
Graph-theoretic data modeling with application to
neuromorphology, activity recognition and event

detection

A Dissertation

Presented to

The faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment

of the requirements for the degree

Doctor of Philosophy (Electrical and Computer Engineering)

by

Tamal Batabyal

April 2019

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

Author: Tamal Batabyal

This dissertation has been read and approved by the examining committee:

Scott T. Acton, Dissertation Adviser

Zongli Lin, Committee Chair

Stephen G. Wilson, Committee Member

Laura Barnes, Committee Member

Daniel S. Weller, Committee Member

Barry Condron, Committee Member

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

April 2019

Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr. Scott T. Acton to give me

the opportunity and freedom to pursue my research. He provided support and encour-

agement during my graduate studies, especially while pursuing out-of-the-box solutions

of problems. I would like to thank my committee members, Dr. Zongli Lin, Dr. Stephen

G. Wilson, Dr. Laura Barnes, Dr. Dan Weller and Dr. Barry Condron for their time and

consideration. My sincere thanks to my recommenders - Dr. Scott T. Acton, Dr. Dan

Weller, Dr. Andrea Vaccari, and Dr. Barry Condron for their important career advice

during my post-doctoral applications. I would also like to thank my Master’s advisor,

Dr. Dipti Prasad Mukherjee, for his help and support.

Thanks are given to the members of VIVA Laboratory for their help and encouragement.

I will definitely miss discussing research problems and socializing with them. Sincere

thanks to Dr. Suvadip Mukherjee, Dr. Rituparna Sarkar, Dr. Shruba Gangopadhyay,

Dr. Anirudhha Dutta for their advice and suggestions regarding my career opportunities.

Friends have been a big part in my life during my graduate studies. I would like to

acknowledge Neel Samanta, Justin Cavanaugh, Ivan Shabalin, Tiffany Ly, Paul Bon-

czek, Magdalena Woińska, Anna Borowska, Rachel Smith, Bassem Tossun, Sourav Maji,

Deepak Kosanam and others. Special thanks to Izabela Hawro for her hospitality and

generosity. I would like to mention Megan Evans and Deiziane Viane for their limitless

enthusiasm in the squash court. Also, special thanks to the salsa club at University of

Virginia.

My sincere thanks to Archan Ray and Kaushik Chakraborty for having weirdest and

funniest discussions since we met at ISI Kolkata. I would also like to acknowledge Nilan-

jan Datta, Avik Chakraborti, Subhabrata Samajdar, and Sanjay Bhattacharjee for their

support while I was at ISI Kolkata.

Lastly, nothing can I achieve without my parents, Samar Kumar Batabyal and Suvra

Batabyal. I simply have no words to describe their continuous support, love, affection

and sacrifice.

Abstract

Recently the world is witnessing an explosion of data, demanding scientific and application-

specific models for data analysis. Unarguably, data is the new oil. It is well-known that

a graph is the most abstract and discrete representation of data that originated from real

world problems. These problems range from the seven bridges of Königsberg in 1736 to

monolithic integrated circuits to biology, food web, internet, transportation, computer

systems, social networks and countless others. Depending on the problem at hand, such

complex data can be broadly classified into two groups. The first group accounts for

problems where the data inherit distinct and invariant graph structures due to several

factors that include the nature of data acquisition, data sampling, and intrinsically dis-

crete structures of the data sources. A noteworthy example is 3D reconstructed neuron

cells, where each neuron emulates a tree-structure branching topology. The second group

of problems involves datasets that are deficient of fixed graph structures. Unlike the first

category, the graph in this case should either be estimated based on optimization criteria

or be initialized using some ad hoc constraints. Image or video based data is one example

of this category, where the graph could be drawn from the pixels, the patches, or the

frames depending on the nature of the problem.

The primary objective of this thesis is to investigate the above two categories of graph

structured data with varying degrees of structural complexity in specific problems. We

perform novel image analysis, build graph models, develop graph theoretic tools and

scalable algorithms for two major purposes - informatics and categorization. In the first

group, we consider activity recognition and neuromorphology. In the second group, we

consider geomorphological event detection and event monitoring from videos.

In activity recognition, we use 3D reconstructed skeleton models of subjects performing

a predefined set of activities. In such a model, the number of vertices and edges are fixed,

connoting low structural complexity. We leverage such simple structures and propose

Unified Graph Signal Processing (UGraSP) to integrate activity recognition and person

identification using the same graph features. With additional graph structures, UGraSP

is improved to make Unified Graph based Activity Detection (UGrAD) to encode the ac-

tivity dynamics in terms of graph features. The central aspect of this thesis is the graph

theoretic modeling of neuronal arbors. Feature-based representation and categorization

of neurons, a topic that correlates with neuronal functionality, is still an open problem

in neuromorphology. We use 3D reconstructed neurons (fixed graph) from stained im-

ages, where the number of vertices is not fixed for every neuron but the edges between the

vertices are structurally fixed. We propose NeuroPath2Path that utilizes path-based mod-

eling of neuron anatomy and provides a visualization tool for the continuous deformation

between a pair of neurons. NeuroPath2Path offers several advantages. Decomposition of

a neuron into paths can be viewed as an assembly of individual circuits from the terminals

to the soma, integrating semi-local features that act as path descriptors. Next, instead

of subgraph matching, NeuroPath2Path provides a full-graph matching algorithm. The

matching algorithm presents several biological factors, including fractality and decaying

importance of features along the path. NeuroPath2Path also precisely investigates the fea-

sibility of algorithmic constraints on the structural repertoire of neuronal arbors, thereby

enforcing criteria, such as hierarchy mismatch. NeuroPath2Path can be extended to two

major domains - morphological analysis and structural transformation of microglia cells,

and in progressive degradation of neuronal paths in neurodegenerative diseases. In addi-

tion, the knowledge of neuronal functions, such as potentiation and co-adaptive spiking

can be translated to neural networks in order to achieve better performance and emulate

neurons by way of neural networks.

In geomorphological event detection, we are interested in three major application areas,

which are road health estimation, sinkhole detection and monitoring, and rock-slope fault

detection, from InSAR (Interferometric Synthetic Aperture Radar) data. The structural

complexity of the data is elevated compared to the previous two problems. It is because

there is no predefined connectivity among the vertices. We first model the data with a

graph using K-nearest neighborhood approach. Then, we develop Laplacian Weighted

Covariance (LaWeCo) for spatial localization of geomorphological events. Later, using a

temporal bipartite graph model and iterative prior estimation, we propose DDT to detect

as well as monitor such events.

Simultaneous detection and tracking of events from videos is another challenging prob-

lem with more complexity of graph structures. Here, there are multiple options for the

selection of vertices and edges. By blending the recursive estimation of a spatial graph

and temporal graphs of patches over time into a dictionary learning framework, we pro-

pose Graph based Dictionary learning for Event Detection (GraDED) to accomplish both

the tasks. Lastly, we consider the problem of accelerating the convergence of LMS filters.

The problem apparently does not require graph modeling of data and combinatorial fea-

ture extraction. However, the imposition of a graph structure to the data is shown to

improve the convergence of LMS.

Contents

Contents vi

List of Figures ix

List of Tables xvi

1 Introduction 1

1.1 Objectives and contributions . 6

1.2 Thesis outline . 9

2 Background 10

2.1 Graph theory . 10

2.2 InSAR & ArcGIS . 12

2.2.1 Coherent motion analysis toolbox 13

2.2.2 Road smoothness analysis toolbox 13

3 Invariant or unique graph structure 15

3.1 Activity recognition . 16

3.1.1 Unified graph signal processing (UGraSP) 17

3.1.1.1 Proposed method . 17

3.1.1.2 Projection on extended Laplacian eigenvector basis . . . 18

3.1.1.3 Feature construction for activity recognition 19

3.1.1.4 Feature construction for person identification 20

3.1.1.5 Results . 21

3.1.1.5.1 Activity recognition 22

3.1.1.5.2 Person identification 23

3.1.2 Unified graph based activity detection (UGrAD) 25

3.1.2.1 Action boundary determination 26

3.1.2.2 Bipartite flow construction 27

3.1.2.3 Polynomial fitting . 29

3.1.2.4 Datasets . 31

3.1.2.5 Results . 32

3.2 Neuromorphology . 34

3.2.1 NeuroBFD . 38

vi

Contents vii

3.2.1.1 Feature construction . 38

3.2.1.2 Results . 41

3.2.2 Neuron solver using Laplacian (NeuroSoL) 43

3.2.2.1 Vertex labeling . 44

3.2.2.2 Feature extraction . 47

3.2.2.3 Optimization . 48

3.2.2.4 Results . 49

3.2.3 What is Path2Path and its variants? 53

3.2.4 ElasticPath2Path . 54

3.2.4.1 Neuron as a graph . 55

3.2.4.2 Elastic morphing and SRVF 56

3.2.4.3 Path-to-Path matching 58

3.2.4.4 Datasets and Results . 58

3.2.5 NeuroPath2Path . 62

3.2.5.1 Path modeling of a neuron 65

3.2.5.2 Proposed methodology 66

3.2.5.2.1 Feature extraction on a path 68

3.2.5.2.2 Path alignment and path distance measure . . . 68

3.2.5.2.3 Path assignment and self-similarity 70

3.2.5.2.4 Path morphing 73

3.2.5.3 Datasets and results . 75

3.2.5.3.1 Dataset-1 (Intraclass) 76

3.2.5.3.2 Dataset-2 (Interclass) 82

4 Non-unique graph structure 92

4.1 Spatio-temporal event detection . 93

4.1.1 Laplacian weighted covariance (LaWeCo) 94

4.1.1.1 Methodology . 94

4.1.1.2 Multiscale formulation 96

4.1.1.3 Dataset . 98

4.1.1.4 Results . 99

4.1.2 Decentralized event detection and tracking (DDT) 101

4.1.2.1 Bipartite graph construction 103

4.1.2.2 Ensemble of walks . 104

4.1.2.3 Prior probability and vertex reinforcement 104

4.1.2.4 Extraction of functional topology 106

4.1.2.5 Results . 106

4.1.3 Graph based dictionary for event detection (GraDED) 108

4.1.3.1 Spatio-temporal graph representation of video 109

4.1.3.2 Graph based parametric dictionary learning 111

4.1.3.3 Event detection using learned graph weights 114

4.1.3.4 Implementation, results & discussion 114

4.2 System preconditioning . 124

4.2.1 Preconditioning using graph (PrecoG) 126

Contents viii

4.2.1.1 Problem statement . 127

4.2.1.2 Methodology . 128

4.2.1.3 Laplacian parametrization 131

4.2.1.4 Complexity analysis . 133

4.2.1.5 Sparse signal and sparse topology estimation 134

4.2.1.6 Results . 135

4.2.1.6.1 Performance by changing parameters 139

5 Conclusion, current & future work 142

5.1 Current and future work . 145

5.1.1 Neuromorphology . 145

5.1.1.1 An example: Graph based learning 149

5.1.1.2 Preliminary results . 151

5.1.2 Activity recognition and event detection 153

Bibliography 159

List of Figures

2.1 Route-11: (a) permanent scatterers (PS) on top of a geo-referenced map,
(b) the smoothness profile (NSI) of all the scatters. The red circle indicates
extreme roughness that is detected by NSI, implying a possible event on
the road surface. Route-600: (c) PS on top of a map, (d) impending rock-
slope as shown in a dense region with Red and yellow marked scatterers.
This is also confirmed by the field geologists. 14

3.1 A schematic representation of human skeleton with labeled joints captured
by Kinect SDK for (a) MSR Action3D [1] and UTKinect [2] and (b) UCF
action dataset [3]. 18

3.2 Activity high-throw : (a) The eigenvector corresponding to maximum eigen-
value of L on the skeleton graph. Projected (b) X-axis, (c) Y-axis, and (d)
Z-axis of all N=20 joints taken on a frame 19

3.3 Average recognition accuracies of activities from [1] and [2] over different
segment lengths. 20

3.4 (a) Spectrogram of the complementary graph Laplacian for all the frames
in the high-arm-wave activity video. (b) Value of ∂Eθ(k, 0)/∂k for the
same video. 25

3.5 Activity flow diagrams (B(k,l)
i,j). Activity high-arm-wave: (a) activity is

about to begin, (b) middle, and (c) end of the activity. (d) Middle frame
of hand-clapping. (e)-(f) Typical start and end frames of activity videos. 33

3.6 Pyramidal neurons from (a) primary motor cortex, (b) secondary motor
cortex, (c) prefrontal cortex, (d) somatosensory cortex, (e) primary vi-
sual cortex, and (f) secondary visual cortex of the mouse. The dendritic
branches in yellow are apical dendrites, and in green are basal dendrites.
The red square in each cell is the soma, used as the designated root node
in our analysis. This figure provides a glimpse of region-based arborial
differences among pyramidal cells. Cells differ in size and volume, which
are scaled for visualization. 34

ix

List of Figures x

3.7 (a) A retinal ganglion cell from the inner plexiform layer of a 9 month-
old adult mouse. The 3D reconstructed cell has 3938 3D locations, 50
bifurcations, 106 branches, 56 rooted paths, 255.52µm height, 4499.5µm
diameter, 9061.14µm3 volume, 18, 213.9µm2 surface area. (b) A 3D recon-
structed (traced by Neuromantic [4]) pyramidal cell of an adult mouse hav-
ing 24, 868 3D locations, 95 bifurcations, 200 branches, 106 tips, 814.05µm
height, 16341.8µm diameter, 12569µm3 volume, 24, 825.9µm2 surface area.
(c) A hippocampal granule cell (in the dentate gyrus) of a 9 month-old
mouse is traced using Neurolucida. The 3D reconstructed neuron con-
tains 414 3D locations with 7 bifurcations, 15 branches, 14 rooted paths,
98.33µm height, 443.18µm diameter, 3107.27µm3 volume, and 3255.33µm2

surface area. (d) A Purkinje cell in cerebellar cortex of a 28 day-old mouse.
The reconstruction is performed by Neurolucida, containing 3187 3D loca-
tions. The neuron has 391 bifurcations, 783 branches, 393 tips, 184.35µm
height, 4366.24µm diameter, 12, 794.7µm3 volume, and 31, 574.8µm2 sur-
face area. (e) A motor cell in the spinal cord of a 10 day-old mouse, which
is reconstructed with 5868 locations using Neurolucida tracer. The 3D
traced neuron has 47 bifurcations, 103 branches, 58 tips, 415.6µm height,
784.158µm diameter, 4006.15µm3 volume, and 11, 931.8µm2 surface area.
(f) A long-axon projection neuron from the thalamus of a 6 months old
mouse - it is traced by Large Volume Viewer(LVV) [5] with 2818 3D loca-
tions. The traced neuron has 169 bifurcations, 265 branches, 2731.69µm
height, 55, 742.44µm3 volume and 189979µm2 surface area. The color code
is the following: yellow=apical dendrites, green = basal dendrites, magenta
= axons, red = cell body/soma/root. The quantified statistics on the num-
ber of bifurcations and tips or rooted paths that are mentioned above are
extracted from dendritic arbors of each cell-type. 36

3.8 (a) and (b) are two different neurons with designated root nodes. bk = kth

bifurcation. p = parent vertex. (a)p=immediate parent vertex of bifurca-
tion b2. b1 is the immediate parent bifurcation vertex of b2. Smaller angle
at b1 constricts the span of its child branches, especially at b2. (b)larger
angle at b3 helps b4 to pan out. (c) describes how to measure branch
fragmentation. φ1, φ2 ≥ τ , and φ3 < τ . 39

3.9 Bifurcation matrix for (a) pyramidal and (b) Purkinje cells. Fragmentation
for (c) motor and (d) Purkinje cells. Spatial density for (e) pyramidal and
(f) Purkinje cells. 42

3.10 (a) A neuron sample, and (b) its graphical representation. (c) Sorted
structure graph, and (d) connectivity graph. 44

3.11 (a)-(b) Correspondence of relevance (shown in colors) between the connec-
tivity graphs of two different neurons of two different sizes. 45

3.12 The path correspondences are shown in the corresponding colors in case of (a)-

(b) pyramidal-motor, (c)-(d) pyramidal-ganglion, and (e)-(f) motor-ganglion cell

types. The paths which are matched are depicted in thick colored lines. The

paths which are left out (larger neurons) are shown in thin black lines. 59

3.13 The retrieval performance (in %) of ElasticP2P against Path2Path [6] and Neu-

roBFD [7]. 60

List of Figures xi

3.14 The plot shows the distance between a pyramidal and a ganglion neuron and

the computational time (in seconds) when 25, 50, 100, 200 and 400 samples are

taken per path. 61

3.15 The figure shows a set of morphometrics that are used in our work. The
metrics are numerically computed from a neocortical pyramidal cell with
its relevant anatomical information provided at the bottom of the figure.
A rooted path of the neuron (at the center) is shown (pink) with the 3D
locations and bifurcation points, and the corresponding concurrence and
hierarchy values are noted on the left hand side of the figure. 18 paths
are originated from the soma, indicating 18 synaptic terminals. The im-
mediate bifurcation point has a concurrence value of 6, because, including
the current path, there are a total of 6 paths that end up in 6 different
terminals. Concurrence values of the rest of the 3D locations are computed
accordingly. It can be observed that there are four concurrence values that
are marked on the chosen path, {1, 2, 6, 18}. The hierarchy values are ob-
tained by sorting the indices of these four values in reverse order, which in
turn describe the depths of locations with respect to the root. On the right
hand side, three morphometrics on the selected paths are demonstrated,
which are tortuosity, divergence, and bifurcation angle. Quantification of
the wrinkle or tangle of a segment (tortuosity) existing between either two
consecutive bifurcation points, or a bifurcation point and a following ter-
minal is performed by measuring the curve length s, and the Euclidean
distance between the start and end locations, d. Neocortical pyramidal
cells show pronounced wrinkles in their branches. Divergence of a location
entails competitive behavior. With a distance scale fixed beforehand, the
number of branch segments that are in the immediate neighborhood of
a location defines its divergence. Bifurcation angle is another important
morphometric, which we measure by using the inner product between two
vectors emanating from the bifurcation point. Wide bifurcation angles con-
note greater exploration of extracellular environment. More branches and
smaller bifurcation angles, in general, lead to higher divergence. Neurons
with higher divergence tend to have longer path lengths. 62

3.16 The figure presents a schematic representation of our proposed method and
work flow. [Top Left]: An SWC [8] file encoding the 3D reconstruction
of a neuron is read, and later the neuron is decomposed into an assembly
of rooted paths. Each rooted path, spanning from the soma to a synaptic
terminal, contains the 3D coordinates of each location traced on the path.
[Top Right]: Each rooted path is subjected to feature extraction from
each location on the path. The exhaustive list of the features that are
used in our approach is given in the bottom left (blue box). We extract
7 features, implying that the path descriptor is a matrix of dimension
(number-of-samples× 7). 64

3.17 A schematic representation of the square root velocity function (q), which
is computed at locations on an open curve. This function endows the curve
with elasticity so that it can continuously deform (bend, stretch, shrink)
to another curve. In a neuron, each rooted path can be modeled as an
elastic open curve. 65

List of Figures xii

3.18 The figure depicts the evolution of 15 paths of one pyramidal neuron to
11 paths of another pyramidal neuron. Both the neurons are procured
and curated from the neocortex (occipital, secondary visual and lateral
visual) brain regions of 2 month-old mice. On the leftmost column, the
top figure corresponds to the candidate neuron 1; the bottom figure is
the target neuron 2. The evolution is represented in multiple arrays such
that the ODD rows are read left-to-right and the EVEN rows are read
right-to-left. The color associated with each path acts as a marker for the
correspondence. At each intermediate step, the morphing of each path is
calculated in the SRVF space [9] and then the path is projected back in
the real 3D domain. In accordance with known properties of the SRVF,
the SRVF takes care of the translation between paths. However for visual
clarity, we intentionally allow the rotation of each path with respect to
the root (soma) while the path advances towards merging with the target
path. Prior to applying the SRVF, we reorganize the coordinates of each
neuron in decreasing order of the ranges along the X, Y , and Z axes,
implementing an in-place rotation of each neuron. 67

3.19 The figure shows the distribution of paths in each pyramidal cell category
from Dataset 1. By glancing at the distribution profiles, a set of inferences
can be drawn. The distribution of paths in primary motor is fairly uniform.
For neurons from the somatosensory cortex and primary visual cortex, the
histogram is right-skewed, indicating a majority of neurons with the num-
ber of paths lying in the range [10, 40]. The probability distribution of
somatosensory pyramidal neurons resembles a right-skewed gamma distri-
bution, and that of primary visual neurons closely follows an exponential
distribution. The profiles of secondary visual and prelimbic neurons are
poorly understood due to scarcity of samples. Most importantly, their
distributions are entirely overlapped (within [10, 40]) in the region where
the majority of primary visual and somatosensory neurons can be sam-
pled. From the figure, it is evident that the number of paths alone is not
sufficiently discriminatory. 72

3.20 Relative importance δ for subsets of classes of Dataset 1. Each color cor-
responds to a specific feature and the area, subtended by the color in a
pie chart, indicates its relative importance. By property,

∑
δ = 1, which

implies a probability distribution. The color codes are as follows. green-
divergence, orange-bifurcation angle, gray-partition asymmetry, yellow-
concurrence, deep blue-tortuosity, sky blue-segment length. The pie
charts taken together asserts a set of inferences. (1) The relative impor-
tance of features δ of all the classes (marked ‘overall’) somewhat follows
a uniform distribution. (2) Segment length and concurrence are two pre-
dominant features when the pyramidal neurons from primary motor cortex
(motor-1) are compared to the rest of the classes. (3) For the prelimbic
class, divergence, tortuosity, and segment length appear to be most impor-
tant. (4) δ for the somatosensory class toggles between two distributions
with comparatively smaller and larger importance of concurrence. 73

List of Figures xiii

3.21 This gallery of images captures the progressive evolution of paths from
a granule neuron to a pyramidal one. The granule neuron is procured
from the hippocampus (dentate gyrus) of a 5 month-old mouse, containing
6 rooted paths. The pyramidal neuron is sampled from the neocortex
(occipital lobe, secondary visual, lateral visual) of a 2 months old mouse,
containing 22 paths. The evolution is represented in multiple arrays such
that the ODD rows are read left-to-right and the EVEN rows are read
right-to-left. In the first column, the top image is the granule cell and at
the bottom is the pyramidal one. Structurally, the pyramidal neuron is
larger than the granule one. However, they are properly scaled to fit for
visualization. 74

3.22 Confusion matrix of an instance of classification using dataset-1. The
overall accuracy is 66%. Here, we set L = 50 and K = 3. 81

3.23 The figure shows comparative performance of NeuroPath2Path against
TMD and NeuroSoL using different values of K in K-NN classifier. At
each K, we perform 5 experiments for each of these methods and the as-
sociated scores are shown with the mean (colored square) and associated
range of values. 81

3.24 This figure shows one typical instance of classwise retrieval accuracy of
NeuroPath2Path and TMD. NeuroPath2Path maintains better classwise
performance than TMD. We use 62 neurons of motor-1, 68 neurons of
motor-2, 24 neurons of prelimbic, 204 neurons of somato-1, 237 neurons
of visual-1, and 30 visual-2 neurons. It is evident that TMD is adversely
affected by class imbalance. 82

3.25 The figure shows the cell-specific distribution of the number of paths. It
is observed that the distribution of paths in the case of Purkinje cells is
approximately uniform. The remainder of the distributions are left-skewed. 83

3.26 Confusion matrix of an instance of classification using Dataset-2. The
overall accuracy is 85.02%. Here, we set L = 50 and K = 9. It can be
seen from the matrix that one-fifth of ganglion cells are misclassified as
pyramidal, leading to a decline in accuracy. However, granule cells are
perfectly classified. 84

3.27 The figure shows comparative performance of NeuroPath2Path against
TMD and NeuroSoL using different values of K in K-NN classifier. At
each K, we perform 5 experiments for each of these methods and the as-
sociated scores are shown with the mean (colored square) and the range
values. The profiles of TMD and NeuroPath2Path surprisingly appear to
have opposite trends over K. NeuroPathPath hits the top accuracy of
86.2% when K = 9. 84

3.28 This figure shown the classwise retrieval accuracy of different methods
including NeuroPath2Path. It is observed that by using TMD the retrieval
accuracy of Motor cells shows minimal improvement when SVM is used.
We use 500 ganglion cells, 490 granule cells, 95 motor cells, 208 purkinje
cells, and 499 pyramidal cells. The imbalance in class adversely affects
the classification accuracy. NeuroPath2Path maintains consistent class
performance. 84

List of Figures xiv

3.29 The performance of NeuroPath2Path on two different partitions, which are
9 : 1 and 8 : 2, of Dataset-2 is shown. K = 9 is found to be a suitable
candidate of K-NN classifier. 85

3.30 This gallery of images captures the progressive evolution of paths from
a Purkinje neuron to a granule one. The granule neuron (426.5µm3 vol-
ume) is procured from the hippocampus (dentate gyrus) of a 5 months old
mouse, containing 6 rooted paths. The Purkinje cell (13094µm3 volume)
is sampled from the cerebellar cortex of a 35 day-old mouse, containing
304 paths. The evolution is represented in multiple arrays such that the
ODD rows are read in the left-to-right and the EVEN rows are read in
the right-to-left fashion. In the first column, the top image is the granule
cell and the bottom shows the pyramidal cell. Volume-wise, the Purkinje
neuron is significantly larger than the granule neuron. However, they are
scaled for visualization. 87

4.1 Multiscale block concatenation in LaWeCo. The grid indicates the blocks
used for the analysis whereas the arrows indicate the direction in which
the concatenation occurs before the following analysis step. 97

4.2 Dataset-1: Active regions identified using different kernels and scales are
marked by red circles. (a) The original dataset, (b) LaWeCo: kernel L̃,
scale 2 feet, (c) LaWeCo: kernel L̃, scale 10 feet, (d) LaWeCo: kernel
(I − L̃)−1, scale 10 feet, (e) LaWeCo: kernel (I − L̃)−1, scale 30 feet (f)
graph cut, (g) LoP, (h) DoP. 117

4.3 Dataset-2: (a) The original dataset. Active regions using different kernels
and scales are marked by red circles. (b) LaWeCo: kernel L̃, scale 1 meter,
(c) LaWeCo: kernel L̃, scale 50 meter, (d) kernel (I−L̃)−1, scale 100 meter,
(e) LaWeCo: kernel

∑2
i=1 L̃

i, scale 10 meter (f) LaWeCo: kernel (I− L̃)−1,
scale 50 meter (g) graph cut, (h) LoP, (i) DoP. 118

4.4 Dataset-3: (a) cropped original dataset. Active regions using different
kernels and scales are marked by red circles. (b) LaWeCo: kernel L̃, scale
0.002 degree, (c) LaWeCo: kernel L̃, scale 0.004 degree, (d) LaWeCo:
kernel L̃, scale 0.008 degree, (e) LaWeCo: kernel

∑4
i=1 L̃

i, (f) LaWeCo:
kernel (I − L̃)−1, (g) LoP, (h) DoP. 119

4.5 The above figure is a representation of a process with four locations and
three times, with the v3,2 and v2,2 registering an event. (a) It shows the
set of 2-length walks θ1,32,m,3;m ∈ {1, 2, 3, 4} from v2,1 to v3,3. Out of four

possible walks, the combined normalized weights of θ1,32,3,3 and θ1,32,2,3 exceed
the threshold τ . V2,2,3 = {v2,2, v3,2}. (b) It shows a subset of walks from
v2,1 and v4,1 to v2,3. Notice that the edge from v3,2 to v2,3 is counted twice.
Therefore, the edge weight of (v2, v3) in the topology at time t2(see eq. 4.8)
is 2w3,2. 120

4.6 Results on the synthetic dataset describing two events - one centralized
and one decentralized. (a) and (c) are the displacement at time instances
t = 3 and 5. The corresponding functional topologies are shown in (b) and
(d). The detection, localization ad tracking of the two events are shown in
(e) with the probabilities of event membership of the 9 locations. 120

List of Figures xv

4.7 (a)The map of Route 600 which depicts two centralized surface deforma-
tions and a decentralized rock slope fault (region of interest). The perfor-
mance of three state-of-the-art methods in terms of the detection and lo-
calization only are shown in (b),(c), and (d). (e) shows the slow drift of the
impending rock slope fault from 01−19−2012(red) to 10−23−2014(green).
(f) The event probability of all the locations over all the time periods. The
black rectangle encapsulates the behavior of rock slope fault over time. . 121

4.8 Top row: An event video with four segments per frame. Bottom row: The linear

graph with five nodes and four weight parameters for the 2nd sub-volume. . . 122

4.9 The video in (a) shows disappearance and reappearance of pilot boat; (b)
shows a spontaneous fire on a street. (c) shows an accident on a highway. 122

4.10 For three video datasets: sensitivity and specificity vs. (a) number of blocks

per frame P , (b) downsample rate of frames and (c) eigenfactor; (d) comparison

with state-of-the-art methods. SP = Specificity, SN = Sensitivity. 123

4.11 A schematic of our algorithm. 125

4.12 Condition ratios obtained by applying the algorithms on (a) regularized Hilbert

matrices with varied regularization parameters, (b) a set of random matrices

containing entries ∼ Gaussian(0, 1), and (d) random matrices of varied sparsi-

ties (for sparse linear systems). 129

4.13 Condition ratios obtained by applying the algorithms on (a) 1st order Markov

process as a function of signal correlation factor ρ and (b) 2nd order autoregres-

sive process with parameters (ρ1, ρ2). 135

4.14 The performance of our algorithm on (a) different initialization of weights, w,

(b) the number of iterations for gradient descent, and (c) the length, N of input

signal vector. 140

5.1 (a) A Convolution layer and its (b) graph signal representation. (c) A
dense layer with 2D input and 4D output. (d) Graph representation. . . 150

5.2 Neural network representation of (a) autoencoder (b) convolutional neural
network (CNN), (c) recurrent neural network (RNN), (d) support vector
machine (SVM), (e) Kohonen map, (f) long short term memory (LSTM),
(g) generative adversarial networks (GAN), and (h) radial basis network
(RBN). 151

5.3 (a) Autoencoder network and its (b) sequence of layer-to-layer graph . . 152

5.4 Perfectly fit (a) input-hidden and (b) hidden-output layers while training
an MLP with MNIST dataset. Smoothness profiles of six convolution fil-
ters over batch iterations. (c) Extremely regularized, and (d) moderately
regularized. (e)-(g) A schematic representation of signal surfaces in the
decreasing order of smoothness. Each surface is sampled at five locations
which constitute a graph. 153

List of Tables

3.1 Comparison of average accuracy of UGraSP vs. current methods for the
MSR Action3D dataset [1]. 22

3.2 Average accuracy of each activity by our proposed method UGraSP using
[1]. The overall accuracy is 93.95% . 22

3.3 Activity-wise average accuracy (%) from UTKinect for [2] and UGraSP.
The overall classification score is 94.58% using our method against 90.92%
using [2]. 23

3.4 Activity-wise average accuracy (%) from UCF Kinect for [3] and UGraSP.
The overall accuracy using our method 97.75% against the competing
method of 95.94%. 23

3.5 Person identification average accuracy (%) from UTKinect [2] by UGraSP.
The overall accuracy is 87.5%. 24

3.6 Person identification average accuracy (%) from UCF Kinect [3] by UGraSP.
The overall accuracy is 86.5%. 24

3.7 Person identification average accuracy (%) from MSR Action3D [1] by
UGraSP. The overall accuracy is 85.4%. 24

3.8 Comparison between UGrAD and other current methods average accuracy
(MSR Action3D dataset [1].) . 26

3.9 Average accuracy of each activity by UGrAD using [1]. The overall accu-
racy is 94.37% . 28

3.10 Average recognition accuracy (%) for each activity from UTKinect for [2]
and UGrAD. The overall recognition accuracy is 95.1% for UGrAD and
90.92% for [2]. 29

3.11 Average recogntion accuracy (%) of each activity from UCF Kinect for
[3] and UGrAD. The overall classification accuracy for UGrAD is 98.2%
compared to of 95.94% for [3]. 31

3.12 Confusion score . 39

3.13 Pairwise interclass distances . 43

3.14 Neurons used in our experiments . 47

3.15 Cell type minimum and maximum separability 50

3.16 Intra-subject separation . 50

3.17 Importance weight δ values for dataset-1. For space constraint, we pro-
vide feature-specific importance weight for classification in case of pairwise
classes and all classes separately. 77

xvi

List of Tables xvii

3.18 Distance and correspondence between paths. The correspondences between
the paths of neuron-1 and neuron-2 are enlisted in the first two columns.
The numbers in yellow indicate that the correspondence obtained by Neu-
roP2P matches with the candidates of best correspondence in the sense of
minimum distance. The pairs in blue are subjected for further verification
because of large differences in the hierarchy values (Routine 4 in Algorithm
2). 80

3.19 Importance weight δ values for dataset-2 83

4.1 Run time in seconds of LaWeCo , Graph-cut, LoP, and DoP for all the
datasets. 100

4.2 Sensitivity & specificity scores of GraDED for spatial localization. 116

Chapter 1

Introduction

Data is the new oil, fueling the advancement of scientific and application-specific data

analysis [10, 11]. By way of complex data analysis, the scientific community diligently

attempts to uncover the underlying principles of natural phenomena [4, 5, 12–21]. The

reliability of such systematic analysis depends on suitable modeling of the data. However,

significant variation in data and several other factors that are associated with the curation

of such data, even for similar applications, precludes the development of a universal data

model. As such, we need application-specific categorization of data models.

Among the existing tools for data modeling, graph based models serve as the most

abstract and discrete representation of the data [22, 23]. In addition to using the raw

data, a graph model also encodes the relationship between the extracted features or

variables [24]. This relationship plays important roles in many tasks, including classifica-

tion, regression, and inferences, which are instrumental in developing informatics. Graph

encompasses three broad domains of literature, which are combinatorial graph theory,

machine learning based graphical models and graph signal processing.

By imposing some constraints a priori, machine learning based models, such as

probabilistic graphical model [12], conditional random fields [25] estimate the hidden

relationship between the observed, latent, or both types of random variables. These

1

Chapter 1. Intro. 2

models are adopted for inference and classification related objectives. Combinatorial

graph theory [23, 26] seeks answers behind the existence, enumeration, and genesis of

structures and performs optimization of certain objectives on the structures. When the

underlying graph is defined, graph signal processing [24] considers the data as the signal

that resides on the graph, and accordingly augments classical signal processing tools to

the graph domain. Graph filtering, manifold regularization, graph Fourier transform are

few examples of graph signal processing tools. This thesis exploits the combinatorial

part of structures that model the data in terms of a graph. In short, we leverage the

morphology and geometry of structures [13] that are either present in the data or assigned

in an abstract fashion in order to fulfill some objectives. Additionally, we utilize signal

processing on the graphs whenever the tools are needed.

Apart from the existing literature, graphs also provide a set of advantages in terms

of minimalistic representation. An example of activity recognition from a video dataset

would be appropriate in this context. A typical frame in that video contains tens of

thousands of pixels, incurring significant computational and storage loads. However, it

is a well-known fact that our visual perception only tracks a specified number of key

locations on a human body while the person is performing an activity. 3D reconstruction

via skeletonization tools, such as Kinect, DensePose, OpenPose provide suitable rendering

of the input videos to files containing the locations of joints of a human body. The

skeleton then serves as the graph for downstream analysis. This conversion drastically

reduces the storage load and enables on-line activity recognition. For example, UTKinect-

Action3D dataset used Kinect with Windows SDK Beta and registered 10 actions which

are performed by 10 subjects at 30fps. The RGB image has the resolution of 480 × 640

and the depth image has 320 × 240. The size of RGB and Depth videos are 1.79GB

and 367MB respectively. Compared to the video data, the 3D reconstructed skeletonized

dataset has the file size of only 3.3 MB, representing significant reduction of input data

Chapter 1. Intro. 3

size. The added advantage is that downstream analysis using graph dataset does not suffer

from the problems that are associated with images and image processing tools. Research

areas other than activity recognition vastly benefit from such modality conversion. In

this thesis, we use

• 3.6 million 3D persistent scatterers from 62 (AOI1) and 28 (AOI2) InSAR images.

Each scatterer is provided with the measured displacements over 232 time instances

and geographical locations.

• 3D reconstructed neuron cells (.swc files) from stained images. The online repos-

itory, neuromorpho.org [27] contains thousands of such reconstructed neuron cells

from different brain regions of several species.

• Kinect captured 3D skeletonized datasets.

In general, graph modeling of a problem can be constructed by identifying or defin-

ing the structure in terms of three parameters - vertices or nodes, edges or links, and

edge weights. Owing to the nature of data acquisition or the data source, a lot of prob-

lems contain the graph structure inherently. Such problems carry a subtle dichotomy

in their inherited structures based on whether the structure can be uniquely defined or

not. Examples, such as 3D reconstructed neurons and Kinect-skeletonized humans, lend

themselves to inherit unique graph structures, whereas the graph structures in images

and videos can be defined based on the problem demands. In an image, a single pixel, a

patch, or the entire image can be accounted as a vertex, denoting the scalewise change in

the description of the vertex. Even in case of neurons, an entire neuron can be regarded

as a vertex when we consider the Connectome.

Another important consideration is the existence of inherited connections. Kinect-

generated skeletons and 3D traced neurons have defined connections. A .swc file lists how

to connect the sampled locations (vertices) to reconstruct the neuron. In an image, such

Chapter 1. Intro. 4

connections are not uniquely defined. Ambiguous definition of scale and connectivity

leads to two different practices of graph modeling.

The first group models the problems with graph structures that are unique or invari-

ant. Lattice structures, polymer structures, neuronal and glial tree structures, genealogy,

and 3D reconstructed human skeletons fall into this category. To meet certain objectives,

a set of morphological, geometrical and combinatorial features is extracted from the struc-

tures. In this thesis, we primarily considers the datasets involving neurons and human

activity recognition, with a major emphasis on neuromorphology as the application of

graph theoretic features are vastly unexplored here.

The second group involves problems that have structured datasets without defined

connectivity. For such problems, we need to first estimate the underlying graph structure

or employ some ad hoc criteria (such as K nearest neighborhood) to connect the vertices.

Rest of the analysis follow the similar paths to that of the first group. We experiment with

InSAR dataset to identify and track geomorphological events (road health assessment,

sinkhole monitoring, and rock-slope fault monitoring) at different scales. The scatterers

(vertices) in the dataset are connected using K-nearest neighbor approach. Next, we

consider graph modeling of videos from car-mounted cameras in order to track hazardous

events. Lastly, we take a stream of input data, which have ill-conditioned autocorrelation

matrix, and present an algorithm that recursively estimates the optimal relationship

between data points. The data points are not graph structured. However, the imposition

of a graph structure on the data is shown to improve the condition number, facilitating

the convergence of LMS based filters.

There is an enormous variation in the complexity in the two groups of problems. The

3D skeleton obtained from Kinect for activity recognition is fairly simple, and does not

contain significant structural variation. The number of joints that are identified by Kinect

is fixed along with the connections among them. Besides activity recognition, the minor

Chapter 1. Intro. 5

structural variation in terms of joint-joint distances is utilized for person identification

from videos where each frame contains only one person.

The neurons with no fixed number of sampled locations have enormous morphological

and geometrical variation. This demands an entirely different modeling strategy. Our

proposed modeling is not confined to neuron classification only. The model also helps

build up neuroinformatics, and can be translated to the analysis of cell types (glia cells,

astrocytes) with ramified branches.

The structural complexity increases when the data is captured without any prede-

fined connections between the data points. InSAR data is one example of that category,

where the similar algorithms to those are developed for neuromorphology and activity

recognition can not be applied directly. Different connections among data points in In-

SAR lead to different results for the same analysis. As the physical connections between

data points are not defined, we aim to explore the functional topology instead of the

physical topology. It means that functionally correlated regions are densely connected

without attempting to model the physical connections.

The complexity is elevated in case of videos, where we use two entirely different

graphs. Each frame of the video is partitioned into blocks (patches or sub-volumess of a

video) to construct a graph between the blocks. To track the event in time, the assembly

of each block at all time points is used to make a temporal graph. The spatial graph

is fully connected with the weight values that are determined by interblock coherence

measure. The temporal graph is sequential and the weights are recursively updated.

Finally, we consider a stream of data (Markov input) where the problem is to improve

the condition number of the matrix. This problem is more complex than the previous

problems in terms of graph structures. Here, the graph between data points is not prede-

fined. In addition, unlike Kinect, InSAR, and neurons, this problem does not demand any

Chapter 1. Intro. 6

morphological or geometrical features to be extracted from the graph if the graph is con-

structed. However, imposition of a graph provides a transformation that helps improve

the condition number of the input autocorrelation matrix. It shows that the assignment

of graph to a problem is not limited to extracting the combinatorial features only.

1.1 Objectives and contributions

The primary objective of this thesis is to model data with graph by leveraging the com-

binatorial graph theory and graph signal processing, where they are needed. Given such

objective, we attempt to answer the following questions.

• How to provide graph-theoretic framework that can be utilized for several tasks,

including classification, informatics, and tracking.

• (In case of biology) How to incorporate biological information in terms of graph

features. In a quest of principles from data, how to separate algorithmic constraints

from biological fact.

• How to incorporate combinatorial graph structures, such as complementary graph,

bipartite graph, walk, path, line graph to enhance the discriminatory power of

feature descriptors.

In response to those queries, the following contributions are summarized below.

Contribution 1:

In neuromorphology, the application of graph features and the potential of graph model

are largely unexplored. We begin our experimentation with graph models based on the

scale of the features. Akin to the bigram [28] model in text or speech processing, we first

propose distribution based model that captures the conditional statistics of bifurcation

Chapter 1. Intro. 7

angle, fragmentation, and spatial density. Reading the neuron model analogous to a

text or a speech sequence is the contribution here. Despite relatively good performance,

we seek to find a model for visualization, and to incorporate biological rationale behind

the feature selection. We devise NeuroSoL that capture morphological and geometrical

features at local scale of vertices and edges. To the best of our knowledge, we are the

first to introduce the concept of structural relevance and connectivity-wise relevance of

a vertex in NeuroSoL, resulting in a one to one mapping of vertices between a pair of

neurons.

Next, we improve our approach by incorporating path models of neuronal graph.

The proposed path based algorithm is called ElasticPath2Path, which is again improved

in NeuroPath2Path (Neurop2P in short). NeuroPath2Path offers several advantages. De-

composition of a neuron into paths can be viewed as an assembly of individual circuits

from the terminals to the soma, integrating semi-local features that act as path descrip-

tors. Next, instead of subgraph matching, NeuroPath2Path does not leave a single path

unassigned, culminating in a full-graph matching algorithm. The matching algorithm

presents the notion of relative fractality, path correspondences and incorporates physio-

logical factors, such as decaying importance of features along the path, exploratory and

competitive behavior for resource exploitation. NeuroPath2Path also precisely investi-

gates the feasibility of algorithmic constraints on the structural repertoire of neuronal

arbors, and thereby enforcing criteria, such as hierarchy mismatch. During classifica-

tion, NeuroPath2Path delivers resilience to the class imbalance problem. Apart from

classification, NeuroPath2Path can be augmented in two major domains - morphological

analysis and structural transformation of microglia cells, and in progressive degrada-

tion of neuronal paths in neurodegenerative diseases. However, the best advantage of

ElasticPath2Path and NeuroPath2Path is the visualization of deformation of paths be-

tween two neurons, which validates the path correspondence. The deformation between

Chapter 1. Intro. 8

a pair of neurons can also be tuned to explore neurogenesis, a well-known problem in

cell-differentiation.

Contribution 2:

It is observed that the analysis including feature extraction using only one graph structure

is not sufficiently discriminatory enough to perform tasks. Conventional methods perform

quantitative analysis only on the intrinsic or estimated graph structure of a problem. In

contrast, we use a series of structures that are derived from the original graph structure

(intrinsic or estimated) of the problem. Examples of such derived structures that we use

are complementary graph, line graph, bipartite graph, walks, structure graph, connectiv-

ity graph, and linear graph.

An example of neuron would suffice to explain the observation that we mention at

the beginning of this contribution. A 3D reconstructed neuron possesses an intrinsic tree

graph structure. By definition, a tree does not contain a loop. Let us consider another

graph that has the same number of locations as of the neuron, but has edges which are not

present in the neuron. We call it the complementary tree. By constraining the analysis

of neuroanatomy only to the tree, we would not harness the information that is present

in the complementary tree. Typically a neuron is referenced, meaning that each location

has a 3D coordinate. By construction, each edge in the tree has a weight value that is

the Euclidean distance between the locations that form the edge. This way the neuron

is modeled as a weighted tree. Now, if we concern about the existence of the edge, we

would consider the edge weight as 1 (if present in the tree) or 0 (if not present in the

tree). If we focus on importance in terms of the length of the edge, we would consider the

Euclidean distance. Therefore, we obtain four different structures when we combine the

existence and importance of edges with the tree and complementary tree graphs. One can

also extract paths within these structures, and develop hop-based model where a hop is

defined as the number of edges on a path. In summary, an ensemble of different structures

Chapter 1. Intro. 9

that are derived from the original graph which models the data generally encapsulates

rich anatomical and geometrical information.

1.2 Thesis outline

The rest of the dissertation is organized as follows: In Chapter 2, we present brief de-

scriptions of the tools that are required for our works. Along with the tools, we provide

an overview of graph theory and graph signal processing. Chapter 3 is dedicated to the

problems that own invariant graph structures. We present our works on neuromophol-

ogy, human activity recognition and neural networks. Chapter 4 includes the problems

having non-unique graph structures. We focus on geomorphological event detection, spa-

tiotemporal event detection, and system precondition to describe how the underlying

graphs are recursively estimated and how the graph tools are used in these cases. Finally,

we conclude in Chapter 5 with discussion of the methods, their possible extensions and

applications.

Chapter 2

Background

In this chapter, we present a brief background on graph theory and graph signal process-

ing. For algorithms and detailed analysis in graph theory and graph signal processing,

interested readers may follow [23] and [24] respectively. We also discuss about ArcGIS,

a geographic information system for working with georeferenced maps and charts. We

use its desktop version ArcGIS 10.2.1 to visualize and analyze SqueeSAR data.

2.1 Graph theory

A graph G can be defined by the triplet (V , E ,W), where V is the set of vertices, and E is

the set of edges to which corresponds a set of weights. In particular V = {v1, v2, · · · , vN},

E = {eij|vi, vj ∈ V} and weight set W = {wij 6= 0 ⇔ eij ∈ E}. The the set of vertices

directly connected to vi, Ni = {vj|eij ∈ E}, is the neighborhood of vi whereas the degree

of vi, di =
∑

vj∈Ni
wij, is the sum of the weights of edges connected to vi. For each graph,

it is possible to define the complementary graph (Ḡ) defined by triplet (V̄ , Ē , W̄), where

Ē = {eij|eij /∈ E} and V̄ = {vi|eij ∈ Ē}. A walk of length k on G is an alternating sequence

of vertices and edges, (vi, ei,i+1, vi+1, · · · , ei+k−2,i+k−1, vi+k−1), where vi and vi+k−1 are the

start and end points of the walk respectively. In DDT, we consider only length-2 walks.

10

Chapter 2. Background 11

A graph is said to be simple if the graph contains no multiple edges between any pair of

vertices or any self-loop. A graph is called undirected if no edge has any directionality. A

bipartite graph, also called a bigraph, partitions V into two non-empty sets such that no

two graph vertices within the same set shares an edge. Given a graph G = G(V , E) and

a set of labels L, we can define vertex labeling as a bijective function f : V → L [29].

Graphs can be conveniently represented by a set of matrices: the adjacency matrix

(A), defined as A(i, j) = wij, the degree matrix (D), defined as D(i, i) = di, and the

Laplacian matrix L = D−A. The Laplacian can be interpreted as a difference operator

when applied to a graph signal s ∈ RN :

Lsi =
∑

vj :eij∈E

wij[si − sj]

where, with si we indicate the value that s assumes on node vi. The incidence matrix,

B ∈ RN×|E| of G is defined as bij = 1 or −1 where the edge j is incident to or emergent from

the vertex i. Otherwise bij = 0. The graph Laplacian L ∈ RN×N , which is a symmetric

positive-semidefinite matrix, can be given by L = BWBT , where W is a diagonal matrix

containing w. A graph is connected if there exists at least a path between each pair of

vertices. An incomplete graph is a graph where at least a pair of vertices is not connected

with an edge. For a tree graph with size N , the total number of edges is N − 1. The

weighted adjacency matrix (∈ RN×N) of a graph is defined as {aij = wij|i, j ∈ V}. The

degree vector Dvc, which indicates the degree of each vertex, is given by Dvc = A1, where

1 is an array of 1s. The structural adjacency matrix As and degree vector,Dvs are defined

in a similar fashion by replacing each weight wij by 1.

Using the Laplacian [24], L, the symmteric normalized Laplacian matrix is defined

as Ln = D−1/2LD−1/2. The set of sorted eigenvalues of Ln (Γ = {λ0, λ1, · · · } where

λ0 ≤ λ1 ≤ · · ·) is known as the spectrum of the normalized Laplacian and, together with

the set of corresponding orthogonal eigenvectors, it bears resemblance to the Fourier

Chapter 2. Background 12

analysis in classical signal processing. The random walk normalized Laplacian is defined

as L̃ = D−1L. The positive Laplacian is given by the formula, L+ = D + A. The

cross-adjacency matrix, Bn1×n2 of two disjoint neighborhoods Ni and Nj with size n1 and

n2 is defined as Bij=wij with i ∈ Ni and j ∈ Nj.

2.2 InSAR & ArcGIS

Synthetic Aperture Radar (SAR) is a remote sensing technology that uses coherent radar

pulses to reconstruct 3D landscapes in terms of images. Each SAR image contains both

amplitude and phase data of each location on the landscape. The phase difference between

two SAR images, taken at different times or vantage points, generates an ‘interferogram’

(InSAR). The variation in the interferogram reveals important topographical information,

such as the ground elevation of a location over time (in mm). To cancel the atmospheric

effects on the ground dispacement measurements, an advanced technique, called PSInSAR

(Permanent Scatterer InSAR) is used. Permanent Scatterers are geo-referenced, and are

abundant in locations where the signal strength of the reflected radar signals is excellent

(e.g. rocky outcrops, transmission towers, tall buildings containing shiny metallic coated

surface). In the rural landscape, the density of PS is significantly low. To resolve this

problem, an improvement of InSAR is made, and new algorithm is called SqueeSAR.

We experiment with several SqueeSAR datasets. For example, we obtain the SqueeSAR

data that is registered on the Central Virginia and the area is centered over the town

of Middlebrook. This area of interest (AOI) has a lot of topographical significance,

containing 100 lane miles of interstate routes, 200 lane miles of primary and secondary

routes, subsidence areas, 600 bridges, culverts and major transportation structures. The

SqueeSAR dataset is constructed using 62 SAR images, acquired by the Cosmo-SkyMed

(CSK) satellite from 29th August, 2011 to 24th November, 2014 with an interval of every

16 days (except a 232 days interval between 25th October, 2012 to 30th June, 2013). After

Chapter 2. Background 13

applying SqueeSAR algorithm, the resulting dataset contains approximately 800K scat-

terers with an average density of 497/km2. After invoking the SqueeSAR data as a layer

to the ArcGIS, each PS will show the recorded displacements at the previously-mentioned

time instances.

2.2.1 Coherent motion analysis toolbox

The coherent motion analysis toolbox is based on the Theil–Sen trend estimator and it was

developed to detect regions, within the user-selected analysis area, showing indications

of strong linear motion: grooves/ruts on a road/pavement, collapsing culverts, creeping

slopes and, in general, any event expected to generate displacements with strong linear

behavior in time. The Theil–Sen estimator is applied to the time series of the displace-

ments to robustly evaluate the median of the displacement rates effectively reducing the

contribution of potential contribution from the SAR additive and multiplicative noise.

These rates are then checked against the user-selected warning and critical thresholds

(given in mm/day) and each scatterer is colored accordingly.

2.2.2 Road smoothness analysis toolbox

Road smoothness index is directly related to the perception of riding quality. On scales,

larger than typical IRI measurements and determined by the density of scatterers along

the road, it is possible to define the normalized smoothness index (NSI) computed at

each scatterer location and for each satellite acquisition time. This index is calculated

using a graph theoretical approach and measures the smoothness of a signal defined over

a graph (see Section 2.1). The hypothesis behind this approach is that regions of the road

surface displaying large differential displacements between neighboring scatterers (large

NSI) are prone to pavement deterioration. The difference in scale between the NSI and

Chapter 2. Background 14

(a) (b)

(c) (d)

Figure 2.1: Route-11: (a) permanent scatterers (PS) on top of a geo-referenced map, (b) the
smoothness profile (NSI) of all the scatters. The red circle indicates extreme roughness that
is detected by NSI, implying a possible event on the road surface. Route-600: (c) PS on top
of a map, (d) impending rock-slope as shown in a dense region with Red and yellow marked

scatterers. This is also confirmed by the field geologists.

IRI measurements means that direct correlation has only been observed for rare stretches

of road with very high densities of permanent scatterers.

Chapter 3

Invariant or unique graph structure

Problems with invariant graph structures are ubiquitous in today’s world. Traffic net-

work [30], social network [31], gene-regulatory network [32, 33], neuron connectome [34]

and numerous other applications contain invariant or unique graph structures. The term

‘invariant’ and ‘unique’ might lead to a lot of confusion, demanding some clarification.

In the thesis, we use these terms to indicate the existence of physical connections among

the vertices of a graph. For example, a 3D reconstructed neuron has a set of sampled

locations as the vertices of the neuron graph. In addition, there exist physical connections

among the vertices, which reconstructs the tree structure of the neuron. In Kinect based

3D reconstructed skeleton model, the sampled locations are joints and the connections

emulate the body parts that connect the joints to form the skeleton. Two persons (or

two people) connected via a friend request in Facebook is another example. These con-

nections are unique in the sense that we do not need to estimate the connections based

on some external criteria.

In contrast, the persistent scatters that are obtained from SqueeSAR dataset for

geomorphological event detection have no predefined connections. We need to apply some

external constraints to find the edges of the graph model in this scenario. Therefore,

the connections are not unique. In image, the pixels form a uniform lattice and the

15

Chapter 3. Invariant graph structures 16

connections among them are undefined. The connections can be defined on different

patterns such as 4 neighbors and 8 neighbors. In this case, even the vertices are non-

unique in the sense that a pixel or a superpixel or a patch or even a frame could be

regarded as vertices. A unique graph structure might be time varying, such as facebook

graph. In summary, by invariant or unique, we account for the problems where the graph

structures need not to be estimated.

We select two problems, which are human activity recognition and neuromorphology,

which are modeled using invariant or unique graph structures. However, the structural

complexity in the two problems are different. In human activity recognition, we use 3D

reconstructed skeleton data, where the number of vertices and the edges among them

are fixed, implying a graph model of low structural complexity. In such graphs, the only

parameter that needs to be estimated is edge weight. Leveraging such simplicity in the

model, other graph structures, such as bipartite graph, complementary graph, cliques

can be derived with almost no computational overhead. In neuromorphology, we use 3D

reconstructed neurons, where the number of vertices, which are traced locations, are not

fixed but the connections among the vertices are defined. Due to the unequal number of

vertices, algorithms that are developed using these datasets encounter subgraph isomor-

phism, inconsistent feature dimension and correspondence deficiency. To overcome these

problems, strategies, such as same-hop walks, distribution of morphometrics, surjective

correspondence maps, structural simplification (if applicable) are proved to be effective.

We provide a through investigation and present our contribution in the neuromorphology

section.

3.1 Activity recognition

The ability to identify a person and record, store, review and recognize the activities being

performed is of key importance in several applications such as security and surveillance,

Chapter 3. Invariant graph structures 17

and elderly health care. Previous image-based (in contrast to joint location-based) studies

include those in pose estimation [35], gait recognition [36], gesture recognition [37] and

activity recognition [14,38,39]. Within the image-based framework, the activity recogni-

tion problem was further addressed by several methods, such as spatiotemporal interest

points (STIPs) [40], histograms of oriented gradients (HOG) [41], and histograms of

oriented flow (HOF) [42]. These methods aimed at the identification of relevant local fea-

tures for which dynamic analysis was carried out via hidden Markov models (HMMs) [2],

dynamic temporal warping (DTW) [43], and conditional random fields (CRFs) [44]. The

task of person identification from multiple videos has also been widely addressed [45–47].

With the recent introduction of point cloud-based systems, the community interest was

extended to the problem of person identification within these type of datasets [48, 49].

We propose a unified graph signal processing (UGraSP) technique that allows for

simultaneous person identification and activity recognition from a single set of features.

3.1.1 Unified graph signal processing (UGraSP)

In our approach we take advantage of the point cloud representation, introduced by 3D

sensors, to successfully extend person identification and activity recognition to datasets

containing a wide variety of persons and activities. We achieve this by leveraging the

graph theoretical formalism applied to the individual skeletal representation obtained

from the imaging sensors where joints are represented as nodes and the edge connectivity

follows the natural individual skeleton (Figure 3.1) with weights based on their Euclidean

length.

3.1.1.1 Proposed method

In our framework, the 3D human skeleton is represented as a labeled set of N vertices,

embedded in R3, with vertices represented by their spatial coordinates vi = (xi, yi, zi) and

Chapter 3. Invariant graph structures 18

(a) (b)

Figure 3.1: A schematic representation of human skeleton with labeled joints captured by
Kinect SDK for (a) MSR Action3D [1] and UTKinect [2] and (b) UCF action dataset [3].

connected by a set of edges with weight dependent on the Euclidean distance between

the connected vertices (figure 3.1). For each frame, we represent the joints coordinates

in vectorized form f g = [x1, . . . , xN , y1, . . . , yN , z1, . . . , zN] ∈ R3N .

3.1.1.2 Projection on extended Laplacian eigenvector basis

Once normalized, the orthogonal set of eigenvectors of the Laplacian constitutes a com-

plete orthonormal basis that can be used to represent any graph signal f ∈ RN . In

order to project f g, we extended this approach to R3N by creating the block diagonal

matrix U g = diag{U ,U ,U}. With this definition, we can leverage the graph Fourier

transform [24] formalism and evaluate the transform f̂ g:

f̂ g = UT
g f g (3.1)

Figure 3.2 shows an example of the transformed skeletal coordinate vectors x̂, ŷ and ẑ

that form f̂ g for a single frame of the video for the high-throw activity. We hypothesize

that f̂ g contains the signature of the skeleton of a specific person that can be utilized for

activity recognition.

Chapter 3. Invariant graph structures 19

(a) (b) (c) (d)

Figure 3.2: Activity high-throw : (a) The eigenvector corresponding to maximum eigenvalue
of L on the skeleton graph. Projected (b) X-axis, (c) Y-axis, and (d) Z-axis of all N=20 joints

taken on a frame

3.1.1.3 Feature construction for activity recognition

A reliable feature descriptor for a specific activity is obtained from the vectorized rep-

resentation of the covariance of f̂ g evaluated over video subsets (segments). The choice

of the length of these segments is relevant since segments that are too short will fail to

capture significant variation whereas segments that are too long will not provide the tem-

poral granularity required to identify the motion sequence within an activity. The total

number of non-overlapped segments in a video can be obtained from J = bS/θc where

S is the number of frames within a video, θ is the length of each segment. Although we

are considering only the first level of the temporal hierarchy proposed by [50], for each

segment we construct simple and robust feature descriptor that, over the ith segment of

a video can be written as

F̃ (i) =

(i+1)θ−1∑
k=iθ

UT
g (fkg − f̄ g)(fkg − f̄ g)TU g

= UT
g CiU g i ∈ {1, 2, · · · , J} (3.2)

where Ci is the covariance matrix of f g over the ith segment of a video, and f̄ g is the

mean of coordinate vectors taking all the frames. The beginning frames of each video,

where no activity is performed, are recognized using the low values of Ci and disregarded

in our analysis.

Chapter 3. Invariant graph structures 20

Figure 3.3: Average recognition accuracies of activities from [1] and [2] over different segment
lengths.

3.1.1.4 Feature construction for person identification

It can be reasonably expected that the elements of the skeleton of a person will maintain

their length during an activity performed at a fixed location. This property, captured

by the adjacency matrix of the graph, is reinforced by the Laplacian. To correct for the

changes in scale due to the location of a person within the field of view we normalized

the Laplacian (LN = D−1/2LD−1/2) and use its vectorized version (Lv) as a feature in

the training of a linear SVM. Since the measurements of the joints location are affected

by noise, Lv, for a specific person, will vary from activity to activity and trial to trial.

Under the hypothesis that the noise introduced by the sensors is linear and additive, its

effects can be minimized by averaging the vectorized Laplacians obtained from the initial

frame of all the videos of a given person. The result is an average vectorized Laplacian

LE, encoding each person’s identity that, owe to the defined connectivity, which is also

sparse. As an example, consider the skeleton in Figure 3.1(a). The 19 edges translate

into 19 × 2 = 38 non-zero entries in the final LE ∈ R400. Because of this sparsity, we

postulate that these features can be embedded in a lower-dimensional manifold.

Given M persons, we want to find the projection operator P : RN2 → R, such that

the projections P TLE of the average Laplacians LE are maximally separated on the real

line. Let LkE and LmE be the average Laplacians for persons k and m respectively. Our

objective is to maximize (P TLkE −P TLmE)2 over all pairs k,m ∈ {1, 2, · · · , J} under the

Chapter 3. Invariant graph structures 21

constraint that
∑N2

i=1 Pi = 1. Then the Lagrangian cost function χ(w) becomes,

min
P∈RN2

χ(P) =

min
P∈RN2

[
−

M∑
k<m

(P TLkE − P TLmE)2 + β

(
N2∑
i=1

Pi − 1

)]
=

min
P∈RN2

−P T

M(M−1)/2∑
c

ĽcĽ
′

c

P + β
(
P T1− 1

) =

min
P∈RN2

[
−P TAP + β

(
P T1− 1

)]
(3.3)

where, Ľ =
(
LkE −LmE

)
for m < k ∈ {1, 2, · · · , N2}. Since A =

∑M(M−1)/2
c ĽcĽ

′

c is

positive definite, the cost function is non-convex and it can be shown that the sub-optimal

solution is given by

Pj =

∑
k A
−1
jk∑

l

∑
mA

−1
lm

; j ∈ {1, 2, · · · , N2}. (3.4)

Whenever a new vectorized average Laplacian (Lt) is extracted from a frame, it can be

projected on the real line as P TLt where identification is carried out by finding the closest

LE.

3.1.1.5 Results

We have tested our proposed methodology over three datasets: MSR Action3D [1],

UTKinect [2] and UCF Kinect [3].

MSR Action3D [1]. This dataset contains twenty activities performed by 10 sub-

jects 3 times each. The entire dataset has 557 activity video sequences of variable length.

The data are captured at 15 frames/second. Each frame contains the (x, y, z) coordi-

nates of 20 joints in a human skeleton captured by Kinect. We discard activity 20 due to

inconsistent data in each video.

Chapter 3. Invariant graph structures 22

Table 3.1: Comparison of average accuracy of UGraSP vs. current methods for the MSR
Action3D dataset [1].

Methods Average accuracy(%)
Recurrent Neural Net [51] 42.50
Dynamic Temporal Warping [43] 54.00
Action Graph [15] 74.70
Hidden Markov Model [2] 78.97
Random Occupancy Pattern [52] 86.50
Actionlet Ensemble [53] 88.20
Cov3DJ [50] 90.53
UGraSP 93.95

Table 3.2: Average accuracy of each activity by our proposed method UGraSP using [1]. The
overall accuracy is 93.95%

Activity Acc(%) Activity Acc(%)

1 hnd high wave 100.00 2 hnd wave 100.00
horiz. wave 90.25 side boxing 100.00
hammer 88.50 bend 52.58
catch 90.00 fwd kick 100.00
fwd punch 100.00 side kick 90.00
high throw 100.00 jogging 100.00
draw X 90.25 tennis swing 100.00
draw tick 92.50 tennis swerve 100.00
draw circle 100.00 golf swing 100.00
hand clap 100.00 SOA 94.50

UTKinect [2]. A stationary Kinect with SDK includes 10 activities performed by

10 subjects twice each. The activity videos are captured in RGB synchronized channel at

a frame rate 30 frames/second. There are 10 subjects performing each of the 10 activities

twice. In total, there are 6220 frames from 200 sample activity videos. The duration of

each activity varies from 5 to 120 frames.

UCFKinect [3]. This dataset contains 16 different activities performed by 16 per-

sons, 5 times each. The skeleton captured by Kinect consists of 15 joints, as shown in

3.1(b).

3.1.1.5.1 Activity recognition The analysis of activity is carried out with non-

overlapping video segments. The sensitivity of the algorithm performance, with respect

Chapter 3. Invariant graph structures 23

Table 3.3: Activity-wise average accuracy (%) from UTKinect for [2] and UGraSP. The overall
classification score is 94.58% using our method against 90.92% using [2].

Activity [2] UGraSP Activity [2] UGraSP

walk 96.5 100.0 throw 59.0 77.3
sit 91.5 98.5 push 81.5 86.5
stand 93.5 94.5 pull 92.5 94.5
pick 97.5 94.5.0 wave 100.0 100.0
carry 97.5 100.0 clap 100.0 100.0

to segment length, is shown in Figure 3.3 for two datasets. The result indicates that

lengths of segment θ = 8 and θ = 6 provide the best result for MSR Action3D and

UTKinect datasets respectively. The overall accuracy over 19 activities are compared

with existing methodologies and UGraSP outperforms all of them as shown in Table 3.8.

The accuracy with respect to individual activities is reported in Table 3.2. The

classification accuracy for each activity is obtained by inserting features from (3.2) into

a linear SVM with a Gaussian kernel of γ = 1
num of features

and C = 1. The features for

each activity are tested with a one-against-all approach, with a random partition of 90%

for training and 10% for testing. The results for UTKinect and UCF Kinect [3] datasets

compared with competing methods are shown in Table 3.3 and Table 3.4.

Table 3.4: Activity-wise average accuracy (%) from UCF Kinect for [3] and UGraSP. The
overall accuracy using our method 97.75% against the competing method of 95.94%.

Activity [3] UGraSP Activity [3] UGraSP

balance 97.5 100.0 vault 92.5 96.5
clmb ldr 93.8 97.2 run 97.5 100.0
clmb up 98.8 100.0 stp back 97.5 94.5
duck 100.0 100.0 stp front 97.5 100.0
hop 96.2 94.5 stp left 96.2 100.0
kick 98.8 100.0 stp right 98.8 100.0
leap 100.0 100.0 twist L 88.8 95.2
punch 95.0 97.2 twist R 86.2 88.9

3.1.1.5.2 Person identification For the datasets, UTKinect and MSR Action3D, we

partition the feature sets in a 80:20 ratio as train:test. Training features are used to build

up a SVM classifier with Gaussian kernel of γ = 1
num of features

and C = 1. The recognition

Chapter 3. Invariant graph structures 24

accuracies are exhibited in Table 3.5 for UTKinect, Table 3.7 for MSR Action3D, and

Table 3.6 for UCF Kinect datasets.

Table 3.5: Person identification average accuracy (%) from UTKinect [2] by UGraSP. The
overall accuracy is 87.5%.

Person UGraSP Person UGraSP Person UGraSP

P1 100 P4 75 P7 75
P2 100 P5 100 P8 75
P3 100 P6 75 P9 75

P10 100

Table 3.6: Person identification average accuracy (%) from UCF Kinect [3] by UGraSP. The
overall accuracy is 86.5%.

Person UGraSP Person UGraSP Person UGraSP

P1 88.8 P6 88.8 P11 88.8
P2 90.0 P7 82.5 P12 87.5
P3 83.8 P8 85 P13 82.8
P4 83.8 P9 84.3 P14 88.8
P5 92.5 P10 92.5 P15 81.3

P16 83.7

Table 3.7: Person identification average accuracy (%) from MSR Action3D [1] by UGraSP.
The overall accuracy is 85.4%.

Person UGraSP Person UGraSP Person UGraSP

P1 86 P4 94 P7 82
P2 88 P5 72 P8 90
P3 82 P6 92 P9 82

P10 86

The performance of UGraSP depends on the fact that almost all the frames in a

video are associated with a particular action that a subject in the video is performing.

Realistically, in a video there might be more than one actions that are concatenated with

a set of rest frames in between. Therefore, it is crucial to identify the action boundaries,

and then to recognize actions using the frames within boundaries.

Chapter 3. Invariant graph structures 25

(a)

(b)

Figure 3.4: (a) Spectrogram of the complementary graph Laplacian for all the frames in the
high-arm-wave activity video. (b) Value of ∂Eθ(k, 0)/∂k for the same video.

3.1.2 Unified graph based activity detection (UGrAD)

Activity boundary detection and activity recognition [39, 42] are two different problems

that have been at the forefront of video analysis research for the last two decades. Bound-

ary determination is the process of detecting the sequence of frames where a subject is

performing an activity, whereas activity recognition deals with the determination of the

action being performed. By improving boundary detection, the accuracy of activity

recognition is increased since the feature descriptors, used in the recognition process, are

computed using action frames [2,15,41,44,52,53]. While numerous approaches have been

developed to tackle the challenge of a robust and reliable action determination based on

a spatiotemporal image analysis framework [38], HOG [41], HOF [42], actionlets [53],

covariance [37, 50, 54, 55], histograms [2], and SMIJ [56], none has considered accurate

boundary detection to improve robustness and reliability of the activity discrimination.

Chapter 3. Invariant graph structures 26

Table 3.8: Comparison between UGrAD and other current methods average accuracy (MSR
Action3D dataset [1].)

Method Accuracy (%)

Actionlet Ensemble [53] 88.20
Lie Group [59] 89.48
Cov3DJ [50] 90.53
Covariance [54] 91.25
UGraSP [55] 93.95
UGrAD 94.37

Another challenge faced by activity recognition is the dynamic modeling of the tem-

poral evolution of the detected feature descriptors. Authors have used covariance descrip-

tors computed on video segments, leading to sensitivity to the chosen segment length [55],

or descriptors depending on sets of subsequences linked to the activity cycle, resulting

in a computationally intensive approach [50]. Others have used CRF [44], HMM [2],

conditional restricted Boltzmann machines [57], recurrent neural networks [51] and latent

variable [58] however, accurate parameters tuning and computational effort are often

impediments to obtaining satisfactory results.

With the availability of skeleton-based datasets, as those acquired by several modern

motion sensing devices, for each frame, subjects in the field of view are portrayed as

a skeletal figure obtained by connecting the 3D locations of the detected joints using

lines following a pattern resembling the human skeleton. In this work we will represent

these skeletal figures as graphs and propose a unified approach that performs simultaneous

activity recognition and activity boundary detection (UGrAD) using their complementary

form. The complementary of a graph is a graph that connects all vertices not connected

by edges in the original graph.

3.1.2.1 Action boundary determination

Let’s consider an activity video with frames {f1, f2, · · · , fM}. Each fi contains the

set of N three-dimensional coordinates representing the location of each joint (vertex)

Chapter 3. Invariant graph structures 27

within the skeletal figure. For each frame, we can construct the complementary graphs

{Ḡ1, Ḡ2, · · · , ḠM} that, contrary to the expected stable behavior of the direct graph (rep-

resenting the skeleton of the imaged subject), measures the dynamics of the activity since

it connects vertices that are expected to be moving with respect to each other. We then

evaluate the Laplacian L̄n, normalized to account for the perspective foreshortening, and

evaluate the set of eigenvalues Γ̄i ∈ RN×1. We use the latter to construct the spectro-

gram of L̄n (Γ̄ ∈ RN×M) where the columns are given by the Γ̄i. Fig.4.8(a) shows that,

within the spectrogram, the presence of an activity can be identified by a few high order

eigenvalues. Let us construct a window θ ∈ Rm×s, where m < N represents the number

of top eigenvalues and s � M the number of consecutive frames considered, in order to

seize the transition of an activity. If we define with Γ̄c ∈ Rm×M the cropped subset of Γ̄

that includes only the top m eigenvalues, we can identify the set F A of frames containing

and action:

fk ∈ F A ⇐⇒
∣∣∣∣∂Eθ(k, 0)

∂k

∣∣∣∣ ≥ T0; 0 ≤ k ≤M (3.5)

where Eθ(k, 0) represents the first row of Eθ = Γ̄
2
c ∗ θ. The partial derivative has a

number of solutions indicating a set of peaks at different frame number k (Fig.3.4(b)).

The largest peaks occur at the beginning and at the end of an activity. The selection

of the threshold T0 is carried out using an iterative approach, similar to the hysteresis

in edge detection problems, until at least the minimum number of frames required for

the polynomial fitting (see section 3.1.2.3) is selected. The process typically ends when

the start and end frames lie on the opposite outer edges of the peaks in Fig.3.4(b), thus

including the entire action.

3.1.2.2 Bipartite flow construction

Once F A and the action boundaries are detected, we determine the temporal description

of an activity by analyzing the evolution of each joint location. To achieve this, we

Chapter 3. Invariant graph structures 28

Table 3.9: Average accuracy of each activity by UGrAD using [1]. The overall accuracy is
94.37%

Activity Acc. (%) Activity Acc. (%)

1 hnd high wave 100.00 2 hnd wave 98.5
horiz. wave 93.45 side boxing 100.00
hammer 90.5 bend 59.2
catch 92.25 fwd kick 100.00
fwd punch 100.00 side kick 91.5
high throw 100.00 jogging 100.00
draw X 90.25 tennis swing 98.25
draw tick 90.00 tennis swerve 100.00
draw circle 100.00 golf swing 98.5
hand clap 100.00

introduce the concept of flow of a graph between two consecutive frames. Consider two

frames 0 < l < k < MA, where MA is the number of frames in fA, and the corresponding

complementary graphs, Ḡl and Ḡk. We define the flow operator as F : (Gl,Gk) −→ B(l,k) ∈

R2N×2N , where B(l,k), the flow diagram, is the adjacency matrix of the bipartite graph

created between Ḡl and Ḡk. To be more precise, if we take two vertices v1 and v2 of Ḡl that

are connected by the edge e1,2 with weight dp1,2 equal to the Euclidean distance within

the p-th frame, we define the flow between frames l and k as

B(k,l)
1,2 = Fk,l(vk1 , vl2) = S

1− exp[−a(dl1,2 − dk1,2)]
1 + exp[−a(dl1,2 − dk1,2)]

,

B(k,l)
1,1 = Fk,l(vk1 , vl1) = B(k,l)

2,2 = Fk,l
(
vk2 , v

l
2

)
= 0,

B(k,l)
2,1 = Fk,l(vk2 , vl1) = −B(k,l)

1,2 = −Fk,l
(
vk1 , v

l
2

)
(3.6)

where S = sgn(dl1,2 − dk1,2), and 0 < a < 1 is a scaling factor. This definition of flow

naturally provides a way to construct the bipartite graph between Ḡl and Ḡk. If the

weights dp1,2 remain unchanged between two consecutive frames, the flow will be zero.

The flow is constrained between 1 and −1 to normalize for the variations among subjects

performing different trials of the same activity and the sum of all flows between l and

k is zero. The idea behind our definition of flow is to imagine a subject performing an

Chapter 3. Invariant graph structures 29

Table 3.10: Average recognition accuracy (%) for each activity from UTKinect for [2] and
UGrAD. The overall recognition accuracy is 95.1% for UGrAD and 90.92% for [2].

Activity [2] UGrAD Activity [2] UGrAD

walk 96.5 97.5 throw 59.0 81.2
sit 91.5 97.25 push 81.5 89.25
stand 93.5 96.4 pull 92.5 96.0
pick 97.5 98.5 wave 100.0 100.0
carry 97.5 100.0 clap 100.0 98.5

activity as a closed system with no external force or energy applied. In this case, the flow

is defined in such a way that the system behaves like a conservative field.

A typical flow during high-arm-wave activity is shown in Fig.3.5(a)-(c). It can be

seen that the pattern in Fig.3.5(c) is oppositely aligned to Fig.3.5(a). This is because the

hand moves away from the body at the onset of high-arm-wave and finally it moves close

to the body at the end. The inversion of the flow reflects this motion. Fig. 3.5(d) shows

an example of a flow diagram for the action hand-clapping.

3.1.2.3 Polynomial fitting

Each flow between two vertices constitutes a time-series which is hypothesized to have a

unique pattern different for each action. We propose to capture such pattern by fitting

Legendre polynomials. Thanks to the high level of symmetry in the flow definition (3.6),

a single flow value is copied (with change of sign) in four entries in Bl,k: (vk1 , v
l
2), (vk2 , v

l
1),

(vl2, v
k
1), and (vk2 , v

l
1) reducing the number of polynomials to fit.

The selection of the set of fitting polynomials is guided by some key observations

regarding the flow, as given below.

1. There can be a constant flow across the frames in F A.

2. There can be accelerated motions across frames. (e.g. golf-swing)

3. If the initial and final positions of active joints are the same or the action is repetitive,

the flow becomes oscillatory. (e.g. hand-clapping)

4. Normal human motion is typically smooth over the frames as the frame rate is usually

Chapter 3. Invariant graph structures 30

higher than the activity speed.

5. Same actions may take different length of frames depending on the person and the

trial. Hence, the polynomial representation must consider frame length and interval.

Between the several potential candidates, observations (2)-(5) above prompted us to

choose the Legendre polynomials of the first kind as defined in (3.7) for |x| < 1. Thanks

to the orthogonality property they add the benefits of computational ease and stability

to our algorithm.

Pn (x) =
n∑
k=0

xk
(
n

k

)(
n+k−1

2

n

)
; n = 0, 1, · · · (3.7)

We assume that, excluding the symmetrical entries, each flow entry βi (where 1 ≤ i ≤ λ =

N(N − 1)/2) in B(k,l)
i,j is independent of all the others thus reducing the computational

complexity by requiring the fitting of Legendre polynomials to each entry separately.

Since Legendre polynomials are defined in −1 < x < 1, in our discrete approximation,

the interval is mapped to the MA frames comprising the action becoming x ∈ [−1,−1 +

2
MA−1

, · · · , 1].

If we choose the maximum degree to be L, with L+ 1 polynomials, we can write

Fx(βi) = b0P0(x) + b1P1(x) + · · ·+ bLPL(x) (3.8)

with bk ∈ R, −1 ≤ x ≤ 1, and L ≤MA. This can be rewritten in a matrix form as

F−1(βi)

...

F1(βi)

 =

P0(−1) P1(−1) · · · PL(−1)

...
...

. . .
...

P0(1) P1(1) · · · PL(1)

b0

...

bL

 (3.9)

Chapter 3. Invariant graph structures 31

Table 3.11: Average recogntion accuracy (%) of each activity from UCF Kinect for [3] and
UGrAD. The overall classification accuracy for UGrAD is 98.2% compared to of 95.94% for [3].

Activity [3] UGrAD Activity [3] UGrAD

balance 97.5 96 vault 92.5 98.45
clmb ldr 93.8 95.7 run 97.5 100.0
clmb up 98.8 98.4 stp bck 97.5 99.2
duck 100.0 100.0 stp frnt 97.5 100.0
hop 96.2 97.2 stp lft 96.2 98.6
kick 98.8 98.25 stp rght 98.8 100.0
leap 100.0 100.0 twist L 88.8 97.75
punch 95.0 99.25 twist R 86.2 92.4

or, more compactly, F (βi) = PB. The solution can be obtained with in a least-square

fitting fashion evaluating

B = (P TP)−1P TF (βi) (3.10)

Thanks to the orthogonality property of Pn(x), (P TP) can be simplified in the limit as

follows

P TP =

∑

x P
2
0 (x) · · ·

∑
x PL(x)P0(x)

...
. . .

...∑
x PL(x)P0(x) · · ·

∑
x P

2
L(x)

 ,P TP −−−−→
MA→∞

2 · · · 0

...
. . .

...

0 · · · 2
2L+1

 (3.11)

For each βi, the L+ 1 coefficients are taken as features resulting in a feature matrix

for an entire activity video of size Υ ∈ R
N(N−1)

2
×(L+1). The vectorized version of Υ is used

as a feature vector identifying a specific action. These vectors are used for classification

of activities using an SVM classifier.

3.1.2.4 Datasets

We test our algorithm on the datasets given in Section 3.1.1.5.

Chapter 3. Invariant graph structures 32

3.1.2.5 Results

The experimental set up is kept fairly similar for all the datasets. The size of the window

θ is set to m = 3 and s = 2. To compute the flow the scale factor a is taken as 0.02 for

MSRAction3D and 0.09 for UTKinect and UCFKinect. The maximum degree of the Leg-

endre polynomial is set to 6 resulting in 7 coefficients for βi. The degree of the polynomial

also sets the minimum number of frames required for the selection of the threshold T0.

After obtaining the set of feature descriptors Υ, an SVM with γ = 1/(num of features)

and C = 1 is used to classify the activities. A 10-round cross-validation analysis, with a

ration of 9:1 (train:test) is used with a one-against-all approach.

The overall accuracy of UGrAD for is compared with state-of-the-art techniques

in Table 3.8 (MSRAction3D dataset). The results for MSRAction3D, UTKinect and

UCFKinect are shown in Table 3.9, 3.10, and 3.11 respectively.

UGrAD, shows significant improvement in discriminating activities after properly

identifying the activity boundaries. Although UGrAD performs 0.5% better than UGraSP

in terms of the average accuracy, it can be seen from Table 3.9 and Table 3.2 that the

recognition accuracy of bending and horizontal wave actions are improved. Among all

the actions, bending is the most challenging to recognize.

In summary, the normalized flow takes care of person-specific and trial-to-trial varia-

tions in movements and reduces noise. The use of Legendre exhibits to capture constant-

speed, accelerated, and oscillatory motion patterns which can be visualized in images

depicting flow. Combining with our previous work [55], the salience of our work is found

in the comprehensive solution to person identification, activity boundary detection and

activity classification, in which the same graph-based features are used in all three tasks.

The implementation is computationally tractable and can be embedded in surveillance

appliances. Currently we are extending this work to detect the boundary and classify

very fast-changing variable-speed activities.

Chapter 3. Invariant graph structures 33

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Activity flow diagrams (B(k,l)i,j). Activity high-arm-wave: (a) activity is about
to begin, (b) middle, and (c) end of the activity. (d) Middle frame of hand-clapping. (e)-(f)

Typical start and end frames of activity videos.

Chapter 3. Invariant graph structures 34

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Pyramidal neurons from (a) primary motor cortex, (b) secondary motor cortex, (c)
prefrontal cortex, (d) somatosensory cortex, (e) primary visual cortex, and (f) secondary visual
cortex of the mouse. The dendritic branches in yellow are apical dendrites, and in green are
basal dendrites. The red square in each cell is the soma, used as the designated root node in our
analysis. This figure provides a glimpse of region-based arborial differences among pyramidal

cells. Cells differ in size and volume, which are scaled for visualization.

3.2 Neuromorphology

Neurons process information by transmitting electrical signals via complex circuitry. The

functionality of each neuron depends on a set of intrinsic factors, such as morphology,

ionic channel density, gene expression, including the extrinsic ones, such as connectivity

to other neurons [60, 61]. In 1899, Cajal [62], considered the founder of modern neuro-

science, put forward his pioneering work on neuroanatomy with detailed, accurate, and

meticulous illustrations, and posited that the shape of a neuron determines its functional-

ity. Experimental results strongly support this idea. Inspired by this fundamental work,

the study of neuromorphology primarily aims at analyzing and quantifying the complex

shape and physiology of neurons in specific functional regions to identify relationships.

Neurons vary greatly in size, shape, and length. A major obstacle towards under-

standing the brain is the development of efficient ways to encode these shapes. The

Chapter 3. Invariant graph structures 35

anatomical and geometrical features of neurons of any cell-type, for example, pyramidal

cells differ based on the regions in which the cells reside [60, 63]. Fig. 3.6 shows re-

gional variation in the structure and geometry of dendritic arbors of pyramidal cells [64].

It is observed that the number of branches, length, surface area, and volume of api-

cal dendrites is 4 − 9 times larger for hippocampal than for cortical regions, whereas in

terms of the same features of basal dendritic arbors, it is approximately 3 times [60].

Another source of variation stems from technical imprecision in measurements obtained

while performing 3D reconstruction from image stacks using software tracing tools, such

as Neurolucida [65]. Noise due to technical imprecision includes wide variations in the

number of manually or semi-automatically traced 3D locations (approximately between

60 to 70, 000), the number of ramified branches and bifurcations by different tracers, and

deletion of dendritic spines adversely affect the registration of neurons, and thereby in-

duce error in morphological feature quantification. The skeletons of dendritic and axonal

branches form a tree topology with a number of bifurcations. The bifurcations at succes-

sive stages help in a series of effective and unambiguous signal processing modules, such

as active and passive signal propagation, integration, filter, attenuation, oscillation, and

backpropagation [61,66].

From the soma to the dendritic terminals of a neuron, the diameter of the dendritic

shaft tapers [67,68]. The increased diameter of a dendritic shaft near the soma is tailored

to faster signal propagation to the soma compared to the dendritic tuft , which helps

generate action potential in the soma. Several research works consider the branches in the

proximity of soma are more important compared to the distant dendritic tuft and spines in

the analysis of neuromorphology [69–71]. The length of dendritic branch segments shows

similar behavior when propagating away from soma. For instance, the terminal segments

are longer than the intermediate branch segments for basal dendrites in cortical pyramidal

cells [63]. These observations support the Bayesian philosophy which is geared towards

Chapter 3. Invariant graph structures 36

(a) (b) (c)

(d) (e) (f)

Figure 3.7: (a) A retinal ganglion cell from the inner plexiform layer of a 9 month-old adult
mouse. The 3D reconstructed cell has 3938 3D locations, 50 bifurcations, 106 branches, 56
rooted paths, 255.52µm height, 4499.5µm diameter, 9061.14µm3 volume, 18, 213.9µm2 surface
area. (b) A 3D reconstructed (traced by Neuromantic [4]) pyramidal cell of an adult mouse hav-
ing 24, 868 3D locations, 95 bifurcations, 200 branches, 106 tips, 814.05µm height, 16341.8µm
diameter, 12569µm3 volume, 24, 825.9µm2 surface area. (c) A hippocampal granule cell (in
the dentate gyrus) of a 9 month-old mouse is traced using Neurolucida. The 3D reconstructed
neuron contains 414 3D locations with 7 bifurcations, 15 branches, 14 rooted paths, 98.33µm
height, 443.18µm diameter, 3107.27µm3 volume, and 3255.33µm2 surface area. (d) A Purkinje
cell in cerebellar cortex of a 28 day-old mouse. The reconstruction is performed by Neurolu-
cida, containing 3187 3D locations. The neuron has 391 bifurcations, 783 branches, 393 tips,
184.35µm height, 4366.24µm diameter, 12, 794.7µm3 volume, and 31, 574.8µm2 surface area.
(e) A motor cell in the spinal cord of a 10 day-old mouse, which is reconstructed with 5868
locations using Neurolucida tracer. The 3D traced neuron has 47 bifurcations, 103 branches, 58
tips, 415.6µm height, 784.158µm diameter, 4006.15µm3 volume, and 11, 931.8µm2 surface area.
(f) A long-axon projection neuron from the thalamus of a 6 months old mouse - it is traced by
Large Volume Viewer(LVV) [5] with 2818 3D locations. The traced neuron has 169 bifurcations,
265 branches, 2731.69µm height, 55, 742.44µm3 volume and 189979µm2 surface area. The color
code is the following: yellow=apical dendrites, green = basal dendrites, magenta = axons, red
= cell body/soma/root. The quantified statistics on the number of bifurcations and tips or
rooted paths that are mentioned above are extracted from dendritic arbors of each cell-type.

the analysis of morphogenesis of neurons [71]. Functions such as synaptic boosting [72],

coadaptive local spiking [73], and global spike amplification [74] suggest the use of other

morphometrics to describe the structural aspects on the functions. For example, packing

density of ramified branches and bifurcations of neuron potentially trigger intermittently

co-adpative spiking.

Chapter 3. Invariant graph structures 37

The tree-type arbors of neurons and the availability of the inventory of digitally-

traced 3D reconstructed neurons, Neuromorpho [75], provided significant momentum in

the last decade for the quantitative and qualitative assessment of neuroanatomy via graph-

based morphometrics. In Neuromorpho, the sequentially-aligned slices of microscopic

images are registered and traced using software [76], such as Neurolucida [65] and Neu-

romantic [4], and the reconstructed images can then be processed through software, such

as L-measure [77] to extract an extensive list of morphological metrics. On one hand,

there are several research works dedicated to analyze the neuromorphology of specific cell

types, such as basal dendrites of cortical pyramidal cells [63,71], GABAergic interneuron

cells [61] and others. These works account for region-specific variations in the physiology

and anatomy of a neuron cell to establish the effect of certain functions on the structure.

On the other hand, research efforts, such as blastneuron [78], neurosol [79],and TMD [69],

attempt to extract model based features, which are catered to the need for automated

classification of different neuronal cells. The motivation behind this avenue of research

is that it is impossible to identify and categorize one trillion neuronal cells by adopting

manual or even semi-automatic methods.

Towards achieving this automation, we first propose scalable morphometrics to ac-

count for primarily three morphological features, which are bifurcation angle, arbor’s

spatial extent, and branch-wise normalized fragmentation. These visually observed fea-

tures are biologically relevant for different types of neurons. Our approach is completely

automatic, coordinate independent, and does not involve any preprocessing steps, such as

neuron alignment to a fixed coordinate frame. In addition, our morphometrics are inde-

pendent of the size of a neuron, which excludes the possibility of of conventional problem

of subgraph matching. Precisely, we compute the conditional distributions of the above

mentioned three features, which serve as the feature descriptors of a neuron in our work,

NeuroBFD (named NeuroBFD for neuron bifurcations, fragmentation and density).

Chapter 3. Invariant graph structures 38

3.2.1 NeuroBFD

The rationale behind NeuroBFD is that we attempt to extract the parentnode-childnode

statistics of the features, which is similar to the bigram statistics in natural language

processing. Conventional research efforts extracted first degree statistics, such as mean

diameter, in which local and discriminatory information is squashed inside a single sta-

tistical value. Instead, we show that this set of second-degree statistics constructs sparse

and discriminatory features for neuron classification.

3.2.1.1 Feature construction

The feature construction for neuron classification is carried out on two stages - the extrac-

tion of a set of primary or raw features, and the determination of conditional distributions

for each feature in the set. The primary features that we consider are bifurcation angle,

fragmentation of each branch, and spatial density of sampled locations of each neuron.

This set of features has visually significant variations in each neuron sample. For exam-

ple, the bifurcation angle appears steeper, and the branches have ‘wrinkles’ in case of the

motor neurons when compared to the ganglion neurons.

Bifurcation angle statistics: The distribution of bifurcation angle, can be computed

for each neuron sample, and an empirical distribution of the bifurcation angle can be

obtained by ensemble averaging all such distributions. However, it is evident that the

arborization extent of a child node is dependent on its parent node in a neuron. For

example, the bifurcation angle at a node guides the locations at which its subsequent

child nodes sprawl their branches as explained in Fig. 3.8. This vital information appears

to be missing in the empirical distribution. To incorporate such dependency of bifurcation

angles, we develop a conditional distribution of bifurcation angle. In order to construct

the distribution, the algorithm starts reading the location of each node from the root node.

The set of bifurcation angles in order can be found by identifying the subset of vertices

Chapter 3. Invariant graph structures 39

(a) (b) (c)

Figure 3.8: (a) and (b) are two different neurons with designated root nodes. bk = kth

bifurcation. p = parent vertex. (a)p=immediate parent vertex of bifurcation b2. b1 is the
immediate parent bifurcation vertex of b2. Smaller angle at b1 constricts the span of its child
branches, especially at b2. (b)larger angle at b3 helps b4 to pan out. (c) describes how to

measure branch fragmentation. φ1, φ2 ≥ τ , and φ3 < τ .

for which the structural degree vector,Dvs at least equals 3. Let us denote this subset as

Bv = [p1, p2, ..., pNv];Nv < N . The bifurcation angles associated to the vertices in Bv are

θv = [θ1, θ2, ..., θNv]. Here, θk; k ∈ {1, 2, ..., Nv} is the angle between two child branch

segments coming from pk. We define the conditional bifurcation matrix Γ ∈ RS1×S1 by

Γ(i, j) =

Γ(i, j) + 1 if θi ∼ θj,

0 o.w.,

(3.12)

where S1 is the number of bins that equally divides the range [0, 180]. θi ∼ θj means

that θi is the immediate parent bifurcation angle of θj, which is explained in Fig. 3.8.

We claim that Γ is a discriminatory feature of a neuron. The example plots of Γ for one

Pyramidal and one Purkinje cells are shown in Fig. 3.9.
Table 3.12: Confusion score

Gang Gran Motor Purk Pyra
Ganglion 85.7 4.1 4.1 0 6.1
Granule 4.2 81.7 1.4 0 12.7
Motor 33.3 0 66.7 0 0
Purkinje 0 0 0 100 0
Pyramidal 1.4 3.3 3.2 1.2 90.9

Branch fragmentation: Fragmentation of each neuronal branches is one of the impor-

tant features for neuron classification. For certain neuron cell types, the branch arbors

Chapter 3. Invariant graph structures 40

and their curvatures are smooth. Whereas, some cell types contain neurons with many

wrinkles. For quantitative assessment of such branch wrinkles, we count the number of

non-differentiable sampled locations at each branch. We set an arbitrary parameter τ as

the threshold for angles between consecutive branch segments as explained in Fig. 3.8.

Let the set of leaf nodes (pendant vertices) of a neuron is Lfv. Let the combined

set of Bv and Lfv be Vbl. We define a fragmentation measure on each vertex in Vbl. Let

vk, vm ∈ Vbl be a leaf node and the parent bifurcation vertex (see Fig. 3.8) of the leaf

node respectively. There are M points with M − 1 segments in the branch (vk −→ vm)

of a neuron. There are m1(< M) thresholded non-differentiable points in (vk −→ vm).

We define a normalized fragmentation score for vk as χ = m1

M−1 . By default, we set the

normalized fragmentation score of the root vertex as unity. The normalized fragmentation

matrix κ ∈ RS2×S2 of the branch is defined as

κ(i, j) =

κ(i, j) + 1 if χi ∼ χj,

0 o.w.,

(3.13)

where S2 is the number of bins for the range of normalized fragmentation score, which

is [0, 1]. χi ∼ χj indicates that the vertex having normalized fragmentation score as χj

is the parent bifurcation vertex of the one with the score as χi (Fig. 3.8). Examples of

κ for a typical motor and purkinje cells are shown in 3.9(c) and (d) respectively. The

motor cell exhibits significant fragmentation in each branch of the neuron. In contrast,

the purkinje cell has comparatively minute fragmentation in branches.

Spatial density: The spatial density of a sampled location of a neuron is defined as

the number of branches that pass through a unit volume centered at the location. In

NeuroBFD, we exploit the complementary graph structure of a neuron to obtain a scale

or depth based density measure. In graph terminology, the scale or depth of a vertex of

a neuron (tree structure) is defined as the smallest number of branch segments between

Chapter 3. Invariant graph structures 41

the vertex and the root node. Let there are mδ(> 1) vertices at a depth δ from the

root node of a typical neuron. A subset of mδ vertices generate mδ+1 child vertices at

the next depth level δ + 1. By the property of a tree, there are no edges within mδ

vertices. Similar argument holds for mδ+1 vertices. By construction, the complementary

of the tree graph contains edges within and between the above mentioned sets of vertices.

In NeuroBFD, we ignore the edges between two consecutive depth levels. Let dδ and

dδ+1 be the average distance between all pairs of mδ and mδ+1 vertices respectively. A

conditional distribution, Ψ ∈ RS3×S3 of all such (dδ, dδ+1) is a discriminatory feature

descriptor for a cell type. Here, S3 is the number of bins which encompass the range

[0, 1]. As a convention, if at any depth, there is only one vertex, we set the average

distance at that depth as zero. Fig. 3.9(e) and (f) show Ψ for a typical pyramidal and

Purkinje cells respectively. The prominent diagonal of Ψ for the pyramidal cell implies

that the branches and the sampled locations are largely in proximity. The off-diagonal

entries in the Ψ for Purkinje indicates a significant spatial variation in the location of

sampled points in the neuron. After computing Γ, κ, and Ψ, we vectorize each feature

matrix, and then concatenate them to form the feature descriptor, Υ ∈ RS2
1+S

2
2+S

2
3 for a

neuron. It can be noted from Fig. 3.9 that the features matrices are sparse as are the

feature descriptor.

3.2.1.2 Results

We apply NeuroBFD on two different datasets containing digitally-traced neurons. The

first dataset contains five cell types - ganglion, granule, motor, Purkinje, and pyramidal,

which are taken from only one subject type, the mouse. The second dataset is taken from

the work [79], which has pyramidal, motor, serotonergic, and ganglion as cell types taken

from human, rat, cat, mouse and drosophila. We show the effectiveness of NeuroBFD by

providing the confusion matrix for the first dataset. For the second dataset, we compare

Chapter 3. Invariant graph structures 42

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Bifurcation matrix for (a) pyramidal and (b) Purkinje cells. Fragmentation for
(c) motor and (d) Purkinje cells. Spatial density for (e) pyramidal and (f) Purkinje cells.

our results with [79] and [6]. In all the experiments, we set S1, S2, and S3 as 36, 25, and

36 respectively. The threshold, τ for measuring the fragmentation is set as 150.

Dataset 1: This dataset contains a total number of 4434 neurons, out of which 1377

are ganglion, 1195 are granule, 116 are motor, 57 are Purkinje, and 1729 are pyramidal

neurons. The training dataset contains 1288 (ganglion), 1124 (granule), 113 (motor), 54

(Purkinje), and 1563 (pyramidal) neuron samples with rest of the data as the test dataset.

This 5-class classification is carried out by using support vector machines (SVM) with

linear kernel. The linear kernel is suitable because each feature descriptor is sparse and of

sufficiently high dimension (∈ R3217). In our approach, we build 10 classifiers by taking

each pair of cell types together. So there are 10 linear SVMs which are trained using

the training dataset. We apply the majority voting algorithm to determine the predicted

class of each test sample.

The confusion score is given in the following table 3.12. The overall accuracy is 85%.

The accuracy for motor cells drops because it has similar morphology as of ganglion. In

addition, the experimental test is carried out only on 3 samples of motor cells.

Chapter 3. Invariant graph structures 43

Dataset 2: The description of the dataset is provided in Table 3.14. We compare

the results of NeuroBFD against NeuroSoL [79] and Path2Path [6]. The metrics for

comparison against NeuroSoL and Path2Path are chosen as avg. interclass similarity
avg. intraclass similarity

and

avg. intraclass distance
avg. interclass distance

. The values of these metrics are expected to be smaller as smaller

intraclass distance implies the same-class features are close together, and larger interclass

distance implies the between class features are far apart. In NeuroBFD, we select the

same metric as in Path2Path. The comparative result is provided in Table 3.13. The
Table 3.13: Pairwise interclass distances

NeuroBFD NeuroSoL path2Path
Pyra-Motor 0.18 0.24 0.49
Motor-Seroto 0.21 0.35 0.57
Pyra-Seroto 0.10 0.12 0.47

results indicate that NeuroBFD outperforms the other two approaches

NeuroBFD adopts the conditional distribution based approach in which the one to

one correspondence between the graph structure of a neuron and the distribution of its

features can not be maintained. Instead of working in the transformed domain (in case

of NeuroBFD, it is the distribution), we use the graph domain to construct anatomical

features in terms of graph matrices.

3.2.2 Neuron solver using Laplacian (NeuroSoL)

We propose an automated algorithm, NeuroSoL to obtain a feasible solution by modeling a

neuron as a graph with the sampled points on the neuron as vertex-set. In this framework,

comparing the anatomy of neurons translates to graph matching. It is important to notice

that graph matching is a computationally challenging problem. More specifically, graph

isomorphism poses a computational bottleneck in performing shape matching of graphs

given the same cardinality of vertex sets. The challenge becomes intensified for large scale

graphs when the cardinalities of vertex sets are different leading to an exhaustive search

of subgraph isomorphism.

Chapter 3. Invariant graph structures 44

A typical dataset of registered neurons contains the coordinates of locations or ver-

tices of each neuron. The assignment of coordinates significantly reduces the possibility of

isomorphic graphs. In order to seize the morphological variation, we extract two crucial

features - structure and connectivity in terms of graph measures. In addition, the geo-

metric variation is captured using the combination of original and complementary graphs

of a neuron [80]. We claim that the assembly of sorted graph measures extracted from

these two graphs of a neuron constitute a set of robust feature descriptors.

3.2.2.1 Vertex labeling

The graph model of a neuron in fig. 3.10(a) is shown in fig. 3.10(b) with labels on vertices

and weights on edges. Given such a simple, connected, and weighted graph G, labeled1 by

fN it is possible to define a new labeling function fI , by introducing a bijection (permu-

tation) I such that fI = I(fN(V)). The various properties of the graph described by the

matrices A, D, and L, are invariant with respect to permutation of the vertex labeling.

What we are aiming for, is to define a bijection fI such that, given a graph, vertices are

labeled with numbers based on the decreasing order of relevance.

(a) (b) (c) (d)

Figure 3.10: (a) A neuron sample, and (b) its graphical representation. (c) Sorted structure
graph, and (d) connectivity graph.

When defining the concept of relevance, we look at the number of incident edges and

the actual degree of each vertex. The former is a measure of structural relevance of a

vertex to the graph. The actual degree, obtained by adding up the weights of incident

edges, reflects the relevance of connectivity induced by the vertex to the graph. Fairly

1For the rest of this work, we will use the word labeling to indicate vertex-labeling.

Chapter 3. Invariant graph structures 45

large values of both for a vertex indicate that the vertex contributes significantly to the

entire graph. On the other hand, small values of both imply that the vertex has low

priority. This way of quantification of relevance is manifested in degree-based sorting

in the decreasing order of relevance of vertices. As a result of sorting, the elements

of structure and connectivity Laplacians are permuted. It is to note that sorting is a

well-known candidate of the class of vertex-labeling functions.

To define vertex-labeling of structure Laplacian, first we derive the structure graph of

a neuron by assigning unity-valued edge weights. Under this setting, the degree matrix is

written asDs and the corresponding Laplacian as Ls. The connectivity graph is obtained

by fixing each weight as the Euclidean distance between two vertices that form the edge.

The derived degree and Laplacian matrices are denoted by Dc, and Lc respectively. For

remainder of the description, we use subscripts s and c as abbreviations for structure

and connectivity.

(a) (b)

Figure 3.11: (a)-(b) Correspondence of relevance (shown in colors) between the connectivity
graphs of two different neurons of two different sizes.

In order to describe sorting for structure and connectivity graphs, we introduce two

sorting functions (vertex labeling) fs and fc. The rearranged Laplacians based on sorted

Chapter 3. Invariant graph structures 46

degree matrices respectively are given by

Lfs = Ls
(
fsofN

)
, Lfc = Lc

(
fcofN

)
(3.14)

To couple structure with connectivity, we also define a ‘mixed’ sorting function fc←s.

Often, while sorting the diagonal of Lc, a subset of vertices may have same degree, which

leads to an inconsistency in the assignment of relevance. To resolve this problem, the

order of relevance of the subset inDfs is examined and then plugged into the connectivity

Laplacian as shown in eq. 3.15.

Dfc←s =

di > dj Then fc←s(i) ≺ fc←s(j),

di = .. = dj Check vi = .. = vj in fs

randomly o.w.

(3.15)

The structure and connectivity graphs of fig.4.5(b) are shown in fig.4.5(c) and (d) respec-

tively. It is important to note that the labels of vertices in fig.3.10(c)and(d) are different

from fig.3.10(a). The labels are given in capital alphabets {A,B, ...,K} with decreasing

order of relevance i.e. A ≺ B ≺ ... ≺ K. The connectivity graph is mixed-sorted. It is

because to define the order of relevance between D and E in fig.4.5(b) (both of degree

3), the order is checked in the structure graph (E ≺ F).

Fig. 3.11 exhibits our method to compare two neurons with different cardinalities

using only connectivity graphs. The color of each vertex in the two graphs indicates

the correspondence of relevance. It means that, for example, the green vertex of the

left neuron is compared with that of right neuron in fig. 3.11. The two vertices of the

comparatively larger circles in fig. 3.11(b) are left unmatched with fig. 3.11(a). This is

why we introduce two dummy vertices in the feature descriptor of fig. 3.11(a) to make the

Chapter 3. Invariant graph structures 47

cardinality of vertex-sets equal. It is evident that this procedure automatically prunes

leaves (vertices with structural degree 1) without involving any preprocessing step.

Table 3.14: Neurons used in our experiments

Archive Animal Region Cell Type

Allman Human Neocortex Pyramidal
Jacobs Human Neocortex Pyramidal
De Koninck Rat Neocortex Pyramidal
Brown Rat Neocortex Pyramidal

Cameron Cat Spinal Cord Motor
Fyffe Cat Spinal Cord Motor
Lu Lichtman Mouse Brainstem Motor

Chiang Drosophila Adult central Serotonergic
Chiang Drosophila Optic lobe Serotonergic

Chalupa Mouse Retina Ganglion
Miller Mouse Retina Ganglion

3.2.2.2 Feature extraction

The sorted structure Laplacian (SSL) and mixed sorted connectivity Laplacian (MSCL)

of a graph capture the morphology of the neuron. In SSL, the set of vertices with degree

3 indicates the number of bifurcations. The sum of diagonal elements of SSL gives twice

the total number of branches. Due to tree-structure of neurons, the top two path lengths

from the highest degree vertex of SSL gives the height and depth of a neuron. MSCL

reflects the deformed topology of a neuron, total length, maximum path distance to root.

To capture the geometric features, Laplacians (L̄fs , L̄fc←s) of complementary graph are

added in the feature assembly. The final feature descriptor of a neuron with N sample

points becomes

ΨN =
[
Lfs|Lfc←s|L̄fs|L̄fc←s

]
(3.16)

To compare two neurons, the feature descriptors are first aligned by optimizing a

cost function. This procedure is discussed next.

Chapter 3. Invariant graph structures 48

3.2.2.3 Optimization

Let us consider two neurons with vertex sets of cardinality N1 and N2 such that N1 =

N2 +M and 0 < M < min(N1, N2). The feature descriptors of the neurons are ΨN1 and

ΨN2 respectively. To measure element-wise distance between ΨN1 and ΨN2 , ΨN2 needs

to be zero-padded accounting for the rows (columns) of deficit vertices. Therefore, M

zero rows (columns) are added to the bottom (right) of each Laplacian in ΨN2 . Let the

zero-padded ΨN2 be Ψ0
N2

.

However, ΨN1 and Ψ0
N2

still might be element-wise misaligned. The obvious reason is

that when M zero rows (columns) are attached to the bottom (right) of ΨN2 , it is implicitly

assumed that the dummy M vertices have least relevance. This might not be the case for

ΨN1 . To resolve the problem, the locations (vertex numbers) of the zero rows (columns)

are tweaked, which leads to a set of four vertex labeling functions f i2←1 : VN2∪VM −→ VN1

with VM as the set of dummy vertices. For example, i = 1 is for Lfs in eq. 3.16. The four

labeling functions correspond to four Laplacians in ΨN2 respectively.

In a mathematical framework, the alignment problem searches for a bijective function

f2←1 between the vertex sets of GN1 and GN2 to maximize a cost function D,

f̂ i2←1 = max
f2←1

D
(
LN1
i ,LN2

i

)
. (3.17)

In eq. 3.17, LN1
i is the ith Laplacian of ΨN1 , and D is the cost function, given by

Θ = Φ(LN1
i)� Φ(LN2

i); ε ∈ (0, 1)

D
(
LN1
i ,LN2

i

)
=

1TΘ1

||
(
LN1
i −L

N2
i

)
�Θ||2F + ε

(3.18)

In eq. 3.18, Φ is a function which assigns unity to a non-zero element in a matrix. �

is element-wise matrix multiplication. 1 is a column vector of all 1s. The numerator

Chapter 3. Invariant graph structures 49

of the above cost function measures the number of non-zero entries in both matrices

being aligned (overlapped) for a specific f2←1. The denominator computes the distance

between two Laplacians after applying f2←1. Overall, the objective implies maximum

alignment with minimum distance between a pair of Laplacians. It is assumed that no

neuron is fully-connected. Otherwise, ||L̄N1

i − L̄
N2

i ||2F = 0 for the complementary of a

fully-connected graph.

In order to achieve a score by comparing two classes (neuron-type, subject-type), Ci

and Cj, we calculate the tuple of minimum separability, λ1, and maximum separability,

λ2, between two classes as our similarity measure as follows:

λ1 = minx∈Ci,y∈Cj
D(ΨNi

,ΨNj
)

λ2 = maxx∈Ci,y∈Cj
D(ΨNi

,ΨNj
) (3.19)

3.2.2.4 Results

We apply NeuroSoL to 4 classes of digitally-traced neurons taken from different test

subjects [75] as shown in Table 3.14. The effectiveness of our proposed approach is

demonstrated by presenting intra-subject variation and cell type specific variation. It

is to notice that the separability measure in eq. 3.19 uses the cost function in eq. 3.18.

Therefore, fairly large values of λ1 and λ2 in eq. 3.19 of two neurons implies that the

neurons belong to the same class. On the other hand, two neurons with comparatively

smaller values of λ1 and λ2 belong to different classes respectively. The neuron samples

are manually selected from [75]. The maximum and minimum sizes of all the neurons

used in our experiment are 4244 and 213 respectively.

The cell type test samples include four categories of neuron - Pyramidal, Motor,

Serotonergic, and Ganglion. Before computing the separability scores, all the samples in

each cell type are put together followed by a random selection of 15 neurons from each

Chapter 3. Invariant graph structures 50

cell type. This process is iterated 4 times and the separability scores are noted for each

pair of cell types.

The cell type maximum and minimum separability values are given in Table 3.15.

Due to space-constraint, the scores are reported by rounding off to nearest integers.

Table 3.15: Cell type minimum and maximum separability

Pyra Motor Sero Gangl

Pyra (37− 101) (11− 58) (41− 109)
Motor (61− 73) (67− 112)
Sero (12− 22)

To compute the subject-specific variability, subjects are taken from different archives.

As an example, to measure the human-specific separations, Allman and Jacobs archives

are considered to be two separate classes. Under this test setting, the intra-subject

variations by taking human, cat, rat, and drosophila are reported in Table 3.16.

Table 3.16: Intra-subject separation

Human Cat Rat Dros

(302− 377) (168− 237) (318− 571) (147− 213)

It can be observed from Table 3.15 that the cell type classes - serotonergic and

ganglion are well-separated as indicated by low values of separability scores. The large

deviations in other pairs can be attributed to different subjects involved in the computa-

tion of separability. As an example, comparison between Pyramidal and Motor cell types

involves four subjects - human, rat, cat, and mouse. For intra-subject variation from

Table 3.16, Human and Rat show comparatively higher scores indicating class-specific

similarity respectively.

NeuroSoL is a registration-independent approach because it incorporates the Eu-

clidean distance between each pair of vertices as defined by the graph connectivity. The

use of vertex relevance, and the combination of neuron graph and its complementary

graph can capture the geometry of the neuron. It enables the visualization of one-one

correspondence of vertices between a pair of neurons. However, NeuroSoL is plagued

Chapter 3. Invariant graph structures 51

with the variation of the number of sampled locations of all neurons. In short, NeuroSoL

is cardinality dependent, implying the possibility of the subgraph isomorphism problem

and triggering sub-optimality in its optimization step.

In summary, conventional state-of-the art methods [7, 78] for the classification of

neurons can be broadly divided in two categories. Research in the first category, which is

supervised in nature, employs different feature extraction algorithms followed by suitable

classifiers to obtain classification accuracy in percentage. The validation of the methods

are performed by adopting a series of statistical tests. However, the significant variation

in the neuron skeletons precludes the selection of the optimal set of morphometrics as

features. Adoption of feature transformations, such as principal component analysis

(PCA) or kernel transformations, may improve the classification accuracy. Nevertheless,

these transformations obscures the identity of discriminating features as the transformed

space is formed by linear or nonlinear composition of extracted features. In addition,

the classification accuracy of categorization does not quite explain the physiological and

structural differences between two neurons.

The second category follows mostly unsupervised approaches and attempts to com-

pute pairwise distances between neurons. Authors in [81] used Fourier based shape de-

scriptors to encode the global shape of a neuron, which however ignored the local features

of the neuron arbor. Gillette [82, 83] performed a sequence alignment based algorithm

for categorization by decomposing a neuron into a sequence of branches. The approach

failed to consider geometric features. Blastneuron [78] adopted a mixed strategy. Us-

ing a supervised approach, the method first extracted 21 global morphological features

and 13 moment invariant features to retrieve a set of targets that closely matches to

each test neuron in terms of the anatomical structures. Each target is then RANSAC

sampled [84] and aligned optimally to the test neuron, which outputs a distance value.

This unsupervised routine decides the output category of the test neuron based on the

Chapter 3. Invariant graph structures 52

minimum distance criteria. The method involved initial pruning of branches and resam-

pling of each neuron, which collectively alters the morphology statistics. Moreover, the

retrieval accuracy of 233 projected neurons (PN) of Drosophila drops significantly to 39%

as the number of potential candidates that are to be compared with the target increases.

NeuroSoL [79] offered a graph-theoretic method which is free from registration and re-

sampling. In spite of its appeal of using graph theory, the matrix alignment routine is

NP-hard in nature, thereby producing suboptimal results. The problem of comparing a

pair of neuron topologies can also be regarded as a graph kernel based similarity mea-

sure problem [85]. However, the rationale behind conventional graph kernels, such as

the random walk kernel may be inconsistent with the morphological understanding of a

neuron.

Instead of modeling a neuron as a generic graph, the neuron can be modeled as a

specialized graph that contains a collection of rooted paths, where each path starts from

the soma, called the root node, and ends up in a dendritic terminal. It is important to

note that each path acts like an atomic neuron, as it contains the soma and a dendritic

end to complete a circuit. Most of the synapses along a path will be nearer the soma than

at the end of the path. It is convenient to think problems, such as synaptic plasticity as

the evolution of a set of synapses over time along all the paths. During this evolution,

there are birth, death and rearrangement of paths. Following the same logic, quantifying

the problem of distinguishing two neurons can be equivalently mapped as finding the cost

of evolving a set of circuits optimally from one neuron to the other.

Another relevant fact is that path based models [6,69,86] integrate both global (over-

all shape based approach) and local (vertex or sampled location based approach) features

of neuron topology. Topological morphology descriptor (TMD) [69] aimed at solving the

categorization problem, encoded the birth and death of path segments over time in a per-

sistence diagram used as a barcode. The authors showed that TMD exhibits robustness to

Chapter 3. Invariant graph structures 53

erroneous 3D sampling and ambiguous branching when the neuron is reconstructed using

two different tracing tools. However, the conversion of a discrete 3D reconstructed neuron

to the persistence image space is irreversible and many-to-one. Based on the distance

used to mark and quantify the birth and death of a branch or component of the neuronal

tree, a single persistence image may correspond to multiple neurons. In addition, an ap-

propriate distance measure between persistence diagrams is still unavailable. The work

in Path2Path [6] shows potential to address the neuron cell categorization problem and

can be extended to several other related problems, such as synaptogenesis, degeneration

of neurons due to neurological diseases, and synaptic plasticity which can be studied by

inspecting the path statistics. The work described in this article is motivated by the

framework of Path2Path.

3.2.3 What is Path2Path and its variants?

The principle of Path2Path is based on finding the optimal correspondence between the

paths of one neuron to that of the other using a proposed metric. It is an intuitive

circuit-based approach that appeals to its electrical engineering inventors. In Path2Path,

each sampled location on a path is endowed with 3D coordinate values and two features,

concurrence and hierarchy. The concurrence value at each location denotes the number

of paths from the soma to dendritic ends that visit that node. The hierarchy value at

a location indicates the depth of the location from the soma in terms of the number of

bifurcations between the point and the soma. The hierarchy value of a location counts the

number of bifurcations one has to cross while traversing from the soma to that location.

Using the 3D coordinates, concurrence, and hierarchy values of each location on a path,

authors in Path2Path proposed an empirical metric that outputs a distance value between

two paths. A path from a neuron corresponds to a path from another neuron if the

distance between the paths is minimum over all the paths of the latter neuron.

Chapter 3. Invariant graph structures 54

This approach has several drawbacks. The Path2Path algorithm is dependent on

the number of sampled locations of each path and the registration. The selection of the

metric is arbitrary in a sense that the metric is null when two paths have the same set

of concurrence values but different locations and hierarchy values. Therefore, it does

not qualify the axioms of a metric. In addition, the proposed distance measure uses the

Euclidean distance between two paths as a part of the distance computation routine,

which favors the pair if they are aligned in proximity after registration. The algorithm

of finding the correspondence is not one-to-one and it often leads to the degenerate case

where all paths from one neuron are matched to only one path in the second neuron.

The problem exacerbates when the number of samples in the two paths are unequal.

One potential solution is to resample each path using a constant step [78], but may,

unfortunately, eliminate the importance of the locations, such as curvature of a rooted

path prior to resampling.

3.2.4 ElasticPath2Path

ElasticPath2Path [86] attempted to address the previously mentioned problems. It intro-

duces a mid-point based resampling routine as opposed to constant-length resampling.

To ensure one-to-one correspondence between a pair of paths from two different neurons,

the Munkres algorithm [87] is employed. Most importantly, ElasticPath2Path envisages

the problem of distinguishing two neurons as a continuous deformation between the cor-

responding paths of the neurons. Such homeomorphism is computed by applying the

square root velocity function (SRVF) [9] to the Euclidean coordinates of each sample on

a path. The visual deformation of the corresponding paths has an enormous impact in the

validation of the path based on customized features and the proposed distance measure.

Chapter 3. Invariant graph structures 55

3.2.4.1 Neuron as a graph

We model a neuron with a simple, connected, undirected tree G with a designated

root node. A neuron G with n dendritic terminals can be decomposed into n paths

fi; {1, 2, ..., n}. fi is a continuous function for each path such that fi : [0, 1] −→ R3

with f(0) = (0, 0, 0). Let Γ be the set of all such fis, which is a linear subspace of the

classical Wiener space. For numerical computation, fi is finitely sampled and each sample

is treated as a vertex of the neuron graph.

The concept of path concurrence, Cfi of a vertex originates from counting the number

of times a given vertex is revisited in all fis. If Cfi(ts) = k; ts ∈ [0, 1], k ∈ N , the vertex

at ts on the path fi is shared among k paths of the neuron, G. As given in [6] the path

concurrence value can be mathematically represented by

Cfi(t) = k; t ∈ [0, 1], j1, j2, . . . , jk ∈ {1, 2, ..., n}

fi(t) = fj1([0, 1]) ∩ fj2([0, 1]) ∩ · · · ∩ fjk([0, 1]). (3.20)

After the computation of the path concurrence values at all the vertices, authors in [6]

introduced the concept of path hierarchy values. The path hierarchy value of a vertex

on a path fi, Hfi(ts) is the number of times the concurrent paths do not visit the vertex

while traversing from the root node to the dendritic terminal of fi.

In [6], each vertex on an arbitrary path, fi therefore has 3D location, path concur-

rence value Cfi(ts) and path hierarchy value Hfi(ts) as shown in Fig.4.5. The distance

metric between any two paths fi and fj was given in [6] as

D
(
fi, fj

)
=

∫ 1

0

|Cfi(t)− Cfj(t)||fi(t)− fj(t)|
λ+

√
Hfi(t)Hfj(t)

dt. (3.21)

In eq. (3.21), λ is a positive constant to avoid singularity.

Chapter 3. Invariant graph structures 56

3.2.4.2 Elastic morphing and SRVF

The metric in (3.21) contains the absolute difference term |fi(t) − fj(t)|, which is the

Euclidean distance between the two paths. From the point of view of geometry, a path

can be thought of as an open curve which starts from a designated root node, and ends

at a given dendritic terminal. However, the submanifold ⊂ L2([0, 1],R3) consisting of all

the open and closed curves is not Euclidean. To measure the geodesic distance between

fi and fj, we need a suitable shape representation and a Riemannian metric.

It is shown in [9] that after the transformation of the space of curves by square

root velocity (SRV) function, the space becomes Euclidean with the Euclidean dis-

tance acting as an elastic metric. The SRV of an arbitrary path fi can be given by

qi(t) = ḟi(t)/
√
||ḟi(t)||; t ∈ [0, 1]. The elasticity comes from the fact that a curve can

continuously deform from one shape to another like a rubber band. To perform such

continuously elastic morphing, one needs to take care of scaling variability, rotation,

translation, and reparametrization of curves.

Translation: The SRV transformation inherently takes care of the translation fac-

tor.

Scaling: To tackle the scaling variability, authors in [9] restrict the lengths of all

the curves to unity, which transforms the flat Euclidean space to a sphere. Therefore,

in order to retrieve the intermediate deformations from one curve to another, one needs

to find and traverse the geodesic path on the hypersphere. This poses a problem in

the path matching between neurons. The restriction of unit length significantly alters

the morphology of the paths. This is because the paths from the root to the dendritic

terminals of a neuron differ in lengths, creating the distinctive morphology of the neuron.

In our work, we do not impose the restriction of unit length of a path.

Rotation and Reparametrization: The rotation group, SO(3) and the reparametriza-

tion group, Γ are compact Lie groups. Let M be the Euclidean manifold of all the open

Chapter 3. Invariant graph structures 57

curves after SRV transformation. The individual quotient spaces, M/SO(3) and M/Γ

are also submanifolds inheriting the Riemannian metric of M , which ensures that the

quotient space, M/
(
Γ × SO(3)

)
is also a submanifold. Therefore, any arbitrary path

fi ∈ M is, at first, subjected to rotation and reparametrization, if required, followed by

the SRV transformation qi to find an element in the quotient space. The registration of

fi with respect to fj via rotation is performed by Kabsch algorithm [88], which registers

two sets of coordinate vectors.

To introduce reparametrization, first note that the numerical implementation of

(3.21) requires an equal number of vertices in fi and fj. However, in practice, the num-

ber of vertices differs significantly from path to path. In addition, the locations of the

vertices are fairly nonuniform to account for the path fragmentation, wiggliness of path

segments [7], which are essential structural characteristics of a neuron. It is evident that

for two curves of arbitrary lengths, more samples (vertices) approximate (3.21) as an

integral. The error in distance, |fi(t) − fj(t)| between two curves decreases with the

increase in the number of samples. Notice that the resampling of a path is a class of

reparametrization function.

In contrast to the resampling routine in Path2Path, we keep the positions of the

actual vertices on a path fi fixed, and add other samples in between in an iteratively

sequential fashion. Between two consecutive samples on a path, we insert the midpoint

of the samples as a new point. This procedure retains the neuronal characteristics of

each path. The concurrence, Cfi , Cfj and the hierarchy, Hfi , Hfj values are interpolated

as C̃fi , C̃fj and H̃fi , H̃fj respectively.

Let the number of vertices of fi and fj are Ni and Nj. The number of samples in

the resampling procedure is fixed as ρ. After reparamterization, the paths become f̃i and

f̃j, which are subjected to SRV function producing qi and qj respectively. The qi is then

Chapter 3. Invariant graph structures 58

rotated as q̃i with respect to qj for registration. The distance D
(
fi, fj

)
between the two

paths is computed by inserting q̃i, qj, C̃fi , C̃fj , H̃fi andH̃fj in (3.21).

3.2.4.3 Path-to-Path matching

In Path2Path [6], the matching algorithm is greedy, which has a serious drawback of

singularity in which all paths in one neuron can be matched to only one path in the other

neuron. We tackled the problem by defining a one-to-one job assignment problem. Let us

consider two different neurons, G1 and G2 having the sets of paths as P1 = {f 1
1 , f

1
2 , . . . f

1
|P1|}

and P2 = {f 2
1 , f

2
2 , . . . f

2
|P2|} with |P1| ≤ |P2| respectively. Here |P | indicates the cardinality

of the set P . The distance measure, D(f 1
i , f

2
j) as defined in eq. (3.21) can be regarded

as a cost between two paths f 1
i and f 2

j . Let C ∈ R|P1|×|P2| be the matrix with C(i, j) =

D(f 1
i , f

2
j). The path-to-path matching problem between two neurons can be regarded as

a variant of a job assignment problem. Here, |P1| is the number of workers and |P2| is the

number of jobs that are to be assigned to the workers. As in most of the cases, |P1| 6= |P2|,

the assignment problem is unbalanced. We append (|P2| − |P1|) zero rows to the bottom

of C as dummy workers. The optimal one-one job assignment is then performed using

the Hungarian algorithm [87].

3.2.4.4 Datasets and Results

We apply Elastic Path2Path (ElasticP2P for short) on a dataset containing (.swc format)

files of digitally-traced neurons taken from Neuromorpho.org. The dataset consists of

five major cell types - pyramidal, granule, motor, purkinje, and ganglion. To restrict the

model organism, we consider the murine neurons only. There are total 4434 neurons used

in our study, out of which 1729 are pyramidal, 1195 are granule, 116 are motor, 57 are

purkinje, and 1377 are ganglion. An example of the path correspondences in ElasticP2P

in case of three major cell types, which are pyramidal, motor, and ganglion are exhibited

in Fig. 3.12. The pyramidal, motor, and ganglion neuron samples contain 28, 35, and

14 rooted paths respectively. The costs of morphing from one neuron to another neuron

Chapter 3. Invariant graph structures 59

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: The path correspondences are shown in the corresponding colors in case
of (a)-(b) pyramidal-motor, (c)-(d) pyramidal-ganglion, and (e)-(f) motor-ganglion cell
types. The paths which are matched are depicted in thick colored lines. The paths

which are left out (larger neurons) are shown in thin black lines.

are 478.67 (pyramidal-motor pair), 514.09 (pyramidal-ganglion pair), and 353.14 (motor-

ganglion pair). We also check the consistency of ElasticP2P by computing distances

between same samples, which turn out to be null.

Due to the variation in the cardinalities of the sets for the five cell types, we resort

to unsupervised classification. The dataset is partitioned into a set for clustering and a

Chapter 3. Invariant graph structures 60

test set for determining the retrieval accuracy. We perform different levels of partitioning

of the dataset to test the resilience of our approach over NeuroBFD and Path2Path. At

each level, we partitioned the dataset five times randomly maintaining the same ratio

between the size of the training and test dataset. The retrieval is carried out using

majority vote rule. At each partition, for a candidate in the retrieval set, we compute

the nearest 11 samples from the cluster set. The class which appears largest number

of times out of 11 labels is assigned to the candidate neuron. We average the retrieval

scores and show them in Fig. 3.13. In all the instances of this experiment, ρ is kept 100.

The results suggest that ElasticP2P exhibits consistent performance over a wide range of

Figure 3.13: The retrieval performance (in %) of ElasticP2P against Path2Path [6]
and NeuroBFD [7].

data partitioning compared to Path2Path and NeuroBFD. The classification method in

NeuroBFD is supervised, which used a set of linear SVMs. With the gradual reduction

in the amount of training data, the performance of NeuroBFD collapses as evident from

Fig. 3.13. At the data ratio of 9 : 1, NeuroBFD performs marginally better (85.1%)

than ElasticP2P (84.3%). The consistent improvement over Path2Path can be attributed

to the insertion of the one-to-one path assignment routine and the rectified resampling

routine in ElasticP2P.

Chapter 3. Invariant graph structures 61

The only hyperparameter of ElasticP2P is ρ, the number of samples after resampling.

We demonstrate the effectiveness in terms of retrieval accuracy and computational de-

mand in terms of execution time of our algorithm with different choices of ρ in Fig. 3.14.

In Fig. 3.14, a pyramidal cell and a ganglion cell containing 28 rooted paths with 463

Figure 3.14: The plot shows the distance between a pyramidal and a ganglion neuron
and the computational time (in seconds) when 25, 50, 100, 200 and 400 samples are

taken per path.

3D locations and 40 paths with 2588 3D locations respectively are selected. The distance

and computation time required as a function of the number of samples after resampling

are shown.

ElasticP2P laid the foundation of the visualization as well as the classification of

complex tree-structures. However, elasticPath2Path failed to address the problem where

there is a significant difference in the number of paths between two neurons. As the cor-

respondence is one-to-one, it asserts that elasticPath2Path performs subgraph matching.

Both Path2Path and elasticPath2Path did not consider important anatomical morpho-

metrics, such as bifurcation angles and partition asymmetry. Besides, elasticP2P is still

registration-dependent, cardinality-dependent and contains no biology-driven rationale

behind the selection of its distance function.

Chapter 3. Invariant graph structures 62

Figure 3.15: The figure shows a set of morphometrics that are used in our work. The metrics
are numerically computed from a neocortical pyramidal cell with its relevant anatomical infor-
mation provided at the bottom of the figure. A rooted path of the neuron (at the center) is
shown (pink) with the 3D locations and bifurcation points, and the corresponding concurrence
and hierarchy values are noted on the left hand side of the figure. 18 paths are originated from
the soma, indicating 18 synaptic terminals. The immediate bifurcation point has a concurrence
value of 6, because, including the current path, there are a total of 6 paths that end up in 6 dif-
ferent terminals. Concurrence values of the rest of the 3D locations are computed accordingly.
It can be observed that there are four concurrence values that are marked on the chosen path,
{1, 2, 6, 18}. The hierarchy values are obtained by sorting the indices of these four values in re-
verse order, which in turn describe the depths of locations with respect to the root. On the right
hand side, three morphometrics on the selected paths are demonstrated, which are tortuosity,
divergence, and bifurcation angle. Quantification of the wrinkle or tangle of a segment (tortu-
osity) existing between either two consecutive bifurcation points, or a bifurcation point and a
following terminal is performed by measuring the curve length s, and the Euclidean distance
between the start and end locations, d. Neocortical pyramidal cells show pronounced wrinkles
in their branches. Divergence of a location entails competitive behavior. With a distance scale
fixed beforehand, the number of branch segments that are in the immediate neighborhood of
a location defines its divergence. Bifurcation angle is another important morphometric, which
we measure by using the inner product between two vectors emanating from the bifurcation
point. Wide bifurcation angles connote greater exploration of extracellular environment. More
branches and smaller bifurcation angles, in general, lead to higher divergence. Neurons with

higher divergence tend to have longer path lengths.

3.2.5 NeuroPath2Path

Key aspects of NeuroPath2Path

1) The inception of NeuroPath2Path comes from the realization of neuromorphogenesis

and the self-similar phenotype of neuronal arbor. Since its birth from the soma, a path of

a neuron has an exploratory attribute to collect external resources by the minimal-length-

maximal-routing [34] strategy. Due to the parsimonious exploitation of intrinsic resources

Chapter 3. Invariant graph structures 63

(ion density, ATP and other electrophysiological items), the path, which fails to procure

external resources, retracts. The exploratory attribute of a path can be expressed by the

concurrence values at each sample point of a path. More paths imply more exploration.

As the path matures, it has a competitive attribute [71, 89, 90] with respect to the other

paths in its neighborhood in order to form a synapse. To account for competition, we

count the number of paths in the proximity of each sampled location on a path and assign

the count to that location.

2) The fractal dimension [60,91] of a neuronal arbor is considered one of the key mor-

phometrics because the fan-out branches of a neuron bear self-similarity. In Path2Path

and elasticPath2Path, the notion of matching the paths ignores this important feature.

We extend the use of Munkres algorithm to perform one-to-one matching in a sequential

fashion, which replicates the self-similar behavior.

3) As path features, we consider the bifurcation angle, partition asymmetry, and

fragmentation score to each 3D location on a path. It is shown that the distribution of

bifurcation angles in the basal dendrites of cortical pyramidal cells follows a Von Mises

distribution [63]. An experimentally observed fact is that the mean bifurcation angle of

branches ordered in a reversed fashion is discriminative for pyramidal cells in different

cortical regions. However, the mean bifurcation angle of branches in standard order

remains similar for the pyramidal cells. We take the standard ordering of branches, instead

of the reverse order, to discriminate different neuronal cell types. Partition asymmetry [27,

60, 92] is another visually-significant morphometric. We use the caulescence measure as

defined in [60] to account for the tree asymmetry.

4) We provide visualization of the continuous deformation between a pair of neurons

and enumerate path similarity statistics to justify the correspondences between the paths.

In contrast, conventional methods perform feature customization and extraction, and the

classification, in supervised or unsupervised settings, depends on the abstract feature

Chapter 3. Invariant graph structures 64

Figure 3.16: The figure presents a schematic representation of our proposed method and work
flow. [Top Left]: An SWC [8] file encoding the 3D reconstruction of a neuron is read, and
later the neuron is decomposed into an assembly of rooted paths. Each rooted path, spanning
from the soma to a synaptic terminal, contains the 3D coordinates of each location traced on
the path. [Top Right]: Each rooted path is subjected to feature extraction from each location
on the path. The exhaustive list of the features that are used in our approach is given in the
bottom left (blue box). We extract 7 features, implying that the path descriptor is a matrix of

dimension (number-of-samples× 7).

space and the strength of the classifier. In those methods, the mapping between the space

of 3D reconstructed neurons and the feature space is irreversible and abstract. Therefore,

apart from the statistical quantification and analysis, it is ambiguous whether improved

accuracy of the categorization stems from the trained classifier or the discriminating

strength of the extracted features or both. In NeuroPath2Path, the classification problem

is modeled as a variant of the transport problem. First, the correspondence of paths

between a pair of neurons are decided in the feature space. Next, the correspondence is

utilized to deform one neuron to the other. The distances computed between the paths

and the deformation together justify the validity of the correspondence.

5) With suitable feature selection, NeuroP2P framework can be applied to perform

morphological analysis of any cell type with ramified branching arbors, such as microglia

and astrocytes. The continuum that is present in the evolution from one cell type to

Chapter 3. Invariant graph structures 65

Figure 3.17: A schematic representation of the square root velocity function (q), which is
computed at locations on an open curve. This function endows the curve with elasticity so that
it can continuously deform (bend, stretch, shrink) to another curve. In a neuron, each rooted

path can be modeled as an elastic open curve.

the other can be utilized in the analysis of cell differentiation. As an example, under

certain constraints, the strategy of continuous morphing with branch splitting (explained

later) can retrieve the intermediate states of a neuron cell while it evolves from a neural

progenitor cell to its fully developed state. In short, NeuroP2P can serve as an effective

tool for cell-specific informatics, which is not restricted to classification only.

3.2.5.1 Path modeling of a neuron

As mentioned in the introduction, a digitally-traced 3D sampled neuron can be modeled

as a graph. Let the graph be represented by G =
(
V , E ,W

)
, where V is the number

of 3D locations as vertices and E is the set of edges connecting the vertices with the

corresponding weights W [23]. G is said to be simple if it does not contain multiple

edges between any two vertices. A graph is called undirected if there is no preferred

direction associated to an edge. A sequence of contiguous edges is called a path if no

vertex and edge are repeated in that sequence. A path of length k has k number of edges

or equivalently (k+ 1) vertices. A sequence of contiguous edges is called a trail if no edge

is repeated. If all the vertices except the start and the end of a trail are distinct, it is

called a loop. A simple graph without a loop is termed as a tree. If the degree of each

vertex is fixed, tree has the fastest growth by volume, hence smallest curvature [93]. A

Chapter 3. Invariant graph structures 66

graph is said to be single-connected if there exists at least one path between a pair of

vertices. In case of a neuron, G is a simple, undirected, weighted, and single-connected

tree.

A path can be considered as an open curve, fi(t), t ∈ [0, 1], as defined in differential

geometry. The cardinality of the set of vertices, or ,equivalently, the total number of 3D

locations, is given by |V| = N . Here, there are n dendritic terminals, which implies that

the total number of paths rooted at the soma is n. Let Γ be the set containing all the

paths fi, i ∈ {1, 2, .., n}, which is a linear subspace of the classical Wiener space. Each

path is sampled with the number of samples as φ with the sampled path denoted by f̃i.

We extract K features for each sample on f̃i, which can be compactly given by the feature

matrix for fi as Θi ∈ Rφ×K . Let Θ be the ordered set containing the feature matrix for

all the paths, Θ = {Θ1,Θ2, ...,Θn}, where Θi corresponds to the ith path f̃i. The path

model of a neuron G can be mathematically represented as H = {Γ,Θ, µ}, where µ is a

measure that we define in the next section. Note that we use the set of paths, Γ, as an

ordered set which has a one-to-one correspondence with the elements in Θ. The standard

branch order of a path, fi, is defined as the order in which the locations of bifurcation

on a path are visited from the root to the end of the path. Similarly, the reverse branch

order is defined when the direction of traversal is reversed. For interclass comparison of

neurons, we use the standard order. Whereas, for intraclass comparison, we follow the

reverse order.

3.2.5.2 Proposed methodology

Our proposed method, which is sequential, scalable and modular, consists of four key

stages as depicted in Fig. 3.16. In the first stage, centrally curated files of 3D-traced

neurons in SWC format (or equivalent formats) are read and then preprocessed to extract

only the dendritic arbors, including the soma. Several preprocessing modules, such as

Chapter 3. Invariant graph structures 67

Figure 3.18: The figure depicts the evolution of 15 paths of one pyramidal neuron to 11 paths
of another pyramidal neuron. Both the neurons are procured and curated from the neocortex
(occipital, secondary visual and lateral visual) brain regions of 2 month-old mice. On the
leftmost column, the top figure corresponds to the candidate neuron 1; the bottom figure is the
target neuron 2. The evolution is represented in multiple arrays such that the ODD rows are
read left-to-right and the EVEN rows are read right-to-left. The color associated with each path
acts as a marker for the correspondence. At each intermediate step, the morphing of each path
is calculated in the SRVF space [9] and then the path is projected back in the real 3D domain. In
accordance with known properties of the SRVF, the SRVF takes care of the translation between
paths. However for visual clarity, we intentionally allow the rotation of each path with respect
to the root (soma) while the path advances towards merging with the target path. Prior to
applying the SRVF, we reorganize the coordinates of each neuron in decreasing order of the

ranges along the X, Y , and Z axes, implementing an in-place rotation of each neuron.

range-wise calibration, bifurcation location determination, and synaptic tip identification

are employed to aid in preparing an assembly of rooted (soma) paths.

In the second stage, a set of features are extracted from each path, forming a feature

descriptor of the path, Θi∀i. An exhaustive list of the features that are used in our

method is provided in Section 3.2.5.2.1, and the systematic quantification of the features

is provided in the Appendix. Notice that each path descriptor can be populated with

additional structural and geometric features in order to perform fine-grained analysis.

The central aspect of the third stage is finding an appropriate cost function, as

illustrated in Section 3.2.5.2.2. The cost function assimilates several anatomical features

(such as segment length and bifurcation angle) and physiologically relevant factors (such

as the competitive behavior, decaying anatomical importance of a path from the soma

to synapse). A rigorous optimization framework is also formulated to find the relative

contributions of such factors. In short, this stage delivers a distance measure between a

pair of paths to the last stage.

Chapter 3. Invariant graph structures 68

With a distance measure between neuron paths in hand, this measure is augmented

in the final stage as elucidated in section 3.2.5.2.3. We theoretically establish the corre-

spondence of paths of a pair of neurons by repeatedly applying the Munkres algorithm.

In contrast to the conventional approaches where the distance between neurons inher-

ently accounts for sub-graph matching, we propose a full-tree matching algorithm. The

repeated application of the Munkres algorithm reveals the fractal or self-similar nature of

a pair of neurons. Equivalently, the following question may be posed: how many identical

copies, taken together, of the first neuron can match with the second neuron, assuming the

second neuron is much larger than the first one? Once the correspondence is found, neu-

rons are diffeomorphically transformed to each other by morphing corresponding paths.

This visual representation aids in justifying the correspondence of paths.

3.2.5.2.1 Feature extraction on a path We extract a set of discriminating features

from each path fi ∈ Γ of H, which are bifurcation angle (bi), concurrence (Ci), hierarchy

(ξi), divergence (λi), segment length (βi), tortuosity (κi), and partition asymmetry (αi).

Therefore, Θi = [bi, Ci, ξi, λi, βi, κi, αi] ∈ Rφ×7. Each feature encodes a specific structural

property of a neuronal arbor, as described in the Appendix. A schematic of different

features along with the systematic quantification is shown in Fig.3.15.

3.2.5.2.2 Path alignment and path distance measure Given an unequal number

of samples in a pair of paths, finding the appropriate distance between two paths or open

curves is challenging. Due to the resampling bias imposed by a given tracer, in general,

a path contains erroneous sampled locations which could alter the path statistics. For

example, adding an extra leaf vertex changes the concurrence values of all the locations

on a path. Unlike conventional approaches that used different resampling procedures,

such as mid-point based resampling, RANSAC sampling, and spectral sampling, we use

the help of the branch order as mentioned in section 3.2.5.1 for suboptimal alignment.

Chapter 3. Invariant graph structures 69

Consider two neurons, G1 and G2, with the corresponding path models given as H1

and H2, respectively. Let f and g be the two paths that are arbitrarily selected from

Γ1 and Γ2, respectively. Without loss of generality, let us assume that f and g contain

φb1 and φb2, the number of locations from which the current paths bifurcate. In the case,

where φb1 < φb2, we append (φb2 − φb1) zeros at the end (standard branch order) or at the

front (reverse branch order) of a feature vector on f .

Experimental evidence [63] suggests that the importance of a bifurcation location

on a path decays as one travels the path from the soma to the synaptic end. We utilize

this relative importance by way of hierarchy values of the bifurcation locations on a

path. Let the sequential order of hierarchy values from the root to the terminal on f be

ξf = [ξ1, ξ2, ..., ξφb1]. Using ξf , the kth importance weight is given by wk = 1
ξk+ε

/
∑φb1

j=1
1

ξj+ε
.

ε is introduced to avoid the indeterminate case. According to the hierarchy, it is obvious

that ξ1 < ξ2 < ... < ξφb1 . Thus, w1 > w2 > ... > wφb1 .

Let us consider a feature υ ∈ {b, C, λ, κ, β, α}. The values of the feature on the

paths, f and g, are defined by

υf = [υf1 , υ
f
2 , ..., υ

f

φb1
, 0, .., 0︸ ︷︷ ︸
φb2−φb1

] (3.22)

υg = [υg1 , υ
g
2 , ..., υ

g

φb1
]

The distance between υf and υg, weighted by the importance factor, is given by

d(υfg) =

√√√√ 1

φb2

φb2∑
k=1

wk(υ
f
k − υ

g
k)

2 (3.23)

Chapter 3. Invariant graph structures 70

This distance is computed for each υ ∈ {b, C, λ, β, κ, α}. The overall distance between

the paths f and g can be expressed as a weighted average of individual distances.

µfg = δ1d(bfg) + δ2d(Cfg) + δ3d(λfg)

+δ4d(κfg) + δ5d(βfg) + δ6d(αfg). (3.24)

For simplicity, we take δi = 1
6
∀i and consider the final distance as the intrinsic dis-

tance between the neurons. For classification, we determine δ through optimization using

maximizing− interclass−minimizing− intraclass distance strategy (See algorithm 2

in the Appendix). We term δ as the relative importance of features.

3.2.5.2.3 Path assignment and self-similarity Let the number of paths in H1 be

|Γ1| = n1. Similarly, for H2, this value is |Γ2| = n2. Without loss of generality, let us

assume n1 ≤ n2. Using eq. 3.24, the cost matrix of paths between G1 and G2 becomes

D (Dij = µij, i ∈ Γ1, j ∈ Γ2). By applying an analogy for the path assignment as a job

assignment problem with n1 workers and n2 jobs, we adopt the Munkres algorithm to find

the optimal assignment of jobs to the workers from D. In most cases, including inter- and

intra-cellular neurons, the job assignment problem is an unbalanced n1 < n2. We append

(n2−n1) zero rows to D to serve as dummy workers. ElasticPath2Path [86] employed this

technique and resulted in an output of n1 optimally matched paths between G1 and G2.

However, this is essentially subgraph matching, which may lead to misclassification while

dealing with two structurally similar, but different, cell types. For example, hippocampal

CA3 pyramidal and cerebellar Purkinje cells have similar dendritic branch patterns, but

significantly different number of paths. To resolve this problem we devise an algorithm,

given in the Appendix, by applying Munkres algorithm repeatedly to obtain a full-tree

matching. To meet such criterion, the algorithm gives n2 pair of paths. Let the pair be

(γ11, γ21), ..., (γ1n2 , γ2n2), where γ1i ∈ Γ1 and γ2j ∈ Γ2. Recall that n1 < n2, which implies

Chapter 3. Invariant graph structures 71

that some of the γ1i are repeated while forming the pair. Finally, the distance between

G1 an G2 is given by

χG1G2 =

n2∑
k=1

µγ1kγ2k (3.25)

Let bn2
n1
c = T . Then, this procedure to find the correspondence is termed as

T−regular matching, which in turn can be thought of T nearly self-similar structures

akin to a fractal system. The detailed algorithm is provided in the Appendix. There are

four modules that are sequentially executed in the algorithm. The first module mathe-

matically deciphers the relatively self-similar anatomy of a larger neuron compared to a

smaller one, yielding the number of copies of the smaller one needed to stitch together

to approximately obtain the larger one. The routine runs for bn2

n1
c times, which indicates

that each path in neuron 1 (containing n1 paths), is matched with bn2

n1
c paths of neuron

2 (containing n2 paths). Here n2 > n1.

The second module runs for the remaining unpaired paths of neuron 2. The assigned

correspondence is added to the list of paired paths from the first module. However, not

all the pairs are anatomically consistent. This is dictated by an internal constraint of

Munkres algorithm, in which the assignment is carried out without replacement. In the

Munkres algorithm, if one ‘worker’(a path from neuron 1) is assigned a ‘job’ (a path from

neuron 2), then the ’job’ is not available for further assignment. Therefore, if the distance

between two paths is significantly large, it demands further inspection whether the pair

of paths is morphologically different to each other or the algorithmic constraint induces

the large distance value. This motivates us to introduce the third module.

In the third module, we inspect the pair of paths having distances more than a

threshold. The threshold is selected based on the skewness, median and standard devia-

tion of the distance values. As mentioned earlier, in order to find the distance of a feature

on two paths (eq. 3.23), we append zeros to the path having relatively fewer number of

Chapter 3. Invariant graph structures 72

Figure 3.19: The figure shows the distribution of paths in each pyramidal cell category from
Dataset 1. By glancing at the distribution profiles, a set of inferences can be drawn. The
distribution of paths in primary motor is fairly uniform. For neurons from the somatosen-
sory cortex and primary visual cortex, the histogram is right-skewed, indicating a majority of
neurons with the number of paths lying in the range [10, 40]. The probability distribution of
somatosensory pyramidal neurons resembles a right-skewed gamma distribution, and that of
primary visual neurons closely follows an exponential distribution. The profiles of secondary vi-
sual and prelimbic neurons are poorly understood due to scarcity of samples. Most importantly,
their distributions are entirely overlapped (within [10, 40]) in the region where the majority of
primary visual and somatosensory neurons can be sampled. From the figure, it is evident that

the number of paths alone is not sufficiently discriminatory.

locations than the other. The choice of traversal order dictates to which side the zeros are

appended. Notice that more zeros lead to higher distance value between paths, and this

happens only when there is significant mismatch in the highest level of hierarchy. This

fact can be interpreted from the morphological viewpoint. A path with a large number

of bifurcation locations (so, large maximum hierarchy value), called a central path of a

neuron, exploits the environment of the neuron extensively when compared to path with

Chapter 3. Invariant graph structures 73

Figure 3.20: Relative importance δ for subsets of classes of Dataset 1. Each color corresponds
to a specific feature and the area, subtended by the color in a pie chart, indicates its relative
importance. By property,

∑
δ = 1, which implies a probability distribution. The color codes

are as follows. green-divergence, orange-bifurcation angle, gray-partition asymmetry, yellow-
concurrence, deep blue-tortuosity, sky blue-segment length. The pie charts taken together
asserts a set of inferences. (1) The relative importance of features δ of all the classes (marked
‘overall’) somewhat follows a uniform distribution. (2) Segment length and concurrence are
two predominant features when the pyramidal neurons from primary motor cortex (motor-1)
are compared to the rest of the classes. (3) For the prelimbic class, divergence, tortuosity, and
segment length appear to be most important. (4) δ for the somatosensory class toggles between

two distributions with comparatively smaller and larger importance of concurrence.

fewer number of bifurcations. Unless otherwise required, a path with large hierarchy val-

ues should not be compared with a path with much smaller maximum hierarchy value.

The highest level of hierarchy values of two paths are given by h1 and h2 with h1 < h2.

We set a criteria that if |h1 − h2| > max[h1,h2]
2

, we do not consider the distance between

the pair, and opt for the best match in terms of minimum distance for each path of the

pair separately. This is outlined in the reassignment module. The reassigned pairs are

added to the list of paired paths serving as the list of correspondence.

Chapter 3. Invariant graph structures 74

Figure 3.21: This gallery of images captures the progressive evolution of paths from a granule
neuron to a pyramidal one. The granule neuron is procured from the hippocampus (dentate
gyrus) of a 5 month-old mouse, containing 6 rooted paths. The pyramidal neuron is sampled
from the neocortex (occipital lobe, secondary visual, lateral visual) of a 2 months old mouse,
containing 22 paths. The evolution is represented in multiple arrays such that the ODD rows
are read left-to-right and the EVEN rows are read right-to-left. In the first column, the top
image is the granule cell and at the bottom is the pyramidal one. Structurally, the pyramidal
neuron is larger than the granule one. However, they are properly scaled to fit for visualization.

3.2.5.2.4 Path morphing Once the correspondence of paths between neurons is

established, it is imperative to know the structural similarity between the paths - whether

a pair of paths are structurally similar to each other, or the pair is structurally incoherent

but the algorithm outputs such a pair due to its internal constraints. This is achieved in

two ways: with a visual representation by morphing the paths of one neuron to that of

the other using an elastic framework, and by extracting path statistics. A rooted path of

a neuron can be considered as an open curve as shown in Fig. 3.17 [9,86]. Each location

on the path can be considered as a function of a parameter,t ∈ [0, 1]. The square root

velocity function (SRVF) that is applied on a location f(t) is defined as q(t) = ḟ(t)√
||ḟ(t)||

.

For a pair of paths i and j, we obtain qi and qj, which assists in retrieving the intermediate

Chapter 3. Invariant graph structures 75

deformations as linear combinations of qi and qj given by qnij = qi(1−n)+nqj; n ∈ [0, 1]. n

denotes the intermediate algorithmic time steps. Although the deformations are exhibited

using the 3D coordinates of the locations of a path, the deformations can also be computed

in the feature domain. An example of the continuous morphing process between two

pyramidal neurons from the secondary visual cortex of the mouse is shown in Fig. 3.18.

The 15 paths of the former neuron merge with 11 paths of the latter upon termination

of the morphing process. This implies that more than one path of the first neuron have

the same final destination path of the second neuron. It is noted that our algorithm

does not consider the costs that are incurred by the merging or splitting of paths during

progression. The assessment of such costs requires biophysical measurements of neurons,

such as metabolic cost of merging or splitting of branches. Therefore, the cost between

paths in eq. 3.24 is proportional to the cost of structural disparity instead of biophysical

costs.

The prime question is: why do we need to inspect intermediate deformations? Sta-

tistical assessment of anatomical similarities between paths is sufficient to validate the

correspondence that is obtained from the Munkres algorithm. However, to make the cor-

respondence necessary, the intermediate deformations should comply with key cell-type

characteristics [9]. So we use the SRVF framework to show the deformations so that any

noticeable incoherence can be attributed to the feature selection, distance measurement,

or both algorithms even though we might obtain improved classification accuracy in the

end.

3.2.5.3 Datasets and results

We validate the approach on two datasets that are collected from a centrally curated

on-line repository of 3D reconstructed neurons, Neuromorpho.org [75]. To demonstrate

the strength of our approach, one dataset is compiled for intraclass and the other one for

interclass analysis and comparison.

Chapter 3. Invariant graph structures 76

3.2.5.3.1 Dataset-1 (Intraclass) This dataset contains 3D-traced neurons from 6

distinct regions of the mouse neocortex. The regions with their cortical locations are

visual-1 or primary visual (occipital), visual-2 or secondary visual (occipital), prelimbic

(prefrontal), somato-1 or primary somatosensory (somatosensory), motor-1 or primary

motor (frontal), and motor-2 or secondary motor (frontal).

We experiment with 62 neurons of motor-1, 68 neurons of motor-2, 24 neurons of

prelimbic, 204 neurons of somato-1, 237 neurons of visual-1, and 30 visual-2 neurons with

625 neurons in total. The neurons vary widely in their morphological characteristics, such

as the number of paths in each neuron. The histogram of paths corresponding to each

category is shown in Fig. 3.19.

Next, we investigate the relative importance of each feature (mentioned in sec-

tion 3.2.5.2.1) in terms of δ when comparing a set of classes. For space constraint, we

provide δ values separately for each pair of classes and all the classes taken together. The

relative importance is listed in Fig. 3.20 by a pool of pie charts. A set of class-specific

inferences regarding the relative importance is enlisted in the figure description. The pie

charts present a comprehensive view of feature strength. In practice, however, the values

are required to report the distance between a pair of neurons. The values are reported in

Table 3.17.

It is worthwhile to note that although there is significant variance in feature strength

when all pairs are considered, the distribution approximates a uniform distribution when

all classes are taken. This result endorses the selection of our features for all-class classi-

fication tasks. It is also important to mention that this framework can incorporate any

set of path-specific features, not restricted to our selected features only.

In order to verify the consistency of the path correspondence obtained from Munkres

algorithm (provided in section 3.2.5.2.3), we statistically evaluate each pair of paths

Chapter 3. Invariant graph structures 77

Table 3.17: Importance weight δ values for dataset-1. For space constraint, we provide
feature-specific importance weight for classification in case of pairwise classes and all classes

separately.

Tortuo Bifur-angle Part-aym Concur Seg-len Diverg
Motor1-Motor2 0.0729 0.1072 0.0876 0.2644 0.3794 0.0955
Motor1-Prelimbic 0.0820 0.0737 0.0631 0.2262 0.4483 0.1067
Motor1-Somato 0.0706 0.0929 0.0646 0.2328 0.4175 0.1218
Motor1-Visual1 0.0689 0.1230 0.0659 0.3317 0.2878 0.1227
Motor1-Visual2 0.0499 0.1212 0.0812 0.2612 0.3952 0.0912
Motor2-Prelimbic 0.2719 0.0737 0.0703 0.0899 0.5367 0.0484
Motor2-Somato 0.0452 0.0256 0.0328 0.4008 0.3730 0.1266
Motor2-Visual1 0.0167 0.0773 0.1041 0.2996 0.2969 0.2055
Motor2-Visual2 0.0545 0.0411 0.0564 0.2235 0.5489 0.0756
Prelimbic-Somato 0.1314 0.1168 0.1121 0.0568 0.4621 0.1187
Prelimbic-Visual1 0.2091 0.0821 0.0617 0.1012 0.4615 0.0795
Prelimbic-Visual2 0.2311 0.0551 0.0453 0.0790 0.3556 0.2339
Somato-Visual1 0.0693 0.0598 0.0584 0.1319 0.5816 0.0941
Somato-Visual2 0.0144 0.0310 0.2043 0.6963 0.0159 0.0382
Visual1-Visual2 0.0075 0.0880 0.1482 0.3551 0.3558 0.0473
Overall 0.0785 0.0807 0.1736 0.1956 0.2600 0.2076

in the correspondence list using pyramidal neurons from two different regions (the so-

matosensory cortex and secondary visual cortex.) The neuron from the somatosensory

cortex (neuron-2) contains 28 rooted paths, while the other (neuron-1) has 11 rooted

paths. Table 3.18 provides the exhaustive list of path correspondences, distances be-

tween corresponding paths, correspondences obtained by a competitive approach named

ElasticPath2Path [86], and the best correspondences of the paths of neuron-2 with that

of neuron-1. Notice that the best correspondence of a path f of neuron-2 is the path g

of neuron-1, which yields minimum distance with f . Whereas, the Munkres algorithm

works on the criteria where the sum of path distances (in our case 11 paths at a time) is

minimized.

In Table 3.18, the two columns on the left enumerate the pair that consists of the

path number of neuron-1 and that of neuron-2. A subset of paths of neuron-1 is repeated

because neuron-2 (with 28) has more paths than neuron-1 (with 11). So from neuron-

1 to neuron-2, the correspondence is a surjective mapping. This is in contrast with

ElasticPath2Path, where the mapping is bijective and, as result of that, the algorithm

Chapter 3. Invariant graph structures 78

outputs only 11 pairs in the correspondence list. The rest of the 28− 11 = 17 paths are

left unmatched, yielding a solution of the subgraph matching problem. The unmatched

paths are marked with ‘NA’ in the fourth column.

The last column, tagged as the best match, identifies only {4, 5, 8, 9} path indices out

of 11 paths of neuron-1. Nevertheless, this best matching algorithm also elicits a potential

solution for subgraph matching. There are certain extreme cases where all paths of one

neuron are matched with only one path of the other neuron, posing degenerate solutions

of the neuron matching problem. We mark the correspondences in yellow, where the

results of our algorithm and best match coincide.

Recall that neuron-1 has 11 paths and neuron-2 contains 28 paths. Careful obser-

vation of the first column of the table suggests that the set of numbers {1, 2, ..., 11} is

repeated twice in the serial order followed by 6 path indices which are {9, 4, 10, 8, 2, 5}.

Here, Munkres algorithm is applied thrice. Each time Munkres algorithm outputs 11

pairs of paths for correspondence. Therefore, the first two passes encompass 11 ∗ 2 = 22

pairs leaving 28 − 22 = 6 paths of neuron-2 unassigned. Before applying the third pass,

the cost matrix D is cropped with a dimension R11×6. The cropped cost matrix is then

transposed (R6×11), zero-appended (R11×11) and subjected to Munkres. The above obser-

vation also indicates that 2 self-similar copies of neuron-1 approximates neuron-2 in the

sense of minimum path to path distance. Therefore, the relative fractal index of neuron-2

with respect to neuron-1 is 2 6
11

or 2.545.

The question is: can the arithmetic average (which is 0.92) of the ‘Distance’ column

of Table 3.18 be regarded as the final distance between the neuron-1 and neuron-2?

Unfortunately, it is not. The reason is explained in section 3.2.5.2.3 and reiterated briefly

in the following sentences. After computing the correspondences (column-1 and column-

2), we identify the defective sets of pairs for which there are significant differences in

the hierarchy levels. The larger the difference, the larger the number of zeros that are

Chapter 3. Invariant graph structures 79

appended to each feature on the path, raising the chances of technical error in the final

distance value. In the table, the defective pairs are emboldened with blue color. We

delete these pairs and replace the correspondences of path indices 18 and 9 (neuron-2)

with their best matches from neuron-1. Note that path indices 7 and 4 of neuron-1 have

already been matched with other paths of neuron-2, which are 7 − −28, 4 − −11, and

4−−12. Therefore, those paths are not subjected to re-assignment. After inserting the

best matches for the path indices 18 and 9 (which are 9 and 5 from neuron-1 respectively),

the corresponding distance values are noted. This is described in the fourth routine,

‘Reassignment’ of algorithm 2. The final distance between the two neurons turns out as

0.90 (rounded off). The competitive approach, ElasticP2P produces a distance value of

0.67, which implies that the two neurons are more similar. This is discordant with the

fact that the two neurons are sampled from two different regions and have two distinct

arbor types. This disagreement can be explained due to subgraph matching nature of

ElasticP2P. Neuron-1 with 11 paths is well-matched with a part of neuron-2. However,

the rest 17 paths of neuron-2 are structurally dissimilar with neuron-1. In this case, our

method, NeuroPath2Path performs significantly better in distinguishing two neurons in

terms of distance owing to its full-graph matching property.

For classification, we compute the importance values δ from (3.24) and show them in

Table 3.17. The importance values are applied to compute the distance between a pair of

neurons. Using our distance function, we resort to the K nearest neighborhood classifier.

We randomly partition the dataset into our training and test set using a constant ratio

and rerun the experiment 5 times. The ratio that we maintain is 0.1 and 0.2 as train and

test datasets. As the number of paths that a neuron has is a distinguishable feature for

certain classes, we devise a strategy to test each neuron from the testing dataset. For

a neuron with number of paths as nP , we seek candidate neurons from the training set

with the number of paths ranging in [nP −L, nP +L]. Overall, NeuroPath2Path contains

Chapter 3. Invariant graph structures 80

Table 3.18: Distance and correspondence between paths. The correspondences between the
paths of neuron-1 and neuron-2 are enlisted in the first two columns. The numbers in yellow
indicate that the correspondence obtained by NeuroP2P matches with the candidates of best
correspondence in the sense of minimum distance. The pairs in blue are subjected for further

verification because of large differences in the hierarchy values (Routine 4 in Algorithm 2).

Index (Neuron-1) Index (Neuron-2) Distance ElasticP2P [86] Best match
1 25 1.0595 1 9
2 2 0.8031 2 5
3 27 0.4530 3 5

4 12 0.7910 4 4

5 3 0.5571 5 5
6 26 0.6165 6 5
7 28 0.5690 7 5

8 5 0.5606 8 8

9 23 0.6271 9 9
10 13 0.7904 10 4
11 24 0.6096 11 5
1 7 1.4997 NA 8
2 1 0.9902 NA 9
3 15 1.1052 NA 5
4 11 0.9223 NA 9

5 6 0.5932 NA 5
6 17 1.7108 NA 9
7 18 1.2869 NA 9
8 20 0.8704 NA 9
9 4 0.7708 NA 5
10 14 0.9186 NA 5
11 10 1.1796 NA 9
9 8 0.8504 NA 5
4 9 1.2279 NA 5
10 16 1.1810 NA 5
8 19 1.1658 NA 9
2 21 1.1522 NA 5

5 22 0.8931 NA 5

two hyperparameters, K (number of nearest neighbors) and L. THis step is followed by

the identical testing procedure while considering the interclass dataset. We fixed L = 50

for our experiments. As noted before, we adopt the reverse and standard branch orders

for dataset-1 and dataset-2, respectively.

With the ratio of train and test as 8 : 2, the confusion matrix of NeuroPath2Path

for an instance of random partition of data is shown in Fig. 3.26. It can be seen that,

Chapter 3. Invariant graph structures 81

while NeuroPath2Path distinguishes Motor-1, Visual-1, and Visual-2 quite well, the class

of Somato-1 is significantly misclassified with Motor-1, Motor-2, and Visual-1, leading to

a decline in the classification score.

Figure 3.22: Confusion matrix of an instance of classification using dataset-1. The overall
accuracy is 66%. Here, we set L = 50 and K = 3.

Next, in Fig. 3.23, we illustrate the comparative performance of NeuroPath2Path

against TMD and NeuroSoL. The train to test ratio is set at 8 : 2. NeuroSoL shows

an erratic behavior as K increases. TMD offers a consistent margin of classification

accuracy per K. Here, at a given value of K, margin implies the difference between the

maximum and minimum scores of 5 experiments which are independently instantiated

by randomly partitioning the dataset with 8 : 2 train:test ratio. Fig. 3.23 suggests that

NeuroPath2Path achieves peak performance when K is set as 7, but with a noticeable

margin. To scrutinize the performance of TMD and NeuroPath2Path, we routinely

Figure 3.23: The figure shows comparative performance of NeuroPath2Path against TMD and
NeuroSoL using different values of K in K-NN classifier. At each K, we perform 5 experiments
for each of these methods and the associated scores are shown with the mean (colored square)

and associated range of values.

inspect the class-wise retrieval accuracy, a crucial metric which is obscured in Fig. 3.23

due to the averaging effect. The result is shown in Fig. 3.24. In a majority of cases, despite

Chapter 3. Invariant graph structures 82

Figure 3.24: This figure shows one typical instance of classwise retrieval accuracy of Neu-
roPath2Path and TMD. NeuroPath2Path maintains better classwise performance than TMD.
We use 62 neurons of motor-1, 68 neurons of motor-2, 24 neurons of prelimbic, 204 neurons of
somato-1, 237 neurons of visual-1, and 30 visual-2 neurons. It is evident that TMD is adversely

affected by class imbalance.

comparable overall classification scores, TMD tends to be affected by class imbalance,

leading to significantly poor accuracy for few classes.

3.2.5.3.2 Dataset-2 (Interclass) The second dataset consists of 3D-reconstructed

neurons that are traced from five major cell types of the mouse: ganglion, granule, motor,

Purkinje, and pyramidal. We experiment with an imbalanced pool of 500 ganglion cells,

490 granule cells, 95 motor cells, 208 purkinje cells, and 499 pyramidal cells, where the

corresponding SWC files are obtained from the neuromorpho repository. The cell-specific

distribution of paths is shown in Fig 3.25.

For classification, we compute the important weights δ of each features, and due to

space constraints, the δ values are enumerated in Table 3.19 for pairwise classes and the

case with all the classes taken together. The importance-weighted distance value, µfg in

(3.24) is used to compute the distance of a pair of neurons. We empirically find that the

nonlinear transformation of µfg, given by 1
1+exp(−µfg) , yields an improved classification

performance.

With a train:test ratio as 8 : 2, one instance of the confusion matrix, obtained

by NeuroPath2Path is provided in Fig.3.26. We demonstrate the effectiveness of Neu-

roPath2Path over two state-of-the-art approaches - Topological Morphological Descriptor

(TMD) [69] and NeuroSoL [79]. For each value of K, we randomly partition the dataset

5 times maintaining a constant 9 : 1 ratio between the train and test datasets. In short,

for every K, we obtain 5 accuracy scores, which are plotted in Fig. 3.27.

Chapter 3. Invariant graph structures 83

Figure 3.25: The figure shows the cell-specific distribution of the number of paths. It is
observed that the distribution of paths in the case of Purkinje cells is approximately uniform.

The remainder of the distributions are left-skewed.

Table 3.19: Importance weight δ values for dataset-2

Tortuo Bifur Part-aym Concur Seg-len Diverg
Ganglion-Granule 0.0278 0.0138 0.0241 0.2102 0.6727 0.0533
Ganglion-Motor 0.0464 0.0797 0.0918 0.1865 0.4730 0.1226
Ganglion-Purkinje 0.27 0.032 0.1437 0.1905 0.2270 0.1368
Ganglion-Pyramidal 0.0433 0.0001 0.0553 0.5121 0.3156 0.0809
Granule-Motor 0.0356 0.0491 0.0372 0.1449 0.6697 0.0636
Granule-Purkinje 0.0147 0.1218 0.1875 0.1073 0.5285 0.0402
Granule-Pyramidal 0.0453 0.0305 0.0372 0.2231 0.5390 0.1248
Motor-Purkinje 0.0094 0.4046 0.0556 0.0007 0.5167 0.0130
Motor-Pyramidal 0.0223 0.0737 0.0465 0.1275 0.6650 0.0650
Purkinje-Pyramidal 0.0219 0.2201 0.1088 0.1528 0.4223 0.0740
Overall 0.1304 0.0372 0.0417 0.1786 0.4489 0.1633

TMD appears to be very consistent in accuracy and range scores, achieving an ac-

curacy of 85.02% when K = 5. However, while computing the confusion matrices of

the classification scores obtained by TMD, we notice that in the majority of instances,

the correct classification of motor cells is abnormally low and approaches 0% in some

Chapter 3. Invariant graph structures 84

Figure 3.26: Confusion matrix of an instance of classification using Dataset-2. The overall
accuracy is 85.02%. Here, we set L = 50 and K = 9. It can be seen from the matrix that one-
fifth of ganglion cells are misclassified as pyramidal, leading to a decline in accuracy. However,

granule cells are perfectly classified.

cases. It is important to notice that Dataset-2 has an imbalance in terms of the num-

ber of examples in each cell category, with motor cells containing the lowest (95) and

ganglion cells containing the highest (500) number of examples. This fact is unobserved

in Fig. 3.27 due to the averaging effect. We adopt the metric, class-wise accuracy of

retrieval, and present the results in Fig. 3.28. It is evident that NeuroPath2Path exhibits

strong resilience against the class imbalance problem.

Figure 3.27: The figure shows comparative performance of NeuroPath2Path against TMD and
NeuroSoL using different values of K in K-NN classifier. At each K, we perform 5 experiments
for each of these methods and the associated scores are shown with the mean (colored square)
and the range values. The profiles of TMD and NeuroPath2Path surprisingly appear to have

opposite trends over K. NeuroPathPath hits the top accuracy of 86.2% when K = 9.

Figure 3.28: This figure shown the classwise retrieval accuracy of different methods including
NeuroPath2Path. It is observed that by using TMD the retrieval accuracy of Motor cells shows
minimal improvement when SVM is used. We use 500 ganglion cells, 490 granule cells, 95 motor
cells, 208 purkinje cells, and 499 pyramidal cells. The imbalance in class adversely affects the

classification accuracy. NeuroPath2Path maintains consistent class performance.

Chapter 3. Invariant graph structures 85

Similar to the train and test ratio of Dataset-1, we conduct experiments using the

ratio of 0.1 and 0.2 separately. The classification scores are given in Fig. 3.29.

Figure 3.29: The performance of NeuroPath2Path on two different partitions, which are 9 : 1
and 8 : 2, of Dataset-2 is shown. K = 9 is found to be a suitable candidate of K-NN classifier.

Appendix

Description of features We extract a set of discriminating features on each path

fi ∈ Γ of H, which are bifurcation angle (bi), concurrence (Ci), hierarchy (ξi), divergence

(λi), segment length (βi), tortuosity (κi), and partition asymmetry (αi). • Bifurcation

angle is a key morphometric that dictates the span and the spatial volume of an arbor.

It is hypothesized that the span of an arbor at each level of bifurcation depends on the

bifurcation of its previous level [7,63,71], suggesting the influence of Bayesian philosophy.

This organizational principle is utilized in several stochastic generative models [71] for the

synthesis of specific neuron cell types. The sequence of bifurcation angles at bifurcation

vertices located on a path of a neuron captures local geometry. For example, a sequence

of non-increasing bifurcation angles from the root to the dendritic terminal of a path

indicates the pyramidal shape geometry of the neuron. For a location with multifurca-

tion, we use the maximum of the bifurcation angles computed using pairwise branches

originated from that location towards the dendritic terminals.

• Concurrence, hierarchy and divergence encode the effect of phenomenological factors,

which are exploration (ex. Purkinje fanning out rostrocaudally) and competition (ex.

retinal ganglion cells), that contribute in the growth of a neuron. The definition of

Chapter 3. Invariant graph structures 86

concurrence and hierarchy are already given in section 3.2.3. The divergence of a location

on a path, fi is proportional to the repulsive force that the location experiences from

its neighborhood path segments. Let Cfi be the sequence of concurrence values of the

path fi ∈ Γ when one visits the locations from the root to the dendritic terminal. As

an open curve, each path can be parameterized with the parameter t ∈ [0, 1]. Cfi(ts) =

k; ts ∈ [0, 1] indicates that k(≤ |Γ|) paths share the location ts on fi. The divergence

λ of a location fi(ts) is defined as λ(fi(ts)) =1{fj | |fj(t)−fi(ts)|≤ε,fj 6=fi,fj�fi}. Here, 1 is

the indicator function computing the number of such fjs which follow the conditions

|fj(t) − fi(ts)| ≤ δ, fj 6= fi and fj � fi. The first condition implies that a location of fj

has to be in the ε neighborhood of fi. fj � fi indicates that the location of bifurcation

at which fj deviates from fi does not appear after fi(ts) on the path fi.

• Tortuosity and partition asymmetry are two important anatomical features of a neuron.

Tortuosity refers to the amount of ‘zig-zag’ or bending of a path. Let us take a segment

on a path fi as fi([t1, t2]); 0 ≤ t1 < t2 ≤ 1. Let there be m − 1 locations in [t1, t2]. The

tortuosity of the segment is defined as κ =
∑m

j=1 ||fi(tj+1)−fi(tj)||2
||fi(t2)−fi(t1)||2 with tm+1 = t2. Partition

asymmetry accounts for how the size of a neuron tree varies within the neuron. We use

a variant of caulescence, proposed in [60], as a measure of tree asymmetry. Caulescence

at a bifurcation location is evaluated by way of α = |l−r|
l+r

, where l is the size of the left

tree and r of the right tree of the bifurcation vertex. We define the size of a tree by

the number of paths or equivalently the number of dendritic terminals. Note that the

quantity (l + r) + 1 is the concurrence value of the bifurcation vertex.

Weight determination Let the combined distance vector containing the individual

feature distances be Dfg = [d(bfg) d(Cfg) d(λfg) d(κfg) d(βfg) d(αfg)]T . The corre-

sponding unknown weight vector is δ = [δ1, ...δ6]. While comparing two neurons of sizes

N and M with N <= M , the distance computation after applying the Munkres algo-

rithm repeatedly will produce M pairs of paths, indicating M such Dfgs. The desired

Chapter 3. Invariant graph structures 87

Figure 3.30: This gallery of images captures the progressive evolution of paths from a Purk-
inje neuron to a granule one. The granule neuron (426.5µm3 volume) is procured from the
hippocampus (dentate gyrus) of a 5 months old mouse, containing 6 rooted paths. The Purkinje
cell (13094µm3 volume) is sampled from the cerebellar cortex of a 35 day-old mouse, containing
304 paths. The evolution is represented in multiple arrays such that the ODD rows are read in
the left-to-right and the EVEN rows are read in the right-to-left fashion. In the first column,
the top image is the granule cell and the bottom shows the pyramidal cell. Volume-wise, the
Purkinje neuron is significantly larger than the granule neuron. However, they are scaled for

visualization.

characteristic of each component of δ is positivity. In addition, we enforce
∑
δi = 1,

implying a probability estimate. δi thus indicates the relative importance of the feature

υi.

Chapter 3. Invariant graph structures 88

We adopt the constrained maximizing-interclass -minimizing-intraclass distances

strategy to find our desired δ. Mathematically,

δopt = − arg min
δ

1

2
δT
(S∑
i,j=1
i<j

Ni∑
k=1

Nj∑
l=1

Mkl∑
z=1

Dz(Dz)T
)
δ

+δT
(S∑
i=1

τi

Ni∑
k,l=1
k 6=l

Mkl∑
z

Dz(Dz)T
)
δ

−ω1logδ + ω2

(6∑
i=1

δi − 1
)

(3.26)

The first term in the above equation encompasses all the distances between neurons

from pairwise classes. The second term encodes the intraclass distances, implying the

distances between neurons for each class. The third term enforces positivity of each

weight δi. This is a logarithmic barrier penalty term that restricts the evolution of δ

at intermediate iterations to the region where δ > 0̄. The last term accounts for the

probabilistic interpretation of δ. S is the number of classes.

Eq. 3.26 is solved by using gradient descent with fixed η = 0.01. The equation and

its derivative can be simply written as,

L(δ) = −δ
TΠδ

2
+ δT

S∑
i=1

τiΠi

2
δ − ω1logδ + ω2

(
δ1− 1

)
dL

dδ
= −Πδ +

S∑
i=1

τiΠiδ −
ω1

δ
+ ω2 (3.27)

We use this derivative term in the following algorithm 1 to obtain optimal δ.

Distance between neurons The algorithm to find distance between a pair of neurons

consists of four stages - finding self-similarity (routine-1), remaining path assignment

(routine-2), finding pairs with hierarchy mismatch (routine-3) and reassignment of the

defective pairs (routine-4).

Chapter 3. Invariant graph structures 89

Algorithm 1: Find δ

Data: Π,Π1,Π2, ...,ΠS (for all classes);
Initialization: δcur, δtmp, τ1, τ2, ..., τS, ω1, ω2, Iter, tol, η;
while iter < Iter do

while ||δcur − δtmp||2 < tol do

D ←−
∑S

k=1 τkΠk;
Der ←− −Πδ +Dδ − ω1

δ
+ ω2;

δcurr ←− δtmp;
δcurr ←− δcurr/(δcurr1);
δtmp ←− δtmp − ηDer;

iter ←− iter + 1;
ω1 ←− ω1/2;
ω2 ←− 2ω2;
τi ←− 1.1τi∀i(more intraclass compaction);

Discussion:

NeuroPath2Path follows a graph-theoretic approach that utilizes path-based modeling of

neuron anatomy and provides a visualization tool by way of a geometric model that aids in

performing continuous deformation between two neurons. NeuroPath2Path offers several

advantages. The decomposition of a neuron into paths can be viewed as an assembly of

individual circuits from the terminals to the soma, integrating semi-local features that

act as path descriptors. Next, instead of subgraph matching, NeuroPath2Path does not

leave a single path unassigned, culminating in a full-graph matching algorithm. The

matching algorithm presents the notion of relative fractality and path correspondences,

and incorporates physiological factors, such as decaying importance of features along the

path, exploratory and competitive behavior for resource exploitation.

NeuroPath2Path also precisely investigates the feasibility of algorithmic constraints

(such as on Munkres algorithm) on the structural repertoire of neuronal arbors, and

thereby enforcing criteria, such as hierarchy mismatch. During classification, NeuroPath2Path

delivers resilience to the class imbalance problem. In the future, in order to explore the

full potential of the approach beyond classification, we aim to augment NeuroPath2Path

in two major domains - morphological analysis and structural transformation of microglia

Chapter 3. Invariant graph structures 90

Algorithm 2: Find χ

Data: D, n1, n2 (n1 ≤ n2), Inf;
Output: pairList, dstSum
Initialization: dstSum←− 0, pairTmp←− [1 : n2]

T , count←− 1, pairList←− [],
Dc ←− D, dstB ←− [];

Routine 1: (Self-similarity)
while count ≤ bn2

n1
c do

D̂ ←− D (append rows with Inf);

pairL, dst←−Munkres(D̂);
dstSum←− dstSum+ dst;
dstB ←− dstB ∪ dst;
pairTmp←− pairTmp \ pairL[1 : n1] ((n2 − n1) dummy);
pairList←− pairList ∪ pairTmp[pairL[1 : n1]];
D ←− D[1 : n1, pairTmp];
count←− count+ 1;

Routine 2: (Remaining n2 − bn2n1cn1 paths) T ←− n2 − bn2n1cn1;
D ←− DT ;

D̂ ←− D (append rows with Inf);

pairL, dst←−Munkres(D̂);
dstSum←− dstSum+ dst;
dstB ←− dstB ∪ dst;
pairList←− pairList ∪ pairTmp[pairL[1 : T]];

Routine 3: (Hierarchy mismatch)
dg ←− Hist[pairList[:, 1]] deg ←− Hist[pairList[:, 2]] (second column);
md←−Median[dstB], sd←− SD[dstB];
sk ←− Skewness[dstB];
if sk > 0 then

IX ←− where[dstB > md+ sd]
misalign2←− [];
listU ←− [];
for k ← 1 to length[IX] do

pvt←− pairList[k, 1 : 2];
h1←− H[pvt[1]], h2←− H[pvt[2]](max hierarchy);

if |h1− h2| > max[h1,h2]
2

then
if deg[pvt[2]] < 2 then

misalign2←− misalign2 ∪ pvt[2];
misalign1←− misalign1 ∪ pvt[1];
dstSum←− dstSum− dstB[k];
listU ←− listU ∩ pairList[k, :];

if listU 6= [] then
Del pairList[listU]

Chapter 3. Invariant graph structures 91

Routine 4: (Reassignment)
for k = 1 to length[misalign2] do

col←− misalign2[k];
row ←− arg minrowDc[:, col];
dstSum←− dstSum+Dc[row, col];
pairList←− pairList ∪ [row, col];

for k = 1 to length[misalign1] do
if dg[misalign1[k]] > 1 then

row ←− misalign1[k];
col←− arg mincolDc[row, :];
dstSum←− dstSum+Dc[row, col];
pairList←− pairList ∪ [row, col];

cells, and in progressive degradation of neuronal paths in neurodegenerative diseases.

Chapter 4

Non-unique graph structure

In this section, we discuss some applications with non-unique graph structures. The

absence of uniqueness can be attributed to two primary reasons, either fixed number

of vertices without physical connections or no fixed vertices and edges, with the latter

being more complex than the former. First, we experiment with SqueeSAR dataset,

obtained from InSAR images, to identify and monitor three primary events, which are

pavement rutting (significantly low-scale event), rock-slope fault (distance scale larger

than pavement rutting), sinkhole formation and growth (large-scale event). SqueeSAR

data belongs to the first category, where there are a fixed number of scatterers (vertices)

without edges.

Event detection from videos falls into the second category, where the vertices and

edges are ambiguous. It is a challenging problem to model such problems. To find global

patterns, often features are extracted from each frame, and then they are observed over

time. To extract the global trend of local patterns, such as in object tracking, researchers

generally adopt patch or superpixel based approaches. To extract only local patterns,

such as in segmentation, pixel based approaches are employed.

Lastly, we mention a problem regarding improvement of the condition number of the

autocorrelation matrices of several classes of data, where the imposition of graph structure

92

Chapter 4. Non-unique graph structure 93

help estimate the connectivity in the graph. This connectivity provides a transformation

of the data, which eventually improves the condition number accelerating the convergence

of an LMS filter.

4.1 Spatio-temporal event detection

The detection of active regions, which is defined as a predominating behavioral pattern

present in data, poses a major challenge in big data. Also called event detection, this

problem can be regarded as a variant of segmentation problem popular in image process-

ing domain. Essentially, the goal of event detection is the identification of the number of

active regions, with their precise locations and extents, present within a dataset. The un-

certainty of finding a local perturbation increases if the points are non-uniformly sampled

and sparse. Typical approaches aim at capturing the synchronized behavior of a locus

of points; however, the extent of the perturbations might vary in size with time. In this

work, we consider an application where the goal is the detection of active regions within

ground displacement time series datasets collected by interferometric synthetic aperture

radar (InSAR). We use these sparse, non-uniformly sampled InSAR measurements to

detect geomorphic events such as sinkholes and rockslides.

The existing approaches can be divided in two broad categories - spatial domain tech-

niques and spectral domain techniques. One of the spatial methods involves evaluating

the average velocity from the time series of a point and detect behaviors inconsistent with

global activities such as seasonal oscillation. This type of point-based approach often does

not provide the extent of the anomaly. As an example, considering the displacement asso-

ciated with a developing sinkhole, the points near the center will have a higher coefficient

of variation compared to the points at the periphery. Methods based on the covariance

between time series of points may lead to false-positives as they do not differentiate be-

tween the magnitudes of the displacements. In addition, the covariance between two very

Chapter 4. Non-unique graph structure 94

distant points might be large due to a similar pattern of variation. Other location-based

approaches [94, 95] suffer from storage overload and imprecision in locations, whereas

location-free methods [96] assume the signal is either stationary or slowly-varying. On

the other hand, spectral domain methods [16, 22, 97] decompose the signal in the space

spanned by the eigenvectors of the Laplacian in order to identify significant trends in a

signal. A recent work [16] using spectral domain technique used the Laplacian of and the

difference between potential functions, analogous to Laplacian-of-Gaussians (LoG) and

Difference-of-Gaussians (DoG) filters in image processing. A major bottleneck of these

approaches is the computation of eigenvectors of the Laplacian matrix, especially in case

of the large-scale graphs.

4.1.1 Laplacian weighted covariance (LaWeCo)

Following recent thrust to solve the problem by developing a scale-space approach [17],

and spatial-domain template matching [18, 98], we propose a spatial-domain method,

LaWeCo, using the Laplacian of a graph to couple neighborhood points combined with a

scale-dependent metric that provides information regarding the strength and the extent

of the neighborhood affected by the perturbation. The implementation of our algorithm

utilizes a scale hierarchy that improves on computational effort by carefully updating the

graph Laplacian and covariance matrix at each increasing scale level.

4.1.1.1 Methodology

Having defined the underlying graph framework, let us consider a dataset that can be rep-

resented as a graph G withN nodes. Let us also consider a graph signal {fi(tk)}i=1,...,N ;k=1,...,T

where the values are defined for each node vi and for a set of time intervals tk not nec-

essarily uniformly sampled. When G can be embedded in a Banach space, it is possible

to define the edge weights as function of the distance between the nodes. With the term

Chapter 4. Non-unique graph structure 95

scale (s) we identify a region within a distance of s from any given node. The vertex set,

V can be partitioned into M subsets ({V(s)
m }m=1,...,M) based on the scale s:

V =
M⋃
m=1

V(s)
m N =

M∑
m=1

N (s)
m

where N
(s)
m is the order (number of nodes) of V(s)

m . For each partition we can evaluate the

covariance matrixC(s) between the time series of the graph nodes (cij = cov(fi(tk), fj(tk))

for all the nodes within distance s from each other) and define the effective variance (σ
(s)
e)

that reflects the strength of coherent activity for each node in the mth neighborhood:

σ(s)
e (vi) =

1

2

σ(vi) +
1

di

∑
j∈N (s)

i

w
(s)
ij |c

(s)
ji |

 (4.1)

where σ(vi) is the variance associated with fi(tk) and c
(s)
ji is the indexed element of the

covariance matrix. In order to reduce the contribution of covariances from distant nodes,

the weights w
(s)
ij are defined by a decreasing function of the distance between vertices vi

and vj. In this work we used w
(s)
ij = 1

s
√

1+d2ij
, where dij is the Euclidean distance between

nodes vi and vj. By using the graph theoretical framework, we can rewrite (4.1) as

σ(s)
e = Diag

(
|L̃(s)||C(s)|

)
(4.2)

where L̃
(s)

is the normalized Laplacian of the fully connected graph G(s)m = G(s)m (V(s)
m , E (s)m).

The covariance between the time series of two nodes only reflects their linear associ-

ation and is independent of their magnitudes. To reduce the potential false-positives that

might be introduced by this lack of sensitivity to the signal’s local power, we incorporate

Chapter 4. Non-unique graph structure 96

the mean of the absolute values of the time series in our formulation:

σ(s)
e = µ(s)TDiag

(
|L̃(s)||C(s)|

)
µ
(s)
j =

∑T
k=1 |fj(tk)|

T
for j ∈ V(s)

m . (4.3)

By definition, the Laplacian only considers one-hop connectivity. This can be under-

stood by remembering that it is defined by using degree and adjacency matrices that are

constructed using only edges, their weights, and the neighborhood of individual nodes.

Within this context, (4.3) is restricted to one-hop connectivity. This definition can be

extended to a larger number of hops by using powers of the Laplacian L̃: for k-hops, we

can use L̃
k
. We can then define a series of different kernels depending on the desired

length of the paths.

K
(
L̃
)

=

L̃
k

k-hop∑P
l=1 L̃

l
upto P-hop(

I− L̃
)−1

upto ∞-hop

(4.4)

The kernels in (4.4) can be used in (4.3) by replacing L̃
(s)

with the one generated by the

desired kernel. The inclusion of multiple hops enforces better coupling between points by

following edges to transfer the effects of a node perturbation.

4.1.1.2 Multiscale formulation

Since we are interested not only in identifying the location of active regions, but also

their size, we implement a scale-space analysis approach by subsequently partitioning

the dataset in blocks of increasing size. For computational ease, we start by subdividing

the dataset in total 2Z grids of identical size, set depending on the application at hand,

where Z identifies the starting level. For each of the blocks, a fully connected graph

Chapter 4. Non-unique graph structure 97

Figure 4.1: Multiscale block concatenation in LaWeCo. The grid indicates the blocks used for
the analysis whereas the arrows indicate the direction in which the concatenation occurs before

the following analysis step.

is generated considering only the nodes within the block, its Laplacian and covariance

matrices evaluated, and the value of σ
(s)
e computed by defining s as the diagonal of

the block. Once the first level is evaluated (smallest scale), the next level is obtained

by concatenating each block with one of its neighbors first-right-then-down fashion as

shown in Fig.4.1. Once the new blocks are defined, the previous evaluation of σ
(s)
e is

repeated with now s defined as the length of the diagonal of the concatenated blocks. As

an example, consider two blocks, N1 and N2, with n1 and n2 points respectively. The

corresponding Laplacian, L̃1 and L̃2 are constructed using fully connected graphs. Let

the covariance matrices be C1 and C2 respectively. To compute the next coarser level

Laplacian L, the cross-adjacency matrix, Bn1×n2 , between N1 and N2 is computed. Let

the degree matrix formed by the row-sum of B be D1 = Dn1×n1 , and by the column-sum

be D2 = Dn2×n2 . The Laplacian L(n1+n2)×(n1+n2) of the concatenated blocks becomes

L(n1+n2)×(n1+n2) =

ρL1 +D1 B

BT ρL2 +D2

 (4.5)

where ρ = sZ/sZ−1, the scale-ratio, is the ratio of the current scale sZ to the next scale

sZ−1. Each edge weight is updated as w
(sZ−1)
ij = ρw

(sZ)
ij . The concatenation of blocks at

every scale is expected to continue until the active region boundaries are reached. An

Chapter 4. Non-unique graph structure 98

active region boundary is obtained when there is a fixed set of points showing signifi-

cant σ
(s)
e irrespective of the increment in scale. The update procedure depicted in (4.5)

significantly reduces the computational load, especially for large-scale graphs. A similar

approach can be used to evaluate the covariance matrix of the concatenated block.

C(n1+n2)×(n1+n2) =

Cn1×n1 Cn1×n2

CT
n1×n2

Cn2×n2

 (4.6)

From (4.5) and (4.6), the calculations of B, Cn1×n2 , and K are regarded as the

computational cost at each scale except the initial one.

4.1.1.3 Dataset

To demonstrate the effectiveness of our approach, we implement it to detect active regions

within large graphs derived from InSAR data. In particular we use spatiotemporal point

cloud datasets obtained by a state-of-the-art technique known as SqueeSAR [99]. These

datasets provide a non-uniformly (both in time and space) sampled measurement of

Earth’s surface deformations within the imaged area. Each point (node) is associated

with a precise latitude and longitude. The time series of a point’s displacements is

provided and can be utilized to detect sharp changes, seasonal trends, and linear or

nonlinear movements.

Dataset 1 - Route 600. The first dataset depicts an impending slope failure on

Route 600 near the Calfpasture river around the location (11,213,601.181, 6,727,296.005)

1. The dataset contains 312 points, and the span of time series is from 05 September 2011

to 24 November 2014.

1NAD 1983 State Plane Virginia North in US feet

Chapter 4. Non-unique graph structure 99

Dataset 2 - Route 11. The dataset is taken on a section of a primary road route

11 around the location (-8,802,382.239, 4,595,066.063) 2. There are 396 points and the

measurements are acquired from 05 September to 14 June 2014.

Dataset 3 - Winksinks. The dataset is based on large sinkholes that collapsed

in West Texas. The sinkholes appear to subside linearly with time. This dataset was

created using SqueeSAR on a stack of ERS 1/2 images acquired between 03 June 1992

and 21 February 1998 with 93,513 points allocated over an area of 55.37 km2.

4.1.1.4 Results

We compare our results with three graph-based event region detection methods - Lapla-

cian of potential (LoP) [16], difference in potential (DoP) [16] and normalized graph

cut [97]. It appears that our method outperforms the competing methods in two metrics

- identification of the number of active regions and reduction in the number of false posi-

tives. Furthermore, the execution time of the LaWeCo algorithm is much faster compared

to the competing approaches since our method does not involve expensive operations such

as spectral decomposition. The runtime for each algorithm is shown in Table 4.1 where

it can be noted that, for relatively small sized datasets, LaWeCo is about 10 times faster

than the competing methods. For larger datasets such as ”Winksinks”, the computation

time is improved by a factor of 50.

The identification of active regions on route 600 over various scales is shown in Fig.

4.2. The X and Y coordinates are the latitude and longitude of the points, respectively.

Fig.4.2(b) shows three active regions marked by circles using kernel L̃ and a scale of 2 feet.

One of them subsequently disappears as the scale is gradually increased (c). However, L̃

is a one-hop kernel. To include the contribution over multiple hops, the infinite kernel,(
I− L̃

)−1
is selected. It appears in Fig. 4.2(d)-(e) that there exist two other small-scale

active regions consistent with a sequence of increments in scale. The result obtained with

2World Geodetic System 1984 in meters

Chapter 4. Non-unique graph structure 100

Table 4.1: Run time in seconds of LaWeCo , Graph-cut, LoP, and DoP for all the datasets.

Dataset LaWeCo Graph-cut LoP DoP

Route 600 0.04 0.47 0.37 0.38
Route 11 0.07 0.76 0.43 0.42
Winksinks 6.43 257.3 264.1 281.2

infinity kernel was validated by Virginia DOT field engineers who provided the ground

truth.

The graph cut method in Fig. 4.2(g) shows several false positive locations where

there are no sign of activities or events as confirmed by the field engineers. LoP and DoP,

intrinsically band pass in nature, also erroneously identify points which are not a part of

activities.

The results for dataset 2 and 3 are given in Fig. 4.3 and 4.4. In both datasets, LoP,

DoP and the graph cut method detect an unacceptable number of false positives. In

contrast, the active regions obtained from our method do not grow substantially as the

the scale increases.

LaWeCo shows promising results both in the identification of active regions and their

extents. The contribution lies in its simple framework and the adaptability to large scale

scenarios in contrast to graph signal processing methods that employ spectral decompo-

sition. In addition, our method proves to be superior in reducing the number of false

positives. This framework is also amenable to parallel processing for fast computation

due to its grid structure. LaWeCo is efficient for spatial localization. However, in order

to localize an event temporally, we need to adopt a temporal window based method and

check LaWeCo on each window, incurring a huge computational load. The problem be-

comes worse when the underlying event is propagating in a decentralized fashion, such as

sinkhole formation and oil-spills in sea-water.

Chapter 4. Non-unique graph structure 101

4.1.2 Decentralized event detection and tracking (DDT)

The majority of existing methodologies in the literature assume a static event in space,

in which the centroid of locations of the event remains temporally stationary. However,

the problem of localization is exacerbated when the event is propagating in an arbitrary

direction, which is known as decentralized behavior. The generation and propagation of

activation potentials over neuronal topology of connectivity [100] inside the brain is an

ideal example of a decentralized event. The complexity of the spatiotemporal localization

of such decentralized events becomes more daunting when the underlying topology is also

time-varying. For example, the Deepwater Horizon oil spill [16] was a real-life hazard in

which the underlying topology residing on the sea surface was anisotropically drifting at a

slow pace. In our work, we focus on the detection followed by the estimation of locations

and extents of multiple decentralized events on an irregularly sampled topology which is

time varying in terms of a predefined functional relationship.

Also known as distributed network boundary detection [17, 95], the methodologies

on event detection can be broadly categorized as spatial domain techniques and spectral

domain techniques. The extraction of statistics from the time series of all the sampled

nodes on a topology followed by inferences about the characterization of events is one of

the earliest approaches for event detection. The set of statistics includes global trend,

seasonal variational trend, coefficient of variation and covariance with an assumption of

regular sampling of the topology and time, and a reasonable spatiotemporal granularity.

Location based approaches [94,95], where the location of each sampled spatial node

is provided by an external service, often face computational burden and storage overload.

By leveraging a graph-theoretic framework, [101] introduced a graph Laplacian weighted

covariance based measure to detect multiple events. The spatial extent of each event

is determined by a scale-based recursive grouping method. However, the selection of

proper thresholds and the imperfect grouping routine introduce imprecision and error in

Chapter 4. Non-unique graph structure 102

detecting and localizing events. In addition, the method fails to work on the detection

of decentralized events. The work in [18] modeled an event, such as sinkhole formation

with a time-varying Gaussian surface. Despite the fact that the algorithm is fast and

scalable and can be applied to decentralized event detection, the constraint of Gaussian

shape restricts its application. On the other hand, the working principles of location-

free methods [96] assume that the signal time series over the topology is either static or

stationary in space.

Spectral methods suffer from the drawback that the spatial topology is unknown

beforehand. It is a fact that different spatial connections provide different spectra and

spectral responses. This issue is marginally addressed in [16], where authors demon-

strated their approach on a regular grid and randomly connected testbeds. It is therefore

essential to estimate the topological structure a priori. Research works related to the

estimation of topological structure resort to various assumptions. The work in [102–104]

assumed that graph signals are stationary and smooth. The method in [105] modeled

an event as a causal autoregressive graph process and estimated the underlying graph

structure in terms of the adjacency matrix. Authors in [102] constructed a dictionary

to learn the graph topology and expressed the graph signal sparsely and linearly with

the dictionary atoms. The temporal evolution of the underlying topology was captured

within a reasonable approximation by [21], where an arbitrary change in the topological

connection is discouraged.

In our work on decentralized event detection and tracking (DDT), we recursively

update the probability of each sampled location (node/vertex) to be associated with

events by using an ensemble of vertex reinforced walks [106]. Iterative computation of such

probability of all the vertices at each instance automatically splits multiple events with

their boundaries and tracks each of the events temporally. Simultaneously, to estimate the

topology, the relationships between all the vertices at each instance are updated based

Chapter 4. Non-unique graph structure 103

on the walk frequency at that instance. We show the effectiveness of DDT regarding

spatiotemporal localization of multiple decentralized events in the result section.

4.1.2.1 Bipartite graph construction

We model a timeseries dataset using a sequence of bipartite graphs. Let the dataset have

N regularly or irregularly sampled locations, also called vertices, nodes or entities, and

T time points. The set of vertices at time ti is labeled by Vi = [v1,i, v2,i, · · · , vN,i]; i ∈

{1, 2, ..., T} with the corresponding vector of measurements, also called as the signal, as

Si = {s1,i, s2,i, · · · , sN,i}. As an example, in the case of interferometric synthetic aperture

radar (InSAR) data, the locations with their geographical coordinates serve as V , with

the surface displacements in millimeters at time instance ti as Si [101]. We are interested

in the absolute forward deviation of the signal over time on each location. Let S̃i be the

absolute forward deviation, which is given by S̃i = |Si − Si−1| ∈ RN ; i ∈ {2, ..., T}. As

there is no prior information, we set S1 as a zero vector. We construct a fully-connected

bipartite graph between times ti and ti+1 as Gi,i+1, i ∈ {1, 2, .., T − 1}. Therefore, the

sequence of bigraphs is denoted by Gb = [G1,2,G2,3, ...,GT−1,T].

As each vertex in V is associated with a location, we can compute the Euclidean

distance between any pair of vertices. Notice that the graph topology, which is constructed

by Euclidean distance only, is invariant over time as the geographical coordinates are fixed.

However, the relationship between a pair of vertices is modeled as a function of both the

locations and the signals, which indicates that the underlying functional topology can

change with the changes in signal over time. To incorporate the effect of locations and

signal in the bigraphs, we define the weight, wij of an edge between vertices vi and vj as

wij = |si,p||sj,p|exp
(
− (

||loc(vi)−loc(vj)||2
σ

)2
)
. Here, loc(vi) is the coordinates of location of

the vertex vi, and p is an arbitrary time instance. For notational simplicity, we write si,p

as si. The expression of wij implies that wij = 0 whenever s̃i or s̃j or both are zero, (no

Chapter 4. Non-unique graph structure 104

event). With the weighted bigraphs defined in this manner, we extract an ensemble of

walks.

4.1.2.2 Ensemble of walks

In order to extract an ensemble of length-2 walks, let us consider two weighted bigraphs

Gi−1,i and Gi,i+1. Between a pair of vertices vk,i−1 ∈ Vi−1 and vl,i+1 ∈ Vi+1, there are

|Vi| = N possible length-2 paths through Vi. Let us take a vertex vm,i ∈ Vi which is a

vertex on such a length-2 walk θi−1,i+1
k,m,l = (vk,i−1, w(k,i−1)(m,i), vm,i, w(m,i)(l,i+1), vl,i+1). The

weight λi−1,i+1
k,m,l of the walk θi−1,i+1

k,m,l can be given by λi−1,i+1
k,m,l = w(k,i−1)(m,i)+w(m,i)(l,i+1). For

a pair of vertices (vk,i−1, vl,i+1), the weights of all such N length-2 walks form a weight

vector, λi−1,i+1
k,l . We assign a user-defined parameter, walk-strength τ , which acts as a

threshold on the sorted λi−1,i+1
k,l (decreasing order) to find the subset of vertices Vi,k,l ⊂ Vi

such that
∑

p∈Vi,k,l λ
i−1,i+1
k,p,l ≤ τ . Vi,k,l is the subset of vertices ⊂ Vi, which are intermediate

vertices of all length-2 walks from vk,i−1 to vl,i+1 with a condition of threshold, τ . An

example of a timeseries with 4-locations-3-timestamps is given in Fig. 4.5.

After obtaining all such Vi,k,l for all pairs of vertices vk,i−1 ∈ Vi−1 and vk,i−1 ∈ Vi−1,

we define the ensemble of walks as a set of vertices Veni = ∪vk∈Vi−1,vl∈Vi+1
Vi,k,l. The

rationale of Veni is as follows: let us assume that vm,i ∈ Vi registers an activity with the

magnitude of s̃m,i that crosses a threshold. To maximize λi−1,i+1
k,l , all the vertices from

Vi−1 will have the tendency to pass through vm,i to reach the vertices in Vi+1. As a result,

vm,i dominates in Veni .

4.1.2.3 Prior probability and vertex reinforcement

Once Veni is computed, we calculate the frequency of each vertex from Veni , χi ∈ RN .

χi ∈ RN is then subjected to a vertex reinforced function via pointwise multiplication:

χi,f = f � χi. χi,f , which is normalized and provides a probability estimate Γi ∈ RN of

event membership of all vertices. When f is a constant function, χi,f is the normalized

Chapter 4. Non-unique graph structure 105

frequency which can be directly computed from χi. For the detection and localization of

decentralized events, it is preferable to set the reinforcement function as the local trend

of the time series. For example, the value of the reinforcement function at node vk,i can

be given by f(vk,i) = | s̃k,i−1+s̃k,i+s̃k,i+1

3
|.

We use the probability Γi as a prior to detect the events between Gi,i+1 and Gi+1,i+2.

Accordingly, the probability Γi will be updated to Γi+1 and so on. It is to note that the

subset of vertices (⊂ Vi) which are not associated with any event, will not appear in Veni .

This is due to the fact for any vertex vp,i belonging to that subset, the weights w(•,i−1)(p,i)

and w(p,i)(•,i+1) become zero as explained at the end of section 4.1.2.1. Therefore, this

subset of vertices is ruled out by the threshold τ while searching for the ensemble of walks.

The selection of τ ∈ (0, 1] is crucial as it helps delineate the neighborhood of a

vertex which participates in an event. It is evident that when τ = 1, all the vertices in Vi

will appear with identical frequency, giving a uniform prior probability with P (Vm,i) =

1
N
∀m. This means that all vertices participate in the event, which results worst-case

event localization. It is empirically observed that τ ∈ [0.7, 0.85] provides a reasonable

localization with negligible error.

In order to formulate mathematically, let Aic be a matrix∈ R|Vi−1|×|Vi|, which is called

as the cross adjacency matrix. Let Γi−1 be the prior estimate of events for Vi−1. The

weight vector of 2-length walks, λi−1,i+1
k,l can be given by

λi−1,i+1
k,l = [Aic(k, :)]

T � Γi−1 + Ai+1
c (:, l), (4.7)

where � is the Hadamard product. The inclusion of Γ in eq. 4.7 guides the algorithm to

track the probable locations of events.

Chapter 4. Non-unique graph structure 106

4.1.2.4 Extraction of functional topology

The functional topology at any time indicates how the vertices are related to each other

in terms of the weight function wij = |s̃i||s̃j|exp
(
− ||loc(vi)−loc(vj)||2

σ

)2
. Once the Veni is ob-

tained, let Eeni be the set of edges ∪vk∈Vi−1,vl∈Vi+1
{(vk,i−1, vm,i)|m ∈ Vi,k,l}∪{(vp,i, vl,i+1)|p ∈

Vi,k,l} with the set of corresponding weights Wen
i . It is obvious that an edge can ap-

pear multiple times in Eeni . In addition, as the bigraphs are simple and undirected,

(va, vb) = (vb, va)∀a, b. We define the weight of an edge(va, vb) ∈ Eeni with va 6= vb as

φ((va, vb)) =
∑(

w(va,vb) + w(vb,va)

)
;w(va,vb) ∈ W

en
i , (4.8)

The graph betweenN vertices as a representation of functional topology at a time instance

is expected to be sparse and sometimes, disconnected. A sample example is explained in

Fig. 4.5(b).

4.1.2.5 Results

We show the effectiveness of DDT in terms of detection, spatial localization and temporal

tracking on two datasets, which are a synthetic dataset and an InSAR dataset. We com-

pare the results on InSAR dataset with the state-of-the-art techniques - LaWeCo [101],

difference of potential (DoP) [16], and laplacian of potential (LoP) [16]. DDT involves

two hyperparameters - σ and τ . If the coordinates of locations are available, we set

σ = maximum distance over all pairs of locations
2N

and τ = 0.7 respectively. The synthetic dataset

consists of measurements of surface displacements (in mm) over six time points on nine

different locations with 2D coordinates. Overall, there is one centralized event and one

decentralized event as shown in Fig. 4.6(a) and (c). The connectivity of the underlying

functional topology is shown in Fig. 4.6(b) and (d) respectively. Fig. 4.6 provides a vi-

sualization of the probabilities P (Vm,i); i ∈ {1− 5}; m ∈ {1− 9} of the locations to be

Chapter 4. Non-unique graph structure 107

associated with the events. At the beginning, it is a uniform distribution, and later the

two events with their locations and boundaries are tracked.

The InSAR dataset as depicted in Fig. 4.7(a) is captured near the Calfpasture river on

Route 600 at approximate location (11213, 601.181, 6, 727, 296.005). The dataset contains

312 points and the surface displacements (in millimeter) are measured from 05-September-

2011 to 24-November-2014. The dataset contains two in-place centralized events and one

decentralized event of impending rock slope failure. The results on spatial localizations

of the events in case of LoP, DoP, and LaWeCo are shown in Fig. 4.7(b),(c), and (d)

respectively. Both LoP and DoP produce significant number of false positives as they

detect places where there is no evidence of any event. LaWeCo performs better compared

to LoP and DoP in terms of the number of false positives. However, LaWeCo fails to

identify a region with a centralized activity, which is due to the improper selection of

threshold. By using the event probability estimate of the locations, in Fig. 4.7(e), we

captured the slow decentralized drift of the rock slope as is evident by the green curve

(10 − 23 − 2014) that moves past the red (01 − 19 − 2012) curve. This detection and

finding out the evidence of the actual movement is useful for monitoring such progressive

geological hazards. The event probability map over all the locations and all the time

instance are shown in Fig. 4.7(f).

Our algorithm, DDT excels in identifying, localizing and tracking multiple decen-

tralized events. DDT provides a functional relationship between locations or entities at

each time instance. In addition, each time the algorithm computes a probability estimate

of event membership of each location. The algorithm is fast, scalable, computationally

tractable, and inexpensive in terms of memory consumption.

Now, designing an automated methodology for event detection and recognition from

videos is a critical task in security and surveillance. This problem demands localization

of an event both in space and time from video data.

Chapter 4. Non-unique graph structure 108

4.1.3 Graph based dictionary for event detection (GraDED)

In order to obtain a potentially acceptable solution to the problem, it is imperative to

separate the foreground, which is the region of our interest, from the background. Con-

ventional methods assume a static or quasi-static background [107] where the foreground

is designed as a sparse matrix by considering the event as a local phenomenon. Other

methods such as the saliency-driven event detection developed in [108] also assume the

static nature of background. As an alternative, frame-wise or block-wise principle compo-

nent analysis (PCA) [109] captures the direction and magnitude of maximum variability

in a sequence of video frames. Robust PCA [110] extends this framework by retrieving the

background as a low-rank matrix to incorporate minor spatio-temporal non-stationarity

due to jitter, clutter and variation in illumination. In other work, the background is

modeled as a mixture of Gaussians [111] to capture variations along with scene changes.

Real-time videos captured by car-mounted or hand-held cameras cannot be effectively

analyzed with the aforementioned models. The high-degree of non-stationarity in the

background, sporadic changes in camera angle (especially while driving on uneven road

surface or persistent swaying motion of human gait while holding the camera for example),

and illumination changes affect the performance of existing algorithms. In this work, we

aim at detecting events exhibiting limited duration and sufficient local extent in the

presence of dynamic background. In the majority of these scenarios (one such example

is shown in Fig. 4.8) there may be no actual object present to track. So, analyzing the

motion of objects to detect anomalies in videos using a tracking algorithm [112, 113] or

trajectory estimation [114,115] is not an appropriate solution for such data.

In recently reported work, it has been shown that subspace-based methods are keen

to detect subtle changes of dynamic background [116–118]. The key idea is to represent

variability of a feature in terms of the coefficients of a subspace. It is expected that

the high-degree nonlinearity caused by the variation in an agent such as jitter can be

Chapter 4. Non-unique graph structure 109

projected onto a subspace allocated for that agent. We seek to find the assembly of

these subspaces, which we call a dictionary [119], to detect events in a video. There

have been few emerging methods that used dictionary learning to build subspaces and

exploit the reinforced sparsity of the input data to formulate suitable measures for event

detection (SSPARED) [120]. The SSPARED algorithm exploits sparse codes obtained by

cross-dictionary representation in conjunction with K-L divergence to detect substantial

changes in consecutive frames. The algorithm is computationally expensive due to the

dictionary construction per frame and cross-dictionary representation for each pair of

consecutive frames and only provides the temporal extent of an event.

We develop a block-based graph-assisted dictionary learning algorithm (GraDED)

to identify both spatial and temporal extents of an event in a video with a dynamic

background as shown in fig 4.8. In this work, the graph Laplacian weights are employed to

detect the temporal extent of the event. The learned dictionary is analyzed to determine

the spatial localization of the event.

Before delving into the formulation of our algorithm, we give an overview of the

graph tools that are used in the derivation.

4.1.3.1 Spatio-temporal graph representation of video

Let V be a video containing K frames, where each frame is partitioned into P non-

overlapping blocks (see fig. 4.8). Collectively the set of ith block of all frames constitutes

the ith sub-volume of the video. Bi
j ∈ R1×S; j ∈ {1, 2, · · · , K}, i ∈ {1, 2, · · · , P} is a

feature extracted from ith block. The set of all features in ith sub-volume, denoted as

Bi ∈ RK×S, is used to construct the dictionary of ith block.

Firstly, we perform PCA on Bi to obtain maximum coherence within the basis of each

block. We take a subset of leading eigenvectors in terms of the magnitude of eigenvalues.

The span of the eigenvectors forms the subspace of principle variation in ith block over

Chapter 4. Non-unique graph structure 110

all the frames. The coherence [121] between two basis matrices can be defined as

µ
(
X, Y

)
= max

k,j
| < xk, yj > |, (4.9)

where xk and yj are the kth and jth columns of X and Y respectively. The coherence

within ith block is called intra-block coherence; whereas between two different blocks, it is

inter-block coherence. As eigenvectors are orthonormal, µi is unity for ith block. However,

no inference can be made regarding the coherence between two different blocks.

Since, Bi
j the principal components of Bi can be exploited to analyze the temporal

variations in a video. Let Mi be the number of leading eigenvectors, which is denoted as

χi ∈ RK×Mi . The choice of the number of eigenvectors is critical, since a large number

would increase the computational time of the algorithm, whereas a small number may

fail to capture the background and foreground variations.

Now, motivated by [122], the idea is to subject χi by a distance-preserving linear

transformation such that a subset of P blocks will have significant mutual incoherence

with respect to the rest without affecting the intra-block mutual coherence. Then, that

subset of blocks can be identified as the spatial localization of the event in a video. Let U

be such a desired transformation. Precisely, we want µi(U
Tχi, U

Tχi) = µi(χi, U ∗UTχi) =

µi(χi, χi). It is evident that U has to be unitary. We want such a transformation to be

data-driven, which motivates us to apply graph theory.

The graph provides a useful framework to iteratively retrieve meaningful relationships

among data samples. We consider each block of a frame as a vertex of a graph. In the

ith sub-volume, there are K number of vertices which are connected as a linear graph

having (K−1) weights as defined in section 2.1. The eigenmatrix of the graph Laplacian,

Li, is derived by using the set of weights as our desirable transformation for the ith sub-

volume. The weights are essentially free parameters, which are updated according to a

Chapter 4. Non-unique graph structure 111

cost function. The changes in weights lead to a change in Li, which consequently induces

a change in Ui, which is the eigenmatrix of Li.

To build a compact mathematical framework, χi is left-multiplied by a unitary matrix

Ui, which is considered to be the ith sub-dictionary, Di. The overall dictionary structure

is given by,

D = [D1 D2 . . . DP] = [UT
1 χ1 U

T
2 χ2 . . . UT

P χP]. (4.10)

Here M =
∑P

i=1Mi and D ∈ RK×M . In eq. (4.10), there are in total P (K−1) parameters

of the dictionary which needs to be updated iteratively for P number of linear graphs.

We select each graph to be linear as it contains the least number of edges for a given set of

vertices in a connected graph. Therefore, this configuration contains the least number of

parameters, which, in effect, reduces the possibility of over-fitting during optimization. It

should be noted here, from graph-theoretic perspective, that there are multiple isomorphic

candidates which share the property of least number of edges. For example, a star-graph

contains the same number of edges as of a linear graph with a fixed cardinality of vertex

sets. However, only linear graph maintains the temporal order of the event occurring in

a video.

4.1.3.2 Graph based parametric dictionary learning

In this section, we attempt to find the set of transformations, Uis by using graph Lapla-

cians. Let us consider, the sequential stack of sub-volume features as Y = [B1 B2 ... BP].

The corresponding high-dimensional sparse code is X = [X1 X2 ... XP]. The optimization

problem by using D, Y , and X can be given by,

(
D∗, X∗

)
= min

D,X
‖Y −DX‖2F s.t. ‖X‖0 ≤ T. (4.11)

Chapter 4. Non-unique graph structure 112

The objective function in the above equation is non-convex. Conventionally, we resort to

an alternating minimization technique in which each quantity is minimized by keeping

the other one fixed. The above non-convex cost function and the constraints in eq. (4.11)

can be stitched together with the help of Lagrangian coefficient λ as

φ
(
D,X, λ

)
= ‖Y −DX‖2F + λ ‖X‖0 . (4.12)

It is to be noted here that the dictionary D is a function of a set of Laplacians Li via Ui

as evident from eq. (4.10). In addition, each Li is a function of diagonal weight matrix

Wi. Therefore, the cost function in eq. (4.22) can be rewritten as

φ
(
{W1, ...,WP}, X, λ

)
= ‖Y −DX‖2F + λ ‖X‖0

Li = UiΓiU
T
i , Li = ΥWiΥ

T ; i ∈ {1, 2, ..., P}. (4.13)

In alternating minimization method, the sparse feature matrix X is kept fixed during

the update step of dictionary D. By using eq. (4.10), the feature Y in eq. (4.13) can be

expanded as Y =
∑P

i=1DiXi.

Note that Xi is not the sparse code for Bi, which we distinguish by subscript and

superscript in notation. Rather, it can be interpreted by the row-wise partition of X i.e.

the ith row-block of X is multiplied by Di. By using Y =
∑P

i=1DiXi, the first term in

eq. (4.13), which is the reconstruction error, can be restructured as a function of Di as

φ
(
Di

)
= ||Ei −DiXi||2F ; Ei = Y −

∑
j 6=i

DjXj. (4.14)

To update the block dictionary Di iteratively, the parameters Wi needs to be estimated

by gradient descent. With the help of eq. (4.13) and (4.14), the update equation for Wi

Chapter 4. Non-unique graph structure 113

can be given by,

w
(t+1)
ij = wtij − ηTr

([∂φ(Di)

∂Ui

]T ∂Ui
∂wij

)
;

∂Ui
∂wij

=
[
Tr
(

(
∂L

∂ukl
)−T

∂L

∂wij

)]
kl
. (4.15)

Here, wtij denotes the jth weight of Wi in eq. (4.13) at tth iteration. η is the learning step

parameter, a scalar value selected from (0, 1). Tr is the matrix trace operator which sums

up the diagonal values of a matrix. [•]kl is the klth element of the matrix expressed as [•].

It is evident from eq. (4.15) that in order to update weight wij, three partial derivatives

are to evaluated at each step - ∂φ(Di)
∂Ui

, ∂L
∂ukl

, and ∂L
∂wij

. Precisely, in order to obtain ∂Ui

∂wij
,

for each (k, l) a total of K2 computation of ∂L
∂ukl

is needed, which is computationally

expensive. However, it appears that the loss of computational simplicity is compensated

by considerably fast convergence of the algorithm.

Now, ∂φ(Di)
∂Ui

in eq. (4.15) can be evaluated by using eq. (4.14).

∂φ(Di)

∂Ui
=

∂ ‖Ei −DiXi‖2F
∂Ui

(4.16)

=
∂

∂Ui

(
Ei −DiXi

)T(
Ei −DiXi

)
=

∂

∂Ui

(
ET
i Ei − 2ET

i DiXi +XT
i D

T
i DiXi

)
.

By construction Di = Uiχi from eq. (4.10), which asserts that DT
i Di = χTi UiU

T
i χi =

χTi χi = I by using UiU
T
i = I. It immediately appears that XT

i D
T
i DiXi = XT

i Xi. After

inserting this expression in eq. (4.16), ∂φ(Di)
∂Ui

becomes −2χiXiE
T
i . The second partial

derivative, ∂L
∂ukl

can be evaluated by using Li = UiΓiU
T
i , where Γ is a diagonal matrix

containing the eigenvalues of Li. By standard rule of matrix derivative and using Jmn =

Chapter 4. Non-unique graph structure 114

δmkδnl,

∂Li
∂ukl

=
∂

∂ukl
UiΓiU

T
i = UiΓiJ

mn + JnmΓiU
T
i . (4.17)

4.1.3.3 Event detection using learned graph weights

The event detection is performed by identifying its spatial and temporal extent indepen-

dently. Both problems can be categorized as binary classification problems - associated

with event or no-event.

To figure out the temporal changes, each set of weights between consecutive frames is

taken as a vector to represent temporal variability. The weight vectors are then clustered

by k-means with Euclidean distance. The spatial localization is obtained via clustering

dictionary atoms. As dictionary atoms are inherently orthonormal, a refined approach

would be to consider clustering over a Grassmann manifold. However, such clustering

involves a computationally intensive intermediate step of Karcher mean calculation. In-

stead, we perform agglomerative clustering to sort out the subset blocks carrying event

signatures. We use an unweighted average distance to measure similarity between clus-

ters and inter-block coherence as the distance between two features in the hierarchical

clustering.

4.1.3.4 Implementation, results & discussion

We evaluate the performance of our proposed algorithm on three video datasets [120],

as shown in fig. 4.9. Video I contains 75 frames depicting the disappearance and reap-

pearance of a pilot boat. In this video, the mounted camera position is kept fixed but

the background variation is primarily caused by intermittent sea-waves. Video II with

Chapter 4. Non-unique graph structure 115

69 frames shows an explosion in a gas station. The camera mounted on a running vehi-

cle captures significant background motion. Video III contains 77 frames showing a car

accident followed by a fire during daytime from a car-mounted camera.

For temporal localization of an event, we set the ground-truth by tagging the frames

manually in which the event persists including the start and end frames. We compare our

results with three recent methods - SSPARED [120], ADM [118], and DRMF [117]. In

addition, we also provide spatial localization by identifying the subset of blocks containing

the event. We use sensitivity and specificity as metrics to evaluate our results for spatial

and temporal localizations separately.

In all of our experiments, we extract block-wise histogram of oriented gradient

(HOG) [41] features with a cell size of 16× 16, followed by dimension-wise normalization

of the features as a prerequisite for orthogonal matching pursuit to generate sparse code.

With the user-specified parameters, the alternative minimization procedure is executed

for dictionary update and sparse code generation. During this procedure, as an interme-

diate step, the weights of all the graphs are normalized before obtaining the Laplacian

matrices at every iteration.

We demonstrate the effects of different parameters - number of blocks (P), down-

sampling of frames, and number of leading eigenvectors (M) on sensitivity and specificity.

We do not set M directly for our experiments. Instead, we introduce a parameter, eigen-

factor such that Mi = d K
eigenFactor

e ∀i. The results shown in fig. 4.10(a) suggest that

the desirable choice of the number of blocks, P would be 16, implying the preference

for coarse spatial partition. It is because, for significantly large number of blocks per

frame, the signature of an event will be distributed among the blocks making it harder

to distinguish from the background. Similarly, from fig. 4.10, the preferred downsample

rate is 3. For higher rates, the variation between consecutive frames would be significant

leading to an erratic prediction of event frames. It is to note that downsample reduces the

Chapter 4. Non-unique graph structure 116

number of graph weights (K − 1), which provides two advantages - computational speed

and reduced possibility of over-fitting. Likewise, according to fig. 4.10(c), the preferred

eigenfactor would be 4 or 5. Higher eigenfactors make the sub-dictionaries thinner, which

precludes to capture major variations. Dictionaries with a lower eigenfactor encounter

almost every possible unwanted variation and loss of computational speed. Fig. 4.10(d)

presents the comparison with SSPARED, ADM, and DRMF methods, and it shows im-

provements in specificity and sensitivity by 0.08 and 0.6 respectively for time localization.

The results of spatial localization for the three video datasets by our method are given

in Table 4.2.
Table 4.2: Sensitivity & specificity scores of GraDED for spatial localization.

Dataset Sensitivity Specificity

Video I 0.75 0.59
Video II 1 0.54
Video III 0.8 0.64

We present a parametric dictionary learning approach by leveraging the graph frame-

work to detect short-time, spatially-local rare events. In this work, the variations of

moving backgrounds, jitter, clutter and varied illumination are overcome by utilizing

block-wise subspaces in the dictionary. The graph plays a crucial role in spatial localiza-

tion of events by iteratively updating the edge-weights. We show the effectiveness of our

algorithm by identifying the temporal extent of the events compared to three different

state-of-the-art methods. In addition, we perform simultaneously spatial localization by

locating the set of blocks in frames in which the events happened. One potential im-

provement involves the derivation of the graph Laplacian from the sparse code, and the

control of the regularization of the Laplacian in order to obtain spatio-temporal event

localization.

Chapter 4. Non-unique graph structure 117

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2: Dataset-1: Active regions identified using different kernels and scales are marked
by red circles. (a) The original dataset, (b) LaWeCo: kernel L̃, scale 2 feet, (c) LaWeCo: kernel
L̃, scale 10 feet, (d) LaWeCo: kernel (I − L̃)−1, scale 10 feet, (e) LaWeCo: kernel (I − L̃)−1,

scale 30 feet (f) graph cut, (g) LoP, (h) DoP.

Chapter 4. Non-unique graph structure 118

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.3: Dataset-2: (a) The original dataset. Active regions using different kernels and
scales are marked by red circles. (b) LaWeCo: kernel L̃, scale 1 meter, (c) LaWeCo: kernel L̃,

scale 50 meter, (d) kernel (I − L̃)−1, scale 100 meter, (e) LaWeCo: kernel
∑2
i=1 L̃

i, scale 10

meter (f) LaWeCo: kernel (I − L̃)−1, scale 50 meter (g) graph cut, (h) LoP, (i) DoP.

Chapter 4. Non-unique graph structure 119

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.4: Dataset-3: (a) cropped original dataset. Active regions using different kernels and
scales are marked by red circles. (b) LaWeCo: kernel L̃, scale 0.002 degree, (c) LaWeCo: kernel

L̃, scale 0.004 degree, (d) LaWeCo: kernel L̃, scale 0.008 degree, (e) LaWeCo: kernel
∑4
i=1 L̃

i,

(f) LaWeCo: kernel (I − L̃)−1, (g) LoP, (h) DoP.

Chapter 4. Non-unique graph structure 120

(a) (b)

Figure 4.5: The above figure is a representation of a process with four locations and three
times, with the v3,2 and v2,2 registering an event. (a) It shows the set of 2-length walks

θ1,32,m,3;m ∈ {1, 2, 3, 4} from v2,1 to v3,3. Out of four possible walks, the combined normal-

ized weights of θ1,32,3,3 and θ1,32,2,3 exceed the threshold τ . V2,2,3 = {v2,2, v3,2}. (b) It shows a
subset of walks from v2,1 and v4,1 to v2,3. Notice that the edge from v3,2 to v2,3 is counted

twice. Therefore, the edge weight of (v2, v3) in the topology at time t2(see eq. 4.8) is 2w3,2.

(a) (b)

(c) (d)

(e)

Figure 4.6: Results on the synthetic dataset describing two events - one centralized and one
decentralized. (a) and (c) are the displacement at time instances t = 3 and 5. The corresponding
functional topologies are shown in (b) and (d). The detection, localization ad tracking of the

two events are shown in (e) with the probabilities of event membership of the 9 locations.

Chapter 4. Non-unique graph structure 121

(a) (b)

(c) (d)

(e)

(f)

Figure 4.7: (a)The map of Route 600 which depicts two centralized surface deformations and
a decentralized rock slope fault (region of interest). The performance of three state-of-the-art
methods in terms of the detection and localization only are shown in (b),(c), and (d). (e) shows
the slow drift of the impending rock slope fault from 01−19−2012(red) to 10−23−2014(green).
(f) The event probability of all the locations over all the time periods. The black rectangle

encapsulates the behavior of rock slope fault over time.

Chapter 4. Non-unique graph structure 122

Figure 4.8: Top row: An event video with four segments per frame. Bottom row: The
linear graph with five nodes and four weight parameters for the 2nd sub-volume.

(a) Video 1

(b) Video 2

(c) Video 3

Figure 4.9: The video in (a) shows disappearance and reappearance of pilot boat; (b) shows
a spontaneous fire on a street. (c) shows an accident on a highway.

Chapter 4. Non-unique graph structure 123

(a) (b)

(c) (d)

Figure 4.10: For three video datasets: sensitivity and specificity vs. (a) number of
blocks per frame P , (b) downsample rate of frames and (c) eigenfactor; (d) comparison

with state-of-the-art methods. SP = Specificity, SN = Sensitivity.

Chapter 4. Non-unique graph structure 124

4.2 System preconditioning

In 1960, Bernard Widrow and Ted Hoff [123] proposed a class of least mean squares

(LMS) algorithms to recursively compute the coefficients of an N-tap finite impulse re-

sponse (FIR) filter that minimizes the output error signal. This computation is achieved

by a stochastic gradient descent approach where the filter coefficients are evaluated as a

function of the current error at the output. Two of the major issues with this approach

are the convergence speed and stability. The filter coefficients (or weights) converge in

mean while showing small fluctuation in magnitude around the optimal value. The con-

vergence speed depends on the condition number of the autocorrelation matrix of the

input, where a condition number close to unity connotes a fast and stable convergence.

Later, adaptive algorithms, such as LSL (least square lattice) and GAL (gradient adap-

tive lattice) [124, 125] filters were designed to achieve faster convergence, immunity to

poor condition number of input autocorrelation matrix, and better finite precision im-

plementation compared to the LMS filter. However, these stochastic gradient filters may

sometimes produce significant numerical errors, and the convergence is poor compared to

recursive least squares (RLS) filters [126].

In order to obtain well-conditioned autocorrelation matrix of any real world in-

put data, we transform the input a priori, which is popularly known as transform-

domain LMS (TDLMS). The discrete Fourier transform (DFT), discrete cosine transform

(DCT) [127–130] and others act as suitable off-the-shelf transformations of the input

data for such problems. The aforementioned step is immediately followed by a power

normalization stage [131,132] and then used as input to the LMS filter. As a geometrical

interpretation, the unitary transformation rotates the mean square error (MSE) hyperel-

lipsoid without changing its shape on the axes of LMS filter weights [132]. The rotation

Chapter 4. Non-unique graph structure 125

(a)

Figure 4.11: A schematic of our algorithm.

tries to align the axes of the hyperellipsoid to the axes of weights. The power normaliza-

tion is crucial in enhancing the speed of convergence of LMS filter. The normalization

forces the hyperellipsoid to cross all the axes at equal distance from the center of the

hyperellipsoid. For a perfect alignment after the transformation, the normalization step

turns the MSE hyperellipsoid into a hypersphere [132].

The TDLMS filter is flexible as it does not attempt to change the working principles

and the architecture of LMS filter. Therefore, the transform-domain module can precede

other algorithms, such as RLS, GAL and LSL. Notice that the conventional unitary

transformations are independent of the underlying data, hence not optimal in regularizing

condition numbers of the autocorrelation matrices of arbitrary real-time datasets. As an

example, the DCT has been shown to be near-optimal for Toeplitz matrices. However,

the DCT loses its near-optimality in conditioning sparse linear systems.

From a different perspective, the transformation of a matrix, such as autocorrelation

matrix to improve the condition number is regarded as a subproblem of preconditioning of

matrices [133–136]. Jacobi [137, 138], Gauss-Seidel [139], approximate inverse [140, 141],

incomplete LU factorization [142] preconditioners are examples of such data-dependent

transformations that utilize a decomposition of the input autocorrelation matrix. These

algorithms are well-suited for solving linear system of equations.

Notice that there is a difference between TDLMS and linear systems in terms of the

usage of a preconditioner. The preconditioning action is implicit in TDLMS filters. The

Chapter 4. Non-unique graph structure 126

autocorrelation matrix is not explicitly used in the LMS architecture. Instead, it is the

input data or the transformed input data (in case, we transform the data) that flows

through the LMS lattice and the update of weights is based on error-correcting learning.

The convergence of the algorithm depends on the input autocorrelation matrix. Whereas,

in case of solving linear system of equations, (Ax = b) type, the use of a preconditioner

is explicit, which is M−1Ax = M−1b, with M as a preconditioner matrix, such as the

Gauss-Seidel type.

Let A be a matrix to be preconditioned by another matrix ζ. ζ is said to be a left,

right, and split preconditioner if ζ−1A, Aζ−1, and U−11 AU−T2 with ζ = U1U
T
2 respectively

provide improved condition numbers compared to that of A. Gauss-Seidel, incomplete

LU, and approximate inverse are examples of a left preconditioner. The transformations

in TDLMS algorithm are the unitary split preconditioner type. By unitary, we have(
U1U

T
2 = I

)
and U1 = U2 = U .

4.2.1 Preconditioning using graph (PrecoG)

In PrecoG, we aim to learn such unitary split preconditioner from input data. It is be-

cause unlike a left or right preconditioner, the operation of a split preconditioner entails

the possibility of a transformation of input data in which the input data vector is left-

multiplied by UT . It is the split preconditioner which helps apply PrecoG to TDLMS as

well as solving a linear system of equations, and possibly any applications where precon-

ditioner or transformation is needed. There are additional benefits of this approach. As

the transformation is unitary, the energy of input data remains unchanged after transfor-

mation. In addition, the procedure of preconditioning that transforms the input vector

as an intermediate step can utilize a number of input signal properties (e.g., the sparsity

of a signal).

Chapter 4. Non-unique graph structure 127

The derivation of our split conditioner is motivated by the topology of the struc-

tured input data. The topology determines neighborhood relationship between data

points, which can be represented using graph-theoretic tools [103, 143, 144]. In recent

years, manifold processing and regularization have shown promise in different areas of re-

search [19,20,145,146]. Based on such evidence, we hypothesize that the intrinsic topology

of the input data affects the construction of a suitable preconditioner matrix. We estimate

a data manifold that provides an alternate set of basis acting as a split preconditioning

matrix. The data when projected onto the basis are expected to be decorrelated.

The main contribution of this work is to provide an optimization framework that

finds the desired unitary transformation for the preconditioning matrix. We iteratively

estimate the underlying topology leveraging graph theory, followed by the computation of

desired unitary transformation by using the graph Laplacian. Most importantly, we show

that our approach is equally applicable in preconditiong arbitrary linear systems apart

from ameliorating the convergence of LMS filters. In addition, PrecoG can be extended

to exploit additional input data constraints, such as sparsity of the transformed input.

Another advantage of PrecoG is that it can be applied without having a prior knowledge

about the process that generates the input data.

4.2.1.1 Problem statement

Let xk = [x(k) x(k − 1) . . . x(k − N + 1)] be a N -length real valued tap-delayed input

signal vector at kth instant. The vector representation is convenient for estimating the

input autocorrelation as an ergodic process. Let the autocorrelation matrix, denoted by

RN be defined as RN = E
(
xNx

T
N

)
. We assume that ∆Y is the main diagonal of a square

matrix Y (∆Y = diag(Y)). Following this notation, after power normalization the auto-

correlation matrix becomes SN = ∆
− 1

2
RN
RN∆

− 1
2

RN
. In general, the condition number of SN ,

χSN
, happens to be significantly large in practical datasets. For example, the condition

number of the autocorrelation matrix of a Markov process with signal correlation factor

Chapter 4. Non-unique graph structure 128

as 0.95 has a χ of O(103). Notice that we seek UN to minimize the condition number

of SN . Let a unitary transformation be UN (UNU
T
N = I) such that the transformed au-

tocorrelation matrix becomes R̃N = E
[
UT
Nxkx

T
kUN

]
. Next, R̃N is subjected to a power

normalization stage that produces S̃N = ∆
− 1

2

R̃N
R̃N∆

− 1
2

R̃N
. Precisely, we want the eigenval-

ues of limN→∞ S̃N ∈
[
1 − ε2, 1 + ε1

]
, where ε1 and ε2 are arbitrary constants such that

χmax ' 1+ε1
1−ε2 . A schematic of our algorithm is given in Fig. 4.11.

Let us take an example of a 1st order Markov input with the signal correlation factor

ρ and autocorrelation matrix, RN as

RN = E[xkx
H
k] =

1 ρ · · · ρn−1

ρ 1 · · · ρn−2

...
...

. . .
...

ρn−1 ρn−2 · · · 1

(4.18)

It is shown in [132] that χSN
' (1+ρ

1−ρ)2, which suggests that ε1 = ρ2 +2ρ, and ε2 = 2ρ−ρ2.

After applying the DFT, the condition number becomes limN→∞ χS̃N
= (1+ρ

1−ρ), which

indicates that ε1 = ε2 = ρ. On applying the DCT, limN→∞ χS̃N
= 1 + ρ with ε1 = ρ and

ε2 = 0.

4.2.1.2 Methodology

The search for UN is carried out through an iterative optimization of an associated cost

function. It can be argued from section 4.2.1.1 that the optimal convergence properties

are obtained when S̃N converges to the identity matrix in the rank zero perturbation

sense [132]: A and B with η = A− B have the same asymptotic eigenvalue distribution

if

lim
N−→∞

rank(η) = 0. (4.19)

Chapter 4. Non-unique graph structure 129

(a) (b)

(c)

Figure 4.12: Condition ratios obtained by applying the algorithms on (a) regularized
Hilbert matrices with varied regularization parameters, (b) a set of random matrices
containing entries ∼ Gaussian(0, 1), and (d) random matrices of varied sparsities (for

sparse linear systems).

In our case, with λ as an eigenvalue, this translates to

lim
N→∞

det(S̃N − λIN) = 0, (4.20)

which can be expanded as,

lim
N→∞

det
(

∆
−1/2
R̃N

R̃N∆
−1/2
R̃N
− λIN

)
= 0. (4.21)

Eq. (4.21) can be rearranged as,

lim
N→∞

det
(
R̃N − λ∆R̃N

)
= 0, (4.22)

which is a quadratic polynomial of UN as R̃N = UT
NRNUN . Given the orthonormality of

the eigenvectors Un, we can rewrite (4.22) as

UN = arg min
UN∈O(N)

[
det
(
R̃N − λ∆R̃N

)]
. (4.23)

Chapter 4. Non-unique graph structure 130

Here, O(N) is the set of unitary matrices. However, in presence of the determinant in

(4.23), obtaining a closed-form expression for UN is difficult to obtain. To overcome this

obstacle, we apply the Frobenius norm in (4.24).

UN = arg min
UN∈O(N)

‖R̃N − λ∆R̃N
‖2F . (4.24)

The Frobenius norm imposes a stronger constraint compared to (4.20). In fact, while

(4.22) can be solved if at least one column of R̃N − λ∆R̃N
can be expressed as a linear

combination of rest of the columns, (4.24) becomes zero only when R̃N − λ∆R̃N
is a zero

matrix. In effect, it reduces the search space of UN . It is due to the fact that the set of

UN that solves eq. (4.24) is a subset of the UN that are the solutions of eq. (4.23). Here,

we address two aspects of the problem. First, (4.24) attempts to minimize the difference

between R̃N , which is UT
NRNUN , and the scaled diagonal matrix of R̃N . This is necessary

because it accounts for the spectral leakage [132] as mentioned later in this section. The

second aspect is that (4.24) seems to diagonalize R̃N apart from attempting to make the

eigenvalues unity only. Here, a solution may be hard to obtain in practice. So, we relax

the unity constraint by forcing the eigenvalues to lie within a range [1 − ε2, 1 + ε1]. By

enforcing the constraint, (4.24) with parameters p = (w, ε1, ε2) becomes

UN = arg min
UN∈O(N)

|| R̃N − s+∆R̃N
‖2F + ||R̃N − s−∆R̃N

‖2F︸ ︷︷ ︸
E(p)

. (4.25)

where s+ = 1 + ε1 and s− = 1 − ε2 are the upper and lower bounds respectively for

the eigenvalues of SN . Using the Hadamard product notation, we can express ∆R̃N
as

UT
NRNUN ◦IN . The first two constraints in (4.25) provide a valley in the space spanned by

the eigenvectors in UN if RN is positive definite. The valley exists between two surfaces

(1−ε2)UT
NRNUN ◦I and (1+ε1)U

T
NRNUN ◦I. At this point, there might be infinitely-many

possible solutions. We add a regularizer on w to obtain an acceptable set of solutions.

Chapter 4. Non-unique graph structure 131

The undesired result of the imposed restriction given above is that the convergence

time may be significant, and the set of solutions of (4.25) in terms of UN is significantly

smaller than that of (4.24). Upon approaching a minimum of (4.24), the speed of gra-

dient descent algorithm drops significantly. Although it is theoretically expected that

limN→∞ S̃N ∈ [1 − ε2, 1 + ε1], in practice, it is difficult to guarantee after a prescribed

number of iterative steps.

4.2.1.3 Laplacian parametrization

The problem of finding a sub-optimal transform by optimizing eq. (4.25) is solved by

leveraging the graph framework. In this framework, the input data is modeled with a fi-

nite, single-connected, simple, and undirected graph endowed with a set of vertices, edges

and edge weights. For example, for an LMS filter with N taps, an input signal vector

xk has length N , which can be represented with N vertices. Basically, each vertex corre-

sponds to one tap of the LMS filter. Using the graph, the unknowns of the optimization

in (4.25) are the number of edges and the associated edge weights. A fully-connected

graph with N vertices contains N(N−1)
2

edges. A deleted edge can be represented with

zero edge weight. We denote the the set of unknown parameters as w, which is the set

of nonzero weights of the graph.

To find the desired transformation, the algorithm initializes the weights w with ran-

dom numbers sampled from a Gaussian distribution with zero mean and unit variance.

Let W is the diagonal matrix containing w. Then by definition, the graph Laplacian,

which is symmetric and positive semidefinite by construction, is given by L = BWBT .

B is the incidence matrix as mentioned in section 2.1. The spectral decomposition of

L provides the matrix of eigenvectors U . Finally, UTxk is the transformation that is

expected to decorrelate the dataset, which may not be possible due to random initial-

ization. Then the cost function (4.25) helps update the weights and the search for the

Chapter 4. Non-unique graph structure 132

desired transformation continues in an iterative fashion until the objective conditions are

met.

The framework provides a couple of advantages. Firstly, in order to obtain U directly

from eq. (4.25), iterative estimation of N2 parameters is needed with the unitary con-

straint, which might result in overfitting. Moreover it does not seem reasonable to make

U sparse. Sparsification is justified in the graph domain, where the sparsifying action

leads to O(N) number of edges and edge weights. A smaller set of weights helps prevent

the risk of overfitting during optimization.

The cost function in eq. (4.25) is nonconvex. Therefore, the solution is not guaranteed

to be a global optimum. In our work, the required solution is obtained through gradient

descent with µ as the step size parameter. We also obtain that L = BWBT . Let Θi = ∂L
∂wi

,

which can be evaluated as ∂L
∂wi

= B ∂W
∂wi

BT . Using µ and Θi, the update equation is given

by,

wt+1
i = wti − µTr

([∂E(p)

∂UN

]T ∂UN
∂wi

)
; 0 < µ < 1

∂uk,l
∂wi

= Tr
(∂uk,l
∂L

Θi

)
= Tr

([∂L
∂uk,l

]−T
Θi

)
, (4.26)

where, by using Jmn = δmkδnl,
∂L
∂ukl

can be given by,

L = UNΓUT
N =⇒ ∂L

∂ukl
= UNΓJmn + JnmΓUT

N . (4.27)

In eq. (4.26), t is the iteration index, and the computation of ∂E(p)
∂UN

is given in the Ap-

pendix. To prevent each wi from erratic values during iteration, we impose 2−norm

on the weight vector w. On adding the regularization term to eq. (4.25), the new cost

function becomes

EN(w, ε1, ε2, β) = E(p) + β(wTw − 1). (4.28)

Chapter 4. Non-unique graph structure 133

On differentiating EN with respect to w, we get

∂EN
∂w

=
∂E(p)

∂w
+ 2βw (4.29)

Following eq. (4.29), the iterative update of each weight can be given by,

wt+1
i = wti

(
1− 2β

)
− µTr

([∂E(p)

∂UN

]T ∂UN
∂wi

)
. (4.30)

4.2.1.4 Complexity analysis

The update of weights wi requires the computation of three partial derivatives (see Ap-

pendix 4.2.1.6.1). Notice that ∂L
∂ukl

and ∂L
∂wi

are significantly sparse. This can be seen from

(4.27), where Jmn is a matrix containing only one nonzero entry of magnitude unity.

Using the fact that Γ is a diagonal matrix containing eigenvalues of L, ∂L
∂ukl

in (4.27)

contains at most (2N − 1) nonzero entries out of N2 entries, where N2 is the dimension

of ∂L
∂ukl

. This sparse matrix is singular by construction, and the Moore-Penrose pseu-

doinverse (O(N3)) is computed in order to obtain
(
∂L
∂ukl

)−1
. It can also be observed that

∂L
∂wi

is sparse. This sparsity is due to the fact that ∂L
∂wi

= B ∂W
∂wi

BT , and each weight wi

appears in exactly four entries of L. It asserts that ∂L
∂wi

has four nonzero entries out

of N2 entries in ∂L
∂wi

. Let L(k, l) = wi; 1 ≤ k, l ≤ N . Then, Θi(k, k) = Θi(l, l) = 1

and Θi(k, l) = Θi(l, k) = −1, which implies that only kth and lth columns of Θi contain

nonzero entries. Therefore, Tr
([

∂L
∂uk,l

]−T
Θi

)
can be given by the sum of (k, k) and (l, l)

entries in
[
∂L
∂uk,l

]−T
Θi. The lone computationally expensive operation is computation of

the pseudoinverse
(
∂L
∂ukl

)−1
; 1 ≤ k, l ≤ N , which incurs in total a complexity of O(N5)

for each weight. It is to note that the constructions of preconditioners for solving lin-

ear systems by comparative methods such as, Jacobi (O(N2)), successive over-relaxation

(SOR) (O(N3)), symmetric SOR (O(N3)), Gauss-Seidel (O(N3)) have faster associated

Chapter 4. Non-unique graph structure 134

run times compared to PrecoG. Here, complexity accounts for the inversion of each pre-

conditioner matrix. However, the acceleration in the convergence of the LMS filter using

PrecoG is also expected to partially compensate for the computational overload of Pre-

coG.

4.2.1.5 Sparse signal and sparse topology estimation

For an input signal vector of length N , the graph can be fully connected with N(N−1)
2

edge weights (E) , which implies a dense topology. However, dense topology may lead to

overfitting during the optimization using gradient descent in (4.26). We employ a fixed

regular topology by setting the connectivity among vertices such that eij ∈ E exists if

0 < |i− j| ≤ 2. This fixed topology maintains the temporal order in which the data point

arrives and keep the topology sparse. The estimation of the sparse topology [104] along

with the constraint of sparsity of the transformed signal can also be achieved by adding

a regularization term to (4.28) as

EN(p, β, α1, α2) = EN − α11
T log(A1) + α2||UT

Nxk||0. (4.31)

Here, A is the adjacency matrix consisting of w, and A1 is the degree vector containing

weighted degree of all the data points. By penalizing high degree vertices (data points)

the log penalty term promotes sparsity in A. On the other hand, it strongly discourages

any vertex to have degree zero, maintaining the graph to be single connected. In (4.31),

||UT
Nxk||0 regulates the sparsity of the transformed signal. Such a sparse signal involves

reduced multiplication with filter coefficients in the LMS filter than a non-sparse signal,

which saves significant computation time. This feature can not be obtained by applying

conventional transforms, such as DCT.

Chapter 4. Non-unique graph structure 135

(a)

(b)

Figure 4.13: Condition ratios obtained by applying the algorithms on (a) 1st order
Markov process as a function of signal correlation factor ρ and (b) 2nd order autore-

gressive process with parameters (ρ1, ρ2).

4.2.1.6 Results

We show the effectiveness of our approach in preconditioning different matrices against the

preconditioners - DCT, DFT, Jacobi (tridiagonal matrix type) and GS (Gauss−Seidel).

In addition, for sparse linear systems, we include a comparison with the incomplete LU

factorized preconditioning procedure. It is not reasonable to compare our results with

LSL, GAL, and RLS because they are the improvements of the traditional LMS algo-

rithm. To represent the strength of an individual algorithm, we incorporate the condi-

tion number of each unconditional matrix with the aforementioned methods. In order

to scale the condition numbers obtained from several methods with respect to ours, we

define a metric, condition ratio = condition number obtained from a method
condition number obtained from our method

. In some of the re-

sults, we compute log10(condition ratio) to mitigate the enormous variance present in the

condition ratio scores. First, we apply our method to precondition a Hilbert matrix [147]

which is severely ill-conditioned. Hilbert matrix, H is defined as H(i, j) = 1
i+j−1 . In

the experiment, we add a regularizer using
(
αI
)

with 0 < α ≤ 1 as the regularization

Chapter 4. Non-unique graph structure 136

coefficient. The condition ratios of the existing algorithms including PrecoG on precon-

ditioning the Hilbert matrices, which are regularized by changing the α, are shown in

Fig. 4.12(a). Notice that the X-axis is given in −log10 scale. Therefore, smaller values

at X coordinate indicates higher regularization of the Hilbert matrix. On increasing the

value of α, the Hilbert matrix becomes diagonally-dominant, and it suggests that the

condition number of the Hilbert matrix approaches unity. This fact is clearly visible

from Fig. 4.12(a), where all the state-of-the-art techniques including PrecoG performs

significantly well when the value of −log10(α) falls in the vicinity of zero. However,

on decreasing the value of α, the Hilbert matrix becomes severely ill-conditioned, and

the performance of the competitive algorithms except Gauss − Seidel exhibit inconsis-

tent behavior. The DCT performs better near α = 1 (−log10(α) = 0). This result

is expected because diagonally dominant matrix behaves similar to a 1st order Markov

process with ρ significantly small. However, the DCT shows inconsistency at α = 0.001,

where it again attains noticeable preconditioning of Hilbert matrix as opposed to other

competitive methods.

We also evaluate our algorithm on five different random positive definite matrices

with the values taken from a zero-mean and unit-variance Gaussian process. We regularize

the matrices to ensure positive-definiteness. The results in Fig. 4.12(b) are bar-plotted.

For example, the first bar corresponds to the results on the first random Gaussian positive

definite matrix. Each bar is shown using six different colors corresponding to six methods.

The width of each color is proportional to the condition ratio obtained by applying

the corresponding preconditioning method. The condition numbers of the five positive

definite matrices are 23.6, 31.8, 28.1, 26.5, and 269.1 respectively. The condition numbers

that we obtain by applying PrecoG are 4.3, 3.1, 4.1, 4.2, and 17.5 respectively. It is

evident from Fig. 4.12(b), the condition ratios obtained by applying PrecoG are at least

1.3 times better compared to DCT, and effectively well compared to Gauss-Seidel, DFT,

Chapter 4. Non-unique graph structure 137

and Jacobi.

The condition ratios (in log10 scale) by applying PrecoG on sparse systems of equa-

tions are shown in Fig. 4.12(c). The five sparse matrices are random by construction with

sparsity
(
number of nonzero elements
total number of elements

)
levels as [5

6
, 2
3
, 1
3
, 1
2
, 1
5
] respectively. For example, 5

6
th of

all the entries in the first matrix which is symmetric and positive definite by construc-

tion, are nonzero. We present the experiments in decreasing order of sparsity with the

most sparse one, in our experiment, containing only 1
5
th nonzero elements. The condition

numbers of these matrices are 138.68, 1620, 22.88, 312.3, and 51.84. On applying PrecoG

to these matrices, we obtain the corresponding condition numbers as 54.6, 491.94, 8.29,

81.8, and 22.3. From Fig. 4.12(c), it can be seen that PrecoG improves the condition

numbers at least twice compared to DCT, DFT, Jacobi, incomplete LU, and at least 1.4

times compared to Gauss-Seidel method.

Comparison on 1st order Markov process and 2nd order autoregressive process:

The DCT is known as the near-optimal preconditioner for 1st and 2nd order Markov

processes. The purpose of this section is to compare the preconditioning strength of our

algorithm with that of DCT. We also include the strength of other methods as shown in

the following figures.

First, we consider the autocorrelation matrix of a first order Markov process of signal

correlation factor ρ (0 ≤ ρ ≤ 1) [132]. The autocorrelation matrix, RN(ρ) of such process

is given in (4.18), which has a Toeplitz structure. Higher values of ρ indicate stronger cor-

relation among data samples, which implies significantly higher eigenvalue spread of the

autocorrelation matrix. Smaller ρ values imply weaker correlation among data instances,

which is reflected in the diagonally-dominant structure of the input autocorrelation ma-

trix RN . It has been proved that the DCT is a near-optimal unitary transformation for

this process. We compare our method against the DCT as presented in Fig. 4.13(a).

Unlike other methods, our result exhibits a consistent behavior with respect to the DCT

Chapter 4. Non-unique graph structure 138

over different values of ρ. The fact that the condition ratios of other methods are non-

linearly increasing as the signal correlation factor approaches unity confirms the weaker

performance of those methods compared to PrecoG.

In Fig. 4.13(b), we present the condition ratios computed by applying the algorithms

on the autocorrelation matrices of eight 2nd order autoregressive process with parame-

ters (ρ1, ρ2) [127]. The input autocorrelation matrix RN of such process is given by

RN = c1RN(ρ1)+c2RN(ρ2). RN(ρ1) and RN(ρ2) are two Toeplitz matrices, similar to RN

of 1st order Markov process. c1 and c2 are constants and are given by c1 =
ρ1(1−ρ22)

(ρ1−ρ2)(1+ρ1ρ2) ,

c2 =
−ρ2(1−ρ21)

(ρ1−ρ2)(1+ρ1ρ2) . The values of the parameters (ρ1, ρ2) considered in the experiments

are (0.015, 0.01), (0.15, 0.1), (0.75, 0.7), (0.25, 0.01), (0.75, 0.1), (0.9, 0.01), (0.95, 0.1), and

(0.99, 0.7). Although the DCT provides a near-optimal option when the autocorrelation

matrix is Toeplitz in nature, our approach is consistent and almost approximates the

DCT, while the others significantly deviate from the DCT in terms of the condition

ratios.

Comments: With the condition ratio scores by the existing preconditioning tech-

niques on different datasets at hand, it can be observed that the preconditioning capability

of each method is essentially dataset-specific. For example, the DCT works significantly

well for the Markov process, autoregressive process, whereas Gauss-Seidel exhibits better

performances on preconditioning the Hilbert matrix and sparse linear systems. In all

the aforementioned datasets except Markov process and autoregressive process, PrecoG

shows its efficacy over other methods. For 1st order Markov process, 2nd order autoregres-

sive process, PrecoG approximates the DCT in terms of the condition ratios. Therefore,

it can be argued that if the input process is not known a priori, PrecoG can reduce the

condition number and should be the preferred choice.

Chapter 4. Non-unique graph structure 139

4.2.1.6.1 Performance by changing parameters Next, we look at the perfor-

mance of our algorithm in terms of condition ratio by varying a set of internal param-

eters - initialization of weights, number of iterations and length of the input vector.

Fig. 4.14(a) shows the behavior of condition numbers for aforementioned datasets with

five different initial weights, w. It is evident that PrecoG yields better performance in the

cases of Markov and autoregressive inputs compared to the remainder of the cases con-

sidered here. During experimentation, we obtained a few instances where PrecoG gives

a substantial improvement not possible with existing techniques. For example, PrecoG

achieves a condition number 10.64 in case of the Hilbert matrix as shown in Fig. 4.14(a).

Fig. 4.14(b) exhibits the result of the preconditioning capacity of PrecoG over iter-

ation. For each dataset, we randomly initialize the weights and keep the input vector

length as 10. There is a gradual decline in the trend of condition ratio for each dataset,

which implies that PrecoG improves preconditioning over iteration.

Fig. 4.14(c) illustrates the consistent performance of PrecoG on the length of input

vectors. There is a positive slope of the condition ratio with increments in the length of

input vector. However, the results are shown using 15 iterations only. It is observed that

PrecoG with longer input vector (larger graph) needs linearly more iterations to output

better condition ratio.

Appendices

Evaluation of
[∂E(p)
∂UN

]
Let, M(ε) = ||UTRU − (1 + ε)UTRU ◦ I||2F . Then,

M(ε) = Tr
(
{UTRU − (1 + ε)UTRU ◦ I}

{UTRU − (1 + ε)UTRU ◦ I}T
)
. (4.32)

Chapter 4. Non-unique graph structure 140

(a) (b)

(c)

Figure 4.14: The performance of our algorithm on (a) different initialization of weights,
w, (b) the number of iterations for gradient descent, and (c) the length, N of input

signal vector.

Eq. (4.32) on expansion gives

M(ε) = Tr
(
UTR2U − 2(1 + ε)(UTRU ◦ I)(

UTRU) + (1 + ε)2(UTRU ◦ I)2
)
. (4.33)

Eq. (4.33) is obtained using the fact that UUT = I. By performing the partial derivative,

∂M(ε)

∂U
=

∂Tr(UTR2U)

∂U
− 2(1 + ε)

∂

∂U
Tr{(UTRU ◦ I)

(UTRU)}+ (1 + ε)2
∂

∂U
Tr(UTRU ◦ I)2.

= 2R2U − 4(1 + ε)RU + (1 + ε)2(UTRU ◦ I)RU

Next, ∂E(p)
∂U

is computed using ∂M
∂U

as ∂E(p)
∂U

= ∂M(+ε1)
∂U

+ ∂M(−ε2)
∂U

.

∂E(p)

∂Un
= 2

[
2Rn − 2(2− ε2 − ε2)I − {(1 + ε1)

2 +

(1− ε2)2}UT
n RnUn ◦ I

]
RnUn. (4.34)

Chapter 4. Non-unique graph structure 141

If ε1 = ε2, the above expression can be simplified as

∂E(p)

∂Un
= 4

(
Rn − (1− ε)I − (1 + ε2)

UT
n RnUn ◦ I

)
RnUn (4.35)

Discussion:

In this letter, we present a method to obtain a unitary split preconditioner by utilizing

nonconvex optimization and graph theory. We demonstrate the efficacy of our approach

over prevalent state-of-the-art techniques. In addition, we show that our algorithm is

amenable to precondition linear systems constrained with sparsity. As a future endeavor,

we will attempt to exploit the signal structure and embed this structure into the optimiza-

tion framework by including a set of constraints. In continuation, we will try to extend

our approach to solve a sparse underdetermined linear system of equations in order to

implement dictionary learning.

Chapter 5

Conclusion, current & future work

In 1736, Leonhard Euler proposed a solution of the seven bridges of Königsberg, which

laid the foundations of graph theory. Graph theory is such a powerful tool that it serves as

the bedrock for numerous scientific problems. The popularity of graphs even transcended

to the domain of arts. Georges Seurat, Paul Signac developed a revolutionary style of

neo-impressionistic art, called pointillism, in which repeated dots of color and cohesive

placements of the dots as opposed to having continuous brush strokes create a portrait.

These painters were creating a signal by place graph vertices instead of continuous tones.

Over the last 200 years, there has been extensive research and theoretical develop-

ments in combinatorial graph theory and graph topology. Using such tools, in the last

two decades, we also witness the widespread use of graphical models for probabilistic

inference, and of complex network models in several real life problems, such as modeling

the spread of disease, evacuation, and biosphere networks. However, suitable modeling of

a data with graph is a difficult problem, and the quality of downstream analysis entirely

depends on how the parameters of a graph are selected. There is no universal algorithm

that can select the graph parameters of an arbitrary dataset, demanding the need for case

by case analysis. In this thesis, we select problems with varying degrees of the structural

complexity of graph models, and propose several algorithms to meet certain objectives.

142

Chapter 5. Conclusion, current & future work 143

Although, it is impossible to consider all the problems and investigate the construction

and application of graph models, the modeling and analysis of our selected problems can

be seamlessly transferred with minor modifications to numerous problems in other do-

mains. Before discussing about the strength, weakness, and potential application areas

of our proposed algorithms, we first intend to provide the inferences that can be drawn

from the thesis. The inferences are listed below.

(I1) Graph model of a problem can provide various combinatorial features that can be

exploited in several applications. In many instances, the graph models provide

compact and abstract representations, and computationally-efficient, low-storage,

scalable algorithms can be designed on the graphs. The model offers significant

degrees of freedom in the selection of the associated parameters, and the downstream

analysis depends on the initialization of such models. For example, in order to

perform geomorphological event detection, by selecting a nearest graph model and

the covariance of features LaWeCo achieves only spatial localization. To capture

subtle temporal changes in displacements for event monitoring purpose, we resort

to a different graph model in DDT.

(I2) One of the principal factors behind the complexity of graph models is the nature of

data acquisition. If the data already has a graph structure with fixed connectivity

and fixed number of vertices, the graph structure is comparatively simple. We

witness this fact in case of Kinect data.

If one of the parameters, let us assume the number of vertices, varies with data,

the graph model exhibits enormous complexity. We observe this variation in case of

3D reconstructed neurons. There are graph–theoretic problems, such as subgraph

matching, subgraph isomorphism, and vertex cover that comes with such graph

models. In case of neurons, a relevant problem would be: if a neuron is traced

by two different tracers with different number of samples, how to know that these

Chapter 5. Conclusion, current & future work 144

two traced neurons are actually the same one? The problem is termed as the

graph sparsification problem and the solution in case of the unweighted version of

graphs, as proposed by Nikhil Srivastava and Daniel Spielman, has a deep-rooted

connection with the famous Kadison-Singer problem. Unfortunately, we use the

weighted tree model, in which graph sparsification is computationally difficult. Our

proposed algorithms, NeuroSoL and ElasticPath2Path are significantly affected by

the discrepancy in the number of samples. However, in neuroPath2Path, we use

only the bifurcation locations for feature construction, which majorly eliminates the

above problem.

When both parameters, vertices and edges, are either not fixed or not defined

properly, the complexity of the graph model rises rapidly. This is the case with video

based datasets, where a pixel, a superpixel, a patch, or a frame can be regarded as

a vertex. There are two different avenues to tackle such problem. In the first one,

the vertices are fixed manually and the connections are defined with a criteria, such

as full connectivity, K-nearest neighborhood and others. In the other avenue, the

vertices are manually chosen and the connections among the vertices are found by

optimizing a cost function that encodes certain properties, such as smoothness of

the data.

(I3) The selection of auxiliary structures that are derived from the graph models plays

important roles in diverse tasks that includes feature discrimination, encoding dy-

namics, and incorporating biological features. The combination of graph and its

complementary graph has been shown to be effective for encoding the structural and

geometrical features of a neuron (NeuroSoL, NeuroPath2Path). Complementary

and bipartite graphs are useful for capturing event dynamics (DDT, UGrAD). Lin-

ear graph is used where the information of sequence needs to be preserved (GraDED,

UGrAD).

Chapter 5. Conclusion, current & future work 145

(I4) Suitable selection of a model can integrate different tasks that can be performed

using features from the same model. For example, in neuromorphology, the task of

classifying different neuronal cell types can be accomplished using several methods,

such as topological morphological descriptor [69], caulescence [92], NeuroSoL [79],

and BlastNeuron [78]. However, the augmentation of these models to other prob-

lems, such as modeling of structural degeneration of neuronal arbors, neurogenesis,

glia surveillance pattern is difficult. Our proposed method NeuroPath2Path offers

such flexibility and it has the potential to be used to build cell-specific informatics.

In the following section, the advantages, disadvantages and scope of our proposed

algorithms are discussed.

5.1 Current and future work

Graph based data modeling stitches an unthinkably broad spectrum of data into the

problem of constructing an abstract representation based on the application demand. Al-

though we categorize the applications based on whether the data inherit graph structures

or not. There might exist other ways to catalogue them. Each problem that we discuss

has its own uniqueness that is reflected in its graph parameters. It would be wise to

unravel the possibilities of each one of the applications.

5.1.1 Neuromorphology

While the shape based categorization is an active area of research now a days, especially

after the introduction of Neuromorpho.org, Linking region-based anatomical variation

to functional heterogeneity is still not actively pursued. As we mention in Section 3.2,

the pyramidal cells shows significant structural variation with the associated regions, the

Chapter 5. Conclusion, current & future work 146

question becomes how to link appropriate functions to the neurons in a specific region.

Does there exist a ‘functional gradient’ of the neurons as a function of regions? or

equivalently, if one takes two samples of pyramidal cells, one from the prefrontal cortex

and the other from the primary visual cortex of mice, can we identify a relationship be-

tween the functional difference with the structural difference so that when we take two

arbitrary samples of neurons, we can quickly associate their functional differences just by

computing the structural variation in terms of morphometrics?

The study of the Connectome does not necessarily answer this question. It is be-

cause of the fact that in the Connectome, researchers are interested in looking for patterns

among the giant connections of nearly 100 billion neurons. In the Connectome, each neu-

ron is considered as a vertex, overriding the possibility to focus on the shape and synaptic

connections and plasticity of each neuron. NeuronPath2Path is definitely well-suited for

incorporating features for the modeling of synaptic connections, and for modeling plas-

ticity by path rearrangements. However, to address the region-based functional mapping,

we need more path-based features to pinpoint such functional variability.

The availability of single-cell transcriptomics data in understanding gene expression

and regulation revolutionizes the field of computational genomics. Once the functional

variability as a function of structural heterogeneity is estimated, the next goal would be to

find the correspondence between the gene expression (transcriptomics) and the functional

variation of neurons. The integration of transcriptomics data with the 3D reconstructed

neuron data would be a challenging but exciting avenue in future as, if is possible, it will

bridge two entities with significant difference in scale (Cellular morphology in µm and

transcriptomics in nm).

Neuroscientists are also interested in the neurogenesis, where a neuron progenitor

cell differentiates into successive cell-states and finally, becomes a mature neuron with

Chapter 5. Conclusion, current & future work 147

synaptic connections. There are lot of unanswered questions involved: what genes pre-

cisely drive the decision of a branch sprouting from a vestige of a neuron? how structural

patterns in terms of morphometrics are affected by the transcriptomics? what is the cost

of growing a dendritic or axonal branch? In NeuroPath2Path, the costs of splitting, grow-

ing, and terminating a branch are taken as unity, which is not true in biological settings.

A neuron generates and rearranges its branches in a cost effective way, and an ad hoc

mathematical formula or algorithm tweaks without interpreting cellular factors, such as

cellular metabolism would be inappropriate in this context.

As discussed in Section 3.2, NeuroPath2Path can be tuned to model structural degen-

eration of neuronal branches. However, we need to customize new features, such as spine

density, branch length, branch volume, number of clumps, clumps density per branch

segment and related others. Once the feature customization is completed, the continuous

morphing is expected to reveal the progress of degeneration. Structural degeneration of

neuronal branches in neurodegenerative diseases also demands suitable model that can

identify the genetic principle behind such phenomenon, a problem that lures the molecular

biologists.

On a different note, ElasticPath2Path, NeuroSoL, NeuroBFD, NeuroPath2Path can

also be applied to cell types with tree-type ramified branches with minor modifications

of the associated features. Examples of cell types include microglia, astrocytes.

Microglia, also called as the ‘Brain Police’ [148], generally exhibit two distinct shapes,

which are ramified (homeostasis) during surveillance, and amoeboid (during pathogen

invasion and phagocytosis). There are unanswered questions regarding these glia. How

does a microglia cell perform surveillance? how does it change shape by coiling up from

the ramified to amoeboid? What are the structural differences of microgial morphology

based on the regions, such as striatum and cerebellum ? It is found that the microglia

at the striatum have strong homeostatic surveillance profile, whereas the microglia cells

Chapter 5. Conclusion, current & future work 148

at the cerebellum have high clearance or phagocytosis profile [149–152]. Does there

exist structural variation to answer such functional differences? NeuroPath2Path can

be certainly tuned to extract relevant features for glia cells, and used for identifying

morphological cues. For example, to quantify the surveillance profile of a microglia cell,

one can extract features, such as the average relative distance among the terminals of

glia processes (equivalently paths in a neuron), the retraction and elongation rates of

each path, and the average bifurcation angle. Tracking glia processes during surveillance

would be identical to the continuous morphing between the processes (paths).

NeuronPath2Path have potential applications beyond the field of biology. Full-graph

matching algorithm by nature, NeuroPath2Path can be deployed to measure the similarity

between any two tree-structured networks. If a network does not inherit tree-structure,

one can extract spanning trees and then, compare two spanning trees from two differ-

ent networks. Owing to its path (walk) based construction, NeuroPath2Path can be

augmented and employed as a graph-kernel in several problems.

Lastly, there is a trend that needs to be addressed in the context of feature extraction

in machine learning. The practice of feature customization is gradually taken over by the

deep learning and transfer learning based features. However, a feedforward neural net is

still basically a mystical black box. Despite various tricks and techniques, a principled

approach to design a neural net is yet to be developed. Graph signal processing based

tools can provide some direction regarding the design methodology. In short, we can

couple certain biological traits, such as potentiation, path rearrangement with graph

theoretic features in a quest for progressive neural network design.

Before jumping to an example of such graph based learning procedure, we can sum-

marize that there is a huge potential of our work on neuromorphology and the work offers

a simple framework that can be applied into diverse fields.

Chapter 5. Conclusion, current & future work 149

5.1.1.1 An example: Graph based learning

The problem that we are seeking answers to is to find a way to learn with fewer labeled

data (Learning with Less Labels – LwLL). The majority of datasets are notoriously class-

imbalanced, which imposes several restrictions on the underlying models. In effect, the

training schedules and various parameters of an architecture in such a case are restricted.

To resolve this problem, popular techniques such as data augmentation have been utilized

extensively. However, it has been argued that data augmentation is unrealistic and bio-

logically implausible in many scenarios, especially in the context of biological/biomedical

datasets.

In contrast to the conventional approaches to solve the problem of LwLL, such as

few-shot learning, one-shot learning, and semi-supervised learning, in which either each

exemplar is provided with a series of manual labels, or the classifier (or regressor) archi-

tecture is accomplished with ad hoc techniques, or features are borrowed from pre-trained

machines, we investigate the problem of learning with fewer labels through the lens of

developmental psychology. The inclusion of techniques inspired by how our brain works

to designing a classifier generally improves the performance of the classifier. Instead of

transferring the learned features, employing functions similar to the fundamental work-

ing principles of human brain to machines may reap significant benefits. For example,

in 2018, authors [153] imposed Hebbian plasticity, mimicking synaptic plasticity in hu-

man brains, to train a recurrent neural network with millions of parameters, yielding

significant improvements in meta-learning tasks.

From developmental psychology, we know that roughly 100 billion neurons progres-

sively innervate and establish synapses based on the external stimuli, the majority of

which are vision-based. According to the Swiss psychologist Jean Piaget [154], within six

months, a child has an early numerical cognition on adding and subtracting numbers, and

within two years (the sensorimotor stage), a child is able to manipulate 3D objects and

Chapter 5. Conclusion, current & future work 150

(a) (b)

(c) (d)

Figure 5.1: (a) A Convolution layer and its (b) graph signal representation. (c) A dense layer
with 2D input and 4D output. (d) Graph representation.

lay out long-term planning with causal reasoning. Between 2 to 7 years of age, a child

develops memory and imagination such that the child can distinguish an unknown object

from the learned ones with a simple glimpse. The progressive development of sensory

ecology dictates the ethologically relevant behaviors of a child. This outstanding feat

seems unattainable even for the current deep neural networks.

In almost all of the approaches, whether it is transfer learning or meta learning or

embedding, the requirement of large datasets remains the same. For example, meta-

learners need sufficient data in order to be well-trained, and they are assumed to work as

infallible and indefatigable oracles. Transfer learning requires large training set a priori.

To find proper embedding, one seeks a large dataset in embedding based methods. There-

fore, in conventional approaches, a classifier, which is supposed to be trained with k-shot

exemplars, takes advantage of a large volume of data implicitly. This is inharmonious with

Chapter 5. Conclusion, current & future work 151

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Neural network representation of (a) autoencoder (b) convolutional neural network
(CNN), (c) recurrent neural network (RNN), (d) support vector machine (SVM), (e) Kohonen
map, (f) long short term memory (LSTM), (g) generative adversarial networks (GAN), and (h)

radial basis network (RBN).

the definition of LwLL. Instead of using the benefits of huge datasets (transfer learning,

meta-learning, embedding), we conceive the problem of LwLL consisting of the following

stages - training (depending on the mode of learning), adaptation, validation, and testing,

which are anchored in the psychological development of the human brain. Particularly

we aim to uncover how to foresee the unseen variation of population using fewer labeled

data (adaptation); to correlate and quantify any measurable changes in a classifier when

trained with fewer data of wide variation (training and adaptation); to distinguish between

classifier networks when trained with fewer data containing small variation and enormous

variation (training); to augment the classifier parameters in order to cope up with unseen

variation of data (adaptation). We resort to graph theory to find answers to these queries.

5.1.1.2 Preliminary results

Schematic diagrams of two fundamental computational blocks used in a classifier and

their equivalent graph signal representations are shown in Figs. 5.1. The network models

of several conventional classifiers are shown in Fig. 5.2. From Fig. 5.3. it is evident that a

neural network can be modeled as a sequence of layer-to-layer graphs. The metrics of such

graphs, such as centrality, max flow, shortest path, smoothness and others, change every

Chapter 5. Conclusion, current & future work 152

iteration in accordance with the learning method. Therefore, a classifier with a network

under a learning model can be described as a sequence of snapshots of its internal states

taken over all iterations. We have experimented using graph smoothness and graph

centrality so far, and performed tests using publicly available datasets. We hypothesize

that the use of other graph metrics, such as max-flow, eccentricity etc. might be useful

for the problem of LwLL.

(a) (b)

Figure 5.3: (a) Autoencoder network and its (b) sequence of layer-to-layer graph

Let us consider the problem of overfitting, a chronic problem due to scarcity of data.

We show explicit visualization to assess overfitting by inspecting the status of internal

states of a classifier architecture using graph smoothness (see Section 2.1). Different

classifiers are chosen to monitor the behavior of graph smoothness as shown in Fig 5.4.

The top two figures are the ideal responses of dense layers in terms of graph smooth-

ness over batch iterations. This also holds true for convolution layers (not shown here).

The smooth monotonic profile are found to be directly correlated with the capacity of the

layer under observation. As both the profiles attain saturation, it implies that given a

dataset, there is a maximum capacity of each layer-to-layer graph. To get more accuracy

via rigorous training, we need either more neurons in a layer or more layers. Degree of

regularization of weights affect layer-to-layer smoothness profile. In Fig. 5.4(c)-(d), the

effects of regularization on 6 convolutional filters are shown. Higher the regularization,

flatter the smoothness profiles.

Chapter 5. Conclusion, current & future work 153

(a) (b)

(c) (d)

(e) (f) (g)

Figure 5.4: Perfectly fit (a) input-hidden and (b) hidden-output layers while training an MLP
with MNIST dataset. Smoothness profiles of six convolution filters over batch iterations. (c)
Extremely regularized, and (d) moderately regularized. (e)-(g) A schematic representation of
signal surfaces in the decreasing order of smoothness. Each surface is sampled at five locations

which constitute a graph.

Currently, we are conducting rigorous experimentation using graph metrics to iden-

tify when to add more layers or to include more neurons in a feedforward neural network.

5.1.2 Activity recognition and event detection

UGraSP and UGrAD are the two algorithms that we propose for activity recognition

and person identification. The videos that we apply our algorithms on contain single

subject per frame. An interesting avenue of research would be to test the resilience of the

algorithms when multiple subjects are present in a video.

Chapter 5. Conclusion, current & future work 154

Another fact to note is that we exclude the bending, and pick up and throw activities,

because the joint correspondences in those videos are erratic. This demands refinement

and correction of faulty skeletons as a required preprocessing step for activity recognition.

As we can safely assume that the the movement of a skeleton is continuous and smooth,

we can leverage the path2path deformation to estimate the correct postures of a subject

at intermediate frames where the skeletons are erroneous.

For geomorphological event detection, we develop LaWeCo and DDT algorithms.

LaWeCo is robust and simple for identifying such events spatially, whereas DDT can

achieve spatiotemporal tracking even for decentralized events. DDT can be applied to

other events, such as identification and tracking of oil spill in sea (Deep Horizon oil spill,

a decentralized event), internet traffic patterns etc.. GraDED has been adopted for event

detection from videos. Some of the bottlenecks of GraDED are the number of parameters

in its dictionary, the eigendecomposition of the Laplacian matrices and the non-convex

optimization function.

Proposed improvement of GrDED:

The framework given in Section 4.1.3 does not utilize the sparse code X which is generated

iteratively corresponding to the input features. We claim that the sparse codes also

contain the signatures of a problem for which the input features are extracted beforehand.

In addition, the framework has limited scope of identifying the spatio-temporal events

from videos. We try to augment this framework to a classification problem by leveraging

the graph framework so that it can be used in segmentation and tracking.

In the work given in Section4.1.3, the dictionary and sparse codes are updated in

an alternate fashion. During the learning process, sparse codes, X, corresponding to

the input features, Y are generated as an intermediate step. The sparse codes are not

re-utilized in section 4.1.3, which incurs computational loss during the runtime of our

Chapter 5. Conclusion, current & future work 155

algorithm. With an algorithm that extracts graph Laplacian from the sparse codes, we

aim to extend the previous approach to apply for supervised multi-class classification

problems.

For a mathematical description, let X i is the sparse code of Y i with i ∈ {1, 2, ..., c},

where c is the number of classes. It can be unarguably assumed that X i contains the sig-

nature of the input Y i. Unlike GraDED, in this work, we can first derive graph Laplacians

from X i. Let the Laplacian derived from the sparse code Xi be Li. Li contains essential

information about the relationship between features of ith class. However, Li does not

contain any free parameter to tweak by an algorithm. To construct a cost function by

including the Laplacians in order to provide discriminatory ability to the dictionary, the

Laplacians are regularized and the regularization parameter is to be optimized.

Let || • ||0 as the L0 norm of a matrix. The optimization function can be given by

φ
(
{D1, D2}, α, βX

)
= ||Y 1 −D1X

1||2F + ||Y2 −D2X2||2F − β
∑
j

||D1X
1 −D2X

j||2F

s.t. ||X1||0 ≤ T1, ||X2||0 ≤ T2. (5.1)

In eq. (5.1), Y 1 is the features of class 1, and Y2 consists of the features from rest of the

classes, Y2 = [Y 2 Y 3 ... Y c]. Similar explanation holds for X2 and D2. Each dictionary

Di is constructed using a single step Di = (Li + αΓ)−1, where Γ is a diagonal matrix. α

is a parameter to be optimized. From computational perspective, it is wise to solve the

above optimization problem by using the regularized graph Laplacian as opposed to the

use of graph spectrum in Section 4.1.3.

Publications resulting from this thesis

Journal Publications

Chapter 5. Conclusion, current & future work 156

1. Vaccari, A., Batabyal, Tamal; Tabassum, N.; Hoppe, E. J.; Bruckno, B. S.; Ac-

ton, S. T. (2018). “Integrating Remote Sensing Data in Decision Support Sys-

tems for Transportation Asset Management.” Transportation Research Record,

0361198118786645.

2. Batabyal, Tamal.; Weller, D.S.; Acton S.T., “PrecoG: an efficient unitary split

preconditioner for the transform-domain LMS filter via graph Laplacian regulariza-

tion.” (Under review)

3. Sadeghzadehyazdi, N.; Batabyal, Tamal; Acton, S.T.“Toward person identifica-

tion by soft biometric feature correction of flash Lidar data.” (In preparation)

4. Batabyal, Tamal; Condron, B.; Acton, S.T. “NeuroPath2Path: Classification

and elastic morphing between neuronal arbors using path-wise similarity.” (under

review)

5. Dutta, A.; Batabyal, Tamal; Acton, S.T. “Neural network based prediction of

coronary and congestive heart disease using clinical data.” (In preparation)

6. Batabyal, Tamal; Vaccari, A.; Condron, B.; Acton, S.T. “GraSPEL: Graph signal

processing based efficient learning.” (In preparation)

Conference Publications

1. Batabyal, Tamal and Acton, Scott T.. “DDT: Decentralized event Detection

and Tracking using an ensemble of vertex-reinforced walks on a graph.” 2018 IEEE

Southwest Symposium on Image Analysis and Interpretation (SSIAI). IEEE, 2018.

[Oral][Conference]

2. Batabyal, Tamal; Andrea Vaccari; and Scott T. Acton. “NeuroBFD: Size-independent

automated classification of neurons using conditional distributions of morphological

Chapter 5. Conclusion, current & future work 157

features.” Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Sympo-

sium on. IEEE, 2018. [Poster][Conference]

3. Batabyal, Tamal and Scott T. Acton. “ElasticPath2Path: Automated morpho-

logical classification of neurons by elastic path matching.” arXiv preprint arXiv:1802.06913

(2018). [Oral][ICIP 2018]

4. Batabyal, Tamal; Rituparna Sarkar and Scott T. Acton. “GraDED: A graph-

based parametric dictionary learning algorithm for event detection.” Image Process-

ing (ICIP), 2017 IEEE International Conference on. IEEE, 2017. [Oral][Conference]

5. Batabyal, Tamal and Scott T. Acton. “NeuroSoL: Automated classification of

neurons using the sorted Laplacian of a graph.” Biomedical Imaging (ISBI 2017),

2017 IEEE 14th International Symposium on. IEEE, 2017. [Oral][Conference]

6. Sadeghzadehyazdi, N., Batabyal, Tamal, Barnes, L. E.; Acton, S. T. (2016,

November). “Graph-based classification of healthcare provider activity.” In Sig-

nals, Systems and Computers, 2016 50th Asilomar Conference on (pp. 1268-1272).

IEEE. [Oral][Conference]

7. Batabyal, Tamal; Scott T. Acton, and Andrea Vaccari. “Ugrad: A graph-

theoretic framework for classification of activity with complementary graph bound-

ary detection.” Image Processing (ICIP), 2016 IEEE International Conference on.

IEEE, 2016. [Oral][Conference]

8. Batabyal, Tamal; Andrea Vaccari, and Scott T. Acton. “LaWeCo: Active region

detection in non-uniformly sampled data using Laplacian-weighted covariance.” Im-

age Analysis and Interpretation (SSIAI), 2016 IEEE Southwest Symposium on.

IEEE, 2016. [Oral][Conference]

Chapter 5. Conclusion, current & future work 158

9. Batabyal, Tamal; Andrea Vaccari, and Scott T. Acton. “Ugrasp: A unified

framework for activity recognition and person identification using graph signal pro-

cessing.” Image Processing (ICIP), 2015 IEEE International Conference on. IEEE,

2015. [Poster][Conference]

10. Wang Jie; Batabyal, Tamal; Zhang, M; Zhang, J; Gahlmann, Andreas; Acton,

S.T., “lCuts: Linear clustering of bacteria using recursive graph cuts.” (submitted)

11. Sadeghzadehyazdi, Nasrin; Batabyal, Tamal; Galndon, A.; Dhar, Nibir K.; Familoni,

B.O.; Ifthekharuddin, K. M.; Acton, S.T., “Glidar3DJ: A View-Invariant gait iden-

tification via flash lidar data correction.” (submitted)

12. Ly Tiffany T.; Batabyal, Tamal; Thompson, Jeremy; Harris, Tajie; Weller, Daniel

S.; Acton, Scott T.,“Hieroglyph: Hierarchical Glia Graph Skeletonization and Match-

ing” (submitted)

Bibliography

[1] L. Zicheng, “MSR Action3d dataset,” http://research.microsoft.com/en-

us/um/people/zliu/ActionRecoRsrc/default.htm, accessed: December, 2014.

[2] L. Xia, C.-C. Chen, and J. Aggarwal, “View invariant human action recognition

using histograms of 3d joints,” in CVPRW. IEEE, 2012, pp. 20–27.

[3] S. Masood, C. Ellis, A. Nagaraja, M. Tappen, J. LaViola, and R. Sukthankar,

“Measuring and reducing observational latency when recognizing actions,” in ICCV

Workshops, November 2011, pp. 422–429.

[4] D. Myatt, T. Hadlington, G. Ascoli, and S. Nasuto, “Neuromantic–from semi-

manual to semi-automatic reconstruction of neuron morphology,” Frontiers in neu-

roinformatics, vol. 6, p. 4, 2012.

[5] S. Murphy, K. Rokicki, C. Bruns, Y. Yu, L. Foster, E. Trautman, D. Olbris, T. Wolff,

A. Nern, Y. Aso et al., “The janelia workstation for neuroscience,” Keystone Big

Data in Biology. San Francisco, CA, 2014.

[6] S. Basu, B. Condron, and S. T. Acton, “Path2path: Hierarchical path-based anal-

ysis for neuron matching,” in 2011 IEEE International Symposium on Biomedical

Imaging: From Nano to Macro. IEEE, 2011, pp. 996–999.

[7] T. Batabyal, A. Vaccari, and S. T. Acton, “Neurobfd: Size-independent automated

classification of neurons using conditional distributions of morphological features,”

in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on.

IEEE, 2018, pp. 912–915.

[8] E. Stockley, H. Cole, A. Brown, and H. Wheal, “A system for quantitative mor-

phological measurement and electrotonic modelling of neurons: three-dimensional

reconstruction,” Journal of neuroscience methods, vol. 47, no. 1-2, pp. 39–51, 1993.

[9] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn, “Shape analysis of elastic

curves in euclidean spaces,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 7, pp. 1415–1428, 2011.

[10] M. Swan, “The quantified self: Fundamental disruption in big data science and

biological discovery,” Big data, vol. 1, no. 2, pp. 85–99, 2013.

159

Chapter 5. Conclusion, current & future work 160

[11] M. A. Waller and S. E. Fawcett, “Data science, predictive analytics, and big data:

a revolution that will transform supply chain design and management,” Journal of

Business Logistics, vol. 34, no. 2, pp. 77–84, 2013.

[12] D. Koller, N. Friedman, and F. Bach, Probabilistic graphical models: principles and

techniques. MIT press, 2009.

[13] M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses

and interpretations,” Neuroimage, vol. 52, no. 3, pp. 1059–1069, 2010.

[14] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu, “Action recognition by dense tra-

jectories,” in CVPR. IEEE, 2011, pp. 3169–3176.

[15] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d points,” in

CVPRW. IEEE, 2010, pp. 9–14.

[16] A. Loukas, M. Zuniga, I. Protonotarios, and J. Gao, “How to identify global trends

from local decisions? event region detection on mobile networks,” in INFOCOM,

2014 Proceedings IEEE, 2014, pp. 1177–1185.

[17] A. Loukas, M. Cattani, M. Zuniga, and J. Gao, “Graph scale-space theory for dis-

tributed peak and pit identification,” in Proc. of the 14th Intl. Conf. on Information

Processing in Sensor Networks, 2015, pp. 118–129.

[18] A. Vaccari and S. T. Acton, “Spatiotemporal gaussian feature detection in sparsely

sampled data with application to insar,” in SPIE Defense, Security, and Sensing,

2013, pp. 87 460U–87 460U.

[19] J. Abernethy, O. Chapelle, and C. Castillo, “Graph regularization methods for web

spam detection,” Machine Learning, vol. 81, no. 2, pp. 207–225, 2010.

[20] H. Bunke and K. Riesen, “Recent advances in graph-based pattern recognition with

applications in document analysis,” Pattern Recognition, vol. 44, no. 5, pp. 1057–

1067, 2011.

[21] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the time-

varying graphical lasso,” arXiv preprint arXiv:1703.01958, 2017.

[22] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,

vol. 17, no. 4, pp. 395–416, 2007.

[23] F. Harary et al., “Graph theory,” 1969.

[24] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerg-

ing field of signal processing on graphs: Extending high-dimensional data analysis to

networks and other irregular domains,” Signal Processing Magazine, IEEE, vol. 30,

no. 3, pp. 83–98, 2013.

Chapter 5. Conclusion, current & future work 161

[25] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data,” 2001.

[26] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

[27] S. Polavaram, T. A. Gillette, R. Parekh, and G. A. Ascoli, “Statistical analysis

and data mining of digital reconstructions of dendritic morphologies,” Frontiers in

neuroanatomy, vol. 8, 2014.

[28] K. W. Church, “A stochastic parts program and noun phrase parser for unrestricted

text,” in International Conference on Acoustics, Speech, and Signal Processing,.

IEEE, 1989, pp. 695–698.

[29] J. A. Gallian, “A dynamic survey of graph labeling,” The electronic journal of

combinatorics, vol. 16, no. 6, pp. 1–219, 2009.

[30] H. Zhu, H. Zang, K. Zhu, and B. Mukherjee, “A novel generic graph model for

traffic grooming in heterogeneous wdm mesh networks,” IEEE/ACM Transactions

on Networking (TON), vol. 11, no. 2, pp. 285–299, 2003.

[31] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models of social

networks,” Proceedings of the National Academy of Sciences, vol. 99, no. suppl 1,

pp. 2566–2572, 2002.

[32] R. Albert, “Scale-free networks in cell biology,” Journal of cell science, vol. 118,

no. 21, pp. 4947–4957, 2005.

[33] M. D RADMACHER, R. Simon, R. Desper, R. Taetle, A. A. Schäffer, and M. A.

Nelson, “Graph models of oncogenesis with an application to melanoma,” Journal

of theoretical biology, vol. 212, no. 4, pp. 535–548, 2001.

[34] O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural de-

scription of the human brain,” PLoS computational biology, vol. 1, no. 4, p. e42,

2005.

[35] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

and R. Moore, “Real-time human pose recognition in parts from single depth im-

ages,” Communications of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[36] D. Cunado, M. Nixon, and J. Carter, “Automatic extraction and description of

human gait models for recognition purposes,” CVIU, vol. 90, no. 1, pp. 1–41, 2003.

[37] A. Sanin, C. Sanderson, M. Harandi, and B. Lovell, “Spatio-temporal covariance

descriptors for action and gesture recognition,” in WACV. IEEE, 2013, pp. 103–

110.

Chapter 5. Conclusion, current & future work 162

[38] A. Kovashka and K. Grauman, “Learning a hierarchy of discriminative space-time

neighborhood features for human action recognition,” in CVPR. IEEE, 2010, pp.

2046–2053.

[39] J. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,” ACM Comput-

ing Surveys (CSUR), vol. 43, no. 3, p. 16, 2011.

[40] I. Laptev, “On space-time interest points,” IJCV, vol. 64, no. 2-3, pp. 107–123,

2005.

[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

CVPR, vol. 1. IEEE, 2005, pp. 886–893.

[42] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning realistic human

actions from movies,” in CVPR. IEEE, 2008, pp. 1–8.

[43] M. Müller and T. Röder, “Motion templates for automatic classification and re-

trieval of motion capture data,” in Proceedings of the 2006 ACM SIGGRAPH/Eu-

rographics symposium on Computer animation. Eurographics Association, 2006,

pp. 137–146.

[44] L. Han, X. Wu, W. Liang, G. Hou, and Y. Jia, “Discriminative human action recog-

nition in the learned hierarchical manifold space,” Image and Vision Computing,

vol. 28, no. 5, pp. 836–849, 2010.

[45] N. Troje, C. Westhoff, and M. Lavrov, “Person identification from biological motion:

Effects of structural and kinematic cues,” Perception & Psychophysics, vol. 67, no. 4,

pp. 667–675, 2005.

[46] R. Brunelli and D. Falavigna, “Person identification using multiple cues,” IEEE

Trans. Pattern Anal. Machine Intell., vol. 17, no. 10, pp. 955–966, 1995.

[47] L. Xia, C.-C. Chen, and J. Aggarwal, “Human detection using depth information

by kinect,” in CVPRW. IEEE, 2011, pp. 15–22.

[48] A. Sinha, K. Chakravarty, and B. Bhowmick, “Person identification using skeleton

information from kinect,” in ACHI 2013, 2013, pp. 101–108.

[49] B. Munsell, A. Temlyakov, C. Qu, and S. Wang, “Person identification using full-

body motion and anthropometric biometrics from kinect videos,” in ECCV 2012.

Workshops and Demonstrations. Springer, 2012, pp. 91–100.

[50] M. Hussein, M. Torki, M. Gowayyed, and M. El-Saban, “Human action recogni-

tion using a temporal hierarchy of covariance descriptors on 3d joint locations,” in

IJCAI. AAAI Press, 2013, pp. 2466–2472.

[51] J. Martens and I. Sutskever, “Learning recurrent neural networks with hessian-free

optimization,” in ICML, 2011, pp. 1033–1040.

Chapter 5. Conclusion, current & future work 163

[52] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3d action recognition

with random occupancy patterns,” in Computer Vision–ECCV 2012. Springer,

2012, pp. 872–885.

[53] J. Wang, Z. Liu, Y. Wu, and J. Yuan, “Mining actionlet ensemble for action recog-

nition with depth cameras,” in CVPR. IEEE, 2012, pp. 1290–1297.

[54] T. Batabyal, T. Chattopadhyay, and D. P. Mukherjee, “Action recognition using

joint coordinates of 3d skeleton data,” in Image Processing (ICIP), 2015 IEEE

International Conference on. IEEE, 2015, pp. 4107–4111.

[55] T. Batabyal, A. Vaccari, and S. Acton, “Ugrasp: A unified framework for activ-

ity recognition and person identification using graph signal processing,” in Image

Processing (ICIP), 2015 IEEE International Conference on. IEEE, 2015, pp.

3270–3274.

[56] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Sequence of the most

informative joints (smij): A new representation for human skeletal action recogni-

tion,” Journal of Visual Communication and Image Representation, vol. 25, no. 1,

pp. 24–38, 2014.

[57] V. Mnih, H. Larochelle, and G. E. Hinton, “Conditional restricted boltzmann ma-

chines for structured output prediction,” arXiv preprint arXiv:1202.3748, 2012.

[58] G. Taylor, G. E. Hinton, and S. T. Roweis, “Modeling human motion using binary

latent variables,” in Advances in neural information processing systems, 2006, pp.

1345–1352.

[59] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition by repre-

senting 3d skeletons as points in a lie group,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 588–595.

[60] K. M. Brown, T. A. Gillette, and G. A. Ascoli, “Quantifying neuronal size: summing

up trees and splitting the branch difference,” in Seminars in cell & developmental

biology, vol. 19, no. 6. Elsevier, 2008, pp. 485–493.

[61] G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson, G. Barrionuevo, R. Benavides-

Piccione, A. Burkhalter, G. Buzsáki, B. Cauli, J. DeFelipe, A. Fairén et al., “Petilla

terminology: nomenclature of features of gabaergic interneurons of the cerebral

cortex,” Nature Reviews Neuroscience, vol. 9, no. 7, p. 557, 2008.

[62] S. R. y Cajal, Histologie du système nerveux de l’homme et des vertébrés: Ed.

française revue et mise a jour par l’auteur. Trad. de l’espagnol par L. Azoulay.

Inst. Ramon y Cajal, 1972.

[63] C. Bielza, R. Benavides-Piccione, P. López-Cruz, P. Larranaga, and J. DeFelipe,

“Branching angles of pyramidal cell dendrites follow common geometrical design

principles in different cortical areas,” Scientific reports, vol. 4, p. 5909, 2014.

Chapter 5. Conclusion, current & future work 164

[64] S. Romand, Y. Wang, M. Toledo-Rodriguez, and H. Markram, “Morphological

development of thick-tufted layer v pyramidal cells in the rat somatosensory cortex,”

Frontiers in neuroanatomy, vol. 5, p. 5, 2011.

[65] J. R. Glaser and E. M. Glaser, “Neuron imaging with neurolucida—a pc-based sys-

tem for image combining microscopy,” Computerized Medical Imaging and Graphics,

vol. 14, no. 5, pp. 307–317, 1990.

[66] M. London and M. Häusser, “Dendritic computation,” Annu. Rev. Neurosci.,

vol. 28, pp. 503–532, 2005.

[67] Y.-N. Jan and L. Y. Jan, “Branching out: mechanisms of dendritic arborization,”

Nature Reviews Neuroscience, vol. 11, no. 5, p. 316, 2010.

[68] Q. Wen and D. B. Chklovskii, “A cost–benefit analysis of neuronal morphology,”

Journal of neurophysiology, vol. 99, no. 5, pp. 2320–2328, 2008.

[69] L. Kanari, P. D lotko, M. Scolamiero, R. Levi, J. Shillcock, K. Hess, and

H. Markram, “A topological representation of branching neuronal morphologies,”

Neuroinformatics, vol. 16, no. 1, pp. 3–13, 2018.

[70] E. P. Cervantes, C. H. Comin, R. M. C. Junior, and L. da Fontoura Costa, “Morpho-

logical neuron classification based on dendritic tree hierarchy,” Neuroinformatics,

pp. 1–15, 2018.

[71] P. L. López-Cruz, C. Bielza, P. Larrañaga, R. Benavides-Piccione, and J. DeFelipe,

“Models and simulation of 3d neuronal dendritic trees using bayesian networks,”

Neuroinformatics, vol. 9, no. 4, pp. 347–369, 2011.

[72] M. Migliore and G. M. Shepherd, “Emerging rules for the distributions of active

dendritic conductances,” Nature Reviews Neuroscience, vol. 3, no. 5, p. 362, 2002.

[73] S. Gasparini, M. Migliore, and J. C. Magee, “On the initiation and propagation of

dendritic spikes in ca1 pyramidal neurons,” Journal of Neuroscience, vol. 24, no. 49,

pp. 11 046–11 056, 2004.

[74] S. R. Williams, “Spatial compartmentalization and functional impact of conduc-

tance in pyramidal neurons,” Nature neuroscience, vol. 7, no. 9, p. 961, 2004.

[75] G. A. Ascoli, D. E. Donohue, and M. Halavi, “Neuromorpho. org: a central resource

for neuronal morphologies,” The Journal of Neuroscience, vol. 27, no. 35, pp. 9247–

9251, 2007.

[76] E. Meijering, “Neuron tracing in perspective,” Cytometry Part A, vol. 77, no. 7,

pp. 693–704, 2010.

[77] R. Scorcioni, S. Polavaram, and G. A. Ascoli, “L-measure: a web-accessible tool

for the analysis, comparison and search of digital reconstructions of neuronal mor-

phologies,” Nature protocols, vol. 3, no. 5, p. 866, 2008.

Chapter 5. Conclusion, current & future work 165

[78] Y. Wan, F. Long, L. Qu, H. Xiao, M. Hawrylycz, E. W. Myers, and H. Peng,

“Blastneuron for automated comparison, retrieval and clustering of 3d neuron mor-

phologies,” Neuroinformatics, vol. 13, no. 4, pp. 487–499, 2015.

[79] T. Batabyal and S. T. Acton, “Neurosol: Automated classification of neurons using

the sorted laplacian of a graph,” in Biomedical Imaging (ISBI 2017), 2017 IEEE

14th International Symposium on. IEEE, 2017, pp. 397–400.

[80] T. Batabyal, S. T. Acton, and A. Vaccari, “Ugrad: A graph-theoretic framework for

classification of activity with complementary graph boundary detection,” in 2016

IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp.

1339–1343.

[81] R. Sarkar, S. Mukherjee, and S. T. Acton, “Shape descriptors based on compressed

sensing with application to neuron matching,” in 2013 Asilomar Conference on

Signals, Systems and Computers. IEEE, 2013, pp. 970–974.

[82] T. Gillette and G. Ascoli, “Topological characterization of neuronal arbor morphol-

ogy via sequence representation. i,” Motif analysis, 2015.

[83] T. A. Gillette, P. Hosseini, and G. A. Ascoli, “Topological characterization of neu-

ronal arbor morphology via sequence representation: Ii-global alignment,” BMC

bioinformatics, vol. 16, no. 1, p. 209, 2015.

[84] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model

fitting with applications to image analysis and automated cartography,” Commu-

nications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[85] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,

“Graph kernels,” Journal of Machine Learning Research, vol. 11, no. Apr, pp. 1201–

1242, 2010.

[86] T. Batabyal and S. T. Acton, “Elasticpath2path: Automated morphological clas-

sification of neurons by elastic path matching,” arXiv preprint arXiv:1802.06913,

2018.

[87] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal

of the society for industrial and applied mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[88] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of

vectors,” Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoreti-

cal and General Crystallography, vol. 34, no. 5, pp. 827–828, 1978.

[89] J. Miina and T. Pukkala, “Application of ecological field theory in distance-

dependent growth modelling,” Forest Ecology and Management, vol. 161, no. 1-3,

pp. 101–107, 2002.

Chapter 5. Conclusion, current & future work 166

[90] A. Genet, P. Grabarnik, O. Sekretenko, and D. Pothier, “Incorporating the mech-

anisms underlying inter-tree competition into a random point process model to

improve spatial tree pattern analysis in forestry,” Ecological modelling, vol. 288,

pp. 143–154, 2014.

[91] N. Puškaš, I. Zaletel, B. D. Stefanović, and D. Ristanović, “Fractal dimension

of apical dendritic arborization differs in the superficial and the deep pyramidal

neurons of the rat cerebral neocortex,” Neuroscience letters, vol. 589, pp. 88–91,

2015.

[92] A. V. Samsonovich and G. A. Ascoli, “Morphological homeostasis in cortical den-

drites,” Proceedings of the National Academy of Sciences, vol. 103, no. 5, pp. 1569–

1574, 2006.

[93] Y. Lin and S.-T. Yau, “Ricci curvature and eigenvalue estimate on locally finite

graphs,” Mathematical research letters, vol. 17, no. 2, pp. 343–356, 2010.

[94] K.-P. Shih, S.-S. Wang, H.-C. Chen, and P.-H. Yang, “Collect: Collaborative event

detection and tracking in wireless heterogeneous sensor networks,” Comp. Comm.,

vol. 31, no. 14, pp. 3124–3136, 2008.

[95] F. Li, J. Luo, C. Zhang, S. Xin, and Y. He, “Unfold: uniform fast on-line boundary

detection for dynamic 3d wireless sensor networks,” in Proceedings of the Twelfth

ACM International Symposium on Mobile Ad Hoc Networking and Computing,

2011, p. 14.

[96] G. Jin and S. Nittel, “Ned: An efficient noise-tolerant event and event boundary

detection algorithm in wireless sensor networks,” in Mobile Data Management. 7th

International Conference on, 2006, pp. 153–153.

[97] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[98] A. Vaccari, M. Stuecheli, B. Bruckno, E. Hoppe, and S. T. Acton, “Detection of

geophysical features in InSAR point cloud data set using spatiotemporal models,”

International Journal of Remote Sensing, vol. 34, no. 22, pp. 8215–8234, 2013.

[99] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, “A new algo-

rithm for processing interferometric data-stacks: Squeesar,” IEEE Trans. Geosci.

Remote Sens., vol. 49, no. 9, pp. 3460–3470, 2011.

[100] A. Karbasi, A. H. Salavati, and M. Vetteri, “Learning network structures from

firing patterns,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE

International Conference on. IEEE, 2016, pp. 699–703.

[101] T. Batabyal, A. Vaccari, and S. T. Acton, “LaWeCo: Active region detection in non-

uniformly sampled data using laplacian-weighted covariance,” in Image Analysis

Chapter 5. Conclusion, current & future work 167

and Interpretation (SSIAI), 2016 IEEE Southwest Symposium on. IEEE, 2016,

pp. 129–132.

[102] H. Petric Maretic, D. Thanou, and P. Frossard, “Graph learning under sparsity

priors,” in International Conference on Acoustics, Speech and Signal Processing

(ICASSP), no. EPFL-CONF-224359, 2017.

[103] M. G. Rabbat, “Inferring sparse graphs from smooth signals with theoretical guar-

antees,” in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Inter-

national Conference on. IEEE, 2017, pp. 6533–6537.

[104] V. Kalofolias, “How to learn a graph from smooth signals,” in Artificial Intelligence

and Statistics, 2016, pp. 920–929.

[105] J. Mei and J. M. Moura, “Signal processing on graphs: Estimating the structure

of a graph,” in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE

International Conference on. IEEE, 2015, pp. 5495–5499.

[106] C. Cotar, D. Thacker et al., “Edge-and vertex-reinforced random walks with super-

linear reinforcement on infinite graphs,” The Annals of Probability, vol. 45, no. 4,

pp. 2655–2706, 2017.

[107] M. Piccardi, “Background subtraction techniques: a review,” in Systems, man and

cybernetics, 2004 IEEE international conference on, vol. 4. IEEE, 2004, pp. 3099–

3104.

[108] F. F. E. Guraya, F. A. Cheikh, A. Tremeau, Y. Tong, and H. Konik, “Predictive

saliency maps for surveillance videos,” in Distributed Computing and Applications

to Business Engineering and Science (DCABES), 2010 Ninth International Sym-

posium on. IEEE, 2010, pp. 508–513.

[109] P. W. Power and J. A. Schoonees, “Understanding background mixture models for

foreground segmentation,” in Proceedings image and vision computing New Zealand,

vol. 2002, 2002, pp. 10–11.

[110] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?”

Journal of the ACM (JACM), vol. 58, no. 3, p. 11, 2011.

[111] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real-

time tracking,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer

Society Conference on., vol. 2. IEEE, 1999, pp. 246–252.

[112] R. Sarkar, S. Das, and N. Vaswani, “Tracking sparse signal sequences from

nonlinear/non-gaussian measurements and applications in illumination-motion

tracking,” in Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE In-

ternational Conference on. IEEE, 2013, pp. 6615–6619.

Chapter 5. Conclusion, current & future work 168

[113] S. Mukherjee, R. Sarkar, J. Vandenbrink, S. T. Acton, and B. Blackman, “Tracking

sunflower circumnutation using affine parametric active contours,” in Image Analy-

sis and Interpretation (SSIAI), 2014 IEEE Southwest Symposium on. IEEE, 2014,

pp. 93–96.

[114] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for learning

statistical motion patterns,” IEEE transactions on pattern analysis and machine

intelligence, vol. 28, no. 9, pp. 1450–1464, 2006.

[115] A. Basharat, A. Gritai, and M. Shah, “Learning object motion patterns for anomaly

detection and improved object detection,” in Computer Vision and Pattern Recog-

nition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[116] J. Hamm and D. D. Lee, “Grassmann discriminant analysis: a unifying view on

subspace-based learning,” in Proceedings of the 25th international conference on

Machine learning. ACM, 2008, pp. 376–383.

[117] L. Xiong, X. Chen, and J. Schneider, “Direct robust matrix factorizatoin for

anomaly detection,” in Data Mining (ICDM), 2011 IEEE 11th International Con-

ference on. IEEE, 2011, pp. 844–853.

[118] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detec-

tion,” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179–188, 2015.

[119] M. Aharon, M. Elad, and A. Bruckstein, “rmk-svd: An algorithm for designing

overcomplete dictionaries for sparse representation,” IEEE Transactions on signal

processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[120] R. Sarkar, A. Vaccari, and S. T. Acton, “Sspared: Saliency and sparse code analysis

for rare event detection in video,” in Image, Video, and Multidimensional Signal

Processing Workshop (IVMSP), 2016 IEEE 12th. IEEE, 2016, pp. 1–5.

[121] E. Candes and J. Romberg, “Sparsity and incoherence in compressive sampling,”

Inverse problems, vol. 23, no. 3, p. 969, 2007.

[122] X. Zhang, X. Dong, and P. Frossard, “Learning of structured graph dictionaries,”

in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International

Conference on. IEEE, 2012, pp. 3373–3376.

[123] B. Widrow and M. E. J. Hoff, “Adaptive switching circuits.” in 1960 IRE WESCON

Convention record: at the Western Electronic Show and Convention, Los Angeles,

Calif., August 23-26, 1960. Institute of Radio Engineers, 1960.

[124] C. Paleologu, S. Ciochina, A. A. Enescu, and C. Vladeanu, “Gradient adaptive

lattice algorithm suitable for fixed point implementation,” in Digital Telecommuni-

cations, 2008. ICDT’08. The Third International Conference on. IEEE, 2008, pp.

41–46.

Chapter 5. Conclusion, current & future work 169

[125] H. Fan and X. Q. Liu, “Gal and lsl revisited: new convergence results,” IEEE

transaction on signal processing, vol. 41, no. 1, pp. 55–66, 1993.

[126] S. Haykin, Adaptive Filter Theory (3rd Ed.). Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1996.

[127] S. Zhao, Z. Man, S. Khoo, and H. R. Wu, “Stability and convergence analysis of

transform-domain lms adaptive filters with second-order autoregressive process,”

Signal Processing, IEEE Transactions on, vol. 57, no. 1, pp. 119–130, 2009.

[128] S. Hosur and A. H. Tewfik, “Wavelet transform domain adaptive fir filtering,” Signal

Processing, IEEE Transactions on, vol. 45, no. 3, pp. 617–630, 1997.

[129] M. H. Costa, J. C. M. Bermudez, and N. J. Bershad, “Stochastic analysis of the

lms algorithm with a saturation nonlinearity following the adaptive filter output,”

Signal Processing, IEEE Transactions on, vol. 49, no. 7, pp. 1370–1387, 2001.

[130] D. I. Kim and P. De Wilde, “Performance analysis of the dct-lms adaptive filtering

algorithm,” Signal Processing, vol. 80, no. 8, pp. 1629–1654, 2000.

[131] B. Farhang-Boroujeny, “Transform domain adaptive filters,” Adaptive Filters: The-

ory and Applications, pp. 207–250, 1998.

[132] F. Beaufays, “Transform-domain adaptive filters: an analytical approach,” Signal

Processing, IEEE Transactions on, vol. 43, no. 2, pp. 422–431, 1995.

[133] K. Chen, Matrix preconditioning techniques and applications. Cambridge Univer-

sity Press, 2005, vol. 19.

[134] M. Benzi, “Preconditioning techniques for large linear systems: a survey,” Journal

of computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

[135] Y. Cao, M.-Q. Jiang, and Y.-L. Zheng, “A splitting preconditioner for saddle point

problems,” Numerical Linear Algebra with Applications, vol. 18, no. 5, pp. 875–895,

2011.

[136] Q. Zheng and L. Lu, “Extended shift-splitting preconditioners for saddle point

problems,” Journal of Computational and Applied Mathematics, vol. 313, pp. 70–

81, 2017.

[137] Y. Dauphin, H. de Vries, and Y. Bengio, “Equilibrated adaptive learning rates for

non-convex optimization,” in Advances in Neural Information Processing Systems,

2015, pp. 1504–1512.

[138] O. Chapelle and D. Erhan, “Improved preconditioner for hessian free optimization,”

in NIPS Workshop on Deep Learning and Unsupervised Feature Learning, vol. 201,

no. 1, 2011.

Chapter 5. Conclusion, current & future work 170

[139] A. Dziekonski, A. Lamecki, and M. Mrozowski, “Jacobi and gauss-seidel precondi-

tioned complex conjugate gradient method with gpu acceleration for finite element

method,” in Microwave Conference (EuMC), 2010 European. IEEE, 2010, pp.

1305–1308.

[140] W.-P. Tang, “Toward an effective sparse approximate inverse preconditioner,”

SIAM journal on matrix analysis and applications, vol. 20, no. 4, pp. 970–986,

1999.

[141] M. Benzi, J. K. Cullum, and M. Tuma, “Robust approximate inverse precondition-

ing for the conjugate gradient method,” SIAM Journal on Scientific Computing,

vol. 22, no. 4, pp. 1318–1332, 2000.

[142] E. Chow and A. Patel, “Fine-grained parallel incomplete lu factorization,” SIAM

Journal on Scientific Computing, vol. 37, no. 2, pp. C169–C193, 2015.

[143] H. P. Maretic, D. Thanou, and P. Frossard, “Graph learning under sparsity priors,”

in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International

Conference on. Ieee, 2017, pp. 6523–6527.

[144] E. Pavez, H. E. Egilmez, and A. Ortega, “Learning graphs with monotone topol-

ogy properties and multiple connected components,” IEEE Transactions on Signal

Processing, 2018.

[145] O. Lezoray, V. T. Ta, and A. Elmoataz, “Nonlocal graph regularization for image

colorization,” in Pattern Recognition, 2008. ICPR 2008. 19th International Con-

ference on. IEEE, 2008, pp. 1–4.

[146] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and optimization

in large graphs,” in Proceedings of the 21th ACM SIGKDD international conference

on knowledge discovery and data mining. ACM, 2015, pp. 387–396.

[147] M.-D. Choi, “Tricks or treats with the hilbert matrix,” The American Mathematical

Monthly, vol. 90, no. 5, pp. 301–312, 1983.

[148] S. Lewis, “Neuroimmunology: Brain police,” Nature Reviews Neuroscience, vol. 19,

no. 2, p. 60, 2018.

[149] C. Madore, C. Baufeld, and O. Butovsky, “Microglial confetti party,” Nature neu-

roscience, vol. 20, no. 6, p. 762, 2017.

[150] F. Rossi and C. Lewis, “Microglia’s heretical self-renewal,” Nature neuroscience,

vol. 21, no. 4, p. 455, 2018.

[151] S. D. Bilbo, “The diverse culinary habits of microglia,” Nature neuroscience, p. 1,

2018.

Chapter 5. Conclusion, current & future work 171

[152] P. Ayata, A. Badimon, H. J. Strasburger, M. K. Duff, S. E. Montgomery, Y.-H. E.

Loh, A. Ebert, A. A. Pimenova, B. R. Ramirez, A. T. Chan et al., “Epigenetic reg-

ulation of brain region-specific microglia clearance activity,” Nature neuroscience,

vol. 21, no. 8, p. 1049, 2018.

[153] T. Miconi, J. Clune, and K. O. Stanley, “Differentiable plasticity: training plastic

neural networks with backpropagation,” arXiv preprint arXiv:1804.02464, 2018.

[154] J. Piaget, “Piaget’s theory,” 1970.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives and contributions
	1.2 Thesis outline

	2 Background
	2.1 Graph theory
	2.2 InSAR & ArcGIS
	2.2.1 Coherent motion analysis toolbox
	2.2.2 Road smoothness analysis toolbox

	3 Invariant or unique graph structure
	3.1 Activity recognition
	3.1.1 Unified graph signal processing (UGraSP)
	3.1.1.1 Proposed method
	3.1.1.2 Projection on extended Laplacian eigenvector basis
	3.1.1.3 Feature construction for activity recognition
	3.1.1.4 Feature construction for person identification
	3.1.1.5 Results
	3.1.1.5.1 Activity recognition
	3.1.1.5.2 Person identification

	3.1.2 Unified graph based activity detection (UGrAD)
	3.1.2.1 Action boundary determination
	3.1.2.2 Bipartite flow construction
	3.1.2.3 Polynomial fitting
	3.1.2.4 Datasets
	3.1.2.5 Results

	3.2 Neuromorphology
	3.2.1 NeuroBFD
	3.2.1.1 Feature construction
	3.2.1.2 Results

	3.2.2 Neuron solver using Laplacian (NeuroSoL)
	3.2.2.1 Vertex labeling
	3.2.2.2 Feature extraction
	3.2.2.3 Optimization
	3.2.2.4 Results

	3.2.3 What is Path2Path and its variants?
	3.2.4 ElasticPath2Path
	3.2.4.1 Neuron as a graph
	3.2.4.2 Elastic morphing and SRVF
	3.2.4.3 Path-to-Path matching
	3.2.4.4 Datasets and Results

	3.2.5 NeuroPath2Path
	3.2.5.1 Path modeling of a neuron
	3.2.5.2 Proposed methodology
	3.2.5.2.1 Feature extraction on a path
	3.2.5.2.2 Path alignment and path distance measure
	3.2.5.2.3 Path assignment and self-similarity
	3.2.5.2.4 Path morphing

	3.2.5.3 Datasets and results
	3.2.5.3.1 Dataset-1 (Intraclass)
	3.2.5.3.2 Dataset-2 (Interclass)

	4 Non-unique graph structure
	4.1 Spatio-temporal event detection
	4.1.1 Laplacian weighted covariance (LaWeCo)
	4.1.1.1 Methodology
	4.1.1.2 Multiscale formulation
	4.1.1.3 Dataset
	4.1.1.4 Results

	4.1.2 Decentralized event detection and tracking (DDT)
	4.1.2.1 Bipartite graph construction
	4.1.2.2 Ensemble of walks
	4.1.2.3 Prior probability and vertex reinforcement
	4.1.2.4 Extraction of functional topology
	4.1.2.5 Results

	4.1.3 Graph based dictionary for event detection (GraDED)
	4.1.3.1 Spatio-temporal graph representation of video
	4.1.3.2 Graph based parametric dictionary learning
	4.1.3.3 Event detection using learned graph weights
	4.1.3.4 Implementation, results & discussion

	4.2 System preconditioning
	4.2.1 Preconditioning using graph (PrecoG)
	4.2.1.1 Problem statement
	4.2.1.2 Methodology
	4.2.1.3 Laplacian parametrization
	4.2.1.4 Complexity analysis
	4.2.1.5 Sparse signal and sparse topology estimation
	4.2.1.6 Results
	4.2.1.6.1 Performance by changing parameters

	5 Conclusion, current & future work
	5.1 Current and future work
	5.1.1 Neuromorphology
	5.1.1.1 An example: Graph based learning
	5.1.1.2 Preliminary results

	5.1.2 Activity recognition and event detection

	Bibliography

