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RESEARCH STRATEGY 

Significance 

Across the lifespan, sepsis remains a leading cause of death for hospitalized patients. From neonates to 

adults, it is a significant cause of ICU admission and mortality remains high.1 Among children who experience 

sepsis, 25% will die in the hospital.2 Sepsis has an often-insidious onset that makes diagnosis challenging.3 The 

hallmark of sepsis, organ dysfunction resulting from a dysregulated host response to infection, often requires 

ICU-level interventions for physiologic organ support.4 Survivors of sepsis have increased lengths of 

hospitalizations and are at risk of long-term complications.5,6 Despite growing research in this area, sepsis remains 

a significant cause of morbidity and mortality. Better targeting of sepsis interventions may result in improved 

outcomes, yet we remain limited in our ability to target sepsis interventions to individual patients.   

Continuous predictive analytics monitoring. 

Recently, machine learning techniques have been employed to predict future clinical deterioration, 

including sepsis.7 Continuous ECG data from bedside monitors, vital signs, laboratory values, and clinical 

assessment findings contained in the electronic health record can be analyzed in real time to identify patients at 

rising risk of sepsis, prior to overt clinical signs. Continuous predictive analytic monitoring involves collecting 

data from multiple inputs and using an algorithm to produce an estimate of risk, updated in real time. Early 

detection of at-risk patients can provide a window of time for clinicians to initiate treatment.  

In the neonatal ICU, predictive analytic monitoring integrating real-time physiologic data from 

electrocardiogram monitors has been used to provide early warning of sepsis.8 Moorman and colleagues 

developed a process to synthesize data inputs from cardiorespiratory monitors to produce an estimate of fold-

increase in risk of sepsis.8 This monitoring system uses a computational algorithm to produce risk scores derived 

from measures of heart rate variability from continuous electrocardiogram monitoring.9,10 In a multi-center 

randomized clinical trial, there was a 20% reduction in mortality among very low birth weight (VLBW) infants in 

the intervention arm, where there was a visual display of risk scores.8 This work has been extended to the adult 
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ICU population. A model that displays a visual representation of risk for clinical deterioration has been developed 

for an adult surgical trauma ICU population.11 The rate of septic shock decreased by more than half after the 

display of the monitor as compared to the time before the display was implemented (rate ratio = 0.478, 95% CI 

[0.250-0.880], p = 0.012).11 

Most recently, this work has been extended to develop a model to predict sepsis in the pediatric ICU 

(PICU). The pediatric model provides a CoMET (Continuous Monitoring of Event Trajectories) score 

representing the fold increase in risk of developing sepsis in the following 24 hours.12 The CoMET score is 

derived from biological and physiological inputs, including computational calculations from the EKG waveform, 

continuous pulse oximetry monitoring, vital signs, laboratory values, and clinical variables (i.e., age).  

Predictive analytic monitoring is designed to give clinicians early warning of future deterioration. By 

detecting subtle, not-yet-clinically-recognizable signs of illness, it may allow clinicians an earlier window of time 

in which to intervene. Sepsis prediction models, displaying a visual risk score to clinicians, have led to improved 

outcomes in the neonatal ICU and are associated with lower rates of septic shock in an adult ICU. While risk 

scores from predictive analytic models have been used to provide early warning to clinicians, less research has 

focused on the use of this innovative derivation of complex physiologic data to characterize illness states. We 

proposed that risk scores can be used for more than early warning for clinicians. With their succinct and 

continuous measure of risk for each patient, derived from multiple inputs that capture biological and complex 

time series physiological states of the patient, this risk score is well suited to represent a measure of illness 

severity.  

We propose that the risk scores from sepsis prediction algorithms can be used in novel ways that extend 

beyond providing early warning to clinicians of impending sepsis. Using risk scores as a proxy for illness 

severity, we can (1) characterize illness trajectories over time. Specifically, we can examine the illness trajectory 

of patients immediately following a sepsis diagnosis. This relatively understudied time of the sepsis course may 

be crucial to understand as we seek ways to improve outcomes following sepsis. We can also use risk scores (2) to 
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create a measure of cumulative burden of illness acquired over the duration of a hospital stay. The construct of a 

cumulative burden of illness may add useful information in addition to the risk scores in real time.  

Using illness trajectories to characterize the sepsis illness course. 

Although sepsis is common, there is little knowledge of clinical trajectories immediately following 

diagnosis. Moreover, the temporal characteristics of illness states may be an important feature in understanding 

the illness course as well as for assessing how interventions affect sepsis recovery.  Mortality and length of 

hospital stay are common static outcome measures used to evaluate the success of both sepsis interventions and 

sepsis prediction algorithms. However, it remains mostly unknown if clinician action or the use of prediction 

algorithms can affect rate of recovery. Examining trajectories would allow for an understanding of not only if 

infants recovered, but of the rate of their recovery.  

Previous work using risk scores identified distinct illness trajectory phenotypes in the days preceding a 

sepsis diagnosis in VLBW infants.13  Risk scores, considered as physiological markers of illness severity, will be 

used to characterize sepsis trajectories pediatric ICU patients following a sepsis diagnosis in this study.  

Using a measure of cumulative burden of illness to characterize illness course. 

We propose the idea that a patient may be in a more vulnerable state because of an accumulated burden of 

illness, acquired over the duration of a hospital stay.14 This more vulnerable state may not be captured fully by 

continuous estimates of risk scores. In describing a post-hospital syndrome, Krumholz hypothesized that patients 

experience physiologic disturbances as a result of the stress of hospitalization.15 This accumulated disturbance 

leaves patients vulnerable to new or recurrent illnesses after discharge. Aspects of clinical care, such as sleep 

deprivation, suboptimal nutrition, anxiety, and immobility had a cumulative effect, representing the trauma of 

hospitalization.16 The burden of hospitalization may be considered not only a burden of the environment of care, 

but also of the burden of illness. While Krumholtz considers the effect of the burden of hospitalization after 

discharge, we extend this concept to the accumulated burden of illness acquired during the hospital admission. 
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This cumulative burden of illness may make the patient not only at higher risk of readmission, but also place the 

patient in a more vulnerable state during hospitalization.  

Building on work done with predictive risk monitoring in the NICU population, where cumulative risk 

scored were predictive of mortality, we aim to extend the idea of quantifying a cumulative burden of illness in the 

PICU population.  We will test the hypothesis that the total burden of pediatric illness is associated with mortality. 

We will consider the COMET score to be a measure of illness severity, or the current, observed burden of illness. 

Cumulative COMET, an addition of the illness scores over time after removing baseline factors, will represent the 

total burden of illness throughout the hospital course.  

To summarize, our proposed study’s significance and scientific premise is that (1) machine learning 

models can be used to improve patient outcomes in ways that extend beyond early warning of clinical 

deterioration. (2) Risk scores produced by machine learning models can be used as physiological markers of 

illness severity. (3) Improved outcomes in sepsis may require knowledge of the clinical trajectory following 

diagnosis, that is, the transitions through states of illness severity in the hours and days following a sepsis 

diagnosis. Using risk scores as measures of illness severity, we can model the course of illness states through 

which patients progress following sepsis diagnosis. (4) Quantifying the cumulative burden of illness may add 

additional information to our understanding of the illness trajectory. We can use risk scores to quantify a 

cumulative burden of illness over the course of an ICU admission. Our study addresses a critical health issue and 

will lay the foundation for future work to improve outcomes in sepsis. 

Innovation  

This study is innovative in multiple ways. First, using risk scores to quantify illness states are novel. We 

propose two applications of risk scores as quantifications of illness states. In the first approach, the application of 

Markov chains to model illness state transitions offers the opportunity to characterize the probabilistic trajectory 

of patients through their illness course following a sepsis diagnosis. The proposed research provides the 

foundation for future research using Markov decision processes (MDPs). MDPs can model the sequence of 
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interactions between clinician interventions and illness states following sepsis, allowing for an understanding of 

how clinician action affects illness trajectories. In the second approach, we aim to evaluate the added value of 

quantifying the impact of the cumulative burden of illness. The idea of a cumulative burden of hospitalization is 

intuitive but novel in its use and quantification. By adding risk scores over time to obtain a measure of cumulative 

burden of hospitalization, we take a view of illness as a burden that accumulates over the course of a 

hospitalization and investigate whether this is associated with mortality. 

APPROACH 

Overall design 

The overarching goal of this study is to investigate novel uses of risk scores by using them to quantify 

illness states and measure the change in illness over time. To characterize longitudinal trajectories of illness 

following a sepsis diagnosis in pediatric patients, we will employ a quantitative descriptive approach using a 

stochastic method to examine illness state transition probabilities (aim 1) and the sequence of transitions among 

illness states (aim 2).  To measure the cumulative burden of illness over the course of a hospitalization, we will 

employ a parametric modeling approach to examine the relationship of cumulative illness with mortality (aim 3).  

Data Source 

Sample. A machine learning sepsis prediction model was developed from a retrospective cohort study of 

PICU admissions from December 2013 through May 2016 at the University of Virginia Children’s Hospital. The 

sample included all admissions to the 17-bed PICU for the duration of the study. Secondary data from this model 

development study will be used in this study. Demographic information, including age, length of hospitalization, 

and mortality (assessed as all in-hospital mortality) was recorded during the trial. We excluded patients missing 

archived physiologic monitoring data or receiving extracorporeal life support. Archived data were available for 

1,711 unique admissions involving 1,425 patients. One hundred fifty-four admission were associated with a sepsis 

event in a total of 136 patients. Mean age of the patients who experienced sepsis was 1.4 (IQR 0.3 – 7.4) years. 

Mean age of those without a sepsis event was 3.2 (IQR: 0.5 – 11.9) years. Length of stay for patient without 
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sepsis was 4 (IQR: 2 – 8) days and in-hospital mortality was 2.4%. Length of stay for those with sepsis was 28 

(IQR 9 – 62) days with 18.2% in-hospital mortality.  

Sepsis definition. Episodes of sepsis were defined as (1) the presence of systemic inflammatory response 

syndrome (SIRS) and (2) suspected or proven invasive infection caused by any pathogen. For every patient who 

had a blood culture order, each chart was individually reviewed by a clinician to establish the time of the sepsis 

event (i.e., the time of blood culture order or time of blood culture collection, whichever came first) in cases 

where a patient met SIRS criteria in the 12-hour window preceding the culture and received antibiotics in the 6-

hour window following cultures.   

Physiologic data inputs to the CoMET model. Inputs to the CoMET algorithm include (1) continuous 

cardiorespiratory monitoring waveforms (three leads of ECG sampled at 240 Hz and pulse plethysmography and 

invasive blood pressure tracings at 120 Hz), continuous cardiorespiratory vital signs (heart rate, respiratory rate, 

peripheral oxygen saturation, invasive blood pressure, ventilator measured respiratory rate, and sample-and-hold 

non-invasive blood pressure) sampled at 0.5 Hz, (3) clinician-entered vital/clinical signs (oxygen saturation, 

temperature, Glasgow coma scale, and fraction of inspired oxygen) (4) laboratory measurements (serum sodium, 

potassium, chloride, bicarbonate, blood urea nitrogen, creatinine, glucose, calcium, white blood cell count, 

hematocrit, platelet count) and BUN-to-creatinine ratio, and (5) clinical covariates (age, male gender, presence of 

an arterial line, and the presence of mechanical ventilation).12  Cardiorespiratory dynamics measured from the 

continuous cardiorespiratory monitor, unseen by clinicians, were calculated as described by Moss and 

colleagues.17 These 16 measures were calculated in 30-minute windows with 50% overlap. Intermediate features, 

censored when the values were more than 24 hours old for vital signs and 48 hours old for laboratory values, were 

combined with continuously obtained features using sample-and-hold.  

CoMET model development. Models were developed for two use cases: (1) as continuous risk estimators 

and (2) as sepsis screening alerts. Logistic regression (r package rms) and random forest (r package 

randomForest) models were created. Both models were developed on the first 60% of hospital admissions and 

validated on the remaining 40% of admissions. Missing data was imputed with median values.  Leave-one-out 
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cross-validation was used to predict risk for both models. The output of the models represents the fold increase in 

risk that a child will be diagnosed with sepsis in the following 24 hours compared with the average risk of sepsis. 

To evaluate model performance, the area under the receiver operating characteristic curve (AUC) was calculated 

for each model. Confidence intervals were calculated on the validation sample 200 bootstrap runs resampled by 

admission. The AUC for the logistic regression model was 0.703 (95% CI: 0.646 to 0.756) for a sepsis detection 

window of 24 hours. Using the same window of time, the random forest model had an AUC of 0.750 (95% CI: 

0.708 to 0.809). For comparison, the AUC for SIRS, with a 12-hour prediction window, was 0.663 (95% CI: 

0.632 to 0.695). The risk scores generated from the random forest model will be used in the analysis of aims one 

and two. The risk scores generated from the logistic regression model will be used for aim 3.  

Approach 

Aim 1. To define and characterize illness state transitions following sepsis diagnosis 

Markov chains are one way to represent the behavior of a system.  All of the states that a system may 

occupy are identified and how it moves through those states is described.18 The system can only be in one state at 

a time, it’s evolution can be represented by transitions from state to state, and the transition between states is 

instantaneous. The future state of the system depends only on the current state (Markov property). Even for 

systems that do not possess the Markov property. It may be possible to represent the behavior of that system by a 

Markov process.18 We will use Markov chains to model patients’ illness state transitions. 

A discrete-time Markov chain will be developed to model the course of illness states transitions through 

which patients progress following sepsis diagnosis. For each COMET score, the time in hours following sepsis 

diagnosis was determined. For all patients with sepsis, the COMET scores measured every hour over two weeks 

following a sepsis diagnosis will be used to characterize changes in illness states. COMET scores ranged from 0 

to 7.8. The scores will be binned to create four clinically meaningful, finite illness states (0 to < 1, 1 to < 2, 2 to < 

3, >= 3). This creates four possible illness states, S = {0, 1, 2, 3}, every hour, where there is a possibility p(qnow+2 

hours|qnow) to transition to another state or to remain in the same state. We assume that at any given time patients are 
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in one of the four defined illness states and that the probability of a patient being in a given illness state only 

depends on their previous illness state.  

A transition matrix will be created to display the probability of transitioning from a current illness state to 

the next illness state (in one hour). A total of 16 possible transitions (4 x4) are captured in the transition matrix 

(see Table 1). The rows represent the current illness state, and the columns represent the subsequent illness state. 

The probabilities in each row sum to one. 

Current 
Illness state 

Illness state in 1 hour 
0 1 2 3 

0 0.94 0.04 0.009 0.007 
1 0.51 0.29 0.14 0.064 
2 0.28 0.32 0.2 0.2 
3 0.14 0.19 0.18 0.49 

Table 1: Example transition matrix  

A Markov chain transition matrix will be created to characterize population-based state transition 

probabilities. Transition matrices stratified by age (dichotomized) and mortality will also be examined. This 

stratification will allow for an understanding of differences in the temporal dynamics of illness as a function of 

clinical characteristics. The transition matrices will be the deliverable for this aim and will allow for examination 

of transition probabilities between illness states, globally and stratified by patient factors. The transition matrices 

will be examined descriptively to characterize trajectories. To quantify differences in stratified trajectories, we 

will calculate the Shannon entropy of each matrix. To calculate the Shannon entropy of a matrix, we will consider 

a transition matrix where all the cells sum to one (rather than the cells of each row summing to one), to obtain one 

entropy value for each matrix. In information theory, the entropy of a random variable can be considered as the 

average level of surprise or uncertainty in the variable’s possible outcomes.  

Aim 2. To examine the sequence of transitions among illness states. 

A quantity of clinical interest based on the Markov chain transition matrix is first passage times. By using 

the probabilities underlying the transition matrix, the first passage times show how many steps (i.e., how much 
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time) it takes to reach a destination illness state from a starting illness state from probabilistic perspective. For 

example, if a child was at a high illness state at the time of sepsis diagnosis, how many steps (or how many hours) 

would it take to reach a low illness state? Like the transition matrix, first passage times will be displayed for all 

possible passage times in matrix form, where each cell represent the average number of steps it takes to reach one 

state from an initial state. Cumulative probabilities for passage times will also be calculated, as well as first 

passage times stratified by age and survival.  

Aim 3. To quantify a measure of the cumulative burden of illness and examine the association between 

illness burden and mortality. 

We consider the CoMET score to be a measure of illness severity. Cumulative CoMET, an addition of 

illness severity over time, will represent the total burden of illness throughout the hospital course. To quantify the 

expected burden of illness, a multivariate logistic model, taking as predictor variables the clinical covariates (age, 

sex, presence of mechanical ventilation, presence of arterial line, and length of stay), will be constructed with 

sepsis occurrence as the outcome variable. The output of this model will be called the demographics index. The 

demographics index is considered as the probability of an occurrence of sepsis in the next 24 hours predicted only 

by clinical covariates.14 We will calculate the demographics index every 6 hours and add the output for each 

patient, thus providing a measure proportional to the illness burden expected as a result of hospital duration and 

baseline clinical factors. We will take the difference between the demographic index and the CoMET risk score 

and consider this measure as the burden of illness not accounted for by baseline clinical factors. We will calculate 

the difference between the demographic index and the CoMET score at six-hour intervals and add this difference 

together to obtain a cumulative CoMET (cCoMET) score for each a patient. Children with a complicated hospital 

course are expected to have a cCoMET score greater than zero, while children whose hospital course is no more 

complicated than expected, based on baseline clinical variables, is expected to have a score near zero.  

We will test the hypothesis that the cumulative burden of illness provides additional information by 

examining the association of the cCoMET with mortality. The difference in cCoMET scores between survivors 

and non-survivors will be evaluated using the rank sum test.  We will also examine the AUCs for the 
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demographics index model and compare this with the AUC of the cCoMET, using in-hospital death as the 

prediction outcome of the models.  

Challenges and potential limitations. 

Our data is limited to a single center PICU. 

We are limited to data collected from a single PICU. However, our approach is to identify novel uses of 

risk scores, in ways that extend beyond early identification of rising sepsis risk.  

What about other methods to analyze trajectories? 

Model-based approaches assume underlying probability distributions. In doing so, they allow for the 

estimation of the probability of group membership and provide inferences in the relationship between covariates 

and group membership.  We acknowledge that there are tradeoffs among different approaches to trajectory 

characterization. A Markovian approach offers a framework for considering changes in illness states over time 

and offers a unique way to understand and characterize transitions as well as serves as the foundation for future 

research investigating the impact of clinician action on sepsis trajectories. Additionally, first passage times, 

presenting the average time it takes to reach one illness state from a starting illness state, may offer clinically 

meaningful insights into illness states transition times.  

What are the limitations of Markov chains? 

A first order Markov chain assumes behavior in the future can be predicted using only the current state. 

Therefore, Markov chains are considered to be “memoryless.” While this has a desirable clinical correlate in that 

at times all a clinician knows of a patient is their current state (i.e., does not know about the state of the patient 

last week), and the clinician does not have immediate access to the entire history. Despite the limitations of this 

assumption, in practice this reflects the information that is immediately available to the clinician.  Markov chains 

can be constructed to maintain a memory effect by accounting for prior state transitions. For example, in a second 

order Markov chain, each observation is influenced by the two previous observations. We will examine the 
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similarity of the transition matrices across first and second order Markov chains to evaluate how well a first order 

Markov chain characterizes transition probabilities as compared with a second order chain.  

A second assumption is that the transition probabilities are independent from time itself. In other words, 

the Markov chain is time homogenous. We are specifying the two-week period following sepsis as the time period 

of sepsis, though it is possible that illness transition probabilities are conditional on time, or that the two-week 

period is not the best time duration to choose. However, clinically, we can see that illness resolution is not 

necessarily guaranteed in the days following sepsis, and lengths of hospital stay are longer for patients with sepsis 

than those without. We plan to examine if this assumption holds by comparing the transition probabilities of a 

two-week period to those of singe week time periods. Finally, this is a population level analysis, Transition 

probabilities are aggregated across all patients. By stratifying groups based on certain characteristics (i.e., sepsis 

severity and survival) we will partially address this limitation.  
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Abstract 

Background: Diagnosing sepsis remains challenging.  Data compiled from continuous 

monitoring and electronic health records allow for new opportunities to compute predictions based on 

machine learning techniques.  There has been a lack of consensus identifying best practices for model 

development and validation towards early identification of sepsis. 

Objective: To evaluate the modeling approach and statistical methodology of machine learning 

prediction models for sepsis in the adult hospital population.   

Methods: PubMed, CINAHL, and Cochrane databases were searched with the Preferred 

Reporting Items for Systematic Reviews guided protocol development.  We evaluated studies that 

developed or validated physiologic sepsis prediction models or implemented a model in the hospital 

environment.  

Results: Fourteen studies met the inclusion criteria, and the AUROC of the prediction models 

ranged from 0.61 to 0.96.  We found a variety of sepsis definitions, methods used for event adjudication, 

model parameters used, and modeling methods.  Two studies tested models in clinical settings; the 

results suggested that patient outcomes were improved with implementation of machine learning 

models. 

Conclusion: Nurses have a unique perspective to offer in the development and implementation 

of machine learning models detecting patients at risk for sepsis.  More work is needed in developing 

model harmonization standards and testing in clinical settings. 

Keywords:  machine learning, predictive analytics, risk prediction, sepsis  
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Implications for Clinical Practice 

• All of the machine learning models for sepsis prediction reviewed reported results reflecting 

moderate to strong prediction of sepsis. Sepsis prediction models hold promise for improving 

patient outcomes; understanding how these models work will be valuable for clinicians who may 

engage with them. 

• Prediction models used heterogeneous definitions of sepsis and were inconsistent in determining 

sepsis onset. Clinicians who engage with prediction models will benefit from understanding 

potential limitations of the models. 

• Further research is needed surrounding integration of these models in the clinical setting.  

Clinicians have a unique perspective to offer in the development and implementation of machine 

learning models detecting patients at risk for sepsis.   
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Physiological Machine Learning Models for Prediction of Sepsis in Hospitalized Adults:  An 

Integrative Review 

Sepsis, a life-threatening organ dysfunction, is the leading cause of death among hospitalized 

patients and accounts for more than five percent of total U.S. hospital costs (Rhee et al., 2017; Torio & 

Andrews, 2006). Though sepsis is common, its variable manifestations and often insidious onset make 

diagnosis challenging (Finfer et al., 2013).  The International Surviving Sepsis Campaign was formed in 

2002 with the goal of reducing the mortality of sepsis by improving diagnosis and developing guidelines 

of care (Rhodes et al., 2017). Yet, recent data suggests that deaths from sepsis remained the same from 

2009 through 2014 (Rhee et al., 2017).  

Clear definitions are important for understanding medical diagnoses, however, sepsis has neither 

a consistent definition nor a definitive test for diagnosis. At present, it is understood that infection 

precedes sepsis, but not all infections end in the dysregulated host response that characterizes sepsis 

(Singer et al., 2016).  In 1991, the Systemic Inflammatory Response Syndrome (SIRS) criteria were 

proposed for sepsis recognition (Bone et al., 1992).  Suspected infection plus two of the four SIRS 

criteria was the definition of sepsis (Table 1). In 2001, the role of organ dysfunction was recognized as a 

feature of the sepsis syndrome.  The resulting Sepsis-2 criteria also included suspicion of infection, 

expanded the list of diagnostic SIRS criteria, and required at least one finding of organ dysfunction 

(Levy et al., 2003).  Subsequently, the Sepsis-3 definition was proposed in 2016 by an international 

consensus group (Singer et al., 2016).   Sepsis-3 includes the Sequential Organ Failure Assessment 

(SOFA) to operationalize sepsis (Table 2). Using Sepsis-3 criteria, the definition of sepsis is an increase 

in a SOFA score of two points or more, or a score of two if there is no baseline, in the presence of 

suspected infection (Singer et al., 2016). 
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Data-driven approaches have immense promise for early sepsis detection. Further, continuous 

monitoring data, vital signs, laboratory values, and clinical assessment findings can be analyzed in real 

time to identify patients at rising risk of sepsis prior to the presence of overt changes in clinical signs.  

Early identification allows for a window of time for clinicians to act and initiate treatments in the 

earliest stages of sepsis.  Despite the immense promise, consensus is lacking regarding best practices for 

machine learning model development and applications for sepsis. In this paper, we aim to: (1) review the 

literature for machine learning models predicting sepsis in hospitalized adults, (2) synthesize findings 

across those studies, and (3) identify areas for future research involving machine learning models for 

sepsis prediction with implications for nurses and nurse scientists. 

Methods 

Protocol 

This review followed the protocol developed from the Preferred Reporting for Systematic 

Reviews and Meta-Analysis (PRISMA) and the CHecklist for Critical Appraisal and data extraction for 

systematic Reviews of prediction Modeling Studies (CHARMS) (Moher et al., 2009; Moons et al., 

2014). The CHARMS checklist was developed with the aim of standardizing assessment of prediction 

models with respect to risk of bias and applicability. The research question was framed according to the 

CHARMS guidance as shown in Table 3.  

Inclusion and Exclusion Criteria 

Studies involving sepsis machine learning model development, validation, or application of 

sepsis models in prospective settings were eligible.  This integrative review included studies with 

patients 15 years of age or older who were cared for in emergency departments (ED), intensive care 

units (ICU), or acute care floors. The predicted outcome was sepsis or septic shock during 
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hospitalization. Publications from database establishment through 1 October 2018 were considered. We 

excluded studies from non-English language publications, conference abstracts, and studies that only 

included prediction of sepsis present at the time of hospital or ED admission. 

Search Strategy 

We systematically searched the literature with terms sepsis AND machine learning OR 

predictive analytics OR physiologic monitoring OR data analytics. Sepsis, machine learning, and 

physiologic monitoring were searched as MeSH terms. We searched for peer-reviewed articles in 

Cochrane Database of Systematic Reviews, Pubmed, and CINAHL (Cumulative Index to Nursing and 

Allied Health Literature, EBSCO). The review authors used the references and citations within the 

included studies and searches to find additional papers. 

The result of this selection process is summarized in a PRISMA flow diagram (Figure 1) (Moher 

2009).  The CHARMS checklist was used for critical appraisal of the individual studies (Moons et al., 

2014).  The primary measure collected to evaluate the discriminatory ability of the machine learning 

model was the Area under the Receiver Operating Characteristic (AUROC).  

Data Extraction 

One researcher (SK) screened the titles and abstracts of each study. Two researchers (SK and 

JKM) analyzed the full text of the 28 articles meeting inclusion criteria to assess for eligibility. Three 

researchers extracted the data (SK, JKM, JRM), including study population, outcome measure (i.e., 

sepsis-1, sepsis-3, septic shock), statistical analysis for model development, model characteristics, and 

model validation measures (i.e., AUROC). 

Results 
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The electronic search resulted in 465 articles.  On the basis of title and abstract, 442 articles were 

removed because they did not meet eligibility criteria.   A review of reference sections in the remaining 

23 articles revealed five additional studies for full review. Fourteen studies were excluded because they 

were not modeling studies, or they only predicted patients who presented to the hospital with a diagnosis 

of sepsis.  Thus, we reviewed 14 studies (Figure 1). All were published between 2010 and 2018 and 

used patient data sources from the United States.   

 Using retrospective cohort designs, 12 studies focused on model development or 

validation. Extracted data for evaluation of the models is included in Table 4 and expanded versions are 

found in the Appendix Table 1 and Appendix Table 2. We found a variety of sepsis definitions, methods 

used for event adjudication, model parameters used, and modeling methods.  The AUROC of the 

prediction models ranged from 0.61 to 0.96 though a variety of methods used in the calculations made 

direct comparison of model performance unfeasible in most cases. F1 scores, reported in two studies, 

ranged from 0.05 to 0.47 (Calvert et al., 2016a; Desautels et al., 2016). 

Four studies reported development and testing of a model called INSIGHT (Calvert et al., 2016a, 

2016b; Desautels et al., 2016; Mao et al., 2018). This is a model that uses low-resolution data (e.g., EHR 

data) and few predictor variables to predict sepsis in the medical ICU (Calvert et al., 2016b). Two 

additional studies expanded on the model to incorporate data from additional hospitals and units, 

examine robustness against missing data, and to validate its use to predict sepsis using the Sepsis-3 

definition. Additionally, the model is validated using a minimal set of predictors, just six vital signs, and 

prediction over varying time periods preceding sepsis onset (Desautels et al., 2016; Mao et al., 2018). 

Finally, the model was validated for use in predicting septic shock in patients with alcohol use disorder 

(Calvert et al., 2016a).  
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Two studies reported development and testing of a model called TREWScore (Dummitt et al., 

2018; Henry et al., 2015).  This is a model for septic shock in ICU patients in the MIMIC database 

(Henry et al., 2015). This model was further tested using a dataset with individual clinician review, 

using lagging techniques, and using alternative methods of survival analysis (Dummitt et al., 2018) 

Nemati et al. (2017) present the Artificial Intelligence Sepsis Expert (AISE) derived from a 

combination of EMR and high-frequency physiological data.  Shashikumar et al. (2017a) propose a 

multiscale network construction and analysis method and its improvement in sepsis prediction over one 

dimensional descriptions of neuro-physiological interactions. Shashikumar et al. (2017b) also examined 

high-resolution blood pressure and heart rate times series for the prediction of sepsis. Both use data from 

all adult ICUs from an Emory-affiliated hospital.  

The remaining three articles are models presented as single models.  Moss and colleagues use 

only high-resolution data (every two second HR and ECG data from bedside monitors) to evaluate 

prediction accuracy in ICU settings (Moss et al., 2016). Rothman and colleagues developed two models 

in a single manuscript, one to identify patients presenting to the hospital with sepsis and another to 

predict the risk of post-admission sepsis (Rothman et al., 2017). Thiel and colleagues identify patients at 

risk for septic shock on acute care floors using only low-resolution data (Thiel et al., 2010).  

Two additional articles assessed patient outcomes after implementing a machine learning model 

in a hospital setting (Ruminski et al., 2018; Shimabukuro et al., 2017). Shimabukuro and colleagues 

used a prospective cohort design and Ruminski and colleagues compared outcomes pre- and post-

implementation of the risk prediction score using another ICU without a sepsis risk score displayed as a 

comparison unit (Appendix Table 2).  

Sepsis Assessment  
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Definition. The sepsis definition varied (Table 5). Four studies used Sepsis-3 (Desautels et al., 

2016; Nemati et al., 2017; Shashikumar et al., 2017a, 2017b), and four used Sepsis-2 guided by SIRS 

criteria (Calvert, Price, et al., 2016; Mao et al., 2018; Moss et al., 2016; Ruminski et al., 2018).   Four 

studies predicted septic shock (Calvertet al., 2016a; Dummitt et al., 2018; Henry et al., 2015; Thiel et al., 

2010).    

Time of onset.  There was wide variation between the time of sepsis onset used in the models. 

Nemati et al. (2018) defined episodes of suspected infection as the earlier timestamp of antibiotics and 

blood cultures. Sepsis was considered to have occurred when there was suspected infection with two or 

more points change in the SOFA score from 24 hours before to 12 hours after suspicion of infection 

(using Sepsis-3 criteria). The onset time of sepsis was defined as either a two-point increase in the 

SOFA score or the time of suspected infection, whichever came first.  Desautels et al. (2016) defined 

sepsis onset as the time at which there was a two-point increase in the SOFA score, regardless of 

whether it came before or after the time of suspected infection. Nemati and colleagues’ criteria was 

likely a more sensitive criteria for sepsis onset. The authors report that 21 percent of the time the change 

in the SOFA score came after the episode of suspected infection, and the AUROC, as a function of 

prediction window, showed better performance for predicting the change in SOFA score then in 

predicting the onset of sepsis.  

Using the sepsis-2 definition, Calvert and colleagues defined the onset of sepsis as the first time 

in which two or more SIRS criteria were present for five hours (they also required patients to have an 

ICD-9 code for sepsis) (Calvert et al., 2016b). Mao and colleagues predicted sepsis with the onset 

timestamp of two or more SIRS criteria present in the same hour (also required an ICD-9 code for 

sepsis) (Mao et al., 2018).  Mao and colleagues also looked at predictions for severe sepsis, defined as 

two or more SIRS criteria and one organ dysfunction (also needed severe sepsis ICD-9 code).  Moss et 
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al. (2016), predicting severe sepsis, defined the onset as the time at which a blood culture was obtained 

in a patient with suspected infection (defined as at least two SIRS, blood cultures, and end organ 

dysfunction). 

Thiel and colleagues (2010) used time of ICU transfer as the time of shock onset to predict septic 

shock among those on acute care floors (Thiel et al., 2010). Rothman and colleagues (2017) used the 

first anti-infective order as sepsis onset time (Rothman et al., 2017).  

Event identification.  Three studies had clinicians individually review patients’ charts in order 

to confirm the diagnosis of sepsis (Dummitt et al., 2018; Moss et al., 2016; Ruminski, 2018). Three 

studies required the presence of ICD-9 codes for the diagnosis of sepsis, severe sepsis, or septic shock 

(Calvert et al., 2016b; Mao et al., 2018; Rothman et al., 2017).  Three studies use EHR-based methods 

for identifying sepsis, requiring clinical indicators of organ dysfunction and presumed infection 

(Desautels et al., 2016; Nemati et al., 2017; Shashikumar et al., 2017a). One study used the Angus 

criteria of ICD-9 codes for infection and organ dysfunction (Thiel et al., 2010). Two studies required 

ICD-9 codes for infection in addition to EHR-based methods for detecting SIRS criteria (Calvert et al., 

2016a; Henry et al., 2015).  

Variables. The input variables used to create the models ranged from high-resolution data, to 

low-resolution data, to clinical free text, or to a combination of data types.  High-resolution features are 

included in four articles. The Artificial Intelligence Sepsis Expert (AISE) takes as predictors 65 features 

in total, including six high-resolution features, clinical features, laboratory test results, and 

demographics/contextual data (Nemati et al., 2017). Shashikumar et al. (2017b) developed three models, 

the first using only high-resolution data, the second using low-resolution EMR data and socio-

demographic data, and the third combining the data in the first two models.  Shashikumar et al. (2017b) 

found that high-resolution data that included features derived from multiscale heart rate and blood 
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pressure time series provided a 20 percent improvement in four-hour advance prediction of sepsis over 

multiscale entropy and EMR features.  Moss et al. (2016) used only high-resolution data from the 

bedside monitor. 

The TREWScore models used low-resolution predictors (Dummitt et al., 2018; Henry et al., 

2015).  Henry (2015) included 45 low-resolution features in the original TREWScore model including 

laboratory test results and certain features of clinical history.  Dummitt (2018) further assessed the 

TREWScore model and included vital signs and laboratory test results.  

The authors of the INSIGHT model included low-resolution predictor variables including vital 

signs, lab values, and age (Calvert et al., 2016a, 2016b). Two of those studies took the approach of 

trying to develop models to predict sepsis using a minimum of variables (Desautels et al., 2016; Mao et 

al., 2018).  Mao et al. (2018) and Desautels et al. (2016) sought to validate the INSIGHT model using 

minimal variables. Mao used six vital signs while Desautels used vital signs in addition to age and the 

Glasgow coma scale.  

Predictive Ability. The reported AUROCs ranged from 0.61 to 0.96 (Table 6). Models designed 

with ICU, emergency department, and acute-care patient populations were all predictive of sepsis.  The 

methods for calculating AUROC differed, especially with regard to time windows. We strongly advise 

against blindly using these values to determine the relative merit of the methods.  For example, the 

highest AUROC of 0.96 was at the time of septic shock onset which offers no window for early clinical 

action. The AUROC four hours prior to septic shock was 0.81 in the same study (Calvert et al., 2016b). 

Multiple models assessed AUROC four hours prior to sepsis or severe sepsis, with AUROCs ranging 

from 0.74 to 0.96 (Calvert et al., 2016a; Desautels et al., 2016; Mao et al., 2018; Nemati et al., 2017; 

Shashikumar et al., 2017a). 
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ICUs. Nine models were designed using exclusively ICU patients (Calvert et al., 2016a, 2016b; 

Desautels et al., 2016; Dummitt et al., 2018; Henry et al., 2015; Moss et al., 2016; Nemati et al., 2017; 

Shashikumar et al., 2017a, 2017b). The Medical Information Mart of Intensive Care (MIMIC-III) is a 

freely accessible database of patients admitted to ICUs at Beth Israel Deaconess Medical Center in 

Boston, Massachusetts from 2001 to 2012 (Johnson et al., 2016).  Four of those used the MIMIC 

database for training and testing (Calvert et al., 2016a, 2016b; Desautels et al., 2016; Henry et al., 2015). 

The InSight model performance was best as evaluated by AUROC measurements at time of 

septic shock onset (AUROC of 0.96 four hours prior to onset) (Mao et al., 2018). Calvert and colleagues 

developed a model with the AUROC of 0.96 at time of septic shock onset in patients with alcohol use 

disorders (Calvert et al., 2016a). The model with the highest AUROC in 24 hours prior to sepsis was 

Dummitt et al. (2018).  Desautels et al. (2016) developed a model that predicted sepsis four hours prior 

to onset that demonstrated moderate capability (AUROC 0.74) using only vital signs, Glasgow Coma 

Score, and age. Compared with Desautels and coworkers, Nemati et al. (2018) achieved better results 

with an AUROC of 0.87 using the same sepsis-3 definition over the same time window using high-

resolution variables plus EMR data.  Shashikumar et al. (2017b) also used the sepsis-3 definition and 

achieved a lower AUROC of 0.74 four hours before sepsis onset.   

Moss and colleagues developed models separately for two different ICUs with high-resolution 

data alone (Moss et al., 2016). High-resolution data alone is sufficient to predict severe sepsis, where 

predictions eight hours in advance had an AUROC of 0.61 in the medical ICU and 0.68 in the surgical 

ICU.  These prediction models did not generalize across ICUs.  The performance of each model, 

developed in one ICU and tested in another, was not predictive, with an AUROC of 0.50 in both cases 

which argues against a “one size fits all” predictive model indicating that a predictive model trained in 

one patient population often does not predict well when applied to a different patient population.   
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Acute care floors. Two articles considered patients on acute care floors (Mao et al., 2018; Thiel 

et al., 2010).  Thiel et al. (2010) presents a model using laboratory results, vital signs, and age to predict 

sepsis in advance of transfer to an ICU for vasopressor support. Using time of ICU transfer as the sepsis 

onset time, positive predictive values for the model ranged from 27.9 to 28.3 percent. Negative 

predictive values ranged from 97.6 to 98.1 percent. Mao and colleagues trained a model using MIMIC 

ICU data with varying amounts of data from UCSF, a dataset that spanned multiple wards. This model 

was tested on UCSF data. InSight achieved an AUROC of 0.96 four hours prior to septic shock onset 

(Mao et al., 2018) 

Clinical utility. The two studies that examined the effects of machine learning models on patient 

outcomes provided evidence that patient outcomes are improved (Appendix Table 2). Shimabukuro et 

al. (2017) designed a randomized controlled trial (RCT) to test the InSight model in an ICU 

environment.  The AUROC in the live environment was 0.95, and sensitivity and specificity were 0.90. 

Length of stay in the hospital and ICU as well as mortality rate were reduced for patients in the 

treatment arm.  

Ruminski et al. (2018) used a quasi-experimental design that examined patient outcomes for 

septic shock pre- and post- implementation of a monitor that displayed risk for clinical deterioration for 

each patient in the ICU. The rate of septic shock decreased by more than half after the display of the 

monitor as compared to the time before the display was implemented (rate ratio = 0.478, 95% CI 

[0.250-0.880], p = 0.012). There was no significant difference in mortality or length of stay before and 

after implementation of the display or between the unit with the display and a comparison ICU unit 

with no display.   

Discussion 
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  This review aimed to examine the literature on sepsis prediction using machine learning 

models, synthesize those findings, and discuss areas for future research. Twelve studies evaluated 

machine learning model development in hospital emergency departments, ICUs, and acute care floors. 

Only two additional studies examined prospective patient outcomes in the ICU environment, which 

indicates a large barrier in translation from model development to clinical translation and 

implementation.  

Models developed to predict sepsis are promising. All the models reviewed had AUROCs that 

reflected moderate to strong prediction of sepsis.  The models have prediction times ranging from 4 to 

24 hours in advance of sepsis onset. Even stronger evidence of the clinical utility of these models is in 

their ability to improve patient outcomes in the hospital.  The RCT designed by Shimabukura et al. 

(2017) found that length of stay was reduced and mortality rate was lower in patients when clinicians 

were aided by a machine learning algorithm. Interestingly, their result of enhanced model performance 

when all types of data were utilized echoes that of Moss and colleagues in a study of ward patient 

deterioration leading to ICU transfer (Moss et al., 2017). Ruminski et al. (2016) found that the rate of 

septic shock fell when a visual risk of clinical deterioration was displayed in a surgical ICU, while there 

was no large change in the outcome in a medical ICU without a display. 

The goal of model development was not always to maximize the AUROC as some models 

included a minimum of input variables to assess the utility of low-resolution models. Overall, the sepsis 

models that focused only on a minimal number of predictors had slightly lower AUROCs than models 

that included high-resolution data. High-resolution data in addition to EHR data provided the best 

AUROCs. It is likely that multiple sepsis models will be needed for different hospital environments with 

different patient populations and subsequent clinical actions (i.e., admit from the ED, upgrade to the 

ICU, start or expand vasopressor use once in the ICU, etc.).  
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There is room for attention to the accuracy of chart annotation prior to model development. Only 

two model development studies used hand annotation to determine the presence of sepsis (Dummitt et 

al., 2018; Moss et al., 2016). Though administrative claims data are commonly used 

for sepsis surveillance, individual record review is a more accurate method of determining the presence 

of sepsis (Rhee et al., 2017). ICD-9 coding reflects variability between hospitals and is susceptible to 

changes in policy and reimbursement incentives (Rhee et al., 2017). Different surveillance methods 

identify different sepsis cohorts (Rhee et al., 2019). Explicit sepsis ICD-9/10 codes, used by three 

studies in a review by Rhee and colleagues, had a high specificity but low sensitivity, capturing the most 

severely ill patients (Rhee et al., 2019). Implicit codes, such as the Angus criteria, have an improved 

sensitivity and capture a cohort with lower mortality rates (Rhee et al., 2019). It is likely that models 

will perform better in clinical practice when trained on data that is most reflective of reality.  

Limitations 

We only reviewed articles in English, which may have caused relevant articles to be excluded. 

Using machine learning models to predict clinical events is still a developing field and as such, there has 

been a rapid proliferation of articles in this area with varying methodological rigor and approaches. The 

excitement around the potential for significant improvement in patient outcomes must be approached 

with rigorous methodological underpinnings for model development and validation.  Beyond rigor in 

model development, research investigating the use of machine learning models in patient care should 

focus on ensuring the models are integrated into the clinical environment successfully through 

frameworks of implementation for predictive analytics in the healthcare system (Keim-Malpass et al., 

2018). 

Conclusions 
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Machine learning models for sepsis prediction demonstrate promise towards the continued goal 

of reducing events of clinical deterioration and improving outcomes for patients at risk for sepsis. 

Twelve machine learning models of sepsis were developed that showed AUROCs ranging from 0.61 to 

0.96, indicating moderate to strong predictive capability. However, direct comparison between models 

was imperfect as a result of the different sepsis definitions used, the varying sepsis onset times 

identified, the difference in how charts were evaluated for the presence or absence of a sepsis event, and 

variations in how the AUROC was measured.  Nine articles focused on predicting sepsis in ICU 

populations with a preponderance of models using the MIMIC database.   

Two studies examined patient outcomes in the ICU and found evidence to support the idea that 

incidence of septic shock can be reduced when predictive analytic models are introduced in clinical 

practice.  Further research is needed surrounding integration of these models in the clinical setting as 

well as the use of predictive models outside of the ICU setting.  Nurses and nurse scientists have a 

unique perspective to offer the development and implementation of machine learning models detecting 

patients at risk for sepsis.  More work is needed in developing model harmonization standards and 

testing the models in diverse clinical settings. 
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Table 1 

Sepsis-1 definition using SIRS criteria (Bone et al., 1992) 

 

 

 

 

 

 

Table 2 

SOFA criteria used in sepsis-3 definition (Singer et al., 2016) 

System 0 1 2 3 4 
Respiration 
PaO2/FIO2, 

mm Hg 

>=400 <400 <300 <200 
with respiratory 
support 

<100 
with respiratory 
support 

Coagulatio
n 

Platelets  

>=150,
000 

< 
150,000 

< 
100,000 

<50,00
0 

<20,00
0 

Liver 
Bilirubin 

mg/dL 

<1.2 1.2-
1.9 

2.0-5.9 6.0-
11.9 

>12.0 

Cardiovasc
ular 

MAP 
>=70 mmHg 

MAP<
70 

mmH
g 

Dopami
ne <5 or 
Dobutamine 
any dose 

Dopami
ne 5.1-15 or 
Epinephrine <= 
0.1 or 
Norepinephrine 
<= 0.1 

Dopami
ne > 15 or 
Epinephrine > 
0.1 or 
Norepinephrine 
> 0.1 

CNS 
GCS score 

15 13-14 10-12 6-9 <6 

Renal  
Creatinine 

mg/dL 

<1.2 1.2-
1.9 

2.0-3.4 3.5-4.9 >5.0 

Urine 
output, mL/d 

   <500 <200 

Note. Sepsis 3: Sepsis = Suspected infection + SOFA (2 or more point increase) 

Abbreviations: FIO2, fraction of inspired oxygen; MAP, mean arterial pressure; PaO2, partial pressure of oxygen 

SIRS Sepsis Severe 
sepsis 

Septic 
shock 

Two or more of the 
following criteria: 

Temperature >38 or < 36; 
Heart rate > 90 beats per 

minute; 
Respiratory rate > 20 per 

minute; 
White blood cell count > 

12,000, <4,000, or >10% of 
immature neutrophils 

Two or 
more SIRS 
plus infection 

Sepsis 
associated with 
organ 
dysfunction, 
hypoperfusion, 
or hypotension 

Sepsis 
with arterial 
hypotension, 
despite 
adequate fluid 
replacement 
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Table 3 

CHARMS guidelines for the framework of the research question 

Item Description 
Intended scope of the review To review models aimed at predicting sepsis 

in hospitalized patients 
Type of prediction modeling studies Both model development and model 

validation studies 
Target population of whom the prediction 

model applies 
Hospitalized adult patients 

Outcome to be predicted Probability of developing sepsis or septic 
shock during hospitalization 

Intended moment of using the model Arrival in emergency department or upon 
admission to a hospital unit 
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Table 4 

Elements of included articles pertaining to sepsis model development (n=12) 
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Table 5 

Sepsis definitions used in sepsis prediction models 

Model Study Sepsis Definition 

InSight 
Calvert, Price, et al. 

(2016) 
Sepsis - Sepsis 2 

 
Desautels et al. 

(2016) 
Sepsis 3 

 
Calvert, Desautels, 

et al. (2016) 
Septic shock 

 
Mao et al. (2018) Sepsis, severe sepsis, septic shock (predicted by 

individual groups) 
TREWScore Henry et al. (2015) Septic shock  

 
Dummitt et al. 

(2018) Septic shock 
Emory 

Cohort 
Nemati et al. (2017) 

Sepsis 3 

 
Shashikumar, Li, et 

al. (2017) Sepsis 3 

 
Shashikumar, 

Stanley, et al. (2017) Sepsis 3 
Individual Thiel et al. (2010) Septic shock 
Articles Moss et al. (2016) Severe sepsis – Sepsis-2 

 
Rothman et al. 

(2017) 
Sepsis, severe sepsis, and septic shock (predicted 

as one group) 
 
Table 6 

AUROCs for sepsis prediction models 

Model Study Time of 
Measurement 

AUROC F1 
Score 

InSight Calvert, Price, et 
al. (2016) 

3 hours pre 
onset 0.92 

None 
reported 

 Desautels et al. 
(2016) Sepsis onset 0.88 0.47 

  4 hours pre 
onset  0.74 0.30 

 Calvert, 
Desautels, et al. (2016) 

Septic shock 
onset 0.96 0.161 

  4 hours pre 
onset 0.81 0.0491 

 Mao et al. (2018) 
Sepsis onset 0.92 

None 
reported 

  4 hours pre 
onset (severe sepsis) 0.85 

None 
reported 

  4 hours pre 
onset (septic shock) 0.96 

None 
reported 



45 
 

 

TREWScore 
Henry et al. 

(2015) 
Septic shock 

onset 0.83 
None 

reported 
 Dummitt et al. 

(2018) 
Septic shock 

onset  0.92 
None 

reported 
  4 hours pre 

onset   0.85 
None 

reported 
  8 hours pre 

onset   0.84 
None 

reported 
  24 hours pre 

onset   0.85 
None 

reported 
Emory 

Cohort 
Nemati et al. 

(2017) 
4 hours pre 

onset 0.85 
None 

reported 
  8 hours pre 

onset 0.84 
None 

reported 
  12 hours pre 

onset 0.83 
None 

reported 
 Shashikumar, Li, 

et al. (2017) Not reported 0.80 
None 

reported 
 Shashikumar, 

Stanley, et al. (2017) Not reported 0.78 
None 

reported 
Individual 

Articles 
Thiel et al. 

(2010) 
 None 

reported 
None 

reported 
 Moss et al. 

(2016) 
8 hours pre 

onset MICU 0.61 
None 

reported 
  8 hours pre 

onset SICU 0.68 
None 

reported 
 Rothman et al. 

(2017) 
Sepsis 

present on admission 0.89 
None 

reported 
  Sepsis NOT 

present on admission 0.82 
None 

reported 
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Figure 1 

PRISMA search strategy 
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Appendix Table 1 
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Abstract 

Pediatric sepsis is a heterogeneous disease with varying physiological dynamics associated with 

recovery, disability, and mortality. Using risk scores generated from a sepsis prediction model to 

define illness states, we used Markov chain modeling to describe disease dynamics over time by 

describing how children transition among illness states. We analyzed 18,666 illness state 

transitions over 157 pediatric intensive care unit admissions in the 3 days following blood 

cultures for suspected sepsis. We used Shannon entropy to quantify the differences in transition 

matrices stratified by clinical characteristics. The population-based transition matrix based on the 

sepsis illness severity scores in the days following a sepsis diagnosis can describe a sepsis illness 

trajectory. Using the entropy based on Markov chain transition matrices, we found a different 

structure of dynamic transitions based on ventilator use but not age group. Stochastic modeling 

of transitions in sepsis illness severity scores can be useful in describing the variation in 

transitions made by patient and clinical characteristics.  
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Dynamic Transitions of Pediatric Sepsis: A Markov Chain Analysis 

The hallmark of sepsis, organ dysfunction resulting from a dysregulated host response to 

infection, often requires ICU-level interventions for physiologic organ support (1). In the 

United States, more than one third of children who die in tertiary care Pediatric Intensive Care 

Units (PICUs) have severe sepsis (2). In addition, survivors of sepsis have increased lengths of 

hospitalizations and are at risk of long-term complications (3, 4). Despite growing research in 

this area, sepsis remains a significant cause of pediatric morbidity and mortality. Better 

targeting of sepsis interventions following diagnosis may result in improved outcomes, yet we 

remain limited in our ability to target sepsis interventions to individual patients. 

Recently, machine learning techniques have been employed to predict future clinical 

deterioration, including sepsis (5). Continuous electrocardiogram (ECG) data from bedside 

monitors, vital signs, laboratory values, and clinical assessment findings in the electronic 

health record can be analyzed to identify patients at rising risk of sepsis, prior to overt clinical 

signs. Continuous predictive analytic monitoring involves collecting data from multiple inputs 

and using an algorithm to estimate risk, updated in real-time. Sepsis prediction models have led 

to improved outcomes in the neonatal ICU and were associated with lower rates of septic 

shock in an adult ICU (6, 7). While risk scores from predictive analytic models have been used 

to provide early warning to clinicians, less research has focused on the use of this innovative 

derivation of complex physiologic data to characterize illness states (8). 

The vast majority of sepsis research has focused on early diagnosis, initiation of goal-

directed therapy, and characterizing phenotypes of sepsis at the time of diagnosis (9, 10). The 

immediate post-diagnosis trajectory has received less attention. However, the time period 

immediately following sepsis diagnosis is of extreme clinical relevance due to the persistent 
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need to assess appropriate responsiveness to therapy and escalate or de-escalate care as needed 

to improve overall outcomes (11, 12, 13). Thus, the temporal characteristics of illness state 

transitions and patterns of recovery may be essential features in understanding the illness 

course as well as for assessing how interventions affect sepsis recovery (8). 

Markov chain modeling can provide insights into disease dynamics (14, 15). It provides 

interpretable, clinically relevant metrics, such as probabilities of transitioning between illness 

states and the expected time required to move from one illness state to another illness state. 

Using risk scores generated from a sepsis prediction model to define illness states, we use 

Markov chain modeling to evaluate the dynamic transitions in illness states following sepsis in 

PICU patients. Our first aim was to characterize a Markov chain transition matrix for a cohort 

of PICU patients meeting sepsis criteria. Our second aim was to characterize Markov chain 

transition matrices stratified by clinical characteristics (e. g., mechanical ventilation). We used 

a measure of entropy to characterize the differences between stratified matrices quantitatively. 

Finally, we examined the sequence of transitions among illness states to determine how much 

time was required to reach a target illness state, given an initial illness state, in a probabilistic 

fashion. 

Methods 

The University of Virginia Institutional Review Board approved this retrospective 

cohort study. 

Study Design 

Spaeder and colleagues developed a sepsis prediction model for use in the PICU 

population at the University of Virginia Children’s Hospital (16). The model produced, for each 

patient, a continuous score that is the fold increase in the risk of developing sepsis in the 
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following 24 hours. This model development study included all admissions to the 17-bed PICU 

from December 2013 to May 2016. The study authors recorded demographic information, 

including age, length of hospitalization, length of time on a ventilator, and mortality (assessed 

as all in-hospital mortality), during the trial. Archived data were available for 1,711 unique 

admissions involving 1,425 patients. 

We used the risk scores produced by the prediction model to construct matrices of the 

probabilities of 60 transitioning from any given illness state to another within a 30-minute 

period in the three days following cultures for suspected sepsis. We further characterized these 

transition matrices using Shannon entropy (17). 

We examined: (1) transition matrices for the cohort of admissions where sepsis occurred, 

(2) simulations of illness trajectories, (3) transition matrices stratified by different clinical 

characteristics, and (4) mean first passage times across the stratifications. Mean first passage 

times present the number of time steps required to reach a target illness state from an initial 

illness state. Analyses were performed using R studio version 3.6.2. The R package 

markovchain was used to calculate transition matrices and mean passage times. The simulation 

of trajectories was implemented in Python. 

Description of the Sepsis Prediction Model  

Data inputs to the predictive model. Inputs to the model algorithm include (1) 

continuous cardiorespiratory monitoring waveforms (three leads of ECG sampled at 240 Hz and 

pulse plethysmography and invasive blood pressure tracings at 120 Hz), (2) continuous 

cardiorespiratory vital signs (heart rate, respiratory rate, peripheral oxygen saturation, invasive 

blood pressure, ventilator measured respiratory rate, and sample-and-hold non-invasive blood 

pressure) sampled at 0.5 Hz, (3) clinician-entered vital/clinical signs (oxygen saturation, 
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temperature, Glasgow coma scale, and fraction of inspired oxygen), (4) laboratory 

measurements (serum sodium, potassium, chloride, bicarbonate, blood urea nitrogen, creatinine, 

glucose, calcium, white blood cell count, hematocrit, platelet 77 count) and BUN-to-creatinine 

ratio, and (5) clinical covariates (age, male gender, presence of an arterial  line, and the presence 

of mechanical ventilation) (16). Cardiorespiratory dynamics measured from the continuous 

cardiorespiratory monitor, unseen by clinicians, were calculated as described by Moss and 

colleagues (18). These 16 measures were calculated in 30-minute windows every 15 minutes. 

Intermediate features, censored when the values were more than 24 hours old for vital signs and 

48 hours old for laboratory values, were combined with continuously obtained features using 

sample-and-hold. 

Model development. The model was developed for two use cases: (1) as continuous risk 

estimators and (2) as sepsis screening alerts. A random forest model was developed on 100% of 

the hospital admissions and validated using cross-validation. Missing data was imputed with 

median values. Leave-one-out cross-validation was used to predict risk for both models. The 

model output represents the fold increase in risk that a child will be diagnosed with sepsis in the 

following 24 hours compared with the average risk of sepsis. The area under the receiver 

operating characteristic curve (AUC) was calculated to evaluate model performance. Confidence 

intervals were calculated based on 200 bootstrap runs resampled by admission. The model had 

an AUC of 0.750 (95% CI: 0.708 to 0.809). For comparison, the AUC for SIRS, with a 12-hour 

prediction window, was 0.663 (95% CI: 0.632 to 0.695). 

Sepsis definition. Sepsis events were established based on the 2005 International 

Pediatric Sepsis Consensus Conference criteria (19). Episodes of sepsis were defined as (1) the 

presence of systemic inflammatory response 96 syndrome (SIRS) and (2) suspected or proven 
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invasive infection caused by any pathogen. For every patient who had a blood culture order, 

each chart was individually reviewed by a clinician to establish the time of the sepsis event (i.e., 

the time of blood culture order or time of blood culture collection, whichever came first) in 

cases where a patient met SIRS criteria in the 12-hour window preceding the culture and 

received antibiotics in the 6-hour window following cultures. 

Description of the data. Sepsis occurred in 157 of the 1,711 PICU admissions. In 

admissions with multiple sepsis events, only the first event was included in this analysis. The 

model generated risk scores every 15 minutes for each patient. To account for the fact that the 

model used the preceding 30 minutes of continuous cardiorespiratory data to generate risk 

scores, this study used scores every 30 minutes. Additionally, evaluating illness state changes 

every 30 minutes has a desirable clinical correlate to the frequent clinician monitoring that 

occurs in the PICU setting. Nonconsecutive risk scores occurred in 71 observations and were 

removed from the analysis (0.3% of the total data). The remaining 18,666 scores were adjacent 

30-minute score pairs. All risk scores were labeled with the corresponding time in minutes 

following the sepsis diagnosis. Actual times were not included; times following sepsis diagnosis 

for each patient were used to obtain scores in the appropriate period following sepsis and in the 

correct time order for this Markov chain implementation. 

Markov Chain Assumptions 

A system must have a set of distinct states and identifiable transitions among those states 

to be modeled as a discrete-time Markov chain (20). The transition probabilities among the 

identified states can be estimated for each possible transition based on the observed data at 

specified time intervals. A first-order Markov chain assumes behavior in the future can be 

predicted using only the current state. Therefore, Markov chains are considered to be 
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“memoryless.” This has a desirable clinical correlate in that at times all a clinician knows of a 

patient is their current state. However, Markov chains can be constructed to maintain a memory 

effect by accounting for prior state transitions. For example, in a second order Markov chain,  

each observation is influenced by the two previous observations. We constrain our examination 

to only the first-order Markov chain. 

We assume transition probabilities are independent of time. We examine the 72-hour 

period following cultures obtained for sepsis as the time of interest in the course of sepsis illness. 

However, illness transition probabilities may be conditional on time. Clinically, we can see that 

illness resolution is not guaranteed in the days following sepsis. We examine if the assumption 

of time-independent probabilities holds by comparing the transition probabilities of one week to 

those of 3-day periods. Finally, this is a population level analysis rather than an individual-level 

analysis. Transition probabilities are aggregated across all patients. By stratifying groups based 

on specific characteristics, we will partially address this limitation. 

Markov Chain Construction 

Risk scores generated from the model are the fold-increase in sepsis relative to the 

average risk of sepsis in the study population. A relative risk of 1.0 indicates the average risk 

while 2.0-fold indicates twice the average risk. Risk scores ranged from 0 to 8. To create 

clinically meaningful, discrete illness states, the scores were binned into 4 groups (0 to 3). The 

lowest illness state, 0, has risk scores in the range [0,1).  Illness state 1 has risk scores in the 

range [1,2), representing those with an increased risk. Risk scores in the range [2,3) compose 

illness state 2, and represent a higher illness state than the preceding states of 0 and 1. The 

highest risk illness state, 3, contains all scores 3 or higher. 
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With four illness states, there are 16 possible transitions and associated transition 

probabilities. The transition matrix is created by row, that is the probabilities in a row sum to 

one. Specifically, the number of transitions from the initial illness state to the next illness state 

are counted and inserted into the corresponding cell in the transition matrix. Then, each cell in 

the row is divided by the sum of transition counts for that row. Transition matrices were 

calculated in two ways: (1) as non-absorbing matrices where only the illness states are 

considered as possible transient states, and (2) including death as an absorbing state in addition 

to the four transient illness states. This matrix has five rows, with the fifth row representing the 

absorbing state of death. 

Developing the ’Entropy Matrix’  

Entropy can be considered as a measure of disorder within a system (21). The Shannon 

entropy of a random variable is (17): 

 H = −∑p(x)log p(x) (1) 

Distributions that are peaked around only a few values will have low entropy relative to more 

uniform distributions. We will calculate the Shannon entropy of the distribution of transition 

probabilities by recalculating the transition matrix. In the transition matrix, all of the rows are 

probability distributions and sum to one. We create an “entropy matrix” where matrix cells sum 

to one. In this matrix the number of transitions observed in each of the matrix cells is divided 

by all observed transitions. We use natural logarithms to define entropy. 

Simulating Trajectories 

An illness trajectory can be simulated from a Markov chain based on a starting state and 

probabilities from the transition matrix. After obtaining the transition matrix of probabilities and 
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selecting an initial illness state, a multinomial distribution can be generated based on the 

corresponding row of probabilities in the transition matrix. 

First Passage Times 

In this context, the first passage times show how much time it would take to reach a 

destination illness state for the first time from a given initial illness state using the probabilities 

in the transition matrix. For each possible initial illness state, the number of time steps required 

to reach the target destination state is calculated. 

Results 

Characteristics of Patients 

Demographic information of the cohort is given in Table 1. Sepsis occurred in 157 PICU 

admissions involving individual patients. In the 3 days following sepsis there were 18,666 

observed illness states. Twenty-seven of the admissions ended with the death of a patient, with 

16 of those deaths occurring within the 3 days following sepsis. One hundred twenty-nine 

admissions with sepsis required mechanical ventilation, with a median duration of ventilation 

of 207 (IQR: 78 to 638) hours. The median age of the cohort was 1.2 years. 

Characterizing the Transition Matrix 

Figure 1 shows the transition matrix for the entire cohort of children in the 3 days 

following sepsis. Transition probabilities ranged from 0.88 to less than 0.01. The highest 

transition probabilities were along the diagonal, with patients most likely to remain in the same 

illness state. The Shannon entropy for the entropy matrix of transitions was 1.96. For a point of 

reference, the minimum entropy value possible is 0, characterizing a matrix with a probability 

of one in one cell and a probability of zero in all remaining cells. The maximum entropy for a 
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16-cell matrix is 2.77, representing the case when the probabilities are uniformly distributed 

among the cells. 

Simulating Trajectories 

The transition matrix can be used to simulate Markov chain iterations from initial illness 

states, as shown in Figure 2. Simulated trajectories offer a probabilistic method to examine how 

illness states may vary between high and low levels of illness following diagnosis regardless of 

the initial illness state. 

Characterization of Stratified Transition Matrices and Entropy Matrices 

Figure 3 includes the absorbing and non-absorbing transition matrices stratified by age 

and the corresponding entropy matrices. When stratified by age less than or greater than one 

year, the transition matrix is similar for both age groups. The entropy of the two matrices is also 

similar. The entropy of the matrix for patients under one year 1.95, similar to the entropy of 1.92 

for those older than one year. The absorbing transition matrix shows that patients died in both 

age groups and the transitions to death occurred across all illness states. 

Figure 4 includes the absorbing and non-absorbing transition matrices stratified by 

ventilator use and the entropy matrices. Non-ventilated patients had the greatest density of 

transitions in illness state 3 and had a probability of 0.95 of remaining in the highest illness state. 

Ventilated patients had the greatest density of transitions in illness state 1. For those in illness 

state 3, the probability of transitioning to a lower illness state was 0.14, greater than the 0.04 

probability of transitioning to an illness state of 2 for those in the 195 non-ventilated group. The 

entropy of the matrix for ventilated patients is 1.96, higher than the entropy of 1.70 for non-

ventilated patients. The absorbing transition matrix shows that most patients who died were 

ventilated and that the transition to death occurred across all illness states. 
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First Passage Time to Target Illness States 

We examined mean first passage times, or how much time was required for a patient to 

move from an initial illness state to a target illness state. Figure 5 shows the first passage times 

(in hours) from each possible initial illness state to each possible destination illness state. We did 

not consider the times required to re-enter the same illness states, and the time is denoted as 0 in 

the matrix. Figure 6 shows passage times stratified by ventilator use and age. 

Assumption Testing 

We assumed a discrete-time Markov chain would characterize illness state transitions in 

the time immediately following sepsis. We tested this assumption by examining different periods 

following sepsis.  Transition matrices were examined for a period of seven days in addition to a 

period of three days following sepsis. The transition matrix of a three-day period modeled the 

population-level illness state transitions better than a seven-day period and was used in this 

analysis. Figures S1 through S4 in Supplementary Material display model fit for each illness 

state. Figure S5 in Supplementary Material shows the transition matrices based on a seven-day 

period. We also examined the effect of different binning of illness states on the transition matrix. 

Transition matrices were examined using illness states binned into 5 and 6 categories, without 

changes in the structure of the matrices. The number of illness state observations we not equal 

among the groups in the four-bin structure we used in this analysis. The majority of illness state 

observations were in state 1 (see Table 1). Therefore, an additional four-bin structure was 

examined where there were an equal number of total observations over the four illness states (see 

Figure S6 in Supplementary Material) without a change in the structure of the transition matrix. 

Discussion 

We studied the trajectories of illness severity indices, the fold-increase risk of sepsis, in a 

cohort of children admitted to the PICU. We undertook stochastic methods to explore 
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physiological state transitions in children in the hours following a sepsis diagnosis. Further, we 

explored transition matrices as a function of clinical factors (e.g., mechanical ventilation) to 

understand the differences in temporal dynamics of illness severity. Our results demonstrate that 

the population-based transition matrix of sepsis illness severity scores in the hours following a 

sepsis diagnosis can describe a sepsis illness trajectory. Additionally, the calculation of Shannon 

entropy can be useful in describing the variation in transitions made across patient characteristics 

and clinical factors. 

The transition matrices stratified by age are similar, both in terms of the probability of 

transitions between illness states and in the distribution of observed transitions. Shannon entropy 

is also similar between the two matrices. Thus, one interpretation is that the illness trajectory of 

sepsis is similar across ages. Also, this could speak to the performance of the prediction model 

when it was developed. The assessment of sepsis trajectories by age is helpful due to the vast 

physiological and developmental differences seen in the population of children in the PICU, 

ranging from neonates to young adults. 

The transition matrices stratified by ventilator group suggest a difference in illness 

trajectory dynamics between the two groups. Those who require mechanical ventilation have a 

greater density of observed transitions in the lower illness states as compared with those who do 

not require ventilation. In the non-ventilated group, almost half of the observed transitions occur 

in the highest illness state. Shannon entropy is also different between these groups, with higher 

entropy in the transitions of ventilated patients. This could speak to the role of respiratory rate on 

illness severity calculations (16). There is a potential that those with mechanical ventilation 

would have respiratory rates within normal ranges due in part to the ventilator breathing for 



66 
 

 

them. These differences between groups further highlight the need to explore sepsis disease 

dynamics and therapeutic intensity simultaneously. 

Very little work has been focused on the critical period immediately following a sepsis 

diagnosis where clinicians must carefully assess responsiveness to therapy or the need to 

change antibiotic regimens. Further, there are very few biomarkers that are indicative of sepsis 

severity. The biomarkers that do exist (e.g., lactate, procalcitonin) require serial blood draws 

for laboratory assessment and are not obtained at the same frequency an illness severity score is 

accessible (22, 23, 24, 25). Approaches that assess differences in illness dynamics that are 

associated with successful recovery can be used in conjunction with established biomarkers and 

assessments of the level of therapeutic intensity, or how much support (i.e., vasopressor 

requirements, use of mechanical ventilation, or extracorporeal membrane oxygenation) the 

child requires to maintain physiological stability (26). Understanding these patterns and 

variations between children who recover and children who do not is of immense clinical utility 

in this early period of sepsis, where clinical regimens may be further tailored to risk. 

This analysis provides an essential first step towards future analyses utilizing Markov 

decision processes to optimize clinical interventions to improve illness trajectories and explore 

the potential for reinforcement learning in this post-sepsis diagnosis period. Other approaches to 

illness trajectories have used longitudinal methods for evaluating change over time, which 

allows for apportioning of variance as well as phenotyping or clustering approaches (27, 9). 

However, to ultimately understand how to choose the best clinical intervention to improve 

patient outcomes, a Markov chain analysis, forming the foundation of Markov decision 

processes, represents a novel approach with immense clinical applicability. 
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One strength of this study is in our generation of Markov chains based on empirical data. 

We had few missing data points and a large amount of data. We re-categorized states to 

examine the effect of different illness state bins on transition matrix probabilities. We note that 

using risk scores as measures of illness severity requires a well-calibrated model. Our study had 

limitations. Our analysis was limited to illness state transitions based on risk scores generated 

from one predictive analytic model designed for use in a single PICU. External validation of 

our method on a different study population is needed. Modeling a system as a Markov chain 

requires making several assumptions, notably the limitation in the Markov property and the 

assumption that we chose an appropriate period to study. We examined whether these 

assumptions held in our data and noted that the Markov assumption has a clinical concordance 

in how clinicians assess patients in the ICU environment. 

In conclusion, we used a discrete-time Markov chain to characterize the illness trajectory 

following sepsis. Pediatric sepsis is a heterogeneous disease that can result in mortality or 

significant morbidity and prolonged physical disability (3, 4). Using the entropy based on 

Markov chain transition matrices, we found a different structure of dynamic transitions based 

on ventilator use but not age group. Elucidating these transitions and variations in illness 

severity is a needed area of inquiry to understand better how to characterize children’s sepsis 

trajectories. Studying disease dynamics through stochastic approaches offers the foundation for 

reinforcement learning during critical clinical decision-making periods. Future work is needed 

to explore the relationships between therapeutic interventions and sepsis transitions and 

understand the burden of illness across the entire critical care trajectory. 
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 Sociodemographics of the study cohort. 
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Figure 1. Across all patients in the three days following sepsis, (A) is the transition matrix. The 
matrix shows the probability of transitioning from a current illness state, denoted by rows, to the 
subsequent illness state, denoted by columns. (B) is the entropy matrix. The probabilities in the 
entropy matrix are normalized from all initial illness states. Thus, values in the entropy matrix 
indicate the density of the observed transitions. The visual difference between the transition and 
entropy matrices arises from the fact that the row values sum to one in the transition matrix 
while all the cell values sum to one in the entropy matrix. The figure may be interpreted as 
follows. The darkest cell in the entropy matrix is in the second row and the second column of 
(B), where 28% of observed transitions occurred. The corresponding cell in (A) signifies that 
there is an 80% chance of remaining in illness state 1 for patients currently in illness state 1. 
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Figure 2. Simulations of Markov chain iterations from three initial illness states. Using the 
Markov chain, three days of transitions (i.e., 144 sequential 30-minute transitions) are simulated 
from (A) initial illness state of 3, (B) initial illness state of 0, and (C) initial illness state of 1. 
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Figure 3. Transition matrices stratified by age group. Separate transition matrices were created 
for (A) patients older than one year of age and including death as an absorbing state, (B) patients 
older than one year of age and including only transient illness states, and (C) the entropy matrix 
for patients older than one year of age. The transition matrices are shown for (D) patients from 
birth to age one, including death as an absorbing state, (E) patients from birth to age one with 
only transient illness states, and (F) the entropy matrix for patients from birth to age one. 
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Figure 4. Transition matrices stratified by ventilator use. Separate transition matrices were 
created for (A) patients without mechanical ventilation and including death as an 
absorbing state (B) patient without mechanical ventilation with only transient illness 
states, and (C) the entropy matrix for patients without mechanical ventilation. The 
transition matrices are shown for (D) patients requiring mechanical ventilation, including 
death as an absorbing state (E) patient requiring mechanical ventilation with only transient 
illness states, and (F) the entropy matrix for patients requiring mechanical ventilation. 
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Figure 5. Mean first passage times from initial illness states to destination illness states. For each 
possible initial illness state, denoted by rows, the amount of time (in hours) required to reach the 
destination illness state in shown. The 0s along the diagonal indicate that the number of steps to 
reach the same state were not calculated. 
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Figure 6. Mean first passage times from initial illness states to destination illness states stratified 
by ventilator use and age group. Times were estimated separately for (A) patients requiring 
mechanical ventilation and (B) patients without mechanical ventilation as well as (C) patients 
older than one year and (D) patients from birth to one year. 
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Supplementary Material 

 

Figure S1. The black line shows the proportion of the cohort in state 0 at each of the first 50 time 
steps (i.e., over the first 25 hours following sepsis). The red line is the expected proportion of the 
cohort in state 0 based on the starting distribution and the transition probabilities in the matrix 
based on observations from the first 3 days following sepsis. The green line is the proportion of 
the cohort in state 0 based on the probabilities in the 7-day transition matrix. 

 

Figure S2. The black line shows the proportion of the cohort in state 1 at each of the first 50 time 
steps (i.e., over the first 25 hours following sepsis). The red line is the expected proportion of the 
cohort in state 1 based on the starting distribution and the transition probabilities in the matrix 
based on observations from the first 3 days following sepsis. The green line is the proportion of 
the cohort in state 1 based on the probabilities in the 7-day transition matrix. 
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Figure S3. The black line shows the proportion of the cohort in state 2 at each of the first 50 time 
steps (i.e., over the first 25 hours following sepsis). The red line is the expected proportion of the 
cohort in state 2 based on the starting distribution and the transition probabilities in the matrix 
based on observations from the first 3 days following sepsis. The green line is the proportion of 
the cohort in state 2 based on the probabilities in the 7-day transition matrix. 

 

Figure S4. The black line shows the proportion of the cohort in state 3 at each of the first 50 time 
steps (i.e., over the first 25 hours following sepsis). The red line is the expected proportion of the 
cohort in state 3 based on the starting distribution and the transition probabilities in the matrix 
based on observations from the first 3 days following sepsis. The green line is the proportion of 
the cohort in state 3 based on the probabilities in the 7-day transition matrix. 
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Figure S5. Transition matrices based on illness states observations for a period of 7 days 
following sepsis. (A) is the overall transition matrix, (B) and (C) are the transition matrices 
stratified by age, and (D) and (E) are the transition matrices stratified by ventilator use. 
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Figure S6. To investigate the effect of 
different illness state bins on the transition matrices, risk scores where binned into 4 illness state 
bins of equal probability. The distribution of all raw risk scores for all admissions over the 72-
hour period following sepsis were examined and 4 bins of equal size were created. The CoMET 
scores for illness state 0 were in the range [0,1.11). Illness state 1 had CoMET scores in the range 
[1.11, 1.83). CoMET scores in the range [1.83, 2.87) compose illness state 2, and illness state, 3, 
contains all CoMET scores 2.87 or higher. (A) is the overall transition matrix, (B) and (C) are the 
transition matrices stratified by age, and (D) and (E) are the transition matrices stratified by 
ventilator use. 
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Abstract 

Illness dynamics and patterns of recovery may be essential features in understanding the 

critical illness course. We propose a method to characterize individual illness dynamics in 

patients who experienced sepsis in the pediatric intensive care unit. For each patient, we 

calculated transition probabilities to characterize movement among illness states. We 

calculated Shannon entropy as a measure of illness state dynamics. Using the entropy 

parameter, we determined phenotypes of illness dynamics based on hierarchical clustering. 

We also examined the association between individual entropy scores and a composite variable 

of negative outcomes. In a cohort of 164 intensive care unit admissions where at least one 

sepsis event occurred, we identified four illness phenotypes. Compared to the low-risk 

phenotype, the high-risk phenotype was defined by the highest entropy values and had the 

most ill patients as defined by negative outcomes and multiple sepsis events. Entropy was 

associated with negative outcomes during the intensive care stay. The use of stochastic 

approaches to characterize the entropy of an illness trajectory offers a novel way of assessing 

the complexity of a course of illness. Additional attention is needed to test and incorporate 

novel measures representing dynamics of illness. Characterizing illness dynamics offers 

additional information in conjunction with static assessments of illness severity. 
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Individual illness dynamics: An analysis of children with sepsis admitted to the pediatric 

intensive care unit 

Temporal characteristics of illness and recovery patterns may be essential in 

understanding the trajectory associated with critical illness and assessing how interventions 

affect recovery.  The time course of recovery following a critical illness and the cumulative 

burden of critical illness are critical to understanding short and long-term outcomes in the 

pediatric intensive care unit patients (1-3). We proposed that the temporal characteristics of 

illness during the intensive care stay itself may provide insights that cannot be obtained from 

measures of illness severity at a single point in time.  

Sepsis remains a particular challenge in the pediatric intensive care unit (PICU).  More 

than one-third of children who die in tertiary care PICUs have severe sepsis (4). In addition, 

survivors of sepsis have increased lengths of hospitalizations and are at risk of long-term 

complications (2, 5). For critically ill pediatric patients who experience sepsis, a better 

understanding of illness dynamics throughout the ICU stay may provide insight into illness 

trajectories, treatment targets, and responsiveness to therapy. Further, this type of 

characterization may help foster enhanced communication of prognosis and goals of care (6). 

Continuous predictive analytic monitoring can be a proxy for patient acuity (7, 8). Real-

time analysis of continuous electrocardiogram data, vital signs, laboratory values, and clinical 

assessment findings in the electronic health record can identify patients at rising risk of sepsis 

and other clinical events before overt clinical signs. Used in this way, continuous analytic 

monitoring allows for more effective care delivery by predicting clinical events and disease 

trajectories (9). Additionally, this succinct derivation of physiologic inputs may be used to define 

individual states of illness severity (8). While risk scores from predictive analytic models have 
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been used to provide early warning to clinicians, less research has focused on the use of this 

innovative derivation of complex physiologic data to characterize illness states (10). 

         Illness dynamics (i.e., characterizing the patterns of recovery and deterioration) contain 

clinically useful information (11, 12). This paper proposes using stochastic approaches to 

characterize the complexity of the trajectory of illness.   Moreover, dynamic modeling at the 

individual level, or person-centered modeling, may be important. Specifically, we propose 

applying Markov chains to characterize individual illness trajectories using risk scores generated 

from a prediction model. The entropy associated with illness state transitions may be clinically 

meaningful and represents the pattern and complexity associated with the transitions among 

various states of physiological illness. We sought to characterize individual PICU illness 

trajectories for patients who experienced sepsis. We quantify the complexity of the pattern of 

illness deterioration and recovery using Shannon entropy. We then tested whether we could 

identify illness dynamic phenotypes using a clustering approach. We also tested whether the 

entropy of the illness trajectory was associated with negative outcomes during the ICU 

admission. 

Methods 

The University of Virginia Institutional Review Board approved this retrospective cohort 

study. 

Study Design 

Spaeder and colleagues developed a sepsis prediction model for use in the PICU 

population (13). This model development study occurred at the University of Virginia Children's 

Hospital and included PICU admissions from December 2013 through May 2016 (13). The 
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model produced risk scores every 15 minutes for each patient for the duration of their PICU stay. 

The risk scores are the fold increase in the risk of developing sepsis in the following 24 hours 

relative to the average risk of sepsis in the population. The study authors recorded patient age, 

length of hospitalization, length of time on a ventilator, and mortality (assessed as all in-hospital 

mortality).  Archived data were available for 1,711 admissions involving 1,425 patients.  

For each admission where a sepsis event occurred, we obtained the time series of risk 

scores for that child's PICU stay. Using risk scores as markers of illness severity, we constructed 

transition matrices of the probability of transitioning from any given illness state to another 

within 30 minutes.  We characterized the transition matrices using Shannon entropy (15). Using 

the entropy parameter, we determined phenotypes of illness trajectories using hierarchical 

clustering. We also examined the association between entropy and negative outcomes using a 

composite variable composed of in-hospital mortality, days of mechanical ventilation, and length 

of hospital stay. We used R studio version 3.6.2 for analyses.  The R package "DescTools" was 

used to calculate Shannon entropy. 

Description of Sepsis Prediction Model 

Model development. Spaeder et al. developed the sepsis prediction model for use as a 

continuous risk estimator as well as a sepsis screening alert (13). The study authors developed a 

random forest model on all hospital admissions and validated it using cross-validation. Missing 

data were imputed with median values.  Model performance was evaluated using the area under 

the receiver operating characteristic curve (AUC).  Confidence intervals were based on 200 

bootstrap runs resampled by admission. The model had an AUC of 0.750 (95% CI: 0.708 to 

0.809). 
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Data inputs to the model. Inputs to the sepsis prediction model include (1) continuous 

cardiorespiratory vital signs (respiratory rate, heart rate, peripheral oxygen saturation, invasive 

blood pressure, ventilator measured respiratory rate, and sample-and-hold non-invasive blood 

pressure) sampled at 0.5 Hz, (2) continuous cardiorespiratory monitoring waveforms (pulse 

plethysmography and invasive blood pressure tracings sampled at 120 Hz and three leads of 

ECG sampled at 240 Hz), (3) laboratory measurements ( white blood cell count, hematocrit, 

platelet count, serum sodium, potassium, chloride, bicarbonate, blood urea nitrogen, creatinine, 

glucose, calcium) and BUN-to-creatinine ratio, (4) clinician-entered vital and clinical signs 

(temperature, oxygen saturation, Glasgow coma scale, and fraction of inspired oxygen), and (5) 

clinical covariates (sex, age, presence of an arterial line, and the presence of mechanical 

ventilation) (13).  Moss and colleagues describe the calculation of the cardiorespiratory 

dynamics measured from the continuous cardiorespiratory monitor (7). These 16 measures were 

calculated in 30-minute windows updated every 15 minutes. 

Sepsis definition. We defined sepsis events using the 2005 International Pediatric Sepsis 

Consensus Conference criteria (14). Episodes of sepsis included (1) the presence of systemic 

inflammatory response syndrome (SIRS) and (2) suspected or proven invasive infection caused 

by any pathogen. Clinicians individually reviewed charts of every patient who had a blood 

culture order to establish the time of each sepsis event (i.e., the time of blood culture order or 

time of blood culture collection, whichever came first).  

Description of data. The model generated risk scores every 15 minutes for each patient, 

this study used scores sampled every 30 minutes to account for the fact that the model used the 

preceding 30 minutes of continuous cardiorespiratory data to generate risk scores.  

Nonconsecutive risk scores occurred in 767 observations and were removed from the analysis 
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(0.3% of the total data). The remaining scores were adjacent 30-minute score pairs. All risk 

scores were labeled with the corresponding time in minutes following the start of PICU 

admission. Actual times were not included; times following admission for each patient were used 

to obtain scores in the correct time order for this Markov chain implementation.    

Characterization of Markov Chains 

Transition matrix construction. Risk scores generated from the model present the fold-

increase in developing sepsis compared to the average risk of developing sepsis in the study 

population. For example, a risk score of 2 indicates twice the average risk of sepsis. Risk scores 

ranged from 0 and 8. We binned scores into four groups to create discrete illness states with 

clinical meaning (0 to 3).  The lowest illness state, 0, has scores in the range [0,1). Illness state 1 

has scores in the range [1,2), representing those with an increased risk.  Scores in the range [2,3) 

compose illness state 2 and represent a higher illness state than the preceding states of 0 and 1. 

The highest risk illness state, 3, contains scores 3 or higher.   

For each admission, we used the time series of illness states to create transition matrices.  

The transition matrix is created by row; each row contains the probability of transitioning to a 

subsequent illness state based on an initial illness state. The number of transitions from each of 

the four initial illness states to subsequent illness states are counted and inserted into the 

corresponding cell in the matrix. Each cell in the row is divided by the sum of the transition 

counts for that row (e.g., Fig. 1A-B).  

'Entropy matrix' construction. Entropy can be considered as a measure of disorder or 

complexity within a system.  The Shannon entropy of a random variable is (15): 

H = −∑p(x)log p(x) 
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Distributions that are uniform will have higher entropy relative to distributions peaked 

around only a few values. We conceptualize entropy as giving a quantitative measure of the 

irregularity in the pattern of illness deterioration and recovery of each child.  

To calculate the 'entropy matrix,' we recalculate the transition matrix to create a matrix 

where all the cells sum to one.  In this matrix, we divide the number of observed transitions in 

each matrix cell by the total number of observed transitions (e.g., Fig. 1C).  For each of the 164 

PICU admissions, we calculated an entropy matrix. Using the values in each cell of the entropy 

matrix, we calculated the Shannon entropy of these matrices. We use natural logarithms to define 

entropy.    

Statistical Analysis 

We created a composite variable termed 'negative outcomes' to capture adverse events 

that occurred during the PICU admission. This composite variable equals the sum of the 

individual rankings on each of the three variables pertaining to adverse clinical outcomes: in-

hospital mortality, days on a ventilator, and days of hospital stay. 

We used the entropy parameter to identify phenotypes of illness dynamics.  We clustered 

the entropy values using an agglomerative hierarchical clustering algorithm. The separation 

between entropy values was calculated using Euclidean distance. We used Ward's method, which 

minimizes the total within-cluster variance, to measure dissimilarity between clusters. We 

selected clusters based on ease of interpretation and the height of the fusion (on the vertical axis). 

To evaluate differences across phenotypes, we used Chi-squared tests, Kruskal-Wallis tests when 

assumptions of normality were not met, and analysis of variance (ANOVA) when assumptions of 

normality were met.  
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 We examined univariate associations using a nonparametric regression (loess, a moving 

least squares) to determine the relationship between entropy and the negative outcome composite 

variable. Using multiple linear regression, we examined the association between entropy with the 

negative outcome composite variable, adjusting for mean illness score. 

We examined different binning of illness scores to explore if the results were artifacts of 

how we defined illness states. We created illness states based on four equiprobable bins (i.e.,  bin 

sizes were based on the total number of observed transition states for all admissions. There are 

an equal number of observations in each bin). We then recalculated the entropy and explored the 

entropy distribution.  

Results 

Sepsis occurred during 164 of the 1,711 (9.6%) PICU admissions comprising 144 

patients. Demographic information of the cohort is given in Table 1. Multiple sepsis events 

occurred in 57 of 164 admissions with sepsis (34.8%). There were 27 (16.5%) events of in-

hospital mortality. The median age was 1.7 years (25% 3.6 months, 75% 7.0 years). The median 

length of stay in the PICU was 13.9 days (25% 5.0 days, 75% 44.7 days). 

Individual Illness State Trajectories 

We created transition matrices and entropy matrices for each of the 164 admissions 

where sepsis occurred.  Fig. 2 and Fig. 3 show the raw time series of illness scores that occurred 

during two representative PICU admissions and the corresponding time series of illness scores 

after the scores were categorized into 4 discrete illness states. Fig. 4 displays the transition 

matrices and entropy matrices (i.e., the matrix on which the entropy parameter is calculated) 

corresponding to the two patients' times series of illness states. 
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For a point of reference (see Fig. 2), Patient 1, a one-day-old female, spent 66 days in the 

hospital before being discharged alive. She spent 51 days in the PICU, and she required 

mechanical ventilation for 26 of those days. Her average illness score over the duration of her 

PICU admission was 0.8, and she had a relatively low entropy of 1.44 (range 0 to 2.77) for her 

PICU stay.  Patient 2 (see Fig. 3), a 3-month-old male,  had a 24-day hospitalization before being 

discharged alive. He spent 14 days in the PICU and required mechanical ventilation for seven 

days. He experienced three sepsis events during his PICU admission. He had a relatively high 

entropy of 2.02 and a mean illness score of 1.6. Even with a shorter PICU stay, patient 2 

experienced more fluctuation between illness states, a feature captured by the entropy value (see 

Fig. 4). Each of the remaining PICU admission trajectories was characterized in the same way 

with a resulting entropy score. 

Phenotypes of Illness Dynamics 

To test the hypothesis that entropy-based clustering accurately describes a high and low 

risk group, we used Hierarchical Ward's clustering and identified two phenotypes based on the 

first split. The phenotypes included 95 and 69 admissions (see table 3). Phenotype one was the 

"high" entropy cluster (phenotype 1 has an average entropy of 1.82 and phenotype 2 had an 

entropy of 1.13).  Admissions in phenotype 1 had a higher mean illness score, a greater 

proportion of multiple sepsis events, and a higher composite score representing more negative 

outcomes.  

Given that we had an adequate number of admissions in each of the two phenotypes, we 

asked if we could further sub-cluster based on entropy to identify a phenotype that is 

significantly worse overall. We identified four illness trajectory phenotypes by allowing for one 

additional split in Hierarchical Ward's clustering. The four phenotypes included 28, 67, 55, and 
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14 admissions, respectively (see table 3). Entropy differed across phenotypes (phenotype A had 

the highest entropy of 2.0, phenotype B had an entropy of 1.7, phenotype C of 1.3, and 

phenotype D had the lowest entropy of 0.5). Phenotype 1, the highest entropy phenotype, 

characterized the admissions with the worse outcomes (phenotype A in this split contains 28 of 

the original 95 admissions of phenotype 1 based on a two-group cluster).  

 An ANOVA on the variable negative outcomes yielded significant variation among 

phenotypes [F(3, 160) = 8.86, p < 0.001]. A post hoc Tukey test showed that phenotype A had a 

significantly higher score than phenotype C or phenotype D. There were no significant 

differences between phenotypes B and C. Phenotype D included admissions with no mortality 

nor multiple sepsis events and had the fewest ventilator days. Phenotype A, characterized by the 

higher mortality, longer hospital stays, and more ventilator days, represents patients considered 

to be at the highest risk of negative outcomes. 

Exploring Trends 

We used nonparametric regression to visualize the relationship between entropy and 

illness scores and the negative outcome composite variable (see Fig. 5). Entropy does have a 

linear relationship with negative outcomes, while illness score does not. 

Entropy was significantly associated with the negative outcome composite variable in a 

univariate analysis (β = 107.6, 95% CI 69.0-146.1; p < 0.001). We used restricted cubic splines 

regression for illness scores, given the nonlinear relationship with the outcome of interest. The 

association between illness scores and negative outcomes was evaluated with a restricted cubic 

spline curve with 3 knots (0.85, 1.65, 2.95). After controlling for the mean illness score, entropy 
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remained significantly associated with negative outcomes (β = 92.8, 95% CI 23.0-162.6; p < 

0.001) 

Sensitivity Analysis  

We assessed the robustness of our findings by considering different bins to define illness 

states. There were 201,180 observed illness states over the duration of the 164 PICU admission 

where sepsis occurred. To test whether our findings were the result of our binning of illness 

states, we examined the entropy resulting from illness state categorization based on equal-sized 

bins. To create discrete illness states with equal probability of occurring, we again binned scores 

into four groups (0 to 3). However, in this categorization, the lowest illness state, 0, has scores in 

the range [0,0.88). Illness state 1 has scores in the range [0.88, 1.45).  Scores in the range [1.45, 

2.23) compose illness state 2. Illness state 3 contains scores 2.23 or higher.  There are 

approximately 50,000 illness state observations in each of the four bins.  Entropy ranged from 0 

to 2.3 using this definition of illness states. The entropy for illness states defined by equal-sized 

bins was slightly higher (M = 1.6, SD = 0.5) than the entropy for our original illness states (M = 

1.5, SD = 0.4). See Supporting Fig. 6 for more information. 

Discussion 

We present a characterization of individuals' illness dynamics during the critical care 

period based on continuous monitoring risk scores. We defined illness states using risk scores 

from a sepsis prediction model. Using a novel approach to characterize illness trajectory 

dynamics using entropy, we identified four dynamic phenotypes. Phenotype 4, representing 

admissions with the lowest entropy values, was the lowest risk with lower negative outcome 

scores and no multiple sepsis events. In contrast, Phenotype 1 had the highest risk as estimated 
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by the components of the composite outcome and the higher proportion with multiple sepsis 

events. We modeled linear regression on a composite outcome that captures cumulative 

surrogates of higher illness severity: death, longer ventilator support, and longer recovery times. 

Entropy was associated with more negative outcomes even after accounting for mean illness 

score.  

Accurate assessments of illness severity in intensive care settings can help clinicians 

decide when to initiate or de-escalate therapies, prognosticate the course of illness, and anticipate 

goals of care. Prognostication in pediatric intensive care settings remains a challenge, and most 

methods are focused on static periods of time (i.e., first 24 hours of admission or in the hours 

preceding a sepsis event) (8, 16). In recent years, there has been increased attention paid to the 

trajectory of critical illness for children in terms of both short-term outcomes (i.e., sepsis events, 

mortality) and long-term clinical and functional sequelae (2).  Our findings suggest that entropy 

may be a valuable parameter to consider and may provide information about illness dynamics 

that can be assessed in conjunction with static assessments of illness severity.  It may be relevant 

for our understanding of critical illness trajectories in the PICU, particularly among children with 

long lengths of stay. The developed method quantifies illness severity patterns and could be 

considered for future use in evaluating illness trajectories in critically ill patients.  

Further, risk scores from predictive models use already available physiologic information 

and do not require additional testing. Information regarding the entropy illness trajectories during 

critical illness may be valuable for prognostication and clinical decision-making. Entropy values 

may be valuable for risk stratification on adverse outcomes of PICU admissions and may help 

determine which children might benefit from additional clinical surveillance.  
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Given the challenges associated with accurate prognostication and prognostic 

communication between clinicians and families, identifying additional ways to characterize 

illness trajectories is an important endeavor.  The interpretation of an entropy score can be 

considered as follows: (1) patients with a high entropy score likely have multiple transitions 

between many illness states, and (2) patients with a low entropy score likely stay within their 

state of illness more often (which can be either remaining within a low severity state or 

remaining within a high severity state).  Given this interpretation, an entropy score requires 

interpretation in conjunction with clinical and therapeutic correlation.  A patient with high 

entropy in the PICU may represent a lower decision-making threshold for clinicians when 

determining whether to obtain a blood culture for concerns related to sepsis.   

One potential use case for a low entropy score could be for the pediatric patient who been 

critically ill for many days in a high state of illness (with an associated high level of therapeutic 

intensity including mechanical ventilation, vasopressor support, etc.) with very few transitions 

out of the high state.  The low entropy score, along with the clinical and therapeutic correlation, 

could be used to initiate consult with palliative care to anticipate the need for supportive care 

measures (17). On the other end of the spectrum, a low entropy score in association with low 

severity of illness and low therapeutic intensity level could indicate that the patient could be 

ready for a successful discharge to the pediatric acute care ward or home.  In this sense, both 

high entropy scores and low entropy scores are of interest when interpreted in conjunction with 

the clinical and therapeutic correlates. 

There are limitations to this analysis. Data collection was limited to a single tertiary 

academic children's hospital and was based on risk scores from a single predictive model. The 

results may not be generalizable to other settings and predictive models, particularly to models 



97 
 

 

without validation of their calibration. Additionally, as outlined in the examples above, the 

entropy score is not a stand-alone metric and should only be used in conjunction with measures 

of clinical illness severity. 

In this study, we developed a method to quantitatively characterize the dynamics of 

illness state transitions during admission to in intensive care unit. We found that the entropy of 

an illness trajectory is associated with negative clinical outcomes for children in the PICU. We 

are unaware of other studies that assess the association of entropy of an illness trajectory to 

clinical outcomes. This analysis supports extending current continuous predictive monitoring 

platforms with the development of individual trajectories based on patient's entropy. Further 

study is needed to investigate the potential for application of an entropy score within the 

pediatric intensive care setting with annotation of events indicating responsiveness to therapy, 

supportive care interventions, and the relationship of entropy to long-term functional outcomes 

for PICU survivors. Understanding the dynamics associated with a child's critical illness 

trajectory, including the transitions within the trajectory, provides a novel analytic lens with the 

potential for multiple clinical and research applications. 
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Table 1 . Characteristics of the Study Population. 

 

 

Table 2. Characteristics of Dynamic Phenotypes: Two clusters. 

 Phenotype 1 (n=95) Phenotype 2 (n=69) p-value 

Illness severity scores  

Mean score of entire admission 1.88±0.5 1.81±1.34 0.002 
Illness severity transition states  

Entropy of entire admission 1.82±0.16  1.13±0.36  
Characteristics  

Male sex 46 55 0.495 
Age (years) 3.97±4.97 4.75±5.80 0.791 
Ventilator days 22.3±35 10.6±21.6  

Hospital stay (days) 55±62 33.8±41  

In-hospital mortality 20 11.6  

Multiple sepsis events 43 23 0.013 
Composite variable  

Negative outcomes 212±113 147±110 < 
0.001** 

Data are presented as % or mean±SD. Phenotypes were defined by the Shannon entropy of 
transition matrix. Differences in the distribution of characteristics across phenotypes were 
assessed using Chi-squared tests for categorical variables and Kruskal–Wallis tests for 
continuous variables. Significant p-values at the Bonferroni-corrected -level of 0.017 are 
shown in bold. 
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Table 3. Characteristics of Dynamic Phenotypes: Four clusters. 

 Phenotype 
A 

Phenotype 
B 

Phenotype 
C 

Phenotype 
D 

p-value 

 (n=28) (n=67) (n=55) (n=14)  

Illness severity 
scores 

     

Mean score of entire 
admission 

1.9±0.3 1.9±0.6 1.7±1.0 2.4±2.3 0.017* 

Illness score 
transition 

     

Entropy of entire 
admission 

2.0±0.1 1.7±0.1 1.3±0.2 0.5±0.2  

Characteristics      

Male sex 54 46 58 43 0.536 
Age (years) 3.9±4.9 3.9±5.0 4.8±6.1 4.3±4.4 0.992* 
Ventilator days 31.7±41.3 18.3±31.4 13.1±23.6 1.1±1.6  

Hospital stay (days) 77.1±77.8 45.8±52.2 39.1±44.1 12.9±10.8  

In-hospital mortality 21.4 19.4 14.5 0  

Multiple sepsis events 50 40.3 29.1 0 0.007 
Composite variable      

Negative outcomes 239±119 200±109 168±112 65.7±55 < 
0.001** 

Data are presented as % or mean±SD. Phenotypes were defined by Shannon entropy. 
Differences in the distribution of characteristics across phenotypes were assessed using Chi-
squared tests for categorical variables. * Kruskal–Wallis tests for continuous variables when 
assumptions of homogeneity of variance and normality were not met. α- level of 0.012 are 
considered significant p -values with the Bonferroni correction. **One way ANOVA for 
testing differences between group means when test assumptions were met. 
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Fig 1. We counted how often a transition to any illness state occurred for each of the four 
illness states. The count information is displayed in (A). In the transition matrix (B) the 
probabilities are obtained by dividing the counts by the total number of observations from 
each initial illness state. In the entropy matrix (C) the probabilities are obtained by dividing 
the counts by the total number of observed transitions. Thus, values in the entropy matrix 
indicate the density of the observed transitions. The visual difference between the transition 
and entropy matrices arises from the fact that the row values sum to one in the transition 
matrix while all the cell values sum to one in the entropy matrix. The figure may be 
interpreted as follows. The darkest cell in the entropy matrix is in the second row and the 
second column of (C), where 53% of observed transitions occurred. The corresponding cell in 
(B) signifies that 92% of the time the patient was in illness state 1, he remained in illness state 
1. 

 

Fig 2. (A) Raw time series of illness scores for patient 1. (B) Time series with illness states 
sampled every 30 minutes and binned to create 4 discrete illness states (0-3). There are 2,441 
observed illness states, measured every 30 minutes, over the 51-day PICU admission. Sepsis 
events are denoted with a black vertical line. 
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Fig 3. (A) Raw time series of illness scores for patient 2. (B) Time series with illness states 
sampled every 30 minutes and binned to create 4 discrete illness states (0-3). There are 659 
observed illness states, measured every 30 minutes, over the 14-day PICU admission. Sepsis 
events are denoted with a black vertical line. 

 
Fig 4. The transition matrices for patient 1 (A) and patient 2 (C) show the probabilities of 
transitioning from a current illness state, denoted by rows, to the subsequent state, denoted by 
columns. In the entropy matrices for patient 1 (B) and patient 2 (D), the probabilities are 
normalized from all initial illness states. The figure may be interpreted as follows. The entropy 
matrix for patient 2 (D) corresponds to an entropy of 2.02, higher than the entropy of 1.44 for 
patient 1 (B). Patient 2 has a more uniform distribution of transition probabilities than patient 
1, whose distribution of probabilities is steeply peaked in row 1, column 1. 
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Fig 5. Negative outcome scores as a function of (A) entropy and (B) illness scores. 
Nonparametric regression (loess, a moving least squares linear regression smoother) estimates 
of the relationship between negative outcomes and the independent variables. Tick marks 
depict the mean illness scores and entropy distributions. 

 

Fig 6. A scatter plot to show the association between illness score and entropy. Lighter color 
points represent higher scores on the composite variable negative outcomes. 
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Conclusion 

Continuous ECG data from bedside monitors, vital signs, laboratory values, and clinical 

assessment findings in the electronic health record can be analyzed in real-time to identify 

patients at rising risk of deterioration. This continuous analytic monitoring has been employed to 

predict future clinical deterioration. In this dissertation, we investigated how the risk scores from 

continuous prediction algorithms can be used as a proxy for illness severity. 

Aim 1 and 2 

Using risk scores as a proxy for illness severity, we characterized illness trajectories over 

time. Specifically, we examined the illness trajectory of PICU patients immediately following a 

sepsis diagnosis using Markov chain modeling. This relatively understudied time of the sepsis 

course may be crucial to understand as we seek ways to improve outcomes following sepsis. We 

analyzed 18,666 illness state transitions over 157 pediatric intensive care unit admissions in the 

three days following cultures for suspected sepsis. We found the population-based transition 

matrix based on the sepsis illness severity scores in the hours following a sepsis diagnosis can 

describe a sepsis illness trajectory. We used Shannon entropy to quantify the differences in 

transition matrices stratified by clinical characteristics. We found a different structure of 

dynamic transitions based on ventilator use but not age group. Stochastic modeling of transitions 

in sepsis illness severity scores can be useful in describing the variation in transitions made by 

patient and clinical characteristics. 

Aim 3 

Our original aim described in the dissertation proposal was to use risk scores to create a 

measure of the cumulative burden of illness acquired over the duration of a hospital stay. We 

believed that the construct of a cumulative burden of illness might add useful information in 

addition to the risk scores in real-time. However, based on work from our original Markov chain 
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analysis examining illness dynamics after sepsis, we focused instead on using Shannon entropy 

to measure illness state dynamics.  

We proposed a method to characterize individual illness dynamics in patients who 

experienced sepsis in the pediatric intensive care unit. We then examined the association 

between individual entropy scores and a composite variable of negative outcomes. In a cohort of 

164 intensive care unit admissions where at least one sepsis event occurred, for each admission, 

we calculated transition probabilities to characterize movement among illness states. We 

calculated Shannon entropy based on these transition probabilities. We considered entropy as a 

measure of illness state dynamics. Using hierarchical clustering based on entropy, we identified 

high- and low-risk phenotypes. Compared to the low-risk phenotype, the high-risk phenotype 

was defined by the highest entropy values and had the most ill patients as defined by negative 

outcomes and multiple sepsis events. We found that characterizing illness dynamics using a 

measure of entropy offers additional information in conjunction with static assessments of illness 

severity. A stochastic approach to characterizing the entropy of an illness trajectory provides a 

novel way of assessing the complexity of a course of illness. 

To summarize, we found that continuous analytic monitoring can be used in ways that 

extend beyond early warning of clinical deterioration. Risk scores produced by well-calibrated 

predictive models can be used as physiological markers of illness severity. We can model the 

course of illness states through which patients progress following sepsis diagnosis using risk 

scores as measures of illness severity. Using a measure of entropy to quantify illness dynamics 

over the critical illness course may add additional information to our understanding of the illness 

trajectory. Understanding the dynamics associated with a child’s critical illness trajectory 

provides a novel analytic lens with the potential for further clinical and research applications. 
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There is the potential to apply an entropy score within the pediatric intensive care setting with 

annotation of events indicating responsiveness to therapy, supportive care interventions, and the 

relationship of entropy to long-term functional outcomes for PICU survivors.  
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