
INNOVATIONS OF HIDDEN MARKOV MODELS

Xiaoyuan Ma

A Dissertation submitted to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy in Statistics

Department of Statistics

University of Virginia

May 2023

Jordan Rodu, Chair

Negin Alemazkoor

Tianxi Li

Shan Yu

ii

Copyright © 2023, Xiaoyuan Ma

iii

Innovations of Hidden Markov Models

Xiaoyuan Ma

(ABSTRACT)

Hidden Markov Models (HMM) are widely used to represent time series with regime

switching phenomenon. The most popular inference method of HMM is the Baum-

Welch (B-W) algorithm, which is a special case of the E-M algorithm. However, it

can be too slow for many real-time applications and is prone to being trapped into

local optima. Spectral learning of HMM (SHMM), which is based on the method of

moments estimation, has been proposed in the literature to overcome these obsta-

cles. Despite its promises, asymptotic theory for SHMM has been elusive, and the

long-run performance of SHMM can degrade due to unchecked propagation of error.

In this thesis, for spectral estimation, we studied the theoretical property of the ap-

proximation error, improved the spectral learning by adding a ’project-onto-simplex’

regularization, and provided the online learning of SHMM. We compare the perfor-

mance of the proposed method with the state-of-the-art methods on both simulated

data and real world applications, and find that the new method not only retains the

computational advantages of SHMM, but also provides more robust estimation and

forecasting.

SHMM is dedicated to the endogenous evolution of HMM. Some HMM’s evolution

is impacted by cross predictors. We propose a variant of HMM called latent control

HMM, which provides a binary latent variable controlling whether each cross predic-

tor has impact on the transition or not. This model is inferred by standard Markov

iv

Chain Monte Carlo (MCMC) sampling, which provides the predictability and inter-

pretability. We show the latent control HMM’s performance on both simulated and

real-world data sets.

Keywords: Hidden Markov models; Spectral estimation; Method of moments; Projection-

onto-simplex; Online learning; Bayesian variable selection; Bayesian hidden Markov

models; Financial time series forecasting; Disease progression modeling

v

Dedication

This is for my family.

vi

Acknowledgments

I would like to express my sincere gratitude to my PhD adviser, Prof. Jordan Rodu,

who always supports me and guides me on the right track. I want to thank him for

his brilliant ideas and kind attitude. Under his supervision, I had a happy PhD study

experience.

I want to thank my committee members, Prof. Negin Alemazkoor, Prof. Tianxi Li,

and Prof. Shan Yu. Prof. Alemazkoor provided me with the funding for one year and

half, and we had a pleasant collaboration on gastric cancer research. I love Prof. Li’s

classes and lectures, which inspired me a lot. All of them provided insightful advice

and suggestions during my dissertation preparations.

I also want to thank Prof. Daniel M. Keenan and Prof. Karen Kafadar, who en-

couraged me a lot, especially in my PhD application process and the early years of

my PhD studies. In addition, I want to thank all members of the department of

Statistics.

Lastly, I would like to thank my parents. They gave me unlimited love and emotional

support in my life. They always respect my choices and my thoughts. Without their

support, I cannot have such a wonderful journey at University of Virginia.

vii

Contents

1 Introduction 1

2 Theory of SHMM 5

2.1 Literature Review . 5

2.1.1 Hidden Markov models . 5

2.1.2 Standard inference method for HMM: Baum-Welch algorithm 6

2.1.3 Estimating HMM by spectral learning 8

2.1.4 Spectral estimation HMMs by Hsu, Kakade, and Zhang (2012) 9

2.1.5 Spectral estimation HMMs by Rodu (2014) 10

2.2 Theoretical Properties of SHMM . 14

2.2.1 Likelihood decomposition by spectral estimation 14

2.2.2 Central limit theorem for likelihood approximation error . . . 18

2.3 Experimental Validation of Theorem 2.2 21

2.4 Potential Application Scenario . 24

3 Projected SHMM 26

3.1 Motivation for Adding Projection . 26

3.2 Projection-onto-Polyhedron and Projection-onto-Simplex SHMM . . . 27

viii

3.2.1 Projection-onto-polyhedron SHMM 27

3.2.2 Projection-onto-simplex SHMM 28

3.2.3 Comparison: projection-onto-polyhedron vs. projection-onto-

simplex . 31

3.3 Choice of Hyperparameters and Variants of PSHMM 31

3.3.1 The choice of hyperparameter d 31

3.3.2 Calculation of U matrix under extremely high-dimensional data:

unigram or bigram randomized SVD 32

3.3.3 Projecting onto the probability space 33

3.4 Simulation . 33

3.5 Application: Backtesting on High Frequency Crypto-Currency Trading 37

3.5.1 Data description and experiment setting 37

3.5.2 Results . 40

3.6 Discussions . 41

4 Online Learning Variants of SHMM 43

4.1 Online Learning . 43

4.1.1 Online learning of SHMM and PSHMM 44

4.1.2 Online learning of SHMM class with forgetfulness 46

4.2 Simulation . 47

4.2.1 Test the prediction performance 47

ix

4.2.2 Test computational time of online learning variants 49

4.2.3 Test the effectiveness of forgetfulness 50

4.3 Application: Backtesting on Commodity Market Daily Trading . . . 52

4.3.1 Data description & experiment setting 52

4.3.2 Results . 53

4.4 Discussions . 54

5 Latent Control Hidden Markov Models 56

5.1 Motivation . 56

5.2 Literature Review . 57

5.2.1 Bayesian HMM . 57

5.2.2 HMM with cross predictors: control HMM 58

5.3 Model Assumption . 59

5.4 Model Inference . 63

5.4.1 Model estimation by MCMC 63

5.4.2 Prediction & Bayesian credible interval 66

5.4.3 Feature importance by posterior mean 67

5.5 Simulations . 68

5.5.1 Test the prediction performance 68

5.5.2 Test the feature selection . 69

x

5.6 Application . 71

5.6.1 Application I: Inference of latent control on end-stage gastric

cancer data . 71

5.6.2 Application II: Prediction of natural gas’s volatility 74

5.7 Discussions . 76

Appendices 78

Appendix A Appendix 79

A.1 Detailed Simulation Results for PSHMM and Online Learning Variants 79

Bibliography 82

1

Chapter 1

Introduction

The Hidden Markov Model (HMM) (Baum and Petrie, 1966; Baum and Eagon, 1967)

is a stochastic probabilistic model for sequential or time series data assuming that

the observations are dependent on an underlying Markov chain, which is frequently

used in a wide range of areas such as finance (Mamon and Elliott, 1995; Bhar and

Hamori, 2004), natural language processing (Viterbi, 1967) and biology (Needle and

Wunsch, 1970; Sankoff, 1972). In this dissertation, we will study two categories of

HMM. One is standard HMM only involving endogenously, where we improved its

spectral learning in the (1) theory, (2) methodology and (3) online learning variants to

bridge the usability gap. The other category is HMM with exogenous input, where we

proposed its variant latent control HMM for better handling sparsity of coefficients.

The most popular inference method for a standard HMM is the Baum-Welch (B-W)

algorithm (Baum, Petrie, et al., 1970), which is a special case of the Expectation-

Maximization (E-M) algorithm (Dempster, Laird, and Rubin, 1977) based on Maxi-

mum Likelihood Estimation (MLE). However, the E-M algorithm can require a large

number of iterations until the parameter estimation converges, which has a large

computational cost especially for large-scale time series data and might get trapped

in local optima. In order to overcome these issues especially for large and high di-

mensional time series, Hsu, Kakade, and Zhang (2012) proposed a Spectral learning

algorithm for HMM (SHMM), which is based on the Method Of Moments (MOM)

2

estimation and has attractive theoretical properties. However, the asymptotic behav-

ior of the algorithm was not well-characterized. Later, Rodu (2014) improved the

spectral estimation algorithm and extended it to HMMs with high dimensional and

continuously distributed output, but again did not address the asymptotic properties.

In this manuscript, we provide a theoretical discussion of the asymptotic distribution

of SHMM algorithms. This is the first project in this thesis.

In addition to investigating the asymptotic behavior, we provide a novel improvement

to the SHMM family of algorithms. Our improvement is motivated from an exten-

sive simulation study of the methods proposed by Hsu, Kakade, and Zhang (2012)

and Rodu (2014), where we found that spectral estimation does not provide stable

results under the low signal-noise ratio setting. We found that the issue comes from

the unchecked propagation error during the recursive forecasting in SHMM, so we

propose a new spectral estimation method, the Projected SHMM (PSHMM), which

leverages a novel regularization technique that we name as ’projection-onto-simplex’

regularization. The PSHMM largely retains the computational advantages of SHMM

methods and substantially improved the prediction stability. We demonstrate its

performance by extensive simulations and real-world applications. This is the second

project in this thesis.

Besides, we also provide a novel extension of SHMM and PSHMM to allow for online

learning, which has two advantages. First, it speeds up computational speed for

learning a model in large data with online settings. Second, it enables incorporating

“forgetfulness” so it is adapting to changing dynamics of the data. This speed and

flexibility is crucial, for instance, in high frequency trading. We show the effectiveness

of the PSHMM in online learning settings, which has an impressive computational

speed and predictability in dynamic settings. This is the third project in this thesis.

3

The above spectral learning is for standard HMM without the outside signals. Some

variants of HMM were proposed to provide a way to leverage exogenous information.

Control HMM (see e.g. Bengio and Frasconi, 1994) provides a framework for involving

the cross features into HMM’s transitions among hidden states inferred by MLE.

Shirley et al. (2010) also proposed a model where the transition matrix is controlled

by the exogenous predictors in a multinomial-logistic form under Bayesian framework

and inferred by Markov Chain Monte Carlo (MCMC) sampling (Andrieu et al., 2003).

However, these models work only when we are sure which exogenous features have

impact on the transitions because they cannot handle sparsity well. To deal with

sparsity, we proposed the latent control HMM which has a hierarchical structure

where a set of binary latent control variables controlling whether each cross predictor

has impact on the transition or not, by using the spike-and-slab priors (Ishwaran and

Rao, 2005b). This is a Bayesian model inferred by MCMC sampling, which has two

benefits. The first benefit is the predictability when the exogenous features only have

a weak relationship with the transitions, because there are MCMC samples on the

binary latent control variables indicating whether each feature is in the model or out

of the model, which is essentially a Bayesian model averaging. Second, the MCMC

samples of latent control variables can provide an interpretation that the posterior

probability of each exogenous predictor is influencing the HMM transitions. This

model could be applied in low frequency data, for example, low frequency trading

prediction and clinical trial time series. These data could be modeled by HMM

whose transitions are impacted by exogenous features. This is the fourth project in

this thesis.

The structure of this dissertation is as follows: In Chapter 2 we provide theorems on

the finite sample properties of SHMM for both discrete and continuous output HMM

4

along with a literature review for HMM, B-W algorithm and SHMM. PSHMM is

introduced in Chapter 3 and the online learning variant for both SHMM and PSHMM

is introduced in Chapter 4, and there are comprehensive simulations and real-world

applications provided in these chapters. In Chapter 5 we discussed deeply about

the latent control HMM, along with the simulations and real-world data applications

with their comparisons with the state-of-the-art methods. Chapter A contains more

technical and results details.

5

Chapter 2

Theory of SHMM

In this chapter, we study the asymptotic behavior of SHMM. Before that, we formally

introduce HMM and its inference algorithm including Baum-Welch algorithm (Baum

and Eagon, 1967) and SHMM (Hsu, Kakade, and Zhang, 2012; Rodu et al., 2013).

2.1 Literature Review

2.1.1 Hidden Markov models

Figure 2.1: Model structure of standard HMM. {ht} is a latent Markov chain evolves
according to transition matrix T. For each time stamp t, the observed Xt is generated
according to the emission distribution associated with ht.

The standard HMM (Baum and Petrie, 1966; Baum and Eagon, 1967; Baum, Petrie,

et al., 1970) is defined that we have a latent state process {ht}t that evolves between

S hidden categorical states {1, 2, · · · , S} according to a Markov chain, where ht is the

6

hidden state at time t. The Markov chain is characterized by an initial probability

π0 = [π
(1)
0 , · · · , π(S)

0] where h1 ∼ Categorical(π
(1)
0 , · · · , π(S)

0) and a transition matrix

T = [Tij]
j=1,··· ,S
i=1,··· ,S where Tij = P(ht+1 = j|ht = i) for ∀t. The emitted observation Xt

is distributed when the value of the hidden state at time t, Xt|ht = s ∼ Fs where

Fs is the emission distribution conditioned on the hidden state ht = s. The standard

HMM’s parameters are
(
π0,T, {Fs}Ss=1

)
, and we denote {Fs}Ss=1 as E . Figure 2.1 is

a graphical representation of the standard HMM. For continuous output HMM ht

denotes the hidden cluster of observations of Xt. Typically, if the emission follows a

Gaussian distribution, then we call it Gaussian HMM (GHMM), which is similar to

Gaussian Mixture Models (GMM) (McLachlan and Basford, 1988) but with temporal

dependency.

2.1.2 Standard inference method for HMM: Baum-Welch al-

gorithm

The Baum-Welch algorithm (Baum and Petrie, 1966) is a variant of E-M algorithm

(Dempster, Laird, and Rubin, 1977) used for inferring the unobserved hidden Markov

chain {ht}t and parameters (π0,T, E) by MLE. Predicting the next observation can be

done with the forward propagation algorithm (Baum and Petrie, 1966). Specifically,

in the Baum-Welch algorithm, there are two iterative main steps. In the E-step,

the Baum-Welch algorithm calculates the forward propagation probability αt(j), j =

1, · · · , S and backward propagation probability βt(j), j = 1, · · · , S. Then we can

calculate state occupancy probabilities P(ht = j) and ξt(i, j) = P(ht = i, ht+1 = j).

In the M-step, the Baum-Welch algorithm updates parameters {π̂0, T̂ , Ê} conditioned

on the state occupancy probabilities. See Algorithm 1 for more details.

7

Algorithm 1: Baum-Welch Algorithm for HMM
Data: {Xt}Tt=1

Result: {π̂0, T̂ , Ê}
Set {π̂0, T̂ , Ê} with random initial conditions;
while not converged do

// E-step: update {γt(j)}j=1:S
t=1:T and {ξt(i, j)}i,j=1:S

t=1:T conditioned on
{π̂0, T̂ , Ê}

Find {bj(Xt)}j=1:S
t=1:T ;

for t← 1 to T do

αt(j)←−

{
π0(j)bj(X1), if t = 1∑S

i=1 αt−1(i)Tijbj(Xt), otherwise
∀j = 1, · · · , S;

end
for t← T to 1 do

βt(j)←−

{
1, if t = T∑S

j=1 Tijβt+1(j)bj(Xt+1), otherwise
∀j = 1, · · · , S;

end
P(ht = j) = γt(j)←− αt(j)βt(j)∑S

i=1 αt(i)βt(i)
∀t, j;

P(ht = i, ht+1 = j) = ξt(i, j)←− αt(i)Tijbj(Xt+1)βt+1(j)∑S
i=1 αt(i)βt(i)

∀t, i, j;
// M-step: update {π̂0, T̂ , Ê} conditioned on {γt(j)} and {ξt(i, j)}
π̂0(j)←− γ1(j) ∀j = 1, · · · , S;
T̂ij ←−

∑T−1
t=1 ξt(i,j)∑T−1

t=1

∑S
k=1 ξt(i,k)

∀i, j = 1, · · · , S;
Estimate Êj based on weighted samples {Xt}Tt=1 with weights {γt(j)}Tt=1;

end

Strengths of Baum-Welch algorithm The inference based on the Baum-Welch

algorithm is very intuitive since it infers the hidden parameters based on forward-

backward propagation under E-M framework, which is the reverse of the data gen-

eration process. It obtains an unbiased estimation with achieving the global optima

theoretically (Yang, Balakrishnan, and Wainwright, 2017). It is robust in parameter

estimation and prediction, because it estimates parameters and predicts based on the

state occupancy probabilities of hidden states which are regularized to be non-zero

and reasonable. For prediction, the Baum-Welch algorithm first predicts the weights,

8

which are explicitly guaranteed to be non-negative and normalized to sum-up 1, and

then yields the prediction as a weighted combination of cluster means that ŷt = Mŵt.

This is later the motivation of proposing PSHMM in Chapter 3.

Limitations of Baum-Welch algorithm While the E-M algorithm is widely used

to infer HMMs, there are some limitations. First of all, the Baum-Welch algorithm

is a special case of the E-M algorithm, which infers HMMs based on MLE. The E-M

algorithm usually needs many iterations to achieve convergence and is computation-

ally expensive. In addition, since the likelihood of HMMs are not convex, the E-M

algorithm might be trapped into local optima (Chen, 2022). Although this could be

mitigated by trying different initialization settings, it is hard to avoid completely.

Also for high dimensional data sets, the E-M algorithm might be stuck due to accu-

mulated truncation error (Jamshidian and Jennrich, 2000).

2.1.3 Estimating HMM by spectral learning

Spectral estimation is to estimate models based on MOM estimation (Pearson, 1936).

MOM estimators usually don’t require iterations, so in general they will be much

faster than the E-M algorithm. Spectral estimation is a well-studied topic that people

have developed spectral estimations for many statistical machine learning methods.

For example, Hsu and Kakade (2013) studied spectral learning for GMM. Anima

Anandkumar et al. (2012) developed the spectral estimation for latent Dirichlet al-

location. Animashree Anandkumar et al. (2011) proposed spectral learning for tree

methods.

For HMMs, Jaeger (2000) was the first person who found that HMM could be rewrit-

ten into the multiplications of some operators. One decade later, Hsu, Kakade, and

9

Zhang (2012) proposed SHMM, a noval framework for learning HMM by spectral es-

timation. Since HMM inferred by Baum-Welch algorithm has a high computational

complexity, this new framework for inferring discrete output HMMs and its great

performance especially its low computational cost bring itself into notice. Later on,

Rodu (2014) further improved this method by reducing the data to a low dimensional

subspace and extended the spectral learning framework to continuous output HMMs.

Rodu et al. (2013) also raised a new way to build the moment estimations by using

regression models. Both Hsu, Kakade, and Zhang (2012) and Rodu (2014) provided

nice mathematical properties of SHMM.

2.1.4 Spectral estimation HMMs by Hsu, Kakade, and Zhang

(2012)

In this part we briefly introduced the spectral estimation method proposed by Hsu,

Kakade, and Zhang (2012). Recall ht denotes the hidden state at time t, and Xt the

emitted observation. Hsu, Kakade, and Zhang (2012) wrote the likelihood with the

observable operators as below:

Pr(x1:t) = bT∞B(xt)B(xt−1) · · ·B(x1)b1 (2.1)

where,

b1 = UTP1, bT∞ = P1(U
TP21)

T , B(x) = (UTP3x1)(U
TP21)

T ,

P1 = Eπ, P21 = E(x2 ⊗ x1), P3x1 = E(x3 ⊗ x1 ⊗ x2)x,

and ⊗ represents the outer product of two vectors.

10

Therefore, we can approximate the likelihood by plugging the method of moments

estimation of P1, P21 and P3x1 that

P̂ r(x1:t) = b̂T∞B̂(xt)B̂(xt−1) · · · B̂(x1)b̂1. (2.2)

Based on this approximation, we could get the conditional predictive probability of

xt given xt−1 without inferring the hidden states by the following recursive formulas:

b̂1:t =
B̂xt b̂t

b̂⊤∞B̂xt b̂t

P̂ r(xt|x1:t−1) =
b̂⊤∞B̂xt b̂t

b̂⊤∑
x ∞B̂xt b̂t

. (2.3)

This recursive formula could be used for prediction.

2.1.5 Spectral estimation HMMs by Rodu (2014)

The model proposed by Rodu (2014) is shown in Figure 2.2. For estimation of the

model, different from Hsu, Kakade, and Zhang (2012), theis method further reduces

observations onto a lower dimensional space of dimensionality d and these reduced

observations are denoted as yt = U⊤xt. Here U could be obtained from singular value

decomposition (SVD) (Eckart and Young, 1936) on the bigrams E(X2⊗X1). In this

dissertation, we use yt to denote the observation with reduced dimensionaliy, and use

ŷt to denote its prediction conditioned on the information up to t− 1.

We discuss the choice of dimensionality d and the projection of the observations

in Section 3.3. Figure 2.3 shows how to make prediction based on the recursive

predictions formula by Equation 2.6.

11

Figure 2.2: Spectral estimation model by Rodu (2014). Besides the latent state series
{ht}t and observed series {Xt}t, Rodu (2014) introduced a reduced-dimensional series
{Yt = U⊤Xt} which is a projection of Xt on a lower-dimensional subspace whose
dimensionality is equal to the number of hidden states. Then the spectral estimation
will be performed based on {Yt}t.

Using the spectral estimation framework, the likelihood can be written as:

Pr(x1:t) = c⊤∞C(yt)C(yt−1) · · ·C(y1)c1, (2.4)

where

c1 = µ, c⊤∞ = µ⊤Σ−1, C(y) = K(y)Σ−1,

µ = E(y1) = U⊤Mπ,

Σ = E(y2y
⊤
1) = U⊤MTdiag(π)M⊤U,

K(a) = E(y3y⊤1 y⊤2)a = U⊤MTdiag(M⊤Ua)Tdiag(π)(M⊤U),

M = [M1, · · · ,MS] where Mi = E(X|i).

12

These quantities can be empirically estimated as:

P̂ r(x1:t) = ĉ⊤∞Ĉ(yt)Ĉ(yt−1) · · · Ĉ(y1)ĉ1, (2.5)

where

ĉ1 = µ̂, ĉ⊤∞ = µ̂⊤Σ̂−1, Ĉ(y) = K̂(y)Σ̂−1,

µ̂ = 1
N

∑N
i=1 Yi,

Σ̂ = 1
N

∑N−1
i=1 Yi+1Y

⊤
i ,

K̂(y) = 1
N

∑N−2
i=1 Yi+2Y

⊤
i · Y ⊤

i+1y.

Prediction of yt is computed recursively by:

ŷt =
C(yt−1)ŷt−1

c⊤∞C(yt−1)ŷt−1

. (2.6)

Note that the recursive prediction by Equation 2.6 only depends on the estimated

prediction ŷt−1 at the last time stamp t − 2, and the observation yt−1 of this time

stamp. Predicted xt can be recovered as:

x̂t|x1, x2, · · · , xt−1 = Uŷt. (2.7)

The above exposition of spectral likelihood estimation assumes a discrete output

HMM. For a continuous output HMM, the spectral estimation of likelihood is slightly

different. We need some kernel function G(x) to calculate K, so

K(a) = U⊤MTdiag(M⊤UG(a))Tdiag(π)(M⊤U).

13

Figure 2.3: Prediction of spectral estimation model by Rodu (2014). The recursive
prediction is by Equation 2.6.

(For more on G(·) see Rodu, 2014). In this paper, we will use a linear kernel G(a) = a

for simplicity. In this case, the moment estimation and recursive forecasting for the

continuous case are identical to the discrete case. See Rodu et al. (2013) for de-

tailed derivations and mathematical proofs of these results. Rodu (2014) also studied

the theoretical properties of SHMM and also proved that the likelihood observable

operator representation (i.e. spectral estimation of likelihood) will converge to the

underlying truth almost surely.

We have introduced both the spectral learning algorithms proposed by Hsu, Kakade,

and Zhang (2012) and Rodu (2014). We want to emphasize that the later one is much

faster in the computational aspect in high-dimensional cases, because we first reduce

the observations on a reduced-rank subspace. Our study on spectral estimation will

be based on this method.

14

2.2 Theoretical Properties of SHMM

In general, SHMM estimates the likelihood through MOM estimators. Although

MOM gives fast approximation, the theoretical properties of SHMM estimation are

less well studied. Hsu, Kakade, and Zhang, 2012 and Rodu et al., 2013 give the

conditions where the spectral estimator converges to the true likelihood almost surely:

P̂ r(x1:t) = b̂T∞B̂(xt)B̂(xt−1) · · · B̂(x1)b̂1
a.s.−−→ Pr(x1:T), (2.8)

P̂ r(x1:T) = ĉ⊤∞Ĉ(yt)Ĉ(yt−1) · · · Ĉ(y1)ĉ1
a.s.−−→ Pr(x1:T), (2.9)

as N −→∞ where N is the number of training triples will be discussed later.

In this manuscript, we study the asymptotic distribution of P̂ r(x1:T) − Pr(x1:T).

Theorem 2.2 shows a Central Limit Theorem (CLT)-type bound of the approximation

error. Note that in the following discussions on theoretical properties, we use the same

setting as Hsu, Kakade, and Zhang (2012) and Rodu (2014) above that the x1:T is

a fixed target process that we will compute the likelihood on. Also there is another

training set independent from the target process, but is generated from the same

HMM as the target. This training set contains N i.i.d. triples for estimating µ, Σ

and K. We will study the asymptotic property of estimated likelihood by SHMM as

N −→∞.

2.2.1 Likelihood decomposition by spectral estimation

First, however, we identify the sources of error for the SHMM in Lemma 2.1. Lemma

2.1 makes use of the ‘∆’ terms, including ∆̂µ, ∆̂Σ and ∆̂K, defined through the

following equations: µ̂ = µ+ ∆̂µ, Σ̂ = Σ + ∆̂Σ, K̂ = K + ∆̂K.

15

Lemma 2.1.

P̂ r(x1:T) = Pr(x1:T) + (v + ṽ)⊤∆̂µ+
T∑
t=1

a⊤t ∆̂K(yt)ãt −
T∑
t=0

b⊤t ∆̂Σb̃t +Op(N
−1),

where

v =
(
µ⊤Σ−1K(yT) · · ·K(y1)Σ

−1
)⊤

; ṽ = Σ−1K(yT) · · ·K(y1)Σ
−1µ;

at =
(
µ⊤Σ−1K(yT)Σ

−1 · · ·K(yt+1)Σ
−1
)⊤

; ãt = Σ−1K(yt−1) · · ·K(y1)Σ
−1µ;

bt =
(
µ⊤Σ−1K(yT)Σ

−1 · · ·Σ−1K(yt+1)Σ
−1
)⊤

; b̃t = Σ−1K(yt)Σ
−1 · · ·K(y1)Σ

−1µ.

Proof (Lemma 2.1). The basic strategy is to fully expand P̂ r(x1:T) after rewriting

the estimated quantities as a sum of the true quantity plus an error term. We then

categorize each summand based on how many ‘∆’ terms it has. There are three

categories: terms with zero ‘∆’ terms (i.e. the true likelihood Pr(x1:T)), terms with

only one ‘∆’ (i.e. (v+ ṽ)⊤∆̂µ+
∑T

t=1 a
⊤
t ∆̂K(yt)ãt−

∑T
t=0 b

⊤
t ∆̂Σb̃t), and all remaining

terms, which involve at least two ‘∆’ quantities, and can be relegated to Op(N
−1).

First, we expand the estimated likelihood by decomposing it into the underlying truth

16

plus the error terms. We have

P̂ r(x1:T)

= ĉ⊤∞Ĉ(yT)Ĉ(yT−1) · · · Ĉ(y1)ĉ1

= (µ̂⊤Σ̂−1)[K̂(yT)Σ̂
−1][K̂(yT−1)Σ̂

−1] · · · [K̂(y1)Σ̂
−1]µ̂

= [(µ+ ∆̂µ)⊤(Σ + ∆̂Σ)−1][(K + ∆̂K)(yT)(Σ + ∆̂Σ)−1]

· · · [(K + ∆̂K)(y1)(Σ + ∆̂Σ)−1](µ+ ∆̂µ).

(2.10)

Consider the matrix perturbation (Σ+∆̂Σ)−1 = Σ−1−Σ−1∆̂ΣΣ−1+O(||∆̂Σ||2), Here

the matrix norm || · || can be any norm since all matrix norms have equivalent orders

(Li, 2006). Also note that all items with ∆̂ are Op(N
− 1

2). N is the number of i.i.d.

triple (Y1, Y2, Y3) for estimating µ̂, Σ̂, K̂. Note that N and T are not related, and

that we work in the regime where T is fixed but N −→ ∞. For example,
√
N∆̂µ =

√
N(µ̂ − µ) =

√
N(1

N
ΣN

i=1Yi − µ)
d−→ MVN(0, Cov(Y)). Similar analyses apply to Σ̂

and K̂ can be similarly. So

∆̂µ = [Op(N
−1/2)](d);

∆̂Σ = [Op(N
−1/2)](d×d);

∆̂K = [Op(N
−1/2)](d×d×d),

where d is the dimension of Yt. One application is (Σ+∆̂Σ)−1 = Σ−1−Σ−1∆̂ΣΣ−1+

Op(N
−1).

According to the previous two expansions, we could rewrite Equation 2.10. We could

17

distribute

[(µ+ ∆̂µ)⊤(Σ + ∆̂Σ)−1][(K + ∆̂K)(yT)(Σ + ∆̂Σ)−1]

· · · [(K + ∆̂K)(y1)(Σ + ∆̂Σ)−1](µ+ ∆̂µ)

= [(µ+ ∆̂µ)T (Σ−1 − Σ−1∆̂ΣΣ−1 +Op(N
−1))]

· · · [(K + ∆̂K)(yT)(Σ
−1 − Σ−1∆̂ΣΣ−1 +Op(N

−1))]

· · · [(K + ∆̂K)(y1)(Σ
−1 − Σ−1∆̂ΣΣ−1 +Op(N

−1))](µ+ ∆̂µ)

= µ⊤Σ−1K(yT)Σ
−1 · · ·K(y1)Σ

−1µ+ (v + ṽ)⊤∆̂µ+
T∑
t=1

a⊤t ∆̂K(yt)ãt

−
T∑
t=0

b⊤t ∆̂Σb̃t +Op(N
−1)

= Pr(x1:T) + (v + ṽ)⊤∆̂µ+
T∑
t=1

a⊤t ∆̂K(yt)ãt −
T∑
t=0

b⊤t ∆̂Σb̃t +Op(N
−1)

In the above, we first substitute (Σ+∆̂Σ)−1 by Σ−1−Σ−1∆̂ΣΣ−1+Op(N
−1). Then we

distribute all multiplications. After distribution, there will be finite terms. We could

categorize these forms into 3 categories according to different orders of convergence.

The first category is the deterministic term without randomness. There is only one

term in this category, µ⊤Σ−1K(yT)Σ
−1 · · ·K(y1)Σ

−1µ, which is Pr(x1:T). The second

category is the part that converges with order Op(N
−1/2). This category involves all

terms with one ‘∆̂’ term, i.e. one ∆̂µ, ∆̂Σ or ∆̂K. This category is (v + ṽ)⊤∆̂µ +∑T
t=1 a

⊤
t ∆̂K(yt)ãt −

∑T
t=0 b

⊤
t ∆̂Σb̃t. For simplicity of subsequent theorem proof, we

simplify each term in the following way: for each ‘∆̂’ term, we denote the part in front

of or behind them by v, ṽ, at, ãt, bt, b̃t as defined in this lemma. The third categories

are all remaining terms. These terms are converging faster than or in the order of

Op(N
−1). There are finite terms in this category, so the summation of them is still

Op(N
−1).

18

2.2.2 Central limit theorem for likelihood approximation er-

ror

Lemma 2.1 shows how the estimated error propagates to the likelihood approximation.

We can leverage the fact that our moment estimators have a CLT property to obtain

the desired results in Theorem 2.2.

For consistency in notations, define a “flattening” operator F(·) for both matrices

and 3-way tensors. For matrix Ad×d,

F(A) = [A(1,1), A(1,2), · · · , A(d,d)]⊤;

For tensor Bd×d×d,

F(B) = [B(1,1,1), B(1,1,2), · · · , B(1,1,d), B(1,2,1), B(1,2,2), · · · , B(1,2,d), · · · , B(1,d,d), · · · , B(d,d,d)]⊤.

We now state and prove our main theorem.

Theorem 2.2.

√
N(P̂ r(x1:T)− Pr(x1:T))

d−→ N

0, β⊤Cov

Y1

F(Y2 ⊗ Y1)

F(Y3 ⊗ Y1 ⊗ Y2)

 β

 ,

where

β =

(v + ṽ)⊤;−

(
T∑
t=0

F(bt ⊗ b̃t)

)⊤

;

(
T∑
t=1

F(at ⊗ ãt ⊗ yt)

)⊤
⊤

19

and v, ṽ, at, ãt, bt, b̃t are defined as in Lemma 2.1.

Proof (Theorem 2.2). We flatten ∆̂Σ and ∆̂K as

F(∆̂Σ) = [∆̂Σ
(1,1)

, ∆̂Σ
(1,2)

, · · · , ∆̂Σ
(d,d)

]⊤,

F(∆̂K) = [∆̂K
(1,1,1)

, ∆̂K
(1,1,2)

, · · · , ∆̂K
(d,d,d)

]⊤.

Rewriting a⊤t ∆̂K(yt)ãt and b⊤t ∆̂Σb̃t in Equation 2.10 as

a⊤t ∆̂K(yt)ãt

=
d∑

i=1

d∑
j=1

d∑
k=1

a
(i)
t ãt

(j)y
(k)
t ∆̂K

(i,j,k)

= [a
(1)
t ãt

(1)y
(1)
t , a

(1)
t ãt

(1)y
(2)
t , · · · , a(d)t ãt

(d)y
(d)
t]⊤ · F(∆̂K)

= F(at ⊗ ãt ⊗ yt)
⊤ · F(∆̂K),

and

b⊤t ∆̂Σb̃t

=
d∑

i=1

d∑
j=1

b
(i)
t ∆̂Σ

(i,j)
b̃t

(j)

= [b
(1)
t b̃t

(1)
, b

(1)
t b̃t

(2)
, · · · , b(1)t b̃t

(d)
, b

(2)
t b̃t

(1)
, · · · , b(d)t b̃t

(d)
]⊤ · F(∆̂Σ)

= F(bt ⊗ b̃t)
⊤ · F(∆̂Σ).

That is to say, we have

a⊤t ∆̂K(yt)ãt = F(at ⊗ ãt ⊗ yt)
⊤ · F(∆̂K),

b⊤t ∆̂Σb̃t = F(bt ⊗ b̃t)
⊤ · F(∆̂Σ).

20

So

P̂ r(x1:T)− Pr(x1:T)

=

(v + ṽ)⊤;−

(
T∑
t=0

F(bt ⊗ b̃t)

)⊤

;

(
T∑
t=1

F(at ⊗ ãt ⊗ yt)

)⊤
 ·

∆̂µ

F(∆̂Σ)

F(∆̂K)

+Op(N

−1)

= β⊤ · ∆̂θ +Op(N
−1).

Since the central limit theorem applies separately to ∆̂µ, ∆̂Σ, ∆̂K, then

√
N∆̂θ =

√
N

1
N

∑N
i=1 Yi,1 − µ

F(1
N

∑N
i=1 Yi,2 ⊗ Yi,1 − Σ)

F(1
N

∑N
i=1 Yi,3 ⊗ Yi,1 ⊗ Yi,2 −K)

d−→ MVN

0⃗, Cov

Y1

F(Y2 ⊗ Y1)

F(Y3 ⊗ Y1 ⊗ Y2)

 .

Therefore,

√
N(P̂ r(x1:T)− Pr(x1:T))

d−→ N

0, β⊤Cov

Y1

F(Y2 ⊗ Y1)

F(Y3 ⊗ Y1 ⊗ Y2)

 β

 .

For simplicity of representation, we derived Theorem 2.2 under the assumption that

the output distribution is discrete. For continuous output, the central limit theorem

21

still holds with a proper kernel function G(·) as mentioned in section 2.1.3.

2.3 Experimental Validation of Theorem 2.2

Figure 2.4: Empirical histograms of P̂ r(x1:T) − Pr(x1:T) estimated under different
training size N and length T and theoretical density calculated based on Theorem
2.2. Each subfigure is associated with a different N . We could see that as N goes
larger, the distribution converges to the theoretical normal distribution. When T is
smaller, the estimation error converges more quickly to the asymptotic distribution.

We performed a series of experiments to validate the conclusions of theorem 2.2. We

generated a target series x1:T with xi ∈ R3 and T = 30, 100 using a 3-state GHMM,

where the initial probabilities and sticky transition probabilities are as described in

Section 3.4, and with discrete emission probability matrix

[[0.8, 0.1, 0.1]⊤, [0.1, 0.8, 0.1]⊤, [0.1, 0.1, 0.8]⊤]⊤.

Parameters µ̂, Σ̂, and K̂ were estimated using training samples generated under the

same model. Specifically, N i.i.d. samples Y
(µ)
1 were used to estimate µ̂, N i.i.d.

samples of (Y (Σ)
1 , Y

(Σ)
2) to estimate Σ̂, and N i.i.d. samples of (Y (K)

1 , Y
(K)
2 , Y

(K)
3) to

estimate K̂. We chose training sets of size N = 5000, 10000, 50000, 100000 and for

22

(a) Likelihood estimation error from first-order first moment estimation.

(b) Likelihood estimation error from first-order second moment estimation.

(c) Likelihood estimation error from first-order third moment estimation.

Figure 2.5: Histogram of the first-order error from first, second and third moment es-
timation error (i.e. (v+ ṽ)⊤∆̂µ,

∑T
t=0 b

⊤
t ∆̂Σb̃t, and

∑T
t=1 a

⊤
t ∆̂K(yt)ãt) under different

training size N with length T = 30 vs. theoretical pdf calculated based on Theorem
2.2. Histograms are empirical pdf of third moment estimation error, and the red line
is the theoretical Normal distribution. Each subfigure is associated with a different
N . We could see as N goes larger, the distribution becomes closer to the theoretical
normal distribution.

each N we replicated the experiment 1000 times. For each replication, we estimated

P̂ r(x1:T)
(N,r) where r indexes the replication. For each N , we construct the histogram

v.s. theoretical pdf for the estimation error, i.e. {P̂ r(x1:T)
(N,r)}r, which by Theorem

2.2 should converge to a normal distribution as N grows larger. In Figure 2.4 we

23

(a) Frobenius norm of first moment estimation.

(b) Frobenius norm of second moment estimation.

(c) Frobenius norm of third moment estimation error

Figure 2.6: Histogram of the Frobenius norm of the first, second and third moment
estimation error (i.e. µ, Σ and K) under different training size N with length T = 30
vs. theoretical pdf calculated based on Theorem 2.2. Histograms are empirical pdf
of third moment estimation error, and the red line is the theoretical Chi-squared
distribution. Each subfigure is associated with a different N . We could see as N goes
larger, the distribution becomes closer to the theoretical normal distribution.

indeed see the desired effect. As N grows larger we see that the distribution of the

estimated likelihood converges to the normal distribution, and with a shorter length

T , the error converges faster. We also separately analyzed the asymptotic behaviour

of the first-order estimation error from first moment error, (v+ṽ)⊤∆̂µ, second moment

error,
∑T

t=0 b
⊤
t ∆̂Σb̃t, and third moment error,

∑T
t=1 a

⊤
t ∆̂K(yt)ãt (as shown in Figure

24

2.5), and we found that the third moment estimation error dominates the error terms

and has the largest contribution as shown in Table 2.1. We further analyzed the

asymptotic distribution of Frobenius norm of the first, second and third moment

estimation error (i.e. µ, Σ and K). Figure 2.6 shows the empirical histogram and its

corresponding theoretical pdf.

We note that there are two facets to the error when estimating the likelihood. The

first stems from the typical CLT-type error in estimating the parameters of the model

(i.e. for smaller N the Op(N
−1) term is not small enough). The second is that any

error introduced into the system from estimation error can propagate under forward

recursion. To achieve a stable normal distribution given the second issue, N must be

much greater than T . In our simulation (T = 100), at N = 10000 we see reasonable

evidence of asymptotic normality, while at N = 5000 we do not. When N = T or N

is only slightly larger than T , the distribution is heavy-tailed. That is to say, there

could be outliers. This also suggests us to add some kinds of regularization.

For simplicity of presentation, we derived Theorem 2.2 under the assumption that

the output distribution is discrete. For continuous output, the central limit theorem

still holds with a proper kernel function G(·) as mentioned in section 2.1.3.

2.4 Potential Application Scenario

One possible application scenario for Theorem 2.2 is modeling finance time series. For

example, based on the industry reports, quantitative researchers could specify a model

that might be momentum (Fama and French, 2012) or mean-reverting (McQueen,

1992), which are the two basic trends of the stock market. With the prior knowledge,

the parameters in HMM including initial probability, transition matrix and emissions

25

Error source Mathematical expression Theoretical std Variance explained ratio
1st moment estimation (v + ṽ)⊤∆̂µ 1.09× 10−12/

√
N 0.43%

2nd moment estimation
∑T

t=0 b
⊤
t ∆̂Σb̃t 8.98× 10−12/

√
N 29.21%

3rd moment estimation
∑T

t=1 a
⊤
t ∆̂K(yt)ãt 1.39× 10−11/

√
N 70.36%

(a) T = 30.

Error source Mathematical expression Theoretical std Variance explained ratio
1st moment estimation (v + ṽ)⊤∆̂µ 2.66× 10−49/

√
N 0.30%

2nd moment estimation
∑T

t=0 b
⊤
t ∆̂Σb̃t 7.75× 10−48/

√
N 25.37%

3rd moment estimation
∑T

t=1 a
⊤
t ∆̂K(yt)ãt 1.33× 10−47/

√
N 74.59%

(b) T = 100.

Table 2.1: Theoretical variance for first, second, third moment estimation errors based
on simulated data with different T .

could be explicitly written out, and so does the likelihood associated with this pre-

specified model. We could calculate the likelihood estimated from observations with

the likelihood calculated from the pre-specified model, and compare them statistically

(e.g. through Wald-type Z test, etc), and check whether the observations are likely

to be generated from the target model. This could help provide some interpretations

for finance time series modeling.

26

Chapter 3

Projected SHMM

3.1 Motivation for Adding Projection

In the Baum-Welch algorithm (Baum, Petrie, et al., 1970), when we make a predic-

tion, we are effectively predicting the belief probabilities, or weights, for each under-

lying hidden state. Denote the predicted weight vector at time t as ŵt. Then the pre-

diction can be expressed as a weighted combination of cluster means ŷt = Mŵt where

||ŵt||1 = 1. The weights are explicitly guaranteed to be non-negative and sum to 1

during forward propagation in the Baum-Welch algorithm. However, SHMM doesn’t

estimate the weights directly and doesn’t have these two constraints, so SHMM can

sometimes give predictions which are far away from the polyhedron spanned by the

cluster means, which is inconsistent with the physical meaning of HMM’s predic-

tion. Further, when N is not sufficiently large, extreme deviations of the estimated

likelihood from the true likelihood can occur if the error is propagated over time.

Regularization is needed to stabilize the performance of estimation of the likelihood

by limiting this propagation of error. In order to solve this problem, we propose the

projected SHMM, where projection serves to regularize the predictions to be within a

reasonable range that is consistent with the physical meaning of HMM’s prediction.

27

3.2 Projection-onto-Polyhedron and Projection-onto-

Simplex SHMM

One way to regularize the predictions is to project it onto the polyhedron whose

vertices are cluster means of different states, which is the domain of prediction yielded

by the Baum-Welch algorithm. There are two ways to achieve projection for our

problem: projection-onto-polyhedron and projection-onto-simplex. Projection-onto-

polyhedron is derived directly from the motivation for using projections in SHMM, but

suffers from high computational cost. To obtain a better computational performance,

we propose projection-onto-simplex as an alternative, which has the same prediction

domain as the projection-onto-polyhedron. We recommend using projection-onto-

simplex for PSHMM.

3.2.1 Projection-onto-polyhedron SHMM

Projection-onto-polyhedron PSHMM first predicts ŷ
(SHMM)
t through the standard

SHMM and then projects it onto the polyhedron with vertices M̂ , which is the esti-

mated cluster means and in practice approximated by GMM on {yt}t. In other words,

we find the point on the polyhedron spanned by M̂ that is nearest to the predicted

ŷ
(SHMM)
t . We can use any distance to define “nearest point” but in our exposition

we use Euclidean distance. Mathematically, we substitute the recursive forecasting

in Equation 2.6 with

ŷ
(SHMM)
t =

C(yt−1)ŷt−1

c⊤∞C(yt−1)ŷt−1

;

ŷt = argmin
y∈Poly(M̂)

d(y, ŷ
(SHMM)
t), (3.1)

28

where d(·, ·) is the distance function (such as Euclidean distance), and

Poly(M̂) = {y = M̂w|w is on the simplex}

is the polyhedron with vertices M̂ . This results in a convex optimization problem if

the distance is convex, which is true for general distance functions such as Euclidean

distance. We can solve this using standard convex optimization methods such as the

Newton-Raphson algorithm (S. Boyd, S. P. Boyd, and Vandenberghe, 2004), with

variants allowing linear constraints such as the log-barrier methods (Frisch, 1955).

To the best of our knowledge, there is no dedicated algorithm for solving projection-

onto-polyhedron, and unfortunately finding a fast solution seems to be challenging.

The approach we take is to write the loss function of the constrained problem as the

loss function with an indicator function, and use the log-barrier method to approxi-

mate the linear constraints through log-barrier functions. We then use the Newton-

Raphson algorithm to optimize this approximated loss function, iteratively relaxing

the approximation and solving it again until convergence. Note that this optimization

needs to be done at every time step, which implies a trade-off between the accuracy

of the approximation and optimization. Recall that we turn to SHMM because it is

faster than the Baum-Welch algorithm, so any modification should not slow down

the computation too much, otherwise this mitigates one of its strongest advantages.

3.2.2 Projection-onto-simplex SHMM

To obtain higher efficiency in computation, we propose an alternative projection

regularization method: projection-onto-simplex. It leverages an algorithm that allows

us to calculate the projection with time complexity O(d log(d)) (Wang and Carreira-

29

Perpinán, 2013). To avoid projection onto a polyhedron, we leverage the fact that

ŷt = M̂ŵt and optimize over ŵt which lies on the simplex. Mathematically, the

optimization problem becomes

ŵt = argmin
w∈Simplex

||w − M̂−1ŷ
(SHMM)
t ||22. (3.2)

This solution is not equivalent to the solution from the projection-onto-polyhedron,

because d(a, b) ̸= d(Aa,Ab) in general. However, the solution set is the same that

the predictions are guaranteed to be constrained to the polyhedron with vertices

M̂ . The solution of Equation 3.2 can be obtained through a closed-form solution

provided in Algorithm 2, which avoids iterations during convex optimization and

yields fast estimation. Figure 3.1 gives a graphical demonstration for the projection-

onto-polyhedron and projection-onto-simplex methods.

Algorithm 2: Projection-onto-simplex (Wang and Carreira-Perpinán, 2013).
Input : u = [u1, u2, · · · , ud]

⊤

Sort u into z: z1 ≥ z2 · · · ≥ zd;
Find ρ = max{1 ≤ i ≤ d : zi +

1
i
(1−

∑i
j=1 zj) > 0};

Define λ = 1
ρ
(1−

∑ρ
j=1 zj);

Solve u(proj), s.t. u(proj)
i = max(ui + λ, 0), i = 1, · · · , d;

Output: u(proj)

The full algorithm for PSHMM with projection-onto-simplex is shown in Algorithm

3. In Algorithm 3, Steps 1-3 are identical to the standard SHMM. Steps 4-5 estimate

M̂ by GMM, calculate the weight processes {wt}, and apply SHMM on the weight

process. Step 6 applies projection-onto-simplex on the recursive predicted ŷt. Step 7

projects the data back into the original space.

30

(a) Projection-onto-polyhedron. (b) Projection-onto-simplex.

Figure 3.1: The left figure shows the projection-onto-polyhedron step, and the right
one is the projection-onto-simplex step. In both two methods, we project the pre-
dicted values (blue points) into the constrained regions (areas with red boundary),
polyhedron (left) or simplex (right).

Algorithm 3: Projection-onto-simplex SHMM.
Input : {xt}, where t = 1, · · · , T
Output: x̂T+1

Step 1: Compute Ê[xt+1 ⊗ xt] =
1

T−2

∑T−2
i=1 xt+1x

⊤
t ;

Step 2: Obtain Û by extracting the first k left eigenvectors of Ê[xt+1 ⊗ xt];
Step 3: Reduce dimensionality yt = Û⊤xt;
Step 4: Estimate cluster mean by GMM, and obtain M̂ , where each column is
the mean vector of each cluster. Then the weight vector is wt = M̂−1yt for
t = 1, · · · , T ;

Step 5: Calculate µ̂ = 1
T

∑⊤
t=1 wt, Σ̂ = 1

T−1

∑T−1
t=1 wt+1w

⊤
t , and

K̂ = 1
T−2

∑T−2
t=1 wt+2 ⊗ wt ⊗ wt+1. Set ĉ1 = µ̂, ĉ⊤∞ = c⊤1 Σ̂

−1, and
Ĉ(wt) = K̂(wt)Σ̂

−1;
Step 6: Recursive prediction with projection-onto-simplex
ŵt = Proj

(
Ĉ(wt−1)ŵt−1

ĉ⊤∞Ĉ(wt−1)ŵt−1

)
for t = 2, · · · , T + 1 where

Proj(a) = argminw∈Simplex ||w − a||22 can be solved by Algorithm 2, and set
ŷ1 = ĉ1;

Step 7: x̂T+1 = Û ŷT+1 = ÛM̂ŵT+1;

31

3.2.3 Comparison: projection-onto-polyhedron vs. projection-

onto-simplex

Projection can pull the prediction within a reasonable range, which serves as a

regularization as well as an insanity filtering. There are two ways for the projec-

tion. Projection-onto-polyhedron is more intuitive but the optimization is more time-

consuming since we have to tune the strength of the constraints and cannot avoid

iterations; projection-onto-simplex transfers the problem into optimizing the weight

vector, which could leverage a closed-form solution to estimate. In practice, we rec-

ommend projection-onto-simplex PSHMM because it can provide an exact solution

without tuning the optimization procedure and provide a fast estimation.

3.3 Choice of Hyperparameters and Variants of

PSHMM

In this part, we discuss the choice of hyperparameters and then we talk about varia-

tions of PSHMM.

3.3.1 The choice of hyperparameter d

d is the dimensionality of the projection space. In theory, d should equal the number

of states in the HMM. Our simulations show that when d is chosen to be equal to the

underlying true number of states, the estimation and prediction will perform better

than at other values of d. However, the number of hidden states is usually unknown

in practice, so we can either choose d using prior knowledge or tune it if we do not

32

have a strong prior belief.

3.3.2 Calculation of U matrix under extremely high-dimensional

data: unigram or bigram randomized SVD

The projection matrix U is constructed by the first d left singular vectors from the

singular value decomposition (SVD) (Eckart and Young, 1936) of the bigram co-

variance matrix Σ̂ = Ê[X2 ⊗ X1]. This encodes the transition information and will

eliminate the in-cluster covariance structure. However, this is not the only acceptable

projection. For instance, we could also estimate U through an SVD of the unigram

covariance matrix Ê[X1⊗X1]. This result will encode covariance structure along with

the cluster mean information. In most cases we suggest using the bigram matrix.

A point worth mentioning is that for extremely high-dimensional cases, we can lever-

age a fast approximation algorithm for computing U based on randomized SVD

(Halko, Martinsson, and Tropp, 2011). When computing the SVD of the bigram

matrix, we need to avoid computing the covariance matrix Ê[xt+1 ⊗ xt]. The stan-

dard algorithm for the SVD requires time complexity O(Tp2 + p3), where T and p

are the sample size and dimensionality of the dataset. For the high-dimensional cases

where p≫ d, the randomized SVD has time complexity O(pT log(d)+ (p+T)d2). In

this case, the bottleneck is the computation of Ê[xt+1 ⊗ xt], whose time complexity

is O(Tp2). The trick is as follows. Note that Ê[xt+1 ⊗ xt] =
1

T−2

∑T−2
i=1 xt+1x

⊤
t =

1
T−2

X⊤
2 X1, where X2 = [x2, · · · , xT]

⊤ and X1 = [x1, · · · , xT−1]
⊤. We can take the

randomized SVD of X1 and X2 separately to obtain two rank-d̃ decompositions with

d ≤ d̃ ≪ p: X1 ≈ U1Σ1V
⊤
1 , X2 ≈ U2Σ2V

⊤
2 . Then X⊤

2 X1 ≈ V2(Σ2U
⊤
2 U1Σ1)V

⊤
1 . The

matrix (Σ2U
⊤
2 U1Σ1) is of dimension d̃× d̃, and computing it is much faster than com-

33

puting Ê[xt+1⊗xt]. We could perform SVD on this matrix to get Σ2U
⊤
2 U1Σ1 = ŨΣ̃Ṽ ⊤.

So Ê[xt+1⊗xt] ≈ (V2Ũ)(1
T−2

Σ̃)(V1Ṽ)⊤. Note that V2Ũ and V1Ṽ are orthonormal ma-

trices and 1
T−2

Σ̃ is a diagonal matrix, so this is the rank-d̃ SVD of Ê[xt+1 ⊗ xt]. The

first d vectors of V2Ũ are an approximation of the U matrix we are to compute in

Step 1 and 2 in Algorithm 3.

3.3.3 Projecting onto the probability space

Another advantage of PSHMM is that we can project Xt onto the probability space y

whose i-th element is the probability that the original data point belongs to the i-th

cluster y(i)t = P(h = i|Xt). This probability is similar to the emission probability in

Gaussian HMM but is now computed by GMM. To do this, we only need to modify

Step 4 in Algorithm 3 by substituting wt = M̂−1yt with calculating wt from the

probability of belonging to GMM’s different components.

The advantage of this method is interpretation. In this model, wt has a straight-

forward probabilistic meaning, i.e. the weight on different components for a given

observation. The SHMM prediction is then based on the weight process wt, while

wt in Algorithm 3 is calculated purely based on the moments. Note that PSHMM

with projecting onto the probability space becomes a mixture of moment-based and

distribution-based method.

3.4 Simulation

In this section, we test the prediction performance, especially the robustness and

the stability, of PSHMM and SHMM under different experimental settings, including

34

different stickiness of transitions, different signal-noise ratio generated data, mis-

specified models, and heavy-tailed data.

Figure 3.2: These subfigures show the simulation results for experiment settings in
Section 3.4. The left column shows the results of the sticky transition, and the right
column shows the nonsticky transition. The first row is the results for 5-state GHMM
with different σ, the second row is the results for inferring 5-state GHMM of σ = 0.05
with different d, and the last row is the results for 5-state t-distribution HMM of
σ = 0.05 with different degrees of freedom for t-distribution. In each subfigure, the
y-axis is R2 and different curves are for different methods. For R2 < 0, we plot 0
instead of the negative for plotting purposes. See supplementary for detailed results.

35

Experiment setting. We generated 100-dimensional data of length 10000 for train-

ing data followed by 100 data points for testing under different settings. We used

Baum-Welch algorithm with forward propagation and SHMM and PSHMM with re-

cursive prediction for time series forecasting. We repeated each simulation setup 100

times, calculated R2 for each repeat, and computed an average R2 over all repeats.

The results below show this averaged R2. We tested 2 variants of the PSHMM:

projection-onto-polyhedron and projection-onto-simplex, and compared them with

standard HMM and E-M algorithm. The data generated is 5-state continuous out-

put HMM where for each state, we assumed the emission distribution has a one-hot

mean vector and diagonal covariance matrix, that the mean vector of the i-th state

is [1{i = j}]pj=1 where 1{·} is the indicator function. We initialized the first hidden

state with equal probabilities. We tested those methods under two types of transition

matrix, three different signal-noise ratios and different distributions as below:

• Transition matrix:

– Sticky transition matrix: diagonal elements are 0.6, off-diagonal elements

are 0.4
S−1

, where S is the number of states;

– Non-sticky transition matrix: diagonal elements are 0.4, off-diagonal ele-

ments are 0.6
S−1

.

• Signal-noise ratio: The covariance matrix of each cluster is: σ2Ip, where p is

the dimension of the space, σ = 0.01, 0.05, 0.1, 0.5, 1.0.

• Data generated from:

– Gaussian distribution: generate according to mean vector and covariance

matrix;

36

– t distribution: generate a standard random vector of i.i.d. t5, t10, t15 and

t20 distribution first, and then multiply by covariance matrix and shifted

by mean vector.

For each setting, we also showed the oracle R2. Strong oracle is to assume we know

all parameters and the hidden states before the time stamp to predict. Limited oracle

is to assume we know all parameters but don’t know the hidden states. Since the

limited oracle and the strong oracle are very near, in the plots we only keep the strong

oracle as oracle. We will show all detailed simulation results in Appendix.

Simulation results. Figure 3.2 shows the simulation results. We see that adding

projections greatly improved R2 compared with standard SHMM, nearly achieving

performance of the oracle in some settings. The top row shows that in both high or

low signal-noise ratio case, PSHMM works well. The middle row shows that PSHMM

is robust and outperforms SHMM when the model is mis-specified, for example, when

the underlying data contains 5 states but we choose to reduce the dimensions to 3 or

4. The last row shows that PSHMM is more robust and has a better R2 than SHMM

with heavy-tailed data generated by t distributions. For R2 < 0 we plot 0 instead of

the negative in all these figures for plotting purposes. See supplementary tables for

detailed results. Negative R2 occurs only for SHMM, implying that it is not stable.

Overall, while SHMM often performs well, it is not robust, and PSHMM provides a

suitable solution.

In all simulation settings, SHMM tends to give poor predictions except in non-sticky

and high signal-to-noise ratio settings. PSHMM is robust against noise, mis-specified

models and heavy-tailed data. Among the PSHMM variants, projection-onto-simplex

outperforms projection-onto-polyhedron, and nearly have the similar performance of

37

E-M. The reason is that the projection-onto-simplex has a dedicated optimization

algorithm that guarantees the exact solution in the projection step. In contrast,

projection-onto-polyhedron uses the log-barrier method, which is a general purpose

optimization algorithm and does not guarantee the optimality of the solution. Since

projection-onto-polyhedron also has a higher computational time, we recommend us-

ing projection-onto-simplex. We will show the computational time comparison in the

next section.

3.5 Application: Backtesting on High Frequency

Crypto-Currency Trading

3.5.1 Data description and experiment setting

To show the performance of our algorithm on real data, we used the crypto currency

trading records dataset of Bitcoin, Ethereum, XRP, Cardano and Polygon published

by Binance (https://data.binance.vision), one of the largest Bitcoin exchanges

in the world. We used the minute-level data, calculated the log return of each minute,

then used the log returns as the input for the models. We set aside a test set from

2022-07-01 to 2022-12-31, and for each day in the test set, we used its previous 30-day

rolling period to train models (see Figure 3.3), and made consecutive-minute recursive

predictions over the testing day without updating model parameters. For prediction,

we use the HMM with the E-M algorithm (HMM-EM), SHMM, PSHMM (projection-

onto-simplex) and compare their performance. For HMM-EM, SHMM and PSHMM,

the hyperparameter d could be tuned on a validation set. We found that d = 4 has

a better performance and it could be interpreted that there are 4 dominant types of

https://data.binance.vision

38

log returns in general: large loss, small loss, small gain and large gain.

Figure 3.3: Rolling training is used for model validation and testing. For each day
of validation and testing sets, the model is trained on the rolling period described in
the figure.

Ultimately, we evaluate models based on the performance of a trading strategy. Trans-

lating predictions into a simulated trading strategy is straightforward as follows. If

we forecast a positive return in the next minute, we buy the currency, and if we

forecast a negative return, we short-sell the currency. We buy or short sell a fixed

dollar amount of crypto-currency for each of the 5 currencies, hold it for one minute,

and then close the position. We repeat this for every minute of the day, and calculate

the return of that day as

Rm =
1

5

5∑
i=1

∑
t

sign(Ŷ
(m)
i,t)Y

(m)
i,t

where Y
(m)
i,t is the return for minute t of day m for currency i, Ŷ (m)

i,t is its prediction,

and sign(a) is 1 if a is positive, −1 if a is negative, and 0 if a = 0. This backtesting

could largely mimic the real-trading procedure, since the target assets are very liquid

39

and we could ignore the market impact. Market impact is the effect that a market

participant has when it buys or sells an asset, including the impact on the capacity,

whether the transaction could be done successfully or not.

We evaluate the trading strategy by 3 most widely used metrics: annualized re-

turn, Sharpe ratio and maximum drawdown. Over a period of M days, we obtain

R1, · · · , RM and calculate the annualized return,

Annualized return = 365×R,

the Sharpe ratio (Sharpe, 1966)

Sharpe ratio =

√
365×R

ŝtd(R)
,

where R and ŝtd(R) is the sample mean and standard variance of these daily returns,

and the maximum drawdown

Maximum drawdown = max
m2

max
m1<m2

[∑m2

m=m1
(−Rm)

1 +
∑m1

m=1 Rm

]
.

These three metrics are standard mechanisms for evaluating the success of a trading

strategy in finance. The annualized return shows the ability of a strategy to generate

revenue and is the most straightforward metric. Sharpe ratio is the risk-adjusted

return, or the return earned per unit of risk, where the standard deviation of return

is viewed as the risk. In general, we can increase both the return and risk by borrowing

money or adding leverage, so Sharpe ratio is a better metric than annualized return

because it is not affected by the leverage effect. Sharpe ratio is the most commonly

used metric in financial literature (see e.g. Falck, Rej, and Thesmar, 2022). Maximum

40

drawdown is the maximum percentage of decline from the peak. Since the financial

data is leptokurtic, the maximum drawdown shows the outlier effect better than the

Sharpe ratio which is purely based on the first and second order moments. A smaller

maximum drawdown indicates that the method is less risky. It is one of the most

widely used metrics for funds’ risk control (Grossman and Zhou, 1993; Chekhlov,

Uryasev, and Zabarankin, 2004; Chekhlov, Uryasev, and Zabarankin, 2005; Goldberg

and Mahmoud, 2017).

3.5.2 Results

Method Sharpe Ratio Annualized Return Maximum drawdown
PSHMM 2.88 1012% 49%
SHMM 1.07 345% 90%

HMM-EM 0.89 197% 53%

Table 3.1: Real-world application results: PSHMM, SHMM, HMM-EM and AR on
crypto-currency trading.

From Table 3.1, we see that PSHMM outperforms all other benchmarks with the high-

est Sharpe ratio and annualized return, and the lowest maximum drawdown. PSHMM

outperforms SHMM and SHMM outperforms HMM-EM. SHMM outperforms HMM-

EM because the spectral learning doesn’t suffer from the local optima problem of the

E-M algorithm. PSHMM outperforms SHMM because the projection-onto-simplex

provides regularization.

The accumulated daily return is shown in Figure 3.4. PSHMM outperformed other

methods. The maximum drawdown of PSHMM is 49%. Considering the high volatil-

ity of the crypto currency market during the second half of 2022, this maximum

drawdown is acceptable. For computational purposes, the drawdown is allowed to be

larger than 100% because we are always using a fixed amount of money to buy or sell,

41

so effectively we are assuming an infinite pool of cash. Between PSHMM and SHMM,

the only difference is from the projection-onto-simplex. We see that the maximum

drawdown of PSHMM is only about half that of SHMM, showing that PSHMM takes

a relatively small risk, especially given that PSHMM has a much higher return than

SHMM. Combining the higher return and lower risk, PSHMM performs substantially

better than SHMM.

Figure 3.4: The average accumulated return of crypto currencies.

3.6 Discussions

Projection-onto-simplex serves as regularization. The standard SHMM can

give poor predictions due to the accumulation and propagation of errors. Projection-

onto-simplex pulls the prediction back to a reasonable range. This regularization

is our primary methodological innovation, and importantly makes the SHMM well-

42

suited for practical use.

Bias-variance trade-off of PSHMM In PSHMM, we leverage GMM to provide

projection boundaries, which would introduce bias, since the hidden state means

estimated by GMM are biased since we ignore time dependency information. In

addition, either projection method– ’projection-onto-polyhedron’ or ’projection-onto-

simplex’– can introduce bias since they are not necessarily an orthogonal projection

due to optimization constraints. However, adding such a projection will largely reduce

the variance. That is, there is a bias-variance tradeoff.

43

Chapter 4

Online Learning Variants of

SHMM

4.1 Online Learning

As a machine learning algorithm to address the computational complexity issue of

Baum-Welch algorithm, it is very natural to apply online learning to SHMM class

to accelerate the computational speed. The automatic learning could be categorized

into two categories: batch or offline learning and online learning. Batch learning has

the following restrictions: (1) the whole data set can be accessed when training (2)

we could endure a relatively long computational time and (3) the data generation

mechanism doesn’t change during the whole process (Fontenla-Romero et al., 2013).

However, we found that in the real-world application, there are many application

scenarios which cannot meet the above requirements. For example, in quantitative

trading, when people want to predict a return of some financial product, it is very

likely that the time series is no longer stationary due to the regime switching phe-

nomenon in the market. In addition, in high frequency trading, especially in second-

level or minute-level trading, training the statistical model by batch and offline will

take more time than online (Lahmiri and Bekiros, 2021) and might yield a delay and

impact the strategy and trading speed.

44

4.1.1 Online learning of SHMM and PSHMM

To adapt the SHMM and PSHMM models as we obtain more data, we first estimate

the first, second and third moments based on a warm-up sequnce {Yt}Twarmup

t=1 :

µ̂ ←− 1

Twarmup

Twarmup∑
t=1

Yt;

Σ̂ ←− 1

Twarmup − 1

Twarmup−1∑
t=1

Yt+1 ⊗ Yt;

K̂ ←− 1

Twarmup − 2

Twarmup−2∑
t=1

Yt+2 ⊗ Yt ⊗ Yt+1;

T ←− Twarmup.

After warm-up, each time we obtain new data point YT+1, we update our moments

as follows:

µ̂ ←− T · µ̂+ YT+1

T + 1
;

Σ̂ ←− (T − 1) · Σ̂ + YT+1 ⊗ YT

T
;

K̂ ←− (T − 2) · K̂ + YT+1 ⊗ YT−1 ⊗ YT

T − 1
;

T ←− T + 1. (4.1)

The above updating rule works for both SHMM and PSHMM. The pseudo code for

online learning PSHMM is shown in Algorithm 4.

For updating GMM for PSHMM To update the first, second and third order

moments of wt, we could just replace Y with w on above formulas. The only consider-

ation is whether to update GMM or not. There are multiple ways of updating GMM.

45

Algorithm 4: Online learning PSHMM.
Input : {xt}t=1,··· ,T , the warm-up length Twarmup

Output: {x̂t}T+1
t=Twarmup+1 yielded sequentially.

Step 1: Compute Ê[xt+1 ⊗ xt]
(warmup) = 1

Twarmup−2

∑Twarmup−2
i=1 xt+1x

⊤
t ;

Step 2: Obtain Û by extracting the first k left eigenvectors of
Ê[xt+1 ⊗ xt]

(warmup);
Step 3: Reduce dimensionality yt = Û⊤xt for t = 1, · · · , Twarmup;
Step 4: Estimate cluster mean by GMM by data {ŷt}Twarmup

t=1 , and obtain M̂ ,
where each column is the mean vector of each cluster. Then the weight vector
is wt = M̂−1yt for t = 1, · · · , Twarmup;

Step 5: Calculate µ̂, Σ̂, K̂, ĉ1, ĉ⊤∞ and Ĉ(·) as described in Step 5 of Algorithm 3;
Step 6: Recursive prediction with projection-onto-simplex ŵt for
t = 1, · · · , Twarmup + 1 as described in Step 6 of Algorithm 3. Yield
x̂Twarmup+1 = ÛM̂ŵTwarmup+1;

Step 7 (online learning and prediction):
for t← Twarmup + 1 to T do

wt = M̂−1Û⊤xt;
Update µ̂, Σ̂ and K̂ according to Eq 4.1;
Predict ŵt+1 by ŵt+1 = Proj

(
Ĉ(wt)ŵt

ĉ⊤∞Ĉ(wt)ŵt

)
, where Ĉ(·) and ĉ⊤∞ are based on

updated µ̂, Σ̂ and K̂, and Proj(·) is solved by Algorithm 2;
Yield x̂t+1 = ÛM̂ŵt+1;

end

We recommend updating it without changing the cluster, for example, we classify a

new input into different clusters and update each cluster’s mean and covariance. We

don’t suggest the online learning algorithm of GMM that allows adding or removing

clusters. The number of clusters is pre-specified as it should be equal to the number

of states in HMM and the dimensionality of space y. The addition of deletion of a

cluster in GMM might fundamentally change this requirement. In practice, we found

that PSHMM works well without updating GMM.

46

4.1.2 Online learning of SHMM class with forgetfulness

When dealing with instationary data, it might help if we add a forgetting mechanism

on parameter estimation. Particularly, we could add a forgetting mechanism on the

moment estimation by using the exponential weighting schema. First we specify a

decay factor γ that the information is forgotten by the rate 1 − γ and then the

updating rule is

µ̂ ←− (1− γ)T̃ µ̂+ YT+1

(1− γ)T̃ + 1
;

Σ̂ ←− (1− γ)T̃ Σ̂ + YT+1 ⊗ YT

(1− γ)T̃ + 1
;

K̂ ←− (1− γ)T̃ K̂ + YT+1 ⊗ YT−1 ⊗ YT

(1− γ)T̃ + 1
;

T̃ ←− T̃ · (1− γ) + 1. (4.2)

Here T̃ =
∑T

i=1(1−γ)i−1 serves as an effective sample size. This strategy is equivalent

to calculating the exponentially weighted moving average that

µ̂ ←−
∑T

t=1(1− γ)T−tYt∑T
t=1(1− γ)T−t

;

Σ̂ ←−
∑T

t=2(1− γ)T−tYt ⊗ Yt−1∑T
t=2(1− γ)T−t

;

K̂ ←−
∑T

t=3(1− γ)T−tYt ⊗ Yt−2 ⊗ Yt−1∑T
t=3(1− γ)T−t

. (4.3)

The full algorithm is the same as Algorithm 4 expect replacing Equation 4.1 with

Equation 4.2 when updating the moment estimation µ̂, Σ̂ and K̂.

47

4.2 Simulation

In this section, we show the simulation of online learning for PSHMM. Since online

learning is used for further improving the computational speed, so here for PSHMM,

we only consider projection-onto-simplex SHMM and don’t consider projection-onto-

polyhedron SHMM, since we mentioned that projection-onto-polyhedron required an

iterative optimization and would largely increase the computational time. Therefore,

in this section, we mainly test the predictability and the computational time for

online learning PSHMM, and compare it with the online learning SHMM and offline

learning SHMM.

4.2.1 Test the prediction performance

In this part, we test the prediction performance of online PSHMM, especially robust-

ness under different signal-noise ratio, mis-specified models and heavy-tailed data.

Experiment setting. The experiment setting for the simulation is the same as the

simulation for PSHMM in Chapter 3. See Section 3.4 for more details on simulation

configurations and the results below show this averaged R2. We tested 3 variants of

the PSHMM and compared them with the E-M algorithm: offline learning, online

learning and online learning with decay factor γ = 5%. The online learning variant

of PSHMM used 1000 training samples for the initial warm-up, and incorporated

the remaining 9000 training samples using online updates. In our simulations, online

training for PSHMM differs from offline training for two reasons. First, the estimation

of U and M̂ are based only on the warm-up set for online learning (as is the case for

the online version of SHMM class), and the entire training set for offline learning.

48

Figure 4.1: These subfigures show the simulation results for online learning exper-
iment settings. The left column shows the results of the sticky transition, and the
right column shows the nonsticky transition. The first row is the results for 5-state
GHMM with different σ, the second row is the results for inferring 5-state GHMM
of σ = 0.05 with different d, and the last row is the results for 5-state t-distribution
HMM of σ = 0.05 with different degrees of freedom for t-distribution. In each sub-
figure, the y-axis is R2 and different curves are for different methods. For R2 < 0, we
plot 0 instead of the negative for plotting purposes. See supplementary for detailed
results.

49

Second, during the training period, for PSHMM, the updated moments are based on

the recursive predictions of ŵt, whose moment estimators are themselves based on

the its previous observations {ws}t−1
s=1. For offline learning of PSHMM in contrast, all

observations are used to calculate the moments.

Simulation results. Figure 4.1 shows the simulation results. We can see that

the online learning variant of PSHMM performed as well as PSHMM (the two lines

overlapped), which means that online learning didn’t sacrifice accuracy. However,

if we add a decay factor in the online learning PSHMM, i.e., added forgetfulness,

then we could see that the performance was not good. This is because the simulated

process is pretty stationary, and added forgetfulness didn’t work since there are no

new generated patterns, and added forgetfulness means the model would be changed

a lot. However, in real-world application, the stationary assumption is very easily

violated. Therefore, modeling training with forgetfulness will become very necessary,

which we show later.

4.2.2 Test computational time of online learning variants

Experiment setting. We used a similar experimental setting from Section 3.4. We

simulated 100-dimensional, 3-state GHMM data with σ = 0.05 and of length 2000.

We use the first half for warm-up and test computational time on the last 1000 time

steps. We tested both the E-M algorithm and SHMM. For SHMM, we tested under

both online and offline learning regimes. We computed the total running time in

seconds. The implementation is done in python with packages Numpy (Harris et al.,

2020), Scipy (Virtanen et al., 2020) and scikit-learn (Pedregosa et al., 2011) without

multithreading. The whole process is repeated 30 times, and the computational time

50

is the average of each time.

Simulation results. Table 4.1 shows the computational time. First, online learn-

ing substantially reduces the computational cost. For the offline learning methods,

projection-onto-simplex SHMM performs similarly with SHMM, and projection-onto-

polyhedron is much slower. In fact, the offline version of projection-onto-polyhedron

is slow even compared to the Baum-Welch algorithm. However, the online learning

variant of projection-onto-polyhedron is much faster than the Baum-Welch algorithm.

Taking both the computational time and prediction accuracy into consideration, on-

line and offline projection-onto-simplex SHMM are the best choice among these meth-

ods.

Method Offline/online Computational time (sec)
EM (Baum-Welch) - 2134

SHMM offline 304
SHMM online 0.5

PSHMM (simplex) offline 521
PSHMM (simplex) online 0.7
PSHMM (polyhedron) offline 10178
PSHMM (polyhedron) online 14

Table 4.1: Simulation results for comparing computational time among different
methods.

4.2.3 Test the effectiveness of forgetfulness

Experiment setting. Similar to Section 3.4 and Section 4.2.1, we simulated 100-

dimensional, 5-state GHMM data with σ = {0.01, 0.05, 0.1, 0.5, 1.0} and of length

1000+ 1000 where the first 1000 steps are for training and the last 1000 steps are for

testing. The transition matrix is no longer time-constant but differ in the training

and testing period as follows:

51

• training period (diagonal-0.8):

0.8 0.05 0.05 0.05 0.05

0.05 0.8 0.05 0.05 0.05

0.05 0.05 0.8 0.05 0.05

0.05 0.05 0.05 0.8 0.05

0.05 0.05 0.05 0.05 0.8

;

• testing period (antidiagonal-0.8):

0.8 0.05 0.05 0.05 0.05

0.05 0.8 0.05 0.05 0.05

0.05 0.05 0.8 0.05 0.05

0.05 0.05 0.05 0.8 0.05

0.05 0.05 0.05 0.05 0.8

.

We tested different methods on the last 100 time steps with four methods including

standard SHMM, projection-onto-simplex SHMM, online learning projection-onto-

simplex SHMM, and online learning projection-onto-simplex SHMMwith decay factor

γ = 0.05. For online learning methods, similar to Section 4.2.1, we used the first 100

in the training set for warm-up and incorporated the remaining 900 samples by online

updates.

Simulation results. Figure 4.2 shows the simulation results. As we can see, when

the underlying data generation process is no longer with a stationary scheme, most

methods failed including the E-M algorithm, except the online learning projection-

onto-simplex SHMM with decay factor = 0.05. This indicated that adding the decay

52

Figure 4.2: The figure shows the simulation results for online learning variants. The
results are for 5-state GHMM with different σ and time-varying transitions. The
y-axis is R2 and different curves are for different methods. For R2 < 0, we plot 0
instead of the negative for plotting purposes. See supplementary for detailed results.

factor could help the model adapt to the non-stationary pattern, and will have more

robust results. At the same time, we could see that when the signal noise ratio is

small, online learning with decay doesn’t work well. This is due to the limited effective

sample size.

4.3 Application: Backtesting on Commodity Mar-

ket Daily Trading

4.3.1 Data description & experiment setting

Commodity future contract is a very important investment class in the world. Here

we are using the historic daily commodity future contract close price to make fore-

53

casting. The data is downloaded from Yahoo Finance. We chose 8 most popular

assets including crude oil, natural gas, gold, wheat, S&P 500 Index, Dow Jones In-

dex, Nasdaq 100 Index and US treasury bond. We first calculated the log return of

the close price for each day, then used it as the input of models. We set a validation

period from 09/01/2021 to 12/31/2021, and then set the whole year 2022 as a test

set. For each day in the validation and testing set, we used its previous 1-year (252

trading days) rolling period as training. We tuned the hyperparameters d from 3 to

6 over the validation based on Sharpe ratio and applied the optimal one to the test

set. In the test set, we convert the prediction into trading strategies and measure

its performance by annualized returns, Sharpe ratios and maximum drawdowns as

in Section 3.5.1. We test PSHMM and SHMM under 3 settings: offline learning,

online learning and online learning with decay γ = 0.05; we also compare them with

HMM-EM.

4.3.2 Results

The results are shown in Table 4.2. From the results, we can see that the PSHMM

outperformed the benchmarks such as E-M algorithm and standard SHMM. The

offline training PSHMM is better compared to online learning since it could obtain

the whole set of training at one time, so the estimation of moments is more accurate

at the beginning stage. Since we only use a 1-year rolling training set, the dynamic

change is not severe in general. Online learning PSHMM with 5% decay has a decent

performance, which shows the adaptability to the dynamic nature of the trading data.

54

Method Sharpe Ratio Annualized Return Maximum drawdown
PSHMM 2.563 3.498 0.257

online PSHMM 0.600 0.827 0.631
online PSHMM decay 5% 1.366 1.873 0.226

SHMM -0.146 -0.201 1.152
online SHMM 0.342 0.490 0.946

online SHMM decay 5% -0.484 -0.664 1.101
HMM-EM 0.187 0.278 0.575

Table 4.2: Real-world application results: SHMM class with online learning on com-
modity trading.

4.4 Discussions

Online learning can adapt to dynamic patterns and provide faster learning.

Here we provide an online learning strategy that allows the estimated moments to

adapt over time, which is critical in several applications that can exhibit nonstation-

arity. Our online learning framework can be applied to both the standard SHMM

and PSHMM. Importantly, online learning substantially reduces the computational

costs compared to re-training the entire model prior to each new prediction.

Trade-off for using online learning with decay. Whether to use a nonzero

decay factor γ for online learning depends on several factors. The biggest factor is

whether the pattern is dynamic or not. If the pattern is dynamic, we should also

consider the signal-noise-ratio. When we are using online learning with decay, the

effective sample size, that the summation of all weights are limited even if we have

infinite samples. If we have infinite samples, the summation of weights is
∑∞

0 (1 −

γ)t = 1
γ
. That is to say, if we choose the decay factor γ = 0.05, then the effective

sample size is about 20; if we choose the decay factor γ = 0.01, then the effective

sample size is about 100. Unlike the non-decay learning whose sample size goes to

infinite when we have infinite observations, the effective sample size is bounded if the

55

decay is nonzero. So if the pattern is only slightly dynamic, we could still choose to

use the non-decay online learning.

56

Chapter 5

Latent Control Hidden Markov

Models

5.1 Motivation

Previous chapters introduce the estimation of standard HMM evolving endogenously

with a strong stationary assumption. However, in many cases, the evolution of the

hidden states does not follow a time-homogeneous Markov chain, meaning that the

state transition probabilities are not constant over time. In this study, we focus on

HMM whose transition is impacted by the cross predictors outside the system and

extend it to a Bayesian model by adding priors. However, this model is not designed

to deal with sparse models that some features are not incorporated in the models.

To deal with sparsity, we propose a new method called latent control HMM, with

latent binary variables controlling the state transitions by automatically selecting

the cross predictors in and out of the model. These binary latent variables further

form spike-and-slab priors (Ishwaran and Rao, 2005a) and could indicate how the

corresponding feature impacts the transition with providing a posterior probability.

The model inference could be done by MCMC sampling. For simple models like linear

regression with spike-and-slab prior, inferring the latent control variable could be done

with sampling from the conjugate class. However, for some more complicated models

57

such as the proposed latent control HMM, the conjugate class is hard to find, a more

common strategy is to do the sampling with Metropolis-Hasting sampler (Chib and

Greenberg, 1995). MCMC could help us predict better under sparse cases or under

the cases where the exogenous features only weakly impact the transition matrix.

When prediction, we could sample from the posterior by MCMC and then take the

average. This could be viewed as a Bayesian model averaging. Besides prediction,

these MCMC samples can provide the feature importance by providing the posterior

probability for each feature of being selected in the model.

To summarize, we propose a latent control HMM with a latent binary variable, which

could provide insights on feature importance on transition between states. We propose

to use MCMC to infer its parameters and make predictions. We tested this model on

both simulated data and application data with benchmark methods, and we found

that the latent control model has a better performance than other models.

5.2 Literature Review

5.2.1 Bayesian HMM

Bayesian HMM is an hierarchical model that every parameter including initial prob-

ability π0, transition matrix T and emission E in standard HMM follows some priors

58

as follows:

π0 = [π1
0, π

2
0, · · · , πS

0] ∼ Dir(1, · · · , 1),

h1|π0 ∼ Multinomial(1, π0), h1 = 1, · · · , S,

T =

T1,1 T1,2 · · · T1,S

T2,1 T2,2 · · · T2,S

· · · · · · · · · · · ·

TS,1 TS,2 · · · TS,S

where T(i,·) ∼ Dir(1, · · · , 1),

(µi,Σi) ∼ NIG(µ0, N0, c, d), i = 1, · · · , S,

Yit ∼ N(µhit
,Σhit

), (5.1)

where Ti,j indicates the transition probability from hidden state i to j, T(i,·) refers to

the transition probability vector of transiting from hidden state i to all next possible

hidden states, and NIG is the Normal-Inverse-Gamma distribution. For simplicity,

we denote the set of Gaussian emission distribution parameters as E = {µi,Σi}i=1:S.

Bayesian HMM by Markov chain Monte Carlo (MCMC) is a very straightforward by

Gibbs sampling (see e.g. Rydén, 2008).

5.2.2 HMM with cross predictors: control HMM

Control HMM was proposed multiple times in the 1990s. For example, Bengio and

Frasconi (1994) proposed the input-output HMM and in this framework, researchers

introduced how to add the cross predictors to the standard HMM. Figure 5.1 shows

the model structure. Compared with the standard HMM, the transition matrix in

the control HMM can be impacted by the exogenous features, and the transition is

no longer a constant due to incorporating time-dependent variables. Typically, the

59

transition matrix is typically in the multinomial logistic form as follows:

Tit(r, s) = P (Hit = s|H(i,t−1) = r) =
exp(Xitβrs)

1 +
∑S

k=2 exp(Xitβrs)
,

Tit =

B1 0 . . . 0

0 B2 . . . 0

...

0 0 . . . BS

1 exp(Xitβ12) . . . exp(Xitβ1S)

1 exp(Xitβ22) . . . exp(Xitβ2S)

...

1 exp(XitβS2) . . . exp(XitβSS)

(5.2)

where Bb = 1 +
∑S

k=2 exp(Xitβrs) is the normalization term. This model can be

inferred by the E-M algorithm for MLE and Algorithm 5 shows the full algorithm of

using E-M algorithm to infer the control HMM.

Figure 5.1: Control HMM with MLE by (Bengio and Frasconi, 1994)

5.3 Model Assumption

In this section, we described the proposed latent control HMM. Assume Yt follows

a HMM whose transition is controlled by exogenous features Xt. Assume Xt is p-

dimensional where p is the number of cross predictors, Yt is q-dimensional where q is

60

Algorithm 5: E-M algorithm for HMM with cross predictors
Data: {Yt}Tt=1, {Xt}Tt=1

Result: Θ̂ = {π̂0, β̂, Ê}
Initialize Θ̂;
while not converged do

E-step: update {γt(j)}j=1:S
t=1:T and {ξt(i, j)}i,j=1:S

t=1:T conditioned on Θ̂ for t← 1
to T do

αt(j) =

{
π0(j)bj(Y1), if t = 1∑S

i=1 αt−1(i)Tij(Xt−1;β)bj(Yt), otherwise
∀j = 1, · · · , S;

end
for t← T to 1 do

βt(j) =

{
1, if t = T∑S

j=1 Tij(Xt;β)βt+1(j)bj(Yt+1), otherwise
∀j = 1, · · · , S;

end
P(ht = j) = γt(j) =

αt(j)βt(j)∑S
i=1 αt(i)βt(i)

∀t, j;
P(ht = i, ht+1 = j) = ξt(i, j) =

αt(i)Tij(Xt;β)bj(Xt+1)βt+1(j)∑S
i=1 αt(i)βt(i)

∀t, i, j;
M-step: update Θ̂ conditioned on {γt(j)} and {ξt(i, j)}
for i← 1 to S do

X(logit), y(logit), w(logit) ← empty array;
for t← 1 to T do

for j ← 1 to S do
append(X(logit), Xt);
append(y(logit), j);
append(w(logit), ξt(i, j));

end
end
Fit multinomial-logistic regression with X(logit) as features, y(logit) as
responses, and w(logit) as sample weights;

β̂i· is its regression coefficient;
end
π̂0(j) = γ1(j) ∀j = 1, · · · , S;
Estimate Êj based on samples {Yt}Tt=1 with weights {γt(j)}Tt=1

end

the number of response, (Xt, Yt) are both observed at time t.

61

Assume there are S hidden states, and define the part related to π0 as below:

π0 = [π1
0, π

2
0, · · · , πS

0] ∼ Dir(1, · · · , 1),

h1|π0 ∼ Multinomial(1, π0), h1 = 1, · · · , S (5.3)

where π0 is the initial probability of hidden states in Equation 5.3, and hidden states

ht is a categorical variable with levels 1, · · · , S. Here we slightly abused the definition

of Multinomial distribution that we want the notation of the model to be simple. ht

could be of the format of either an one-hot dummy variable or an integer 1, · · · , S.

Second, the latent control variable and the coefficient of cross predictors have a con-

tinuous bimodal spike-and-slab structure as follows:

w ∼ Beta(a, b),

Zm
rs ∼ Bern(w), m = 1, · · · , p; r = 1, · · · , S; s = 2, · · · , S

βrs = [β1
rs, . . . , β

p
rs],

βm
rs|(Zm

rs = 0) ∼ Normal(0, σ2
spike),

βm
rs|(Zm

rs = 1) ∼ Normal(0, σ2
slab), (5.4)

where Z = {Zm
rs}mrs is the latent variable, which controls β = {βm

rs}mrs, and Z and

β are of the same dimensionality p× S × S, where m is the m-th predictor among p

cross predictors, Zm
rs controls the scale of βm

rs by spike-and-slab prior, and βm
rs controls

the impact of the m-th feature on the transition from hidden state r to s. By default,

in Equation 5.4 we set priors a = b = 1, σ2
spike =

1
1000

and σ2
slab = 1.

62

Then, define the transition matrix and hidden states:

Tit(r, s) = P (hit = s|h(i,t−1) = r) =
exp(Xitβrs)∑S
k=1 exp(Xitβrk)

,

Tit =

Bit,1 0 . . . 0

0 Bit,2 . . . 0

...

0 0 . . . Bit,S

exp(Xitβ11) exp(Xitβ12) . . . exp(Xitβ1S)

exp(Xitβ21) exp(Xitβ22) . . . exp(Xitβ2S)

...

exp(XitβS1) exp(XitβS2) . . . exp(XitβSS)

,

hi(t+1) ∼ Multinomial(1, Tit(hit, ·)), (5.5)

where Tit is the transition matrix for each observation i at each time step t, and

Tit(r, s) is the elements representing the transition probability from hidden state r

to s in the transition matrix Tit. The transition matrix is in the multinomial-logistic

format. In Equation 5.5, Bit,s is the normalization term and Bit,s = 1∑S
k=1 exp(Xitβrk)

.

Tit(hit, ·) represents the probability vector of hidden states transiting from hit to each

hidden state.

Finally define the part for emission and observations:

E = {µi,Σi}i=1:S where (µi,Σi) ∼ NIG(µ0, N0, c, d), i = 1, · · · , S,

Yit ∼ N(µhit
,Σhit

), (5.6)

where E is the set of parameters representing the Gaussian emission distributions,

which follow a Normal - Inverse Gamma prior distribution with hyperparameters

(µ0, N0, c, d,), where µ0 is the prior mean for µi, N0 is the prior strength, and c and

d are the parameters for Σhit
. By default we set µ0 = 0, N0 = 10, c = d = 1.

63

Figure 5.2: Latent control HMM model structure. β = {βm
rs}, Z = {Zm

rs}, m =
1, · · · , p, r, s = 1, · · · , S.βm

rs and Zm
rs is 1-1 mapping, and β and Z are not time-

dependent and will not change over time.

5.4 Model Inference

5.4.1 Model estimation by MCMC

To infer the parameters in the model, we used Gibbs MCMC sampling with stochastic

search variable selection (Ishwaran and Rao, 2005b) to infer w and {Zm
rs}mrs and

Metropolis-Hasting sampler for inferring {βm
rs}mrs. We divided the inference into six

main steps as following:

• Initialization: set initial value for parameters, including π0, E and βm
rs by MLE;

• Step 1: Sample h1, h2, · · · , hT

Sample ht based on the posterior, and get the probability p(ht = s) for each pos-

sible hidden state. Sample the hidden states based on Multinomial distribution

and backward recursion forward sampling.

• Step 2: Sample w

64

Sample w from posterior distribution p(w|Zm
rs), where w|Zm

rs ∼ Beta(a+#{Zm
rs =

0}, b+#{Zm
rs ̸= 0}).

• Step 3: Sample Zm
rs

Sample Z from continuous bimodal distribution as follows:

P (Zm

rs = 0) ∝ (1− w)(
σ2
spike

σ2
slab

)−
1
2 exp(− (βm

rs)
2

2σ2
spike

)

P (Zm
rs = 1) ∝ wexp(− (βm

rs)
2

2σ2
slab

)

,

• Step 4: Sample βm
rs by Metropolis-Hasting

Propose a new βm
rs by Gaussian random walk, then calculate the posterior prob-

ability. If the posterior becomes larger, then accept the proposed βm
rs; otherwise,

accept the proposal with an acceptance rate.

• Step 5: Sample E:

Sample µi,Σi, i = 1, · · · , S based on Normal-Inverse Gamma conjugate poste-

rior distribution.

• Step 6: Sample π0:

Sample π0 by the Dirichlet-Dirichlet conjugate. See more details.

• Repeat Step 1 to Step 6 until all parameters involved in this model for enough

sampling times (e.g. 1000).

The above sampling procedure is for a single observed series, and the generalization

to multiple observed series is straightforward. Here the biggest difference between

this method and traditional Bayesian HMM’s MCMC sampling is that we don’t have

the posterior distribution for coefficients β, so we proposed to use Metropolis-Hasting

sampler. The mathematical details of the above procedure is as follows.

65

Sampling h1, · · · , hT by backward recursion forward sampling For each ob-

servation i, sample hidden states h1, · · · , hT as based on the following probability.

P (h1 = r| · · ·) ∝ πr
0ϕ(yi1;µr, σr)p(yi2:iT |h1 = r),

P (ht = r|ht−1 = s) ∝ Ti(t−1)(s, r)ϕ(yit;µr, σr)p(yi(t+1):iT |ht = r), (5.7)

where ϕ(·) is the Gaussian pdf, and p(yi(t+1):iT |ht = r) is the backward propagation

probability. That is to say, we sample h1 based on P (h1 = r| · · ·) in Eq. 5.7, and

then conditioned on the sampled h1, sample h2. Then conditioned on sampled h2,

sample h3. Recursively sample until hT .

Metropolis-Hasting algorithm for sampling exogenous predictor coefficients

Suppose we have a previous sample βm
rs and a proposed β̃m

rs. We calculate the poste-

rior, if the posterior of the new proposal is larger than the old one, then accept and

update the previous βm
rs by it. Otherwise, accept the proposed parameter with the

acceptance rate in Eq. 5.8.

Acceptance Rate = min{1, π(β̃
m
rs)L(β̃

m
rs, · · ·)

π(βm
rs)L(β

m
rs, · · ·)

} = min{1, H}, (5.8)

where H = π(β̃m
rs)L(β̃

m
rs,···)

π(βm
rs)L(β

m
rs,···)

is the Hasting rate. Then we sample a uniformly distributed

variable u ∼ Unif [0, 1] and update βm
rs to β̃m

rs if we have u ≤ min{1, H}, else we

keep βm
rs. The proposal β̃m

rs can be sampled from a Gaussian random walk around the

previous βm
rs.

66

Sample the initial probability by Dirichlet distribution Sample πupdated
0 from

the posterior as following:

πupdated
0 ∼ Dir(1 +#(h1 = 1), · · · , 1 +#(h1 = S)), (5.9)

where h1 is the hidden states at time step t = 1.

5.4.2 Prediction & Bayesian credible interval

Given the sampled parameter set Θ = (π0, E, β, Z), we can use the standard forward

propagation to make predictions based on the latent-control HMM model. Figure

5.3 shows the prediction steps. Assume we use time steps 1, · · · , t − 1 as training

set for MCMC parameter sampling, and use time steps t, · · · , T as test set. For

each time step t, conditioned on all information before t, at time t, the hidden state

ĥt|t− 1 = ht−1Tt−1. The predicting at time step t is Ŷt = (ĥt|t− 1) · µ⃗. When predict

the hidden state ht+1, we need to update the observation of Yt and also update

ht based on forward-propagation and repeat the above steps. These steps are the

same as prediction by frequentist HMM as all parameters are fixed. Note that we

have M different sampled parameters by MCMC {Θn}Mn=1, following the posterior

distribution. For each of these parameter sets, we will get a prediction Ŷt|Θm for each

time step t, and their arithmetic average of M predictions are the final prediction

Ŷ
(MCMC)
t = 1

M

∑M
n=1(Ŷt|Θn), which is the posterior mean prediction. Based on the

MCMC samples, we can construct 95% Bayesian credible interval (Eberly and Casella,

2003) by finding the empirical 2.5% and 97.5% quantiles of {(Ŷt|Θn)}Mn=1.

67

Figure 5.3: Prediction by latent control HMM

5.4.3 Feature importance by posterior mean

The most interesting part of latent control HMM is that it can provide a way to

evaluate feature importance by the posterior mean. This feature importance mecha-

nism we proposed is unique to the best of our knowledge. The motivation is that if

Zm
rs = 1, then βm

rs is in the slab mode, otherwise in the spike mode. We can treat the

βm
rs in the slab mode to be in the model and treat the βm

rs in the spike mode to be out

of the model. So we find the posterior probability of Zm
rs = 1 from MCMC samples

as the posterior probability that βm
rs is in the model.

Mathematically, after the MCMC sampling, for the m-th feature on transition from

state r to s, we have {(Zm
rs)n}Mn=1 that is the MCMC samples for whether this feature

could impact this transition. We calculate the posterior mean that PrD(Z
m
rs) = Zm

rs =

1
M

∑M
n=1 m(Zm

rs)n as the feature importance score. If this score is large, then it means

that the corresponding feature has a significant impact on the transition. We provided

a detailed interpretation of this feature importance score in the application which

68

provides insights for disease progression diagnosis for clinical trial data in Section

5.6.1.

5.5 Simulations

5.5.1 Test the prediction performance

We generated time series from a Gaussian HMM with 2 hidden states and 10 cross

predictors, where the emission probabilities associated with state i are distributed as

N(µi, σ
2I) where µ1 = [1, 0, · · · , 0]⊤, µ2 = [0, 1, 0, · · · , 0]⊤, and I is the dim(Y) ×

dim(Y) identity matrix. For the transition probabilities, we use the multinomial-

logistic form stated in Equation 5.5. We generated cross predictors of dimensional-

ity dim(X) i.i.d. from N(0, 1). Then we sampled the coefficients βm
rs’s from i.i.d.

Unif [10, 20] × δmrs, where δmrs ∼ Bern(p), p = {0.01, 0.05, 0.1, 0.5, 1.0} to control

the sparsity of the cross predictor. In other words, if δmrs = 0 we let βm
rs = 0

otherwise βm
rs ∼ Unif [10, 20]. We simulated data across a wide range of settings:

σ = {0.01, 0.05, 0.1, 0.5}; dim(X) = 10, 100; dim(Y) = 10, 100. For each setting, we

repeated our simulation 100 times and reported the average R2 and computational

time. We used 10000 time points for training and tested the performance on a test

series of size 1000. We test the performance on feature importance inference of this

latent control model, and also compare its prediction results with control HMM as

well as the oracle using all information up to time t including ht and all parameters

to predict t+ 1.

We compared the prediction performance of latent control HMM with some bench-

marks such as control HMM and the oracle. From Figure 5.4 we can see that the

69

latent control HMM performs much better than other models, and it even nearly

overlaps with the oracle under different signal-noise ratio.

5.5.2 Test the feature selection

Here we tested whether the latent control HMM models can select the true important

features. We generate data similar to Section 5.5.1 but with different sparsity ratio,

including 0.7, 0.8, 0.9. Since there are 2 hidden states and 10 cross predictors, in total

there are 40 cross predictor coefficients. If the sparsity ratio is 0.7 / 0.8 / 0.9, then 28

/ 32 / 36 among 40 coefficients are 0. Then we conducted MCMC sampling 500 times,

so for each Zm
rs, we have 500 samples and we can calculate their feature importance by

their posterior mean. We repeat the whole experiment 10 times, and then calculate

the average probability that a feature could be selected in the model condition on it is

a true important feature, and the average probability that a feature could be selected

in the model condition on it is not a true important feature. Therefore, the larger

the difference between these two probabilities, the better feature selection ability the

model will have. Figure 5.5 shows the results of this experiment. We can see that

the feature importance is separable, that the strong features have a much higher

probability to have the corresponding binary control variable being 1. Here we can

see when the model is sparser, then the difference between the two probabilities are

larger, which indicates that the model feature selection ability is stronger. Compared

with control HMM under E-M framework, this model incorporates all cross predictors,

therefore the above two probabilities are always 1. It suggests that our method works

better and can identify the important features under sparse cases.

70

Figure 5.4: This figure shows the simulation results for the prediction performance
of latent control model and the benchmarks under different signal noise ratio and
sparsity of coefficient cases. The left column shows the results of low dimensional
data, and the right column shows high dimensional cases.

71

Figure 5.5: This figure shows the probabilities of a strong or noisy feature selected in
the model.

5.6 Application

We show two applications of this latent control HMM model. The first one is to show

the inference and feature selection ability of this model, and the second application

is to show the strong prediction performance of this model.

5.6.1 Application I: Inference of latent control on end-stage

gastric cancer data

This application is to use latent control HMM with multiple observed series. The data

was extracted from patients’ medical reports (1000+ pages) provided by University

of Virginia Health System (UVA Health), including the lab reports, scan reports and

the pathology reports. There are 96 patients and 10 variables included in this dataset.

Those variables contain information of patients’ demographic characteristics and lab

results. The six lab results are collected weekly during their chemotherapy. Among

72

those variables, the 4 demographic characteristics are the exogenous predictors, the

lab results are response, and each patient forms an observed series with time-invariant

cross predictors. The following Table 5.1 shows more detailed description of the

variables. We inferred it with a latent control Gaussian HMM with 2 states and 1000

MCMC samples. All exogenous are standardized to have 0 mean and 1 variance.

Variables Description Data type Unit
& Normal range

Demographic dx-age Patient’s age integer
(at the time diabetes Diabetic or not binary
of diagnosis) gender Gender of patient binary

BIM Body mass index continuous kg/m2
Lab results T1 Hematocrit continuous, 35.0-47.0 %

T2 Platelet continuous, 150-450 K/UL
T3 WBC continuous, 4.0-11.0 K/UL
T4 Albumin continuous, 3.2-5.2 G/DL
T5 Creatinine continuous, 0.7-1.3 MG/DL
T6 Total bilirubin continuous, 0.3-1.2 MG/DL

Table 5.1: Variables in end-stage gastric cancer dataset. Data was collected from
UVA Health.

Results and interpretation Table 5.2 shows the estimated mean for each cluster,

i.e. the estimated mean for different emission distributions. According to the reference

level and normal range of the lab results in Table 5.1, we labeled the abnormal lab

results with stars (‘*’) in Table 5.2. With this table, we could interpret the two hidden

states as ‘faster progression state’ and ‘lower progression state’ respectively according

to the lab results. That is to say, if an inferred state has more abnormal estimated

mean of lab results, then we treat it as ’faster progression state’; otherwise, we labeled

it as ’lower progression state’. Therefore, the transition from ‘lower progression state’

to ‘faster progression state’ indicates the patient’s lab results become worse and have

a severe condition than the last observation. In contrast, the transition from ’faster

73

progression state’ to ’lower progression state’ indicates the patient’s lab results become

better but this doesn’t indicate that the patient has fully recovered. As we can see, in

this table, 5 out of 6 estimated means of the lab results in ‘faster progression state’ are

out of the reference level, while no estimated means are out of the reference range in

the ‘lower progression state’. We also checked the estimated standard deviation, which

showed that ‘faster progression state’ has a much larger value than ‘lower progression

state’. Note that ‘lower progression’ and ‘faster progression’ are relative concepts,

since all patients are end-stage gastric cancer patients and died in the hospitals or

hospices eventually.

Cluster T1 T2 T3 T4 T5 T6
Reference (35.0, 47.0) (150, 450) (4.0, 11.0) (3.2, 5.2) (0.7, 1.3) (0.3, 1.2)

Faster progression 27.42∗ 244.62 11.51∗ 2.64∗ 1.33∗ 1.21∗

Lower progression 33.18 275.88 8.29 3.36 0.78 0.47

Table 5.2: Estimated mean for each cluster in gastric cancer dataset.

ht+1

Faster Lower

ht

Faster 0.216 + 0.571 +
Lower 0.703 + 0.542 +

(a) Age at diagnosis

ht+1

Faster Lower

ht

Faster 0.56 + 0.254 +
Lower 0.483 - 0.41 +

(b) Gender (0: male, 1: female)

ht+1

Faster Lower

ht

Faster 0.891 + 0.715 -
Lower 0.461 + 0.518 -

(c) Diabetes (0: N, 1: Y)

ht+1

Faster Lower

ht

Faster 0.675 - 0.399 +
Lower 0.233 + 0.31 +

(d) Body mass index.

Table 5.3: The probability of an exogenous predictor controlling the transition among
hidden states.

Table 5.3 shows the estimated probability that a cross predictor controlling the tran-

74

sition between hidden states. For example, ‘0.703 +’ in Table 5.3 can be interpreted

as: the age at time of diagnosis can influence the hidden states transiting from ’lower

progression’ to ’faster progression’ with probability 0.703. i.e. among every 100

MCMC samples, about 70 samples shows that the age at time of diagnosis can influ-

ence the hidden states transiting from ’lower progression’ to ’faster progression’. ‘+’

means the impact is positive (i.e. βdx−age
lower,faster > 0), which indicated that the larger

age the patient has, the more likely their state will transfer from ’lower progression’

to ’faster progression’ that the condition will become worse. From the results shown

in Table 5.3, we can see that patients who are elder, diabetic and with a smaller

BMI are more likely to have a severe condition. This is consistent with some prior

knowledge in clinical diagnosis. For example, end-stage gastric cancer patients who

have a larger BMI indicated that those patients have a better condition than others,

since the tumor development usually yields losing weight dramatically (Tegels et al.,

2014).

5.6.2 Application II: Prediction of natural gas’s volatility

This application is to use latent control HMM with time-dependent exogenous pre-

dictors. The data of natural gas future contract price (2000.01 to 2020.05) was

downloaded from Yahoo finance, and New York weather data was downloaded from

National Weather Service. Table 5.4 shows the variables used in the dataset. In

this application, we use volatility as the response, and use the temperature as time-

dependent exogenous predictors. Here we used the difference between the highest

price and lowest price of each day to describe the volatility of the natural gas’ price.

The volatility is not tradable directly, but we can use the result as a signal or in-

dicator to help option trading, such as Gamma trading or straddles. We inferred it

75

with a latent control Gaussian HMM with 3 states and 1000 MCMC samples. All

exogenous are standardized to have 0 mean and 1 variance. We compared it with the

benchmark method, control HMM inferred by MLE.

Variables Description Unit
raw Date the date that the data recorded
variables High the highest price of the NG future contract USD

Low the lowest price of the NG future contract USD
TMAX the highest temperature of NYC ◦C
TMIN the lowest temperature of NYC ◦C

response Vol volatility = High - Low USD
exogenous THIGH binary, 1 if TMAX > 30, else 0
predictors TLOW binary, 1 if TMIN < 0, else 0

Table 5.4: Variables in natural gas prediction dataset

Figure 5.6: Time series plot

Results and interpretation. We tested the latent control HMM on this natural

gas contracts data set to predict the volatility of the price, compared the results with

the benchmark method, control HMM, and the underlying ground truth. Table 5.5

shows the results of prediction. From the table, we can see that R2 for latent variable

HMM is 0.32, R2 for EM-based control HMM is 0.26. Using 0.2 as a threshold for

classifying the volatility, above which the volatility is classified into high volatility,

otherwise, low volatility, then we calculated Area under the Receiver Operating Char-

acteristic Curve (ROC-AUC) based on this classification. The results show that latent

76

control HMM outperformed control HMM. Based on MCMC samples, we constructed

the 95% Bayesian credible interval shown in Figure 5.7.

Model Inference Prior test R2 AUC
Latent control HMM MCMC with prior 0.33 0.912
control HMM MLE no prior 0.26 0.904

Table 5.5: R squared of the prediction of natural gas

Figure 5.7: Compare the prediction by latent control HMM with control HMM, the
latent control HMM gives a higher R2.

5.7 Discussions

There are two main advantages of latent control HMM, the predictability and feature

importance interpretability under sparse settings. Both two advantages come from the

MCMC sampling procedure because for each feature it is taking both two possibilities,

in the model or out of the model, into consideration. From MCMC sampling, we will

have the posterior of whether each feature is involved in the model, which will be

automatically calibrated according to the observed data.

77

The latent control variable could provide an interpretation of how the exogenous

predictors can impact the transition between the hidden states, which could provide

some insights and signals in real-world applications, such as for disease progression

diagnosis. The feature importance provided by latent control is unique because it is

a marginal posterior probability. In contrast, Bayesian HMM proposed by Shirley

et al. (2010) cannot provide feature importance. Control HMM can evaluate the

feature importance by Likelihood Ratio Test (LRT) (Woolf, 1957) under frequentist

framework, but it has two drawbacks. First, it provides a conditional, not marginal,

p-value. The LRT is comparing two nested models, and the p-value is only valid

conditioned on the smaller model. Second, it provides a p-value indicating whether

a feature is significant or not. This is an in the model or out of model qualitative

interpretation, instead of a quantitative posterior probability interpretation.

The latent control can help prediction because it provides flexibility of incorporation

of the cross features. The binary latent control indicates whether the model involves

the features or not, which can be told by the posterior. This would be useful when

we are not confident of whether to involve the feature or not and the prediction is

a Bayesian model averaging. In contrast, control HMM will always involve all cross

predictors. Besides, control HMM is inferred by MLE so will only converge to the

local optima instead. But our latent control HMM samples from posterior distribution

which will be less likely to be trapped into local optima.

78

Appendices

79

Appendix A

Appendix

A.1 Detailed Simulation Results for PSHMM and

Online Learning Variants

Table A.1 shows the detailed simulation results for Figure 3.2.

Table A.2 shows the detailed simulation results for Figure 4.1.

80

E T σ #Cluster Limited Strong SHMM PSHMM PSHMM
inferred oracle oracle simplex polyhedron

t5 sticky 0.05 5 0.28 0.28 −673629.23 0.27 0.24
t10 sticky 0.05 5 0.3 0.3 −67.72 0.29 0.27
t15 sticky 0.05 5 0.31 0.31 −2.82 0.3 0.28
t20 sticky 0.05 5 0.3 0.3 −205.24 0.29 0.27
t5 nonsticky 0.05 5 0.17 0.17 −2.48 0.17 0.11
t10 nonsticky 0.05 5 0.19 0.19 0.11 0.18 0.11
t15 nonsticky 0.05 5 0.19 0.19 −0.59 0.18 0.11
t20 nonsticky 0.05 5 0.19 0.19 0.14 0.19 0.11
N sticky 0.05 3 0.31 0.31 −125.03 0.21 0.12
N sticky 0.05 4 0.31 0.31 −717.8 0.25 0.23
N nonsticky 0.05 3 0.19 0.19 −3.25 0.16 0.1
N nonsticky 0.05 4 0.19 0.19 −155.85 0.17 0.09
N sticky 0.01 5 0.38 0.38 0.34 0.38 0.37
N nonsticky 0.01 5 0.24 0.24 0.24 0.24 0.15
N sticky 0.05 5 0.31 0.31 −9.36 0.3 0.28
N nonsticky 0.05 5 0.19 0.19 0.14 0.19 0.12
N sticky 0.1 5 0.19 0.19 −74.73 0.18 0.15
N sticky 0.5 5 0.01 0.01 −22.02 0.01 0.0
N sticky 1.0 5 0.0 0.0 −1163.8 0.0 −0.0
N nonsticky 0.1 5 0.12 0.12 −8.47 0.12 0.07
N nonsticky 0.5 5 0.01 0.01 −22.29 0.01 0.0
N nonsticky 1.0 5 0.0 0.0 −5.61 0.0 −0.0

Table A.1: Detailed simulation results for Figure 3.2.

81

E T σ #Cluster PSHMM PSHMM PSHMM
inferred simplex simplex, online simplex, online, decay

t5 sticky 0.05 5 0.27 0.26 0.07
t10 sticky 0.05 5 0.29 0.29 0.07
t15 sticky 0.05 5 0.3 0.29 0.06
t20 sticky 0.05 5 0.29 0.29 0.06
t5 nonsticky 0.05 5 0.17 0.17 −0.02
t10 nonsticky 0.05 5 0.18 0.18 −0.02
t15 nonsticky 0.05 5 0.18 0.18 −0.03
t20 nonsticky 0.05 5 0.19 0.18 −0.02
N sticky 0.05 3 0.21 0.21 0.1
N sticky 0.05 4 0.25 0.25 0.08
N nonsticky 0.05 3 0.16 0.17 0.04
N nonsticky 0.05 4 0.17 0.18 −0.0
N sticky 0.01 5 0.38 0.37 0.08
N nonsticky 0.01 5 0.24 0.24 −0.08
N sticky 0.05 5 0.3 0.3 0.06
N nonsticky 0.05 5 0.19 0.19 −0.03
N sticky 0.1 5 0.18 0.18 0.03
N sticky 0.5 5 0.01 0.0 −0.0
N sticky 1.0 5 0.0 −0.01 −0.0
N nonsticky 0.1 5 0.12 0.11 0.0
N nonsticky 0.5 5 0.01 −0.0 −0.01
N nonsticky 1.0 5 0.0 −0.01 −0.01

Table A.2: Detailed simulation results for Figure 4.1.

82

Bibliography

Anandkumar, Anima et al. (2012). “A spectral algorithm for latent dirichlet alloca-

tion”. In: Advances in neural information processing systems 25.

Anandkumar, Animashree et al. (2011). “Spectral methods for learning multivariate

latent tree structure”. In: Advances in neural information processing systems 24.

Andrieu, Christophe et al. (2003). “An introduction to MCMC for machine learning”.

In: Machine learning 50.1, pp. 5–43.

Baum, Leonard E and John Alonzo Eagon (1967). “An inequality with applications

to statistical estimation for probabilistic functions of Markov processes and to

a model for ecology”. In: Bulletin of the American Mathematical Society 73.3,

pp. 360–363.

Baum, Leonard E and Ted Petrie (1966). “Statistical inference for probabilistic func-

tions of finite state Markov chains”. In: The annals of mathematical statistics 37.6,

pp. 1554–1563.

Baum, Leonard E, Ted Petrie, et al. (1970). “A maximization technique occurring in

the statistical analysis of probabilistic functions of Markov chains”. In: The annals

of mathematical statistics 41.1, pp. 164–171.

Bengio, Yoshua and Paolo Frasconi (1994). “An input output HMM architecture”. In:

Advances in neural information processing systems 7.

Bhar, Ramaprasad and Shigeyuki Hamori (2004). Hidden Markov models: Applica-

tions to financial economics. Vol. 40. Springer Science & Business Media.

Boyd, Stephen, Stephen P Boyd, and Lieven Vandenberghe (2004). Convex optimiza-

tion. Cambridge university press.

83

Chekhlov, Alexei, Stanislav Uryasev, and Michael Zabarankin (2004). “Portfolio op-

timization with drawdown constraints”. In: Supply chain and finance. World Sci-

entific, pp. 209–228.

— (2005). “Drawdown measure in portfolio optimization”. In: International Journal

of Theoretical and Applied Finance 8.01, pp. 13–58.

Chen, Yen-Chi (2022). “Statistical inference with local optima”. In: Journal of the

American Statistical Association, pp. 1–13.

Chib, Siddhartha and Edward Greenberg (1995). “Understanding the metropolis-

hastings algorithm”. In: The american statistician 49.4, pp. 327–335.

Dempster, Arthur P, Nan M Laird, and Donald B Rubin (1977). “Maximum likelihood

from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical

Society: Series B (Methodological) 39.1, pp. 1–22.

Eberly, Lynn E and George Casella (2003). “Estimating Bayesian credible intervals”.

In: Journal of statistical planning and inference 112.1-2, pp. 115–132.

Eckart, Carl and Gale Young (1936). “The approximation of one matrix by another

of lower rank”. In: Psychometrika 1.3, pp. 211–218.

Falck, Antoine, Adam Rej, and David Thesmar (2022). “When do systematic strate-

gies decay?” In: Quantitative Finance 22.11, pp. 1955–1969.

Fama, Eugene F and Kenneth R French (2012). “Size, value, and momentum in

international stock returns”. In: Journal of financial economics 105.3, pp. 457–

472.

Fontenla-Romero, Óscar et al. (2013). “Online machine learning”. In: Efficiency and

Scalability Methods for Computational Intellect. IGI global, pp. 27–54.

Frisch, KR (1955). “The logarithmic potential method of convex programming”. In:

Memorandum, University Institute of Economics, Oslo 5.6.

84

Goldberg, Lisa R and Ola Mahmoud (2017). “Drawdown: from practice to theory and

back again”. In: Mathematics and Financial Economics 11, pp. 275–297.

Grossman, Sanford J and Zhongquan Zhou (1993). “Optimal investment strategies

for controlling drawdowns”. In: Mathematical finance 3.3, pp. 241–276.

Halko, Nathan, Per-Gunnar Martinsson, and Joel A Tropp (2011). “Finding structure

with randomness: Probabilistic algorithms for constructing approximate matrix

decompositions”. In: SIAM review 53.2, pp. 217–288.

Harris, Charles R. et al. (Sept. 2020). “Array programming with NumPy”. In: Nature

585.7825, pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.

org/10.1038/s41586-020-2649-2.

Hsu, Daniel and Sham M Kakade (2013). “Learning mixtures of spherical gaussians:

moment methods and spectral decompositions”. In: Proceedings of the 4th confer-

ence on Innovations in Theoretical Computer Science, pp. 11–20.

Hsu, Daniel, Sham M Kakade, and Tong Zhang (2012). “A spectral algorithm for

learning hidden Markov models”. In: Journal of Computer and System Sciences

78.5, pp. 1460–1480.

Ishwaran, Hemant and J Sunil Rao (2005a). “Spike and slab variable selection: fre-

quentist and Bayesian strategies”. In.

— (2005b). “Spike and slab variable selection: frequentist and Bayesian strategies”.

In: The Annals of Statistics 33.2, pp. 730–773.

Jaeger, Herbert (2000). “Observable operator models for discrete stochastic time se-

ries”. In: Neural computation 12.6, pp. 1371–1398.

Jamshidian, Mortaza and Robert I Jennrich (2000). “Standard errors for EM estima-

tion”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 62.2, pp. 257–270.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

85

Lahmiri, Salim and Stelios Bekiros (2021). “Deep learning forecasting in cryptocur-

rency high-frequency trading”. In: Cognitive Computation 13, pp. 485–487.

Li, Ren-Cang (2006). “Matrix perturbation theory”. In: Handbook of linear algebra.

Chapman and Hall/CRC, pp. 15–1.

Mamon, Rogemar S and Robert J Elliott (1995). Hidden Markov Models in Finance:

Further Developments and Applications, Volume II. Springer.

McLachlan, Geoffrey J and Kaye E Basford (1988). Mixture models: Inference and

applications to clustering. Vol. 38. M. Dekker New York.

McQueen, Grant (1992). “Long-horizon mean-reverting stock prices revisited”. In:

Journal of Financial and Quantitative Analysis 27.1, pp. 1–18.

Needle, Sagl B and Christus D Wunsch (1970). “A general method applicable to the

search for similarities in the amino acid sequence of two proteins”. In: Journal of

molecular biology 48.3, pp. 443–53.

Pearson, Karl (1936). “Method of moments and method of maximum likelihood”. In:

Biometrika 28.1/2, pp. 34–59.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12, pp. 2825–2830.

Rodu, Jordan (2014). Spectral estimation of hidden Markov models. University of

Pennsylvania.

Rodu, Jordan et al. (2013). “Using regression for spectral estimation of hmms”. In:

International Conference on Statistical Language and Speech Processing. Springer,

pp. 212–223.

Rydén, Tobias (2008). “EM versus Markov chain Monte Carlo for estimation of hidden

Markov models: A computational perspective”. In: Bayesian Analysis 3.4, pp. 659–

688.

86

Sankoff, David (1972). “Matching sequences under deletion/insertion constraints”. In:

Proceedings of the National Academy of Sciences 69.1, pp. 4–6.

Sharpe, William F (1966). “Mutual fund performance”. In: The Journal of business

39.1, pp. 119–138.

Shirley, Kenneth E et al. (2010). “Hidden Markov Models for Alcoholism Treatment

Trial Data”. In: The Annals of Applied Statistics 4.1, p. 366.

Tegels, Juul JW et al. (2014). “Improving the outcomes in gastric cancer surgery”.

In: World journal of gastroenterology: WJG 20.38, p. 13692.

Virtanen, Pauli et al. (2020). “SciPy 1.0: Fundamental Algorithms for Scientific Com-

puting in Python”. In: Nature Methods 17, pp. 261–272. DOI: 10.1038/s41592-

019-0686-2.

Viterbi, Andrew (1967). “Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm”. In: IEEE transactions on Information Theory 13.2,

pp. 260–269.

Wang, Weiran and Miguel A Carreira-Perpinán (2013). “Projection onto the proba-

bility simplex: An efficient algorithm with a simple proof, and an application”. In:

arXiv preprint arXiv:1309.1541.

Woolf, Barnet (1957). “The log likelihood ratio test (the G-test)”. In: Annals of human

genetics 21.4, pp. 397–409.

Yang, Fanny, Sivaraman Balakrishnan, and Martin J Wainwright (2017). “Statistical

and computational guarantees for the Baum-Welch algorithm”. In: The Journal

of Machine Learning Research 18.1, pp. 4528–4580.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	Titlepage
	Abstract
	Dedication
	Acknowledgements
	Introduction
	Theory of SHMM
	Literature Review
	Hidden Markov models
	Standard inference method for HMM: Baum-Welch algorithm
	Estimating HMM by spectral learning
	Spectral estimation HMMs by Hsu, Kakade, and T. Zhang (2012)
	Spectral estimation HMMs by Rodu (2014)

	Theoretical Properties of SHMM
	Likelihood decomposition by spectral estimation
	Central limit theorem for likelihood approximation error

	Experimental Validation of Theorem 2.2
	Potential Application Scenario

	Projected SHMM
	Motivation for Adding Projection
	Projection-onto-Polyhedron and Projection-onto-Simplex SHMM
	Projection-onto-polyhedron SHMM
	Projection-onto-simplex SHMM
	Comparison: projection-onto-polyhedron vs. projection-onto-simplex

	Choice of Hyperparameters and Variants of PSHMM
	The choice of hyperparameter d
	Calculation of U matrix under extremely high-dimensional data: unigram or bigram randomized SVD
	Projecting onto the probability space

	Simulation
	Application: Backtesting on High Frequency Crypto-Currency Trading
	Data description and experiment setting
	Results

	Discussions

	Online Learning Variants of SHMM
	Online Learning
	Online learning of SHMM and PSHMM
	Online learning of SHMM class with forgetfulness

	Simulation
	Test the prediction performance
	Test computational time of online learning variants
	Test the effectiveness of forgetfulness

	Application: Backtesting on Commodity Market Daily Trading
	Data description & experiment setting
	Results

	Discussions

	Latent Control Hidden Markov Models
	Motivation
	Literature Review
	Bayesian HMM
	HMM with cross predictors: control HMM

	Model Assumption
	Model Inference
	Model estimation by MCMC
	Prediction & Bayesian credible interval
	Feature importance by posterior mean

	Simulations
	Test the prediction performance
	Test the feature selection

	Application
	Application I: Inference of latent control on end-stage gastric cancer data
	Application II: Prediction of natural gas's volatility

	Discussions

	Appendices
	Appendix Appendix
	Detailed Simulation Results for PSHMM and Online Learning Variants

	Bibliography

