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The growth of the Internet of Things (IoT) has propelled the world into an "information

Big Bang'' in which 2.5 quintillion bytes of data are generated daily (Marr, 2018). Three of the

core laws of computing outline the "network effect" phenomenon, conjecturing en masse that the

value of a telecommunications network generally scales with size (Delony, 2013). Accordingly,

this means that the near ubiquity of smartphones and other Internet-enabled devices—in

conjunction with the overwhelming popularity of social media and widening deployment of

quantum computers and 5G networks—will continue to exponentially compound network effects

and in turn propel the rate of data expansion (Kerry, 2020). Per the three "Vs" of "volume",

"variety", and "velocity", more data will open the door for increasingly robust (volume),

diversified (variety), and timely (velocity) statistical analysis  (Kerry, 2020, para. 2).

As such, artificial intelligence (AI), a sweeping moniker for machine learning,

algorithmic decision-making, and other modern statistical methods, is experiencing a boom in

today's big data-driven world. The proliferation of AI-based technologies (e.g., speaker

identification, image classification, sentiment analysis, and facial recognition) presents an

opportunity to achieve unparalleled levels of productivity and efficiency (Stahl, 2021). AI's

unique abilities to "link data, find patterns, and yield outcomes across domains and geographic

boundaries" allow it to "be more consistent than humans, quickly adapt to changing inputs, and

free humans from tedious or repeated tasks" (Stahl, 2021, n.p.). While the technology has been

employed in everything from baseball analytics to search engine optimization (SEO) for digital

marketing, one of the most promising applications to date lies in healthcare. Using large sets of

clinical data, retrieved directly from wearable devices or more indirectly from disease registries

or health surveys, AI has found use in diagnosis, clinical decision-making, and personalized

medicine, with impressive performance (Rigby, 2019). In one instance, a trained deep neural
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network was actually able to more accurately identify skin cancer than a board-certified

dermatologist (Rigby, 2019).

However, this promising technology does not come without serious ethical, legal, and

social implications rooted in issues of privacy and data protection, bias and transferability, and

moral and professional responsibility (Carter et al., 2020). Currently, the privacy-related concern

of patient confidentiality stands as the most frequently cited and hotly contested obstacle to the

widespread implementation of AI-based diagnostic algorithms in the medical industry (Stahl,

2021). The artificial neural networks at the core of these algorithms rely on large training

datasets, and accessing those datasets poses clear privacy issues from potential unwanted

exposure to sensitive information (Stahl, 2021). Thus, as an increasingly data-reliant society that

values privacy, we find ourselves caught in an impasse produced by a chain reaction of

expansion: more data produces more AI-based analysis, which produces more privacy-centered

ethical headaches.

If we continue to rush the deployment of AI-based diagnostic algorithms in the healthcare

industry, then we will overlook critical effects of socio-political forces that threaten to not only

compromise the effectiveness of this innovative technology but also severely infringe on the

long-respected intrinsic right to patient confidentiality. Thus, this paper seeks to advance the

working knowledge of possible AI-based solutions in medical diagnostics by evaluating whether

state-of-the-art cryptographic methods like homomorphic encryption can be employed to develop

privacy-preserving machine learning (PPML) models that maintain the confidentiality of

sensitive clinical data. In order to conduct a properly comprehensive analysis, the paper will

employ a bottom-up approach. First, AI and homomorphic encryption will be independently

reviewed, exploring their respective technical backgrounds and associated practical challenges.
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Then, these elements will be black-boxed, or opaquely viewed purely in terms of inputs and

outputs, and subsequently combined in order to holistically determine the privacy-preserving and

functional utilities of the resulting sociotechnical system, a homomorphic encryption-equipped

PPML model. All necessary supporting evidence will be collected from a combination of

scholarly journal articles, industry documentation, and research papers.

Artificial Intelligence (AI)

Technical Background

After years of serving as a leading tech buzzword, the label "artificial intelligence" is

barely more than unintelligible jargon, much like "personalization" or "augmented reality".

Hence, we need to define the moniker, as well as explain the underlying methodologies, before a

truly exhaustive analysis can be performed. Essentially, one can frame AI as an area of study that

seeks to perform cognitive problem-solving through a combination of computer science, applied

statistics, and data science (IBM Cloud Education, 2020). The entire field can be divided into

three subsets: Artificial Narrow Intelligence (ANI), Artificial General Intelligence (AGI), and

Artificial Super Intelligence (ASI) (IBM Cloud Education, 2020). Today, strong AI—wherein

computer systems have intelligence and ability that either rivals that of the human brain (AGI) or

surpasses it (ASI)—is completely theoretical (IBM Cloud Education, 2020). All current practical

AI-based applications employ weak AI (ANI) to perform targeted functions, with most of these

systems falling under the robust sub-field of machine learning (IBM Cloud Education, 2020).

Machine learning models use prepared datasets to uncover patterns and in turn develop

predictions without extensive human guidance (Brown, 2021). While software engineers are able

to enhance the overall accuracy by choosing the model architecture, tweaking the overarching

learning parameters (i.e., hyperparameters), and adjusting the amount of training data set aside

3



for evaluation, ultimately it is the computer itself that performs all of the actual learning (Brown,

2021). In practice, this typically occurs as a form of supervised machine learning, wherein

models are trained on human-labeled datasets (Brown, 2021).

Machine learning has seen considerable advancement in the last decade with the advent

of artificial neural networks (ANNs) and deep learning. Conceptually based on the human brain,

ANNs contain thousands—or even millions—of interconnected processing nodes, or "neurons"

(Brown, 2021). Each neuron multiplies inputs with a "synaptic" weight to reflect their relative

importance and then outputs the sum of the adjusted values (Ananthaswamy, 2021). During the

deep learning process, these weights are adjusted within the scope of the entire network via the

two-part backpropagation algorithm (Ananthaswamy, 2021). During the purely inferential

"forward" phase, random synaptic weights are used to generate possibly erroneous predictions on

the input data (Ananthaswamy, 2021). Model performance is improved in the ensuing

"backward" phase, which adjusts the synaptic weights based on their individual contributions to

the collective error, working sequentially from the output layer to the input layer

(Ananthaswamy, 2021). Simply, the model learns by making mistakes, correcting those mistakes,

and repeating the process over and over until it reaches the highest possible accuracy.

Connections Between Dataset Quality & Model Performance

While poor learning performance can be attributed to an overly simplistic neural

architecture or an excessive number of features used for generating predictions, more often than

not the datasets themselves stand as the root cause of the issue (IBM Cloud Education, 2021).

Noisy, fragmented, or otherwise insufficient training datasets—like those containing excessive

human- and instrument-based errors that obscure key trends (noisy) or missing observations that

hold valuable information (fragmented)—fundamentally hinder the backpropagation algorithm
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and by virtue the entire machine learning model. Datasets with a meager amount of samples will

not supply ample evidence for the algorithm to properly adjust the synaptic weights during the

backward phase, so the model may end up "underfitting" the data such that it cannot recognize

key patterns. Moreover, datasets containing exceedingly complementary information will

likewise create issues during the backward phase, causing the algorithm to adjust the synaptic

weights to solely reflect patterns and noise in the training data. In turn, the model will perform

poorly when attempting to make inferences with unseen data, typically referred to as

"overfitting", or memorizing, the data (Amazon Web Services, 2022).

In this way, the complex trade-off between user privacy and technological efficacy can be

fully perceived: stricter privacy legislation inherently limits the depth and variability of the

training datasets, which in turn produces overfitting and potential bias in the machine learning

models (Kerry, 2020). Conversely, models with access to a greater range of data will be able to

generate more accurate, refined, and consistent predictions, albeit at the possible violation of user

privacy rights. In fact, properly tuned machine learning models are so analytically powerful that

they may be able to formulate patterns and associated conclusions that violate patient confidence

and consent, even after applying rigorous data anonymization and randomization procedures

(Stahl, 2021). Naturally, continued social and commercial adoption of machine learning-based

technologies in medical diagnostics requires a solution that manages to circumvent this

significant compromise.

Homomorphic Encryption

Technical Background

In Data Hiding Techniques in Windows OS (2016), Nihad Hassan and Rami Hijazi define

cryptography as a discipline concerning mathematics-, computer science-, and electrical
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engineering-based methods that seek to conceal sensitive information by masking its original

value. At its core, this process is executed with a key, which converts unencrypted data (i.e.,

plaintext) to encrypted data (i.e., ciphertext). Secret key cryptography, or symmetrical

encryption, uses the same secret key for both encrypting plaintext and decrypting ciphertext.

This presents a glaring security risk, as the recipient of the data must be given the secret key in a

secure manner, or else the integrity of the entire cryptographic system could be compromised.

Public key cryptography, or asymmetrical encryption, provides a solution with the advent of the

keypair. Two different keys are used to encrypt and decrypt data during transmission, but the pair

are mathematically linked so that plaintext encrypted with the public key can only be decrypted

by the corresponding private key, and vice versa (Hassan & Hijazi, 2016). As a result, system

users can exchange their public keys freely without jeopardizing the security of the associated

private keys (Hassan & Hijazi, 2016). Moreover, users can encrypt data with a private key—and

decrypt the data with the associated public key after transmission—to create a digital signature

and verify the sender's identity (Hassan & Hijazi, 2016).

As such, asymmetric encryption has found standard application across an array of

information security systems; however, it is far from infallible with regards to data processing.

Data encrypted via public key cryptography must be unencrypted for accurate processing,

thereby introducing further trust and privacy concerns (Will & Ko, 2015). If data is unencrypted

outside of the owner's trusted environment, any intruder with the processing algorithm can

readily gain access and exploit or even outright modify sensitive information (IBM, 2021). Just

as a deadbolt provides no protection when the door is open, encryption—asymmetric or

otherwise—provides no protection when the data is represented as plaintext. Homomorphic

encryption is an extension of public key encryption that seeks to definitively resolve these issues,
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ushering in a new generation of cryptography that allows ciphertext to be processed identically to

plaintext (Will & Ko, 2015). While there are multiple forms of homomorphic encryption, this

paper will purely focus on modern (i.e., developed after 2017, which are commonly referred to

as fourth-generation) fully homomorphic encryption (FHE) schemes that perform multiple

operations over ciphertext (Will & Ko, 2015). Fourth-generation FHE schemes are designed to

be among the most efficient and widely adaptable cryptosystems to date, yet they still contain

serious inherent shortcomings that jeopardize their functional deployment in machine learning

applications.

Functional Roadblocks with FHE

FHE, which is often touted as the "holy grail" encryption scheme, has seen minimal

practical implementation due to its high computing overhead (Will & Ko, 2015). Elementary

computations that may only take a few tenths of a second on plaintext are amplified to anywhere

from a few seconds to a few hours with FHE (Will & Ko, 2015). This massive slowdown

predominantly occurs due to the unique way in which modern FHE generates ciphertext. All

fourth-generation schemes encrypt data using approximations, rather than exact values (van den

Nieuwenhoff, 2021). As a result, computations over ciphertext produce a small amount of error

that could accumulate and corrupt the data (Kluczniak & Schild, 2021). Accordingly, these

cryptosystems require an extra step called bootstrapping to reduce the amount of error-based

distortion by periodically re-encrypting the ciphertext (Kluczniak & Schild, 2021). Since it

produces no useful computation toward the output, bootstrapping proves highly inefficient,

weighing down both run-time and memory usage (Lee et al., 2021). Yet, it is pivotal to

accurately evaluate ciphertext over thousands or even millions of function cycles, as would be

required in deep learning applications (Lee et al., 2021).
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Lamentably, this is not the only complication that has precluded the widespread

implementation of FHE-based privacy protection in data processing with ANNs. Leading

fourth-generation FHE schemes only support multiplication and addition over encrypted data,

but ANNs typically rely on activation functions (i.e., algorithms that determine an individual

neuron's output, or "activate" the neuron) employing more complex non-arithmetic operations

(Lee et al., 2021). For instance, the default activation function for a majority of neural networks,

rectified linear activation (ReLU), employs a piecewise linear function that outputs the input

value directly if it is positive or zero if it is less than or equal to zero (Brownlee, 2019). As a

workaround, several proposed machine learning models incorporating FHE have reduced the

number of neural layers, eliminated bootstrapping, and developed arithmetic activation

functions; however, the resulting distilled models are too simple to grasp the complexities of

real-world datasets, severely underperforming against standard deep learning architectures (Lee

et al., 2019).

The Phase, Guarantee, & Technical Utility (PGU) Triad

With a growing number of AI-based algorithms finding application in situations that

require the use of sensitive information, vociferous concerns over data privacy and security have

prompted the development of a new form of machine learning, termed privacy-preserving

machine learning (PPML). Fundamentally, PPML attempts to quell these tensions by fortifying

machine learning models with stringent data concealment procedures, sitting at the nexus of AI

and information security. Duly, a suitable analysis of this intricate, multidisciplinary system

requires a methodical interpretive framework. This paper will engage the Phase, Guarantee, and

Technical Utility (PGU) triad, a targeted PPML diagnostic strategy proposed by Runhua Xu and

Nathalie Baracaldo of IBM Research and James Joshi of the University of Pittsburgh's School of
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Computing and Information in "Privacy-Preserving Machine Learning: Methods, Challenges,

and Directions".

As defined by Xu et al., the "phase" pillar of the triad divides the machine learning

pipeline into four phases, data preparation, model training and evaluation, model deployment,

and model inference, in order to examine how a given approach offers privacy protection from a

narrower, more categorical lens (2021). In the context of PPML, the former half can be

collectively classified as privacy-preserving model generation and the latter half as

privacy-preserving model serving. Recognizing that any part of this sequence is susceptible to

privacy leakage, three associated trust domains identify potential sources of external risk: the

data owner's trust domain, the third-party trust domain, and the model user's trust domain (Xu et

al., 2021). Figure 1 draws explicit connections between these trust domains and the

aforementioned pipeline phases.

Figure 1
The machine learning pipeline and associated trust domains, as outlined by Xu et al.
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In turn, trust domain-derived potential sources of risk shape the security assumptions that

underscore the "guarantee" pillar. Xu et al. frame PPML-based privacy guarantees as either

pipeline-oriented (i.e., offering definitive security across the entire PPML pipeline) or

object-oriented (i.e., offering definitive security at a specific element in the PPML architecture,

such as the data samples or trained model weights) (2021). Moreover, object-oriented privacy

guarantees are data-oriented if “an adversary cannot learn private information directly from input

training/inference data samples or associate private information with a specific person's

identification” or model-oriented if “an adversary cannot derive any private information from a

given model by querying it a number of times" (p. 10). Finally, the triad's "technical utility”

pillar importantly gauges the functional costs of applying these solutions to standard machine

learning models via several key performance metrics, including computation utility,

communication utility, model utility, and scalability utility (Xu et al., 2021).

Essentially, the PGU triad's three strategic pillars offer a complete lifecycle perspective,

with each centered around the following driving questions:

1. Phase: How does the approach preserve privacy?

2. Guarantee: How effective is the approach at preserving privacy?

3. Technical Utility: How does incorporating the approach impact model

functionality?

Along these lines, the framework examines the technical, social, and political factors

surrounding the implementation of PPML models. Developers can apply the PGU triad to

determine whether a certain privacy-preserving approach provides ample performance—in terms

of both information security and prediction accuracy—before the model is implemented and

adjust accordingly.
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A PGU-Based Analysis of FHE-Equipped PPML

Phase

FHE-based privacy-preserving solutions are particularly interesting from a phase-oriented

perspective, as they manage to offer high-level security without actually attaining full-chain

privacy preservation. Essentially, they introduce a two-fold approach to data protection that

combines encryption and secure computation to offer privacy-preserving functionalities across

three of the four phases of the machine learning pipeline. Functionally, we find that FHE

provides obvious safeguards during both data preparation and model inference by encrypting the

training dataset and model prediction class with the owner's public key. At face value, neither the

input data nor the associated model output will be intelligible to an intruder without access to the

appropriate private key. Likewise, secure computation produces privacy-preserving model

training and evaluation by allowing the supervised learning process to occur over encrypted data.

On the contrary, this data-centric approach does little, if anything, to address privacy concerns

with the model architecture itself, so it is impossible to claim that FHE attains any level of

privacy preservation in the model deployment phase.

Guarantee

FHE-based privacy-preserving approaches only target security at specific phases of the

pipeline by encrypting sensitive data and output values, leaving the inner workings of the neural

network itself unprotected. Hence, they only offer an object-oriented, specifically data-oriented,

privacy guarantee. This introduces the possibility to circumvent encryption through a

membership inference attack, wherein an intruder uses the machine learning model's output to

determine whether a particular instance was included in the training data (Shokri et al., 2017).

Every time a model is queried, it generates a vector of decimal probabilities, with each value
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corresponding to the confidence that the given input represents a certain classification type

(Shokri et al., 2017). Due to overfitting, machine learning models tend to predict with higher

confidence on data that was included in the training set, and membership inference attacks take

advantage of this Achilles heel to circumvent anonymization and encryption tactics (Shokri et

al., 2017). Accordingly, such attacks are particularly damaging to data-oriented solutions, as they

allow intruders to gain knowledge of material contained in the training dataset purely by

detecting patterns in the output. Minimal prior insight into the PPML model's architecture or

encryption scheme is necessary.

Machine learning as a service (MLaaS), which provides cloud-based machine learning

tools via a third-party like Google or Amazon, is becoming increasingly popular since it can

greatly simplify the development process and offset high recurring maintenance and computing

costs, not to mention offer unparalleled portability and accessibility (Dickson, 2021). For these

reasons, medical diagnostic PPML models will most likely employ MLaaS; however, this also

means that they will require a model-oriented privacy guarantee transcending the data-oriented

guarantee offered by FHE alone. MLaaS PPML models would be hosted on a cloud service, so

little assumed trust can be placed in the third-party developer's domain. Under the Health

Insurance Portability and Accountability Act (HIPAA) Privacy Rule, third-party developers

constructing the diagnostic models for a healthcare provider or health plan would be legally

required to "use appropriate safeguards to prevent a use or disclosure of the protected health

information" (OCR, 2019, n.p.). Consequently, MLaaS services must formulate exhaustive

whole-pipeline PPML solutions that protect sensitive health information not only from direct

identification (through FHE) but also from circumstantial association with a membership

inference attack (through another privacy-preserving solution).
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Technical Utility

Recent academic work has developed promising new bootstrapping algorithms that strive

to resolve the aforementioned utility concerns regarding PPML models equipped with

fourth-generation FHE schemes by allowing for deeper neural architectures and faster processing

times. Addressing concerns regarding neural network depth, Lee et al. propose a high-fidelity

bootstrapping algorithm that works with the Residue Number System (RNS) variant of the

Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme—the most efficient and

accurate method to execute arithmetic operations over both real and complex numbers,

commonly referred to as RNS-CKKS—and cutting-edge, low-error approximations of

non-arithmetic activation functions like ReLU in "Privacy-Preserving Machine Learning with

Fully Homomorphic Encryption for Deep Neural Network" (2019). To demonstrate the

cryptosystem's practicality, the authors applied RNS-CKKS FHE with bootstrapping to

ResNet-20, an industry-standard deep learning architecture for computer vision tasks, and

performed object recognition with the widely used CIFAR-10 image dataset (Lee et al., 2019).

The proposed RNS-CKKS FHE-equipped model achieved a classification accuracy of

90.67%, which is 98.7% identical to the original ResNet-20 model working on plaintext (Lee et

al., 2019). Importantly, this demonstrates FHE-based solutions’ rare ability to fortify existing

models with privacy-preserving functionalities, all while inducing negligible losses in model

accuracy. Substantial previous research and development has generated powerful deep learning

frameworks that apply image classification to diagnose everything from cardiovascular

irregularities to blood-borne bacterial infections and even certain types of cancer, and FHE’s

practical flexibility allows for their continued use and advancement. Rather than having to go

through the arduous and often largely ineffectual process of model retraining and restructuring,
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RNS-CKKS FHE can be used with modified activation functions and bootstrapping to adapt

these highly successful machine learning models for computation over ciphertext.

Secondly, in "FDFB: Full Domain Functional Bootstrapping Towards Practical Fully

Homomorphic Encryption" Kamil Kluczniak and Leonard Schild of the CISPA Helmholtz

Center for Information Security introduce a flexible bootstrapping algorithm that reduces noise

while simultaneously performing useful functions with minimal processing costs (2021).

Accordingly, the proposed algorithm reduces run-times by a factor of 3000 compared to

fourth-generation FHE schemes, bringing computations that may have taken weeks or days down

to hours or even minutes (Kluczniak & Schild, 2021). This is particularly promising in the

medical diagnostic space, as we see that state-of-the-art FHE-based privacy-preserving solutions

achieve computational run-times that would not contribute to significant slowdowns in medical

diagnoses, and may actually expedite the process in certain cases.

For example, let's assume that a PPML model equipped with flexible bootstrapping FHE

requires two hours for inference, a fairly conservative estimate by Kluczniak and Schild's

calculations. Diagnostic mammography performed by a radiologist usually takes anywhere from

10-30 minutes (Frazer & Wylie, 2018). As such, the hypothetical PPML model could reasonably

be applied in this situation as a second opinion. On the other hand, oncological imaging

diagnoses can take anywhere from a few days to a few weeks with delays (American Cancer

Society, 2016). In this case, the model could be used to decrease wait times, providing patients

with an initial assessment that same day. Thus, it becomes evident that computing overhead for

FHE-based privacy-preserving solutions is not so laborious that it hinders the model's

functionality entirely. Instead, determining the best means to incorporate these PPML models

within existing industry practice and organization merely requires a bit of resourcefulness, which
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is rather trivial when considering the overall societal benefit acquired from properly maintaining

patient confidentiality.

Conclusion

Machine learning models have shown great potential as a core element in the

advancement of modern medicine, promising to usher in a new era of diagnostics built on

enhanced efficiency and unprecedented accuracy. Notwithstanding, these algorithms rely on

large sets of private health information for training and accordingly threaten to jeopardize the

basic, long-heralded right of patient confidentiality. From a technological standpoint,

homomorphic encryption presents a conceivable solution, yet further analysis is necessary in

order to gain a holistic understanding of privacy-related socio-political effects surrounding the

practical utilization of FHE-equipped PPML models. Employing the targeted PGU triad as an

analytical framework, we can conclude that purely FHE-based solutions are a step in the right

direction towards attaining complete privacy preservation but unfortunately not a complete

solution: they cannot guarantee privacy across the entire machine learning pipeline, which grants

the opportunity for membership inference attacks during model deployment.

That being said, FHE is still a particularly appealing option, as it can add

privacy-preserving functionalities to proven, industry-tested deep neural networks with

near-lossless accuracy. Proper implementation would require a hybrid approach that takes

advantage of other object-oriented privacy-preserving approaches. For instance, private

aggregation of teacher ensembles (PATE) creates an ensemble of "teacher" models that are

independently trained on disjoint sets from the data (Xu et al., 2021). In turn, their collective

predictive ability is distilled to a single "student" model, which induces noise such that it is

impossible to glean any information from querying the student model multiple times, like in a
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membership inference attack (Xu et al., 2021). Adding RNS-CKKS FHE as proposed by Lee et

al. produces a PPML model that offers a full-pipeline privacy guarantee with nearly identical

performance to the original version.

Ultimately, the analysis presented in this paper answers a knowledge gap in how

FHE-based PPML solutions can find practical applications in industry, as little previous work has

been done to explicitly connect their use to privacy-preserving functionalities in medical

diagnostics. As such, this opens the door for future work with employing PPML to enhance

efficiency—while maintaining patient confidentiality—in other essential tasks in medicine,

spanning everything from personalized care to natural language processing for report preparation

and clinical note transcription (Davenport & Kalakota, 2019). Currently, privacy concerns stand

as some of the primary underlying issues preventing the widespread adoption of these

progressive technologies, and developing thorough, well-evaluated PPML solutions could help

spur necessary social and regulatory acceptance.
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