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ABSTRACT

As the first forms of life on earth billions of years ago, bacteria are essential participants in na-
ture and exist almost everywhere. However, the living world of these cells remains mysterious
due to limitations of conventional microscopy.

The recently introduced lattice light sheet microscope is capable of breaking the diffraction
limit and performing long term live cell imaging with low photo-toxicity. This new modality
necessitates advanced image analysis algorithms for understanding or ultimately controlling the
activities of individual bacteria in a crowded, three-dimensional environment such as a biofilm.
Bacterial behavior in biofilms is closely related to important problems in energy, disease, and the
basic biology. Although there exist bacterial image analysis algorithms, they fail to delineate cells
in dense biofilms, especially in 3D imaging scenarios in which the cells are growing and subdi-
viding in a complex manner. This research develops an automated and effective analysis toolkit
that overcomes the challenges of live cell imaging, such as the lack of apparent structure, limited
contrast between conterminous cells, and high density of cells.

In the initial thrust of this research, a level set segmentation workflow, named Bact-3D, was
explored with local constraints to stop the merging of level sets in different cell regions. The algo-
rithm yielded promising results for multi-layered biofilm 3D data, but the performance degrades
when applied to more complex biofilm images, where the gaps between neighboring cells are ex-
tremely hard to distinguish. Therefore, linear graph cuts (LCuts) is proposed as an automated
cell segmentation algorithm to find individual bacteria by extracting and detecting the embed-
ded linearity features in the biofilm. LCuts and its later improvements are generally extendable
as a linear data clustering method; the method does not require prior knowledge of the number
of cells as do other clustering methods. In the second major thrust of this dissertation, we in-
vestigate the incorporation of LCuts with deep neural networks to maximize the cell detection
accuracy, and propose a generalized and unified algorithm, m-LCuts, for post-processing under-
and over-segmented results.

Current training data are limited due to the limited number of real datasets and lack of cor-
responding annotated ground truth. The current gold-standard, manual annotation, is error-
prone and time consuming. Therefore, as efforts to expand the annotated 3D biofilm datasets,
both a model-based image simulation pipeline using optical and biological knowledge and an im-
age generation workflow via 3D cyclic generative adversarial networks are introduced in the third
thrust of this research. In order to evaluate those 3D synthetic datasets, a stochastic synthetic
dataset quality assessment measure, named SSQA, is proposed that can fill the existing gap in the
art to evaluate 3D synthetic dataset quality.

The automated algorithms, presented in this research, are able to promote the single-cell and
population-level studies by combining super-resolution imaging with computational image ad-
vance. Furthermore, they also enable reconstruction and analysis of 3D biofilms. As conducted

iii



in the last thrust in this dissertation, biofilm reconstruction via geometrical model fitting and
shape analysis of segmentation results can provide the cell biologists with statistics to further ex-
plore bacterial cell morphology and intrabiofilm mechanisms in future work.

Key words: 3D segmentation, data clustering, biofilm reconstruction, machine learning,

graph, shape
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The real voyage of discovery consists not in seeking new

landscapes, but in having new eyes.

Marcel Proust

Introduction

As the first forms of life on earth since billions of years ago, microorganisms are essential par-
ticipants in nature and exist almost everywhere *°. Based on the “two-empire system” since a cen-
tury ago, cellular life is classified into two groups: Prokaryota and Eukaryota'®. Prokaryotes ac-
count for more than half the biomass on earth with an estimated count of 5 nonillion ***, which
is about 6.5 x 10?° the population of humans on the earth. Bacteria and archaea are all prokary-
otic cells in the microscopic world. The survival of almost all the animals on the earth is depen-
dent on bacteria and some archaea, because they provide fundamental genes and enzymes for

vitamin By, synthesis*’.



Analysis of individual microscopic cells, especially those bacterial cells which aggregate in mul-
ticellular communities called biofilms ", promotes significant insights regarding microorganisms.
Studies indicated that single-cell level inter- and intra-cellular variations and activities are critical

for biofilm development****

, cellular functionality*”’, and population heterogeneity ' »"**. Un-
derstanding these single-cell level activities is an essential step for preventing harmful impacts and
harnessing beneficial outputs of microorganisms for human benefit. For example, the formation
of bacterial biofilms on microbial surfaces can cause persistent infections with higher antibiotic
tolerance in contrast to single wandering cells outside biofilms*>"**. Thus, learning the inner
workings of biofilms can assist in finding effective treatments for bacterial infectious diseases,
such as cystic fibrosis pneumonia, cholera, and chronic implant-related infections*”. A promis-
ing industrial application of bacteria involves wastewater that could produce electrical power or
high value chemicals through electro-biosynthesis”".

Studying single cell behavior in biofilms requires the identification of individual cells from the
complex 3D environment, which remains a challenging task due to limitations in both imaging
and image analysis techniques. In terms of imaging biofilms, phototoxicity, the optical diffrac-
tion limit (around 200nm), and anisotropic imaging resolutions (inferior vertical resolution),
make accurate segmentation of individual cells difficult. In terms of image analysis, the main
issues are caused by the dense aggregation of micron-sized cells, nonuniform intra-cellular fluo-
rophore distributions and spatially variant illumination conditions. In this dissertation, an au-

tomated biofilm image analysis approach is presented to perform single cell analysis for images

acquired by the advanced lattice light sheet imaging technique.

1.1 LATTICE LIGHT SHEET IMAGING OF BACTERIAL B1OoFILMS

The imaging of bacterial biofilms has been a challenging task due to the lack of imaging tech-

niques to resolve cellular behaviors over time among many micrometer-sized bacteria in 3D



biofilms**. Conventional optical microscopy techniques, such as confocal and wide-field mi-
croscopy, suffered from the diffraction limit ( 200 nm) and high phototoxicity caused by high il-
lumination intensity. For example, the resolution of images produced by these methods can only
reach about 230 nm in the lateral plane and get worse in the axial direction with only s70 nm"*7.
In these cases, bacterial cells with a typical radius ranging from 200 nm to 600 nm can be easily
fused to the neighboring cells with diffraction limited microscopy. Meanwhile, live cell func-
tions can be destroyed with high illumination intensity. For confocal and wide-field microscopy,
the illumination intensities are usually at 10°> and 10* w/cm? respectively, which are potentially
harmful for light sensitive specimens and long-term live cell imaging'®. Rapid photobleaching of
fluorophores is another factor that affects the quality of images. In confocal microscopy modali-
ties, the high contrast images are produced by laser scanning across the image and removing out-
of-focus signals by pin holes. The out-of-focus signals are usually repeatedly illuminated when
scanning across the whole image, resulting in fast photobleaching '*”.

To overcome these limitations, 3D super-resolution imaging technology '+

is applied by
using a lattice light sheet to excite fluorescence of a specimen. Lattice light sheet microscopy
(LLSM) is capable of performing long term live cell imaging with non-phototoxic illumina-
tion intensities (~1 w/cm?), which is comparable to the illumination of sunshine (~o.1 w/cm?).
Meanwhile, the fluorophore photobleaching can be 20-50 times lower than confocal microscopy
to produce comparable resolution and contrast™*”'*"**. With the structured illumination mode,
LLSM can even produce three-dimensional images at resolutions ten times smaller than that pro-
vided by traditional techniques "*.

The LLSM for acquiring fluorescent three-dimensional images was built in the Cell Imaging
at Nanoscale lab at the University of Virginia (UVA). A 2D optical latticed thin sheet of light is
used to illuminate and excite the flourophores in the excitation planes in the specimen*”. An

illustration of the imaging procedure is shown in Figure 1.1. Because the laser and detector are

set up at an inclined angle, the final images for image analysis are de-skewed. Additional raw data
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Figure 1.1: lllustration of the imaging procedure of bacterial biofilm using LLSM. The final output for image analysis

are 3D images de-skewed and deconvolved from the raw volume produced by LLSM.

processing was also conducted in the imaging lab with background subtraction and deconvolu-
tion using the Richardson-Lucy algorithm. The optical resolution of LLSM outputs is 230 nm
X 230nm X 370 nm and the image voxel size for the final dataset is oo nm X 100 nm X 100

nm.

1.2 DATASETS AND CHALLENGES IN THE IMAGE

There are three species of bacteria utilized in this dissertation: Shewanella oneidensis MR-1,
E. coli K12, and Myxococcus xanthus. Shewanella oneidensis bacteria are commonly found in
aquatic ecosystems. They are notable for their function as microbial fuel cells due to respiratory
abilities ’?. Shewanella also has one of the densest biofilms; Shewanella is the model bacterium to
study cell detection in dense biofilms (Figure 1.2 a). E. col7 is a typical bacterium that normally
lives in the intestines of people and animals, and serves as a sample model in the study of bacterial
biofilms. Two different labeling methods, (1) genetic labeling through the expression of cell-
internal fluorescent proteins with cytosolic fluorophores, and (2) staining of the cell membranes
using fluorescent dyes, can be utilzied at the same time (Figure 1.2 bc). More challenges occur

when cells are bending, growing, and subdividing. Myxococcus xanthus is a predator in the bac-



Figure 1.2: Sample experimental datasets covered in the dissertation. (a) Two viewpoints of Shewanella dataset.

The others are xy views of (b) mix-labeling of E. coli dataset, (c) interior labeling of E. coli dataset, and (c) membrane
staining of Myxococcus dataset.

teria family. One notable morphological behavior occurs when there are not enough nutrients
in the biofilm; in such a case, some of the cells will turn quickly into spheres, the so-called fruity
bodly.

As it can be observed in the datasets (Figure 1.2), the major challenges in the images for single
cell analysis come from: (a) the presence of uneven fluorescence intensity within a single cell or
across multiple cells; (b) the mixture labeling of cytosolic expression of cell interior fluorescent
proteins and membrane staining with fluorescent dyes; (c) the diversity in cell shapes; (d) the
high density of cells that are closely touching each other; (e) the complex noise conditions in the

dataset, especially the ones imaged at later time points in biofilm formation.

1.3 OVERVIEW OF IMAGE ANALYSIS TECHNIQUES

The ultimate goal of image analysis is to extract information that is meaningful for the target
dataset ***. For single cell analysis of dense bacterial biofilms in this dissertation, informatics,
such as cell size, cell shapes, cell-to-cell spatial and temporal relationships, are of great interest for
biofilm researchers, where identification of individual cell regions is the essential first step.

There are generally two ways to find these individual cell regions: object detection and image

segmentation. Object detection utilizes features in the image to localize each individual cell, usu-



ally by a coarse bounding box. Such features may include edges, intensity, texture, and curvature.
For the cases when the maximum intensity is always inside of the cells, a local maxima intensity
detection approach can satisfy the detection of cells '*. With spherical cells, the curvature of cell
shape is used for neuron detection with Laplacian of Gaussian (LoG) '*°. For deep learning re-
lated applications, the region-based convolutional network (fast R-CNN#*) and its variations are
the current top picks with successful application in cell detection (Cell R-CNN V37, CPN”).
For R-CNN, the final input includes a bounding box regressor to locate the object and a classifi-
cation score to determine the confidence of the detected region to be the targeted cell. However,
object detection can only provide an approximate size and location of cells, while the other im-
portant informatics are not accessible.

Image segmentation for single cell analysis is an instance segmentation task. For instance seg-
mentation, in addition to separation of the foreground of cells from the background, the iden-
tification of edges between neighboring cells is a vital step *°. The classic image processing tech-
niques usually take a combination of thresholding and watershed methods """, The general
thresholding methods attempt to find the cell regions by way of low-pass or high-pass filter, but
they are usually unable to distinguish noisy background from inhomogeneous foreground. Wa-
tershed ' uses the gradient flow to identify the morphological changes along segment contours,
or variations in the image intensity. Such method is sensitive to the noisy conditions in the im-
age. Edge-based image segmentation methods, such as edge detection*”, define the contours by
utilizing the gradient and Hessian of the image. They are also error-prone to discontinuities in
color, texture, etc. Region-based solutions are usually less sensitive to noisy signals in the image
and can provide segmentation results with smooth boundaries, such as using geometric active
contour models. Geometric active contour models are known for their ability to automatically
adjust to the image topology in the presence of an arbitrary number of regions*. However, for
single-cell segmentation purposes, the basic geometric active contour models can easily ignore

the small gaps between two adjacent cells. Another model, parametric active contours, do not



merge to another contour belonging to the other region, but the initialization of landmarks on
the contours for each individual bacterium in the biofilm is required.

Within deep neural networks, convolutional neural network (CNN) based models are es-
pecially popular approaches in biomedical image segmentation tasks 7337190936157 1162 5110,
There are two typical routines for achieving single-cell instance segmentation: (1) preprocess-
ing with CNN to distinguish foreground from background, then followed by post-processing
to identify each individual cell"“"*7*%"*; (2) localization of each cell region by object detec-
tion, then finding the precise segmentation inside of each object region**>***. However, the
most significant obstacle for implementing such an experiment is the sizable demand for train-
ing datasets. For experimental biofilm images, the ground truth cell positions and boundaries are
unknown. While often used as a gold-standard, manual labeling of training datasets is not only
time-consuming, but often inconsistent across different annotators and different datasets .

Data augmentation that can extend the feature dimension of limited datasets is thus highly

adopted in state-of-the-art pipelines for biological image segmentation”"**"*

1.4 DISSERTATION OVERVIEW

This dissertation aims to present automated algorithms to break through the inability in re-
solving and analyzing individual cells in densely-packed biofilms incorporating both classic and
machine learning image analysis techniques. The goals are captured by the four thrusts described
below. They will be introduced and analyzed in detail from Chapter 2 to Chapter 5 correspond-
ingly”. In the last chapter, we will conclude, discuss the contributions, and point to potential

future work.

“The details and figures of each chapter are related to the author’s publications as cited in the thrusts.



I.4.1 THRUST 1: SEGMENTATION OF BACTERIA WITH LCUTS

The complicated structure of three-dimensional biofilms poses distinct challenges for quanti-
tative cell analysis and modeling, especially with the presence of variant density, noise, illumina-
tion, cell type, and fluorescent staining conditions"*”. In this thrust, we are going to introduce
two methodologies to overcome the hurdles presented by this biofilm application: (1) active
contour-based segmentation method with Bact-3.D'** for multi-layered biofilm data, and (2)

a more advanced segmentation solution with linear feature-based detection algorithm LCuts'*°,

which can find individual cells in a more complicated structure in 3D. LCuts will be explored

using a recursive graph cut approach to enhance the single cell identification performance.

I.4.2 THRUST 2: GENERALIZATION OF THE SEGMENTATION METHOD WITH M-LCUTS

To handle the image analysis challenges, many toolkits were proposed over the last decade to
detect individual cells. However, a trade-oft that exists among all the methods is between the goal
of identifying distinct cells and the goal of preserving morphology. Favoring one such criterion
may lead to frequent cases of under-segmentation and over-segmentation of cells. These phe-
nomena are even more common for bacterial cells with anisotropic cell shapes. Post-processing
methods are thus required by many existing solutions, involving either the combining of the
over-segmented clusters or the splitting of the merged cells. Therefore, m-LCuts (masked LCuts) '**
will be presented as a generalized and unified solution to fix both over-segmentation and under-
segmentation problems with one theory in Chapter 3. Experiments are conducted that combine
computational and machine learning-based techniques for a generalization of segmentation for
bacterial biofilms in BCM3D "7 (with an intermediate version of m-LCuts, referred to as 7e-

fined LCuts).



1.4.3 THRUST 3: IMAGE SYNTHESIS AND EVALUATION FOR BACTERIAL BIOFILM IMAGES

The advent of deep learning brings opportunities for solving challenging problems in a variety
of fields, including single-cell analysis. Data-driven approaches typically require a large quan-
tity of labeled training data to achieve reliable solutions. To expand the number of 3D images
to quantify and evaluate data-driven analysis, we present solutions for synthetic data genera-
tion by way of model-based image simulation (in Chapter 3) and generative adversarial networks
(GANSs) based image generation algorithms in Chapter 4. For model-based image simulation,
datasets are generated combining computational model of biofilm growth and optical knowledge
of the microscope. For GAN-based image generation, 3D Cyclic GAN (!5;) with unbalanced
cycle consistency loss is proposed in our research **, with the purpose of mimicking the realistic
conditions in experimental images. GAN-based approach can take into account the challenging
image conditions, such as uncalibrated image aberrations and illumination/emission heterogene-
ity; while, model-based image simulation workflow cannot accommodate these situations. Ad-
ditionally, a stochastic synthetic dataset quality assessment (SSQA) measure ' ** will be presented
that can evaluate the qualities of synthetic datasets without the need for corresponding ground

truth images in 3D.

1.4.4 THRUST 4: BACTERIAL BIOFILM RECONSTRUCTION AND ANALYSIS

The aforementioned goals that segment, learn and evaluate biofilm images can further enable
advanced bioinformatics analysis in Chapter 5. Informatics embedded in biofilms enable under-
standing mechanisms inside of biofilms and the control of the development of harmful biofilms.
Reconstruction alternatives will be introduced, including using geometrical model fitting and
exploit active surface for model shape refinement. Furthermore, we would like to demonstrate
the potential of shape-based biofilm analysis to analyze, visualize, and compare bacterial shapes in

the biofilm, based on our work shape filter'*.



For the things we bave to learn before we can do them, we

learn by doing them.

Aristotle, The Nicomachean Ethics

Segmentation of Bacteria

The objective of this chapter is to introduce a single-cell segmentation solution, named LCuts
(Linear graph cuts) '*°, that overcomes the difficulty of segmenting dense aggregations in a large
biofilm with non-homogeneous inter- and intra-cell intensities. In our initial attempt for single-
cell segmentation, a level set segmentation method, Bact-3D ***, was introduced. Bact-3D pre-
vents the level sets in different single-cell regions from merging into each other by establishing
local evolution constraints. Although promising results for multi-layered biofilm 3D data was
achieved, the performance degrades on more complex biofilm images as the gaps between neigh-

boring cells are extremely hard to identify. In contrast, LCuts is capable of finding the linear
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structures in point cloud data where cell boundaries may be ambiguous. Instead of identifying
the boundaries in intensity between densely packed cells, LCuts compute the local intensity max-
ima to delineate the central axis of each cell; then it partitions the point cloud data based on the
approximate collinearity of bacterial cells embedded in the image to represent different groups

of cells. LCuts is a graph-based multi-class linear data clustering algorithm that works in a recur-
sive manner. It does not require prior knowledge of the number of cells as do other clustering

methods.

2.1 BACKGROUND

For single-cell segmentation tasks, the two major objectives are: (1) distinguishing the inho-
mogeneous foreground (bacteria) from a noisy background; (2) identitying the gaps between
neighboring cells.

Thresholding-based methods (7" usually take a multilevel approach to deal with the in-
homogeneity. In”*, the authors combined global and local adaptive thresholding methods to
optimize segmented cells in iterations. Authors in" hierarchically found multiple thresholding
levels followed by morphological operations to find nuclei regions. However, these methods can
easily cause incomplete cell segment with rough boundaries or false detection of cells from the
noisy background. Methods derived from geometric active contour models, ze. level sets 7>+,
are able to provide smooth segment for objects without the need for clear edges. Modeling with
Legendre polynomials in* enabled the level sets segmentation with the presence of uneven in-
tensities.*’ corrected the inhomogenity and noise in 3D directions of the image and performed
region-based active contours segmentation. Both aforementioned thresholding and active con-
tours methods face difficulty in identifying small gaps between closely touching cells. To analyze

the behavior of an individual cell in a crowded collection of cells, the identification of edges be-

tween neighboring cells is another vital step. A popular choice is to use watershed algorithms "
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and its variations with seeds’""*»%*’. The latter, i.e. marker-controlled/seeded watershed algo-

132

rithms, performed decent work in many cell segmentation problems***"*". A preprocessing step
is usually taken to denoise and enhance the image quality. Then, seeds/cell-markers can be found
as the regional maxima intensity within cell regions. With the watershed algorithm, these seeds
will grow in the region of cells and stop at edge boundaries or merging points with other mark-
ers. Nevertheless, such methods are sensitive to images with heterogeneous fluorescence intensity
across the image. The high density of cells also adds an additional challenge to these methods, in
which case the gaps between neighboring cell are even harder to identify. Consequently, miss-
ing cells, over-segmentation, and under-segmentation problems are observed **""**. To decrease
the cases of unsolved segmentation error, some alternative active contours methods were pro-
posed *»*7?.° and”” incorporated shape constraint for active contours model to segment over-
lapped cells. However, when it comes to 3D cell segmentation in much complex 3D structure in
biofilms, additional challenges arise.

The structural heterogeneity of 3D biofilms, namely variant cell density, illumination inten-
sity, cell type, and fluorescent staining, poses severe challenges for quantitative cell analysis’*”.
Thus, modalities in the art tried to integrate different techniques together to identify each single-
cell region. Seg-3D, proposed in"*, combines local thresholding, shape analysis, and concavity-
based cluster splitting to identify single cells. The utilization of the concavity of the contours
often causes incorrect splitting of the cells. The authors in'*" distinguish the cell regions from
the background by way of a saliency cut that considers the color and size information of regions
in the image. He etal.”* detect single cell regions by analyzing features on cellular convex curva-
tures. Yet, these methods are not designed for the needs in the 3D segmentation tasks and can
easily cause over- and under-segmentation.

To find an advanced solution that can resolve single bacterium in the dense 3D biofims, we
investigated alternative active contour-based segmentation methods and feature-based data clus-

tering methods, by introducing Bact-3D and LCuts.
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2.1.1 LEVEL SET SEGMENTATION METHODS

Active contour-based segmentation methods can be categorized into parametric and geo-
metric active contours”. Between these two alternatives, geometric active contours, ze. level
set methods, are more flexible in topological changes, which means it can segment different ob-
jects simultaneously. The general theory of level set segmentation was proposed by Osher and
Sethain**, in which a level set function @(x, y; #) evolves iteratively along time to approach the
object boundary. For example, the level set function can be a signed Euclidean distance function.
The zero level set, C = {(x,y;2) : p(x,y;¢) = 0}, represents the boundary contour, where the
inside (@ > 0) denotes foreground and outside (¢ < 0) is the background. The motion of the
level set function can be generally formulated as:

oC _

i (2.1)

where Vis the velocity that evolves the curve and N = V¢ /| V| is the outward normal force.

Using the chain rule, the above general expression is equivalent to:

dp _
2 = —V|Vol (2.2)

which can be further written into discrete time evolution as: @"*! = ¢” — V|V |At.

In the level set literature, different velocity 7 functions have been proposed for different ap-
plication needs. For example, Osher and Sethian defined edge-based curvature-dependent speed
to propagate the zero level set to the object boundary. To find regions without clear edges, Chan
and Vese '’ calculate regional mean values to lead the movement of level set function. To detect

** analyzed eigenvalues of the Hessian of the images

tubular structures of vessels, the authors in
and incorporated curvature in the velocity functions to find vesselness structures in the image.

The authors in”* added a coupled tubularity and blob flow field to segment microgila cells. Leg-
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endre polynomials are utilized in the velocity function in*° to capture inhomogeneity across the
objects. Shape priors are added in** in the curvature-based velocity function to regularize the
deformable model. More recently, the authors in*'* presented LyMPhi, which automatically
refines the speed of the level set function towards the object foreground based on matted hier-
archies in image intensity and location. Deep learning techniques were embedded in the region-
based level sets formulation in°*, where deep convolutional neural networks were employed to

learn the saliency of regions in the image to update the speed function.

2.1.2 FEATURE-BASED DATA CLUSTERING METHODS

Clustering is a method to group data with high degrees of similarity into the same set®’. Ma-
jor measures for similarity of data include, but is not limited to: distance, density, predefined
models, and hierarchical relationships. K-means clustering” partitions the data into £ groups
which are centered at £ arithmetic means. Gaussian mixture models'* estimate the variables for
multiple probability distributions in the point cloud by expectation-maximization. Both ap-
proaches can easily cause mis-classification when non-spherical morphology is encountered. To
detect arbitrarily shaped clusters in the presence of noise, density-based measures have emerged.
DBSCAN 7 and DensityClust " are widely used in many settings. Density-based measures find
clusters with different size and shape based on local density of each point, while DensityClust
also maximizes the relative distance between cluster centers. A common drawback of all of these
approaches is that they require specification of the number of groups, which substantially af-
fects the final clustering result. To automatically identify single cells in the presence of over- and
under-segmentation errors, we propose to build a graph on the initially segmented results and

then cluster the nodes in the graph based on their collinearity feature.
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2.1.3 GRAPH CUTS

Graph cuts was originally a terminology in graph theory. A graph usually consists of vertices
and edges, while a cut attempts to disconnect some edges to partition the graph into two disjoint
sub-graphs. Based on the purpose of a cut, there are a variety of graph cut methods, such as min-
imum cut’*°, maximum cut*’, and sparsest cut”’*. The first application of graph cuts theory in
computer vision problem was in 1989 by Greig et al.** to evaluate how the maximum « posteri-
ori (MAP) optimization problem in the images can be obtained by maximum flow. Since two
decades ago, graph cuts for image segmentation emerged, such as normalized graph cuts”” and
interactive graph cuts . As image segmentation is an effort to separate the regions that shared
the similar features in the image, graph cuts-based segmentation methods also utilize these fea-
tures to disconnect the edges among pixels or regions-based graphs. The graph construction
and similarity definition are usually the key to applying graph cuts methods in image segmen-
tation '*”?. In normalized graph cuts, pixels are used as vertices in the graph while image intensity
and location of regions in the image are used to define the cut energy”. In interactive graph cuts,
the vertices for graph cuts are denoted as seeds, which may start from several bounding boxes of
the regions of interest to construct the initial graph then iteratively add new seeds if needed "***°.
Recently, graph cuts image segmentation pipelines are widely applied in biological and bio-
medical settings. The authors in”* specified shape constraints in multi-dimensional feature-based
min-cut to extract liver regions from CT images. Centroid-based and k-means based seed se-
lection methods were proposed in’' to construct graph on brain Magnetic Resonance Imaging
(MRI) images. In*"?, image intensity information and second-order tensor features, such as Hes-
sian of the image, were used in max-flow min-cut workflow to segment vesselness structures in
blood vessel. For the bacteria biofilm images in our experiment, graph cut-based methods pro-
vide us a direction by proposing biofilm graph construction and collinearity feature extraction to

delineate cells even though they are closely touching to each other in 3D.
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2.2 INITIAL WORK ON BIOFILM SEGMENTATION WITH BacT-3D

Bact-3D was firstly developed to resolve individual cells in dense 3D bacterial biofilms '**. In
order to identify and segment the individual bacteria in 3D, we propose an approach in which
we first analyze each layer and finally reconstruct the segmented 3D volume. The intuition be-
hind Bact-3D is that although bacteria are densely packed, their ellipsoidal shape, due to the
interaction between the distribution of fluorophores and the simulated point spread function,

helps in identifying a z-plane where all the individual cells are completely separated.

2.2.1 METHODS

Fig. 2.1 gives an overview of the methodology involved in performing slice-by-slice segmenta-
tion in a layered biofilm. In Bact-3D, we evolve the level set function from the seed points inside
of each cell using Hessian-based curvature detection (Fig. 2.1 b) and allow the contours, defined
by the level set function, to evolve in a local neighborhood (Fig. 2.1 c). The level set is evolved
until it reaches a stopping criterion (Fig. 2.1 ¢), obtained exploiting the prior slice segmentation

result.

Initial Layer Slice "Next Slice

!

R i |
c. Level set evolution d. Identification e. Stopping criterion

a. Initialization

N

Yes

f. Biofilm layer
change?

Figure 2.1: Flowchart of the Bact-3D algorithm.

The local level set method developed in Bact-3D is motivated by the idea of over-segmentation
from“*. To prevent the merging of evolving contours in slices where the boundaries of adjacent

bacteria blur into each other due to the imaging resolution, it is critical to define a stopping cri-
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terion (where the curve evolution velocity is set to 0) that clearly separates adjacent cells. This is

achieved by defining a piece-wise velocity function as follows:

0, ifSC = 1
V= (2.3)

gl —ex] — BVgN, otherwise
The V' = 0 condition effectively prevents the contours, driven by the level set evolution, from
crossing the boundaries defined by the stopping criterion (SC). The velocity model V' = g[1 —
x| — BV gN " represents the propagating rate of the evolving curve toward the cell boundary. In
this formula, « is generally the curvature forcing a slow down at the boundary areas, £ and 8 are

the contour smoothing and edge attracting regularization, and g is the local affinity function as

defined in®*: v
— EEDS Bl ) —
glx,y) =e , E(x,y) G VI 1y (2.4)

where V/is the gradient of the image, G, is a smoothing kernel, and y is a constant to guarantee
that £ will remain limited in presence of small gradients.

The stopping criterion (SC) in Fig. 2.1 e is the skeleton of background that extracts smoothed
cell regions from the initialization layer of the biofilm, where cells are not touching to each other.
The smoothed cell regions are cell segmentation results fitted with ellipse fitting, so that we can
obtain a smooth skeleton of the background region. The initialization layers of the biofilm are
automatically detected by analyzing the number of detected bacteria as function of slice location

along the z-direction. At initialization layers, the numbers of bacteria are the local maxima.

2.2.2 DISCUSSION AND MOTIVATION FOR LCUTS

We qualitatively and quantitatively compared our results on simulated datasets with two pub-
lished algorithms: single cell tracking by Yan, etal.”** and L2S5 " in our Bact-3D paper '**. Fig.

2.2 is a visual comparison of all three algorithms. Yan’s single cell tracking method is imple-
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mented using the available open source code where the value of 10 used in the watershed algo-
rithm was empirically chosen to optimize the output. For L2S, we used the published code in a
slice-by-slice implementation and then merged all the segmented slices along the z-direction to

achieve the final 3D volume.

L |
[T
a

".1‘5'.& R
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. v."’".\,‘

AN T & d:),e\'{\.l '

(a) Ground truth (b) Bact-3D (c) Yanetal.'?*

Figure 2.2: Comparison of segmentation algorithms with Bact-3D. The first row shows final 3D volumes recon-
structed by each algorithm (different color for each layer). The second row shows the segmentation on an individual
slice.

The Dice coefficient, mean squared error and cell detection accuracy are used to evaluate the

performance of the above methods (Table. 2.1). The Dice coefficient compares the similarity be-

2|V,NV|

tween two sets: the ground truth V, and the detected V, volume, and it is evaluated by ARl
g t

where | - | denotes the cardinality of the corresponding set, and varies between o to 1 with unity
indicating optimal segmentation. Mean squared error (MSE = ||V, — V||3) measures the average
squared errors between ground truth V,, and detected V. volumes. The MSE is normalized by the
total number of pixels in the volume. The cell detection accuracy (CD) determines how many
cells are segmented and identified N, compared with the actual number in the ground truth vol-

2 min(Ng,N;)
W. The ground

ume N,. We define this measure similarly to the Dice coefficient: CD =
truth was defined, identically for all the resolutions, as the solid volumes occupying the simulated
bacterial cells before the blurring by the Gaussian kernel. The value was set to unity for the inside

of the cells and zero for the outside. The same index-type function was used for the detections
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Bact-3D Yan, et al. 3> La2S®
Data | Dice MSE CD% | Dice MSE CD% | Dice MSE CD%

0.88 0.08 100.0 | 0.54 o0.24 587 |0.89 o0.07 I.1
0.86 0.08 100.0| 0.56 0.19 61.9 |0.88 0.07 9.1
0.87 0.09 100.0 | 0.56 0.26 59.1 |0.89 0.08 3.1
087 009 99.5 | 0.56 0.26 47.4 |0.89 0.07 4.I
087 0.09 99.5 | 0.57 0.25 55.6 | 0.89 0.08 8.9

WA W N H

Table 2.1: Comparison of segmentation efficiency of Bact-3D. Each dataset was generated using the cylinders models

to simulate the biofilm images with pixel resolution to be 77 X77 nm ‘.

obtained by the three methods allowing for a direct comparison.

Due to the high over-segmentation results, the single cell tracking method "** has no evident
advantages when compared with the two other methods. Although L2S" can define the homo-
geneous foreground from the background, when considering the accuracy in single cell identifi-
cation (CD) in"**, the proposed Bact-3D shows a significant advantage with an average accuracy
of 99.81%. Bact-3D output provides us not only with a clear 3D reconstruction of the layered
biofilm but also with the ability to identify each individual bacterium (Fig. 2.2, second column)
allowing the extraction of statistical information about location, size and orientation.

When Bact-3D was applied on more complex biofilm images as shown in Fig. 1.2, where the
bacterial cells are not layerly-positioned and are more densely packed, the performance of Bact-
3D degraded. Therefore, we explored a solution that can identify individual bacterial regions by
linear data clustering using a recursive graph cuts method, named LCuts '*°. LCuts is built on
the following insight: even though the raw image data does not show distinct boundaries in in-
tensity between densely packed cells, we are still able to reliably compute local intensity maxima

that delineate the central axis of each cell.
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2.3 LINEAR CLUSTERING ALGORITHM

( Inputs: \

Output:
Nodes (nodeDir, nodeLoc), I Yes Save in groups
Image (optional) OOO
Parameters: Current component . 0 g
sizeLimit, distLimit, op, g % Stopping criteria: %e¢ S %o,
o — : — 1. size < sizeLimit Update *]
(k] O ° No adjacency matrix (]
[ ]
L X Y ° 004 ° ®
e0 g0, 4 2. Linearity? l °
[ )
[ ] [ ]
: ° Compute bi-partition solution
Component 1 Component 2
%0 o
eo%0, LTYS
Construct the graph: %
°
generate Nodes | I %
° Recursion

Figure 2.3: Intuitive workflow for the recursive program of LCuts. Here, sizeLimit, distLimit, and eccLimit are
parameters based on prior biological information. Blue panels are major steps proposed in Sec 2.3.1 to Sec 2.3.3.

Unlike most data clustering methods (such as k-means”, DBSCAN "7, and DensityClust ™,
LCuts does not require manual intervention in order to locate the appropriate number of clus-
ters with a proposed recursive work flow (Fig. 2.3). Incorporation of structural constraints, such
as the distance limit and the eccentricity of the bacteria into LCuts, obviates the need for 4 prior:
information regarding the number of clusters (in our case, the number of cells), making LCuts
a fully automatic approach. The whole algorithm can be primarily divided into three parts: con-
struct the graph (Sec 2.3.1), compute the bi-partition solution (Sec 2.3.2), and recursively re-

partition until the stopping criteria are reached (Sec 2.3.3).

2.3.1 GRAPH CONSTRUCTION

Nodes: The nodes (local maxima along the ridgeline of a cell) in the constructed graph have
two features: location (zodeLoc) and direction (nodeDsr). Location is simply the Cartesian posi-
tion of the node. Direction of each node is the principal axis direction of the ridgeline computed

via majority voting (see Fig. 2.4).
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Hop of neighbors

a. Build“neighborhood b. Find orientations e¢. Vote candidates d. Select the average

Figure 2.4: An illustration of majority voting. (a) A 4-hop "neighborhood” example. In graph theory, a "hop” between
two nodes is defined as the number of edges that one has to traverse in order to reach from one node to the other
node. Each hop-neighbor is found within a specified distance (dashed circles) to node. (b) The dashed lines connect-
ing target node with all the other nodes in the neighborhood are possible orientations. (c) Those orientations that
have larger relative angles with respect to the orientations are excluded from the candidates. (d) The direction to
represent the target node is determined as the average orientation from the candidates.

A N, x N, accumulator is set up for the majority voting. One dimension of this accumulator
represents the N, possible orientations (p) in /N, bins (see Fig. 2.4b). Another dimension corre-
sponds to the quantized relative angles (@) with /N, bins, where ¢ is computed from each possible
orientation to all the others. Here, N, is chosen based on the hop” number. The accumulator
will count the number of parameter pairs (p, @) that lie in each bin. Within the first bin of ¢, the
orientations with the largest value are selected which give the candidate directions. These candi-
dates are averaged to yield the major direction for the target node.

Adjacency matrix: The adjacency matrix reflects the likelihood if two nodes are in the same
group. Suppose there are /N nodes in the graph, then the dimension of the adjacency matrix is
N x N. Each attribute in the matrix represents the connectivity and edge weight between two
nodes (7, /): Wy = Wiistance * Wdirection * Wintensity-

Three similarity measures are involved: the Euclidean distance of locations of nodes (eq 3.3),

the relative angle between major directions (eq 3.6) and the dissimilarity of intensity along the
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segment connecting two nodes (eq 2.7). Here, the terms are defined as follows:

_ — 112 .
e HnodeLoc, nodeLonﬂz/‘%, lf | ’nodeLocl. —_ nodeLOCj| |2 S 7

Wiistance — (25)
0, otherwise
~(cos(6)—1)2/2

Wdirection = € (cos(9)=1)"/e7 (2‘6)

Wintensiry = min I, if min I;_,; < thresh (2.7)

Here, wy;s4nc Weighs the distance between two nodes and wy;y,, weighs the difference be-
tween node directions. ||[nodeLoc; — nodeLog;||, is the Euclidean distance between node 7 and
node 7, and s set to eliminate edges between two far away nodes. 0 is the relative angle between
the directions of nodes 7 and j. o and ¢ are adjustable parameters that control the rate of expo-
nential decay.

The third term, Winensizys detects the intensity dissimilarity along the segment joining two
nodes in the image. thresh equals the difference between the mid-range (Mzd) of all the nodes
and the variance (Var) of the constituent node intensities. In the case that the nodes have no in-
tensity information, this term can be set as 1. Otherwise, we extract the intensities along the con-
necting segment from node 7 to node j from the image as shown in Fig. 2.5 and find the lowest

intensity along the segment and compare to thresh.

2.3.2 COMPUTATION OF BI-PARTITION SOLUTION

The computation of the bi-partition solution in the proposed recursive workflow was intro-
duced by Shi and Malik”’. The image is represented as a weighted, undirected graph G = (V, E),
where I = A4 U B and E represents the connecting edges. Then, the image is partitioned into
two groups, 4 and B, by disconnecting the edges between these two groups. A closed-form solu-

tion of this partitioning problem is found by rewriting Ncu# into generalized eigenvalue system.
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Figure 2.5: lllustration and motivation of defining intensity on edge weight. a: Nodes are denoted as red asterisk. b:
After extracting the node directions from the red region in a, it is still hard to separate two groups as the relative an-
gle (in c) and relative distance (shown in d, the distance is 10) are close. In this case, we evaluate the intensity along
the connection of the two nodes. The intensity changes are shown in d. The intensity weighting is then assigned as
the lowest intensity lower than thresh.

Then, the optimal bi-partition solution is given by computing the eigenvector with the second
smallest eigenvalue of the generalized Nexs function. Please refer to Section 3.4.7 for more de-

tails regarding the mathematical calculations.

2.3.3 STOPPING CRITERIA

Two stopping conditions are checked after each bi-partition step to decide the completeness of
the recursion.

Criterion 1 - size: The preliminary components that are less than sizeLimit have the poten-
tial to be an individual group. Here, sizeLimit is determined by the prior bio-information of the
maximum length of the bacterium.

Criterion 2 - linearity: Three aspects are checked to ensure the linearity: (1) Standard devi-
ation (Std) from nodes in the group to the least square fitted line; (2) Intensity changes between
the nodes within the group (as explained in Sec 2.3.1); (3) Eccentricity of the group. This is an
optional condition based on the data type. For linear components, the eccentricity (eccLimit) is

closer to 1; while, for circular components, it is closer to o.
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2.4 EXPERIMENTS ON 2D BACTERIAL IMAGES

2.4.1 DATASET

For qualitative and quantitative assessments, LCuts is first tested on 1o two-dimensional point
cloud datasets which are generated from bacterial images using Airyscan microscopy. From these
images, we obtain prior information regarding the longest bacterium in the dataset (approxi-
mately maximum 6o pixels in length and 15 pixels in width, where each pixel is 46nm X 46nm).
The typical data have 250 to 600 nodes with approximately 20 to 6o cells observed. To build the
graph, we generate the point cloud data following the pipeline in Fig. 2.6.

To build the graph, we generate the point cloud data following the pipeline in Fig. 2.6. An

experimental result and corresponding node features is shown in Fig. 2.7.

a. Original b. Gaussian filtered ¢. Background subtracted d. Local maxima

Figure 2.6: Pipeline for finding nodes from bacterial images. Step 1: Filter the original image with a Gaussian kernel (a
— b). Step 2: Enhance the signals in the image via background subtraction (b — c). Step 3: Find the local maxima (c
— d). Step 4: Clear the points if they have no neighbors or overlap with other points - the rest are the found nodes

(red asterisks in d).

a. nodes b. nodeDir c. result
Figure 2.7: An example performance of LCuts with constructed graph features. (a) Nodes are marked in red aster-

isks. (b) Red lines show the major direction features for each nodes (blue dots). (c) LCut clustering results for the

constructed graph.
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2.4.2 EvaLuATION

The performance of LCuts is analyzed qualitatively and quantitatively by comparing with
two current methods used in the bioimaging community, DensityClust** and Single Cell track-
ing"**. DensityClust is a highly-rated clustering method that has favorable performance in clas-
sifying elements based on the relative density around each points. Single Cell tracking is one of
the representative toolkits for reconstructing bacterial biofilms. It uses a band-pass filter for im-
age denoising and performs marker controlled watershed segmentation to separate single cells.

Qualitative comparison is shown in Fig. 2.8.

Figure 2.8: Qualitative comparison for the proposed method (second column) with DensityClust®’ (third column) and
132
(

Single Cell Tracking fourth column). The first column is manually labeled ground truth. Different colors represent

different single cell groups in all the cases.

Two measures, grouping accuracy (GAcc) and counting accuracy (CAcc), are computed for
quantitative comparison using Dice = 2 TP/(2TP + FP +FN). For both measures, the true pos-
itives (TP) are the number of nodes per cell that are correctly classified within each cell region.
Here, cell regions are manually labeled as binarized ground truth as consistent standard in the
comparison. For GAcc, false positives (FP) count the nodes mismatched in experimental data;

while, false negatives (FN) represent those nodes missing in corresponding ground truth. Simi-
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larly, for CAcc, FP is the count for cells that are over-segmented and FN count for cells that have

no corresponding cluster in the experimental result.

LCuts DensityClust SCT
GAcc CAcc GAcc CAcc GAcc CAcc

Best  95.9 95.1 946 923 944 941
Worst 87.8 8s5.2 783 837  77.8 53.5

Avg. 91.6 912 859 872 877 865

Table 2.2: Quantitative comparison of LCuts with DensityClust®’ and Single Cell Tracking (SCT) **? using Dice scores.

Overall, LCuts outperforms DensityClust and SCT in GAcc and CAcc by a margin of at least
4% on average. There are circumstances that some cells are misclassified in LCuts. One cause is
the non-linearity of auto-produced point cloud data, especially when cells are randomly float-
ing in the three-dimensional space. Another reason is the trade-oft between the tolerance in dis-

tance/intensity changes and the continuity of the linear structure.

2.5 EXPERIMENTS ON 3D BACTERIAL IMAGES

2.5.1 DATASET

LCuts can be directly applied on the three-dimensional data. We tested a refined version of
LCuts (modifications stated in Chapter 3) on two different types of bacterial experimental 3D
datasets: Shewanella oneidensis MR-1 and M. xanthus. To test the performance of cell identifica-
tion algorithms, manually segmented ground truth were provided by the cell biologists from the
Department of Chemistry, at UVA (Fig. 2.9).

Point cloud data: The performance of two different point cloud data inputs is tested. One of
the data inputs is the centroids from the manually labeled contours by cell biologists (Fig. 2.9).
The other one is the central points automatically extracted by detecting local maxima from the

intensity image slice by slice along x-, y-, and z- directions (Fig. 2.6).
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Figure 2.9: Pipeline for manual labeled ground truth for 3D experimental datasets provided by Imaging at the
Nanoscale Lab, University of Virginia. (a) Cell contours are manually labeled slice by slice along x-, y-, and z-. (b)
Contours from 2D slices are manually grouped together in 3D (one color represents one group). (c) Then the ground
truth of the central points is provided as grouped centroids of the contours.

2.5.2 RESULTS AND EVALUATION

Qualitative preliminary results on Shewanella and Myxococcus are shown in Fig. 2.10, where
we compared the qualitative results on manually labeled point cloud data and auto-detected cen-
troids using local maxima detection.

Evaluation: Due to the fact that ground truth was manually grouped to reflect the single bac-
terium layout in 3D space (Fig. 2.9 (c)), the ground truth cannot perfectly align with the seg-
mented results in some cases. A new evaluation matrix was used to test the accuracy by matching
the segmented result with ground truth using the Hungarian®' method.

The Hungarian algorithm®’ is a linear programming technique that considers all possible one-
to-one assignments between segmented cells at two time points and then determines the set of
cell-to-cell assignments that minimizes the sum > cost. In this case, each segmented point cloud
can only be matched with one group in the ground truth where the overall cost of distance and

relative angles are minimized. In detail, the cost function for the Hungarian matching algorithm
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Ground Truth Result on manual centroids Result on auto centroids

Figure 2.10: Comparison of qualitative results on manual labeled centers and auto-detected centroids. Top: She-
wanella; Bottom: Myxococcus. The cell counting accuracy results using the Hungarian algorithm on manual and auto
centroids are 88.7% and 59.5% respectively on the top, and 86.8% and 65.9% on the bottom row.

takes into account the relative distance and angle between two segments, which is defined as:

cost = ||cg — Cresur] |5 x acos(diry, dir i) (2.8)

where ¢, and ¢, denote the centroid coordinates of a segment in ground truth and a segment
in the LCuts result. dir,; and di7,.,,, are the segment (point cloud) directions.

After the one-to-one assignment via Hungarian algorithm, we are able to visualize and quan-
tify the histogram of distance and angles between matched cells as shown in Fig. 2.11. When the
number of cells are not the same in the ground truth and the result volumes, which means there
are missing cells or extra cells in the results, then those cells are counted as unmatched or false
negatives. For the other matched cells, the diagrams in Fig. 2.11 present the histograms on dis-

tance and relative angle cost separately. To quantify the preliminary cell counting accuracy using
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Figure 2.11: Histogram of distance and relative angles between matched cells using Hungarian algorithm. This is

an example of Shewanella analysis figure. The unmatched number of cells in manual labeled centroids and auto-
detected centroids are 33 and 24 respectively. After using the thresholding on distance < 60 pixels as a sample, the
counting accuracy for the two centroids are 88.7% and 59.5%.

Dice coefhicient, we chose a thresholding value on distance of 6o pixels (6pm) to count the cells
within the range as true positives while the others are false positives.

The preliminary 3D results reveal that LCuts is promising with manually label datasets; how-
ever, there is a challenge for the current workflow that comes from the noisy input of point cloud
data (Fig. 2.10). Therefore, we proposed an improvement on the automated central axis extrac-

tion as more details will be introduced in the next chapter.

2.6 SUMMARY

This chapter firstly presented biofilm segmentation with an edge-based level set segmenta-
tion method, named Bact-3D. In Bact-3D, a local velocity constraint was proposed to locate

individual cell segment. However, when cell edges are ambiguous, the situation for segmenta-
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tion becomes more challenging. Thus, an advanced segmentation solution is presented, named
LCuts. This solution is a data-clustering approach and has been shown to be efficacious in find-
ing individual bacteria in dense biofilms. It outperforms the existing methods in the majority of
cases (2D). Furthermore, LCuts can benefit the biofilm community by its automation and easy
adaption to multi-dimensions. With the expected output, cell biologists are able to analyze the
biofilm with the quantifiable information provided by LCuts in the form of cellular positions,
orientations, and the physical contact points between them. Beyond bacterial biofilms, LCuts
can be extended to other linear clustering or segmentation problems where identification of lin-

ear structures of the objects is desired.
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When we do the best we can, we never know what miracle

is wrought in our life or the life of another.

Helen Keller

Generalization of the segmentation method

To generalize the bacterial cell analysis for any segmentation pipelines and to maximize the sin-
gle cell identification performance, the incorporation of the refined LCuts within a deep neural
networks framework was firstly investigated. By utilizing pre-segmented cell regions to gener-
ate smooth point cloud data, the performance of LCuts also improves as it can effectively post-
process the under-segmented clusters in the u-net processed segmentation results. With more
experiments conducted using different initial segmentation methods, the need for additional
post-processing emerged where both under- and over-segmentation errors may occur. Post-

processing attempts to balance the trade-off between the global goal of cell counting for instance
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segmentation, and local fidelity to the morphology of identified cells. We present a unified solu-
tion, named masked LCuts (m-LCuts), which is an advanced algorithm to automatically detect
collinearly structured clusters and to post-process the unsolved cell segmentation errors in an an-
alyzed image of a 3D bacterial biofilm. Generally, the mask can be any preprocessed under- or
over-segmented result; then, m-LCuts can automatically further split or connect the incomplete
segmentation result. Construction of outlier-removed graphs to extract the collinearity feature
in the data adds novelty to #-LCuts. The superiority of m-LCuts is observed by the evaluation
in cell counting with over 90% of cells correctly identified, while a lower bound of 0.8 in terms
of average single-cell segmentation accuracy is maintained. This proposed method does not need
manual specification of the number of cells to be segmented. Furthermore, the broad adaptation
for working on various applications, with the presence of data collinearity, also makes m-L Cuts

stand out from the other approaches.

3.1 BACKGROUND: THE NEED FOR POST-PROCESSING

The need for post-processing commonly exists in most workflows (e.g., *'**) due to the difhi-
culties in cell segmentation. As also mentioned earlier, main categories for bacterial biofilm seg-

22

mentation include thresholding-based *******, watershed-based ' »'****’, active models**'**»*7%,

106,66,120,1

feature-based detection”” 7, and deep learning workflows "' 7721725127195 A trade-
off that exists among all the methods is between the global goal of identifying the separations
among cells and the local goal of preserving maximal appearance of cell morphology. Over-
tuning on each side may lead to frequent cases of under-segmentation and over-segmentation of
cells. These phenomena are even more common for bacterial cell where an anisotropic cell mor-
phology is presented. Post-processing methods are thus required by many workflows, as either

combining the over-segmented clusters or further splitting the diffused cells. Common tech-

niques include but are not limited to region growing, watershed, model fitting, and cutting along
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curvature. However, none of these methods can target the two post-processing demands naively.

For cases where cells are still connected after segmentation, 7.e., under-segmentation and watershed-
based methods, are most frequently applied as an additional step””*»“°. However, these methods
are sensitive to uneven intensities in the images. For large connected cell regions, Gaussian mix-
ture models with the estimated number of cells are used to divide the cluster **. Here, the esti-
mated number of cells can heavily affect the final output. Concavity along the cell contour is
another index for splitting cells****. Such methods have not yet been tested for 3D images and
they can be computationally expensive when the number of foreground pixels is large. There
are also methods for splitting unsolved cases (7.¢., under- and over-segmentation errors) based on
intensity, segment distance, and curvature’"'*°. However, the current state-of-the-art methods
perform sub-optimally when tasked with resolving multiple cells that are similar to each other
and closely packed.

Common practices for solving over-segmentation problems are region merging, grouping,
and morphological closing. Hartmann et al.*” connects the neighboring regions by maximum
contacting area. This is difficult in the case when multiple over-segmented clusters gather to-
gether in parallel layouts. In**, area and eccentricity information are used to determine if the
morphological closing operation is needed to connect the pixels between neighboring segments.
This method is however unable to solve complicated cases in 3D where morphological opera-
tions might erroneously connect other nearby cells. The authors of Ilastik *“ modeled the edges
of over-segmented data as superpixels and trained a random forest classifier to decide if the edges
of the two segments need to be merged. The interface for merging 3D cell segmentation is not

yet available.
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3.2 CELL SEGMENTATION USING U-NET

One barrier in cell segmentation using deep neural networks comes from the limited experi-
mental data and the lack of ground truth for training. This problem arises especially for 3D neu-
ral networks where labeling of 3D ground truth is not consistent from volume to volume, and
from annotator to annotator. For example, for a 3D image with approximately 300 cells, it takes
more than one week for multiple domain experts to get a manual ground truth (Fig. 2.9). In this
case, the initial choice of the neural network structure is critical.

U-net”' can provide promising segmentation results with limited training data based on the
experiments with a variety of biomedical images. It can extend the training dataset by data aug-
mentation such as scaling, rotation, and elastic deformation. Many extensions of u-net, such as
DeepCell”, BiofilmQ *, and StarDist*°, also exhibit advantages for learning limited datasets for
cell segmentation problems. However, inconsistent 3D ground truth still affects the reliability of
qualitative and quantitative assessment of proposed algorithms. Simulated datasets are used to
test the feasibility of proposed methods, where the ground truth is automatically produced via

simulation.

3.2.1 DATA SIMULATION

Simulation of bacterial biofilms is conducted in the Gahlmann lab as a first step in the pro-
posed workflow, named Bacterial Cell Morphometry 3D (BCM3D) *. The procedure of sim-
ulating an F.col7 dataset is shown in Fig. 3.1. An agent-based computational model of biofilm
growth, CellModeller”*, is used to simulate the layout of bacterial biofilm. Random numbers
of cells were placed in the biofilms with two variables: signal to background (SBR) ratio and cell
density. The fluorescence emitters for each cell are randomly selected within the cell volume and

cell surface to simulate expression of intracellular fluorescent proteins and membrane staining,

"BCM3 D is a collaboration manuscript with M. Zhang, et al.
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respectively. Each cell was simulated with 500 to 1000 fluorophores to express variations be-
tween cells according to biofilm experiments**”. Convolution is performed with an experimental
point spread function (PSF) to produce an intensity image, and noise (approximating the actual
distribution) is added. Mix-type of cells are also simulated as myxococcus dataset where sphero-

cylinder cells and fruity body (sphere) cells are present at the same time.

Simulated cell arrangement Convolve with the experimentally acquired psf Add background and noise

Figure 3.1: Model-based data simulation procedure 197, Step1: Different layouts of bacterial biofilm are generated by
CellModeller”°; Step 2: Randomly simulate fluorescence emission points in the layouts and convolve these points
with experimental acquired point spread function (psf); Step 3: Add background and other microscope noise.

3.2.2 EXPERIMENTS ON SIMULATED DATASETS

A 3D u-net with three voxel-based classes (cell, cell boundary, and background) was trained
and tested in BCM 3D **7 using the NiftyNet platform**. The network architecture contains
depth of 4 convolutional layers. Each convolutional layer has kernels of size 3 X 3 X 3 and uses
ReLU as the activation function. There are 32 initial feature maps, and followed by a dropout
layer of 50% probability. Ten 3D images (~ 9 million voxels per image) with different SBRs and
cell densities were used for training, and five hundred 3D images were used for testing. The fi-
nal output of u-net provides a confidence map for each class. The segmentation results are then
chosen by thresholding of the cell confidence map with a value that maximizes the cell counting
accuracy.

Evaluation: Two metrics are used to evaluate the performance of segmentation results by

u-net (Fig. 3.2): The Jaccard Index represents the segmentation accuracy using TP/(TP + FP
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Figure 3.2: Evaluation of u-net segmentation performance. Illustration of used evaluation metrics is shown on the left
panel. Red cell is the ground truth (GT) and blue cell is the experimental result (Res). (a-c): Performance of images
labeled with cytosolic fluorophores; (d-f): Performance of images labeled with membrane-localized fluorophores.
Each value shows the averaged performance on 10 datasets for each setting. Dots represent different experimental
data setup in terms of SBR and cell density. (c) and (f) show the one slice result with the SBR and cell density marked
in the white window, where the u-net failed to split closely connected cells (pointed out by the red arrow).

+FN). True positive (TP) is the number of pixels in which the ground truth overlaps with the
experimental result. False positive (FP) is the portion of the segmented areas without any overlap
with the ground truth, and false negative (FN) is the non-matching part in the ground truth.
The Counting accuracy uses the calculation of Jaccard index as well. TP here counts for the
number of results that have an overlapped area (between segmentation result and ground truth)
larger than a thresholding value, which is also referred to as Intersection-over-Union (JoU) value.
FP is the number of cells that are counted in the experimental result but do not exist in the ground
truth. FNs are the ones that are not-counted in the result, but are present in the ground truth.
Evaluation of u-net segmentation performance on two different types of labeled datasets is
shown in Fig. 3.2. The overall performance of u-net is decent in most cases. However, when im-
ages are heavily affected by the noise (SBR: low) or cells are closely located with respect to one

another (density: high), both metrics show a noticeable drop in accuracy. For example, with
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the lowest simulated SBR, the average counting accuracy is 46.82% for so images labeled with
cytosolic fluorophores and only 11.97% for so images labeled with membrane-localized fluo-
rophores. From another aspect, when cell density increases from 64% to 72%), the cell counting

accuracy decreases from 99% to 60% for the images with higher SBR.

3.3 POST-PROCESSING U-NET RESULT WITH REFINED LCUTS

C. Data generation
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a. Unet result —

D. Graph construction

A. Clutter removal D.1 node location
—* d. Post-processed graph
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D.2 node direction \A
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Figure 3.3: Post-processing using refined LCuts 120 A: Clutter removal using CV-filtering. B: Under-segmented clus-
ters are selected for further splitting based on cluster size. C: lllustration of modified medial axis (dashed red lines)
extraction for fused clusters or rod-shaped cells using the method of inscribed spheres. Proposed medial axis ex-
traction limits the radii of inscribed spheres (C.2) overcomes the drawbacks in traditional method (C.1). D: The con-
structed graph has two node features: location (D.1) and direction (D.2). E: The further splitting of the graph is done
in a recursive manner until all the groups meet the stopping criteria. F: The final reconstructed cluster is obtained by
model fitting on the post-processed cluster.
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When cells are closely touching each other, segmented results after u-net remain connected
which forms a cluster with multiple cells (under-segmentation). In the datasets with low SBR,
connected voxel clusters may be detected that do not correspond to cells at all (noise). To im-
prove the accuracy of single cell segmentation, post-processing on u-net results using refined
LCuts (Fig. 3.3) is proposed in the BCM3D workflow.

CV-fultering to remove noisy clutter: Noisy clutter is identified by evaluating the coefficient of

136,113

variation for each connected voxel cluster 7 (Fig. 3.3A):

crv,=Z (3.1)
lui

where ¢; and g, denote the standard deviation and the mean of the intensity taken over all vox-
els contained in connected voxel cluster 7. If the coefficient of variation is larger than 0, then the
current object will be classified as a noisy clutter and removed from the preprocessed result. The
value of d'is selected based on the coefficient of variation of the background. For the data pre-
sented here, we used d =1.1. After CV-filtering, objects smaller than 25% of the expected bacte-

rial cell size are also removed by setting their voxels to zero.

3.3.1 REFINED LCUTS FOR POST-PROCESSING

Refined LCuts preserves the original framework of linear clustering algorithm as described in
Chapter 2 with some modifications addressed as follows:

Medial axis extraction: To prepare under-segmented clusters for refined LCuts to further
identify and delineate individual cells (Fig. 3.3 B), the idea of medial axis extraction using the
method of inscribed spheres is exploited ”. A novel modification is a restriction on the radii
of the inscribed sphere that does not exceed the maximum diameter of a single bacterial cell
(d = 0.8um) (Fig. 3.3 C). The set of N inscribed spheres are constrained to be tangent to
the object’s surface and parameterized by (x;, y;, 2;; 77 < d) fori = 1,, N. Determination of

the (x;, y;, 2;; 7;) coordinates is achieved using the Euclidean distance transform of the objects’
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boundary, as described in***, so that the points with coordinates (x;, y;, z;) reliably trace out the
central cell axes of individual bacterial cells.

The fundamental elements of a weighted mathematical graph are nodes, edges, and edge
weights. Here, the points with coordinates (x;, y;, z;) represent the graph’s nodes. Edges are the
connections among nodes. Edges are assigned weights, for example, to reflect the confidence that
two nodes belong to the same group. LCuts works by assigning weights to edges in the fully-
connected graph to reflect the similarity between two nodes.

Node features: The features of each node include its location and orientation (Fig. 3.3 D).
The location is each node’s Cartesian coordinates. The orientation of each node is found as illus-

trated in Fig. 3.4.

Target node [
([ ] L
[ ] [ J /
4 o,

Neighbor? o®
Yes No @ .\ ([ ]
Hop of neighbors - —-—) —)
—_— o [
(XX}
4
a. Find all possible neighbors b. Build 5-hop neighborhood ¢. Remove outliers d. Find the major direction

Figure 3.4: lllustration of finding each node’s orientation in an outlier-removed neighborhood. a: A neighborhood of
the target node is a sub-graph, where all adjacent nodes are connected via edges to the target node. Here, if the
distance of two nodes is less than a chosen value (indicated by the dashed circle), these nodes are adjacent to each
other. b: A 5-hop neighborhood of the target node is built. c: The directional vectors are found from the target node
to the other nodes in the neighborhood (dashed lines). The nodes are evaluated as outliers if they have larger net
relative angles compared to all the other directional vectors (red dashed lines). d: Finally, the node’s orientation is
evaluated as the major direction of the outlier removed neighborhood using principle component analysis.

Stopping criteria: LCuts continues to separate groups of nodes until each group satisfies the
stopping criteria. The stopping criteria are based on the expected length of a single cell and a
group’s linearity after each recursion. The group linearity accounts for node variations compared
to the major direction of the nodes. In addition, if two cells are linearly aligned, a gap detection
will distinguish long cells and cells aligned in a row. Here, a gap is detected if the neighboring

nodes have a distance larger than the average point-to-point distance.
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Figure 3.5: Evaluation of segmentation performance after post-processing using the workflow of refined LCuts 7 (a-

c): Performance of images labeled with cytosolic fluorophores; (d-f): Performance of images labeled with membrane-
localized fluorophores. (c) and (f) show the improvement of cell counting accuracy after post-processing.

Model fitting: The final output of linear clustering can provide length, location, and orien-
tation of each cell. Based on these linear clusters, the cellular architecture of the biofilms can be
reconstructed by placing geometrical models of cells in the space as shown in (Fig. 3.8F). More
details about biofilm reconstruction will be discussed in Section s5.3. As before, when the length
of the linear clusters is shorter than 25% of the expected cell length, the segment will be deleted.
Here, we chose a spherocylinder for the geometrical model with the radius determined based on

known sizes of bacterial cells.

3.3.2 EVALUATION OF POST-PROCESSING PERFORMANCE

The same evaluation metrics are displayed for the performance of post-processed results (Fig.
3.5). The Jaccard index, which shows the segmentation accuracy, cannot reveal further splitting

performance. This is because further splitting of the cells may erode true positive pixels com-
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Figure 3.6: Comparison of refined LCuts post-processed results with other segmentation methods in the biofilm
community137, in terms of cell counting accuracy with variant loU values. (a-c): Performance of cytosolic-labeled
data without post-processing with refined LCuts; (d-f): Post-processing performance with refined LCuts.

pared to the ground truth. At the same time, fitting of a spherocylinder model adds false positive
pixels. Thus, the improvements on Jaccard index are not representative (< 5%). Instead, it is
worth mentioning that post-processing using the proposed workflow can boost cell counting ac-
curacy by over 10% for both datasets (Fig. 3.5 cf). This is especially true for membrane-stained
datasets, which were a challenge for u-net. A maximum improvement of 36.6% is observed.
Although the score for averaged cell counting accuracy remains low for low SBR (typically for
membrane-stained dataset), it comes from the weak performance of u-net.

More experiments on the other datasets have been performed. 100 images with mixed labeling
using both cytosolic and membrane-localized fluorophores are tested with variant percentage of
mixture of labeling, e.g., in an image, one third of the cells are cytosolic-labeled while the others

are membrane-labeled. overall, the proposed post-processing pipeline improves u-net results by

41



5 — 15%. Another dataset with 100 images that includes mixed cell types (spherocylinder cell
and fruity body cell) is also improved by a range from 20% to 35% after post-processing. More
details can be found in our BCM3D paper' .

Comparison to other biofilm segmentation methods: We also compared our method, post-
processing with refined LCuts, with other cell segmentation methods in the biofilm commu-
nity "7, Three selected SBR and Density conditions are selected for quantitative comparison
as shown in Fig. 3.6. The comparison methods are Hartmann et al.*”, Seg3D*, Yan et al. **
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and Cellpose'*°. Hartmann et al. and Yan et al. are watershed-based cell segmentation methods.
Hartmann et al. also includes post-processing of under- and over-segmented errors using Gaus-
sian Mixture Models and Region merging. The experiments using the these methods were con-
ducted by the Drescher lab. Seg3D uses a slice-by-slice thresholding method followed by post-
processing using ellipsoid fitting. Cellpose is a CNN-based cell segmentation model, which was
pre-trained with a variety of images, including eukaryotic cells.

According to Fig. 3.6, BCM3D (CNN only), which means only trained u-net with simulated
dataset to segment the images, already achieves the best performance overall with variant IoU
thresholding values. However, the performance degrades at SBR= 1.19 as the combination of
low contrast and high density increases the difhiculty in single-cell segmentation. With refined

LCuts as a post-processing step, we are able to bring back the cell counting accuracy to the level

around 80% for IoU values less than 0.5.

3.3.3 EXPERIMENTS ON REAL DATASETS AND MOTIVATION FOR M-LCUTSs

The quantitative and qualitative comparison of experiments on real datasets are shown in Fig.
3.7, which is also reported in our BCM 3D paper . Due to the difficulty in manual annotation
of 3D ground truth of individual cells, only several 2D slices in the 3D raw image are available.
Therefore, the results shown in a to ¢ in Fig. 3.7 are performance averaged over these selected

2D slices. A visual 2D qualitative comparison is also presented in Fig. 3.7 d. It can be observed
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that, with refined LCuts, the regions that are still connected after u-net trained with a simulated
dataset (BCM3D (CNN only)) can be further split and filled with estimated cell models, and
thus improves the cell counting accuracy.

Motivation for m-LCuts: The refined version of LCuts improves the u-net outputs by filter-
ing out the noisy cell regions and splitting under-segmented clusters into different cells (marked
with white circle in Fig. 3.7 ). However, there are still imperfect regions that are not yet fixed
by refined LCuts (marked with red circles in Fig. 3.7 €). These imperfections may be caused by
the bending cell shape in the real images or rough segmentation boundaries in pre-segmented
outputs, which may further cause over-segmentation errors as a single cell is separated into parts.
Therefore, we propose masked LCuts (m-LCuts) in the purpose of generalizing the segmenta-

tion method.

3.4 GENERALIZED SOLUTION FOR POST-PROCESSING WITH M-LCUTSs

Frequent cases of under- and over-segmentation are often observed when segmenting dense
biofilm images using currently available cell segmentation tools*"*»°»?%>773512> " Additional
post-processing procedures are thus required to refine the segmentation results, with either
under- or over-segmentation errors. The proposed masked collinear cuts (72-LCuts) can post-
process the unresolved clusters by automatically dividing them into different components or
by connecting oversegmented objects into larger groups. The user does not need to specify the
number of cells in advance. The overall workflow and pseudocode of #-LCuts are shown in Fig.
3.8 and Algorithm 1. Details of each step are explained in the following subsections, including
introducing Algorithm 2 and Algorithm 3. Currently, the mode in the algorithm is a user se-
lected input, but this input can also be determined automatically for different applications, e.g.,
by checking cluster size and convexity for the bacterial biofilm imaging. The final results can pro-

vide cell location, orientation and cell length, and thus assist in biofilm reconstruction.
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Figure 3.7: Experiments on real experimental image and motivation for m-LCuts. (a-c) Experiments on real exper-
imental image and comparison to the other cell segmentation methods at three biofilm growing time points, 300
mins, 360 mins, and 600 mins **’. The SBR and Density conditions for these time points are 2.2 and 54.8%, 1.8 and
59.0%, and 1.3 and 64.6%, respectively. (d) The performance of BCM3D without/with refined LCuts on a 2D slice in
the raw biofilm 3D image at time = 600 mins. Red and blue boxed areas are enlarged regions for visual performance
comparison. (e) Post-processing on real dataset shows that the current pipeline is capable of fixing undersegmented
clusters after u-net in most of the cases (success example circled in white). However, when cells are bending or the
output from u-net has a rough boundary, imperfect post-processing, such as over-segmentation errors, may occur.
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Figure 3.8: Workflow of m-LCuts with the application to the post-processing of unsolved cases in biofilm segmenta-
tion.

3.4.1 DIFFERENCES OF TWO MODES

The theory for post-processing an under- or over-segmented mask remains the same, but the
algorithm runs in two modes with slightly different specifications to address these different
errors. The major differences in the running modes are how key point cloud data is extracted
(Algorithm 1 lines 2-9), how the major direction feature of a graph node is defined (Algorithm

2 lines 3-10), and how the stopping criterion is reached (Fig. 3.12).

3.4.2% DIFFERENCES COMPARED TO PREVIOUS WORK

In contrast to our previously published work (LCuts'*° and refined version of LCuts used
in**7), this paper reports a generalized and unified data clustering solution with input data either

being point or segment to address different post-processing concerns. The main clustering al-
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gorithm majorly differs from the other two in the extension to the mode with over-segmented
mask. Furthermore, there are also changes in details of the algorithms for generalization: (i)
graph construction now contains medial axis extraction and supernode generation; (ii) feature
extraction is modified with the new Algorithm 2; (iii) the similarity measure defines new mea-
sures in distance (Eq. (3.4)) and direction (Eq. (6-8)); and (iv) the stopping criterion adds auto-
matic gap detection and concavity check (Fig. 3.12). Compared to the initial work LCuts, the
node-based graph is constructed differently in 72-LCuts with binarized masks as input instead of
intensity images. The collinear feature extraction in #-LCuts replaces the majority voting process

in LCuts by automatic outlier removal and principal direction computation.

Algorithm 1 Procedure of 7-LCuts on post-processing

Input The Mask of region of interest; mode to be processed.
Output The final clustered groups;

Optional reconstructed volume post V.
Parameters sizeLimit, distLimit, op, or

: procedure MLCuUTS(Mask, mode)

Find nodes with features:

if mode: under-segmented mask then

nodeLoc < extract medial axis point cloud data;
nodeDir < use Algorithm 2 for all the nodes.

else if mode: over-segmented mask then

nodeLoc < generate supernode with segments;
nodeDir <— use Algorithm 2 for all supernodes.
end if

10: Construct the graph and compute Eq. (3.2) to find W.
11: Compute recursive graph cuts solutions using Algorithm 3 to detect collinear
groups in the graph.

12 Optional: reconstruct the volume, postV, by fitting geometrical models to groups.

—

34

13: return
14: end procedure
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3.4.3 FROM MASK TO GRAPH

A mask, in general, is a binarized image provided by the preprocessing methods. The target
object of interest can be extracted by masking an image where the unselected regions are set to
zero. Based on the size of a bacterial cell in the application, a mask can be classified into two cat-
egories: an under-segmented mask contains connected cells, while an over-segmented mask en-
closes cells that are erroneously divided into different parts (Fig. 3.8A).

The segmentation problem is transformed into a data clustering problem by constructing a
graph from the binary mask. Based on graph theory, the proposed graph has two major compo-
nents: nodes and weighted edges. The nodes represent the key points in space extracted from the
mask. There are two features on the nodes, node Cartesian coordinates (zodeLoc) and node ma-
jor direction (zodeDir). The connections between each pair of the nodes are called edges. The

weights on these edges reflect the similarity of the connected nodes.

3.4.4 NODES

For under-segmented masks, the nodes lie along the medial axes of the binary image (Fig. 3.8B
left). A radius-constrained medial axis extraction method is presented, which exploits the idea
of inscribed spheres"*”. Inscribed spheres are the largest spheres with at least two tangent points
to the object’s inner surface. The centers of the spheres are extracted as the object’s medial axis,
known as the medial axis transform (MAT)"*. However, accurate implementation of MAT is
computationally expensive and hard to process especially in 3D*°. We adopt the idea of approx-

100

imate MAT skeletonization using the Euclidean distance transform **°, adding the constraints
on the distance ranges to obtain the modified binary foreground for centerline extraction. The
motivation of using the MAT with radius constraints (7) is explained in Fig. 3.9. The proposed

algorithm can avoid the merging of medial axes of touching cells, as well as can maintain the con-

tinuity of the extracted medial axes. Although there are still connections between parallel cells
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Uil

Figure 3.9: Procedure of medial axis extraction with example on a 2D image. Step 1: Compute the Euclidean dis-

tance transform (b) on the perimeter of foreground (a). Step 2: Binarize the distance transform map (b) with/without
a constraint on distance ranges, which is the so-called radius constraint, to further extract the centerline/skeleton
(c/d). c: If there is no radius constraint, the skeleton of neighboring cells are still connected to each other, as indi-
cated by the blue arrows. The ones that are connecting in a line (marked with yellow arrow) are harder to distin-
guish. d: If a radius constraint is added, the medial axes more closely match the central cell axes.

(Fig. 3.9d) with the current choice of constraint (» € [1,7] pixels), #-LCuts is still capable of
splitting them, because they present different collinearity. The lengths of cells are shortened due
to choice of lower limit of radius constraint, but the loss of length is added back during final cell
reconstruction.

For over-segmented masks, the nodes are supernodes representing each connected compo-
nent, referred to as a segment, in the mask (Fig. 3.8B right). The location feature (zodeLoc) of a
supernode contains the coordinates of all the voxels in the segment, which can be roughly repre-

sented by the centroid of the current segment for indexing and visual display (Fig. 3.8C).

3.4.5 MA]OR DIRECTION ON NODES

For both cases, the major direction of a node is calculated from its outlier-removed multi-
hop neighborhood using principle component analysis (PCA). An example of constructing a
3-hop neighborhood is shown in (Fig. 3.10). Suppose G is an undirected fully-connected graph.
Then, we remove the edges where the Euclidean distance between the two nodes is larger than a
thresholding value, d, resulting in subgraph Gz. The two nodes, connected by an edge in Gz,
are neighbors to each other. For a target node 7, its multi-hop neighborhood is defined as a sub-

graph, Gn,. Here, the number of hops is the number of edges that one node needs to traverse
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Algorithm 2 Finding major direction feature on node 7

Input
The inputs are the index 7 for target node;
The multi-hop neighborhood G#; for node 7
The node locations nodeLoc;
The current algorithm mode.

Output

The major direction feature zodeDir; on node 7.

: procedure FINDMAJORDIR(Z, Gn;, nodeLoc, mode)
for each neighbor jin G, do

-

)4

3: if mode: undersegment then
4: Find the candidate direction from 7 to j:
5: candidate;; < nodeLoc; — nodeLoc;.
6: else if mode: oversegment then
7: Find sub-point cloud that includes all the points in /" and ]"h nodes;
8: Find principal direction of the sub-point cloud:
9: candidate;; < PCA of sub-point cloud.
10: ‘ end if
11 end for
12: S <— compute pairwise direction similarity between each two directions in

candidate using eq. (4);
13: Smﬂx<—maX5},j€ [1,...,]\]1'];

14: outlier < find the indices id of candidate that S < the median value of S,,,.;
Is: Gn; < remove outlier nodes from Gn;

16: nodeDir; <— compute the principal direction of Gz, .

17: return nodeDir;

18: end procedure

to another node. For example, for the target node 7 in Gz,, three edges are traversed to reach the
nodes numbered as 3" hop.

The major direction to represent the collinearity feature of a target node 7 is the principal di-
rection of the points/nodes in an outlier-removed neighborhood, G»;” (Fig. 3.10). Noisy data
points (outliers) can dramatically change the trending direction. Thus, Algorithm 2 is presented
to find the major direction of node 7 by removing the outliers from its neighborhood. In this
algorithm, S'is the similarity matrix where each attribute is the pairwise similarity of each two
direction vectors using eq. (4). The size of S'is IV; by IV;, where NN, is the number of neighbors

in Gn;. S,,, is a column vector that finds the column-wise maximum values in .S, which corre-
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Figure 3.10: Construction of a 3-hop outlier-removed neighborhood for node 7. G: a fully connected graph. Gz: a
subgraph where all the neighboring nodes are connected to each other. G7;: an example of 3-hop neighborhood for
node 7, where numbered nodes are hop neighbors enclosed in this neighborhood. Gnl-_: outlier nodes are removed

in the outlier-removed neighborhood in order to find the node major direction.
sponds to the maximum similarities for each candidate direction on neighbors.

3.4.6 SIMILARITY MEASURE BASED ON COLLINEARITY FEATURES

Given a graph with collinearity features on the nodes (Fig. 3.8C), we propose a similarity
measure that considers both distance d;; and relative angle §; of major directions between two

nodes, e.g., 7 and ;. If the adjacency matrix is W, then each attribute w; € W is defined as:
wy; = wp(d, op) -w(6, or) (3.2)

Both wp and wy vary from o to 1. The o and o are hyper-parameters that control the decay of
similarity measure (egs. (3.3) and (3.6)).
The similarity measure on distance simply considered the Euclidean distance d;; in Cartesian

coordinates (Fig. 3.11a). Then,

wD(d, O‘D) = f_d’;j/g% (33)

where

||nodeLoc; — nodeLoc||,, for UM

min(||nodeLoc; — nodeLog;||,), for OM
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Figure 3.11: lllustration of measuring similarity in distance and relative angle. (a): Euclidean distance, d,-j, is calcu-
lated based on the node Cartesian locations. (b): Relative angle, 91-]- weighs the difference in node major direction
difference. (c): Penalty on direction displacements, dl'—>j and dj_n-.

Here, || - || is L2-norm; OM and UM stand for over- and under-segmented masks. In the case
of supernodes (OM), d;; is the shortest distance between two connected components. Pair-wise
distances are computed between all the points in the two components, referred as zodeLoc; and
nodeLoc; in eq. (3.4). In actual experiments, the computation can be simplified by only consider-
ing the boundary points in the supernodes.

For similarity measure on node major direction features, if nodeDir; = aand nodeDir; = B,

the measure based on relative angle ;; (Fig. 3.11b) is evaluated as:

abs(< ib >)
0s(fy) = ————— (3-5)
’ 13| - |[b]|

Then the corresponding similarity measure yields:

WT<€Z]’ JT) — 6*((305(9;/)71)2/0% (3'6)

One challenging case with the above measure arises when two groups of data are neighbors
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to each other in parallel (w; — 1) and their Euclidean distance d; is within a distLimit such as

the case in Fig. 3.11. This is particularly important for the over-segmented case, as distLimit can

be larger than a cell radius. To penalize on these cases, a weighting for direction displacement is

added, where d,_; is the displacement from node 7 to the major direction of node j and vice versa

ford;_,;
]t
||(nodeLoc; — nodeLoc;) x nodeDir||,

d...—
7 ||nodeDir||,

||(nodeLoc; — nodeLoc;) x nodeDir,||,

do .. —
I ||nodeDir,||,

Then the penalty can be formulated as:

¢ (max(dinjidj))? /72 , itdy; < distLimit
S —

i
0 , otherwise

(3.8)

Here, 7 is a value retrieved from the estimated maximum radius of the bacterial cells under inves-

tigation. In this case, parallel displacement more than a cell radius is more penalized on dissimi-

larity. The updated similarity measure on node direction feature is then

wT<€l'ju O'T) = 31] . K*(COS(H,--)fl)Z/FzT

3.4.7 RECURSIVE GRAPH CUTS

(3.9)

The clustering of different collinearly structured groups follows the theory of recursive graph

cuts in LCuts, while more details and pseudocode Algorithm 3 are added in this chapter. For

bacterial biofilm segmentation, the variables (szzeLimit, distLimit, opp and o) are chosen based

on prior biological knowledge (see analysis in Sec. 3.5). déstLimit is the distance limit between

two nodes in the same group, and sizeLimit is the limit of number of nodes in each group. op

and o7 are semi-automated parameters that can be chosen based on the former two parameter se-
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lections. The whole algorithm can be primarily divided into three parts: update the graph, com-

pute the bi-partition solution, and recursively re-partition until reaching the stopping criterion.

The bi-partition solution is given by exploiting the idea of normalized graph cut in”?, which
utilizes the total global similarity as well as dissimilarity between the different groups in the im-
age. Given a weighted, undirected graph, G = (N, E, W), where N contains nodes, E denotes
edges and W is the adjacency matrix that represents the weightings on the edges. Suppose L and
R are two disjoint groups and N = L U R. The goal of a graph cut, at each graph cut level in
the recursion, is to disconnect the edges between these two groups where the net weighting, z.e.,
similarities of node features, is minimized. The disconnection is found by minimizing Ncut in””,

which removes the edges between 7 € Landj € R in our case (Fig. 3.8D):

min Nexut(L, R)
2 seLjer W(27) N > jer e W 7) (3.10)
Zz’EL,nEN W(l'v 71) ZjER,nGN W(], }’l)

Here, the numerators take into account the cross-group weightings. The denominators calculate
the connecting weighted edges between nodes in either L or R to all the other nodes in N, which
establish the unbiased normalized association between each group and the whole graph.

By adding an indicator vector x, where dim(x) = dim(N), definex; = 1fori € Land
x; = —lforj € R. Also, letd, (dim(d) = dim(N)) be the total connection matrix between one

node, 7 or 7, to all the other nodes z € N. Then, eq. (3.10) can be rewritten as:

WX, x —Wix;
min Neut(x) = Z(">°) o Z( <0) %Y
" Z(x>0) d; Z(X<0) d;

(3.11)

Let D be the diagonal matrix where each diagonal is the total connection d from one node to

all the nodes in the graph, and W be the adjacent matrix that stores w;; in each cell. Meanwhile,
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Algorithm 3 Pseudocode for recursive collinear graph cuts using advanced LCuts on a single
component.

Input The current nodes sz Comp and node features nodeLoc and nodeDir;

The current adjacency matrix adj of sinComp;
The status of recursion; The current groups and the number of groups 7 in the data.

Output The updated groups in the data; The updated number 7 of groups.

Parameters sizeLimit, distLimit, op, o, mode

Initialize n < 1, status < 0, groups{n} < 0, adj <~ W, sinComp <— N

I

4

10:
11:
12:
13:
14:
I§:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

. procedure LCUTS(inputs, parameters)

sinComp <— current single component for LCuts;
linearity < 0;
if mode: undersegment then
‘ curSize <— number of nodes in sinComp;
else if mode: oversegment then
| curSize < number of all points in supernodes;

> Update the graph

end if > Check recursion stopping criterion

if sizeLimit(1) < curSize < sizeLimit(2) then
‘ linearity < check collinearity of sinComp;
else if curSize < sizeLimit(1) then
‘ status <— 1
end if
if status = 1 or linearity = 1 then
‘ groups{n} < save sinComp in the result; n <— n + 1;
else
adj <— Update current adjacency matrix;
Comps <— Compute bi-partition solution;
if Comps just has one group then
‘ status <— 1; sinComp < Comps;
else
status <— 0;
sinComp <— Compsy;
return LCUTS(inputs, parameters);
sinComp <— Compsg;
return LCUTS(inputs, parameters);
end if
end if

return

end procedure

> Bi-partition sinComp

> complete partition
plete p

> not complete

set y as a deformed indicator vector relaxed to take real values:

Sd
Z(x<0) d]
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Then the normalized bi-partition problem in eq. (3.11) yields a generalized Rayleigh quotient:

TD-wW
min -2~ W)y (3.13)
y y Dy

where a optimal closed-form solution of the above problem is given by solving (D — W)y =
ADy. The eigenvector with the second smallest eigenvalue then indicates the optimal bi-partition
of the current graph””.

To automatically determine the continuity or termination of each recursion, the stopping
criterion is checked, which considers the size and collinearity (Algorithm 3 lines 9-14). A cut
component that is smaller than sizeLimit represents a final group of nodes if that group also
satisfies the collinearity criterion. The check for collinearity is mainly composed of two parts

(Fig. 3.12a and b) with an additional part (Fig. 3.12c) for supernode mode.

Figure 3.12: Stopping criterion for collinearity check of a cut component. (a) Deviation detection: check if there are
points apart from principal fitted line of the component that is larger than a cell radius. (b) Gap detection: check if
the distance between a pair of neighboring points is larger than node distance limit. (c) Concavity check: compare
ratio of the volume of the convex hull and the total number of points in all the supernodes (yielding the approximate
volume of current cell.)

3.5 EVALUATION ON THE PERFORMANCE OF M-LCUTS

3.5.1 DATASET

The validation of the performance for analyzing densely packed biofilms in 3D is challenging,

because of the limited amount of experimental data and the lack of ground truth. Manual anno-
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Figure 3.13: Max intensity projection along z-axis of (a) an example input image, (b) over-segmented segmentation
results, and (c) under-segmented results. Different colors denote different connected components.

tation of experimental data is time consuming and unreliable "*”. Thus, we used simulated 3D
biofilms with ground truth to generate the regions of interest (ROI). The process of data simu-
lation is described in **7, where the data mimic the actual microscopic images collected by lattice
light sheet microscopy (LLSM). The mean signal-to-background ratio and cell density of the sim-
ulated image dataset in this paper are 2.2 and 60%. The background intensity and read noise of
the microscope are simulated by Poisson noise (1 = 199.73) and Gaussian noise (¢ = 3.04). The
voxel size of each image is 100nm x100nm x100nm.

The input images (Fig. 3.13) for image analysis are preprocessed with basic deconvolution
and background subtraction '*”. Then, masked ROI with under-segmentation and over-segmentation
errors are used for quantitative and qualitative performance evaluation for the proposed method.
Although the quality of the masks after initial segmentation is not the emphasis for assessing
m-LCuts, the Baseline performances are still reported in Tables 3.1, 3.2 and Figs. 3.15, 3.17
to demonstrate the effectiveness of post-processing. Baseline compares the initial segmentation

results in a mask to ground truth for the ROL

3.5.2 EVALUATION METRICS

The data clustering performance of 72-LCuts is evaluated using three measures: cell counting

accuracy (CA), single-cell grouping accuracy (SGA) and single-cell boundary F1 score (SBFx).
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The calculation of each score is described below.

The cell counting accuracy accounts for how many cells are correctly identified as true posi-
tives (7Ps) in the post-processed result (posz}”) when compared to the ground truth (G 7). False
positives (FPs) are the detected cells that do not exist in GT but are identified in post V. False nega-

tive (FIN') counts the number of cells that are missing in post V.

CA = Z-NTp/u\]pmV + NGT)

Here, N, and N7 are the number of groups or segments in post}”and GT respectively. Suc-
cessful counting (N7p) of cells occurs when the number of overlapped voxels/nodes, ||GT N
postV]|o, is larger than the IoU value. IoU value stands for Intersection-over-Union, which indi-
cates the fraction of intersecting area of two components over their union.
The single-cell grouping accuracy evaluates how many nodes/voxels are correctly classified/grouped

in a cell region. It takes the mean value over matched segments 7 that have corresponding pairs of

postV;and GT,.
i Noasch 9. ||G7}ﬂpostVi||o

Nmﬂtc‘h ) ||GT;||0 + ||P05tVz'||0

z

SGA =

The number of matching segments is I,,,,.,. The percentage of overlapped nodes/voxels over
the total number of nodes/voxels is used to evaluate SGA for each segment.

The single-cell boundary F1 score averages the scores on how many points on the boundary
of the segment can match with the contour of corresponding G 7 at single-cell level. Boundary
F1 score, or contour matching score, for semantic image segmentation was proposed in**, Ac-
cording to its definition, precision; is the ratio of matching boundary points in postV; and GT7,

that are within a distance threshold, to the total length of postV; boundary. Similarly, recall; is

57



the ratio of the matching boundary points to the total length of G7; boundary.

Nm b ..
1 X 2 precision; - recall;

SBF1 =

match “— precision; + recall;
1

While SBF1 measures boundary fidelity, SGA measures pixel-wise volumetric overlap.

3.5.3 UNDER-SEGMENTED MASK MODE

The under-segmented data-set is produced by using the output confidence map of cell interior
trained with a 3D u-net as described in **”. The confidence map for a class indicates the proba-
bilities that a given voxel belongs to a given class. To generate under-segmented masks, the confi-
dence map is thresholded with a value of o.5. Clusters that are larger than a single cell volume are
then automatically selected. The number of cells in each under-segmentation mask is between
I to 29, which sums up to 211 different under-segmented cell clusters. The dataset contains a
few clusters with only one cell, because their size is larger than a normal estimated bacterial size.
However, the algorithm can decide itself whether to post-process further.

The experiments and qualitative performance of 7-LCuts, compared to other works with
under-segmented masks, are shown in Fig. 3.14. In this mode, m-LCuts aims to automatically
find collinearly-featured structures in the point cloud data after medial axis extraction, with the
purpose of enhancing cell counting accuracy. The output of the algorithm is comprised by the
different clusters of central cell axes that represent individual cells, so only CA and SGA are avail-
able for evaluation as shown in Table 3.1. Clustered segments that are less than the minimum
cell length are eliminated, because such segments, especially those extracted from the connec-
tion of touching cells, do not represent a cell (Fig. 3.9). A reconstruction of the biofilm is also

provided by m-LCuts, which substitutes each node cluster with sphero-cylinder models.
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3.5.4 COMPARISON FOR UNDER-SEGMENTED MODE

For the post-processing methods compared in this section, the final clusters are displayed by
pseudocoloring the medial axes of the clusters (Fig. 3.14). For a given data clustering method
(e.g., DensityClust), the results are obtained by directly testing on the medial axes point cloud
data. Details of the compared methods and observed limitations are listed below. Parameters
were chosen to achieve relative optimal performance.

Watershed: The basic watershed is utilized in CellProfiler”” to further split under-segmented
cellular regions. The software over-segments the data due to the rough surface of the non-spherical
binary mask. We used watershed tunction in MATLAB to test this method. It appears that it
over-segments the data due to the rough surface of the non-spherical binary mask.

Hminima: Yan etal. > applies H-minima transform *** to mark the high intensity regions of a
cell, followed by watershed. The tuning parameter, h-minima height, was chosen to be 0.3 times
the maximum intensity of the image in the code**. Although this method shows apparent im-
provements in single cell identification compared to basic watershed, a cell can still be mistakenly
labeled with multiple markers caused by inhomogeneous image intensity.

Recurrent DT: Roszkowiak et al. ”*added recurrent distance transform to consider the mor-
phology of the segment for marker-controlled watershed. The optimal threshold to find the
foreground marker is recurrently searched until reaching a o split criterion. We define this cri-
terion as segments are successfully separated into different groups to identify individual bacteria.
Two limitations are observed: one is that it is sensitive to the pre-segmented morphology, where
a rough and thin object may lead to over-segmentation; the other one is that it fails to split con-
necting components when the diameter of their connection is similar to the cell body.

GMMs: Gaussian mixture models are fitted to clumped clusters to identify single cells as used
in*’. It needs manual input on the number of clusters, £, in the data. We automatically estimated

the value based on the approximate regular size of a cell (4 um in length and 0.4 um in radius).
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Figure 3.15: Comparison on cell counting accuracy of under-segmented masks averaged over 211 experiments with
variant loU values.

The value of k£ was found to be normally equal to or less than the actual group numbers. It is
challenging to determine a proper class number when different single data sizes are present in the
group. Additionally, the fitted Gaussian models vary from time to time; even sometimes they are
unable to converge. Its performance degrades when cells are densely packed.

DensityClust: DensityClust*” finds the cluster centers based on local density and global neigh-
boring distance. This method was tested with the code provided in**. We changed the man-
ual selection of cluster centers to automatically select the top num Clust high densities. Here,
numClust is also estimated from the single cell size. This method thus also requires the number
of clusters to be specified as input and is prone to clustering errors.

LCuts & refined LCuts: Our prior work reported in'** and "*. m-LCuts is an advanced version
of the earlier approaches with better performance in a under-segmentation mode, and with a ma-
jor advance in being able to accommodate an over-segmented mask. The details of the differences
are described in Sec. 3.4.2.

Advantages and limitations: Overall, 7-LCuts outperforms the aforementioned methods
both qualitatively (Fig. 3.14) and quantitatively (Fig. 3.15 and Table 3.1). Although the per-
formance of refined LCuts is comparable to the current m-LCuts version according to Fig. 3.15,

the refined LCuts cannot fulfill the need for post-processing over-segmentation conditions. Re-
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CA SGA

Watershed™” 0.065 = 0.122 0.483 £ 0.153
Hminima " 0.473 T 0.210 0.835 F 0.168
Recurrent DT  0.942 & 0.147 0.971 = 0.076
GMMs* 0.904 £0.186 0.919 F0.134
DensityClust*®  0.842 £ 0.191  0.832 +0.143
LCuts'*° 0.826 £ o0.116 0.855 £ o.147
refined LCuts””  0.972 £ 0.092  0.984 £ 0.051
m-LCuts 0.982 = 0.059 0.986 1 0.049

" Baseline  0.046+0.038 0.560%0.166

Table 3.1: Quantitative comparison of cell counting and point grouping/classification performance on further splitting
under-segmented cells. All the scores include the mean value over all the experiments plus the standard deviation.
Here, loU threshold for CA is 0.4. Baseline compares the initial segmentation results in a mask to ground truth for
the ROLI.

current DT also exhibits stable cell counting accuracy with variant IoU values. Visual inspec-
tion of the results shows that Recurrent DT fails in the cases of closely end-to-end connected
clusters and non-smooth segments with variant changes in diameter (e.g., Fig. 3.14, 3™ row).
The margin between the two, though, is not larger than the other methods, which is because the
under-segmented mask dataset does not have many of those challenging cases. 7-LCuts presents
the best performance in both averaged CA and SGA scores with the smallest standard deviation
(Table 3.1).

The major advantages of 7-LCuts include the lack of requirement to specify the number of
clusters, the stability in varying inter- and intra-cellular intensity environments, and the insensi-
tivity to the smoothness of the mask. However, mask morphology is still important for 7-LCuts
in terms of mask diameter and initial segmentation error. If the associated inscribed sphere di-
ameters (Section III-B) along the medial axes of a mask are much less than an expected minimum
cell radius, the current medial axis extraction method might create a super sparse point cloud
data with no collinearity feature presented. In this case, the lower limit of the radius in medial

axes extraction can be set to zero to consider these weak connections. As a consequence, connec-
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tions between collinearly connected cells will also be included in the point cloud data (like the
condition in Fig. 3.14, 4th row), but m-LCuts is able to determine the continuity of recursive
graph cuts based on the cell length limit. Another factor is the falsely detected or missing cell re-
gions in the initial mask, which affects the collinearity feature in the data. This limitation is going

to be discussed later.

3.5.5 OVER-SEGMENTED MASK MODE

The over-segmented results are generated by H-minima transform based marker-controlled
watershed method as used in’>***. All minimum inverse intensities less than the height / are
used as markers. The value of H controls the over- and under-segmentation rate in the result,
and is chosen as around 4% of the maximum image intensity in this paper to create more regions
of interest with over-segmentation. Then, the over-segmented regions of interest (ROIs) are ran-
domly chosen from the over-segmentation results, which further generate the masked dataset
(Mask). Challenging conditions, such as parallel, T-, and L-shaped cell arrangements, were given

particular scrutiny (Fig. 3.16).

3.5.6 COMPARISON FOR OVER-SEGMENTED MODE

Similarly, experiments on post-processing over-segmented masks start from graph construc-
tion, where each segment are treated as a supernode. The qualitative performance of 7-LCuts
masked with over-segmentation results is shown in Fig. 3.16. Different segments that belong to
the same cell structure are merged into the same cluster (represented with the same color).

The inputs of all the methods in this section include all the regions/points in the masks. The
parameters are selected empirically or based on prior information about the bacterial biofilm.

Region Merging: Region merging by connecting maximum contact areas is used to fix over-
segmentation problems in*’. Here, regions are recursively merged by their maximum contact

area until all the segments were traversed. This method can correctly merge the components if
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Figure 3.17: Quantitative comparison on cell counting accuracy of over-segmented masks. The scores are averaged
over 125 over-segmented data.

one cell is just over-segmented into two or three segments and their maximum contacting sides
are different on each side of the segment. It is unable to resolve the cases when cells are packed in
dense side-by-side configuration or are extremely over-segmented.

GMMs and DensityClust: The same algorithms as we introduced earlier are tested here. The
cluster numbers are chosen with respect to cell size. Similar to our previous observation, both
methods are not only sensitive to the choice of cluster number, but also unable to separate closely
packed cells.

DBSCAN: DBSCAN 7 is a leading data clustering method based on data local density. Similar
to DensityClust and GMMs, DBSCAN requires an initial estimate of cluster cardinality. Here,
we estimated this number based on single cell size and tested with the function dbscan in MAT-
LAB. The results show that it is challenging for DBSCAN to correctly identify different cells in
densely packed biofilm images.

Recursive Ncut: Recursive Neut is similar to the m2-LCuts workflow, but here only the similar-
ity on spatial location is considered in calculating the adjacency matrix, .e., only Eq. (3.3) is kept.
All the parameter settings and stopping criterion remain unchanged. The test of recursive Ncut
indicates the necessity of adding collinearity feature for classifying collinearly structured data.

Advantages and limitations: 7-LCuts exhibits superior performance over all other methods
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CA SGA SBF1

Region merging®  o.721 £0.222  0.847 £0.073 0.866 1= 0.064
GMMs" 0.760 = 0.183 0.815 £ 0.108 0.834 + 0.097
DBSCAN 7 0.571 £0.222 0.766 F0.113 0.786 = 0.109
DensityClust* 0.615 £0.237 0.718 £ 0.095 0.739 = 0.089
Recursive Ncut™  0.625 +0.177 0.762 £ 0.087 0.789 + 0.077
m-LCuts 0.812 £ 0.145 0.888 = 0.082 0.900 * 0.074

' Basedline  o0.403£0.159 0.676 £0.075 0.714+0.073

Table 3.2: Quantitative comparison of performance on combining components in 125 over-segmented masks, where
the loU threshold for CA is 0.4. Baseline compares the initial segmentation results in a mask to ground truth for the
ROLI.

at most IoU values (Fig. 3.16). The only exception is the average performance of GALAMs when
IoU < 0.3, which is slightly better than #2-LCuts. This is due to the fact that GMAMs will not
produce false positives as £ is always less or equal to the number of cells. It is worth mentioning
that only 7-LCuts and GMMs meet a reasonable level of precision, say o.7, for cell counting pur-
poses. At IoU > 0.4, m-LCuts beats GMMs and all other methods by 20% in sensitivity. In ad-
dition, 7-LCuts can better preserve the desired cell shape with respect to SGA and SBF1 (Tabel
3.2). When considering both global performance (cell counting accuracy) and local fidelity (mor-
phology of the classified cluster), #m-LCuts is superior to all the other methods. During the ex-
periment, we noticed that the initial segmentation result will affect the final performance. This is
because false detected or missing cell regions in the initial masks can change the collinearity fea-
tures embedded in the supernodes. Some of these cases are evident in Fig. 3.16. An analysis of

these cases will be discussed in the following section.

3.5.7 EXPERIMENTS ON REAL DATASETS

In the last two experiments, we tested the performance of 7:-LCuts for collinear data cluster-
ing with different types of input data, including point-based and segment-based data, with the

goal of addressing different post-processing needs. Here, we explore how 7-LCuts functions
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when applied to a real dataset with uncategorized post-processing needs. However, a problem for
conducting systematic evaluation of such experiments arises from the lack of 3D ground truth.
Manual annotation is the current approach to generating ground truth, but such a process is
very difficult to perform in 3D. In this sense, only 2D manual annotations were available in *7.
These manual annotations are also error-prone and inconsistent between different annotators as
may be observed in the rough object boundaries as shown in Fig. 3.18 second column. In order
to demonstrate the ability of 7-LCuts in dealing with real cases, we will validate the method us-
ing cropped views of the original real image and compare to manual annotation results by four
different annotators for reference. Of course, the performance of m-LCuts is not necessarily de-
termined by the original datasets but by the initial segmentation outputs (masks). An additional
experiment is discussed in Sec. 3.6.1.

Automatic mode detection: To determine the mode for post-processing the current mask,
volume checks and concavity checks are employed, which are based on the estimated size and
shape of the cells. For the volume check, if the volume of a connected component in a mask is
larger than the upper limit of a regular bacterial size, it is likely that the cell requires additional
cuts in under-segmented mode; otherwise, if the size is lower than the lower limit for a typical cell
size, it will be treated with the over-segmented mode. The concavity check is the same as described
in Fig. 3.12 (c), with an additional guarantee to include the components that are within the reg-
ular cell size.

Mixture of two different cases in one mask: In many real image scenarios, the sources of
problems in the initial segmentation results might be unknown. Two different situations, under-
or over-segmentation, may exist in the same mask. Here, we demonstrate a possible solution.
Each case, the under- or over-segmented cases, is still treated separately via 7-LCuts, but in a se-
quential manner. Given an initial segmented result, the volume and concavity checks are first
performed to find all under-segmented components. If such cases exist, 7-LCuts will run in the

under-segment mode. Next, the volume and concavity tests are computed again to find the over-
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Real image (MIP) m-LCuts (mode: over)

Figure 3.18: Evaluation using real data. Maximum intensity projection (MIP) along the z-axis of 3D real biofilm im-
ages are shown in the first column. The experimental signal-to-background ratio of the two images are 2.2 and 1.8
referring to **”. The other images are 3D annotated/segmented volumes with a top view of z-axis. Yellow and blue
arrows in the first column are examples that are highlighted for comparison in the other columns. The masks are pro-
vided by CNN only results from >’ Then, we run the two modes of m-LCuts sequentially to post-process the initial
segmentation results. Quantitatively, the counting accuracy (CA) scores of columns three to five, compared with
manual annotations, are 0.34, 0.49, 0.50 for the first row, and 0.52, 0.61, 0.68 for the second row.

segmented ones for recombination using 7-LCuts in the over-segment mode. In this mode, the
neighboring segments of the over-segmented fragments will also be included in the graph for the
consideration of recombination, even if they pass the mode checks.

Evaluation on real biofilm dataset: Experiments on real dataset are presented in Fig. 3.18
with quantitative evaluation on counting accuracy. The experiments were conducted automat-
ically with the mode detection mentioned earlier under the hypothesis that there is mixture of
cases in the initial segmentation results. We ran under- and over- segmented modes sequentially
as shown in the fourth and fifth columns in Fig. 3.18. Although there are not many mixed cases
in the cropped views of CNN only (u-net based) initial segmentation results from '*7, the abil-
ity of m-LCuts to reconnect the remaining over-segmented components after splitting under-
segmented clusters can still be observed in Fig. 3.18. Final individual segments that are still less
than the minimum cell size are eliminated during volume reconstruction in the second mode,
because such segments are usually initial segmentation errors or from the touching cell con-

nections. At least 16% improvement in counting accuracy (CA) was achieved after the two-step
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post-processing, at an IoU thresholding value of o.4.

The previous methods for quantitative performance comparison are recurrent DT, GMMs,
and region merging, as they are the sub-optimal under- or over-segmentation post-processing
methods in sections 3.5.4 and 3.5.6. The clusters of interest are found by volume check. The
post-processed CA values with recurrent DT to fix under-segmentation errors are o.53 and 0.58
for the two real data as shown in Fig. 3.18. We executed the GMM:s and region merging sequen-
tially to solve under- and over-segmentation problems as this post-processing combination was
applied in*’. The updated CA values respectively after the two algorithms are o.50, 0.47 for the
first dataset, and 0.63, 0.65 for the second dataset. We also attempted to test over-segmented
mode performance individually with all the methods, but there is no improvement as the under-
segmented error is the dominant problem in the testing with real data. On the whole, the final
m-LCuts outputs showed quantitative improvements over the other methods. Although some-
times the CA values after recurrent DT and GMM:s are slightly higher, they usually detect less
true positive cells than 7-LCuts does. Moreover, manual annotation is difficult and error-prone
for the 3D data, for example, it is difficult to identify single bacterium by human eyes in the re-
gions highlighted with orange and blue arrows in Fig. 3.18.

Validation of sequential workflow on simulated dataset: The performance of m-LCuts is
not related to the original image type, i.e., simulated or real, as the inputs of 7-LCuts are binary
images (masks). Owing to the limited amount of ground truth for real 3D data, the proposed
sequential workflow is additionally verified on ten simulated images pre-processed with u-net
and watershed methods. Half of these examples are dominated by under-segmentation errors,
while the other half are dominated with over-segmentation errors. There are approximately 100
to 200 ground truth cells in each dataset. The quantitative cell counting performances of the
current sequential 7-L Cuts and the combined post-processing method in* are listed in TABLE
3.3. Similar to the above observations for real data, 7-LCuts presents the optimal performance

in the majority of cases. After Step 1, 7-LCuts sometimes cannot exceed the performance of
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Data  Initial 1-GMMs 2- Region merging 1-m-LCuts 2-m-LCuts

UM1  o0.67 0.76 0.72 0.73 0.74
UM2  0.43 0.63 0.62 0.69 0.70
UM3 o0.53 0.65 0.64 E 0.75
UM4 o.57 0.70 0.68 0.77 0.77
UMs  o.56 0.74 0.72 0.79 0.78
OM1 o0.67 0.71 0.71 E 0.72
OM2 0.63 m 0.66 0.65 0.67
OM3  o0.65 0.68 0.67 E 0.65
OM4 0.68 0.68 0.68 0.70 0.73
OMs 0.83 0.84 0.82 0.83 0.85

Table 3.3: Comparison of the sequential workflow on simulated dataset. The simulated image dataset is described in section
3.5.1. UM denotes under-segmentation error dominated data and OM stands for over-segmentation error dominated data. The
combination of GMMs and region merging is the two-step post-processing workflow used in“’. The best final (after two steps)
outputs are marked in bold and the best first step outputs are underlined.

GMM:s as m-LCuts may detect extra line segments at the connections of cells, but these errors
can be filtered out in Step 2.
To sum up, the above validations on both real dataset and simulated dataset demonstrate the

effectiveness and generality of m-LCuts.

3.6 FACTOR ANALYSIS OF M-LCUTS

In this section, we conducted experiments to analyze the factors that can affect the perfor-
mance of m-LCuts. In general, our analyses show that majorly the cell counting accuracy is re-
lated to the initial segmentation error. Initial segmentation errors are particularly problematic,
when the masks do not possess clear collinearity, as is the case for heavily over-segmented or noisy
masks. Therefore, extensive experiments were carried out to assess this input-output relationship.

The results are discussed below together with a validation of the selected parameters.

3.6.I INFLUENCE OF INITIAL SEGMENTATION RESULT

To produce under- and over-segmented masks, U-Net and seeded watershed were utilized to

obtain the binarized initial segmentation result. The influence of initial segmentation result is
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analyzed in terms of initial segmentation error for each ROI. For over-segmented masks, this
error is averaged over all the cells in the ROI by comparing original ground truth (G77) of layouts
with corresponding masked ground truth (GT*%). The initial segmentation error per cell, Err,,

is calculated as 1 minus voxel-level precision, which is:

IGT; N GTE™[
GTEN o

Err.=1-—

This is to analyze how many voxels in the segmented regions (mask) are not belonging to the
original ground truth.

In Fig. 3.19, alinear regression can be estimated between #-L Cuts performance and ini-
tial segmentation error. When the masked area includes extra large segments (noisy clutter) in
multiple cell regions, the corresponding 7-LCuts performance degraded because of the missing
collinearity feature. Similar evaluation was also repeated on the ratio of missing G717 voxels in the
segmented result by changing voxel-level precision to recall. No substantial linear relationship
was observed with this analysis, because there are not many missing component situations in the
data. However, we still noticed that missing components can split the cell regions with big gaps,
in which case, m-LCuts would not connect them.

For under-segmented masks, above evaluations per ROI were performed by comparing the
whole ROI GT regions with under-segmentation result. Since rare cases of missing components
or extra noisy clutter were found by thresholding the u-net result with a confidence of 0.5, the
under-segmented masks can still maintain the collinear structure after medial axis extraction.
Thus, averaged cell counting accuracy above 0.95 was achieved with loU < 0.8 (Fig. 3.15).

It is notable that the radius-constrained medial axis extraction method proposed along with -
LCuts can take into account radius of an initial segment as small as 7, = 1. This action prevents
point cloud data from breaking in the middle of a cell region. Additionally, it is beneficial for

identifying central axes of parallel cells by setting the upper limit of inscribed radius (7,,.).

71



Oversegmented mask Layout Mask

0.9-\;-',&' A 1

8 0.8+ 0“. "o.qf ... . &%&%
c .“ " °

g07/ o woee T * 5

e o
L] @™ oo0 O. -~
506" L R AN

© L X ~ ] A ;
2051 . . \ B
2o4; —
O L ® |
508 SGA T~
€02 Linear regression(SGA) T™—
e CA
= =Linear regression(CA)
0 | | 5

0 0.1 0.2 0.3 0.4 0.
Initial segmentation error

Figure 3.19: Analysis on the effect of initial segmentation results. Scatter plots of single-cell node grouping accuracy
(SGA) and cell counting accuracy (CA) versus initial segmentation error are shown on the left panel. A linear relation-
ship between m-LCuts performance and initial segmentation error is estimated. On the right panel, three masks are
shown. The noisy clutter and missing components on these masks affect the collinearity of segments compared to
the original ground truth of the layout. Hence, cell counting performance is affected, especially when multiple cell

regions were affected by the errors.

3.6.2 PARAMETER VALIDATION

Twenty randomly selected under- or over-segmented clusters participate in validation for each
case. Grid search is conducted on the major two adjustable hyper-parameters, sizeLimit and
distLimit, while the other parameter ¢ can be estimated from these two values in the algorithm
(see Algorithm 1). 7 is related to the user definition for collinearity. In our case, 77 equals to
0.2 while the relative angle (6;) between two vectors is around 36 degrees. There are also some
other parameters inside of the algorithm, such as the maximum hop-level number, minimum
neighboring segment contacting area, and the cell concavity ratio limit in stopping criterion. The
values of the former three parameters can be estimated by different applications, e.g., chosen as 5,
37 and 1.8 respectively based on bacterial cell morphology.

In the scenario of bacterial cells in this paper, sizeLimit, determined by 7, is selected based on
cell size information, where a typical cell in our experiment has a radius between 3 — 5 pixels

and length between 8 — 60 pixels. The distLimit is chosen based on both cell size and mask
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Undersegmented mask Oversegmented mask
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Figure 3.20: Parameter validation via grid search. Counting accuracies (CA) are averaged over 20 randomly selected
data experiments. For both masks, radius » € [1, 7] pixels with a step size of 1 pixel. distLimit € [1, 40] with a
step size of 1 pixel for under-segmented mask and dzstLimit € [10, 70] with a step size of 5 pixels for the other

mask. Red markers are the positions of selected parameters in our experiment.

conditions. It reflects an allowance of distance between neighboring nodes in the same group.
For under-segmented masks, nodes that are within the radius of a cell (déstLimit = r)are
more likely to be in the same group; while for the other case, distLimit was selected by evaluat-
ing the supernode-to-supernode distance in the data. By investigation, the mean supernode-to-
supernode distance lies in the range of 20 to 40 pixels for all the datasets. Small variations of CA

with previously mentioned parameter ranges are observed in Fig. 3.2.0 for both masks.

3.6.3 RUNTIME

The time complexity of the core section in 72-LCuts can be estimated as O(n*), where 7 is
the number of nodes/supernodes. Here, the worst case of recursion depth is 7 for bi-partition
problems. However, m-LCuts will actually never reach this worst case especially for the under-
segmented dataset, because the stopping criterion reduces the recursion depth by checking the
size, collinearity and concavity conditions at each branch. Additionally, the implementation of
graph cut at each level involves solving the eigenvalue problem, which has a complexity of O(7?).
m-LCuts takes the advantage of constructing a sparse graph with key points, z.e., medial axes for

under-segmented mask and segment centers for over-segmented mask. Thus, it can effectively
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reduce the computational expense.

The experiments were tested on two laptops: (1) Windows 8.1 pro, Intel(R) Core(TM) i7-
4770 CPU @ 3.40GHz, RAM 16GB, and (2) macOS Big Sur, 3.1 GHz Dual-Core Intel Core
is, RAM 16GB. The reference running time on Windows 8.1 pro for correcting over-segmented
masks in Fig. 3.16 first and last row are 18.4 seconds and 95.8 seconds, respectively. For further
splitting under-segmented masks, such as the mask in the last row of Fig. 3.14, the runtime is
7.7 seconds. There are still several ways to optimize the proposed runtime in the future, such
as modifying the bi-partition workflow to a k-class classification problem, or increasing the effi-
ciency of graph cut by substituting the computation of eigenvalues in the solution of optimized
graph cut. It is worth mentioning that the k-class strategy may need an estimated number of
groups, k, while the recursive bi-partition strategy in the current m-LCuts does not require this

parameter beforehand.

3.6.4 OTHER FACTORS

A complete list of the factors that were tested is shown in Table 3.4, typically for the over-
segmented mask mode. Three major aspects are considered for factor analysis: parameters, im-
age environment, and connectivity/layouts of the segmented connected components. In image
environment, SBR stands for signal-to-background ratio, which accounts for the contrast of
intensity in the image. SNR stands for signal-to-noise ratio, which can also be alternatively rep-
resented by the coeflicient of variation. Initial segmentation error has been explained above. For
connectivity/layout of segments, the number of cells is just the ground truth cell number in the
masked cluster. Cell density is calculated by dividing the volume of cell regions by the whole
cluster/mask volume. Average node-to-node distance evaluates the average distance from the
centroids of over-segmented supernodes to each other; while the average cell-to-cell distance is
the average distance between the centroids of each two ground truth cell regions. The last one,

contact surface ratio, considers how many area on the surface of each cell is contacting with a
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neighboring cell.

Parameters Image environment Connectivity/layout of segments
Algorithm input parameters SBR/contrast Number of cells

SNR/ coefficient of variation ~ Cell density

Initial segmentation error Average node-to-node distance

Average cell-to-cell distance
Contact surface ratio

Table 3.4: A complete list of factors that were analyzed to test the performance of m-LCuts, typically for the mode
with over-segmented masks. Based on our analyses, the cell counting accuracy is mainly affected by the initial seg-
mentation error, underlined in the table.

There were no typical relationship between the performance of 7-LCuts and other factors at
the current experimental set-up as described in section 3.5.1, except for the two discussed in the
above section, e, initial segmentation error and parameter validation. To analyze these factors,
we plot the performance (CA and SGA score as y) and the factors in Table 3.4 as x. Some exam-
ple plots are shown in Fig. 3.2x1. There is a linear drop of accuracy when SBR < 1.87, but that is

beyond the current dataset (SBR=2.2) in the experiment section of m-LCuts.
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Figure 3.22: Applications of m-LCuts to find collinearly featured clusters on masked datasets. In this paper, the theory
of m-LCuts and its application in clustering (a) points and (b) over-segmented components are presented. It also has
the flexibility to be extended to other scenarios, such as shape classification in an elastic shape space (a preliminary
result is shown in c.)
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Figure 3.21: Example plots for m-LCuts factor analysis. The x axes for each plot are the factors denoted in the titles,
while the y axes are accuracy in terms of single-cell segmentation/grouping accuracy and cell counting accuracy. The
data for the scattor plots contain the results with all six image SBR conditions. The accuracy at each SBR level in the
SBR plot is averaged over 125 regions of interest experiments as the ROI also used in the experimental part for the
m-LCuts.

3.7 EXTENSION ON SHAPE CLASSIFICATION

The proposed method, 7-LCuts, is capable of detecting and separating collinearly-featured
objects in 3D segmentation masks, as demonstrated in the previous sections. Compared to the
state of the art, 7-LCuts achieves the best performance and does not require manual specifica-
tion of the number of different objects in the data. 7-LCuts is not only a post-processing solu-
tion for biofilm segmentation, but also a general collinear data clustering approach. It accepts
different types of input, such as points and segments. 7-LCuts can also be extended to other
applications where collinearly-featured data are presented. A preliminary experiment on shape
classification was performed (Fig. 3.22¢).

A current workflow of 72-L Cuts for shape classification is shown in Fig. 3.23. The mask is the
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Figure 3.23: Preliminary Procedure of applying m-LCuts for shape classification.

contour of binarized objects in the image (we used the MPEG7 CE-Shape-1 Part B dataset**).
Then, each contour is a supernode in 7-LCuts where the node collinearity feature is the arc
length between two shapes, defined as geodesic distance, in the square-root velocity transformed
elastic shape space . Details about how we apply the shape space in our bacterial problem will
be discussed in detail in Chapter 5. We also investigated features such as the relative angle be-
tween the geodesic shooting velocity from one shape to the other shape. The classification re-
sult was not affected significantly under the current shape clustering requirement. Currently,
the stopping criterion is the number of shapes in the group. This criterion can be further in-
vestigated by evaluating the linearity variance of nodes as presented in #-LCuts, but in terms of

shape.

3.8 SUMMARY

In this chapter, we presented the extension of LCuts to m-LCuts. In general, m-LCuts yields a
generalized and unified data clustering solution with input data either being points or segments
to address different post-processing concerns. m-LCuts reveals strengths in post-processing un-
solved cases in biofilm segmentation, as evidenced by both higher cell counting and higher single-
cell segmentation accuracies compared to the current state of the art and the previous versions of

LCuts. The advances of m-LCuts include the following aspects:

77



* Generalization: The whole algorithm is adaptable to different kinds of input data, such as

points, segments, or even shapes;

* Clean key point extraction: m-LCuts constructs the graph using radius-constrained
medial axis extraction or super node generation from masks, which provides cleaner key
points that can preserve the collinearity of data in 3D. Here, a cleaner key point means that
the collinearity features are less affected by the noisy data points outside the central axes of

cells;

* Stable collinearity extraction in 3D: Outlier-removed graphs are constructed that re-
placed the original majority voting process to better describe collinearity features in 3D,

which is observed in both visual and quantitative experiments;

* Unified recursive clustering: The new similarity measure is defined with additional lin-
earity penalty and new stopping criterion with gap detection to separate different cells in a

line, which can fulfill the needs for all the inputs (points or segments) as a unified solution.

* Improved segmentation performance after post-processing: In both experiments with
initial segmentation methods that incorporating convolutional neural networks and ap-
plying general watershed-based segmentation methods, m-LCuts is observed to effectively
improve the performance by at least 16% in cell counting accuracy after post-processing in

the real image experiments.
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Never stop dreaming, never stop believing, never give up,

never stop trying, and never stop learning.

Roy T. Bennett, The Light in the Heart

Learning and evaluating biofilm images

When incorporating our proposed post-processing methods with data-driven cell segmen-
tation strategies (¢.g., machine learning-based approaches), the performance of experiments on
real LLSM datasets is typically inferior to the performance on simulated datasets. Furthermore,
the real data experiments are often difficult to evaluate. One possible reason comes from the
lack of ground truth annotations of the 3D images as cells are densely-packed and randomly-
oriented in the 3D space. More challenges arise because of the difficulty in reproducing the re-
alistic experimental image conditions in the simulated dataset for training those deep learning-

derived models. As a consequence, further bioimformatic analysis of the realistic biofilms can
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be affected. Therefore, we investigate generative adversarial networks (GANs) to synthetically
generate dataset that can mimic the realistic conditions in the LLSM 3D biofilm images'**. By
proposing a stochastic synthetic dataset quality assessment (SSQA) "**, we will be able to expand

the training dataset for biofilm image segmentation with reliable images and annotations.

4.1 BACKGROUND ON IMAGE SYNTHESIS

The advent of deep learning brings opportunities to solve challenging problems in a variety
of fields, including single-cell analysis. However, such data-driven approach requires a large
quantity of labeled training data to achieve solid solutions *°". The current gold standard for
labeling biological images such as those of bacterial biofilms is manual annotation, which can
be extremely time-consuming, especially for 3D data, and also inconsistent among different an-
notators. The process of manual annotation in microscopic fluorescent images is hard, because
fluorescence intensity is often not uniform in cells. When cells are closely touching each other,
the gaps between neighboring cells are often smaller than the diffraction-limited resolution (200-
300 nm) and therefore hard to identify. It is even more difficult, or sometimes nearly impossible,
to annotate non-spherical cells densely packed in 3D (Fig. 4.3 first column), like bacterial cells.
Even with manual annotation, it is difficult to delineate touching cells and to provide correspon-
dence between different z-slices of the same cell. Therefore, an automatic data augmentation
method is important for deep learning tasks to obtain sufficient training dataset with objective
ground truth annotations.

There are three major strategies to expand the size of the training dataset for applying deep
learning on the single-cell analysis task: performing classic transformation (e.g., scaling, trans-
lation, rotation, interpolation ?*) on limited manually annotated data, simulating the volumes

137,68,112

using optical and biological knowledge , and generating synthetic datasets using genera-

tive adversarial networks (GANs) ***°. The first strategy, using the limited manually labeled data,
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is very error-prone and time-consuming, especially in the setting of 3D biofilms as mentioned
above. Therefore, the ideal goal is to automatically expand the datasets with accessible ground
truth labels that do not incorporate human subjective opinions.

The second approach, data simulation based on optical and biological knowledge, is a model-
based data augmentation strategy. There are three general steps in prototyping microscopic im-
ages' 7. First, modeling the spatial structure of the objects in the image, e.g. spherocylindrical
rods for bacterial cells. In"*7, a computational modeling software, CellModeller”*, is used to
synthesize the physical splitting and growing nature of biofilms in 3D, which generates binary
images where bacterial cell volumes are foreground on an otherwise dark background. Then, vir-
tual fluorophores are placed in the cell volumes to simulate the fluorescence emission’, z.e., the
fluorophores give rise to overlapping focused and defocused point spread functions on the de-
tector. Finally, read noise and photon shot noise of the specific microscope are convolved/added
to mimic the real conditions in the images. Promising instance segmentation results (categoriz-
ing each cell region as an individual segment) were achieved with simulated bacterial biofilm data
in"?7, but observable differences between simulated and real data still exist, because the simulated
images cannot take into account uncalibrated image aberrations and illumination/emission het-
erogeneity. Perhaps more importantly, CellModeller only simulates spherocylindrical cells, such
that curved or bent bacterial cells are never encountered in the training step. Thus, data augmen-
tation method that can learn the realistic experimental microscopic image conditions is needed
for in-depth analysis of biological/medical images*°'.

The third strategy, using generative adversarial networks (GAN:s), is a recent more popular so-
lution because it can generate images that reproduce realistic scenarios in experimental datasets.
GANSs attempt to maximize the probability in discriminating between real and fake images, as
well as minimize the difference between real and generated images**. There are many modalities
in the literature that learn the translation between images, such as pixzpix for learning paired nat-

ural images**, CycleGAN for unpaired image-to-image scenario'*°, DCGAN on CT images **,
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and Ising-GAN ** on microscopic images. Among these, CycleGAN and its variations’””>"*” do
not require the input and output images to be exactly paired. The paired image-to-image trans-
lation means the input and output domains are aligned to each other, for example translating a
binary image to its corresponding fluorescence image. In another case, the unpaired task trans-
lates unrelated images from different domains where the ground truth annotation (input image)
for the corresponding output microscopic images does not exist.

CycleGAN generates images via mapping the distribution in the input image domain to an-
other unpaired output image domain. Most importantly, such a model can bring back the input
image from the reverse direction in the network by a cycle consistency constraint **°. This tech-
nique was tested for a cell label-to-image translation task in*”, but spatial drifting of cell location
was observed within the generated images. Here, a label-to-image translation is defined as map-
ping the distribution in the labels to another distribution in the image. The authors in’*” added
spatial consistency loss to reduce the drift of generated cells from their labels. This work success-
tully generated 3D synthetic nuclei cells images in a rat kidney, and motivates the learning task in
this paper. While works like*” and” perform training on 2D slices in the 3D images to generate
synthetic 3D stacks, they cannot provide sufficient axial (along z-ax7s) signal continuity in the
images for our bacterial biofilm data, because there is not a large size of z stack in the biofilms to
train the 2D networks as the others did. There are also works extending 2D GANs to 3D*"*7,
but they do not have the learning needs to transfer between unmatched labels and images. Be-
sides, our biofilm data presents different challenges than the data in the literature in the differing
cell size, anisotropic cell shape, and different noise levels, so an adapted generation workflow is

desired to fulfill the needs for the biofilm learning and augmentation task.
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4.2 IMAGE SYNTHESIS BY LEARNING LLSM 1MaGEs wiTH 3D Cycric GAN

The image synthesis pipeline proposed in this dissertation exploits the ideas of unpaired image
translation with cycle consistent GANs'#>*?, and extends the networks to 3D for learning the
microscopic bacterial biofilm data. Additionally, different GAN loss functions are compared to
achieve optimal augmented biofilm data in 3D when evaluating multiple image quality assess-
ment metrics. Since the ground truth annotation is not available in most of the unpaired image-
to-image translation tasks, a stochastic synthetic data quality assessment scheme (SSQA) is also
proposed in the next section. Our solution, 3.D Cyclic GAN ' along with SSQA, will answer the

following questions:

* How to learn the axial correspondence in terms of image signal continuity along the z axzs

for 3D images compared to those generated by the 2D GANs?

* What is the most appropriate loss function that provides both faithful distribution and

spatial consistency in the 3D biofilm images?

* How to evaluate the quality of generated synthetic dataset without corresponding ground

truth?

Correspondingly, a workflow that summarizes the learning and evaluation pipeline in this paper

is shown in Fig. 4.1.

4.2.1  DATASET

The 3D experimental dataset of biofilm is obtained by lattice light-sheet microscopy (LLSM)
built in the Cell Imaging at Nanoscale lab at the University of Virginia**”. LLSM is able to look
into the dense aggregations of cells 7z v:vo because of its lower phototoxicity and higher spatial
and axial resolution compared to that of traditional confocal microscopy*°. E.col7 bacterial cells

are used in this experiment with cytosolic expression of green fluorescent protein. There are 300
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Figure 4.1: Pipeline for learning and evaluating the LLSM 3D bacterial biofilm images. All the images shown are 3D
rendered in ImageJ. Step 1: learning the translation from labels to real images using 3D cyclic GANs, which contains
two generators (G g, Grr), and two discriminators (not shown in the figure). Step 2: the learned translation from
labels to real images is used to generate synthetic data. Step 3: evaluating the quality of synthetic data compared to

real images.

3D images with size 128 x 128 x 8 voxels for training. These training images contain three time
points in biofilm development (Fig. 4.3 first column). Each image has voxel size of 100 nm X100
nm %100 nm. All the real images are pre-processed with normalization and contrast enhance-
ment that saturates the bottom 1% and the top 1% of all voxel values. The label set is generated
by CellModeller”* with local densities that approximately match the real image conditions (Fig.
4.3 second column). These images in the label set will be treated as the ground truth of synthetic

cell location.

4.2.2 3D GAN ARCHITECTURE

The basic framework of the learning module in this paper follows the cyclic generative adver-

sarial networks (CycleGAN) **°, which consists of four parts: two generators and two discrimi-
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Figure 4.2: Architectures of networks in the 3D cyclic GAN for learning biofilm images, which replace all the 2D
layers in 149 and*? to 3D layers. The sizes of kernel, stride, and padding in the convolutional layers are cube-shaped
with parameters indicated in the diagram.

nators (Fig. 4.2). The generators (Gz, Gg;) attempt to generate synthetic LLSM images from

a binary label set, while discriminators (D, Dy) try to distinguish generated synthetic data from
the real data. We adopt the architectures of the downsampling/upsampling style generator with
six residual blocks’“ at the bottleneck and patchGANS discriminator with three convolutional
layers as used in*?, which presented promising results in 2D cases. In both networks, we change
all the 2D layers to 3D ones. In addition, the original 70 x 70 2D patchGANSs discriminator is
changed to patch size 8 X 65 x 65 (depth X height X width) for input of a biofilm image. Replica-
tion padding, instance normalization and the ReLu activation function are used in the generator
with employment of the hyperbolic tangent function in the last layer, while the discriminator
uses LeakyRelu(o.2) and batch normalization. Details about the input and output shapes of
each layer implemented with PyTorch are shown in Fig. 4.2, where the number of channels,

image tensor size, and other details of each convolutional layer are labeled in the diagram.
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4.2.3 LOSS FUNCTION

To learn the mapping functions between labels (/; € L) and microscopic real images (7; € R),
where 7 € [1, 7] and T is the number of training data, the loss function in the original CycdleGAN
formation and several variations are tested for applying on biofilm data. Generally, the total loss

function (£) consists of three parts '+
L(Grr, Gre, L, R) = Loan(Grr, Dr, L, R) + Loan(Grr, Dr, R, L) + ALy (Grr, Grr) (4.1)

where A is a control parameter, which is set to 10 in the experiments such that all losses are on the
same scale.

The first two GAN losses assess the mappings L — R and R — L. These losses try to generate
the similar images as the target output images, as well as maximize the performance of distin-
guishing the two classes (o for generated, or 1 for original) by using Dz or D;. The basic adver-
sarial objective function, which was originally derived from log loss or binary cross-entropy in **°,
is a min-max problem. However, as suggested in"*, such a regular GAN loss function with a
sigmoid function in the last layer of the discriminators can cause the well-known vanishing gradi-
ents problem. Unstable results are observed both in the experiment in*** and in our 3D biofilm
situation. Thus, least-squares GAN loss function”’, which minimizes both generator Gz or
and discriminator Dy, g, is more practically used. Consequently, the optimization of GAN loss

yields:

T
1
i in L Grr,Dg,R, L) = min — Dr(Grr(l)) —1
rnglflﬂjl);n GAN( LR, LR ) nclLl,? T,Z_I:H R( LR( )) Hz

. (4.2)
+min = S (1D&(r) = 1l +|1Dx(Gea(h)) — Ol1)

Dgr
=1

The last cycle consistency loss L. tries to ensure that the cyclic translation process from one
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side to the other is able to bring back the original input image, 7.e., Gr(Gr(/;)) ~ /;. Math-
ematically, the cycle consistency loss aims to minimize the mean error between an input image

140

and the cycled back image

. We generalize and modify the original loss formula as:

T

1
Leye(Grr, Grr) I}Z(“HGRL(GLR(L')) — Uil )
pam 43

+ BIGLr(Gre(7:)) — 7illp,)

where 2 and  are weighting factors. £;-norm, as p; = p, = 1for both mapping directions, is
used in '* and many other single biomedical object translation applications (e.g. from fMRI to
T1 maps®). However, the work on generating synthetic cell volumes from binary cell labels in *”
suggested that displacements in cell location was observed. Accordingly, the authors in*” added
a spatial consistency loss, which is an additional £,-norm that computes the pixel-wise mean-
squared error between /; and H(Gx(/;)). Here, H is the same structure as G .

As the lack of paired data is particularly challenging in our case, and the noise levels and cell
sizes differ significantly from those of the original data used in*?, simply utilizing the loss func-
tion does not accommodate our particular data augmentation problem. We aim to investigate
different loss functions to determine which form provides both the best distribution and spatial
consistency for biofilm data. The decision between choosing ¢;-norm and ¢,-norm in loss func-
tions is always of critical interest. Although ¢;-norm is robust for data with outliers, £,-norm
provides unique solutions. The output correspondence between labels and images is impor-
tant for the data augmentation task for biofilms, as future researchers would like to use the aug-
mented dataset with corresponding real ground truth labels for improving segmentation tasks.
Thus, different combinations of p; and p, values, including the options listed above, are com-
pared below. Particularly, we hold a hypothesis: changing p; = 2 and increasing the weighting of
cycle mapping direction L — R — L by a factor of # = 2 can also provide spatial consistency.

In this case, the need for training another network A in 3D will be reduced. Details about the
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comparison of different loss functions are included in the next section.

4.3 EVALUATING SYNTHETIC DATASET WITH SSQA

The training of 3D cyclic GANS for generating LLSM biofilm images follows the basic setup
in**°, which uses Adam optimizer with batch size of 1 and learning rate of 2¢7*. The learning
rate decays linearly after half of the total epochs are completed.

Four loss functions are compared: the original SpCycleGAN ** ", the SpCycleGAN loss func-
tion applied in 3D GAN:S, the original CycleGAN extended to 3D, and the modified 3D cyclic
GAN with unbalanced cycle consistency loss, as shown in Fig. 4.3. Other combinations of p,
and p, values are also tested, but they did not provide reasonable outputs. SpCycleGAN was
trained with all the 2D z-s/zced images in the 3D stacks and the other networks are directly trained
using 3D cyclic GANs with 300 training data. Each model is trained separately with one NVIDIA
Titan v GPU, which takes about a day for training and few minutes for testing. The training
time elapse for all the networks follows: SpCycleGAN < 3D Cyclic GAN ({5;) < CycleGAN 3D
< SpCycleGAN 3D. The testing, or image generation, is performed on another 3D dataset con-
taining 300 images that have never appeared in the training set. Additionally, model-based simu-
lated dataset and reference real images are also listed in Fig. 4.3, where all the images are one slice
along z-axzs in the 3D image volumes.

The goal of this section is to evaluate the GAN outputs, find the best loss function for the
biofilm learning task, and potentially obtain the best synthetic biofilm dataset for future re-

search.

“We thank Prof. Edward J. Delp and his laboratory at Purdue University for providing the code for DeepSynth
(SpCycleGAN) in the work of this chapter.
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D ~54.8% SBR~ 2.2

D ~59.0% SBR~1.8

D ~64.6% SBR~1.3

Figure 4.3: Examples for unpaired training dataset, and qualitative comparison of different augmented results. The
images in each column are one slice in z-axis in the 3D volume. Real: examples of real enhanced LLSM experimental
3D images, which contain three average biofilm local densities (D), 54.8%, 59.0%, and 64.6%, and three signal-to-
background ratios (SBR), 2.2, 1.8, and 1.3 %7 Label: example label images obtained by CellModeller with compa-
rable local density conditions to the first column. The test label images for generating synthetic data do not exist

in the label set for training. Please note, the real and label images are unpaired, as they do not have location corre-
spondence to each other. The synthetic outputs for comparison are from model-based simulation 87 original Sp-
CycleGAN®?, SpCycleGAN loss extended to 3D, CycleGAN loss *“° used in 3D, and our modified 3D cyclic GAN with

(p1.p2) = (2,1) and (a, 8) = (2,1) in Eq. (3).
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4.3.1 MOTIVATION FOR SYNTHETIC DATASET QUALITY ASSESSMENT

As mentioned earlier, we aim to study how well a GAN generated synthetic dataset creates
a training set in which the images are similar to the real conditions with corresponding ground
truth labels, as it is difficult to annotate single cell regions in experimental 3D biofilm images
(see Fig. 4.3 first column). The quantitative evaluation of the quality of a 3D synthetic dataset,
without ground truth labels, is extremely challenging. For a paired image translation dataset,
the ground truth images are used to compute scores such as pixel-wise mean-squared errors or
class-wise Dice ' scores. As a significant body of ground truth images does not exist, the quanti-
tative quality evaluation metrics are limited, because there are not many referenceless metrics for
3D images. In*#, AMT perceptual studies were carried out to collect subjective feedback from
human participants, but it is difficult to gather sufficient data for our particular experiment. In
order to automatically assess and learn the conditions in 3D GAN outputs, this paper presents
a comparison-based stochastic synthetic dataset quality assessment measure that evaluates rel-
ative intensity-wise quality of 2D/3D synthetic dataset compared to real dataset. Three other
measures in the literature are also evaluated for comparison. These measures take into account
different aspects of images: deep feature-based dataset similarity analysis with FID **, distortion-
based image quality evaluation with BRISQUE"*, and location correspondence evaluation with

signal-to-background ratio (SBR) analysis.

4.3.2  SSQA

To evaluate the intensity-wise similarity between a generated synthetic dataset and the real
LLSM biofilm dataset, a Stochastic patch-based Synthetic dataset Q uality Assessment (SSQA)
method is proposed. When the two datasets for comparison are neither identical images nor cor-
responding volumes with different distortions, the regular fully-referenced image quality assess-

ment (e.g. SSIM "*°) or comparison-based blind quality assessment methods (e.g. C-IQA ") can-
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not accommodate our application, because they rely on the structure and distortion within the

whole image.
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Figure 4.4: Flowchart to compute and analyze SSQA.

The proposed SSQA, as shown in Fig. 4.4, is a stochastic approach that takes random patches
from random images for quality evaluation and statistical observation analysis. SSQA contains
four stages. In the first stage, three images are randomly picked from the pool of two sets, /, and
J from the real and V from the synthetic dataset. This stage will repeat K times and an SSQA
score will be computed at each time. At the second stage, the comparison-based quality similarity
measure Dk;;z is calculated between two randomly cropped patches with size W x W x W
from two pairs of images: /o <+ JandJ <+ V. Here, the similarity score obtained from /; <+ /
pair is treated as a reference intra-class (real image) comparison. 5%;2 denotes the similarity score
between the compared images Data = {J/, V'} in the dataset and the images /in the real dataset

at the n? patch selection and the kt image comparison. This score is formulated based on the

luminance and contrast indices from '*°:

Sge,n) _ zludam lu] + Cl ) Za-dam : 0} + CZ (44)
o ‘ufim + lujz + G data + 012 + G

91



wherep, —and p and ¢, and o; are the means and standard deviations extracted from patches
data and j, respectively. Patches data and j are randomly picked from Data and J. Cy and C; are
just constant values to avoid a zero denominator. Each patch similarity score is between zero and
one. The value of /7 can change the values of SSQA, as it reflects the local features in intensity.
For the choice in this paper, we are trying to compare the random regions that can include the
interior intensity of a cell, so W~ = 4 pixels is chosen as the average radius (400 nm) of bacterial
cells. In fact, the patterns of SSQA freqencies for different window sizes 17" were found to be
similar to each other.

The third stage of SSQA is to repeat the second stage for N times, and then find the distri-
bution of similarity Sp,,, at k image comparison. The current “real vs synthetic” SS' QA/‘* score

from randomly picked images is the Bhattacharyya distance between two comparison-based simi-

larity distributions, Sf and S%. The SSQA* is defined as:

5504" = ~in (Z VS ) .%)) (45)

wherex € [0, X] is the domain of discrete probability distribution. Bhattacharyya distance "
measures the overlapping amount of two distributions. It does not require an order of input dis-
tributions and can avoid a zero denominator when compared to KL-divergence. Its value ranges
from zero to infinity, where a zero value means that the two distributions are identical. The dis-
tribution of patch similarity is discretized with 100 quantization levels, which results in SSQA
being small (~ 1072) as shown in Fig. 4.7.

Finally, the performances of K cross-dataset (real vs synthetic) SSQA scores are compared
graphically with different data generation methods as shown in Fig. 4.7. To achieve statistically
meaningful SSQA comparisons, K = 600 and N = 10000 are chosen in each evaluation. Sta-
tistical observations (e.g. mean, standard deviation) and intersection-over-union (IoU) of two

SSQA histograms are analyzed as listed in TABLE 4.3. In terms of a single SSQA, a value closer
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to zero means better image relative quality. When we evaluate a unpaired dataset containing mul-
tiple image conditions, the comparison between intra-dataset (real vs real) and cross-dataset (real
vs target) SSQA measures is needed. In this case, a smaller difference between the statistical ob-
servations compared to the reference (intra real dataset SSQA,) denotes more similar dataset con-
ditions. The mean values of SSQA, along with standard deviations (std), are shown in TABLE
4.3. The IoU values of SSQAs exhibit quantitative comparison of different synthetic datasets,
where a value closer to 1 means the distributions of image intensity-wise qualities in the two

datasets are more similar.

4.3.3 EMPIRICAL ANALYSIS OF SSQA

In general, SSQA takes random patches from random images and analyzes the inter- and intra-
datasets statistics. To extract the statistics, SSQA evaluates measures embedded in intensity and
noisy background of each patch, in terms of illuminance and contrast. A question may be asked
that “can we substitute the similarity measure by other existing scores?” In this section, further
analysis on SSQA is performed to discuss the choices for parameters (e.g. patch size, sample num-
bers), and to compare difterent similarity measure metrics. It is worth mentioning that SSQA
takes advantage of the stochastic statistical approach and does not need the two images to exactly
match; while the other methods may require image to image structure correspondence. How-
ever, by taking the patch-based SSQA scheme, 7.¢., embedding different similarity measures in
our proposed SSQA framework, the limitations on structure correspondence can be diminished.

Parameter analysis: There are three major parameters in SSQA: patch/window size (17), the
number of random patches (/N), and the number of random images (K). Table 4.1 demonstrates
the comparison with different parameter settings and the corresponding SSQA scores. For vary-
ing patch size, images are fixed as shown in Fig. 4.5. For the other studies, there are twenty five
3D stacks from two SBR conditions in the model-based simulated datasets. Then, 2D images

are selected from the same random depth in the 3D dataset with different SBR conditions. The
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window size (7)) 4 8 16 32

inter-dataset SSQA 0.1348 0.0931 0.0685 0.0851
intra-dataset SSQA 0.0025 0.0028 0.0026 ©0.0024

num. of images (K) 10 50 100 200

inter-dataset mean SSQA  0.0809 0.0941 ©0.0818 0.0882
intra-dataset mean SSQA  0.0025 ©0.0025 ©0.0025 0.0025

num. of patches (/) 50 500 5000 10000

inter-dataset mean SSQA  0.0983 ©0.1084 0.0900 0.0891
intra-dataset mean SSQA  0.0581 ©0.0279 0.0026 0.0025

Table 4.1: Parameter analysis in SSQA.

number of patches and the number of images are 10000 and 1. The fixed window size and the
number of patches for analyzing varying number of images are 8 and 10000. When there are suf-
ficient numbers of images and patches, both inter- and intra-dataset SSQA scores maintained
a stable level of evaluation. Window size will affect the value of SSQA according to Table 4.1.
However, when we repeat the validation on different sets of images, window size won’t dramati-
cally change the probability of SSQA as long as it is sufhicient to describe the local characteristics

in the image (e.g. around a bacterial diameter size).

SBR 1 SBR 2

Figure 4.5: Images with different SBR conditions are used for the analysis of SSQA. For the validation of parameter setting with
varying window size, SBR 2 image was used as a reference real image for intra-dataset comparison.

Comparison with different similarity measures: This section analyzes and compares differ-

ent similarity measures to evaluate the image quality either for the entire image or for patch-wise
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similarity at the second stage in SSQA scheme. The similarity scores for comparison are normal-
ized root mean-squared error (NRMSE), normalized cross-correlation analysis by evaluating the
maximum value (max(NCC)), mutual information analysis (MI), and SSIM "*°. For NRMSE,
the root of mean-squared error is normalized by the difference between the maximum and min-
imum intensities in the two patches. The parameter settings for the comparison are window
patch size of 8, and the number of patches of 10000. The results shown in TABLE 4.2 are com-
parisons using different quality assessment measures to evaluate qualities of the entire images
(top three rows) and the mean qualities of random patches (bottom three rows). The number of
bins for evaluating the similarity distribution is roo.

Our observation indicates that, when biofilm structure does not appear the same in the two
images (see Fig. 4.6 second and third columns), NCC, SSIM and MI fail to exhibit appropriate
intra-dataset qualities, which are expected to be larger than inter-dataset values in these scores.
Both NRMSE and SSQA present reasonable trends in the two comparisons, z.e., larger values
for inter-dataset evaluation than those for intra-dataset. While for SSQA, the inter- and intra-
dataset scores are observed to be more diverse with a relative ratio of 100, which is larger than the
ratio (~ 2 times) evaluated by NRMSE. In the cases when we analyze stochastic patch-wise sim-
ilarities, the mean score closer to 1 for the S in SSQA denotes more similar qualities of the two
images. Although the other scores, especially SSIM and MI, exhibit enhanced patterns that com-
pare inter- and intra-dataset qualities, they are still lacking in diverse scores for different datasets.

For both studies in Table 4.1 and TABLE 4.2, the original reference dataset quality affects the
range and values of similarity scores. However, SSQA can still present a relative ratio of at least

~ 30 between inter- and intra-dataset quality measures.
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“fake" image

“real” image

Comparison 12

Comparison 21

Figure 4.6: Images for the analysis and comparison of different similarity scores. In comparison 12, "real” images are SBR 2
images which are served as reference dataset; while in comparison 21, the reference dataset contains SBR 1 images.

NRMSE max(NCC) SSIM MI  SSQA

inter-dataset 21 0.3412 0.7086 0.1451 1.1283 1.0179
intra-dataset 11 0.1661 0.5607 0.0242 1.0999 0.0099
intra-dataset 22 0.1448 0.3197 0.00I2 1.0507 0.0044
inter-dataset 21 (in SSQA scheme) o.5770 0.5628 0.0294 1.8096 0.3178
intra-dataset 11 (in SSQA scheme)  0.4607 0.5563 0.0807 1.8101 0.4738
intra-dataset 22 (in SSQA scheme) o0.3041 0.3688 0.0945 1.8889 0.9651

Table 4.2: Comparison of different similarity scores to evaluate the quality of images or patches. The upper three rows compute
the quality assessment scores using different methods between two images. The lower three rows evaluate the mean patch-
wise similarity of two images. The patch-wise scores are averaged over 10000 comparisons. Inter-dataset 21 denotes the
comparison between SBR 2 and SBR 1 conditions (Fig. 4.5). Intra-dataset 11 evaluates intra SBR 1 dataset quality and intra-
dataset 22 accounts for intra SBR 2 dataset comparison.

4.3.4 OTHER DATASET QUALITY ASSESSMENT METRICS

Fréchet inception distance (FID): FID score evaluates the quality of GAN outputs based on
the statistics from the original real training dataset’* as well as the statistics in the target outputs.

It uses a pre-trained inception v3 model to extract deep features that discriminate real and gener-
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ated images in terms of mean and covariance. Then, FID calculates the difference of two feature
distributions using Fréchet distance. The lower the FID, the better the dataset quality. FID was
found to be well-correlated with human judgment, but the inception v3 model was trained on
ImageNet 2D images with no 3D interface as of yet. Therefore, only 2D slices in the 3D stacks
were evaluated as shown in TABLE 4.3.

Blind/referenceless image spatial quality evaluator (BRISQUE): BRISQUE is an algo-
rithm that evaluates the distortions in images without the need for corresponding reference im-
ages. It measures the deviation of the distributions in normalized distorted images from natural
scene images which follow the Gaussian distribution”". Features in intensity and pixel neighbors
are extracted and further analyzed to get a quality score using a support vector regressor. This
paper uses the original version of BRISQUE, which predicts the distortions in 2D images. When
its value is smaller, the image quality is better. For the comparison of dataset quality, smaller dif-
ference of BRISQUE value between the reference and target synthetic dataset is better.

Location correspondence with SBR: The evaluation on location correspondence is per-
formed by overlaying the ground truth labels on generated synthetic data. The values of mean
intensity and standard deviation in “cell regions” and “background regions” are extracted. To
compare the difference among different datasets, signal-to-background ratio (SBR) is calculated
as described in "> that takes the ratio of foreground to background mean intensities. When the
location correspondence is lower, the mean intensity in the foreground gets lower due to the
lack of foreground signals, and the mean intensity in the background is higher because of more
wrongly-positioned signals. Thus, higher SBR that is closer to the reference value in TABLE 4.3

is better.

4.3.5 COMPARISON

With regard to comparing the image conditions quantitatively in real dataset and target syn-

thetic datasets (TABLE 4.3), 3.D Cyclic GAN ({5;) presented the overall optimal dataset quality
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SSQA frequency comparison of different datasets
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Figure 4.7: SSQA frequency comparison of different datasets. Histogram of SSQA for all the different outputs are
normalized by the total number of K image comparisons to get the frequency of SSQA score in each dataset. The
Reference plot indicates the stochastic comparison within the data pool of real images. The more similar the distribu-
tion compared to the reference, the better relative image quality of synthetic dataset.

Dataset FID BRISQUE (meantstd) SBR  SSQA (meanztstd) IoU(SSQA, SSQA,)
Reference 1.170€-10 36.252 £ 5.997 1.767 0.026 £ 0.029 I
Simulation 122.147 41.096 * 3.269 1.567 0.019 F 0.023 0.4670
SpCycleGAN 45.188 34.124 £ 6.796 0.926 0.030 *+ 0.027 0.6173
SpCycleGAN 3D 103.074 38.478 £ 2.187 1.234 0.018 * 0.018 0.3652
CycleGAN 3D 106.938 38.092 £ 5.439 1.364 0.021 F 0.025 0.4371

3D Cyclic GAN (¢21)  80.798 34.238 £ 5.155 1.418 0.028 £ 0.029 0.6575

Table 4.3: Dataset quality assessment measures and their comparisons. Columns are quality assessment scores

of different datasets. Fréchet inception distance (FID)°? and blind/referenceless image spatial quality evaluator
(BRISQUE) are performed on 2D slices in 3D stacks, while the others directly evaluate 3D images. Rows are differ-
ent scores foreach dataset. The scores shown in BRISQUE and SSQA are mean and standard deviation (std) values.
The SBR scores are also averaged over all the test images in the dataset. Reference denotes the intra real image data
pool quality comparison or statistics. The closer to the Reference scores the better relative dataset image quality.

The values highlighted in bold are best result and the underlined ones in italics are second best.

with best distortion-based measure (BRISQUE) and best intensity-wise comparisons (SSQA and
IoU(SSQA,SSQA,)). For the other two scores FID and SBR, 3.D Cyclic GAN ({5 still achieve
the second best. In visual inspection of different datasets as shown in Fig. 4.3, 3.D Cyclic GAN
({>1) also demonstrates reliable image details that mimic the microscopic image conditions in

the real dataset. Especially in the background of the images, less regions of artifacts or over-
smoothness are seen compared to some other augmented datasets. There are cell drifting prob-
lems for all the GAN augmented datasets, but the results of 3.0 Cyclic GAN ({5;) are relatively

better.
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SpCycleGAN achieved the best FID score and comparable BRISQUE and SSQA scores to
3.D Cyclic GAN ({5;), which indicates that the outputs from 2D GAN with the original spatial
consistency loss provide decent 2D image intensity-wise and distortion-wise quality conditions.
The visual results in Fig. 4.3 also validate the intensity and distortion similarity compared to
the real images. SpCycleGAN gets the lowest SBR, because it cannot preserve the axial signal
correspondence along z-a:xzs (Fig. 4.8) and has more regions of cell signals missing as shown in
Fig. 4.3. When this spatial consistency loss is applied in 3D Cyclic GAN, better visual location
correspondence, as quantified by SBR, is found in part of the SpCycleGAN 3D outputs, such
as the first and last rows in Fig. 4.3. The outputs, however, cannot consistently yield realistic
images, where the resultant images are over-smoothed and distorted outputs (see Fig. 4.3 last
row). SpCycleGAN 3 D has the lowest mean of SSQA score over all the K image comparisons, but
its SSQA frequency does not reflect the similar spread of different image conditions in the real
LLSM microscopic image dataset (Fig. 4.7).

Model-based simulation outputs exhibit the best location correspondence in terms of SBR
as shown in Fig. 4.8, due to the fact that the cell signals in the datasets are produced by incor-
porating the exact locations of cells in labels with theoretical fluorescent emission models, point
spread functions, and noise conditions. These simulated datasets are suboptimal, because they
cannot mimic the actual intensity and distortion statistics in real datasets with regards to FID,
BRISQUE, and SSQA.

In summary, 3D Cyclic GAN ({5;) generates the overall most realistic dataset with qualities
better than other GAN outputs in terms of intensity, distortion, and location correspondence.
Additionally, the proposed 3D Cyclic GAN (¢5;) generated a diverse dataset with a similar mix-
ture of different image conditions as compared to the reference dataset. This diversity in image

conditions is observed by the mean and standard deviation values in BRISQUE and SSQA.
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4.3.6 DiscussioN

The following discussions are to analyze the limitations in the current GAN-based networks
for biofilm application and other experiments to improve the GANs outputs. In the last para-
graph, feasible solutions to overcome the limitations are discussed as future work, taking advan-
tage of the proposed SSQA.

Although 3D Cyclic GAN successfully reproduces the LLSM microscopic distributions in
the real experimental biofilms to generate 3D synthetic datasets, the spatial drifting of each bac-
terial cell region within the generated images is a limitation of the current GAN-based unpaired
biofilm augmentation workflows (Fig. 4.8). Preliminary 3D segmentation performance with
u-net’’ using a set of GAN generated synthetic dataset did not provide accurate segmentation
outputs, as part of the training images and labels for segmentation are not perfectly matching to
each other (Fig. 4.8). A possible reason for spatial drifting is that since the synthetic data are gen-
erated from a label consisting of all the cell locations as one joint block, the lack of spatial consis-
tency is exacerbated as the noise level of the input data and the density of cells increase. The lack
of spatial consistency means that the synthetic data generated may shift, distort, obscure, or dis-
regard the cell regions compared to the original input label locations. Fig. 4.8 shows an example
with missing cells and location drifting rendered in 3D. It is worth mentioning that generating
a synthetic dataset with unpaired images is challenging in nature as only about 50% pixel-wise
accuracy was observed in the original unpaired image translation paper '*°, and is already the best
associated performance.

Additional experiments aiming to improve the dataset quality in intensity, distortion and
spatial consistency were carried out with the presented 3D Cyclic GAN. These efforts include
changing the architecture in terms of the number of layers and parameters in both the genera-
tor and discriminator, expanding the training dataset by flipping and cropping, and tuning basic

training parameters. For example, we tested learning rate from a scale of 1072 t0 107¢, added and
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Simulation |,

Figure 4.8: A comparison of GAN outputs, which shows the preservation of axial (along z-axis) signal continuity with
3D GANS, as well as problems in location drift and missing cells associated with SpCycleGAN™’, SpCycleGAN loss
extended to 3D, CycleGAN loss 140 used in 3D, and the proposed 3D cyclic GAN (521). The ground truth label volume
and model-based simulation result **” are shown for reference. All the images shown are 3D rendered in ImageJ.

removed up to two layers, and tuned the parameters in the convolutional layers. We also mod-
ified the activation layers with sigmoid, and varied batch size from 1 to 5. None of these trials
provided a better synthetic microscopic biofilm output than the current setup. The setup is us-
ing the architecture as shown in Fig. 4.2, the training set with 300 image volumes, batch size of 1,
and learning rate of 2¢™*.

However, with the 3D synthetic dataset quality evaluation scheme (SSQA) proposed in this
paper, a future work can be done on filtering out the low quality and low label-to-image corre-

spondence pairs to increase the location correspondence in the data. Other experiments can be
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explored by adding a small amount of manual annotation of real images to improve the overall
GAN location correspondence for the biofilm learning task. Besides, the current biofilm data do
not contain enough thick clusters of cells in z-dzrection that follow the density in CellModeller
outputs, so we only selected 8 slices of them with comparable number of cells to label-set images.
Collection of more LLSM biofilms data with thicker cluster size may be helpful as well to pro-

vide more and larger 3D volumes for learning the label-to-image spatial and axial translation.

4.4 SUMMARY

This chapter explored data augmentation options using generative adversarial networks to
learn densely packed LLSM microscopic 3D biofilm images at the diffraction limit. The findings
and contributions are concluded as follows, as are also the answers to the questions discussed in

the beginning of this chapter:

* By modifying the original 2D layers to 3D layers in cyclic GANS, axial continuity in sig-
nals of cell regions along z-direction is better preserved when compared to 2D GAN out-
puts in both visual comparison and location correspondence evaluation with respect to

the signal-to-background mean intensity ratio (SBR> 1.2).

* The most preferable synthetic dataset that mimics the realistic image conditions in the real
dataset is produced by 3D cyclic GAN with unbalanced cycle consistency loss £5;, which
empbhasizes the loss in the forward cycle direction that minimizes the ¢,-norm of the input
labels and the cycled back generated labels. This unbalanced 3D Cyclic GAN achieved the
best results in terms of three out of five scores in quantitative evaluation, and scored the
second best in the rest two metrics. It also takes the shortest training time with 3D GAN

models compared to the other loss function options in prior works.

* The proposed stochastic synthetic dataset quality assessment scheme, abbreviated as

SSQA, provides a quantitative option for comparison-based 3D GAN output evaluation
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when the corresponding ground truth images are not available. With adequate compar-
isons in terms of number of patches and images (e.g. 10000 x 600 in this paper), SSQA

reveals statistically meaningful trends of intensity-wise cross-dataset quality.

The overall learning and evaluating pipeline presented in the chapter will be able to assist in

generating more realistic images for future work on improving the single-cell segmentation work.
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Imagination is more important than knowledge. Knowl-

edge is limited. Imagination encircles the world.

Albert Einstein

Analysis of bacterial biofilms

Computation of bio-informatic measures from images of bacterial biofilms can provide cell
biologists significant insights to understand and control the growth of biofilms. With the out-
put of automatically identified cells from the previous chapters with LCuts and m-LCuts, we are
able to extract some basic bio-infomatics regarding cellular position, cell length, orientation, and
density. In this chapter, we will describe in detail how we reconstruct the biofilm models by ge-
ometrical models and refine the reconstructions using deformable active models. Preliminary
shape-based alternatives, e.g., the extension of our work shape filter'*' to biofilm scenario, to an-

alyze, visualize, and compare bacterial cells are also presented in this chapter, as a gateway to the
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future work on statistic analysis of biofilm shapes in 3D.

5.1 BIOFILM RECONSTRUCTION

Biofilm reconstruction is an important step for LCuts and m-LCuts, especially in the mode
of medial axis point cloud data, to recover the shape of bacteria cells. A pipeline of the current

approach in this research is shown in Fig. s.1.

Model fitting

)

L

Center, direction, length, ... Density, layout, ... Size, shape ...

Figure 5.1: Pipeline of biofilm reconstruction. Panel 1: Result after LCuts and m-LCuts (under-segmented mask mode)
is a point cloud data with different groups in different colors. Panel 2: Model fitting with spherocylinders, where cell
length, position, and orientation are from the previous result. Panel 3: Further reconstruction can be realized by an

active surface model to get the actual shape of bacterial cell in the intensity image.

5.1.1 MODEL FITTING

A computational efficient solution is provided by fitting a geometrical model, z.¢., a sphero-
cylinder, to the actual position and orientation of a medial axis. A sherocylinder consists of a
cylinder in the middle and two half sphere on each side of the cylinder. We first compute the cen-
troid, orientation and length of a cell segment from LCuts and m-LCuts outputs. Then, a point
cloud data of spherocylinder model is initialized at the origin, which is vertical to the xy-plane.
By shifting and rotating, the final location of a estimated bacterial volume can be determined, as

shown in the last row in Fig. s.2.
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Mask GT

m-LCuts

Reconstruction

Figure 5.2: Examples of geometrical model fitting. GT is the ground truth layout of the cells during simulation. Mask
is provided by initial segmentation method using u-net. m-LCuts outputs identify each cell as a central axis of a cell
and reconstruct the volumes by fitting geometrical models to replace each medial axis data.

Evaluation of the performance on geometric model fitting uses two scores: single-cell group-
ing/segmentation accuracy (SGA) and single-cell boundary F1 score (SBF1) from Chapter 3.
We randomly selected some examples as shown in Fig. 5.2 to demonstrate the reconstruction
comparison. SGA and SBF1 compares each cell in GT to a corresponding cell in reconstruction,
while the former compares the voxel-level accuracy of the whole volume and the later compares
the boundary accuracy of each cell segment. The scores are shown in Table s.1. Although the
geometric model fitted volumes cannot perfectly align with the ground truth cell layouts (e.g.
SGA =100%), the current performance with SGA ~ 0.7 and SBF1 ~ 0.9 is sufficient to iden-

tify the population of cells (for cell counting purpose) and to estimate the density of the cells in

the biofilm.

ROI No. I 2 3 4 5 6 7

SGA 0.756 0.825 0.649 0.799 0.790 0.707 0.752
SBF1 0.918 0.933 0.888 0.916 0.929 0.918 0.916

Table 5.1: Examples of evaluation on geometrical model fitting. SGA and SBF1 are defined in Chapter 3.
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5.1.2 MODEL REFINEMENT WITH DEFORMABLE ACTIVE SURFACE

An advanced biofilm reconstruction is explored by employing parametric active contour/surface
driven by vector field convolution (VFC) . Different from the geometric active contour model
as discussed in Chapter 2, a parametric active contour model cannot adapt to topological changes,
but it can avoid merging of two contours from different identified cell segments.

A parametric active contour is usually initialized with landmarks, for example, some points
sampled along the boundary of a circle or a surface. An illustration is shown in Fig. 5.3. Then,
these landmarks will be attracted to the actual object boundary in a force field. In a closed curve/surface
situation, the ordering of these landmarks is important as the active model will also try to keep

the smoothness of the contour/surface that connects all the landmarks.

Figure 5.3: An illustration of a parametric active contour. The red dots are landmarks on the initialized active contour.
The parametric active contour tries to approach the object boundary driven by a force field.

The force field is defined by utilizing vector field convolution (VFC)“". An illustration that
shows how we generate the force field in the biofilm application is shown in Fig. s.4. In the cur-
rent preliminary work, the edge map of a LLSM biofilm image is generated by sobel edge detec-
tion. It will then be convolved with the vector field kernel (VFK) defined in® to generate the
force field, in which the flow of force points towards the detected edges, for our bacterial biofilm
images. Mathematically, a VFK is defined as k(x, y,2) = m(x,y,z)n(x, y, z), where m is the

magnitude of the vectors in the kernel and n is the normal vector pointing to the kernel origin.

*Another successful application of VFC can be found in a collaboration manuscript, named C3VFC, with T.
Ly, etal.
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Figure 5.4: An illustration of the force field for model refinement using VFC®°. The images from left to right are edge
map of a biofilm image in a 2D view, the 2D view of a vector field kernel (VFK) with a radius of 10 as defined in 6
and the resultant velocity field (blue arrows) aligned with the orignal 2D view of the intensity image.

Figure 5.5: An illustration of the evolution of the active surface from geometrical model fitted shape to the actual
bacterial shape in the image, driven by the force field. The dashed contours represent the parametric active surface
in a 2D slice.

When the VFC-driven active surface is applied to refine the model at each cell location, an
illustration of the evolution process is shown in Fig. 5.5. The expected result is an updated ac-
tive surface evolved from the initialized location with geometrical model fitted shape. At the ini-
tialization step of the 3D active surface, each bacterial shape in 3D is parameterized by a set of
points and triangular connections on the surface. Mathematically, the evolution of active surface
is achieved by minimizing an energy functional, which has two parts: E,y = Eperna(X, Y) +
E,vrermal(X, Y). The internal energy minimization will yield a smooth contour with a preferred
shape and size, while the external energy minimization will yield agreement with the actual bound-

ary of cells in the image, where the net force at these locations are minimal.
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(i) Image (MIP) (ii) Central axes (iii) Model fitted (iv) Model refined

(vi) Bio-informatics

Cell volume Elevation angle ., Nearest-neighbor distance

Occupied volume = 74.3 %

2 3 4
Cell volume (um?)

Figure 5.6: An example of biofilm reconstruction and the bio-informatics behind it. (i) The maximum intensity pro-
jection along z-axis of the deconvolved 3D Shewanella image. (ii) The central axes manually labeled along x-, y-, and
z-axes. (iii) Model fitted with spherocylinder models. (iv) Model refined with VFC driven active surface. (v) Biofilm
reconstructed by fitting a bounding surface that can enclose all the cells (with the boundary function in MATLAB).
(vi) Bio-informatics that are interesting to domain area experts. The hitogram diagrams in (vi) are provided by M.
Zhang. The cell volume diagram compares the distribution of cell volumes in geometrical model fitted biofilm and
VFC surface refined model. The elevation angle diagram demonstrates the histogram of orientations of cells in the
biofilm. The nearest-neighbor distance diagram computes the histogram on cell-to-cell distance in the biofilm.

Preliminary results: A preliminary result that applies VEC-driven active surface to refine ge-
ometrical models of cells is presented in Fig. 5.6. In this experiment, one model was evolved at
each time in the VFC field, and the force at the area that was already occupied by this model was
set to zero to avoid overlapping with other cells. As shown in Fig. 5.6 (vi), the volumes, elevation
angles, and cell-to-cell distances in the biofilm are interesting bio-informatics for the experts in
cell biology. The refined models reveal a shifting in the hitogram of cell volume compared to the
original geometrical model fitted biofilm, which may be caused by the lack of minimized force
at the weak edges so that the active surface kept growing to a larger size. An improvement on

the force field to stop the evolution of the active surface, even when the edges were not clearly
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presented in the image, can be a future work to explore. The current results still exhibit mean-
ingful refinement on the shapes of bacterial cells, as the bending morphometry of some cells are

restored.

5.2 SHAPE FILTER

With the proposed methods in this dissertation, biofilm segmentation are improved and re-
fined to reconstruct the actual cell morphology. Next, we can analyze the statistics on the cell
morphology by shape analysis. A shape is usually a representation of an object boundary, re-
gardless of the texture, color, and scaling information. The statistic in shape can provide a novel
aspect to analyze the deformation of bacterial cells along time and quantitatively compare the
shapes of different bacterial species.

In this section, we introduce an application of our work on shape, named shape filter '’ . It
was proposed to repair segmentation results obtained in calcium imaging of neurons 2 vivo.
We extract the contour from an initially segmented cell in the time series images and exploit
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square-root velocity (SRV) transform '*” to represent the cells in shape space. The goal of shape
filter is to generate a smooth path on the shape space to represent the evolution of a cell segment
through time without any prior knowledge. Shape filter can also automatically filter out outlier
segmentation results, in which case several cells maybe connected as one component.

Under the SRV representation, each shape is defined on a Riemannian manifold M with lo-

cally assembled SRV Euclidean coordinates ¢, defined as follows:

A(s)

q(s) = ———=
VG

where j(s) represents the shape, which is a closed curve parameterized by equal distant arc length

(5.1)

s € [0, 27]. B(s) shows the gradient of this curve and || - || denotes the Euclidean norm. Suppose



a is the geodesic path between two arbitrary shapes on the defined manifold. Then, the differ-

ence between two shapes can be evaluated using the geodesic distance between the two SRV-

dg:/()l\/<a<t),ﬂ<t) >dt (5.2)

where #(0) and 2(1) represent the initial and final positions of the path, respectively. a(#) shows

transformed shapes:

the gradient of this geodesic path. When dt is infinitesimally small, the geodesic distance is ap-
proximately the integral length of each gradient magnitude.

After transforming the shape data into the SRV representation, an optimization problem is
solved to filter out the extra components (oxtlzers) in the preliminary result by interpolating the
most possible shapes along the time-indexed calcium firing path.

We use ¢ to denote the original evolution path and y to represent the filtered new path on
the manifold. Both of these two paths are approximately differentiable and have the geodesic
distance defined as aforementioned. Then, y is estimated by optimizing the following regression

problem, which is modified from De Boor’s approach*:

end
mine Y w(®)|e(z) — y(5)] +01 —ﬂ)/|D27(f)| (5-3)
4 t=start N /
™ 4 smoothness term
data term

This modified shape regression model aims to find a desired minimizer y that balances the
trade-off between approaching the original data and smoothing the filtered path. In equation
5.3, ¢ is time index for each shape, which is also used in the following sections in this paper. D*y(¢)
is the second derivative of path y, which characterizes the changes of shapes along the fitted path.
P € [0,1] is the smoothing parameter that reflects the emphasis on data or smoothness. Note
that, when p is close to 1, y becomes the spline of the input data @; and when p is getting smaller,

y will be smoother with fewer shape changes along time in terms of SRV transformed shape rep-
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Figure 5.7: Flow chart of shape filter applied to filter calcium imaging of neurons.

resentation. w(z) is the local weight to estimate the ouz/iers automatically, for which we proposed
two alternatives in the shape filter paper **'. Details of the two weighting functions are intro-
duced as follows.

Bi3 local shape weighting: Inspired by tricube kernel model and robust local regression
model in” , Bi3 local shape weight is defined as:

o) = (1= (o POy (5.4

where

r(t) = dy(9(2), o(2)) (s-5)
| X
7= 2 S (1H0) — median(r(©) (59
=1
7 =0, + (0, — min(r(¢))) (s-7)
where 7(¢) is the residual geodesic distance from the true data to a fitted smooth spline J with
a small weight for the data term in equation (5.3). o, specifies the mean deviation of residu-
als from . median(r(z)) is treated as the mean shape in the sequence instead of the traditional
mean because median is more robust with oxt/iers in the data. 7 is the tolerance for residual devi-

ations.This 7 will automatically assign a negative feedback to data term when the data is far away

(more than tolerance) from the smoothed spline J. The formula to calculate this value is inspired



by the skew measure in statistical analysis. A is just a constant that can amplify the proportion of
the data term whenever necessary. The choice of the bi-cube function is capable of constructing
wider low pass range for data when the base of the inner cube is closer to zero”.

Modified shape Gaussian (sGaussian) weighting: The Gaussian model is also a popular
weighting selection in local regression problems, such as in”°. To adapt the framework of Gaus-

sian weighting to shapes, the weighting may be computed using:

1 d2< (t), me z'an)
wi(t) = < expl— S ) (59)
where
1 N
azij[Z(dg(p(t)uqmedz}m))z (59)

Here, ¢cd:4n represents the Euclidean median shape along the input path 2 with /N shapes in
the SRV representation. The Euclidean distance in the normal Gaussian cases is replaced by the
geodesic distance.

A flow chart of the application in the original paper is shown in Fig. 5.7, where the time se-
quence segmentation results with outliers are filtered and replaced with shape estimation along

the neuron firing process.

5-3 EXTENDING THE SHAPE FILTER TO SHAPE-BASED BIOFILM ANALYSIS

A possibility that shape filter experiments bring to biofilm analysis is the ability to analyze
bacterial shapes. More specifically, the possible analysis include fixing the rough and wrong seg-
mented results, visualizing the deformation of cells, and quantifying the difference between dif-
ferent bacterial cells in the image. In this section, experiments on 2D shapes using shape filter will

be presented. A potential solution to extend shape filter in 3D is also discussed.
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5.3.1 EXPERIMENT ON 2D SHAPES

The experiments on the 2D shapes of bacterial biofilm data are performed on the BCM3D
processed LLSM time lapse E.col7 dataset*”. The maximum projection of these segmentation
results are shown in Fig. 5.8. The biofilm images were captured every 30 minutes in 3D by the
Nanoscale Lab at UVA. To demonstrate the shape analysis using shape filter, a target cell segment
is selected as shown in the bottom panel of Fig. s5.8. It is notable to mention that there is a seg-
mentation error at 510 mins, where two cells are under-segmented as one connected component.
The corresponding cell segments are manually traced. The shapes of the segments are parameter-

ized with 100 sampling landmarks along their contours.

300 mins 330 mins 360 mins 390 mins 420 mins 450 mins 480 mins 510 mins 540 mins 570 mins

Figure 5.8: Segmented dataset for shape analysis with shape filter. The images are all maximum projection along z-axis
of the original 3D image. The segmentation results are provided using BCM3D 137 The cell marked with the white
arrow is the target for shape analysis in this section. The target cell segment is also cropped out individually in the
bottom panel in the figure. The experimental time lapse images are imaged at an interval of 30 minutes.

By using the shape filter, the segmentation error can be filtered out as shown in Fig. 5.9 with
both of the proposed weighting functions. According to the resulting paths, Bi3 local shape

weighting (Bi3) provides a path that is closer to the shapes in the original path, compared to
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shape Gaussian weighting (sGaussian). Note here, the same parameter p = 0.91ineq. (5.3) is
used. The corresponding geodesic paths of the three shape paths along time are projected on a di-
mension reduction plane, using the isomap method'*°. As all the shapes along the time sequence
are also labeled with orders in Fig. 5.9, we are also able to demonstrate the relative quantitative
difference between two bacterial shapes. Fig. 5.9 also indicates that the paths after nonlinear fil-
tering with shape filter are smoother and denser than the original path, while Bi3 weighting can

keep more information from the original path.

t (mins)= 300 330 360 390 420 450 480 510 540 570

sGaussian pﬁﬁf&%&éﬁ&)%
s e R e e o 2 &

isomap of original path isomap of sGaussian path isomap of Bi3 path
3 3 3
7

Figure 5.9: Filtered paths with shape filter and projection of the corresponding geodesic path on a dimension reduc-
tion plane. The filtered paths are outputs using the proposed shape Gaussian weighting (sGaussian) and Bi3 local
shape weighting (Bi3). The geodesic path of each shape sequence is projected on a 2D plane using isomap dimen-
sionality reduction **°. Each circle markers on the isomap indicates the ordered shape in the time sequence. The x
and y are relative geodesic distance projected on the 2D plane.

The shape filter can also provide estimations of shapes/segments that may not be originally
imaged at the experimental imaging step, and potentially provide insights for biofilm statistic

analysis. An experiment of shape interpolation and an analysis on tracking the change of volume
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along time are shown in Fig. s.10. Itis observed that shape filter can provide reasonable estima-
tion of shapes even though the images were not obtained during the experimental imaging pro-

cess. Given the estimations, a potential analysis that shape filter can provide to the cell biologists
is a track of volume variations along time. It is interesting to find a periodic change of volume of

the target cell in Fig. 5.10, as it approximately agrees with the cell dividing situation observed in

the real time lapse images.
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Figure 5.10: Estimation of shapes and potential biofilm analysis on cell volume provided by shape filter. The top panel
demonstrates the path estimated in shape filter by interpolation. The shapes in blue are original shapes (after Bi3 fil-
tering) in the experimental imaging sequence, and the ones in magenta are new estimation/interpolations of shapes.
The bottom diagram reveals the track of volume changes of the target cell along time (with interpolations). The
original data at original time scales are marked with blue asterisk.

5.3.2 POTENTIALS FOR 3D SHAPES

The 2D experiments exhibit encouraging findings as discussed in the last section, while the
3D representation of cells can definitely bring more insights for biofilm analysis. A barrier in
conducting 3D shape experiments, at the current stage, is the lack of a suitable parameterization
method for 3D shapes that can be analyzed in Riemannian manifold as shape filter utilized. In

order to find an elastic shape representation in Riemannian manifold for the 3D bacterial shapes,
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a potential solution is in progress, collaborating with T. Toma in the VIVA lab and shape exper-
tise from the Florida State University (FSU), A. Srivastava and his student Y. Wu. In their recent
paper, a square root normal field (SRNF) is presented as a solution to describe 3D shapes, along
with all the potential elastic shape analysis statistics .

Based on the theoretic papers®*’’, the 3D surface of each bacterial cell is a function f defined
on domain D — R?, where each point s on the surface s € D is a point with three-dimensional

coordinates. Then, the representation of a 3D surface with SRNF is:

g6 = L (5.10)

where 7(s) is the normal vector at each point s on the shape surface; ¢(s) is an L,-metric un-
der the SRNF representation. Thus, SRNF transform preserves the properties in the original
SRVF for comparing shape difference in the differentiable shape space. A preliminary SNRF-
transformed bacterial shape, provided by Y. Wu, is shown in Fig. s.xx1. With the supporting
statistics from SRNF, a future work can target on extending shape filter to the 3D space. The
higher dimensional shape data points that represent 3D surfaces will be potentially fitted in the

data filtering scheme by adjusting the weighting functions to a higher dimension.

400 -

200 -

-200 -

-400 -

500 400 200 0 200 400

Figure 5.11: An example of 3D shape parameterized with square root normal field °.
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5.4 SUMMARY

In this chapter, biofilm reconstruction using geometrical model fitting and active surface-
based model refinement was firstly presented. These biofilm reconstruction methods can smoothly
link up the central axis point cloud outputs from LCuts and m-LCuts and thus provide bio-
informatics of cells in the biofilms, such as cell position, orientation, biofilm density, ezc. By
combining the advances in biofilm image analysis algorithms presented in this dissertation, the
single cell segmentation results can be improved, which further enables shape-based biofilm anal-
ysis using shape filter. Based on the preliminary experiments in this chapter, shape filter is able to
fix the segmentation errors along time, visualize and estimate the deformation of cells, and quan-
tify the morphometry difference (e.g. volume, shape) of different bacterial cells in the image. A

tuture work will be on extending the current shape analysis workflow to 3D shape space.
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Nothing is impossible. The word itself says T'm possible!’

Audrey Hepburn

Conclusions

6.1 CONTRIBUTIONS

This dissertation presents four thrusts from Chapters 2 to 5. Several automated algorithms
were proposed in each thrust, which include the graph-based segmentation variations, biofilm
image synthesis, evaluation and biofilm analysis solutions. This research breaks through the in-
ability in resolving and analyzing individual cells in densely-packed biofilm. It also enables single-
cell and population-level studies of biofilms, incorporating both classic and machine learning

image analysis techniques, as a gateway for future work on biofilm analysis. The major contribu-
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tions are listed below.

Contribution I: Graph-theoretic automated bacterial cell segmentation with L-Cuts.

The first thrust is directed toward the segmentation of individual bacterial cells in dense biofilm.
Bact-3D and LCuts were presented in Chapter 2 as single-cell segmentation solutions. Bact-3.D
is the first effort of this biofilm research, and gives an edge-based level-set segmentation method
with local velocity constraints to prevent the merging of two cell contours. Although promis-
ing results for multi-layered biofilm 3D data were achieved, the performance degrades on more
complex biofilm images as the gaps between neighboring cells are harder to identify. Therefore,
LCuts was presented to detect each cell by analyzing its central axis, even when the cell boundary
is ambiguous.

In LCuts, the segmentation of bacterial cells is transformed to a key point clustering problem
via recursive graph cuts. It computes the local intensity maxima to delineate the central axis of
each cell; then it automatically divides these point cloud data to different collinear groups to rep-
resent each rod-shaped bacterial cell. Distance, linearity, and intensity characteristics of the point
cloud data are utilized to define the new graph node similarity measure. LCuts outperforms the
existing methods in the majority cases in 2D. Experiments in 3D with LCuts indicate the neces-
sity to improve the automatic point cloud data generation process that can provide data that

exhibit explicit collinearity features, for which the second part of this research was carried out.

Contribution II: #-LCuts for generalized collinear data clustering with application to

post-processing. In the second thrust (Chapter 3), the extension from LCuts to masked LCuts
(me-LCuts) was presented to maximize the single cell identification performance and to generalize
the method to be able to combine with any other segmentation pipelines. By utilizing prelimi-
narily segmented outputs (masks) from the general segmentation approaches, the point cloud

data for m-LCuts are extracted using either radius-constrained medial axis extraction method on
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under-segmented masks or supernode generation workflow for over-segmented masks. In these
cases, the collinearity in the data can be preserved and utilized for further data clustering. Com-
pared to the initial LCuts, m-LCuts algorithm reports new sub-algorithms in graph construction,
node feature extraction, node similarity measure, and stopping criterion for recursion.

The validation experiments are twofold. Firstly, the incorporation of refined LCuts, the in-
termediate version, with deep neural networks was investigated in BCM3D. Refined LCuts can
further split the connected components where multiple cells merge into one cluster in the CNN-
trained segmentation outputs. Secondly, experiments were conducted to generalize m-LCuts
as it can post-process segments with different segmentation errors with one unified theory. In
addition, to deal with the under-segmented clusters, 7-LCuts can also remedy the situation in
which a single cell is over-segmented into several parts. In such a case, the segmentation outputs
(masks) can be provided with any segmentation approaches, e.g. machine learning-based facilities
or traditional computational image processing solutions.

Furthermore, 7-LCuts is a broadly applicable data clustering method, potentially extendable
to many other scenarios. For example, in the experiments of shape classification, the masks are bi-
nary image of shapes and 7-LCuts can find the classes of shapes using their collinearity in shape
space. With each of the LCuts variation, there is no need to specify the number of cells to be seg-

mented.

Contribution III: 3D GAN image synthesis and dataset quality assessment with SSQA
for bacterial biofilms. The third thrust of this dissertation focuses on the generation of biofilm
images (Chapter 4). A machine learning solution using generative adversarial networks (GANS),
named 3.D Cyclic GAN (5;) with unbalanced loss functions, was designed to generate synthetic
3D images that mimic the actual LLSM biofilm image conditions. The proposed workflow is
a solution to potentially increase the segmentation performance on real experimental biofilm

images, and to overcome the current limitation in data-driven segmentation pipelines that the
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model-based simulated training data may not fully reproduce the complicated image conditions
in the biofilm dataset. The unbalanced loss function tested in 3.D Cyclic GAN ({5;) provides the
best synthetic data quality compared to model-based image generation and other GAN loss op-
tions, in terms of intensity-wise and distortion-based image quality assessment measures.

To fill in the lack in assessing 3D synthetic dataset quality, a stochastic synthetic dataset qual-
ity assessment scheme was proposed, abbreviated as SSQA. SSQA is a stochastic approach that
takes random patches from random images for quality evaluation and statistical observation anal-
ysis. It provides a quantitative option for comparison-based 3D GAN output evaluation when
the corresponding ground truth images are not available. With adequate comparisons in terms of
number of patches and images (e.g. 10000 x 600 in this paper), SSQA revealed statistically mean-
ingful trends of intensity-wise cross-dataset quality. We believe that this approach is applicable to

other bioimage data generation problems for which blind quality assessment is required.

Contribution IV: Shape-based biofilm reconstruction and analysis. By providing the im-
age analysis and machine learning advances to improve the single-cell segmentation performance
as mentioned above, biofilm analysis is enabled for researchers in the biofilm community. As
discussed in Chapter s, biofilm reconstructions using geometrical model fitting and active
surface-based model refinement are both provided with preliminary results to demonstrate
the handling of ZCuts and m-LCuts outputs. They are able to provide statistics in cell location,
orientation, size, biofilm density, and even shapes for biofilm biologists to perform analysis. Fur-
thermore, shape filter was applied to analyze bacterial shapes along time. Experiments demon-
strate the potential that the shape filter brings to the biofilm analysis. For example, the morpho-
logical tools allow one to visualize the shape deformation of cell growing-and-dividing process

and to quantify the difference in cell morphometry spatially and temporally.
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6.2 FUTURE WORK

One of the future directions of this work will focus on biofilm analysis with the extension
of a shape filter in 3D. As also mentioned in Chapter s, a collaborative project on this topic is
actually in progress, using an elastic shape representation of bacterial cells in 3D. In addition, for
biofilm reconstruction, further improvements will be explored on the active surface-based model
refinement, such as adding shape prior on each active surface model, which may also include
systematic experiments on evaluating the corresponding biofilm reconstruction accuracy.

For biofilm image generation, future work may involve the improvement of GAN pipeline
to decrease the problems in location drifting of cells in the generated images compared to in-
put binary annotations. On the other hand, experiments will be performed using SSQA and the
adjusted SBR score from Chapter 4 to filter out the images with low quality and low location
correspondence. Then, the segmentation pipelines can be refined to improve the single-cell iden-
tification accuracy. These works will further assist in accurate single-cell tracking in the biofilms
along time.

Another branch of future work will be devoted to broader applications of the proposed graph-
based clustering method, m-LCuts. A preliminary result on shape classification is already shown
in Chapter 3. Works will be further carried out to define a stopping criterion that can automat-
ically terminate each recursion, for the detection of difterent collinear shape groups in shape
space. In addition, the goal to further generalize 7-L Cuts may also require future modifications
in the algorithm and optimization of the runtime. Then, more experiments will be performed to

validate the performance of the developments and to compare with the current state of the art.
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