

such a vulnerability, independent randomization for all the pairs of commitments

is necessary. A simple method is to randomly swap the two commitments in each

pair, and thus randomize the commitment order. However, this may require EVAL to

try both commitments until the right one is found, which is wasteful for real-world

applications. Fortunately, there are random bits that we can reuse—the permutation

bits. Recall that in Protocol 3.1, GEN assigns two key-locator pairs (Ki,0, 0⊕πi) and

(Ki,1, 1⊕πi) to each wire wi, where πi is a random permutation bit assigned to wi.

Since EVAL is going to learn one of the two key-locator pairs anyway, denoted by

(K ,δ), we could reuse δ to help EVAL locate the right commitment. In particular, GEN

commits to the pair of key-locator pairs assigned to its input wire wi in the format

of com((Ki,0⊕πi
, 0)),com((Ki,1⊕πi

, 1)), that is, the commitments are sorted according

to the locators. Since permutation bit πi varies from circuit to circuit, EVAL will not

be able to compromise GEN’s input privacy like before, and only one out of each pair

of commitments needs to be tried and revealed.

EVAL’s Input Key Correctness: For each of the wires corresponding to EVAL’s input, EVAL

needs to be sure that the retrieved input keys indeed match its input. Similarly,

we could arrange the commitment order to achieve this. In particular, we let GEN

commit to the pair of key-locator pairs assigned to EVAL’s input wire wi in the

format of com((Ki,0, 0⊕πi)),com((Ki,1, 1⊕πi)), that is, the commitments are sorted

according to the semantics of the random keys. Under this design, EVAL can easily

verify the semantics of its input keys retrieved from GEN (after this construction’s

correctness is proved via the cut-and-choose technique).

In summary, to ensure the input key correctness, the probabilistic algorithm for GEN to
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run is to commit to both random keys assigned to a circuit-input wire. In particular, GEN

provides com((Ka,0⊕πa
, 0)),com((Ka,1⊕πa

, 1)) for wire wa that corresponds to GEN’s input

and com((Kb,0, 0⊕πb)),com((Kb,1, 1⊕πb)) for wire wb that corresponds to EVAL’s input.

• More on Ensuring Correct Garbling: We mentioned that the garbling function itself is

not binding. However, we observe that when given a garbled truth table and the labels

(key-locator pairs) assigned to the input wires, the labels assigned to the output wire can

be uniquely determined. In other words, when given a garbled truth table, as long as

both labels assigned to the gate-input wires are binding, those assigned to the gate-output

wires are binding too. More generally, when given a garbled circuit, as long as both labels

assigned to all circuit-input wires are binding, those assigned to the intermediate (or

circuit-output) wires are binding too. The garble circuit is automatically binding as long

as GEN commits to both labels assigned to all circuit-input wires, which it does as we

previously discussed.

Finally, we provide the formal definition of a commitment scheme:

Definition 3.1 (Commitment Schemes). A deterministic polynomial-time algorithm com is called

a commitment scheme if the following two properties hold:

1. (Hiding) For all non-uniform probabilistic polynomial-time distinguisher D, there exists a

negligible function µ(·) such that for all k ∈ N and all v0, v1 ∈ {0,1}k, D distinguishes the

following distributions with probability at most µ(k)

• {r R← {0,1}poly(k) : com(v0; r)}k

• {r R← {0,1}poly(k) : com(v1; r)}k

2. (Binding) For all non-uniform probabilistic polynomial-time machine M, there exists a

negligible function µ(·) such that for all k ∈ N, all v0 ∈ {0,1}k, and all r0 ∈ {0,1}poly(k), it
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holds that

Pr
h

(v1, r1)
R← M(com(v0; r0)) : v0 6= v1 ∧ com(v0; r0) = com(v1; r1)

i

< µ(k).

A commitment scheme is perfectly-hiding if the hiding property holds for all (possibly un-

bounded) algorithms.

A commitment scheme is perfectly-binding if instead of the above binding property, for all k ∈ N,

all distinct v0, v1 ∈ {0, 1}k and all r0, r1 ∈ {0,1}poly(k), it holds that com(v0; r0) 6= com(v1; r1).

3.3.2 Cut-and-Choose Oblivious Transfer

We have discussed that even an ideal OT will not provide enough security for secure 2PC in

the presence of malicious adversaries due to EVAL’s Input Key Inconsistency Attack and Input

Polluting Attack. Recall that the Input Key Inconsistency Attack occurs when GEN provides

invalid key pair (K∗0 , K1) or (K0, K∗1) to the OT, and the Input Polluting Attack occurs when GEN

provides valid but flipped key pair (K1, K0) or repeated keys (K0, K0) or (K1, K1) to the OT. The

former can result in an evaluation failure or, even worse, EVAL’s input leak, and the latter can

result in a valid secure 2PC over an incorrect EVAL’s input. As a result, the consistency here is

twofold: (1) the consistency of the keys used in the OT and those used in the circuit garbling

and (2) the semantics consistency of the keys that GEN provides and those that EVAL requests.

Here, we capture the security properties needed, in addition to those guaranteed by OTs,

to defend these two attacks from a malicious GEN. Loosely speaking, after the OT, GEN needs

to provide a proof for EVAL to check. This proof needs to satisfy the following two security

properties.

1. No matter how EVAL reacts to the proof, GEN cannot deduce any extra information about

EVAL’s input. To put it another way, EVAL’s response to the proof, either acceptance or
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rejection, needs to be independent of its input. This is also equivalent to saying that the

probability that EVAL rejects the proof is independent of its input. This property is meant

to prevent the Input Key Inconsistency Attack.

2. If EVAL accepts the proof, most of the random keys received in the OT are valid and correct.

A random key is valid if it is indeed one of the two assigned to EVAL’s corresponding

input wire by GEN in the circuit garbling, and a valid key is correct if its semantics indeed

coincides with EVAL’s actual input. By “most” we mean that this property holds for the

majority of the evaluation circuits. This property will defeat the Input Polluting Attack.

We stress that in addition to these two properties, the simulation security of the OT in the

presence of a malicious receiver (or the sender security) is also indispensable. Loosely speaking,

OT’s sender security requires that the view of any malicious receiver in the real model can be

generated by a simulator in the ideal model.

A technical difficulty arises when we attempt to modularize this check. Since the validity

and correctness of a random key is defined externally via the circuit garbling, it is not well

defined within the scope of this check. Fortunately, recall that GEN is asked to commit to both

random keys assigned to EVAL’s input wire in the first place. These commitments can serve

as the common ground for both the circuit garbling and this module. More specifically, let

commitments {(Ω( j)i,0,Ω( j)i,1)} j∈[σ],i∈[n] be a common input. Key K ( j)i is valid if it is the decommitted

value from either commitment Ω( j)i,0 or Ω( j)i,1, and valid key K ( j)i is correct if it is the decommitted

value from commitment Ω( j)i,yi
, where yi is the i-th bit of EVAL’s input.

Next, we provide the formal definition of the needed building block called the Cut-and-

Choose OT. We will suggest a couple of instantiations in a later chapter.

Definition 3.2. A CCOT (Cut-and-Choose OT) is an interactive protocol between two probabilistic

polynomial-time algorithms—sender S and receiver R. In this protocol, the common input includes

security parameter 1k, statistical security parameter 1σ, and commitments {Ω( j)i,0,Ω( j)i,1} j∈[σ],i∈[n].
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Moreover, the functionality of this protocol is as follows:

CCOT : ({W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n], (E, y)) 7→ (⊥, ({W ( j)
i } j∈[σ],i∈[n],out)),

where W ( j)
i,b , W ( j)

i ∈ {0,1}k+1, E ⊂ [σ], y ∈ {0,1}n for some n ∈ N, and out ∈ {0,1}. Here, E

denotes the set of unchecked instances.

We say that the receiver accepts if out = 1, or rejects otherwise. A CCOT is secure if for any

E ⊂ [σ] such that |E|= r ·σ for some 0< r < 1, it satisfies the following conditions:

1. (Completeness) If both parties are honest, the receiver accepts with probability 1.

2. (OT Sender Security) When ignoring private output out, this protocol is an OT secure

in the presence of a malicious receiver. More specifically, for all non-uniform probabilistic

polynomial-time algorithm R∗ (malicious receiver), there exists simulator S2 such that

¦

IdealOT,(S1,S2)

©

k∈N

c
≈
¦

RealCCOT,(S,R∗)

©

k∈N
,

where IdealOT,(S1,S) denotes the joint output of S1 and S2 from interacting with the external

trusted party that computes function

OT : ({W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n], y) 7→ (⊥, {W ( j)
i,yi
} j∈[σ],i∈[n])

in the ideal model defined in Definition 2.5, and RealCCOT,(S,R∗) denotes the joint output (not

including out) of S and R∗ from running this CCOT protocol in the real model.

3. (Indistinguishability) Let out(y) denote the receiver’s output out from running this protocol

honestly while using input y. For all non-uniform probabilistic polynomial-time algorithm

S∗ (malicious sender), there exists negligible function µ(·) such that for all k ∈ N, and any

y0, y1 ∈ {0,1}n, S∗ distinguishes the following distributions with probability at most µ(k):
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•
�

out(y0)
	

k

•
�

out(y1)
	

k

4. (Soundness) We say that the j-th instance is good if the following conditions hold:

• the sender’s private input (W ( j)
i,0 , W ( j)

i,1 ) is in the proper format, that is, for all i ∈ [n],

W ( j)
i,0 = (K

( j)
i,0 ,π( j)i ) and W ( j)

i,1 = (K
( j)
i,1 , 1− π( j)i ) for some (K ( j)i,0 , K ( j)i,1 ,π( j)i ) ∈ {0,1}k ×

{0,1}k × {0, 1}.

• the sender’s private input (W ( j)
i,0 , W ( j)

i,1 ) matches common input (Ω( j)i,0,Ω( j)i,1), that is, for

all i ∈ [n], b ∈ {0,1}, commitment Ω( j)i,b decommits to label W ( j)
i,b ;

• the receiver’s private output W ( j)
i matches the proper common input (Ω( j)i,0,Ω( j)i,1), that is,

for all i ∈ [n], commitment Ω( j)i,yi
decommits to label W ( j)

i .

For all non-uniform probabilistic polynomial-time algorithm S∗ (malicious sender), there

exists negligible function µ(·) such that for all k ∈ N, if the honest receiver accepts, the

following conditions hold with probability at least 1−µ(k):

• (Soundness of the checked instances) For all j ∈ [σ]\E, the j-th instance is good.

• (Soundness of the unchecked instances) There exists F ⊂ E such that

(a) |F |> |E|/2; and

(b) for all j ∈ F, the j-th instance is good.

Remark 3.2. We stress that the sender security property and the soundness property dos not

conflict with each other. It is totally possible that both properties hold at the same time. Recall

that the former guarantees that for all j ∈ [σ], the receiver’s private output W ( j)
i is indeed chosen

from the sender’s input (W ( j)
i,0 , W ( j)

i,1 ) according to choice bit yi, that is, W ( j)
i =W ( j)

i,yi
, whereas the

latter ensures that for all j ∈ [σ] but a small fraction in E, the following two properties hold:

(1) W ( j)
i =W ( j)

i,yi
and (2) Ω( j)i,b = com(W ( j)

i,b ) for b ∈ {0, 1}. Observe that the sender security property

says nothing about the relation between commitments Ω( j)i,b and the sender’s private input W ( j)
i,b . In
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other words, while the sender security property requires that Property (1) holds for all j ∈ [σ],

the soundness property ensures that both Property (1) and Property (2) hold for all j ∈ [σ] but a

small fraction in E; in particular, that small fraction can only violate Property (2).

Remark 3.3. We acknowledge that the name Cut-and-Choose OT is not new. Lindell and Pinkas

have proposed a similar primitive [LP11]. However, their primitive is a stronger notion than ours.

In particular, their primitive requires that the receiver learns K ( j)i,yi
for all j ∈ E, whereas ours

requires that the receiver learns K ( j)i,yi
only for the majority of j ∈ E. We stress that this relaxation

allows instantiations that do not make hardness assumptions in addition to OTs, whereas Lindell

and Pinkas’ instantiation relies on the Decisional Diffie-Hellman assumption [LP11].

Remark 3.4. Officially, this module should be referred to as weak CCOT. However, due to naming

consistency, it will be referred to as CCOT in this thesis.

3.3.3 Cut-and-Choose Consistent Transfer

Recall that carefully chosen inconsistent input keys from a malicious GEN could reveal more

information about EVAL’s input than GEN is allowed to learn, which compromises EVAL’s input

privacy. We therefore need to ensure that the semantics of GEN’s input keys is consistent among

different evaluation circuits.

At a high level, GEN and EVAL run an interactive protocol such that in the end, EVAL

receives GEN’s input keys along with a proof for EVAL to check. This proof needs to satisfy the

following two security properties. First and the most important, EVAL should not learn any extra

information about GEN’s input from interacting with GEN. In other words, EVAL’s transcript from

running the protocol should be independent of GEN’s input. Second, if the proof is accepted,

GEN’s inputs keys to most of the evaluations circuits must have the same semantics. Similarly,

by “most” we mean that this property holds for the majority of the evaluation circuits.
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A technical difficulty similar to, but more complicated than, the one in EVAL’s input con-

sistency check arises when dealing with GEN’s input consistency. In order to construct a

well-defined module, we again suggest that the commitments to both random keys assigned

to GEN’s input wire are made public in the beginning. GEN will later help EVAL decommit one

out of each pair of the commitments. However, because of the condition that EVAL must not

learn the semantics of the decommitted keys, which is GEN’s input, the pursuit of the semantics

consistency among different evaluation circuits is not as straightforward. Recall that in addition

to a pair of random keys, a random bit is also assigned to each of the wires corresponding

to GEN’s input. This random bit is used to indicate whether the commitments to the random

keys are swapped in order to prevent EVAL from learning GEN’s input by the location of the

successfully decommitted key. However, those random bits in an evaluation circuit should be

hidden from EVAL. We therefore suggest that the commitments to these random bits become

a common input too so that the semantics of GEN’s input keys are well defined but in an

oblivious manner. More specifically, let commitments {(Θ( j)i,0,Θ( j)i,1,Π( j)i )} j∈[σ],i∈[n] be common

input. Label W ( j)
i = (K

( j)
i ,δ( j)i ) is valid if it is the decommitted value from Θ( j)

i,δ( j)i

, and a pair

of valid labels W (a)
i = (K (a)i ,δ(a)i ) and W (b)

i = (K (b)i ,δ(b)i ) are said to have consistent semantics

if δ(a)i ⊕ π
(a)
i = δ

(b)
i ⊕ π

(b)
i , where π(a)i and π(b)i are the decommitted bit from Π(a)i and Π(b)i ,

respectively.

Next, we provide the formal definition of a primitive called Cut-and-Choose Consistent

Transfer. We will suggest a couple of instantiations in a later chapter.

Definition 3.3. A CCCT (Cut-and-Choose Consistent Transfer) is an interactive protocol between

two probabilistic polynomial-time algorithms—sender S and receiver R. In this protocol, the

common input includes security parameter 1k, statistical security parameter 1σ, and commitments

{Θ( j)i,0,Θ( j)i,1,Π( j)i } j∈[σ],i∈[n]. Moreover, this protocol has the following functionality:

CCCT : (({W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n], x), E) 7→ (⊥, ({W ( j)
i } j∈E,i∈[n],out)),
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where W ( j)
i,b , W ( j)

i ∈ {0,1}k+1, x ∈ {0,1}n for some n ∈ N, E ⊂ [σ], and out ∈ {0,1}. Here, E

denotes the set of the uncheck instances. We say that the receiver accepts if out = 1, or rejects

otherwise. A CCCT is secure if for any E ⊂ [σ] such that |E| = r ·σ for some 0< r < 1, it satisfies

the following conditions:

1. (Completeness) If both parties are honest, the receiver accepts with probability 1.

2. (Indistinguishability) Let tran(x) denote the receiver’s transcript from running this protocol

with the honest sender using input x. For all non-uniform probabilistic polynomial-time

algorithm R∗ (malicious receiver), there exists negligible function µ(·) such that for all k ∈ N

and any x0, x1 ∈ {0,1}n, R∗ distinguishes the following distributions with probability at

most µ(k):

•
�

tran(x0)
	

k

•
�

tran(x1)
	

k

3. (Soundness) We say that the j-th instance is good if the following conditions hold:

• the sender’s private input (W ( j)
i,0 , W ( j)

i,1 ) is in the proper format, that is, for all i ∈ [n],

W ( j)
i,0 = (K

( j)
i,0 ,π( j)i ) and W ( j)

i,1 = (K
( j)
i,1 , 1− π( j)i ) for some (K ( j)i,0 , K ( j)i,1 ,π( j)i ) ∈ {0,1}k ×

{0,1}k × {0, 1}.

• the sender’s private input (W ( j)
i,0 , W ( j)

i,1 ) matches common input (Ω( j)i,0,Ω( j)i,1,Π( j)i ), that is,

for all i ∈ [n], commitment Π( j) decommits to permutation bit π( j)i , and for all i ∈ [n]

and b ∈ {0, 1}, commitment Ω( j)
i,b⊕π( j)i

decommits to label W ( j)
i,b .

For all non-uniform probabilistic polynomial-time algorithm S∗ (malicious sender), there

exists negligible function µ(·) such that for all k ∈ N, if the honest receiver accepts, with

probability at least 1−µ(k) the following conditions hold:

• (Soundness of the checked instances) For all j ∈ [σ]\E, the j-th instance is good.
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• (Soundness of the unchecked instances) There exists F ⊂ E such that

(a) |F |> |E|/2;

(b) for all j ∈ F, the j-th instance is good;

(c) for all j ∈ F and i ∈ [n], commitment Θ( j)
i,δ( j)i

decommits to label W ( j)
i , where

W ( j)
i = (K

( j)
i ,δ( j)i ) for some K ( j)i ∈ {0,1}k and δ( j)i ∈ {0, 1}; and

(d) for all j ∈ F and i ∈ [n], x i = δ
( j)
i ⊕π

( j)
i .

3.3.4 Cut-and-Choose Communication Channels

The cut-and-choose technique has two steps: cut and reveal. GEN first garbles multiple copies

of the circuit, and then a random fraction is chosen. This fraction is called a cut. Next, GEN

reveals the randomness of those not in the cut for EVAL to check their correctness. The principle

of this technique is that GEN should be oblivious of the cut while garbling the circuits and must

not have any control over the choosing of the cut, either. Clearly, if this principle is violated, a

malicious GEN could sneak in as many faulty circuits as it wants.

A popular instantiation of the cut-and-choose technique is based on a secure coin toss

protocol [LP07, PSSW09, sS11, LP11]. After GEN constructs and delivers the garbled circuits,

both parties jointly run a coin toss protocol, and the generated random bits are used to

determine the cut. This approach works as long as the coin toss produces unbiased random bits

even in the presence of malicious adversaries.

However, the coin toss has a couple of disadvantages. First, it adds several communication

rounds to the original Yao protocol, which is less desirable. More importantly, this instantiation

implicitly requires that EVAL stores all of the garbled circuits temporarily while both parties

are running the coin toss. This assumption becomes impractical when the objective circuit is

big, which is not uncommon for real-world applications. For example, a circuit that computes

1,024-bit RSA consists of tens of billions of gates. To run a secure computation of this circuit at
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the security level of 2−80 would require a machine that has memory at the terabyte scale in

order to store all the garbled circuits temporarily. A machine at this scale can be too much to

ask for general users.

Additionally, our framework has a security issue that needs to be handled carefully. Recall

that our framework consists of three independent cut-and-choose modules: CCCG (Cut-and-

Choose Circuit Garbling), CCOT (Cut-and-Choose Oblivious Transfer), and CCCT (Cut-and-

Choose Consistent Transfer). We need to ensure that the cuts are consistent among these

modules. Indeed, if a malicious EVAL has the j-th instance checked in CCCG but evaluated in

CCCT, it will learn GEN’s input. More specifically, recall that for each wire corresponding to

GEN’s input, it is assigned a random permutation bit, which serves as the one-time-pad to GEN’s

input in an evaluation circuit. For a checked instance in CCCG, EVAL will learn this bit; and

for an evaluated instance in CCCT, EVAL will learn GEN’s input one-time-padded with this bit.

Therefore, a malicious EVAL learns GEN’s input as long as it is capable of providing inconsistent

cuts to CCCG and CCCT.

We propose the construction of the Cut-and-Choose Communication Channels in order to

solve the above concerns. At a high level, GEN and EVAL jointly build two one-way (from GEN to

EVAL) communication channels for each circuit: the check channel and the evaluation channel.

These communication channels have the following two properties:

1. EVAL has access to at most one of the two channels per circuit.

2. GEN is oblivious of the channel to which EVAL has access.

We next argue at a high level that these channels tackle the above issues.

• The security properties needed by the cut-and-choose technique can be provided by the

cut-and-choose channels seamlessly. Recall that a garbled circuit can be either checked

or evaluated. For a check circuit, GEN provides the randomness, and for an evaluation
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circuit, GEN provides its input keys. It is important that EVAL does not learn both the

randomness and GEN’s input keys. It is also important that GEN does not know what

EVAL learns about the circuit. Given the cut-and-choose channels, GEN simply sends the

randomness over the check channel, and provides its input labels via the evaluation

channel. These channels ensure that EVAL learns either the randomness or input labels,

but never both. They also ensure that GEN is clueless about what EVAL learns.

• With the help of the cut-and-choose communication channels, GEN and EVAL can jointly

garble and evaluate a circuit, even a huge one, with a moderate use of memory. The

insight is that the cut can now be determined before the circuit garbling starts. At a high

level, if the cut is determined before the circuit garbling, both parties can work together

in a pipeline manner. GEN sends a garbled gate as soon as it is generated. While EVAL

is checking or evaluating a garbled gate, GEN could start garbling the next. As a result,

rather than a whole garbled circuit, only a small amount of the garbled gates need to

reside in memory at any moment. We will elaborate on this optimization technique in a

later chapter when considering secure 2PC in practice.

• These cut-and-choose channels help ensure the cut consistency among CCCG, CCOT,

and CCCT. Instead of allowing EVAL choose cuts for these modules separately, GEN and

EVAL first jointly build the cut-and-choose channels. Later, GEN and EVAL jointly run the

protocols over these channels. Therefore, EVAL does not have to choose a cut separately

for each module, and as a result, has no capability of introducing inconsistent cuts.

Let CCOT(E) and CCCT(E) denote the CCOT and CCCT protocol, respectively, over the

cut-and-choose channels for some E ⊂ [σ] such that E is the set of unchecked instances.

It remains to show how the cut-and-choose communication channels are built. Naturally,
�2

1

�

-OT comes into the picture. For the j-th circuit, both parties jointly run a
�2

1

�

-OT such that

GEN has key pair (L( j)0 , L( j)1 ) as input and EVAL has choice bit e j as input. After the completion of

the OT, whatever messages regarding the j-th circuit that GEN sends over the check channel is
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encrypted with L( j)0 , and whatever sent over the evaluation channel is encrypted with L( j)1 . The
�2

1

�

-OT’s sender security ensures that EVAL learns only L( j)e j
, hence, has access to at most one of

the two channels. Furthermore, the
�2

1

�

-OT’s receiver security ensures that GEN is oblivious of

the channel to which EVAL has access.

3.4 The Main Protocol

Before we give a detailed description of our main framework, we would like to point out a few

assumptions that we made:

• Our framework considers only those objective functions that allow EVAL to receive the

output. However, we are aware of the importance and need of two-output objective

functions to real-world applications. We will present a couple of solutions to secure 2PC

over two-output functions in a later chapter.

• In the Main protocol, we often say that “(someone) uses randomness ρ to compute

(something).” We implicitly assume that this algorithm, which computes the random bits

needed from randomness ρ, is agreed upon in advance by both parties.

• Both parties have agreed in advance upon a symmetric encryption scheme (gen,enc,dec)

with semantic security, a perfectly-hiding commitment scheme com, a protocol for
�2

1

�

-OT

secure in the presence of malicious adversaries, a secure CCOT, and a secure CCCT.

Moreover, we will be using a symmetric encryption scheme whose key space is exactly

{0,1}k, where k is the security parameter. Therefore, generating random key K with

key generation algorithm gen, originally denoted by K
R← gen(1k), is simplified to simply

picking a random element from {0,1}k, now denoted by K
R← {0,1}k.

Remark 3.5. Due to the Selective Decommitment Attack, the commitment scheme com needs to be

perfectly-hiding so that the unopened commitments remain hiding [Hof11].
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Next, we put together all the modules to form the Main protocol of our framework.
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Protocol 3.2. The Main Protocol

Common Input: security parameter 1k for some k ∈ N, statistical security parameter 1σ

for some σ ∈ N, cut ratio 0< r < 1, and boolean circuit C that computes f (·, ·).

Private Input: GEN has input x = x1 x2 . . . xn1
and EVAL has input y = y1 y2 . . . yn2

, where

x i and yi denote the i-th bit of x and y , respectively.

Private Output: EVAL receives output f (x , y).

1. (Circuit OTs) Both parties jointly execute σ instances of the
�2

1

�

-OT. More specifically,

EVAL first randomly picks E ⊂ [σ] such that |E| = r ·σ. EVAL then computes e j ← 1 if

j ∈ E, or e j ← 0 otherwise, while GEN randomly picks L( j)0 , L( j)1
R← {0,1}k so that in

the j-th instance of the
�2

1

�

-OTs, both parties jointly run

�2
1

�

-OT : ((L( j)0 , L( j)1 ), e j) 7→ (⊥, L( j)).

Either party aborts if any of the
�2

1

�

-OTs fails. Both parties will use {L( j)0 , L( j)1 } j∈[σ]

and {L( j)} j∈[σ] to construct the cut-and-choose communication channels.

Remark 3.6. The above
�2

1

�

-OTs could run in parallel if they provide security for parallel

execution. If these
�2

1

�

-OTs successfully complete, their receiver security ensures that

L( j) = L( j)e j
, meaning that EVAL will have access to the check channel for the j-th circuit if

e j = 0; or to the evaluation channel if e j = 1.

2. (Pick the randomness) For all j ∈ [σ], GEN picks randomness ρ( j) for the j-th

garbled circuit, and then sends ρ( j) over the check channel.
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Remark 3.7. Randomness ρ( j) can be considered as either a pool of truly random bits

or a truly random seed to a pseudo-random number generator. It has internal states

that keep track of old and fresh random bits, and it always returns fresh ones when used.

What GEN sends here has to be the initial state of randomness ρ( j) so that EVAL will be

able to repeat and verify whatever GEN does with ρ( j).

3. (Pick random label pairs) For all j ∈ [σ] and every wire wi, GEN uses randomness

ρ( j) to compute (K ( j)i,0 , K ( j)i,1 ,π( j)i )
R← {0,1}k × {0,1}k × {0,1}. Let W ( j)

i,b denote the

key-locator pair (K ( j)i,b , b⊕π( j)i ). W ( j)
i,b is called the label corresponding to wire wi of

value b in the j-th garbled circuit hereafter.

4. (Commit to input label pairs) Let {wi}i∈[n1] be the wires corresponding to GEN’s in-

put and {wn1+i}i∈[n2] be the wires corresponding to EVAL’s input. GEN uses randomness

ρ( j) to commit to the label pairs assigned to {wi}i∈[n1+n2] and random permutation

bits assigned to {wi}i∈[n1] by sending {Θ( j),Ω( j),Π( j)} j∈[σ] to EVAL, where

Θ( j) = {Θ( j)i,0,Θ( j)i,1}i∈[n1] = {com(W ( j)

i,0⊕π( j)i

),com(W ( j)

i,1⊕π( j)i

)}i∈[n1];

Ω( j) = {Ω( j)n1+i,0,Ω( j)n1+i,1}i∈[n2] = {com(W ( j)
n1+i,0),com(W ( j)

n1+i,1)}i∈[n2];

Π( j) = {Π( j)i }i∈[n1] = {com(π( j)i )}i∈[n1].

Remark 3.8. The randomness for all the commitments here are omitted for simplicity.

Remark 3.9. GEN commits to the label pairs assigned to GEN’s and EVAL’s input wires so

that when EVAL later receives proper decommitments, it will know that the decommitted

labels are valid. Recall that commitments {Ω( j)} j∈[σ] serve as the common ground for

CCCG and CCOT, and commitments {Θ( j),Π( j)} j∈[σ] for CCCG and CCCT.

Moreover, the commitment pairs corresponding to GEN’s input wires need to be randomly

swapped so that each label’s semantics is independent of its location. In other words, the
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location of a successfully decommitted label will not disclose GEN’s input to EVAL. This

random swap is done by reusing the permutation bit π( j)i that is assigned to each wire

and used to permute entries in garbled truth tables. In contrast, the commitment pairs

corresponding to EVAL’s input wires need to follow a known order so that EVAL can verify

that the semantics of the successfully decommitted labels actually matches its input. As a

result, the commitment pairs in Θ( j) are randomly swapped so that the commitment to

b-label of the i-th wire is the (2 · i+ b⊕π( j)i )-th entry, whereas in Ω( j), the commitment

to b-label of the i-th wire is the (2 · i+ b)-th entry.

5. (Retrieve EVAL’s Input Labels) With common input security parameter 1k, statistical

security parameter 1σ, and commitments {Ω( j)i,0,Ω( j)i,1} j∈[σ],i∈[n1], both parties jointly

run CCOT over the cut-and-choose communication channels, that is,

CCOT(E) : ({W ( j)
n1+i,0, W ( j)

n1+i,1} j∈[σ],i∈[n2], y) 7→ (⊥, ({W ( j)
n1+i} j∈[σ],i∈[n2],out)).

EVAL aborts if out= 0.

6. (Retrieve GEN’s Input Labels) With common input security parameter 1k, statistical

security parameter 1σ, and commitments {Θ( j)i,0,Θ( j)i,1,Π( j)i } j∈[σ],i∈[n1], both parties

jointly run CCCT over the cut-and-choose communication channels, that is,

CCCT(E) : (({W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n1], x),⊥) 7→ (⊥, ({W ( j)
i } j∈E,i∈[n1],out)).

EVAL aborts if out= 0.

7. (Retrieve Garbled Circuits) For each gate g : {0,1} × {0,1} 7→ {0,1} with input

wires wa and wb and output wire wc, GEN garbles g by computing

G(g)( j)← (〈π( j)a ,π( j)b 〉, 〈π
( j)
a , 1−π( j)b 〉, 〈1−π

( j)
a ,π( j)b 〉, 〈1−π

( j)
a , 1−π( j)b 〉),
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where 〈d1, d2〉= encK( j)a,d1

(encK( j)b,d2

(W ( j)
c,g(d1,d2)

)). Let {wi}i∈O be the circuit-output wires.

GEN then sends {G(C)( j)} j∈[σ] to EVAL, where G(C)( j) =
�

{G(g)( j)}g∈C , {π( j)i }i∈O

�

.

Remark 3.10. Note that once (K ( j)i,0 , K ( j)i,1 ,π( j)i ) are chosen for every wire wi in Step 3,

no more randomness is needed for G(C)( j). So randomness ρ( j) is not used here.

8. (Check Circuits) For each j ∈ [σ]\E, EVAL checks if randomness ρ( j) received in

Step 2 can regenerate commitments {Θ( j),Ω( j),Π( j)} received in Step 4 and garbled

circuit G(C)( j) received in Step 7. EVAL aborts if any of the checks fails.

9. (Evaluate Circuits) For each j ∈ E, EVAL has now obtained garbled circuit G(C)( j)

and (n1 + n2) labels corresponding to the circuit-input wires of C . EVAL evaluates

these (evaluation) circuits as follows:

(a) For each gate g with retrieved input labels W ( j)
a = (K ( j)a ,δ( j)a ) and W ( j)

b =

(K ( j)b ,δ( j)b ), EVAL picks the (2 · δ( j)a + δ
( j)
b )-th entry T in garbled truth table

G(g)( j) and computes output label W ( j)
c ← decK( j)b

(decK( j)a
(T )).

(b) For each circuit-output wire wi with corresponding label W ( j)
i = (K

( j)
i ,δ( j)i ), EVAL

computes wire value b( j)i ← δ
( j)
i ⊕π

( j)
i .

(c) EVAL interprets {b( j)i }i∈O as f ( j)(x , y).

10. (Majority Operation) Let f (x , y) represent the most common value in multiset

{ f ( j)(x , y)} j∈E. EVAL outputs ⊥ (aborts) if f (x , y) does not appear more than |E|/2

times in the multiset; otherwise, EVAL outputs f (x , y). GEN always outputs ⊥.

Theorem 3.2. Assume that the
�2

1

�

-OT protocol is secure in the presence of malicious adversaries,

and there exist a perfectly-hiding commitment scheme, a semantically secure symmetric encryption

scheme, a secure CCOT, and a secure CCCT. Protocol 3.2 securely computes polynomial-time function

f : {0, 1}n1 × {0,1}n2 7→ {⊥}× {0, 1}∗ in the presence of malicious adversaries.
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3.5 Security Proof for the Main Protocol

To clearly identify malicious parties, we use GEN∗ and EVAL∗ to denote an arbitrary cheating GEN

and EVAL, respectively. To formally prove Theorem 3.2, we need to construct two non-uniform

probabilistic expected polynomial-time simulators SGEN and SEVAL such that malicious GEN∗ (resp.

EVAL∗) cannot distinguish whether it is working with simulator SGEN (resp. SEVAL) in the ideal

model or with honest counterpart EVAL (resp. GEN) in the real model.

3.5.1 For Malicious Generator

Intuition: First of all, without loss of generality, we assume that GEN∗ always provides valid

keys in the circuit OTs. Conceivably, GEN∗ could use (L( j)0 , L( j)1 ) in an instance of the circuit OTs

while using (L′( j)0 , L′( j)1 ) to build the corresponding cut-and-choose communication channels,

where L′( j)b may or may not be equal to L( j)b for b ∈ {0,1}. In the case that L( j)0 6= L′( j)0 , all the

messages transmitted over the check channel cannot be properly received. This is equivalent to

that the j-th circuit fails to be a check circuit. Similarly, in the case of L( j)1 6= L′( j)1 , it is equivalent

to that the j-th circuit fails to be an evaluation circuit. As a result, even if GEN∗ provides invalid

keys in the j-th instance of the circuit OTs, we can always think of it as GEN∗ provides valid

keys in the OT but cheats in the corresponding garbled circuit.

Next, we observe that GEN∗ can only cheat in the following three ways: (1) provide malicious

labels for EVAL’s input; (2) provide malicious labels for its own input; and (3) provide faulty

circuits. Let F1, F2, F3 ⊂ [σ] denote the set of the evaluation circuits in which GEN∗ does not

cheat in the above three ways, respectively. Note that CCOT, CCCT, and CCCG ensure that if

EVAL does not abort before the step of circuit evaluation, then |Fi|> |E|/2 for i = 1,2,3. The

insight is that with high probability, |F1 ∩ F2 ∩ F3|> |E|/2, too. Indeed, since cut E is consistent

among these three building blocks, |F1∩ F2∩ F3| ≤ |E|/2 implies that GEN∗ cheats in at least one
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of the above three ways in more than |E|/2 garbled circuits, and none of them is checked. The

probability of this event is negligible in σ as long as GEN is oblivious of E, which is guaranteed

by circuit OTs’ receiver security. In other words, with high probability the majority of the

evaluation circuits are honest execution of the Yao protocol. As a consequence, if EVAL does not

abort before the step of circuit evaluation, the majority operation will give EVAL output f (x , y).

We now proceed to the formal proof. Protocol 3.3 shows how simulator SGEN works.
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Protocol 3.3. The Simulator for an Arbitrary Malicious Generator GEN∗

Common Input: security parameter 1k for some k ∈ N, statistical security parameter 1σ

for some σ ∈ N, cut ratio 0< r < 1, and boolean circuit C that computes f (·, ·).

Private Input: GEN∗ has private input x but uses x ′ (which will be extracted) in the

protocol instead. Note that x ′ may or may not equal x .

1. (Circuit OTs) SGEN randomly picks E ⊂ [σ] such that |E| = r ·σ and computes e j ← 1

if j ∈ E; or e j ← 0 otherwise. In the j-th instance of the
�2

1

�

-OTs, SGEN invokes

externally the simulator that comes with the
�2

1

�

-OT’s receiver security to extract

from GEN∗ the sender’s input, that is, (L( j)0 , L( j)1 ). Upon request, SGEN provides e j as

the receiver’s input to the external simulator. If the simulation does not fail, SGEN uses

L( j)e j
to construct the cut-and-choose channels for all j ∈ [σ].

Remark 3.11. Since SGEN learns both L( j)0 and L( j)1 , it gets to retrieve information sent

over both the check channel and the evaluation channel for the j-th circuit.

2. (Pick the randomness) For all j ∈ [σ], SGEN use L( j)0 to retrieve ρ( j), even though

ρ( j) is sent over the check channel meant only for a check circuit.

3. (Pick random label pairs) For all j ∈ [σ] and every wire wi, SGEN uses randomness

ρ( j) to compute (K ( j)i,0 , K ( j)i,1 ,π( j)i )
R← {0,1}k × {0,1}k × {0,1}. Let label W ( j)

i,b denote

key-locator pair (K ( j)i,b , b⊕π( j)i ) hereafter.

4. (Commit to input label pairs) SGEN receives commitments {Θ( j),Ω( j),Π( j)} j∈[σ].

5. (Retrieve EVAL’s Input Labels) SGEN uses y = 0n2 as its private input. With common

input security parameter 1k, statistical security parameter 1σ, and commitments
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{Ω( j)n1+i,0,Ω( j)n1+i,1} j∈[σ],i∈[n2], both parties jointly run CCOT over the cut-and-choose

channels, that is,

CCOT(E) : ({V ( j)n1+i,0, V ( j)n1+i,1} j∈[σ],i∈[n2], y) 7→ (⊥, ({V ( j)n1+i} j∈[σ],i∈[n2],out)).

If out = 0, SGEN sends ⊥ to external trusted party O. Otherwise, SGEN uses randomness

{ρ( j)} j∈[σ] to verify the CCOT’s soundness. More specifically, let G1 denote the

instances that are good and have honest EVAL’s input labels, that is,

G1 =







j ∈ [σ]

�

�

�

�

�

�

�

∀i ∈ [n2], b ∈ {0,1},

Ω( j)n1+i,b = com(W ( j)
n1+i,b)∧ V ( j)n1+i =W ( j)

n1+i,yi







where label W ( j)
n1+i,b = (K

( j)
n1+i,b, b⊕π( j)n1+i) is computed from randomness ρ( j) in Step 3

and V ( j)n1+i is SGEN’s private output from the CCOT. Let N1 = G1 ∩ ([σ]\E) and F1 =

G1 ∩ E. SGEN sends ⊥ to O if any of the following properties does not hold:

• N1 = [σ]\E

• |F1|> |E|/2.

Remark 3.12. N1 = [σ]\E is in fact the CCOT’s soundness property for the checked

instances, and |F1|> |E|/2 is that for the unchecked instances (cf. Definition 3.2).

6. (Retrieve GEN’s Input Labels) With common input security parameter 1k, statistical

security parameter 1σ, and commitments {Θ( j)i,0,Θ( j)i,1,Π( j)i } j∈[σ],i∈[n1], both parties

jointly run CCCT over the cut-and-choose channels, that is,

CCCT(E) : (({V ( j)i,0 , V ( j)i,1 } j∈[σ],i∈[n1], x),⊥) 7→ (⊥, ({V ( j)i } j∈E,i∈[n1],out)).
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If out = 0, SGEN sends ⊥ to O. Otherwise, SGEN uses {ρ( j)} j∈[σ] to extract the semantics

of {V ( j)i } j∈E,i∈[n1] and check the CCCT’s soundness. Let x ( j) ∈ {0,1}n1 denote the

extracted input from the j-th instance, that is, for i ∈ [n1],







x ( j)i ← b if V ( j)i =W ( j)
i,b

x ( j)i
R← {0, 1} otherwise,

where W ( j)
i,b is computed from randomness ρ( j) in Step 3 and V ( j)i is SGEN’s private

output from the CCCT. Let x ′ be the most common value in multiset {x ( j)} j∈E. Next,

let G2 denote the set of the instances that are good, that is,

G2 =















j ∈ [σ]

�

�

�

�

�

�

�

�

�

�

∀i ∈ [n1], b ∈ {0,1},

Π( j)i = com(π( j)i )

Θ( j)b = com(W ( j)

i,b⊕π( j)i

)















.

Let N2 = G2 ∩ ([σ]\E) and F2 = G2 ∩ E ∩ { j ∈ E|∀i ∈ [n1], b ∈ {0,1}, V ( j)i = W ( j)
i,x ′i
}.

SGEN sends ⊥ to O if any of the following properties does not hold:

• N2 = [σ]\E, and

• |F2|> |E|/2.

Remark 3.13. N2 = [σ]\E is in fact the CCCT’s soundness property for the checked

instances, and |F2|> |E|/2 is that for the unchecked instances (cf. Definition 3.3).

7. (Retrieve Garbled Circuits) SGEN receives garbled circuits {G(C)( j)} j∈[σ].

8. (Check Circuits) We say that the j-th circuit is honest if randomness ρ( j) can regen-

erate commitments (Θ( j),Ω( j),Π( j)) received in Step 4 and garbled circuit G(C)( j))

received in Step 7. For all j ∈ [σ], SGEN uses randomness ρ( j) to check the correctness
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of the received garbled circuits. More specifically, let N3 ⊂ [σ]\E be the set of the

checked circuit that are honest and F3 ⊂ E be the set of the evaluation circuits that

are honest. SGEN sends ⊥ to O if any of the following properties does not hold:

• N3 = [σ]\E and

• F3 > |E|/2.

9. (Evaluate Circuits) SGEN sends ⊥ to O if |F1 ∩ F2 ∩ F3| ≤ |E|/2; or x ′, otherwise.

10. (Majority Operation) SGEN outputs whatever GEN∗ outputs.

Lemma 3.3 (Security against a Malicious Generator). Let Π = (GEN, EVAL) be Protocol 3.2 and

S2 be the honest ideal-model player described in Definition 2.5. Assume that the
�2

1

�

-OT protocol

is secure in the presence of malicious adversaries, and there exist a perfectly-hiding commitment

scheme, a semantically secure symmetric encryption scheme, a secure CCOT, and a secure CCCT.

For any single-output function f : {0,1}n1 × {0,1}n2 7→ {⊥}× {0,1}∗, and any non-uniform

probabilistic strict polynomial-time machine GEN∗, simulator SGEN presented in Protocol 3.3 is a

non-uniform probabilistic expected polynomial-time machine satisfying that

¦

RealΠ,P̄(x , y, 1k)
©

x ,y,k

c
≈
¦

Ideal f ,S̄(x , y, 1k)
©

x ,y,k
,

where P̄ = (GEN∗, EVAL) and S̄ = (SGEN, S2).

Remark 3.14. For brevity, subscript “x , y, k” denotes that both distributions range over all

x ∈ {0,1}n1 , all y ∈ {0,1}n2 , and all k ∈ N.

Proof. Recall that in this case, EVAL follows the Main protocol faithfully, and S2 always provides

y to the trusted party and responds with 1 after getting its result (cf. Definition 2.5). To prove

this lemma, consider the following hybrid experiments and lemmas. Note that we denote by

Hybridi the i-th hybrid experiment and by Hi the algorithm that interacts with GEN∗ in Hybridi.
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Hybrid1: H1 is the same as EVAL except that in all the σ instances of the circuit OT, instead

of running as a real-model OT receiver, H1 invokes ideal-model OT simulator SOT
1 , the

existence of which is guaranteed by OT’s receiver security. In particular, for all j ∈ [σ], H1

invokes externally simulator SOT
1 to extract from GEN∗ the sender’s private input (L( j)0 , L( j)1 ),

and provides e j as the receiver’s private input upon the request from simulator SOT
1 .

Lemma 3.4. Let Hybrid1(x , y, 1k) denote the joint output of GEN∗ and H1. Then

¦

RealΠ,P̄(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid1(x , y, 1k)
©

x ,y,k
.

Proof. Intuitively, this lemma follows OT’s receiver security. Formally, suppose that there exists

non-uniform probabilistic polynomial-time distinguisher D such that for infinitely many k, D

distinguishes Real from Hybrid1 with probability at least 1/p(k) for some polynomial p(·).

Note that we can think of D as a potential GEN∗ that attempts to compromise the security. In

particular, D plays the role of GEN in both Real and Hybrid1 to interact with EVAL and H1,

respectively. Upon completion, D outputs a decision bit indicating in which experiment it was

working.

We will show another non-uniform probabilistic polynomial-time machine A that breaks the

OT’s receiver security with black-box access to D. Again, we consider A as a malicious sender

that interacts with either a real-model OT receiver or an ideal-model OT simulator such that

upon completion, A outputs a decision bit indicating in which model it was working.

Let machine H0, j be the same as EVAL except that for the first j instances of the circuit OT,

H0, j invokes simulator SOT
1 to simulate the sender’s view. Note that H0,0 = EVAL and H0,σ = H1.

Since D distinguishes Real from Hybrid1 with probability at least 1/p(k), by averaging, there

exists some j such that D distinguishes Hybrid0, j−1 and Hybrid0, j with probability at least

1/(σ · p(k)). Although j is unknown, it can be guessed with probability 1/σ. Recall that σ is

also assumed to be a polynomial in k.
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A can therefore be constructed as follows: A first randomly picks j
R← [σ]. A then internally

runs as H0, j−1 with D except in the j-th instance of the circuit OTs, A forwards D’s message to

an external OT receiver, and vice versa. After this OT, A continues to run as H0, j−1 with D. In

the end, A outputs the decision bit that D outputs. We know that if the external receiver is a

real-model OT receiver, D sees Hybrid0, j−1; and if the external receiver is an ideal-model OT

simulator, D sees Hybrid0, j. Therefore, the statement that D distinguishes Hybrid0, j−1 from

Hybrid0, j with probability at least 1/(σ · p(k)) implies that A distinguishes the view in a real

OT execution from that in the ideal OT simulation with probability at least 1/(σ2 · p(k)), which

contradicts the assumption of OT’s receiver security.

Remark 3.15. We stress that the successful simulation of GEN∗’s view indicates that GEN∗ is

oblivious of e j for all j ∈ [σ]. In other words, if the circuit OTs are successfully simulated, GEN∗

does not know E, the cut for all the cut-and-choose modules.

Hybrid2: H2 is the same as H1 except that H2 sends ⊥ to O if H2 accepts the CCOT but the

CCOT’s soundness cannot be verified with randomness {ρ( j)} j∈[σ]. More specifically, recall

that for all j ∈ [σ], H2 learned randomness ρ( j) since the OT simulator extracts both L( j)0

and L( j)1 , the keys used to build the cut-and-choose communication channels. H2 first

uses randomness ρ( j) to compute (K ( j)i,0 , K ( j)i,1 ,π( j)i )
R← {0,1}k × {0,1}k × {0,1} for wires

{wn1+i}i∈[n2] and all j ∈ [σ]. Next, H2 verifies the CCOT’s soundness as follows:

• H2 computes N1, the set of the checked instances that are good, that is,

N1 =







j ∈ [σ]\E

�

�

�

�

�

�

�

∀i ∈ [n2], b ∈ {0,1},

Ω( j)n1+i,b = com(W ( j)
n1+i,b)∧ V ( j)n1+i =W ( j)

n1+i,yi







,

where W ( j)
n1+i,b = (K

( j)
n1+i,b, b⊕π( j)n1+i).
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• H2 computes F1, the set of the unchecked instances that are good and have honest

EVAL’s input labels, that is,

F1 =







j ∈ E

�

�

�

�

�

�

�

∀i ∈ [n2], b ∈ {0, 1},

Ω( j)n1+i,b = com(W ( j)
n1+i,b)∧ V ( j)n1+i =W ( j)

n1+i,yi







,

where W ( j)
n1+i,b = (K

( j)
n1+i,b, b⊕π( j)n1+i) is computed from randomness ρ( j) and V ( j)n1+i is

H2’s private output from the CCOT.

Recall that for a secure CCOT, the soundness for the checked instances ensures that

N1 = [σ]\E and the soundness for the unchecked instances ensures that |F1|> |E|/2. So

H2 checks these two properties and sends ⊥ to O if either N2 6= [σ]\E or |F1| ≤ |E|/2.

Lemma 3.5. Let Hybrid2(x , y, 1k) denote the joint output of GEN∗ and H2. Then

¦

Hybrid1(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid2(x , y, 1k)
©

x ,y,k
.

Proof. At a high level, this lemma holds due to the CCOT’s soundness property. In particular,

if H1 rejects the CCOT, H2 rejects too. These two experiments differ when H1 accepts but H2

rejects, that is, when GEN∗ corrupts the labels assigned to EVAL’s input wires in more than |E|/2

instances while being able to prove the opposite in the CCOT. The soundness property ensures

that this only happens with negligible probability.

Hybrid3: H3 is the same as H2 except that H3 sends ⊥ to O if H3 accepts the CCCT but

the CCCT’s soundness cannot be verified with randomness {ρ( j)} j∈[σ]. More specifi-

cally, for all j ∈ [σ] and all wires {wi}i∈[n1], H3 first uses randomness ρ( j) to compute

(K ( j)i,0 , K ( j)i,1 ,π( j)i )
R← {0,1}k × {0,1}k × {0,1}. H3 then extracts GEN∗’s input to the j-th

instance by comparing its private output {V ( j)i }i∈[n1] from the CCCT with label pairs
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{W ( j)
i,0 , W ( j)

i,1 }i∈[n1] computed from randomness ρ( j). In particular, for each i ∈ [n1],







x ( j)i ← b if V ( j)i =W ( j)
i,b for b ∈ {0,1}

x ( j)i
R← {0, 1} otherwise.

Let x ′ be the most common value from multiset {x ( j)} j∈E.

At last, H3 verifies the CCOT’s soundness as follows:

• H3 computes N2, the set of the checked instances that are good, that is,

N2 =















j ∈ [σ]\E

�

�

�

�

�

�

�

�

�

�

∀i ∈ [n1], b ∈ {0, 1},

Π( j)i = com(π( j)i )∧

Θ( j)i,b = com(W ( j)

i,b⊕π( j)i

)















,

where W ( j)
i,b = (K

( j)
i,b , b⊕π( j)i ).

• H3 computes F2, the set of the unchecked instances that are good and have honest

GEN’s input labels, that is,

F2 =















j ∈ E

�

�

�

�

�

�

�

�

�

�

∀i ∈ [n1], b ∈ {0,1},

Π( j)i = com(π( j)i )∧

Θ( j)i,b = com(W ( j)

i,b⊕π( j)i

)∧ V ( j)i =W ( j)
i,x ′i















,

where W ( j)
i,b = (K

( j)
i,b , b ⊕ π( j)i ) is computed from randomness ρ( j) and V ( j)i is H3’s

private output from the CCCT.

Recall that the CCCT’s soundness for the checked instances ensures that N2 = [σ]\E

and the soundness for the unchecked instances ensures that |F2|> |E|/2. Therefore, H3

verifies these two properties and sends ⊥ to O if either N2 6= [σ]\E or |F2| ≤ |E|/2.
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Lemma 3.6. Let Hybrid3(x , y, 1k) denote the joint output of GEN∗ and H3. Then

¦

Hybrid2(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid3(x , y, 1k)
©

x ,y,k
.

Proof. At a high level, this lemma holds due to the CCCT’s soundness property. In particular,

if H2 rejects the CCCT, H3 rejects too. These two experiments differ when H2 accepts but H3

rejects, that is, when GEN∗ corrupts the labels assigned to GEN’s input wires in more than |E|/2

instances while being able to prove the opposite in the CCCT. The soundness property ensures

that this only happens with negligible probability.

Hybrid4: H4 is the same as H3 except that H4 sends ⊥ to O if all the check circuits are honest

but more than |E|/2 of the evaluation circuits received in Step 8 are not. Since for all

j ∈ [σ], H4 learns ρ( j) even though ρ( j) is sent over the check channel. H4 is then capable

of using randomness ρ( j) to regenerate commitments {Θ( j),Ω( j),Π( j)} and garbled circuit

G(C)( j). If the regenerated one coincides with the one received from GEN∗, the j-th

garbled circuit is honest. Let N3 denote the checked circuits that are honest and F3 denote

the evaluation circuits that are honest. H4 sends ⊥ to O if N3 6= [σ]\E or |F3| ≤ |E|/2.

Lemma 3.7. Let Hybrid4(x , y, 1k) denote the joint output of GEN∗ and H4. Then

¦

Hybrid3(x , y, 1k)
©

x ,y,k

s
≈
¦

Hybrid4(x , y, 1k)
©

x ,y,k
.

Proof. Note that both H3 and H4 get to compute N3. So if N3 6= [σ]\E, that is, any of the

check circuits is faulty, both H3 and H4 abort, in Hybrid3 and Hybrid4, respectively. The only

case that Hybrid3 and Hybrid4 differ is when H3 accepts H4 rejects due to |F3| ≤ |E|/2, that is,

more than half of the evaluation circuits are faulty. In other words, GEN∗ generates |E|/2 faulty

circuits, and H3 randomly picks (σ− |E|) to check and all of the chosen ones are among those
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(σ− |E|/2) honest circuits. The probability of this case is at most

�

σ− |E|/2
σ− |E|

��

σ

σ− |E|

�−1

=
�

(σ− |E|/2)!
(σ− |E|)!(|E|/2)!

��

σ!

(σ− |E|)!(|E|)!

�−1

=
(σ− |E|/2)!(|E|)!
σ!(|E|/2)!

(3.1)

=
� |E|/2+ 1

σ− |E|/2+ 1

�

·
� |E|/2+ 2

σ− |E|/2+ 2

�

· · ·
� |E|/2+ |E|2
σ− |E|/2+ |E|/2

�

(3.2)

<

� |E|
σ

�|E|/2

= r−(r/2)·σ. (3.3)

Thus, the probability that Hybrid3 and Hybrid4 differ is negligible in σ, hence negligible in k.

It is noteworthy that the last equality comes from the fact that |E|= r ·σ.

Hybrid5: H5 is the same as H4 except that after confirming that all the check circuits are honest,

it sends ⊥ to O if |F | ≤ |E|/2, where F = F1 ∩ F2 ∩ F3.

Lemma 3.8. Let Hybrid5(x , y, 1k) denote the joint output of GEN∗ and H5. Then

¦

Hybrid4(x , y, 1k)
©

x ,y,k

s
≈
¦

Hybrid5(x , y, 1k)
©

x ,y,k
.

Proof. Our argument here will be conditioned on that neither H4 nor H5 abort before confirming

that all the check circuits are honest, since both hybrids behave identically before that step.

Let M denote set E\F . We know that Fi ⊂ E and |Fi|> |E|/2 for i ∈ {1, 2, 3} from previous

hybrids. We also know that H4 and H5 differ when |F | ≤ |E|/2, or equivalently, |M | > |E|/2.

We will argue that this happens with probability negligible in σ.

Observe that for all j ∈ M , GEN∗ must have cheated in the j-th instance in at least one of

the following three ways: (1) provide malicious labels for GEN’s input; (2) provide malicious

labels for EVAL’s input; or (3) provide a faulty circuit. Recall that due to the circuit OT’s receiver

security, GEN∗ is completely oblivious of E the whole time. In other words, the choosing of

M is independent of the choosing of E. The probability that H4 and H5 differ is equal to the
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probability that all those in M are evaluation instances, namely, the probability that |M |> |E|/2

and M ⊂ E, which is

Pr((|M |> |E|/2)∧ (M ⊂ E))≤

�|E|/2
|E|/2

�

·
�σ−|E|/2
|E|/2

�

� σ

σ−|E|

� =
(σ− |E|/2)!(|E|)!
σ!(|E|/2)!

< r−r·σ/2,

which is negligible in σ. Note that the second inequality comes from Equation (3.1)–(3.3).

Hybrid6: H6 is the same as H5 except that H6 sends x ′ to O and outputs whatever GEN∗ outputs.

Lemma 3.9. Let Hybrid6 denote the joint output of H6 and S2. Then

¦

Hybrid5(x , y, 1k)
©

x ,y,k
=
¦

Hybrid6(x , y, 1k)
©

x ,y,k
.

It is worth-mentioning that while Hybrid5(x , y, 1k) denotes the joint output of GEN∗ and H5,

Hybrid6(x , y, 1k) denotes the joint output of H6 and S2.

Proof. Since H6 outputs whatever GEN∗ outputs, GEN∗’s output in Hybrid5 is identical to H6’s in

Hybrid6. Moreover, |F |> |E|/2 and F = F1 ∩ F2 ∩ F3 imply that the majority of those in E are

honest executions of the Yao protocol that compute f (x ′, y). Since H5’s output comes from the

majority output of those from E, H5’s output in Hybrid5 coincides with S2’s output in Hybrid6.

This lemma therefore follows.

Hybrid7: H7 is the same as H6 except that H7 uses 0n2 as input to the CCOT.

Lemma 3.10. Let Hybrid7(x , y, 1k) denote the joint output of H7 and S2. Then

¦

Hybrid6(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid7(x , y, 1k)
©

x ,y,k
.

Proof. (Due to the CCOT’s indistinguishability property)
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Finally, since every step finishes in expected polynomial time, including σ invocations of

simulator SOT
1 , H7 runs in expected polynomial time. Observe that H7 and SGEN are syntactically

similar, hence Hybrid7(x , y, 1k) = Ideal f ,S̄(x , y, 1k). In particular, EVAL’s private input y is no

longer used (replaced by 0n2 to be exact). By Lemma 3.4–3.10, we prove the simulation security

of the Main protocol in the presence of arbitrary malicious GEN∗.

3.5.2 For Malicious Evaluator
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Protocol 3.4. The Simulator for an Arbitrary Malicious Evaluator EVAL∗

Common Input: security parameter 1k for some k ∈ N, statistical security parameter 1σ

for some σ ∈ N, cut ratio 0< r < 1, and boolean circuit C that computes f (·, ·).

Private Input: EVAL∗ has private input y but uses y ′ (which will be extracted) in the

protocol instead. Note that y ′ may or may not equal y .

Private Output: EVAL∗ receives output f (x , y ′).

1. (Circuit OTs) For each j ∈ [σ], SEVAL randomly picks L( j)0 , L( j)1
R← {0,1}k, and in the

j-th instance of the
�2

1

�

-OTs, SEVAL invokes externally the simulator that comes with

the
�2

1

�

-OT’s sender security and extracts from EVAL∗ the receiver’s private input

e j. Upon request, SEVAL provides L( j)e j
as the sender’s private input to the external

simulator. From now on, for all j ∈ [σ], SEVAL will use (L( j)0 , L( j)1 ) to construct the

cut-and-choose communication channels for the j-th circuit.

2. (Pick the randomness) For all j ∈ [σ], SEVAL picks randomness ρ( j) for the j-th

garbled circuit and sends ρ( j) over the check channel.

3. (Pick random label pairs) For all j ∈ [σ] and every wire wi, SEVAL uses randomness

ρ( j) to compute (K ( j)i,0 , K ( j)i,1 ,π( j)i )
R← {0,1}k × {0,1}k × {0,1}. Let W ( j)

i,b denote the

key-locator pair (K ( j)i,b , b⊕π( j)i ). W ( j)
i,b is called the label corresponding to wire wi of

value b in the j-th garbled circuit hereafter.

4. (Commit to input label pairs) Let {wi}i∈[n1] be the wires corresponding to GEN’s

input and {wn1+i}i∈[n2] be those corresponding to EVAL’s input. SEVAL uses randomness

ρ( j) to commit to the label pairs assigned to {wi}i∈[n1+n2] and random permutation
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bits assigned to {wi}i∈[n1] by sending {Θ( j),Ω( j),Π( j)} j∈[σ] to EVAL, where

Θ( j) = {Θ( j)i,0,Θ( j)i,1}i∈[n1] = {com(W ( j)

i,0⊕π( j)i

),com(W ( j)

i,1⊕π( j)i

)}i∈[n1];

Ω( j) = {Ω( j)n1+i,0,Ω( j)n1+i,1}i∈[n2] = {com(W ( j)
n1+i,0),com(W ( j)

n1+i,1)}i∈[n2];

Π( j) = {Π( j)i }i∈[n1] = {com(π( j)i )}i∈[n1].

5. (Retrieve EVAL’s Input Labels) Instead of jointly running CCOT with EVAL∗, simula-

tor SEVAL invokes externally the simulator that comes with CCOT’s sender security to

extract EVAL∗’s input y ′. Upon request, SEVAL sends {W ( j)
n1+i,y ′i

} j∈[σ],i∈[n2] to the external

simulator. If EVAL∗ aborts, SEVAL sends ⊥ to the external trusted party O.

6. (Retrieve GEN’s Input Labels) SEVAL uses 0n1 as its private input in the CCCT. With

common input security parameter 1k, statistical security parameter 1σ, and com-

mitments {Θ( j)i,0,Θ( j)i,1,Π( j)i } j∈[σ],i∈[n1], both parties jointly run CCCT over the cut-and-

choose communication channels, that is,

CCCT(E) : (({W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n1], 0n1),⊥) 7→ (⊥, ({W ( j)
i } j∈E,i∈[n1],out)).

If EVAL∗ aborts, SEVAL sends ⊥ to O.

7. (Retrieve Garbled Circuits) SEVAL sends y ′ to O and receives f (x , y ′) in return.

Let {wi}i∈O be the circuit-output wires. SEVAL parses f (x , y ′) into {bi}i∈O, where

bi ∈ {0,1}.

Moreover, SEVAL generates garbled circuit G(C)( j) such that if e j = 1, then G(C)( j)

always outputs f (x , y ′); or if e j = 0, then G(C)( j) is an honest garbled version of

objective circuit C . In particular, for each gate g : {0, 1}× {0, 1} 7→ {0, 1} with input
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wires wa and wb and output wire wc, SEVAL garbles gate g by computing

G(g)( j)← (〈π( j)a ,π( j)b 〉, 〈π
( j)
a , 1−π( j)b 〉, 〈1−π

( j)
a ,π( j)b 〉, 〈1−π

( j)
a , 1−π( j)b 〉),

where

〈d1, d2〉=







encK( j)a,d1

(encK( j)b,d2

(W ( j)
c,bc
)) if e j = 1 and c ∈ O

encK( j)a,d1

(encK( j)b,d2

(W ( j)
c,g(d1,d2)

)) otherwise.

SEVAL then sends {G(C)( j)} j∈[σ] to EVAL∗, where G(C)( j) =
�

{G(g)( j)}g∈C , {π( j)i }i∈O

�

.

Remark 3.16. Recall that e j = 1 means that the j-th circuit is an evaluation circuit. If

e j = 1 and wc is a circuit-output wire, then G(g) always outputs W ( j)
c,bc

, that is, gate g

always outputs bc. This implies that if e j = 1, the j-th garbled circuit always outputs

{bi}i∈O, which is equivalent to f (x , y ′).

8. (Check Circuits) SEVAL outputs ⊥ if EVAL∗ aborts.

9. (Evaluate Circuits) SEVAL does nothing in this step.

10. (Majority Operation) SEVAL outputs whatever EVAL∗ outputs.

Lemma 3.11 (Security against a Malicious Evaluator). Let Π = (GEN, EVAL) be Protocol 3.2 and

S1 be the honest ideal-model player described in Definition 2.5. Assume that the
�2

1

�

-OT protocol

is secure in the presence of malicious adversaries, and there exist a perfectly-hiding commitment

scheme, a semantically secure symmetric encryption scheme, a secure CCOT, and a secure CCCT.

For any single-output function f : {0,1}n1 × {0,1}n2 7→ {⊥}× {0,1}∗, and any non-uniform

probabilistic strict polynomial-time machine EVAL∗, simulator SEVAL presented in Protocol 3.4 is a

non-uniform probabilistic expected polynomial-time machine satisfying that

¦

RealΠ,P̄(x , y, 1k)
©

x ,y,k

c
≈
¦

Ideal f ,S̄(x , y, 1k)
©

x ,y,k
,
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where P̄ = (GEN, EVAL∗) and S̄ = (S1, SEVAL).

Remark 3.17. For brevity, subscript “x , y, k” denotes that both distributions range over all

x ∈ {0,1}n1 , all y ∈ {0,1}n2 , and all k ∈ N.

Proof. In this case, GEN follows the Main protocol faithfully. To prove this lemma, consider the

following hybrid experiments and lemmas. Note that we denote by Hybridi the i-th hybrid

experiment and by Hi the algorithm that interacts with EVAL∗ in Hybridi.

Hybrid1: H1 is the same as GEN except that in all σ instances of the circuit OT, instead

of running as a real-model OT sender, H1 invokes ideal-model OT simulator SOT
2 , the

existence of which is guaranteed by OTs’ sender security. In particular, for all j ∈ [σ],

H1 first randomly picks L( j)0 , L( j)1 ∈ {0, 1}k; H1 then invokes externally SOT
2 to extract from

EVAL∗ the receiver’s private input e j ∈ {0, 1} and provides L( j)e j
as the sender’s private input

upon the request from simulator SOT
2 .

Lemma 3.12. Let Hybrid1(x , y, 1k) denote the joint output H1 and EVAL∗. Then

¦

RealΠ,P̄(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid1(x , y, 1k)
©

x ,y,k
.

Proof. The only difference between Hybrid1 and Real is that SOT
2 is invoked in Hybrid1. After

this step, both experiments are identical since H1 acts exactly the same as GEN does in Real. So

this lemma follows from the simulation property of the OT’s sender security. A little bit more

formally, let H0, j be the same as GEN except that the first j executions of the OT protocol are

replaced with invocations to SOT
2 . Observe that H0,0 = GEN and H0,σ = H1. If there exists some

probabilistic polynomial-time distinguisher D such that for infinitely many ks, D distinguishes

Real from Hybrid1 with probability 1/p(k) for some polynomial p(·) in k. By averaging, there

must exist some j such that D distinguishes Hybrid0, j−1 from Hybrid0, j with probability at least

1/(σ · p(k)). We can then construct an algorithm A with black-box access to D to break the

sender security of the OT protocol, which results in a contradiction.
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Remark 3.18. We stress that for all j ∈ [σ], in the course of the simulator invocations, L( j)1−e j
has

never been disclosed to anyone except H1 itself. This implies that with high probability, EVAL∗ can

have access to at most one out of the two cut-and-choose communication channels for each circuit,

namely, EVAL∗ has no access to the check channel if e j = 1; or to the evaluation channel if e j = 0.

This also implies that the cuts among modules CCCG, CCOT, and CCCT have to be consistent.

Hybrid2: H2 is the same as H1 except that instead of running the CCOT as a real-model sender,

H2 invokes ideal-model simulator SCCOT
2 , which comes with the CCOT’s sender security. In

particular, H2 invokes simulator SCCOT
2 to extract from EVAL∗ the receiver’s private input

y ′ and provides {W ( j)
n1+i,y ′i

} j∈[σ],i∈[n2] as the sender’s private input upon SCCOT
2 ’s request.

Lemma 3.13. Let Hybrid2(x , y, 1k) denote the joint output of H2 and EVAL∗. Then

¦

Hybrid1(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid2(x , y, 1k)
©

x ,y,k
.

Proof. (Due to the CCOT’s sender security)

Hybrid3: H3 is the same as H2 except that if EVAL∗ does not abort right after the CCOT, H3

additionally sends y ′ to external oracle O, saves the returned output f (x , y ′), and outputs

whatever EVAL∗ sends to external oracle O. Note that EVAL∗’s output for O here includes

a choice bit indicating whether S1 gets an output (in the case of two-output objective

function) and its final output.

Lemma 3.14. Let Hybrid3(x , y, 1k) denote the joint output of S1 and H3. Then

¦

Hybrid2(x , y, 1k)
©

x ,y,k
=
¦

Hybrid3(x , y, 1k)
©

x ,y,k
.

It it worth-mentioning that while Hybrid2(x , y, 1k) represents the joint output of H2 and EVAL∗,

Hybrid3(x , y, 1k) represents the joint output of S1 and H3.
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Proof. Note that if EVAL∗ aborts before or right after the CCOT, both H2 and S1 output ⊥ (abort).

After EVAL∗ accepts the CCOT, its private input y ′ will be extracted and sent to external oracle

O. Therefore, H2’s and S1’s outputs will depend on EVAL∗’s and H3’s output, respectively. Since

after y ′ is sent to O, H3 will output whatever EVAL∗ outputs, we conclude that the joint output

of H2 and EVAL∗ is identical to the joint output of S1 and H3. This lemma therefore follows.

Hybrid4: H4 is the same as H3 except that H4 generates the evaluation circuits in the way that

they all have constant output f (x , y ′). Recall that for all j ∈ [σ], H4 knows e j, which

indicates that the j-th circuit is either checked or evaluated. If e j = 0, then the j-th circuit

is a check circuit and remains an honest garbled version of the objective circuit; if e j = 1,

then the j-th circuit is an evaluation circuit that is generated in the way that EVAL∗ will

always get f (x , y ′) from evaluating it regardless of the input labels that EVAL∗ provides.

More specifically, let {wi}i∈O denote the circuit-output wires of objective circuit C . Recall

that (W ( j)
i,0 , W ( j)

i,1 ) is the label pair assigned to wire wi in the j-th circuit, where W ( j)
i,b =

(K ( j)i,b , b⊕π( j)i ). H4 first parses f (x , y ′) into {bi}i∈O, where bi ∈ {0, 1}. Next, for all j ∈ [σ]

and each gate g : {0, 1}× {0, 1} 7→ {0, 1} with input wires wa and wb and output wire wc,

H4 garbles g by computing

G(g)( j)← (〈π( j)a ,π( j)b 〉, 〈π
( j)
a , 1−π( j)b 〉, 〈1−π

( j)
a ,π( j)b 〉, 〈1−π

( j)
a , 1−π( j)b 〉),

where

〈d1, d2〉=







encK( j)a,d1

(encK( j)b,d2

(W ( j)
c,bc
)) if e j = 1 and c ∈ O

encK( j)a,d1

(encK( j)b,d2

(W ( j)
c,g(d1,d2)

)) otherwise.

Lemma 3.15. Let Hybrid4(x , y, 1k) denote the joint output of S1 and H4. Then

¦

Hybrid3(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid4(x , y, 1k)
©

x ,y,k
.
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Proof. (Due to the semantic security of the symmetric encryption scheme)

Hybrid5: H5 is the same as H4 except that H5 uses 0n1 as input in the CCCT.

Lemma 3.16. Let Hybrid5(x , y, 1k) denote the joint output of S1 and H5. Then

¦

Hybrid4(x , y, 1k)
©

x ,y,k

c
≈
¦

Hybrid5(x , y, 1k)
©

x ,y,k
.

Proof. (Due to the CCCT’s indistinguishability and the Yao protocol’s generator security)

Finally, since every step finishes in expected polynomial time, including σ invocations of

simulator SOT
2 and the invocation of simulator SCCOT

2 , H5 runs in expected polynomial time too.

Observe that H5 and SEVAL are syntactically similar, hence Hybrid5(x , y, 1k) = Ideal f ,S̄(x , y, 1k).

In particular, GEN’s private input x is no longer used (replaced by 0n1 to be exact). By

Lemma 3.12–3.16, we prove the Main protocol is secure even in the presence of arbitrary

malicious EVAL∗.

3.6 Optimal Parameters

3.6.1 The Optimal Cut Size

Here, we want to explore the best ratio between the check circuits and the evaluation circuits.

Recall that GEN constructs σ copies of the garbled circuit that compute the objective function.

According to the cut-and-choose technique, EVAL asks for GEN’s input keys for e = |E| evaluation

circuits and the randomness for (σ− e) check circuits. After the correctness of the check circuits

are verified, EVAL proceeds to evaluate the remaining e copies of the evaluation circuits and

takes the majority output as the final output. The following Lemma suggests that the best

check-to-evaluation ratio is 3:2 instead of the folklore 1:1.
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Lemma 3.17 (Optimal Cut Size). Suppose that the cut-and-choose technique is adopted and GEN

garbles σ copies of the objective circuit. The probability that GEN sneaks in a faulty majority into

the evaluation circuits without getting caught is minimized when EVAL picks a cut of size e, where

either e = 1
5

�

σ− 7+
p

(σ− 7)2− 40
�

or e = 1
5
(2σ− 9).

Proof. Let b be the number of bad circuits created by GEN. A circuit is bad if either the circuit

does not compute the objective function or EVAL’s input labels are corrupted. The goal is to

minimize the probability that a malicious GEN sneaks in faulty majority to the evaluation circuits

with out getting caught. In other words, we want to find e and b that minimize
�σ−b
σ−e

�

/
� σ

σ−e

�

,

that is, the probability that all the (σ − e) check circuits are good assuming that there are

(σ− b) good circuits.

We first claim that a malicious GEN’s best cheating strategy is to produce b = be/2c+ 1 bad

circuits. Indeed, if b ≤ be/2c, the final output will not be influenced since the faulty outputs

will be overwhelmed by majority good ones. On the other hand, the more bad circuits, the

more likely that the malicious GEN will get caught since
�σ−(b−1)

σ−e

�

>
�σ−b
σ−e

�

. So the best strategy

for GEN to succeed in cheating is to construct as few bad circuits as possible while the majority

of evaluation circuits are bad, which justifies the choice of b.

Our next goal is to find the e that minimizes F(e) =
�σ−b e

2
c−1

σ−e

�

/
� σ

σ−e

�

. To get rid of the

troublesome floor function, we will consider the case when e is even and odd separately.

• If e = 2n for some n ∈ N such that n≤ σ

2
, let Feven(n) =

�σ−n−1
σ−2n

�

/
� σ

σ−2n

�

. Observe that

Feven(n+ 1)
Feven(n)

=
(2n+ 1)(2n+ 2)
n · (σ− n− 1)

.

It is not hard to solve a quadratic inequality and come to the conclusion that

Feven(n+ 1)
Feven(n)

< 1 when 0< n< 1
10

�

σ− 7+
p

(σ− 7)2− 40
�

def
= α.
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In other words, Feven(·) is monotonically decreasing when 0< n< α and monotonically

increasing when α≤ n≤ σ

2
. Therefore, Feven(·) is minimal when n= dαe.

• If e = 2n+ 1, let Fodd(n) =
� σ−n−1
σ−2n−1

�

/
� σ

σ−2n−1

�

. By a similar computation, we know that

Fodd(n+ 1)
Fodd(n)

=
(2n+ 2)(2n+ 3)
(n+ 1)(σ− n− 1)

< 1 when n<
σ− 7

5
def
= β .

Hence, Fodd(·) is minimal when n= dβe.

In summary, F(·) has the minimum when either e = 2dαe or e = 2dβe+ 1.

Remark 3.19. If σ is sufficiently large, F(·) will have the minimum when e ≈ 2
5
σ, which implies

that the check-to-evaluation ratio is roughly (σ− 2
5
σ) : 2

5
σ = 3 : 2.

3.6.2 The Minimum Repetition Factor

Given that cut ratio r = 2/5, we further explore the number of the garbled circuits needed, that

is, statistical security parameter σ, in order to achieve security level 2−k.

Recall that in the security proof, the weakest link appears in Equation (3.1)–(3.3), which is

�

σ− |E|/2
σ− |E|

��

σ

σ− |E|

�−1

=
(σ− |E|/2)!(|E|)!
σ!(|E|/2)!

< r−(r/2)·σ.

In order to get a more concrete and tighter bound, we substitute |E| with 2σ/5 and have that

�4σ/5
3σ/5

�

� σ

3σ/5

� =
(2σ/5)!(4σ/5)!
σ!(σ/5)!

≤

Æ

2π2σ
5
·
�

2σ/5
e

�2σ/5Æ

2π4σ
5
·
�

4σ/5
e

�4σ/5

p
2πσ ·

�

σ

e

�σp

2πσ
5
·
�

σ/5
e

�σ/5
≤ 2−0.32σ.

Note that the first inequality comes from Stirling’s approximation for factorials.
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Finally, we conclude that achieving security level 2−k requires that 2−0.32σ ≤ 2−k, or equiva-

lently, σ ≥ k/0.32= (25/8) · k. Therefore, we have the following corollary.

Corollary 3.18 (Minimum Garbled Circuits Needed). In order to achieve security level 2−k for

some k ∈ N, our framework requires at least (25/8) · k copies of the garbled circuit.
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Chapter 4

Secure 2PC Instantiations

4.1 Secure 2PC via Number-Theoretic Assumptions

CCCT via Malleable Claw-Free Collections In Section 4.1.1, we present an instantiation of

CCCT, in which we make use of the claw-free collections that have a weak malleability property.

Loosely speaking, a pair of functions ( f0, f1) are said to be claw-free if they are (1) easy to

evaluate, (2) identically distributed over the same range, and (3) hard to find a claw. A claw is

a pair of elements, one from f0’s domain and the other from f1’s domain, that are mapped to

the same range element.

Intuitively, GEN’s input is encoded using elements from the domain of the claw-free collec-

tions. Those elements can later be used to prove their consistency among circuits. In particular,

GEN uses the elements to construct random keys corresponding to its input wires. The rest

of the gates in the circuit use fast symmetric operations as per the Yao protocol. A concrete

example is to instantiate the claw-free functions under the Discrete Logarithm assumption by

letting fb(r) = g bhr for some primes p and q such that p = 2q+ 1, and some distinct group

elements g and h of Z∗p such that 〈g〉 = 〈h〉 = q. A toy example of CCCT built on this pair of
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claw-free functions works as follows:

1. GEN samples {r( j)0 } j∈[σ] and {r( j)1 } j∈[σ] from f0 and f1’s domain Zq. Range elements

{hr( j)0 } j∈[σ] and {ghr( j)1 } j∈[σ] are then used to construct garbled circuits such that g bhr( j)b is

associated with GEN’s input wire of value b in the j-th garbled circuit.

2. The cut-and-choose method enforces that the majority of the evaluation circuits are

correctly constructed. Let E be the set of the evaluation circuits.

3. At the onset of the evaluation phase, GEN with input bit x sends ~K = {g xhr( j)x } j∈E to EVAL

and then proves that these range elements are the encodings of the same x . Intuitively,

by the identical range distribution property, EVAL with fx(r( j)x ) at hand has no information

about x . Furthermore, after GEN proves the knowledge of the pre-image of ~K under the

same fx(·), the claw-free property ensures that GEN’s input to most of the evaluation

circuits are consistent.

It is well-known that such a pair of claw-free functions have efficient zero-knowledge proofs.

However, in the course of developing our proof, we noticed that witness indistinguishable proofs

suffice in place of zero-knowledge proofs. Even more generally, when the claw-free collection

has a very weak malleability property (which holds for all known concrete instantiations),

sending a simple function of the witness itself suffices.

CCOT via 2-Out-of-1 Committing Oblivious Transfers In Section 4.1.2, we present a secure

CCOT instantiated from
�2

1

�

-COT proposed by Kiraz and Schoenmakers [KS06]. At a high level,

this approach instructs the sender (GEN in the Yao protocol) of the
�2

1

�

-OT to post-facto prove

that it ran the
�2

1

�

-OT correctly by revealing the randomness used during the protocol execution.

Normally, this would break the
�2

1

�

-OT’s sender security. However, in the cut-and-choose

framework, GEN is already opening many circuits, so the keys used as inputs for the
�2

1

�

-OT are

no longer secret. Therefore, the idea is that GEN can prove that it executed the
�2

1

�

-OT correctly
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for all check circuits by simply sending the random coins used in those instances. We stress

that not every
�2

1

�

-OT can be used here. Loosely speaking, a
�2

1

�

-COT is the
�2

1

�

-OT with the

binding property so that it is hard for a cheating GEN to produce random coins different from

what it really used. An efficient
�2

1

�

-COT based on Decisional Diffie-Hellman assumption is also

presented.

4.1.1 CCCT via Malleable Claw-Free Collections

The main idea of our solution is inspired both by Mahassel and Franklin’s Committed-Input

scheme [MF06] and by the claw-free collections. We first give the formal definition of the

claw-free collections as follows:

Definition 4.1 (Claw-Free Collections in [GK96]). A three-tuple of algorithms (G, D, F) is called

a claw-free collection if the following conditions hold

1. Easy to evaluate: Both index selecting algorithm G and the domain sampling algorithm D

are probabilistic polynomial-time, while evaluating algorithm F is deterministic polynomial-

time.

2. Identical range distribution: Let fb(r) denote the output of F on input (b, I , r). For any I

in the range of G, the following two distributions are identical:

• {r ← D(0, I) : f0(r)}

• {r ← D(1, I) : f1(r)}

3. Hard to form claws: For every non-uniform probabilistic polynomial-time algorithm A, the

probability that for a randomly generated index I, A could come up with r0 and r1 such that

f0(r0) = f1(r1) is negligible.
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Let E denote the set of the evaluation circuits and assume that GEN’s input x is only one-bit.

With the claw-free collections, our idea works as follows:

1. EVAL first generates I by invoking the index generating algorithm G(1k), where k is the

security parameter.

2. GEN computes r ← D(x , I) and K ← fx(r). Then GEN sends K to EVAL.

3. GEN invokes sampling algorithms D(I , b) to pick {r( j)b } j∈[σ] for b ∈ {0, 1}.

4. For j ∈ [σ] and b ∈ {0,1}, GEN computes K ( j)b ← fb(r
( j)
b ) and commits to K ( j)b .

5. Both parties jointly do the following:

• For j ∈ [σ]\E, GEN decommits to (K ( j)0 , K ( j)1 ) and reveals (r( j)0 , r( j)1 ) for EVAL to check

the correctness of (K ( j)0 , K ( j)1 ).

• For j ∈ E, GEN decommits to K ( j)x and proves that it computes K and K ( j)x via the

same function fx(·) without revealing x .

At a high level, this idea works for the following two reasons.

• The identical range distribution property implicitly implies that both f0(·) and f1(·) have

the perfectly-hiding property. For any r0← D(0, I), there always exists r1 in f1(·)’s domain

such that f0(r0) = f1(r1). In other words, K and {K ( j)x } j∈E will not leak any information

about x to EVAL.

• If a malicious GEN is able to introduce inconsistent inputs, that is, there exists j ∈ E

such that GEN can prove that both K and K ( j) are computation results from fx(·), while

K ( j) is actually computed via f1−x(·). This implies that GEN knows r0 and r1 such that

fx(r0) = K ( j) = f1−x(r1), which contradicts the “hard to form claws” property of the

claw-free functions.
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It remains to show how GEN proves to EVAL that it computes K and K ( j)x via the same fx(·)

efficiently. Let us consider the claw-free collection instantiated from the Discrete Logarithm

assumption again, that is, let fb(r) = g bhr , where I = (g, h, p, q) includes two primes p and

q such that p = 2q+ 1, and distinct elements g and h of Z∗p such that 〈g〉 = 〈h〉 = q. Again,

assume GEN only has one-bit input x . After revealing K and {K ( j)} j∈E to EVAL, where K = g xhr

and K ( j) = g xhr( j)x , a natural solution is for GEN to prove in zero-knowledge the knowledge

of d( j) = r( j) − r such that K ( j) = K · hd( j) for all j ∈ E. Nonetheless, we observe that it is

unnecessary for GEN to hide (r( j)x − r) from EVAL. Indeed, since r and {r( j)x } j∈E are new random

variables introduced by GEN, giving (r( j)x − r) in clear to EVAL will not compromise GEN’s input

privacy.

To generalize this idea, we introduce the following notion.

Definition 4.2 (Malleable Claw-Free Collections). A four-tuple of algorithms (G, D, F, R) is a

malleable claw-free collection if the following conditions hold.

1. A subset of claw-free collections: (G, D, F) is a claw-free collection, and the range of D

and F are cyclic groups, denoted by (G1,+) and (G2, ·) respectively.

2. Uniform domain sampling: For any I in the range of G, random variable D(0, I) and

D(1, I) are uniform over G1, and denoted by D(I) for simplicity.

3. Malleability: R :G1→G2 runs in polynomial time, and for b ∈ {0, 1}, any I in the range

of G, and any r1, r2 ∈G1, fb(r1+ r2) = fb(r1) · RI(r2).

Remark 4.1. It is noteworthy that group operations are only needed for the input gates, those of

GEN in particular. All of the remaining gates in the circuit are generated as per the Yao protocol.

So, unlike solutions with committed OT such as [JS07], number-theoretic operations are only used

for the input gates rather than the entire circuit.

A CCCT based on the malleable claw-free collections is shown in Protocol 4.1.
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Protocol 4.1. Secure CCCT via Malleable Claw-Free Collections

Common Input: security parameter 1k, statistical security parameter 1σ, perfectly-hiding

commitment scheme com, and malleable claw-free collection (G, D, F, R). Also, both

parties have built the cut-and-choose communication channels. Let E denote the set

of the evaluation instances.

Before CCCT starts: Both parties jointly set up the CCCT environment as follows:

1. EVAL computes I ← G(1k) and sends I to GEN.

2. For all j ∈ [σ], GEN picks π( j)
R← {0,1}. Then GEN computes r( j)b ← D(I) and

K ( j)b ← fb(r
( j)
b ) for all j ∈ [σ] and b ∈ {0, 1}. Recall that we use fb(r) to denote

F(b, I , r) for simplicity.

Remark 4.2. Recall that in the Yao protocol, for each wi of the wires corresponding

to GEN’s input, GEN picks (K ( j)0 , K ( j)1 ,π( j))
R← {0,1}2k+1. Here, we encode the

random keys differently.

3. For all j ∈ [σ], all b ∈ {0,1}, GEN computes W ( j)
b ← (K ( j)b , b ⊕ π( j)), Θ( j)b ←

com(W ( j)
b⊕π( j)

), and Π( j)← com(π( j)).

4. GEN sends {Θ( j)0 ,Θ( j)1 ,Π( j)} j∈[σ] to EVAL.

Remark 4.3. Now both parties have set up the common inputs for CCCT, includ-

ing security parameter 1k, statistical security parameter 1σ, and commitments

{Θ( j)0 ,Θ( j)1 ,Π( j)} j∈[σ].

Private Input: GEN has x ∈ {0,1} and {K ( j)0 , K ( j)1 ,π( j)} j∈[σ].

Output: EVAL receives {W ( j)} j∈E and out ∈ {0,1}.
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1. GEN picks r ← D(I) and sends to EVAL K ← fx(r).

Remark 4.4. Recall that the identical range distribution property ensures that K reveals

no information about x, in particular, for all x ∈ {0,1} and r in fx(·)’s domain, there

always exists r ′ in f1−x(·)’s domain such that f1−x(r ′) = fx(r).

2. (Check instances)

• For all j ∈ [σ], GEN sends (r( j)0 , r( j)1 ) and decommitments (W ( j)
0 , W ( j)

1 ,π( j)) over

the check channel.

• For all j ∈ [σ]\E, EVAL parses W ( j)
0 as (K ( j)0 ,δ( j)0 ) and W ( j)

1 as (K ( j)0 ,δ( j)1 ) such

that |δ( j)0 |= |δ
( j)
1 |= 1. EVAL checks the following:

– if W ( j)
0 and W ( j)

1 successfully decommit Θ( j)
δ
( j)
0

and Θ( j)
δ
( j)
1

, respectively;

– if π( j) successfully decommits Π( j);

– if π( j) = δ( j)0 and δ( j)0 ⊕δ
( j)
1 = 1; and

– if K ( j)0 = f0(r
( j)
0 ) and K ( j)1 = f1(r

( j)
1 ).

If any of the checks fails, EVAL computes out← 0.

3. (Evaluation instances)

• For all j ∈ [σ], GEN computes d( j)← r( j)− r and sends d( j) and decommitments

W ( j)←W ( j)
x over the evaluation channel.

• For j ∈ E, EVAL parses W ( j) as (K ( j),δ( j)) such that |δ( j)|= 1. EVAL then checks

the following:

– if W ( j) successfully decommits Θ( j)
δ( j)

; and

– if K ( j) = K · R(d( j)).

If any of the checks fails, EVAL computes out← 0.



86

Remark 4.5. Recall that the cut-and-choose communication channels ensure that over

the check channel, EVAL receives only the communication for check instances; and

likewise, over the evaluation channel, EVAL receives only that for evaluation instances.

4. If out 6= 0, then EVAL computes out← 1.

5. Finally, EVAL outputs ({W ( j)} j∈E,out).

Lemma 4.1. Protocol 4.1 is a secure CCCT instantiation.

Proof. To show that this protocol is indeed a secure CCCT, we show its completeness, indistin-

guishability, and soundness as follows.

Completeness: If both parties are honest, all the decommitments reveal the corresponding

commitments successfully. Moreover, K · R(d( j)) = fx(r) · R(r( j)− r) = fx(r + r( j)− r) =

fx(r( j)) = K ( j), which means that all evaluation circuits will pass all the checks. Hence,

EVAL always accepts.

Indistinguishability: Note that in EVAL’s transcript from running this protocol, only K and

{K ( j)} have information about GEN’s input x . Since K = fx(r) and K ( j) = fx(r( j)), we

first define tran(x) =
�

fx(r), { fx(r( j))} j∈E

�

. It suffices to show that {tran(0)} = {tran(1)}.

Note that due to the identical range distribution property, there must exist z ∈G1 such
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that f0(0) = f1(z). As a result,

tran(0) =
¦�

f1(r), { f1(r
( j))} j∈E

�©

r,r( j)∈G1

=
¦�

f0(0+ r), { f0(0+ r( j))} j∈E

�©

r,r( j)∈G1

=
¦�

f0(0) · R(r), { f0(0) · R(r( j))} j∈E

�©

r,r( j)∈G1
(Malleability Property)

=
¦�

f1(z) · R(r), { f1(z) · R(r( j))} j∈E

�©

r,r( j)∈G1
( f0(0) = f1(z))

=
¦�

f1(z+ r), { f1(z+ r( j))} j∈E

�©

r,r( j)∈G1

=
¦�

f1(s), { f1(s
( j))} j∈E

�©

s,s( j)∈G1

= tran(1)

Soundness: Let F ⊂ E be those instances that are honest constructed. We first claim that if

out = 1, then the probability that |F | < |E|/2 is negligible in σ. We further claim that

GEN’s inputs to those in F are consistent with high probability; otherwise, GEN must be

capable of finding a claw.

Claim 4.2. Pr(|F |< |E|/2) is negligible in σ.

Proof. Recall that |E| = r ·σ for some 0 < r < 1. The event that |F | < |E|/2 happens

when there are more than |E|/2 bad instances and none of them is chosen for check. The

probability of this event is

Pr(|F |< |E|/2)

<

�

σ− |E|/2
σ− |E|

��

σ

σ− |E|

�−1

=
�

(σ− |E|/2)!
(σ− |E|)!(|E|/2)!

��

σ!

(σ− |E|)!(|E|)!

�−1

=
(σ− |E|/2)!(|E|)!
σ!(|E|/2)!

=
� |E|/2+ 1

σ− |E|/2+ 1

�

·
� |E|/2+ 2

σ− |E|/2+ 2

�

· · ·
� |E|/2+ |E|2
σ− |E|/2+ |E|/2

�

<

� |E|
σ

�|E|/2

= r−r·σ/2. (|E|= r ·σ)
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This probability decreases exponentially as σ increases and is therefore negligible.

Claim 4.3. Recall that EVAL’s output W ( j) can be parsed as (K ( j),δ( j)) such that |δ( j)|= 1.

If out= 1, then for all a, b ∈ F, δ(a)⊕π(a) = δ(b)⊕π(b) except with probability negligible

in k.

Proof. Let x ( j) denote GEN’s input to the j-th circuit. Recall that δ( j) = x ( j) ⊕ π( j), or

equivelently, δ( j)⊕π( j) = x ( j). Hence, this claim is equivalent to proving that x (a) = x (b)

for all a, b ∈ F . To prove in contradiction, suppose there exist a, b ∈ F such that

x (a) 6= x (b). Without loss of generality, let x (a) = 0 and x (b) = 1. We therefore know that

K (a) = f0(r
(a)) and K (b) = f1(r

(b)) (4.1)

for some r(a), r(b) ∈G1. Since out= 1, we also know that

K (a) = K · R(d(a)) and K (b) = K · R(d(b)). (4.2)

From Eqn (4.2), we know that K (a) ·R(d(a))−1 = K = K (b) ·R(d(b))−1. Along with Eqn (4.1),

we conclude that

f0(r
(a)) · R(d(a))−1 = f1(r

(b)) · R(d(b))−1⇒ f0(r
(a)− d(a)) = f1(r

(b)− d(b)).

In other words, GEN has found a claw (r(a)− d(a), r(b)− d(b)), which happens only with

probability negligible in k.

We therefore prove the soundness and complete the proof of this lemma.

Consider the claw-free collection constructed above under the Discrete Logarithm assump-

tion, we know that it can become a malleable claw-free collection simply by letting G1 = Zq,

G2 = Z∗p, and RI(r) = hr for any r ∈G1. We therefore have the following corollary.
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Corollary 4.4. If there exists a group in which the Discrete Logarithm assumption holds, then

there exists a secure CCCT instantiation.

4.1.2 CCOT via Committing OTs

Kiraz and Schoenmakers [KS06] introduced another notion of OT called COT (committing

oblivious transfer) in which the receiver also receives perfectly-hiding commitments to both

of the sender’s inputs, and the sender receives as output the corresponding decommitments.

In fact, Kiraz and Schoenmakers introduced this notion specifically for use in a Yao circuit

evaluation context. We adopt the idea behind their construction.

Formally, a
�2

1

�

-COT is a pair of interactive probabilistic polynomial-time algorithms sender

and receiver that jointly run the following protocol

�2
1

�

-COT : (((m0, r0), (m1, r1)), b) 7→ ((φ0,φ1), (m,Φ0,Φ1)),

where b ∈ {0, 1} and decommitment φc can reveal Φc to mc for c ∈ {0, 1}. Correctness requires

that m = mb for all messages m0, m1, for all choice b ∈ {0,1}, and for all coin tosses of the

algorithms. Here, we use the standard notion of security given in Definition 2.5.
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Protocol 4.2. Secure CCOT via
�2

1

�

-COTs

Common Input: security parameter 1k, statistical security parameter 1σ, perfectly-hiding

commitment scheme com, and commitments {Ω( j)0 ,Ω( j)1 } j∈[σ]. Also, both parties

have built the cut-and-choose communication channels. Let E denote the set of the

evaluation instances.

Private Input: GEN has {W ( j)
0 , W ( j)

1 } j∈[σ] such that W ( j)
b = (K

( j)
b , b⊕π( j)) for some π( j) ∈

{0,1}, and EVAL has y ∈ {0, 1}.

Output: EVAL receives {W ( j)} j∈[σ] and out ∈ {0, 1}.

1. For j ∈ [σ], b ∈ {0,1}, GEN computes U ( j)b ←W ( j)
b and picks r( j)b

R← {0, 1}poly(k).

2. Both parties jointly run a committing protocol

�2
1

�

-COT : (((~U0,~r0), (~U1,~r1)), y) 7→ (( ~φ0, ~φ1), (~U , ~Φ0, ~Φ1)),

where for b ∈ {0,1}, ~Ub denotes local data {U ( j)b } j∈[σ], ~rb denotes local randomness

{r( j)b } j∈[σ], ~φb denotes decommitments {φ( j)b } j∈[σ], ~U denotes EVAL’s retrieved labels

{U ( j)} j∈[σ], and ~Φb denotes the commitment {Φ( j)b } j∈[σ].

Remark 4.6. Note that if GEN is honest, then U ( j)b = W ( j)
b for all j ∈ [σ], b ∈ {0,1}.

The security properties of the committing
�2

1

�

-COT then ensure that once the
�2

1

�

-

COT successfully completes, EVAL’s output U ( j) = U ( j)y = W ( j)
y and φ( j)b reveals Φ( j)b to

U ( j)b =W ( j)
b for all j ∈ [σ], b ∈ {0,1}.

However, GEN could be malicious. We therefore resort to the cut-and-choose technique

that we check those in [σ]\E. This guarantees the correctness of a majority in E, which

achieves the goal of a secure CCOT.
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3. For all j ∈ [σ] and b ∈ {0, 1}, GEN sends decommitments (ω( j)b ,φ( j)b ) over the check

channel.

4. (Check the check instances) For all j ∈ [σ]\E, EVAL checks the following:

• if decommitment ω( j)b successfully reveals commitment Ω( j)b , a common input,

to label W ( j)
b for b ∈ {0,1};

• if decommitment φ( j)b successfully reveals commitment Φ( j)b , an output from the
�2

1

�

-COT, to label U ( j)b for b ∈ {0, 1};

• if the revealed W ( j)
b and U ( j)b coincide for b ∈ {0, 1}; and

• if labels (W ( j)
0 , W ( j)

1 ) are in the format that W ( j)
b = (K ( j)b , b ⊕ π( j)) for some

π( j) ∈ {0,1} for b ∈ {0,1}.

If any of the checks fails, EVAL computes out← 0. Otherwise, out← 1.

5. Finally, EVAL outputs ({W ( j)} j∈[σ],out).

Lemma 4.5. Protocol 4.2 is a secure CCOT instantiation.

Theorem 4.6 ([NP01]). If there exists a group in which the Decisional Diffie-Hellman assumption

holds, there exists a protocol securely computes the committing
�2

1

�

-OT.

Protocol 4.3 constructively demonstrates this theorem. This protocol is a simple modification

of the OT protocols designed by Bellare and Micali [BM89] and later Naor and Pinkas [NP01].

We simply add a ZK proof of knowledge in intermediate steps. Intuitively, the receiver-security

is achieved due to the Decisional Diffie-Hellman assumption and the fact that the ZK proof

of knowledge is independent of the receiver’s input. On the other hand, the sender security

comes from the uniform distributions of X ( j)b and Y ( j)b over G given r( j)b and s( j)b are uniformly

chosen and the fact that the ZK proof has an ideal-world simulator for the verifier (or the

receiver in the OT). Note that the efficient proof of knowledge is due to Cramer, Damgård, and

MacKenzie [CDM00].
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Protocol 4.3. A
�2

1

�

-COT based on the Decisional Diffie-Hellman Assumption

Common Input: Security parameter 1k, statistical security parameter 1σ, perfectly-hiding

commitment scheme com, group G of prime order p, and generator g of group G.

Private Input: GEN has input (( ~W0,~r0), ( ~W1,~r1)), where ~Wb denotes private data {W ( j)
b } j∈[σ]

and ~rb denotes randomness {r( j)b } j∈[σ]. EVAL has input y ∈ {0, 1}.

Output: GEN receives { ~φ0, ~φ1}, where for b ∈ {0, 1}, ~φb denotes decommitments {φ( j)b } j∈[σ].

EVAL receives ( ~W , ~Φ0, ~Φ1), where ~W denotes received input {W ( j)} j∈[σ] and ~Φb de-

notes commitments {Φ( j)b } j∈[σ] for b ∈ {0, 1}.

1. EVAL picks a, b
R← Zp and computes g0← g, g1← ga, and (h0, h1)← (g b

0 , g b+1
1 ). Then

EVAL sends (g0, g1, h0, h1) to GEN.

2. EVAL proves in ZK the knowledge of b such that (h0 = g b
0 )∧ (h1 = g b+1

1 ).

3. EVAL picks r
R← Zp, computes (g, h)← (g r

y , hr
y), and then sends (g, h) to GEN.

4. For j ∈ [σ], b ∈ {0,1}, GEN

(a) maps W ( j)
b into some K ( j)b ∈G;

(b) uses r( j)b as randomness to compute s( j)b , t( j)b ∈ Zp;

(c) lets φ( j)b ← (W
( j)
b , r( j)b );

(d) computes X ( j)b ← g
s( j)b
b h

t( j)b
b and Y ( j)b ← g s( j)b ht( j)b · K ( j)b ; and

(e) sends (X ( j)b , Y ( j)b ) to EVAL.

5. For j ∈ [σ], EVAL

(a) computes K ( j)← Y ( j)y · (X
( j)
y )
−1;
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(b) unmaps K ( j) to W ( j); and

(c) lets Φ( j)0 ← (X
( j)
0 , Y ( j)0 ) and Φ( j)1 ← (X

( j)
1 , Y ( j)1 ).

6. Finally, GEN outputs ( ~φ0, ~φ1) and EVAL outputs ( ~W , ~Φ0, ~Φ1).

Remark 4.7. Mapping a random input W ( j)
b into group element K ( j)b ∈ G and its reverse

operation should be made public before this protocol starts. More importantly, this mapping

has to be injective.

Corollary 4.7. If there exists a group in which the Decisional Diffie-Hellman assumption holds,

then there exists a secure CCOT instantiation.

4.2 Secure 2PC via Auxiliary Circuits

In this section, we study the use of auxiliary circuits in order to instantiate CCCT and CCOT

modules. Generally speaking, to instantiate the modules, the standard technique requires GEN

to provide a proof that it has behaved honestly during the collaboration. We observed that

the Yao protocol is itself a powerful tool to provide such a proof. So we propose that besides

the objective circuit, both participants jointly work on a few auxiliary circuits, whose output is

exactly the proof of honest behavior that EVAL expects.

Secure CCCT vis 2-Universal Hash Circuit In Section 4.2.1, we suggest to instantiate a

secure CCCT by using a 2-universal hash circuit. The insight is that the cut-and-choose

technique will ensure that this auxiliary circuit is correctly constructed and its output (the hash)

will ensure that GEN’s inputs are consistent among the evaluation circuits but nothing about

their exact values. For this technique to work, we need to endow a 2-universal hash of GEN’s

input with the collision-free and hiding properties. The former ensures that the consistency of
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the hashes implies the consistency of GEN’s inputs, and the latter ensures that the hashes do not

reveal information about GEN’s input.

Secure CCOT via Probe-Resistant Matrices Lindell and Pinkas suggested an auxiliary circuit

to deter the Selective Failure Attack [LP07]. In their solution, EVAL picks M ∈ {0,1}n×m for

some m ∈ N and computes its new input ȳ ∈ {0, 1}m such that M · ȳ = y . The auxiliary circuit

will later convert ȳ back to y to ensure correctness. The insight is that now the fact that GEN

gets to probe some partial information about ȳ , due to Input Key Inconsistency Attack, should

not grant it non-negligible advantage to learn partial information about EVAL’s real input y . In

Section 4.2.2, we first capture the security property needed and formulate the probe-resistant

matrices. Then we present a secure CCOT that is instantiated from a probe-resistant matrix

circuit. Finally, we suggest parameters that achieve the asymptotically optimal performance.

It is worth-mentioning that these auxiliary circuits were not taken into serious consideration

previously for they were considered too costly. Indeed, back in 2009, Pinkas et al. were able

to report a system that only handles a circuit of 33,880 gates at the rate of 40 gates per

second [PSSW09]. A system that is able to handle a circuit of billions of gates at the rate of

hundreds of thousands of gates per second is only recently reported [KsS12]. So the burden of

those auxiliary circuits is no longer unbearable.

4.2.1 CCCT via 2-Universal Hash Circuit

In this section, we first give the definition of universal hash functions, and then we discuss how

we endow a universal hash circuit with both collision-free and hiding properties. Finally, we

present a secure CCCT and sugguest proper parameters.
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Definition 4.3 (Universal Hash). A collection of hash functions H = {h|h : A→ B} is called

universal if for any distinct x , y ∈ A, the probability that a uniformly chosen h ∈H satisfies that

h(x) = h(y) is at most 1/|B|.

The collision-free property comes naturally with universal hash functions. Indeed, Defini-

tion 4.3 shows that for any distinct x , y, if they are fixed before h is uniformly chosen, their

hashes are unlikely to collide. This suggests that the collision-free property can be achieved by

letting GEN commit to (fix) its inputs before a hash function is jointly (uniformly) picked. Later,

the consistency of GEN’s inputs can be implied by the consistency of the outputs—the hashes.

Our protocol is outlined as follows:

1. GEN commits to its inputs x (1), x (2), . . . , x (σ), where x ( j) denotes GEN’s input to the j-th

circuit.

2. GEN and EVAL jointly and uniformly pick h ∈H.

3. GEN constructs σ copies of the garbled circuit that computes (x ,⊥) 7→ (⊥, h(x)).

4. EVAL asks to check the correctness of a random fraction of the garbled circuits. If the check

fails, EVAL aborts; otherwise, EVAL asks GEN to decommit to its inputs for the remaining

(unchecked) circuits.

5. EVAL evaluates the remaining circuits. If the evaluation outputs (the hashes) are not

consistent, EVAL aborts; otherwise, EVAL accepts.

We next argue, at a high level, that with high probability, this protocol guarantees the

desired collision-free property, that is, GEN’s inputs to the majority of the remaining circuits are

consistent. Indeed, if a malicious GEN is able to pass the hash consistency check and provide

inconsistent inputs to the majority of the remaining circuits, there are only three possibilities:



96

1. The circuits are faulty: The cut-and-choose technique ensures that with high probability,

this only happens to a minority of the remaining circuits.

2. GEN is really lucky to have found a collision: By Definition 4.3, this happens with

probability at most 1/|B|, which becomes negligible if B is properly chosen.

3. GEN is able to break the binding property of the commitments: Note that since universal

hash functions do not even provide pre-image resistance, given h and h(x (a)), it can

be easy to find x (b) such that h(x (a)) = h(x (b)). Therefore, if GEN is able to open the

commitment from Step 1 to some value computed after h is chosen in Step 2, it breaks

the desired security property. However, this would imply that GEN is able to break the

commitment scheme’s binding property. This happens with negligible probability too.

A deterministic universal hash h : A→ B provides the collision-free property we need, yet

it is insufficient for the purposes here due to the lack of the hiding property. Indeed, if the

size of A is small, EVAL could exhaustively compute the hash of all possibilities in A and then

deduce x ( j) ∈ A from h(x ( j)). As a result, the hash function has to be randomized. We further

observe that if the hashes are pseudo-random, they reveal little information about the input,

which is the hiding property we desire. In particular, Leftover Hash Lemma (Lemma 4.8) states

that the output of a uniformly picked universal hash function h is pseudo-random (even if

h is made public) as long as the input has enough entropy. All we need to do is introduce

entropy to the input. We hence suggest that objective function (x ,⊥) 7→ (⊥, h(x)) is converted

to (x ||r,⊥) 7→ (⊥, h(x ||r)), where r is a proper randomness picked by GEN at the beginning

and h is a universal hash function uniformly picked after GEN commits to its new input x ||r.

Lemma 4.8 (Leftover Hash Lemma [IZ89]). Let Xn denote {0,1}n for some n ∈ N, and let

H = {h|h : Xk+2ε→ Xk} be a collection of universal hash functions for some ε, k ∈ N. Distributions

{(h, h(x))} and {(h, y)} are statistically indistinguishable with probability at least 1− 2−ε, where

h, x, and y are uniformly chosen from H, Xk+2ε, and Xk, respectively.
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We argue that the introduction of random input r does provide the hiding property even

when h is public. Indeed, given h(x ||r) and h, as long as r is long enough (has enough entropy),

for any x ′, there must exist r ′ such that h(x ||r) = h(x ′||r ′). This shows that fixing h(x ||r) does

not rule out any possibilities of x .

Next, we suggest the use of the matrix universal hash family

Mk,m = {hM | hM(x) = M · x for some M ∈ {0, 1}k×m},

for some m ∈ N. A nice property of this hash family is that it is ⊕-homomorphic, that is, for any

x , y ∈ {0, 1}m and hM ∈Mk,m, it holds that hM(x ⊕ y) = hM(x)⊕ hM(y). This homomorphism

allows a very efficient instantiation of the above protocol outline with the following twists:

1. GEN commits not to x ( j) directly but to x ( j)⊕π( j) and π( j) instead, where π( j)i is random

bit assigned to the wire corresponding to GEN’s i-th input bit.

2. GEN provides not a garbled circuit that lets EVAL compute h(x ( j)) obliviously but rather

actual hash h(π( j)) that GEN computes locally.

3. Let E be the set of the evaluation circuits.

• For j ∈ [σ]\E, EVAL checks not the correctness of the j-th garbled circuit but the

correctness of h(π( j)) (by asking GEN to decommit to π( j) first).

• For j ∈ E, EVAL learns h(x ( j)) not via evaluating the j-th garbled circuit but via

asking GEN to decommit to z( j) = x ( j)⊕π( j) and then computing h(z( j))⊕ h(π( j)).

The main goal of the above twist is to replace the garbled circuit that computes h(x ( j))

with actual hash h(π( j)) that is locally computed while maintaining the main structure of the

protocol, that is, letting GEN commit to its inputs before h is jointly picked and letting EVAL

learn the hash of the input to the evaluation circuits.
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The complete protocol of the secure CCCT instantiated from 2-universal hash circuit is

presented in Protocol 4.4.
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Protocol 4.4. Secure CCCT via 2-Universal Circuit

Common Input: security parameter 1k, statistical security parameter 1σ, perfectly-hiding

commitment scheme com, and commitments {Θ( j)i,0,Θ( j)i,1,Π( j)i } j∈[σ],i∈[n]. Also, both

parties have built the cut-and-choose communication channels. Let E denote the set

of the evaluation instances.

Private Input: GEN has x ∈ {0,1}n and {K ( j)i,0 , K ( j)i,1 ,π( j)i } j∈[σ],i∈[n].

Output: EVAL receives {W ( j)
i } j∈E,i∈[n] and out ∈ {0, 1}.

1. (Compute New Input) GEN picks r
R← {0,1}t for some t ∈ N and computes x̄ ←

(x , r) and m← n+ t.

2. For j ∈ [σ], i ∈ [t], GEN picks (K ( j)n+i,0, K ( j)n+i,1,π( j)n+i)← {0,1}2k+1.

3. (Fix GEN’s Input) For j ∈ [σ], i ∈ [m], GEN commits to W ( j)
i, x̄ i

by sending Ψ( j)i to EVAL,

where W ( j)
i,b = (K

( j)
i,b , b⊕π( j)i ) and Ψ( j)i = com(W ( j)

i, x̄ i
).

4. (Uniformly Pick a Hash) Both parties jointly run a coin toss protocol to uniformly

pick M ∈ {0,1}k×m.

5. (Securely Compute GEN’s Input Hashes) Both parties jointly run the twisted version

of the cut-and-choose-based Yao protocol as previously discussed. More specifically,

both parties work as follows:

(a) (Commit to Input Label Pairs) GEN commits to the label pairs assigned to all

the input wires just like in the Main protocol. Recall that the commitments to

the label pairs corresponding to the first n wires are already common inputs.

It remains to commitment to the new t wires. Therefore, GEN commits to
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{W ( j)
n+i,0, W ( j)

n+i,1,π( j)n+i} j∈[σ],i∈[t] by sending {Θ( j)n+i,0,Θ( j)n+i,1,Π( j)n+i} j∈[σ],i∈[t] to EVAL,

where

Θ( j)n+i,b = com(W ( j)

n+i,b⊕π( j)n+i

) and Π( j)n+i = com(π( j)n+i).

(b) (Retrieve the Twisted Garbled Circuit) For j ∈ [σ], GEN sends h( j)π to EVAL,

where h( j)π = M · (π( j)1 ||π
( j)
2 || · · · ||π

( j)
m ).

(c) (Check Instances)

i. For all j ∈ [σ], GEN sends decommitments {W ( j)
i,0 , W ( j)

i,1 ,π( j)i }i∈[m] with re-

spect to {Θ( j)i,0,Θ( j)i,1,Π( j)i }i∈[m] over the check channel.

ii. For all j ∈ [σ]\E, EVAL checks the following:

A. if Π( j)i successfully decommits to π( j)i for all i ∈ [m];

B. if Θ( j)i,b successfully decommits to W ( j)

i,b⊕π( j)i

for b ∈ {0,1} and all i ∈

[m] such that W ( j)
i,0 = (K

( j)
i,0 ,π( j)i ) and W ( j)

i,1 = (K
( j)
i,1 , 1− π( j)) for some

K ( j)i,0 , K ( j)i,1 ∈ {0, 1}k;

C. if h( j)π = M · (π( j)1 ||π
( j)
2 || · · · ||π

( j)
m ).

If any of the checks fails, EVAL computes out← 0.

(d) (Evaluation Instances)

i. For all j ∈ [σ], GEN sends decommitments {X ( j)i }i∈[m] with respect to

{Θ( j)i,0,Θ( j)i,1}i∈[m] and decommitments {X ′( j)i }i∈[m] with respect to {Ψ( j)i }i∈[m]

over the evaluation channels.

ii. For all j ∈ E and all i ∈ [m], EVAL parses X ( j)i as (K ( j)i ,δ( j)i ) and computes

h( j)x ← h( j)π ⊕ (M · (δ
( j)
1 ||δ

( j)
2 || · · · ||δ

( j)
m )). Let hx be the most common element

in multiset {h( j)x } j∈E.

iii. For each j ∈ E, EVAL checks the following:
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A. if θ ( j)
i,δ( j)i

successfully decommits to X ( j)i for all i ∈ [m], where X ( j)i =

(K ( j)i ,δ( j)i );

B. if Ψ( j)i successfully decommits to X ′( j)i to for all i ∈ [m];

C. if X ( j)i = X ′( j)i for all i ∈ [m].

If any of the checks fails or hx does not occur more than |E|/2 times in

multiset {h( j)x } j∈E, EVAL computes out← 0.

6. If out 6= 0, EVAL computes out← 1.

7. Finally, EVAL outputs ({W ( j)
i } j∈E,i∈[n],out).

Lemma 4.9. Assume that the
�2

1

�

-OT protocol is secure in the presence of malicious adversaries,

and there exist a perfectly-hiding commitment scheme, and a semantically secure symmetric

encryption scheme. Protocol 4.4 is a secure CCCT.

It remains to show the parameter selection for the desired security parameter k. By the

definition of 2-universal hash function family, GEN cannot pick distinct x (i), x ( j) ∈ A whose

hashes collide with probability better than 1/|B|. So the size of B needs to be at least 2k. Next,

the Leftover Hash Lemma states that if the input’s min-entropy minus the output hash’s entropy

is great than 2 lg(1/ε), then the output hash is distinguished from a truly random string with

probability at most ε. In other words, the output hash is k-bit long and 2−k-indistinguishable

from truly random if the min-entropy of x ||r is at least k+2 lg(1/2−k) = 3k. To put the minimal

assumption on GEN’s input entropy, a simple approach suggested by the Leftover Hash Lemma

is to append 3k random bits after x , that is, |r|= 3k. However, by exploiting the properties of

the specific hash familyM, we can do a little better than this, that is, we can reach the same

goal with |r|= 2k+ lg(k).

Lemma 4.10. LetM= {hM | M ∈ {0, 1}k×(n+t) and hM(x) = M · x for some k, n, t ∈ N}. For any

x ∈ {0, 1}n, if r is uniformly distributed over {0, 1}t such that t ≥ 2k+ lg(k), the probability that
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a randomly picked hM ∈M satisfies that hM(x ||r) is uniformly distributed over {0, 1}k is at least

1− 2−k.

Proof. Note that picking hM ∈M is equivalent to picking M ∈ {0,1}k×(n+t). We first fix some

x ∈ {0,1}n. For a random M ∈ {0,1}k×(n+t), let M = [M1, M2], where M1 ∈ {0,1}k×n and

M2 ∈ {0,1}k×t . For any r ∈ {0,1}t , we know that

hM(x ||r) = M ·









x

r









= M1 x +M2r.

For hM(x ||r) to be uniformly distributed over {0, 1}k, it suffices that M2r is uniformly distributed

over {0,1}k, which happens if and only if the rank of M2 is k. So all we need to do is count

the number of full rank matrices of size k × t. Starting from the first row of M2, there are

2t − 1 choices (all but the all-zero vector). The second row can be any vector outside the space

spanned by the first row, and there are 2t − 2 choices. Following the same logic, the i-th row

can be any vector outside the space spanned by the first (i− 1) rows, and there are 2t − 2i−1

choices. Therefore, among all the 2kt possibilities, the number of full rank matrices is

F =
k−1
∏

i=0

(2t − 2i−1)≥ (2t − 2k−1)k = 2kt(1− 2k−1−t)k ≥ 2kt(1− k2k−1−t).

As a result, the probability that hM(x ||r) is uniformly distributed over {0, 1}k is the same as the

probability that M2 has full rank, which is

F

2kt ≥ 1− k · 2k−1−t ≥ 1− k · 2k−1−2k−lg(k) = 1− 2−1−k > 1− 2−k.
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4.2.2 CCOT via Probe-Resistant-Matrix Circuit

We first give the formal definition of the probe-resistant matrices as follows:

Definition 4.4. M ∈ {0, 1}n×m for some n, m ∈ N is called k-probe-resistant for some k ∈ N if for

any L ⊂ [n], the Hamming distance of
⊕

i∈L Mi is at least k, where Mi denotes the i-th row of M.

As long as M is k-probe-resistant, a malicious GEN will have to successfully probe k bits

of ȳ in order to gain any partial information of y, the probability of which is negligible. We

stress that matrix M can even be made public so that the auxiliary circuit could consist of only

XOR-gates, which requires no communication overhead and can be computed efficiently when

combining with the free-XOR technique [KS08b]. In short, not only does this approach elegantly

reduce the selective failure attack problem to the classic error correcting code construction, it

also incurs very little overhead.

We next give the full description of the secure CCOT instantiated from probe-resistant

matrix circuit in Protocol 4.5.
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Protocol 4.5. Secure CCOT via Probe-Resistant Matrix Circuit

Common Input: security parameter 1k, statistical security parameter 1σ, perfectly-hiding

commitment scheme com, and commitments {Ω( j)i,0,Ω( j)i,1} j∈[σ],i∈[n]. Also, both parties

have built the cut-and-choose communication channels. Let E denote the set of the

evaluation instances.

Private Input: GEN has {W ( j)
i,0 , W ( j)

i,1 } j∈[σ],i∈[n] such that W ( j)
i,b = (K

( j)
i,b , b ⊕ π( j)i ) for some

π
( j)
i ∈ {0, 1}, and EVAL has y ∈ {0, 1}n for some n ∈ N.

Output: EVAL receives {W ( j)
i } j∈[σ],i∈[n] and out ∈ {0,1}.

1. EVAL randomly computes a k-probe-resistant matrix M ∈ {0, 1}m×n.

2. EVAL computes ȳ ∈ {0,1}m such that M · ȳ = y .

Remark 4.8. ȳ can always be efficiently computed by Gaussian Elimination.

3. EVAL reveals (m, M) so that both parties can agree upon the auxiliary circuit C that

computes (⊥, z) 7→ (⊥, M · z) for any z ∈ {0,1}m.

4. Both parties jointly run σ copies of the Yao protocol over the auxiliary circuit in the

way that the i-th output bit of the j-th circuit are assigned label pair (W ( j)
i,0 , W ( j)

i,1 ),

which is GEN’s private input to this protocol. More specifically, both parties work as

follows:

(a) GEN garbles σ copies of circuit C . We denote by G(C)( j) the j-th circuit, by

(U ( j)i,0 , U ( j)i,1 ) the label pair assigned to the i-th input wire of G(C)( j), and by

(V ( j)i,0 , V ( j)i,1 ) the label pair assigned to the i-th output wire of G(C)( j).
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(b) GEN commits to (U ( j)i,0 , U ( j)i,1 ) by sending (∆( j)0 ,∆( j)1 ) to EVAL, where

∆( j)i,b = com(U ( j)i,b ).

(c) GEN sends {G(C)( j)} j∈[σ] to EVAL.

(d) Both parties jointly execute m instances of
�2

1

�

-OT. In the i-th instance, both

parties run

OT : ((~δi,0, ~δi,1), ȳi) 7→ (⊥, ~δi),

where for b ∈ {0, 1}, ~δi,b denotes decommitments {δ( j)i,b} j∈[σ] and ~δi denotes the

received decommitments {δ( j)i } j∈[σ].

Remark 4.9. If GEN is honest, decommitment δ( j)i,b can successfully reveal commit-

ment ∆( j)i,b to input label U ( j)i,b for all j ∈ [σ], i ∈ [n], and b ∈ {0,1}.

(e) GEN sends {δ( j)i,b,ω( j)i,b} j∈[σ],b∈{0,1} over the check channel.

(f) For each j ∈ [σ]\E, EVAL checks the following:

i. if δ( j)i,b successfully reveals ∆( j)i,b to U ( j)i,b) for i ∈ [m], b ∈ {0, 1};

ii. if ω( j)i,b successfully reveals Ω( j)i,b to W ( j)
i,b for i ∈ [n], b ∈ {0,1}; and

iii. if G(C)( j) is an honest garbled version of C such that (U ( j)i,0 , U ( j)i,1 ) is indeed

the label pair assigned to the i-th input wire and (W ( j)
i,0 , W ( j)

i,1 ) indeed the

label pair assigned to the i-th output wire.

If any of the checks fails, EVAL computes out← 0; otherwise, EVAL computes

W ( j)
i ←W ( j)

i,yi
for all j ∈ [σ]\E and i ∈ [n].

(g) For each j ∈ E, EVAL

i. checks if δ( j)i successfully reveals ∆( j)i, ȳi
to U ( j)i, ȳi

for i ∈ [m], and

ii. evaluates G(C)( j) with input labels {U ( j)} j∈[m].
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If any of the checks fails, EVAL computes out← 0; otherwise, let {W ( j)
i } j∈E,i∈[n]

be the computed labels corresponding to all output wires.

5. If out 6= 0, EVAL computes out← 1.

6. Finally, EVAL outputs ({W ( j)
i } j∈[σ],i∈[n],out).

Lemma 4.11. Assume that the
�2

1

�

-OT protocol is secure in the presence of malicious adversaries,

and there exist a perfectly-hiding commitment scheme, and a semantically secure symmetric

encryption scheme. Protocol 4.5 is a secure CCOT.

In this work, we would like to improve upon the randomized construction proposed by

Lindell and Pinkas. Their construction works as follows: Let M be randomly picked from

{0,1}n×m. As long as m is big enough, the probability that M fails to be k-probe-resistant will

be negligible. In particular, they suggest that m=max(4n, 8k). This approach is intuitive and

simple, but there is room for improvement. Indeed, our study shows that it is possible to reduce

m to less than 2n when n is big enough, for example, when n= 1024, we are able to generate

an 80-probe-resistant M such that m= 1752.

We believe this improvement is worthwhile for two reasons. First, the computation of M

can be done locally by the evaluator alone. This local computation is insignificant compared

with circuit garbling, while the benefits could be as big as 75% saving in computation and

communication. Moreover, M can be even computed beforehand. Second, it improves the

scalability. It is true that the auxiliary circuit incurs little overhead with the help of the free-XOR

technique. However, while XOR gates can be computed almost for free, the oblivious transfers

can not. In fact, oblivious transfers are arguably the most expensive part (on average) due to

the need of number-theoretic operations. It is also true that there are extension techniques that

provide the amortized complexity of O(1) symmetric cryptographic operations per oblivious

transfer. Nonetheless, not all variants of oblivious transfer have a corresponding extension

technique. For example, it is unknown if the committing oblivious transfer [sS11] or the
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cut-and-choose oblivious transfer [LP11] could be extended. In these cases, reducing the

number of the real OTs (as opposed to extended OTs) needed makes a difference.

Our idea to construct a k-probe-resistant M is to use a maximum distance separable code

such as Reed-Solomon codes. We will work on the Reed-Solomon code over F2t for some

t ∈ N with codeword length N and message length K . Basically, we start by randomly picking

polynomials P1, P2, . . . , Pn ∈ F2t[x] with degree at most K − 1, where n is EVAL’s input size.

Then we evaluate these polynomials at points x1, x2, . . . , xN ∈ F2t . The outputs for Pi over these

points are concatenated as a N t-bit vector and becomes the i-th row of M . The goal now is to

minimize the goal function m= N t under the constraint that M is k-probe-resistant with high

probability.

For M to be k-probe-resistant, there are four constraints on parameters (N , K , t). The first

two are inherited from Reed-Solomon code: the minimum distance has to be at least k, that is,

N − K + 1≥ k, (4.3)

and there needs to be enough non-zero points for the polynomials to be evaluated at, that is,

2t − 1≥ N . (4.4)

The third constraint is that there needs to be enough distinct non-zero polynomials to choose

from. Indeed, Reed-Solomon code guarantees that two codewords differ at k or more places

only if the corresponding polynomials are distinct. Since each bit in y needs a corresponding

polynomial, we have that

(2t)K − 1= 2K t − 1≥ n. (4.5)

The last and the most important constraint is that each polynomial cannot be a subset sum

of the rest. Let us consider the case that P3 = P1+ P2. In this case, we know that M has rank
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at most n− 1. The consequences of this case are twofold. On one hand, the range of the

transformation induced by M has dimension at most n− 1. As a result, for some y ∈ {0,1}n,

there exists no ȳ such that M · ȳ = y. On the other hand, if there indeed exists such a ȳ, a

malicious GEN can easily deduce that y3 = y1+ y2, which is the partial information of y that

GEN is not supposed to learn. Lemma 4.12 shows that with probability at least 1− 2−k, no

polynomial is a subset sum of the rest as long as

K ≥ (lg(n) + n+ k)/t. (4.6)

Lemma 4.12. If K ≥ (lg(n) + n+ k)/t, the probability that for any i ∈ {1, 2, . . . , n} there exists

no L ⊂ {1,2, . . . , n}\{i} such that Pi =
∑

j∈L Pj is at least 1− 2−k.

From Constraint (4.3)(4.4)(4.6)1, we know that

2t ≥ N + 1≥ k+ K ≥ k+ (lg(n) + n+ k)/t (4.7)

Since the goal function m = N t ≥ lg(n)+ n+ k+(k− 1)t increases as t increases, to minimize

m, what remains is to find the minimum t satisfying Constraint (4.7).

Finally, we provide a probabilistic algorithm in Figure 4.1 finding a k-probe-resistant M

with high probability. The correctness of this algorithm is shown in Theorem 4.13.

Theorem 4.13. With probability at least 1− 2−k, the algorithm presented in Figure 4.1 outputs a

k-probe-resistant M ∈ {0, 1}n×m such that m ∈ N and m≤ lg(n)+ n+ k+ k ·max(lg(4n), lg(4k)).

Proof. We want to randomly pick polynomials P1, P2, . . . , Pn ∈ F2t[x] with degree at most K − 1

under the condition that with high probability, not only do they have to be nonzero, none of

them can be a subset sum of the rest. We use the counting argument here. Starting from P1,

there are 2K t − 1 choices, which is all but the zero polynomial. After P1 is fixed, P2 has 2K t − 2

1Constraint (4.5) is in fact weaker than Constraint (4.6) and thus not needed.
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choices, which is all but zero polynomial nor P1. After the first P1, . . . , Pi−1 are fixed, Pi has

2K t − 2i−1 choices, which is all but all the possible subset sum of P1, . . . , Pi−1. As a result, the

number of possible choices for (P1, . . . , Pn) is

F =
n−1
∏

i=0

(2K t − 2i)≥ (2K t − 2n−1)n ≥ (2K t − 2n)n = 2K tn(1− 2n−K t)n ≥ 2K tn(1− n2n−K t).

For the success probability to be at least 1− 2−k, we conclude that

F

2K tn > 1− n2n−K t ≥ 1− 2−k or K ≥ (lg(n) + n+ k)/t.
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Input: EVAL’s input size n and a security parameter 1k

Output: A k-probe-resistant M ∈ {0,1}n×m for some m ∈ N

1 begin

2 t ← dmax(lg(4n), lg(4k))e;

3 while 2t−1 > k+ (lg(n) + n+ k)/(t − 1) do

4 t ← t − 1;

5 end

6 K ← d(lg(n) + n+ k)/te;

7 N ← K + k− 1;

8 for i← 1 to n do

9 Pick P(x) =
∑K−1

i=0 ai x
i, where ai ←R F2t ;

10 Mi ← [P(1)2||P(2)2|| . . . ||P(N)2]

11 end

12 return M ; // M ∈ {0,1}n×m, where m= N t

13 end

Figure 4.1: A probabilistic algorithm to generate a k-probe-resistant matrix M ∈ {0, 1}n×m for
some m ∈ N. Line 2-5 is to find the minimum t such that 2t ≥ k+ (lg(n) + n+ k)/t, and P(i)2
denotes a t × 1 row vector over {0,1}.
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Chapter 5

Secure 2PC over Two-Output Functions

In most real-world applications, GEN also needs to receive an output from the computation, and

this could be quite involved in the presence of malicious adversaries. Recall that GEN’s output

security needs both the privacy and correctness properties to be satisfied. The privacy property

requires that EVAL does not learn GEN’s output, and the correctness property here requires that

EVAL cannot trick GEN into accepting an arbitrary output.

The privacy property is the easy part. Both parties could agree in advance to convert

objective function f (x , y) 7→ ( f1, f2) into new objective function g((x , r), y) 7→ (⊥, ( f1⊕ r, f2))

(and the objective circuit changes accordingly). After the completion of evaluating the new

objective circuit, EVAL sends f1⊕ r back to GEN for her to recover f1 with one-time pad r that

she enters as input in the first place. The one-time pad encryption’s perfect privacy guarantee

ensures that EVAL does not learn f1 from f1⊕ r.

However, the non-trivial part is to guarantee the correctness property, which is equivalent

to asking EVAL for a proof of GEN’s output authenticity. Note that when in the presence of

honest-but-curious adversaries, random key Kb corresponding to a circuit-output wire of bit

value b suffices to be the proof. This is because if the circuit-output wire is of value b, the
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invariant ensures that EVAL does not learn K1−b, and thus EVAL cannot provide a proof of output

value 1− b, except with negligible probability. Nevertheless, this idea does not automatically

apply to the malicious case.

Let us consider a natural attempt and see why it does not work. Recall that in the malicious

case, multiple garbled circuits are evaluated. In this attempt, EVAL simply provides all random

keys {K (i)b } she learned to support output value b, where K (i)b comes from the i-th garbled circuit

and this circuit actually outputs b. We stress that the correctness of which the cut-and-choose

technique guarantees is the majority output, not the circuit that produces the majority output.

It is possible that the j-th garbled circuit G(C) j is designed to produce majority output under

some condition, e.g., when the first bit of EVAL’s input is 0. There is a non-negligible chance

that G(C) j would not get checked. Later, after the evaluation is completed, when GEN learns

that G(C) j produced the majority output, she also learns the first bit of EVAL’s input. The same

vulnerability remains even if EVAL only provides the majority circuit’s random key since G(C) j

could be the majority circuit. In short, there is correctness guarantee over only G(C) j ’s output

but G(C) j itself, and not its random keys, either. In other words, EVAL needs to prove GEN’s

output authenticity without revealing which circuit the output comes from.

GEN’s Output Authenticity Check via WI Proof with Garbled Values We propose a novel

witness-indistinguishable proof to ensure the generator’s output authenticity. The idea is novel

in the sense that it requires only standard primitives, an encryption scheme and commitment

scheme to be precise, and it has the overhead the same as garbling and evaluating the genera-

tor’s output gates. In other words, it requires only O(kn) symmetric cryptographic operations,

compared with the previous state-of-the-art O(k2n) symmetric operations [LP07, PSSW09] or

O(kn) symmetric operations plus O(s) = O(k) number-theoretic operations [Kir08].

Our approach handles the output authenticity problem in a way that needs no number-

theoretic operations at all (hence no number-theoretic intractability assumption is needed).
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Our idea comes from the following three observations:

We first observe that the labels obtained from evaluating GEN’s output gates are in fact

sufficient for EVAL to prove the output authenticity. Recall that the Yao protocol guarantees

that EVAL learns one and only one of the labels assigned with each wire. In other words, the

knowledge of the labels corresponding to GEN’s output is more than enough for EVAL to show

the output authenticity. What remains is how EVAL shows the knowledge without disclosing the

index of the majority circuit, which has been shown to be exploitable in breaching EVAL’s input

privacy [Kir08].

The second observation we have, as also pointed out in shelat and Shen’s work [sS11], is

that a witness-indistinguishable proof suffices the purposes here. Let us consider the case in

which GEN (plays as the verifier) has private input U = {u( j)} j∈[s] for some s ∈ N, and EVAL

(plays as the prover) knows u(m) for some m ∈ [s]. In the honest-but-curious model, a simple

witness-indistinguishable proof of EVAL’s knowledge u(m) can be done as follows:

1. GEN picks a random nonce r, and then sends {encu( j)(r)} j∈[s] to EVAL;

2. EVAL receives {c( j)} j∈[s] and sends decu(m)(c(m)) back to GEN; and

3. GEN receives r ′ and accepts if r ′ = r, or aborts otherwise.

Unfortunately, this proof is not witness-indistinguishable in the presence of malicious adver-

saries. In fact, a malicious GEN may pick distinct {r( j)} j∈[s] and send {encu( j)(r( j))} j∈[s] to EVAL

so that EVAL’s knowledge could be identified by locating r ′ in {r( j)} j∈[s].

To force GEN to behave honestly in the first step, we suggest that GEN discloses U = {u( j)} j∈[s]

and r after receiving r ′ so that EVAL could check if {c( j)} j∈[s] is constructed correctly. Our third

observation is that this disclosure does not compromise GEN’s input privacy. Indeed, EVAL

should have already learned the majority of U from the circuit evaluation, and r is a random

nonce that has no information about GEN’s input at all. So GEN’s input is not leaked through
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U and r. Moreover, this disclosure does not compromise the soundness of the protocol since

after GEN receives r ′, EVAL has already delivered her proof of authenticity so that learning

U and r afterwards will not change the proof retroactively. Nonetheless, we stress that GEN

should not learn r ′ before EVAL finishes the check, and nor should EVAL be able to change r ′

after the check. Naturally, a commitment scheme comes into the picture. Our idea is that EVAL

commits to decu(m)(c(m)) instead of giving it away in clear. After GEN reveals U and r, EVAL

checks if {c( j)} j∈[s] is indeed correctly generated. If the check fails, EVAL aborts; otherwise, EVAL

decommits to r ′. Then GEN checks if r ′ = r and responds as in the above honest-but-curious

protocol.

One more issue is that a malicious GEN could learn EVAL’s private input u(m) with non-

negligible probability by faking her private inputs from the beginning. More specifically, a

malicious GEN could guess u(m) with probability 1/s and then pretend her private input to be

U = (u(1), . . . , u(m−1), u(m), u(m+1), . . . , u(s))

rather than U , where u(i) is randomly sampled. With this attack, a malicious generator is

capable of providing checkable ciphertexts when EVAL’s private input is indeed u(m), that is, the

fact that EVAL can provide the correct nonce r reveals her private input u(m). A straightforward

way to get around this issue is for the two parties to share the commitment to GEN’s private

inputs in the first place. By the binding property of the commitment scheme, a malicious

GEN cannot change her private inputs at will. The correctness of these commitments will be

guaranteed by the cut-and-choose technique.
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Protocol 5.1. WI Proofs with Labels

Common Input: a security parameter 1k, a statistical security parameter 1s, the commit-

ments to GEN’s private input {(com(u( j)0 ),com(u( j)1 ))} j∈[s], and GEN’s output a.

Private Input: GEN has {(u( j)0 , u( j)1 )} j∈[s] and EVAL has the index m ∈ [s] of the majority

circuit and the random key v corresponding to GEN’s output wire of value a.

1. GEN picks a nonce r ∈ {0, 1}k and sends {encu( j)a
(r)} j∈[s] to EVAL.

2. After receiving {c( j)} j∈[s], EVAL sends com(decv(c(m))) back to GEN.

3. After receiving com(r ′), GEN decommits to {u( j)a } j∈[s].

4. EVAL checks the decommited values {u( j)} j∈[s] that

(a) if com(u( j)a ) can be correctly opened to u( j) for all j ∈ [s]?

(b) if decu( j)(c( j)) equals decu( j+1)(c( j+1)) for j = 1,2, . . . , s− 1?

EVAL aborts if any of the checks fails; otherwise, she decommits to r ′.

5. GEN accepts the proof if com(r ′) is opened correctly and r ′ = r; otherwise, she

rejects.

Lemma 5.1. Let {(com(u( j)0 ),com(u( j)1 ))} j∈[s] be common input. Suppose GEN has private input

{(u( j)0 , u( j)1 )} j∈[s], where u( j)b ∈ {0,1}k. Protocol 5.1 satisfies the following properties:

1. If GEN knows u( j)b for some j ∈ [s] and b ∈ {0,1}, GEN always accepts.

2. If EVAL does not know any of u( j)b , GEN rejects with probability at least 1− 2−k.
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3. If EVAL knows the majority of {u( j)b } j∈[s] for some b ∈ {0, 1}, say she knows M, then for any

m1, m2 ∈ M, VIEWm1
and VIEWm2

are computationally indistinguishable, where VIEWm is

GEN’s view during the protocol with EVAL’s private input being m.

Proof. In order to prove the lemma, we show the completeness, soundness, and witness-

indistinguishability as follows:

(Completeness) We first clarify that by saying “(a, v) is the evaluation result from the

majority circuit (the evaluation circuit of index m)” in the protocol, we mean that the majority

of the evaluation circuits agree with GEN’s output a, and v is indeed a correct decommitment of

com(u(m)a ). Since v = u(m)a for some m ∈ [s], the completeness of the proof follows.

(Soundness) On one hand, due to the hiding property of com, EVAL with private input

(a, v) cannot learn u( j)1−a for some j ∈ [s] from {com(u( j)1−a)} j∈[s]. On the other hand, if the proof

is accepted, the binding property of com guarantees that EVAL knows r ′ at the moment she

receives c(1)||c(2)|| . . . ||c(s) from GEN, and the semantic security of (enc,dec) ensures that EVAL

does not learn r from those ciphertexts. As a result, EVAL must have known r = r ′ to begin

with. Hence, the soundness property holds.

(Witness-Indistinguishability) Let m1, m2 ∈ [s] be the indices of two distinct majority

circuits, and let (a, v1) and (a, v2) be their evaluation results, respectively.

First, because the checking in Step 4 is independent of EVAL’s private input, the probability

that EVAL aborts in Step 4 is independent of m1 and m2.

Next, assuming that EVAL does not abort by the end of Step 4, to prove contrapositively, sup-

pose that transcripts {com(decv1
(c(m1))), r ′1} and {com(decv2

(c(m2))), r ′2} are distinguishable. Be-

cause of the hiding property of com, commitments {com(decv1
(c(m1)))} and {com(decv2

(c(m2))}

are indistinguishable. Thus, we know that r ′1 6= r ′2, which contradicts to the result of the

checking in Step 4 that com(u(m1)
a ) and com(u(m2)

a ) are correctly opened to u(m1) = u(m2)
a = v1
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and u(m2) = u(m2)
a = v2, respectively, and r ′1 = decv1

(c(m1)) = decu(m1)(c(m1)) = decu(m2)(c(m2)) =

decv2
(c(m2)) = r ′2.
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Chapter 6

Secure 2PC in Practice

The goal of this chapter is to present a high performance secure 2PC system that integrates

state-of-the-art techniques for dealing with malicious adversaries efficiently. Although some

of these techniques have been reported individually, we are not aware of any attempt to

incorporate them all into one system, while ensuring that a security proof can still be written

for that system. Even though some of the techniques are claimed to be compatible, it is not

until everything is put together and someone has gone through all the details can a system as a

whole be said to be provably secure.

System Framework This system is an implementation of our Main protocol (Protocol 3.2).

In particular, it uses the CCCT instantiated from 2-universal hash circuits (Protocol 4.4) and

the CCOT instantiated from probe-resistant matrix circuits (Protocol 4.5). Moreover, it uses the

WI proof with labels to handle two-output functions (Protocol 5.1).

State-of-the-Art Optimization Techniques For garbled circuit generation and evaluation,

we incorporate Kolesnikov and Schneider’s Free-XOR technique that minimizes the computation

and communication cost for XOR gates in a circuit [KS08b]. We also adopt Pinkas et al.’s
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Garbled-Row-Reduction technique that reduces the communication cost for k-fan-in non-XOR

gates by 1/2k [PSSW09], which means at least 25% communication saving in our system since

we only have gates of 1-fan-in or 2-fan-in. Finally, we propose a novel technique that reduces

communication cost by at least 50% [sS13]. Although these techniques exist individually, this

work is the first to incorporate all of these mutually compatible state-of-the-art techniques.

Circuit-Level Parallelism The most important technique that we use is to exploit the embar-

rassingly parallelizable nature of our frameowork for achieving security in the malicious model.

Exploiting this, however, requires careful engineering in order to achieve good performance

while maintaining security. We parallelize all computation-intensive operations such as OTs

or circuit construction by splitting the GEN-EVAL pair into hundreds of slave pairs. Each of the

pairs works on an independently generated copy of the circuit in a parallel but synchronized

manner as synchronization is required for our Main protocol to be secure.

Large Circuits In the Fairplay system, a garbled circuit is fully constructed before being

sent over a network for the other party to evaluate [MNPS04]. This approach is particularly

problematic when hundreds of copies of the garbled circuit are needed against malicious

adversaries. Huang et al. pointed out that buffering the whole garbled circuit in memory is

unnecessary, and that instead, the garbling and evaluation of boolean gates could be done in a

“pipelined” manner [HEKM11]. Consequently, not only do both parties spend less time idling,

only a small number of garbled gates need to reside in memory at one time, even when dealing

with large circuits. Our system integrates this pipelining idea with the optimization techniques

mentioned above, and is capable of handling circuits of billions of gates.
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6.1 State-of-the-Art Optimization Techniques

Yao’s garbled circuit technique has been studied for decades. It has drawn significant attention

for its simplicity, constant round complexity, and computational efficiency (since circuit eval-

uation only requires fast symmetric operations). The fact that it incurs high communication

overhead has provoked interest that has led to the development of fruitful results.

In this section, we willdiscuss the optimization techniques that greatly reduce the com-

munication cost while maintaining the security. These techniques include Free-XOR, Garbled

Row Reduction, Random Seed Checking, and large circuit pre-processing. In addition to these

original ideas, practical concerns involving large circuits and parallelization will be addressed.

6.1.1 Free-XOR

Kolesnikov and Schneider proposed the Free-XOR technique that aims for removing the com-

munication cost and decreasing the computation cost for XOR gates [KS08b].

The idea is that GEN first randomly picks a global key R such that R = r||1 for some

r
R← {0,1}k. Global key R has to be hidden from EVAL. Then for each wire wi, instead of

randomly picking (Ki,0, Ki,1,πi)
R← {0, 1}k × {0, 1}k × {0, 1}, only one of (Ki,0, Ki,1) is randomly

chosen, that is (Ki,b,πi)
R← {0,1}k × {0,1} for some b ∈ {0,1}, and the other is determined

by computing Wi,1−b ← Wi,b ⊕ R. For each XOR gate g having input wire wa with random

keys (Ka,0, Ka,1,πa), input wire wb with random keys (Kb,0, Kb,1,πb), and output wire wc, GEN

computes

Wc,0←Wa,0⊕Wb,0 and Wc,1←Wc,0⊕ R.
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Observe that

Wa,0⊕Wb,1 =Wa,1⊕Wb,0 =Wa,0⊕Wb,0⊕ R=Wc,0⊕ R=Wc,1

Wa,0⊕Wb,0 =Wa,1⊕Wb,1 =Wa,0⊕Wb,0 =Wc,0.

This means that when evaluating an XOR gate, XORing the labels for the two input wires will

directly retrieve the label for the output wire. So no garbled truth table needs to be transferred,

and the cost of evaluating an XOR gate is reduced from a decryption to a bitwise XOR.

This technique is only secure when the encryption scheme satisfies certain security properties.

The solution provided by the authors is

encKa
(encKb

(Wc)) = H(Ka||Kb)⊕Wc,

where H : {0,1}2k 7→ {0,1}k+1 is a random oracle. Recently, Choi et al. have further shown

that it is sufficient to instantiate H(·) with a weaker cryptographic primitive, 2-circular cor-

relation robust functions [CKKZ12]. Our system instantiates this primitive with H(Ka||Kb) =

SHA-256(Ka||Kb). However, when AES-NI instructions are available, our system instantiates it

with H(Ka||Kb) = AES-256(Ka||Kb).

6.1.2 Garbled Row Reduction

The GRR (Garbled Row Reduction) technique suggested by Pinkas et al. [PSSW09] is used to

reduce the communication overhead for non-XOR gates. In particular, it reduces the size of the

garbled truth table for 2-fan-in gates by 25%.

Recall that in the original Yao’s garbled circuit, both the 0-key and 1-key for each wire are

randomly chosen. After the Free-XOR technique is integrated, the 0-key and 1-key for an XOR

gate’s output wire depend on input key and R, but the 0-key for a non-XOR gate’s output wire
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is still free. The GRR technique is to make a smart choice for this degree of freedom, and thus,

reduce one entry in the garbled truth table to be communicated over network.

In particular, for every non-XOR gate g : {0, 1} × {0, 1} 7→ {0, 1} having input wire wa with

random keys (Ka,0, Ka,1,πa), input wire wb with random keys (Kb,0, Kb,1,πb), and output wire

wc, GEN computes (Kc,0, Kc,1,πc) by the following instructions:

1. compute d ← g(πa,πb);

2. compute Wc,d ← H(Ka,πa
||Kb,πb

);

3. parse Wc,d as (Kc,d ,δ);

4. compute Kc,1−d ← Kc,d ⊕ r (recall that R= r||1); and

5. compute πc ← δ⊕ d.

Moreover, GEN garbles gate g by computing

G(g)← {〈πa, 1−πb〉, 〈1−πa,πb〉, 〈1−πa, 1−πb〉},

where 〈d1, d2〉= H(Ka,d1
||Kb,d2

)⊕Wc,g(d1,d2).

Later, when EVAL gets Wa = (Ka,δa) and Wb = (Kb,δb), EVAL evaluates g by computing

K ←







H(Ka||Kb) if (δa,δb) = (0,0);

H(Ka||Kb)⊕ T otherwise, where T is the (2 ·δa +δb − 1)-th entry in G(g).

We can therefore see that the GRR technique reduces the number of entries in G(g) from

four to three, which implies 25% reduction in communication cost for non-XOR gates.
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6.1.3 Interpolated Communication

In this section, we provide an effective method reducing the communication cost of our protocol

by up to 60%. This is a simple trick yet it provides a big benefit.

Our main protocol is in fact compatible with the pipeline technique that vastly increases the

scalability of secure two-party computation. In particular, the garbled circuits can be sent in

batches of gates. Each batch consists of σ garbled gates corresponding to the same gate of the

objective circuit. While EVAL is still working on evaluating the current batch, GEN could start

generating the next.

The observation is that EVAL has already got the randomness for check circuits. It is

inefficient for each gate in a check circuit to be sent over network while both parties are capable

of generating it. However, the difficulty is that GEN does not get to know which is check circuit

and which is evaluation circuit. She has to treat each gate in the same batch equally. The

problem can be formulated as follows:

GEN wants to send EVAL σ numbers {g0, g1, . . . , gσ−1}, and in fact, EVAL already

knows (or is capable of generating) µ of them. How do they reduce the communica-

tion overhead while GEN does not learn which numbers EVAL knows (or is capable

of generating)?

An interesting trick is that they could treat {gi} as coefficients of a polynomial, that is,

P(x) = g0+ g1 x + · · · gσ−1 xσ−1.

Although GEN does not know which µ numbers out of {gi} that EVAL knows, she does know

that EVAL only needs (σ−µ) points to fully recover the polynomial. GEN therefore sends EVAL

P(1), P(2), . . . , P(σ−µ).
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Clearly, there are σ unknowns in P(x). With the µ equations EVAL already knows plus the

(σ−µ) new equations from GEN, she can easily recover all {gi} herself with simple polynomial

interpolation.

Since our protocol suggests 3:2 check-to-evaluation ratio, with a slight increase of the

computation overhead, this trick helps to reduce the communication cost by 60%.

6.1.4 Large Circuits

A circuit for a reasonably complicated function can easily consist of billions of gates. For

example, a 4095-bit edit distance circuit has 5.9 billion gates. When circuits grow to such a

size, the task of achieving high performance secure computation becomes challenging.

Working Set Optimization Another problem encountered while dealing with large circuits

is the working set minimization problem. Note that the circuit value problem is log-space

complete for P. It is suspected that L6=P, that is, there exist some circuits that can be evaluated

in polynomial time but require more than logarithmic space. This open problem captures

the difficulty of handling large circuits during both the construction and evaluation, where

at any moment there is a set of wires, called the working set, that are available and will be

referenced in the future. For some circuits, the working set is inherently super-logarithmic. A

naive approach is to keep the most recent D wires in the working set, where D is the upper

bound of the input-output distance of all gates. However, there may be wires which are used

as inputs to gates throughout the entire circuit, and so this technique could easily result in

adding almost the whole circuit to the working set, which is especially problematic when there

are hundreds of copies of a circuit of billions of gates. While reordering the circuit or adding

identity gates to minimize D would mitigate this problem, doing so while maintaining the
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topological order of the circuit is known to be an NP-complete problem, the graph bandwidth

problem [GGJK78].

Our solution to this difficulty is to pre-process the circuit so that each gate comes with a

usage count. Our system has a compiler that converts a program in high-level language into

a boolean circuit. Since the compiler is already using global optimization in order to reduce

the circuit size, it is easy for the global optimizer to analyze the circuit and calculate the usage

count for each gate. With this information, it is easy for GEN and EVAL to decrement the counter

for each gate whenever it is being referenced and to toss away the gate whenever its counter

becomes zero. In other words, we keep track of merely useful information and heuristically

minimize the size of the working set, which is small compared with the original circuit size as

shown in Table 6.1.

AES Dot64
4 RSA-32 EDT-255

circuit size 49,912 460,018 1,750,787 15,540,196
wrk set size 323 711 235 2,829

Table 6.1: The size of the working set for various circuits (sizes include input gates)

6.2 Experimental Results

In this section, we give a detailed description of our system, upon which we have implemented

various real world secure computation applications. The experimental environment is the

Ranger cluster in the Texas Advanced Computing Center. Ranger is a blade-based system,

where each node is a SunBlade x6240 blade running a Linux kernel and has four AMD Opteron

quad-core 64-bit processors, as an SMP unit. Each node in the Ranger system has 2.3 GHz

core frequency and 32 GB of memory, and the point-to-point bandwidth is 1 GB/sec. Although

Ranger is a high-end machine, we use only a small fraction of its power for our system, only 512

out of 62,976 cores. Note that we use the PBC (Pairing-Based Cryptography) library [Lyn06]
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to implement the underlying cryptographic protocols such as oblivious transfers, witness-

indistinguishable proofs, and so forth. However, moving to more modern libraries such as

RELIC [Rel] is likely to give even better results, especially to those circuits with large input and

output size.

System Setup In our system, both GEN and EVAL run an equal number of processes, including

a root process and many slave processes. A root process is responsible for coordinating its own

slave processes and the other root process, while the slave processes work together on repeated

and independent tasks. There are three pieces of code in our system: GEN EVAL and the IP

exchanger. Both GEN’s and EVAL’s program are implemented with Message Passing Interface

(MPI) library. The reason for the IP exchanger is that it is common to run jobs on a cluster with

dynamic working node assignment. However, when the nodes are dynamically assigned, GEN

running on one cluster and EVAL running on another might have a hard time locating each

other. Therefore, a fixed location IP exchanger helps the match-up process as described in

Figure 6.1. Our system provides two modes—the user mode and the simulation mode. The

former works as mentioned above, and the latter simply spawns an even number of processes,

half for GEN and the other half for EVAL. The network match-up process is omitted in the latter

mode to simplify the testing of this system.

To achieve a security level of 2−80, meaning that a malicious player cannot successfully cheat

with probability better than 2−80, requires at least 250 copies of the garbled circuit [sS11]. For

simplicity, we used 256 copies in our experiments, that is, security parameters k = 80 and

s = 256. Each experiment was run 30 times (unless stated otherwise), and in the following

sections we report the average runtime of our experiments.

Timing methodology When there is more than one process on each side, care must be taken

in measuring the timings of the system. The timings reported in this section are the time
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Figure 6.1: Both GEN and EVAL consist of a root process (solid circles) and a number of slave
processes (hollow circles). The match-up works as follows: the slave EVAL processes send their
IPs to the root EVAL process (Step 1), who then forwards them to the IP exchanger (Step 2).
Next, the root GEN process comes to acquire these IPs (Step 3) and dispatch them to its slaves
(Step 4), who then proceed to pair up with one of the slave EVAL processes (Step 5) and start
the main protocol. The arrows show the message flow.

required by the root process at each stage of the system. This was chosen because the root

process will always be the longest running process, as it must wait for each slave process to run

to completion. Moreover, in addition to doing all the work that the slaves do, the root processes

also perform the input consistency check and the coin tossing protocol.

Impacts of the Performance Optimization Techniques We have presented several perfor-

mance optimization techniques in Section 6.1 with theoretical analyses, and here we demon-

strate their empirical effectiveness in Table 6.2. As we have anticipated, the Random Seed

Checking reduces the communication cost for the garbled circuits by 60%, and the Garbled Row

Reduction further reduces by another 25%. In the RS and GRR columns, the small deviation

from the theoretical fraction 40% and 30%, respectively, is due to certain implementation

needs. Our compiler is designed to reduce the number of non-XOR gates. In these four circuits,

the ratio of non-XOR gates is less than 43%. So after further applying the Free-XOR technique,

the final communication is less than 13% of that in the baseline approach.

Performance Gain by AES-NI On a machine with 2.53 GHz Intel Core i5 processor and 4GB

1067 MHz DDR3 memory, it takes 784 clock cycles to run a single SHA-256 (with OpenSSL
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non-XOR Baseline RS GRR FX
(%) (MB) (%) (%) (%)

AES 30.81 509 39.97 30.03 9.09
Dot64

4 29.55 4,707 39.86 29.91 8.88
RSA-32 34.44 17,928 39.84 29.88 10.29
EDT-255 41.36 159,129 39.84 29.87 12.36

Table 6.2: The impact of various optimization techniques: The Baseline shows the communica-
tion cost for 256 copies of the original Yao garbled circuit when k = 80; RS shows the remaining
fraction after Random Seed technique is applied; GRR shows when Garbled Row Reduction is
further applied; and FX shows when the previous two techniques and the Free-XOR are applied.
(The communication costs here only include those in the generation and evaluation stages.)

1.0.0g), while it needs only 225 cycles for AES-256 (with AES-NI). To measure the benefits of

AES-NI, we use two instantiations to construct various circuits, listed in Table 6.3, and observe

a consistent 20% saving in circuit construction.1

size AES-NI SHA-256 Ratio
(gate) (sec) (sec) (%)

AES 49,912 0.12± 1% 0.15± 1% 78.04
Dot64

4 460,018 1.11±0.4% 1.41±0.5% 78.58
RSA-32 1,750,787 4.53±0.5% 5.9±0.8% 76.78
EDT-255 15,540,196 42.0±0.5% 57.6± 1% 72.92

Table 6.3: Circuit generation time (for a single copy) with different instantiations (AES-NI vs
SHA-256) of the 2-circular correlation robust function.

6.2.1 Secure 2PC 128-bit AES

We used AES as a benchmark to compare our compiler to the Fairplay compiler, and as a

test circuit for our system. We tested the full AES circuit, as specified in FIPS-197 [FIP01].

In the semi-honest model, it is possible to reduce the number of gates in an AES circuit by

computing the key schedule offline; e.g. this is one of the optimizations employed by Huang

et al. [HEKM11]. In the malicious model, however, such an optimization is not possible; the

1The reason that saving 500+ cycles does not lead to more improvements is that this encryption operation
is merely one of the contributing factors to generating a garbled gate. Other factors, for example, include GNU
hash_map table insertion (∼1,200 cycles) and erase (∼600 cycles).
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party holding the key could attempt to reduce the security level of the cipher by computing a

malicious key schedule. So in our experiments we compute the entire function, including the

key schedule, online.

In this experiment, two parties collaboratively compute the function (x , y) 7→ (⊥, AESx(y)),

i.e., GEN provides the encryption key x , while EVAL has the message y to be encrypted. At the

end, GEN will not receive any output, whereas EVAL will receive the ciphertext AESx(y).

In Table 6.4, both the computational and communication costs for each main stage are

listed under the traditional setting, where there is only one process on each side. These main

stages include oblivious transfer, garbled circuit construction, GEN’s input consistency check,

and the circuit evaluation. Each row includes both the computation and communication time

used. Note that network conditions could vary from setting to setting. Our experiments run in

a local area network, and the data can only give a rough idea on how fast the system could be

in an ideal environment. However, the precise amount of data being exchanged is reported.

Gen Eval Comm
(sec) (sec) (KB)

OT
comp 45.8±0.09% 34.0±0.2%

5,516
comm 0.1± 1% 11.9±0.6%

Gen.
comp 35.6± 0.5% –

3
comm – 35.6±0.5%

Inp. comp – 1.75±0.2%
266

Chk comm – –

Evl.
comp 14.9± 0.6% 32.4±0.4%

28,781
comm 18.2± 1% 3.2±0.8%

Total
comp 96.3± 0.3% 68.0±0.2%

34,566
comm 18.3± 1% 50.8±0.4%

Table 6.4: The 95% two-sided confidence intervals of the computation and communication
time for each stage in the experiment (x , y) 7→ (⊥, AESx(y)).

We notice in Table 6.4 that EVAL spends an unreasonable amount of time on communication
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node #
4 16

Gen Evl Gen Evl

OT 12.56±0.1% 8.41±0.1% 4.06±0.1% 2.13±0.2%
Gen. 8.18±0.4% – 1.92±0.7% –

Inp. Chk – 0.42± 4% – 0.10± 10%
Evl. 3.3± 4% 7.08± 1% 0.80± 10% 1.58± 4%

Inter-com 4± 5% 13.2±0.3% 0.93± 10% 4.08±0.8%
Intra-com 0.17± 30% 0.23± 20% 0.18± 8% 0.25± 6%

Total time 28.3±0.3% 29.4±0.3% 7.90±0.5% 8.17±0.4%

(a)

node #
64 256

Gen Evl Gen Evl

OT 1.96±0.1% 0.58±0.2% 0.64±0.1% 0.19±0.2%
Gen. 0.49±0.4% – 0.14± 1% –

Inp. Chk – – – –
Evl. 0.23± 17% 0.37± 7% 0.12±0.5% 0.05±0.6%

Inter-com 0.31± 20% 1.98± 1% 0.11± 40% 0.72±0.2%
Intra-com 0.45± 20% 0.48± 15% 0.34± 30% 0.34± 30%

Total time 3.45± 2% 3.44± 2% 1.4± 10% 1.3± 9%

(b)

Table 6.5: The average and error interval of the times (seconds) running AES circuit. The
number of nodes represents the degree of parallelism on each side. “–” means that the time is
smaller than 0.05 seconds. Inter-com refers to the communication between the two parties,
and intra-com refers to communication between nodes for a single party.

with respect to the amount of data to be transmitted in both the oblivious transfer and circuit

construction stages. This is because EVAL spends that time waiting for GEN to finish computation-

intensive tasks. The same reasoning explains why in the circuit evaluation stage GEN spends

more time in communication than EVAL. This waiting results from the fact that both parties need

to run the protocol in a synchronized manner. A GEN-EVAL pair cannot start next communication

round while any other pair has not finished the current one. This synchronization is crucial

since our protocol’s security is guaranteed only when each communication round is performed

sequentially. While the parallelization of the program introduces high performance execution,
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it does not and should not change this essential property. A stronger notion of security such as

universal security will be required if asynchronous communication is allowed. By using TCP

sockets in “blocking” mode, we enforce this communication round synchronization.

Note that the low communication during the circuit construction stage is due to the random

seed checking technique. Also, the fact that GEN spends more time in the evaluation stage than

she traditionally does comes from the second construction for evaluation circuits. Recall that

only the evaluation circuits need to be sent to EVAL. Since only 40% of the garbled circuits (102

out of 256) are evaluation-circuits, the ratio of GEN’s computation time in the generation and

evaluation stage is 35.63:14:92 ' 5:2.

We were unfortunately unable to find a cluster of hundreds of nodes that all support AES-NI.

Our experimental results, therefore, do not show the full potential of all the optimization

techniques we have proposed. However, recall that for certain circuits the running time in

the semi-honest setting is roughly half of that in the malicious setting. We estimate a 20%

improvement in the performance of garbled circuit generation when the AES-NI instruction set

becomes ubiquitous, based on the preliminary results presented above in Table 6.3.

Table 6.5 shows that the Yao protocol really benefits from the circuit-level parallelization.

Starting from Table 6.4, where each side only has one process, all the way to when each side

has 256 processes, as the degree of parallelism is multiplied by four, the total time reduces

into a quarter. Note that the communication costs between GEN and EVAL remain the same, as

shown in Table 6.4. It may seem odd that the communication costs are reduced as the number

of processes increase. The real interpretation of this data is that as the number of processes

increases, the “waiting time” decreases.

Notice that as the number of processes increases, the ratio of the time GEN spends in the

construction and evaluation stage decreases from 5:2 to 1:1. The reason is that the number of

garbled circuit each process handles is getting smaller and smaller. Eventually, we reach the
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limit of the benefits that the circuit-level parallelism could possibly bring. In this case, each

process is dealing with merely a single copy of the garbled circuit, and the time spent in both

the generation and evaluation stages is the time to construct a garbled circuit.

To the best of our knowledge, completing an execution of secure AES in the malicious

model within 1.4 seconds is the best result that has ever been reported. The next best result

from Nielsen et al. [NNOB12] is 1.6 seconds, and it is an amortized result (85 seconds for

54 blocks of AES encryption in parallel) in the random oracle model. This is only a crude

comparison, however; our experimental setup uses a cluster computer while Nielsen et al. used

only two desktops. A better comparison would be possible given a parallel implementation of

Nielsen et al.’s system, and we are interested in seeing how much of an improvement such an

implementation could achieve.

6.2.2 Secure 2PC 256-bit RSA

In this experiment, we run the 256-bit RSA encryption circuit, that is, (x , y) 7→ (⊥, x y mod m),

where x , y, m ∈ {0, 1}256 and m is a public odd number. The circuit generated by our compiler

has 934 million gates, and 332 million of which are non-XOR. Roughly, our system can handle

38,000 (non-XOR) gates per second. The results are shown in Table 6.6.

6.2.3 Secure 2PC 4095-bit Edit-Distance

In this experiment, we run the 4095-bit edit distance circuit (x , y) 7→ (⊥, EDT(x , y)), where

x , y ∈ {0, 1}4095. Both the parties run the circuit generation and evaluation in a pipeline manner,

where one party is generating and giving away garbled gates on one end, and the other party is

evaluating and checking the received gates at the other end at the same time. The results are

shown in Table 6.7.
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Gen Eval Comm
(sec) (sec) (MB)

OT
1.43± 0.0% 0.47± 2.9%

11
0.07± 10% 1.02± 1.8%

Gen.
742.39± 2.0% 48.68± 8.1%

<1
– 693.71± 2.6%

cut & 44.44± 8.7% 44.44± 8.7%
<1

chk – –

Evl.
723.48± 0.9% 348.40± 0.6%

204,355
230.17± 1.5% 605.41± 1.5%

Total 1742.05± 1.0% 1742.24± 1.0% 204,368

Table 6.6: The result of (x , y) 7→ (⊥, x y mod m), where x , y, m ∈ {0,1}256 and m is public
parameter. Each party is comprised of 256 cores in a cluster.

This circuit generated by our compiler has 5.9 billion gates, and 2.4 billion of those are

non-XOR. It is worth mentioning that, without the random-seed technique, the communication

cost shown in Table 6.7 can also be estimated by 256× 2.4× 109× 3× 10= 1.8× 1013, since

256 copies of the garbled circuits need to be transferred, each copy has 2.4 billion non-free

gates, each non-free gate has three entries, and each entry has k = 80 bits.

In additional to showing that our system is capable of handling the largest circuits ever

reported, we also have shown a speed in the malicious setting that is comparable to those in

the semi-honest setting. In particular, we were able to complete an single execution of 4095-bit

edit distance circuit in less than 8.2 hours with the rate of 82,000 (non-XOR) gates per second.

Note that Huang et al.’s system is the only one, to the best of our knowledge, that is capable of

handling such large circuits [HEKM11]; they reported the rate of over 96,000 (non-XOR) gates

per second for an edit-distance circuit in the semi-honest setting.
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Gen Eval Comm
(sec) (sec) (Byte)

OT
19.73±0.5% 5.26±0.4%

1.7× 108

1.1± 6% 15.6±0.6%

Cut-& 1.1±0.8% –
6.5× 107

Choose – 1.5± 2%

Gen./Evl.
24,400± 1% 14,600± 3%

1.8× 1013

4,900± 1% 14,700± 2%

Inp. 0.6± 20% –
8.5× 106

Chk 0.4± 40% 0.60± 20%

Total
24,400± 1% 14,600± 3%

1.8× 1013

4,900± 1% 14,700± 2%

Table 6.7: The result of (x , y) 7→ (⊥, EDT-4095(x , y)). Each party is comprised of 256 cores in
a cluster. This table comes from 6 invocations of the system. Similarly, the upper row in each
stage is the computation time, while the lower is the communication time.
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