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Abstract

The Kondo lattice model is one of the most fundamental models that have re-

ceived tremendous theoretical interest. It describes strongly correlated systems with

interaction between itinerant electrons and local magnetic moments. This interaction

plays an important role in heavy fermion materials, where local magnetic moments

interact with 4f or 5f electrons which behaves as if they are effectively much heavier

than themselves. In this thesis, we present a few numerical studies on the Kondo

lattice model and models based on Kondo chains.

Tensor network is a geometric architecture composed of connected tensors to rep-

resent quantum many body states. The representation turns out to be surprisingly

efficient for area law states, in which the entanglement entropy scales linearly with

the surface area of the system, rather than the volume as in a generic state. Tensor

network algorithms have witnessed fast development in the past near 30 years. Den-

sity matrix renormalization group (DMRG), popularized in the last two decades for

low dimensional system studies, and time-evolving block decimation (TEBD) are two

representatives. In this thesis, we characterize the phases of one-dimensional Kondo

lattice model with quantum localized spins using DMRG, and present the quench

dynamics of the model using TEBD.

Highly frustrated magnets have attracted considerable attention with its intriguing

and sometimes unexpected magnetic phases. In this thesis, we present an extensive

numerical study of a new type of frustrated itinerant magnetism on the pyrochlore

lattice. In this theory, the pyrochlore magnet can be viewed as a cross-linking network

of Kondo or double-exchange chains. Contrary to models based on Mott insulators,

this itinerant magnetism approach provides a natural explanation for several spin and

orbital superstructures observed on the pyrochlore lattice. Through extensive Monte

Carlo simulations, we obtain the phase diagrams at two representative electron filling
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fractions n = 1/2 and 2/3. For the half filling case, we observed a paramagnetic

phase and an all-in-all-out phase, mimicking a spin ice. For the case of 2/3 filling,

we found a
(

1
3
, 1

3
, 1
)

magnetic order, ferromagnetic phase, paramagnetic phase and an

unexpected
(

1
2
, 1

2
, 1

2

)
order. In particular, we show that the intriguing glassy magnetic

state characterized by ordering wavevectors q =
(

1
3
, 1

3
, 1
)

gives a rather satisfactory

description of the low temperature phase recently observed in spinel GeFe2O4.

Finally, we present extensive large-scale dynamical simulations of the phase sep-

arated states, which are a mixture of ferromagnetic metallic cluster and antiferro-

magnetic insulating regions, in the double exchange model. These inhomogeneous

electronic states play a crucial role in the colossal magnetoresistance phenomenon

(CMR). The double-exchange model (Kondo lattice model) is considered as a major

mechanism for its electronic phase separation. We present an innovative and effi-

cient von-Neumann Landau-Lifshitz dynamics framework which enables large-scale

dynamical simulation of inhomogeneous electronic states for the very first time. We

compute the dynamical structure factor of these nanoscale textures using. Dynami-

cal signatures of the various underlying magnetic structures are identified. At small

hole doping, the structure factor exhibits a dominating signal of magnons from the

background Néel order and localized modes from magnetic polarons. A low-energy

continuum due to large-size ferromagnetic clusters emerges at higher doping levels.

Implications for experiments on magnetoresistive manganites are also discussed.



iv

Contents

1 Introduction 2

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Kondo Lattice Model and Heavy Fermion Materials . . . . . . . 3

1.3 The Double Exchange Model and the Manganites . . . . . . . . . . . 4

1.4 Layout of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quench Dynamics of One-dimensional Kondo Lattice Model 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Kondo Lattice Model and Heavy Fermion Materials . . . . . . . 11

2.3 Tensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Tensor network states . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Matrix product states . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Matrix product operators . . . . . . . . . . . . . . . . . . . . 21

2.4 Tensor Network Algorithms: DMRG and TEBD . . . . . . . . . . . . 22

2.4.1 Density matrix renormalization group (DMRG) . . . . . . . . 22

2.4.2 Time evolution blocking decimation (TEBD) . . . . . . . . . . 24

2.5 The Phase Diagram of 1D Kondo Lattice Model . . . . . . . . . . . . 25

2.6 Quench Dynamics of 1D Kondo Lattice Model . . . . . . . . . . . . . 29



v

3 Frustrated Kondo Chains and Glassy Magnetic Phases on the Py-

rochlore Lattice 34

3.1 Introduction to Frustration . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Motivation and Overview . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Frustrated Kondo Chains on the Pyrochlore Lattice Model . . . . . . 40

3.4 Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Half filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 2/3 filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Quasi-degeneracy and Glassy Behaviors of the q = (1
3
, 1

3
, 1) Phase . . 52

3.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Dynamics of Phase Separated States in the Double Exchange Model 62

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Manganites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Colossal magnetoresistance . . . . . . . . . . . . . . . . . . . . 63

4.1.3 The Double-exchange mechanism and double-exchange model 65

4.1.4 Phase separation and the dynamics . . . . . . . . . . . . . . . 66

4.1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 The Double-Exchange Model on a Square Lattice . . . . . . . . . . . 69

4.3 Laudau-Lifshitz-von Neumann (LLvN) Dynamics . . . . . . . . . . . 72

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Summary 84

A Phase Diagram of 1D Kondo Chain with Classical Spins 87



vi

B Examples of Matrix Product States and Matrix Product Operators 92

B.1 Matrix product states: AKLT state . . . . . . . . . . . . . . . . . . . 92

B.2 Matrix product operators: Heisenberg Hamiltonian . . . . . . . . . . 93

Bibliography 96



vii

List of Figures

2.1 The temperature dependence of resistivity measured in (MoxNb1−x)0.99Fe0.01

from Ref. [1]. The resistivity is rescaled at 4.2K. . . . . . . . . . . . . 9

2.2 Graphic representations of (a) a rank-0 tensor (scalar), (b) rank-1 ten-

sor (vector), (c) rank-2 tensor (matrix), (d) matrix product of two

rank-2 tensors, (e) trace of 3 rank-2 tensors. . . . . . . . . . . . . . . 14

2.3 Graphic representations of representative tensor network states: (a) a

generic tensor network state, (b) matrix product states (MPS) with

periodic boundary condition and (c) projected entangled pair states

(PEPS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 A schematic diagram of matrix product states. σi’s are the physical

indices. di’s are the bond dimensions. . . . . . . . . . . . . . . . . . . 17

2.5 A schematic diagram of matrix product operators, with σi, σ
′
i the local

indices and di the bond dimensions (not shown in the figure). . . . . . 21

2.6 Density matrix renormalization group: minimizing the variational func-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Density matrix renormalization group: solving an equation. . . . . . . 23

2.8 Density matrix renormalization group: eigenvalue problem. . . . . . . 23

2.9 Density matrix renormalization group: H matrix. . . . . . . . . . . . 23



viii

2.10 The ground state phase diagram of the 1D Kondo lattice model with

36 sites and commensurate electron fillings obtained using DMRG in

Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 The ferromagnetic ground state phase of the double exchange model

with N = 36, Nf = 18, J = 20. (a) shows the correlation and the

background removed correlation of spins with distance d apart. (b)

shows the expected number of up and down electrons, 〈ni,↑〉, 〈ni,↓〉 and

total number of electrons 〈ni〉 = 〈ni,↑〉+ 〈ni,↓〉 on each site. . . . . . . 28

2.12 The Island ground state phase of the double exchange model with

N = 36, Nf = 18, J = 2. (a) shows the correlation and the background

removed correlation of spins with distance d apart. (b) is the structure

factor. (c) is the spin correlation with the central site. (d) is the

correlation between neighboring spins. (e) is the expectation of electron

spin 〈Se,zi 〉, local spin 〈Szi 〉, and total spin
〈
Stot,zi

〉
= 〈Se,zi 〉 + 〈Szi 〉 on

each site. (e) shows the expected number of up and down electrons,

〈ni,↑〉, 〈ni,↓〉 and total number of electrons 〈ni〉 = 〈ni,↑〉+ 〈ni,↓〉 on each

site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13 Dynamics of the Kondo lattice model simulated on a chain of size L =

20. (a) is the time dependence of the Loschmidt rate, (b) is the time

dependence of the central bond entropy, (c) is the time dependence of

S(q = π
2
) and (d) shows a few snapshots of S(q) at different time slices. 32

3.1 A schematic diagram of the 1D ANNNI model. J1, J2 are the coupling

between nearest, second nearest neighbors. . . . . . . . . . . . . . . . 35



ix

3.2 The antiferromagnetic Ising model on a square lattice (a) without frus-

tration and triangular lattice (b) with frustration reproduced from

Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 A unit cell of the pyrochlore lattice with spins on each site. . . . . . . 38

3.4 The inequivalent transfer integrals between the three t2g orbitals on

the pyrochlore lattice: t1 = 3
4
Vddσ + 1

4
Vddδ, t2 = 1

2
Vddπ + 1

2
Vddδ, t3 =

1
2
Vddπ − 1

2
Vddδ, t4 = t5 = 0. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Schematic diagram showing the shortest hexagonal loops in the py-

rochlore lattice. The three different colors indicate distinct Kondo

chains occupied by the three t2g orbitals. . . . . . . . . . . . . . . . . 43

3.6 The phase diagrams for (a) half filling and (b) 2/3 filling. Solid and

dashed lines represents 1st and 2nd order phase transitions respec-

tively in both (a) and (b). For half filling, two phases are all-in-all-

out phase (AIAO), paramagnetic phase. For 2/3 filling, phases are

(I) q =
(

1
3
, 1

3
, 1
)

order, (II)
(

1
2
, 1

2
, 1

2

)
order, (III) a unknown magnetic

phase characterized by a large spin nematic order parameter, (IV) fer-

romagnetic phase and (V) paramagnetic phase. . . . . . . . . . . . . 45

3.7 (a) The T → 0 ground state of a single Kondo chain. The long-

range spin order is characterized by a tripled unit cell with a coplanar

almost 120◦ structure within a unit cell. (b) shows the gap-opening of

a n = 2/3-filled Kondo chain due to Fermi point nesting. . . . . . . . 48

3.8 Snapshots of the local spin configurations for (a) the q = (1
3
, 1

3
, 1) order

and (b) q = (1
2
, 1

2
, 1

2
) order. . . . . . . . . . . . . . . . . . . . . . . . . 49



x

3.9 The spin-spin correlation function 〈S(r) · S(r + n)〉 averaged over all

Kondo chains of the pyrochlore lattice for (a) the q = (1
3
, 1

3
, 1) and (b)

the q = (1
2
, 1

2
, 1

2
) order at n = 2/3 filling with (a) J = 1 for and (b)

J = 1.5. The insets show the corresponding structure factor on the (a)

q = (h, k, 1) and (b) q = (h, h, l) plane. . . . . . . . . . . . . . . . . . 51

3.10 The temperature dependence of some quantities for the 2/3-filled cou-

pled Kondo chains with J = 1. (a) the energy density and (b) the

magnetic order parameter M shows the first order phase transition.

(c) the nematic order parameter Q bifurcates into multiple branches

below the phase transition point. (d) the partial magnetic order pa-

rameter, Mx,My,Mz, which are summation of Φm at wavevectors

qm =
(
1,±1

3
,±1

3

)
,
(
±1

3
, 1,±1

3

)
,
(
±1

3
,±1

3
, 1
)
, respectively, with L = 6

show no significant difference at low temperatures. . . . . . . . . . . 54

3.11 Probability distribution function for the magnetic order parameterM,

the nematic order parameter Q and the energy density E (insets) at

three different temperatures below Tc. These curves are obtained from

extensive Monte Carlo simulations on lattices of J = 1, L = 9. . . . . 55

3.12 Distribution for X in the complex plane. Red, green, blue points rep-

resent independent samples whose nematic order parameter Q is in

the left, middle and right peaks, respectively, of the histogram h(Q) in

Fig. 3.11(b). Namely, Q1 ∈ [0, 0.17), Q2 ∈ [0.17, 0.23), Q3 ∈ [0.23, 0.3].

The figure is obtained with 1000 samples of the system at T = 0.03, J =

1, L = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.13 The spin freezing parameter q
(2)
s as a function of temperature with the

electron-spin coupling J = 1. The green dashed line is a guide to the

eye. The distribution of q
(2)
s is rather asymmetric and non-Gaussian. . 59



xi

4.1 Crystal Structure of Manganites from Ref. [4]. . . . . . . . . . . . . . 63

4.2 Colossal magnetoresistance: the temperature dependence of MR ratio

for La0.67Ca0.33MnO3 (La-Ca-Mn-O films) from Ref. [5]. . . . . . . . . 64

4.3 The double exchange mechanism from Ref. [4]. JH is the Hubd’s cou-

pling between t2g and eg orbitals on the same site. JH is a direct

exchange between neighboring sites. . . . . . . . . . . . . . . . . . . . 65

4.4 Schematic diagram of the phase separation. The red domain is an anti-

ferromagnetic insulating cluster, while the blue domains are ferromag-

netic metallic clusters with different directions for spins represented by

the arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Left: interactions in the double-exchange model. Right: phase diagram

of the double-exchange model on a square lattice [6], 〈n〉 is the electron

density (number of electrons per site). . . . . . . . . . . . . . . . . . 70

4.6 The local electron density plots of the phase-separated states with fill-

ing fractions (a) f = 0.43 and (b) f = 0.498 on a 60 × 60 square

lattice. The red region is the half-filled antiferromagnetic insulating

background, where the green and blue regions indicate ferromagnetic

metallic domains with low electron density. . . . . . . . . . . . . . . 71

4.7 Upper panels: density plots of the on-site electron number n(ri) =

〈c†i,αci,α〉 in sample phase-separated states for filling fractions (a) f =

0.43, (b) f = 0.45, (c) f = 0.465, (d) f = 0.48, (e) f = 0.498, obtained

from Langevin dynamics simulations on a 60× 60 lattice with Hund’s

coupling J = 6t and temperature T = 5 × 10−4t. The corresponding

dynamical structure factors S(q, ω) averaged over tens of independent

initial states are shown in the lower panels. The high-symmetry points

of the Brillouin zone are Γ = (0, 0), X = (π, 0),M = (π, π). . . . . . . 76



xii

4.8 The power spectrum I(ω) =
∑

i∈C |S̃i(ω)|2 of (a) a magnetic polaron

and (b) a FM metallic cluster consisting of roughly 20 spins. Here

the sum runs over spins in the FM domain of these object. The inset

shows the electron density plot n(ri) = 〈c†iαciα〉. With a large Hund’s

coupling J = 6t, the size of the magnetic polaron is rather small, with

a radius of roughly three lattice constants. . . . . . . . . . . . . . . . 78

4.9 Top panels show the density plot n(ri) = 〈c†iαciα〉 of one particular

phase-separated state for filling fractions (a) f = 0.465 and (b) f =

0.498. The simulated system size is 60×60. The corresponding spatial

profile of spin excitations F(ri) =
∫ ω2

ω1
|S̃i(ω)|2 dω is shown in panels

(c) and (d), respectively, where ω1 = 0.006283 and ω2 = 0.09425. . . 80

4.10 (a) The dynamical structure factor S(q, ω) versus ω at a few selected

wavevectors q for filling fraction f = 0.465. (b) The frequency depen-

dence of the spin excitation spectrum I(ω) ≡∑q S(q, ω)/N integrated

over the whole Brillouin zone, at varying electron filling fractions. The

curves are shifted vertically for clarity. The dashed line shows the

ω−1.83 power-law dependence. . . . . . . . . . . . . . . . . . . . . . . 81

A.1 (a): Wave vectors q∗ where the module of S(q) reaches local maximum

for 1
3

filling. (b1) ∼ (b4): S(q) as a function of q for characteristic

J = 0.2, 1.6, 4.4, 8.0 in region I, II, III, IV. . . . . . . . . . . . . . . . 89



1

A.2 Energy contour plot with respect to θ1 and θ2 for (a) J = 0.2, (b) J =

0.4. The red dots indicate the optimal configuration. The range for θ1

and θ2 is [0, 2π]. The 12 dots represent the same or symmetry related

configuration. For J = 0.2, the ground state is the state such that the

angles between each of the 3 pairs of S0,S1,S2 are 115.8◦, 120.6◦, 123.6◦.

For J = 0.4, they are 111◦, 112.4◦, 126.6◦. . . . . . . . . . . . . . . . . 90

B.1 A schematic diagram of the procedure for obtaining a matrix product

operators reproduced from Ref. [7]. . . . . . . . . . . . . . . . . . . . 94



2

Chapter 1

Introduction

1.1 Overview

Condensed matter physics is a field that studies the collective behavior of atoms

and electrons in condensed matter. It covers a wide variety of phenomenon such

as superconducting, phase transition. Complexity emerges when individual atoms

and electrons are grouped together. The collective behavior could be dramatically

different from that of the individual components.

Strongly correlated systems have attracted tremendous attention and research ef-

forts. Interesting phenomenon appear due to the strong interactions and correlations.

Topics include high temperature superconducting, colossal magnetoresistance. In the

real word, understanding the physics of strongly correlated system help us develop

next generation electronic technology for real life and industry applications, such as

Mott transistor, multiferroicity. Over decades, the research on strongly correlated

systems has seen seen its breakthrough and become the building block of condensed

matter physics.

The study of strongly correlated systems is a board area. There are many rep-
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resentative models. In this thesis, we focus on the systems where itinerant electrons

interact with local magnetic moments. More specifically, the model is expressed in

the Hamiltonian with both electron degree of freedom and spin degree of freedom,

H = −t
∑

〈i,j〉

∑

σ=↑,↓

(
c†i,σ cj,σ + h.c.

)
+ J

∑

i

Si · si, (1.1)

where the first term describes electron hopping between nearest-neighbor sites, and

the second term is the onsite coupling between electrons si =
∑

α,β c
†
iασαβciβ and

local magnetic moments Si.

For antiferromagnetic onsite coupling (J > 0), this is the Kondo lattice model.

The local spins are quantum. This is taken as the standard model for heavy fermion

systems.

When the coupling is ferromagnetic (J < 0), this is the double exchange model,

also known as ferromagnetic Kondo lattice model. It is worth noting that although

these two models have the same form of Hamiltonian, the antiferromagnetic and fer-

romagnetic interactions come from different mechanisms. In this model, even classical

local spins can result in rich phases diagrams. A model on a specific lattice structure,

such as pyrochlore, could also result in geometrical frustration.

1.2 The Kondo Lattice Model and Heavy Fermion

Materials

Heavy fermion materials are in general a class of inter-metallic compounds with

rare earth or actinide elements [8]. These elements typically contain 4f or 5f electrons

that are highly localized, which is the origin of the local magnetic moments [9]. These

materials exhibits energy scales typically as small as a few tens of Kelvin, giving rise
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to extremely enhanced specific heat and spin susceptibility [8]. The effective mass of

electron quasiparticles is typically a few hundreds or thousands of the bare electron

mass. Thus these electron quasiparticles are named heavy fermions.

The physics of these materials are dominated by the interactions between itiner-

ant electrons and the localized moments. A model to describe heavy fermion systems

is the periodic Anderson model which considers the interaction between two types

of electrons, the itinerant electrons and the localized f electrons [8]. In the Kondo

regime, this model can be transformed into the Kondo lattice model, where local

moments are immersed in a conducting background and favor antiferromagnetic con-

figurations with onsite electrons. We will give a detailed introduction to the Kondo

lattice model in Chapter 2 and present our study on its quench dynamics.

1.3 The Double Exchange Model and the Mangan-

ites

The double exchange model has the same expression as the Kondo lattice model,

with the difference that the coupling between the local magnetic moments and con-

ducting electrons is ferromagnetic, rather than antiferromagnetic as in the Kondo

lattice model. However, they come from different mechanisms. This ferromagnetic

coupling in the double exchange model originates from Hund’s coupling, which is not

considered in the Kondo lattice model since the orbital degeneracy is ignored.

The double exchange model was proposed to describe the physics of manganites,

a class of mineral with chemical formula T1−xDxMnO3, where T is a trivalent rare

earth element or Bi3+ cation, D is a divalent alkaline or Pb2+ cation [10]. The

most interesting characteristic property of manganites is colossal magnetoresistance

(CMR), where a small magnetic field could induce a dramatic change in the electrical
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resistance.

In Chapter 4, we discuss our dynamical simulations on the phase separated states

in the square lattice double exchange model.

1.4 Layout of the Thesis

Although tremendous efforts have been spent on the equilibrium phases of the

Kondo lattice model and double exchange model, at least two aspects are less ex-

plored: spatial inhomogeneity and dynamics. In this thesis, we will present a

few numerical studies that focus more on these two aspects.

The layout of the thesis is as follows. In chapter 2, we present a numerical study on

the one-dimensional Kondo lattice model with quantum localized spins. We give a de-

tailed introduction to tensor network states. Two tensor network based algorithms are

also introduced: density matrix renormalization group (DMRG) and time-evolving

block decimation (TEBD). We apply the essentially exact DMRG to study phases of

the model, and study its quench dynamics using TEBD.

In chapter 3, we discuss the frustrated Kondo chains with classical local spins on

the pyrochlore lattice. The corss-linked Kondo chains give rise to a new type of geo-

metrical frustration. We present extensive numerical simulations on this model and

characterize its phase diagrams at two representative filling fractions 1/2 and 2/3.

This study is also experiment motivated and the glassy magnetic phase character-

ized by the ordering wavevector q =
(

1
3
, 1

3
, 1
)

at 2/3 filling gives a rather satisfactory

description of the low temperature phase recently observed in spinel GeFe2O4. The

discussion on 1D Kondo chains with classical local spins is also included for compar-

ison and illustration.

In chapter 4, we focus on the spatial inhomogeneity of the model, especially the
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phase separated states mixed by the ferromagnetic metallic clusters and antiferromag-

netic insulating regions. These inhomogeneous electronic states are believed to play

an import role in colossal magnetoresistance. However, the dynamics of this phase

was less explored partly due to a lack of efficient numerical methods. To this end,

we introduce a real-space von-Neumann Landau-Lifshitz (LLvN) dynamics which en-

ables large-scale dynamical simulation of the phase separated states. We compute the

dynamical structure factor and identity the dynamical signatures, especially the roles

of the magnetic polarons and larger metallic clusters. We also discuss the implications

for experiments on magnetoresistive manganites.

In chapter 5, we summarize the thesis and point out some possible future direc-

tions.
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Below is a list of publication. The thesis is based on [1], [2] and some unpublished

work.

[1] J. Luo, G. Chern, Dynamics of the phase separated states in the double ex-
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pyrochlore lattice, Phys. Rev. B 98, 214423 (2018).

[3] B. S. Shivaram, J. Luo, G. Chern, D. Phelan, R. Fittipaldi, A. Vecchione,
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magnetism, Phys. Rev. B 97, 100403 (Rapid Communication) (2018).
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Chapter 2

Quench Dynamics of

One-dimensional Kondo Lattice

Model

In this chapter, we discuss the Kondo lattice model, especially the one-dimensional

Kondo lattice model. After that we introduce tensor network, especially its one-

dimension version matrix product states, and some tensor network algorithms, namely,

density matrix renormalization group (DMRG), time-evolution block decimation (TEBD).

These algorithms are extensively used in the investigation in this chapter. We apply

DMRG to obtain the phases of the one-dimensional Kondo lattice model and apply

TEBD to study its quench dynamics between some states.

2.1 Introduction

To introduce the Kondo lattice model, we first give an introduction to the Kondo

model. The Kondo model (also referred to as the s-d model) is a model that describes
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the effect of a single local magnetic moment (impurity) interacting with a background

of conducting electrons. It is usually expressed in the following form,

H =
∑

k,σ

εkc
†
kσckσ + JS · s0, (2.1)

where c†kσ is the creation operator for the electron with momentum k and spin σ,

J > 0 measures the strength of the interaction between the local impurity S with

spin-1
2

at the origin and the conducting electron

s0 =
∑

k,k′,σ,σ′

c†kσσσ,σ′ck′σ′ , (2.2)

at the impurity site. The Kondo model was studied by Jun Kondo [11] in 1964

to account for the phenomenon resistance minimum at low temperatures in dilute

magnetic alloys.

The electrical resistivity were deemed to decrease monotonically with the decreas-

ing temperature, due to the contributions from phonon scattering. However, W. J.

de Haas, J. de Boer, and G.J.van den Berg [12] discovered in 1934 that in “not very

pure” gold wires with less than 10−4% impurity, the resistivity starts to increase below

a certain temperature (3.70 K), resulting in a resistance minimum.

One of the most well known sets of the measurement that shows resistance min-

imum was taken in 1964 [1]. They measured alloys MoxNb1−x and MoxRe1−x with

and without 1% Fe. The scaled resistivity for (MoxNb1−x)0.99Fe0.01 is shown in Fig.

2.1.

The phenomenon has been a puzzle for over 30 years until Jun Kondo solved this

problem. He analyzed the experimental observations and found that this phenomenon

is closely related to the existence of magnetic impurities. These observations also
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Figure 2.1: The temperature dependence of resistivity measured in
(MoxNb1−x)0.99Fe0.01 from Ref. [1]. The resistivity is rescaled at 4.2K.

suggested that resistivity minimum does not come from the interactions between

magnetic impurities, but is an effect due to interactions between the conducting

electrons and magnetic impurities.

The magnetic moments originate from the localization of the electrons that are

unpaired in the atomic or ionic d or f shell. At low temperatures, the high frequency

excitations are eliminated and the only degree of freedom is the magnetic moment.

The Curie-Weiss law describes such a system composed of magnetic moments with

the magnetic susceptibility

χ =
C

T − Tc
, (2.3)

where C is a material specific constant and Tc is the Curie temperature. A positive
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Tc reflects antiferromagnetic interactions between spins while a negative Tc indicates

ferromagnetic interactions. Earlier than Jun Kondo, Philip W. Anderson formulated a

later called Anderson model where he found the interaction between the local magnetic

moments and the itinerant electrons in metals is antiferromagnetic [13]. Later the

antiferromagnetic interaction was confirmed in Kondo’s work [11].

In this model, the resistivity contribution from the electron-impurity interaction

was calculated to be

Rspin
imp =

3πmJ2S(S + 1)

2e2~εF

(
1− 4Jρ0 (εF) ln

(
kBT

D

))
, (2.4)

where D is the half band width [11, 14]. For an antiferromagnetic coupling J > 0,

the J3 term increase as lnT when lowering the temperature. The total resistivity is

R(T ) = aT 5 + cimpR0 − cimpR1 ln

(
kBT

D

)
, (2.5)

where cimp is the density of magnetic impurities, the first term is the contribution from

phonon, the second term is the contribution from impurities, the third term comes

from the interactions between conduction electrons and local magnetic moments. The

resistivity has a minimum at

Tmin =

(
R1

5a

)1/5

c
1/5
imp. (2.6)

The result fits the data well for dilute AuFe alloys.

On the other hand, the result also defines the Kondo temperature

TK = De−1/(2Jρ) (2.7)
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below which the physics is roughly dominated by electron-impurity coupling. The

resistivity above diverges logarithmically in the low temperature regime (T < TK).

Gaining understanding in this regime became the famous Kondo problem which in-

spired significant theoretical investigations and developments. The problem was fi-

nally solved by Kenneth G. Wilson using numerical renormalization group [15].

Over the last 50 years, the Kondo model has become one of the most fundamental

models in condensed matter physics and the playground for theoretical and numerical

methods.

2.2 The Kondo Lattice Model and Heavy Fermion

Materials

In the Kondo model, the magnetic impurity is on a single site. It is tempting

to think of a lattice of these magnetic impurities on each site. Such a model with

massive local magnetic moments is called the Kondo lattice model. This is the model

that this chapter and some of the following chapters are built on.

The Hamiltonian of the Kondo lattice model can be written as

H =
∑

kσ

εkc
†
kσckσ + J

∑

i

Si · si, (2.8)

where Si is the local magnetic moment at position i. The tight-binding form of a

Kondo lattice model is

H = −t
∑

〈i,j〉

∑

σ=↑,↓

(
c†i,σ cj,σ + h.c.

)
+ J

∑

i

Si · si, (2.9)

where c†i,σ is the creation operator of electrons at site i with spin σ, 〈i, j〉 represents
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nearest neighbor sites, t is the nearest-neighbor hopping constant, J is the coupling

strength, Si is local magnetic moment, and

si =
∑

α,β

c†iασαβciβ, (2.10)

is the spin of the conduction electron.

The Kondo lattice model can also be viewed as transformed from the periodic

Anderson model. The Hamiltonian is

HPAM = −t
∑

〈i,j〉

∑

σ

(
c†i,σcj,σ + h.c.

)
+
∑

i,σ

εfn
f
i,σ

+V
∑

i,σ

(
c†i,σfi,σ + h.c.

)
+ U

∑

i

nfi,↑n
f
i,↓, (2.11)

where ni,σ = c†i,σci,σ is the conducting electron number operator, nfi,σ = f †i,σfi,σ is the

local spin number operator, εf is atomic energy of the f level, V mixes the electrons

in two orbitals, U is the Coulomb repulsion between f electrons [8]. It is important

to note that there is no Hund’s rule coupling since the orbital degeneracy is ignored.

In the Kondo regime, unpaired f electrons have lower energy than the conduction

band and thus can be treated as local moments. The periodic Anderson model can

be reduced to a Kondo lattice model as in Eq. 2.8 and Eq. 2.9 with the coupling

strength J = 8V 2/U [8].

Another important mechanism for the local moments is the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction [16, 17, 18], which explains the indirect long-

range interactions between local moments mediated by itinerant electrons. The

RKKY interaction has an energy scale [9]

ERKKY = J2ρ. (2.12)
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The physics of heavy fermion materials is determined by the competition of Kondo

effect and the RKKY interaction.

In the Hamiltonian of Kondo lattice model, if the coupling between the local

moments and the itinerant electrons is ferromagnetic, the model becomes double-

exchange model or ferromagnetic Kondo lattice model, which describes another mech-

anism in a class of material called manganites. Since it is more relevant to the

following chapters, we will introduce it later.

2.3 Tensor Networks

Various numerical methods have been applied to study the Kondo lattice model.

Here we introduce methods based on tensor networks.

Tensor network is a geometric architecture composed of tensors connected by

bonds to represent quantum states. The last two decades have witnessed the explod-

ing development of tensor networks. It lays a solid basis for some powerful simulation

algorithms for condensed matter systems. In a tensor network, each node is a mul-

tidimensional tensor with open and/or contracted indices. They are linked by bonds

to form a tensor network to represent a quantum state. An accurate representation

usually results in large dimensions of the tensors, or equivalently the bond dimensions

(dimensions of the bonds). Then the size of tensor network state for a generic system

grows exponentially with the system size. However, thanks to the area law, lots of low

lying states of the systems of interest can be exactly or almost exactly represented

by tensor networks with restricted bond dimensions. This is where the efficiency of

some tensor network algorithms is rooted in.

Numerical methods based on tensor networks has seen a rapid growth since

the invention of density matrix renormalization group (DMRG) by Steve White in
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1992 [19, 20]. Its connection with tensor networks, or more specifically matrix product

states, was found later in Ref. [21, 22, 23, 24]. DMRG has become one of dominating

methods for studying low dimensional, especially one dimensional lattice systems. It

is widely used in calculating the ground state or other low lying states and gives es-

sentially numerical exact results. For the dynamics, time evolution block decimation

(TEBD) and some other methods have been developed. In this chapter, we present

an introduction to tensor networks, DMRG and TEBD and apply TEBD to study

the quench dynamics of Kondo lattice model.
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X

�

A↵�B��

↵ � �

A B

F =
X

↵��

A↵�B��C�↵

↵

��

A

B

C

(d) (e)

vi Aij

i i j

(a) (c)(b)
c

Figure 2.2: Graphic representations of (a) a rank-0 tensor (scalar), (b) rank-1 tensor
(vector), (c) rank-2 tensor (matrix), (d) matrix product of two rank-2 tensors, (e)
trace of 3 rank-2 tensors.

Tensors are the building blocks of tensor networks. We illustrate the graphic

representation of tensor networks in Fig. 2.2. Each circle represents a tensor with

connected lines (bonds) being the indices for the tensor. The number of lines is
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the rank of the tensor. The actual values for entries in the tensor are hidden in the

graphic representation until being used in computation or calculation. Fig. 2.2 (a) (b)

(c) represents a rank-0 tensor (scalar), rank-1 tensor (vector), rank-2 tensor (matrix)

respectively. In the connected tensors, we perform a summation (contraction) over

the connecting indices. Thus, the product of matrix A and matrix B, namely,

Cαβ =
∑

γ

AαγBγβ (2.13)

can be represented in Fig. 2.2 (d). This process is usually named contraction. Simi-

larly, trace of tensors (matrices), for an example,

F =
∑

αβγ

AαγBγβCβα (2.14)

can be represented Fig. 2.2 (e).

A tensor network is connected network composed of these tensors.

2.3.1 Tensor network states

Each quantum state can be expressed as a vector in the Hilbert space. Consider

a spin-1
2
σ, the Hilbert space has a dimension of 2 with a basis {|↑〉 , |↓〉}. For a

many-body state, the Hilbert space is then spanned by the tensor products of the

bases in the local Hilbert spaces. A quantum many-body state can be written as

|Ψ〉 =
∑

σ1σ2···σN

Cσ1σ2···σN |σ1〉 |σ2〉 · · · |σN〉 (2.15)

where |ψi〉 is a local state on site i, and Cσ1σ2···σN constitute a set of coefficients.

Tensor networks can be used to represent quantum states, called tensor network
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states. A generic tensor network state is shown in Fig. 2.3 (a) with N open indices.

Each index represents a physical local dimension σi. The internal structure of tensor

network states are specified in practical use cases. For example, in matrix product

states (MPS) as illustrated in Fig. 2.3 (b), we use N rank-3 tensors to represent N

sites in the system. Each tensor has an open physical index and two bonds connected

with two neighboring tensors. If the boundary is open, the tensors on the boundary

have a rank of 2 instead of 3. MPS is used for one-dimensional systems, sometimes

also applied in two-dimensional systems. Cσ1σ2···σN could be calculated explicitly

by contracting the tensors (making products of matrices in the MPS case). The

geometric structure of a tensor network state varies, often mimicking the geometry

of the lattice structure or the interactions between sites. Apart from matrix product

states, projected entangled pair states (PEPS) in Fig. 2.3 (c) are also frequently used

for two dimensional systems.

(a)

(b)

(c)
Figure 2.3: Graphic representations of representative tensor network states: (a) a
generic tensor network state, (b) matrix product states (MPS) with periodic boundary
condition and (c) projected entangled pair states (PEPS).
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2.3.2 Matrix product states

We will be using matrix product states for our investigations in this chapter.

Consider a one-dimensional quantum spin system with local Hilbert space dimension

d, the state of such a system can be represented as a matrix product state in Fig. 2.4.

Each tensor in the MPS takes open or closed indices. The open indices are the physical

Figure 2.4: A schematic diagram of matrix product states. σi’s are the physical
indices. di’s are the bond dimensions.

indices that represent the physical components and the closed indices indicate where

the tensors should be contracted. The state in Fig. 2.4 is

|ψ〉 =
∑

σ1,··· ,σL

Mσ1
1 Mσ2

2 · · ·MσL
L |σ1σ2 · · · σL〉 (2.16)

where σi is the direction of spin on site i, Mi is the rank-3 tensor at site i, Mσi
i is

a matrix for the corresponding local state σi with dimension di−1 × di, |σ1σ2 · · ·σL〉

is a vector of the basis. For each |σ1σ2 · · · σL〉, the matrix product Mσ1
1 Mσ2

2 · · ·MσL
L

yields a number. The state |ψ〉 can thus be explicitly represented by computing dL

such numbers.

The MPS representation for a state is not unique, it is possible to do a gauge

transformation on the MPS and keep the state the same. The gauge transforma-

tion can be completed by inserting a matrix G and its inverse G−1 in a bond, and

incorporating (contracting) them to the left and right tensors respectively.
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Each bond bipartition the system into two parts with size NL on the left and

NR = N −NL on the right, namely,

|ψ〉 =

dimHL∑

i=1

dimHR∑

j=1

Aij |ui〉L |vj〉R (2.17)

where |ui〉L and |vj〉R are the basis for the left and right systems respectively, Aij

is the corresponding coefficient, the dimensions of the Hilbert spaces dimHL = dNL

and dimHR = dNR for a generic state. Considering the tensor representation, we are

essentially looking for matrices ML and MR such that A = MLMR. ML has dimension

dNL × dNL and MR has dimension dNL × dNR . The bond dimension between the left

and right systems is dNL = min{dNL , dNR}. Consequently, to precisely represent a

generic state, the bond dimension di grows exponentially as di from either end of the

chain to the middle. di becomes very big in the middle of the chain, but it is not

necessary for most states of interest. These states are compressible using singular

value decomposition.

For a general matrix A of dimension m× n and k = min{m,n}, a singular value

decomposition (SVD) is written as

A = USV †, (2.18)

where U is a m×k matrix that has U †U = I, V is a k×n matrix that satisfy V V † = I,

and S is k×k diagonal matrix with singular values s1 > s2 > s3 > · · · > sk > 0. The

number of positive singular values is equal to the rank of A.

After the singular value decomposition, we have

Aij =
r∑

α=1

UiαsαV
∗
jα. (2.19)
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By a unitary transformation defined by U and V , we could form a new set of basis

for the system and write the state as

|ψ〉 =
r∑

α=1

sα|α〉L|α〉R (2.20)

where r is the rank of matrix A and the new basis is

|α〉L =

dimHL∑

i=1

Uiα|i〉L

|α〉R =

dimHR∑

j=1

V ∗jα|j〉R
(2.21)

Thus we should be able to reduce the bond dimension to r. More technical details

can be found in [25, 7].

Another important aspect about tensor network states is normalization. Perform-

ing singular value decompositions using the full matrix is computationally expensive.

It turns out we could iteratively keep the matrix product states left-canonical and

right-canonical about a bond while performing calculations. This is called the mixed

canonical form. As a result, we only need to operate on the tensors on sites connected

by the bond, which greatly reduces computational efforts.

The singular value decomposition also gives the entanglement entropy of the sub-

systems conveniently. The reduced density matrix for the left and right subsystems

are

ρL = trR |ψ〉 〈ψ| =
r∑

α=1

s2
α |α〉L 〈α|L (2.22)

ρR = trL |ψ〉 〈ψ| =
r∑

α=1

s2
α |α〉R 〈α|R (2.23)
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The entanglement entropy is

SNL(|ψ〉) = − trA ρA ln ρA = − trB ρB ln ρB = −
r∑

α=1

s2
α ln s2

α (2.24)

In general, if the entanglement entropy is low, that means more singular values are

0, so a relatively low bond dimension is sufficient to provide an almost numerically

exact result. During the SVD, if some singular values are very small, we could also

remove these values and rescale the remaining singular values. This is truncation.

The necessary bond dimension grows exponentially with the entanglement entropy

between the left and right subsystem divided by the bond.

One of the advantages of matrix product states is that DMRG becomes easily

extendable to more complicated systems and problems in this language. It is also

understood that the reason behind the strength of DMRG and related numerical

methods is that the low lying states of most of Hamiltonians of interest obey the

celebrated area law. For area law states, the entanglement entropy does not scale as

the volume of the system, but grow with the size of the surface. For such states in

1D systems, the area of the intersections is constant. Consequently, the entanglement

entropy can only grow to an upper bound, which means the bond dimension of the

matrix product state has an upper limit, making the operations on the MPS more

practical.

One of the most popular and interesting examples for matrix product states is the

Affleck-Kennedy-Lieb-Tasaki (AKLT) state. We present its MPS form in Appendix

B.1.
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2.3.3 Matrix product operators

An operator can also be represented in a tensor network form, named matrix

product operator (MPO), where each tensor has two open indices. A generic operator

for a system of size L can be written as

O =
∑

{σ}

∑

{σ′}

Cσ1...σL,σ′1...σ′L |σ1 . . . σL〉 〈σ′1 . . . σ′L| (2.25)

To represent it as a matrix product operator, we write

O =
∑

{σi,σ′j}

Mσ1σ′1Mσ2σ′2 . . .MσLσ
′
L |σ1 . . . σL〉 〈σ′1 . . . σ′L| (2.26)

Fig. 2.5 is an example of a matrix product operator Eq. 2.25 for a one-dimensional

spin system.

Figure 2.5: A schematic diagram of matrix product operators, with σi, σ
′
i the local

indices and di the bond dimensions (not shown in the figure).

There is a systematic way of constructing short-ranged Hamiltonians with mini-

mized bond dimensions almost automatically [25]. We show an example of construct-

ing the MPO of Heisenberg Hamiltonian from Ref. [7] in B.2.
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2.4 Tensor Network Algorithms: DMRG and TEBD

2.4.1 Density matrix renormalization group (DMRG)

Density matrix renormalization group (DMRG) can be viewed as a variational

method based on MPSs. We introduce DMRG following Ref. [7]. To find the ground

state for a 1D system, we could start with a random state |ψ〉 and keep varying it

until we reach a good approximation. During the process, we are minimizing the

energy of the state [7],

E =
〈ψ|H|ψ〉
〈ψ|ψ〉 . (2.27)

Minimizing it is equivalent to minimizing

〈ψ|H|ψ〉 − λ〈ψ|ψ〉. (2.28)

In the language of tensor networks, we could represent Eq. 2.28 as Fig. 2.6. Then,

−λ ×

Figure 2.6: Density matrix renormalization group: minimizing the variational func-
tion.

for each site i, we just need to solve an equation

∂

∂Mσi∗
(〈ψ|H|ψ〉 − λ〈ψ|ψ〉) = 0 (2.29)

which is represented as Fig. 2.7.
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−λ × = 0

Figure 2.7: Density matrix renormalization group: solving an equation.

If the MPS is normalized both on the left and right sides (mixed canonical form),

we could simplify it as Fig. 2.8.

−λ × = 0

Figure 2.8: Density matrix renormalization group: eigenvalue problem.

This is an eigenvalue problem

HiM = λM, (2.30)

where Hi is illustrated in Fig. 2.9. Now we just need to solve this eigenvalue problem

Hi ≡

Figure 2.9: Density matrix renormalization group: H matrix.
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and take M corresponding to the smallest λ. After updating M , we continue to apply

the same procedure to the next site.

We summarize the procedures of DMRG as follows. (1) Prepare a MPS for the

system to start with. This MPS could be random or any other state that is adequate

to reach the ground state under DMRG. (2) Sweep each bonds from one end to the

other end while keeping the MPS in a mixed canonical form. On each bond, solve a

eigenvalue problem to update the MPS. Reduce the bond dimension if necessary in

the process. (3) Repeat step (2) until the energy and entropy converges. In practice,

for some systems, converging results can be obtained within only a few sweeps. More

technical details can be found in Ref. [25, 7]. To optimize, we could work on specific

sectors defined by quantum numbers of the system.

There are some tensor network packages developed in the recent decade, such as

ITensor [26]. We use ITensor for tensor network calculations in this thesis.

2.4.2 Time evolution blocking decimation (TEBD)

Using the matrix product states, we can also simulate dynamics in a straight-

forward way. The method is time evolution blocking decimation (TEBD) [27]. For a

generic system, the time evolved state is the initial state applied by the time evolution

operator e−iHt, namely |ψ(t)〉 = e−iHt|ψ(0)〉. Explicitly evolving the state in the lan-

guage of tensor network states is computationally expensive and usually intractable.

We could take advantage the fact that most of Hamiltonians of interest only involves

nearest-neighbor or short range interactions. The basic idea of this algorithm is to

break down the Hamiltonian into nearest-neighbor pieces and apply one small piece

of the Hamiltonian with a small time interval each time. Applying an operator on a

MPS generally increases the bond dimension by a few times, so we do singular value

decomposition to compress the state simutanously.
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Specifically for the one-dimensional Kondo lattice model, we write the Hamilto-

nian as

H =
L∑

i=1

hi, (2.31)

where

hi = −t
∑

σ

(
c†i,σci+1,σ + c†i+1,σciσ

)
− JSi · si. (2.32)

We also break the total evolving time to smaller τ = t/N . τ is small enough that the

time evolution operator can be Trotter decomposed as

e−iHτ = e−i
∑L−1
i=1 hiτ ≈ e−ih1τe−ih2τe−ih3τ . . . e−ihL−1τ (2.33)

Higher order of the Trotter decomposition is also possible if higher precision is neces-

sary. Time evolved state |ψ(τ)〉 at time τ can be found by applying the small pieces

e−ihiτ consecutively on the MPS from one end to the other end until arriving at the

final state. |ψ(t)〉 can be obtained by repeating this process and performing singular

value decomposition to compress the states simultaneously.

2.5 The Phase Diagram of 1D Kondo Lattice Model

The phase diagram of the one-dimensional Kondo lattice with S = 1
2

localized

quantum spins has been studied in Ref. [2]. To keep the notation consistent with

that in their work, we rewrite the Hamiltonian as follows,

H = −t
∑

〈i,j〉,σ

c†iσcjσ − J
∑

i

~Si · ~σi. (2.34)
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Here we change the sign in front of J to incorporate their results. The local electron

Hilbert space is spanned by states with zero, one spin up, one spin down or two

electrons, represented as |Ø〉, |↑〉, |↓〉, and |l〉, the dimension is 4. The local spins

contribute to another dimension of 2 (|⇑〉 and |⇓〉). So the total local Hilbert space

dimension is 8. It is spanned by

|Ø ⇑〉 , |↑⇑〉 , |↓⇑〉 , |l⇑〉 , |Ø ⇓〉 , |↑⇓〉 , |↓⇓〉 , |l⇓〉 . (2.35)

Local operators are then specified in our program by defining their matrix elements

under the local basis. For example, in the case of c†i↑, we have 〈↑⇑| c†i↑ |Ø ⇑〉 = 1,

〈l⇑| c†i↑ |↓⇑〉 = 1, 〈↑⇓| c†i↑ |Ø ⇓〉 = 1, 〈l⇓| c†i↑ |↓⇓〉 = 1 and all other matrix elements

are 0.

The authors [2] applied the finite size DMRG on the 1D chain of 36 sites for

several commensurate electron filling fractions with either ferromagnetic (J > 0) or

antiferromagnetic (J < 0) couplings. The ground state phase diagram is presented in

Fig. 2.10. In the figure, n is the average number of itinerant electrons per site.

For relatively smaller Hund’s or Kondo couplings in some regions, there exists

the so-called island phase, characterized by a prominent wavevector q = 2kF = nπ.

They also found that the island phase transits to a ferromagnetic phase for stronger

couplings, through a “spiral” phase. This “spiral” phase is characterized by incom-

mensurate values of q’s and short range correlations.

Phase separation emerges on the top right corner with electron density close to

n = 1 and strong Hund’s coupling. This is consistent with our results on the square

lattice double exchange model with classical local spins in chapter 4. When the

electron density n = 1, it becomes a spin liquid.

To characterize the phases, we calculate some parameters of the obtained ground



27

Figure 2.10: The ground state phase diagram of the 1D Kondo lattice model with
36 sites and commensurate electron fillings obtained using DMRG in Ref. [2].

state obtained using DMRG. These quantities can all be implemented in the language

of MPSs and MPOs. The first quantity we want to calculate is the average spin-spin

correlation

C(d) =
1

L− d
∑

i

〈
~Si · ~Si+d

〉
, (2.36)

and the background removed correlation

C ′(d) =
1

L− d
∑

i

〈
~Si · ~Si+d

〉
−
〈
~Si

〉
·
〈
~Si+d

〉
. (2.37)
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We also calculate the spin structure factor

S(q) =
1

L

∑

i,j

eiq(Rj−Ri)
〈
~Si · ~Sj

〉
. (2.38)

As comparisons, we also show spin correlations with the spin in the middle
〈
~Si · ~SL/2

〉
,

nearest-neighbor spin correlations
〈
~Si · ~Si+d

〉
, and 〈Szi 〉 for local spins. For the elec-

trons, the expected number of up and down electrons, 〈ni,↑〉 = c†i↑ci↑, 〈ni,↓〉 = c†i↓ci↓

and 〈ni〉 = 〈ni,↑〉 + 〈ni,↓〉 on each site. We also calculate 〈Se,zi 〉 = 1
2

(〈ni,↑〉 − 〈ni,↓〉)

and
〈
Stot,zi

〉
= 〈Se,zi 〉+ 〈Szi 〉.

Figure 2.11: The ferromagnetic ground state phase of the double exchange model
with N = 36, Nf = 18, J = 20. (a) shows the correlation and the background removed
correlation of spins with distance d apart. (b) shows the expected number of up and
down electrons, 〈ni,↑〉, 〈ni,↓〉 and total number of electrons 〈ni〉 = 〈ni,↑〉 + 〈ni,↓〉 on
each site.

In the Hund’s coupling regime of the phase diagram, a large portion is ferromag-

netic ground state at large J , especially when the density of electrons is low. We

pick N = 36, n = 0.5, number of electrons Nf = 18 and J = 20, the phase is char-

acterized in Fig. 2.11. With a dominating J , the spins are aligned perfectly in the
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same direction. Each local spin align with the electron to form a triplet state S = 1.

The expected number of |↑〉 electrons is also distributed almost uniformly in the 1D

lattice.

On the other hand, when J = 2, n = 0.5, the ground state is a “island phase”,

as illustrated in Fig. 2.12. The spin order at q = π/2 in (b) becomes significant and

thus we can see a zigzag 4-site periodic pattern in the spin-spin correlation (a). The

spin correlation with central site also show this periodicity in (c); the neighboring site

spins also exhibits a strong correlation and the 4-site periodic pattern in (d). In (e),

we see the expectation of the total spin tends to be 0. Contrary to the ferromagnetic

case, the electron density plot in (f) does not show difference between |↑〉 and |↓〉

electrons. In addition, the electron density is almost uniform in the bulk.

These are the two states that we will study the dynamics on. More detailed studies

on the phase diagrams can be found in Ref. [2]. It is worth noting that the phase

diagrams of 1D Kondo lattice model have been studied using various methods, but

the phase diagram itself is not the main focus of our research.

2.6 Quench Dynamics of 1D Kondo Lattice Model

In this section, we apply the TEBD algorithm on the Kondo lattice model to

study its quench dynamics. We consider the system with a representative filling

(quarter filling) at n = 1/2. For the dynamics, we can prepare the initial state as

the ground state of the model at some coupling strength J using DMRG, and then

immediately quench it on the system with a different J . Snapshots of the evolved

states for different time steps obtained using TEBD are saved for analysis. Due to

the linearly increasing entanglement entropy, we could only simulate a system with

size L = 24.
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Figure 2.12: The Island ground state phase of the double exchange model with
N = 36, Nf = 18, J = 2. (a) shows the correlation and the background removed
correlation of spins with distance d apart. (b) is the structure factor. (c) is the
spin correlation with the central site. (d) is the correlation between neighboring
spins. (e) is the expectation of electron spin 〈Se,zi 〉, local spin 〈Szi 〉, and total spin〈
Stot,zi

〉
= 〈Se,zi 〉+ 〈Szi 〉 on each site. (e) shows the expected number of up and down

electrons, 〈ni,↑〉, 〈ni,↓〉 and total number of electrons 〈ni〉 = 〈ni,↑〉+ 〈ni,↓〉 on each site.
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We simulate the quench dynamics between the island state at J = 2 and fer-

romagnetic state at J = 20. For the quench of the ferromagnetic ground state at

J = 20 under the Hamiltonian with J = 2, we observe that the state stays exactly

the same across the quench. This indicates that the ferromagnetic ground state is an

eigenstate of the island phase Hamiltonian.

On the other hand, the quench of the island state at J = 2 under the Hamiltonian

with J = 20 yields more interesting phenomenon. To characterize some features,

we define the Loschmidt rate
〈
ψ
∣∣e−iHt

∣∣ψ
〉
. This is essentially the overlap of the

time evolved state and the initial state. It exhibits a damped oscillation pattern

and this overlap tends to stabilize at a finite constant value in Fig. 2.13 (a). This

stabilized constant can characterize how the initial state is inherently compatible

with the quench Hamiltonian. In Fig. 2.13 (b) is time dependence of the central bond

entanglement entropy. The linearly increasing entanglement entropy is consistent with

the studies on 1D quantum systems [28, 29]. A qualitative picture to understand it

involves quasiparticles. The quench in our study is global in the sense that each

onsite coupling undergoes a change or perturbation. This perturbation results in

quasiparticle excitations. These excitations travels at some speed v. Thus the distance

between entangled quasiparticle pairs increase linearly with time. This could be

signified by the correlations of the local observables. The regions covered by the

entangled pairs exhibit a light-cone pattern. If we assume the entanglement entropy

scales as the number of entangled pairs, the entanglement entropy should increase

linearly.

The linearly increasing entanglement entropy is also found in quenches for differ-

ent electron filling fractions in this system, which we don’t show here. The growing

entanglement entropy, leading to growing bond dimensions for accurate representa-

tions of the evolving states, means that simulation of long time dynamics is difficult
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in the framework of TEBD for such a system.
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Figure 2.13: Dynamics of the Kondo lattice model simulated on a chain of size
L = 20. (a) is the time dependence of the Loschmidt rate, (b) is the time dependence
of the central bond entropy, (c) is the time dependence of S(q = π

2
) and (d) shows a

few snapshots of S(q) at different time slices.

To take a closer look at how the states are evolved, we compute the time de-

pendence of the spin structure factor at the prominent peak π/2. As imagined,

S(q = π/2) decreases over time in Fig. 2.13 (c). The decrease takes a similar oscil-

lation pattern as the Loschmidt rate. In Fig. 2.13 (d), we plot S(q) for a few time
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snapshots. Although the peak is fading away, the peak at q = π/4 remains signifi-

cant with the time span of the simulations. Another interesting observation is that

S(q = 0) does not increase much, although we are using J = 20 to quench the system.
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Chapter 3

Frustrated Kondo Chains and

Glassy Magnetic Phases on the

Pyrochlore Lattice

In this chapter, we present an extensive numerical study of a model for frus-

trated itinerant magnet. This model is composed of cross-linked Kondo chains on

the pyrochlore lattice, which gives rise to a new kind of geometrical frustration. This

itinerant electron picture provides a natural explanation for several spin and orbital

superstructures observed in materials on the pyrochlore lattice. We extract the phase

diagrams for the model at two representative filling fractions 1/2 and 2/3 through

extensive Monte Carlo simulations. We find a glassy magnetic state with wave vector

q =
(

1
3
, 1

3
, 1
)

to provide a good description of the low temperature phase observed in

spinel GeFe2O4.
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3.1 Introduction to Frustration

Frustration is common in condensed matter physics. It happens with a large

ground state degeneracy. There are basically two kinds of sources of frustration.

One of them is from competing interactions. The simplest example of this kind of

frustrated system would be the one-dimensional axial next-nearest neighbor Ising

(ANNNI) model [30] as illustrated in figure.

H = −J1

(∑

i

SiSi+1 − κ
∑

i

SiSi+2

)
(3.1)

In this model, the ferromagnetic nearest neighbor interaction J1, which favors a fer-

romagnetic state with all spins pointing up or down. However, the antiferromagnetic

interaction J2 = −κJ1 between second nearest neighbors favors the up-up-down-down

pattern as in Fig. 3.1. No matter how the spins are arranged, the state cannot satisfy

Figure 3.1: A schematic diagram of the 1D ANNNI model. J1, J2 are the coupling
between nearest, second nearest neighbors.

both ground state constraints simultaneously. The competition between these two

interactions gives rise to a rich phase diagram. A comprehensive review on the 1D,

2D, 3D ANNNI models can be found in [30].

Another kind of frustration comes from the fact that the pairwise interactions

cannot be simultaneously minimized due to the lattice geometry. The interactions

may lead to one or a few well-defined stable ground state on some lattice, but result
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in frustration on other lattices (geometrical frustration). Let’s consider a simple

antiferromagnetic Ising model [3] on a square lattice Fig. 3.2 (a). Here we can find a

simple pattern for the ground state, in which each spin has antiparallel neighbors. The

ground state degeneracy is 2. However, if the lattice is triangular as in Fig. 3.2 (b),

the scenario becomes different. The first two spins could be aligned anti-parallelly,

but the third spin is frustrated because it does not know how to align itself. Either

pointing up or pointing down gives rise to the same energy.

Figure 3.2: The antiferromagnetic Ising model on a square lattice (a) without frus-
tration and triangular lattice (b) with frustration reproduced from Ref. [3].

One of the most notable features of strong frustration is the emergence of macro-

scopic degeneracy. The model usually used to illustrate this is the Heisenberg model

H = J
∑

〈i,j〉

Si · Sj, (3.2)

where 〈i, j〉 denotes the nearest neighbors and Si is a classical Heisenberg spin on site

i. Instead of considering how the individual spins should be arranged, it is usually



37

more convenient to view the model in terms of simplexes. We write the Hamiltonian

as

H =
J

2

∑

α

|Lα|2 + C. (3.3)

Here C is a constant that could be ignored, Lα =
∑

i∈α Si is the sum of mutually

interacting spins in a simplex. In a triangular lattice, the simplex is the smallest

triangle composed of 3 spins. In the pyrochlore lattice (Fig. 3.3), the simplex is the

smallest tetrahedra with 4 spins. In a ground state, all Lα = 0. There are many

possible configurations for this condition to be satisfied. To obtain the ground state

degeneracy, we apply the Maxwell counting argument. Denote F,K,D as the number

of degrees of freedom in the system, number of constraints in the ground state, number

of ground state degree of freedom, respectively. Then we have D = F −K.

The pyrochlore lattice is a face-centered cubic (FCC) lattice with a basis consisting

of a tetrahedra, as shown in Fig. 3.3. On a pyrochlore lattice with N Heisenberg spins,

F = 2N since each spin has 2 degrees of freedom as it could be parametrized by two

numbers, polar angle θ and azimuthal angle φ. Each cluster contains 4 spins and each

spin is shared by 2 clusters, thus there are N/2 clusters in total and D = 3
2
N . Finally

the ground state degree of freedom is D = F −K = 1
2
N . It is an extensive number.

The low temperature phase is confined in the region near the ground state manifold

and the system is thus sensitive to perturbation. The extensive ground state degree

of freedom also gives rise to some other features of frustrated system, such as order

by disorder.
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Figure 3.3: A unit cell of the pyrochlore lattice with spins on each site.

3.2 Motivation and Overview

Highly frustrated magnets continue to fascinate physicists with intriguing and

sometimes unexpected magnetic phases. This is particularly true for spin systems ex-

hibiting strong geometrical frustration such as pyrochlore antiferromagnets [3]. Con-

ventionally, frustrated magnets are modeled by the Heisenberg Hamiltonian H =
∑

ij JijSi · Sj within the framework of Mott insulators. For pyrochlore and kagome

lattices, the frustrated nearest-neighbor antiferromagnetic spin interactions give rise

to a macroscopic ground-state degeneracy [31, 32]. This in turn makes the mag-

nets highly susceptible to small perturbations. Removal of the extensive degeneracy
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by perturbations beyond J1 leads to unusual spin ordering and even unconventional

magnetic phases [33, 34]. For systems with degenerate orbitals, a good starting point

is the Kugel-Khomskii Hamiltonian [35], which has been successfully employed to

understand spin-orbital ordering in frustrated magnets [36, 37, 38].

Recently, complex spin and/or orbital superstructures observed in spinels such

as CuIr2S4 [39, 40], MgTi2O4 [41], and ZnV2O4 [42] have posed an intriguing the-

oretical challenge. Several models have been proposed to explain the experimental

results. However, understanding these unusual orderings within the framework of

Mott insulators often requires fine tuning or sometimes ad hoc perturbations. On

the other hand, it has been demonstrated in many cases that approaches based on

itinerant magnetism provide a very natural explanation for the observed superstruc-

tures [43, 44, 45]. For example, the octamer-order in CuIr2S4 and chiral distortion

in MgTi2O4 can be explained as resulting from an orbital driven Peierls instabil-

ity [43, 46]. Moreover, several of these compounds have been shown to be a bad

insulator, indicating that these magnets are in the vicinity of metal-insulator transi-

tion [47, 48, 49, 50]. Recent experiments further support the picture of orbital-Peierls

state [51, 52].

The itinerant approach also naturally explains the q = (0, 0, 1) magnetic structure

of ZnV2O4, which consists of ↑↑↓↓ · · · spin chains along [110] directions of the py-

rochlore lattice [44, 45]. Essentially, taking into account the reduced dimensionality

of electron hopping in such systems, this interesting commensurate one-dimensional

(1D) order can be understood as resulting from the spin-induced nesting instability of

1D Kondo chains. Another interesting example is the multiple-q magnetic ordering

recently observed in spinel GeFe2O4 [53]. At low temperatures, neutron-scattering ex-

periments found diffusive peaks centered at q = (1
3
, 1

3
, 1) and other symmetry-related

wavevectors, implying a quasi-1D ordering with a tripled unit cell. Stabilization of
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this unusual commensurate magnetic order seems rather difficult using the localized

spin models.

In this chapter, we present a detailed numerical study of a novel frustrated itin-

erant spin model for spinel compounds AB2X4. In these materials, the octahedral

crystal field splits the 3d orbitals of the B-site magnetic ion into a t2g triplet and

a higher energy eg doublet. The lattice structure (pyrochlore) is shown in Fig. 3.3.

Keeping only the dominant ddσ transfer integral between the low-energy t2g orbitals,

electron hoppings on the pyrochlore lattice can be modeled by a set of one-dimensional

(1D) tight-binding chains in this leading order approximation [44]. Inclusion of the

on-site Hubbard and Hund’s interactions within the mean-field approximation then

leads to Kondo or double-exchange type electron-spin couplings. A minimum model

is given by a collection of cross-linking Kondo chains running along the 〈110〉 direc-

tions of the pyrochlore lattice. Importantly, commensurate 1D spin order can arise

naturally as a result of Fermi point nesting instability in Kondo chains with a rational

electron filling fraction. A new type of geometrical frustration then results from the

fact that the favored 1D spin order cannot be realized on all chains simultaneously,

leading to novel 3D magnetic order and to glassy behavior in some cases.

3.3 Frustrated Kondo Chains on the Pyrochlore

Lattice Model

Our itinerant electron approach to magnetic orders in spinels is based on a mean-

field treatment of Hubbard-type Hamiltonian. First, we consider the tight-binding

model of t2g orbitals in spinels. As discussed above, the magnetic ions in spinels

form a pyrochlore lattice. Fig. 3.4 shows some representative hopping processes of t2g

electrons on the pyrochlore lattice. Here the various hopping integrals are computed
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using the Slater-Koster formula; the results can be expressed in terms of fundamental

bond integrals Vddσ, Vddπ, and Vddδ [54]. In general, the σ bond-integral is much

stronger than the π, and δ bonds. To the leading-order approximation, we thus neglect

contributions from Vddπ and Vddδ to the various bond integrals. As a result, only the

t1 hopping remains in this approximation, which means only those nearest-neighbor

hoppings between the same type of orbitals among appropriate chains dominate,

namely, dxy along 〈110〉, 〈11̄0〉, dyz along 〈011〉, 〈011̄〉 and dzx along 〈101〉, 〈1̄01〉, see

Fig. 3.4.

t1
t1

t1

t2 t3

t3

t4

dxy

dyz

dzx

t5

Figure 3.4: The inequivalent transfer integrals between the three t2g orbitals on
the pyrochlore lattice: t1 = 3

4
Vddσ + 1

4
Vddδ, t2 = 1

2
Vddπ + 1

2
Vddδ, t3 = 1

2
Vddπ − 1

2
Vddδ,

t4 = t5 = 0.

Next we consider the on-site interactions which is dictated by the multi-orbital

Hubbard-Kanamori interaction HU [55]. Since we are interested in solutions with
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non-zero local moment, we use the Hartree-Fock mean-field method to decouple the

interaction terms. The mean-field decoupling gives rise to a Kondo-like electron-spin

coupling HU = Ueff〈ŝi〉 · ŝi, where ŝi is the electron spin operator, and Ueff is an

effective Hubbard parameter. For example, for t2g orbitals, Ueff = 4(U/9 + 4JH/9),

where U and JH are the on-site Hubbard repulsion and Hund’s coupling, respectively.

In the case of GeFe2O4, the magnetic Fe2+ ions have a t42g e
2
g electron configuration.

Due to strong intra-orbital Hubbard interaction and Hund’s coupling, the two eg

electrons remain in the correlated S = 1 state. The remaining t42g electrons thus form

conduction band with a filling fraction n = 2/3.

We thus arrive at the following Hamiltonian describing cross-linking Kondo chains

on the pyrochlore lattice in Fig. 3.5:

H = −t
∑

µ,σ

∑

〈ij〉‖µ

(
ĉ†i µσ ĉjµσ + h.c.

)
− J

∑

i,µ

Si · ŝi,µ (3.4)

where ĉ†i,µσ is the creation operator for electron with spin σ =↑, ↓ and orbital flavor

µ = xy, yz, zx at site-i, 〈ij〉 ‖ µ indicates the nearest-neighbor (NN) pair along the

〈110〉 direction that corresponds to the active t2g orbital µ, the hopping constant t is

set to be 1 in all the simulations below, J ≈ Ueff〈ŝ〉 is the effective Hund’s coupling,

Si is the O(3) local magnetic moment, and ŝi,µ =
∑

α,β c
†
iµασαβciµβ is the electron

spin operator.

The 1D ferromagnetic Kondo chain, which is the backbone of Hamiltonian (4.1),

have been extensively studied over the years [8, 2, 56]. However, the fact that ev-

ery local spin Si is shared by three Kondo chains introduces competition between

different chains. In particular, the cross-linking Kondo chains exhibit a new type

of geometrical frustration since the electronic energy of neighboring chains cannot

be simultaneously minimized. For example, the shortest hexagonal loops (Fig. 3.5)
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of spins on the pyrochlore lattice contain sites which belong to six different Kondo

chains. Consequently, the nearest-neighbor spin-spin correlation favored by individ-

ual chains might not be able to extend over the hexagonal loop consistently, leading

to frustrated interactions.

dxy

dyz

dzx

Figure 3.5: Schematic diagram showing the shortest hexagonal loops in the py-
rochlore lattice. The three different colors indicate distinct Kondo chains occupied
by the three t2g orbitals.

Since our main interest is in the potential magnetic orderings of this model, we

will assume classical local spins here. However, even with classical local spins, Monte

Carlo simulations of Kondo-lattice models are a challenging task mainly due to the

non-local electron-mediated effective interactions between the local moments. Indeed,

in the weak-coupling limit J � t, integrating out the electrons gives rise to a long-

range RKKY type spin interactions. For large J , one needs to diagonalize the electron

tight-binding Hamiltonian that depends on the spin configuration for each Monte
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Carlo update. For a pyrochlore lattice of linear size L, there are N = 16L3 spins

and the dimension of a generic spinful and orbitally degenerate TB Hamiltonian is

D = 2×3×N = 96L3. This severely limits the largest accessible lattice sizes, as exact

diagonalization scales as O(D3) and is computationally very costly. However, thanks

to the 1D nature of the TB model in Eq. (4.1), each local spin update only requires

diagonalizing three chains whose dimension is D1D = 4L. Specifically, we adopt the

standard local Metropolis Monte Carlo method. For a randomly chosen spin, say at

site-i, we consider rotating the spin from Si to S′i. The energy cost associated with

this update comes from the electron energy of the three Kondo chains intersecting at

this site, i.e.

∆E =
∑

µ=xy,yz,zx




Nf∑

m=1

(
ε(µ)
m (S′i)− ε(µ)

m (Si)
)

 . (3.5)

Here ε
(µ)
m are the eigen-energies of the µ-orbital Kondo chain and Nf is the number

of occupied electrons determined by the filling fraction. Once ∆E is obtained by

exactly diagonalizing the three chains intersecting at Si, the spin-update is accepted

according to the standard Metropolis algorithm with a probability

pacc = min

[
1, exp

(
−∆E

kBT

)]
. (3.6)

The computational cost of each update thus scales as O(D3
1D) ∼ O(N). Each sweep

is completed by updating local spins sequentially. The Monte Carlo simulation for

the coupled chains is still costly with an overall scaling O(N × D3
1D) ∼ O(N2), but

the efficiency is much improved compared with the full 3D tight-binding model.
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3.4 Phase Diagrams

In this part we obtain the phase diagram of Hamiltonian Eq. (4.1) for two represen-

tative filling fractions n = 1/2 and 2/3 based on extensive Monte Carlo simulations;

the results are summarized in Fig. 3.6.

3.4.1 Half filling

J

T

Half filling

AIAO

Paramagnetic

(a)

J

T

2/3 filling

I

II

III

IV

V

(b)
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Figure 3.6: The phase diagrams for (a) half filling and (b) 2/3 filling. Solid and
dashed lines represents 1st and 2nd order phase transitions respectively in both (a)
and (b). For half filling, two phases are all-in-all-out phase (AIAO), paramagnetic
phase. For 2/3 filling, phases are (I) q =

(
1
3
, 1

3
, 1
)

order, (II)
(

1
2
, 1

2
, 1

2

)
order, (III) a

unknown magnetic phase characterized by a large spin nematic order parameter, (IV)
ferromagnetic phase and (V) paramagnetic phase.

We first discuss the simpler case of half-filling. There is only one ordered phase

characterized by the non-coplanar all-in-all-out (AIAO) spin order at low tempera-

tures; see Fig. 3.6(a). For a half-filled Kondo chain, the nesting of the Fermi points

favors a collinear Néel order with doubled unit cell, i.e ↑↓↑↓ · · · . However, it is easy
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to convince oneself that such collinear ordering cannot be simultaneously realized in

the three different chains on the pyrochlore lattice; a manifestation of the geometrical

frustration is discussed above. The solution to this conflicted situation is the AIAO

order in which an 1D spin-order with a doubled unit cell, albeit with non-collinear

spins, still gaps out the Fermi points and lowers the overall energy. The AIAO order

is characterized by three non-zero staggered magnetization:

L1 = S0 + S1 − S2 − S3, (3.7)

and the symmetry-related L2 and L3. Here Sm denotes the spin of the m-th sublattice

(there are four sublattices) of the pyrochlore lattice. A perfect AIAO has |L1| = |L2| =

|L3| while their orientations satisfy L1 ⊥ L2 ⊥ L3. Due to the non-coplanar nature

of this magnetic order, the AIAO phase further breaks a Z2 chiral symmetry which

is measured by the discrete scalar spin chirality

χ = L1 · (L2 × L3) (3.8)

The phase boundary of the AIAO order, shown in Fig. 3.6(a), is determined from the

Binder crossing of corresponding staggered order parameters for continuous phase

transition at small J .

Interestingly, the transition becomes first-order at large J . As in general Kondo-

lattice or double-exchange models, the effective Hamiltonian in the large-J limit is

given by a Heisenberg model with a dominant NN exchange JAF ∼ t2/J . This can be

understood as follows. In the J → ∞ limit at half-filling, electrons are localized in

individual orbitals of each site with their spins aligned with the local moments. This

gives rise to a huge degeneracy which is lifted by the electron hopping. Due to Pauli

exclusion principle, electrons can hop to neighboring sites only when their spins are
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not aligned, thus favoring an antiferromagnetic interaction. Specifically, the effective

Hamiltonian corresponds to the energy gain through the second-order process, which

is

E
(2)
ij ≈ −

[
t 〈χi|χj〉

]2

J
, (3.9)

where |χi〉 is the local electron spinor wavefunction. Since Pauli exclusion requires

that the spins at i and j must be anti-aligned in order to allow the electrons hop to

the NN sites, the inner product of the spinor eigenstates 〈χi|χj〉 = sin(θij/2), where

θij is the angle between the two local spins. Consequently, we obtain an effective spin

interaction:

E
(2)
ij = JAF Si · Sj (3.10)

up to a constant, with JAF ∼ t2/J .

It is interesting to note that the frustrated nature of the coupled Kondo chains

in the large-J limit corresponds to the well known geometrical frustration of AF

Heisenberg model on the pyrochlore lattice. The huge ground-state degeneracy of

this model leads to a low temperature spin liquid phase. Contrary to the high-

temperature paramagnetic phase, disordered spins in this classical spin liquid exhibit

strong short-range correlation [32]. A possible scenario is that the system first enters

a correlated classical spin liquid regime at T ∼ JAF, then undergoes a phase transition

at a lower Tc into the AIAO phase. Our detailed analysis shows that the classical spin

liquid phase is preempted by the first-order transition, and the system immediately

goes to the AIAO phase at a critical Tc ∼ JAF.
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3.4.2 2/3 filling

We now turn to the case of 2/3-filling. Before discussing the phase diagram of

coupled Kondo chains on the pyrochlore lattice, we first consider the ground states of

a single Kondo chain. The Fermi wavevector of a 2/3-filled 1D band is kF = 2π/3`,

where ` =
√

2a/4 is the 1D lattice constant and a is the size of the cubic unit cell.

The system is thus susceptible to perturbations with a wavevector q = 2kF = 4π/3`

that gaps out the two Fermi points; see Fig. 3.7. Indeed, our Monte Carlo simulations

on a single Kondo chain find a magnetic order with a tripled unit cell at T → 0 and

small J . The three spins within the extended unit cell are coplanar, with a relative

angle very close to 120◦; more details can be found in Appendix A.

2kF 2kF

gap

(b)

(a)

Figure 3.7: (a) The T → 0 ground state of a single Kondo chain. The long-range
spin order is characterized by a tripled unit cell with a coplanar almost 120◦ structure
within a unit cell. (b) shows the gap-opening of a n = 2/3-filled Kondo chain due to
Fermi point nesting.

Next we apply the above 1D results to understand the ground-states of coupled
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(a) (b)

Figure 3.8: Snapshots of the local spin configurations for (a) the q = (1
3
, 1

3
, 1) order

and (b) q = (1
2
, 1

2
, 1

2
) order.
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Kondo chains in 3D, which is particularly important in explaining the magnetic order

of spinel GeFe2O4 where the t2g orbitals are 2/3-filled. From direct inspection of the

geometry, one immediately realizes that the above coplanar 1D ground-state cannot

be consistently combined in the 3D pyrochlore lattice. This is another manifestation

of the geometrical frustration discussed in Fig. 3.5. Contrary to the half-filling case,

where the frustrated coupling leads to the AIAO long-range order, there is no simple

magnetic structure selected in the 2/3-filling case. A snapshot of spin configuration

from our Monte Carlo simulations is shown in Fig. 3.8(a). Individual Kondo chains

are clearly not in their 1D ground state discussed above. In fact, spins on a given chain

are not even coplanar. Although no clear pattern can be seen from this snapshot,

detailed characterization shows that a long-range spin-spin correlation with a tripled

unit cell nonetheless is developed along each individual chain of the 3D lattice; see

Fig. 3.9(a). Moreover, the 3D non-coplanar spin order is characterized by multiple

wavevectors that are related to q = (1
3
, 1

3
, 1) by symmetry, as shown in the inset of

Fig. 3.9(a).

From the phase diagram of single Kondo chain discussed in Appendix A, the

magnetic order at large J cannot be understood from the Fermi-point nesting picture.

Here we performed extensive Monte Carlo simulations to obtain the n = 2/3-filling

phase diagram, shown in Fig. 3.6(b). At small Hund’s coupling, the low-T phase is

a magnetic order characterized by multiple ordering wavevectors that are related to

q = (1
3
, 1

3
, 1), as discussed above. Several unusual magnetic structures are obtained at

larger J . The phase boundaries are mostly first order, except for the small J regime

(purple dots) where the phase transition between paramagnetic and (1
3
, 1

3
, 1)-ordered

phases might be continuous.

The various 3D phases are loosely related to their 1D counterpart. Upon increasing

J , the ordering wavevectors first change from q = (1
3
, 1

3
, 1) to (1

2
, 1

2
, 1

2
) at J ≈ t. The
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Figure 3.9: The spin-spin correlation function 〈S(r) · S(r + n)〉 averaged over all
Kondo chains of the pyrochlore lattice for (a) the q = (1

3
, 1

3
, 1) and (b) the q = (1

2
, 1

2
, 1

2
)

order at n = 2/3 filling with (a) J = 1 for and (b) J = 1.5. The insets show the
corresponding structure factor on the (a) q = (h, k, 1) and (b) q = (h, h, l) plane.
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system undergoes another 1st-order transition at J ≈ 1.6t into an unknown magnetic

order (phase III) that is characterized by rather large nematic order parameter. We

have checked that spins are pretty much frozen in this phase, yet no clear long-range

order can be seen from the static structure factor. And finally, the ferromagnetic

order takes over as the ground state when J & 2.5t.

An interesting case is the q = (1
2
, 1

2
, 1

2
) phase at intermediate Hund’s coupling 1 .

J . 1.6 (phase-II in the phase diagram). A snapshot of local spin configurations on

three different chains intersecting at one spin is shown in Fig. 3.8(b). Again, although

no clear ordering pattern can be found in the snapshot, detailed analysis showed that

individual Kondo chains exhibit a clear 1D spin correlation with a quadrupled unit

cell, as shown in Fig. 3.9(b). This is in stark contrast to the ground state of a single

Kondo chain in the same J regime, where the T → 0 ground state is a multiple-q non-

coplanar order. In this case, the “frustrated” inter-chain coupling actually stabilizes

the quadrupled chains and the q = (1
2
, 1

2
, 1

2
) order on the pyrochlore lattice.

3.5 Quasi-degeneracy and Glassy Behaviors of the

q = (1
3,

1
3, 1) Phase

To characterize the complex multiple-q magnetic order in the q = (1
3
, 1

3
, 1) phase,

we introduce vector order parameters

Φm ≡
1

N

∑

j

Sj exp(iqm · rj), (3.11)

which are the Fourier modes of spins at the 12 symmetry-related wavevectors qm =
(
±1

3
,±1

3
, 1
)
,
(
±1

3
, 1,±1

3

)
, and

(
1,±1

3
,±1

3

)
. Phenomenologically, the phase transition
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is described by a Landau free energy expansion [57]

F = α(T − Tc)
∑

m

|Φm|2 + β
∑

m

|Φm|4 (3.12)

+
∑

m,n,k,l

′ λmnkl(Φm ·Φn)(Φk ·Φl) + · · · ,

where α, β > 0, and the prime in the summation indicates the condition of momentum

conservation, i.e. qm+qn+qk+ql = 0 module a reciprocal lattice vector. The overall

q = (1
3
, 1

3
, 1) magnetic ordering is measured by the order parameter

M =

(
12∑

m=1

|Φm|2
)1/2

. (3.13)

The temperature dependence of the M, shown in Fig. 3.10(b), clearly indicates

that these vector order parameters develop a nonzero expectation value at T < Tc,

where Tc is estimated to be 0.045t for J = t. Detailed structure of this q = (1
3
, 1

3
, 1)

magnetic order is determined by the interaction terms λmnkl, which are very difficult

to compute analytically. Our extensive Monte Carlo simulations, on the other hand,

seem to observe a multitude of different magnetic structures and a possible glassy

regime below Tc.

To explore this intriguing glassy phase, we compute the so-called nematic order-

parameter Q for spin structures obtained from our simulations. Essentially, this order

parameter provides a measure of the collinearity of spins. It is given by the largest

eigenvalue of the traceless matrix [58]

Qµν ≡ 〈Sµ Sν −
δµν
3
〉 (µ, ν = x, y, z). (3.14)

This matrix is averaged over all spins in the lattice.
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Figure 3.10: The temperature dependence of some quantities for the 2/3-filled cou-
pled Kondo chains with J = 1. (a) the energy density and (b) the magnetic order
parameterM shows the first order phase transition. (c) the nematic order parameter
Q bifurcates into multiple branches below the phase transition point. (d) the partial
magnetic order parameter, Mx,My,Mz, which are summation of Φm at wavevec-
tors qm =

(
1,±1

3
,±1

3

)
,
(
±1

3
, 1,±1

3

)
,
(
±1

3
,±1

3
, 1
)
, respectively, with L = 6 show no

significant difference at low temperatures.
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Figure 3.11: Probability distribution function for the magnetic order parameterM,
the nematic order parameter Q and the energy density E (insets) at three differ-
ent temperatures below Tc. These curves are obtained from extensive Monte Carlo
simulations on lattices of J = 1, L = 9.
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Interestingly, the temperature dependence of the nematic order, shown in Fig. 3.10

(c), exhibits three branches below the critical temperature Tc, implying distinct con-

figurations of the q = (1
3
, 1

3
, 1) magnetic order. To demonstrate this quasi-degeneracy

directly, Fig. 3.11 shows the probability distribution of energy density E, magnetic

order parameter M, and spin nematic order parameter Q at three different tem-

peratures below Tc. Interestingly, while a single prominent peak is observed in the

distribution of energy and magnetic order, the histogram of the nematic order param-

eter Q exhibits several peaks, consistent with the multiple branches in Fig. 3.10 (c).

This finding clearly indicates a quasi degeneracy of the multiple-q magnetic orders,

and the various quasi-degenerate q = (1
3
, 1

3
, 1) structures can be divided into three

different groups according to their collinearity. We note that a systematic finite-size

study is required in order to see whether this quasi-degeneracy structure persists

in the thermodynamic limit. However, due to the limitation of our current Monte

Carlo simulations that is based on the exact diagonalization method, it is already too

costly to compute the histogram for L = 12 lattices. Nonetheless, we have compared

the histograms of L = 6 and L = 9 systems and found similar results. In fact, the

multiple-peak feature is even more pronounced in the L = 9 histogram than the L = 6

one.

Another important question is whether the cubic symmetry remains in the q =

(1
3
, 1

3
, 1) magnetically ordered phase. To answer this question, we first define the

partial magnetic order parameters Mx, My, and Mz, which are sum of |Φm|2 at

wavevectors qm =
(
1,±1

3
,±1

3

)
,
(
±1

3
, 1,±1

3

)
,
(
±1

3
,±1

3
, 1
)
, respectively. The depen-

dence of these partial magnetic orders are plotted in Fig. 3.10(d) as functions of

temperature. It is apparent that the cubic symmetry in the low-T phase is conserved

in average. However, the issue remains whether individual multi-q configuration pre-
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Figure 3.12: Distribution for X in the complex plane. Red, green, blue points
represent independent samples whose nematic order parameter Q is in the left, middle
and right peaks, respectively, of the histogram h(Q) in Fig. 3.11(b). Namely, Q1 ∈
[0, 0.17), Q2 ∈ [0.17, 0.23), Q3 ∈ [0.23, 0.3]. The figure is obtained with 1000 samples
of the system at T = 0.03, J = 1, L = 6.

serves the cubic symmetry. To this end, we define a complex order parameter

X =Mx + ωMy + ω2Mz (3.15)

which measures the disparity between the three partial magnetic orders; here ω = ei
2π
3 .

A symmetric phase with Mx ≈ My ≈ Mz, thus gives rise to a vanishing complex

order parameter X ≈ 0.

Fig. 3.12 shows the distribution of X obtained from 1000 independent Monte
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Carlo runs. Interestingly, we find strong correlation between the nematic order Q

and the cubic-symmetry parameter X . Here magnetic orders belonging to distinct

groups in the histogram (Fig. 3.11) are labeled by three different colors. For example,

the X parameters corresponding to the middle peak of h(Q) in Fig. 3.11(b) cluster

around the origin, indicating that these q = (1
3
, 1

3
, 1) magnetic orders approximately

preserves the cubic symmetry. The two distinct parts with smaller Q illustrate the

possible existence of two phases corresponding to this peak. On the other hand,

magnetic orders with large Q tends to break the cubic symmetry. However, it is

worth noting that the cubic symmetry is recovered when averaging over multiple

domains each characterized by a different X in the system. This picture of quasi-

degenerate multi-q manifold is thus consistent with the experimental observation that

GeFe2O4 retains cubic symmetry in the low-T magnetic glassy phase.

We also compute the spin freezing parameter defined as

q
(2)
SG =

∑

µν

〈
q2
µν

〉
, (3.16)

where

qµν =
1

N

∑

i

S
(a)
i,µS

(b)
i,ν (3.17)

denotes the overlap of spins obtained from two replicas a and b [59]. These two

replicas of the same size are simulated independently from different random initial

spin configurations. This parameter is nonzero when spins are frozen either in an

ordered or a random configuration.

Fig. 3.13 shows the temperature dependence of the q
(2)
SG parameter computed from

our Monte Carlo simulations for J = 1. The freezing parameter starts to grow at the
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Figure 3.13: The spin freezing parameter q
(2)
s as a function of temperature with

the electron-spin coupling J = 1. The green dashed line is a guide to the eye. The
distribution of q

(2)
s is rather asymmetric and non-Gaussian.

magnetic transition point. Moreover, the curves for different lattice sizes show rather

weak finite size dependence, consistent with a first-order phase transition scenario.

Extrapolating to zero temperature, we obtain a nonzero, yet rather small q
(2)
SG ≈

0.05. This near vanishing of the freezing parameter can be attributed to the quasi-

degeneracy of the multiple-q manifold of the (1
3
, 1

3
, 1) phase. Similar multiple-q glassy

states have also been observed in J1-J2 Heisenberg pyrochlore antiferromagnets [60,

61].

3.6 Conclusion and Outlook

To summarize, we have presented a thorough numerical study of a new type of

itinerant frustrated magnetism on the pyrochlore lattice. In this model, the pyrochlore
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magnet can be viewed as a cross-linking network of Kondo chains. We have obtained

the phase diagrams at two representative filling fractions n = 1/2 and 2/3. This

model provides a natural explanation to complex spin and orbital structures observed

in several spinels compound, which are very difficult to understand within localized

spin models.

Importantly, this magnetic phase provides a rather consistent explanation for the

recently observed magnetic order in spinel GeFe2O4 [53]. In this compound, two of

the 6 d-electrons of the magnetic Fe2+ ion occupy the eg level, forming the local

spins {Si} with length S = 1. The other 4 d-electrons partially fill the t2g orbitals,

forming quasi-1D tight-binding chains with a filling fraction n = 2/3. Instead of a

sharp Bragg peak, neutron scattering experiments show diffusive peaks centered at

q = (1
3
, 1

3
, 1) wavevectors, indicating a short-range spin ordering in this material. This

observation is also consistent with the glassy (1
3
, 1

3
, 1) phase of our model. Since the

magnetic transition is first order, the correlation length remains finite throughout the

phase transition. The large quasi-degeneracy of spin orders in this phase also means

that most likely the low temperature phase of GeFe2O4 consists of finite domains of

different magnetic structures.

The q = (1
3
, 1

3
, 1) glassy phase is reminiscent to other magnetic glassy states re-

ported in strongly correlated systems, including frustrated magnets [62, 63], high-Tc

superconducting materials [64, 65], and spin-orbital Mott insulator [66]. All these

states are characterized by diffuse scattering at well defined wavevectors, indicat-

ing the short-range nature of magnetic orders. A plausible picture for these glassy

magnets is the coexistence of domains with different spin structures separated by

domain-walls. Moreover, they also exhibit dynamical behaviors [67, 68, 69] that are

different from conventional spin glass. Our work along with previous studies [60, 61]

suggest that multiple-q magnetic ordering in frustrated magnets provides a new route
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to realize such unconventional glassy magnets and GeFe2O4 is a potential candidate.
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Chapter 4

Dynamics of Phase Separated

States in the Double Exchange

Model

In this chapter, we study the dynamics of the phase separated states in the square

lattice double exchange model. We start by an introduction to the double exchange

model, phase separated states and the relevant background. Then we introduce the

method we developed to study its dynamics. Finally we present our simulation results

and give a detailed discussion.

4.1 Introduction

4.1.1 Manganites

Manganites are a class of mineral with chemical formula T1−xDxMnO3, where

T is a trivalent rare earth element or Bi3+ cation , D is a divalent alkaline or Pb2+

cation [10]. It can be viewed a mixture of TMnO3 and DMnO3. The Oxygen occupies
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two more electrons to constitute O2− and the Mn is in either Mn4+ or Mn3+ with

the proportion determined by x. In 1950, Jonker and Van Santen reported their

studies on manganites La1−xCaxMnO3, La1−xSrxMnO3 and La1−xBaxMnO3 for the

first time [70]. Manganites have the same crystal structure as perovskite as shown

in Fig. 4.1, where the large ions (La3+, Sr2+, Ca2+) reside on the A sites, small ions

(Mn3+, Mn4+) occupy the B sites, and the oxygens surrounding the B sites stays at

the face centers [4]. It is worth noting that in some manganites, the Mn-O-Mn is

always distorted and deviates from 180◦.

Figure 4.1: Crystal Structure of Manganites from Ref. [4].

By the middle of 1960s, physicists had understood the basic physics of manganites

and the research interest faded away [71], until it was brought into attention about 20

years ago. As summarized in [4], the growing interest comes from at least 3 reasons,

(1) the colossal magnetoresistance effect, (2) the rich phase diagrams, and (3) the

intrinsic inhomogeneity of manganites.

4.1.2 Colossal magnetoresistance

Colossal magnetoresistance (CMR) is the effect of dramatical change in the elec-



64

trical resistance when a magnetic field is applied. In 1994, a group of researchers pre-

pared thin film of perovskite La0.67Ca0.33MnO3 and measured the magnetoresistance

to be more than 3 orders of magnitude higher than the ordinary giant magnetore-

sistance materials [5]. They defined the MR ratio to be ∆R/RH = (RH − R0)/RH ,

where RH is the resistance R at the magnetic field H = 6T and R0 is R at H = 0.

The temperature dependence of the MR ratio was presented in Fig. 4.2. The MR

ratio was found to be around 1300% near room temperature and 127,000% near 77K

(not shown in the figure) after processing optimizations.

Figure 4.2: Colossal magnetoresistance: the temperature dependence of MR ratio
for La0.67Ca0.33MnO3 (La-Ca-Mn-O films) from Ref. [5].
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4.1.3 The Double-exchange mechanism and double-exchange

model

In 1951, Zener explained the origin of the ferromagnetic phase in manganites using

a mechanism later known as double exchange mechanism [72]. The 3d orbitals are

Figure 4.3: The double exchange mechanism from Ref. [4]. JH is the Hubd’s cou-
pling between t2g and eg orbitals on the same site. JH is a direct exchange between
neighboring sites.

split into a t2g triplet and a eg doublet with a higher energy. The e2g electrons are

localized to be the local magnetic moment while the eg electrons hopes between sites.

Due the ferromagnetic Hund’s coupling JH , the electrons favors a configuration which

maximize the total spins. The itinerant eg electrons do not change the spins while

hoping, so the energy will be lowered if the local magnetic moments are aligned with

the eg electrons. This finally induce an indirect ferromagnetic coupling between the

local spins. It is worth noting that besides the indirect ferromagnetic interaction

mediated by the itinerant electrons, a direct antiferromagnetic coupling JAF also

exists in the material.

The Hamiltonian for the double-exchange model resembles that of the Kondo lat-
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tice model, with the difference in the sign of the coupling between the local magnetic

moments and the conducting electrons. We will discuss the details in the section

below.

4.1.4 Phase separation and the dynamics

Phase separation is ubiquitous in systems dominated by nonlinear and non-equilibrium

processes [73, 74]. In particular, it has been observed in the intermediate state of

numerous first-order phase transitions [75]. Nanoscale phase separation also under-

pins many of the intriguing functionalities of strongly correlated electron materi-

als [10, 76, 77, 78, 79, 80]. A prominent example is the colossal magnetoresistance

(CMR) observed in several manganese oxides [4, 10, 78, 76, 81], in which a small

change in magnetic field induces an enormous variation of resistance, as mentioned

above. Detailed microscopic studies have revealed complex nano-scale textures con-

sisting of metallic ferromagnetic clusters embedded in an insulating matrix [82, 83, 84].

It is believed that CMR arises from a field-induced percolating transition of the metal-

lic nano-clusters in such mixed-phase states [85, 86, 87].

In a network of nodes and links, percolation theory describes the behavior when

a proportion of these nodes or links are removed randomly, and result in fragmented

disconnected clusters. For example, in a network, a bond could be either open and

allows liquids to flow with probability p, or closed with probability 1 − p. In a

finite lattice (network), the bond percolation problem is calculating the probability

of existence of a connected cluster, or equivalently an open path, that connects two

ends of the lattice. In an infinite lattice, the question is if there exists a cluster of

infinite size in the network. The probability of existence is either 0 below a critical

p = pc or 1 above the critical pc. In an infinite square lattice, pc was found to be 1
2
.

In our particular system, although the mechanism of CMR is still under debate,
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one possible picture involves percolating transition suggested in Ref. [87]. As illus-

trated in Fig. 4.4, the phase is separated by antiferromagnetic insulating clusters (red)

and ferromagnetic metallic clusters (blue). These metallic clusters are disconnected

and spins in different clusters point to different directions. Driven by an external

magnetic field, these spins tend to align in the same direction along the magnetic

field, and the sizes of insulating clusters are also reduced, resulting in an increased

probability p of “open bonds”. Consequently, electrons have higher probability to

percolate or transit through the system, and the resistivity is reduced.

insulating

<latexit sha1_base64="emtkQuv7bFOZ5oLC/UBQI/aGZ2o="></latexit>

FM
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Figure 4.4: Schematic diagram of the phase separation. The red domain is an an-
tiferromagnetic insulating cluster, while the blue domains are ferromagnetic metallic
clusters with different directions for spins represented by the arrows.

Considerable experimental and theoretical effort has been devoted to understand-

ing the origin of these complex nano textures in manganites and other correlated

systems. An emerging picture is that such inhomogeneous states result from the

competition between two distinct electronic phases with nearly degenerate energies.
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Microscopically, the double-exchange model [72, 88] is considered a major mechanism

for the electronic phase separation. It describes itinerant electrons interacting with

local magnetic moments through the Hund’s coupling. Since electrons can gain ki-

netic energy when propagating in a sea of parallel spins, an instability occurs when

ferromagnetic domains favored by doped carriers compete with the background anti-

ferromagnetic order. The tendency toward phase separation is further enhanced by

factors such as long-range Coulomb interaction, quenched disorder, and coupling to

spin, orbital, and lattice degrees of freedom [4].

The magnetization dynamics of the hole-doped manganites L1−xAxMnO3, where

L is a trivalent lanthanide ion and A is a divalent alkaline earth ion, has also been

extensively studied experimentally [89, 90, 91, 92, 93, 94]. The majority of the investi-

gations focused on the ferromagnetic phase with optimal hole doping, which is also the

regime exhibiting pronounced CMR effect. While the spin-wave spectrum of some

ferromagnetic manganites such as La1−xSrxMnO3 is well described by the double-

exchange model [95, 96], intriguing unconventional magnetic behaviors have also been

reported. For example, the spin wave dispersion of manganites with a lower critical

Tc is significantly softened near the Brillouin zone boundary. Moreover, enhanced

broadening of magnon excitations has also been observed in several compounds, par-

ticularly for large-q excitations approaching the zone boundary. Theoretically, the

anomalous spin-wave excitations have been attributed to a host of diverse mechanisms

including higher-order effects of spin-charge coupling [97, 98, 99], magnon-phonon

coupling [100, 101], orbital fluctuations [102], and disorder effect [103].

4.1.5 Overview

Despite extensive studies on the spin-wave excitations of the ferromagnetic regime,

the spin dynamics of the phase-separated states has received much less attention.
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From the theoretical viewpoint, the lack of translation invariance in a mixed-phase

state renders most momentum-based diagrammatic techniques inapplicable.

In this chapter, we present the first large-scale dynamical simulations of the phase-

separated states in the single-band double exchange model based on an efficient real-

space formulation of the electron and spin equations of motion. The dynamical struc-

ture factor of these highly inhomogeneous states are computed via the space-time

Fourier transform of the spin trajectories. We find intriguing coexistence of ferro-

magnetic and antiferromagnetic magnons at large hole doping. Dynamical signatures

of the magnetic polarons and ferromagnetic metallic clusters are also identified. In

particular, an abundance of low-energy magnons is found to arise from the larger size

metallic clusters.

4.2 The Double-Exchange Model on a Square Lat-

tice

We start with the single-band double-exchange (DE) model on a square lattice,

H = −t
∑

〈ij〉

(
c†iαcjα + h.c.

)
− J

∑

i

Si · c†iασαβciβ, (4.1)

where repeated indices α, β imply summation. The first term describes the electron

hopping: c†iα creates an electron with spin α =↑, ↓ at site i, 〈ij〉 indicates the nearest

neighbors, t is the electron hopping constant. The second term represents the Hund’s

rule coupling J between electron spin and the local magnetic moment Si, which are

assumed to be classical spins with length S = 1. These interactions are illustrated

in Fig. 4.5 (left). The square-lattice DE model has been extensively studied theo-

retically [6, 104, 105]. We show the results from [6] in Fig. 4.5 (right). Exactly at
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half-filling, there is one electron per site on average. Due to Pauli exclusion principle,

electrons tend not to hop between sites if they are aligned in the same/close direction.

Thus, electrons are antiparallel and are able to hop between nearest sites to lower

the energy. The local spins accordingly develop a long-range Néel order in the T = 0

insulating ground state. When the electron density 〈n〉 is small, on the other hand, a

metallic state with predominantly ferromagnetic (FM) spin correlation emerges as the

ground state. Near half-filling with a small hole doping, the FM metal becomes unsta-

ble against either a noncollinear magnetic spiral or phase separation [6, 104, 105, 106]

depending on the strength of the Hund’s coupling J .

Figure 4.5: Left: interactions in the double-exchange model. Right: phase diagram of
the double-exchange model on a square lattice [6], 〈n〉 is the electron density (number
of electrons per site).

In the large-J regime, the instability of the FM phase leads to phase separation

with FM domains coexisting with a Néel background. Such mixed-phase state has

been observed in Monte Carlo simulations [6]. Because of the nonlocal electronic
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degrees of freedom, large-scale equilibrium simulation of the DE model requires effi-

cient algorithms for solving the tight-binding Hamiltonian. The linear-scaling kernel

polynomial method (KPM) is usually used to solve the electronic structure problem

in simulations of DE model [107, 108, 109]. Here we adopt an efficient Langevin

dynamics method combined with a gradient extension of the KPM [110, 111, 112]

to obtain equilibrium phase-separated states. A few examples of such mixed-phase

states on a 60× 60 square lattice are shown in Fig. 4.6. The red region corresponds

(a)
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Figure 4.6: The local electron density plots of the phase-separated states with filling
fractions (a) f = 0.43 and (b) f = 0.498 on a 60× 60 square lattice. The red region
is the half-filled antiferromagnetic insulating background, where the green and blue
regions indicate ferromagnetic metallic domains with low electron density.

to the half-filled insulating background with the antiferromagnetic order, while the

green and blue regions indicate metallic FM domains with low electron density. In-

terestingly, in addition to forming puddles of FM state, a fraction of the doped holes

are self-trapped in a composite object which can be viewed as the magnetic analog

of the polaron [113, 114, 115, 116]. Especially in Ref. [116], the polarons with short

range ferromagnetic correlation were found numerically on a three-dimensional lattice



72

using Monte Carlo. The size of the polarons is 3-4 lattice spacing, consistent with

neural scattering experiments.

4.3 Laudau-Lifshitz-von Neumann (LLvN) Dynam-

ics

To describe the dynamics of the DE system, one needs to account for the time

evolution of both the local spins and the electrons. Here we assume the dynamics of

local moments is governed by the Landau-Lifshitz equation

dSi
dt

= −Si ×
∂〈H〉
∂Si

= JSi × σαβ ρiβ,iα, (4.2)

where

ρiα,jβ ≡ 〈c†jβ ciα〉 (4.3)

is the reduced single-particle electron density matrix. Importantly, the effective local

field

hi(t) = −∂〈H〉
∂Si

(4.4)

depends on the electron degrees of freedom which have to be propagated simulta-

neously. The evolution of the electronic state is given by a time-dependent Slater

determinant |Ψ(t)〉 =
∏Ne

m=1 ψ
†
m(t)|0〉, where the quasi-particle field operator satisfies

the Heisenberg equation

∂ψm
∂t

= i[H(t), ψm(t)]. (4.5)
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This approach has been employed to study the photo-induced dynamics of DE system

in recent works [117, 118]. However, since the Hamiltonian H is time-varying through

its dependence on Si, propagation of the Slater determinant is rather cumbersome

numerically.

Instead of evolving the many-body wavefunction, one could equally describe the

electron dynamics in terms of the reduced density matrix. An additional advan-

tage with this formulation is that it can be straightforwardly generalized to finite-

temperature simulations, which are beyond the description of a single Slater deter-

minant. To this end, we define a time-dependent “first-quantization” Hamiltonian

Hiα,jβ(t) = −tijδαβ − J δij Si(t) · σαβ. (4.6)

The DE model in Eq. (4.1) can then be expressed as Ĥ =
∑

i,j

∑
α,βHiα,jβ ĉ

†
iαĉjβ. In

terms of H, the reduced density matrix satisfies the von Neumann equation dρ/dt =

i[ρ,H], or explicitly:

dρiα,jβ
dt

= i(tik ρkα,jβ − ρiα,kβ tkj) (4.7)

+ iJ(Si · σαγ ρiγ,jβ − ρiα,jγ σγβ · Sj).

It can be readily verified that the total energy of the system E = 〈H〉 = Tr(ρH)

is a constant of motion. The numerical efficiency of integrating the von Neumann

equation can be improved with optimized sparse-matrix multiplication algorithms. A

similar formulation has been developed for the semiclassical dynamics of spin density

waves in the Hubbard model [119].

We name the method above Laudau-Lifshitz-von Neumann (LLvN) dynamics.

Let’s summarize it here. (1) Start with an initial state, build the density matrix.
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The initial state can be obtained from other methods. (2) For each time step, apply

Runge-Kutta method to propagate the density matrix using Eq. 4.7, and then update

the local spins using Eq. 4.2. To be more specific, we propagate the density matrix

at time step tn as

ρiα,jβ (tn+1) = ρiα,jβ (tn) +
1

6
(k1 + 2k2 + 2k3 + k4) ∆t (4.8)

with ∆t the step size and





k1 =
dρiα,jβ
dt

(S (tn) , tn)

k2 =
dρiα,jβ
dt

(
S (tn) + k1

2
∆t, tn + ∆t/2

)

k3 =
dρiα,jβ
dt

(
S (tn) + k2

2
∆t, tn + ∆t/2

)

k4 =
dρiα,jβ
dt

(S (tn) + k3∆t, tn + ∆t)

(4.9)

For a system with N sites, building the density matrix generally take O(N3) time

using exact diagonalization. But the exact diagonalization only need to be performed

once at the beginning. In addition, other more efficient methods could be used in this

step to reduce running time. Compared to the whole dynamical simulation, the time

for this step can be ignored. In step (2), the propagation of density matrix involves

matrix multiplication, but the H matrix is a sparse matrix, so the time scales as

O(N2). Updating local spins only takes O(N) time. We perform rank-4 Runge-

Kuta, the error per time step dt is as small as (dt)5. This method is surprisingly and

reasonably efficient. Compared to a 8× 8 lattice in [117] or a 16× 16 lattice in [118],

this method can elegantly simulate a lattice of size 60× 60, which contains one order

of magnitude more number of sites.
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4.4 Simulation Results

Next we apply the above Laudau-Lifshitz-von Neumann (LLvN) dynamics to com-

pute the dynamical structure factor S(q, ω) of the phase-separated states. The initial

state is prepared using the Langevin simulations at a temperature of T = 5× 10−4 t.

A fourth-order Runge-Kutta method is used to integrate the coupled equations of

motions. Given the numerical spin trajectories Si(t), the dynamical structure fac-

tor is computed from the space-time Fourier transform of the correlation function

C(rij, t) = 〈Si(t) · Sj(0)〉. Importantly, the dynamical simulations here is completely

deterministic and energy-conserving. The symbol 〈· · · 〉 here denotes ensemble av-

erage over independent initial states at the same temperature. The lower panels of

Fig. 4.7 show the S(q, ω) of phase-separated states with five different electron filling

fractions; each is averaged over 50 distinct initial states.

Since the Néel order parameter, characterized by the wavevector Q = (π, π) at

the M -point, is not a conserved quantity, the fluctuations of the associated Fourier

component

S̃(Q, t) ≡
∑

i

Si(t) e
iQ·ri (4.10)

produce a huge artifact in the raw data of the dynamical structure factor. Interest-

ingly, we found that the drifting of this Goldstone mode of finite lattices exhibits

a 1/ω power-law behavior, extending to very high energies. This observation thus

allows us to systematically remove the large artificial signal in the vicinity of the

M -point. The S(q, ω) shown in Fig. 4.7 were obtained after this subtraction.

The dynamical structure factor in the vicinity of half-filling is dominated by the

background antiferromagentic spin-wave excitations, as shown in Fig. 4.7(e). The

pronounced signals around the M -point correspond to the Goldstone modes of the
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Figure 4.7: Upper panels: density plots of the on-site electron number n(ri) =
〈c†i,αci,α〉 in sample phase-separated states for filling fractions (a) f = 0.43, (b) f =
0.45, (c) f = 0.465, (d) f = 0.48, (e) f = 0.498, obtained from Langevin dynamics
simulations on a 60 × 60 lattice with Hund’s coupling J = 6t and temperature T =
5× 10−4t. The corresponding dynamical structure factors S(q, ω) averaged over tens
of independent initial states are shown in the lower panels. The high-symmetry points
of the Brillouin zone are Γ = (0, 0), X = (π, 0),M = (π, π).
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underlying Néel order. As mentioned above, the doped holes in this regime are

localized by the self-induced potential in a magnetic polaron. Numerically, each

polaron is found to accommodate nearly exactly one hole. To understand the nature

of the associated spin excitations, we focus on the dynamics of a single magnetic

polaron. To obtain its equilibrium structure, we perform relaxational dynamics on a

perturbed half-filled Néel state (by flipping a center spin) with exactly one electron

removed. Using this as the initial state for the LLvN dynamics simulation, we then

compute the power spectrum

I(ω) ≡
∑

i∈C

|S̃i(ω)|2, (4.11)

where

S̃i(ω) =

∫
Si(t)e

−iωtdt, (4.12)

and the summation is over five spins at the center of the polaron. The computed

spectrum, shown in Fig. 4.8(a), is characterized by prominent peaks at, e.g. ω/t =

0.05, 0.25, 0.49, corresponding to eigen-energies of the spin-wave excitations localized

at the magnetic polaron. Importantly, these localized magnons contribute to the flat

bands seen in the S(q, ω).

With increasing hole doping, the antiferromagnetic spin-wave dispersion is still

visible, yet with gradually reduced strength. Some of the flat-bands due to magnetic

polarons also persists. An intriguing new feature is the emergence of a continuum of

low-energy magnons throughout the whole Brillouin zone. It is tempting to associate

this continuum with the metallic ferromagnetic clusters whose size also grows with

increasing hole doping; see Fig. 4.7. To this end, we examine the spectrum of metallic

clusters of varying shapes and sizes. Similar to the preparation of the magnetic
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Figure 4.8: The power spectrum I(ω) =
∑

i∈C |S̃i(ω)|2 of (a) a magnetic polaron
and (b) a FM metallic cluster consisting of roughly 20 spins. Here the sum runs
over spins in the FM domain of these object. The inset shows the electron density
plot n(ri) = 〈c†iαciα〉. With a large Hund’s coupling J = 6t, the size of the magnetic
polaron is rather small, with a radius of roughly three lattice constants.
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polaron, we manually create such structures by carefully tuning the hole doping with

the cluster size. The LLvN dynamics simulation is then used to compute their power

spectrum. Fig. 4.8(b) shows the I(ω) of such a cluster consisting of roughly 20 spins.

A few pronounced peaks, corresponding to the dominant quantized magnons, can be

seen in the spectrum. While the intensity and position of these peaks depend on the

geometric details of the FM clusters, a common feature of the cluster spectrum is the

abundance of low energy modes.

To further investigate the nature of these low-energy magnons, we compare their

spatial profile F(r) with the density plot n(r) from LLvN simulation of a particular

initial state, as demonstrated in Fig. 4.9 for two electron filling fractions. Here the

magnon profile function is defined as a finite integral of the spin Fourier components

F(ri) =

∫ ω2

ω1

|S̃i(ω)|2 dω, (4.13)

over a finite band [ω1, ω2] of small energies. In the case of electron filling n = 0.465,

where the system is spontaneously segregated into FM domains of various sizes in

an AFM background, the dominant spin excitations are from the FM clusters of the

doped holes; see Fig. 4.9(a) and (c). As mentioned above, the magnetic polarons

dominate the regime of smaller hole doping near half filling. Although the low-

energy excitations exhibit a complex profile with various length scales, as shown

in Fig. 4.9(d), distinct signals can be seen that are contributed from the magnetic

polarons.

We next examine the distribution of low-energy spin excitations of the phase-

separated states. Fig. 4.10(a) shows the log-log plot of the dynamical structure factor

S(q, ω) versus ω at a few selected wavevectors. Each curve is again obtained after

averaging over tens of different mixed-phase configurations. These distributions ex-
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(a) (b)

(c) (d)

Figure 4.9: Top panels show the density plot n(ri) = 〈c†iαciα〉 of one particular phase-
separated state for filling fractions (a) f = 0.465 and (b) f = 0.498. The simulated
system size is 60× 60. The corresponding spatial profile of spin excitations F(ri) =∫ ω2

ω1
|S̃i(ω)|2 dω is shown in panels (c) and (d), respectively, where ω1 = 0.006283 and

ω2 = 0.09425.
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hibit an abrupt drop above a band-edge Eb ∼ 0.5t, indicating the absence of magnon

density of states at high energies; see also the density plots in Fig. 4.7. While the

high-energy ω dependence of the dynamical structure factor differs at different q, a

pronounced increase of S(q, ω) at small ω can be seen for all three wavevectors shown

in Fig. 4.10(a).
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Figure 4.10: (a) The dynamical structure factor S(q, ω) versus ω at a few selected
wavevectors q for filling fraction f = 0.465. (b) The frequency dependence of the
spin excitation spectrum I(ω) ≡ ∑q S(q, ω)/N integrated over the whole Brillouin
zone, at varying electron filling fractions. The curves are shifted vertically for clarity.
The dashed line shows the ω−1.83 power-law dependence.

To further explore this issue, we compute the averaged distribution function

I(ω) =
1

N

∑

k

S(q, ω) (4.14)

by integrating the dynamical structure factor over the whole Brillouin zone. The
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obtained distribution functions, shown in Fig. 4.10(b) for three different filling frac-

tions, show strong similarity with each other, especially with increasing hole doping.

There are a band-edge and a shoulder-like feature at high energies. Furthermore,

the distribution function I(ω) develops a sharp peak at ω → 0, which in turn indi-

cates a significant increase in the magnon density of states (DOS) since the magnon

occupation number is roughly a constant at small ω. Moreover, the nearly linear

segments in the log-log plot suggest a power-law behavior. As discussed above, this

low-energy continuum of magnons can be attributed to the quasi-zero-modes origi-

nating from individual FM clusters. It is worth noting that similar disorder-induced

peaks at ω → 0 have also been observed in the magnon DOS in different localized

spin models [120, 121].

4.5 Summary and Discussion

To summarize, we have presented an efficient formulation for the real-space dy-

namics simulation of double-exchange model. Focusing on the regime with small hole

doping, we compute, for the first time, the dynamical structure factor of the electronic

phase-separated states. At small hole doping close to half-filling, in addition to antie-

ferromagnetic spin-waves from the background Néel order, the spin excitations include

distinct flat bands that originates from quantized modes of the small-size magnetic

polarons. With increasing doping, a low-energy magnon continuum emerges that is

attributed to the quasi-zero-modes of large-size individual FM clusters. Such abun-

dance of low-energy magnons has shown up in recent neutron-scattering measurement

of ferromagnetic manganites La0.7Ca0.3MnO3 close to optimal doping [94], although

the focus of most studies is still on the anomalous behaviors of the FM magnons

in this regime. We have also observed the coexistence of FM and AFM magnons
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in the dynamical structure factor with larger hole doping, a result consistent with

experiment that shows the coexistence of both spin correlations [122].

While several mechanisms have been proposed to explain the unusual softening

and broadening of spin-waves in some manganites, recent experiment [94] highlighted

the possibility that this anomalous behavior could be simply caused by the electronic

phase separation. With our efficient formulation, it is desirable to quantitatively study

the FM magnons in the mixed-phase state, which will be left for future study. Our

work also opens a new avenue for dynamical simulations of electronic inhomogeneous

states in other systems.
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Chapter 5

Summary

We have presented a few numerical studies on the models based on the Kondo

lattice model or double exchange moel. In chapter 2, for the 1D Kondo lattice model

with quantum 1/2 local spins, we characterized some phases in its phase diagram

using density matrix renormalization group (DMRG). We quench the system between

representative ground states for different coupling strengths (J) at quarter electron

filling. We find that the state stays the same when quenching the ferromagnetic

ground state using a Hamiltonian with a lower J in the island phase region via time-

evolving block decimation (TEBD). The reverse quench on the island phase using

a Hamiltonian with a higher J yields more interesting results. We identified the

oscillating pattern of the Loschmidt rate of the reverse quench. Time dependence

of other quantities are also identified. The almost linearly increasing entanglement

entropy is consistent with other studies on 1D quantum systems. This also indicates

that TEBD may not be a good numerical method for long time dynamics of this

system, as the bond dimension explodes exponentially with the linearly increasing

entanglement entropy.

In chapter 3, we constructed a frustrated magnet on the pyrochlore lattice with
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itinerant electrons and performed extensive numerical simulations. In this model,

the pyrochlore magnet can be viewed as a cross-linking network of Kondo chains. In

several spinels such as CuIr2S4, MgTi2O4 and ZnV2O4, the localized spin models are

difficult to establish some observed complex spin and orbital structures. On the other

hand, the itinerant pyrochlore magnet provides a rather natural explanation. We pre-

sented the phase diagrams at two representative filling fractions n = 1/2 and 2/3. For

the half filling case, we observed a paramagnetic phase and an all-in-all-out phase,

mimicking a spin ice. For the case of 2/3 filling, we found a (1/3, 1/3, 1) magnetic

order, ferromagnetic phase, paramagnetic phase and an unexpected (1/2, 1/2, 1/2)

order. Especially, we uncover the glassy nature of the (1/3, 1/3, 1) phase, which sat-

isfactorily describes the low temperature phase recently observed in spinel GeFe2O4.

The building block one-dimensional Kondo lattice with classical local moments are

also studied.

In chapter 4, a linear scaling kernel polynomial method (KPM) is applied to ob-

tain the equilibrium phase-separated states of the double exchange model on a square

lattice. Then we present an innovative and efficient Landau-Lifshitz von-Neumann

dynamics (LLvN) framework which enables large-scale dynamical simulation of inho-

mogeneous electronic states for the very first time. Empowered by the new method,

we show dynamical structure factors for the phase separated states. We identify quan-

tized modes of small-size magnetic polarons at small hole doping, and a low-energy

magnon continuum at higher hole doping with larger size ferromagnetic clusters. We

find the power law dependence of the dynamical structure factor. Relevant exper-

iments on magnetoresistive manganites are also discussed. The state that we are

interested in is the phase separated states, which is believed to be the origin of the

celebrated colossal magnetoresistance (CMR). To the best of our knowledge, this is

the first large-scale dynamical simulation of inhomogeneous electronic states. The
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method we developed could be used in other models which involves interactions be-

tween electrons and localized spins.
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Appendix A

Phase Diagram of 1D Kondo Chain

with Classical Spins

In this appendix, we consider the ground state of 1D Kondo chains, which are the

backbone of the itinerant frustrated model on the pyrochlore lattice discussed above.

The Hamilton of a Kondo chain is

H = −t
∑

i

∑

σ=↑,↓

(
c†i,σ ci+1,σ + h.c.

)
− J

∑

i

Si · si, (A.1)

where c†i,σ is the creation operator of electrons at site-i with spin σ, t is the nearest-

neighbor hopping constant, J is the Hund’s coupling strength, Si is local magnetic

moment, and si =
∑

α,β c
†
iασαβciβ is the spin of the conduction electron. Since we are

interested in magnetically ordered or glass states with frozen nonzero moments, we

further assume Si are classical spins with magnitude |Si| = 1. The zero-temperature

phase diagram of the classical 1D Kondo chain in the µ-J plane, where µ is the

chemical potential of the electrons, has been mapped out in Ref. [56]. Here, instead,

we focus on the Kondo chain with a fixed filling fraction n = 1/2 and n = 1/3, and
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obtain the ground states as a function of J . Due to particle-hole symmetry, the 2
3

filling case studied in chapter 3 for the 3D pyrochlore model, is equivalent to the 1
3

filling case.

We perform extensive Monte Carlo simulations with Metropolis algorithm to ob-

tain the ground states of the 1D Kondo chain. While most of the results discussed

below were obtained from the chain with N = 72 spins, we have also conducted

simulations with different chain lengths and boundary conditions (periodic vs open

boundary conditions) in order to eliminate the finite size effects. To avoid freezing

problems, we started our simulations at a relatively high temperature and perform

annealing simulations by slowly reducing the temperature. The final spin configura-

tion is determined at T ≈ 10−8. The structure factor S(q) and correlation function

are evaluated and averaged at the final temperature.

We first discuss the half-filling case. Our simulations find a ground state with

Néel order, i.e. ↑↓↑↓ · · · , for all values of electron-spin coupling J , consistent with the

results obtained in Ref. [56]. One can understand the stabilization of the Néel order

from the weak as well as the strong coupling limits. In the small J limit, the nesting of

the Fermi points of a half-filled chain leads to a weak-coupling instability with respect

to perturbation of Néel wavevector q = 2kF = π. The energy of the Néel ordered state

is lowered by opening a spectral gap at the Fermi points. Furthermore, our simulation

finds that the energy-gain is maximized by collinear Néel order. In the opposite

large J regime, the half-filled chain is a special case in the sense that there exists a

macroscopic degeneracy in the J →∞ limit. In this strong coupling limit, each site

binds an electron whose spin is aligned with the local moment Si, whose direction

can point in an arbitrary direction. As discussed in chapter 3, this huge degeneracy

is lifted by the nearest-neighbor hopping, giving rise to an effective antiferromagnetic

spin-spin interaction JAFSi ·Sj, where JAF ∼ t2/J > 0. Consequently, the Néel order
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is also stabilized in this large J limit. The cross-linking geometry in the pyrochlore

lattice leads to geometrical frustration of Néel ordered chains. The system ends up in

an all-in-all-out long-range order in which the Néel order coexists with a ferromagnetic

component in each chain.
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Figure A.1: (a): Wave vectors q∗ where the module of S(q) reaches local maximum
for 1

3
filling. (b1) ∼ (b4): S(q) as a function of q for characteristic J = 0.2, 1.6, 4.4, 8.0

in region I, II, III, IV.

The 1/3-filled Kondo chain displays a richer phase diagram as shown in Fig. A.1(a).

Here we plot the wavevector q∗, which corresponds to the maxima of S(q), as a

function of J . At J . 0.5, the ground state shows a spin configuration with a period

of 3, represented by a wavevector at q∗ = 2
3
π, as shown in Fig. A.1 (b1). Again,

this magnetic order arises from the weak-coupling instability due to the Fermi point

nesting q∗ = 2kF for a 1/3-filled chain. The wavevector q∗ = 2π/3 bifurcates at

J ≈ 0.5 with one branch gradually going down and the other one rising up to 1
2
π

(see Fig. A.1 (b2)). The small plateaus for q∗ may result from the finite size effect.

In region III, the spin structure tends to be non-coplanar and rather complicated,

represented by a less pronounced peak at q∗ = π (see Fig. A.1 (b3)). Starting from

J ≈ 5.5, the ground state is ferromagnetic (Fig. A.1 (b4)). The 3-period phase

at small J agrees with that of 3D pyrochlore lattice, while at intermediate J , the
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gradual change of q∗ is broken by the 3D structure and replaced by a (1/2, 1/2, 1/2)

order. In both 1D and 3D models, a large J gives rise to the ferromagnetic phase.

The evolution of the most pronounced wave vector, which is the line in the middle

in region II of Fig. A.1(a), shows the same trend as that of the quantum Kondo

chain [2].

✓1/⇡ ✓1/⇡

✓2

⇡

✓2

⇡

(a) (b)

Figure A.2: Energy contour plot with respect to θ1 and θ2 for (a) J = 0.2, (b) J = 0.4.
The red dots indicate the optimal configuration. The range for θ1 and θ2 is [0, 2π].
The 12 dots represent the same or symmetry related configuration. For J = 0.2, the
ground state is the state such that the angles between each of the 3 pairs of S0,S1,S2

are 115.8◦, 120.6◦, 123.6◦. For J = 0.4, they are 111◦, 112.4◦, 126.6◦.

Here we identify the period-3 ground state for small J = 0.2, 0.4 at 1/3 fill-

ing. Since the ground state is expected to exhibit a 3-period structure due to the

Fermi point nesting mechanism as indicated by the Monte Carlo simulations, we

can then Fourier transform the real space Hamiltonian to a k-space Hamiltonian
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H =
∑

k

∑2
i,j=0 c

†
iα(k)Hiα,jβ(k)cjβ(k) in which

H(k) =




−1
2
Jσ · S0 −teikσ0 −te−ikσ0

−te−ikσ0 −1
2
Jσ · S1 −teikσ0

−teikσ0 −te−ikσ0 −1
2
Jσ · S2




(A.2)

where σ0 is the 2× 2 identity matrix. Working on the k-space, we try to identify the

ground state local spin configuration. The whole spin chain is composed of multiple

periodic duplicates of the first three spins S0,S1,S2. It is convenient to set S0 =

(0, 0, 1),S1 = (sin θ1, 0, cos θ1),S2 = (sin θ2 cosφ2, sin θ2 sinφ2, cos θ2). Scanning over

θ1, θ2, φ2 shows the minimum energy is obtained when S0,S1 and S2 are coplanar,

which allows us to set φ2 = 0. We can then scan over θ1, θ2 only. The final optimal

configurations with J = 0.2, 0.4 are presented in the figure below. Although it is

tempted to consider that the structure with the angle between any pair of spins being

120◦ is the best configuration, our results show that the optimal state is close to but

not exactly the 120◦ structure and varies with J .



92

Appendix B

Examples of Matrix Product States

and Matrix Product Operators

B.1 Matrix product states: AKLT state

The AKLT state is the ground state of the AKLT Hamiltonian

HAKLT =
∑

i

Si · Si+1 +
1

3
(Si · Si+1)2 (B.1)

with S = 1 spins [123, 124]. The ground state can be written as a matrix product

state with bond dimension D = 2 as follows [25]

|AKLT 〉 =
∑

σ

Tr (Aσ1Aσ2 · · ·AσL) |σ〉 (B.2)
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with

A+ =
√

2
3
σ+ =




0
√

2
3

0 0


 , (B.3)

A0 = −
√

1
3
σz =



− 1√

3
0

0 1√
3


 , (B.4)

A− = −
√

2
3
σ− =




0 0

−
√

2
3

0


 . (B.5)

B.2 Matrix product operators: Heisenberg Hamil-

tonian

We take the Heisenberg model as an example from Ref. [7]. The Hamiltonian with

open boundary condition can be written as

H = J
L−1∑

i=1

(
1

2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ Ŝzi S

z
i+1

)
+ h

L∑

i=1

Szi (B.6)

We can introduce the operator valued matrices

M [i] =
∑

σi,σ′i

Mσi,σ
′
i |σi〉 〈σ′i| (B.7)

We expect the matrix product operator representation of the Hamiltonian to be in

the form of H = M [1]M [2] . . .M [L]. With this in mind, we construct the automaton

diagram for the Hamiltonian as in Fig. B.1. By examining the Hamiltonian B.6 term

by term, we could add the local terms S+, Sz, S− to our automaton and index the

bonds that connect them. We start with the internal state 1. The term 1
2
JS+

i S
−
i+1
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1

2 3 4

5

S+

I

I

S−Sz

(J/2)S−
hSz

JSz (J/2)S+

Figure B.1: A schematic diagram of the procedure for obtaining a matrix product
operators reproduced from Ref. [7].

can be split as the product of S+
i and 1

2
JS−i+1. So we add a bond S+ pointing to a

new state 2. Similarly, we could add other bonds pointing to internal state 3 and

4. To complete the term 1
2
JS+

i S
−
i+1, we add a bond 1

2
JS−i+1 starting from internal

state 2 and ending at internal state 5. Other terms are treated in the same way. The

numbers on the two ends of a bond locates the local operators in the final result.

Finally we are able to write the operator valued matrices as

M [i] =




I 0 0 0 0

S+ 0 0 0 0

Sz 0 0 0 0

S− 0 0 0 0

hSz J
2
S− JzSz J

2
S+ I




. (B.8)
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Due to the open boundary condition, on the first and last sites we have

M [1] =

[
hSz J

2
S− JzSz J

2
S+ I

]
, (B.9)

and

M [L] =




I

S+

Sz

S−

hSz




. (B.10)

Here the I is an identity matrix (operator). This provides a general approach for the

commonly studied Hamiltonians with short ranged interactions.
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