
C.H.E.S.S.B.O.A.R.D.
An Interactive Chess Learning Aid

John Berberian Jr.
B.S. Electrical Engineering

University of Virginia
Charlottesville, Virginia, United States

ccg3sr@virginia.edu

Kevin Dang
B.S. Electrical Engineering

University of Virginia
Charlottesville, Virginia, United States

ejj4wt@virginia.edu

Paul Diaz Karhnak
B.S. Computer Engineering

University of Virginia
Charlottesville, Virginia, United States

pkarhnak@gmail.com

Lourdes Leung
B.S. Electrical Engineering

University of Virginia
Charlottesville, Virginia, United States

mqw6nf@virginia.edu

Liam Timmins
B.S. Electrical Engineering

University of Virginia
Charlottesville, Virginia, United States

uhj6qw@virginia.edu

Abstract—The Chess Helper, Evaluator, and Study Supporter
to Boost Observation, Acumen, Reasoning, and Deduction
(C.H.E.S.S.B.O.A.R.D., referred to herein as CHESSBOARD) is
a smart chessboard focused on streamlining the chess learning
process for beginner to intermediate players. The CHESSBOARD
provides an interactive learning experience that displays possible
moves and hints with light-emitting diode (LED) feedback, vali-
dates moves according to standard rules, and transcribes games
automatically. The bulk of the system is built inside a custom
wood and acrylic enclosure and a separate 3D-printed container
(“clock box”) houses the computers. The CHESSBOARD uses
linear Hall effect sensors to measure the magnetic field strength
from custom magnetic chess pieces in order to detect their type
and color. An MSPM0G3507 microcontroller reads from these
sensors, detects game updates like a player making a move,
lights up the LEDs in response to new game information, and
forwards this new game information to a secondary Raspberry
Pi computer. The Raspberry Pi interprets these updates, records
new game conditions, and plays the changes against the Stockfish
chess engine to get new lists of legal moves, new hints, and new
special information as applicable. Every aspect of the system
design was designed and built with users and their experience in
mind.

Index Terms—Chess, teaching, magnetic sensors, human com-
puter interaction, consumer products.

CONTENTS

I Statement of Work 2
I-A John Berberian Jr. 2
I-B Kevin Dang 3
I-C Paul Diaz Karhnak 3
I-D Lourdes Leung 3
I-E Liam Timmins 3

II Background 3
II-A Initial Idea 3

This was the capstone design project (ECE 4440/4991) for the authors, per-
formed in partial fulfillment of the graduation requirements for the Charles L.
Brown Department of Electrical and Computer Engineering at the University
of Virginia. We would like to acknowledge our excellent advisor, Prof. Adam
Barnes.

II-B Rationale 4
II-C Comparison with Prior Art 4
II-D Relevant Coursework 5

III Project Description 5
III-A Performance Objectives and Specifications 5
III-B Block Diagram and Functionality 5
III-C Hardware Design Details 7

III-C1 Sensor PCBs 7
III-C2 LED Arrays 8
III-C3 I/O PCB 9
III-C4 Clock Box PCBs 10
III-C5 Power Budget Design 11

III-D Software Design Details 11
III-D1 MSPM0 Firmware 11
III-D2 Internal 32-Bit Protocol . . . 13
III-D3 Stockfish Wrapper 13
III-D4 Raspberry Pi Administration 13

III-E Manufacturing Design Details 14
III-E1 Chessboard 14
III-E2 Clock Box Module 15
III-E3 Chess Pieces 16
III-E4 LED Array and Soldering . . 16
III-E5 Computer Systems 16

III-F Testing and Verification 16
III-F1 PCBs 16
III-F2 Sensing System 17
III-F3 LED Arrays 17
III-F4 UART Communication . . . 18
III-F5 Stockfish Wrapper 19

IV Constraints 20
IV-A Parts and Resource Availability 20
IV-B Software Tools 20
IV-C Prototype Cost Constraints 20
IV-D Manufacturability 21

V Societal Impact 22

mailto:ccg3sr@virginia.edu
https://orcid.org/0000-0003-1466-8389
mailto:ejj4wt@virginia.edu
mailto:pkarhnak@gmail.com
mailto:mqw6nf@virginia.edu
mailto:uhj6qw@virginia.edu

VI External Standards 22
VI-A IEEE 2089-2021: IEEE Standard for

an Age Appropriate Digital Services
Framework Based on the 5Rights Prin-
ciples for Children 22

VI-B Fédération Internationale des Échecs
(FIDE) Handbook: General Rules and
Technical Recommendations for Tour-
naments 23

VI-C Other Standards to Consider 24

VII Intellectual Property Issues 24

VIII Timeline 24

IX Costs 25

X Final Results 27

XI Engineering Insights 29
XI-A Reinventing the Wheel 29
XI-B Trust, but Verify 29
XI-C Nights and Weekends 30

XII Future Work 30

XIII Using This Report 31

References 31

Appendix 33
A 32-bit Protocol Specification 33

A1 RPi→MSP normal 33
A2 RPi→MSP undo 33
A3 MSP→RPi normal 33
A4 MSP→RPi calibration 33

B Cost Breakdown Tables 35

LIST OF FIGURES

1 Initial CAD model of CHESSBOARD physical
structure made for project proposal. 6

2 Chess Board Block Diagram. 7
3 Clock Box Block Diagram. 7
4 The sensor board schematic used in the final

design. In the PCB layout, the sensors are spaced
two inches apart from each other. 8

5 Sensor boards installed into the acrylic surface
sheet. 9

6 Revised I/O board layout. 10
7 Revised clock box board layout. 12
8 MSP Firmware Block Diagram. 14
9 Finite state machine (FSM) diagram representa-

tion of the Stockfish wrapper script, which was
the main code run on the Raspberry Pi. 14

10 LED strips glued to the bottom of the chessboard
enclosure. 15

11 Revised CAD model of CHESSBOARD physical
structure with simplified geometry, expanded I/O
shield, and added piece silhouettes. 15

12 Revised CAD model of clock box enclosure with
button ports, ventilation grill, and horizontal split
line. 16

13 Initial chess piece design with a slot and plug
(left) and final design with a base and body (right). 16

14 Manufacturing tool to ensure consistent distances
between LEDs. 16

15 Model of test tiles with the bottom layer (right)
to fit the sensors and top layer (left) with 32 mm
divot. 17

16 Initial Gantt Chart of the Project Conception and
Initiation and the Research Phases. 25

17 Initial Gantt Chart of the Design Phase. 25
18 Initial Gantt Chart of the Manufacturing Phase. . 26
19 Initial Gantt Chart of the Testing and Finalization

Phases and Other Important Dates. 26
20 Final version of the manufacturing Gantt chart. . 27
21 Final version of the testing Gantt chart. 27
22 Final version of the clock box. The top two

buttons correspond to each of the players’ turn
swap, the while the others correspond to clock,
hint, undo, pause, and restart, respectively. . . . 27

23 The start state of the untimed board. All available
moves are highlighted with the LEDs. 28

24 The white D pawn being moved. The LEDs
light to indicate which spaces are available for
movement. 28

25 A top down view of the completed chessboard. . 28
26 A side view of the chessboard and clock box. . . 28
27 Sample 32-bit Protocol Field Packing. 34

LIST OF TABLES

I Final sensor height and voltage bins used for
the piece bases. The height represents where the
magnet is positioned from the bottom of the piece. 9

II Power Budget for 3.3V System. 12
III Power Budget for 5V System. 12
IV Cost breakdown for full order cost, cost of pro-

totype unit, and bulk manufacturing costs. 35

I. STATEMENT OF WORK

A. John Berberian Jr.

John was primarily responsible for the embedded firmware
that ran on the MSPM0G3507 microcontroller (“MSPM0”),
including the drivers, real-time operating system (RTOS), and
communication logic. He was also the primary team member
responsible for the power subsystem and its associated design
features like communication and level shifting. He designed
the filter component values for the sensor subsystem and
carried out noise and switching time simulations in PSPICE.
In addition, he assisted with soldering and hardware testing,
and advised design decisions in other areas of the project. He
helped with the design of the electronics contained in the clock

box, including the buttons and liquid crystal display (LCD)
interface.

John was also involved to a lesser extent in the implementa-
tion of the Raspberry Pi system. His main contribution to the
Raspberry Pi was debugging the issues with powering over
the header pins, leading to the team’s decision to switch to a
Raspberry Pi 4 from a Raspberry Pi 5. Additionally, he wrote
extra firmware to verify the functionality of each hardware
subsystem, and helped debug hardware issues.

B. Kevin Dang

Kevin was the primary person working on the design of
the enclosures. All enclosures were modeled in SolidWorks.
For the main chessboard, the enclosure used both acrylic and
wood, materials which required Kevin to perform machining
on the laser cutter and woodworking machines, respectively.
Additionally, Kevin 3D printed an I/O shield to cover the
cutout for port access. Another significant area of Kevin’s
work encompassed PCB layout. Kevin was the primary person
designing the I/O board. First, Kevin created a power budget
using the maximum load of each device in the system to
size the connectors and traces on the board. Then, Kevin
helped with testing of the first revision of the I/O board
which revealed many issues with mismatched pins caused by
erroneous footprints. This meant that stray pins had to be
bent and fly-wired. Kevin either replaced or manually modified
footprints in a second revision of the board. Along with his
work on the I/O board, Kevin assisted the other team-members
with reviewing the layouts of the sensor board and clock box
board.

C. Paul Diaz Karhnak

Paul was the primary team member responsible for op-
erating and administering the Raspberry Pi, which included
installing necessary packages like stockfish, installing
necessary Python modules like chess and pyserial, and
dealing with file-mapped UART through the Linux file system.
Paul wrote the Stockfish wrapper code which interacted with
Stockfish in a subprocess and engaged with the chess module
to perform chess game state tracking and move registration (in-
cluding move undo requests and game restarts). Paul worked
closely with John on aspects of the MSPM0 code base by
writing the first draft of the MSPM0 UART driver; reviewing
John’s application programming interface (API) and business
logic on the MSPM0; adding UART task management into
the main task; writing the first draft of pushbutton interrupt
handlers; and debugging UART on the two devices. Lastly,
Paul wrote the first draft of the data copying code on the
Raspberry Pi to enable games to be written to removable
persistent storage when connected to the Pi.

D. Lourdes Leung

Lourdes was primarily responsible for the design and testing
of the piece detection system. In the early stages of the project,
she conducted preliminary testing of the sensing system and
decided on which type of sensors and magnets to purchase.

She performed several rounds of testing to determine the
heights for the magnets inside the chess pieces so that the
sensing system could accurately differentiate between chess
piece types. Using these results, Lourdes designed the chess
pieces in AutoCAD and 3D printed them. Along with the
piece detection system, she designed and produced schematics
for the clock box boards. Lourdes also aided in the physical
enclosure design and manufacturing process. During the manu-
facturing process, she helped solder several of the LED strips
and sensor printed circuit boards (PCBs). While performing
exhaustive testing and debugging after the hardware assembly,
she identified the factors contributing to the range variations
of the sensors and made several revisions to the chess piece
designs and sensors PCBs.

E. Liam Timmins

Liam was primarily responsible for several aspects of the
hardware design and assembly. For instance, Liam designed
the printed circuit board (PCB) layouts for the sensor boards
and clock box boards in KiCAD. These consisted of efficiently
laying out components in order to mitigate the effects of noise
and minimize dimensions to effectively fit within the enclo-
sures. When filtering became a higher priority partway through
the semester, he revised these designs to better accommodate
the additions while maintaining the small form factor. Liam
also contributed to the sensor testing process, determining the
feasibility of the use of Hall effect sensors and the sensitivity
to choose.

Beyond design and testing, Liam contributed to a significant
portion of the hardware assembly, including soldering the
LED arrays and all of the PCBs made for the project. This
included soldering all of the clock box boards, most of the
sensor boards, and parts of the I/O board. After the assembly
was completed, he assisted in the hardware testing process,
including sensor functionality in the context of the rest of
the system. This process consists of tuning the individual
sensors to best read the anticipated piece type from the sensor’s
output to minimize the chance of misreading said piece type.
Liam also resoldered components when he localized issues
during the hardware testing process, including bridges forming
between VCC and ground and faulty ICs.

II. BACKGROUND

A. Initial Idea

As we worked to come up with ideas in Summer 2024, Liam
suggested making an automatic chess transcriber. The original
idea was that automatic transcription would be an aid observers
of speed chess tournaments. With an automatic transcriber,
they would not have to wait for manual transcription of the
game or watch a video recording. Under a strict 15-week
timeline (ECE 4440/4991 formally met from August 2024 to
December 2024), we needed a project that would demonstrate
our technical proficiency while being achievable in a relatively
short period of time. We were confident in our capabilities to
implement an automatic chess transcriber, felt that a successful
design did not need to incorporate potential hazards like

heating components or high voltage,1 and thought that there
was ample flexibility to expand the scope of the project if
needed. Based on this, the team selected the transcriber for
further development.

B. Rationale

After re-evaluating the target audience, we reasoned that
gearing the design toward a less competitive user, like a
beginner, opened up more design options that would result
in an more compelling overall product. A beginner-focused
chess aid gave the project more utility, since on top of
transcription for post-game analysis such a chess aid could
interactively provide insights for players during games. For
complete beginners, the chess aid could teach them standard
rules; for players looking to learn more, they could study the
strategy of an advanced chess engine like Stockfish. Since
discussion with the team favored this new direction, we chose
to modify the project to become a chess learning aid for
beginner and intermediate players instead of simply a chess
transcriber.

C. Comparison with Prior Art

Many similar “smart chessboard” projects have been de-
signed in the past. Three examples were designed here at the
University of Virginia: a self-rearranging chessboard [1], an
autonomous chessboard [2], and an assistive chessboard [3].
The self-rearranging chessboard was a project that aimed to
speed up the process of resetting a board to begin a new game.
The project was focused on moving chess pieces and detecting
pieces via visual means. The autonomous chessboard had the
goal of creating a mechanism that could play against a human
user. Like the self-rearranging chessboard, the autonomous
chessboard’s main feature was its ability to manipulate piece
positioning. The system utilized binary reed sensors to detect
changes in board state. The last of the prior capstone examples
is the assistive chessboard, which sought to improve chess
learning and practice. It did this by retaining the physical
interaction of a chess set and adding visual elements and cues
to assist a player in remembering strategy.

Of the three examined projects, the assistive chessboard was
the most similar to our project: we also planned to make
a learning aid, use LEDs to provide live feedback, and use
Hall effect sensors to record changes in board state. Our
project focuses less on the integration of the chess engine and
more on the user experience. This was evident in our design
decisions from the beginning. For example, by choosing to
use analog Hall effect sensors, the team gained the ability
to tell exactly what piece is present on a tile. Eliminating
ambiguity in detecting piece types was important to correctly
allow for certain “special moves” (e.g., promotion, castling,
en passant captures) and verify board conditions (e.g., piece
placement at the beginning of each game). The undo feature

1Other ideas proposed included a robot that wound transformers and an
electric kettle. In addition to being perceived as infeasible, these designs
were rejected due to involving potentially dangerous high voltage and heating,
respectively.

in our project provided a better experience for the players
who are trying to learn through experimentation and want
to see how different options can affect a game. Building the
majority of our features into the product itself allowed for a
more approachable experience that was meaningfully similar
to playing a normal game of chess. The self-rearranging
chessboard and autonomous playing chessboard had less in
common with our goal but did have features that related to our
design like identifying invalid or illegal moves, and recording
the board state. The value of understanding these projects was
in understanding the reasoning behind the design choices and
hurdles they faced.

The most similar capstone design that we could find was
from students at Carnegie Mellon University. In their project,
“Tactile Chess” [4], the students created an accessible interface
to online chess tools for blind people. They used a sensing
system almost identical to ours (analog hall effect sensors,
two layers of 8:1 multiplexers) and they ran Stockfish on a
Raspberry Pi, but the remainder of their system differed. They
communicated with the user through a web-based GUI and
speakers rather than an LED array embedded in the board, and
they performed move validation through online APIs rather
than locally. Because the “Tactile Chess” team was writing
for a web-based platform, their board requires internet access
to work, and their move validation was much slower than ours.
Also, the team chose to house their complete system in a single
module, unlike our choice to house the computer systems in
the separate clock box.

The team also looked into miscellaneous designs from the
Internet. One of the designs was a demo application of giant
magnetoresistance sensors (GMR) by NVE Corporation [5]
which seemed to be built for transcription. As pieces moved,
the move was displayed in chess notation on a small screen
with time stamps and read aloud with a speaker. NVE’s
sensor implementation seemed to be digital like the assistive
chessboard capstone project. A hobbyist implementation of a
smart chessboard was also considered [6]. The hobbyist design
had a hint feature and established wireless communication
with another board to allow for remote play. LEDs illuminated
tiles to communicate hints and to indicate where the remote
opponent had moved. All moves had to be manually input with
a keypad system. These two prior projects overlap with many
features that we planned to integrate in our board. We wanted
to use Hall effect sensors in a similar capacity to the NVE
GMR sensors, although we used analog sensors to distinguish
piece color and type. We wanted to have an LED array to show
all available moves as well as recommended moves. Our board
combined these features to make a product more suited for our
target audience: a chessboard that can transcribe and inform
without any input other than the movement of pieces like in
a traditional chess game.

One challenge we anticipated was detecting when a turn was
over. We initially planned to automatically detect turn comple-
tion without requiring players to hit a clock button. When we
changed our focus to beginner players, we quickly realized that
automatic detection would be inappropriate for our customer

base. Beginner players cannot always be expected to play their
final choice of a move simply by placing a piece down once
per turn: they might want to look at the resulting board state
before they finalize their move, and might change their mind
halfway through a turn. A player changing their mind might,
in turn, mean that the player has to revert a new board state
and make a different move that has a different result. After
some consideration, we decided on an interface inspired by
a chess clock: we designed and implemented the clock box
with turn switching buttons on top to definitively end turns
and with displays which can optionally act as chess clocks.
Even when the chess clock is disabled, the players still need
to use the turn-switching buttons to indicate to our system that
the current turn is complete.

D. Relevant Coursework

Throughout the project, we drew upon our experience
from the Electrical and Computer Engineering Fundamentals
sequence (ECE 2630, ECE 2660, and ECE 3750) to design
the project’s PCBs. In the Fundamentals series, we practiced
circuit analysis and simulation as well as PCB design, which
were skills used to design the sensor, I/O, and clock box
PCBs. Most of the team had taken Electromagnetic Fields
(ECE 3209) and Electromagnetic Energy Conversion (ECE
3250), so they were comfortable in their understanding of
what was fundamentally happening in the interaction between
magnets in the chess pieces and the Hall effect sensors in the
board. Every member of the team had taken the Introduction
to Embedded Computer Systems course (ECE 3430), which
taught the essentials of embedded systems programming in
C. Two team members, including the primary embedded pro-
grammer on the team (Paul), had taken Advanced Embedded
Computing Systems (ECE 4501): a course which teaches
more complex embedded programming in C, including RTOS
kernel development. The two embedded systems courses (par-
ticularly ECE 4501) were immediately useful in the project:
they enabled us to orchestrate the RTOS which interprets
changes in the CHESSBOARD’s sensor readings and manages
the associated changes in chess game logic. FreeRTOS was
deployed on the MSPM0 and skills from ECE 4501 were used
to understand the FreeRTOS kernel and analyze aspects such
as its multitasking behavior, methods of software interaction
with peripherals, and thread and process management.

III. PROJECT DESCRIPTION

A. Performance Objectives and Specifications

The team designed CHESSBOARD to be an intuitive learn-
ing resource for beginner and intermediate chess players. We
intended for the primary means of communication to be an
array of LEDs that light up specific tiles as needed. The
value of CHESSBOARD is that basic information such as
which pieces can move, where can they move, and when an
illegal move has been made can be communicated in real time.
Additionally, tools like post-game transcription and an undo
move queuing system help improve the experience by giving

the user the ability to easily analyze how they played and learn
by trying out different options from one position.

The CHESSBOARD features a 20in × 20in × 1.5in board.
The base is made of wooden materials like composite wooden
panels and planks and is topped with layers of acrylic. To
reduce the number of manufactured components, the tiles were
made from one solid sheet of clear acrylic. The white tiles
were etched into the acrylic and further sanded to whiten the
surface appearance. A sheet of window tint underneath the
acrylic gives the board the appearance of having black and
white tiles while maintaining the translucent characteristics
necessary for observing the LEDs underneath the tiles (Fig. 1).

To teach players the movement rules of each chess piece,
the LEDs light up to show all possible tiles to which a player
may move a piece when it is lifted. The LEDs are placed
beneath the Hall effect sensors. The Hall effect sensors are
used to detect which piece has been picked up; specifically,
they observe the change in a square’s output voltage from a bin
associated with that specific chess piece to the bin associated
with an empty square. Each chess piece has a slotted magnet
in its center at a varying distance from the base, producing a
specific voltage output from the Hall effect sensors. Our goal
was to make the response time of the entire system faster than
human reaction time (around 250ms). We were able to exceed
this goal: based on our calculations, we believe our system is
able to keep response times under 150ms.

Another main feature that helps players develop their skills
is the hint button. Once pressed, tiles light up to display the
best possible move a player can make during their turn. Once
players learn the rules of the game, they can start to learn
new strategies using the suggested moves. Because the goal
of CHESSBOARD is to be a learning aid, the board also
features an undo button to allow players to retry their last
move. As their skills develop to a more intermediate level,
users may practice faster thinking during a game with the use
of the built-in chess clock. When a player’s clock starts, that
clock will count down when the clock is reset or when the
opposing player ends their turn. The chess clocks are displayed
on seven-segment LCD screens that can display six digits for
the remaining time in hours, minutes, and seconds.

The last feature is the automatic chess transcriber that logs
each move as it is made and thus immediately provides a full
list of moves for each game. Using this transcription, players
may analyze how the game played out and study or revise their
strategies to become better chess players. The transcription
may be retrieved by plugging a thumb drive into the USB port
on the side of the clock box. The Raspberry Pi automatically
recognizes the new device and copies recent transcriptions
(stored as text files) onto the thumb drive. While this requires
that the thumb drive be formatted with a supported file system,
the copying script assumes that every thumb drive is formatted
for FAT32, which is a common and widely supported format.

B. Block Diagram and Functionality

The system is physically split into two modules: the chess-
board itself and the separate clock box. The two modules are

Fig. 1. Initial CAD model of CHESSBOARD physical structure made for
project proposal.

connected by a high-density D-Bus 15-pin (DE15) connector.
The entire system is powered by an external 5V DC power
supply, which plugs into a barrel jack on the chessboard I/O
PCB. The block diagrams for the chessboard and the clock box
are shown in Fig. 2 and Fig. 3, respectively. In this section, we
traverse the block diagram and explain how the components
work together to produce the intended functionality.

The user expects to move pieces and see the LEDs in
the board respond to the movement. For this to be possible,
we needed a mechanism for detecting the movement of a
piece. We chose to put magnets in each piece and place Hall
effect sensors under the squares of the board. Well-defined
spacing and offsets for the magnets allowed us to detect the
type and color of any piece on the board. Since our MSPM0
microcontroller did not have enough pins to uniquely connect
to each square’s sensor (64 total), we decided to place analog
multiplexers in two stages (8:1 to select one column from each
row, then 8:1 to select between the row results) to reduce the
number of analog wires to just 1. This did, however, require six
digital wires for selection (64 = 26). Because sensors we chose
are ratiometric—they will scale their output domain to their
power rails, within some range—we were able to choose which
power supply level to place them on. The microcontroller
requires 3.3V power (and the ADCs will range from 0 to 3.3V)
so we decided to place the Hall effect sensors on 3.3V power.

The red-green-blue (RGB) LEDs we selected run off of 5V
power and use a digital protocol for control which permits
them to be daisy-chained to an arbitrary length. This protocol
means that we only need to use two pins for communication
with the LEDs: one for data in and one for a clock. The
LEDs expect 5V logic levels but the microcontroller that we
selected used 3.3V logic levels, so we needed a level shifter to
translate the signals. After reviewing our power requirements,
we decided it was prudent to isolate the 5V components
from the 3.3V components to reduce power supply noise. The
components we expected to be noisiest (the LEDs and the
Raspberry Pi) were on 5V power and the components that are
sensitive to noise (MSPM0 and sensors) are on 3.3V power, so

we decided on an isolated 3.3V switched-mode power supply
and an isolated level shifter. We expected that this would
protect the sensor output signal from any voltage drops due
to high currents through the 5V-ground.

The whole system is controlled by the MSPM0 microcon-
troller [7] [8] on a Launchpad development board [9]. The
MSPM0 runs the code to measure the positions of the pieces,
control the LEDs under the squares, respond to button presses,
and keep a chess clock running. The MSPM0 has many
integrated peripherals that we used for communication with
the various system components. The data protocol our selected
LEDs use is similar to a simplified version of the Serial
Peripheral Interface (SPI), so we used one of the MSPM0’s
two built-in SPI hardware modules to offload the work of com-
munication. SPI was likewise a logical choice to communicate
with the LCDs, so our driver used the MSPM0’s other SPI
module. The Raspberry Pi 4 [10], which runs a chess engine
for producing the hints, communicates with the MSPM0 via
UART; both the Raspberry Pi 4 and MSPM0 have hardware
support for UART, and both of the MSPM0’s hardware SPI
modules were already occupied with the previously mentioned
uses. Though the Pi 4 uses 3.3V logic levels, it uses 5V
power, so we needed an isolator within the UART link to
keep the two power domains isolated. The Pi 4 also logs a
text representation of the game (chess notation) to a USB flash
drive if one is plugged into the system.

Because the digital signals to communicate with the LEDs
were relatively high-frequency (1.6MHz), we expected to see
some coupling between those signal lines and the sensor
subsystem’s analog signal lines. Fortunately, the frequencies
present in the coupled noise were substantially higher than
in the sensor signal. To attenuate the noise, we added low-
pass Bessel filters, placing second-order filters after each row
multiplexer and a fourth-order filter directly next to the analog-
to-digital converter (ADC) pin on the microcontroller board.
To avoid using inductors, we built the filters with operational
amplifiers using the Sallen-Key topology. To attenuate any
60Hz environmental noise that we have picked up from power
supplies, we also added first-order RC filters to each sensor
line. This was in accordance with the stability recommenda-
tions in our Hall effect sensors’ datasheet [11].

We wished to support users in their competitive develop-
ment, so we decided to integrate a chess clock to optionally
simulate the conditions of a competitive game. The time
remaining for each player is displayed on two six-digit seven-
segment LCDs. LCD segments must be driven with an AC
signal, so we connected them to an LCD driver chip that could
be chained and which used an SPI-like protocol.

Aside from the sensors, the main means of user input is
through the button system. To prevent mechanical bouncing
from generating erroneous signal edges on the general-purpose
input/output (GPIO) pins (which could then be incorrectly
interpreted as multiple button presses), we added an RC
network and Schmitt trigger to each button as described in
Debounce a Switch [12].

5V Power
Supply

3.3V DC-DC
Converter

DE
15

LEDsIsolated
Level Shifter

Hall Effect
Sensors

Filters & Analog
Multiplexers

Power

120VAC

Power

5V

Power

3.3V

2×Digital

0− 5V

2×Digital

0− 3.3V

64×Analog

0− 3.3V

1×Analog

0− 3.3V

6×Digital

0− 3.3V

Clock
Box

OutsideChess Board

Fig. 2. Chess Board Block Diagram.

DE
15

MSPM0
Microcontroller

Buttons &
Schmitt Triggers

Shift Register
AC Generator

7-Segment
LCD Isolator Stockfish

RPi 4

Filter

Power

3.3V

Power
5V

Power

3.3V

Power

3.3V

Power
3.3V

Power
3.3V

SPI
2×Digital

0− 3.3V

GPIO
6×Digital

0− 3.3V

1×Analog

0− 3.3V

ADC

SPI
3×Digital

0− 3.3V

88×AC
0− 3.3V

GPIO
7×Digital

0− 3.3V

2×Digital
0− 3.3V

2×Digital

0− 3.3V

UART

Chess
Board

Clock Box

Fig. 3. Clock Box Block Diagram.

C. Hardware Design Details

1) Sensor PCBs: The initial criteria and components were
for 8 boards with 8 sensors each. The sensors collect into
an 8:1 mux with three select pins on each sensor board.
The TMUX1208 [13] satisfied our requirements for a mul-
tiplexer: it had easily accessible documentation, a relatively
low price, low on-resistance, and high switching speed. The
decision to make the system as a unified PCB rather than
as a network of wired components was made to introduce a
greater level of regularity in spacing, which is critical for piece
sensing accuracy. The schematic for this board can be seen
in Fig. 4. The team tested a sample group of three sensors
to establish sensitivity bins: the DRV5055A1QLPG (“A1”),
DRV5055A3QLPG (“A3”), and DRV5055A4QLPG (“A4”)

[11]. These sensors were chosen due to their availability and
price at the scale that we required in addition to satisfying our
technical requirements for sensing. The A1 sensor was selected
since the greater sensitivity allowed for the highest resolution
within the expected height range (3mm to 13mm) of the six
discrete magnet height bins. When we tested with the magnet
we selected [14], this range gave us reasonable space between
the different pieces’ voltage bins while avoiding significant
overlap. Each sensor required a bypass capacitor of at least
0.01µF according to the datasheet [11].

Initially, we planned to use a single set of voltage bins for
all the squares. As the project moved into the manufacturing
phase, it became clear that this was infeasible. Our final design
for the height choices and their respective voltage outputs is
visible in Tab. I. When we tested pieces with these magnet

Fig. 4. The sensor board schematic used in the final design. In the PCB layout, the sensors are spaced two inches apart from each other.

heights on different squares, we saw substantial discrepancies.
We believe this was caused by slight variations in the angle
and position of the sensor soldered onto the board. We were
unable to precisely fix the sensor positions while soldering
them by hand, so manufacturing differences occurred despite
our efforts. After a few failed solutions, we decided to fix
this in software. We measured the minimum and maximum
voltage values for each piece type on each square, and created
a separate set of bins for each individual square. The firmware
required for this is discussed in Section III-D.

The first major modification to the sensor boards was the
inclusion of filtering. It occurred to the team that the long
traces in the board would be prone to picking up 60Hz
environmental noise. First-order low-pass filters with a corner
frequency of 10Hz were deemed sufficient to attenuate this
noise. The sensor output was assumed to be nearly DC, though
AC components were expected to be introduced into the signal
by the high-speed switching of the mux selection as the system
scanned the board. To filter the output of an individual sensor,
we selected 10kΩ resistors and 2.2µF capacitors. This RC
filter results in a corner frequency of 7.2Hz, which met our
specification for a satisfactory filter. Higher order filtering was
also introduced in other sections to better attenuate the high
frequency noise coupled from digital signals within the system.

A problem was found in the footprints of the the Hall effect
sensors: the pins were in reverse order relative to the schematic
symbol. The problem was resolved by flipping the orientation
of the sensors and bending the sensor in such a way that the
flat face of the sensor head was close to flush with the ceiling
of the enclosure. The voltage bins corresponding to black

and white had to be swapped to compensate for the sensors’
orientation change. Brief testing concluded that aside from
this, the change would result in negligible differences from
the anticipated orientation. A few sensor boards are shown
installed in the acrylic board top in Fig. 5.

2) LED Arrays: The original design for the LED array was
to wire together a matrix of 64 addressable LEDs arranged in
rows. Power was distributed from a central I/O board to each
row in parallel. This wiring arrangement allows the power
bearing wires to remain relatively short, so the current load of
each LED only compounds within the row instead of through
the whole array. Because the LEDs selected used a serial
protocol for programming, clock and data had to be routed
through each of the rows, alternating direction each time. We
decided to use RGB LEDs to give us flexibility to use color
as a means of conveying different meanings without text or
audio.

In choosing which RGB LED chip to use, we faced a
complex decision. Serial addressable RGB LEDs can be
generally considered within two categories: synchronous 4-pin
(APA102-like) LEDs [15] and asynchronous 3-pin (WS2812-
like) LEDs [16]. The synchronous type requires four pins:
clock, data, power, and ground. The asynchronous type is
able to function without a clock, but this introduces some
downsides: the asynchronous protocol relies on very precise
timing to signal the data. We found that the 3-pin protocol
was unsuitable for our application: the timing sensitivity would
necessitate that we disable interrupts while signaling the LEDs,
but our product needed to be able to tolerate interruptions
in LED programming to achieve the low latency we were

TABLE I
FINAL SENSOR HEIGHT AND VOLTAGE BINS USED FOR THE PIECE BASES. THE HEIGHT REPRESENTS WHERE THE MAGNET IS POSITIONED FROM THE

BOTTOM OF THE PIECE.

Piece Type Height (mm) White Voltage Range (V) Black Voltage Range (V)
Pawn 1 0.040 - 0.200 3.28 - 3.40
Rook 3.2 0.560 - 0.960 2.40 - 2.60

Knight 4.5 1.00 - 1.12 2.20 - 2.40
Bishop 6 1.08 - 1.24 2.04 - 2.14
Queen 8 1.20 - 1.32 2.00 - 2.08
King 11 1.44 - 1.56 1.76 - 1.80

Fig. 5. Sensor boards installed into the acrylic surface sheet.

targeting. After reviewing the synchronous LED products
available on the market, we selected the AdaFruit DotStar LED
strips [17], which use the SK9822 (APA102-compatible) chip
[18]. The synchronous protocol they use is compatible with
SPI, so we were able to take advantage of the MSPM0’s built-
in SPI hardware modules when using them. Because these
LEDs use 5V logic and our MSPM0 uses 3.3V, we had to add
a level shifter (ISO6731) [19] in the middle.

One modification to this design was to add 18 additional
LEDs. These LEDs were added underneath the piece silhou-
ettes at the edge of the board, to allow software to highlight a
specific piece type during gameplay. These silhouettes help in
setting up the initial board state and in reverting to prior board
states. For instance, if a piece has been captured, reverting that
move will light the indicator to display which piece type was
captured and should be placed in the empty square.

Another modification to the LED array was the inclusion
of an RC circuit at the beginning of both the clock and data
lines. Initial testing showed substantial flickering when the
LEDs were connected to the level shifter. This issue was
made more challenging to debug by the fact that connecting
an oscilloscope probe made the oscillation disappear. From

this, we decided to add an equivalent circuit model of the
oscilloscope probe (an RC circuit in parallel) to the clock
and data lines. We only had a limited range of values in
our laboratory, so we scaled the resistance and capacitance
to maintain the same time constant, ending up with 220kΩ
and 1nF. This successfully resolved the flickering issue.

The completed LED array can be seen installed into the
board in Fig. 10.

3) I/O PCB: The I/O board is a hub for power, sensor, and
control distribution between the chessboard and clock box. It
has 6-pin connectors for the sensor boards, 4-pin connectors
for the LEDs, the second-stage 8:1 mux, a barrel socket, a 5V-
3.3V DC-DC converter, a level shifter, and a DE15 connector.
The 6-pin connector was chosen to provide simple header pins
for debugging when the harness was not attached. The 4-pin
connector was only necessary for the one LED strip that started
the clock and data chain. However, using 4-pin connectors for
all of the strips simplified parts logistics, and a bag of JST
connector pairs was already available in the lab. The barrel
socket was sized to match the 2.10 mm standard of the power
supply and to handle the maximum wattage of 50W (10A at
5V) [20]. Our system has both 5V and 3.3V loads. Given that

Fig. 6. Revised I/O board layout.

power flow is more efficient at higher voltages, we decided
it was best to start with a 5V supply and step down to 3.3V
with a DC-DC converter as needed. The DC-DC also isolated
the 5V and 3.3V power domains and mitigated some of our
noise concerns. The exact model used was the RECOM R3K-
053.3S/H3 [21] since it could supply above the required 3W,
had isolation, and was the cheapest option from one major
distributor. The level shifter was necessary to translate the
MSPM0’s 3.3V control signals for the 5V LEDs. Since the
two power domains needed to be isolated, we used an isolated
level shifter [19]. The DE15 was an acceptable choice since it
had sufficient pins for the number of connections we needed
between the chessboard and clock box: 13 unique nodes. It
is a relatively simple connector with easily accessed, direct
pinouts. Moreover, the shielding built into the cable helped
to address some environmental noise concerns. The additional
two pins were necessary, though, because each pin is only
rated for 3A [22]. Our initial design used a Raspberry Pi 5
in place of the eventual Pi 4; the Pi 5 which draws up to 5A
from its 5V power supply [23], so we used the extra two pins
as extra rails (in parallel) for the 5V power system to support
the needed current.

The I/O board had one major modification to its design
prior to the manufacturing of the first PCB set. Like the
sensor board, filters were added to the design to address noise
concerns. Unlike the sensor boards, though, we decided to use
active filters: eight second-order Sallen-Key filters were used,
one for each row. Having second-order active filters allowed
us to effectively remove high-frequency noise while keeping
step response times tight. The expected input to these filters
was a rapidly switching DC value; to keep latency as low
as possible and accommodate these inputs, we optimized the
step response of the filter to converge very quickly without
oscillating. These filters were designed as Bessel filters to
produce an ideal step response for the effectively DC values
being read from the sensors. Using the Texas Instruments
analog filter designer, resistor values of 1.5kΩ and 2.7kΩ and
capacitor values of 15nF and 10nF were found to produce the
desired step response: a convergence to 0.5% within 150us.
These choices resulted in a passband gain of 0dB and a

corner frequency of 5kHz, which were within our design
parameters. The operational amplifier chosen for the filters
was the TLV9052 [24], which was relatively cheap and had
sufficient bandwidth for our application.

We ended up making a second revision of the I/O board
to address footprint issues. Numerous devices whose sym-
bols and footprints were imported from UltraLibrarian had
mismatched pin numbering. In the barrel jack, the polarity
was reversed and pads needed to be widened. The DE15
connector’s middle row of pins needed to be shifted one
position to the left so that the “arrow” formed by the pins
pointed the other direction. The DC-DC enable pin needed
to be disconnected from VCC instead of shorted. Lastly, the
pin 1 silkscreen dots for the operational amplifiers needed
to be shifted down to make them visible. Although footprint
issues also existed for the CHESSBOARD’s other PCBs,
the I/O board’s issues were significant enough to justify the
manufacture of a formally revised board. Without the revision,
the chances of introducing noise or bridging due to faulty
soldering would have increased greatly. The revised version
of the I/O board can be seen in Fig. 6.

4) Clock Box PCBs: As a cost saving measure, two dif-
ferent PCBs were arranged on the same PCB and cut apart
later. One board was a header board to interface with the
microcontroller; the other was the display board, housing the
LCD timing display [25] and the buttons through which the
users can interact with the device. These two boards can be
seen conjoined in the KiCad layout (Fig. 7).

The MSPM0 header board takes the power and data from
the main DB-15 connector and routes it to the appropriate pins
on the MSPM0 development board, which plugs in from jacks
on its underside. The header board also contains the necessary
filtering and isolation blocks for the sensor and UART signals.
To filter out the interference from the nearby high-frequency
digital traces, we added a 4th-order Bessel filter composed
of two cascaded Sallen-Key blocks. The Bessel filter response
was selected for similar reasons as it was for the I/O board: the
Bessel step response was preferred because the expected input
signal was entirely composed of discontinuous transitions
between stationary values. To achieve the desired response,

resistor values of 4.7kΩ and 6.2kΩ and capacitor values of
1nF and 1.1nF were used for the first filter; for the second,
resistor values of 2.4kΩ and 3.9kΩ and capacitor values of
1nF and 2.7nF were used. These values produced a corner
frequency of 20kHz and a passband gain of 0dB. Besides this
filtering, the board featured various header pins for interfacing
with the MSPM0 and routing signals and power to the display
board, which is also stored within the clock box. For noise
shielding, we grounded the casing of the DE15 connector on
the MSPM0 header board. To avoid a ground loop, we left the
other side disconnected.

The display board is relatively simple in terms of function-
ality. The desired display state is sent from the MSPM0 to the
device’s LCD driver chip [26] over an SPI-like communication
protocol. This signal is routed to the display board via the
header pins installed onto the board, which also supply power
and ground. When the load pin on the LCD drivers is pulled
high, the LCD driver outputs the correct AC waveforms to
produce the display state it received from the MSP. Alongside
the displays, this board houses 5 of the buttons on the clock
box. These buttons are connected to the MSPM0 through
a Schmitt trigger buffer [27] which debounces the signal.
The time constant of the debouncing circuit was tuned by
adjusting the values of the capacitors soldered in parallel with
the buttons and the values of the pulldown resistors. Given
the complexity of the code required for button debouncing,
we decided that a hardware solution was more practical and
simpler. The debouncing circuit is nearly identical to that
described in Debounce a Switch [12], but with the polarity of
the output flipped: the resistor pulls the output down, rather
than up.

Compared to the I/O board, there were fewer issues in
the design and assembly of these boards. The display board
needed to be expanded from what was initially designed to
account for the footprint of the LCD drivers. The header
board also expanded unexpectedly: an improper board cutting
job resulted in excess PCB dielectric on the header board
compared to what was designed. By the time we noticed this,
the board had already been completely soldered. After some
consideration, we decided that a redesign of the clock box
enclosure to account for the slightly larger dimensions was
the most efficient option.

Unfortunately, like with the I/O board, the clock box PCBs
encountered footprint problems. Though we were able to
overcome these issues without a second revision, the solutions
were not straightforward. The most significant footprint issue
to deal with for this board was that of the LCD itself. This
board fit the pins horizontally, but not vertically: the vertical
spacing was 7mm too small. We were able to work around this
by bending the pins of the LCD inward. This increased the
vertical distance of the clock box’s face, necessitating another
alteration to the enclosure’s design.

These footprint issues notwithstanding, we encountered
relatively fewer problems when designing the clock box PCBs.
There was an unforeseen issue with the Raspberry Pi, though.
Initially, we had set up the system so that the Raspberry

Pi would be powered from the same 5V power supply as
the rest of the system; we justified this after reading online
that a Raspberry Pi could be powered either from the USB
port or the header pins. Since we had an easy way to bring
5V jumpers across, we planned to power the Pi over the
headers. Unfortunately, testing showed that this somehow was
not the case for the Pi 5. We briefly considered cutting another
hole in the clock box enclosure for a separate power cable
(supporting USB-PD negotiation) or trying to emulate the
USB-PD protocol in a customized USB-C cable, but decided
that downgrading to a Pi 4 was the most straightforward
option. This design modification was not of consequence,
though: the Pi 4 was still sufficiently powerful to run Stockfish
with enough resources to produce powerful insights.

5) Power Budget Design: In order to help with sizing traces
and finding a proper power supply, the team assembled a
power budget sheet using the maximum power draw of each
component. This was performed separately for the two power
domains. The 3.3V power budget (Tab. II) was used in the
selection of the DC-DC converter to ensure that it would be
able to supply sufficient power. For the 5V system (Tab. III),
we designed conservatively by assuming that the DC-DC
converter was as inefficient as a three-terminal regulator. The
team made sure to add margins either for discrepancies from
datasheets or modifications to the power budget. For the entire
system, we selected the Adafruit 658 power supply [28],
which is rated for 50W (a 25% margin above the expected
maximum).

D. Software Design Details

Software was designed in two fundamental modules: the
firmware deployed on the MSPM0 and the software deployed
on the Raspberry Pi. The MSPM0 firmware was based on
FreeRTOS and was responsible for managing the project
hardware, including the sensors, buttons, clock display, and
LEDs. The Raspberry Pi ran the latest (as of November 2024)
version of Raspberry Pi OS, which is a port of Debian Linux.
Many common and useful utilities were thus provided “out of
the box” either as default software or accessible packages,
including Python, a character device mapping for UART,
and Stockfish. The Python modules chess and serial
were ultimately incorporated into the overall Raspberry Pi
script; each of the modules was a stable, functional option
for offloading software tasks and reducing the scope of new
software which needed to be written.

1) MSPM0 Firmware: The entirety of the firmware was
written in C. When deciding between real-time operating
systems, we had two options: a lightweight RTOS written
by John and Paul during ECE 4501 or the community-
supported FreeRTOS [29]. Our team selected FreeRTOS as
the base for the firmware because of its extensive testing and
official support from Texas Instruments on the MSPM0. In a
similar vein, we chose not to write our own peripheral drivers
to the extent possible: instead of interacting directly with
the memory-mapped peripheral registers on the MSPM0, we
used TI’s DriverLib library [8], which provides a convenient

Fig. 7. Revised clock box board layout.

TABLE II
POWER BUDGET FOR 3.3V SYSTEM.

Part Max Current (mA) Quantity Net Current (mA) Power (mW)
Hall effect 10 64 640 2112

Isolated Level Shifter 5.8 2 11.6 38.28
Muxes 1 · 10−5 9 9 · 10−5 2.97 · 10−4

7-Segment AC Generator 0.06 3 0.18 0.594
Op-Amps 50 5 250 825
MSPM0 7.68 1 7.68 25.3

Total 909.46 3001.22

TABLE III
POWER BUDGET FOR 5V SYSTEM.

Part Max Current (mA) Quantity Net Current (mA) Power (W)
LEDs 60 82 4920 24.6

Isolated Level Shifter 5.8 1 5.8 0.029
3.3V DC-DC 909.46 1 909.46 4.5473

RPi4 1800 1 1800 9
Total 7635.26 38.1763

interface for configuring and operating the peripherals. We
still needed to write drivers to generate data in the format
expected by the hardware connected to the peripherals, but
being able to use well-tested and well-documented peripheral
drivers undoubtedly saved us substantial development and
debugging time.

Deadlock, race conditions, and state corruption were pri-
mary concerns when designing the firmware. To prevent these
issues, the firmware was designed in a modular fashion, and
each peripheral was only accessed from one thread. The SPI
hardware for the LEDs, for example, is only accessed from a
dedicated LED thread. Communication between the threads
was accomplished through synchronized FIFO queues that
FreeRTOS provided. This project’s philosophy toward inter-
thread communication followed the Go language proverb:
“Do not communicate by sharing memory; instead, share
memory by communicating” [30]. Instead of using global
state, we chose to use a system of message passing to
ensure consistent state with no race conditions or deadlocks.
Following this philosophy required using more memory but
resulted in much greater flexibility and maintainability: for
example, all the hardware driver logic could be logically
from the main state machine logic. Splitting the firmware into
these modules was also helpful from a testing perspective,
allowing us to independently test each hardware driver with
minimal changes to the rest of the code base. The block
diagram for the firmware is shown in Fig. 8 and depicts the
interactions between the various threads and peripherals within
the MSPM0. The arrows between separate threads indicate
communication through a synchronized FIFO.

2) Internal 32-Bit Protocol: Communication between the
microcontroller and the Raspberry Pi occurs over UART.
To facilitate this, we designed a custom 32-bit protocol for
encoding chess moves in both directions. The protocol has
four modes: RPi→MSP normal, RPi→MSP undo, MSP→RPi
normal, and MSP→RPi calibration. We designed the protocol
to be able to encode any valid chess move and any valid
chessboard action, including hints, undo moves, multi-piece
moves (e.g., castling, en passant), and piece promotion. The
calibration also allowed us to quickly and efficiently collect
calibration data for creating per-square bins to correct for
differences in sensor height under the board. The calibration
data, once received on the Raspberry Pi, was saved to a cloud-
synchronized file for analysis. The protocol is described in
further detail in Appendix A.

3) Stockfish Wrapper: The Stockfish wrapper code de-
ployed on the Raspberry Pi (sf_wrapper.py, plus a helper
module wrapper_util.py) ran in an infinite loop in a sim-
ilar fashion as the embedded code deployed on the MSPM0.
Once setup is complete, the wrapper script effectively runs
as a finite state machine that generates predictable responses
to the limited changes of turn switches, undo button presses,
restart button presses, and hint button presses.

Fig. 9 demonstrates the finite state machine behavior in
sf_wrapper.py and its helper module. At the beginning
of every loop iteration, the wrapper blocks until it receives a

custom UART packet from the MSPM0 (represented by the
ReadPacket state). When a packet is received, the wrapper
decodes this and detects special conditions based on specific
packet encodings. A zero packet indicates a sentinel move
with a special meaning that the player has finished requesting
undos. If the packet encodes a hint request from the MSPM0,
meaning a player has pressed the hint button, the wrapper
sends the MSPM0 the most recently computed best (i.e., most
skilled) move from Stockfish, then continues a new iteration.
If the packet encodes an undo request, meaning a player has
pressed the undo button, the wrapper rewinds the internal
chessboard data structure by one move, sends the MSPM0
back the undone move, and continues a new iteration. If the
packet encodes a restart, meaning a player has pressed the
start/restart button, the wrapper clears its internal chessboard
data structure and confirms this board state to the MSPM0
(including by sending the initial legal moves), then continues
a new iteration.2 Otherwise, the wrapper decodes the packet
as a regular move and plays the move using Stockfish. When
the new turn is played, Stockfish gives a new best move and
list of legal moves.

Based on the results from the new turn play, the wrapper
indicates endgame conditions or otherwise sends the new
list of legal moves to the MSPM0 and transitions back to
ReadPacket. If the wrapper detects through chess module
routines a checkmate has occurred, the wrapper sends a special
checkmate packet to the MSPM0; similarly, if the wrapper de-
tects a stalemate, it sends a special stalemate packet. In either
case, the wrapper transitions back to listening for a packet
from the MSPM0. This is, however, a no-op until a start/restart
packet is received and the wrapper begins recording a new
game.

The wrapper runs its main event loop as an infinite loop.
The only disruptions that can occur are due to loss of system
power or from interruption due to catastrophic errors on the
system.

4) Raspberry Pi Administration: As the Raspberry Pi ran
a fully functional Linux instance, it required careful system
administration. The Pi ran a Secure Shell (SSH) server to allow
the team to remotely develop on the system; the server allowed
only public key authentication, however, rather than the sim-
pler password authentication. The configuration was sufficient
for prototyping with the caveat that, if the CHESSBOARD
was mass-produced, such networking capabilities would likely
be disabled and the wrapper script would effectively run as
firmware. Configuration tasks for the Raspberry Pi included
creating a Python virtual environment for the wrapper script
to run within; installing the chess and pyserial (aliased
in code as serial) packages within the Python virtual
environment; installing Stockfish; ensuring Git was installed if
not already present; and cloning the Git repository containing
the code to be run on the Raspberry Pi. Like the SSH server,

2The diagram hides these extra steps within the Reset state for readability
reasons. Sending the MSPM0 the legal moves effectively means that the
Reset state transitions to the SendLegal state, then to the ReadPacket
state.

CHESSBOARD
State Machine

Main Thread

Clock
Thread

Button
Interrupt Handler

FreeRTOS
Tick Hook

LED
Thread

Sensor
Thread

UART
Thread

Button
Events

Player

Turn Switch

1ms
Updates

SPI1

GPIO

Lighting
Events

Board
State

Possible
Moves

Moves

SPI0

GPIO

ADC

UART

Synchronized
FIFOs

FreeRTOS

Fig. 8. MSP Firmware Block Diagram.

Fig. 9. Finite state machine (FSM) diagram representation of the Stockfish
wrapper script, which was the main code run on the Raspberry Pi.

Git was used solely for development and prototyping and
would be omitted from the Raspberry Pi’s software if the
CHESSBOARD was mass-produced. Lastly, for file retrieval
purposes, a special data directory was created, and a systemd
rule was written to automatically mount any detected USB
drives and copy game data over accordingly.

While using Git version control and relying on commonly
available packages increased system reliability, it became
apparent during development that the Raspberry Pi was only
as reliable as the microSD card it booted Linux from. Unlike
systems like laptop and desktop computers that use larger
hard drives, the smaller Raspberry Pi boots from a microSD
card. If the microSD card broke (most commonly due to

accidental bending), a new microSD card had to be flashed
with a Raspberry Pi OS image and set up according to
the procedure described above. Recovery was doable in a
development setting but could pose significant risks in an
environment where the CHESSBOARD is a mass-produced
consumer product. In a real product, protections like better
casing and padding around the microSD card, which was
otherwise exposed when using the available Raspberry Pi case,
would significantly improve the microSD card’s resistance to
bending and breaking. This would reduce the likelihood that
consumers would experience a sudden malfunction in their
product due to an unexpected failure in a delicate microSD
card.

E. Manufacturing Design Details

1) Chessboard: The chessboard houses the sensor boards,
LED array, cell dividers, and I/O board. The computational
devices (Pi and MSPM0) were kept external to the chessboard
to keep the profile as slim as possible and reminiscent of a
traditional chessboard (see Fig. 1). Although we were willing
to compromise where necessary, the team wanted the CHESS-
BOARD to resemble a normal chessboard in order to make
the process of switching between the CHESSBOARD and a
normal chessboard easy. The base and walls were intended to
be made of a solid block of wood milled out with a cavity, but
time constraints prevented this. On the floor of the enclosure
the LED array was hot glued in position. The cell dividers
were made from sheets of composite wood, then cut with a
laser cutter to have cutouts that interlocked with the other
dividers and supported the placement of the other components
in the enclosure. The use of cell dividers helped isolate light
produced by LEDs to a distinct cell—we wanted to avoid

Fig. 10. LED strips glued to the bottom of the chessboard enclosure.

confusion for the user when we tried to light up a particular
tile.

The last major component of the design was the lid.
The lid is a composite of three layers that were originally
intended to be acrylic, polycarbonate, and acrylic, in that
order. Polycarbonate was the only offering from McMaster
Carr for translucent, colored plastic with dimension 24in×24in
(determined by the smallest acceptable FIDE tile length of 2in
multiplied out by the eight rows plus extra for a border). We
needed a colored middle layer so we could laser etch in any
white detailing (e.g.tiles, borders, coordinates). The composite
would be held together with glue. Functionally, the top layer
would be for piece alignment with the sensor: it consisted of
hole cutouts to help center a chess piece in a square above
the corresponding sensor. The middle layer was the layer on
which the pieces rested and in which aesthetic details were
etched. The lowest layer would help align the sensor boards
using specifically shaped cutouts (see Fig. 5). The composite
panel would be secured to the base with bolts.

After discussing the manufacturing of the enclosure with
staff from UVA makerspaces, the base design was changed
to suit traditional woodworking methods (see Fig. 11). It was
the opinion of the staff that the time investment to get trained
on the CNC would have been too great for the timeline of
this project and that the milling process would have been
relatively wasteful (about half of the material would have
been lost). Instead, scrap wood planks were planed and glued
together for the base. The base was surrounded by composite
wood panels with miter joints. Square wooden posts were
glued to the inner corner of the base to provide something
for the top panel (lid) screws to bite into. Also, we found
that polycarbonate could not be laser cut without producing
toxic gases, so the team pivoted to applying color to another
layer of clear acrylic. When a dyeing method did not work,
the team instead used a film of window tint. Applying the
window tint was difficult since the adhesive left many bubbles

Fig. 11. Revised CAD model of CHESSBOARD physical structure with
simplified geometry, expanded I/O shield, and added piece silhouettes.

on the surface. We compromised by using no adhesive for
the tint or the acrylic and using thin strips of double sided
tape instead, which limited the air bubbles to less visually
important areas of the board. We added silhouettes of each
piece on the border of the board to help guide the player with
initial game setup and to give us a method to signal what piece
to place at the identified tile when reverting to a prior board
state. After manufacturing, the team was dissatisfied with the
hatching density, which made it a bit difficult to tell what tile
was white. To make the tiles appear whiter, we sanded the tile
parallel to the edges of the square.

2) Clock Box Module: The clock box contains the clock
box PCBs, the Raspberry Pi, and the MSPM0. The display
was angled up at the user and the Pi and the MSPM0 were
housed in a cavity at the bottom of the clock box. We chose
to use 3D printing to make the enclosure since it gave us the
flexibility to custom-fit the cavity to the devices so mounting
would be “friction fit.”

We held off on making the clock box enclosure until the end
to give us the flexibility to adapt its layout in response to any
unforeseen issues. Some examples of changes that occurred
were expanding the cavity in response to board misalignment,
moving port windows after swapping from the Pi 5 to the Pi 4,
and placing button cutouts on the display face of the enclosure
as well as on top of the enclosure to accommodate the final
PCB layout. Additionally, the LCD screens were mounted
at a greater height above the display PCB than anticipated,
resulting in another adjustment to the enclosure model. Vents
were added above the Pi to ensure it would have sufficient air
flow to prevent thermal throttling. The revised model can be
seen in Fig. 12.

Due to limited printer bed size, the enclosure was segmented
into four separate prints (two for the top and two for the
bottom) that were glued together. The top and bottom halves
can be screwed together, but we often kept them unscrewed
during the development phase for ease of access.

Fig. 12. Revised CAD model of clock box enclosure with button ports,
ventilation grill, and horizontal split line.

Fig. 13. Initial chess piece design with a slot and plug (left) and final design
with a base and body (right).

3) Chess Pieces: In our initial design, we planned to 3D
print the chess pieces with a hollow cavity to fit the magnets.
Chess piece models were taken from Thingiverse and modified
to hold the magnets. The original project is the OpenSCAD
Chess by TimEdwards [31]. Initially, a separate cylindrical
plug would have been printed to secure the magnets inside the
chess pieces. The height of the plug would vary depending on
the type of chess piece to position the magnet at a certain
distance from the Hall effect sensors. This setup allowed
each chess piece to be associated with a specific magnetic
field strength. However, after printing a few test pieces, we
encountered issues when inserting the plugs and attempting
to align the bottoms of the plugs with the chess pieces. In
the redesign, the chess pieces were split into base and body
segments. The bases held the magnets at a certain distance
from the Hall effect sensors. The upper sections of the chess
pieces were bonded to the bases using acrylic glue. The initial
and final designs are visualized in Fig. 13.

Fig. 14. Manufacturing tool to ensure consistent distances between LEDs.

4) LED Array and Soldering: A total of ten LED strips
were manufactured, each consisting of eight LEDs (or nine
LEDs to light up the pawn silhouettes). For each strip, the
LEDs were connected by wire groups of a 2-inch length. To
ensure that the LEDs would be evenly spaced and centered
with each chessboard tile, a wooden jig was designed to
hold the LEDs during soldering as shown in Fig. 14. While
soldering the LEDs strips, we performed connectivity tests
to ensure that the rails were electrically connected. Next, the
LED strips were soldered together along with their connectors.
When trying to install the LED network into the chessboard
enclosure for testing, though, there were several instances
where the wires became disconnected. To cushion the solder
joints, we applied hot glue across the wire and LED contacts.
Hot glue was also used to secure the LEDs to the bottom of
the chessboard as shown in Fig. 10.

5) Computer Systems: The MSPM0 (formally, the Texas
Instruments MSPM0G3507-LP) and the Raspberry Pi (for-
mally, the Raspberry Pi 4B) were directly sourced from their
respective vendors. Manufacturing for these components was
controlled through external processes.

F. Testing and Verification

1) PCBs: As a general testing process for all PCBs, we
first checked for continuity between ground and VCC to detect
errant shorts. We also checked for continuity between small
SMD component leads with other nodes on the board sharing
the net to find poor solder joints. In most cases through-
hole components were reliably soldered and did not need
special attention prior to supplying power and testing system
behavior. If the continuity checks produced correct results, the
PCBs were powered with an external bench power supply with
current limits close to the theoretical maximum power draw.
If the voltage sagged, indicating that the supply’s current limit
had been reached and a short probably existed, the PCB was
sent back for visual inspection under a microscope to try to
find the issue. Disconnecting devices where reasonable was
a strategy used to try to isolate the source of the problem.
If the boards cleared all basic inspection, they would be
then examined based on their respective requirements and
expectations as outlined in the following sections.

2) Sensing System: To determine if our sensing method
with the Hall effect sensors worked, we performed preliminary
testing with the three different sensors: A1, A3, and A4 (see
Section III-C). To vary the magnetic field strength that would
be detected by the Hall effect sensors, we varied the distance
between the sensors and the magnets. With the Hall effect
sensors connected to 3.3V and ground, we laid the sensors
face-up on a tabletop. The magnets were displaced a certain
distance from the sensors by placing a number of printer paper
sheets between the face of the sensors and bottom of the
magnets. Since printer paper has a standard thickness, we
assumed it would work well as a variable spacer. Starting
with 16 sheets of paper, we measured the height of the
paper medium with calipers. The voltage output of the sensors
was measured with an oscilloscope for both cases where the
magnet poles were faced down. Next, we added another 16
sheets of paper and repeated this process until we reached
128 sheets.

Based on the preliminary testing, we decided to use the
A1 sensors as they provided the best resolution of the output
voltages. Using these results, bins for the output voltages and
distances (between magnet and sensor) for each of the chess
piece types (e.g., pawn) were initially determined.

The next stage of sensor testing involved the 3D printed
bases that held the magnets. Test tiles were also modeled to
have a 32mm diameter divot to center the chess pieces at a
standard height of 1/16 inches to replicate the physical design
of the chessboard enclosure. The sensors were placed against
the bottom of the 3D printed test tiles at their center and
the 3D printed bases rested inside the divot. Each base and
its associated bin were measured by moving the base around
within the divot and recording minimum and maximum output
voltages produced. The magnet was then flipped inside the
base and the same procedure was performed. This process
was repeated for each of the 3D printed bases and six different
sensors.

First, we tested the original design for the chess pieces with
the plug-and-cavity method described in Section III-C. When
inserting the plugs into the chess pieces, we found it difficult
to align the bottoms of the plugs with the bottoms of the chess
pieces. This led us to redesign the chess pieces with the base-
and-body design. In the later rounds of testing, we also realized
that the sensors were not perfectly centered when taped to
the test tiles. The test tiles were then redesigned to have a
bottom slot for the sensor, centered in the correct location
(see Fig. 15).

There were some complications in the displacement tests:
the sensors were not perfectly centered and were slightly
mobile during testing as tape was used to secure the sensors
to the test tile. The test tiles were redesigned to perfectly align
the sensors with the center of the divots. Bottom and top layers
sandwiched the sensors to minimize air distance between the
top of the sensors and bottom of the magnets.

After manufacturing the sensor PCB boards and the chess-
board enclosure, we retested the chess piece bins with the
prototype model. In this testing procedure, we interfaced to

Fig. 15. Model of test tiles with the bottom layer (right) to fit the sensors
and top layer (left) with 32 mm divot.

the analog multiplexer on the I/O board through the MSPM0
breakout board. First, we confirmed column and row selection
by inputting 3.3 V logic levels to the appropriate pins. To
determine which sensors were selected, we observed whether
the data pin output varied from the idle state voltage (≈1.64
V) when a magnet was placed on the above tile.

When we first tested the sensor boards, we realized that
the Hall effect sensor footprints were incorrect as 3.3 V was
traced to the ground pin of the sensors and ground was traced
to the supply pin. To resolve this issue without purchasing new
PCBs, we flipped the sensors so that they were face-down.
We also had to bend the pins to align the sensors with the
PCB edge so that they were flushed against the middle acrylic
layer. The resulting voltage bins were different from when
we tested the bases using the test tile, which was partially a
result of the middle acrylic layer being slightly lifted from the
bottom layer near the center of the board. To resolve this, we
applied double-sided tape between the bottom acrylic layer,
window tint, and middle acrylic layer. After this redesign, we
performed another round of sensor testing and adjusted the
heights of the chess piece bases accordingly.

When integrating the software system, a testing procedure
was developed to verify the voltage bins. The LED under
a specific tile would light up to indicate which sensor was
selected and actively reading. Two buttons on the clock box
were set up to allow us to select adjacent sensors. When a
chess piece base was placed on the active tile, the silhouette
of the detected chess piece (e.g., white pawn) lit up. We
discovered that many of the sensors detected different chess
pieces when measuring the same base. This variability must
have been from errors introduced by bending the Hall effect
sensor pins. A calibration procedure was then created to
measure the full output range produced by each of the 64
sensors when testing each type of base. Three more clock box
buttons were utilized to start and end calibration and to select
which type of base was being measured.

3) LED Arrays: Two tests were performed regarding the
LEDs: one to verify the operation of an individual row and a
second to test the entire LED array.

When the LED data and clock lines were connected directly
to the MSPM0, the single-row test worked perfectly, cycling
through a wide range of colors and brightnesses as expected.
However, after it was connected through the level shifter, we

found that the data was being corrupted, resulting in rapid
flickering. It was determined during this test that it would be
necessary to add a parallel input RC network for the LED data
and clock lines. After the input network was added, the row’s
data was observed to output the expected result at all 8 LEDs.
After verifying functionality on a single row, the array was
constructed.

After the LED array was assembled and installed, this code
was flashed onto the MSPM0 to observe the LED output.
Compared to the response of the individual row, there was far
more noise introduced into the full array, with an expanded
version of the row code resulting in LED values seeming
to randomly change. The root of this problem was found
to be poor soldering between some of the data and clock
lines throughout the system. Resoldering some of the most
obviously problematic joints and applying hot glue to provide
flex resistance resulted in a system that acted exactly as
designed.

4) UART Communication: Loopback tests were conducted
for both the MSPM0 and the Raspberry Pi to verify as a
“ground truth” that UART for both devices worked. At first,
the MSPM0 and the Raspberry Pi were respectively isolated,
had their UART TX connected to their UART RX, and were
programmed with code that sent test messages to UART TX
and immediately read from UART RX. This verified that,
independently of the integrity of the communication medium
between them, TX could correctly encode serial messages
according to the expected UART protocol and RX could
correctly decode serial messages by the same standard. UART
data sizes were fixed at 8 bits for both devices, and a standard
1-bit start bit and 1-bit stop bit were used with no parity bit
included with the word. Not only were test words verified
for correctness in software, but oscilloscope captures were
taken for both devices to verify electrically that their UART
peripherals behaved as expected.

For the Raspberry Pi, a reference to file-mapped UART (at
/dev/serial0 on the Raspberry Pi 4B) was first opened.
In the initial version of the UART interaction code which
used C, this directly invoked the Linux open, write, and
read system calls to operate on 4 bytes at a time. Loopback
testing on the Raspberry Pi using this version of the UART
interaction code (referred to during the design process as the
“UART booster”) first revealed that a kernel patch unexpect-
edly altered direct memory access (DMA) and inhibited UART
communication. After the UART interaction code was replaced
with invocations of the pyserial module and its routines
(specifically serial.Serial to create the file reference
and serial.Serial.read, serial.Serial.write,
and serial.Serial.read_until for byte-level I/O),
the loopback tests were repeated. It was at this point that the
kernel version had been reverted in an effort to fix the DMA
issues. Using pyserial quickly and conclusively verified
that, in fact, loopback testing was successful on the Raspberry
Pi. The change to pyserial was maintained even after the
team concluded that the Pi’s UART DMA issue was resolved
since using the trusted pyserial library instead of the

previous custom driver code saved further development and
debugging time.

The MSPM0 firmware was all C-based, so loopback testing
occurred in C. Unlike blocking Linux file operations, which
introduced complexity that using pyserial was necessary
to deal with, the MSPM0 UART device was simpler and
more straightforward to test. Conducting a loopback test on
the MSPM0 involved calling lower-level Texas Instruments
driver functions that directly moved bytes to and from the
memory-mapped UART device. First, the custom UART rou-
tines written for the project (which still used the TI drivers
but wrapped repeated invocations of them to deal with 32-
bit UART protocol words) were invoked for loopback testing.
When these drivers busy-waited indefinitely for space to
become available (for TX) and for FIFO entries to become
available (for RX), loopback testing was done using simpler
examples sourced directly from TI rather than from more
complex derived code. Using the simpler TI code examples
was unsuccessful, however. Faced with no other software-
based explanations for the MSPM0’s UART failures, the team
repeated the test while attaching oscilloscope probes to the
configured UART TX and RX, discovering that no part of
the UART communication appeared to occur. Bolstering this
conclusion was the fact that the logic level was never pulled
high (i.e., to 3.3V) during testing. Because no part of the
UART initialization appeared to occur successfully, the team
concluded that some underlying hardware defect caused the
UART failure on the MSPM0. When the team repeated the
loopback testing using the same code and oscilloscope setup
but with the UART module configured to use different pins,
the loopback testing succeeded. A quick fix was implemented
in which the functional pins were physically shunted to the
nonfunctional GPIO pins (which nonetheless remained con-
nected to maintain compatibility with PCBs that had already
been manufactured). While the team could not have anticipated
the UART failures for either the Raspberry Pi or the MSPM0,
the team’s loopback testing approach allowed for the most
accurate attribution of these issues and, therefore, for the best
solutions (in the context of this project) to be implemented.

Once loopback testing was successful on both the Raspberry
Pi 4B and the MSPM0, the devices were programmed with
testing code that propagated a duplex communication (i.e.,
two-way with reception and transmission on both ends) over
UART using the custom 32-bit protocol. With some initial
hurdles in verifying pyserial usage overcome, breakpoints
on the MSPM0 allowed halting the microcontroller and view-
ing variables in watch windows to verify that words sent by
the Raspberry Pi were correctly received on the MSPM0.
Duplex testing was done interactively in that specific words
and byte sequences were sent from the Raspberry Pi using
an interactive Python shell with pyserial, received on the
MSPM0 using code that triggered breakpoints, viewed in a
debugger connected to the MSPM0 to verify proper receipt,
transmitted back on the MSPM0 UART TX to the Raspberry
Pi, and read back on the Raspberry Pi. Thus, data integrity was
verified at all points of the communication (first transmission,

first reception, second transmission, and second reception),
and the overall accuracy of the transmission was verified
by successfully comparing the words transmitted from the
Raspberry Pi to the MSPM0 with the words subsequently
received by the Raspberry Pi from the MSPM0.

When we connected the entire system together, we ran
into one last set of problems with the UART protocol. The
Raspberry Pi and the MSP have different startup timings: the
MSP comes up within fractions of a second, but the RPi
takes 20-30 seconds. The word size supported by the UART
hardware is a single byte; each protocol packet consists of
four. Depending on the specific timing of the boot process,
the first word received by the UART on the RPi might be
halfway through a packet. Similarly, the first word received
by the MSP might be erroneous noise generated during the
boot process, rather than the start of a packet. To remedy this,
we introduced a handshake protocol (similar to TCP’s three-
way handshake) that runs during the start-up, to synchronize
the packet frames on both sides. Upon starting up, the MSP
sends 0x00000008 (“SYN”) every 100ms until it receives a
response. Because the first (least significant) byte is unique in
this frame, it can be used to align the framing on the RPi side.
When the RPi program starts, it waits for a 0x08 byte and
then begins processing packets. It sends back 0x00000001
(“SYNACK”) for each SYN it receives, which is similarly used
to align the MSP’s framing. To acknowledge this reception, the
MSP sends back 0xFFFFFFFF. This triggers the start of the
chess move list generation.

5) Stockfish Wrapper: The Stockfish wrapper was best
tested with all hardware subsystems working to replicate
a live chess game. Before all subsystems were assembled
into a complete prototype, the wrapper’s helper module was
extensively tested using a set of white-box unit tests that
covered various code paths and checked correctness.

First, the parse_button_event function which de-
codes the least significant two bits of every packet to
check for button event indicators was tested. The intended
behavior was verified in each case: for lowest two bits
012

3, parse_button_event flagged the packet as in-
dicating a start/restart button press; for lowest two bits
102, parse_button_event flagged the packet as in-
dicating a hint button press; for lowest two bits 112,
parse_button_event flagged the packet as indicating an
undo button press; and in all other cases (i.e., lowest two
bits 002), parse_button_event indicated that the packet
represented a normal move.

Next, the decode_packet function was tested to ensure
it properly constructed an intended move from a packet. The
custom UART protocol encodes the source and destination
squares within the most significant 16 bits of the word. Unit
tests confirmed that, for an arbitrary setting of bits to indicate
squares, these squares were transcribed as intended according
to rank and file (i.e., {000, 001, ..., 111} → {a, b, ..., h} file

3Binary values are written as literals in base two with a subscript 2

appended for clarity, e.g., 1 = 012.

translation occurred and {000, 001, ..., 111} → {1, 2, ..., 8}
rank translation occurred). Accompanying unit tests confirmed
that, as intended, the encoding of any bits except for those
in the specifically designated source and destination square
fields did not influence the decoded source and destination
squares. These moves were ultimately decoded and stored as
chess.Move objects and, in unit tests, their representation
as move strings was quickly verified for successful decoding.

The Stockfish wrapper’s business logic was enforced
in the functions encode_packet, encode_undo, and
encode_mtype. Unit tests for encode_packet were
first written to reverse the process of decode_packet
and encode a custom packet from a chess.Move object.
White-box tests ensured that when chess.Move objects
were encoded as packets, these new packets matched the
original packets the chess.Move objects were decoded
from. Next, encode_mtype was verified through a se-
ries of unit tests to return valid encodings whenever move
objects indicated that castling conditions, check conditions,
or castle conditions were present, or otherwise to return
an encoding indicating that the move had a “normal” type.
Since encode_packet calls encode_mtype as part of
its logic, verifying encode_mtype proved not only its own
correctness, but helped prove the correctness of its parent func-
tion encode_packet. Lastly, encode_undo was tested
to not only encode the source and destination squares for
the most recent move, but also to indicate which type of
piece had been moved. A series of unit tests proved that
encode_undo correctly marked a packet with the source and
destination squares; that the function queried the chessboard
correctly to get the type of piece that was moved; and that the
encoded packet reflected that a special move (castling, capture,
promotion) occurred if applicable. The helper utilities were
comprehensively verified using this testing framework; thus,
there was an assurance of software correctness as the prototype
was assembled.

The overall product (including the main event loop) is
currently being tested as part of whole-system testing, and
is showing promising results thus far. The team is confident
that further testing will show where bugs exist as applicable
and that the demonstrated final product will exhibit software
behavior that meets the design requirements.

One of the more interesting features we wanted to support
is automatic transcription. From the chess wrapper side, this
is straightforward enough: we write a text file to a special
directory for each game. It is slightly more complicated to
automatically copy this to a USB drive. We initially planned
to use a udev rule to trigger a script that would mount the
drive, copy the files, and unmount the drive. This turned out
to be more difficult than expected: udev does not permit
mounting or network access inside the rule handlers. Instead,
we made a systemd one-shot service template that runs a
shell script to perform the mount-copy-unmount procedure.
We were able to configure the udev rule to trigger our custom
service with the correct device as its argument. Because this
service was spawned in normal userspace (rather than in the

udev sandbox) it was able to perform privileged operations
like mounting.

IV. CONSTRAINTS

A. Parts and Resource Availability

The MSPM0 had a very small amount of memory: only
32 KiB of RAM. This was far too small to store the data
structures necessary for a chess engine, so we chose to separate
tasks. The MSPM0 manages the hardware and the board state
machine, while the Raspberry Pi coprocessor manages the
more complex state machine of the game itself. Based on the
power calculations for the board performed in Section III-C5,
we ordered a 50W AC power supply, which was sufficient for
our immediate needs and should provide enough headroom to
support a variety of future extensions.

The enclosure had minimal manufacturing constraints. One
goal was that we wanted to follow FIDE’s standard of tile
sizes. Otherwise, the only limits were our own capability
to manufacture the design, our skill, and our access to re-
sources. Factors which limited our manufacturing capacity
included restricted access to machining tools and special
training requirements. This was the cause for decisions like
making the enclosure with traditional woodworking instead
of CNC milling (in this case, for instance, the makerspace
staff believed it would take too long to get trained). Another
manufacturing constraint was the 400mm × 500mm limit set
by the chosen PCB supplier (JLCPCB). The team followed
the design flow that a PCB was designed with all of the
necessary components. The enclosures were then built around
the dimensions of the PCB and other components like the
MSPM0 and Raspberry Pi.

B. Software Tools

FreeRTOS provided the threading, synchronization, and
multitasking primitives used in this project. The FreeRTOS im-
plementation of queues was particularly widely used through-
out the firmware.

Raspberry Pi OS was installed on the Raspberry Pi to
provide a powerful general-purpose operating system that
supported Stockfish, file persistence for recording game data,
and I/O processing for UART, at minimum. While the lead
team member in charge of the Raspberry Pi (Paul) began
the project with Linux system administration experience, this
project’s requirements dealt with lower-level Linux operations
(character devices for UART) than he had encountered before.
The team, especially Paul, needed to learn how to bridge
applications traditionally held to be in the domain of embedded
C programming (e.g., UART and other byte-level serial proto-
cols) with comprehensive operating systems and their features
(Linux with its I/O system). Furthermore, the team had to
gain practice with mounting removable drives and automating
software to run when such drives were connected. In addition
to the mounting and unmounting, the team ended up having to
learn the format of systemd services and their limitations to
successfully automate the Raspberry Pi’s intended behaviors
(running the wrapper on boot and running the transcription

copy script upon detecting a removable drive). While not
without technical hurdles along the way, the project was an
ultimately successful exercise in extending Linux skills to
leverage the Linux file system in more powerful ways than
the team had done before.

The team used Python and Bash as needed to administer the
Raspberry Pi and run the desired code. Python was selected
for its breadth of modules and for its ease of implementing
features in code which would have required a substantially
greater amount of lower-level C code. While Python’s internal
complexity does typically make the language slower than C,
this was a trade-off the team willingly made since the tolerable
latency on the Raspberry Pi—targeted at one-quarter of a
second for move computation based on human reaction time
estimates—was lenient enough to accommodate any overhead
that Python introduced. In other words, using Python never
seriously prompted concerns since other features of the system
(chiefly the physical realities of chess) contributed far more
to overall latency. Like with Linux, the lead team member
for Python programming (also Paul) began the project with
significant experience; in this area, the project required extend-
ing existing skills rather than learning new skills altogether.
Nonetheless, Paul and the team had to learn the details of
Python’s chess and pyserial modules (and how to test
code which relied on them) to effectively meet the project
demands.

For the PCB designs, we used KiCAD, which is a free
cross-platform application with much better library support
than alternatives like Ultiboard. Since some team members
were already familiar with KiCAD from prior projects, this
helped the other team members learn the software more easily.
Schematic and PCB files were uploaded to a shared drive for
collaboration.

The modeling software used for the design of the chessboard
and clock box enclosures was SolidWorks. Fusion 360 was
used to model the chess pieces. We used two different 3D
CAD software tools was because the two team members
responsible for the physical design of the project were familiar
with different programs. Since the team members worked on
separate design parts of the project, there were no issues in
using different modeling software. Ultimaker Cura was used
as the slicing software for the 3D prints since we were using
the Ultimaker S3 printers available in the lab. Our choices of
modeling software were necessarily contingent on the prior
experience of the team members and the resources the team
had access to. Modifying these constraints (team expertise and
available resources) would likely modify the specific design
software used.

C. Prototype Cost Constraints

For this project, our team was given a $500 budget. Initial
estimates suggested that this project would cost $470. How-
ever, this excluded the costs of items that the group already
owned personally (most significantly the Raspberry Pi 4B
8GB, which cost $80). Additional salvaged and personally
owned component including buttons, passive electrical compo-

nents, 3D printing material, and an SD card had an estimated
total cost of $32. In all, our actual initial budget would be
approximately $582, with $30 left over to supply changes for
any unforeseen issues.

Over the course of development, several adjustments needed
to be made that resulted in budget increases. Such adjust-
ments included purchasing an official power supply for testing
purposes, creating a second revision of the I/O board, and
purchasing surplus multiplexers and Hall effect sensors. These
increased the spent budget to $520 ($20 over the provided
budget), or $635 after accounting for the provided or per-
sonally owned materials. Though we were able to cover cost
overruns for our prototype using personal funds, these excess
costs would need to be considered and handled differently if
the CHESSBOARD was manufactured at scale.

If we were to manufacture this prototype in its current state
as a production version, the costs would decrease compared
to the development costs as testing, revision, and surplus
components would be removed from the production budget.
Ignoring the taxes and shipping associated with our purchases,
the cost of a production version of this product would cost
approximately $346.05. This includes estimates for products
that the team did not order but used from personal or lab
inventory, like the Raspberry Pi 4B and 3D printing PLA. Fur-
ther discussion about market-ready production can be found
in Section IX, and the tables in Appendix B shows the final
budget as discussed in this section.

D. Manufacturability

The design of the CHESSBOARD prototype has many
aspects which could be changed to reduce cost of components
and simplify manufacturing. Many choices were made to make
the system modular and allowed for separate tasks to run in
parallel and be tested independently. For example, jumper pins
allowed for the team to have the flexibility of probing pins
for testing while providing an interface to connect subsystems
together when assembled as a full product.

The first aspect we would change for manufacturing is the
sensor boards. We believe the sensor boards should be oriented
horizontally, rather than vertically, in future versions of the
product. This would have a slight drawback of making a very
visible, opaque strip down each tile, but would allow for a
reduced number of components and would help with sensor
consistency. Horizontal sensor boards could be combined into
a larger board with I/O board components integrated into it.
In the PCB layout, we would just need to specify cutout
regions in a grid fashion to allow light to wrap around the
PCB and show through to the user. A horizontal board would
also eliminate a large number of wires and connectors. Instead
of cutting and soldering wires to LEDs, we could solder the
LEDs directly to the underside of the sensor board and have
a reflective coating on the cell dividers reflect the light up to
the user. There would be no need to include connectors from
I/O board to the sensors or LED array since those connections
could all be internalized to the new PCB design.

Additionally, a new horizontal board would be a much
better basis for an SMD-only design. From the standpoint
of a product brought to market, the team believes it would
be cheaper and faster to solder a board with exclusively
SMD components with a stencil and solder paste. A reflow
oven could practically solder every component simultaneously.
Moreover, an SMD sensor would eliminate the process of
bending leads to get the sensor head as close to the ceiling
of the enclosure, reducing manufacturing time and improving
consistency.

Improvements to the chessboard enclosure would be minor.
The advice to use traditional woodworking as opposed to
CNC milling was probably better for cost and manufacturing
time. We did observe variability in the floor height in our
prototype, but that was largely a byproduct of a nonstan-
dard assembly process. A machine-driven drilling process for
screws rather than glue would likely reduce that variability.
The more significant change would be in the top panel. The
tint proved problematic to use, so avoiding it completely in
a consumer product would be best. Finding a supplier that
makes translucent black acrylic would solve that issue. We still
believe using laser etching for white detailing is better than
independently coloring or machining tiles. When made from
a single piece, there is no need to join together many parts, so
there would be less irregularity in surface finish. Instead of an
adhesive, using rivets periodically at the intersection of tiles
would apply compression to the acrylic panels in a fashion
that is readily performed by a robot.

Anything that was 3D printed could be manufactured at
scale with injection molding techniques. To guarantee the
precision of the magnet depth the magnet cavity would be
mechanically milled.

A market-ready product would have the MSPM0G3507 chip
installed directly to the breakout board without the rest of the
development board, reducing package size and cost. Instead of
placing jumpers between standalone header pins and MSPM0
launchpad header pins, traces on a new version of the breakout
board could route peripherals directly to the MSPM0G3507
chip’s pins for its various hardware modules. This also means
the breakout board could reasonably be connected directly to
the Raspberry Pi header pins using traces, eliminating wires
and again reducing package size. This could allow us to build
a smaller clock box that needs less plastic to form the housing.

The overall dimension of the chessboard and associated
components could be scaled down so that the maximum
dimensions are reduced from 20in× 20in to 16in× 16in. This
would violate FIDE regulations for tile size, but it will allow
us to reduce costs substantially. The price point would drop
since less material would be needed for each board. The noise
captured in long traces would also be slightly reduced since
traces could be shortened.

Our last few changes from the prototype would be to fix
any remaining PCB design issues (formalizing any flywired
solutions), add a power switch, and change the D-Bus connec-
tor to a standard 15-pin connector instead of the high-density
version. These are mostly quality-of-life changes that either

help simplify the PCB layout or provide user safety.

V. SOCIETAL IMPACT

In this project, the main group of stakeholders are the users:
chess students ranging anywhere from a complete beginner to
an intermediate level player. This group is the most at risk for
any technical issues that compromise the safety of the board
such as a fault in the power supply. We hold a responsibility
as designers to appropriately and safely create a product that
can withstand the wear and tear that a standard chessboard
would be expected to tolerate. We operated with the mindset
that our design process should account for this and that a
thorough testing procedure would assist in guaranteeing a safe
experience for our users. Although we expect adults to use
our device, children are a significant subset of our expected
user base. Designing an appropriate digital product for children
required special attention to data collection and retention; since
the CHESSBOARD employs computer systems to collect data
about any chess games that are played, which may involve
child players, the CHESSBOARD was designed in accordance
with the IEEE 2089-2021 standard. More information about
IEEE 2089-2021 compliance is documented herein in Sec-
tion VI.

Another important group to consider is the purchasers, more
often than not being the parents of child users. If mass-
produced, this product would likely still be prohibitively ex-
pensive for several intended purchase groups. This price point
means that an average household likely could not purchase
this product on a whim.

In lieu of use by individuals or their households, the device
could appeal to school-affiliated and independent chess clubs
who could integrate it into their activities and could be likelier
to afford it based on their pooled resources. Although there
were some concerns about equitable access with the assump-
tion that only parents would be purchasing this, assuming this
secondary group of potential purchasers lowers the barrier to
access for the CHESSBOARD. The implications of this help
to maintain the low barrier of entry for chess as a whole,
further supporting the traditional game for anyone interested
in playing it.

The technologies which constitute the CHESSBOARD have
minimal potential for misuse and abuse. The computer sys-
tems involved can be arbitrarily reprogrammed assuming an
individual has physical access to the device and sufficient
time and resources; in fact, this is a risk for any consumer
product that incorporates a computer system. Thus, the risks
of physical access are, unfortunately, impossible to account
for absent the incorporation of extreme and expensive security
measures. However, the CHESSBOARD follows other, more
reasonable measures when it can to be a secure product. Since
the CHESSBOARD does not maintain an Internet connection
and does not require an Internet connection to interface with
an end-user’s computer and dump transcriptions, fewer vectors
exist for cyberattacks on the CHESSBOARD than exist for
many other consumer technologies. Bugs and vulnerabilities
likely exist within our code that we wrote to run on the

CHESSBOARD; this is, unfortunately, not unusual, and it is
also true that the libraries and operating systems we depend
on may have vulnerabilities we could not have anticipated.
Apart from reasonable testing for functionality, implementing
additional security measures was not practical, nor would it
have offset the greatest threat (physical access). Thus, the
CHESSBOARD meets a similar ethical standard for protect-
ing its intended application from unwanted interference that
similar computer systems on the market meet.

VI. EXTERNAL STANDARDS

In comparison to many other engineering projects, the
CHESSBOARD has fewer standards it must uphold. Neverthe-
less, there are relevant standards worth discussing in relation
to the product’s design. These include standards relating to
child safety [32], chessboard and piece regulations [33], LED
brightness [34], and power safety [35].

A. IEEE 2089-2021: IEEE Standard for an Age Appropriate
Digital Services Framework Based on the 5Rights Principles
for Children

Since the CHESSBOARD was developed for a general au-
dience that may include children, designing the computer sys-
tems and their code to interact ethically with child users was
paramount. Specifically, the CHESSBOARD was designed
in accordance with the IEEE 2089-2021 standard, which
describes an “Age Appropriate Digital Services Framework”
(AADSF) based on prior children’s rights literature [32]. IEEE
2089-2021 was an appropriate choice since the burden of
compliance was relatively low: a team or developer “is not
required to engage an expert to conform with the standard”
[32]. Rather, Square Dance needed to demonstrate that the
outcomes, activities, and tasks in Clauses 7 through 15 of the
standard had been achieved [32].

For the purposes of Clause 7 of the standard, the CHESS-
BOARD design features and data processing which interact
with children are those features which support the transcription
of moves that child players may make into chess notation.
This notation is completely severed from a player’s personally
identifying characteristics like age or other status. Children’s
rights are thus inherently protected as users are not identified
to begin with.

Pursuant to Clause 8, Square Dance has identified that
the CHESSBOARD product and its associated services are
appropriate for all children. Outside of standard variation in
players’ ability to understand the game of chess, there is no
content within the product and services the CHESSBOARD
provides that are appropriate for some children but not for
others. Square Dance asserts that the product and its services
are appropriate for all children and that, correspondingly, no
engagement with an “age assurance” mechanism is needed on
the part of the end user [32].

Pursuant to Clause 9, Square Dance has ensured that “chil-
dren’s rights are realized in the product or service” of the
CHESSBOARD and that the terms of use which accompany
the CHESSBOARD uphold children’s rights [32]. For an

example of upholding children’s rights, in accordance with
Section 22580 of the California Business and Professions
Code [36], the CHESSBOARD does not advertise a variety
of drug- or weapons-related products to child users because
the CHESSBOARD does not advertise any product to any user.

Pursuant to Clause 10, Square Dance does not subject
child users of the CHESSBOARD to inappropriate commercial
advertising techniques; completely separates player data from
player identity and personally identifying characteristics; and
collects the minimal amount of necessary data regarding chess
moves themselves and the sequences in which they were
made. Square Dance has not, and does not, put “commercial
considerations” over children’s rights [32].

Pursuant to Clause 11, Square Dance provides fair terms to
child users that treat child users as equally capable as adult
users. The actual CHESSBOARD products and its services
uphold these terms, which are in the best interests of children
[32]. The CHESSBOARD is a learning device that operates
equally for child and adult users; since the CHESSBOARD
serves to increase chess skills, which is an age-appropriate
skill that engages with no adult concepts, the CHESSBOARD
acts in the best interests of children.

Pursuant to Clause 12, if the CHESSBOARD is released
for a consumer audience, Square Dance will publish CHESS-
BOARD terms of use to the extent necessary that are easily
understood. Since the CHESSBOARD uses universal chess
symbols and only involves culturally specific glyphs (i.e., A-
G for files and 1-8 for ranks) to mark different portions of
the board, the device and its services are available to children
of many different backgrounds. The underlying product of a
chess game with anonymous transcription is age-appropriate;
thus, the CHESSBOARD terms of use do “render an age
appropriate service” [32].

Pursuant to Clause 13, Square Dance is “explicitly [adopt-
ing] and [implementing]” the AADSF standard, and the supply
chain which provides the electronics, materials, and computer
systems for the CHESSBOARD can be reasonably verified as
offering “age appropriate digital services” [32]. Since the only
digital services offered to the child end user are those which
Square Dance create, there is practically no supply chain to
verify. Correspondingly, the Square Dance member primarily
responsible for the portions of the CHESSBOARD design
which interact with children (Paul Karhnak) has read through
the IEEE 2089-2021 standard and is making reasonable efforts
to be trained in child compliant design. Lastly, Square Dance
has consistently upheld children’s interests in design and
business decisions [32] and will continue to do so.

Pursuant to Clause 14, Square Dance is making a “best
effort” attempt to incorporate the CHESSBOARD’s impacts
on children in the product and service design, noting various
scenarios that child users may encounter, and prioritizing
children’s rights and development in the product [32]. The
remaining risks in the product, which are hereby published,
mainly encompass the inherent risks that unrestricted physical
access to computer systems entail (see Section V for a
detailed description). That is, the computer systems on the

CHESSBOARD have the inherent risk of being reprogrammed
with malicious software because anyone with enough time
and access to such systems has unlimited control over them.
Reasonable efforts have been taken to ensure that only with
physical access is this the case, however; because network-
based authentication on the system is based on a secure
public key infrastructure rather than on passwords which are
often easily cracked, any attacker would almost certainly need
physical access. If the CHESSBOARD were developed into
a mass-market device, network services would be disabled
entirely; they were only enabled during prototyping for live
testing and debugging purposes.

Lastly, pursuant to Clause 15, Square Dance has monitored
and will, to the best of its ability, continue to monitor the
CHESSBOARD prototyping and deployment, iterating wher-
ever and whenever possible to best protect children’s rights. If
the device is developed into a mass-market consumer product
and actually made available to children, Square Dance will
publish a corresponding AAR. Furthermore, Square Dance
by default shreds user data (completely overwriting it and
deallocating the file system space associated with the data)
once it is copied to an external flash drive. This respects the
wishes of customers, including children, and their “right to be
forgotten” [32].

B. Fédération Internationale des Échecs (FIDE) Handbook:
General Rules and Technical Recommendations for Tourna-
ments

In an ideal scenario, we would comply completely to
FIDE’s General Rules and Technical Recommendations for
Tournaments [33]. However, many of our alterations from a
standard chessboard, though vital to the functionality of our
subsystems, violate the regulations outlined in this section of
the FIDE Handbook. One such example is the divots that
are to be incorporated into every square for our pieces. In
our design, it is required that the piece be placed within
a very specific proximity to the sensor to properly trigger
the Hall effect sensor. These divots are all the same size,
so the pieces we constructed all needed to be of the same
base size. This violates regulation C.02.2.2, which states that
piece’s bases must be 40–50% of their heights. To comply with
another element of the same regulation, dictating specific piece
heights, this portion must be ignored.

The regulations also have several key features that we
wished to include in our board design, including sufficient
contrast between the two colors of pieces, a square size of at
least 2in, and the previously mentioned piece heights.

With the understanding that these violations of chess tour-
nament procedure were necessary to ensure the functionality
of our product, we attempted to apply as many standards
present as possible but accepted that violations were necessary.
The intended goal of this product was to provide a tool for
beginners moreso than an instrument for competitive play in
tournaments. Adhering to as many standards as possible should
produce a project that is ergonomic and comfortable for most
users, so it is still important to consider these standards.

C. Other Standards to Consider

According to the Power Supply Safety Standards, Agencies,
and Marks published by CUI, inc. [35], the device we are
operating is Class III equipment, as we are supplying it with
a 5V DC power supply. This is well below the 42V AC peak
established by the Safety Extra Low Voltage (SELV), meaning
hazardous voltages are unable to be generated by the system.
These systems do not require extensive safety testing and are
considered safe for operator access.

According to the IEEE Recommended Practices for Modu-
lating Current in High-Brightness LEDs [34], flickering LEDs
could pose a minor health risk to epileptic individuals when
flickering at a rate below 90 Hz, especially considering that
they would be expected to stare directly at the board for
extended periods of time. Although the risks are minor consid-
ering that the view of the LED is obfuscated by the board’s sur-
face, it is still worth considering the recommendations outlined
in the document to mitigate the adverse effects. Considering
that 60 Hz is generally the limit for discernible flicker, it is
important to be considerate when designing the system and
guaranteeing that the power is sufficiently provided for each
LED, while not being so bright as to be uncomfortable. Part
of the way we addressed LED flickering was to ensure LEDs
were connected in such a way that code written to consistently
light up LEDs did not result in unexpected flickering: this is
documented in Section III-F3. LED brightness is likely to be
a subjective metric considering that we would be unable to
measure the brightness across the board’s surface. Though the
majority of the document is dedicated to general LED lighting,
it is still worth considering the implications of an LED that is
expected to be stared at for an extended period of time.

VII. INTELLECTUAL PROPERTY ISSUES

In light of the more novel aspects of this design, the
device’s patentability is worth considering. The concept of a
“smart chessboard” is already a widely commercially available
product as well as a common electronics hobbyist project. Due
to this lack of novelty, the idea of a smart chessboard itself
likely has little or no patentability. In fact, a patent granted in
2022 features a smart chessboard that communicates with a
computer by sensing chess pieces with RFID [37]; this patent
is set to remain active until 2039. Since patents exist for
similar “smart chessboards”, this would have to be taken into
consideration for a patent application for the CHESSBOARD.

In addition to the concept of a smart chessboard, several
aspects of the design originate from other projects. This
includes the idea of using Hall effect sensors as the means
by which to determine the piece type. A patent from 1974
uses similar magnetic based sensors in order to determine the
presence of a piece on a specific square [38]. Although our
method of sensing determines the type of piece in comparison
to just the presence, the preexisting magnetic board patent
can be used to demonstrate that several aspects of this project
are not novel. Another patent approved in 1978 describes an
electronic chessboard which uses a push-button display to
indicate the location of a set of chess pieces for any given

board state [39]. This provides the ability to display a similar
degree of information as we are able to with our LEDs, albeit
with a different form factor and technology.

Beyond the sensing and communication approaches, the
project uses the open source Stockfish chess engine and chess
piece modeling files from Thingiverse. The chess piece models
are modified versions of the OpenSCAD Chess project by
Tim Edwards [31]; this OpenSCAD project is licensed under
the Creative Commons BY-SA license, which allows for the
copying or modification of the material to be commercially
distributed so long as attribution is given to the original
creator. If modifications are made (the original material is
“remixed”), the remixed material must be released under the
same license. Through this, we would be able to include our
remix versions of the chess pieces in a patent application of
our own. Similarly, Stockfish is open source software released
under the GNU General Public License version 3 (GPLv3)
[40], so using Stockfish does not impede the creation of a
patent because our system is a derivative work, rather than
simply a redistribution, of Stockfish.

Despite these features that are reused from previous work,
the CHESSBOARD’s overall approach is nonetheless novel.
The CHESSBOARD’s use case and specific application—
a smart chessboard designed for learners with supplemental
features like a hint button, undo button, and LED feedback—
is unique. Although many of these aspects have appeared
individually within other patents, our overall combination to
support our goal can be argued to be novel. Indeed, some of the
prior projects have aspects that overlap with each other, and
they could still each be patented. Approaching the patent with
this in mind while emphasizing the more unique aspects of
our CHESSBOARD could give a potential patent application
more merit.

VIII. TIMELINE

Over the course of the semester, there were several points
of divergence from our initial estimate of the project timeline
that became increasingly apparent. Chief among these were
assembly and manufacturing processes that were significantly
longer than expected. Nonetheless, we allowed ourselves a
period of nearly three spare weeks at the end of the semester
in our timeline, so we still completed this project on time
before our major deadlines.

Our hardware development schedule changed dramatically
over the course of the design process. During this process,
we realized that there were several less critical elements such
as the enclosure design. This part of the design required
modification after having a better understanding of the PCB
dimensions, so pushing the completion of this aspect of the
project back was an appropriate action to take. Even after
the PCBs were designed, some issues with assembly required
adjustments to the enclosure, as discussed in Section III-C.
Aside from this, the design largely aligned with our initial
expectations (see Fig. 17).

Our software design schedule also changed. Although the
preliminary hardware design phase was completed early in the

Fig. 16. Initial Gantt Chart of the Project Conception and Initiation and the Research Phases.

Fig. 17. Initial Gantt Chart of the Design Phase.

semester, later changes to the hardware systems necessitated
restructuring and rewriting substantial sections of code. In
addition, the delays caused by unexpected issues related to
UART communication momentarily prevented the develop-
ment of other sections that were dependent on it. Much
of the software logic was completed early, but because the
hardware was unavailable until later, we were unable to test
large portions of the software until the last few weeks of the
development period (see Fig. 21).

After the design phase, the assembly process experienced
the most significant increase in time relative to our expecta-
tions. Initially, our expectations were to complete this over
an approximately 4-week span in October and early Novem-
ber. However, this significantly underestimated the amount
of soldering that needed to be conducted. The LED array
and PCB soldering processes took until late November to be
fully completed. As the team members doing the soldering
were largely the same as those in charge of the enclosure
manufacturing, the enclosure manufacturing was also impacted
(see Fig. 20).

Hardware testing was ongoing during the entirety of this
process, from simple beep testing and visual inspection which

verified proper soldering to power or sensor testing that
guaranteed we were adhering to our calculations. Other kinds
of testing were also performed. This testing was largely con-
sistent between our initial (Fig. 19) and final (Fig. 21) Gantt
charts: we expected the testing process to occur simultaneously
with the assembly process. After assembly was completed,
the sole focus could be placed on guaranteeing hardware
functionality. This last objective was a continuous task that
was not complete until our final demonstration, so the task is
not marked completed on our attached Gantt charts.

For reference, initial Gantt charts that reflected our ex-
pectations for the timeline of the project’s research, design,
manufacturing, and testing phases are given in Fig. 16, Fig. 17,
Fig. 18, and Fig. 19, respectively. Our final Gantt charts which
measure our actual project timeline as it proceeded are given
in Fig. 20 and Fig. 21.

IX. COSTS

In this section we outline a potential mass production
scenario for an order of 10,000 units. As mentioned in
Section IV-D, there are many adjustments to the design that
could be made to reduce costs. To summarize, we could

Fig. 18. Initial Gantt Chart of the Manufacturing Phase.

Fig. 19. Initial Gantt Chart of the Testing and Finalization Phases and Other Important Dates.

Fig. 20. Final version of the manufacturing Gantt chart. .

Fig. 21. Final version of the testing Gantt chart.

consolidate subsystems to reduce the number of components to
assemble, simplify parts logistics by using a narrower variety
of parts with similar functions, and more loosely follow FIDE
guidance to reduce the size of the device and its material costs.
Automated manufacturing would also have a significant impact
on the effective cost of the product. Using stencils and solder
paste to assemble the PCBs and injection molds for the chess
pieces would all allow for much more rapid production times.

Conservative estimates of costs for a 10,000-unit production
order may thus be made. In Tab. IV, the far right column
shows the ordering the parts in volume provides a substantial
reduction in cost from $346.05 per unit to $262.55, a 24%
reduction. This could be only be reduced further with the
manufacturing changes we previously discussed.

X. FINAL RESULTS

On December 6, 2024, the original publication date of this
report, the functionality of the project was as follows: when
the user plugged in the power cable into the I/O board, the
game automatically began if the pieces were in the correct
starting position. If this was not the case, the lights would not
turn on until the board was in the correct position. In this state,
the white player’s movable pieces were highlighted. When any
piece was picked up, all available moves for that piece were
indicated by the LEDs. For pieces that were not movable, no
LEDs were highlighted. An issue prevented the turns from
swapping to the other player. The piece movement is visible
in Fig. 23 and Fig. 24.

However, what was present at that point indicated that
we had a complete understanding of the board state and

Fig. 22. Final version of the clock box. The top two buttons correspond to
each of the players’ turn swap, the while the others correspond to clock, hint,
undo, pause, and restart, respectively.

accurate readings of our sensors. Additionally, the LEDs were
functioning as expected. Further testing and debugging showed
errors in the Stockfish wrapper on the Raspberry Pi that caused
the code to crash and prevented the entire CHESSBOARD
system from functioning as intended as a result.

For the project proposal, we outlined five items to aim for
completing by the day of the demonstration to achieve full
marks. Firstly, we needed a proper enclosure and all physical

Fig. 23. The start state of the untimed board. All available moves are
highlighted with the LEDs.

Fig. 24. The white D pawn being moved. The LEDs light to indicate which
spaces are available for movement.

elements required to play chess. Secondly, we needed an
LED array that allows us to communicate with the players to
indicate what pieces they can interact with. We also decided to
include the ability to transmit a complete game transcript via
USB to study and import into other chess software. Addition-
ally, to facilitate newer players, hint and undo buttons were
designed and included. Lastly, we decided it was important to
include a chess clock to encourage newer players to approach
the game with a different mindset.

First, it is apparent based on Fig. 25 or Fig. 26 that all of the
physical materials necessary for chess are present. All pieces,
as well as additional pieces to accommodate pawn promotion,
are present. Additionally, based upon Fig. 23 and Fig. 24,
the LEDs can be seen to function as intended, highlighting

Fig. 25. A top down view of the completed chessboard.

Fig. 26. A side view of the chessboard and clock box.

available moves and guiding the players into legal moves.
The remainder of the features (hint, undo, clock, and

transcript) were implemented in software but had bugs as of
this report’s initial publication. All the hardware required for
these features was functional, however. We expected that these
bugs would be resolved during the period from December
6, 2024, to December 9, 2024, between this report’s initial
submission and the final demonstration of the project. Since
transcription depended on a fully functional game to be tested,
the transcription feature also could not be verified to work as
of December 6, 2024.

Based on the outline established, the work that we achieved
as of December 6 would be deserving of a B. However,
considering our proximity to full functionality at that point
and our confidence in achieving these aspects of the project by
the time of the prototype demonstration, we still believed that

the effort that had been placed into the project was deserving
of an A.

We have preserved the above paragraphs in order to doc-
ument the state of the project when we turned in this report
in Fall 2024, three days before the demonstration. Over the
weekend that followed, we worked ceaselessly toward full
functionality. We are very pleased to report that we success-
fully achieved every goal laid out in this project and scored an
A+ for our efforts. Every system worked completely on demo
day4—though one of the turn-switching buttons needed to be
re-glued after an enthusiastic child hit it too hard. A quick
demonstration video, filmed and edited by Lourdes, may be
found here.

XI. ENGINEERING INSIGHTS

A. Reinventing the Wheel

One of the foremost lessons from this project was to
not “reinvent the wheel” and instead employ existing stable
tools as project components wherever possible. For example,
software tasks were progressively offloaded to well-tested
external libraries, packages, and projects. Initially, the team
planned to write a bespoke RTOS kernel and manually port a
chess engine to the MSPM0’s limited embedded environment.
Using the stable, professionally maintained FreeRTOS for
the MSPM0, however, proved a superior alternative. With
FreeRTOS’s comprehensive interfaces for task management,
data structures, and synchronization, among other features,
the team saved countless hours of development time by using
existing “off-the-shelf” products instead of opting for a “do-
it-yourself” approach. Moreover, when the more powerful
Raspberry Pi emerged as a platform to run a chess engine
on, the team elected to run Stockfish on the Raspberry Pi
and engineer communication between the Raspberry Pi and
MSPM0 rather than engineer a full-fledged stripped-down
chess engine on the MSPM0 itself. Yet more time was saved
by using Python’s chess and serial modules to use trusted
code for chess game management and UART communication,
respectively. In all, reducing the scope of novel software we
developed allowed for easier testing and debugging. If existing
libraries and projects could simply be assumed to work a
priori (often, though not always, justified), we could, and did,
ultimately concern ourselves with simply testing the bespoke
code written to interface with those software tools rather than
testing all software involved in the project.

In comparison to software, the hardware side of the project
largely avoided this issue by prioritizing the aspects of design
that only we could implement, such as the filter values and
the overall block diagram. Even in these aspects, we utilized
tools to make them as simple as possible, such as the Texas
Instruments analog filter designer. For other aspects, we used
widely available and common standards to have as much infor-
mation and references to take from as possible. For instance,
we used a commonly available DE-15 adapter and cable to

4Punctuated by the successful application of a “hotfix” for the Stockfish
wrapper’s Python code approximately 15 minutes before our demonstration.

transmit power and information between the clock box and
chessboard. These actions meaningfully avoided “reinventing
the wheel” with respect to the hardware.

B. Trust, but Verify

Another critical lesson we learned through this experience
was to trust our judgment but also verify our work. Assump-
tions that critical project software worked were always justified
with extensive testing and, where needed, debugging. One
of the foremost software examples to demonstrate this was
the UART testing (see Section III-F4). Initially, UART was
configured properly and appeared to work on the Raspberry
Pi. When a new microSD card had to be prepared to replace
a broken one, however, the new kernel version bundled with
the installation contained a patch that disrupted the ability to
access memory necessary for UART communication. While
further kernel patches have since addressed this problem, the
original solution was to revert the kernel version to one issued
before the patch. This put into practice the principle that no
software was treated as infallible.

This lesson was especially relevant for the hardware. Testing
our system, much like with the software, was a critical part of
guaranteeing correct functionality. To this end, we took great
care to check our work throughout the assembly and design
process. However, there were still aspects of the project in
which our overconfidence led to problems that could have
been prevented with more careful reflection. One such issue
was the faulty footprints on our PCBs. This issue was largely
preventable—indeed, it should have been caught during the
design phase of the project—but was able to go unnoticed
until the assembly phase, resulting in the need for several
unexpected modifications to the components to allow them
to fit within their expected positions. In the case of the I/O
PCB, a second revision needed to be ordered to resolve the
footprint issues. Although trust in our capabilities was critical
to actually creating a functional end product, verifying our
work thoroughly was a key factor we needed to pay more
attention to during the development of the project. A hardware
problem with UART on the MSPM0 also demonstrated this
principle. Like with the Raspberry Pi, basic examples were
used to verify that the UART functioned as expected for simple
TI-provided code snippets. This helped diagnose a UART issue
on the MSPM0 where a hardware defect led to two of the
GPIO pins failing to propagate the intended UART messages
electrically. A hasty fix somewhat analogous to the kernel
reversion on the Raspberry Pi was soon put in place to address
the underlying problem.

One way we were able to proactively follow this lesson
was by providing ample surplus parts during prototyping. This
was initially avoided because we trusted our soldering ability.
Although our soldering ability by itself was generally suffi-
cient, other design issues meant that additional multiplexers
and sensors needed to be ordered individually, which incurred
fairly expensive shipping costs. This shipping is what caused
us to exceed the budget cap of $500, and it could have been
avoided if additional parts were ordered from the beginning. A

https://pub.eldamar.org/projects/capstone-vid.mp4

better approach would have been to order at least 20% more of
every part than we really needed, to account for adjustments
that needed to be performed; this would have become valuable
as certain aspects of the design demonstrated that they would
not function as intended without alteration.

For both software and hardware, thorough testing that im-
plemented conservative assumptions allowed the team to catch
potentially product-breaking errors. Especially for UART,
discarding the assumption that UART drivers and hardware
simply worked as-is enabled the team to catch critical errors.
While the team could not always anticipate these errors ahead
of time (especially for UART, where the errors were unusual),
the team could nonetheless pinpoint the source of the problem
immediately rather than have to repeatedly vet the entire
project’s hardware and software every time an error presented
itself.

C. Nights and Weekends

Lastly, an important lesson emerged from the pace at which
this project was developed. Initially, we expected this project
would proceed at a constant pace. To start from the best place
possible, we all put ourselves into this project completely and
get a great work pace even before the start of this semester.
However, we failed to anticipate our external obligations and
struggled to properly balance this project with many of our
competing priorities. By the midpoint of the semester, this
project was just meeting the deadlines established by the class.
With the addition of underestimations for the assembly period,
this project was completed only with great time commitments
during the last few weeks of the semester.

The main takeaway from this section is that even with
intentions of maintaining a good development pace, without
the will to act and a thorough plan of doing so, said pace can
fall below the established expectations.

XII. FUTURE WORK

Many of the changes the team would have made to the
design have been outlined in Section IV-D. The main changes
would be to reduce the number of parts and simplify man-
ufacturing. The sensor boards should be turned horizontally
in future versions of the product and combined together with
the I/O board into fewer, larger parts. Components should be
standardized across PCBs in the system and be SMD only
rather than a mix of SMD and through-hole. The D-Bus
connector should be swapped for the low density variant with
only two rows to help ensure it is easy to run properly sized
traces to each pin. Compression of the acrylic should be done
mechanically with rivets rather than with adhesives.

For future student teams who may want to tackle a similar
project concept, we would like to preface that some of these
changes anticipate industrial manufacturing capacities that
student teams may not have. The choice of SMD components,
for example, is great for package size and manufacturing time
if a designer has access to a system that allows for large scale
solder paste and stencil methods. One might be able to achieve
similar results with a heat gun but may deem it more practical

to use through-hole component since many students are more
likely to be comfortable soldering through-hole components.

The aesthetics and interface could also be improved upon
to enhance user experience during gameplay. Since we spent
the majority of the semester manufacturing and debugging the
project (even up until the day of our showcase), we did not
have time to make all the redesigns and implement all the
features we wanted to. Features and components the team
would like to add or change beyond those geared toward
mass production include adding puzzle modes, using a more
complex display option, trying out omnidirectional Hall effect
sensors, and trying out a resistor-based piece identification
system. With the limited time we had, we did not expect to
be able to implement many more features than those outlined
in our original proposal. However, that does not mean these
additional features are unimportant. For instance, the team
thinks a commercial learning aid with the option for puzzles to
give the user more options for learning how to strategize and
think about playing chess. Other improvements could be made
to the aesthetics and interfaces to enhance user experience
during game play. For example, the current end player buttons
should be replaced by larger buttons that are also possibly
external to the clock box module to prevent the wearing down
of both the buttons and the clock box enclosure. This would
be important as players may try to hit the buttons to end their
turn as soon as possible. As such, durability of the buttons is
important to consider, especially for Blitz games.

The more complex display idea of the project is driven by
a desire to make this product more accessible. Currently, the
only way to access the transcription feature is to have a USB
flash drive and a computer to read the output file. This makes
owning a computer a limiting factor for the accessibility of
our device. A more complex display could offer the ability
to use the transcription feature without additional financial
investments (owning a computer).

Omnidirectional Hall effect sensors and the resistor concept
are all ideas the team thought of as we progressed further
into the project and ran into concerns with piece detection
consistency. Needing to bend the through-hole sensors to
reduce the space between the sensors’ face and the ceiling
of the enclosure allows for deviations in distances and angles
relative to the enclosure ceiling. The omnidirectional sensor
would help with issue of the relative angle.

The resistor option would be an attempt to completely cir-
cumvent the magnetic system. Magnets may still be desirable
to snap the pieces into the same position every time, but they
would not be essential for the core piece detection system.
In a resistive design, two circular, concentric contacts could
be put on the board, with pieces containing corresponding
contacts and an internal resistor of a value unique to the piece’s
color and type. The probability of misidentification with this
system is far smaller than with the magnetic system, where
any physical difference in the position of the piece relative
to the sensor could result in misidentification. One downside
would be the aesthetic of the board, which would have visible
ring contacts on every tile.

The team generally advises future teams to put more thought
into manufacturing and system integration. When reviewing
PCB layouts, read the datasheet for major components and
make sure the connections align with what the pinout is on
the datasheet. Avoid soldering to wires wherever possible and
use standard, pre-made wire harnesses if this type of soldering
is still needed. Try to use harness or connector standards
with locking mechanisms to make electrical connections more
reliable. Minimize the use of adhesives and use mechanical
joining systems instead. When there are repeated manufac-
turing processes, try making rigs to help with consistency
and reduce time spent on the task. Include tolerance in
manufactured components that give room for small mistakes
and individual differences between parts. Lastly, buy backups
of critical components. Planning ahead might save money
since bulk orders result in reduced costs per unit.

In the Spring 2025 semester, following the completion of
this initial project, Liam, Kevin, Lourdes, and John worked
on a second revision of the CHESSBOARD with an entirely
different sensing system based on resistors and contact pads.
This engaged with one of the major areas of future work
outlined here. The simplicity of manufacturing the design
was also improved substantially: we designed it such that the
majority of the soldering could be performed with a single
bake in a reflow oven. A more detailed technical description
of the second revision may be found here.

XIII. USING THIS REPORT

The technical team (John Berberian Jr., Kevin Dang, Paul
Karhnak, Lourdes Leung, and Liam Timmins) wish to license
this technical report under a Creative Commons BY-NC-SA
license to allow noncommercial use that attributes the authors
so long as works which derive from our report reproduce our
licensing conditions. While the SA provision of our license
may introduce some hurdles, we believe this provides the
greatest protection against the commercialization of our work
without our permission or involvement. We do not wish our
license terms to be an undue burden on scholarly use, however,
and invite any questions about using this report to any of the
authors via the email addresses given on the title page.

REFERENCES

[1] M. Mcilyar, “Chess Automation for Accessibility / Female Gamers
and Their Struggles with Online Gaming,” University of Virginia,
May 9, 2023. DOI: 10 . 18130 / TFPH - YN34. [Online]. Available:
https : / / libraetd . lib.virginia .edu /public view/3b5919733 (visited on
09/17/2024).

[2] G. Portillo, “Autonomous Chess Robot; The Semiconductor Industry,”
University of Virginia, School of Engineering and Applied Science,
BS (Bachelor of Science), 2023, Charlottesville, VA, May 12, 2023.
[Online]. Available: https://doi.org/10.18130/1wkr- h829 (visited on
09/17/2024).

[3] S. Chittari, “Assistive Chessboard; The Struggle Over Artificial Intel-
ligence in Healthcare,” University of Virginia, School of Engineering
and Applied Science, BS (Bachelor of Science), 2023, Charlottesville,
VA, May 9, 2023. [Online]. Available: https://doi.org/10.18130/s56k-
f620 (visited on 09/17/2024).

[4] J. M. Mukundh Balajee Edison Aviles, “Tactile Chess,” Carnegie
Mellon University, Apr. 29, 2023. [Online]. Available: https://course.
ece . cmu . edu /∼ece500 / projects / s23 - teama0 / wp - content / uploads /
sites /218 /2023/05 /Team A0 Aviles Balajee Mejia final report .pdf
(visited on 05/04/2025).

[5] NVE Corporation, Ad024-10e: 2.8 mt digital switch, rohs tdfn. [On-
line]. Available: https://www.nve.com/webstore/catalog/product info.
php?cPath=27 31 41&products id=561 (visited on 09/19/2024).

[6] DIY Machines, Diy super smart chessboard — play online or against
raspberry pi. [Online]. Available: https : / / www. instructables . com /
DIY-Super-Smart-Chessboard-Play-Online-or-Against- / (visited on
09/19/2024).

[7] Mixed-signal microcontrollers with can-fd interface, MSPM0G3507,
Rev. C, Texas Instruments, Oct. 2023. [Online]. Available: https : / /
www.ti.com/lit/ds/symlink/mspm0g3507.pdf.

[8] “Mspm0-sdk: Mspm0 software development kit.” (Aug. 2024), [On-
line]. Available: https://www.ti.com/tool/MSPM0- SDK (visited on
09/20/2024).

[9] “Lp-mspm0g3507: Mspm0g3507 launchpad™ development kit for 80-
mhz arm cortex-m0+ mcu.” (2024), [Online]. Available: https : / /
www. ti . com / tool / LP - MSPM0G3507 ? keyMatch = mspm0g3507 %
20launchpad&tisearch=universal search (visited on 09/20/2024).

[10] Raspberry pi 4, Raspberry Pi Ltd, Feb. 2025. [Online]. Available: https:
//datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf.

[11] Ratiometric linear hall effect sensor, DRV5055, Rev. B, Texas Instru-
ments, Jan. 2021. [Online]. Available: https : / / www. ti . com / lit / ds /
symlink/drv5055.pdf.

[12] Debounce a switch, SCEA094, Texas Instruments, Oct. 2022. [Online].
Available: https://www.ti.com/lit/ab/scea094/scea094.pdf.

[13] 5-v bidirectional 8:1, 1-channel multiplexer, TMUX1208, Rev. C,
Texas Instruments, Dec. 2018. [Online]. Available: https : / /www. ti .
com/lit/ds/symlink/tmux1208.pdf.

[14] Disk neodymium magnets, N35-8195, Radial Magnets. [Online]. Avail-
able: https://radialmagnet.com/wp- content/uploads/2017/01/Disk%
20Neodymium%20Magnets%20N35-8195.pdf.

[15] APA102-2020 SuperLED, APA102, Shenzhen LED Color Opto Elec-
tronic CO., LTD, Jul. 2021. [Online]. Available: https://www.mouser.
com/datasheet/2/737/APA102 2020 SMD LED-2487271.pdf.

[16] Intelligent control led integrated light source, WS2812, WorldSemi.
[Online]. Available: https://cdn-shop.adafruit.com/datasheets/WS2812.
pdf.

[17] Dotstar leds, DotStar, Adafruit, Jun. 2024. [Online]. Available: https:
//cdn-learn.adafruit.com/downloads/pdf/adafruit-dotstar-leds.pdf.

[18] Integrated Light Source Intelligent Control (Double line transmission)
of chip-on-top SMD type LED, SK9822, Opsco Optoelectronics, Mar.
2016. [Online]. Available: https://www.digikey.com/htmldatasheets/
production/1843597/0/0/1/sk9822.pdf.

[19] General-purpose triple-channel digital isolator with robust emc,
ISO6731, Rev. B, Texas Instruments, Feb. 2023. [Online]. Available:
https://www.ti.com/lit/ds/symlink/iso6731.pdf.

[20] High power dc connectors, JACK-C-PC-10A-RA(R), Rev. F, GlobTek,
Mar. 2024. [Online]. Available: https://spec.globtek.info/spec/spec
misc?id=01t0c000008OOuxAAG.

[21] Regulated converters, RS6-053.3S, RECOM Power, Oct. 2024. [On-
line]. Available: https : / / www. mouser. com / datasheet / 2 / 468 / RS6 -
1006283.pdf.

[22] D-subminiature product catalog, ICD15S13E4GX00LF, Amphenol
ICC. [Online]. Available: https : / / cdn . amphenol - cs . com / media /
wysiwyg/files/documentation/datasheet/inputoutput/io dsub brochure.
pdf.

[23] Raspberry pi 5, Raspberry Pi Ltd, Jan. 2025. [Online]. Available: https:
//datasheets.raspberrypi.com/rpi5/raspberry-pi-5-datasheet.pdf.

[24] 5mhz, 15v/µs high slew-rate, rrio op amp, TLV9052IDR, Rev. J, Texas
Instruments, Feb. 2024. [Online]. Available: https://www.ti.com/lit/ds/
symlink/tlv9052.pdf.

[25] 0.71” character height, six digit lcd glass, tn, reflective, 50 pins, LCD-
S601C71TR, Lumex Opto/Components Inc., Nov. 1998. [Online].
Available: https://www.lumex.com/spec/LCD-S601C71TR.pdf.

[26] 32-segment cmos lcd driver, AY0438/P, Texas Instruments, 1995.
[Online]. Available: http : / / ww1 . microchip . com / downloads / en /
DeviceDoc/80438a.pdf.

[27] Octal buffers and line drivers with schmit trigger inputs, 3-state
outputs, and flow-through pinout, SN74HCS541, Rev. B, Texas In-

https://pub.eldamar.org/projects/capstone-v2.pdf
https://doi.org/10.18130/TFPH-YN34
https://libraetd.lib.virginia.edu/public_view/3b5919733
https://doi.org/10.18130/1wkr-h829
https://doi.org/10.18130/s56k-f620
https://doi.org/10.18130/s56k-f620
https://course.ece.cmu.edu/~ece500/projects/s23-teama0/wp-content/uploads/sites/218/2023/05/Team_A0_Aviles_Balajee_Mejia_final_report.pdf
https://course.ece.cmu.edu/~ece500/projects/s23-teama0/wp-content/uploads/sites/218/2023/05/Team_A0_Aviles_Balajee_Mejia_final_report.pdf
https://course.ece.cmu.edu/~ece500/projects/s23-teama0/wp-content/uploads/sites/218/2023/05/Team_A0_Aviles_Balajee_Mejia_final_report.pdf
https://www.nve.com/webstore/catalog/product_info.php?cPath=27_31_41&products_id=561
https://www.nve.com/webstore/catalog/product_info.php?cPath=27_31_41&products_id=561
https://www.instructables.com/DIY-Super-Smart-Chessboard-Play-Online-or-Against-/
https://www.instructables.com/DIY-Super-Smart-Chessboard-Play-Online-or-Against-/
https://www.ti.com/lit/ds/symlink/mspm0g3507.pdf
https://www.ti.com/lit/ds/symlink/mspm0g3507.pdf
https://www.ti.com/tool/MSPM0-SDK
https://www.ti.com/tool/LP-MSPM0G3507?keyMatch=mspm0g3507%20launchpad&tisearch=universal_search
https://www.ti.com/tool/LP-MSPM0G3507?keyMatch=mspm0g3507%20launchpad&tisearch=universal_search
https://www.ti.com/tool/LP-MSPM0G3507?keyMatch=mspm0g3507%20launchpad&tisearch=universal_search
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf
https://www.ti.com/lit/ds/symlink/drv5055.pdf
https://www.ti.com/lit/ds/symlink/drv5055.pdf
https://www.ti.com/lit/ab/scea094/scea094.pdf
https://www.ti.com/lit/ds/symlink/tmux1208.pdf
https://www.ti.com/lit/ds/symlink/tmux1208.pdf
https://radialmagnet.com/wp-content/uploads/2017/01/Disk%20Neodymium%20Magnets%20N35-8195.pdf
https://radialmagnet.com/wp-content/uploads/2017/01/Disk%20Neodymium%20Magnets%20N35-8195.pdf
https://www.mouser.com/datasheet/2/737/APA102_2020_SMD_LED-2487271.pdf
https://www.mouser.com/datasheet/2/737/APA102_2020_SMD_LED-2487271.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-dotstar-leds.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-dotstar-leds.pdf
https://www.digikey.com/htmldatasheets/production/1843597/0/0/1/sk9822.pdf
https://www.digikey.com/htmldatasheets/production/1843597/0/0/1/sk9822.pdf
https://www.ti.com/lit/ds/symlink/iso6731.pdf
https://spec.globtek.info/spec/spec_misc?id=01t0c000008OOuxAAG
https://spec.globtek.info/spec/spec_misc?id=01t0c000008OOuxAAG
https://www.mouser.com/datasheet/2/468/RS6-1006283.pdf
https://www.mouser.com/datasheet/2/468/RS6-1006283.pdf
https://cdn.amphenol-cs.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_dsub_brochure.pdf
https://cdn.amphenol-cs.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_dsub_brochure.pdf
https://cdn.amphenol-cs.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_dsub_brochure.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-datasheet.pdf
https://datasheets.raspberrypi.com/rpi5/raspberry-pi-5-datasheet.pdf
https://www.ti.com/lit/ds/symlink/tlv9052.pdf
https://www.ti.com/lit/ds/symlink/tlv9052.pdf
https://www.lumex.com/spec/LCD-S601C71TR.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/80438a.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/80438a.pdf

struments, Oct. 2021. [Online]. Available: https://www.ti.com/lit/ds/
symlink/sn74hcs541.pdf.

[28] 5v 10a switching power supply, 658, Adafruit, Jan. 2016. [Online].
Available: https://mm.digikey.com/Volume0/opasdata/d220001/medias/
docus/2322/658 Web.pdf.

[29] R. Barry, “Freertos-a free rtos for small embedded real time systems,”
2006.

[30] A. Gerrand. “Share memory by communicating – the go programming
language.” (Jul. 2010), [Online]. Available: https : / / go . dev / blog /
codelab-share (visited on 12/06/2024).

[31] TimEdwards, Openscad chess. [Online]. Available: https : / / www .
thingiverse.com/thing:585218 (visited on 09/19/2024).

[32] “Ieee standard for an age appropriate digital services framework based
on the 5rights principles for children,” IEEE Std 2089-2021, pp. 1–54,
2021. DOI: 10.1109/IEEESTD.2021.9627644.

[33] “Fide handbook,” General Rules and Technical Recommendations for
Tournaments, 2017. [Online]. Available: https://www.fide.com/FIDE/
handbook / Standards of Chess Equipment and tournament venue .
pdf/.

[34] “Ieee recommended practices for modulating current in high-brightness
leds for mitigating health risks to viewers,” IEEE Std 1789-2015, pp. 1–
80, 2015. DOI: 10.1109/IEEESTD.2015.7118618.

[35] CUI, Inc., “Power supply safety standards, agencies, and marks,”
Jan. 1, 2020. [Online]. Available: https : / / www. cui . com / catalog /
resource/power-supply-safety-standards-agencies-and-marks/.

[36] Privacy rights for california minors in the digital world, 2013.
[Online]. Available: https : / / leginfo . legislature . ca . gov / faces /
codes displayText.xhtml?lawCode=BPC&division=8.&title=&part=
&chapter=22.1.&article.

[37] R. Socorregut, “Sensory chessboard and method for detecting positions
of chess pieces on a chessboard and transmitting those positions to
a computer or other electronic recording device,” US11369862B2,
Jul. 2017. [Online]. Available: https : / / patents . google . com / patent /
US11369862B2/en?q=(chessboard)&oq=chessboard&page=1 (visited
on 12/05/2024).

[38] D. Ferguson, “Board game move recording system,” US3843132A,
Apr. 1973. [Online]. Available: https : / / patents . google . com / patent /
US3843132A/en?q=(chessboard)&oq=chessboard&page=1 (visited on
12/05/2024).

[39] D. B. Bathurst, “Electronic chess game,” US4082285A, Nov. 1976.
[Online]. Available: https://patents.google.com/patent/US4082285A/
en?q=(chessboard)&oq=chessboard&page=1 (visited on 12/05/2024).

[40] D. Yang, About, 2022. [Online]. Available: https://stockfishchess.org/
about/ (visited on 05/08/2025).

https://www.ti.com/lit/ds/symlink/sn74hcs541.pdf
https://www.ti.com/lit/ds/symlink/sn74hcs541.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2322/658_Web.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2322/658_Web.pdf
https://go.dev/blog/codelab-share
https://go.dev/blog/codelab-share
https://www.thingiverse.com/thing:585218
https://www.thingiverse.com/thing:585218
https://doi.org/10.1109/IEEESTD.2021.9627644
https://www.fide.com/FIDE/handbook/Standards_of_Chess_Equipment_and_tournament_venue.pdf/
https://www.fide.com/FIDE/handbook/Standards_of_Chess_Equipment_and_tournament_venue.pdf/
https://www.fide.com/FIDE/handbook/Standards_of_Chess_Equipment_and_tournament_venue.pdf/
https://doi.org/10.1109/IEEESTD.2015.7118618
https://www.cui.com/catalog/resource/power-supply-safety-standards-agencies-and-marks/
https://www.cui.com/catalog/resource/power-supply-safety-standards-agencies-and-marks/
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=BPC&division=8.&title=&part=&chapter=22.1.&article
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=BPC&division=8.&title=&part=&chapter=22.1.&article
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=BPC&division=8.&title=&part=&chapter=22.1.&article
https://patents.google.com/patent/US11369862B2/en?q=(chessboard)&oq=chessboard&page=1
https://patents.google.com/patent/US11369862B2/en?q=(chessboard)&oq=chessboard&page=1
https://patents.google.com/patent/US3843132A/en?q=(chessboard)&oq=chessboard&page=1
https://patents.google.com/patent/US3843132A/en?q=(chessboard)&oq=chessboard&page=1
https://patents.google.com/patent/US4082285A/en?q=(chessboard)&oq=chessboard&page=1
https://patents.google.com/patent/US4082285A/en?q=(chessboard)&oq=chessboard&page=1
https://stockfishchess.org/about/
https://stockfishchess.org/about/

APPENDIX

A. 32-bit Protocol Specification

The protocol has four modes. They are detailed in their
respective subsections. The general protocol details are de-
scribed below. Example packets (with packing order) are
shown in Fig. 27, on the next page.

The ranks and files of the chessboard are encoded as 3-
bit integers, starting at 0 (e.g.File A→ 0, Rank 1→ 0). This
allows us to encode a square in 6 bits: file, then rank. Each
move includes a source and destination square. Some moves
also include a “second move,” if a second piece is moved as
a result of the chess move (e.g.en passant, castle in normal
mode or undoing a take in undo mode). In order to support
piece promotion, the protocol also sometimes includes a field
to indicate the type of piece expected to be placed on the
destination square. The piece type is encoded as a 3-bit integer,
with the mapping below:

0) Empty square
1) Pawn
2) Knight
3) Bishop
4) Rook
5) Queen
6) King
7) Empty square

1) RPi→MSP normal: The normal protocol includes two
additional fields not described above: move type (normal,
check, capture, castle/promote), second move piece type
(empty or rook), and last (not last or last). Move type is
encoded as a two-bit integer, with the options numbered from
0 to 3 in the order listed above. The move type is required
for the differences in LED rendering (red for takes, purple
for promotion, etc.). Similarly, the second move piece type,
describing the expected piece type on the destination square
of the second move, is either nothing (en passant) or rook
(castle). The “last” bit indicates whether a move is the last
one in the sequence of legal moves that are being sent.

2) RPi→MSP undo: The undo packet type must also
encode the information required to reverse a take, so we
expanded the piece type specifications by removing the last-
move and move type fields. Because the second move piece
color could be either the same (castle) or different (take) from
the color of the main move, we also added a single bit to
indicate whether the second move piece was white (0) or black
(1). The encoding and packing is otherwise identical to allow
for maximum compatibility with the tools developed to parse
the normal protocol.

3) MSP→RPi normal: Valid moves may be uniquely iden-
tified by the source and destination square along with the
type of piece placed on the destination square. The moves
are validated on the MSP side, so every move encoded with
this scheme is guaranteed to be correct. This obviates the need
for much of the information in the move packet, freeing up
enough space for the MSP to encode button presses. Again,

the fields were aligned to provide maximum compatibility with
the other protocol modes’ parsing code.

4) MSP→RPi calibration: The calibration code needs to
send only a few pieces of information: for each square and
each piece type of each color, we should record the maximum
and minimum sensor values measured. The sensor value is
a 12-bit integer, so encoding all of this information required
splitting up the data into two packets: one for max and one
for min. There is an indicator bit in the same position as
the second-move indicator to discriminate between these two
packet types.

Fi
g.

27
.

Sa
m

pl
e

32
-b

it
Pr

ot
oc

ol
Fi

el
d

Pa
ck

in
g.

B. Cost Breakdown Tables

TABLE IV
COST BREAKDOWN FOR FULL ORDER COST, COST OF PROTOTYPE UNIT, AND BULK MANUFACTURING COSTS.

	Statement of Work
	John Berberian Jr.
	Kevin Dang
	Paul Diaz Karhnak
	Lourdes Leung
	Liam Timmins

	Background
	Initial Idea
	Rationale
	Comparison with Prior Art
	Relevant Coursework

	Project Description
	Performance Objectives and Specifications
	Block Diagram and Functionality
	Hardware Design Details
	Sensor PCBs
	LED Arrays
	I/O PCB
	Clock Box PCBs
	Power Budget Design

	Software Design Details
	MSPM0 Firmware
	Internal 32-Bit Protocol
	Stockfish Wrapper
	Raspberry Pi Administration

	Manufacturing Design Details
	Chessboard
	Clock Box Module
	Chess Pieces
	LED Array and Soldering
	Computer Systems

	Testing and Verification
	PCBs
	Sensing System
	LED Arrays
	UART Communication
	Stockfish Wrapper

	Constraints
	Parts and Resource Availability
	Software Tools
	Prototype Cost Constraints
	Manufacturability

	Societal Impact
	External Standards
	IEEE 2089-2021: IEEE Standard for an Age Appropriate Digital Services Framework Based on the 5Rights Principles for Children
	Fédération Internationale des Échecs (FIDE) Handbook: General Rules and Technical Recommendations for Tournaments
	Other Standards to Consider

	Intellectual Property Issues
	Timeline
	Costs
	Final Results
	Engineering Insights
	Reinventing the Wheel
	Trust, but Verify
	Nights and Weekends

	Future Work
	Using This Report
	References
	Appendix
	32-bit Protocol Specification
	RPi->MSP normal
	RPi->MSP undo
	MSP->RPi normal
	MSP->RPi calibration

	Cost Breakdown Tables

\begin{figure*}
 \centering
 \centerline{
 \begin{tikzpicture}
\input{tikzstyle}

\node[block](psu){5V Power\\Supply};
\node[block](dcdc)[left = 3.7cm of psu.center,anchor=center]{3.3V DC-DC\\Converter};
\node[trapezium, rotate=90, trapezium angle=80, minimum height=1.2cm,draw=black,rounded corners=2.4mm](db15)[left=7cm of dcdc.center,anchor=center]{\rotatebox{-90}{\parbox[][1.2cm][c]{0.6cm}{\centering DE\\15}}};
%\node[block, minimum height=2cm, minimum width=1cm](db15)[left = 4cm of dcdc]{DB\\15};
\node[block](leds)[below=2cm of dcdc.center,anchor=center]{LEDs};
\node[block](iso)[left=4.1cm of leds.center,anchor=center]{Isolated\\Level Shifter};
\node[block](hes)[above=2cm of dcdc.center,anchor=center]{Hall Effect\\Sensors};
\node[block](mux)[at=(hes.center-|iso.center),anchor=center]{Filters \& Analog\\Multiplexers};

% Power lines.
\draw[5v] (psu.east)++(1.2cm,0) coordinate(farright)-- (psu.east) node[mymid,above]{Power} node[mymid,below] {120VAC};
\draw[5v] (psu.west)--(dcdc.east) node[mymid,above]{Power} node[mymid,below] {5V};
\draw[5v] ($(psu.west)!0.7!(dcdc.east)$) coordinate(powmid) -- (leds.east-|powmid) coordinate(ledmid) -- (leds.east);
\draw[5v] (ledmid)--++(0, -1cm) coordinate(ledbot)--(ledbot-|iso.south) coordinate(isobot);
\draw[5v] (isobot)--(iso.south);
\draw[5v*] (isobot)--(isobot-|db15.west);
\draw[5v] (isobot-|db15.west)--(db15.west);
\draw[3v3] (dcdc.west)--($(dcdc.west)!0.8!(dcdc.west-|mux.south)$) coordinate(3v3mid) node[mymid,above]{Power} node[mymid,below] {3.3V};
\draw[3v3] (3v3mid) -- (db15.south);
\draw[3v3] (3v3mid) -- (mux.south-|3v3mid) coordinate(muxpow);
\draw[3v3] (3v3mid) -- (iso.north-|3v3mid) coordinate(isopow);
\draw[3v3] ($(3v3mid)!0.7!(muxpow)$) coordinate(muxmid) -- (muxmid-|hes.south) -- (hes.south);

%% Data lines
% LED/level shifter system
\draw[data] (iso.east) -- (leds.west) node[mymid,above] {$2\times$Digital} node[mymid,below]{$0-5\volt$};
\draw[data] ($(3v3mid)!0.6!(isopow)$) coordinate(isomid) (isomid-|db15.south) coordinate(dbisodata)-- (dbisodata-|iso.north) coordinate(isodatacorner) node[mymid,above]{$2\times$Digital} node[mymid,below]{$0-3.3\volt$};
\draw[data] (isodatacorner)--(iso.north);
% Hall effect/mux system
\draw[data] (hes.west)--(mux.east) node[mymid,above]{$64\times$Analog} node[mymid,below]{$0-3.3\volt$};
\draw[data] (mux.west)--(mux.west-|db15.east)coordinate(amuxcorner) ($(mux.west)!0.6!(amuxcorner)$)node[mylabel,above]{$1\times$Analog} node[mymid,below]{$0-3.3\volt$};
\draw[data] (amuxcorner)--(db15.east);
\draw[data] ($(3v3mid)!0.6!(muxpow)$) coordinate(muxmid) (muxmid-|db15.south) coordinate(dbmuxsel)-- (dbmuxsel-|mux.south) coordinate(muxselcorner) node[mymid,above]{$6\times$Digital} node[mymid,below]{$0-3.3\volt$};
\draw[data] (muxselcorner)--(mux.south);
\draw[data*, very thick] (db15.north)--++(-0.5cm, 0) coordinate(lboardconn) node[mylabel,left]{Clock\\Box};

% Bounding box, labels.
\draw[dashed] ($(db15.north)!0.5!(lboardconn)$) coordinate(lboardborder) (hes.north-|lboardborder) -- (ledbot-|lboardborder)--++(0, -0.75cm) coordinate(llabelheight);
\draw[dashed] ($(psu.west)!0.2!(dcdc.east)$) coordinate(rboardborder) (hes.north-|rboardborder) -- (ledbot-|rboardborder)-- ++(0, -0.75cm) coordinate(rlabelheight);
\draw ($(farright)!0.5!(rboardborder)$) coordinate(midout) (rlabelheight-|midout)node[align=center]{Outside};
\draw ($(rlabelheight)!0.5!(llabelheight)$) node[align=center]{Chess Board};
\end{tikzpicture}
 }
 \caption{Chess Board Block Diagram.}
 \label{fig:block:board}
\end{figure*}
\begin{figure*}
 \centering
 \begin{tikzpicture}
\input{tikzstyle}

\node[trapezium, rotate=-90, trapezium angle=80, minimum height=1.2cm,draw=black,rounded corners=2.4mm](2db15){\rotatebox{90}{\parbox[][1.2cm][c]{0.6cm}{\centering DE\\15}}};
\node[block,minimum width=3cm,minimum height=3cm](mcu)[left=1.8cm of 2db15.south]{MSPM0\\Microcontroller};
\node[block](btn)[left=2.9cm of mcu.north-|mcu.west,anchor=north]{Buttons \&\\Schmitt Triggers};
\node[block](sipo)[at=(mcu.south-|btn.south),anchor=south]{Shift Register\\AC Generator};
\node[block](7seg)[below=2cm of sipo.center,anchor=center]{7-Segment\\LCD};
\node[block](iso2)[at=(7seg.center-|mcu.center),anchor=center]{Isolator};
\node[block](rpi)[at=(iso2.center-|2db15.center),anchor=center]{Stockfish\\RPi 4};
\node[block](4bessel)[above=1cm of mcu.north,anchor=center]{Filter};

%% Power
\draw[3v3] (2db15.south)--(mcu.east) node[mymid,above]{Power} node[mymid,below]{3.3V};
\draw[5v] (2db15.east)--(rpi.north) node[mymid,left]{Power\\5V};
% TODO: conflicted on which thickness to draw these.
% It *is* 3.3V, but it also is on the 5V ground.
\draw[3v3*] (rpi.south)--++(0,-0.5cm) coordinate(3v3bot);
\draw[3v3] (3v3bot)--(3v3bot-|iso2.south) node[mymid,above]{Power} node[mymid,below]{3.3V};
\draw[3v3*] (3v3bot-|iso2.south)--(iso2.south);
\draw[3v3] (mcu.west)--(mcu.west-|btn.south) node[mymid,above]{Power} node[mymid,below]{3.3V};
\draw[3v3*] (btn.south)--(sipo.north);
\draw[3v3] ($(iso2.west)!0.3!(iso2.east)$) coordinate(isoleft) (mcu.south-|isoleft)--(iso2.north-|isoleft) node[mymid,left]{Power\\3.3V};
\draw[3v3] (mcu.north west-|4bessel.west) coordinate(mcupowertop) ($(mcupowertop)!0.7!(mcu.north west)$) coordinate(4bespower)--(4bessel.west-|4bespower) node[mymid,left]{Power\\3.3V};
\draw[3v3*] (4bessel.west-|4bespower)--(4bessel.west);

%% Data lines
% DB15-MCU wires
\draw[data] ($(2db15.south)+(0,-0.9cm)$) coordinate(isopins) (isopins-|mcu.east) node[mylabel,left]{SPI}-- (isopins) node[mymid,above]{$2\times$Digital} node[mymid,below]{$0-3.3\volt$};
\draw[data] ($(2db15.south)+(0,0.9cm)$) coordinate(muxpins) (muxpins-|mcu.east) node[mylabel,left]{GPIO}-- (muxpins) node[mymid,above]{$6\times$Digital} node[mymid,below]{$0-3.3\volt$};
\draw[data] (2db15.west)--(4bessel.east-|2db15.west) coordinate(analogcorner);
\draw[data] (analogcorner)--(4bessel.east) node[mymid,above]{$1\times$Analog} node[mymid,below]{$0-3.3\volt$};
\draw[data](4bessel.south)--(mcu.north) node[mylabel,below]{ADC};
% SIPO/7seg subsystem
\draw[data] (sipo.east-|mcu.west) node[mylabel,right]{SPI} -- (sipo.east) node[mymid,above]{$3\times$Digital} node[mymid,below]{$0-3.3\volt$};
\draw[data] (sipo.south)--(7seg.north) node[mymid,right]{$88\times$AC\\$0-3.3\volt$};
% Buttons
\draw[data] (btn.east) -- (btn.east-|mcu.west) node[mylabel,right]{GPIO} node[mymid,above]{$7\times$Digital} node[mymid,below]{$0-3.3\volt$};
% UART/Iso2/RPi subsystem
\draw[data] ($(iso2.west)!0.7!(iso2.east)$) coordinate(iso2right2) ($(iso2.west)!0.8!(iso2.east)$) coordinate(iso2right1) (iso2.north-|iso2right1)--(mcu.south-|iso2right1) node[mymid,right]{$2\times$Digital\\$0-3.3\volt$};
\draw[data] (mcu.south-|iso2right2)--(iso2.north-|iso2right2);
\draw[data] ($(iso2.north)!0.4!(iso2.south)$) coordinate(iso2high) ($(iso2.north)!0.6!(iso2.south)$) coordinate(iso2low) (iso2high-|iso2.east)--(iso2high-|rpi.west) node[mymid,above]{$2\times$Digital};
\draw[data] (iso2low-|rpi.west)--(iso2low-|iso2.east) node[mymid,below]{$0-3.3\volt$};
\draw ($(mcu.south-|iso2right1)!0.5!(mcu.south-|iso2right2)$) node[mylabel,above]{UART};

\draw[data*, very thick] (2db15.north)--++(1cm, 0) ++(-0.25cm,0)coordinate(rboardconn2) node[mylabel,right]{Chess\\Board};
\draw[dashed] (analogcorner-|rboardconn2)++(0,0.55cm) coordinate(rdashtop)--(3v3bot-|rboardconn2)--++(0,-0.75cm) coordinate(rdashbot);
\draw[dashed] (sipo.west)++(-0.25,0)coordinate(lboardconn2) (rdashtop-|lboardconn2)--(rdashbot-|lboardconn2);
\draw ($(rdashbot)!0.5!(rdashbot-|lboardconn2)$) node[align=center]{Clock Box};
 \end{tikzpicture}
 \caption{Clock Box Block Diagram.} % Say that five times fast!
 \label{fig:block:box}
\end{figure*}

%% Styles
\tikzstyle{block} = [rectangle, rounded corners, minimum width=2cm, minimum height=1cm,align=center, draw=black]

\tikzstyle{arrow} = [postaction={decorate},decoration={markings,mark=at position 0.53 with {\arrow{>}}}]
\tikzstyle{doublearrow} = [postaction={decorate},decoration={markings,mark=at position 0.4 with {\arrow{<}},mark=at position 0.6 with {\arrow{>}}}]
\tikzstyle{doublearrowwide} = [postaction={decorate},decoration={markings,mark=at position 0.27 with {\arrow{<}},mark=at position 0.83 with {\arrow{>}}}]

\tikzstyle{3v3*} = [color=red,thick]
\tikzstyle{3v3} = [3v3*,arrow]
\tikzstyle{5v*} = [3v3*,very thick]
\tikzstyle{5v} = [5v*,arrow]

\tikzstyle{data*} = [color=black,thin]
\tikzstyle{data} = [data*,arrow]

\tikzstyle{mylabel} = [font=\footnotesize,color=black,align=center]
\tikzstyle{mymid}=[midway,mylabel]

\begin{figure*}
 \centering
 \centerline{
\begin{tikzpicture}
\input{tikzstyle}

\node[block,minimum width=3.5cm,minimum height=3.5cm](main){CHESSBOARD\\State Machine\\\\Main Thread};
\node[block](clk)[left = 3cm of main.west,anchor=center]{Clock\\Thread};
\node[block](btn)[above = 1.5cm of clk.north,anchor=south]{Button\\Interrupt Handler};
\node[block](tim)[below = 1.5cm of clk.south,anchor=north]{FreeRTOS\\Tick Hook};
\node[block](led)[at=($2*(main.center)-(clk.center)$),anchor=center]{LED\\Thread};
\node[block](adc)[at=(btn.center-|led.center),anchor=center]{Sensor\\Thread};
\node[block](rpi)[at=(tim.center-|led.center),anchor=center]{UART\\Thread};

\draw[data] ($(btn.south east)!0.5!(btn.south)$) -- ($(main.north west)!0.5!(main.west)$) node[mymid,above right,xshift=-0.1cm]{Button\\Events};
\draw[data] (main.west) -- (clk.east) node[mymid,above]{Player} node[mymid,below]{Turn Switch};
\draw[data] (tim.north)--(clk.south) node[mymid,right]{1ms\\Updates};
\draw[data] (clk.west)--++(-0.75cm,0) coordinate(spi1) node[left]{SPI1};
\draw[data] (btn.west-|spi1)node[left]{GPIO} --(btn.west);

\draw[data] (main.east)--(led.west) node[mymid,above]{Lighting\\Events};
\draw[data] ($(adc.south west)!0.5!(adc.south)$) -- ($(main.north east)!0.5!(main.east)$) node[mymid,above left,xshift=0.1cm]{Board\\State};
\draw[data*,doublearrow] ($(rpi.north west)!0.5!(rpi.north)$) -- ($(main.south east)!0.5!(main.east)$) node[mymid,below left]{Possible\\Moves} node[mymid,above right,xshift=0.1cm]{Moves};
\draw[data] (led.east)--($2*(main.center)-(spi1)$) coordinate(spi0) node[right]{SPI0};
\draw[data] (adc.east) -- (adc.east-|spi0) node[right]{GPIO};
\draw[data] (adc.north)++(0,0.75cm) coordinate(adc0) node[above]{ADC}--(adc.north);
\draw[data*,doublearrowwide] (rpi.south)--($2*(led.center)-(adc0)$) node[below]{UART};

\draw (btn.west-|main.north) node[mylabel]{Synchronized\\FIFOs};
\node[block](rtos)[minimum width=15.2cm,minimum height=8.7cm]{};
\draw (rtos.north) node[below]{FreeRTOS};
\end{tikzpicture}
}
 \caption{MSP Firmware Block Diagram.}
 \label{fig:block:software}
\end{figure*}

%\usepackage[extract=tex, auto={circuitikz}]{memoize}
\usepackage{color}
%\usepackage{ulem}
\usepackage{amsmath,amssymb,amsfonts}

\usepackage[pdftex]{graphicx}
\usepackage{graphicx}
\usepackage{multirow}% to allow multiple-row elements in tabular environment
\usepackage[export]{adjustbox}
\usepackage{setspace}

\usepackage{xspace}	% puts spaces after macros ONLY when needed (for example, before another word, but not before punctuation)
\usepackage[colorlinks=true,linkcolor=black,urlcolor=blue]{hyperref} % helps with url formatting and auto-linking

\usepackage{gensymb}
\usepackage{float}
\usepackage{esdiff}
\usepackage{etoolbox}
\usepackage{minted}
\usepackage{enumitem}
\usepackage{placeins}
\usepackage{xcolor} % to access the named colour LightGray
\definecolor{LightGray}{gray}{0.9}
\usepackage[siunitx, RPvoltages, american]{circuitikz}
\usetikzlibrary{calc}
\usetikzlibrary{shapes.geometric, arrows}
\usetikzlibrary{positioning}
\usetikzlibrary{decorations.markings}
\usetikzlibrary{external}

% Make includegraphics (specifically, includegraphics's internal Gin@ii macro) default to a reasonable width and height.
% Shamelessly lifted from https://tex.stackexchange.com/a/439927.
\if@twocolumn
\expandafter\patchcmd\csname Gin@ii\endcsname
 {\setkeys {Gin}{#1}}
 {
 \setkeys {Gin}
 {width=0.4\textwidth,height=.5\textwidth,keepaspectratio,#1}
 }
 {}{}
\else
\expandafter\patchcmd\csname Gin@ii\endcsname
 {\setkeys {Gin}{#1}}
 {
 \setkeys {Gin}
 {width=\textwidth,height=.5\textwidth,keepaspectratio,#1}
 }
 {}{}
\fi
\usepackage{doi}
\usepackage[style=ieee,bibencoding=utf8]{biblatex}
\renewcommand*{\bibfont}{\footnotesize}
\usepackage{comment}
%\includecomment{sampleText}
\excludecomment{sampleText}
\usepackage{lscape}
%\usepackage{algorithmic}
\usepackage{dblfloatfix} % Allows us to put figures at the bottom of a page
\usepackage{textcomp}
\usepackage{orcidlink}
\usepackage{rotating}

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ifx\eTeXrevision\undefined%
 \pgfutil@packageerror{PGF}{PGF requires etex in extended mode}{}%
 \csname @@end\expandafter\endcsname\expandafter\end%
\fi

\ifnum\eTeXversion<2
 \pgfutil@packageerror{PGF}{PGF requires etex version 2}{}%
 \csname @@end\expandafter\endcsname\expandafter\end%
\fi

% The purpose of this file is to define the command
% \ProvidesPackageRCS, which should be followed by an RCS id
% string. This command will also be available in plain TeX, where it
% prints out a message to the log.

\pgfutil@IfFileExists{pgf.revision.tex}{\input pgf.revision.tex } {%
 \def\pgfrevision{0.0}%
 \def\pgfversion{0.0}%
 \def\pgfversiondate{2014-07-01}%
 \def\pgfrevisiondate{2014-07-01}%
}

\begingroup
\catcode`\"=12
\pgfutil@IfUndefined{directlua}{}{%
 \directlua{pgf = {}; pgf.pgfversion = "\pgfversion"}%
}%
\endgroup

% \def\pgftypesetversion{\oldstylenums{3}.\oldstylenums{0}.\oldstylenums{1}}
% XXX : implement pretty-printing:
% which is better? 'version' is something like 3.0.1 . revision is
% 3.0.1-151-g62184b3 which might be better for instable builds
%\let\pgftypesetversion=\pgfversion
\let\pgftypesetversion=\pgfrevision

\ifx\pgfrcsloaded\undefined
\def\pgfrcsloaded{}

\edef\pgfrcsatcode{\the\catcode`\@}
\catcode`\@=11

% not used in PGF, deprecated
\def\ProvidesFileRCS{%
 \let\pgfrcs@final=\ProvidesFileRCS@
	\pgfrcs@parseinput
}
\def\ProvidesFileRCS@#1{%
 \ProvidesFile{#1}[\pgfversiondate\space v\pgfversion\space(\pgfrevision)]%
}

\def\pgf@remove@ext#1.#2\relax{%
 \def\pgfretval{#1}%
}%

\def\ProvidesPackageRCS{%
	\let\pgfrcs@final=\ProvidesPackageRCS@
	\pgfrcs@parseinput
}
\def\ProvidesPackageRCS@#1{%
 \pgf@remove@ext#1.\relax
 \edef\pgfrcs@marshal{{\pgfretval}[\pgfversiondate\space v\pgfversion\space(\pgfrevision)]}%
 \expandafter\ProvidesPackage\pgfrcs@marshal
}

% not used in PGF, deprecated
\def\ProvidesClassRCS{%
	\let\pgfrcs@final=\ProvidesClassRCS@
	\pgfrcs@parseinput
}
\def\ProvidesClassRCS@#1{%
 \pgf@remove@ext#1.\relax
 \edef\pgfrcs@marshal{{\pgfretval}[\pgfversiondate\space v\pgfversion\space(\pgfrevision)]}%
 \expandafter\ProvidesClass\pgfrcs@marshal
}

\def\pgfrcs@parseinput@bracket{[}%
\def\pgfrcs@parseinput@dollarsign{$}%

\def\pgfrcs@parseinput#1{%
	\def\pgfrcs@parseinput@{#1}%
	\ifx\pgfrcs@parseinput@\pgfrcs@parseinput@bracket%
		% still accept it if someone has written his own pgfrcs files with headers of sorts
		% \ProvidesPackageRCS[v\pgfversion] $Header: /cvsroot/pgf/pgf/generic/pgf/basiclayer/pgfcore.code.tex,v 1.7 2010/04/11 07:09:19 username Exp $
		\let\next=\pgfrcs@parseinput@opt
	\else
		\ifx\pgfrcs@parseinput@\pgfrcs@parseinput@dollarsign
			% still accept it if someone has written his own pgfrcs files with headers of sorts
			% \ProvidesPackageRCS $Header: /cvsroot/pgf/pgf/generic/pgf/basiclayer/pgfcore.code.tex,v 1.7 2010/04/11 07:09:19 username Exp $
			\let\next\pgfrcs@parseinput@dollar
		\else
			% the new, normal pgf-way is \ProvidesPackageRCS{pgfcore.code.tex}
			\def\next{\pgfrcs@final{#1}}%
		\fi
	\fi
	\next
}
\def\pgfrcs@parseinput@opt#1] ${%
	% just backwards compatibility -- ignore the information, but parse the input tokens:
	\pgfrcs@parseinput@dollar
}%
\def\pgfrcs@parseinput@dollar#1${%
	\pgf@parseid $#1$%
	% we ignore pretty much everything except for the file name:
	\edef\pgfrcs@parseinput@{\pgf@rcsfile.\pgf@rcssuffix}%
	\expandafter\pgfrcs@final\expandafter{\pgfrcs@parseinput@}%
}%
% Get date and version from RCS Ids
\def\pgf@parseid $#1: #2.#3,v #4 #5/#6/#7 #8${%
 \pgf@parsercsfile$#2/$
 \def\pgf@rcssuffix{#3}
 \def\pgf@rcsrevision{#4}
 \def\pgf@rcsdate{#5/#6/#7}
}
\def\pgf@parsercsfile$#1/#2${
 \def\pgf@temp{#2}
 \ifx\pgf@temp\pgfutil@empty
 \def\pgf@rcsfile{#1}
 \else
 \pgf@parsercsfile$#2$
 \fi}

\ifx\ProvidesPackage\@undefined
 % plain tex
 \def\ProvidesPackage#1[#2]{\wlog{Loading package #1 version #2.}}
\fi

\ifx\ProvidesFile\@undefined
 % plain tex
 \def\ProvidesFile#1[#2]{\wlog{Loading file #1 version #2.}}
\fi

\ProvidesPackageRCS{pgfrcs.code.tex}

\catcode`\@=\pgfrcsatcode

\fi

% Local Variables:
% coding: undecided-unix
% End:

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesPackageRCS{pgfsys.code.tex}

% Load key mechanism
\ifdefined\pgfkeysloaded\else
 \input pgfkeys.code.tex
\fi

% "pgf" is a family
\pgfkeys{/pgf/.is family}
\def\pgfset{\pgfqkeys{/pgf}}

% This if is needed *very* early
\newif\ifpgfpicture

%
% The following conversion functions are used to convert from TeX
% dimensions to postscript/pdf points.
%
{\catcode`\p=12\catcode`\t=12\gdef\Pgf@geT#1pt{#1}}

\def\pgf@sys@tonumber#1{\expandafter\Pgf@geT\the#1}

\def\pgf@sys@bp@correct#1{#1=0.99627#1}

\def\pgf@sys@bp#1{%
 {%
 \pgf@x=#1\relax%
 \pgf@x=0.99627\pgf@x%
 \edef\temp{\expandafter\Pgf@geT\the\pgf@x\space}%
 \pgfutil@toks@\expandafter\expandafter\expandafter{\expandafter\pgfsysprotocol@currentprotocol\temp}%
 \xdef\pgfsysprotocol@currentprotocol{\the\pgfutil@toks@}%
 }%
}
\def\pgf@sys@pt#1{%
 {%
 \pgf@x=#1\relax%
 \edef\temp{\expandafter\Pgf@geT\the\pgf@x\space}%
 \pgfutil@toks@\expandafter\expandafter\expandafter{\expandafter\pgfsysprotocol@currentprotocol\temp}%
 \xdef\pgfsysprotocol@currentprotocol{\the\pgfutil@toks@}%
 }%
}

% internal dimensions that are always present when pgsys is loaded.
\newdimen\pgf@x
\newdimen\pgf@y
\newdimen\pgf@xa
\newdimen\pgf@ya
\newdimen\pgf@xb
\newdimen\pgf@yb
\newdimen\pgf@xc
\newdimen\pgf@yc
\newdimen\pgf@xd
\newdimen\pgf@yd

\newwrite\w@pgf@writea
\newread\r@pgf@reada
\let\pgfutil@inputcheck=\r@pgf@reada

% internal counters that are always present when pgfsys is loaded
\newcount\c@pgf@counta
\newcount\c@pgf@countb
\newcount\c@pgf@countc
\newcount\c@pgf@countd

\newtoks\t@pgf@toka
\newtoks\t@pgf@tokb
\newtoks\t@pgf@tokc

% Ensure that math registers are the same (math is broken in case it
% is loaded first)
\let\pgfmath@x\pgf@x
\let\pgfmath@xa\pgf@xa
\let\pgfmath@xb\pgf@xb
\let\pgfmath@xc\pgf@xc

\let\pgfmath@y\pgf@y
\let\pgfmath@ya\pgf@ya
\let\pgfmath@yb\pgf@yb
\let\pgfmath@yc\pgf@yc

\let\c@pgfmath@counta\c@pgf@counta
\let\c@pgfmath@countb\c@pgf@countb
\let\c@pgfmath@countc\c@pgf@countc
\let\c@pgfmath@countd\c@pgf@countd

% In the following dummy definitions of the pgf system commands are
% given. The individual drivers must overwrite these definitions,
% preferably all of them. If some system command is used that has not
% been overwritten, the command fails with a warning.
%
% In some cases, some pgf system commands are just shorthands for a
% series of more complicated commands. In this case, a default
% implementation is given in this file, but a driver may choose to
% overwrite this default implementation with a more efficient
% version. For example, a closestroke is the same as a closepath
% followed by a stroking, but in pdf there is a special shorthand for
% this. So, the pdf driver overwrites \pgfsys@closestroke, while the
% postscript driver does not.
%
% The commands for which default implementations are available are
% given at the end.

\def\pgf@sys@fail#1{%
 \expandafter\ifx\csname pgf@sys@fail@#1\endcsname\pgfutil@empty%
 \else%
 \expandafter\global\expandafter\let\csname pgf@sys@fail@#1\endcsname=\pgfutil@empty%
 \pgfwarning{Your graphic driver \pgfsysdriver\space does not support #1. This warning is given only once}%
 \fi%
}

%
% Invocation commands
%

\def\pgfsys@invoke{\pgf@sys@fail{invoking specials}}
% This command is used whenever some literal text needs to be inserted
% into the resulting .pdf, .ps, or .dvi file. Note that most
% \pgfsys@xxxx commands will not directly call this command, but,
% rather, use the protocolling mechanism to record their literal
% text. It is then left to the discretion of the protocolling
% mechanism to insert the literal text at some appropriate, later
% time.
%
% This command should only be called when \pgfsys@beginpicture has
% been called previously and when the picture has not been suspended
% using \pgfsys@beginhbox.

\def\pgfsys@outerinvoke{\pgfsys@invoke}
% This command can be used to insert protocolled graphic commands
% outside any picture. This is extremely dangerous, but sometimes
% useful. By default, this command does the same as inside pictures.

%
%
% Path construction commands
%
%

\def\pgfsys@moveto#1#2{\pgf@sys@fail{path constructions}}
% This command is used to start a path at a specific point (#1,#2)
% or to move the current point of the current path to (#1,#2)
% without drawing anything upon stroking (the current path is
% `interrupted').
%
% The arguments must be dimensions (like |10pt|).
%
% Example:
%
% \pgfsys@moveto{10pt}{10pt}
% \pgfsys@lineto{0pt}{0pt}
% \pgfsys@stroke
%
% This will draw a line from (10pt,10pt) to the origin of the picture.

\def\pgfsys@lineto#1#2{\pgf@sys@fail{path constructions}}
% Continue the current path to (#1,#2) with a line.

\def\pgfsys@curveto#1#2#3#4#5#6{\pgf@sys@fail{path constructions}}
% Continue the current path with a bezier curve to (#5,#6). The
% control points of the curve are at (#1,#2) and (#3,#4).

\def\pgfsys@rect#1#2#3#4{\pgf@sys@fail{path constructions}}
% Append a rectangle to the current path whose lower left corner is at
% (#1,#2) and whose width/height is given by (#3,#4).
%
% This command can be `mapped back' to moveto and lineto commands, but
% it is included since pdf has a special, quick version of this command.

\def\pgfsys@closepath{\pgf@sys@fail{path constructions}}
% Close the current path. This results in joining the current point of
% the path with the point specified by the last moveto
% operation. Typically, this is preferable over using lineto to the
% last point specified by a moveto, since the line starting at this
% point and the line ending at this point will be smoothly joined by
% closepath.
%
% Example:
%
% \pgfsys@moveto{0}{0}
% \pgfsys@lineto{10}{10}
% \pgfsys@lineto{0}{10}
% \pgfsys@closepath
% \pgfsys@stroke
%
% versus
%
% \pgfsys@moveto{0}{0}
% \pgfsys@lineto{10}{10}
% \pgfsys@lineto{0}{10}
% \pgfsys@lineto{0}{0}
% \pgfsys@stroke
%
% The difference between the above will be that in the second triangle
% the corner at the origin will be wrong; it will just be the overlay
% of two lines going in different directions, not a sharp pointed
% corner.

%
%
% Stroking and filling commands
%
%

\def\pgfsys@stroke{\pgf@sys@fail{path usage}}
% Stroke the current path (as if it were drawn with a pen). A number
% of so-called graphic state parameters influence this, which can be
% set in different ways:
%
% - linewidth
% The `thickness' of the line. A width of 0 is the thinnest width
% renderable on the device. On a high-resolution printer this may
% become invisible and should be avoided. A good choice is 0.4pt,
% which is the default.
%
% - stroke color
% This special color is used for stroking. If it is not set, the
% current color is used.
%
% - cap
% The cap describes how the endings of lines a drawn. A round cap
% adds a little half circle to these endings. A butt cap ends the
% lines exactly at the end (or start) point without anything
% added. A rectangular cap ends the lines like the butt cap, but the
% lines protrude over the endpoint by the line thickness. (See also
% the pdf or postscript manual). If the path has been closed, no cap
% is drawn.
%
% - join
% This describes how a bend (a join) in a path is rendered. A round
% join draws bends using small arcs. A bevel join just draws the two
% lines and then fills the join minimally so that it becomes
% convex. A miter join extends the lines so that they form a single
% sharp corner, but only up to a certain miter limit. (See the pdf
% or postscript manual once more).
%
% - dash
% The line may be dashed according to a dashing pattern.
%
% - clipping area
% If a clipping area is established, only those parts of the path
% that are inside the clipping area will be drawn.
%
% In addition to stroking a path, the path may also be used for
% clipping after it has been stroked. This will happen if the
% \pgfsys@clipnext is used prior to this command, see there for
% details.

\def\pgfsys@fill{\pgf@sys@fail{path usage}}
% This command fills the area surrounded by the current path. If the
% path has not yet been closed, it is closed prior to filling. The
% path itself is not stroked. For self-intersecting paths or paths
% consisting of multiple parts, the nonzero winding number rule is
% used to determine whether a point is inside or outside the
% path, except if \ifpgfsys@eorule holds -- in which case the even-odd
% rule should be used. (See the pdf or postscript manual for details.)
%
% The following graphic state parameters influence the filling:
%
% - fill color
% If the fill color is not especially set, the current color is
% used.
%
% - clipping area
% If a clipping area is established, only those parts of the filling
% area that are inside the clipping area will be drawn.
%
% In addition to filling the path, the path will also be used for
% clipping if \pgfsys@clipnext is used prior to this command.

\def\pgfsys@fillstroke{\pgf@sys@fail{path usage}}
% First, the path is filled, then the path is stroked. If the fill and
% stroke colors are the same (or if they are not specified and the
% current color is used), this yields almost the same as a
% \pgfsys@fill. However, due to the line thickness of the stroked
% path, the fillstroked area will be slightly larger.
%
% In addition to stroking and filling the path, the path will also be
% used for clipping if \pgfsys@clipnext is used prior to this command.

\def\pgfsys@clipnext{\pgf@sys@fail{path usage}}
% This command should be issued after a path has been constructed, but
% before it has been stroked and/or filled or discarded. When the
% command is used, the next stroking/filling/discarding command will
% first be executed normally. Then, afterwards, the just-used path
% will be used for subsequent clipping. If there has already been a
% clipping region, this region is intersected with the new clipping
% path (the clipping cannot get bigger). The nonzero winding number
% rule is used to determine whether a point is inside or outside the
% clipping area or the even-odd rule, depending on whether
% \ifpgfsys@eorule holds.

\def\pgfsys@discardpath{\pgf@sys@fail{path usage}}
% Normally, this command should `throw away' the current path.
% However, after \pgfsys@clipnext has been called, the current path
% should subsequently be used for clipping. See \pgfsys@clipnext for
% details.

\def\pgfsys@closestroke{\pgfsys@closepath\pgfsys@stroke}
% This command should have the same effect as first closing the path
% and then stroking it.

\newif\ifpgfsys@eorule
% Decides, whether even-odd filling and clipping is
% to be used or normal the non-zero winding number rule. See the
% pdf-documentation for details on what these rules are.

%
%
% Stroking options
%
%
\def\pgfsys@setlinewidth#1{\pgf@sys@fail{setting the line width}}
% Sets the width of lines, when stroked, to #1, which must be a TeX
% dimension (as text).

\def\pgfsys@buttcap{\pgf@sys@fail{setting the line cap}}
% Sets the cap to a butt cap. See \pgfsys@stroke.

\def\pgfsys@roundcap{\pgf@sys@fail{setting the line cap}}
% Sets the cap to a round cap. See \pgfsys@stroke.

\def\pgfsys@rectcap{\pgf@sys@fail{setting the line cap}}
% Sets the cap to a rectangular cap. See \pgfsys@stroke.

\def\pgfsys@miterjoin{\pgf@sys@fail{setting the line join}}
% Sets the join to a miter join. See \pgfsys@stroke.

\def\pgfsys@setmiterlimit#1{\pgf@sys@fail{setting the line cap}}
% Sets the miter limit of lines to #1. See the pdf or postscript
% documentation.

\def\pgfsys@roundjoin{\pgf@sys@fail{setting the line cap}}
% Sets the join to a round join. See \pgfsys@stroke.

\def\pgfsys@beveljoin{\pgf@sys@fail{setting the line cap}}
% Sets the join to a bevel join. See \pgfsys@stroke.

\def\pgfsys@setdash#1#2{\pgf@sys@fail{setting the dashing pattern}}
% Sets the dashing patter. #1 should be a list of lengths separated by
% commas. #2 should be a single dimension.
%
% The list of values in #1 is used to determine the lengths of the
% `on' phases of the dashing and of the `off' phases. For example, if
% #1 is `3pt,4pt', then the dashing pattern is `3pt on followed by 4pt
% off, followed by 3pt on, followed by 4pt off, and so on'. A pattern
% of `.5pt,4pt,3pt,1.5pt' means `.5pt on, 4pt off, 3pt on, 1.5pt off, .5pt on,
% ...'. If the number of entries is odd, the last one is used twice,
% so `3pt' means `3pt on, 3pt off, 3pt on, 3pt off,...'. An empty list
% means `always on'.
%
% The second argument determines the `phase' of the pattern. For
% example, for a pattern of `3pt,4pt' and a phase of `1pt', the pattern
% would start: `2pt on, 4pt off, 3pt on, 4pt off, 3pt on, 4pt off...'.

%
%
% Color stuff
%
%

\def\pgfsys@color@rgb@stroke#1#2#3{\pgf@sys@fail{color}}
% Sets the color used for stroking operations to the given rgb tuple
% (numbers between 0 and 1).
%
% Example: Make stroked text dark red: \pgfsys@color@rgb@stroke{0.5}{0}{0}
%
% The special stroking color is only used if the stroking color has
% been set since the last \pgfutil@color command. Thus, each \pgfutil@color command
% should reset both the stroking and filling colors.

\def\pgfsys@color@rgb@fill#1#2#3{\pgf@sys@fail{color}}
% Sets the color used for filling operations to the given rgb tuple
% (numbers between 0 and 1). This color may be different from the
% stroking color.

\def\pgfsys@color@rgb#1#2#3{\pgfsys@color@rgb@stroke{#1}{#2}{#3}\pgfsys@color@rgb@fill{#1}{#2}{#3}}
% Sets the color used for filling and stroking operations. This is a
% ``low-level'' version of the \pgfutil@color command. It is currently only
% used by the plain tex version to support colors.

\def\pgfsys@color@cmyk@stroke#1#2#3#4{\pgf@sys@fail{color}}
% Sets the color used for stroking operations to the given cymk tuple
% (numbers between 0 and 1).

\def\pgfsys@color@cmyk@fill#1#2#3#4{\pgf@sys@fail{color}}
% Sets the color used for filling operations to the given cymk tuple
% (numbers between 0 and 1).

\def\pgfsys@color@cmyk#1#2#3#4{\pgfsys@color@cmyk@stroke{#1}{#2}{#3}{#4}\pgfsys@color@cmyk@fill{#1}{#2}{#3}{#4}}
% Sets the color used for filling and stroking operations.

\def\pgfsys@color@cmy@stroke#1#2#3{\pgf@sys@fail{color}}
% Sets the color used for stroking operations to the given cym tuple
% (numbers between 0 and 1).

\def\pgfsys@color@cmy@fill#1#2#3{\pgf@sys@fail{color}}
% Sets the color used for filling operations to the given cym tuple
% (numbers between 0 and 1).

\def\pgfsys@color@cmy#1#2#3{\pgfsys@color@cmy@stroke{#1}{#2}{#3}\pgfsys@color@cmy@fill{#1}{#2}{#3}}
% Sets the color used for filling and stroking operations.

\def\pgfsys@color@gray@stroke#1{\pgf@sys@fail{color}}
% Sets the color used for stroking operations to the given gray level
% (number between 0 and 1).

\def\pgfsys@color@gray@fill#1{\pgf@sys@fail{color}}
% Sets the color used for filling operations to the given gray level
% (number between 0 and 1).

\def\pgfsys@color@gray#1{\pgfsys@color@gray@stroke{#1}\pgfsys@color@gray@fill{#1}}
% Sets the color used for filling and stroking operations.

\newif\ifpgfsys@color@reset@inorder
% This if decides whether the color resetting of the
% \pgfsys@color@reset command may assume that all color commands are
% given ``in order.'' This means that this command will not be called,
% say, at the beginning of a box that is later inserted at a point
% where a fill color was actively set. This may allow the command to
% produce more compact code when it ``knows'' that no special fill or
% stroke color has been set.
\pgfsys@color@reset@inordertrue

\def\pgfsys@color@reset{}
% This command will be called when the \pgfutil@color command is used. It
% should purge any internal settings of stroking and filling
% color. After this call, till the next use of a command like
% \pgfsys@color@rgb@fill, the current color installed by the \pgfutil@color
% command should be used.

\def\pgfsys@color@unstacked#1{}
% This slightly obscure command causes the color stack to be
% tricked. When called, this command should set the current color to
% #1 without causing any change in the color stack.

\def\pgfsys@text@to@black@hook{}
% Another slightly obscure command that allows tikz to hack into
% dvisvgm's color management inside text nodes. The problem is that
% the color "black" is special for dvisvgm.

%
%
% Coordinate system transformations
%
%

\def\pgfsys@transformcm#1#2#3#4#5#6{\pgf@sys@fail{transformations}}
% Perform a concatenation of the low-level current transformation
% matrix with the matrix given by the values #1 to #6. The
% transformation matrix is a transformation on a homogeneous
% 2D-coordinate system. See the pdf or postscript manual for details.

\def\pgfsys@transformshift#1#2{\pgfsys@transformcm{1}{0}{0}{1}{#1}{#2}}
% This command will change the origin of the low-level coordinate
% system to (#1,#2).

\def\pgfsys@transformxyscale#1#2{\pgfsys@transformcm{#1}{0}{0}{#2}{0bp}{0bp}}
% This command will scale the low-level coordinate system (and
% everything that is drawn) by a factor of #1 in x-directed and #2 in
% y-direction. Note that this applies to everything, including
% lines. So a scaled line will have a different width and may even
% have a different width when going along the x-axis and when going
% along the y-axis, if the scaling is different in these directions.

\def\pgfsys@viewboxmeet#1#2#3#4#5#6#7#8{\pgfsys@beginscope\pgf@sys@default@viewbox@impl{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{<}}
% Consider the two rectangles R with lower left corner
% (#5,#6) and upper right (#7,#8) and S with lower left corner
% (#1,#2) and upper right (#3,#4). Now, consider the transformation
% that scales and translates R so that the result T has the same
% center as S and has maximal size while still being inside S. This
% transformation gets installed in a new graphics group, which must be
% ended with a corresponding \pgfsys@endviewbox.

\def\pgfsys@viewboxslice#1#2#3#4#5#6#7#8{\pgfsys@beginscope\pgf@sys@default@viewbox@impl{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{>}}
% Works like \pgfsys@viewboxmeet, but R3 will have minimal size so
% that in contains all of R2.

\def\pgfsys@endviewbox{\pgfsys@endscope}
% Ends a viewbox scope started by either of the previous two commands.

\def\pgf@sys@default@viewbox@impl#1#2#3#4#5#6#7#8#9{{%
 \pgf@x#1%
 \pgf@y#2%
 \pgf@xa#3%
 \pgf@ya#4%
 \advance\pgf@xa by-\pgf@x%
 \advance\pgf@ya by-\pgf@y%
 \pgfmathdivide@{\pgf@sys@tonumber\pgf@xa}{\pgf@sys@tonumber\pgf@ya}%
 \let\aspectr\pgfmathresult%
 \pgf@xb#5%
 \pgf@yb#6%
 \pgf@xc#7%
 \pgf@yc#8%
 \advance\pgf@xc by-\pgf@xb%
 \advance\pgf@yc by-\pgf@yb%
 \pgfmathdivide@{\pgf@sys@tonumber\pgf@xc}{\pgf@sys@tonumber\pgf@yc}%
 \let\aspects\pgfmathresult%
 \ifdim\aspectr pt#9\aspects pt%
 \pgfmathdivide@{\pgf@sys@tonumber\pgf@xa}{\pgf@sys@tonumber\pgf@xc}%
 \else%
 \pgfmathdivide@{\pgf@sys@tonumber\pgf@ya}{\pgf@sys@tonumber\pgf@yc}%
 \fi%
 \advance\pgf@x by.5\pgf@xa%
 \advance\pgf@xb by.5\pgf@xc%
 \advance\pgf@y by.5\pgf@ya%
 \advance\pgf@yb by.5\pgf@yc%
 \pgfsys@transformcm{\pgfmathresult}{0}{0}{\pgfmathresult}{\pgf@x}{\pgf@y}%
 \pgfsys@transformcm{1}{0}{0}{1}{-\pgf@xb}{-\pgf@yb}%
 }%
}

%
%
% Graphic state saving and restoring.
%
%

\def\pgfsys@beginscope{\pgf@sys@fail{scoping}}
% Saves the current graphic state on a graphic state stack. All
% changes to the graphic state parameters mentioned for \pgfsys@stroke
% and \pgfsys@fill will be local to the current graphic state and will
% the old values will be restored after endscope is used.
%
% WARNING: pdf and postscript differ with respect to the question of
% whether the current path is part of the graphic state or not. For
% this reason, you should never use this command unless the path is
% currently empty. For example, it might be a good idea to use
% discardpath prior to calling this command.

\def\pgfsys@endscope{\pgf@sys@fail{scoping}}
% Restores the last saved graphic state.

\def\pgfsys@begin@idscope{%
 \begingroup%
 \edef\pgf@sys@cacheref{\pgfsys@id@refcurrent}%
 \expandafter\let\expandafter\pgfsys@beg@save\csname pgf@sys@att@beg@\pgf@sys@cacheref\endcsname%
 \expandafter\let\expandafter\pgfsys@end@save\csname pgf@sys@att@end@\pgf@sys@cacheref\endcsname%
 \ifx\pgfsys@beg@save\relax%
 \ifx\pgfsys@end@save\relax%
 \else%
 \pgfsys@call@save%
 \fi%
 \else%
 \pgfsys@call@save%
 \fi%
 \pgfsys@invalidate@currentid%
 \begingroup%
}
% Starts an "id scope" where the current value of \pgfsys@use@id and
% \pgfsys@use@type is used. If the combination has been used before,
% nothing happens. Otherwise, depending of the driver, a graphic
% scope may or may not be created. To ensure that a graphic scope is
% created, use \pgfsys@beginscope additionally.

\def\pgfsys@call@save{%
 \pgfsys@beginscope%
 \pgfsys@beg@save%
 \expandafter\global\expandafter\let\csname pgf@sys@att@beg@\pgfsys@id@refcurrent\endcsname\relax%
 \expandafter\global\expandafter\let\csname pgf@sys@att@end@\pgfsys@id@refcurrent\endcsname\relax%
}

\def\pgfsys@end@idscope{
 \endgroup%
 \ifx\pgfsys@beg@save\relax%
 \ifx\pgfsys@end@save\relax%
 \else%
 \pgfsys@call@end%
 \fi%
 \else%
 \pgfsys@call@end%
 \fi%
 \endgroup
}
% Ends an id scope.

\def\pgfsys@call@end{%
 \pgfsys@end@save%
 \pgfsys@endscope%
}

\def\pgfsys@begin@text{}
% Inside a text box you should not use graphics command. However, TikZ
% needs to insert some color commands at the beginnings of text
% boxes. For most drivers, this is not a problem; except for SVG,
% where every change of the graphics state opens a scope and needs a
% closing scope. This command should be used at the beginning of text
% boxes containing such color commands and the matching
% \pgfsys@end@text at the end. If the box does not contain commands
% that change the graphics state, this command is not needed.

\def\pgfsys@end@text{}
% Closes a \pgfsys@begin@text.

%
%
% Id management (all of these commands have a default implementation
% any typically need not be redefined by a driver)
%
%

% The id count
\newcount\pgf@sys@id@count

\def\pgfsys@new@id#1{%
 \edef#1{pgf\the\pgf@sys@id@count}%
 \global\advance\pgf@sys@id@count by1\relax%
}
% Creates a new id and stores it in the macro #1.

\def\pgfsys@use@id#1{%
 \edef\pgf@sys@id@current@id{#1}%
 \let\pgfsys@current@type\pgfutil@empty%
}
\let\pgf@sys@id@current@id\pgfutil@empty
% Sets the id to be used for the next graphic object (group, box, or
% path). The type is reset to be empty. #1 must be a macro name that
% has previously been set using \pgfsys@new@id.
%
% Each combination of id and type can be used only once, on a second
% use nothing happens.

\def\pgfsys@clear@id{%
 \let\pgf@sys@id@current@id\pgfutil@empty%
}
% Clears the current id, so nothing can be referenced.

\def\pgfsys@use@type#1{%
 \edef\pgfsys@current@type{#1}%
 \pgfsys@register@type\pgfsys@current@type%
}
\let\pgfsys@current@type\pgfutil@empty
% Sets the type to be used for the next graphic object.

\def\pgfsys@append@type#1{%
 \ifx\pgfsys@current@type\pgfutil@empty%
 \pgfsys@use@type{#1}%
 \else%
 \pgfsys@use@type{\pgfsys@current@type.#1}%
 \fi%
}
% Appends something to the current type

\def\pgfsys@register@type#1{%
 \expandafter\let\expandafter\pgf@sys@temp\csname pgf@sys@reg@type@#1\endcsname%
 \ifx\pgf@sys@temp\relax%
 {%
 \c@pgf@counta\pgf@sys@type@count\relax%
 \global\advance\c@pgf@counta by1\relax%
 \edef\pgf@sys@type@count{\the\c@pgf@counta}%
 \expandafter\xdef\csname pgf@sys@reg@type@#1\endcsname{y\the\c@pgf@counta}%
 }%
 \fi%
}
% Registers a type with the system. Must be called before any use of
% the type
\def\pgf@sys@reg@type@{}
\def\pgf@sys@reg@type@background{b}
\def\pgf@sys@reg@type@path{p}
\def\pgf@sys@reg@type@text{t}
\expandafter\def\csname pgf@sys@reg@type@background.path\endcsname{bp}
\def\pgf@sys@type@count{0}

\def\pgfsys@push@type{%
 \expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter\pgf@sys@typestack%
 \expandafter\expandafter\expandafter{\expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter\pgfsys@current@type%
 \expandafter\expandafter\expandafter{\expandafter\pgfsys@current@type\expandafter}%
 \expandafter\def\expandafter\pgf@sys@typestack\expandafter{\pgf@sys@typestack}}%
}
\let\pgf@sys@typestack\pgfutil@empty
% Pushes the current type onto a global stack. This is useful for
% temporarily changing the type without creating \TeX scopes.

\def\pgfsys@pop@type{\pgf@sys@typestack}
% Pops the last id from the stack.

\def\pgfsys@id@ref#1#2{#1\csname pgf@sys@reg@type@#2\endcsname}
% Expands to a text that can be inserted as a reference. #1 must be a
% reference created \pgfsys@new@id, #2 must be a type that has been
% registered using \pgfsys@id@register@type.

\def\pgfsys@id@refcurrent{\pgfsys@id@ref{\pgf@sys@id@current@id}{\pgfsys@current@type}}
% Expands to a text that can be inserted as a reference to the current
% id-type pair in use.

\def\pgfsys@invalidate@currentid{%
 \expandafter\global\expandafter\let\csname pgf@sys@id@keylist@\pgfsys@id@refcurrent\endcsname\pgfutil@empty%
}
% Mark the current id-type pair as used.

\def\pgfsys@attach@to@id#1#2#3#4{%
 \pgfsys@register@type{#2}%
 \expandafter\def\expandafter\pgf@sys@tempbeg\expandafter{\csname pgf@sys@att@beg@\pgfsys@id@ref{#1}{#2}\endcsname}%
 \expandafter\def\expandafter\pgf@sys@tempend\expandafter{\csname pgf@sys@att@end@\pgfsys@id@ref{#1}{#2}\endcsname}%
 \expandafter\ifx\pgf@sys@tempbeg\relax%
 \expandafter\let\pgf@sys@tempbeg\pgfutil@empty%
 \fi%
 \expandafter\ifx\pgf@sys@tempend\relax%
 \expandafter\let\pgf@sys@tempend\pgfutil@empty%
 \fi%
 \expandafter\let\expandafter\pgf@sys@tempbeg@cont\pgf@sys@tempbeg%
 \expandafter\let\expandafter\pgf@sys@tempend@cont\pgf@sys@tempend%
 \expandafter\expandafter\expandafter\gdef\expandafter\pgf@sys@tempbeg\expandafter{\pgf@sys@tempbeg@cont#3}%
 \def\pgf@sys@temp{#4}%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\gdef\expandafter\expandafter\expandafter\pgf@sys@tempend\expandafter\expandafter\expandafter{\expandafter\pgf@sys@temp\pgf@sys@tempend@cont}%
}
% Attaches some code to an id-type pair so that when the id's scope
% gets created, #3 is added at the beginning and #4 is added at the
% end.

\def\pgfsys@if@fresh@id#1#2#3#4{%
 \edef\pgf@sys@temp{#1}%
 \ifx\pgf@sys@temp\pgfutil@empty% empty id always counts as "has been used"
 #4%
 \else%
 \pgfsys@register@type{#2}%
 \expandafter\ifx\csname pgf@sys@id@keylist@\pgfsys@id@ref{#1}{#2}\endcsname\pgfutil@empty%
 % has already been used!
 #4%
 \else%
 #3%
 \fi%
 \fi%
}
% Checks whether a given id-type pair #1-#2 has not been used, yet. If
% so, #3 is executed, otherwise #4.

\def\pgfsys@if@fresh@currentid#1#2{%
 \ifx\pgf@sys@id@current@id\pgfutil@empty% empty id always counts as "has been used"
 #2%
 \else%
 \expandafter\ifx\csname pgf@sys@id@keylist@\pgfsys@id@refcurrent\endcsname\pgfutil@empty%
 % has already been used!
 #2%
 \else%
 #1%
 \fi%
 \fi%
}
% Checks whether the current id-type pair in use has not been used,
% yet. If so, #1 is executed, otherwise #2.

%
%
% Special commands
%
%

\def\pgfsys@imagesuffixlist{}
% A list of suffixes, separated by `:', that will be tried when
% searching for an image.

%
%
% Transparency
%
%

\def\pgfsys@opacity#1{\pgfsys@stroke@opacity{#1}\pgfsys@fill@opacity{#1}}
% Ideally, this should sets the opacity of all operations, treating
% the group as a transparency group with 1 meaning fully opaque, 0
% meaning fully transparent. Since most drivers do not support this,
% the fallback is to set the stroke and fill opacity at the same
% time. This is not quite the same, however.

\def\pgfsys@stroke@opacity#1{\pgf@sys@fail{opacity}}
% Sets the opacity of stroking operations. 1 means fully opaque, 0
% means fully transparent.

\def\pgfsys@fill@opacity#1{\pgf@sys@fail{opacity}}
% Sets the opacity of filling operations. 1 means fully opaque, 0
% means fully transparent.

\def\pgfsys@transparencygroupfrombox#1{\pgf@sys@fail{transparency groups}}
% This takes a TeX box and converts it into a transparency
% group. This means that any transparency settings apply to the box as
% a whole. For instance, if a box contains two overlapping black
% circles and you draw them normally with 50% transparency, then the
% overlap will be darker than the rest. By comparison, if the circles
% are part of a transparency group, the overlap will get the same
% color as the rest.
%
% The following settings modify the behaviour of a transparency group:

\newif\ifpgfsys@transparency@group@isolated
\newif\ifpgfsys@transparency@group@knockout

\def\pgfsys@blend@mode#1{\pgf@sys@fail{blend mode}}
% Sets the current blend mode. See the PDF specification for details
% on blend modes.

\def\pgfsys@definemask{\pgf@sys@fail{image masks}}
% This command declares a mask for usage with images. It works similar
% to \pgfsys@defineimage: Certain macros are set when the command is
% called. The result should be to set the macro \pgf@mask to a pdf
% object count that can subsequently be used as a soft mask. The
% following macros will be set when this command is invoked:
%
% - \pgf@filename
% File name of the mask to be defined.
%
% - \pgf@maskmatte
% The so-called matte of the mask (see the pdf documentation for
% details). The matte is a color specification consisting of 1, 3 or
% 4 numbers between 0 and 1. The number of numbers depends on the
% number of color channels in the image (not in the mask!). It will
% be assumed that the image has been preblended with this color.

\def\pgfsys@fadingfrombox#1#2{\pgf@sys@fail{fadings}}
% Declares an fading named #1. The parameter #2 must be a
% box. Its contents luminosity determines the opacity of the resulting
% mask.

\def\pgfsys@usefading#1#2#3#4#5#6#7{\pgf@sys@fail{fadings}}
% Installs a previously declared fading #1 in the current graphics
% state. Parameters #2 to #7 specify a transformation cm that should
% be applied to the mask before it is used.

\def\pgfsys@clipfading{}
% This default implementation is a no-op for all drivers except `dvips'
% where we have to set the clipping path _before_ installing the fading (used in
% \pgfsetfadingforcurrentpath, \pgfsetfadingforcurrentpathstroked commands of
% the basic layer)

%
%
% Shading commands
%
%

\def\pgfsys@horishading#1#2#3{\pgf@sys@fail{shadings}\pgf@sys@noshading{#1}}
% Declares a horizontal shading for later use. The effect of this
% command should be the definition of a macro called `@pgfshading#1!'
% (or \csname @pdfshading#1!\endcsname, to be precise). When invoked,
% this new macro should insert a shading at the current position.
%
% #1 is the name of the shading, which is also used in the output
% macro name. #2 is the height of the shading and must be given as a
% TeX dimension like `2cm' or `10pt'. #3 is a shading color
% specification as specified in the pgfuserguide. The shading
% specification implicitly fixes the width of the shading.
%
% When `@pgfshading#1!' is invoked, it should insert a box of height
% #2 and the width implicit in the shading declaration.

\def\pgfsys@vertshading#1#2#3{\pgf@sys@fail{shadings}\pgf@sys@noshading{#1}}
% Like horishading, only for vertical shadings. This time, the height
% of the shading is implicit in #3 and the width is given as #2.

\def\pgfsys@radialshading#1#2#3{\pgf@sys@fail{shadings}\pgf@sys@noshading{#1}}
% Declares a radial shading. Like the previous macros, this command
% should setup the macro `@pgfshading#1!', which upon invocation
% should insert a radial shading whose size is implicit in #3.
%
% The parameter #2 is a pgf point specification if the starting point
% of the shading. See the pgfuserguide for details.

\def\pgfsys@functionalshading#1#2#3#4{\pgf@sys@fail{shadings (functional)}\pgf@sys@noshading{#1}}
% Declares a shading using a PostScript-like function that provides a
% color for each point. Like the previous macros, this command
% should setup the macro `@pgfshading#1!' so that it will produce a
% box containing the desired shading.
%
% Parameter #1 is the name of the shading. Parameter #4 is a
% Postscript-like function (type 4 function of the PDF specification)
% as described in Section 3.9.4 of the PDF Specification version 1.7.
% Parameter #2 and #3 are pgf point specifications that specifies the
% lower left and upper right coordinate.
%
% When function #4 is evaluated, the coordinate of the current
% point will be on the (virtual) PostScript stack in bp units. After
% the function has been evaluated, the stack should consist of three
% numbers (not integers! - the Apple PDF renderer is broken in this
% regard, so add cvr's at the end if needed) that represent the red,
% green, and blue components of the color.
%
% A buggy #4 will result is *totally unpredictable chaos* during
% rendering.

\def\pgf@sys@noshading#1{\expandafter\global\expandafter\let\csname @pgfshading#1!\endcsname=\pgfutil@empty}

%
%
% Pattern stuff
%
%

\def\pgfsys@declarepattern#1#2#3#4#5#6#7#8#9{\pgf@sys@fail{patterns}}
% This command declares a new colored or uncolored pattern. Uncolored
% patterns have no inherent color, the color is provided when they are
% set. Colored patters have an inherent color.
% #1 = name of the pattern (must be a plain suffix for use in
% postscript/pdf/etc.)
% #2 to #5 = four coordinates describing the corners of a bounding box
% of pattern cells
% #6 = x-step
% #7 = y-step
% #8 = pattern code
% #9 = 0 if uncolored patter, 1 if colored pattern.

\def\pgfsys@setpatternuncolored#1#2#3#4{\pgf@sys@fail{patterns}}
% Sets an uncolored pattern #1 as filling color. The numbers #2, #3,
% #4 must be an rgb-value to be used as the color of the pattern.

\def\pgfsys@setpatterncolored#1{\pgf@sys@fail{patterns}}
% Sets an colored pattern #1 as filling color.

%
%
% Animations
%
%

\newif\ifpgfsysanimationsupported
% Will be set to true by a driver when animations are supported. Note
% that snapshots are always supported.

\def\pgfsys@animate#1{\pgf@sys@fail{animations}}
% Adds an animation of the attribute #1 to the current scope.
% The configuration of the animation (like start times, etc.) is taken
% from the current values of the animation keys, which are configured
% using calls to \pgfsys@animation@..., which setup an animation
% key for the local scope. This means that you typically setup these
% keys in a scope and at the end of the scope call \pgfsys@animate.
%
% Some keys accumulate (like begin or keytime), most do not. In those
% cases, the last call overrides the previous one.
%
% Not all value types make sense or are allowed, it depends on the
% specific \pgfsys@animate call.
%
% Example:
%
% {
% \pgfsys@animation@offset{10}{begin}%
% \pgfsys@animation@event{}{click}{1}{begin}%
% \pgfsys@animation@time{5}{1}{1}{0}{0}
% \pgfsys@animation@val@scalar{1}
% \pgfsys@animation@time{8}{1}{1}{0}{0}
% \pgfsys@animation@val@scalar{0.5}
% \pgfsys@animation@sum%
% \pgfsys@animate{fillopacity}%
% }
%
% When a driver does not support a specific attribute #1, it should
% issue a \pgf@sys@fail. Typical attributes are things like "opacity"
% or "linewidth" or "dash".
%
% The following values are permissible for "#1":
%
% "opacity" adds an animation of the opacity.
% Type: scalar
%
% "fillopacity" adds an animation of the fill opacity.
% Type: scalar
%
% "strokeopacity" adds an animation of the stroke opacity.
% Type: scalar
%
% "visibility" adds an animation of the visibility.
% Type: text ("visible" or "hidden")
%
% "linewidth" adds an animation of the line width.
% Type: dimension
%
% "dash" adds an animation of the dash.
% Type: dash
%
% "translate" adds an animation of the transformation.
% Type: translate
%
% "scale" adds an animation of the transformation.
% Type: scale
%
% "rotate" adds an animation of the transformation.
% Type: scalar
%
% "skewx" adds an animation of the transformation.
% Type: scalar
%
% "skewy" adds an animation of the transformation.
% Type: scalar
%
% "motion" adds a movement along a path.
% Type: motion
%
% "strokecolor" adds an animation of the stroke color.
% Type: color
%
% "fillcolor" adds an animation of the fill color.
% Type: color
%
% "viewbox" adds an animation of the view box.
% Type: view box
%
% "path" adds an animation of the path to the path specified by
% \pgfsys@animation@whom
% Type: path
%
% "syncbase" adds a sync base to the animation. A sync base does not animate
% anything by itself, but other animations can begin and end relative
% to it.
%
% "none" suppresses the animation
% Type: any

% Animation timing :
%
% You specify an animation using a timeline. A timeline consists of a
% sequence of times together with values for these times. The times
% must be given in increasing order. You use the command
% \pgfsys@animation@time to specify a time and
% \pgfsys@animation@val@... to specify a value. The time must be
% specified first, the time--value is created when the value command is
% used.
%
% Times are given in seconds (so 0.01 is one hundredth of a second).
%
% The animation's timeline will start with the first time mentioned
% (not necessarily zero and not necessarily a positive value) and ends
% with the last value. The duration is the difference between these
% two values.

\def\pgfsys@animation@restart@always{}
% Specifies that the animation can always restart

\def\pgfsys@animation@restart@never{}
% Specifies that the animation should never restart

\def\pgfsys@animation@restart@whennotactive{}
% Specifies that the animation should only restart when it is not active

\def\pgfsys@animation@repeat#1{}
% #1 must be a number

\def\pgfsys@animation@repeat@indefinite{}
% Repeats forever

\def\pgfsys@animation@repeat@dur#1{}
% #1 must be a clock value

\def\pgfsys@animation@freezeatend{}
% Specifies that the last value of the animation remains in force at
% the end

\def\pgfsys@animation@removeatend{}
% Specifies that the effect of the animation is removed at the end

\def\pgfsys@animation@time#1#2#3#4#5{}
% Specifies a time together with spline control points for the entry
% and the exit to this time. The value #1 is a time in seconds (so 60
% means 1 minute, 0.001 means one millisecond). The values #2 and #3
% specify the control point of the spline *entering* the time point,
% while the values #4 and #5 specify the control point of the spline
% *leaving* the time point. They are all dimensionless values between
% 0 and 1. For a linear animation, set the first two to 1 and the last
% two to 0.
%
% Example:
% \pgfsys@animation@time{5}{1}{1}{0.25}{0.1}
% \pgfsys@animation@val@scalar{80}
% \pgfsys@animation@time{8}{.75}{1}{0}{0}
% \pgfsys@animation@val@scalar{90}
%
% In SVG, this will create the following entries:
% begin = +5s
% duration = 3s
% keyTimes = 0;1
% values = 80;90
% keySpline = 0.25 0.1 0.75 1
%
% For the key spline, note that the entry spline controls of the first
% time and the exit spline controls of the last point are dropped.
%
%
% When the exit spline takes the special values #4="stay" and #5="0",
% the attribute's value "stays" until the next value for the next time
% (it "jumps" to the next value then). This corresponds, roughly, to
% an "infinite" #4.
%
% Similarly, when the entry spline takes the special value #2="jump"
% and #3="1", the value immediately jumps from the previous value to
% the next value when the previous value was "created".

\def\pgfsys@stay@text{{stay}{0}}
\def\pgfsys@jump@text{{jump}{1}}

\def\pgfsys@animation@base{}
% Think of this command as setting the value of the attribute in the
% timeline before the timeline starts. Normally, an animation only
% influences the timeline while the animation is running (which may be
% forever) and before and after the animation is running, the
% attribute's value is not modified by the animation (so, it is just
% inherited from the surrounding scope). When a base value is set,
% while the animation is not running, this value is used. For most
% attributes you can achieve the same effect by surrounding the
% to-be-animated object by a scope and setting the value there, but
% using bases is often more convenient and, for instance for the
% visibility attribute, it is necessary to use a base.
%
% Note that when a backend driver does not support animations, base
% values will not be depicted unless a snapshot is used explicitly.

\def\pgfsys@animation@offset#1#2{}
% #1 must be a value in seconds, #2 is the target "begin" or "end" to
% which this offset is appended.

\def\pgfsys@animation@syncbegin#1#2#3#4{}
% #1 is the id of a sync base (obtained by
% \pgfsys@new@id), #2 is the id type (or empty), #3 is an optional
% offset, #4 is the target.

\def\pgfsys@animation@syncend#1#2#3#4{}
% Like the previous command.

\def\pgfsys@animation@event#1#2#3#4#5{}
% #1 is the optional id of another element (obtained by
% \pgfsys@new@id), #2 is the optional type of the id, #3 is an event
% name, #4 is an optional offset, #5 is the target.

\def\pgfsys@animation@repeat@event#1#2#3#4#5{}
% #1 is the optional id of another element, #2 is the type, #3 is a
% repeat count, and #4 is an optional offset, #5 is the target.

\def\pgfsys@animation@accesskey#1#2#3{}
% #1 is a character, #2 is an optional offset, #3 is the target.

\def\pgf@sys@begin@text{begin}

% Accumulation

\def\pgfsys@animation@accumulate{}
% Corresponds to accumulate="sum" in SVG

\def\pgfsys@animation@noaccumulate{}
% Corresponds to accumulate="none" in SVG

% Targeting

\def\pgfsys@animation@whom#1#2{}
% Sets the target of the animation. #1 must be an id previously
% created using \pgfsys@new@id and #2 must be empty or a type
% previously created using \pgfsys@new@id@type

% Attribute definitions

\def\pgfsys@animation@rotatealong{}
% Applicable only to motion animations. Indicates that the
% to-be-animated group should be rotated automatically so that it
% points along the path as time progresses.

\def\pgfsys@animation@norotatealong{}
% Corresponds to rotate="0"

\def\pgfsys@animation@movealong#1{}
% Applicable only to motion animations. #1 is a softpath along which
% the movement will be done.

\def\pgfsys@animation@tip@markers#1#2{}
% Applicable only to path animations. #1 and #2 are markers (declared
% using \pgfsys@marker@declare) that store marker symbols to be added
% at the start and at the end of the to-be-animated path. If empty, no
% markers are added.

\def\pgfsys@animation@canvas@transform#1#2{}
% #1 is some code that may call \pgfsys@transformcm at most once. It
% will be executed when a canvas transformation animation is
% installed for a scope id. #2 is some further codes that may also
% call \pgfsys@transformcm at most once. It will be installed right
% after the animation.
%
% Typically, #1 is some pgf coordinate shift followed by
% {\pgflowlevelsynccm} and #2 is \pgftransforminvert followed by
% \pgflowlevelsynccm.

% Values

\def\pgfsys@animation@val@current{}
% The current value of the attribute. At least with SVG, this can only
% be used for the first value and, then, only if there is only one
% other value.

\def\pgfsys@animation@val@text#1{}
% #1 should be some text.

\def\pgfsys@animation@val@scalar#1{}
% #1 should be a single value.

\def\pgfsys@animation@val@dimension#1{}
% #1 must be a dimension.

\def\pgfsys@animation@val@color@rgb#1#2#3{}
% #1,#2,#3 must be an rgb tuple

\def\pgfsys@animation@val@color@cmyk#1#2#3#4{}
% #1,#2,#3,#4 must be an cmyk tuple

\def\pgfsys@animation@val@color@cmy#1#2#3{}
% #1,#2,#3 must be an cmy tuple

\def\pgfsys@animation@val@color@gray#1{}
% #1 must be a gray value

\def\pgfsys@animation@val@path#1{}
% #1 must consist of path-construction tokens (as returned by the
% softpath layer)

\def\pgfsys@animation@val@translate#1#2{}
% #1,#2 must be dimensions

\def\pgfsys@animation@val@scale#1#2{}
% #1,#2 must be dimensionless

\def\pgfsys@animation@val@viewbox#1#2#3#4{}
% #1,#2 describe the lower left, #3,#4 the upper right corner of the
% view box.

\def\pgfsys@animation@val@dash#1#2{}
% #1,#2 have the syntax of \pgfsys@setdash.

%
%
% Markers
%
%

\def\pgfsys@marker@declare#1#2{%
 {%
 \pgfpicturetrue%
 \pgfsysprotocol@getcurrentprotocol\pgfsys@marker@temp%
 \pgfsysprotocol@setcurrentprotocol\pgfutil@empty%
 \pgfsysprotocol@bufferedtrue%
 \pgfsys@beginscope%
 #2%
 \pgfsys@endscope%
 \xdef#1{\the\pgf@sys@id@count}%
 \expandafter\expandafter\expandafter\global\expandafter\pgfsysprotocol@getcurrentprotocol\csname pgf@sys@marker@prot@#1\endcsname%
 \pgfsys@marker@declare@% curtesy hook
 \pgfsysprotocol@setcurrentprotocol\pgfsys@marker@temp%
 \global\advance\pgf@sys@id@count by1\relax%
 }%
}
\let\pgfsys@marker@declare@\relax
% Declares a new marker symbol whose code is in #2. #1 should be a
% macro name, which will be set to a unique
% value by which the marker can be referenced later on. #2 should be
% code that, when executed, produces recordable code.

\def\pgfsys@marker@use#1{%
 \pgfsysprotocol@literal{\csname pgf@sys@marker@prot@#1\endcsname}%
}
% Draws the marker symbol not at the end of a path, but simply with
% the current transformation matrix

%
%
% RDF
%
%

\def\pgfsys@rdf@about#1{\pgf@sys@fail{rdf}}
% Adds the rdf attribute "about" with value #1 to the next
% idscope. The RDF-spec says: "a SafeCURIEorCURIEorIRI, used for
% stating what the data is about (a 'subject' in RDF terminology);"

\def\pgfsys@rdf@content#1{\pgf@sys@fail{rdf}}
% Adds the rdf attribute content with value #1 to the next
% idscope. The RDF-spec says: "a CDATA string, for supplying
% machine-readable content for a literal (a 'literal object', in RDF
% terminology);"

\def\pgfsys@rdf@datatype#1{\pgf@sys@fail{rdf}}
% Adds the rdf attribute datatype with value #1 to the next
% idscope. The RDF-spec says: "a TERMorCURIEorAbsIRI representing a
% datatype, to express the datatype of a literal;"

\def\pgfsys@rdf@href#1{\pgf@sys@fail{rdf}}
% Adds the rdf attribute href with value #1 to the next idscope
% The RDF-spec says: "a traditionally navigable IRI for
% expressing the partner resource of a relationship (a 'resource
% object', in RDF terminology);"

\def\pgfsys@rdf@inlist{\pgf@sys@fail{rdf}}
% Adds the rdf attribute inlist to the next idscope. The
% RDF-spec says: "An attribute used to indicate that the object
% associated with a rel or property attribute on the same element is
% to be added to the list for that predicate. The value of this
% attribute must be ignored. Presence of this attribute causes a list
% to be created if it does not already exist."

\def\pgfsys@rdf@prefix#1{\pgf@sys@fail{rdf}}
% Adds #1 to the list of the rdf prefix attribute to the next
% idscope. Can be called several times, in which case all values of #1
% are concatenated with whitespaces. The RDF-spec says: "a white space
% separated list of prefix-name IRI pairs of the form NCName ':' ' '+
% xsd:anyURI"

\def\pgfsys@rdf@property#1{\pgf@sys@fail{rdf}}
% Adds #1 to the list of the rdf property attribute to the next
% idscope. Can be called repeatedly. The RDF-spec says: "a white space
% separated list of TERMorCURIEorAbsIRIs, used for expressing
% relationships between a subject and either a resource object if
% given or some literal text (also a 'predicate');"

\def\pgfsys@rdf@rel#1{\pgf@sys@fail{rdf}}
% Adds #1 to the list of the rdf rel attribute to the next
% next idscope. Can be called repeatedly. The
% RDF-spec says: "a white space separated list of
% TERMorCURIEorAbsIRIs, used for expressing relationships between two
% resources ('predicates' in RDF terminology);"

\def\pgfsys@rdf@resource#1{\pgf@sys@fail{rdf}}
% Adds the rdf attribute resource with value #1 to the next idscope. The
% RDF-spec says: "a SafeCURIEorCURIEorIRI for expressing the partner
% resource of a relationship that is not intended to be navigable
% (e.g., a 'clickable' link) (also an 'object');"

\def\pgfsys@rdf@rev#1{\pgf@sys@fail{rdf}}
% Adds #1 to the list of the rdf rev attribute to the next
% idscope. Can be called repeatedly. The
% RDF-spec says: "a white space separated list of
% TERMorCURIEorAbsIRIs, used for expressing reverse relationships
% between two resources (also 'predicates');

\def\pgfsys@rdf@src#1{\pgf@sys@fail{rdf}}
% Adds an rdf attribute src with value #1 to the next idscope. The
% RDF-spec says: "an IRI for expressing the partner resource of a
% relationship when the resource is embedded (also a 'resource
% object');"

\def\pgfsys@rdf@typeof#1{\pgf@sys@fail{rdf}}
% Adds #1 to the list of the rdf typeof attribute to the next
% idscope. Can be called repeatedly. The
% RDF-spec says: "a white space separated list of TERMorCURIEorAbsIRIs
% that indicate the RDF type(s) to associate with a subject;"

\def\pgfsys@rdf@vocab#1{\pgf@sys@fail{rdf}}
% Adds an rdf attribute vocab with value #1 to the next idscope. The
% RDF-spec says: "an IRI that defines the mapping to use when a TERM
% is referenced in an attribute value. See General Use of Terms in
% Attributes and the section on Vocabulary Expansion."

%
%
% Page size stuff
%
%

\def\pgfsys@papersize#1#2{\pgf@sys@fail{papersize}}
% This command sets the paper size in a portable way. It tries to do
% so "locally" for the current page, but what really happens depends
% strongly on the driver. For instance, dvips will use whatever is
% used with the first call to this command that is part of the
% shipped-out document and will ignore all other uses. In contrast,
% pdftex will use the current value of the papersize for each page
% and, additionally, setting the papersize is local to the current TeX
% group.
% #1 = width
% #2 = height

\def\pgfsys@global@papersize#1#2{\pgfsys@papersize{#1}{#2}}
% This command does the same as the papersize command, only for
% drivers that support this, \global is used to set the papersize.
% #1 = width
% #2 = height

\def\pgfsys@prepare@papersize#1#2{\pgfsys@papersize{#1}{#2}}
% Like \pgfsys@papersize, this prepares the paper size in a portable
% way -- but it is supposed to be a preparation step before the
% document has started. Drivers may decide to postpone the action
% until the document has started.
%
% The root cause why I added this method is that image externalization
% seems to suffer from the fact that some drivers need a "prepared"
% routine whereas others must not have a prepared routine and have to
% apply the action right-away. This method is the solution for image
% externalization.
% #1 = width
% #2 = height

\ifx\paperheight\@undefined
 \def\pgfsys@thepageheight{\the\vsize} % this is wrong, but I do not
 % know how to compute the page height
 % in plain tex.
 \def\pgfsys@thepagewidth{\the\hsize}
\else
 \def\pgfsys@thepageheight{\paperheight}
 \def\pgfsys@thepagewidth{\paperwidth}
\fi

%
%
% Position tracking commands
%
%

% Marks the current position on the page. This position can later be
% referenced using \pgfsys@getposition
\def\pgfsys@markposition#1{\pgf@sys@fail{marking the current position}}

% Sets #2 to a pgfpoint macro that returns the position #1 is
% returned in a coordinate system where the x-axis goes right and the
% y-axis goes up. The origin of this coordinate system may or may not
% lie in the lower left corner; you should shift the coordinate system
% to the position "pgfpageorigin" to make sure that the origin is at
% the lower left corner. Typically, getting this position
% requires two runs of TeX. On the first run, the macro will be set to
% \relax, indicating that the position is not available.
%
% If #1 is set to the special position "pgfpageorigin", the position
% of the the lower left page corner is returned.

\def\pgfsys@getposition#1#2{\let#2=\relax}

%
%
% Commands having a default implementation. These commands only need
% not be implemented by drivers if this results in a better
% performance.
%
%

\def\pgfsys@shadingoutsidepgfpicture#1{%
 #1%
}
% This command gets the definition of a shading (@pgfshadingxxxx!) as
% an argument and should insert this shading into the normal text.
%
% This command has a default implementation.

\def\pgfsys@shadinginsidepgfpicture#1{%
 \pgf@makehbox{#1}%
 \setbox\pgf@hbox=\hbox{\hskip-.5\wd\pgf@hbox\lower.5\ht\pgf@hbox\hbox{\box\pgf@hbox}}%
 \pgfqbox{\pgf@hbox}%
}
% This command works like \pgfsys@shadingoutsidepgfpicture, only it is
% called when a shading should be inserted inside a picture. This
% command should insert the shading centered on the origin (which will
% typically have been low-level translated somewhere else.)
%
% This command has a default implementation.

\def\pgfsys@hbox#1{%
 \pgfsys@begin@idscope%
 \pgfsys@beginscope%
 \setbox#1=\hbox{\box#1}%
 \wd#1=0pt%
 \ht#1=0pt%
 \dp#1=0pt%
 \box#1%
 \pgfsys@endscope%
 \pgfsys@end@idscope%
}
% Called to insert a TeX hbox into a pgfpicture.

\def\pgfsys@hboxsynced#1{%
 \pgfsys@beginscope\pgflowlevelsynccm\pgfsys@hbox#1\pgfsys@endscope%
}%
% Called to insert box #1 into a pgfpicture, but with the current
% coordinate transformation matrix synced with the canvas
% transformation matrix and surrounded by a scope.
%
% In essence, this command does the same as if you first said
% \pgflowlevelsynccm and then \pgfsys@hbox#1. However, a
% ``TeX-translation'' is used for the translation part of the
% transformation cm. This will ensure that hyperlinks ``survive'' at
% least translations.

\def\pgfsys@pictureboxsynced#1{%
 {%
 \setbox0=\hbox{\pgfsys@beginpicture\box#1\pgfsys@endpicture}%
 \pgfsys@hboxsynced0%
 }%
}
% Basically, this should do the same as doing a (scoped) low level sync
% followed by inserting the box #1 directly into the output
% stream. However, the default implementation uses \pgfsys@hboxsynced
% in conjunction with \pgfsys@beginpicture to ensure that, if
% possible, hyperlinks survive in pdfs. Drivers that are sensitive to
% picture-in-picture scopes should replace this implementation by
% \pgfsys@beginscope\pgflowlevelsynccm\box#1\pgfsys@endscope

\def\pgfsys@beginpicture{}
% Called at the beginning of a pgfpicture. Used to setup things.

\def\pgfsys@endpicture{}
% Called at the end of a pgfpicture.

\def\pgfsys@typesetpicturebox#1{%
 \pgf@ya=\pgf@shift@baseline\relax%
 \advance\pgf@ya by-\pgf@picminy\relax%
 %
 %
 \advance\pgf@picmaxy by-\pgf@picminy\relax% maxy is now the height
 \advance\pgf@picmaxx by-\pgf@picminx\relax% maxx is now the width
 \setbox#1=\hbox{\hskip-\pgf@picminx\lower\pgf@picminy\box#1}%
 \ht#1=\pgf@picmaxy%
 \wd#1=\pgf@picmaxx%
 \dp#1=0pt%
 \leavevmode%
 \pgf@xa=\pgf@trimleft@final\relax \ifdim\pgf@xa=0pt \else\kern\pgf@xa\fi
 \raise-\pgf@ya\box#1%
 \pgf@xa=\pgf@trimright@final\relax \ifdim\pgf@xa=0pt \else\kern\pgf@xa\fi
}
% Called after a picture has been typeset in box #1. This
% command should insert the box into the normal TeX code. The box #1
% will still be a ``raw'' box that contains only the \special's. The
% job of this command is to resize and shift this box according to the
% baseline shift and the size of the box.
%
% This command has a default implementation.

\def\pgfsys@beginpurepicture{\pgfsys@beginpicture}
% This version of the beginpicture command can be used for pictures
% that are guaranteed not to contain any hboxes. In this case, a
% driver might provide a more compact version of the command.

\def\pgfsys@endpurepicture{\pgfsys@endpicture}
% Called at the end of a ``pure'' pgfpicture.

\def\pgfsys@defineimage{%
 \ifx\pgf@imagewidth\pgfutil@empty\else\edef\pgf@imagewidth{width=\pgf@imagewidth,}\fi%
 \ifx\pgf@imageheight\pgfutil@empty\else\edef\pgf@imageheight{height=\pgf@imageheight,}\fi%
 \ifx\pgf@imagepage\pgfutil@empty\else\edef\pgf@imagepage{page=\pgf@imagepage,}\fi%
 \edef\pgf@image{\noexpand\includegraphics[\pgf@imageheight\pgf@imagewidth]{\pgf@filename}}%
}
% Called, when an image should be defined.
%
% This command does not take any parameters. Instead, certain macros
% will be preinstalled with appropriate values when this command is
% invoked. These are:
%
% - \pgf@filename
% File name of the image to be defined.
%
% - \pgf@imagewidth
% Will be set to the desired (scaled) width of the image.
%
% - \pgf@imageheight
% Will be set to the desired (scaled) height of the image.
%
% If this macro and also the height macro are empty, the image
% should have its `natural' size.
%
% If exactly only of them is specified, the undefined value the
% image is scaled so that the aspect ratio is kept.
%
% If both are set, the image is scaled in both directions
% independently, possibly changing the aspect ratio.
%
%
% The following macros presumable mostly make sense for drivers that
% can handle pdf:
%
% - \pgf@imagepage
% The desired page number to be extracted from a multi-page
% `image'.
%
% - \pgf@imagemask
% If set, it will be set to `/SMask x 0 R', where x is the pdf
% object number of a soft mask to be applied to the image.
%
% - \pgf@imageinterpolate
% If set, it will be set to `/Interpolate true' or `/Interpolate
% false', indicating whether the image should be interpolated in
% pdf.
%
%
% The command should now setup the macro \pgf@image such that calling
% this macro will result in typesetting the image. Thus, \pgf@image is
% the `return value' of the command.

\def\pgfsys@defobject#1#2#3#4{%
 \pgfsysprotocol@getcurrentprotocol\pgfsys@temp%
 {%
 \pgfpicturetrue%
 \pgfsysprotocol@setcurrentprotocol\pgfutil@empty%
 \pgfsysprotocol@bufferedtrue%
 \pgfsys@beginscope%
 #4%
 \pgfsys@endscope%
 \pgfsysprotocol@getcurrentprotocol\pgfsys@@temp%
 \expandafter\global\expandafter\let\csname #1\endcsname=\pgfsys@@temp%
 }%
 \pgfsysprotocol@setcurrentprotocol\pgfsys@temp%
}
% Declares an object for later use. The idea is that the object can be
% precached in some way and then be rendered more quickly when used
% several times. For example, an arrow head might be defined and
% prerendered in this way.
%
% The parameter #1 is the name for later use. #2 and #3 are pgf points
% specifying a bounding box for the object. #4 is the code for the
% object. The code may only contain protocolable code.

\def\pgfsys@useobject#1#2{%
 \pgfsysprotocol@getcurrentprotocol\pgfsys@temp%
 {%
 \pgfsysprotocol@setcurrentprotocol\pgfutil@empty%
 \pgfsysprotocol@bufferedfalse%
 #2%
 \expandafter\pgfsysprotocol@setcurrentprotocol\csname #1\endcsname%
 \pgfsysprotocol@invokecurrentprotocol%
 }%
 \pgfsysprotocol@setcurrentprotocol\pgfsys@temp%
}
% Renders a previously declared object. The first parameter is the
% name of the object. The second parameter is extra code that
% should be executed right *before* the object is rendered. Typically,
% this will be some transformation code.

\def\pgfsys@begininvisible{\pgfsys@transformcm{1}{0}{0}{1}{2000bp}{2000bp}}
% Between this command and the closing endinvisible, all output should
% be suppressed. Nothing should be drawn at all, which includes all
% paths, images and shadings. This command typically should not open a
% graphic scope.

\def\pgfsys@endinvisible{\pgfsys@transformcm{1}{0}{0}{1}{-2000bp}{-2000bp}}
% Ends the invisibility section, unless invisibility blocks have been
% nested. In this case, only the `last' one restores visibility.

\def\pgfsys@begininvisiblescope{\pgfsys@beginscope\pgfsys@begininvisible}
% Works like pgfsys@begininvisible, but it may open a graphics scope.

\def\pgfsys@endinvisiblescope{\pgfsys@endinvisible\pgfsys@endscope}
% Closes the invisibility scope.

\def\pgfsys@atbegindocument{}
% This command will be executed at the begin of the document. If for
% whatever reason this is not done, you may wish to execute this
% command yourself. It will setup certain specials that need to be
% inserted into the resulting .pdf/.ps/.xxx file.

% String comparison
\ifdefined\pdfstrcmp
 \let\pgfsys@strcmp\pdfstrcmp
\else\ifdefined\strcmp
 \let\pgfsys@strcmp\strcmp
\else\ifdefined\directlua
 \directlua{
 local lft = lua.get_functions_table()
 lft[\string#lft+1] = function()
 local lhs = token.scan_string()
 local rhs = token.scan_string()
 if lhs < rhs then
 tex.sprint(-2, "-1")
 elseif lhs == rhs then
 tex.sprint(-2, "0")
 else
 tex.sprint(-2, "1")
 end
 end
 token.set_lua("pgfsys@strcmp", \string#lft, "global")
 }
\else
 \def\pgfsys@strcmp#1#2{\pgf@sys@fail{string comparison}}%
\fi\fi\fi

% Discern the driver:

% Default driver:
\ifx\pgfsysdriver\@undefined
 \pgfutil@guessdriver
\fi

\input pgf.cfg

\immediate\write-1{Driver file for pgf: \pgfsysdriver}
\pgfutil@InputIfFileExists{\pgfsysdriver}{}{%
 \pgferror{Driver file ``\pgfsysdriver'' not found.}}

% This will insert always-present-specials at the beginning of the
% code.
\AtBeginDocument{
 \pgfsys@atbegindocument
 \let\pgfsys@atbegindocument=\pgfutil@empty
}

% Read aux file in plain and context mode:

\pgfutil@aux@read@hook

\endinput

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesFileRCS{pgfsyssoftpath.code.tex}

% This package provides the pgf system path abstraction layer. This
% layer is used to construct paths first ``abstractly.'' These
% abstract paths can still be modified, before they are ``made
% concrete.''
%
% An abstract path consists of a sequence of basic building blocks,
% each of which is a tuple consisting of two numbers (specifying a
% coordinate) and a token. Possible tokens are:
%
% 1. moveto
% 2. lineto
% 3. rectcorner
% 4. rectsize
% 5. curvetosupporta
% 6. curvetosupportb
% 7. curveto
% 8. closepath
% 9. specialround
%
% A curveto must always be preceded by a curvetosupporta and a
% curvetosupportb. A non-empty path must always begin with a
% moveto. The coordinates of a closepath are non-specified, currently,
% but they might be set to the coordinate of the path segment start,
% in the future.

% Access to the current path:
%
% Lots of stuff is added to the current path and it can get very long
% (containing literally tens of thousands of tokens). For such macros,
% adding things using a simple "g@addtomacro" takes more and more
% time, resulting in quadratic runtime. To avoid this, ideally, one
% would collect things in an array and then use a divide and conquer
% merger. A simple intermediate solution is the following, implemented
% here: We have the path and two buffers. New tokens are added to the
% first buffer, which is quite small. When it overflow, its contents
% is added to the second buffer, which is large. If that buffer
% overflow, the contents is finally added to the main path (which can
% have arbitrary length). Whenever the main path is set or read, the
% buffers are flushed.
%
% Because of this buffering, it is imperative that the main path is
% accessed only via appropriate interface macros.

% The current path
\let\pgfsyssoftpath@thepath=\pgfutil@empty
\let\pgfsyssoftpath@bigbuffer=\pgfutil@empty
\let\pgfsyssoftpath@smallbuffer=\pgfutil@empty
\newcount\pgfsyssoftpath@smallbuffer@items
\newcount\pgfsyssoftpath@bigbuffer@items

\def\pgfsyssoftpath@flushbuffers{%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\gdef%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\pgfsyssoftpath@thepath%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%
 \expandafter\expandafter\expandafter\pgfsyssoftpath@thepath%
 \expandafter\pgfsyssoftpath@bigbuffer\pgfsyssoftpath@smallbuffer}%
 \global\let\pgfsyssoftpath@smallbuffer=\pgfutil@empty
 \global\let\pgfsyssoftpath@bigbuffer=\pgfutil@empty
 \global\pgfsyssoftpath@bigbuffer@items0\relax%
 \global\pgfsyssoftpath@smallbuffer@items0\relax%
}

% Getting and setting the current path
\def\pgfsyssoftpath@getcurrentpath#1{%
 \pgfsyssoftpath@flushbuffers%
 \let#1=\pgfsyssoftpath@thepath%
}

\def\pgfsyssoftpath@setcurrentpath#1{%
 \global\let\pgfsyssoftpath@thepath=#1%
 \global\let\pgfsyssoftpath@smallbuffer=\pgfutil@empty
 \global\let\pgfsyssoftpath@bigbuffer=\pgfutil@empty
 \global\pgfsyssoftpath@bigbuffer@items0\relax%
 \global\pgfsyssoftpath@smallbuffer@items0\relax%
}

% Invoking the current path (slightly optimized)
\def\pgfsyssoftpath@invokecurrentpath{%
 \pgfsyssoftpath@thepath%
 \pgfsyssoftpath@bigbuffer%
 \pgfsyssoftpath@smallbuffer%
}

\def\pgfsyssoftpath@flushcurrentpath{%
 \pgfsyssoftpath@invokecurrentpath%
 \pgfsyssoftpath@setcurrentpath\pgfutil@empty%
}

% Add an item at the end
\def\pgfsyssoftpath@addtocurrentpath#1{%
 \global\advance\pgfsyssoftpath@smallbuffer@items by1\relax%
 \ifnum\pgfsyssoftpath@smallbuffer@items<40\relax% good number?
 \expandafter\gdef\expandafter\pgfsyssoftpath@smallbuffer\expandafter{\pgfsyssoftpath@smallbuffer#1}%
 \else%
 \pgfsyssoftpath@smalloverflow{#1}%
 \fi%
}
\def\pgfsyssoftpath@smalloverflow#1{%
 \global\advance\pgfsyssoftpath@bigbuffer@items by1\relax%
 \ifnum\pgfsyssoftpath@bigbuffer@items<30\relax% good number?
 \expandafter\expandafter\expandafter\gdef%
 \expandafter\expandafter\expandafter\pgfsyssoftpath@bigbuffer%
 \expandafter\expandafter\expandafter{\expandafter\pgfsyssoftpath@bigbuffer\pgfsyssoftpath@smallbuffer#1}%
 \global\let\pgfsyssoftpath@smallbuffer=\pgfutil@empty%
 \global\pgfsyssoftpath@smallbuffer@items0\relax%
 \else%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\gdef%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\pgfsyssoftpath@thepath%
 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%
 \expandafter\expandafter\expandafter\pgfsyssoftpath@thepath
 \expandafter\pgfsyssoftpath@bigbuffer\pgfsyssoftpath@smallbuffer#1}%
 \global\let\pgfsyssoftpath@smallbuffer=\pgfutil@empty
 \global\let\pgfsyssoftpath@bigbuffer=\pgfutil@empty
 \global\pgfsyssoftpath@bigbuffer@items0\relax%
 \global\pgfsyssoftpath@smallbuffer@items0\relax%
 \fi%
}

\def\pgfsyssoftpath@lastmoveto{{0pt}{0pt}}

\newif\ifpgfsyssoftpathmovetorelevant
\pgfsyssoftpathmovetorelevanttrue

% Add a moveto element to the current path
\def\pgfsyssoftpath@moveto#1#2{%
 \edef\pgfsyssoftpath@coord{{#1}{#2}}%
 \expandafter\pgfsyssoftpath@addtocurrentpath\expandafter{\expandafter\pgfsyssoftpath@movetotoken\pgfsyssoftpath@coord}%
 \ifpgfsyssoftpathmovetorelevant%
 \global\let\pgfsyssoftpath@lastmoveto\pgfsyssoftpath@coord%
 \fi%
}

% Add a lineto element to the current path
\def\pgfsyssoftpath@lineto#1#2{%
 \edef\pgfsyssoftpath@coord{{#1}{#2}}%
 \expandafter\pgfsyssoftpath@addtocurrentpath\expandafter{\expandafter\pgfsyssoftpath@linetotoken\pgfsyssoftpath@coord}%
}

% Add curveto elements to the current path
\def\pgfsyssoftpath@curveto#1#2#3#4#5#6{%
 \edef\pgfsyssoftpath@temp{{%
 \noexpand\pgfsyssoftpath@curvetosupportatoken{#1}{#2}%
 \noexpand\pgfsyssoftpath@curvetosupportbtoken{#3}{#4}%
 \noexpand\pgfsyssoftpath@curvetotoken{#5}{#6}%
 }}%
 \expandafter\pgfsyssoftpath@addtocurrentpath\pgfsyssoftpath@temp%
}

% Add rectangle elements to the current path
\def\pgfsyssoftpath@rect#1#2#3#4{%
 \edef\pgfsyssoftpath@temp{{%
 \noexpand\pgfsyssoftpath@rectcornertoken{#1}{#2}%
 \noexpand\pgfsyssoftpath@rectsizetoken{#3}{#4}%
 }}%
 \expandafter\pgfsyssoftpath@addtocurrentpath\pgfsyssoftpath@temp%
}

% Add closepath element to the current path
\def\pgfsyssoftpath@closepath{%
 \expandafter\pgfsyssoftpath@addtocurrentpath\expandafter{\expandafter\pgfsyssoftpath@closepathtoken\pgfsyssoftpath@lastmoveto}%
}

% Add special element to the current path
\def\pgfsyssoftpath@specialround#1#2{%
 \edef\pgfsyssoftpath@temp{{#1}{#2}}%
 \expandafter\pgfsyssoftpath@addtocurrentpath\expandafter{\expandafter\pgfsyssoftpath@specialroundtoken\pgfsyssoftpath@temp}%
}

% Marshallers
\def\pgfsyssoftpath@movetotoken#1#2{\pgfsys@moveto{#1}{#2}}
\def\pgfsyssoftpath@linetotoken#1#2{\pgfsys@lineto{#1}{#2}}
\def\pgfsyssoftpath@rectcornertoken#1#2#3#4#5{\pgfsys@rect{#1}{#2}{#4}{#5}} % #3 = \pgfsyssoftpath@rectsizetoken
\def\pgfsyssoftpath@curvetosupportatoken#1#2#3#4#5#6#7#8{\pgfsys@curveto{#1}{#2}{#4}{#5}{#7}{#8}}
\def\pgfsyssoftpath@closepathtoken#1#2{\pgfsys@closepath}
\let\pgfsyssoftpath@specialroundtoken=\pgfutil@gobbletwo
\def\pgfsyssoftpath@curvetosupportbtoken#1#2{curvetotokenb} % make sure this \ifx-equal only to itself
\def\pgfsyssoftpath@curvetotoken#1#2{curvetotoken}% make sure this \ifx-equal only to itself

\endinput

%%% Local Variables:
%%% mode: latex
%%% End:

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesFileRCS{pgfsysprotocol.code.tex}

% This package provides the pgf system protocol layer. Protocolling is
% used to record a bunch of graphic operations so that they can be
% reused quickly at a later point.
%
% Basically, all ``recordable'' \pgfsys@xxxx commands call
% \pgfsysprotocol@protocol for their protocolable literal
% specials. The literal text will either be stored in the current
% protocol. At a later point (actually, normally this happens
% immediately afterwards), the accumulated protocolled text is invoked
% using pgfsys@invokeprotocol.

\let\pgfsysprotocol@currentprotocol=\pgfutil@empty
\newif\ifpgfsysprotocol@buffered

% Add to the protocol buffered
\def\pgfsysprotocol@literalbuffered#1{%
 \edef\pgfsysprotocol@temp{{#1\space}}%
 \expandafter\pgfutil@g@addto@macro\expandafter\pgfsysprotocol@currentprotocol\pgfsysprotocol@temp%
}

% Add to the protocol
\def\pgfsysprotocol@literal#1{%
 \pgfsysprotocol@literalbuffered{#1}%
 \ifpgfsysprotocol@buffered%
 \else%
 \pgfsysprotocol@flushcurrentprotocol%
 \fi%
}

% Getting and setting the current protocol
\def\pgfsysprotocol@getcurrentprotocol#1{%
 \let#1=\pgfsysprotocol@currentprotocol%
}

\def\pgfsysprotocol@setcurrentprotocol#1{%
 \global\let\pgfsysprotocol@currentprotocol=#1%
}

% Invoking the current protocol
\def\pgfsysprotocol@invokecurrentprotocol{%
 \ifx\pgfsysprotocol@currentprotocol\pgfutil@empty%
 \else%
 \expandafter\pgfsys@invoke\expandafter{\pgfsysprotocol@currentprotocol}%
 \fi%
}

\def\pgfsysprotocol@flushcurrentprotocol{%
 \pgfsysprotocol@invokecurrentprotocol%
 \pgfsysprotocol@setcurrentprotocol\pgfutil@empty%
}

\endinput

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesPackageRCS{pgfcore.code.tex}

\newif\ifpgf@draftmode
\def\pgf@typeout{\immediate\write0}

\ifdefined\pgfmathloaded\else
 \input pgfmath.code.tex
\fi

\ifdefined\pgfintloaded\else
 \input pgfint.code.tex
\fi

\input pgfcorepoints.code.tex
\input pgfcorepathconstruct.code.tex
\input pgfcorepathusage.code.tex
\input pgfcorescopes.code.tex
\input pgfcoregraphicstate.code.tex
\input pgfcoretransformations.code.tex
\input pgfcorequick.code.tex
\input pgfcoreobjects.code.tex
\input pgfcorepathprocessing.code.tex
\input pgfcorearrows.code.tex
\input pgfcoreshade.code.tex
\input pgfcoreimage.code.tex
\input pgfcoreexternal.code.tex
\input pgfcorelayers.code.tex
\input pgfcoretransparency.code.tex
\input pgfcorepatterns.code.tex
\input pgfcorerdf.code.tex

\endinput

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

% The files pgfkeys.code.tex and pgfkeysfiltered.code.tex are
% perfectly self-contained, except that the catcode of @
% should be made a letter.

% Guard against reading twice
\ifx\pgfkeysloaded\undefined
 \let\pgfkeysloaded=\relax
\else
 \expandafter\endinput
\fi

% The purpose of this file is to provide a general settings engine that
% works with all TeX formats and has no save-stack impact

\def\pgfkeys@empty{}
\long\def\pgfkeys@firstoftwo#1#2{#1}
\long\def\pgfkeys@secondoftwo#1#2{#2}
\long\def\pgfkeys@ifcsname#1{%
 \ifcsname#1\endcsname
 \expandafter\pgfkeys@firstoftwo
 \else
 \expandafter\pgfkeys@secondoftwo
 \fi
}

% This is useful:

\ifx\PackageError\undefined
 \def\pgfkeys@error#1{\errmessage{Package pgfkeys Error: #1}}%
\else
 \def\pgfkeys@error#1{\PackageError{pgfkeys}{#1}{}}%
\fi

\ifx\eTeXrevision\undefined%
 \pgfkeys@error{PGF requires etex in extended mode}%
 \csname @@end\expandafter\endcsname\expandafter\end%
\fi

\ifnum\eTeXversion<2
 \pgfkeys@error{PGF requires etex version 2}%
 \csname @@end\expandafter\endcsname\expandafter\end%
\fi

% e-TeX primitives and beyond

\ifx\contextversion\undefined
 \let\pgfkeys@expanded \expanded
 \let\pgfkeys@unexpanded \unexpanded
\else
 \let\pgfkeys@expanded \normalexpanded
 \let\pgfkeys@unexpanded \normalunexpanded
\fi

\begingroup
 \edef\pgfkeys@tmpa{\string\expanded}
 \edef\pgfkeys@tmpb{\meaning\pgfkeys@expanded}
 \expandafter
\endgroup
\ifx\pgfkeys@tmpa\pgfkeys@tmpb
\else
 \pgfkeys@error{PGF requires the \noexpand\expanded primitive}
 \csname @@end\expandafter\endcsname\expandafter\end%
\fi

% Set a key to a value
%
% #1 = key
% #2 = tokens
%
% Description:
%
% This command sets the key to the given tokens. The tokens are stored as
% is and can even contain things like #9.
%
% Keys are organized hierarchically using something similar to Unix
% paths. Thus, a typically key might be called "/tikz/length" or
% "/tikz/length dimension/.@cmd". Some keys starting with a dot are
% special, so they should not be used as normal key names (they are
% similar to Unix files starting with a dot -- you can use them, but
% be careful).
%
% Keys are always local to the current TeX group.
%
% Example:
%
% \pgfkeyssetvalue{/tikz/length}{2cm-3cm}
% \pgfkeyssetvalue{/algo/swap}{{#2}{#1}}

\long\def\pgfkeyssetvalue#1#2{%
 \pgfkeys@temptoks{#2}\expandafter\edef\csname pgfk@#1\endcsname{\the\pgfkeys@temptoks}%
}

\long\def\pgfkeyssetevalue#1#2{%
 \expandafter\edef\csname pgfk@#1\endcsname
 {\pgfkeys@unexpanded\expandafter{\pgfkeys@expanded{#2}}}%
}

% Add text to a key at the end
%
% #1 = key
% #2 = a value to be added at the beginning
% #3 = a value to be added at the end
%
% Description:
%
% This command adds #2 to the definition of the key. The key should
% have been set previously using \pgfkeyssetvalue.
%
% Example:
%
% \pgfkeysaddvalue{/tikz/length}{}{-3cm}

\long\def\pgfkeysaddvalue#1#2#3{%
 {%
 \toks0{#2}%
 \pgfkeysifdefined{#1}
 {\pgfkeys@temptoks\expandafter\expandafter\expandafter{\csname pgfk@#1\endcsname}}%
 {\pgfkeys@temptoks{}}%
 \toks1{#3}%
 \xdef\pgfkeys@global@temp{\the\toks0 \the\pgfkeys@temptoks \the\toks1}% believe or don't: the spaces are important
 }%
 \pgfkeyslet{#1}\pgfkeys@global@temp%
}

% Makes a key equal a given code
%
% #1 = key
% #2 = a code name
%
% Description:
%
% This command executes a \let command so that a key gets the same
% value as the parameter #2.
%
% Keys are always local to the current TeX group.
%
% Example:
%
% \pgfkeyslet{/algo/swap}{\myswap}

\long\def\pgfkeyslet#1#2{%
 \expandafter\let\csname pgfk@#1\endcsname#2%
}

% Retrieve the code stored in a key into a code
%
% #1 = key
% #2 = code
%
% Description:
%
% This command will set #2 to "point" to the value stored in the key.
%
% Example:
%
% \pgfkeysgetvalue{/tikz/swap}{\myswap}

\long\def\pgfkeysgetvalue#1#2{%
 \pgfkeys@ifcsname{pgfk@#1}%
 {\expandafter\let\expandafter#2\csname pgfk@#1\endcsname}%
 {\let#2\relax}}

% Retrieve the value stored in a key
%
% #1 = key
%
% Description:
%
% This command will expand to the value stored in the key. The key
% should previously have been set using \pgfkeyasetkey or \pgfkeyslet.
%
% Example:
%
% The length is \pgfkeysvalue{/tikz/length}.

\let\pgfkeys@relax\relax
\long\def\pgfkeysvalueof#1{\csname\pgfkeys@ifcsname{pgfk@#1}{pgfk@#1}{pgfkeys@relax}\endcsname}

% If for testing whether a key exists
%
% #1 = key
% #2 = if-case
% #3 = else-case
%
% Description:
%
% This if will be executed if the key exists. In eTeX mode this works
% like a normal if, in normal TeX mode you need to provide an \else.
%
% Example:
%
% \pgfkeysifdefined{/tikz/length}{key exists}{does not exist}

\long\def\pgfkeysifdefined#1{%
 \ifcsname pgfk@#1\endcsname
 \expandafter\pgfkeys@firstoftwo
 \else
 \expandafter\pgfkeys@secondoftwo
 \fi
}

% Tests whether a key is assignable. For standard keys which just
% store their value, this is identical to \pgfkeysifdefined.
%
% But \pgfkeysifassignable is true for command keys as well (but not
% for handled keys).
\long\def\pgfkeysifassignable#1#2#3{%
 \pgfkeysifdefined{#1}%
 {#2}
 {\pgfkeysifdefined{#1/.@cmd}%
 {#2}%
 {#3}}%
}%

% Execute settings
%
% #1 = list of settings
%
% Description:
%
% The list of settings should contain comma-separated settings. Each
% setting has the following form:
%
% /path/key=value
%
% The parts "/path/" and "=value" are optional. When the path is not
% specified, the value of the token register "\pgfkeypath" is used. If
% "=value" is missing, the value of the setting "/path/key/.@def" is used
% instead. If this key is set to "\pgfvaluerequired", the key
% "/errors/value required/.@cmd" is executed. This error handler,
% like all other error handlers, will get the current key as its first
% parameter (unexpanded) and the current value as its second value
% (also unexpanded).
%
% Any spaces at the beginning and at the end and around the
% equals-sign are removed. The key with the complete path is set to
% the code \pgfcurrentkey.
%
% The setting is then processed according to the following rules:
%
% 1) If the key /path/key/.@cmd" is present, its code is executed
% with the value computed above, followed by \pgfeov (end of
% value). So, to handle
%
% "/stuff/height= 1.5 ,"
%
% /stuff/height/.@cmd should be set to some code, that can
% handle the parameter
%
% "1.5\pgfeov"
%
% For instance, saying
%
% \pgfkeys{/stuff/height/.@cmd}{#1\pgfeov}{\def\myheight{#1}}
%
% will do nicely.
%
% 2) Otherwise, if the key /path/key is present, this key is
% set to the value computed above.
%
% 3) Otherwise, if the key /handlers/key/.@cmd is present, it is executed
% with the same parameters as in 1). Additionally, the
% token register \pgfcurrentkeypath will be set to "/path/" and the
% macro \pgfcurrentkeywithoutpath to "key". So, in the above
% example if neither "/stuff/height/.@cmd" nor
% "/stuff/height" is present, but "/handlers/height" is,
% then "/handlers/height" is executed with the parameters:
%
% "1.5\pgfeov"
%
% and \pgfcurrentkey is set to "/stuff/height" and \pgfcurrentkeypath
% is set to "/stuff/" and \pgfcurrentkeywithoutpath to "height".
%
% 4) Otherwise, if the key "/path/.unknown/.@cmd" is present, its code is
% executed with the same parameters as in 3).
%
% 5) Otherwise, the key "/handlers/.unknown/.@cmd" is executed with the same
% parameters as in 1).
%
% After all settings have been processed, the value of the token
% register \pgfdefaultkeypath is set to its original value. Thus, any local
% change of this token register has no effect outside the call.
%
% Example:
%
% \pgfkeys{/tikz/.is family}
% \pgfkeys{/tikz/line width/.cd,
% .def=\pgfsetlinewidth{##1},
% .set default=.4pt}
% \pgfkeys{tikz,line width=1pt}

\newtoks\pgfkeys@pathtoks
\def\pgfkeyscurrentpath{\the\pgfkeys@pathtoks}
\newtoks\pgfkeys@temptoks

\def\pgfkeys@root{/}
\let\pgfkeysdefaultpath\pgfkeys@root

\def\pgfkeys{\expandafter\pgfkeys@@set\expandafter{\pgfkeysdefaultpath}}%
\long\def\pgfkeys@@set#1#2{%
 \let\pgfkeysdefaultpath\pgfkeys@root%
 \pgfkeys@parse#2,\pgfkeys@mainstop%
 \def\pgfkeysdefaultpath{#1}}

\def\pgfkeys@parse{\futurelet\pgfkeys@possiblerelax\pgfkeys@parse@main}
\def\pgfkeys@parse@main{%
 \ifx\pgfkeys@possiblerelax\pgfkeys@mainstop%
 \expandafter\pgfkeys@cleanup%
 \else%
 \expandafter\pgfkeys@normal%
 \fi%
}
\newif\ifpgfkeys@syntax@handlers
\def\pgfkeys@normal{%
 \ifpgfkeys@syntax@handlers%
 \expandafter\pgfkeys@syntax@handlers%
 \else%
 \expandafter\pgfkeys@@normal%
 \fi%
}
\def\pgfkeys@syntax@handlers{\pgf@keys@utilifnextchar\relax\pgfkeys@syntax@@handlers\pgfkeys@syntax@@handlers}%get rid of spaces
\def\pgfkeys@syntax@@handlers{\futurelet\pgfkeys@first@char\pgfkeys@syntax@handlers@test}
\def\pgfkeys@syntax@handlers@test{%
 \pgfkeysgetvalue{/handlers/first char syntax/\meaning\pgfkeys@first@char}\pgfkeys@the@handler%
 \ifx\pgfkeys@the@handler\relax%
 \expandafter\pgfkeys@@normal%
 \else%
 \expandafter\pgfkeys@use@handler%
 \fi%
}
\long\def\pgfkeys@use@handler#1,{%
 \pgfkeys@the@handler{#1}%
 \pgfkeys@parse%
}

\long\def\pgfkeys@@normal#1,{%
 \pgfkeys@unpack#1=\pgfkeysnovalue=\pgfkeys@stop%
 \pgfkeys@parse%
}
\def\pgfkeys@cleanup\pgfkeys@mainstop{}

\def\pgfkeys@mainstop{\pgfkeys@mainstop} % equals only itself
\def\pgfkeys@novalue{}
\def\pgfkeysnovalue{\pgfkeys@novalue} % equals only itself
\def\pgfkeysnovalue@text{\pgfkeysnovalue}
\def\pgfkeysvaluerequired{\pgfkeysvaluerequired} % equals only itself

\long\def\pgfkeys@unpack#1=#2=#3\pgfkeys@stop{%
 \pgfkeys@spdef\pgfkeyscurrentkey{#1}%
 \edef\pgfkeyscurrentkey{\pgfkeyscurrentkey}%
 \ifx\pgfkeyscurrentkey\pgfkeys@empty%
 % Skip
 \else%
 \pgfkeys@add@path@as@needed%
 \pgfkeys@spdef\pgfkeyscurrentvalue{#2}%
 \ifx\pgfkeyscurrentvalue\pgfkeysnovalue@text% Hmm... no value
 \pgfkeysifdefined{\pgfkeyscurrentkey/.@def}%
 {\pgfkeysgetvalue{\pgfkeyscurrentkey/.@def}{\pgfkeyscurrentvalue}}
 {}% no default, so leave it
 \fi%
 \ifx\pgfkeyscurrentvalue\pgfkeysvaluerequired%
 \def\pgf@marshal{\pgfkeysvalueof{/errors/value required/.@cmd}}%
 \expandafter\pgf@marshal\expandafter{\pgfkeyscurrentkey}{}\pgfeov%
 \else%
 \pgfkeys@case@one%
 \fi%
 \fi}

\def\pgfkeys@case@one{%
 \pgfkeysifdefined{\pgfkeyscurrentkey/.@cmd}%
 {\pgfkeysgetvalue{\pgfkeyscurrentkey/.@cmd}{\pgfkeys@code}%
 \ifx\pgfkeys@code\relax\expandafter\pgfkeys@firstoftwo\else\expandafter\pgfkeys@secondoftwo\fi
 {\pgfkeys@unknown}%
 {\expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov}}
 {\pgfkeys@case@two}%
}

\def\pgfkeys@case@two{%
 \pgfkeysifdefined{\pgfkeyscurrentkey}%
 {\pgfkeys@case@two@extern}%
 {\pgfkeys@case@three}%
}

\def\pgfkeys@case@two@extern{%
 \ifx\pgfkeyscurrentvalue\pgfkeysnovalue@text%
 \pgfkeysvalueof{\pgfkeyscurrentkey}%
 \else%
 \pgfkeyslet{\pgfkeyscurrentkey}\pgfkeyscurrentvalue%
 \fi%
}

% either handled key or unknown.
%
% This macro will be replaced by the /handler config/handle only existing
% configuration, see below.
\def\pgfkeys@case@three{%
 \pgfkeys@split@path%
 \pgfkeysifdefined{/handlers/\pgfkeyscurrentname/.@cmd}%
 {\pgfkeysgetvalue{/handlers/\pgfkeyscurrentname/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov}
 {\pgfkeys@unknown}%
}
\let\pgfkeys@case@three@handleall=\pgfkeys@case@three
\def\pgfkeys@case@three@handle@restricted{%
 \pgfkeys@split@path%
 \pgfkeysifdefined{/handlers/\pgfkeyscurrentname/.@cmd}{%
 \pgfkeys@ifexecutehandler{%
 \pgfkeysgetvalue{/handlers/\pgfkeyscurrentname/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov
 }{%
 % this here is necessary: /my search path/key/.code
 % won't be called, so \pgfkeyscurrentpath == '/my search path/key'
 % -> it should be one directory higher! We want to invoke the
 % .unknown handler in
 % '/my search path'
 %
 % Idea:
 % set
 % - path := '/my search path'
 % - name := 'key/.code'
 % - key = '/my search path/key/.code'
 \let\pgfkeys@tempa=\pgfkeyscurrentkey
 \let\pgfkeys@tempb=\pgfkeyscurrentname
 \edef\pgfkeyscurrentkey{\pgfkeyscurrentpath}%
 \pgfkeys@split@path%
 \let\pgfkeyscurrentkey=\pgfkeys@tempa
 \edef\pgfkeyscurrentname{\pgfkeyscurrentname/\pgfkeys@tempb}%
 \pgfkeys@unknown
 }%
 }{%
 \pgfkeys@unknown
 }%
}

% this macro is to implement the |handle only existing| key in key filtering:
% #1: the code to invoke IF the key handler shall be executed
% #2: the code to invoke if it shall not run.
\def\pgfkeys@ifexecutehandler#1#2{#1}%
\let\pgfkeys@ifexecutehandler@handleall=\pgfkeys@ifexecutehandler
\def\pgfkeys@ifexecutehandler@handleonlyexisting#1#2{%
 \pgfkeys@ifcsname{pgfk@excpt@\pgfkeyscurrentname}{%
 #1% ok, this particular key handler is known and should be processed in any case (for example .try)
 }{%
 % implement the 'only existing' feature here:
 \pgfkeysifdefined{\pgfkeyscurrentpath}{#1}{%
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@cmd}{#1}{#2}%
 }{}%
 }%
}%
\def\pgfkeys@ifexecutehandler@handlefullorexisting#1#2{%
 \ifpgfkeysaddeddefaultpath
 \pgfkeys@ifcsname{pgfk@excpt@\pgfkeyscurrentname}{%
 #1% ok, this particular key handler is known and be processed in any case (for example .try)
 }{%
 % implement the 'only existing' feature here:
 \pgfkeysifdefined{\pgfkeyscurrentpath}{%
 #1%
 }{%
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@cmd}{%
 #1%
 }{%
 #2%
 }%
 }%
 }%
 \else
 #1% ok, always true if the USER explicitly provided the full key path.
 \fi
}%
\def\pgfkeysaddhandleonlyexistingexception#1{\expandafter\def\csname pgfk@excpt@#1\endcsname{1}}%

\def\pgfkeys@unknown{%
 \pgfkeysifdefined{\pgfkeyscurrentpath/.unknown/.@cmd}%
 {%
 \pgfkeysgetvalue{\pgfkeyscurrentpath/.unknown/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov}
 {%
 \pgfkeysgetvalue{/handlers/.unknown/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov%
 }%
}

\long\def\pgfkey@argumentisspace#1{%
 \long\def\pgfkeys@spdef##1##2{%
 \futurelet\pgfkeys@possiblespace\pgfkeys@sp@a##2\pgfkeys@stop\pgfkeys@stop#1\pgfkeys@stop\relax##1}%
 \def\pgfkeys@sp@a{%
 \ifx\pgfkeys@possiblespace\pgfkeys@sptoken%
 \expandafter\pgfkeys@sp@b%
 \else%
 \expandafter\pgfkeys@sp@b\expandafter#1%
 \fi}%
 \long\def\pgfkeys@sp@b#1##1 \pgfkeys@stop{\pgfkeys@sp@c##1}%
}
\pgfkey@argumentisspace{ }
\long\def\pgfkeys@sp@c#1\pgfkeys@stop#2\relax#3{\pgfkeys@temptoks{#1}\edef#3{\the\pgfkeys@temptoks}}
{\def\:{\global\let\pgfkeys@sptoken= } \: }

\def\pgfkeys@add@path@as@needed{% Should add the path if the
 % \pgfkeyscurrentkey does not start with /
 \expandafter\futurelet\expandafter\pgfkeys@possibleslash\expandafter\pgfkeys@check@slash\pgfkeyscurrentkey\relax%
}
\newif\ifpgfkeysaddeddefaultpath
\def\pgfkeys@check@slash{%
 \ifx\pgfkeys@possibleslash/%
 \expandafter\pgfkeys@nevermind%
 \else%
 \expandafter\pgfkeys@addpath%
 \fi%
}

\def\pgfkeys@nevermind#1\relax{%
 \pgfkeysaddeddefaultpathfalse
 \let\pgfkeyscurrentkeyRAW\pgfkeyscurrentkey
}
\def\pgfkeys@addpath#1\relax{%
 \pgfkeysaddeddefaultpathtrue
 \def\pgfkeyscurrentkeyRAW{#1}%
 \edef\pgfkeyscurrentkey{\pgfkeysdefaultpath#1}%
}

\def\pgfkeys@split@path{% Should assign the two codes
 % \pgfkeyscurrentname and \pgfcurrentlkeypath
 \pgfkeys@pathtoks{}%
 \expandafter\pgfkeys@splitter\pgfkeyscurrentkey//%
}
\def\pgfkeys@splitter#1/#2/{%
 \def\pgfkeys@temp{#2}%
 \ifx\pgfkeys@temp\pgfkeys@empty%
 % Ah. done
 \def\pgfkeyscurrentname{#1}%
 \expandafter\pgfkeys@gobbletoslash%
 \else%
 \expandafter\pgfkeys@pathtoks\expandafter{\the\pgfkeys@pathtoks#1/}%
 \fi%
 \pgfkeys@splitter#2/%
}
\def\pgfkeys@gobbletoslash\pgfkeys@splitter/{%
 \if\relax\detokenize\expandafter{\the\pgfkeys@pathtoks}\relax\else
 \expandafter\pgfkeys@remove@slash\the\pgfkeys@pathtoks\relax
 \fi
}%
\def\pgfkeys@remove@slash#1/\relax{\pgfkeys@pathtoks{#1}}

% Quickly set keys
%
% #1 = default path
% #2 = key-value pairs
%
% Description:
%
% This command starts the execution with the default path set to
% #1. This command should only be used when speed is important (like
% in a heavily used macro like \tikzset). Normally, keys should be
% used to set the path. Note that if #1 equals /, then \pgfkeys will
% actually be quicker!
%
% Example:
%
% \pgfqkeys{/tikz}{myother length/.code=\def\myotherlength{#1}\pgfkeysalso{length={#1}}}

\def\pgfqkeys{\expandafter\pgfkeys@@qset\expandafter{\pgfkeysdefaultpath}}%
\long\def\pgfkeys@@qset#1#2#3{\def\pgfkeysdefaultpath{#2/}\pgfkeys@parse#3,\pgfkeys@mainstop\def\pgfkeysdefaultpath{#1}}

% Sets keys while setting keys
%
% #1 = key-value pairs
%
% Description:
%
% This code may only be called inside the code that is executed for a
% key. The #1 should be a list of settings pairs. They will be executed
% as if they had been given as the argument to the \pgfkeys command.
%
% Example:
%
% \pgfkeys{tikz,myother length/.code=\def\myotherlength{#1}\pgfkeysalso{length={#1}}}

\long\def\pgfkeysalso#1{\pgfkeys@parse#1,\pgfkeys@mainstop}

% Quickly sets keys while setting keys
%
% #1 = default path
% #2 = key-value pairs
%
% Description:
%
% This command executes #2 with the default path set to #1. This
% command will cause chaos if used incorrectly. The only safe
% place to use it instead of \pgfkeys is at the beginning of a TeX group.
%
% Example:
%
% \begingroup
% \pgfqkeysalso{/tikz}{myother length/.code=\def\myotherlength{#1}\pgfkeysalso{length={#1}}}

\long\def\pgfqkeysalso#1#2{\def\pgfkeysdefaultpath{#1/}\pgfkeys@parse#2,\pgfkeys@mainstop}

% Now setup the default handlers and keys:

% Define a key macro with one argument (\def or \edef)
%
% #1 = key
% #2 = code
%
% Description:
%
% This command will setup things so the key/.@cmd contains a macro
% that takes one parameter and has #2 as its code.
%
% Example:
%
% \pgfkeysdef{/my key}{\show#1}

\long\def\pgfkeysdef#1#2{%
 \long\def\pgfkeys@temp##1\pgfeov{#2}%
 \pgfkeyslet{#1/.@cmd}{\pgfkeys@temp}%
 \pgfkeyssetvalue{#1/.@body}{#2}%
}
\long\def\pgfkeysedef#1#2{%
 \long\edef\pgfkeys@temp##1\pgfeov{#2}%
 \pgfkeyslet{#1/.@cmd}{\pgfkeys@temp}%
 \pgfkeyssetevalue{#1/.@body}{#2}%
}

% Define a key macro with multiple arguments (\def or \edef)
%
% #1 = key
% #2 = argument pattern
% #2 = code
%
% Description:
%
% This command will setup things so the key/.@cmd contains a macro
% that takes #2 as its parameter pattern and has #3 as its code.
%
% Example:
%
% \pgfkeysdefargs{/swap}{#1#2}{#2#1}

\long\def\pgfkeysdefargs#1#2#3{%
 \long\def\pgfkeys@temp#2\pgfeov{#3}%
 \pgfkeyslet{#1/.@cmd}{\pgfkeys@temp}%
 \pgfkeyssetvalue{#1/.@args}{#2\pgfeov}%
 \pgfkeyssetvalue{#1/.@body}{#3}%
}

\long\def\pgfkeysedefargs#1#2#3{%
 \long\edef\pgfkeys@temp#2\pgfeov{#3}%
 \pgfkeyslet{#1/.@cmd}{\pgfkeys@temp}%
 \pgfkeyssetvalue{#1/.@args}{#2\pgfeov}%
 \pgfkeyssetevalue{#1/.@body}{#3}%
}

% Like \pgfkeysdefargs, but `#2' is an integer denoting the expected
% *number* of arguments.
%
% There is a subtle difference between the 'args' command, when it
% comes to spaces:
% a key defined with defargs{#1#2} must not have spaces between the
% arguments when it is used.
%
% See this:
%
%--
% % defnargs:
% \pgfkeysdefnargs{/a}{2}{1=`#1', 2=`#2'}
% \pgfkeys{
% /a=
% {1}
% {2}
% }
% ->defnargs: 1=`1', 2=`2'
%
% defargs:
% \pgfkeysdefargs{/b}{#1#2}{1=`#1', 2=`#2'}
% \pgfkeys{
% /b=
% {1}
% {2}
% }
% ->defargs: 1=`1', 2=` 2' (note the space!)
%
% defargs:
% \pgfkeysdefargs{/b}{#1#2}{1=`#1', 2=`#2'}
% \pgfkeys{
% /b=
% {1}%
% {2}
% }
% ->defargs: 1=`1', 2=`2'
% --
\long\def\pgfkeysdefnargs#1#2#3{\pgfkeysdefnargs@{#1}{#2}{#3}{\def}{\pgfkeyssetvalue}}%
\long\def\pgfkeysedefnargs#1#2#3{\pgfkeysdefnargs@{#1}{#2}{#3}{\edef}{\pgfkeyssetevalue}}%
\long\def\pgfkeysdefnargs@#1#2#3#4#5{%
 \ifcase#2\relax
 \pgfkeyssetvalue{#1/.@args}{}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4##5}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4##5##6}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4##5##6##7}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4##5##6##7##8}%
 \or
 \pgfkeyssetvalue{#1/.@args}{##1##2##3##4##5##6##7##8##9}%
 \else
 \pgfkeys@error{\string\pgfkeysdefnargs: expected <= 9 arguments, got #2}%
 \fi
 \pgfkeysgetvalue{#1/.@args}\pgfkeys@tempargs
 \def\pgfkeys@temp{\expandafter\long\expandafter#4\csname pgfk@#1/.@@body\endcsname}%
 \expandafter\pgfkeys@temp\pgfkeys@tempargs{#3}%
 % eliminate the \pgfeov at the end such that TeX gobbles spaces
 % by using
 % \pgfkeysdef{#1}{\pgfkeysvalueof{#1/.@@body}##1}
 % (with expansion of '#1'):
 \edef\pgfkeys@tempargs{\noexpand\pgfkeysvalueof{#1/.@@body}}%
 \def\pgfkeys@temp{\pgfkeysdef{#1}}%
 \ifnum#2=1\relax
 \expandafter\pgfkeys@temp\expandafter{\pgfkeys@tempargs{##1}}%
 \else
 \expandafter\pgfkeys@temp\expandafter{\pgfkeys@tempargs##1}%
 \fi
 #5{#1/.@body}{#3}%
}

% Defining a key command

\pgfkeysdef{/handlers/.code}{\pgfkeysdef{\pgfkeyscurrentpath}{#1}}
\pgfkeysdef{/handlers/.code 2 args}{\pgfkeysdefargs{\pgfkeyscurrentpath}{##1##2}{#1}}
\pgfkeysdef{/handlers/.ecode}{\pgfkeysedef{\pgfkeyscurrentpath}{#1}}
\pgfkeysdef{/handlers/.ecode 2 args}{\pgfkeysedefargs{\pgfkeyscurrentpath}{##1##2}{#1}}
\pgfkeysdefnargs{/handlers/.code args}{2}{\pgfkeysdefargs{\pgfkeyscurrentpath}{#1}{#2}}
\pgfkeysdefnargs{/handlers/.ecode args}{2}{\pgfkeysedefargs{\pgfkeyscurrentpath}{#1}{#2}}
\pgfkeysdefnargs{/handlers/.code n args}{2}{\pgfkeysdefnargs{\pgfkeyscurrentpath}{#1}{#2}}
\pgfkeysdefnargs{/handlers/.ecode n args}{2}{\pgfkeysedefnargs{\pgfkeyscurrentpath}{#1}{#2}}

% Adding to a key command

\pgfkeys{/handlers/.add code/.code 2 args=%
 % Find out, whether with args or not.
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@args}%
 {% Yes, so add to body and reuse args
 \pgfkeysaddvalue{\pgfkeyscurrentpath/.@body}{#1}{#2}%
 % Redefine code
 {%
 \pgfkeysgetvalue{\pgfkeyscurrentpath/.@args}{\pgfkeys@tempargs}%
 \pgfkeysgetvalue{\pgfkeyscurrentpath/.@body}{\pgfkeys@tempbody}%
 \def\pgfkeys@marshal{\expandafter\long\expandafter\gdef\expandafter\pgfkeys@global@temp\pgfkeys@tempargs}%
 \expandafter\pgfkeys@marshal\expandafter{\pgfkeys@tempbody}%
 }%
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@@body}{%
 % support for \pgfkeysndefargs:
 \pgfkeyslet{\pgfkeyscurrentpath/.@@body}{\pgfkeys@global@temp}%
 }{%
 % support for \pgfkeysdefargs:
 \pgfkeyslet{\pgfkeyscurrentpath/.@cmd}{\pgfkeys@global@temp}%
 }%
 }%
 {%
 % No, so single argument (simple \pgfkeysdef). Redefine accordingly.
 \edef\pgf@expanded@path{\pgfkeyscurrentpath}%
 {%
 \toks0{#1}%
 \pgfkeysifdefined{\pgf@expanded@path/.@cmd}%
 {\expandafter\expandafter\expandafter\pgfkeys@temptoks\expandafter\expandafter\expandafter{\csname pgfk@\pgf@expanded@path/.@body\endcsname}}%
 {\expandafter\pgfkeys@temptoks\expandafter{\expandafter\pgfkeyssetvalue\expandafter{\pgf@expanded@path}{##1}}}%
 \toks1{#2}%
 \xdef\pgfkeys@global@temp{\the\toks0 \the\pgfkeys@temptoks \the\toks1 }%
 }%
 \def\pgf@temp{\pgfkeyssetvalue{\pgf@expanded@path/.@body}}%
 \expandafter\pgf@temp\expandafter{\pgfkeys@global@temp}%
 \expandafter\long\expandafter\def\expandafter\pgfkeys@temp\expandafter##\expandafter1\expandafter\pgfeov\expandafter{\pgfkeys@global@temp}%
 \pgfkeyslet{\pgf@expanded@path/.@cmd}\pgfkeys@temp%
 }%
}
\pgfkeys{/handlers/.prefix code/.code=\pgfkeys{\pgfkeyscurrentpath/.add code={#1}{}}}%
\pgfkeys{/handlers/.append code/.code=\pgfkeys{\pgfkeyscurrentpath/.add code={}{#1}}}%

% Defining a style

\pgfkeys{/handlers/.style/.code=\pgfkeys{\pgfkeyscurrentpath/.code=\pgfkeysalso{#1}}}
\pgfkeys{/handlers/.estyle/.code=\pgfkeys{\pgfkeyscurrentpath/.ecode=\noexpand\pgfkeysalso{#1}}}
\pgfkeys{/handlers/.style args/.code 2 args=\pgfkeys{\pgfkeyscurrentpath/.code args={#1}{\pgfkeysalso{#2}}}}
\pgfkeys{/handlers/.estyle args/.code 2 args=\pgfkeys{\pgfkeyscurrentpath/.ecode args={#1}{\noexpand\pgfkeysalso{#2}}}}
\pgfkeys{/handlers/.style 2 args/.code=\pgfkeys{\pgfkeyscurrentpath/.code 2 args=\pgfkeysalso{#1}}}
\pgfkeys{/handlers/.style n args/.code 2 args=\pgfkeys{\pgfkeyscurrentpath/.code n args={#1}{\pgfkeysalso{#2}}}}

% Adding to a style

\pgfkeys{/handlers/.add style/.code 2 args=\pgfkeys{\pgfkeyscurrentpath/.add code={\pgfkeysalso{#1}}{\pgfkeysalso{#2}}}}%
\pgfkeys{/handlers/.prefix style/.code=\pgfkeys{\pgfkeyscurrentpath/.add code={\pgfkeysalso{#1}}{}}}%
\pgfkeys{/handlers/.append style/.code=\pgfkeys{\pgfkeyscurrentpath/.add code={}{\pgfkeysalso{#1}}}}%

% Defining a value

\pgfkeys{/handlers/.initial/.code=\pgfkeyssetvalue{\pgfkeyscurrentpath}{#1}}
\pgfkeys{/handlers/.add/.code 2 args=\pgfkeysaddvalue{\pgfkeyscurrentpath}{#1}{#2}}
\pgfkeys{/handlers/.prefix/.code=\pgfkeysaddvalue{\pgfkeyscurrentpath}{#1}{}}
\pgfkeys{/handlers/.append/.code=\pgfkeysaddvalue{\pgfkeyscurrentpath}{}{#1}}
\pgfkeys{/handlers/.get/.code=\pgfkeysgetvalue{\pgfkeyscurrentpath}{#1}}
\pgfkeys{/handlers/.link/.code=\pgfkeyssetvalue{\pgfkeyscurrentpath}{\pgfkeysvalueof{#1}}}

% Defining a default

\pgfkeys{/handlers/.default/.code=\pgfkeyssetvalue{\pgfkeyscurrentpath/.@def}{#1}}
\pgfkeys{/handlers/.value required/.code=\pgfkeyssetvalue{\pgfkeyscurrentpath/.@def}{\pgfkeysvaluerequired}}
\pgfkeys{/handlers/.value forbidden/.code=\pgfkeys{\pgfkeyscurrentpath/.add code=%
{%
 \ifx\pgfkeyscurrentvalue\pgfkeysnovalue@text%
 \else%
 \def\pgf@marshal{\pgfkeysvalueof{/errors/value forbidden/.@cmd}}%
 \expandafter\expandafter\expandafter\pgf@marshal\expandafter\expandafter\expandafter{\expandafter\pgfkeyscurrentkey\expandafter}\expandafter{\pgfkeyscurrentvalue}\pgfeov%
 \fi%
}{}}}

% High-level cmds

\pgfkeys{/handlers/.store in/.code=\pgfkeysalso{\pgfkeyscurrentpath/.code=\def#1{##1}}}
\pgfkeys{/handlers/.estore in/.code=\pgfkeysalso{\pgfkeyscurrentpath/.code=\edef#1{##1}}}

\pgfkeys{/handlers/.is if/.code=\pgfkeysalso{%
 \pgfkeyscurrentpath/.code=\pgfkeys@handle@boolean{#1}{##1},
 \pgfkeyscurrentpath/.default=true%
 }%
}
\def\pgfkeys@handle@boolean#1#2{%
 \pgfkeys@ifcsname{#1#2}{%
 \csname#1#2\endcsname%
 }{%
 \def\pgf@marshal{\pgfkeysvalueof{/errors/boolean expected/.@cmd}}%
 \expandafter\pgf@marshal\expandafter{\pgfkeyscurrentkey}{#2}\pgfeov%
 }%
}

\pgfkeys{/handlers/.is choice/.code=%
 \pgfkeys{%
 \pgfkeyscurrentpath/.cd,%
 .code=\def\pgfkeys@was@choice{##1}\expandafter\pgfkeysalso\expandafter{\pgfkeyscurrentkey/##1},
 .unknown/.code={%
 \def\pgf@marshal{\pgfkeysvalueof{/errors/unknown choice value/.@cmd}}%
 {\expandafter\expandafter\expandafter\pgf@marshal\expandafter\expandafter\expandafter{\expandafter\the\expandafter\pgfkeys@pathtoks\expandafter}\expandafter{\pgfkeys@was@choice}\pgfeov}%
 }%
 }%
}

% Repeatedly setting a key

\pgfkeys{/handlers/.list/.code=%
 {%
 \ifx\foreach\@undefined%
 \pgfkeys@error{You need to load the pgffor package to use the .list key syntax.}%
 \fi%
 % Use foreach to unfold the list
 \def\pgf@keys@temp{}%
 \foreach \pgf@keys@key in{#1}%
 {\expandafter\expandafter\expandafter\gdef%
 \expandafter\expandafter\expandafter\pgf@keys@temp%
 \expandafter\expandafter\expandafter{\expandafter\pgf@keys@temp\expandafter{\pgf@keys@key}}}%
 \edef\pgf@keys@list@path{\pgfkeyscurrentpath}%
 \expandafter\expandafter\expandafter\pgf@keys@do@list%
 \expandafter\expandafter\expandafter{\expandafter\pgf@keys@list@path\expandafter}\pgf@keys@temp\pgf@stop%
 }%
}
\def\pgf@keys@do@list#1{\pgf@keys@utilifnextchar\bgroup{\pgf@keys@do@list@item{#1}}\pgf@keys@gobble}
\def\pgf@keys@do@list@item#1#2{\pgfkeysalso{#1={#2}}\pgf@keys@do@list{#1}}

% Forwarding

\pgfkeys{/handlers/.forward to/.code=%
 \pgfkeys{\pgfkeyscurrentpath/.add code={}{\pgfkeys{#1={##1}}}}
}

% Inspection handlers

\pgfkeys{/handlers/.show value/.code=\pgfkeysgetvalue{\pgfkeyscurrentpath}{\pgfkeysshower}\show\pgfkeysshower} % inspect the value
\pgfkeys{/handlers/.show code/.code=\pgfkeysgetvalue{\pgfkeyscurrentpath/.@cmd}{\pgfkeysshower}\show\pgfkeysshower} % inspect the body of the command

% First char syntax handlers
\pgfkeys{/handlers/first char syntax/.is if=pgfkeys@syntax@handlers}

% Path handling

% Prepares the .unknown handler used by '.search also'.
% It will be stored into \pgfkeys@global@temp.
\def\pgfkeys@searchalso@prepare@unknown@handler#1{%
 \global\def\pgfkeys@global@temp##1\pgfeov{}%
 \pgfkeys@searchalso@parse#1,\pgfkeys@mainstop
 {%
 \toks0=\expandafter{\pgfkeys@global@temp##1\pgfeov}%
 \toks1={%
 \pgfkeysgetvalue{/handlers/.unknown/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeys@searchalso@temp@value\pgfeov
 }%
 \xdef\pgfkeys@global@temp{%
 \noexpand\def\noexpand\pgfkeys@searchalso@temp@value{####1}%
 \noexpand\ifpgfkeysaddeddefaultpath
 \noexpand\expandafter\noexpand\pgfkeys@firstoftwo
 \noexpand\else
 \noexpand\expandafter\noexpand\pgfkeys@secondoftwo
 \noexpand\fi{%
 \noexpand\pgfkeyssuccessfalse
 \noexpand\let\noexpand\pgfkeys@searchalso@name=\noexpand\pgfkeyscurrentkeyRAW
 \the\toks0 % one or more /.try things; one for each path. The last element won't have a /.try
 %\noexpand\ifpgfkeyssuccess
 %\noexpand\else
 % \the\toks1 % invoke /handlers/.unknown handler
 %\noexpand\fi
 }{%
 \the\toks1 % invoke /handlers/.unknown handler
 }%
 }%
 \expandafter\gdef\expandafter\pgfkeys@global@temp\expandafter##\expandafter1\expandafter\pgfeov\expandafter{\pgfkeys@global@temp}%
 }%
}%

\def\pgfkeys@searchalso@parse{\futurelet\pgfkeys@possiblerelax\pgfkeys@searchalso@parse@main}
\def\pgfkeys@searchalso@parse@main{%
 \ifx\pgfkeys@possiblerelax\pgfkeys@mainstop%
 \expandafter\pgfkeys@cleanup%
 \else%
 \expandafter\pgfkeys@searchalso@appendentry%
 \fi%
}
\def\pgfkeys@searchalso@appendentry#1,#2{%
 \def\pgfkeys@searchalso@nexttok{#2}%
 \pgfkeys@spdef\pgfkeys@temp{#1}%
 {%
 \toks0=\expandafter{\pgfkeys@global@temp##1\pgfeov}%
 \toks1=\expandafter{\pgfkeys@temp}%
 \xdef\pgfkeys@global@temp{%
 \the\toks0 % the space is important!
 \noexpand\ifpgfkeyssuccess\noexpand\else
 \noexpand\pgfqkeys{\the\toks1 }{\noexpand\pgfkeys@searchalso@name
 \ifx\pgfkeys@searchalso@nexttok\pgfkeys@mainstop\else/.try\fi /.expand once=\noexpand\pgfkeys@searchalso@temp@value}%
 \noexpand\fi}%
 \expandafter\gdef\expandafter\pgfkeys@global@temp\expandafter##\expandafter1\expandafter\pgfeov\expandafter{\pgfkeys@global@temp}%
 }%
 \pgfkeys@searchalso@parse#2%
}
\pgfkeys{%
 /handlers/.is family/.code=\pgfkeys{\pgfkeyscurrentpath/.ecode=\edef\noexpand\pgfkeysdefaultpath{\pgfkeyscurrentpath/}},%
 /handlers/.cd/.code=\edef\pgfkeysdefaultpath{\pgfkeyscurrentpath/},%
 /handlers/.search also/.code={%
 \pgfkeys@searchalso@prepare@unknown@handler{#1}%
%\message{I prepared the '\pgfkeyscurrentpath/.unknown' handler \meaning\pgfkeys@global@temp\space for '#1'.}%
 \pgfkeyslet{\pgfkeyscurrentpath/.unknown/.@cmd}{\pgfkeys@global@temp}%
 }
}%

% Value expansion

\pgfkeys{/handlers/.expand once/.code=\expandafter\pgfkeys@exp@call\expandafter{#1}}
\pgfkeys{/handlers/.expand twice/.code=\expandafter\expandafter\expandafter\pgfkeys@exp@call\expandafter\expandafter\expandafter{#1}}
\pgfkeys{/handlers/.expanded/.code=\edef\pgfkeys@temp{#1}\expandafter\pgfkeys@exp@call\expandafter{\pgfkeys@temp}}

\long\def\pgfkeys@exp@call#1{\pgfkeysalso{\pgfkeyscurrentpath={#1}}}

\def\pgfkeys@mathparse{%
 \pgfkeys@ifcsname{pgfmathparse}{%
 \pgfmathparse
 }{%
 \pgfkeys@error{You have to load `pgfmath' to use \string\pgfmathparse}%
 \def\pgfmathresult
 }%
}
\pgfkeys{/handlers/.evaluated/.code=\pgfkeys@mathparse{#1}\expandafter\pgfkeys@exp@call\expandafter{\pgfmathresult}}

% Try to set a key and do nothing if not define

\newif\ifpgfkeyssuccess
\pgfkeys{/handlers/.try/.code=\pgfkeys@try}
\pgfkeys{/handlers/.retry/.code=\ifpgfkeyssuccess\else\pgfkeys@try\fi}
\def\pgfkeys@try{%
 \edef\pgfkeyscurrentkey{\pgfkeyscurrentpath}% make sure that \pgfkeys@code doesn't know about 'try'. Important for .is choice
 \ifx\pgfkeyscurrentvalue\pgfkeysnovalue@text% Hmm... no value
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@def}%
 {\pgfkeysgetvalue{\pgfkeyscurrentpath/.@def}{\pgfkeyscurrentvalue}}
 {}% no default, so leave it
 \fi%
 \pgfkeysifdefined{\pgfkeyscurrentpath/.@cmd}%
 {%
 \pgfkeysgetvalue{\pgfkeyscurrentpath/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov%
 \pgfkeyssuccesstrue%
 }%
 {%
 \pgfkeysifdefined{\pgfkeyscurrentpath}%
 {%
 \ifx\pgfkeyscurrentvalue\pgfkeysnovalue@text%
 \pgfkeysvalueof{\pgfkeyscurrentpath}%
 \else%
 \pgfkeyslet{\pgfkeyscurrentpath}\pgfkeyscurrentvalue%
 \fi%
 \pgfkeyssuccesstrue%
 }%
 {%
 \pgfkeys@split@path%
 \pgfkeysifdefined{/handlers/\pgfkeyscurrentname/.@cmd}{%
 % in the standard configuration, this check here is redundant
 % because pgfkeys@ifexecutehandler === true.
 % It is only interesting for 'handle only existing'.
 \pgfkeys@ifexecutehandler{%
 \pgfkeysgetvalue{/handlers/\pgfkeyscurrentname/.@cmd}{\pgfkeys@code}%
 \expandafter\pgfkeys@code\pgfkeyscurrentvalue\pgfeov
 \pgfkeyssuccesstrue%
 }{%
 \pgfkeyssuccessfalse
 }%
 }{%
 \pgfkeyssuccessfalse
 }%
 }%
 }%
}

% Utilities

\pgfkeys{/utils/exec/.code={#1}} % simply execute the given code directly.

% Errors

\pgfkeys{
 /errors/boolean expected/.code 2 args=%
 {%
 \toks1={#1}%
 \toks2={#2}%
 \pgfkeys@error{%
 Boolean parameter of key '\the\toks1' must be 'true' or 'false', not
 '\the\toks2'. I am going to ignore it%
 }%
 },
 /errors/value required/.code 2 args=%
 {%
 \toks1={#1}%
 \pgfkeys@error{%
 The key '\the\toks1' requires a value. I am going to ignore this
 key%
 }%
 },
 /errors/value forbidden/.code 2 args=%
 {%
 \toks1={#1}%
 \toks2={#2}%
 \pgfkeys@error{%
 You may not specify a value for the key '\the\toks1'. I am going to ignore
 the value '\the\toks2' that you provided%
 }%
 },
 /errors/unknown choice value/.code 2 args=%
 {%
 \toks1={#1}%
 \toks2={#2}%
 \pgfkeys@error{%
 Choice '\the\toks2' unknown in choice key '\the\toks1'. I am
 going to ignore this key%
 }%
 },
 /errors/unknown key/.code 2 args=%
 {%
 \toks1={#1}%
 \toks2={#2}%
 \def\pgf@temp{#2}%
 \pgfkeys@error{%
 I do not know the key '\the\toks1'\ifx\pgf@temp\pgfkeysnovalue@text\space\else, to which you passed
 '\the\toks2', \fi and I am going to ignore it. Perhaps you
 misspelled it%
 }%
 }
}

\pgfkeys{/handlers/.unknown/.code=%
 {%
 \def\pgf@marshal{\pgfkeysvalueof{/errors/unknown key/.@cmd}}%
 {\expandafter\expandafter\expandafter\pgf@marshal\expandafter\expandafter\expandafter{\expandafter\pgfkeyscurrentkey\expandafter}\expandafter{\pgfkeyscurrentvalue}\pgfeov}%
 }%
}

\pgfkeys{
 /handler config/.is choice,
 /handler config/all/.code={%
 \let\pgfkeys@case@three=\pgfkeys@case@three@handleall
 \let\pgfkeys@ifexecutehandler=\pgfkeys@ifexecutehandler@handleall
 },
 /handler config/only existing/.code={%
 \let\pgfkeys@case@three=\pgfkeys@case@three@handle@restricted
 \let\pgfkeys@ifexecutehandler=\pgfkeys@ifexecutehandler@handleonlyexisting
 },
 /handler config/full or existing/.code={%
 \let\pgfkeys@case@three=\pgfkeys@case@three@handle@restricted
 \let\pgfkeys@ifexecutehandler=\pgfkeys@ifexecutehandler@handlefullorexisting
 },
 /handler config/only existing/add exception/.code={\pgfkeysaddhandleonlyexistingexception{#1}},
}%
\pgfkeysaddhandleonlyexistingexception{.cd}%
\pgfkeysaddhandleonlyexistingexception{.try}%
\pgfkeysaddhandleonlyexistingexception{.retry}%
\pgfkeysaddhandleonlyexistingexception{.lastretry}%
\pgfkeysaddhandleonlyexistingexception{.unknown}%
\pgfkeysaddhandleonlyexistingexception{.expand once}%
\pgfkeysaddhandleonlyexistingexception{.expand twice}%
\pgfkeysaddhandleonlyexistingexception{.expanded}%

% Utilities for self-containment
\def\pgf@keys@gobble#1{}
\long\def\pgf@keys@utilifnextchar#1#2#3{%
 \let\pgf@keys@utilreserved@d=#1%
 \def\pgf@keys@utilreserved@a{#2}%
 \def\pgf@keys@utilreserved@b{#3}%
 \futurelet\pgf@keys@utillet@token\pgf@keys@utilifnch}
\def\pgf@keys@utilifnch{%
 \ifx\pgf@keys@utillet@token\pgf@keys@utilsptoken
 \let\pgf@keys@utilreserved@c\pgf@keys@utilxifnch
 \else
 \ifx\pgf@keys@utillet@token\pgf@keys@utilreserved@d
 \let\pgf@keys@utilreserved@c\pgf@keys@utilreserved@a
 \else
 \let\pgf@keys@utilreserved@c\pgf@keys@utilreserved@b
 \fi
 \fi
 \pgf@keys@utilreserved@c}
{%
 \def\:{\global\let\pgf@keys@utilsptoken= } \:
 \def\:{\pgf@keys@utilxifnch} \expandafter\gdef\: {\futurelet\pgf@keys@utillet@token\pgf@keys@utilifnch}
}

\chardef\pgfkeys@inputcheck0
\def\pgfkeys@IfFileExists#1{%
 \openin\pgfkeys@inputcheck=#1
 \ifeof\pgfkeys@inputcheck
 \expandafter\closein\expandafter\pgfkeys@inputcheck
 \expandafter\pgfkeys@secondoftwo
 \else
 \expandafter\closein\expandafter\pgfkeys@inputcheck
 \expandafter\pgfkeys@firstoftwo
 \fi
}

% Library system for pgfkeys
\def\usepgfkeyslibrary{\pgf@keys@utilifnextchar[{\pgfkeys@@uselibrary}{\pgfkeys@uselibrary}}
\def\pgfkeys@@uselibrary[#1]{\pgfkeys@uselibrary{#1}}
\def\pgfkeys@uselibrary#1{\pgfkeys@uselibrary@parse#1,\pgfkeys@mainstop}
\def\pgfkeys@uselibrary@parse{%
 \pgf@keys@utilifnextchar\pgfkeys@mainstop{\pgfkeys@cleanup}{\pgfkeys@uselibrary@normal}%
}%
\def\pgfkeys@uselibrary@normal#1,{%
 \pgfkeys@uselibrary@load{#1}%
 \pgfkeys@uselibrary@parse
}
\def\pgfkeys@uselibrary@load#1{%
 \expandafter\pgfkeys@spdef\expandafter\pgf@temp\expandafter{#1}%
 \ifx\pgf@temp\pgfkeys@empty\expandafter\pgfkeys@firstoftwo\else\expandafter\pgfkeys@secondoftwo\fi{}{%
 \pgfkeys@ifcsname{pgfkeys@library@\pgf@temp @loaded}{}{%
 \expandafter\let\csname pgfkeys@library@\pgf@temp @loaded\endcsname=\pgfkeys@empty
 \expandafter\edef\csname pgfkeys@library@#1@atcode\endcsname{\the\catcode`\@}%
 \expandafter\edef\csname pgfkeys@library@#1@barcode\endcsname{\the\catcode`\|}%
 \expandafter\edef\csname pgfkeys@library@#1@dollarcode\endcsname{\the\catcode`\$}%
 \catcode`\@=11
 \catcode`\|=12
 \catcode`\$=3
 \pgfkeys@IfFileExists{pgfkeyslibrary\pgf@temp.code.tex}{%
 \input pgfkeyslibrary\pgf@temp.code.tex
 }{%
 \pgfkeys@error{I did not find the pgfkeys library '\pgf@temp'. I looked for the
 file named pgfkeyslibrary\pgf@temp.code.tex, but could not find it in the
 current texmf trees.}%
 }%
 \catcode`\@=\csname pgfkeys@library@#1@atcode\endcsname
 \catcode`\|=\csname pgfkeys@library@#1@barcode\endcsname
 \catcode`\$=\csname pgfkeys@library@#1@dollarcode\endcsname
 }%
 }%
}

\let\pgfkeys@library@filtered@loaded\pgfkeys@empty
\input pgfkeyslibraryfiltered.code.tex

\endinput

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

% Guard against reading twice
\ifx\pgfmathloaded\pgfutil@undefined
 \let\pgfmathloaded=\relax
\else
 \expandafter\endinput
\fi

% We need keys:
\ifx\pgfkeysloaded\pgfutil@undefined
 \input pgfkeys.code.tex
\fi

\input pgfmathutil.code.tex
\input pgfmathparser.code.tex
\input pgfmathfunctions.code.tex
\input pgfmathfunctions.basic.code.tex
\input pgfmathfunctions.trigonometric.code.tex
\input pgfmathfunctions.random.code.tex
\input pgfmathfunctions.comparison.code.tex
\input pgfmathfunctions.base.code.tex
\input pgfmathfunctions.round.code.tex
\input pgfmathfunctions.misc.code.tex
\input pgfmathfunctions.integerarithmetics.code.tex
\input pgfmathcalc.code.tex
\input pgfmathfloat.code.tex

\endinput

% Copyright 2019 by Till Tantau and Mark Wibrow
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesPackageRCS{pgffor.code.tex}

% pgfmath is needed
\ifdefined\pgfmathloaded\else
 \input pgfmath.code.tex
\fi

\newdimen\pgffor@iter
\newdimen\pgffor@skip
\newif\ifpgffor@continue

\def\pgffor@reset@hooks{%
 \let\pgffor@beginhook=\relax%
 \let\pgffor@endhook=\relax%
 \let\pgffor@afterhook=\relax%
}
\pgffor@reset@hooks

% Stack emulation
%
\newtoks\pgffor@stack
\pgffor@stack={{}{}{}}

\def\pgffor@stackpush#1{%
 \def\pgffor@stacktemp{#1}%
 \expandafter\expandafter\expandafter\pgffor@stack\expandafter\expandafter\expandafter=%
 \expandafter\expandafter\expandafter{\expandafter\expandafter\expandafter%
 {\expandafter\pgffor@stacktemp\expandafter}\the\pgffor@stack}%
}

\def\pgffor@stackpop{\expandafter\pgffor@@stackpop\the\pgffor@stack\pgffor@stackstop}
\def\pgffor@@stackpop#1#2\pgffor@stackstop{\pgffor@stack{#2}#1}

\def\pgffor@emptyvalues{, \pgffor@stop,}%

\def\pgffor@foreach{%
 \pgffor@atbeginforeach%
 \let\pgffor@assign@before@code=\pgfutil@empty%
 \let\pgffor@assign@after@code=\pgfutil@empty%
 \let\pgffor@assign@once@code=\pgfutil@empty%
 \let\pgffor@remember@code=\pgfutil@empty%
 \let\pgffor@remember@once@code=\pgfutil@empty%
 \pgffor@alphabeticsequencefalse%
 \pgffor@contextfalse%
 %
 \let\pgffor@var=\pgfutil@empty
 %
 \pgffor@vars%
}

\let\foreach=\pgffor@foreach

\def\pgffor@vars{%
 \pgfutil@ifnextchar i{\pgffor@@vars@end}{%
 \pgfutil@ifnextchar[{\pgffor@@vars@opt}{%]
 \pgfutil@ifnextchar/{\pgffor@@vars@slash@gobble}{%
 \pgffor@@vars}}}}%

\def\pgffor@@vars@end in{\pgfutil@ifnextchar\bgroup{\pgffor@normal@list}{\pgffor@macro@list}}
\def\pgffor@@vars@opt[#1]{\pgfkeys{/pgf/foreach/.cd,#1}\pgffor@vars}
\def\pgffor@@vars#1{\pgffor@var@add#1\pgffor@stop\pgffor@vars}
\def\pgffor@@vars@slash@gobble/{\pgffor@@vars}

\def\pgffor@var@add#1#2\pgffor@stop{%
 \ifx\pgffor@var\pgfutil@empty%
 \def\pgffor@var{#1}%
 \def\pgffor@mainvar{#1}%
 \else%
 \expandafter\def\expandafter\pgffor@var\expandafter{\pgffor@var/#1}%
 \fi%
}

\def\pgffor@expand@list@true{\let\pgffor@expand@list\edef}
\def\pgffor@expand@list@false{\let\pgffor@expand@list\def}
\def\pgffor@macro@list#1{%
 \expandafter\pgffor@normal@list\expandafter{#1}}
\def\pgffor@normal@list#1{%
 \pgffor@expand@list\pgffor@values{#1}%
 \expandafter\def\expandafter\pgffor@values\expandafter{\pgffor@values, \pgffor@stop,}%
 \ifx\pgffor@values\pgffor@emptyvalues
 \def\pgffor@values{\pgffor@stop,}%
 \fi%
 \let\pgffor@body=\pgfutil@empty%
 \global\pgffor@continuetrue%
 \pgffor@collectbody}
\def\pgffor@collectbody{%
 \pgfutil@ifnextchar\foreach{\pgffor@collectforeach}{%
 \pgfutil@ifnextchar\bgroup{\pgffor@collectargument}{\pgffor@collectsemicolon}}%
}

\def\pgffor@collectforeach\foreach#1in{%
 \pgfutil@ifnextchar\bgroup{\pgffor@collectforeach@normal{#1}}{\pgffor@collectforeach@macro{#1}}}
\def\pgffor@collectforeach@macro#1#2{%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter{\pgffor@body\foreach#1in#2}%
 \pgffor@collectbody%
}
\def\pgffor@collectforeach@normal#1#2{%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter{\pgffor@body\foreach#1in{#2}}%
 \pgffor@collectbody%
}
\long\def\pgffor@collectargument#1{%
 \expandafter\pgfutil@in@\expandafter\foreach\expandafter{\pgffor@body}%
 \ifpgfutil@in@%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter%
 {\pgffor@body{#1}}%
 \else%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter%
 {\pgffor@body#1}%
 \fi%
 \pgffor@iterate%
}

\def\pgffor@collectsemicolon{%
 \let\pgffor@next=\pgffor@collectnormalsemicolon%
 \ifnum\the\catcode`\;=\active\relax%
 \let\pgffor@next=\pgffor@collectactivesemicolon%
 \fi%
 \pgffor@next%
}

\def\pgffor@collectnormalsemicolon#1;{%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter{\pgffor@body#1;}%
 \pgffor@iterate%
}

{
 \catcode`\;=\active

 \gdef\pgffor@collectactivesemicolon#1;{%
 \expandafter\long\expandafter\def\expandafter\pgffor@body\expandafter{\pgffor@body#1;}%
 \pgffor@iterate%
 }
}

\def\pgffor@iterate{%
 % Must do all of these in case the internal stack is used.
 \let\pgffor@last=\pgfutil@empty%
 \let\pgffor@prevlast=\pgfutil@empty%
 \let\pgffor@dotsend=\pgfutil@empty%
 \let\pgffor@dots@pre=\pgfutil@empty%
 \let\pgffor@dots@post=\pgfutil@empty%
 %
 \expandafter\pgffor@scan\pgffor@values}

\def\pgffor@stop{\pgffor@stop}%
\def\pgffor@dots{...}%

\def\pgffor@scan{\pgfutil@ifnextchar({\pgffor@scanround}{\pgffor@scanone}}
\def\pgffor@scanround(#1)#2,{\def\pgffor@value{(#1)#2}\pgffor@scanned}
\def\pgffor@scanone#1,{\def\pgffor@value{#1}\pgffor@scanned}

% Check for dots.
\newif\ifpgffor@dots@in@
\def\pgffor@dots@in@#1...#2#3\pgffor@stop{%
 \ifx\pgffor@dots@@#2%
 \pgffor@dots@in@false%
 \else%
 \pgffor@dots@in@true%
 \fi%
}

\def\pgffor@dots@@{\pgffor@dots@@}

\def\pgffor@scanned{%
 \ifx\pgffor@value\pgffor@stop%
 \let\pgffor@next=\pgffor@after% Done!
 \else%
 % Check for dots. Quicker than \pgfutil@in@ and not suceptable
 % to false-positives when a token sequence ends in a single full-stop.
 \expandafter\pgffor@dots@in@\pgffor@value\pgffor@dots@...\pgffor@dots@@\pgffor@stop%
 \ifpgffor@dots@in@%
 \let\pgffor@next=\pgffor@handledots%
 \else%
 \let\pgffor@next=\pgffor@handlevalue%
 \fi%
 \ifpgffor@continue%
 \else%
 \let\pgffor@next=\pgffor@scan% Done!
 \fi%
 \fi%
 \pgffor@next}

\def\pgffor@after{%
 \global\pgffor@continuetrue%
 \pgffor@atendforeach%
 \pgffor@afterhook}

\def\pgffor@handlevalue{%
 \let\pgffor@prevlast=\pgffor@last%
 \let\pgffor@last=\pgffor@value%
 \pgffor@invokebody%
 \pgffor@scan%
}

\def\pgffor@invokebody{%
 \pgffor@begingroup%
 \expandafter\pgfutil@in@\expandafter/\expandafter{\pgffor@var}%
 \ifpgfutil@in@%
 \expandafter\def\expandafter\pgffor@valuerest\expandafter{\pgffor@value//\relax}%
 \expandafter\pgffor@multiassign\pgffor@var/\pgffor@stop/\pgffor@stop/\relax%
 \else%
 \expandafter\expandafter\expandafter\def\expandafter\pgffor@var\expandafter{\pgffor@value}%
 \fi%
 % Execute assign once code.
 \ifx\pgffor@assign@once@code\pgfutil@empty%
 \else%
 \pgffor@assign@once@code%
 \fi%
 % Execute assign before code.
 \ifx\pgffor@assign@before@code\pgfutil@empty%
 \else%
 \pgffor@assign@before@code%
 \fi%
 %
 \expandafter\expandafter\expandafter\pgffor@reset@hooks\expandafter\pgffor@beginhook\expandafter\pgffor@body\pgffor@endhook%
 % Execute assign after code.
 \ifx\pgffor@assign@after@code\pgfutil@empty%
 \else%
 \pgffor@assign@after@code%
 \fi%
 %
 \pgffor@endgroup%
}

\def\pgffor@multiassign#1/#2/\relax{%
 \def\pgffor@currentvar{#1}%
 \def\pgffor@rest{#2}%
 \ifx\pgffor@currentvar\pgffor@stop%
 \let\pgffor@next=\relax%
 \else%
 \let\pgffor@next=\pgffor@multiassignrest%
 \fi%
 \pgffor@next%
}

\def\pgffor@multiassignrest{\expandafter\pgffor@multiassignfinal\pgffor@valuerest}
\def\pgffor@multiassignfinal#1/#2/\relax{%
 \def\pgffor@temp{#1}%
 \ifx\pgffor@currentvar\pgffor@mainvar%
 \ifpgffor@alphabeticsequence%
 \pgffor@makealphabetic\pgffor@temp%
 \fi%
 \fi%
 \def\pgffor@test{#2}%
 \ifx\pgffor@test\pgfutil@empty%
 \expandafter\def\expandafter\pgffor@valuerest\expandafter{\pgffor@temp//\relax}% repeat
 \else%
 \def\pgffor@valuerest{#2/\relax}%
 \fi%
 \expandafter\expandafter\expandafter\def\expandafter\pgffor@currentvar\expandafter{\pgffor@temp}%
 %
 \expandafter\pgffor@multiassign\pgffor@rest/\relax%
}

\def\pgffor@gobblespaces#1{\pgfutil@ifnextchar x{#1}{#1}}

\def\pgffor@handledots{%
 \pgffor@gobblespaces{\expandafter\pgffor@@handledots\pgffor@value\pgffor@@stop}%
}

\newif\ifpgffor@context

\def\pgffor@@handledots#1...#2\pgffor@@stop{%
 % Define the context if any.
 \def\pgffor@dots@pre{#1}%
 \def\pgffor@dots@post{#2}%
 \def\pgffor@dots@stripcontext#1##1#2\pgffor@@stop{\def\pgffor@dotsvalue{##1}}%
 \pgffor@contexttrue%
 \ifx\pgffor@dots@pre\pgfutil@empty%
 \ifx\pgffor@dots@post\pgfutil@empty%
 \pgffor@contextfalse%
 \def\pgffor@dots@stripcontext##1\pgffor@@stop{\def\pgffor@dotsvalue{##1}}%
 \fi%
 \fi%
 \pgffor@gobblespaces{\pgffor@dotsscanend}%
}

\def\pgffor@dots@value@process#1{%
 \expandafter\pgffor@dots@stripcontext#1\pgffor@@stop%
 \expandafter\pgffor@dots@charcheck\pgffor@dotsvalue\pgffor@@stop%
 \ifpgffor@alphabeticsequence
 \else
 \ifpgffor@assign@parse
 \begingroup
 \pgfkeys{/pgf/fpu/false/.try}%
 \pgfmathparse{\pgffor@dotsvalue}%
 \pgfmath@smuggleone\pgfmathresult
 \endgroup
 \let\pgffor@dotsvalue=\pgfmathresult
 \fi
 \fi
 \let#1=\pgffor@dotsvalue%
}

\def\pgffor@dotsscanend#1,{%
 \pgffor@alphabeticsequencefalse%
 % Strip context and check for a character sequence.
 \def\pgffor@dotsend{#1}%
 \pgffor@dots@value@process{\pgffor@dotsend}%
 %
 \pgffor@dots@value@process{\pgffor@last}%
 %
 % calculate skip%
 \ifx\pgffor@prevlast\pgfutil@empty%
 \ifdim\pgffor@dotsend pt>\pgffor@last pt%
 \pgffor@skip=1pt%
 \else%
 \pgffor@skip=-1pt%
 \fi%
 \else%
 \pgffor@dots@value@process{\pgffor@prevlast}%
 \pgffor@skip=\pgffor@last pt%
 \pgffor@iter=\pgffor@prevlast pt%
 \advance\pgffor@skip by-\pgffor@iter%
 \fi%
 \pgffor@iter=\pgffor@last pt%
 % do loop
 \pgffor@loop%
}

\def\pgffor@loop{%
 \advance\pgffor@iter by\pgffor@skip%
 \let\pgffor@next=\pgffor@doloop%
 \ifdim\pgffor@skip<0pt%
 \ifdim\pgffor@iter<\pgffor@dotsend pt%
 \let\pgffor@next=\pgffor@endloop%
 \fi%
 \else%
 \ifdim\pgffor@iter>\pgffor@dotsend pt%
 \let\pgffor@next=\pgffor@endloop%
 \fi%
 \fi%
 \ifpgffor@continue%
 \else%
 \let\pgffor@next=\pgffor@endloop% Done!
 \fi%
 \pgffor@next%
}

\def\pgffor@endloop{%
 \pgffor@alphabeticsequencefalse%
 \pgffor@scan%
}

{\catcode`\p=12\catcode`\t=12\gdef\Pgffor@geT#1pt{#1}}

\def\pgffor@doloop{%
 \pgffor@begingroup
 \edef\pgffor@temp{\expandafter\Pgffor@geT\the\pgffor@iter}%
 \edef\pgffor@incheck{{.0/}{\pgffor@temp/}}%
 \expandafter\pgfutil@in@\pgffor@incheck%
 \ifpgfutil@in@%
 \expandafter\pgffor@strip\pgffor@temp%
 \fi%
 \expandafter\pgfutil@in@\expandafter/\expandafter{\pgffor@var}%
 \ifpgfutil@in@%
 \expandafter\def\expandafter\pgffor@valuerest\expandafter{\pgffor@temp//\relax}%
 \expandafter\pgffor@multiassign\pgffor@var/\pgffor@stop/\pgffor@stop/\relax%
 \else%
 % Convert to alphabetic sequence, if necessary.
 \ifpgffor@alphabeticsequence%
 \pgffor@makealphabetic\pgffor@temp%
 \expandafter\let\pgffor@var=\pgffor@temp%
 \else%
 \expandafter\expandafter\expandafter\def\expandafter\pgffor@var\expandafter{\pgffor@temp}%
 \fi%
 \fi%
 % Insert any context, if any.
 \ifpgffor@context%
 \let\pgffor@temp=\pgffor@dots@pre%
 \expandafter\pgfutil@append@macrotomacro\expandafter%
 {\expandafter\pgffor@temp\expandafter}\expandafter{\pgffor@var}%
 \expandafter\pgfutil@append@macrotomacro\expandafter%
 {\expandafter\pgffor@temp\expandafter}\expandafter{\pgffor@dots@post}%
 \expandafter\let\pgffor@var=\pgffor@temp%
 \fi%
 % Perform assignments before loop body.
 \ifx\pgffor@assign@before@code\pgfutil@empty%
 \else%
 \pgffor@assign@before@code%
 \fi%
 %
 \expandafter\expandafter\expandafter\pgffor@reset@hooks\expandafter\pgffor@beginhook\expandafter\pgffor@body\pgffor@endhook%
 %
 % Perform assignments after loop body.
 \ifx\pgffor@assign@after@code\pgfutil@empty%
 \else%
 \pgffor@assign@after@code%
 \fi%
 \pgffor@endgroup%
 \pgffor@loop%
}

\def\pgffor@strip#1.0{\def\pgffor@temp{#1}}

\def\breakforeach{\global\pgffor@continuefalse}

\def\pgffor@gobbletil@pgffor@@stop#1\pgffor@@stop{}

\newif\ifpgffor@registeriscount

\def\pgffor@ifcsregister#1{%
 \expandafter\pgffor@@ifcsregister\meaning#1\pgffor@stop}

\def\pgffor@@ifcsregister#1#2#3#4#5\pgffor@stop{%
 \if#1m% It is an ordinary (m)acro.
 \pgffor@registeriscountfalse%
 \let\pgffor@csnext=\pgfutil@secondoftwo%
 \else%
 \if#1u% It is (u)ndefined.
 \let\pgffor@csnext=\pgfutil@secondoftwo%
 \pgffor@registeriscountfalse%
 \else%
 \let\pgffor@csnext=\pgfutil@firstoftwo%
 \if#4u% It is a co(u)nt
 \pgffor@registeriscounttrue%
 \else% Assume it is a dimen or skip (bad assumption in the general case).
 \pgffor@registeriscountfalse%
 \let\pgffor@csnext=\pgfutil@firstoftwo%
 \fi%
 \fi%
 \fi%
 \pgffor@csnext}

\newif\ifpgffor@alphabeticsequence

%
\def\pgffor@dots@charcheck#1\pgffor@@stop{%
 \edef\pgffor@dots@charcheck@temp{#1}%
 \expandafter\expandafter\expandafter\pgffor@@dotscharcheck\expandafter\meaning\pgffor@dots@charcheck@temp\pgffor@@stop%
}
\def\pgffor@@dotscharcheck#1#2\pgffor@@stop{%
 \if#1t%
 \afterassignment\pgffor@gobbletil@pgffor@@stop%
 \expandafter\chardef\expandafter\pgffor@char\expandafter=\expandafter`\pgffor@dots@charcheck@temp\relax\pgffor@@stop%
 \edef\pgffor@char{\the\pgffor@char}%
 \ifnum\pgffor@char>64\relax% From A-Z?
 \ifnum\pgffor@char<91\relax%
 \let\pgffor@dotsvalue=\pgffor@char%
 \pgffor@alphabeticsequencetrue%
 \else%
 \ifnum\pgffor@char>96\relax% From a-z?
 \ifnum\pgffor@char<123\relax%
 \let\pgffor@dotsvalue=\pgffor@char%
 \pgffor@alphabeticsequencetrue%
 \fi%
 \fi%
 \fi%
 \fi%
 \fi%
}

\def\pgffor@makealphabetic#1{%
 % Convert the number in the macro passed as #1 to a-z or A-Z.
 \pgfutil@tempcnta=#1\relax%
 \ifnum\pgfutil@tempcnta>95\relax%
 \advance\pgfutil@tempcnta by-96\relax%
 \edef#1{\pgffor@alpha\pgfutil@tempcnta}%
 \else%
 \advance\pgfutil@tempcnta by-64 %
 \edef#1{\pgffor@Alpha\pgfutil@tempcnta}%
 \fi%
}

\def\pgffor@Alpha#1{%
 \ifcase#1\relax\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or K\or L\or M%
 \or N\or O\or P\or Q\or R\or S\or T\or U\or V\or W\or X\or Y\or Z\else?\fi%
}

\def\pgffor@alpha#1{%
 \ifcase#1\relax\or a\or b\or c\or d\or e\or f\or g\or h\or i\or j\or k\or l\or m%
 \or n\or o\or p\or q\or r\or s\or t\or u\or v\or w\or x\or y\or z\else?\fi%
}

\newtoks\pgffor@toks

\def\pgffor@addcstotoks#1{%
 \expandafter\def\expandafter\pgffor@tokstemp\expandafter{\expandafter\def\expandafter#1\expandafter{#1}}%
 \pgffor@@addcstotoks}

\def\pgffor@addregtotoks#1{%
 \expandafter\def\expandafter\pgffor@tokstemp\expandafter{\expandafter#1\expandafter=\the#1}%
 \pgffor@@addcstotoks}

\def\pgffor@addiftotoks#1{%
 \begingroup%
 \escapechar=-1\relax%
 \expandafter\pgffor@@addiftotoks\string#1\pgffor@stop}
\def\pgffor@@addiftotoks#1#2#3#4\pgffor@stop{%
 \endgroup
 \csname if#3#4\endcsname%
 \expandafter\def\expandafter\pgffor@tokstemp\expandafter{\csname#3#4true\endcsname}%
 \else%
 \expandafter\def\expandafter\pgffor@tokstemp\expandafter{\csname#3#4false\endcsname}%
 \fi%
 \pgffor@@addcstotoks%
}

\def\pgffor@@addcstotoks{%
 \expandafter\expandafter\expandafter\pgffor@toks\expandafter\expandafter\expandafter=%
 \expandafter\expandafter\expandafter{\expandafter\pgffor@tokstemp\the\pgffor@toks}%
}

% Set up the pgffor scopes.

\def\pgffor@atbeginforeach{%
 \begingroup%
}

\def\pgffor@atendforeach{%
 \global\edef\pgffor@remember@expanded{\pgffor@remember@code}%
 \ifx\pgffor@remember@expanded\pgfutil@empty%
 \else%
 \pgffor@remember@expanded%
 \global\let\pgffor@remember@expanded=\pgfutil@empty%
 \fi%
 \endgroup%
}
\def\pgffor@default@begingroup{%
 \begingroup%
}

\let\pgffor@remember@once@expanded=\pgfutil@empty
\let\pgffor@remember@expanded=\pgfutil@empty

\def\pgffor@default@endgroup{%
 \ifx\pgffor@remember@once@code\pgfutil@empty
 \else
 \xdef\pgffor@remember@once@expanded{\pgffor@remember@once@code}%
 \fi
 \ifx\pgffor@remember@code\pgfutil@empty
 \else
 \xdef\pgffor@remember@expanded{\pgffor@remember@code}%
 \fi
 \endgroup
 %
 \ifx\pgffor@remember@once@expanded\pgfutil@empty
 \else
 \pgffor@remember@once@expanded%
 % \let\pgffor@assign@once@code=\pgfutil@empty % Not needed anymore? (CJ)
 \global\let\pgffor@remember@once@expanded=\pgfutil@empty
 \fi
 \ifx\pgffor@assign@once@code\pgfutil@empty
 \else
 \global\let\pgffor@assign@once@code=\pgfutil@empty
 \fi
 %
 \ifx\pgffor@remember@expanded\pgfutil@empty
 \else
 \pgffor@remember@expanded%
 \global\let\pgffor@remember@expanded=\pgfutil@empty
 \fi
}

\let\pgffor@begingroup=\pgffor@default@begingroup
\let\pgffor@endgroup=\pgffor@default@endgroup

\def\pgffor@stack@begingroup{%
 \pgffor@toks={}%
 \pgffor@addcstotoks{\pgffor@mainvar}%
 \pgffor@addcstotoks{\pgffor@var}%
 \pgffor@addcstotoks{\pgffor@body}%
 %
 \pgffor@addcstotoks{\pgffor@last}%
 \pgffor@addcstotoks{\pgffor@prevlast}%
 \pgffor@addcstotoks{\pgffor@dotsend}%
 %
 \pgffor@addcstotoks{\pgffor@assign@before@code}%
 \pgffor@addcstotoks{\pgffor@assign@after@code}%
 \pgffor@addcstotoks{\pgffor@remember@code}%
 \pgffor@addcstotoks{\pgffor@remember@once@code}%
 \pgffor@addcstotoks{\pgffor@dots@pre}%
 \pgffor@addcstotoks{\pgffor@dots@post}%
 %
 \pgffor@addregtotoks{\pgffor@iter}%
 \pgffor@addregtotoks{\pgffor@skip}%
 %
 \pgffor@addiftotoks{\ifpgffor@alphabeticsequence}%
 \pgffor@addiftotoks{\ifpgffor@context}%
 \expandafter\pgffor@stackpush\expandafter{\the\pgffor@toks}%
}

\def\pgffor@stack@endgroup{\pgffor@stackpop}

% Keys stuff.

\newif\ifpgffor@assign@evaluate
\newif\ifpgffor@assign@once
\newif\ifpgffor@assign@parse

\pgfkeys{/pgf/foreach/.cd,
 var/.code=\pgffor@var@add#1\pgffor@stop,
 scope iterations/.code={
 \csname if#1\endcsname%
 \let\pgffor@begingroup=\pgffor@default@begingroup%
 \let\pgffor@endgroup=\pgffor@default@endgroup%
 \else%
 \let\pgffor@begingroup=\pgffor@stack@begingroup%
 \let\pgffor@endgroup=\pgffor@stack@endgroup%
 \fi%
 },
 evaluate/.code=\pgffor@assign@evaluatetrue\pgffor@assign@oncefalse\pgffor@assign@parse{#1},%
 assign/.code=\pgffor@assign@evaluatefalse\pgffor@assign@oncefalse\pgffor@assign@parse{#1},%
 evaluate once/.code=\pgffor@assign@evaluatetrue\pgffor@assign@oncetrue\pgffor@assign@parse{#1},%
 assign once/.code=\pgffor@assign@evaluatefalse\pgffor@assign@oncetrue\pgffor@assign@parse{#1},%
 remember/.code=\pgffor@remember@parse{#1},%
 count/.code=\pgffor@count@parse#1\pgffor@stop,
 parse/.is if=pgffor@assign@parse,
 parse/.default=false,
 expand list/.is if=pgffor@expand@list@,
 expand list/.default=true,
 expand list=false,
}

\def\pgffor@assign@parse#1{%
 \pgfutil@in@;{#1}%
 \ifpgfutil@in@%
 \else%
 \pgfutil@in@={#1}%
 \fi%
 \ifpgfutil@in@%
 \pgffor@assign@@parse#1;\pgffor@stop;%
 \else%
 \pgffor@assign@parse@old#1\pgffor@stop%%
 \fi%
}

\def\pgffor@stop{\pgffor@stop}
\def\pgffor@assign@@parse#1;{%
 \def\pgffor@test{#1}%
 \ifx\pgffor@test\pgffor@stop%
 \let\pgffor@next=\relax%
 \else%
 \let\pgffor@next=\pgffor@assign@@parse%
 \ifx\pgffor@test\pgfutil@empty%
 \else%
 \pgfutil@in@={#1}%
 \ifpgfutil@in@%
 \pgffor@assign@@@parse#1\pgffor@stop%
 \else%
 \pgffor@assign@@@parse#1=#1\pgffor@stop%
 \fi%
 \fi%
 \fi%
 \pgffor@next}

\def\pgffor@assign@@@parse#1=#2\pgffor@stop{%
 \ifpgffor@assign@evaluate%
 \ifpgffor@assign@once%
 \pgfutil@append@tomacro{\pgffor@assign@once@code}{\pgfmathparse{#2}\let#1=\pgfmathresult}%
 \pgfutil@append@tomacro{\pgffor@remember@once@code}{\noexpand\def\noexpand#1{#2}}%
 \else
 \pgfutil@append@tomacro{\pgffor@assign@before@code}{\pgfmathparse{#2}\let#1=\pgfmathresult}%
 \fi%
 \else%
 \ifpgffor@assign@once%
 \pgfutil@append@tomacro{\pgffor@assign@once@code}{\def#1{#2}}%
 \pgfutil@append@tomacro{\pgffor@remember@once@code}{\noexpand\def\noexpand#1{#2}}%
 \else
 \pgfutil@append@tomacro{\pgffor@assign@before@code}{\def#1{#2}}%
 \fi%
 \fi%
}

\def\pgffor@assign@parse@old#1#2\pgffor@stop{%
 \pgffor@assign@@parse@old#2\pgffor@stop as#1using #1\pgffor@@stop}

\def\pgffor@assign@@parse@old#1as#2#3\pgffor@@stop{%
 \pgffor@assign@@@parse@old{#2}#1#3\pgffor@stop\pgffor@@stop}

\def\pgffor@assign@@@parse@old#1#2using #3\pgffor@stop#4\pgffor@@stop{%
 \pgffor@assign@@@parse#1=#3\pgffor@stop}

\def\pgffor@remember@parse#1{%
 \pgfutil@in@ a{#1}% This matches the 'a' in 'as' or 'initially'.
 \ifpgfutil@in@%
 \pgffor@remember@parse@old#1\pgffor@stop%
 \else%
 \pgffor@remember@@parse#1;\pgffor@stop;%
 \fi%
}

\def\pgffor@remember@@parse#1;{%
 \def\pgffor@test{#1}%
 \ifx\pgffor@test\pgffor@stop%
 \let\pgffor@next=\relax%
 \else%
 \let\pgffor@next=\pgffor@remember@@parse%
 \ifx\pgffor@test\pgfutil@empty%
 \else%
 \pgfutil@in@={#1}%
 \ifpgfutil@in@%
 \pgffor@remember@@@parse#1\pgffor@stop%
 \else%
 \pgffor@ifcsregister{#1}{%
 \pgfutil@append@tomacro{\pgffor@remember@code}{\noexpand#1=\the#1\noexpand\relax}%
 }%
 {%
 \pgfutil@append@tomacro{\pgffor@remember@code}{\noexpand\def\noexpand#1{#1}}%
 }%
 \fi%
 \fi%
 \fi%
 \pgffor@next%
}

\def\pgffor@remember@@@parse#1=#2\pgffor@stop{%
 \pgffor@ifcsregister{#2}{%
 \pgfutil@append@tomacro{\pgffor@assign@after@code}{\expandafter\def\expandafter#1\expandafter{\the#2}}%
 \pgfutil@append@tomacro{\pgffor@remember@code}{\noexpand\def\noexpand#1{#1}}%
 }%
 {%
 \pgfutil@append@tomacro{\pgffor@assign@after@code}{\expandafter\def\expandafter#1\expandafter{#2}}%
 \pgfutil@append@tomacro{\pgffor@remember@code}{\noexpand\def\noexpand#1{#1}}%
 }%
}

\def\pgffor@remember@parse@old#1#2\pgffor@stop{%
 \pgffor@remember@@parse@old#1#2\pgffor@stop as#1(initially 0)\pgffor@@stop}

\def\pgffor@remember@@parse@old#1#2as#3#4\pgffor@@stop{%
 \pgffor@remember@@@parse@old{#1}{#3}#2#4\pgffor@stop\pgffor@@stop}

\def\pgffor@remember@@@parse@old#1#2#3(initially #4)#5\pgffor@stop#6\pgffor@@stop{%
 \pgfutil@append@tomacro{\pgffor@assign@after@code}{\edef#2{#1}}%
 \pgfutil@append@tomacro{\pgffor@remember@code}{\noexpand\def\noexpand#2{#2}}%
 \pgfutil@append@tomacro{\pgffor@assign@once@code}{\def#2{#4}}%
}

\def\pgffor@count@parse#1#2\pgffor@stop{%
 \pgffor@count@@parse#1#2\pgffor@stop from 1\pgffor@stop\pgffor@@stop}

\def\pgffor@count@@parse#1#2from#3\pgffor@stop#4\pgffor@@stop{%
 \pgfutil@append@tomacro\pgffor@remember@code{\noexpand\def\noexpand#1{#1}}%
 \pgfutil@append@tomacro\pgffor@assign@before@code{\pgfmathparse{int(#1+1)}\let#1=\pgfmathresult}%
 \pgfmathparse{int(#3-1)}\let#1=\pgfmathresult%
}

\def\pgfutil@append@macrotomacro#1#2{%
 \expandafter\expandafter\expandafter\def\expandafter\expandafter\expandafter%
 #1\expandafter\expandafter\expandafter{\expandafter#1#2}}

\def\pgfutil@append@tomacro#1#2{%
 \expandafter\def\expandafter#1\expandafter{#1#2}}

\endinput

% Copyright 2019 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\ProvidesPackageRCS{tikz.code.tex}

\def\tikzerror#1{\pgfutil@packageerror{tikz}{#1}{}}

% Always-present libraries (|\usepgflibrary| defined in
% \file{pgfutil-common.tex}).
\usepgflibrary{plothandlers}

\newdimen\tikz@lastx
\newdimen\tikz@lasty
\newdimen\tikz@lastxsaved
\newdimen\tikz@lastysaved
\newdimen\tikz@lastmovetox
\newdimen\tikz@lastmovetoy

\newdimen\tikzleveldistance
\newdimen\tikzsiblingdistance

\newbox\tikz@figbox
\newbox\tikz@figbox@bg
\newbox\tikz@tempbox
\newbox\tikz@tempbox@bg

\newcount\tikztreelevel
\newcount\tikznumberofchildren
\newcount\tikznumberofcurrentchild

\newcount\tikz@fig@count

\newif\iftikz@node@is@a@label
\newif\iftikz@snaked
\newif\iftikz@decoratepath

\let\tikz@options\pgfutil@empty
% |\tikz@addoption| adds \texttt{#1} at the end of the replacement
% text of |\tikz@options| without expansion.
\def\tikz@addoption#1{%
 \expandafter\def\expandafter\tikz@options\expandafter{\tikz@options#1}}%
% Same as |tikz@addoption| for |\tikz@mode|. Note that |\tikz@mode| is
% initially let to |\pgfutil@empty| later (see path usage options).
\def\tikz@addmode#1{%
 \expandafter\def\expandafter\tikz@mode\expandafter{\tikz@mode#1}}%
% Same as |tikz@addoption| for |\tikz@transform|. Works even if
% |\tikz@transform| is not defined. In that case, nothing is added to
% |\tikz@transform|: \texttt{#1} is expanded.
\def\tikz@addtransform#1{%
 \ifx\tikz@transform\relax
 #1%
 \else
 \expandafter\def\expandafter\tikz@transform\expandafter{\tikz@transform#1}%
 \fi
}%

% TikZ options management.

% Setting up the tikz key family (key management needs
% \file{pgfkeys.code.tex});
\pgfkeys{/tikz/.is family}%

% |\tikzset| is a shortcut to set keys that belongs to the tikz
% family.
\def\tikzset{\pgfqkeys{/tikz}}%

% Note: |\tikzoption| is supported for compatibility only. |\tikzset|
% should be used instead.
\def\tikzoption#1{%
 \pgfutil@ifnextchar[%]
 {\tikzoption@opt{#1}}{\tikzoption@noopt{#1}}}%
\def\tikzoption@opt#1[#2]#3{%
 \pgfkeysdef{/tikz/#1}{#3}%
 \pgfkeyssetvalue{/tikz/#1/.@def}{#2}}%
\def\tikzoption@noopt#1#2{%
 \pgfkeysdef{/tikz/#1}{#2}%
 \pgfkeyssetvalue{/tikz/#1/.@def}{\pgfkeysvaluerequired}}%

% Baseline options
\tikzoption{baseline}[0pt]{%
 \pgfutil@ifnextchar(%)
 {\tikz@baseline@coordinate}{\tikz@baseline@simple}#1\@nil}%
\def\tikz@baseline@simple#1\@nil{\pgfsetbaseline{#1}}%
\def\tikz@baseline@coordinate#1\@nil{%
 \pgfsetbaselinepointlater{\tikz@scan@one@point\pgfutil@firstofone#1}}%

\tikzoption{trim left}[0pt]{\pgfutil@ifnextchar({\tikz@trim@coordinate{left}}{\tikz@trim@simple{left}}#1\@nil}%)%
\tikzoption{trim right}{\pgfutil@ifnextchar({\tikz@trim@coordinate{right}}{\tikz@trim@simple{right}}#1\@nil}%)%
\def\tikz@trim@simple#1#2\@nil{\csname pgfsettrim#1\endcsname{#2}}%
\def\tikz@trim@coordinate#1#2\@nil{\csname pgfsettrim#1pointlater\endcsname{\tikz@scan@one@point\pgfutil@firstofone#2}}%

% Draw options
\tikzoption{line width}{\tikz@semiaddlinewidth{#1}}%

\def\tikz@semiaddlinewidth#1{\tikz@addoption{\pgfsetlinewidth{#1}}\pgfmathsetlength\pgflinewidth{#1}}%

\tikzoption{cap}{\tikz@addoption{\csname pgfset#1cap\endcsname}}%
\tikzoption{join}{\tikz@addoption{\csname pgfset#1join\endcsname}}%
\tikzoption{line cap}{\tikz@addoption{\csname pgfset#1cap\endcsname}}%
\tikzoption{line join}{\tikz@addoption{\csname pgfset#1join\endcsname}}%
\tikzoption{miter limit}{\tikz@addoption{\pgfsetmiterlimit{#1}}}%

\tikzoption{dash pattern}{% syntax: on 2pt off 3pt on 4pt ...
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\pgfutil@empty%
 \def\tikz@dashpattern{}%
 \tikz@addoption{\pgfsetdash{}{0pt}}%
 \else%
 \def\tikz@dashpattern{}%
 \expandafter\tikz@scandashon\pgfutil@gobble#1o\@nil%
 \edef\tikz@temp{{\tikz@dashpattern}{\noexpand\tikz@dashphase}}%
 \expandafter\tikz@addoption\expandafter{\expandafter\pgfsetdash\tikz@temp}%
 \fi}%
\tikzoption{dash phase}{%
 \def\tikz@dashphase{#1}%
 \edef\tikz@temp{{\tikz@dashpattern}{\noexpand\tikz@dashphase}}%
 \expandafter\tikz@addoption\expandafter{\expandafter\pgfsetdash\tikz@temp}%
}%
\tikzoption{dash}{\tikz@parse@full@dash#1\pgf@stop}%
\def\tikz@parse@full@dash#1phase#2\pgf@stop{%
 \def\tikz@dashphase{#2}%
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\pgfutil@empty%
 \def\tikz@dashpattern{}%
 \tikz@addoption{\pgfsetdash{}{0pt}}%
 \else%
 \def\tikz@dashpattern{}%
 \expandafter\tikz@scandashon\pgfutil@gobble#1o\@nil%
 \edef\tikz@temp{{\tikz@dashpattern}{\noexpand\tikz@dashphase}}%
 \expandafter\tikz@addoption\expandafter{\expandafter\pgfsetdash\tikz@temp}%
 \fi%
}%
\def\tikz@dashphase{0pt}%
\def\tikz@dashpattern{}%

\def\tikz@scandashon n#1o{%
 \expandafter\def\expandafter\tikz@dashpattern\expandafter{\tikz@dashpattern{#1}}%
 \pgfutil@ifnextchar\@nil{\pgfutil@gobble}{\tikz@scandashoff}}%
\def\tikz@scandashoff ff#1o{%
 \expandafter\def\expandafter\tikz@dashpattern\expandafter{\tikz@dashpattern{#1}}%
 \pgfutil@ifnextchar\@nil{\pgfutil@gobble}{\tikz@scandashon}}%

% use a decoration to expand the `off' section of a dash pattern.
% https://tex.stackexchange.com/a/133357
\tikzset{
 dash expand off/.code={%
 \ifcsname tikz@library@decorations@loaded\endcsname\else
 \tikzerror{You need \string\usetikzlibrary{decorations} for ``dash expand off''}%
 \fi
 \tikz@addoption{%
 \pgfgetpath\currentpath
 \pgfprocessround{\currentpath}{\currentpath}%
 \pgf@decorate@parsesoftpath{\currentpath}{\currentpath}%
 % All of \on, \off, \dashphase, \rest, and \onoff are unit-free.
 % Parse \on and \off from the current path
 \pgfmathsetmacro\on{\expandafter\pgfutil@firstoftwo\tikz@dashpattern}%
 \pgfmathsetmacro\off{\expandafter\pgfutil@secondoftwo\tikz@dashpattern}%
 % \dashphase = max(\on - \dashphase, 0)
 \pgfmathsetmacro\tikz@dashphase{\tikz@dashphase}%
 \pgfmathsubtract@{\on}{\tikz@dashphase}%
 \pgfmathmax@{\pgfmathresult,0}%
 \let\dashphase=\pgfmathresult
 % \rest = \pgf@decorate@totalpathlength - \on + 2\dashphase
 \edef\rest{\pgf@sys@tonumber\dimexpr\pgf@decorate@totalpathlength - \on pt + 2\dimexpr\dashphase pt\relax\relax}%
 % \onoff = \on + \off
 \edef\onoff{\pgf@sys@tonumber\dimexpr\on pt+\off pt\relax}%
 % \nfullonoff = max(floor(\rest/\onoff), 1)
 \pgfmathdivide@{\rest}{\onoff}%
 \pgfmathfloor@{\pgfmathresult}%
 \pgfmathmax@{\pgfmathresult,1}%
 % \offexpand = max(\rest/\nfullonoff - \on, \off)
 \pgfmathdivide@{\rest}{\pgfmathresult}%
 \pgfmathsubtract@{\pgfmathresult}{\on}%
 \pgfmathmax@{\pgfmathresult,\off}%
 \edef\tikz@marshal{\noexpand\pgfsetdash{{+\on pt}{+\pgfmathresult pt}}{+\dashphase pt}}%
 \tikz@marshal
 }%
 }
}

\tikzoption{draw opacity}{\tikz@addoption{\pgfsetstrokeopacity{#1}}}%

% Double draw options
\tikzoption{double}[]{%
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\tikz@nonetext%
 \tikz@addmode{\tikz@mode@doublefalse}%
 \else%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \pgfsetinnerstrokecolor{#1}%
 \fi%
 \tikz@addmode{\tikz@mode@doubletrue}%
 \tikzset{every double/.try}%
 \fi}%
\tikzoption{double distance}{%
 \pgfmathsetlength{\pgf@x}{#1}%
 \edef\tikz@double@setup{%
 \pgf@x=\the\pgf@x%
 \advance\pgf@x by2\pgflinewidth%
 \pgflinewidth=\pgf@x%
 \noexpand\pgfsetlinewidth{\pgflinewidth}%
 \noexpand\pgfsetinnerlinewidth{\the\pgf@x}%
 }%
 \tikzset{double}}%
\def\tikz@double@setup{%
 \pgf@x=2\pgflinewidth%
 \advance\pgf@x by0.6pt%
 \pgflinewidth=\pgf@x%
 \pgfsetlinewidth{\pgflinewidth}%
 \pgfsetinnerlinewidth{0.6pt}%
}%
\tikzset{double distance between line centers/.code={
 \pgfmathsetlength{\pgf@x}{#1}%
 \edef\tikz@double@setup{%
 \pgf@x=\pgflinewidth%
 \pgf@xa=\the\pgf@x%
 \advance\pgf@x by\pgf@xa%
 \advance\pgf@xa by-\pgflinewidth%
 \pgflinewidth=\pgf@x%
 \noexpand\pgfsetlinewidth{\pgflinewidth}%
 \noexpand\pgfsetinnerlinewidth{\pgf@xa}%
 }%
 \tikzset{double}}}%
\tikzset{double equal sign distance/.style={double distance between line centers=0.45ex}}%

% Fill options

\tikzoption{even odd rule}[]{\tikz@addoption{\pgfseteorule}}%
\tikzoption{nonzero rule}[]{\tikz@addoption{\pgfsetnonzerorule}}%

\tikzoption{fill opacity}{\tikz@addoption{\pgfsetfillopacity{#1}}}%

% Joined fill/draw options

\tikzoption{opacity}{\tikz@addoption{\pgfsetstrokeopacity{#1}\pgfsetfillopacity{#1}}}%

% Blend mode

\tikzset{blend mode/.code={\tikz@addoption{\pgfsetblendmode{#1}}}}%

% Main color options
\tikzoption{color}{%
 \tikz@addoption{%
 \ifx\tikz@fillcolor\pgfutil@empty%
 \ifx\tikz@strokecolor\pgfutil@empty%
 \else%
 \pgfsys@color@reset@inorderfalse%
 \let\tikz@strokecolor\pgfutil@empty%
 \let\tikz@fillcolor\pgfutil@empty%
 \fi%
 \else%
 \pgfsys@color@reset@inorderfalse%
 \let\tikz@strokecolor\pgfutil@empty%
 \let\tikz@fillcolor\pgfutil@empty%
 \fi%
 \pgfutil@colorlet{tikz@color}{#1}%
 \pgfutil@colorlet{.}{tikz@color}%
 %
 \pgfsetcolor{.}%
 \pgfsys@color@reset@inordertrue%
 }%
 \def\tikz@textcolor{#1}}%

% Rounding options
\tikzoption{rounded corners}[4pt]{\pgfsetcornersarced{\pgfpoint{#1}{#1}}}%
\tikzoption{sharp corners}[]{\pgfsetcornersarced{\pgfpointorigin}}%

% Radii and arc options
\tikzset{x radius/.initial=0pt}%
\tikzset{y radius/.initial=0pt}%
\tikzset{%
 radius/.code={%
 \pgfmathparse{#1}%
 \ifpgfmathunitsdeclared
 \pgfkeyssetevalue{/tikz/x radius}{\pgfmathresult pt}%
 \pgfkeyssetevalue{/tikz/y radius}{\pgfmathresult pt}%
 \else
 \pgfkeyssetevalue{/tikz/x radius}{\pgfmathresult}%
 \pgfkeyssetevalue{/tikz/y radius}{\pgfmathresult}%
 \fi
 }%
}%
\tikzset{start angle/.initial=}%
\tikzset{end angle/.initial=}%
\tikzset{delta angle/.initial=}%

% Coordinate options
\tikzoption{x}{\tikz@handle@vec{\pgfsetxvec}{\tikz@handle@x}#1\relax}%
\tikzoption{y}{\tikz@handle@vec{\pgfsetyvec}{\tikz@handle@y}#1\relax}%
\tikzoption{z}{\tikz@handle@vec{\pgfsetzvec}{\tikz@handle@z}#1\relax}%

\def\tikz@handle@vec#1#2{\pgfutil@ifnextchar({\tikz@handle@coordinate#1}{\tikz@handle@single#2}}%
\def\tikz@handle@coordinate#1{\tikz@scan@one@point#1}%
\def\tikz@handle@single#1#2\relax{#1{#2}}%
\def\tikz@handle@x#1{\pgfsetxvec{\pgfpoint{#1}{0pt}}}%
\def\tikz@handle@y#1{\pgfsetyvec{\pgfpoint{0pt}{#1}}}%
\def\tikz@handle@z#1{\pgfsetzvec{\pgfpoint{#1}{#1}}}%

% Transformation options
\tikzoption{scale}{\tikz@addtransform{\pgftransformscale{#1}}}%
\tikzoption{scale around}{\tikz@addtransform{\def\tikz@aroundaction{\pgftransformscale}\tikz@doaround{#1}}}%
\tikzoption{xscale}{\tikz@addtransform{\pgftransformxscale{#1}}}%
\tikzoption{xslant}{\tikz@addtransform{\pgftransformxslant{#1}}}%
\tikzoption{yscale}{\tikz@addtransform{\pgftransformyscale{#1}}}%
\tikzoption{yslant}{\tikz@addtransform{\pgftransformyslant{#1}}}%
\tikzoption{rotate}{\tikz@addtransform{\pgftransformrotate{#1}}}%
\tikzoption{rotate around}{\tikz@addtransform{\def\tikz@aroundaction{\pgftransformrotate}\tikz@doaround{#1}}}%
\def\tikz@doaround#1{%
 \edef\tikz@temp{#1}% get rid of active stuff
 \expandafter\tikz@doparseA\tikz@temp%
}%
\def\tikz@doparseA#1:{%
 \def\tikz@temp@rot{#1}%
 \tikz@scan@one@point\tikz@doparseB%
}%
\def\tikz@doparseB#1{%
 \pgf@process{#1}%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \pgftransformshift{\pgfqpoint{\pgf@xc}{\pgf@yc}}%
 \tikz@aroundaction{\tikz@temp@rot}%
 \pgftransformshift{\pgfqpoint{-\pgf@xc}{-\pgf@yc}}%
}%

\tikzoption{shift}{\tikz@addtransform{\tikz@scan@one@point\pgftransformshift#1\relax}}%
\tikzoption{xshift}{\tikz@addtransform{\pgftransformxshift{#1}}}%
\tikzoption{yshift}{\tikz@addtransform{\pgftransformyshift{#1}}}%
\tikzoption{cm}{\tikz@addtransform{\tikz@parse@cm#1\relax}}%
\tikzoption{reset cm}[]{\tikz@addtransform{\pgftransformreset}}%
\tikzoption{shift only}[]{\tikz@addtransform{\pgftransformresetnontranslations}}%

\def\tikz@parse@cm#1,#2,#3,#4,{%
 \def\tikz@p@cm{{#1}{#2}{#3}{#4}}%
 \tikz@scan@one@point\tikz@parse@cmA}%
\def\tikz@parse@cmA#1{%
 \expandafter\pgftransformcm\tikz@p@cm{#1}%
}%

\tikzset{transform canvas/.code=%
 {%
 \tikz@addoption
 {%
 {%
 \pgftransformreset%
 \let\tikz@transform=\relax%
 \tikzset{#1}%
 \pgflowlevelsynccm%
 }%
 \pgf@relevantforpicturesizefalse%
 }%
 }%
}%

\tikzset{turn/.code={%
 \pgf@x=0pt%
 \pgf@y\pgf@x%
 \pgf@process{\tikz@tangent}%
 \advance\pgf@x by-\tikz@lastx%
 \advance\pgf@y by-\tikz@lasty%
 \pgfpointnormalised{}% x/y = normalised vector
 \pgf@x=-\pgf@x%
 \pgf@ya=-\pgf@y%
 \pgftransformcm%
 {\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@ya}}%
 {\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@x}}{\pgfqpoint{\tikz@lastx}{\tikz@lasty}}%
 }%
}%

\def\tikz@tangent@lookup{%
 \pgfgetpath\tikz@temp%
 \pgfprocesspathextractpoints\tikz@temp%
 \pgfpointsecondlastonpath%
}%

% Code for rotating the xyz coordinate system
% around the x, y, or z vector.
%
\def\tikz@xyz@rotate@let{%
 \let\pgf@z=\pgf@yc%
 \let\pgf@za=\pgf@xc%
}%

\def\tikz@xyz@rotate@xyz@xaxis#1#2#3#4{%
 \tikz@xyz@rotate@let%
 \pgf@x=#1\relax%
 \pgf@ya=#2\relax%
 \pgf@za=#3\relax%
 \pgfmathsin@{#4}\let\tikz@xyz@sin=\pgfmathresult%
 \pgfmathcos@{#4}\let\tikz@xyz@cos=\pgfmathresult%
 \pgf@y=\tikz@xyz@cos\pgf@ya%
 \advance\pgf@y by-\tikz@xyz@sin\pgf@za%
 \pgf@z=\tikz@xyz@sin\pgf@ya%
 \advance\pgf@z by\tikz@xyz@cos\pgf@za%
}%

\def\tikz@xyz@rotate@xyz@yaxis#1#2#3#4{%
 \tikz@xyz@rotate@let%
 \pgf@xa=#1\relax%
 \pgf@y=#2\relax%
 \pgf@za=#3\relax%
 \pgfmathsin@{#4}\let\tikz@xyz@sin=\pgfmathresult%
 \pgfmathcos@{#4}\let\tikz@xyz@cos=\pgfmathresult%
 \pgf@x=\tikz@xyz@cos\pgf@xa%
 \advance\pgf@x by\tikz@xyz@sin\pgf@za%
 \pgf@z=-\tikz@xyz@sin\pgf@xa%
 \advance\pgf@z by\tikz@xyz@cos\pgf@za%
}%

\def\tikz@xyz@rotate@xyz@zaxis#1#2#3#4{%
 \tikz@xyz@rotate@let%
 \pgf@xa=#1\relax%
 \pgf@ya=#2\relax%
 \pgf@z=#3\relax%
 \pgfmathsin@{#4}\let\tikz@xyz@sin=\pgfmathresult%
 \pgfmathcos@{#4}\let\tikz@xyz@cos=\pgfmathresult%
 \pgf@x=\tikz@xyz@cos\pgf@xa%
 \advance\pgf@x by-\tikz@xyz@sin\pgf@ya%
 \pgf@y=\tikz@xyz@sin\pgf@xa%
 \advance\pgf@y by\tikz@xyz@cos\pgf@ya%
}%

\tikzset{rotate around x/.code={%
 \tikz@xyz@rotate@let%
 \pgfmathparse{#1}\let\tikz@xyz@angle=\pgfmathresult%
 \tikz@xyz@rotate@xyz@xaxis{0pt}{1pt}{0pt}{\tikz@xyz@angle}%
 \pgfextract@process\tikz@xyz@rotate@yvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \tikz@xyz@rotate@xyz@xaxis{0pt}{0pt}{1pt}{\tikz@xyz@angle}%
 \pgfsetzvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \pgfsetyvec{\tikz@xyz@rotate@yvec}%
 },
 rotate around y/.code={%
 \tikz@xyz@rotate@let%
 \pgfmathparse{#1}\let\tikz@xyz@angle=\pgfmathresult%
 \tikz@xyz@rotate@xyz@yaxis{1pt}{0pt}{0pt}{\tikz@xyz@angle}%
 \pgfextract@process\tikz@xyz@rotate@xvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \tikz@xyz@rotate@xyz@yaxis{0pt}{0pt}{1pt}{\tikz@xyz@angle}%
 \pgfsetzvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \pgfsetxvec{\tikz@xyz@rotate@xvec}%
 },
 rotate around z/.code={%
 \tikz@xyz@rotate@let%
 \pgfmathparse{#1}\let\tikz@xyz@angle=\pgfmathresult%
 \tikz@xyz@rotate@xyz@zaxis{1pt}{0pt}{0pt}{\tikz@xyz@angle}%
 \pgfextract@process\tikz@xyz@rotate@xvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \tikz@xyz@rotate@xyz@zaxis{0pt}{1pt}{0pt}{\tikz@xyz@angle}%
 \pgfsetyvec{\pgfpointxyz{\pgf@sys@tonumber{\pgf@x}}{\pgf@sys@tonumber{\pgf@y}}{\pgf@sys@tonumber{\pgf@z}}}%
 \pgfsetxvec{\tikz@xyz@rotate@xvec}%
 },
}%

% Grid options
\tikzoption{xstep}{\def\tikz@grid@x{#1}}%
\tikzoption{ystep}{\def\tikz@grid@y{#1}}%
\tikzoption{step}{\tikz@handle@vec{\tikz@step@point}{\tikz@step@single}#1\relax}%
\def\tikz@step@single#1{\def\tikz@grid@x{#1}\def\tikz@grid@y{#1}}%
\def\tikz@step@point#1{\pgf@process{#1}\edef\tikz@grid@x{\the\pgf@x}\edef\tikz@grid@y{\the\pgf@y}}%

\def\tikz@grid@x{1cm}%
\def\tikz@grid@y{1cm}%

% Current point updates
\newif\iftikz@current@point@local
\tikzset{current point is local/.is if=tikz@current@point@local}%

% Path usage options
\newif\iftikz@mode@double
\newif\iftikz@mode@fill
\newif\iftikz@mode@draw
\newif\iftikz@mode@clip
\newif\iftikz@mode@boundary
\newif\iftikz@mode@shade
\newif\iftikz@mode@fade@path
\newif\iftikz@mode@fade@scope
\let\tikz@mode=\pgfutil@empty

\def\tikz@nonetext{none}%

\tikzoption{path only}[]{\let\tikz@mode=\pgfutil@empty}%
\tikzset{
 shade/.is choice,
 shade/.default=true,
 shade/true/.code=\tikz@addmode{\tikz@mode@shadetrue},
 shade/false/.code=\tikz@addmode{\tikz@mode@shadefalse},
 shade/none/.code=\tikz@addmode{\tikz@mode@shadefalse},
}%

\tikzoption{fill}[]{%
 \edef\tikz@temp{#1}%
 \ifx\tikz@temp\tikz@nonetext%
 \tikz@addmode{\tikz@mode@fillfalse}%
 \else%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \tikz@addoption{\pgfsetfillcolor{#1}}%
 \def\tikz@fillcolor{#1}%
 \fi%
 \tikz@addmode{\tikz@mode@filltrue}%
 \fi%
}%
\tikzoption{draw}[]{%
 \edef\tikz@temp{#1}%
 \ifx\tikz@temp\tikz@nonetext%
 \tikz@addmode{\tikz@mode@drawfalse}%
 \else%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \tikz@addoption{\pgfsetstrokecolor{#1}}%
 \def\tikz@strokecolor{#1}%
 \fi%
 \tikz@addmode{\tikz@mode@drawtrue}%
 \fi%
}%
\tikzoption{clip}[]{\tikz@addmode{\tikz@mode@cliptrue}}%
\tikzoption{use as bounding box}[]{\tikz@addmode{\tikz@mode@boundarytrue}}%

\tikzoption{save path}{\tikz@addmode{\pgfsyssoftpath@getcurrentpath#1\global\let#1=#1}}%
\tikzoption{use path}{\tikz@addmode{\pgfsyssoftpath@setcurrentpath#1}}%

\let\tikz@fillcolor=\pgfutil@empty
\let\tikz@strokecolor=\pgfutil@empty

% Insert a path using an option
\tikzset{insert path/.code=\tikz@scan@next@command#1\pgf@stop}%

% Pattern options
\tikzset{pattern/.code=\tikzerror{You need to say \string\usetikzlibrary{patterns}},
 pattern color/.style=pattern}%

% Path pictures
\tikzset{path picture/.code=\tikz@addmode{\def\tikz@path@picture{#1}}}%

% Fading options
\tikzset{path fading/.code={
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\tikz@nonetext%
 \tikz@addmode{\tikz@mode@fade@pathfalse}%
 \else%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \def\tikz@path@fading{#1}%
 \fi%
 \tikz@addmode{\tikz@mode@fade@pathtrue}%
 \fi%
 },
 path fading/.default=,
 scope fading/.code={
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\tikz@nonetext%
 \tikz@addmode{\tikz@mode@fade@scopefalse}%
 \else%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \def\tikz@scope@fading{#1}%
 \fi%
 \tikz@addmode{\tikz@mode@fade@scopetrue}%
 \fi%
 },
 scope fading/.default=}%
\tikzset{fit fading/.is if=tikz@fade@adjust}%
\tikzset{fading transform/.store in=\tikz@fade@transform}%
\tikzset{fading angle/.style={fading transform={rotate={#1}}}}%

\newif\iftikz@fade@adjust%
\tikz@fade@adjusttrue%
\let\tikz@fade@transform\pgfutil@empty%

\pgfutil@colorlet{transparent}{pgftransparent}%
\def\tikz@do@fade@transform{\let\tikz@transform=\relax\expandafter\tikzset\expandafter{\tikz@fade@transform}}%

% Transparency groups
\newif\iftikz@transparency@group%
\tikzset{/tikz/transparency group/.code=\tikz@transparency@grouptrue\def\tikz@transparency@group@options{isolated=true,#1}\let\tikz@blend@group\pgfutil@empty}%
\tikzset{/tikz/blend group/.code=\tikz@transparency@grouptrue\def\tikz@transparency@group@options{isolated=true}\def\tikz@blend@group{\pgfsetblendmode{#1}}}%

\let\tikz@blend@group\pgfutil@empty

% Shading options
\tikzoption{shading}{\def\tikz@shading{#1}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{shading angle}{\def\tikz@shade@angle{#1}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{top color}{%
 \pgfutil@colorlet{tikz@axis@top}{#1}%
 \pgfutil@colorlet{tikz@axis@middle}{tikz@axis@top!50!tikz@axis@bottom}%
 \def\tikz@shading{axis}\def\tikz@shade@angle{0}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{bottom color}{%
 \pgfutil@colorlet{tikz@axis@bottom}{#1}%
 \pgfutil@colorlet{tikz@axis@middle}{tikz@axis@top!50!tikz@axis@bottom}%
 \def\tikz@shading{axis}\def\tikz@shade@angle{0}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{middle color}{%
 \pgfutil@colorlet{tikz@axis@middle}{#1}%
 \def\tikz@shading{axis}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{left color}{%
 \pgfutil@colorlet{tikz@axis@top}{#1}%
 \pgfutil@colorlet{tikz@axis@middle}{tikz@axis@top!50!tikz@axis@bottom}%
 \def\tikz@shading{axis}\def\tikz@shade@angle{90}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{right color}{%
 \pgfutil@colorlet{tikz@axis@bottom}{#1}%
 \pgfutil@colorlet{tikz@axis@middle}{tikz@axis@top!50!tikz@axis@bottom}%
 \def\tikz@shading{axis}\def\tikz@shade@angle{90}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{ball color}{\pgfutil@colorlet{tikz@ball}{#1}\def\tikz@shading{ball}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{inner color}{\pgfutil@colorlet{tikz@radial@inner}{#1}\def\tikz@shading{radial}\tikz@addmode{\tikz@mode@shadetrue}}%
\tikzoption{outer color}{\pgfutil@colorlet{tikz@radial@outer}{#1}\def\tikz@shading{radial}\tikz@addmode{\tikz@mode@shadetrue}}%

\def\tikz@shading{axis}%
\def\tikz@shade@angle{0}%

\pgfdeclareverticalshading[tikz@axis@top,tikz@axis@middle,tikz@axis@bottom]{axis}{100bp}{%
 color(0bp)=(tikz@axis@bottom);
 color(25bp)=(tikz@axis@bottom);
 color(50bp)=(tikz@axis@middle);
 color(75bp)=(tikz@axis@top);
 color(100bp)=(tikz@axis@top)}%

\pgfutil@colorlet{tikz@axis@top}{gray}%
\pgfutil@colorlet{tikz@axis@middle}{gray!50!white}%
\pgfutil@colorlet{tikz@axis@bottom}{white}%

\pgfdeclareradialshading[tikz@ball]{ball}{\pgfqpoint{-10bp}{10bp}}{%
 color(0bp)=(tikz@ball!15!white);
 color(9bp)=(tikz@ball!75!white);
 color(18bp)=(tikz@ball!70!black);
 color(25bp)=(tikz@ball!50!black);
 color(50bp)=(black)}%

\pgfutil@colorlet{tikz@ball}{blue}%

\pgfdeclareradialshading[tikz@radial@inner,tikz@radial@outer]{radial}{\pgfpointorigin}{%
 color(0bp)=(tikz@radial@inner);
 color(25bp)=(tikz@radial@outer);
 color(50bp)=(tikz@radial@outer)}%

\pgfutil@colorlet{tikz@radial@inner}{gray}%
\pgfutil@colorlet{tikz@radial@outer}{white}%

% Pin options
\tikzset{
 pin distance/.store in=\tikz@pin@distance,
 pin distance=3ex,
 pin position/.store in=\tikz@pin@default@pos,
 pin position=above,
 pin edge/.store in=\tikz@pin@edge@style,
 pin edge={},
 tikz@pin@post/.code={\global\let\tikz@pin@edge@style@smuggle=\tikz@pin@edge@style},
 tikz@pre@pin@edge/.code={%
 \toks0=\expandafter{\tikz@pin@edge@style@smuggle}%
 \edef\pgf@marshal{\noexpand\tikzset{tikz@pin@options/.style={\the\toks0}}}%
 \pgf@marshal
 },%
}%

\tikzset{%
 pin/.code={%
 \begingroup
 \ifnum\the\catcode`\:=\active\relax
 \def\tikz@next{%
 \endgroup
 \tikz@parse@pin@active@i{#1}}%
 \else
 \def\tikz@next{%
 \endgroup
 \pgfutil@ifnextchar[%]
 {\tikz@parse@pin@nonactive}
 {\tikz@parse@pin@nonactive[]}#1:\pgf@nil}%
 \fi
 \tikz@next}}%

\begingroup
 \catcode`\:=\active\relax

 \gdef\tikz@parse@pin@active@i#1{%
 \pgfutil@ifnextchar[%]
 {\tikz@parse@pin@active}
 {\tikz@parse@pin@active[]}#1:\pgf@nil}%

 \long\gdef\tikz@parse@pin@active[#1]#2:#3\pgf@nil{%
 \def\tikz@temp{#3}%
 \ifx\tikz@temp\pgfutil@empty
 % no position, use default
 \tikz@@parse@pin@active[#1]\tikz@pin@default@pos:#2:\pgf@nil%
 \else
 \tikz@@parse@pin@active[#1]#2:#3\pgf@nil%
 \fi}%

 \long\gdef\tikz@@parse@pin@active[#1]#2:#3:\pgf@nil{%
 \tikzset{%
 append after command = {%
 \bgroup
 [current point is local = true]
 \pgfextra{\let\tikz@save@last@node=\tikzlastnode\tikz@node@is@a@labelfalse}%
 node [tikz@label@angle = #2,
 anchor=@auto,
 every pin,
 #1,
 append after command = {%
 (\tikz@save@last@node)
 edge [every pin edge,
 tikz@pre@pin@edge,
 tikz@pin@options]
 (\tikzlastnode)},
 tikz@label@post = \tikz@pin@distance,
 tikz@pin@post] {#3}
 \egroup}}}%
\endgroup

\long\def\tikz@parse@pin@nonactive[#1]#2:#3\pgf@nil{%
 \def\tikz@temp{#3}%
 \ifx\tikz@temp\pgfutil@empty
 % no position, use default
 \tikz@@parse@pin@nonactive[#1]\tikz@pin@default@pos:#2:\pgf@nil%
 \else
 \tikz@@parse@pin@nonactive[#1]#2:#3\pgf@nil%
 \fi}%

\long\def\tikz@@parse@pin@nonactive[#1]#2:#3:\pgf@nil{%
 \tikzset{%
 append after command = {%
 \bgroup
 [current point is local = true]
 \pgfextra{\let\tikz@save@last@node=\tikzlastnode\tikz@node@is@a@labelfalse}%
 node [tikz@label@angle = #2,
 anchor=@auto,
 every pin,
 #1,
 append after command = {%
 (\tikz@save@last@node)
 edge [every pin edge,
 tikz@pre@pin@edge,
 tikz@pin@options]
 (\tikzlastnode)},
 tikz@label@post = \tikz@pin@distance,
 tikz@pin@post] {#3}
 \egroup}}}%

% Label and pin options

\tikzset{
 label distance/.store in=\tikz@label@distance,
 label distance=0pt,
 label position/.store in=\tikz@label@default@pos,
 label position=above,
 absolute/.is if=tikz@absolute,
 tikz@label@angle/.store in=\tikz@label@angle
}%

\newif\iftikz@absolute
\def\tikz@on@text{center}%

\tikzset{tikz@label@post/.code 2 args={
 \edef\tikz@label@angle{\tikz@label@angle}%
 \expandafter\pgfkeys@spdef\expandafter\tikz@label@angle\expandafter{\tikz@label@angle}%
 \csname tikz@label@angle@is@\tikz@label@angle\endcsname
 \ifx\tikz@label@angle\tikz@on@text%
 \def\tikz@node@at{\pgfpointanchor{\tikzlastnode}{center}}%
 \def\tikz@anchor{center}%
 \else%
 \iftikz@absolute%
 \pgftransformreset%
 \pgf@process{%
 \pgfpointshapeborder{\tikzlastnode}%
 {\pgfpointadd{\pgfpointanchor{\tikzlastnode}{center}}{\pgfpointpolar{\tikz@label@angle}{1pt}}}}%
 \edef\tikz@node@at{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
 \tikz@compute@direction{\tikz@label@angle}%
 \tikz@addtransform{\pgftransformshift{\pgfpointpolar{\tikz@label@angle}{#1}}}%
 \else%
 \pgf@process{\pgfpointanchor{\tikzlastnode}{\tikz@label@angle}}%
 \edef\tikz@node@at{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
 \pgf@xb=\pgf@x%
 \pgf@yb=\pgf@y%
 \pgf@process{\pgfpointanchor{\tikzlastnode}{center}}%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \tikz@label@simplefalse%
 \ifdim\pgf@xc=\pgf@xb\relax%
 \ifdim\pgf@yc=\pgf@yb\relax%
 \tikz@label@simpletrue%
 \fi%
 \fi%
 \iftikz@label@simple%
 \tikz@compute@direction{\tikz@label@angle}%
 \tikz@addtransform{\pgftransformshift{\pgfpointpolar{\tikz@label@angle}{#1}}}%
 \else%
 \pgf@process{\pgfpointnormalised{%
 \pgfpointdiff{\pgfpointtransformed{\pgfqpoint{\pgf@xc}{\pgf@yc}}}{\pgfpointtransformed{\pgfqpoint{\pgf@xb}{\pgf@yb}}}}}%
 \edef\pgf@marshal{%
 \noexpand\tikz@addtransform{\noexpand\pgftransformshift{\noexpand\pgfpointscale{#1}{
 \noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}}}%
 \pgf@marshal%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \pgf@x=\pgf@yc%
 \pgf@y=-\pgf@xc%
 \ifx\tikz@anchor\tikz@auto@text%
 \tikz@auto@anchor%
 \fi%
 \fi%
 \fi%
 \fi}
}%

\newif\iftikz@label@simple%

\tikzset{%
 label/.code={%
 \begingroup
 \ifnum\the\catcode`\:=\active\relax
 \def\tikz@next{%
 \endgroup
 \tikz@parse@label@active@i{#1}}%
 \else
 \def\tikz@next{%
 \endgroup
 \pgfutil@ifnextchar[%]
 {\tikz@parse@label@nonactive}
 {\tikz@parse@label@nonactive[]}#1:\pgf@nil}%
 \fi
 \tikz@next}}%

\begingroup
 \catcode`\:=\active\relax

 \gdef\tikz@parse@label@active@i#1{%
 \pgfutil@ifnextchar[%]
 {\tikz@parse@label@active}
 {\tikz@parse@label@active[]}#1:\pgf@nil}%

 \gdef\tikz@parse@label@active[#1]#2:#3\pgf@nil{%
 \def\tikz@temp{#3}%
 \ifx\tikz@temp\pgfutil@empty
 % no position, use default
 \tikz@@parse@label@active[#1]\tikz@label@default@pos:#2:\pgf@nil%
 \else
 \def\tikz@temp{#2}%
 \ifx\tikz@temp\pgfutil@empty
 \tikz@@parse@label@active[#1]\tikz@label@default@pos:#3\pgf@nil%
 \else
 \tikz@@parse@label@active[#1]#2:#3\pgf@nil%
 \fi
 \fi
 }%

 \gdef\tikz@@parse@label@active[#1]#2:#3:\pgf@nil{%
 \tikzset{%
 append after command = {%
 \bgroup
 [current point is local=true]
 \pgfextra{\let\tikz@save@last@fig@name=\tikz@last@fig@name\tikz@node@is@a@labelfalse}
 node [tikz@label@angle = #2,
 anchor=@auto,
 every label,
 #1,
 tikz@label@post = \tikz@label@distance] {\iftikz@handle@active@nodes\expandafter\scantokens\else\expandafter\pgfutil@firstofone\fi{#3\noexpand}}
 \pgfextra{\global\let\tikz@last@fig@name=\tikz@save@last@fig@name}
 \egroup}}}%
\endgroup

\def\tikz@parse@label@nonactive[#1]#2:#3\pgf@nil{%
 \def\tikz@temp{#3}%
 \ifx\tikz@temp\pgfutil@empty
 % no position, use default
 \tikz@@parse@label@nonactive[#1]\tikz@label@default@pos:#2:\pgf@nil%
 \else
 \def\tikz@temp{#2}%
 \ifx\tikz@temp\pgfutil@empty
 \tikz@@parse@label@nonactive[#1]\tikz@label@default@pos:#3\pgf@nil%
 \else
 \tikz@@parse@label@nonactive[#1]#2:#3\pgf@nil%
 \fi
 \fi
}%

\def\tikz@@parse@label@nonactive[#1]#2:#3:\pgf@nil{%
 \tikzset{%
 append after command = {%
 \bgroup
 [current point is local=true]
 \pgfextra{\let\tikz@save@last@fig@name=\tikz@last@fig@name\tikz@node@is@a@labelfalse}
 node [tikz@label@angle = #2,
 anchor=@auto,
 every label,
 #1,
 tikz@label@post = \tikz@label@distance] {\iftikz@handle@active@nodes\expandafter\scantokens\else\expandafter\pgfutil@firstofone\fi{#3\noexpand}}
 \pgfextra{\global\let\tikz@last@fig@name=\tikz@save@last@fig@name}
 \egroup}}}%

\expandafter\def\csname tikz@label@angle@is@right\endcsname{\def\tikz@label@angle{0}}%
\expandafter\def\csname tikz@label@angle@is@above right\endcsname{\def\tikz@label@angle{45}}%
\expandafter\def\csname tikz@label@angle@is@above\endcsname{\def\tikz@label@angle{90}}%
\expandafter\def\csname tikz@label@angle@is@above left\endcsname{\def\tikz@label@angle{135}}%
\expandafter\def\csname tikz@label@angle@is@left\endcsname{\def\tikz@label@angle{180}}%
\expandafter\def\csname tikz@label@angle@is@below left\endcsname{\def\tikz@label@angle{225}}%
\expandafter\def\csname tikz@label@angle@is@below\endcsname{\def\tikz@label@angle{270}}%
\expandafter\def\csname tikz@label@angle@is@below right\endcsname{\def\tikz@label@angle{315}}%

\def\tikz@compute@direction#1{%
 \ifx\tikz@anchor\tikz@auto@text%
 \let\tikz@do@auto@anchor=\relax
 \pgfmathsetcount{\c@pgf@counta}{#1}%
 \ifnum\c@pgf@counta<0\relax
 \advance\c@pgf@counta by 360\relax%
 \fi%
 \ifnum\c@pgf@counta>359\relax
 \advance\c@pgf@counta by-360\relax%
 \fi%
 \ifnum\c@pgf@counta<4\relax%
 \def\tikz@anchor{west}%
 \else\ifnum\c@pgf@counta<87\relax%
 \def\tikz@anchor{south west}%
 \else\ifnum\c@pgf@counta<94\relax%
 \def\tikz@anchor{south}%
 \else\ifnum\c@pgf@counta<177\relax%
 \def\tikz@anchor{south east}%
 \else\ifnum\c@pgf@counta<184\relax%
 \def\tikz@anchor{east}%
 \else\ifnum\c@pgf@counta<267\relax%
 \def\tikz@anchor{north east}%
 \else\ifnum\c@pgf@counta<274\relax%
 \def\tikz@anchor{north}%
 \else\ifnum\c@pgf@counta<357\relax%
 \def\tikz@anchor{north west}%
 \else%
 \def\tikz@anchor{west}%
 \fi\fi\fi\fi\fi\fi\fi\fi%
 \fi%
}%
\def\tikz@auto@text{@auto}%

% General node options
\tikzset{
 name/.code={\edef\tikz@fig@name{\tikz@pp@name{#1}}\let\tikz@id@name\tikz@fig@name},%
 name prefix/.initial=,%
 name suffix/.initial=,%
 local bounding box/.style={/pgf/local bounding box/.expanded=\tikz@pp@name{#1}}
}%
\def\tikz@pp@name#1{\csname pgfk@/tikz/name prefix\endcsname#1\csname pgfk@/tikz/name suffix\endcsname}%

\tikzset{
 node contents/.code=\def\tikz@node@content{#1},
 pic type/.code=\def\tikz@node@content{#1}, % alias
}%

\tikzset{
 behind path/.code=\def\tikz@whichbox{\tikz@figbox@bg},
 in front of path/.code=\def\tikz@whichbox{\tikz@figbox}
}%
\def\tikz@whichbox{\tikz@figbox}%

\tikzoption{at}{\tikz@scan@one@point\tikz@set@at#1}%
\def\tikz@set@at#1{\def\tikz@node@at{#1}}%

\tikzoption{shape}{\edef\tikz@shape{#1}}%

\tikzoption{nodes}{\tikzset{every node/.append style={#1}}}%

\tikzset{alias/.code={%
 \tikz@fig@mustbenamed
 \begingroup
 \toks0=\expandafter{\tikz@alias}%
 \edef\pgf@temp{\noexpand\pgfnodealias{\tikz@pp@name{#1}}{\noexpand\tikz@fig@name}}%
 \toks1=\expandafter{\pgf@temp}%
 \xdef\pgf@marshal{%
 \noexpand\def\noexpand\tikz@alias{\the\toks0 \the\toks1 }%
 }%
 \endgroup
 \pgf@marshal
}}%

% deprecated:
\def\tikzaddafternodepathoption#1{#1\tikzset{prefix after command={\pgfextra{#1}}}}%
\tikzset{after node path/.style={append after command={#1}}}%

% Pic options
\tikzset{pic text/.store in=\tikzpictext}%
\let\tikzpictext\relax
\tikzset{pic text options/.store in=\tikzpictextoptions}%
\let\tikzpictextoptions\pgfutil@empty

% Anchoring

\tikzoption{anchor}{\def\tikz@anchor{#1}\let\tikz@do@auto@anchor=\relax}%

\tikzoption{left}[]{\def\tikz@anchor{east}\tikz@possibly@transform{x}{-}{#1}}%
\tikzoption{right}[]{\def\tikz@anchor{west}\tikz@possibly@transform{x}{}{#1}}%
\tikzoption{above}[]{\def\tikz@anchor{south}\tikz@possibly@transform{y}{}{#1}}%
\tikzoption{below}[]{\def\tikz@anchor{north}\tikz@possibly@transform{y}{-}{#1}}%
\tikzoption{above left}[]%
 {\def\tikz@anchor{south east}%
 \tikz@possibly@transform{x}{-}{#1}\tikz@possibly@transform{y}{}{#1}}%
\tikzoption{above right}[]%
 {\def\tikz@anchor{south west}%
 \tikz@possibly@transform{x}{}{#1}\tikz@possibly@transform{y}{}{#1}}%
\tikzoption{below left}[]%
 {\def\tikz@anchor{north east}%
 \tikz@possibly@transform{x}{-}{#1}\tikz@possibly@transform{y}{-}{#1}}%
\tikzoption{below right}[]%
 {\def\tikz@anchor{north west}%
 \tikz@possibly@transform{x}{}{#1}\tikz@possibly@transform{y}{-}{#1}}%
\tikzset{centered/.code=\def\tikz@anchor{center}}%

\tikzoption{node distance}{\def\tikz@node@distance{#1}}%
\def\tikz@node@distance{1cm}%

% The following are deprecated:
\tikzoption{above of}{\tikz@of{#1}{90}}%
\tikzoption{below of}{\tikz@of{#1}{-90}}%
\tikzoption{left of}{\tikz@of{#1}{180}}%
\tikzoption{right of}{\tikz@of{#1}{0}}%
\tikzoption{above left of}{\tikz@of{#1}{135}}%
\tikzoption{below left of}{\tikz@of{#1}{-135}}%
\tikzoption{above right of}{\tikz@of{#1}{45}}%
\tikzoption{below right of}{\tikz@of{#1}{-45}}%
\def\tikz@of#1#2{%
 \def\tikz@anchor{center}%
 \let\tikz@do@auto@anchor=\relax%
 \tikz@addtransform{%
 \expandafter\tikz@extract@node@dist\tikz@node@distance and\pgf@stop%
 \pgftransformshift{\pgfpointpolar{#2}{\tikz@extracted@node@distance}}}%
 \def\tikz@node@at{\pgfpointanchor{\tikz@pp@name{#1}}{center}}}%
\def\tikz@extract@node@dist#1and#2\pgf@stop{%
 \def\tikz@extracted@node@distance{#1}}%

\tikzset{
 transform shape nonlinear/.is choice,
 transform shape nonlinear/.default=true,
 transform shape nonlinear/true/.code=\let\tikz@nlt\relax,
 transform shape nonlinear/false/.code=\def\tikz@nlt{\pgfapproximatenonlineartranslation},
 transform shape nonlinear=false,
}%

\tikzoption{transform shape}[true]{%
 \csname tikz@fullytransformed#1\endcsname%
 \iftikz@fullytransformed%
 \pgfresetnontranslationattimefalse%
 \else%
 \pgfresetnontranslationattimetrue%
 \fi%
}%

\newif\iftikz@fullytransformed
\pgfresetnontranslationattimetrue%

\def\tikz@anchor{center}%
\def\tikz@shape{rectangle}%

\def\tikz@possibly@transform#1#2#3{%
 \let\tikz@do@auto@anchor=\relax%
 \def\tikz@test{#3}%
 \ifx\tikz@test\pgfutil@empty%
 \else%
 \pgfmathsetlength{\pgf@x}{#3}%
 \pgf@x=#2\pgf@x\relax%
 \edef\tikz@marshal{\noexpand\tikz@addtransform{%
 \expandafter\noexpand\csname pgftransform#1shift\endcsname{\the\pgf@x}}}%
 \tikz@marshal%
 \fi%
}%

% Inter-picture options
\tikzoption{remember picture}[true]{\csname pgfrememberpicturepositiononpage#1\endcsname}
\tikzset{
 overlay/.is choice,
 overlay/true/.code={\pgf@relevantforpicturesizefalse},
 overlay/false/.code={\pgf@relevantforpicturesizetrue},
 overlay/.default=true
}

% Line/curve label placement options
\tikzoption{sloped}[true]{\csname pgfslopedattime#1\endcsname}%
\tikzoption{allow upside down}[true]{\csname pgfallowupsidedownattime#1\endcsname}%

\tikzoption{pos}{\edef\tikz@time{#1}\ifx\tikz@time\pgfutil@empty\else\pgfmathsetmacro\tikz@time{\tikz@time}\fi}%

\tikzoption{auto}[]{\csname tikz@install@auto@anchor@#1\endcsname}%
\tikzoption{swap}[]{%
 \def\tikz@temp{left}%
 \ifx\tikz@auto@anchor@direction\tikz@temp%
 \def\tikz@auto@anchor@direction{right}%
 \else%
 \def\tikz@auto@anchor@direction{left}%
 \fi%
}%
\tikzset{'/.style=swap}% shorthand

\def\tikz@install@auto@anchor@{\let\tikz@do@auto@anchor=\tikz@auto@anchor@on}%
\def\tikz@install@auto@anchor@false{\let\tikz@do@auto@anchor=\relax}%
\def\tikz@install@auto@anchor@left{\let\tikz@do@auto@anchor=\tikz@auto@anchor@on\def\tikz@auto@anchor@direction{left}}%
\def\tikz@install@auto@anchor@right{\let\tikz@do@auto@anchor=\tikz@auto@anchor@on\def\tikz@auto@anchor@direction{right}}%

\let\tikz@do@auto@anchor=\relax%

\def\tikz@auto@anchor@on{\csname tikz@auto@anchor@\tikz@auto@anchor@direction\endcsname}

\def\tikz@auto@anchor@left{\tikz@auto@pre\tikz@auto@anchor\tikz@auto@post}%
\def\tikz@auto@anchor@right{\tikz@auto@pre\tikz@auto@anchor@prime\tikz@auto@post}%

\def\tikz@auto@anchor@direction{left}%

% Text options
\tikzoption{text}{\def\tikz@textcolor{#1}}%
\tikzoption{font}{\def\tikz@textfont{#1}}%
\tikzoption{node font}{\def\tikz@node@textfont{#1}}%
\tikzoption{text opacity}{\def\tikz@textopacity{#1}}%
\tikzoption{text width}{\def\tikz@text@width{#1}}%
\tikzoption{text height}{\def\tikz@text@height{#1}}%
\tikzoption{text depth}{\def\tikz@text@depth{#1}}%
\tikzoption{text ragged}[]%
{\def\tikz@text@action{\pgfutil@raggedright\rightskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax}}%
\tikzoption{text badly ragged}[]{\def\tikz@text@action{\pgfutil@raggedright\relax}}%
\tikzoption{text ragged left}[]%
{\def\tikz@text@action{\pgfutil@raggedleft\leftskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax}}%
\tikzoption{text badly ragged left}[]{\def\tikz@text@action{\pgfutil@raggedleft\relax}}%
\tikzoption{text justified}[]{\def\tikz@text@action{\leftskip0pt\rightskip0pt\relax}}%
\tikzoption{text centered}[]{\def\tikz@text@action{%
 \leftskip0pt plus2em%
 \rightskip0pt plus2em%
 \spaceskip.3333em \xspaceskip.5em%
 \parfillskip=0pt%
 \iftikz@warn@for@narrow@centered\else\hbadness10000\fi%
 \let\\=\@centercr% for latex
 \relax}}%
\tikzoption{text badly centered}[]%
{\def\tikz@text@action{%
 \let\\=\@centercr% for latex
 \parfillskip=0pt%
 \rightskip\pgfutil@flushglue%
 \leftskip\pgfutil@flushglue\relax}}%
\tikzset{badness warnings for centered text/.is if=tikz@warn@for@narrow@centered}%
\newif\iftikz@warn@for@narrow@centered

\def\tikz@text@reset{%
 \let\tikz@text@width=\pgfutil@empty
 \let\tikz@text@height=\pgfutil@empty
 \let\tikz@text@depth=\pgfutil@empty
 \let\tikz@textcolor=\pgfutil@empty
 \let\tikz@textfont=\pgfutil@empty
 \let\tikz@textopacity=\pgfutil@empty
 \let\tikz@node@textfont=\pgfutil@empty
 \def\tikz@text@action{\pgfutil@raggedright\rightskip0pt plus2em \spaceskip.3333em \xspaceskip.5em\relax}%
}
\tikz@text@reset

% Alignment
\tikzset{
 node halign header/.initial=,
 align/.is choice,
 align/left/.style ={text ragged,node halign header=\tikz@align@left@header},
 align/flush left/.style ={text badly ragged,node halign header=\tikz@align@left@header},
 align/right/.style ={text ragged left,node halign header=\tikz@align@right@header},
 align/flush right/.style ={text badly ragged left,node halign header=\tikz@align@right@header},
 align/center/.style={text centered,node halign header=\tikz@align@center@header},
 align/flush center/.style={text badly centered,node halign header=\tikz@align@center@header},
 align/justify/.style ={text justified,node halign header=\tikz@align@left@header},
 align/none/.style ={text justified,node halign header=},
}%
\def\tikz@align@left@header{##\hfil\cr}%
\def\tikz@align@right@header{\hfil##\cr}%
\def\tikz@align@center@header{\hfil##\hfil\cr}%

% Arrow options
\tikzoption{arrows}{\tikz@processarrows{#1}}%

\tikzoption{>}{\pgfdeclarearrow{name=<->,means={#1}}}%
\pgfdeclarearrow{name=|<->|, means={>[sep=0pt].|}}%

\tikzoption{shorten <}{\pgfsetshortenstart{#1}}%
\tikzoption{shorten >}{\pgfsetshortenend{#1}}%

\def\tikz@processarrows#1{%
 \def\tikz@current@arrows{#1}%
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\pgfutil@empty%
 \else%
 \pgfsetarrows{#1}%
 \fi%
}%

\def\tikz@current@arrows{-}%

% Parabola options
\tikzoption{bend}{\tikz@scan@one@point\tikz@set@parabola@bend#1\relax}%
\tikzoption{bend pos}{\def\tikz@parabola@bend@factor{#1}}%
\tikzoption{parabola height}{%
 \def\tikz@parabola@bend@factor{.5}%
 \def\tikz@parabola@bend{\pgfpointadd{\pgfpoint{0pt}{#1}}{\tikz@last@position@saved}}}%

\def\tikz@parabola@bend{\tikz@last@position@saved}%
\def\tikz@parabola@bend@factor{0}%

\def\tikz@set@parabola@bend#1{\def\tikz@parabola@bend{#1}}%

% Axis options
\tikzoption{domain}{\edef\tikz@plot@domain{#1}\expandafter\tikz@plot@samples@recalc\tikz@plot@domain\relax}%
\tikzoption{range}{\def\tikz@plot@range{#1}}%
\tikzoption{yrange}{\def\tikz@plot@range{#1}}%
\let\tikz@plot@range=\pgfutil@empty
\tikzoption{xrange}{\def\tikz@plot@xrange{#1}}%
\let\tikz@plot@xrange=\pgfutil@empty

% Plot options
\tikzoption{smooth}[]{\let\tikz@plot@handler=\pgfplothandlercurveto}%
\tikzoption{smooth cycle}[]{\let\tikz@plot@handler=\pgfplothandlerclosedcurve}%
\tikzoption{sharp plot}[]{\let\tikz@plot@handler\pgfplothandlerlineto}%
\tikzoption{sharp cycle}[]{\let\tikz@plot@handler\pgfplothandlerpolygon}%

\tikzoption{tension}{\pgfsetplottension{#1}}%

\tikzoption{xcomb}[]{\let\tikz@plot@handler=\pgfplothandlerxcomb}%
\tikzoption{ycomb}[]{\let\tikz@plot@handler=\pgfplothandlerycomb}%
\tikzoption{polar comb}[]{\let\tikz@plot@handler=\pgfplothandlerpolarcomb}%
\tikzoption{ybar}[]{\let\tikz@plot@handler=\pgfplothandlerybar}%
\tikzoption{ybar interval}[]{\let\tikz@plot@handler=\pgfplothandlerybarinterval}%
\tikzoption{xbar interval}[]{\let\tikz@plot@handler=\pgfplothandlerxbarinterval}%
\tikzoption{xbar}[]{\let\tikz@plot@handler=\pgfplothandlerxbar}%
\tikzoption{const plot}[]{\let\tikz@plot@handler=\pgfplothandlerconstantlineto}%
\tikzoption{const plot mark left}[]{\let\tikz@plot@handler=\pgfplothandlerconstantlineto}%
\tikzoption{const plot mark right}[]{\let\tikz@plot@handler=\pgfplothandlerconstantlinetomarkright}%
\tikzoption{const plot mark mid}[]{\let\tikz@plot@handler=\pgfplothandlerconstantlinetomarkmid}%
\tikzoption{jump mark right}[]{\let\tikz@plot@handler=\pgfplothandlerjumpmarkright}%
\tikzoption{jump mark mid}[]{\let\tikz@plot@handler=\pgfplothandlerjumpmarkmid}%
\tikzoption{jump mark left}[]{\let\tikz@plot@handler=\pgfplothandlerjumpmarkleft}%

\tikzoption{raw gnuplot}[true]{\csname tikz@plot@raw@gnuplot#1\endcsname}%
\tikzoption{prefix}{\def\tikz@plot@prefix{#1}}%
\tikzoption{id}{\def\tikz@plot@id{#1}}%

\tikzoption{samples}{\pgfmathsetmacro\tikz@plot@samples{max(2,#1)}\expandafter\tikz@plot@samples@recalc\tikz@plot@domain\relax}%
\tikzoption{samples at}{\def\tikz@plot@samplesat{#1}}%
\tikzoption{parametric}[true]{\csname tikz@plot@parametric#1\endcsname}%

\tikzoption{variable}{\def\tikz@plot@var{#1}}%

\tikzoption{only marks}[]{\let\tikz@plot@handler\pgfplothandlerdiscard}%

\tikzoption{mark}{%
 \def\tikz@plot@mark{#1}%
 \def\tikz@temp{none}%
 \ifx\tikz@temp\tikz@plot@mark
 \let\tikz@plot@mark=\pgfutil@empty
 \fi
}%
\tikzset{
 no marks/.style={mark=none},%
 no markers/.style={mark=none},%
 every mark/.style={},
 mark options/.style={%
 every mark/.style={#1}%
 }}%
\tikzoption{mark size}{\pgfsetplotmarksize{#1}}%

\tikzoption{mark indices}{\def\tikz@mark@list{#1}}%
\tikzoption{mark phase}{\pgfsetplotmarkphase{#1}}%
\tikzoption{mark repeat}{\pgfsetplotmarkrepeat{#1}}%

\let\tikz@mark@list=\pgfutil@empty

\let\tikz@plot@handler=\pgfplothandlerlineto
\let\tikz@plot@mark=\pgfutil@empty

\def\tikz@plot@samples{25}%
\def\tikz@plot@domain{-5:5}%
\def\tikz@plot@var{\x}%
\def\tikz@plot@samplesat{-5,-4.5833333,...,5}%
\def\tikz@plot@samples@recalc#1:#2\relax{%
 \begingroup
 \pgfmathparse{#1}%
 \let\tikz@temp@start=\pgfmathresult%
 \pgfmathparse{#2}%
 \let\tikz@temp@end=\pgfmathresult%
 \pgfmathsetmacro\tikz@temp@diff{(\tikz@temp@end-\tikz@temp@start)/(\tikz@plot@samples-1)}%
 %
 % this particular item is for backwards compatibility.
 % Pgfplots <= 1.8 called 'samples' in a context where the 'fpu' was
 % active... and I fear there is no simple solution to replace the
 % new \ifdim below. Sorry.
 \pgfkeys{/pgf/fpu/output format/fixed/.try}%
 %
 \pgfmathsetmacro\tikz@temp@diff@abs{abs(\tikz@temp@diff)}%
 \ifdim\tikz@temp@diff@abs pt<0.0001pt\relax%
 \edef\tikz@plot@samplesat{\tikz@temp@start,\tikz@temp@end}%
 \else%
 \pgfmathparse{\tikz@temp@start+\tikz@temp@diff}%
 \edef\tikz@plot@samplesat{\tikz@temp@start,\pgfmathresult,...,\tikz@temp@end}%
 \fi%
 \pgfmath@smuggleone\tikz@plot@samplesat
 \endgroup
}%

\def\tikz@plot@prefix{\jobname.}%
\def\tikz@plot@id{pgf-plot}%

\newif\iftikz@plot@parametric
\newif\iftikz@plot@raw@gnuplot

%
% To and edge options
%
\tikzoption{to path}{\def\tikz@to@path{#1}}%

\def\tikz@to@path{-- (\tikztotarget) \tikztonodes}%

\tikzset{edge macro/.store in=\tikz@edge@macro}%
\let\tikz@edge@macro\pgfutil@empty

\tikzset{
 edge node/.code={
 \expandafter\def\expandafter\tikz@tonodes\expandafter{\tikz@tonodes #1}
 },
 edge label/.style={/tikz/edge node={node[auto]{#1}}},
 edge label'/.style={/tikz/edge node={node[auto,swap]{#1}}},
}%

% After command options
\tikzset{
 append after command/.code=\expandafter\def\expandafter\tikz@after@path\expandafter{\tikz@after@path#1},
 prefix after command/.code={%
 \def\tikz@temp{#1}%
 \expandafter\expandafter\expandafter\def%
 \expandafter\expandafter\expandafter\tikz@after@path%
 \expandafter\expandafter\expandafter{%
 \expandafter\tikz@temp\tikz@after@path}%
 },
}%
\let\tikz@after@path\pgfutil@empty

% Tree options
\newif\iftikz@child@missing
\pgfkeys{/tikz/missing/.is if=tikz@child@missing}%

\tikzset{edge from parent macro/.initial=\tikz@edge@from@parent@macro}%
\def\tikz@edge@from@parent@macro#1#2{
 [style=edge from parent, #1, /utils/exec=\tikz@node@is@a@labeltrue] \tikz@edge@to@parent@path #2}%

\tikzoption{edge from parent path}{\def\tikz@edge@to@parent@path{#1}}%

\tikzoption{parent anchor}{\def\tikzparentanchor{.#1}\ifx\tikzparentanchor\tikz@border@text\let\tikzparentanchor\pgfutil@empty\fi}%
\tikzoption{child anchor}{\def\tikzchildanchor{.#1}\ifx\tikzchildanchor\tikz@border@text\let\tikzchildanchor\pgfutil@empty\fi}%

\tikzoption{level distance}{\pgfmathsetlength\tikzleveldistance{#1}}%
\tikzoption{sibling distance}{\pgfmathsetlength\tikzsiblingdistance{#1}}%

\tikzoption{growth function}{\let\tikz@grow=#1}%

\tikzset{grow siblings on line/.style={growth function=\tikz@grow@direction}}%

\tikzoption{growth parent anchor}{\def\tikz@growth@anchor{#1}}%
\tikzoption{grow}{\tikz@set@growth{#1}\edef\tikz@special@level{\the\tikztreelevel}}%
\tikzoption{grow'}{\tikz@set@growth{#1}\tikz@swap@growth\edef\tikz@special@level{\the\tikztreelevel}}%

\def\tikz@growth@anchor{center}%

\def\tikz@special@level{-1}% never

\def\tikz@swap@growth{%
 % Swap left and right
 \let\tikz@temp=\tikz@angle@grow@right%
 \let\tikz@angle@grow@right=\tikz@angle@grow@left%
 \let\tikz@angle@grow@left=\tikz@temp%
}%

\def\tikz@set@growth#1{%
 \let\tikz@grow=\tikz@grow@direction%
 \expandafter\ifx\csname tikz@grow@direction@#1\endcsname\relax%
 \c@pgf@counta=#1\relax%
 \else%
 \c@pgf@counta=\csname tikz@grow@direction@#1\endcsname%
 \fi%
 \edef\tikz@angle@grow{\the\c@pgf@counta}%
 \advance\c@pgf@counta by-90\relax%
 \edef\tikz@angle@grow@left{\the\c@pgf@counta}%
 \advance\c@pgf@counta by180\relax%
 \edef\tikz@angle@grow@right{\the\c@pgf@counta}%
}%

\def\tikz@border@text{.border}%
\let\tikzparentanchor=\pgfutil@empty
\let\tikzchildanchor=\pgfutil@empty
\def\tikz@edge@to@parent@path{(\tikzparentnode\tikzparentanchor) -- (\tikzchildnode\tikzchildanchor)}%

\tikzleveldistance=15mm%
\tikzsiblingdistance=15mm%

\def\tikz@grow@direction@down{-90}%
\def\tikz@grow@direction@up{90}%
\def\tikz@grow@direction@left{180}%
\def\tikz@grow@direction@right{0}%

\def\tikz@grow@direction@south{-90}%
\def\tikz@grow@direction@north{90}%
\def\tikz@grow@direction@west{180}%
\def\tikz@grow@direction@east{0}%

\expandafter\def\csname tikz@grow@direction@north east\endcsname{45}%
\expandafter\def\csname tikz@grow@direction@north west\endcsname{135}%
\expandafter\def\csname tikz@grow@direction@south east\endcsname{-45}%
\expandafter\def\csname tikz@grow@direction@south west\endcsname{-135}%

\def\tikz@grow@direction{%
 \pgftransformshift{\pgfpointpolar{\tikz@angle@grow}{\tikzleveldistance}}%
 \ifnum\tikztreelevel=\tikz@special@level%
 \else%
 \pgf@xc=.5\tikzsiblingdistance%
 \c@pgf@counta=\tikznumberofchildren%
 \advance\c@pgf@counta by1\relax%
 \pgfutil@tempdima=\c@pgf@counta\pgf@xc%
 \pgftransformshift{\pgfpointpolar{\tikz@angle@grow@left}{\pgfutil@tempdima}}%
 \pgftransformshift{\pgfpointpolar{\tikz@angle@grow@right}{\tikznumberofcurrentchild\tikzsiblingdistance}}%
 \fi%
}%

\tikzset{grow=down}%

% Snakes are in a lib:
\tikzset{snake/.code=\tikzerror{You need to say \string\usetikzlibrary{snakes}}}%

% Decorations
\tikzset{decorate/.code=\tikzerror{You need to load a decoration library}}%

% Matrix options
\usepgfmodule{matrix}%

\tikzoption{matrix}[true]{\csname tikz@is@matrix#1\endcsname}%

\tikzoption{matrix anchor}{\def\tikz@matrix@anchor{#1}}%

\tikzoption{column sep}{\def\pgfmatrixcolumnsep{#1}}%
\tikzoption{row sep}{\def\pgfmatrixrowsep{#1}}%

\tikzoption{cells}{\tikzset{every cell/.append style={#1}}}%

\tikzoption{ampersand replacement}{\def\tikz@ampersand@replacement{#1}}%

\newif\iftikz@is@matrix
\let\tikz@matrix@anchor=\pgfutil@empty
\let\tikz@ampersand@replacement=\pgfutil@empty

% Automatic shorthand management
\tikzset{%
 handle active characters in code/.is if=tikz@handle@active@code,
 handle active characters in nodes/.is if=tikz@handle@active@nodes,
}%
\newif\iftikz@handle@active@code
\newif\iftikz@handle@active@nodes

% Execute option
\tikzoption{execute at begin picture}{\expandafter\def\expandafter\tikz@atbegin@picture\expandafter{\tikz@atbegin@picture#1}}%
\tikzoption{execute at end picture}{\expandafter\def\expandafter\tikz@atend@picture\expandafter{\tikz@atend@picture#1}}%
\tikzoption{execute at begin scope}{\expandafter\def\expandafter\tikz@atbegin@scope\expandafter{\tikz@atbegin@scope#1}}%
\tikzoption{execute at end scope}{\expandafter\def\expandafter\tikz@atend@scope\expandafter{\tikz@atend@scope#1}}%
\tikzoption{execute at begin to}{\expandafter\def\expandafter\tikz@atbegin@to\expandafter{\tikz@atbegin@to#1}}%
\tikzoption{execute at end to}{\expandafter\def\expandafter\tikz@atend@to\expandafter{\tikz@atend@to#1}}%
\tikzoption{execute at begin node}{\expandafter\def\expandafter\tikz@atbegin@node\expandafter{\tikz@atbegin@node#1}}%
\tikzoption{execute at end node}{\expandafter\def\expandafter\tikz@atend@node\expandafter{\tikz@atend@node#1}}%
\tikzoption{execute at begin matrix}{\expandafter\def\expandafter\tikz@atbegin@matrix\expandafter{\tikz@atbegin@matrix#1}}%
\tikzoption{execute at end matrix}{\expandafter\def\expandafter\tikz@atend@matrix\expandafter{\tikz@atend@matrix#1}}%
\tikzoption{execute at begin cell}{\expandafter\def\expandafter\tikz@atbegin@cell\expandafter{\tikz@atbegin@cell#1}}%
\tikzoption{execute at end cell}{\expandafter\def\expandafter\tikz@atend@cell\expandafter{\tikz@atend@cell#1}}%
\tikzoption{execute at empty cell}{\expandafter\def\expandafter\tikz@at@emptycell\expandafter{\tikz@at@emptycell#1}}%

\let\tikz@atbegin@picture=\pgfutil@empty
\let\tikz@atend@picture=\pgfutil@empty
\let\tikz@atbegin@scope=\pgfutil@empty
\let\tikz@atend@scope=\pgfutil@empty
\let\tikz@atbegin@to=\pgfutil@empty
\let\tikz@atend@to=\pgfutil@empty
\let\tikz@atbegin@node=\pgfutil@empty
\let\tikz@atend@node=\pgfutil@empty
\let\tikz@atbegin@cell=\pgfutil@empty
\let\tikz@atend@cell=\pgfutil@empty
\let\tikz@at@emptycell=\pgfutil@empty
\let\tikz@atbegin@matrix=\pgfutil@empty
\let\tikz@atend@matrix=\pgfutil@empty

% Pre and post actions
\tikzset{preaction/.code=\expandafter\def\expandafter\tikz@preactions\expandafter{\tikz@preactions\tikz@extra@preaction{#1}}}%
\tikzset{postaction/.code=\expandafter\def\expandafter\tikz@postactions\expandafter{\tikz@postactions\tikz@extra@postaction{#1}}}%
\let\tikz@preactions=\pgfutil@empty
\let\tikz@postactions=\pgfutil@empty

% Styles
\tikzoption{set style}{\tikzstyle#1}%

% Handled in a special way.
\def\tikzstyle{\pgfutil@ifnextchar\bgroup\tikz@style@parseA\tikz@style@parseB}%
\def\tikz@style@parseB#1={\tikz@style@parseA{#1}=}%
\def\tikz@style@parseA#1#2=#3[#4]{% check for an optional argument
 \pgfutil@in@[{#2}%]
 \ifpgfutil@in@%
 \tikz@style@parseC{#1}#2={#4}%
 \else%
 \tikz@style@parseD{#1}#2={#4}%
 \fi%
}%

\def\tikz@style@parseC#1[#2]#3=#4{%
 \pgfkeys{/tikz/#1/.default={#2}}%
 \pgfutil@in@+{#3}%
 \ifpgfutil@in@%
 \pgfkeys{/tikz/#1/.append style={#4}}%
 \else%
 \pgfkeys{/tikz/#1/.style={#4}}%
 \fi}%
\def\tikz@style@parseD#1#2=#3{%
 \pgfutil@in@+{#2}%
 \ifpgfutil@in@%
 \pgfkeys{/tikz/#1/.append style={#3}}%
 \else%
 \pgfkeys{/tikz/#1/.style={#3}}%
 \fi}%

%
%
% Predefined styles
%
%

\tikzset{help lines/.style= {color=gray,line width=0.2pt}}%

\tikzset{every picture/.style= {}}%
\tikzset{every path/.style= {}}%
\tikzset{every scope/.style= {}}%
\tikzset{every plot/.style= {}}%
\tikzset{every node/.style= {}}%
\tikzset{every child/.style= {}}%
\tikzset{every child node/.style= {}}%
\tikzset{every to/.style= {}}%
\tikzset{every cell/.style= {}}%
\tikzset{every matrix/.style= {}}%
\tikzset{every edge/.style= {draw}}%
\tikzset{every label/.style= {draw=none,fill=none}}%
\tikzset{every pin/.style= {draw=none,fill=none}}%
\tikzset{every pin edge/.style= {help lines}}%

\tikzset{ultra thin/.style= {line width=0.1pt}}%
\tikzset{very thin/.style= {line width=0.2pt}}%
\tikzset{thin/.style= {line width=0.4pt}}%
\tikzset{semithick/.style= {line width=0.6pt}}%
\tikzset{thick/.style= {line width=0.8pt}}%
\tikzset{very thick/.style= {line width=1.2pt}}%
\tikzset{ultra thick/.style= {line width=1.6pt}}%

\tikzset{solid/.style= {dash pattern=}}%
\tikzset{dotted/.style= {dash pattern=on \pgflinewidth off 2pt}}%
\tikzset{densely dotted/.style= {dash pattern=on \pgflinewidth off 1pt}}%
\tikzset{loosely dotted/.style= {dash pattern=on \pgflinewidth off 4pt}}%
\tikzset{dashed/.style= {dash pattern=on 3pt off 3pt}}%
\tikzset{densely dashed/.style= {dash pattern=on 3pt off 2pt}}%
\tikzset{loosely dashed/.style= {dash pattern=on 3pt off 6pt}}%
\tikzset{dashdotted/.style= {dash pattern=on 3pt off 2pt on \the\pgflinewidth off 2pt}}%
\tikzset{dash dot/.style= {dash pattern=on 3pt off 2pt on \the\pgflinewidth off 2pt}}%
\tikzset{densely dashdotted/.style= {dash pattern=on 3pt off 1pt on \the\pgflinewidth off 1pt}}%
\tikzset{densely dash dot/.style= {dash pattern=on 3pt off 1pt on \the\pgflinewidth off 1pt}}%
\tikzset{loosely dashdotted/.style= {dash pattern=on 3pt off 4pt on \the\pgflinewidth off 4pt}}%
\tikzset{loosely dash dot/.style= {dash pattern=on 3pt off 4pt on \the\pgflinewidth off 4pt}}%
\tikzset{dashdotdotted/.style= {dash pattern=on 3pt off 2pt on \the\pgflinewidth off 2pt on \the\pgflinewidth off 2pt}}%
\tikzset{densely dashdotdotted/.style= {dash pattern=on 3pt off 1pt on \the\pgflinewidth off 1pt on \the\pgflinewidth off 1pt}}%
\tikzset{loosely dashdotdotted/.style= {dash pattern=on 3pt off 4pt on \the\pgflinewidth off 4pt on \the\pgflinewidth off 4pt}}%
\tikzset{dash dot dot/.style= {dash pattern=on 3pt off 2pt on \the\pgflinewidth off 2pt on \the\pgflinewidth off 2pt}}%
\tikzset{densely dash dot dot/.style= {dash pattern=on 3pt off 1pt on \the\pgflinewidth off 1pt on \the\pgflinewidth off 1pt}}%
\tikzset{loosely dash dot dot/.style= {dash pattern=on 3pt off 4pt on \the\pgflinewidth off 4pt on \the\pgflinewidth off 4pt}}%

\tikzset{transparent/.style= {opacity=0}}%
\tikzset{ultra nearly transparent/.style={opacity=0.05}}%
\tikzset{very nearly transparent/.style= {opacity=0.1}}%
\tikzset{nearly transparent/.style= {opacity=0.25}}%
\tikzset{semitransparent/.style= {opacity=0.5}}%
\tikzset{nearly opaque/.style= {opacity=0.75}}%
\tikzset{very nearly opaque/.style= {opacity=0.9}}%
\tikzset{ultra nearly opaque/.style= {opacity=0.95}}%
\tikzset{opaque/.style= {opacity=1}}%

\tikzset{at start/.style= {pos=0}}%
\tikzset{very near start/.style= {pos=0.125}}%
\tikzset{near start/.style= {pos=0.25}}%
\tikzset{midway/.style= {pos=0.5}}%
\tikzset{near end/.style= {pos=0.75}}%
\tikzset{very near end/.style= {pos=0.875}}%
\tikzset{at end/.style= {pos=1}}%

\tikzset{bend at start/.style= {bend pos=0,bend={+(0,0)}}}%
\tikzset{bend at end/.style= {bend pos=1,bend={+(0,0)}}}%

\tikzset{edge from parent/.style= {draw}}%

% Animation callbacks
\tikzset{
 animate/.code=\tikzerror{You need to say \string\usetikzlibrary{animations} to use animations}
}

% ID callbacks
\newif\iftikz@is@node
\let\tikz@id@name\pgfutil@empty
\let\tikz@id@hook\pgfutil@empty
\def\tikz@call@id@hook{\ifx\tikz@id@hook\pgfutil@empty\else\tikz@id@hook\pgfuseid{\tikz@id@name}\fi}%

% RDF stuff
\let\tikz@clear@rdf@options\relax
\let\tikz@do@rdf@post@options\relax
\let\tikz@do@rdf@pre@options\relax

%
% Setting keys
%

\pgfkeys{/tikz/style/.style={#1}}%

\pgfkeys{/tikz/.unknown/.code=%
 % Is it a pgf key?
 \let\tikz@key\pgfkeyscurrentname%
 \pgfkeys{/pgf/\tikz@key/.try={#1}}%
 \ifpgfkeyssuccess%
 \else%
 \expandafter\pgfutil@in@\expandafter!\expandafter{\tikz@key}%
 \ifpgfutil@in@%
 % this is a color!
 \expandafter\tikz@addoption\expandafter{\expandafter\tikz@compat@color@set\expandafter{\tikz@key}}%
 \edef\tikz@textcolor{\tikz@key}%
 \else%
 \pgfutil@doifcolorelse{\tikz@key}
 {%
 \expandafter\tikz@addoption\expandafter{\expandafter\tikz@compat@color@set\expandafter{\tikz@key}}%
 \edef\tikz@textcolor{\tikz@key}%
 }%
 {%
 % Ok, second chance: This might be an arrow specification:
 \expandafter\pgfutil@in@\expandafter-\expandafter{\tikz@key}%
 \ifpgfutil@in@%
 % Ah, an arrow spec!
 \expandafter\tikz@processarrows\expandafter{\tikz@key}%
 \else%
 % Ok, third chance: A shape!
 \expandafter\ifx\csname pgf@sh@s@\tikz@key\endcsname\relax%
 \pgfkeys{/errors/unknown key/.expand
 once=\expandafter{\expandafter/\expandafter t\expandafter i\expandafter k\expandafter z\expandafter/\tikz@key}{#1}}%
 \else%
 \edef\tikz@shape{\tikz@key}%
 \fi%
 \fi%
 }%
 \fi%
 \fi%
}%
\def\tikz@compat@color@set#1{%
 \pgfutil@color{#1}\pgfutil@colorlet{pgffillcolor}{#1}%
 \expandafter\let\expandafter\pgf@temp\csname\string\color@pgffillcolor\endcsname%
 % for arrow tips:
 \global\let\pgf@strokecolor@global=\pgf@temp
 \global\let\pgf@fillcolor@global=\pgf@temp
}%

\def\tikz@startup@env{%
 \ifnum\the\catcode`\;=\active\relax\expandafter\let\expandafter\tikz@origsemi\expandafter=\tikz@activesemicolon\fi%
 \ifnum\the\catcode`\:=\active\relax\expandafter\let\expandafter\tikz@origcolon\expandafter=\tikz@activecolon\fi%
 \ifnum\the\catcode`\|=\active\relax\expandafter\let\expandafter\tikz@origbar\expandafter=\tikz@activebar\fi%
 \tikz@deactivatthings%
 \iftikz@handle@active@code%
 \tikz@switchoff@shorthands%
 \fi%
}%

%
% Main TikZ Environment
%
\newif\iftikz@inside@picture
\tikz@inside@picturefalse
\def\tikz@check@inside@picture{%
 \iftikz@inside@picture%
 \pgfwarning{Nesting tikzpictures is NOT supported}%
 \fi%
 \tikz@inside@picturetrue%
}

\def\tikzpicture{%
 \begingroup%
 \tikz@startup@env%
 \tikz@collect@scope@anims\tikz@picture}%
\def\tikz@picture[#1]{%
 %\tikz@check@inside@picture%
 \pgfpicture%
 \let\tikz@atbegin@picture=\pgfutil@empty%
 \let\tikz@atend@picture=\pgfutil@empty%
 \let\tikz@transform=\relax%
 \def\tikz@time{.5}%
 \tikz@installcommands%
 \scope[every picture,#1]%
 \iftikz@handle@active@code%
 \tikz@switchoff@shorthands%
 \fi%
 \expandafter\tikz@atbegin@picture%
 \tikz@lib@scope@check%
}%
\def\endtikzpicture{%
 \tikz@atend@picture%
 \global\let\pgf@shift@baseline@smuggle=\pgf@baseline%
 \global\let\pgf@trimleft@final@smuggle=\pgf@trimleft%
 \global\let\pgf@trimright@final@smuggle=\pgf@trimright%
 \global\let\pgf@remember@smuggle=\ifpgfrememberpicturepositiononpage%
 \pgf@remember@layerlist@globally
 \endscope%
 \let\pgf@baseline=\pgf@shift@baseline@smuggle%
 \let\pgf@trimleft=\pgf@trimleft@final@smuggle%
 \let\pgf@trimright=\pgf@trimright@final@smuggle%
 \let\ifpgfrememberpicturepositiononpage=\pgf@remember@smuggle%
 \pgf@restore@layerlist@from@global
 \endpgfpicture\endgroup}%

% Inlined picture
%
% #1 - some code to be put in a tikzpicture environment.
%
% If the command is not followed by braces, everything up to the next
% semicolon is used as argument.
%
% Example:
%
% The rectangle \tikz{\draw (0,0) rectangle (1em,1ex)} has width 1em and
% height 1ex.

\def\tikz{%
 \begingroup%
 \tikz@startup@env%
 \tikz@collect@scope@anims\tikz@opt}%
\def\tikz@opt[#1]{\tikzpicture[#1]\pgfutil@ifnextchar\bgroup{\tikz@}{\tikz@@single}}%
\def\tikz@{\bgroup\tikz@auto@end@pathtrue\aftergroup\endtikzpicture\aftergroup\endgroup\let\pgf@temp=}%
\def\tikz@@single#1{%
 \expandafter\ifx\csname tikz@protected@command\string#1\endcsname\relax%
 \expandafter\tikz@@%
 \else%
 \begingroup\def\tikz@path@do@at@end{\endgroup\endtikzpicture\endgroup}%
 \fi%
 #1%
}%

\expandafter\let\csname tikz@protected@command\string\draw\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\pattern\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\fill\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\filldraw\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\shade\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\shadedraw\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\clip\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\graph\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\useasboundingbox\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\node\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\coordinate\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\matrix\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\datavisualization\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\path\endcsname\pgfutil@empty%
\expandafter\let\csname tikz@protected@command\string\pic\endcsname\pgfutil@empty%

% Comment by TT: I hope I fixed the \tikz \foreach problem. The new
% version will take a conservative approach and will only do fancy
% stuff when the next keyword after \tikz is one of the following:
% \draw, \fill, \filldraw, \graph, \matrix,
\def\tikz@@{%
 \let\tikz@next=\tikz@collectnormalsemicolon%
 \ifnum\the\catcode`\;=\active\relax%
 \let\tikz@next=\tikz@collectactivesemicolon%
 \fi%
 \tikz@next}%
\def\tikz@collectnormalsemicolon#1;{#1;\endtikzpicture\endgroup}
{
 \catcode`\;=\active
 \gdef\tikz@collectactivesemicolon#1;{#1;\endtikzpicture\endgroup}
}%
% End old code

% Invokes '#1' if the command is invoked within a tikzpicture and
% '#2' if not.
\def\tikzifinpicture#1#2{%
 \pgfutil@ifundefined{filldraw}{#2}{#1}% TT: This is a wrong
 % test! Who uses this?...
}%

\def\tikz@collect@scope@anims#1{%
 \pgfutil@ifnextchar[#1{#1[]}%]
}%

%
% Environment for scoping graphic state settings
%
\def\tikz@scope@env{%
 \pgfscope%
 \begingroup%
 \let\tikz@atbegin@scope=\pgfutil@empty%
 \let\tikz@atend@scope=\pgfutil@empty%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@mode=\pgfutil@empty%
 \let\tikz@id@name=\pgfutil@empty%
 \tikz@transparency@groupfalse%
 \tikzset{every scope/.try}%
 \tikz@collect@scope@anims\tikz@scope@opt%
}%
\def\tikz@scope@opt[#1]{%
 \tikzset{#1}%
 \tikz@options%
 \tikz@do@rdf@pre@options%
 \iftikz@transparency@group\expandafter\pgftransparencygroup\expandafter[\tikz@transparency@group@options]\tikz@blend@group\fi%
 \tikz@is@nodefalse%
 \tikz@call@id@hook%
 \pgfidscope%
 \tikz@do@rdf@post@options%
 \begingroup%
 \let\tikz@id@name\pgfutil@empty%
 \expandafter\tikz@atbegin@scope%
 \expandafter\pgfclearid%
 \tikz@lib@scope@check%
}%
\def\endtikz@scope@env{%
 \tikz@atend@scope%
 \endgroup%
 \endpgfidscope%
 \iftikz@transparency@group\endpgftransparencygroup\fi%
 \endgroup%
 \endpgfscope%
 \tikz@lib@scope@check%
}%

\def\tikz@scoped{\tikz@collect@scope@anims\tikz@scoped@opt}%
\def\tikz@scoped@opt[#1]{\scope[#1]\pgfutil@ifnextchar\bgroup{\tikz@scoped@}{\tikz@scoped@@single}}%
\def\tikz@scoped@{\bgroup\tikz@auto@end@pathtrue\aftergroup\endscope\let\pgf@temp=}%
\def\tikz@scoped@@single#1{%
 \expandafter\ifx\csname tikz@scoped@protected@command\string#1\endcsname\relax%
 \expandafter\tikz@scoped@@%
 \else%
 \begingroup\def\tikz@scoped@path@do@at@end{\endgroup\endscope}%
 \fi%
 #1%
}%
\def\tikz@scoped@@{%
 \let\tikz@scoped@next=\tikz@scoped@collectnormalsemicolon%
 \ifnum\the\catcode`\;=\active\relax%
 \let\tikz@scoped@next=\tikz@scoped@collectactivesemicolon%
 \fi%
 \tikz@scoped@next}%
\def\tikz@scoped@collectnormalsemicolon#1;{#1;\endscope}
{
 \catcode`\;=\active
 \gdef\tikz@scoped@collectactivesemicolon#1;{#1;\endscope}
}%

% Install a shortcut command which is only valid inside of a
% tikzpicture.
%
% It works in the same way as the '\path' shortcut does: it introduces
% a \let#1=#2 at the beginning of tikzpicture.
%
% #1: shortcut command inside of tikzpicture
% #2: real command name
\def\tikzaddtikzonlycommandshortcutlet#1#2{%
 \expandafter\def\expandafter\tikz@installcommands\expandafter{\tikz@installcommands
 \let#1=#2%
 }%
}%

% Has the same effect as \tikzaddtikzonlycommandshortcutlet but uses
% \def#1{#2} instead of \let.
\def\tikzaddtikzonlycommandshortcutdef#1#2{%
 \expandafter\def\expandafter\tikz@installcommands\expandafter{\tikz@installcommands
 \def#1{#2}%
 }%
}%

%
% Install the abbreviated commands
%
\def\tikz@installcommands{%
 \let\tikz@origscope=\scope%
 \let\tikz@origscoped=\scoped%
 \let\tikz@origendscope=\endscope%
 \let\tikz@origstartscope=\startscope%
 \let\tikz@origstopscope=\stopscope%
 \let\tikz@origpath=\path%
 \let\tikz@origagainpath=\againpath%
 \let\tikz@origdraw=\draw%
 \let\tikz@origpattern=\pattern%
 \let\tikz@origfill=\fill%
 \let\tikz@origfilldraw=\filldraw%
 \let\tikz@origshade=\shade%
 \let\tikz@origshadedraw=\shadedraw%
 \let\tikz@origclip=\clip%
 \let\tikz@origuseasboundingbox=\useasboundingbox%
 \let\tikz@orignode=\node%
 \let\tikz@origpic=\pic%
 \let\tikz@origcoordinate=\coordinate%
 \let\tikz@origmatrix=\matrix%
 \let\tikz@origcalendar=\calendar%
 \let\tikz@origdv=\datavisualization%
 \let\tikz@origgraph=\graph%
 %
 \let\scope=\tikz@scope@env%
 \let\scoped=\tikz@scoped%
 \let\endscope=\endtikz@scope@env%
 \let\startscope=\scope%
 \let\stopscope=\endscope%
 \let\path=\tikz@command@path%
 \let\againpath=\tikz@command@againpath%
 %
 \def\draw{\path[draw]}%
 \def\pattern{\path[pattern]}%
 \def\fill{\path[fill]}%
 \def\filldraw{\path[fill,draw]}%
 \def\shade{\path[shade]}%
 \def\shadedraw{\path[shade,draw]}%
 \def\clip{\path[clip]}%
 \def\graph{\path graph}%
 \def\useasboundingbox{\path[use as bounding box]}%
 \def\node{\tikz@path@overlay{node}}%
 \def\pic{\tikz@path@overlay{pic}}%
 \def\coordinate{\tikz@path@overlay{coordinate}}%
 \def\matrix{\tikz@path@overlay{node[matrix]}}%
 \def\calendar{\tikz@lib@cal@calendar}%
 \def\datavisualization{\tikz@lib@datavisualization}%
}%
\ifx\tikz@lib@cal@calendar\@undefined
\def\tikz@lib@cal@calendar{\tikzerror{You need to say \string\usetikzlibrary{calendar} to use the \string\calendar{} command}}%
\fi
\ifx\tikz@lib@datavisualization\@undefined
\def\tikz@lib@datavisualization{\tikzerror{You need to say \string\usetikzlibrary{datavisualization} to use the \string\datavisualization{} command}}%
\fi

\def\tikz@path@overlay#1{%
 \let\tikz@signal@path=\tikz@signal@path% for detection at begin of matrix cell
 \pgfutil@ifnextchar<{\tikz@path@overlayed{#1}}{\path #1}}%
\def\tikz@path@overlayed#1<#2>{\path<#2> #1}%

\def\tikz@uninstallcommands{%
 \let\scope=\tikz@origscope%
 \let\scoped=\tikz@origscoped%
 \let\endscope=\tikz@origendscope%
 \let\startscope=\tikz@origstartscope%
 \let\stopscope=\tikz@origstopscope%
 \let\path=\tikz@origpath%
 \let\againpath=\tikz@origagainpath%
 \let\draw=\tikz@origdraw%
 \let\pattern=\tikz@origpattern%
 \let\fill=\tikz@origfill%
 \let\filldraw=\tikz@origfilldraw%
 \let\shade=\tikz@origshade%
 \let\shadedraw=\tikz@origshadedraw%
 \let\clip=\tikz@origclip%
 \let\useasboundingbox=\tikz@origuseasboundingbox%
 \let\node=\tikz@orignode%
 \let\pic=\tikz@origpic%
 \let\coordinate=\tikz@origcoordinate%
 \let\matrix=\tikz@origmatrix%
 \let\calendar=\tikz@origcalendar%
 \let\datavisualization=\tikz@origdv%
 \let\graph=\tikz@origgraph%
}%

{%
 \catcode`\;=12
 \gdef\tikz@nonactivesemicolon{;}%
 \catcode`\:=12
 \gdef\tikz@nonactivecolon{:}%
 \catcode`\|=12
 \gdef\tikz@nonactivebar{|}%
 \catcode`\!=12
 \gdef\tikz@nonactiveexlmark{!}%
 \catcode`\;=\active
 \catcode`\:=\active
 \catcode`\|=\active
 \catcode`\"=\active
 \catcode`\!=\active
 \gdef\tikz@activesemicolon{;}%
 \gdef\tikz@activecolon{:}%
 \gdef\tikz@activebar{|}%
 \gdef\tikz@activequotes{"}%
 \global\let\tikz@active@quotes@token="%
 \gdef\tikz@activeexlmark{!}%
 \gdef\tikz@deactivatthings{%
 \def;{\tikz@nonactivesemicolon}%
 \def:{\tikz@nonactivecolon}%
 \def|{\tikz@nonactivebar}%
 \def!{\tikz@nonactiveexlmark}%
 }%
}%

\let\tikz@orig@shorthands\pgfutil@empty
\def\tikz@switchoff@shorthands{%
 \ifx\tikz@orig@shorthands\pgfutil@empty%
 \edef\tikz@orig@shorthands{%
 \catcode\noexpand`\noexpand\;\the\catcode`\;\relax%
 \catcode\noexpand`\noexpand\:\the\catcode`\:\relax%
 \catcode\noexpand`\noexpand\|\the\catcode`\|\relax%
 \catcode\noexpand`\noexpand\!\the\catcode`\!\relax%
 \catcode\noexpand`\noexpand\,\the\catcode`\,\relax%
 \catcode\noexpand`\noexpand\<\the\catcode`\<\relax%
 \catcode\noexpand`\noexpand\>\the\catcode`\>\relax%
 \catcode\noexpand`\noexpand\"\the\catcode`\"\relax%
 \catcode\noexpand`\noexpand\'\the\catcode`\'\relax%
 \catcode\noexpand`\noexpand\-\the\catcode`\-\relax%
 \catcode\noexpand`\noexpand\=\the\catcode`\=\relax%
 \catcode\noexpand`\noexpand\.\the\catcode`\.\relax%
 \catcode\noexpand`\noexpand\$\the\catcode`\$\relax%
 }%
 \catcode`\;12\relax%
 \catcode`\:12\relax%
 \catcode`\|12\relax%
 \catcode`\!12\relax%
 \catcode`\,12\relax%
 \catcode`\<12\relax%
 \catcode`\>12\relax%
 \catcode`\"12\relax%
 \catcode`\'12\relax%
 \catcode`\-12\relax%
 \catcode`\=12\relax%
 \catcode`\.12\relax%
 \catcode`\$3\relax%
 \fi%
}%

% Constructs a path and draws/fills them according to the current
% settings.

\def\tikz@command@path{%
 \let\tikz@signal@path=\tikz@signal@path% for detection at begin of matrix cell
 \pgfutil@ifnextchar[{\tikz@check@earg}%]
 {\pgfutil@ifnextchar<{\tikz@doopt}{\tikz@@command@path}}}%
\pgfutil@protected\def\tikz@signal@path{\tikz@signal@path}%
\def\tikz@check@earg[#1]{%
 \pgfutil@ifnextchar<{\tikz@swap@args[#1]}{\tikz@@command@path[#1]}}
\def\tikz@swap@args[#1]<#2>{\tikz@command@path<#2>[#1]}%

\def\tikz@doopt{%
 \let\tikz@next=\tikz@eargnormalsemicolon%
 \ifnum\the\catcode`\;=\active\relax%
 \let\tikz@next=\tikz@eargactivesemicolon%
 \fi%
 \tikz@next}%
\long\def\tikz@eargnormalsemicolon<#1>#2;{\alt<#1>{\tikz@@command@path#2;}{\tikz@path@do@at@end}}%
{
 \catcode`\;=\active
 \long\global\def\tikz@eargactivesemicolon<#1>#2;{\alt<#1>{\tikz@@command@path#2;}{\tikz@path@do@at@end}}%
}

\def\tikz@@command@path{%
 \edef\tikzscope@linewidth{\the\pgflinewidth}%
 \begingroup%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \let\tikz@path@do@at@end=\tikz@lib@scope@check%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@mode=\pgfutil@empty%
 \let\tikz@moveto@waiting=\relax%
 \let\tikz@timer=\relax%
 \let\tikz@tangent=\relax%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \let\tikz@preactions=\pgfutil@empty%
 \let\tikz@postactions=\pgfutil@empty%
 \tikz@snakedfalse%
 \tikz@decoratepathfalse%
 \tikz@node@is@a@labelfalse%
 \tikz@resetexpandcount
 \pgf@path@lastx=0pt%
 \pgf@path@lasty=0pt%
 \tikz@lastx=0pt%
 \tikz@lasty=0pt%
 \tikz@lastxsaved=0pt%
 \tikz@lastysaved=0pt%
 \tikzset{every path/.try}%
 \tikz@scan@next@command%
}%
\def\tikz@scan@next@command{%
 \ifx\tikz@collected@onpath\pgfutil@empty%
 \else%
 \tikz@invoke@collected@onpath%
 \fi%
 \afterassignment\tikz@handle\let\pgf@let@token=%
}%
\newcount\tikz@expandcount
\def\tikz@resetexpandcount{\tikz@expandcount=100\relax}
\let\tikz@collected@onpath=\pgfutil@empty%

\edef\tikz@frozen@relax@token{\ifnum0=0\fi}

% Central dispatcher for commands
\def\tikz@handle{%
 \pgfutil@switch\pgfutil@ifx\pgf@let@token{%
 {(}{\let\pgfutil@next\tikz@movetoabs}%)
 {+}{\let\pgfutil@next\tikz@movetorel}%
 {-}{\let\pgfutil@next\tikz@lineto}%
 {.}{\let\pgfutil@next\tikz@dot}%
 {r}{\let\pgfutil@next\tikz@rect}%
 {n}{\let\pgfutil@next\tikz@fig}%
 {[}{\let\pgfutil@next\tikz@parse@options}%]
 {c}{\let\pgfutil@next\tikz@cchar}%
 {\bgroup}{\let\pgfutil@next\tikz@beginscope}%
 {\egroup}{\let\pgfutil@next\tikz@endscope}%
 {;}{\let\pgfutil@next\tikz@finish}%
 {a}{\let\pgfutil@next\tikz@a@char}%
 {e}{\let\pgfutil@next\tikz@e@char}%
 {g}{\let\pgfutil@next\tikz@g@char}%
 {s}{\let\pgfutil@next\tikz@schar}%
 {|}{\let\pgfutil@next\tikz@vh@lineto}%
 {p}{\pgfsetmovetofirstplotpoint\let\pgfutil@next\tikz@pchar}%
 {t}{\let\pgfutil@next\tikz@to}%
 {\pgfextra}{\let\pgfutil@next\tikz@extra}%
 {\foreach}{\let\pgfutil@next\tikz@foreach}%
 {f}{\let\pgfutil@next\tikz@fchar}%
 {\pgf@stop}{\let\pgfutil@next\relax}%
 {\par}{\let\pgfutil@next\tikz@scan@next@command}%
 {d}{\let\pgfutil@next\tikz@decoration}%
 {l}{\let\pgfutil@next\tikz@l@char}%
 {:}{\let\pgfutil@next\tikz@colon@char}%
 {\relax}{\relax\let\pgfutil@next\tikz@scan@next@command}%
 }{\tikz@resetexpandcount\pgfutil@next}{\tikz@expand}%
}%

\def\tikz@l@char{%
 \pgfutil@ifnextchar e{\tikz@let@command}{%
 \pgfutil@ifnextchar i{\tikz@lsystem}{%
 \pgfutil@ifnextchar-{\tikz@@lsystem}{\tikz@expand}%
 }%
 }%
}%

\def\tikz@lsystem{%
 \tikzerror{You need to say \string\usetikzlibrary{lindenmayersystems} to draw Lindenmayer systems}
}%

\def\tikz@@lsystem{%
 \tikzerror{You need to say \string\usetikzlibrary{lindenmayersystems} to draw L-systems}
}%

\def\tikz@pchar{\pgfutil@ifnextchar l{\tikz@plot}{\pgfutil@ifnextchar i{\tikz@subpicture}{\tikz@parabola}}}%
\def\tikz@cchar{%
 \pgfutil@ifnextchar i{\tikz@circle}%
 {\pgfutil@ifnextchar h{\tikz@children}{\tikz@cochar}}}%
\def\tikz@cochar o{%
 \pgfutil@ifnextchar o{\tikz@coordinate}{\tikz@cosine}}%
\def\tikz@e@char{%
 \pgfutil@ifnextchar l{\tikz@ellipse}{\tikz@@e@char}}%
\def\tikz@a@char{%
 \pgfutil@ifnextchar r{\tikz@arcA}{\tikzerror{Arc expected}}}%
\def\tikz@@e@char dge{%
 \pgfutil@ifnextchar f{\tikz@edgetoparent}{\tikz@edge@plain}}%

\def\tikz@schar{\pgfutil@ifnextchar i{\tikz@sine}{\tikz@svg@path}}%

\def\tikz@g@char r{\pgfutil@ifnextchar i{\tikz@grid}{\tikz@graph}}%

% svg syntax
% svg[options] {...}

\def\tikz@svg@path{%
 \tikzerror{You need to say \string\usetikzlibrary{svg.path} to use the svg path command}
}%

\def\tikz@finish{%
 % Rendering pipeline
 %
 % Step 1: The path background box
 %
 \box\tikz@figbox@bg%
 %
 % Step 2: Decorate path
 %
 \iftikz@decoratepath%
 \tikz@lib@dec@decorate@path%
 \fi%
 %
 % Step 3: Preactions
 %
 \pgfsyssoftpath@getcurrentpath\tikz@actions@path%
 \edef\tikz@restorepathsize{%
 \global\pgf@pathmaxx=\the\pgf@pathmaxx%
 \global\pgf@pathmaxy=\the\pgf@pathmaxy%
 \global\pgf@pathminx=\the\pgf@pathminx%
 \global\pgf@pathminy=\the\pgf@pathminy%
 }%
 \tikz@preactions%
 %
 % Step 4: Reset modes
 %
 \let\tikz@path@picture=\pgfutil@empty%
 \tikz@mode@fillfalse%
 \tikz@mode@drawfalse%
 \tikz@mode@doublefalse%
 \tikz@mode@clipfalse%
 \tikz@mode@boundaryfalse%
 \tikz@mode@fade@pathfalse%
 \tikz@mode@fade@scopefalse%
 \edef\tikz@pathextend{%
 {\noexpand\pgfqpoint{\the\pgf@pathminx}{\the\pgf@pathminy}}%
 {\noexpand\pgfqpoint{\the\pgf@pathmaxx}{\the\pgf@pathmaxy}}%
 }%
 \tikz@mode% installs the mode settings
 % Path fading counts as an option:
 \iftikz@mode@fade@path%
 \tikz@addoption{%
 \iftikz@fade@adjust%
 \iftikz@mode@draw%
 \pgfsetfadingforcurrentpathstroked{\tikz@path@fading}{\tikz@do@fade@transform}%
 \else%
 \pgfsetfadingforcurrentpath{\tikz@path@fading}{\tikz@do@fade@transform}%
 \fi%
 \else%
 \pgfsetfading{\tikz@path@fading}{\tikz@do@fade@transform}%
 \fi%
 \tikz@mode@fade@pathfalse% no more fading...
 }%
 \fi%
 %
 % Step 5: Install scope fading
 %
 \iftikz@mode@fade@scope%
 \iftikz@fade@adjust%
 \iftikz@mode@draw%
 \pgfsetfadingforcurrentpathstroked{\tikz@scope@fading}{\tikz@do@fade@transform}%
 \else%
 \pgfsetfadingforcurrentpath{\tikz@scope@fading}{\tikz@do@fade@transform}%
 \fi%
 \else%
 \pgfsetfading{\tikz@scope@fading}{\tikz@do@fade@transform}%
 \fi%
 \tikz@mode@fade@scopefalse%
 \fi%
 %
 % Step 5': Setup options
 %
 \ifx\tikz@options\pgfutil@empty%
 \else%
 \pgfsys@beginscope%
 \let\pgfscope@stroke@color=\pgf@strokecolor@global%
 \let\pgfscope@fill@color=\pgf@fillcolor@global%
 \begingroup%
 \tikz@options%
 \fi%
 \tikz@do@rdf@pre@options%
 %
 % Step 5'': Setup animations
 %
 \tikz@is@nodefalse%
 \tikz@call@id@hook%
 \iftikz@mode@clip\else%
 \pgfidscope%
 \tikz@do@rdf@post@options%
 \begingroup%
 \fi% open an animation scope here, unless clipping is done
 %
 % Step 6: Do a fill if shade or a path picture follows.
 %
 \iftikz@mode@fill%
 \iftikz@mode@shade%
 \pgfsyssoftpath@getcurrentpath\tikz@temppath
 \pgfprocessround{\tikz@temppath}{\tikz@temppath}% change the path
 \pgfsyssoftpath@setcurrentpath\tikz@temppath%
 \pgfsyssoftpath@invokecurrentpath%
 \pgfpushtype%
 \pgfusetype{.path fill}%
 \pgfsys@fill%
 \pgfpoptype%
 \tikz@mode@fillfalse% no more filling...
 \else%
 \ifx\tikz@path@picture\pgfutil@empty%
 \else%
 \pgfsyssoftpath@getcurrentpath\tikz@temppath
 \pgfprocessround{\tikz@temppath}{\tikz@temppath}% change the path
 \pgfsyssoftpath@setcurrentpath\tikz@temppath%
 \pgfsyssoftpath@invokecurrentpath%
 \pgfpushtype%
 \pgfusetype{.path fill}%
 \pgfsys@fill%
 \pgfpoptype%
 \tikz@mode@fillfalse% no more filling...
 \fi%
 \fi%
 \fi%
 %
 % Step 7: Do a shade if necessary.
 %
 \iftikz@mode@shade%
 \pgfsyssoftpath@getcurrentpath\tikz@temppath
 \pgfprocessround{\tikz@temppath}{\tikz@temppath}% change the path
 \pgfsyssoftpath@setcurrentpath\tikz@temppath%
 \pgfpushtype%
 \pgfusetype{.path shade}%
 \pgfshadepath{\tikz@shading}{\tikz@shade@angle}%
 \pgfpoptype%
 \tikz@mode@shadefalse% no more shading...
 \fi%
 %
 % Step 8: Do a path picture if necessary.
 %
 \ifx\tikz@path@picture\pgfutil@empty%
 \else%
 \begingroup%
 \pgfusetype{.path picture}%
 \pgfidscope%
 \pgfsys@beginscope%
 \let\tikz@id@name\pgfutil@empty%
 \pgfclearid%
 \pgfsyssoftpath@getcurrentpath\tikz@temppath
 \pgfprocessround{\tikz@temppath}{\tikz@temppath}% change the path
 \pgfsyssoftpath@setcurrentpath\tikz@temppath%
 \pgfsyssoftpath@invokecurrentpath%
 \pgfsys@clipnext%
 \pgfsys@discardpath%
 \pgf@relevantforpicturesizefalse%
 \expandafter\def\csname pgf@sh@ns@path picture bounding box\endcsname{rectangle}
 \expandafter\edef\csname pgf@sh@np@path picture bounding box\endcsname{%
 \def\noexpand\southwest{\noexpand\pgfqpoint{\the\pgf@pathminx}{\the\pgf@pathminy}}%
 \def\noexpand\northeast{\noexpand\pgfqpoint{\the\pgf@pathmaxx}{\the\pgf@pathmaxy}}%
 }
 \expandafter\def\csname pgf@sh@nt@path picture bounding box\endcsname{{1}{0}{0}{1}{0pt}{0pt}}
 \expandafter\def\csname pgf@sh@pi@path picture bounding box\endcsname{\pgfpictureid}
 \pgfinterruptpath%
 \tikz@path@picture%
 \endpgfinterruptpath%
 \pgfsys@endscope%
 \endpgfidscope%
 \endgroup%
 \let\tikz@path@picture=\pgfutil@empty%
 \fi%
 %
 % Step 9: Double stroke, if necessary
 %
 \iftikz@mode@draw%
 \iftikz@mode@double%
 % Change line width
 \begingroup%
 \pgfsys@beginscope%
 \tikz@double@setup%
 \fi%
 \fi%
 %
 % Step 10: Do stroke/fill/clip as needed
 %
 \pgfpushtype%
 \edef\tikz@temp{\noexpand\pgfusepath{%
 \iftikz@mode@fill fill,\fi%
 \iftikz@mode@draw draw,\fi%
 \iftikz@mode@clip clip\fi%
 }}%
 \pgfusetype{.path}%
 \tikz@temp%
 \pgfpoptype%
 \tikz@mode@fillfalse% no more filling
 %
 % Step 11: Double stroke, if necessary
 %
 \iftikz@mode@draw%
 \iftikz@mode@double%
 \pgfsys@endscope%
 \endgroup%
 \fi%
 \fi%
 \tikz@mode@drawfalse% no more stroking
 %
 % Step 12: Postactions
 %
 \tikz@postactions%
 %
 % Step 13: Add labels and nodes
 %
 \box\tikz@figbox%
 %
 % Step 14: Close animations
 %
 \iftikz@mode@clip\else\endgroup\endpgfidscope\fi%
 %
 % Step 14: Close option brace
 %
 \ifx\tikz@options\pgfutil@empty%
 \else%
 \endgroup%
 \global\let\pgf@strokecolor@global=\pgfscope@stroke@color%
 \global\let\pgf@fillcolor@global=\pgfscope@fill@color%
 \pgfsys@endscope%
 \iftikz@mode@clip%
 \tikzerror{Extra options not allowed for clipping path command.}%
 \fi%
 \fi%
 \iftikz@mode@clip%
 \aftergroup\pgf@relevantforpicturesizefalse%
 \fi%
 \iftikz@mode@boundary%
 \aftergroup\pgf@relevantforpicturesizefalse%
 \fi%
 \endgroup%
 \global\pgflinewidth=\tikzscope@linewidth%
 \tikz@path@do@at@end%
}%
\let\tikz@lib@scope@check\pgfutil@empty% this is a hook for the scopes library
\def\tikz@path@do@at@end{\tikz@lib@scope@check}%
\def\tikz@@pathtext{@path}%

\def\pgf@outer@auto@adjust@hook{%
 {%
 \tikz@mode@drawfalse%
 \tikz@mode%
 \expandafter%
 }%
 \iftikz@mode@draw\else%
 \pgfkeyslet{/pgf/outer xsep}\pgf@zero@text
 \pgfkeyslet{/pgf/outer ysep}\pgf@zero@text
 \fi%
}%

% Extra actions

\def\tikz@extra@preaction#1{%
 {%
 \pgfsys@beginscope%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \path[#1];% do extra path
 \pgfsyssoftpath@setcurrentpath\tikz@actions@path% restore
 \tikz@restorepathsize%
 \pgfsys@endscope%
 }%
}%

\def\tikz@extra@postaction#1{%
 {%
 \pgfsys@beginscope%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@restorepathsize%
 \path[#1]\pgfextra{\pgfsyssoftpath@setcurrentpath\tikz@actions@path};% do extra path
 \pgf@resetpathsizes%
 \pgfsys@endscope%
 }%
}%

\def\tikz@skip#1{\tikz@scan@next@command#1}%
\def\tikz@expand{%
 \advance\tikz@expandcount by -1
 \ifnum\tikz@expandcount<0\relax%
 \expandafter\pgfutil@firstoftwo
 \else
 \expandafter\pgfutil@secondoftwo
 \fi
 {%
 \tikzerror{Giving up on this path. Did you forget a semicolon?}%
 % since the last token caused an error we should reinsert it and therefore save it
 \global\let\tikz@expand@last@token=\pgf@let@token
 \tikz@finish%
 %
 % To be combatible with `scopes` lib, which uses a redefined
 % \tikz@lib@scope@check to check the next token, the reinsertion is done
 % here, not at the end of (every) \tikz@finish.
 %
 \expandafter\let\expandafter\tikz@expand@last@token@\csname tikz@expand@last@token\endcsname
 \global\let\tikz@expand@last@token=\relax
 \tikz@expand@last@token@
 }{%
 \tikz@@expand
 }%
}

\def\tikz@@expand{%
 \expandafter\tikz@scan@next@command\pgf@let@token}%

% Syntax for scopes:
% {scoped path commands}

\newif\iftikz@auto@end@path

\def\tikz@beginscope{\begingroup\tikz@auto@end@pathfalse\tikz@scan@next@command}%
\def\tikz@endscope{%
 \iftikz@auto@end@path\expandafter\tikz@finish\expandafter\egroup\else\expandafter\tikz@@endscope\fi%
}%
\def\tikz@@endscope{%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \global\let\tikz@tangent@temp\tikz@tangent%
 \edef\tikz@marshal{%
 \tikz@lastx=\the\tikz@lastx%
 \tikz@lasty=\the\tikz@lasty%
 \iftikz@current@point@local%
 \else%
 \tikz@lastxsaved=\the\tikz@lastxsaved%
 \tikz@lastysaved=\the\tikz@lastysaved%
 \ifx\tikz@moveto@waiting\relax%
 \let\tikz@moveto@waiting\relax%
 \else%
 \def\noexpand\tikz@moveto@waiting{\tikz@moveto@waiting}%
 \fi%
 \iftikz@shapeborder%
 \noexpand\tikz@shapebordertrue%
 \def\noexpand\tikz@shapeborder@name{\tikz@shapeborder@name}%
 \else%
 \noexpand\tikz@shapeborderfalse%
 \fi%
 \fi%
 }%
 \expandafter%
 \endgroup\tikz@marshal%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \let\tikz@tangent\tikz@tangent@temp%
 \tikz@scan@next@command}%

% Syntax for pgfextra:
% \pgfextra {normal tex text}
% \pgfextra normal tex text \endpgfextra

\def\tikz@extra{\pgfutil@ifnextchar\bgroup\tikz@@extra\relax}%
\long\def\tikz@@extra#1{#1\tikz@scan@next@command}%
\let\endpgfextra=\tikz@scan@next@command

\def\pgfextra{pgfextra}%

% Syntax for foreach:
%
% foreach \var in {list} {path text}
%
% or
%
% \foreach \var in {list} {path text}
%
% Example:
%
% \draw (0,0) \foreach \x in {1,2,3} {-- (\x,0) circle (1cm)} -- (5,5);

\def\tikz@fchar oreach{\tikz@foreach}%

\def\tikz@foreach{%
 \def\pgffor@beginhook{%
 \tikz@lastx=\tikz@foreach@save@lastx%
 \tikz@lasty=\tikz@foreach@save@lasty%
 \tikz@lastxsaved=\tikz@foreach@save@lastxsaved%
 \tikz@lastysaved=\tikz@foreach@save@lastysaved%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \expandafter\tikz@scan@next@command\pgfutil@firstofone}%
 \def\pgffor@endhook{\pgfextra{%
 \xdef\tikz@foreach@save@lastx{\the\tikz@lastx}%
 \xdef\tikz@foreach@save@lasty{\the\tikz@lasty}%
 \xdef\tikz@foreach@save@lastxsaved{\the\tikz@lastxsaved}%
 \xdef\tikz@foreach@save@lastysaved{\the\tikz@lastysaved}%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \pgfutil@gobble}}%
 \def\pgffor@afterhook{%
 \tikz@lastx=\tikz@foreach@save@lastx%
 \tikz@lasty=\tikz@foreach@save@lasty%
 \tikz@lastxsaved=\tikz@foreach@save@lastxsaved%
 \tikz@lastysaved=\tikz@foreach@save@lastysaved%
 \let\pgffor@beginhook\relax%
 \let\pgffor@endhook\relax%
 \let\pgffor@afterhook\relax%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \tikz@scan@next@command}%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \xdef\tikz@foreach@save@lastx{\the\tikz@lastx}%
 \xdef\tikz@foreach@save@lasty{\the\tikz@lasty}%
 \xdef\tikz@foreach@save@lastxsaved{\the\tikz@lastxsaved}%
 \xdef\tikz@foreach@save@lastysaved{\the\tikz@lastysaved}%
 \foreach}%

% Syntax for againpath:
% \againpath \somepathname

\def\tikz@command@againpath#1{%
 \pgfextra{%
 \pgfsyssoftpath@getcurrentpath\tikz@temp%
 \expandafter\pgfutil@g@addto@macro\expandafter\tikz@temp\expandafter{#1}%
 \pgfsyssoftpath@setcurrentpath\tikz@temp%
 }%
}%

% animation syntax
% :attribute = {...}

\def\tikz@colon@char#1=#2{%
 \tikz@scan@next@command{[animate={myself:{#1}={#2}}]}%
}%

%
% When this if is set, a just-scanned point is a shape and its border
% position still needs to be determined, depending on subsequent
% commands.
%

\newif\iftikz@shapeborder

% Syntax for moveto:
% <point>
\def\tikz@movetoabs{\tikz@moveto(}%
\def\tikz@movetorel{\tikz@moveto+}%
\def\tikz@moveto{%
 \tikz@scan@one@point{\tikz@@moveto}}%
\def\tikz@@moveto#1{%
 \tikz@make@last@position{#1}%
 \iftikz@shapeborder%
 % ok, the moveto will have to wait. flag that we have a moveto in
 % waiting:
 \edef\tikz@moveto@waiting{\tikz@shapeborder@name}%
 \else%
 \tikz@@movetosave{\tikz@last@position}%
 \let\tikz@moveto@waiting=\relax%
 \fi%
 \tikz@scan@next@command%
}%

 % Wrapper around \pgfpathmoveto that adds a save
\def\tikz@@movetosave#1{%
 {\pgftransformreset
 \pgf@process{#1}%
 \xdef\tikz@marshal{%
 \tikz@lastmovetox=\the\pgf@x\relax%
 \tikz@lastmovetoy=\the\pgf@y\relax%
 }%
 }%
 \tikz@marshal
 \pgfpathmoveto{#1}%
}%

\let\tikz@moveto@waiting=\relax % normally, nothing is waiting...

\def\tikz@flush@moveto{%
 \ifx\tikz@moveto@waiting\relax%
 \else%
 \tikz@@movetosave{\tikz@last@position}%
 \fi%
 \let\tikz@moveto@waiting=\relax%
}%

\def\tikz@flush@moveto@toward#1#2#3{%
 % #1 = a point towards which the last moveto should be corrected
 % #2 = a dimension to which the corrected x-coordinate should be stored
 % #3 = a dimension for the corrected y-coordinate
 \ifx\tikz@moveto@waiting\relax%
 % do nothing
 \else%
 \pgf@process{\pgfpointshapeborder{\tikz@moveto@waiting}{#1}}%
 #2=\pgf@x%
 #3=\pgf@y%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
 \tikz@@movetosave{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \fi%
 \let\tikz@moveto@waiting=\relax%
}%

%
% Collecting labels on the path
%

\def\tikz@collect@coordinate@onpath#1c{%
 \pgfutil@ifnextchar y{\tikz@cycle@expander@add#1}{\tikz@collect@coordinate@onpath@{#1}}}%
\def\tikz@collect@coordinate@onpath@#1oordinate{%
 \pgfutil@ifnextchar[{\tikz@@collect@coordinate@opt#1}{\tikz@@collect@coordinate@opt#1[]}}%}%
\def\tikz@@collect@coordinate@opt#1[#2]{%
 \pgfutil@ifnextchar({\tikz@@collect@coordinate#1[#2]}{%
 \tikz@collect@label@onpath#1node[shape=coordinate,#2]{}}}%}%
\def\tikz@@collect@coordinate#1[#2](#3){%
 \tikz@collect@label@onpath#1node[shape=coordinate,#2](#3){}}%

\newif\iftikz@collect@pic

\def\tikz@collect@label@onpath#1node{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath node}%
 \let\tikz@collect@cont#1%
 \tikz@collect@picfalse%
 \tikz@collect@label@scan}%

\def\tikz@collect@pic@onpath#1pic{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath pic}%
 \let\tikz@collect@cont#1
 \tikz@collect@pictrue%
 \tikz@collect@label@scan}%

\def\tikz@collect@label@scan{%
 \pgfutil@ifnextchar f{\tikz@collect@nodes}{%
 \pgfutil@ifnextchar({\tikz@collect@paran}%
 {\pgfutil@ifnextchar[{\tikz@collect@options}%
 {\pgfutil@ifnextchar:{\tikz@collect@animation}%
 {\pgfutil@ifnextchar\bgroup{\tikz@collect@arg}%
 {\tikz@collect@cont}}}}}%
}%}}%

\def\tikz@collect@nodes foreach#1in{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath foreach#1in}%
 \pgfutil@ifnextchar\bgroup\tikz@collect@nodes@group\tikz@collect@nodes@one%
}%
\def\tikz@collect@nodes@one#1{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath #1}%
 \tikz@collect@label@scan%
}%
\def\tikz@collect@nodes@group#1{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath{#1}}%
 \tikz@collect@label@scan%
}%

\def\tikz@collect@animation#1=#2{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath#1={#2}}%
 \tikz@collect@label@scan%
}%
\def\tikz@collect@paran#1){%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath#1)}%
 \tikz@collect@label@scan%
}%
\def\tikz@collect@options#1]{%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath#1]}%
 \tikz@collect@label@scan%
}%
\def\tikz@collect@arg#1{%
 \iftikz@handle@active@nodes%
 \iftikz@collect@pic%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath{#1}}%
 \else%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath{\scantokens{#1}}}%
 \fi%
 \else%
 \expandafter\def\expandafter\tikz@collected@onpath\expandafter{\tikz@collected@onpath{#1}}%
 \fi%
 \tikz@collect@cont%
}%

\def\tikz@invoke@collected@onpath{%
 \tikz@node@is@a@labeltrue%
 \let\tikz@temp=\tikz@collected@onpath%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \expandafter\tikz@scan@next@command\tikz@temp\pgf@stop%
 \tikz@node@is@a@labelfalse%
}%

%
% Macros for the cycle command
%

\def\tikz@cycle@expander#1{\pgfutil@ifnextchar c{\tikz@cycle@expander@{#1}}{#1}}%
\def\tikz@cycle@expander@#1c{\pgfutil@ifnextchar y{\tikz@cycle@expander@add{#1}}{#1c}}%
\def\tikz@cycle@expander@add#1ycle{#1(current subpath start)--cycle}%

% Syntax for lineto:
% -- <point>

\def\tikz@lineto{%
 \pgfutil@ifnextchar |%
 {\expandafter\tikz@hv@lineto\pgfutil@gobble}%
 {\expandafter\pgfutil@ifnextchar\tikz@activebar{\expandafter\tikz@hv@lineto\pgfutil@gobble}%
 {\expandafter\tikz@lineto@mid\pgfutil@gobble}}}%
\def\tikz@lineto@mid{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@lineto@mid}%
 {%
 \pgfutil@ifnextchar c{\tikz@close}{%
 \pgfutil@ifnextchar p{\tikz@lineto@plot@or@pic}{\tikz@scan@one@point{\tikz@@lineto}}}}}%
\def\tikz@lineto@plot@or@pic p{%
 \pgfutil@ifnextchar i{\tikz@collect@pic@onpath\tikz@lineto@mid p}{%
 \pgfsetlinetofirstplotpoint\tikz@plot}%
}%
\def\tikz@@lineto#1{%
 % Record the starting point for later labels on the path:
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}
 \iftikz@shapeborder%
 % ok, target is a shape. recalculate end
 \pgf@process{\pgfpointshapeborder{\tikz@shapeborder@name}{\tikz@last@position}}%
 \tikz@make@last@position{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \tikz@flush@moveto@toward{\tikz@last@position}\pgf@x\pgf@y%
 \tikz@path@lineto{\tikz@last@position}%
 \edef\tikz@timer@end{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \tikz@make@last@position{#1}%
 \edef\tikz@moveto@waiting{\tikz@shapeborder@name}%
 \else%
 % target is a reasonable point...
 % Record the starting point for later labels on the path:
 \tikz@make@last@position{#1}%
 \tikz@flush@moveto@toward{\tikz@last@position}\pgf@x\pgf@y%
 \tikz@path@lineto{\tikz@last@position}%
 \edef\tikz@timer@end{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \fi%
 \let\tikz@timer=\tikz@timer@line%
 \let\tikz@tangent\tikz@timer@start%
 \tikz@scan@next@command%
}%

% snake or lineto?
\def\tikz@path@lineto#1{%
 \iftikz@snaked%
 {
 \pgfsyssoftpathmovetorelevantfalse%
 \pgfpathsnakesto{\tikz@presnake,{\tikz@snake}{\tikz@mainsnakelength}{\noexpand\tikz@snake@install@trans}{},\tikz@postsnake}{#1}%
 }
 \else%
 \pgfpathlineto{#1}%
 \fi%
}%

% snake or lineto?
\def\tikz@path@close#1{%
 \iftikz@snaked%
 {%
 \pgftransformreset%
 \pgfpathsnakesto{\tikz@presnake,{\tikz@snake}{\tikz@mainsnakelength}{\noexpand\tikz@snake@install@trans}{},\tikz@postsnake}{#1}%
 }%
 \fi%
 \pgfpathclose%
}%

% Syntax for lineto horizontal/vertical:
% -| <point>

\def\tikz@hv@lineto{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@hv@lineto}{%
 \pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@hv@lineto}%
 {\pgfutil@ifnextchar c{\tikz@collect@coordinate@onpath\tikz@hv@lineto}%
 {\tikz@scan@one@point{\tikz@@hv@lineto}}}}}%
\def\tikz@@hv@lineto#1{%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \pgf@yc=\tikz@lasty%
 \tikz@make@last@position{#1}%
 \edef\tikz@tangent{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\pgf@yc}}%
 \tikz@flush@moveto@toward{\pgfqpoint{\tikz@lastx}{\pgf@yc}}\pgf@x\pgf@yc%
 \iftikz@shapeborder%
 % ok, target is a shape. have to work now:
 {%
 \pgf@process{\pgfpointshapeborder{\tikz@shapeborder@name}{\pgfqpoint{\tikz@lastx}{\pgf@yc}}}%
 \tikz@make@last@position{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \tikz@path@lineto{\pgfqpoint{\tikz@lastx}{\pgf@yc}}%
 \tikz@path@lineto{\tikz@last@position}%
 \xdef\tikz@timer@end@temp{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}% move out of group
 }%
 \let\tikz@timer@end=\tikz@timer@end@temp%
 \edef\tikz@moveto@waiting{\tikz@shapeborder@name}%
 \else%
 \tikz@path@lineto{\pgfqpoint{\tikz@lastx}{\pgf@yc}}%
 \tikz@path@lineto{\tikz@last@position}%
 \edef\tikz@timer@end{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}% move out of group
 \fi%
 \let\tikz@timer=\tikz@timer@hvline%
 \tikz@scan@next@command%
}%

% Syntax for lineto vertical/horizontal:
% |- <point>

\def\tikz@vh@lineto-{\tikz@vh@lineto@next}%
\def\tikz@vh@lineto@next{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@vh@lineto@next}{%
 \pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@vh@lineto@next}%
 {\pgfutil@ifnextchar c{\tikz@collect@coordinate@onpath\tikz@vh@lineto@next}%
 {\tikz@scan@one@point\tikz@@vh@lineto}}}}%
\def\tikz@@vh@lineto#1{%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \pgf@xc=\tikz@lastx%
 \tikz@make@last@position{#1}%
 \edef\tikz@tangent{\noexpand\pgfqpoint{\the\pgf@xc}{\the\tikz@lasty}}%
 \tikz@flush@moveto@toward{\pgfqpoint{\pgf@xc}{\tikz@lasty}}\pgf@xc\pgf@y%
 \iftikz@shapeborder%
 % ok, target is a shape. have to work now:
 {%
 \pgf@process{\pgfpointshapeborder{\tikz@shapeborder@name}{\pgfqpoint{\pgf@xc}{\tikz@lasty}}}%
 \tikz@make@last@position{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \tikz@path@lineto{\pgfqpoint{\pgf@xc}{\tikz@lasty}}%
 \tikz@path@lineto{\tikz@last@position}%
 \xdef\tikz@timer@end@temp{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}% move out of group
 }%
 \let\tikz@timer@end=\tikz@timer@end@temp%
 \edef\tikz@moveto@waiting{\tikz@shapeborder@name}%
 \else%
 \tikz@path@lineto{\pgfqpoint{\pgf@xc}{\tikz@lasty}}%
 \tikz@path@lineto{\tikz@last@position}%
 \edef\tikz@timer@end{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \fi%
 \let\tikz@timer=\tikz@timer@vhline%
 \tikz@scan@next@command%
}%

% Syntax for cycle:
% -- cycle
\def\tikz@close c{%
 \pgfutil@ifnextchar o{\tikz@collect@coordinate@onpath\tikz@lineto@mid c}% oops, a coordinate
 {\tikz@@close c}}%
\def\tikz@@close cycle{%
 \tikz@flush@moveto%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}
 \tikz@make@last@position{\expandafter\pgfpoint\pgfsyssoftpath@lastmoveto}%
 \tikz@path@close{\expandafter\pgfpoint\pgfsyssoftpath@lastmoveto}%
 \def\pgfstrokehook{}%
 \edef\tikz@timer@end{%\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \noexpand\pgfqpoint{\the\tikz@lastmovetox}{\the\tikz@lastmovetoy}}%
 \let\tikz@timer=\tikz@timer@line%
 \let\tikz@tangent\tikz@timer@start%
 \tikz@scan@next@command%
}%

% Syntax for options:
% [options]
\def\tikz@parse@options#1]{%
 \tikzset{#1}%
 \tikz@scan@next@command%
}%

% Syntax for edges:
% edge [options] (coordinate)
% edge [options] node {node text} (coordinate)
% edge :attribute={...} [options] node {node text} (coordinate)
\def\tikz@edge@plain{%
 \begingroup%
 \ifx\tikz@to@use@whom\pgfutil@undefined\else\tikz@to@use@whom\fi
 \let\tikz@to@or@edge@function=\tikz@do@edge%
 \let\tikz@@to@local@options\pgfutil@empty%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \tikz@to@or@edge}%

% Syntax for to paths:
% to [options] (coordinate)
% to [options] node {node text} (coordinate)
% to :attribute={...} [options] node {node text} (coordinate)
\def\tikz@to o{%
 \tikz@to@use@last@coordinate%
 \let\tikz@to@or@edge@function=\tikz@do@to%
 \let\tikz@@to@local@options\pgfutil@empty%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \tikz@to@or@edge}%

\def\tikz@to@or@edge{%
 \pgfutil@ifnextchar[{\tikz@to@or@edge@option}{%
 \pgfutil@ifnextchar:{\tikz@to@or@edge@animation}{%
 \tikz@@to@collect}}%]
}%
\def\tikz@to@or@edge@option[#1]{%
 \expandafter\def\expandafter\tikz@@to@local@options\expandafter{\tikz@@to@local@options,#1}%
 \tikz@to@or@edge%
}%
\def\tikz@to@or@edge@animation:#1=#2{%
 \expandafter\def\expandafter\tikz@@to@local@options\expandafter{\tikz@@to@local@options,%
 animate={myself:{#1}={#2}}}%
 \tikz@to@or@edge%
}%
\def\tikz@@to@collect{%
 \pgfutil@ifnextchar(\tikz@@to@or@edge@coordinate%)
 {\pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@@to@collect}%
 {\pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@@to@collect}%
 {\pgfutil@ifnextchar c{\tikz@collect@coordinate@onpath\tikz@@to@collect}%
 {\pgfutil@ifnextchar +{\tikz@scan@one@point\tikz@@to@or@edge@math}%
 {\tikzerror{(, +, coordinate, pic, or node expected}%)
 \tikz@@to@or@edge@coordinate()}}}}}%
}%

\def\tikz@@to@or@edge@coordinate({%
 \pgfutil@ifnextchar${%$
 % Ok, parse directly
 \tikz@scan@one@point\tikz@@to@or@edge@math(%
 }{%
 \pgfutil@ifnextchar[{%]
 \tikz@scan@one@point\tikz@@to@or@edge@math(%
 }{%
 \tikz@@to@or@edge@@coordinate(%
 }%
 }%
}%
\def\tikz@@to@or@edge@math#1{%
 \pgf@process{#1}%
 \iftikz@updatecurrent\else
 \tikz@updatenextfalse
 \fi
 \edef\tikztotarget{\the\pgf@x,\the\pgf@y}%
 \tikz@to@or@edge@function%
}%

\def\tikz@@to@or@edge@@coordinate(#1){%
 \def\tikztotarget{#1}%
 \tikz@to@or@edge@function%
}%

\def\tikz@do@edge{%
 \ifx\tikz@edge@macro\pgfutil@empty%
 \setbox\tikz@whichbox=\hbox\bgroup%
 \unhbox\tikz@whichbox%
 \hbox\bgroup
 \bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \let\tikz@transform=\pgfutil@empty%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@tonodes=\tikz@collected@onpath%
 \def\tikztonodes{{\pgfextra{\tikz@node@is@a@labeltrue}\tikz@tonodes}}%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \tikz@options%
 \tikz@do@rdf@pre@options%
 \pgfidscope%
 \tikz@do@rdf@post@options%
 \tikz@transform%
 \let\tikz@transform=\relax%
 % Typeset node:
 \let\tikz@after@path\pgfutil@empty%
 \tikz@atbegin@to%
 \tikz@enable@edge@quotes%
 \path[style=every edge]\expandafter[\tikz@@to@local@options](\tikztostart)\tikz@to@path
 \pgfextra{\global\let\tikz@after@path@smuggle=\tikz@after@path};%
 \tikz@atend@to%
 \endpgfidscope%
 \endpgfscope%
 \endpgfinterruptpath%
 \egroup
 \egroup%
 \egroup%
 \global\setbox\tikz@tempbox=\box\tikz@whichbox%
 \expandafter\endgroup%
 \expandafter\setbox\tikz@whichbox=\box\tikz@tempbox%
 \else%
 \expandafter\expandafter\expandafter\tikz@edge@macro%
 \expandafter\expandafter\expandafter{\expandafter\tikz@@to@local@options\expandafter}\expandafter{\tikz@collected@onpath}%
 \endgroup%
 \let\tikz@after@path@smuggle=\pgfutil@empty%
 \fi%
 \expandafter\tikz@scan@next@command\tikz@after@path@smuggle%
}%

\def\tikz@do@to{%
 \let\tikz@tonodes=\tikz@collected@onpath%
 \def\tikztonodes{{\pgfextra{\tikz@node@is@a@labeltrue}\tikz@tonodes}}%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \tikz@scan@next@command%
 {%
 \pgfextra{\let\tikz@after@path\pgfutil@empty}%
 \pgfextra{\tikz@atbegin@to}%
 \pgfextra{\tikz@enable@edge@quotes}%
 [style=every to]\expandafter[\tikz@@to@local@options]\tikz@to@path%
 \pgfextra{\tikz@atend@to}%
 \pgf@stop%
 \expandafter\tikz@scan@next@command\expandafter%
 }\tikz@after@path%
 \pgfextra{\tikz@updatenexttrue\tikz@updatecurrenttrue}%
}%

\def\tikz@to@use@last@coordinate{%
 \iftikz@shapeborder%
 \edef\tikztostart{\tikz@shapeborder@name}%
 \else%
 \edef\tikztostart{\the\tikz@lastx,\the\tikz@lasty}%
 \fi%
}%
\def\tikz@to@use@last@fig@name{%
 \edef\tikztostart{\tikz@to@last@fig@name}%
}%

% Syntax for graph path command:
% graph [options] {...}
% See the graph library for details

\def\tikz@graph aph{\tikz@lib@graph@parser}%

\def\tikz@lib@graph@parser{\pgfutil@ifnextchar[\tikz@graph@error{\tikz@graph@error[]}}%]%
\def\tikz@graph@error[#1]#2{%
 \tikzerror{You need to say \string\usetikzlibrary{graphs} in order to use the graph syntax}%
 \tikz@lib@graph@parser@done%
}%

\def\tikz@lib@graph@parser@done{%
 \tikz@scan@next@command%
}%

% Syntax for edge from parent:
% edge from parent [options]
\def\tikz@edgetoparent from parent{\pgfutil@ifnextchar[\tikz@@edgetoparent{\tikz@@edgetoparent[]}}%}%
\def\tikz@@edgetoparent[#1]{%
 \let\tikz@edge@to@parent@needed=\pgfutil@empty%
 \def\tikz@edgetoparent@options{#1}%
 \begingroup%
 \let\tikz@collected@onpath=\pgfutil@empty%
 \tikz@edgetoparentcollect%
}%
\def\tikz@edgetoparentcollect{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@edgetoparentcollect}%
 {%
 \expandafter%
 \endgroup%
 \expandafter\tikz@edgetoparent@rollout\expandafter{\tikz@collected@onpath}%
 }%
}%

\def\tikz@edgetoparent@rollout#1{%
 \pgfkeysgetvalue{/tikz/edge from parent macro}\tikz@etop@temp
 \expandafter\tikz@scan@next@command\expandafter\tikz@etop@temp\expandafter{\tikz@edgetoparent@options}{#1}%
}%

% Syntax for bezier curves
% .. controls(point) and (point) .. (target)
% .. controls(point) .. (target)
% .. (target) % currently not supported

\def\tikz@dot.{\tikz@@dot}%
\def\tikz@@dot{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@@dot}{%
 \pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@@dot}%
 {\pgfutil@ifnextchar c{\tikz@curveto@double}{\tikz@curveto@auto}}}%
}%

\def\tikz@curveto@double co{%
 \pgfutil@ifnextchar o{\tikz@collect@coordinate@onpath\tikz@@dot co}
 {\tikz@cureveto@@double}}%
\def\tikz@cureveto@@double ntrols#1{%
 \tikz@scan@one@point\tikz@curveA#1%
}%
\def\tikz@curveA#1{%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 {%
 \tikz@lastxsaved=\tikz@lastx%
 \tikz@lastysaved=\tikz@lasty%
 \tikz@make@last@position{#1}%
 \xdef\tikz@curve@first{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 }%
 \pgfutil@ifnextchar a
 {\tikz@curveBand}%
 {\let\tikz@curve@second\tikz@curve@first\tikz@curveCdots}%
}%
\def\tikz@curveBand and{%
 \tikz@scan@one@point\tikz@curveB%
}%
\def\tikz@curveB#1{%
 \def\tikz@curve@second{#1}%
 \tikz@curveCdots}
\def\tikz@curveCdots{%
 \afterassignment\tikz@curveCdot\let\pgfutil@next=}%
\def\tikz@curveCdot.{%
 \ifx\pgfutil@next.%
 \else%
 \tikzerror{Dot expected}%
 \fi%
 \iftikz@updatenext
 \tikz@updatecurrenttrue%
 \fi
 \tikz@curveCcheck%
}%
\def\tikz@curveCcheck{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@curveCcheck}{%
 \pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@curveCcheck}%
 {\pgfutil@ifnextchar c{\tikz@collect@coordinate@onpath\tikz@curveCcheck}
 {\tikz@scan@one@point\tikz@curveC}}}%
}%
\def\tikz@curveC#1{%
 \tikz@make@last@position{#1}%
 \edef\tikz@curve@third{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 {%
 \tikz@lastxsaved=\tikz@lastx%
 \tikz@lastysaved=\tikz@lasty%
 \tikz@make@last@position{\tikz@curve@second}%
 \xdef\tikz@curve@second{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 }%
 %
 % Start recalculating things in case start and end are shapes.
 %
 % First, the start:
 \ifx\tikz@moveto@waiting\relax%
 \else%
 \pgf@process{\pgfpointshapeborder{\tikz@moveto@waiting}{\tikz@curve@first}}%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
 \tikz@@movetosave{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \fi%
 \let\tikz@timer@cont@one=\tikz@curve@first%
 \let\tikz@timer@cont@two=\tikz@curve@second%
 % Second, the end:
 \iftikz@shapeborder%
 % ok, target is a shape. recalculate third
 {%
 \pgf@process{\pgfpointshapeborder{\tikz@shapeborder@name}{\tikz@curve@second}}%
 \tikz@make@last@position{\pgfqpoint{\pgf@x}{\pgf@y}}%
 \edef\tikz@curve@third{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \pgfpathcurveto{\tikz@curve@first}{\tikz@curve@second}{\tikz@curve@third}%
 \global\let\tikz@timer@end@temp=\tikz@curve@third% move out of group
 }%
 \let\tikz@timer@end=\tikz@timer@end@temp%
 \edef\tikz@moveto@waiting{\tikz@shapeborder@name}%
 \else%
 \pgfpathcurveto{\tikz@curve@first}{\tikz@curve@second}{\tikz@curve@third}%
 \let\tikz@timer@end=\tikz@curve@third
 \let\tikz@moveto@waiting=\relax%
 \fi%
 \let\tikz@timer=\tikz@timer@curve%
 \let\tikz@tangent=\tikz@curve@second%
 \tikz@scan@next@command%
}%

% Syntax for rectangles:
% rectangle <corner point>
\def\tikz@rect ectangle{%
 \tikz@flush@moveto%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \tikz@@rect}%
\def\tikz@@rect{%
 \pgfutil@ifnextchar n{\tikz@collect@label@onpath\tikz@@rect}{%
 \pgfutil@ifnextchar p{\tikz@collect@pic@onpath\tikz@@rect}%
 {\pgfutil@ifnextchar c{\tikz@collect@coordinate@onpath\tikz@@rect}%
 {
 \pgf@xa=\tikz@lastx\relax%
 \pgf@ya=\tikz@lasty\relax%
 \tikz@scan@one@point\tikz@rectB}}}}%
\def\tikz@rectB#1{%
 \tikz@make@last@position{#1}%
 \edef\tikz@timer@end{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \let\tikz@timer=\tikz@timer@line%
 \tikz@@movetosave{\pgfqpoint{\pgf@xa}{\pgf@ya}}%
 \tikz@path@lineto{\pgfqpoint{\pgf@xa}{\tikz@lasty}}%
 \tikz@path@lineto{\pgfqpoint{\tikz@lastx}{\tikz@lasty}}%
 \tikz@path@lineto{\pgfqpoint{\tikz@lastx}{\pgf@ya}}%
 \iftikz@snaked%
 \tikz@path@lineto{\pgfqpoint{\pgf@xa}{\pgf@ya}}%
 \fi%
 \pgfpathclose%
 \tikz@@movetosave{\pgfqpoint{\tikz@lastx}{\tikz@lasty}}%
 \def\pgfstrokehook{}%
 \let\tikz@tangent\relax%
 \tikz@scan@next@command%
}%

% Syntax for grids:
% grid <corner point>
\def\tikz@grid id{%
 \tikz@flush@moveto%
 \pgf@xa=\tikz@lastx\relax%
 \pgf@ya=\tikz@lasty\relax%
 \pgfutil@ifnextchar[{\tikz@gridA}{\tikz@gridA[]}}%}%
\def\tikz@gridA[#1]{%
 \def\tikz@grid@options{#1}%
 \tikz@cycle@expander{\tikz@scan@one@point\tikz@gridB}}%
\def\tikz@gridB#1{%
 \tikz@make@last@position{#1}%
 \let\tikz@tangent\relax%
 {%
 \let\tikz@after@path\pgfutil@empty%
 \expandafter\tikzset\expandafter{\tikz@grid@options}
 \tikz@checkunit{\tikz@grid@x}%
 \iftikz@isdimension%
 \pgf@process{\pgfpoint{\tikz@grid@x}{0pt}}%
 \else%
 \pgf@process{\pgfpointxy{\tikz@grid@x}{0}}%
 \fi%
 \pgf@xb=\pgf@x%
 \pgf@yb=\pgf@y%
 \tikz@checkunit{\tikz@grid@y}%
 \iftikz@isdimension%
 \pgf@process{\pgfpoint{0pt}{\tikz@grid@y}}%
 \else%
 \pgf@process{\pgfpointxy{0}{\tikz@grid@y}}%
 \fi%
 \advance\pgf@xb by\pgf@x%
 \advance\pgf@yb by\pgf@y%
 \pgfpathgrid[stepx=\pgf@xb,stepy=\pgf@yb]%
 {\pgfqpoint{\pgf@xa}{\pgf@ya}}{\pgfqpoint{\tikz@lastx}{\tikz@lasty}}%
 \expandafter}%
 \expandafter\tikz@scan@next@command\tikz@after@path%
}%

% Syntax for plot:
% plot [local options] ... % starts with a moveto
% -- plot [local options] ... % starts with a lineto
\def\tikz@plot lot{%
 \tikz@flush@moveto%
 \pgfutil@ifnextchar[{\tikz@@plot}{\tikz@@plot[]}}%}%
\def\tikz@@plot[#1]{%
 \let\tikz@tangent\tikz@tangent@lookup%
 \begingroup%
 \let\tikz@after@path\pgfutil@empty%
 \let\tikz@options=\pgfutil@empty%
 \tikzset{every plot/.try}%
 \tikzset{#1}%
 \pgfutil@ifnextchar f{\tikz@plot@f}%
 {\pgfutil@ifnextchar c{\tikz@plot@scan@points}%
 {\pgfutil@ifnextchar ({\tikz@plot@expression}{%
 \tikzerror{Cannot parse this plotting data}%
 \endgroup}}}}%
\def\tikz@plot@f f{\pgfutil@ifnextchar i{\tikz@plot@file}{\tikz@plot@function}}%

\def\tikz@plot@file ile#1{\def\tikz@plot@data{\pgfplotxyfile{#1}}\tikz@@@plot}%
\def\tikz@plot@scan@points coordinates#1{%
 \pgfplothandlerrecord\tikz@plot@data%
 \pgfplotstreamstart%
 \pgfutil@ifnextchar\pgf@stop{\pgfplotstreamend\expandafter\tikz@@@plot\pgfutil@gobble}
 {\tikz@scan@one@point\tikz@plot@next@point}%
 #1\pgf@stop%
}%
\def\tikz@plot@next@point#1{%
 \pgfplotstreampoint{#1}%
 \pgfutil@ifnextchar\pgf@stop{\pgfplotstreamend\expandafter\tikz@@@plot\pgfutil@gobble}%
 {\tikz@scan@one@point\tikz@plot@next@point}%
}%
\def\tikz@plot@function unction#1{%
 \def\tikz@plot@filename{\tikz@plot@prefix\tikz@plot@id}%
 \iftikz@plot@raw@gnuplot%
 \def\tikz@plot@data{\pgfplotgnuplot[\tikz@plot@filename]{#1}}%
 \else%
 \iftikz@plot@parametric%
 \def\tikz@plot@data{\pgfplotgnuplot[\tikz@plot@filename]{%
 set samples \tikz@plot@samples;
 set parametric;
 plot [t=\tikz@plot@domain]
 [\tikz@plot@xrange]
 [\tikz@plot@range]
 #1}}%
 \else%
 \def\tikz@plot@data{\pgfplotgnuplot[\tikz@plot@filename]{%
 set samples \tikz@plot@samples;
 plot [x=\tikz@plot@domain]
 \ifx\tikz@plot@range\pgfutil@empty\else[\tikz@plot@range]\fi
 #1}}%
 \fi%
 \fi%
 \tikz@@@plot%
}%

\def\tikz@plot@no@resample{%
 \pgfutil@IfFileExists{\tikz@plot@filename.table}%
 {\def\tikz@plot@data{\pgfplotxyfile{\tikz@plot@filename.table}}}%
 {}%
}%

\def\tikz@plot@expression(#1){%
 \edef\tikz@plot@data{\noexpand\pgfplotfunction{\expandafter\noexpand\tikz@plot@var}{\tikz@plot@samplesat}}%
 \expandafter\def\expandafter\tikz@plot@data\expandafter{\tikz@plot@data{\tikz@scan@one@point\pgfutil@firstofone(#1)}}%
 \tikz@@@plot%
}%

\def\tikz@@@plot{%
 \def\pgfplotlastpoint{\pgfpointorigin}%
 \tikz@plot@handler%
 \tikz@plot@data%
 \global\let\tikz@@@temp=\pgfplotlastpoint%
 \ifx\tikz@plot@mark\pgfutil@empty%
 \else%
 % Marks are drawn after the path.
 \setbox\tikz@whichbox=\hbox{%
 \unhbox\tikz@whichbox%
 \hbox{{%
 \pgfinterruptpath%
 \pgfscope%
 \let\tikz@options=\pgfutil@empty%
 \let\tikz@transform=\pgfutil@empty%
 \tikzset{every mark}%
 \tikz@options%
 \ifx\tikz@mark@list\pgfutil@empty%
 \pgfplothandlermark{\tikz@transform\pgfuseplotmark{\tikz@plot@mark}}%
 \else
 \pgfplothandlermarklisted{\tikz@transform\pgfuseplotmark{\tikz@plot@mark}}{\tikz@mark@list}%
 \fi
 \tikz@plot@data%
 \endpgfscope
 \endpgfinterruptpath%
 }}%
 }%
 \fi%
 \global\setbox\tikz@tempbox=\box\tikz@whichbox%
 \global\let\tikz@after@path@smuggle=\tikz@after@path
 \expandafter\endgroup%
 \expandafter\setbox\tikz@whichbox=\box\tikz@tempbox%
 \tikz@make@last@position{\tikz@@@temp}%
 \expandafter\tikz@scan@next@command\tikz@after@path@smuggle%
}%

\pgfdeclareplotmark{ball}
{%
 \def\tikz@shading{ball}%
 \shade (0pt,0pt) circle (\pgfplotmarksize);%
}%

% Syntax for cosine curves:
% cos <end of quarter-period>
\def\tikz@cosine s{\tikz@cycle@expander{\tikz@scan@one@point\tikz@@cosine}}
\def\tikz@@cosine#1{%
 \let\tikz@tangent\tikz@tangent@lookup%
 \tikz@flush@moveto%
 \pgf@process{#1}%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \advance\pgf@xc by-\tikz@lastx%
 \advance\pgf@yc by-\tikz@lasty%
 \advance\tikz@lastx by\pgf@xc%
 \advance\tikz@lasty by\pgf@yc%
 \tikz@lastxsaved=\tikz@lastx%
 \tikz@lastysaved=\tikz@lasty%
 \tikz@updatecurrenttrue%
 \pgfpathcosine{\pgfqpoint{\pgf@xc}{\pgf@yc}}%
 \tikz@scan@next@command%
}%

% Syntax for sine curves:
% sin <end of quarter-period>
\def\tikz@sine in{\tikz@cycle@expander{\tikz@scan@one@point\tikz@@sine}}
\def\tikz@@sine#1{%
 \let\tikz@tangent\tikz@tangent@lookup%
 \tikz@flush@moveto%
 \pgf@process{#1}%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \advance\pgf@xc by-\tikz@lastx%
 \advance\pgf@yc by-\tikz@lasty%
 \advance\tikz@lastx by\pgf@xc%
 \advance\tikz@lasty by\pgf@yc%
 \tikz@lastxsaved=\tikz@lastx%
 \tikz@lastysaved=\tikz@lasty%
 \tikz@updatecurrenttrue%
 \pgfpathsine{\pgfqpoint{\pgf@xc}{\pgf@yc}}%
 \tikz@scan@next@command%
}%

% Syntax for parabolas:
% parabola[options] bend <coordinate> <coordinate>
\def\tikz@parabola arabola{%
 \let\tikz@tangent\tikz@tangent@lookup%
 \pgfutil@ifnextchar[{\tikz@parabola@options}{\tikz@parabola@options[]}}%}%

\def\tikz@parabola@options[#1]{%
 \def\tikz@parabola@option{#1}%
 \pgfutil@ifnextchar b{\tikz@parabola@scan@bend}{\tikz@cycle@expander{\tikz@scan@one@point\tikz@parabola@semifinal}}}%
\def\tikz@parabola@scan@bend bend{\tikz@scan@one@point\tikz@parabola@scan@bendB}%
\def\tikz@parabola@scan@bendB#1{%
 \def\tikz@parabola@bend{#1}%
 \tikz@cycle@expander{\tikz@scan@one@point\tikz@parabola@semifinal}%
}%
\def\tikz@parabola@semifinal#1{%
 \tikz@flush@moveto%
 % Save original start:
 \pgf@xb=\tikz@lastx%
 \pgf@yb=\tikz@lasty%
 \tikz@make@last@position{#1}%
 \pgf@xc=\tikz@lastx%
 \pgf@yc=\tikz@lasty%
 \begingroup% now calculate bend:
 \let\tikz@after@path\pgfutil@empty%
 \expandafter\tikzset\expandafter{\tikz@parabola@option}%
 \tikz@lastxsaved=\tikz@parabola@bend@factor\tikz@lastx%
 \tikz@lastysaved=\tikz@parabola@bend@factor\tikz@lasty%
 \advance\tikz@lastxsaved by\pgf@xb%
 \advance\tikz@lastysaved by\pgf@yb%
 \advance\tikz@lastxsaved by-\tikz@parabola@bend@factor\pgf@xb%
 \advance\tikz@lastysaved by-\tikz@parabola@bend@factor\pgf@yb%
 \expandafter\tikz@make@last@position\expandafter{\tikz@parabola@bend}%
 % Calculate delta from bend
 \advance\pgf@xc by-\tikz@lastx%
 \advance\pgf@yc by-\tikz@lasty%
 % Ok, now calculate delta to bend
 \advance\tikz@lastx by-\pgf@xb%
 \advance\tikz@lasty by-\pgf@yb%
 \xdef\tikz@parabola@b{{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}{\noexpand\pgfqpoint{\the\pgf@xc}{\the\pgf@yc}}}%
 \expandafter\endgroup%
 \expandafter\expandafter\expandafter\pgfpathparabola\expandafter\tikz@parabola@b%
 \expandafter\tikz@scan@next@command\tikz@after@path%
}%

% Syntax for circles:
% circle [options] % where options should set, at least, radius
% circle (radius) % deprecated
%
% Syntax for ellipses:
% ellipse [options] % identical to circle.
% ellipse (x-radius and y-radius) % deprecated
%
% radii can be dimensionless, then they are in the xy-system
\def\tikz@circle ircle{\tikz@flush@moveto\tikz@@circle}%
\def\tikz@ellipse llipse{\tikz@flush@moveto\tikz@@circle}%
\def\tikz@@circle{%
 \let\tikz@tangent\relax%
 \pgfutil@ifnextchar(\tikz@@@circle
 {\pgfutil@ifnextchar[\tikz@circle@opt{%])
 \advance\tikz@expandcount by -10\relax% go down quickly
 \ifnum\tikz@expandcount<0\relax%
 \let\pgfutil@next=\tikz@@circle@normal%
 \else%
 \let\pgfutil@next=\tikz@@circle@scanexpand%
 \fi%
 \pgfutil@next%
 }}%
}%
\def\tikz@@circle@scanexpand{\expandafter\tikz@@circle}%
\def\tikz@@circle@normal{\tikz@circle@opt[]}%

\def\tikz@circle@opt[#1]{%
 {%
 \def\tikz@node@at{\tikz@last@position}%
 \let\tikz@transform=\pgfutil@empty%
 \tikzset{every circle/.try,#1}%
 \pgftransformshift{\tikz@node@at}%
 \tikz@transform%
 \tikz@do@ellipse{\pgfkeysvalueof{/tikz/x radius}}{\pgfkeysvalueof{/tikz/y radius}}
 }%
 \tikz@scan@next@command%
}%

\def\tikz@@@circle(#1){%
 {%
 \pgftransformshift{\tikz@last@position}%
 \pgfutil@in@{ and }{#1}%
 \ifpgfutil@in@%
 \tikz@@ellipseB(#1)%
 \else%
 \tikz@do@circle{#1}%
 \fi%
 }%
 \tikz@scan@next@command%
}%
\def\tikz@@ellipseB(#1 and #2){%
 \tikz@do@ellipse{#1}{#2}%
}%
\def\tikz@do@circle#1{%
 \pgfmathparse{#1}%
 \let\tikz@ellipse@x=\pgfmathresult
 \ifpgfmathunitsdeclared
 \pgfpathellipse{\pgfpointorigin}%
 {\pgfqpoint{\tikz@ellipse@x pt}{0pt}}%
 {\pgfpoint{0pt}{\tikz@ellipse@x pt}}%
 \else
 \pgfpathellipse{\pgfpointorigin}%
 {\pgfpointxy{\tikz@ellipse@x}{0}}%
 {\pgfpointxy{0}{\tikz@ellipse@x}}%
 \fi
}
\def\tikz@do@ellipse#1#2{
 \pgfmathparse{#1}%
 \let\tikz@ellipse@x=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \pgfmathparse{#2}%
 \let\tikz@ellipse@y=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \pgfpathellipse{\pgfpointorigin}{%
 \pgfqpoint{\tikz@ellipse@x pt}{0pt}}{\pgfpoint{0pt}{\tikz@ellipse@y pt}}%
 \else%
 \tikzerror{You cannot mix dimensions and dimensionless values in an ellipse}%
 \fi%
 \else%
 \pgfmathparse{#2}%
 \let\tikz@ellipse@y=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \tikzerror{You cannot mix dimensions and dimensionless values in an ellipse}%
 \else%
 \pgfpathellipse{\pgfpointorigin}{%
 \pgfpointxy{\tikz@ellipse@x}{0}}{\pgfpointxy{0}{\tikz@ellipse@y}}%
 \fi%
 \fi%
}%

% Syntax for arcs:
% arc [options]
%
% (The syntax with parentheses is deprecated.)
\def\tikz@arcA rc{\tikz@flush@moveto\tikz@arc@cont}%
\def\tikz@arc@cont{%
 \pgfutil@ifnextchar(%)
 {\tikz@@arcto}{%
 \pgfutil@ifnextchar[%]
 {\tikz@arc@opt}%
 {%
 \advance\tikz@expandcount by -10\relax% go down quickly
 \ifnum\tikz@expandcount<0\relax%
 \let\pgfutil@next=\tikz@@arc@normal%
 \else%
 \let\pgfutil@next=\tikz@@arc@scanexpand%
 \fi%
 \pgfutil@next%
 }%
 }%
}%
\def\tikz@@arc@scanexpand{\expandafter\tikz@arc@cont}%
\def\tikz@@arc@normal{\tikz@arc@opt[]}%

\def\tikz@arc@opt[#1]{%
 {%
 \tikzset{every arc/.try,#1}%
 \pgfkeysgetvalue{/tikz/start angle}\tikz@s
 \pgfkeysgetvalue{/tikz/end angle}\tikz@e
 \pgfkeysgetvalue{/tikz/delta angle}\tikz@d
 \ifx\tikz@s\pgfutil@empty%
 \pgfmathsetmacro\tikz@s{\tikz@e-\tikz@d}
 \else
 \ifx\tikz@e\pgfutil@empty%
 \pgfmathsetmacro\tikz@e{\tikz@s+\tikz@d}
 \fi%
 \fi%
 \xdef\pgf@marshal{\noexpand%
 \tikz@do@arc{\tikz@s}{\tikz@e}
 {\pgfkeysvalueof{/tikz/x radius}}
 {\pgfkeysvalueof{/tikz/y radius}}}%
 }%
 \pgf@marshal%
 \tikz@arcfinal%
}%

\def\tikz@@arcto(#1){%
 \edef\tikz@temp{(#1)}%
 \expandafter\tikz@@@arcto@check@slashand\tikz@temp%
}%

\def\tikz@@@arcto@check@slashand(#1:#2:#3){%
 \pgfutil@in@{ and }{#3}%
 \ifpgfutil@in@%
 \tikz@parse@arc@and(#1:#2:#3)%
 \else%
 \tikz@parse@arc@and(#1:#2:{#3} and {#3})%
 \fi%
 \tikz@arcfinal%
}%

\def\tikz@parse@arc@and(#1:#2:#3 and #4){%
 \tikz@do@arc{#1}{#2}{#3}{#4}%
}%
\def\tikz@do@arc#1#2#3#4{%
 \let\tikz@tangent\tikz@tangent@lookup%
 \edef\tikz@timer@start{\noexpand\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \pgfmathsetmacro\tikz@timer@start@angle{#1}%
 \pgfmathsetmacro\tikz@timer@end@angle{#2}%
 \pgfmathparse{#3}%
 \let\tikz@arc@x=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \pgfmathparse{#4}%
 \let\tikz@arc@y=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \tikz@@@arcfinal{\pgfpatharc{\tikz@timer@start@angle}{\tikz@timer@end@angle}{\tikz@arc@x pt and \tikz@arc@y pt}}
 {\pgfpointpolar{\tikz@timer@start@angle}{\tikz@arc@x pt and \tikz@arc@y pt}}
 {\pgfpointpolar{\tikz@timer@end@angle}{\tikz@arc@x pt and \tikz@arc@y pt}}%
 \edef\tikz@timer@zero@axis{\noexpand\pgfqpoint{\tikz@arc@x pt}{0pt}}
 \edef\tikz@timer@ninety@axis{\noexpand\pgfqpoint{0pt}{\tikz@arc@y pt}}
 \else%
 \tikzerror{You cannot mix dimensions and dimensionless values in an arc}%
 \fi%
 \else%
 \pgfmathparse{#4}%
 \let\tikz@arc@y=\pgfmathresult%
 \ifpgfmathunitsdeclared%
 \tikzerror{You cannot mix dimensions and dimensionless values in an arc}%
 \else%
 \tikz@@@arcfinal{\pgfpatharcaxes{\tikz@timer@start@angle}{\tikz@timer@end@angle}{\pgfpointxy{\tikz@arc@x}{0}}{\pgfpointxy{0}{\tikz@arc@y}}}
 {\pgfpointpolarxy{\tikz@timer@start@angle}{\tikz@arc@x and \tikz@arc@y}}{\pgfpointpolarxy{\tikz@timer@end@angle}{\tikz@arc@x and \tikz@arc@y}}%
 \pgf@process{\pgfpointxy{\tikz@arc@x}{0}}
 \edef\tikz@timer@zero@axis{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}
 \pgf@process{\pgfpointxy{0}{\tikz@arc@y}}
 \edef\tikz@timer@ninety@axis{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}
 \fi%
 \fi%
}%

\def\tikz@@@arcfinal#1#2#3{%
 #1%
 \pgf@process{#2}
 \xdef\tikz@arc@save@first{\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
 \pgf@process{#3}
 \xdef\tikz@arc@save@second{\pgfqpoint{\the\pgf@x}{\the\pgf@y}}%
}%

\def\tikz@arcfinal{%
 \pgf@process{\tikz@arc@save@first}%
 \advance\tikz@lastx by-\pgf@x%
 \advance\tikz@lasty by-\pgf@y%
 \pgf@process{\tikz@arc@save@second}%
 \advance\tikz@lastx by\pgf@x%
 \advance\tikz@lasty by\pgf@y%
 \tikz@lastxsaved=\tikz@lastx%
 \tikz@lastysaved=\tikz@lasty%
 \let\tikz@timer=\tikz@timer@arc%
 \tikz@scan@next@command%
}%

% Syntax for coordinates:
% coordinate[options] (coordinate name) at (point)
% where ``at (point)'' is optional
\def\tikz@coordinate ordinate{%
 \pgfutil@ifnextchar[{\tikz@@coordinate@opt}{\tikz@@coordinate@opt[]}}%
\def\tikz@@coordinate@opt[#1]{%
 \pgfutil@ifnextchar({\tikz@@coordinate[#1]}
 {\tikz@fig ode[shape=coordinate,#1]{}}}%}%
\def\tikz@@coordinate[#1](#2){%
 \pgfutil@ifnextchar a{\tikz@@coordinate@at[#1](#2)}
 {\tikz@fig ode[shape=coordinate,#1](#2){}}}%
\def\tikz@@coordinate@at[#1](#2)a{%
 \pgfutil@ifnextchar t{\tikz@@coordinate@@at[#1](#2)a}%
 {\tikz@fig ode[shape=coordinate,#1](#2){}a}%
}%
\def\tikz@@coordinate@@at[#1](#2)at#3({%
 \def\tikz@coordinate@caller{\tikz@fig ode[shape=coordinate,#1](#2)at}%
 \tikz@scan@one@point\tikz@@coordinate@at@math(%
}%
\def\tikz@@coordinate@at@math#1{%
 \pgf@process{#1}%
 \edef\tikz@temp{(\the\pgf@x,\the\pgf@y)}%
 \expandafter\tikz@coordinate@caller\tikz@temp{}%
}%

% Syntax for nodes:
% node foreach \var in {list} ... :attribute={...} [options] (node name) at (pos) {label text}
%
% all of :attribute, [options], (node name), at(pos), and foreach are
% optional. There can be multiple options and the ordering is not
% important as in node[draw] (a) [rotate=10] {text}, *except* that all
% foreach statements must come first.
%
% A label text always ``ends'' the node.
%
\def\tikz@fig ode{%
 \pgfutil@ifnextchar a\tikz@test@also{%
 \pgfutil@ifnextchar f{\tikz@nodes@start}\tikz@normal@fig}}%
\def\tikz@test@also a{\pgfutil@ifnextchar l\tikz@node@also{\tikz@normal@fig a}}%
\def\tikz@normal@fig{%
 \edef\tikz@save@line@width{\the\pgflinewidth}%
 \begingroup%
 \let\tikz@fig@name=\pgfutil@empty%
 \begingroup%
 \tikz@is@matrixfalse%
 \let\nodepart=\tikz@nodepart%
 \let\tikz@atbegin@scope=\pgfutil@empty%
 \let\tikz@atend@scope=\pgfutil@empty%
 \let\tikz@do@after@node=\tikz@scan@next@command%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@id@name=\pgfutil@empty%
 \let\tikz@after@path=\pgfutil@empty%
 \let\tikz@transform=\pgfutil@empty%
 \let\tikz@mode=\pgfutil@empty%
 \tikz@decoratepathfalse%
 \let\tikz@preactions=\pgfutil@empty%
 \let\tikz@postactions=\pgfutil@empty%
 \let\tikz@alias=\pgfutil@empty%
 \def\tikz@node@at{\pgfqpoint{\the\tikz@lastx}{\the\tikz@lasty}}%
 \let\tikz@time@for@matrix\tikz@time%
 \let\tikz@node@content\relax%
 \pgfgetpath\tikzpathuptonow%
 \iftikz@node@is@a@label%
 \else%
 \let\tikz@time\pgfutil@empty%
 \fi%
 \tikz@node@reset@hook%
 \tikzset{every node/.try}%
 \tikz@@scan@fig}%
\def\tikz@@scan@fig{%
 \pgfutil@ifnextchar a{\tikz@fig@scan@at}
 {\pgfutil@ifnextchar({\tikz@fig@scan@name}
 {\pgfutil@ifnextchar[{\tikz@fig@scan@options}%
 {\pgfutil@ifnextchar:{\tikz@fig@scan@animation}%
 {\pgfutil@ifnextchar\bgroup{\tikz@fig@main}%
 {\tikzerror{A node must have a (possibly empty) label text}%
 \tikz@fig@main{}}}}}}}%}}%
\def\tikz@fig@scan@at at{%
 \tikz@scan@one@point\tikz@@fig@scan@at}%
\def\tikz@@fig@scan@at#1{%
 \def\tikz@node@at{#1}\tikz@@scan@fig}%
\def\tikz@fig@scan@name(#1){%
 \pgfkeysvalueof{/tikz/name/.@cmd}#1\pgfeov% CF : this is now ALWAYS consistent with 'name=' option; allows overrides.
 \tikz@@scan@fig}%
% make it \long to allow \par in "pin" options etc:
\long\def\tikz@fig@scan@options[#1]{\iftikz@node@is@pic\tikz@enable@pic@quotes\else\tikz@enable@node@quotes\fi\tikzset{#1}\ifx\tikz@node@content\relax\expandafter\tikz@@scan@fig\else\tikz@expand@node@contents\fi}%
\def\tikz@fig@scan@animation:#1=#2{\tikzset{animate={myself:{#1}={#2}}}\tikz@@scan@fig}%
\def\tikz@expand@node@contents{%
 \expandafter\tikz@@scan@fig\expandafter{\tikz@node@content}%
}%
\let\tikz@node@reset@hook=\pgfutil@empty%
\let\tikz@node@begin@hook=\pgfutil@empty%
\def\tikz@fig@main{%
 \iftikz@node@is@pic%
 \tikz@node@is@picfalse%
 \expandafter\tikz@subpicture@handle%
 \else%
 \afterassignment\tikz@@fig@main\expandafter\let\expandafter\next\expandafter=%
 \fi}%
\def\tikz@@fig@main{%
 \pgfutil@ifundefined{pgf@sh@s@\tikz@shape}%
 {\tikzerror{Unknown shape ``\tikz@shape.'' Using ``rectangle'' instead}%
 \def\tikz@shape{rectangle}}%
 {}%
 \expandafter\xdef\csname tikz@dcl@coord@\tikz@fig@name\endcsname{%
 \csname tikz@scan@point@coordinate\endcsname}%
 \tikzset{every \tikz@shape\space node/.try}%
 \tikz@node@textfont%
 \tikz@node@begin@hook%
 \iftikz@is@matrix%
 \let\tikz@next=\tikz@do@matrix%
 \else%
 \let\tikz@next=\tikz@do@fig%
 \fi%
 \tikz@next%
}%
\let\tikz@nodepart@list\pgfutil@empty
\def\tikz@do@fig{%
 % Ok, reset all node part boxes
 \pgfutil@for\tikz@temp:=\tikz@nodepart@list\do{%
 \expandafter\setbox\csname pgfnodepart\tikz@temp box\endcsname=\box\pgfutil@voidb@x%
 }%
 \setbox\pgfnodeparttextbox=\hbox%
 \bgroup%
 \pgfinterruptpicture%
 \pgfsys@begin@text%
 \pgfsys@text@to@black@hook%
 \tikzset{every text node part/.try}%
 \ifx\tikz@textopacity\pgfutil@empty%
 \else%
 \pgfsetfillopacity{\tikz@textopacity}%
 \pgfsetstrokeopacity{\tikz@textopacity}%
 \fi%
 \ifx\tikz@text@width\pgfutil@empty%
 \tikz@textfont%
 \else%
 \begingroup%
 \pgfmathsetlength{\pgf@x}{\tikz@text@width}%
 \pgfutil@minipage[t]{\pgf@x}\leavevmode\hbox{}%
 \tikz@textfont%
 \tikz@text@action%
 \fi%
 \tikz@atbegin@node%
 \bgroup%
 \aftergroup\unskip%
 % Some color stuff has been moved from here to outside; this is
 % necessary for support of dvisvgm and of animation
 % snapshots.
 \ifx\tikz@textcolor\pgfutil@empty%
 \else%
 \pgfutil@colorlet{.}{\tikz@textcolor}%
 \pgfutil@color{\tikz@textcolor}%
 \fi%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@uninstallcommands%
 \iftikz@handle@active@code%
 \tikz@orig@shorthands%
 \let\tikz@orig@shorthands\pgfutil@empty%
 \fi%
 \ifnum\the\catcode`\;=\active\relax\expandafter\let\tikz@activesemicolon=\tikz@origsemi\fi%
 \ifnum\the\catcode`\:=\active\relax\expandafter\let\tikz@activecolon=\tikz@origcolon\fi%
 \ifnum\the\catcode`\|=\active\relax\expandafter\let\tikz@activebar=\tikz@origbar\fi%
 \aftergroup\tikz@fig@collectresetcolor%
 \tikz@signal@halign@check%
 \tikz@text@reset%
 \tikz@halign@check%
 \ignorespaces%
}%
\def\tikz@fig@collectresetcolor{%
 % Hacks for special packages that mess with \aftergroup
 \pgfutil@ifnextchar\reset@color% hack for color package
 {\reset@color\afterassignment\tikz@fig@collectresetcolor\let\tikz@temp=}\tikz@fig@boxdone%
}%
\def\tikz@fig@boxdone{%
 \tikz@atend@node%
 \ifx\tikz@text@width\pgfutil@empty%
 \else%
 \pgfutil@endminipage%
 \endgroup%
 \fi%
 \pgfsys@end@text%
 \endpgfinterruptpicture%
 \egroup%
 \pgfutil@ifnextchar c{\tikz@fig@mustbenamed\tikz@fig@continue}%
 {\pgfutil@ifnextchar[{\tikz@fig@mustbenamed\tikz@fig@continue}%
 {\pgfutil@ifnextchar t{\tikz@fig@mustbenamed\tikz@fig@continue}
 {\pgfutil@ifnextchar e{\tikz@fig@mustbenamed\tikz@fig@continue}
 {\ifx\tikz@after@path\pgfutil@empty\expandafter\tikz@fig@continue\else\expandafter\tikz@fig@mustbenamed\expandafter\tikz@fig@continue\fi}}}}}%}%

\tikzset{
 matrix/inner style/every cell/.code={%
 \tikzset{every cell/.try={\the\pgfmatrixcurrentrow}{\the\pgfmatrixcurrentcolumn}}%
 },
 matrix/inner style/column/.code={%
 \tikzset{column \the\pgfmatrixcurrentcolumn/.try}%
 },
 matrix/inner style/even odd column/.code={
 \ifodd\pgfmatrixcurrentcolumn%
 \tikzset{every odd column/.try}%
 \else%
 \tikzset{every even column/.try}%
 \fi
 },
 matrix/inner style/row/.code={%
 \tikzset{row \the\pgfmatrixcurrentrow/.try}%
 },
 matrix/inner style/even odd row/.code={%
 \ifodd\pgfmatrixcurrentrow%
 \tikzset{every odd row/.try}%
 \else%
 \tikzset{every even row/.try}%
 \fi
 },
 matrix/inner style/cell/.code={%
 \tikzset{row \the\pgfmatrixcurrentrow\space column \the\pgfmatrixcurrentcolumn/.try}%
 },
 matrix/inner style order/.store in=\tikz@common@matrix@code@styleorder,
 matrix/inner style order={
 every cell,
 column,
 even odd column,
 row,
 even odd row,
 cell
 },
}%

\def\tikz@do@matrix{%
 \tikzset{every matrix/.try}%
 \tikz@node@transformations%
 \tikz@fig@mustbenamed%
 \setbox\tikz@whichbox=\hbox\bgroup%
 \unhbox\tikz@whichbox%
 \hbox\bgroup\bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \ifx\tikz@time\pgfutil@empty\let\tikz@time\tikz@time@for@matrix\fi%
 \tikz@options%
 \tikz@do@rdf@pre@options%
 \tikz@is@nodefalse%
 \tikz@call@id@hook%
 \pgfidscope%
 \tikz@do@rdf@post@options%
 \begingroup%
 \let\tikz@id@name\pgfutil@empty%
 \pgfclearid%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \let\tikzmatrixname=\tikz@fig@name%
 \edef\tikz@m@anchor{\ifx\tikz@matrix@anchor\pgfutil@empty\tikz@anchor\else\tikz@matrix@anchor\fi}%
 \expandafter\pgfutil@in@\expandafter{\expandafter.\expandafter}\expandafter{\tikz@m@anchor}%
 \ifpgfutil@in@%
 \expandafter\tikz@matrix@split\tikz@m@anchor\relax%
 \else%
 \def\tikz@matrix@shift{\pgfpointorigin}%
 \fi%
 \let\tikz@transform=\relax%
 \pgfmatrixbeforeassemblenode{\tikzset{every outer matrix/.try}}%
 \pgfmatrix%
 {\tikz@shape}%
 {\tikz@m@anchor}%
 {\tikz@fig@name}%
 {%
 \pgfutil@tempdima=\pgflinewidth%
 {\begingroup\tikz@finish}%
 \global\pgflinewidth=\pgfutil@tempdima%
 }%
 {\tikz@matrix@shift}%
 {%
 \tikz@matrix@make@active@ampersand%
 \def\pgfmatrixbegincode{%
 \pgfsys@beginscope%
 \tikz@common@matrix@code%
 \tikz@atbegin@cell%
 }%
 \def\tikz@common@matrix@code{%
 \let\tikz@options=\pgfutil@empty%
 \let\tikz@mode=\pgfutil@empty%
 \pgfutil@for\pgf@temp:=\tikz@common@matrix@code@styleorder\do{%
 \toks0=\expandafter{\romannumeral-`0\expandafter\pgfutil@trimspaces\expandafter{\pgf@temp}}%
 \def\pgf@marshal{}%
 \pgfutil@ifxempty\pgf@temp{}{%
 \edef\pgf@marshal{\noexpand\tikzset{matrix/inner style/.cd,\the\toks0}}%
 }%
 \pgf@marshal
 }%
 \tikz@options%
 }%
 \def\pgfmatrixendcode{%
 \tikz@atend@cell%
 \pgfsys@endscope%
 }%
 \def\pgfmatrixemptycode{%
 \pgfsys@beginscope%
 \tikz@common@matrix@code%
 \tikz@at@emptycell%
 \pgfsys@endscope%
 }%
 \tikz@atbegin@matrix%
 \aftergroup\tikz@do@matrix@cont}%
 \bgroup%
}%
\def\tikz@do@matrix@cont{%
 \tikz@atend@matrix%
 \endgroup%
 \endpgfidscope%
 \endpgfscope
 \endpgfinterruptpath%
 \egroup\egroup%
 \egroup%
 %
 \tikz@node@finish%
}%
{%
 \catcode`\&=13
 \gdef\tikz@matrix@make@active@ampersand{%
 \ifx\tikz@ampersand@replacement\pgfutil@empty%
 \catcode`\&=13%
 \let&=\pgfmatrixnextcell%
 \else%
 \expandafter\let\tikz@ampersand@replacement=\pgfmatrixnextcell%
 \fi%
 }%
}%

\def\tikz@matrix@split#1.#2\relax{%
 \def\tikz@m@anchor{text}%
 \def\tikz@matrix@shift{\pgfpointanchor{#1}{#2}}%
}%

\def\tikz@fig@continue{%
 \ifx\tikz@text@width\pgfutil@empty%
 \else%
 \pgfmathsetlength{\pgf@x}{\tikz@text@width}%
 \wd\pgfnodeparttextbox=\pgf@x%
 \fi%
 \ifx\tikz@text@height\pgfutil@empty%
 \else%
 \pgfmathsetlength{\pgf@x}{\tikz@text@height}%
 \ht\pgfnodeparttextbox=\pgf@x%
 \fi%
 \ifx\tikz@text@depth\pgfutil@empty%
 \else%
 \pgfmathsetlength{\pgf@x}{\tikz@text@depth}%
 \dp\pgfnodeparttextbox=\pgf@x%
 \fi%
 %
 % Node transformation
 %
 \tikz@node@transformations%
 \tikz@nlt%
 %
 \setbox\tikz@whichbox=\hbox{%
 \unhbox\tikz@whichbox%
 \hbox{{%
 \pgfinterruptpath%
 \pgfscope%
 \tikz@options%
 \tikz@do@rdf@pre@options%
 \tikz@is@nodetrue%
 \tikz@call@id@hook%
 \pgfidscope%
 \tikz@do@rdf@post@options%
 \let\tikz@id@name\pgfutil@empty%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 % Add color modifications to text box
 \setbox\pgfnodeparttextbox=\hbox{{%
 \pgfsys@begin@text% Colors moved here...
 \ifx\tikz@textcolor\pgfutil@empty%
 \else%
 \pgfutil@colorlet{.}{\tikz@textcolor}%
 \fi%
 \pgfsetcolor{.}%
 \pgfusetype{.text}%
 \pgfidscope%
 \box\pgfnodeparttextbox%
 \endpgfidscope%
 \pgfsys@end@text%
 }}%
 \pgfmultipartnode{\tikz@shape}{\tikz@anchor}{\tikz@fig@name}{%
 \pgfutil@tempdima=\pgflinewidth%
 {\begingroup\tikz@finish}%
 \global\pgflinewidth=\pgfutil@tempdima%
 }%
 \endpgfidscope%
 \endpgfscope%
 \endpgfinterruptpath%
 }}%
 }%
 %
 \tikz@alias%
 \tikz@node@finish%
}%

\def\tikz@fig@mustbenamed{%
 \ifx\tikz@fig@name\pgfutil@empty%
 % Assign a dummy name
 \global\advance\tikz@fig@count by1\relax
 \edef\tikz@fig@name{tikz@f@\the\tikz@fig@count}%
 \let\tikz@id@name\tikz@fig@name%
 \fi%
}%

\def\tikz@node@transformations{%
 %
 % Possibly, we are ``online''
 %
 \ifx\tikz@time\pgfutil@empty%
 \pgftransformshift{\tikz@node@at}%
 \iftikz@fullytransformed%
 \else%
 \pgftransformresetnontranslations%
 \fi%
 \else%
 \tikz@do@auto@anchor%
 \tikz@timer%
 \fi%
 % Invoke local transformations
 \tikz@transform%
}%

\def\tikz@node@finish{%
 \global\let\tikz@last@fig@name=\tikz@fig@name%
 \global\let\tikz@after@path@smuggle=\tikz@after@path%
 % shift box outside group
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \endgroup\endgroup%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \global\pgflinewidth=\tikz@save@line@width%
 \tikz@do@after@path@smuggle%
 \tikz@node@is@picfalse
 \tikz@do@after@node%
}%
\let\tikz@fig@continue@orig=\tikz@fig@continue

\def\tikz@do@after@node{\tikz@scan@next@command}%

\def\tikz@do@after@path@smuggle{%
 \let\tikz@to@last@fig@name=\tikz@last@fig@name%
 \let\tikz@to@use@whom=\tikz@to@use@last@fig@name%
 \let\tikzlastnode=\tikz@last@fig@name%
 \ifx\tikz@after@path@smuggle\pgfutil@empty%
 \else%
 \ifpgflatenodepositioning%
 \expandafter\expandafter\expandafter\tikz@call@late%
 \expandafter\expandafter\expandafter{\expandafter\tikz@last@fig@name\expandafter}\expandafter{\tikz@after@path@smuggle}%
 \else%
 \tikz@scan@next@command{\tikz@after@path@smuggle}\pgf@stop%
 \fi%
 \fi%
}%

\def\tikz@call@late#1#2{\pgfnodepostsetupcode{#1}{\path[late options={name={#1},append after command={#2}}];}}%

\newif\iftikz@do@align

% Alignment handling
\def\tikz@signal@halign@check{%
 \tikz@do@alignfalse
 \ifx\tikz@text@width\pgfutil@empty%
 \pgfkeysgetvalue{/tikz/node halign header}\tikz@align@header%
 \ifx\tikz@align@header\pgfutil@empty%
 \else%
 \tikz@do@aligntrue%
 \fi%
 \fi%
}
\def\tikz@halign@check{%
 \iftikz@do@align%
 % Bingo
 \setbox\tikz@align@aligned@box=\box\pgfutil@voidb@x% void
 \let\\=\tikz@align@newline%
 \expandafter\tikz@start@align%
 \fi%
}%
\def\tikz@align@newline{\pgfutil@protect\tikz@align@newline@}%
\def\tikz@align@newline@{\unskip\pgfutil@ifnextchar[\tikz@@align@newline{\tikz@@align@newline[0pt]}}%}%
\def\tikz@@align@newline[#1]{\egroup\tikz@align@continue\pgfmathparse{#1}\let\tikz@align@temp=\pgfmathresult\tikz@start@align}%
% Two safe boxes for alignment:
\let\tikz@align@aligned@box=\pgfnodeparttextbox
\let\tikz@align@line@box=\tikz@figbox

\def\tikz@start@align{%
 % Start collecting text:
 \setbox\tikz@align@line@box=\hbox\bgroup\bgroup%
 \aftergroup\tikz@align@collectresetcolor\ignorespaces%
}%
\def\tikz@align@collectresetcolor{%
 \pgfutil@ifnextchar\reset@color%
 {\reset@color\afterassignment\tikz@align@collectresetcolor\let\tikz@temp=}%
 {\tikz@align@end@check}%
}%
\def\tikz@align@end@check{%
 \egroup%
 \ifvoid\tikz@align@aligned@box%
 \setbox\tikz@align@aligned@box=\box\tikz@align@line@box%
 \else%
 \setbox\tikz@align@aligned@box=\vbox{%
 \expandafter\expandafter\expandafter\halign\expandafter\expandafter\expandafter{\tikz@align@header%
 \box\tikz@align@aligned@box\cr%
 \noalign{\vskip\tikz@align@temp pt}%
 \unhbox\tikz@align@line@box\unskip\cr}}%
 \fi%
 \pgfutil@ifnextchar\tikz@align@continue{}
 {%
 % Main continue
 \box\tikz@align@aligned@box%
 \egroup%
 }%
}%
\def\tikz@align@continue{\tikz@@align@continue}%
\let\tikz@@align@continue=\pgfutil@empty

\def\tikz@node@also lso{\pgfutil@ifnextchar[\tikz@node@also@opt{\tikz@node@also@opt[]}}%
\def\tikz@node@also@opt[#1]{
 \pgfutil@ifnextchar(%)
 {\tikz@node@also@opt@cont[#1]}%
 {\tikzerror{Syntax error in node also: ``('' expected.}%
 \tikz@scan@next@command}%
}%
\def\tikz@node@also@opt@cont[#1](#2){\tikzset{late options={name=#2,#1}}\tikz@scan@next@command}%

% Syntax for parts of nodes:
% node ... {... \nodepart[options]{name} ... \nodepart{name} ...}

\def\tikz@nodepart{\pgfutil@ifnextchar[\tikz@@nodepart{\tikz@@nodepart[]}}%}%
\def\tikz@@nodepart[#1]#2{%
 \tikz@atend@node%
 \unskip%
 \gdef\tikz@nodepart@options{#1}%
 \gdef\tikz@nodepart@name{#2}%
 \global\let\tikz@fig@continue=\tikz@nodepart@continue%
 \pgfutil@ifnextchar x{\egroup\relax}{\egroup\relax}% gobble spaces
}%
\def\tikz@nodepart@continue{%
 \global\let\tikz@fig@continue=\tikz@fig@continue@orig%
 \ifx\tikz@nodepart@list\pgfutil@empty%
 \let\tikz@nodepart@list\tikz@nodepart@name%
 \else%
 \edef\tikz@nodepart@list{\tikz@nodepart@list,\tikz@nodepart@name}%
 \fi%
 % Now start new box:
 \expandafter\setbox\csname pgfnodepart\tikz@nodepart@name box\endcsname=\hbox%
 \bgroup%
 \pgfinterruptpicture%
 \pgfsys@begin@text%
 \pgfsys@text@to@black@hook%
 \tikzset{every \tikz@nodepart@name\space node part/.try}%
 \expandafter\tikzset\expandafter{\tikz@nodepart@options}%
 \ifx\tikz@textopacity\pgfutil@empty%
 \else%
 \pgfsetfillopacity{\tikz@textopacity}%
 \pgfsetstrokeopacity{\tikz@textopacity}%
 \fi%
 % Colors moved here...
 \ifx\tikz@textcolor\pgfutil@empty%
 \else%
 \pgfutil@colorlet{.}{\tikz@textcolor}%
 \fi%
 \pgfsetcolor{.}%
 \ifx\tikz@text@width\pgfutil@empty%
 \tikz@textfont%
 \else%
 \begingroup%
 \pgfmathsetlength{\pgf@x}{\tikz@text@width}%
 \pgfutil@minipage[t]{\pgf@x}\leavevmode\hbox{}%
 \tikz@textfont%
 \tikz@text@action%
 \fi%
 \bgroup%
 \aftergroup\unskip%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@uninstallcommands%
 \iftikz@handle@active@code%
 \tikz@orig@shorthands%
 \let\tikz@orig@shorthands\pgfutil@empty%
 \fi%
 \ifnum\the\catcode`\;=\active\relax\expandafter\let\tikz@activesemicolon=\tikz@origsemi\fi%
 \ifnum\the\catcode`\:=\active\relax\expandafter\let\tikz@activecolon=\tikz@origcolon\fi%
 \ifnum\the\catcode`\|=\active\relax\expandafter\let\tikz@activebar=\tikz@origbar\fi%
 \tikz@atbegin@node%
 \aftergroup\tikz@fig@collectresetcolor%
 \tikz@signal@halign@check%
 \tikz@text@reset%
 \tikz@halign@check%
 \ignorespaces%
}%

%
% Node foreach
%

\def\tikz@nodes@start{%
 \let\tikz@nodes@list\pgfutil@empty%
 \iftikz@node@is@pic%
 \def\tikz@nodes@collect{pic }%
 \else%
 \def\tikz@nodes@collect{node }%
 \fi%
 \tikz@nodes%
}%
\def\tikz@nodes foreach{\pgfutil@ifnextchar x\tikz@nodes@\tikz@nodes@}% get rid of spaces
\def\tikz@nodes@#1in{%
 \expandafter\def\expandafter\tikz@nodes@list\expandafter{\tikz@nodes@list\foreach#1in}%
 \pgfutil@ifnextchar\bgroup\tikz@nodes@group\tikz@nodes@one%
}%
\def\tikz@nodes@one#1{%
 \expandafter\def\expandafter\tikz@nodes@list\expandafter{\tikz@nodes@list#1}%
 \pgfutil@ifnextchar f\tikz@nodes\tikz@nodes@scan%
}%
\def\tikz@nodes@group#1{%
 \expandafter\def\expandafter\tikz@nodes@list\expandafter{\tikz@nodes@list{#1}}%
 \pgfutil@ifnextchar f\tikz@nodes\tikz@nodes@scan%
}%
\def\tikz@nodes@scan{%
 \pgfutil@ifnextchar a{\tikz@nodes@at}%
 {\pgfutil@ifnextchar({\tikz@nodes@name}%
 {\pgfutil@ifnextchar[{\tikz@nodes@opt}%
 {\pgfutil@ifnextchar\bgroup{\tikz@nodes@main}%
 {\tikzerror{Nodes must have a (possibly empty) label text}%
 \tikz@fig@main{}}}}}}%}}%

% Look ahead whether the next character is a (. If that is the case, we scan
% until), otherwise we grab a single token and append.
\def\tikz@nodes@at at{\pgfutil@ifnextchar({\tikz@nodes@at@}{\tikz@nodes@at@@}}%
\def\tikz@nodes@at@#1){%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect at#1)}%
 \tikz@nodes@scan}%
\def\tikz@nodes@at@@#1{%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect at#1}%
 \tikz@nodes@scan}%

\def\tikz@nodes@name#1){%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect#1)}%
 \tikz@nodes@scan}%
\def\tikz@nodes@opt#1]{%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect#1]}%
 \tikz@nodes@scan}%
\def\tikz@nodes@main#1{%
 \iftikz@handle@active@nodes%
 \iftikz@node@is@pic%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect{#1}}%
 \else%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect{\scantokens{#1}}}%
 \fi%
 \else%
 \expandafter\def\expandafter\tikz@nodes@collect\expandafter{\tikz@nodes@collect{#1}}%
 \fi%
 % Ok, got everything.
 % Now, start building parse text.
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \tikz@nodes@list{%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \expandafter\tikz@scan@next@command\tikz@nodes@collect\pgfextra\relax%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 }%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \tikz@scan@next@command%
}%

%
% "late" options can be used to "redo" a node
%
\tikzset{late options/.code=\tikz@late@options{#1}}%
\def\tikz@late@options#1{%
 % Do a "virtual" node:
 \begingroup%
 \iftikz@shapeborder%
 \let\tikz@fig@name=\tikz@shapeborder@name%
 \else%
 \let\tikz@fig@name=\pgfutil@empty%
 \fi%
 \tikz@is@matrixfalse%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@after@path=\pgfutil@empty%
 \let\tikz@afternodepathoptions=\pgfutil@empty%
 \let\tikz@alias=\pgfutil@empty%
 \let\tikz@transform=\pgfutil@empty%
 \tikz@decoratepathfalse%
 \tikz@node@reset@hook%
 \tikz@enable@node@quotes%
 \tikzset{every node/.try,#1}%
 \ifx\tikz@fig@name\pgfutil@empty%
 \tikzerror{Late options must reference some existing node}%
 \fi%
 \tikz@node@begin@hook%
 \tikz@alias%
 \tikzgdlatenodeoptionacallback{\tikz@fig@name}%
 \global\let\tikz@last@fig@name=\tikz@fig@name%
 \global\let\tikz@after@path@smuggle=\tikz@after@path%
 \endgroup%
 \tikz@do@after@path@smuggle%
}%

% Auto placement

\def\tikz@auto@pre{%
 \begingroup
 \pgfresetnontranslationattimefalse
 \ifpgfslopedattime
 \pgfslopedattimefalse%
 \else
 \pgfslopedattimetrue%
 \fi
 \pgfallowupsidedownattimetrue%
 \tikz@timer%
 \pgf@x=\pgf@pt@aa pt%
 \pgf@y=\pgf@pt@ab pt%
 \pgfpointnormalised{}%
}%

\def\tikz@auto@post{%
 \global\let\tikz@anchor@smuggle=\tikz@anchor%
 \endgroup%
 \let\tikz@anchor=\tikz@anchor@smuggle%
}%

\def\tikz@auto@anchor{%
 \ifdim\pgf@x>0.05pt%
 \ifdim\pgf@y>0.05pt%
 \def\tikz@anchor{south east}%
 \else\ifdim\pgf@y<-0.05pt%
 \def\tikz@anchor{south west}%
 \else
 \def\tikz@anchor{south}%
 \fi\fi%
 \else\ifdim\pgf@x<-0.05pt%
 \ifdim\pgf@y>0.05pt%
 \def\tikz@anchor{north east}%
 \else\ifdim\pgf@y<-0.05pt%
 \def\tikz@anchor{north west}%
 \else
 \def\tikz@anchor{north}%
 \fi\fi%
 \else%
 \ifdim\pgf@y>0pt%
 \def\tikz@anchor{east}%
 \else%
 \def\tikz@anchor{west}%
 \fi%
 \fi\fi%
}%

\def\tikz@auto@anchor@prime{%
 \ifdim\pgf@x>0.05pt%
 \ifdim\pgf@y>0.05pt%
 \def\tikz@anchor{north west}%
 \else\ifdim\pgf@y<-0.05pt%
 \def\tikz@anchor{north east}%
 \else
 \def\tikz@anchor{north}%
 \fi\fi%
 \else\ifdim\pgf@x<-0.05pt%
 \ifdim\pgf@y>0.05pt%
 \def\tikz@anchor{south west}%
 \else\ifdim\pgf@y<-0.05pt%
 \def\tikz@anchor{south east}%
 \else
 \def\tikz@anchor{south}%
 \fi\fi%
 \else%
 \ifdim\pgf@y>0pt%
 \def\tikz@anchor{west}%
 \else%
 \def\tikz@anchor{east}%
 \fi%
 \fi\fi%
}%

%
% Callbacks: Please see the documentation of the graph drawing
% lib for info on these callbacks
%
\def\tikzgdeventcallback#1#2{}%
\def\tikzgdeventgroupcallback#1{}%
\def\tikzgdlatenodeoptionacallback#1{}%

% Syntax for trees:
% node {...} child [options] {...} child [options] {...} ...
% node {...} child [options] foreach \var in {list} [options] {...} ...

\def\tikz@children{%
 % Start collecting the children:
 \let\tikz@children@list=\pgfutil@empty%
 \tikznumberofchildren=0\relax%
 \tikz@collect@children c}%

\def\tikz@collect@children{\pgfutil@ifnextchar c{\tikz@collect@children@cchar}{\tikz@children@collected}}%
\def\tikz@collect@children@cchar c{\pgfutil@ifnextchar h{\tikz@collect@child}{\tikz@children@collected c}}%
\def\tikz@collect@child hild{\pgfutil@ifnextchar[{\tikz@collect@childA}{\tikz@collect@childA[]}}%}%
\def\tikz@collect@childA[#1]{\pgfutil@ifnextchar f{\tikz@collect@children@foreach[#1]}{\tikz@collect@childB[#1]}}%
\def\tikz@collect@childB[#1]{%
 \advance\tikznumberofchildren by1\relax
 \expandafter\def\expandafter\tikz@children@list\expandafter{\tikz@children@list \tikz@childnode[#1]}%
 \pgfutil@ifnextchar\bgroup{\tikz@collect@child@code}{\tikz@collect@child@code{}}}%
\def\tikz@collect@child@code#1{%
 \expandafter\def\expandafter\tikz@children@list\expandafter{\tikz@children@list{#1}}%
 \tikz@collect@children%
}%
\def\tikz@collect@children@foreach[#1]foreach#2in#3{%
 \pgfutil@ifnextchar\bgroup{\tikz@collect@children@foreachA{#1}{#2}{#3}}{\tikz@collect@children@foreachA{#1}{#2}{#3}{}}}%
\def\tikz@collect@children@foreachA#1#2#3#4{%
 \expandafter\def\expandafter\tikz@children@list\expandafter
 {\tikz@children@list\tikz@childrennodes[#1]{#2}{#3}{#4}}%
 \c@pgf@counta=\tikznumberofchildren%
 \foreach#2in{#3}%
 {%
 \global\advance\c@pgf@counta by1\relax%
 }%
 \tikznumberofchildren=\c@pgf@counta%
 \tikz@collect@children%
}%
\long\def\tikz@children@collected{%
 \begingroup%
 \advance\tikztreelevel by 1\relax%
 \tikzgdeventgroupcallback{descendants}%
 \let\tikz@options=\pgfutil@empty%
 \tikz@clear@rdf@options%
 \let\tikz@transform=\pgfutil@empty%
 \tikzset{level/.try=\the\tikztreelevel,level \the\tikztreelevel/.try}%
 \tikz@transform%
 \let\tikz@transform=\relax%
 \let\tikzparentnode=\tikz@last@fig@name%
 \ifx\tikz@grow\relax\else%
 % Transform to center of node
 \pgftransformshift{\pgfpointanchor{\tikzparentnode}{\tikz@growth@anchor}}%
 \fi%
 \tikznumberofcurrentchild=0\relax%
 \tikz@children@list%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \endgroup%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \tikz@scan@next@command%
}%

% Syntax for children:
%
% child [all children options] foreach \var in {values} [child options] {...}
\def\tikz@childrennodes[#1]#2#3#4{%
 \c@pgf@counta=\tikznumberofcurrentchild\relax%
 \setbox\tikz@tempbox=\box\tikz@figbox%
 \setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 \foreach#2in{#3}{%
 \tikznumberofcurrentchild=\c@pgf@counta\relax%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
 \tikz@childnode[#1]{#4}%
 % we must now make the current child number and the figbox survive
 % the group
 \global\c@pgf@counta=\tikznumberofcurrentchild\relax%
 \global\setbox\tikz@tempbox=\box\tikz@figbox%
 \global\setbox\tikz@tempbox@bg=\box\tikz@figbox@bg%
 }%
 \tikznumberofcurrentchild=\c@pgf@counta\relax%
 \setbox\tikz@figbox=\box\tikz@tempbox%
 \setbox\tikz@figbox@bg=\box\tikz@tempbox@bg%
}%

% Syntax for child:
%
% child
%
% child[options]
%
% child[options] {node (name) {child node text} ...
% edge from parent[options] node {label text} node {label text}}

\def\tikz@childnode[#1]#2{%
 \advance\tikznumberofcurrentchild by1\relax%
 {\tikzset{every child/.try,#1}\expandafter}%
 \iftikz@child@missing%
 \tikzgdeventcallback{node}{}%
 \else%
 \setbox\tikz@whichbox=\hbox\bgroup%
 \unhbox\tikz@whichbox%
 \hbox\bgroup\bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \let\tikz@transform=\pgfutil@empty%
 \tikzset{every child/.try,#1}%
 \tikz@options%
 \tikz@transform%
 \let\tikz@transform=\relax%
 \tikz@grow%
 % Typeset node:
 \edef\tikz@parent@node@name{[name=\tikzparentnode-\the\tikznumberofcurrentchild,style=every child node]}%
 \def\tikz@child@node@text{[shape=coordinate]{}}
 \tikz@parse@child@node#2\pgf@stop%
 \expandafter\expandafter\expandafter\node
 \expandafter\tikz@parent@node@name
 \tikz@child@node@text
 \pgfextra{\global\let\tikz@childnode@name=\tikz@last@fig@name};%
 \let\tikzchildnode=\tikz@childnode@name%
 {%
 \def\tikz@edge@to@parent@needed{edge from parent}
 \ifx\tikz@child@node@rest\pgfutil@empty%
 \path edge from parent;%
 \else%
 \path \tikz@child@node@rest \tikz@edge@to@parent@needed;%
 \fi%
 }%
 \endpgfscope%
 \endpgfinterruptpath%
 \egroup\egroup%
 \egroup%
 \fi%
}%

\def\tikz@parse@child@node{%
 \pgfutil@ifnextchar n{\tikz@parse@child@node@n}%
 {\pgfutil@ifnextchar c{\tikz@parse@child@node@c}%
 {\pgfutil@ifnextchar\pgf@stop\tikz@parse@child@node@rest\tikz@parse@child@node@expand}}}%
\def\tikz@parse@child@node@expand{%
 \advance\tikz@expandcount by-1\relax%
 \ifnum\tikz@expandcount<0\relax%
 \expandafter\tikz@parse@child@node@rest%
 \else%
 \expandafter\expandafter\expandafter\tikz@parse@child@node%
 \fi%
}%
\def\tikz@parse@child@node@rest#1\pgf@stop{\tikz@resetexpandcount\def\tikz@child@node@rest{#1}}%
\def\tikz@parse@child@node@c c{\tikz@resetexpandcount\pgfutil@ifnextchar o{\tikz@parse@child@node@co}{\tikz@parse@child@node@rest c}}%
\def\tikz@parse@child@node@co o{\pgfutil@ifnextchar o{\tikz@parse@child@node@coordinate}{\tikz@parse@child@node@rest co}}%
\def\tikz@parse@child@node@coordinate ordinate{%
 \pgfutil@ifnextchar ({\tikz@@parse@child@node@coordinate}{%
 \def\tikz@child@node@text{[shape=coordinate]{}}%
 \tikz@parse@child@node@rest}}%}%
\def\tikz@@parse@child@node@coordinate(#1){%
 \pgfutil@ifnextchar a{\tikz@p@c@n@c@at(#1)}{%
 \def\tikz@child@node@text{[shape=coordinate,name=#1]{}}%
 \tikz@parse@child@node@rest}}%
\def\tikz@p@c@n@c@at(#1)at#2({%
 \def\tikz@child@node@text@pre{[shape=coordinate,name=#1]at}%
 \tikz@scan@one@point\tikz@p@c@n@c@at@math(%
}%
\def\tikz@p@c@n@c@at@math#1{%
 \pgf@process{#1}%
 \edef\tikz@marshal{(\the\pgf@x,\the\pgf@y){}}%
 \expandafter\expandafter\expandafter\def%
 \expandafter\expandafter\expandafter\tikz@child@node@text%
 \expandafter\expandafter\expandafter{\expandafter\tikz@child@node@text@pre\tikz@marshal}%
 \tikz@parse@child@node@rest%
}%
\def\tikz@parse@child@node@n node{\tikz@resetexpandcount%
 \let\tikz@child@node@text=\pgfutil@empty%
 \tikz@p@c@s}%
\def\tikz@p@c@s{%
 \pgfutil@ifnextchar a{\tikz@p@c@s@at}
 {\pgfutil@ifnextchar ({\tikz@p@c@s@paran}
 {\pgfutil@ifnextchar [{\tikz@p@c@s@bra}
 {\pgfutil@ifnextchar \bgroup{\tikz@p@c@s@group}
 {\tikzerror{Cannot parse this node}}}}}}%}}%
\def\tikz@p@c@s@at at#1({%
 \tikz@scan@one@point\tikz@p@c@s@at@math(%
}%
\def\tikz@p@c@s@at@math#1{%
 \pgf@process{#1}%
 \edef\tikz@marshal{ at(\the\pgf@x,\the\pgf@y)}%
 \expandafter\expandafter\expandafter\def%
 \expandafter\expandafter\expandafter\tikz@child@node@text%
 \expandafter\expandafter\expandafter{\expandafter\tikz@child@node@text\tikz@marshal}
 \tikz@p@c@s}%
\def\tikz@p@c@s@paran(#1){%
 \expandafter\def\expandafter\tikz@child@node@text\expandafter{\tikz@child@node@text(#1)}
 \tikz@p@c@s}%
\def\tikz@p@c@s@bra[#1]{%
 \expandafter\def\expandafter\tikz@child@node@text\expandafter{\tikz@child@node@text[#1]}
 \tikz@p@c@s}%
\def\tikz@p@c@s@group#1{%
 \iftikz@handle@active@nodes%
 \expandafter\def\expandafter\tikz@child@node@text\expandafter{\tikz@child@node@text{\scantokens{#1}}}%
 \else%
 \expandafter\def\expandafter\tikz@child@node@text\expandafter{\tikz@child@node@text{#1}}
 \fi%
 \tikz@parse@child@node@rest%
}%

%
% Syntax for decorated subpaths:
%
% decorate [option] { subpath }
%
\def\tikz@decoration ecorate{%
 \pgfutil@ifnextchar[{\tikz@lib@decoration}{\tikz@lib@decoration[]}%]
}%

\def\tikz@lib@decoration[#1]#2{\tikzerror{You need to load a decoration library}}%

% The decorate path command:
\def\tikz@lib@dec@decorate@path{\tikzerror{You need to load a decoration library}}%

%
% Syntax for let :
%
% let \p1 = (coordinate), \p2 = (coordinate),... in
%
\def\tikz@let@command et#1in{%
 \tikzerror{You need to say \string\usetikzlibrary{calc} to use the let command}%
 \tikz@scan@next@command%
}%

%
% Syntax for pictures:
%
% as for nodes, but with "pic" instead of "node"
%
\newif\iftikz@node@is@pic
\def\tikz@subpicture ic{\tikz@node@is@pictrue\tikz@scan@next@command node}%
\def\tikz@subpicture@handle#1{%
 \pgfkeys@spdef\tikz@temp{#1}%
 \expandafter\tikz@subpicture@handle@\expandafter{\tikz@temp}%
}%
\def\tikz@subpicture@handle@#1{
 \pgfkeys{/tikz/pics/.cd,#1}%
 \tikz@node@transformations%
 \let\tikz@transform=\relax%
 \let\tikz@picmode\tikz@mode%
 \tikzset{name prefix ../.style/.expanded={/tikz/name prefix=\pgfkeysvalueof{/tikz/name prefix}}}%
 \ifx\tikz@fig@name\pgfutil@empty\else%
 \tikzset{name prefix/.expanded=\tikz@fig@name}%
 \fi%
 \pgfkeysvalueof{/tikz/pics/setup code}%
 \pgfkeysgetvalue{/tikz/pics/code}{\tikz@pic@code}
 \ifx\tikz@pic@code\pgfutil@empty\else%
 \setbox\tikz@whichbox=\hbox\bgroup%
 \unhbox\tikz@whichbox%
 \hbox\bgroup
 \bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \tikz@options%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@atbegin@scope%
 \scope[every pic/.try]%
 \tikz@pic@code%
 \endscope%
 \tikz@atend@scope%
 \endpgfscope%
 \endpgfinterruptpath%
 \egroup
 \egroup%
 \egroup%
 \fi%
 \pgfkeysgetvalue{/tikz/pics/foreground code}{\tikz@pic@code}
 \ifx\tikz@pic@code\pgfutil@empty\else%
 \setbox\tikz@figbox=\hbox\bgroup%
 \unhbox\tikz@figbox%
 \hbox\bgroup
 \bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \tikz@options%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@atbegin@scope%
 \scope[every front pic/.try]%
 \tikz@pic@code%
 \endscope%
 \tikz@atend@scope%
 \endpgfscope%
 \endpgfinterruptpath%
 \egroup
 \egroup%
 \egroup%
 \fi%
 \pgfkeysgetvalue{/tikz/pics/background code}{\tikz@pic@code}
 \ifx\tikz@pic@code\pgfutil@empty\else%
 \setbox\tikz@figbox@bg=\hbox\bgroup%
 \unhbox\tikz@figbox@bg%
 \hbox\bgroup
 \bgroup%
 \pgfinterruptpath%
 \pgfscope%
 \tikz@options%
 \setbox\tikz@figbox=\box\pgfutil@voidb@x%
 \setbox\tikz@figbox@bg=\box\pgfutil@voidb@x%
 \tikz@atbegin@scope%
 \scope[every behind pic/.try]%
 \tikz@pic@code%
 \endscope%
 \tikz@atend@scope%
 \endpgfscope%
 \endpgfinterruptpath%
 \egroup
 \egroup%
 \egroup%
 \fi%
 \tikz@node@finish%
}%
\tikzset{
 pic actions/.code=\tikz@addmode{\tikz@picmode}
}%

% Setting up the picture codes:
\tikzset{
 pics/setup code/.initial=,
 pics/code/.initial=,
 pics/background code/.initial=,
 pics/foreground code/.initial=
}%

% Defining pictures:

\def\tikzdeclarepic#1#2{\pgfkeys{/tikz/#1/.cd,#2}}%

\pgfkeysdef{/handlers/.pic}{%
 \edef\pgf@temp{\pgfkeyscurrentpath}%
 \edef\pgf@temp{\expandafter\tikz@smuggle@pics@in\pgf@temp\pgf@stop}%
 \expandafter\pgfkeys\expandafter{\pgf@temp/.style={code={#1}}}%
}%
\def\tikz@smuggle@pics@in/tikz/#1\pgf@stop{/tikz/pics/#1}%

%
% Timers
%

\def\tikz@timer@line{%
 \pgftransformlineattime{\tikz@time}{\tikz@timer@start}{\tikz@timer@end}%
}%

\def\tikz@timer@vhline{%
 \ifdim\tikz@time pt<0.5pt% first half
 \pgf@process{\tikz@timer@start}%
 \pgf@xa=\pgf@x%
 \pgf@ya=\pgf@y%
 \pgf@process{\tikz@timer@end}%
 \pgf@xb=\tikz@time pt%
 \pgf@xb=2\pgf@xb%
 \edef\tikz@marshal{\noexpand\pgftransformlineattime{\pgf@sys@tonumber{\pgf@xb}}{\noexpand\tikz@timer@start}{%
 \noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@y}}}%
 \tikz@marshal%
 \else% second half
 \pgf@process{\tikz@timer@start}%
 \pgf@xa=\pgf@x%
 \pgf@ya=\pgf@y%
 \pgf@process{\tikz@timer@end}%
 \pgf@xb=\tikz@time pt%
 \pgf@xb=2\pgf@xb%
 \advance\pgf@xb by-1pt%
 \edef\tikz@marshal{\noexpand\pgftransformlineattime{\pgf@sys@tonumber{\pgf@xb}}%
 {\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@y}}{\noexpand\tikz@timer@end}}%
 \tikz@marshal%
 \fi%
}%

\def\tikz@timer@hvline{%
 \ifdim\tikz@time pt<0.5pt% first half
 \pgf@process{\tikz@timer@start}%
 \pgf@xa=\pgf@x%
 \pgf@ya=\pgf@y%
 \pgf@process{\tikz@timer@end}%
 \pgf@xb=\tikz@time pt%
 \pgf@xb=2\pgf@xb%
 \edef\tikz@marshal{\noexpand\pgftransformlineattime{\pgf@sys@tonumber{\pgf@xb}}{\noexpand\tikz@timer@start}{%
 \noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@ya}}}%
 \tikz@marshal%
 \else% second half
 \pgf@process{\tikz@timer@start}%
 \pgf@xa=\pgf@x%
 \pgf@ya=\pgf@y%
 \pgf@process{\tikz@timer@end}%
 \pgf@xb=\tikz@time pt%
 \pgf@xb=2\pgf@xb%
 \advance\pgf@xb by-1pt%
 \edef\tikz@marshal{\noexpand\pgftransformlineattime{\pgf@sys@tonumber{\pgf@xb}}%
 {\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@ya}}{\noexpand\tikz@timer@end}}%
 \tikz@marshal%
 \fi%
}%

\def\tikz@timer@curve{%
 \pgftransformcurveattime{\tikz@time}{\tikz@timer@start}{\tikz@timer@cont@one}{\tikz@timer@cont@two}{\tikz@timer@end}%
}%

\def\tikz@timer@arc{%
 \pgfmathcos@{\tikz@timer@start@angle}%
 \let\tikz@angle@cos\pgfmathresult%
 \pgfmathsin@{\tikz@timer@start@angle}%
 \let\tikz@angle@sin\pgfmathresult%
 \pgftransformarcaxesattime{\tikz@time}{%
 \pgfpointdiff{%
 \pgfpointadd{%
 \pgfpointscale{\tikz@angle@cos}{\tikz@timer@zero@axis}%
 }{%
 \pgfpointscale{\tikz@angle@sin}{\tikz@timer@ninety@axis}%
 }%
 }%
 {\tikz@timer@start}%
 }%
 {\tikz@timer@zero@axis}%
 {\tikz@timer@ninety@axis}%
 {\tikz@timer@start@angle}{\tikz@timer@end@angle}%
}%

%
% Coordinate systems
%

\def\tikzdeclarecoordinatesystem#1#2{%
 \expandafter\def\csname tikz@parse@cs@#1\endcsname(##1){%
 \pgf@process{%
 #2%
 \global\let\tikz@smubble@b=\tikz@shapeborder@name%
 }%
 \let\tikz@shapeborder@name=\tikz@smubble@b%
 \edef\tikz@return@coordinate{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
}%
\def\tikzaliascoordinatesystem#1#2{%
 \edef\pgf@marshal{\noexpand\let\expandafter\noexpand\csname
 tikz@parse@cs@#1\endcsname=\expandafter\noexpand\csname
 tikz@parse@cs@#2\endcsname}%
 \pgf@marshal%
}%

% Default coordinate systems:

\tikzdeclarecoordinatesystem{canvas}
{%
 \tikzset{cs/.cd,x=0pt,y=0pt,#1}%
 \pgfpoint{\tikz@cs@x}{\tikz@cs@y}%
}%

\tikzdeclarecoordinatesystem{canvas polar}
{%
 \tikzset{cs/.cd,angle=0,radius=0cm,#1}%
 \pgfpointpolar{\tikz@cs@angle}{\tikz@cs@xradius and \tikz@cs@yradius}%
}%

\tikzdeclarecoordinatesystem{xyz}
{%
 \tikzset{cs/.cd,x=0,y=0,z=0,#1}%
 \pgfpointxyz{\tikz@cs@x}{\tikz@cs@y}{\tikz@cs@z}%
}%

\tikzdeclarecoordinatesystem{xyz polar}
{%
 \tikzset{cs/.cd,angle=0,radius=0,#1}%
 \pgfpointpolarxy{\tikz@cs@angle}{\tikz@cs@xradius and \tikz@cs@yradius}%
}%
\tikzaliascoordinatesystem{xy polar}{xyz polar}%

\tikzdeclarecoordinatesystem{node}
{%
 \tikzset{cs/.cd,name=,anchor=none,angle=none,#1}%
 \ifx\tikz@cs@anchor\tikz@nonetext%
 \ifx\tikz@cs@angle\tikz@nonetext%
 \expandafter\ifx\csname pgf@sh@ns@\tikz@cs@node\endcsname\tikz@coordinate@text%
 \else
 \aftergroup\tikz@shapebordertrue%
 \edef\tikz@shapeborder@name{\tikz@pp@name{\tikz@cs@node}}%
 \fi%
 \pgfpointanchor{\tikz@pp@name{\tikz@cs@node}}{center}%
 \else%
 \pgfpointanchor{\tikz@pp@name{\tikz@cs@node}}{\tikz@cs@angle}%
 \fi%
 \else%
 \pgfpointanchor{\tikz@pp@name{\tikz@cs@node}}{\tikz@cs@anchor}%
 \fi%
}%

% Intersection coordinates
\tikzset{cs/first line/.code=\def\tikz@cs@line@a{#1}\def\tikz@cs@type@a{line}}%
\tikzset{cs/second line/.code=\def\tikz@cs@line@b{#1}\def\tikz@cs@type@b{line}}%

\tikzset{cs/first node/.code=\tikz@cs@unpack{\tikz@cs@node@a}{\tikz@cs@type@a}{#1}}%
\tikzset{cs/second node/.code=\tikz@cs@unpack{\tikz@cs@node@b}{\tikz@cs@type@b}{#1}}%

\def\tikz@cs@unpack#1#2#3{%
 \expandafter\ifx\csname pgf@sh@ns@#3\endcsname\relax%
 \tikzerror{Undefined node ``#3''}%
 \else%
 \def#1{#3}%
 \edef#2{\csname pgf@sh@ns@#3\endcsname}%
 \fi%
}%

\tikzset{cs/solution/.initial=1}%

\tikzset{cs/horizontal line through/.store in=\tikz@cs@hori@line}%
\tikzset{cs/vertical line through/.store in=\tikz@cs@vert@line}%

\tikzdeclarecoordinatesystem{intersection}
{%
 \tikzset{cs/.cd,#1}%
 \expandafter\ifx\csname tikz@intersect@\tikz@cs@type@a @and@\tikz@cs@type@b\endcsname\relax%
 \tikzerror{I do not know how to compute the intersection
 of a \tikz@cs@type@a and a \tikz@cs@type@b. Try saying
 \string\usetikzlibrary{calc}}%
 \pgfpointorigin%
 \else%
 \csname tikz@intersect@\tikz@cs@type@a @and@\tikz@cs@type@b\endcsname%
 \fi%
}%

\def\tikz@intersect@line@and@line{%
 \expandafter\tikz@scan@one@point\expandafter\tikz@parse@line\tikz@cs@line@a%
 \pgf@xa=\pgf@xc%
 \pgf@ya=\pgf@yc%
 \pgf@xb=\pgf@x%
 \pgf@yb=\pgf@y%
 \expandafter\tikz@scan@one@point\expandafter\tikz@parse@line\tikz@cs@line@b%
 \edef\pgf@marshal{%
 {\noexpand\pgfpointintersectionoflines%
 {\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@ya}}%
 {\noexpand\pgfqpoint{\the\pgf@xb}{\the\pgf@yb}}%
 {\noexpand\pgfqpoint{\the\pgf@xc}{\the\pgf@yc}}%
 {\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}}%
 \pgf@marshal%
}%

\def\tikz@parse@line#1--{%
 \pgf@process{#1}%
 \pgf@xc=\pgf@x%
 \pgf@yc=\pgf@y%
 \tikz@scan@one@point\pgf@process%
}%

\tikzdeclarecoordinatesystem{perpendicular}
{%
 \tikzset{cs/.cd,#1}%
 \expandafter\tikz@scan@one@point\expandafter\tikz@parse@intersection@a\tikz@cs@hori@line%
 \expandafter\tikz@scan@one@point\expandafter\tikz@parse@intersection@b\tikz@cs@vert@line%
 \pgfqpoint{\the\pgf@xb}{\the\pgf@ya}
}%

\tikzdeclarecoordinatesystem{barycentric}
{%
 {%
 \pgf@xa=0pt% point
 \pgf@ya=0pt%
 \pgf@xb=0pt% sum
 \tikz@bary@dolist#1,=,%
 \pgfmathparse{1/\the\pgf@xb}%
 \global\pgf@x=\pgfmathresult\pgf@xa%
 \global\pgf@y=\pgfmathresult\pgf@ya%
 }%
}%

\def\tikz@bary@dolist#1=#2,{%
 \def\tikz@temp{#1}%
 \ifx\tikz@temp\pgfutil@empty%
 \else
 \pgf@process{\pgfpointanchor{#1}{center}}%
 \pgfmathparse{#2}%
 \advance\pgf@xa by\pgfmathresult\pgf@x%
 \advance\pgf@ya by\pgfmathresult\pgf@y%
 \advance\pgf@xb by\pgfmathresult pt%
 \expandafter\tikz@bary@dolist%
 \fi%
}%

\tikzset{cs/x/.store in=\tikz@cs@x}%
\tikzset{cs/y/.store in=\tikz@cs@y}%
\tikzset{cs/z/.store in=\tikz@cs@z}%
\tikzset{cs/angle/.store in=\tikz@cs@angle}%
\tikzset{cs/x radius/.store in=\tikz@cs@xradius}%
\tikzset{cs/y radius/.store in=\tikz@cs@yradius}%
\tikzset{cs/radius/.style={/tikz/cs/x radius={#1},/tikz/cs/y radius={#1}}}%
\tikzset{cs/name/.store in=\tikz@cs@node}%
\tikzset{cs/anchor/.store in=\tikz@cs@anchor}%

%
% Coordinate management
%

% Last position visited
\def\tikz@last@position{\pgfqpoint{\tikz@lastx}{\tikz@lasty}}%
\def\tikz@last@position@saved{\pgfqpoint{\tikz@lastxsaved}{\tikz@lastysaved}}%

% Make given point the last position visited
\def\tikz@make@last@position#1{%
 \pgf@process{#1}%
 \tikz@lastx=\pgf@x\relax%
 \tikz@lasty=\pgf@y\relax%
 \iftikz@updatecurrent%
 \tikz@lastxsaved=\pgf@x\relax%
 \tikz@lastysaved=\pgf@y\relax%
 \fi%
 \iftikz@updatenext
 \tikz@updatecurrenttrue%
 \fi
}%

\newif\iftikz@updatecurrent
\tikz@updatecurrenttrue
\newif\iftikz@updatenext
\tikz@updatenexttrue

% Scanner: Scans a point or a relative point.
% It then calls the first parameter with the argument set to an
% appropriate pgf command representing that point.

\def\tikz@scan@one@point#1{%
 \let\tikz@to@use@whom=\tikz@to@use@last@coordinate%
 \tikz@shapeborderfalse%
 \pgfutil@ifnextchar+{\tikz@scan@relative#1}{\tikz@scan@absolute#1}}%
\def\tikz@scan@absolute#1{%
 \pgfutil@ifnextchar({\tikz@scan@@absolute#1}%)
 {%
 \advance\tikz@expandcount by -1
 \ifnum\tikz@expandcount<0\relax%
 \let\pgfutil@next=\tikz@@scangiveup%
 \else%
 \let\pgfutil@next=\tikz@@scanexpand%
 \fi%
 \pgfutil@next{#1}%
 }%
}%
\def\tikz@@scanexpand#1{\expandafter\tikz@scan@one@point\expandafter#1}%
\def\tikz@@scangiveup#1{\tikzerror{Cannot parse this coordinate}#1{\pgfpointorigin}}%
\def\tikz@scan@@absolute#1({%
 \pgfutil@ifnextchar[% uhoh... options!
 {\def\tikz@scan@point@recall{#1}\tikz@scan@options}%
 {\tikz@@@scan@@absolute#1(}%
}%

\def\tikz@scan@options[#1]#2{%
 \def\tikz@scan@point@options{#1}%
 \tikz@@@scan@@absolute\tikz@scan@handle@options(#2%
}%

\def\tikz@scan@handle@options#1{%
 {%
 % Ok, compute point with options set and zero transformation
 % matrix:
 \pgftransformreset%
 \let\tikz@transform=\pgfutil@empty%
 \expandafter\tikzset\expandafter{\tikz@scan@point@options}%
 \tikz@transform%
 \pgf@process{\pgfpointtransformed{#1}}%
 \xdef\tikz@marshal{\expandafter\noexpand\tikz@scan@point@recall{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
 }%
 \tikz@marshal%
}%

\def\tikz@@@scan@@absolute#1({%
 \pgfutil@ifnextchar{$}%$
 {\tikz@parse@calculator#1(}
 {\tikz@scan@no@calculator#1(}%
}%
\def\tikz@scan@no@calculator#1(#2){%
 \edef\tikz@scan@point@coordinate{(#2)}%
 \expandafter\tikz@@scan@@no@calculator\expandafter#1\tikz@scan@point@coordinate%
}%
\def\tikz@@scan@@no@calculator#1(#2){%
 \pgfutil@in@{cs:}{#2}%
 \ifpgfutil@in@%
 \let\pgfutil@next\tikz@parse@coordinatesystem%
 \else%
 \pgfutil@in@{intersection }{#2}%
 \ifpgfutil@in@%
 \let\pgfutil@next\tikz@parse@intersection%
 \else%
 \pgfutil@in@|{#2}%
 \ifpgfutil@in@
 \pgfutil@in@{-|}{#2}%
 \ifpgfutil@in@
 \let\pgfutil@next\tikz@parse@hv%
 \else%
 \let\pgfutil@next\tikz@parse@vh%
 \fi%
 \else%
 \pgfutil@in@:{#2}%
 \ifpgfutil@in@
 \let\pgfutil@next\tikz@parse@polar%
 \else%
 \pgfutil@in@,{#2}%
 \ifpgfutil@in@%
 \let\pgfutil@next\tikz@parse@regular%
 \else%
 \let\pgfutil@next\tikz@parse@node%
 \fi%
 \fi%
 \fi%
 \fi%
 \fi%
 \pgfutil@next#1(#2)%
}%

\def\tikz@parse@calculator#1($#2$){%
 \tikzerror{You need to say \string\usetikzlibrary{calc} for coordinate calculation}%
 #1{\pgfpointorigin}%
}%

\def\tikz@parse@coordinatesystem#1(#2 cs:#3){%
 \let\tikz@return@coordinate=\pgfpointorigin%
 \pgfutil@ifundefined{tikz@parse@cs@#2}
 {\tikzerror{Unknown coordinate system '#2'}}
 {\csname tikz@parse@cs@#2\endcsname(#3)}%
 \expandafter#1\expandafter{\tikz@return@coordinate}%
}%

\newif\iftikz@isdimension
\def\tikz@checkunit#1{%
 \pgfmathparse{#1}%
 \let\iftikz@isdimension=\ifpgfmathunitsdeclared%
}%

\def\tikz@parse@polar#1(#2:#3){%
 \pgfutil@ifundefined{tikz@polar@dir@#2}
 {\tikz@@parse@polar#1({#2}:{#3})}
 {\tikz@@parse@polar#1(\csname tikz@polar@dir@#2\endcsname:{#3})}%
}%
\def\tikz@@parse@polar#1(#2:#3){%
 \pgfutil@in@{ and }{#3}%
 \ifpgfutil@in@%
 \edef\tikz@args{({#2}:#3)}%
 \else%
 \edef\tikz@args{({#2}:{#3} and {#3})}%
 \fi%
 \expandafter\tikz@@@parse@polar\expandafter#1\tikz@args%
}%
\def\tikz@@@parse@polar#1(#2:#3 and #4){%
 \tikz@checkunit{#3}%
 \iftikz@isdimension%
 \tikz@checkunit{#4}%
 \iftikz@isdimension%
 \def\tikz@next{#1{\pgfpointpolar{#2}{#3 and #4}}}%
 \else%
 \tikzerror{You cannot mix dimension and dimensionless values for polar coordinates}
 \def\tikz@next{#1{\pgfpointorigin}}%
 \fi%
 \else%
 \tikz@checkunit{#4}%
 \iftikz@isdimension%
 \tikzerror{You cannot mix dimension and dimensionless values for polar coordinates}
 \def\tikz@next{#1{\pgfpointorigin}}%
 \else%
 \def\tikz@next{#1{\pgfpointpolarxy{#2}{#3 and #4}}}%
 \fi%
 \fi%
 \tikz@next%
}%
\def\tikz@polar@dir@up{90}%
\def\tikz@polar@dir@down{-90}%
\def\tikz@polar@dir@left{180}%
\def\tikz@polar@dir@right{0}%
\def\tikz@polar@dir@north{90}%
\def\tikz@polar@dir@south{-90}%
\def\tikz@polar@dir@east{0}%
\def\tikz@polar@dir@west{180}%
\expandafter\def\csname tikz@polar@dir@north east\endcsname{45}%
\expandafter\def\csname tikz@polar@dir@north west\endcsname{135}%
\expandafter\def\csname tikz@polar@dir@south east\endcsname{-45}%
\expandafter\def\csname tikz@polar@dir@south west\endcsname{-135}%

% MW:
% Check to see if the y-coordinate is inside {}. If it is, scan it and
% reinsert it into the stream inside an extra group.
%
\def\tikz@parse@regular#1(#2,{%
 \pgfutil@ifnextchar\bgroup{\tikz@@parse@regular#1{#2}}{\tikz@@@parse@regular#1{#2}}%
}%
\def\tikz@@parse@regular#1#2#3{%
 \pgfutil@ifnextchar[{% Uh oh! An array index.
 \tikz@@@parse@regular#1{#2}{#3}}%
 {\tikz@@@parse@regular#1{#2}{{#3}}}}%

% Originally \def\tikz@parse@regular#1(#2,#3){%
%
\def\tikz@@@parse@regular#1#2#3){%
 \pgfutil@in@,{#3}%
 \ifpgfutil@in@%
 \tikz@parse@splitxyz{#1}{#2}#3,%
 \else%
 \tikz@checkunit{#2}%
 \iftikz@isdimension%
 \tikz@checkunit{#3}%
 \iftikz@isdimension%
 \def\pgfutil@next{#1{\pgfpoint{#2}{#3}}}%
 \else%
 \def\pgfutil@next{#1{\pgfpointadd{\pgfpoint{#2}{0pt}}{\pgfpointxy{0}{#3}}}}%
 \fi%
 \else%
 \tikz@checkunit{#3}%
 \iftikz@isdimension%
 \def\pgfutil@next{#1{\pgfpointadd{\pgfpoint{0pt}{#3}}{\pgfpointxy{#2}{0}}}}%
 \else%
 \def\pgfutil@next{#1{\pgfpointxy{#2}{#3}}}%
 \fi%
 \fi%
 \fi%
 \pgfutil@next%
}%

\def\tikz@parse@splitxyz#1#2#3,#4,{%
 \def\pgfutil@next{#1{\pgfpointxyz{#2}{#3}{#4}}}%
}%

\def\tikz@coordinate@text{coordinate}%

\def\tikz@parse@node#1(#2){%
 \pgfutil@in@.{#2}% Ok, flag this
 \ifpgfutil@in@
 \tikz@calc@anchor#2\tikz@stop%
 \else%
 \tikz@calc@anchor#2.center\tikz@stop% to be on the save side, in
 % case iftikz@shapeborder is ignored...
 \ifcsname pgf@sh@ns@\tikz@pp@name{#2}\endcsname
 \expandafter\ifx\csname pgf@sh@ns@\tikz@pp@name{#2}\endcsname\tikz@coordinate@text%
 \else
 \tikz@shapebordertrue%
 \def\tikz@shapeborder@name{\tikz@pp@name{#2}}%
 \fi%
 \else\ifcsname pgf@sh@ns@#2\endcsname
 \expandafter\ifx\csname pgf@sh@ns@#2\endcsname\tikz@coordinate@text%
 \else
 \tikz@shapebordertrue%
 \def\tikz@shapeborder@name{#2}%
 \fi%
 \fi\fi
 \fi%
 \edef\tikz@marshal{\noexpand#1{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
 \tikz@marshal%
}%

\def\tikz@calc@anchor#1.#2\tikz@stop{%
 % Check if a shape with name prefix exists, otherwise try the global name
 % without prefix.
 \ifcsname pgf@sh@ns@\tikz@pp@name{#1}\endcsname%
 \pgfpointanchor{\tikz@pp@name{#1}}{#2}%
 \else
 \pgfpointanchor{#1}{#2}%
 \fi
}%

\def\tikz@parse@hv#1(#2){%
 \pgfutil@in@{ -| }{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@hvboth%
 \else%
 \pgfutil@in@{ -|}{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@hvleft%
 \else%
 \pgfutil@in@{-| }{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@hvright%
 \else%
 \let\tikz@next=\tikz@parse@hvdone%
 \fi%
 \fi%
 \fi%
 \tikz@next#1(#2)}%
\def\tikz@parse@hvboth#1(#2 -| #3){\tikz@parse@vhdone#1({#3}|-{#2})}%
\def\tikz@parse@hvleft#1(#2 -|#3){\tikz@parse@vhdone#1({#3}|-{#2})}%
\def\tikz@parse@hvright#1(#2-| #3){\tikz@parse@vhdone#1({#3}|-{#2})}%
\def\tikz@parse@hvdone#1(#2-|#3){\tikz@parse@vhdone#1({#3}|-{#2})}%

\def\tikz@parse@vh#1(#2){%
 \pgfutil@in@{ |- }{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@vhboth%
 \else%
 \pgfutil@in@{ |-}{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@vhleft%
 \else%
 \pgfutil@in@{|- }{#2}%
 \ifpgfutil@in@%
 \let\tikz@next=\tikz@parse@vhright%
 \else%
 \let\tikz@next=\tikz@parse@vhdone%
 \fi%
 \fi%
 \fi%
 \tikz@next#1(#2)}%
\def\tikz@parse@vhboth#1(#2 |- #3){\tikz@parse@vhdone#1({#2}|-{#3})}%
\def\tikz@parse@vhleft#1(#2 |-#3){\tikz@parse@vhdone#1({#2}|-{#3})}%
\def\tikz@parse@vhright#1(#2|- #3){\tikz@parse@vhdone#1({#2}|-{#3})}%
\def\tikz@parse@vhdone#1(#2|-#3){%
 {%
 \tikz@@@scan@@absolute\tikz@parse@vh@mid(#2)%
 \tikz@@@scan@@absolute\tikz@parse@vh@end(#3)%
 \xdef\tikz@marshal{\noexpand#1{\noexpand\pgfqpoint{\the\pgf@xa}{\the\pgf@ya}}}%
 }%
 \tikz@marshal%
}%
\def\tikz@parse@vh@mid#1{\pgf@process{#1}\pgf@xa=\pgf@x}%
\def\tikz@parse@vh@end#1{\pgf@process{#1}\pgf@ya=\pgf@y}%

\def\tikz@parse@intersection#1(intersection{%
 \pgfutil@ifnextchar o{%
 \tikz@parse@main@intersection#1 1%
 }{%
 \tikz@parse@main@intersection#1%
 }%
}%
\def\tikz@parse@main@intersection#1#2of #3 and #4){%
 \tikzset{cs/solution={#2}}%
 \pgfutil@in@{--}{#3}%
 \ifpgfutil@in@%
 \tikz@reparse@line{first}#3\pgf@stop%
 \else%
 \tikzset{cs/first node={#3}}%
 \fi%
 \pgfutil@in@{--}{#4}%
 \ifpgfutil@in@%
 \tikz@reparse@line{second}#4\pgf@stop%
 \else%
 \tikzset{cs/second node={#4}}%
 \fi%
 \tikz@parse@cs@intersection()% advanced hackery...
 \edef\pgf@marshal{\noexpand#1{\noexpand\pgfqpoint{\the\pgf@x}{\the\pgf@y}}}%
 \pgf@marshal%
}%
\def\tikz@reparse@line#1#2--#3\pgf@stop{%
 \tikzset{cs/#1 line={(#2)--(#3)}}%
}%

\def\tikz@parse@intersection@a#1{\pgf@process{#1}\pgf@xa=\pgf@x\pgf@ya=\pgf@y}%
\def\tikz@parse@intersection@b#1{\pgf@process{#1}\pgf@xb=\pgf@x\pgf@yb=\pgf@y}%

\def\tikz@scan@relative#1+{%
 \pgfutil@ifnextchar+{\tikz@scan@plusplus#1}{\tikz@scan@oneplus#1}}%

\def\tikz@scan@plusplus#1+{%
 \def\tikz@doafter{#1}%
 \tikz@scan@absolute\tikz@add%
}%
\def\tikz@add#1{%
 \tikz@doafter{\pgfpointadd{#1}{\tikz@last@position@saved}}%
}%
\def\tikz@scan@oneplus#1{%
 \def\tikz@doafter{#1}%
 \tikz@updatecurrentfalse%
 \tikz@scan@absolute\tikz@add%
}%

%
% Quote handling
%

\let\tikz@enable@node@quotes\relax
\let\tikz@enable@edge@quotes\relax
\let\tikz@enable@pic@quotes\relax

% Loading further libraries

% Include a library file.
%
% #1 = List of names of library file.
%
% Description:
%
% This command includes a list of TikZ library files. For each file X in the
% list, the file tikzlibraryX.code.tex is included, provided this has
% not been done earlier.
%
% For the convenience of Context users, both round and square brackets
% are possible for the argument.
%
% If no file tikzlibraryX.code.tex exists, the file
% pgflibraryX.code.tex is tried instead. If this file, also, does not
% exist, an error message is printed.
%
% Example:
%
% \usetikzlibrary{arrows}
% \usetikzlibrary[patterns,topaths]

\def\usetikzlibrary{\pgfutil@ifnextchar[{\use@tikzlibrary}{\use@@tikzlibrary}}%}%
\def\use@tikzlibrary[#1]{\use@@tikzlibrary{#1}}%
\def\use@@tikzlibrary#1{%
 \edef\pgf@list{#1}%
 \pgfutil@for\pgf@temp:=\pgf@list\do{%
 \expandafter\pgfkeys@spdef\expandafter\pgf@temp\expandafter{\pgf@temp}%
 \ifx\pgf@temp\pgfutil@empty
 \else
 \expandafter\ifx\csname tikz@library@\pgf@temp @loaded\endcsname\relax%
 \expandafter\global\expandafter\let\csname tikz@library@\pgf@temp @loaded\endcsname=\pgfutil@empty%
 \expandafter\edef\csname tikz@library@#1@atcode\endcsname{\the\catcode`\@}
 \expandafter\edef\csname tikz@library@#1@barcode\endcsname{\the\catcode`\|}
 \expandafter\edef\csname tikz@library@#1@dollarcode\endcsname{\the\catcode`\$}
 \catcode`\@=11
 \catcode`\|=12
 \catcode`\$=3
 \pgfutil@InputIfFileExists{tikzlibrary\pgf@temp.code.tex}{}{
 \pgfutil@IfFileExists{pgflibrary\pgf@temp.code.tex}{%
 \expandafter\usepgflibrary\expandafter{\pgf@temp}%
 }{%
 \tikzerror{I did not find the tikz library
 '\pgf@temp'. I looked for files named
 tikzlibrary\pgf@temp.code.tex and
 pgflibrary\pgf@temp.code.tex, but neither
 could be found in the current texmf trees.}
 }}%
 \catcode`\@=\csname tikz@library@#1@atcode\endcsname
 \catcode`\|=\csname tikz@library@#1@barcode\endcsname
 \catcode`\$=\csname tikz@library@#1@dollarcode\endcsname
 \fi%
 \fi
 }%
}%

% Always-present libraries:

\usetikzlibrary{topaths}%

\endinput

% macros for formatting references within the document
\newcommand{\fref}[1]{\hyperref[#1]{Fig.~\ref*{#1}}}
\newcommand{\tref}[1]{\hyperref[#1]{Tab.~\ref*{#1}}}
\newcommand{\eref}[1]{\hyperref[#1]{Equation~\ref*{#1}}}
\newcommand{\aref}[1]{\hyperref[#1]{Alg.~\ref*{#1}}}
\newcommand{\apref}[1]{\hyperref[#1]{Appendix~\ref*{#1}}}
\newcommand{\sref}[1]{\hyperref[#1]{Section~\ref*{#1}}}
\newcommand{\pref}[1]{\hyperref[#1]{Part~\ref*{#1}}}

% Text macros
\newcommand{\eg} {\textit{e.g.}}
\newcommand{\ie} {\textit{i.e.}}
\newcommand{\todo}[1] {\textcolor{red}{TODO: #1}}
\newcommand{\quotes}[1]{`#1'}
\newcommand{\dquotes}[1]{``#1''}

%% Math formatting
\newcommand{\xmath}[1]	{\ensuremath{#1}\xspace}% math with a space if needed
\newcommand{\bmath}[1]	{\xmath{\bm{#1}}}	% this is the best math bold!

%% Basic math commands
% fractions
\newcommand{\onehalf}	{\xmath{\dfrac{1}{2}}}
\newcommand{\onehalft}{\xmath{\tfrac{1}{2}}} % 1/2 formatted for in-text
\newcommand{\onequarter}	{\xmath{\dfrac{1}{4}}}
\newcommand{\onethird}	{\xmath{\dfrac{1}{3}}}
\newcommand{\twothirds}	{\xmath{\dfrac{2}{3}}}
\newcommand{\paren}[1]{\xmath{\left(#1\right)}}

% operators
\newcommand{\conv} 		{\circledast} % convolution symbol
\newcommand{\abs}[1] {\xmath{\lvert #1 \rvert}} % | . | absolute value
\newcommand{\norm}[1] {\xmath{\left\lVert#1\right\rVert}} % || . ||
\newcommand{\normsq}[1] {\xmath{\left\lVert#1\right\rVert^2}} % || . ||^2
\newcommand{\normrsq}[1]{\xmath{\| #1 \|^2}} % "regular" - not big
\newcommand{\dottimes} {\xmath{\cdot *}}
\newcommand{\real}[1]{\;\xmath{\text{real} \left\{ #1 \right\}) }}
\newcommand{\sign}[1]{\xmath{\mathrm{sign}\left(#1\right)}}
%\renewcommand{\log}[1] {\xmath{\operatorname{log}\mleft(#1 \mright)}} % trick to get ,proper spacing all around; see 2.1.1

% define other helpful math stuff
\newcommand{\by} {\xmath{\times}} % I can never remember the right command for the x signal in a dimension, e.g., m x n
\renewcommand{\neg} {\xmath{\text{-}}}

% Common part names
\newcommand{\R}[1] {\xmath{R_{#1}}} % for example, \R{1} produces R_1 and \R{2} produces R_2
\newcommand{\C}[1] {\xmath{C_{#1}}}

\newcommand{\kohm}{\text{k}\Omega}
\newcommand{\Mohm}{\text{M}\Omega}
\newcommand{\volt}{\text{V}}
\newcommand{\mvolt}{\text{mV}}
\newcommand{\mhenry}{\text{mH}}
\newcommand{\microfarad}{\mu\text{F}}
\newcommand{\picofarad}{\text{pF}}
\newcommand{\ms}{\text{ms}}
\newcommand{\us}{\text{us}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand{\mA}{\text{mA}}
\newcommand{\dB}{\text{dB}}
\newcommand{\watt}{\text{W}}
\newcommand{\joule}{\text{J}}
\newcommand{\amp}{\text{A}}
\newcommand{\hertz}{\text{Hz}}
\newcommand{\Hz}{\hertz}
\newcommand{\khz}{\text{kHz}}
\newcommand{\kHz}{\khz}
\newcommand{\MHz}{\text{MHz}}
\newcommand{\cm}{\text{cm}}
\newcommand{\meter}{\text{m}}
\newcommand{\inch}{\text{in}}
% John says: are we sure we want the V to be text-mode instead of math mode? I think the italic math-mode V would match with existing style conventions better.
\newcommand{\vcc}{$\text{V}_{\text{CC}}\text{ }$}

\newcommand*\intd{\mathop{}\!\mathrm{d}}

\newcommand{\shrug}[1][]{%
\begin{tikzpicture}[baseline,x=0.8\ht\strutbox,y=0.8\ht\strutbox,line width=0.125ex,#1]
\def\arm{(-2.5,0.95) to (-2,0.95) (-1.9,1) to (-1.5,0) (-1.35,0) to (-0.8,0)};
\draw \arm;
\draw[xscale=-1] \arm;
\def\headpart{(0.6,0) arc[start angle=-40, end angle=40,x radius=0.6,y radius=0.8]};
\draw \headpart;
\draw[xscale=-1] \headpart;
\def\eye{(-0.075,0.15) .. controls (0.02,0) .. (0.075,-0.15)};
\draw[shift={(-0.3,0.8)}] \eye;
\draw[shift={(0,0.85)}] \eye;
% draw mouth
\draw (-0.1,0.2) to [out=15,in=-100] (0.4,0.95);
\end{tikzpicture}}

% Various things to deal with the formatting idiosyncrasies of IEEETran
\newcommand{\emaillink}[1]{\href{mailto:#1}{#1}}
% from https://tex.stackexchange.com/a/619107
\makeatletter % changes the catcode of @ to 11
\newcommand{\linebreakand}{%
 \end{@IEEEauthorhalign}
 \hfill\mbox{}\par
 \mbox{}\hfill\begin{@IEEEauthorhalign}
}
\makeatother % changes the catcode of @ back to 12

\documentclass[conference]{IEEEtran}
\iftrue
\begingroup\escapechar=-1
\xdef\jobname{\expandafter\string\csname main\endcsname}
\endgroup
\usepackage{embedall}
\fi

\IEEEoverridecommandlockouts
% The preceding line is only needed to identify funding in the first footnote. If that is unneeded, please comment it out.
\input{packages}
\addbibresource{references.bib}
\input{macros}

\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
 T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

\begin{document}

\title{C.H.E.S.S.B.O.A.R.D.\\\large An Interactive Chess Learning Aid \\
\thanks{This was the capstone design project (ECE 4440/4991) for the authors, performed in partial fulfillment of the graduation requirements for the Charles L. Brown Department of Electrical and Computer Engineering at the University of Virginia. We would like to acknowledge our excellent advisor, Prof. Adam Barnes.}
}

\author{\IEEEauthorblockN{John Berberian Jr.}
\IEEEauthorblockA{\textit{B.S. Electrical Engineering} \\
\textit{University of Virginia}\\
Charlottesville, Virginia, United States \\
\emaillink{ccg3sr@virginia.edu}\,\orcidlink{0000-0003-1466-8389}}
\and
\IEEEauthorblockN{Kevin Dang}
\IEEEauthorblockA{\textit{B.S. Electrical Engineering} \\
\textit{University of Virginia}\\
Charlottesville, Virginia, United States \\
\emaillink{ejj4wt@virginia.edu}}
\and
\IEEEauthorblockN{Paul Diaz Karhnak}
\IEEEauthorblockA{\textit{B.S. Computer Engineering} \\
\textit{University of Virginia}\\
Charlottesville, Virginia, United States \\
\emaillink{pkarhnak@gmail.com}}
\linebreakand
\IEEEauthorblockN{Lourdes Leung}
\IEEEauthorblockA{\textit{B.S. Electrical Engineering} \\
\textit{University of Virginia}\\
Charlottesville, Virginia, United States \\
\emaillink{mqw6nf@virginia.edu}}
\and
\IEEEauthorblockN{Liam Timmins}
\IEEEauthorblockA{\textit{B.S. Electrical Engineering} \\
\textit{University of Virginia}\\
Charlottesville, Virginia, United States \\
\emaillink{uhj6qw@virginia.edu}}
}

\maketitle

\begin{abstract}

The Chess Helper, Evaluator, and Study Supporter to Boost Observation, Acumen, Reasoning, and Deduction (C.H.E.S.S.B.O.A.R.D., referred to herein as CHESSBOARD) is a smart chessboard focused on streamlining the chess learning process for beginner to intermediate players. The CHESSBOARD provides an interactive learning experience that displays possible moves and hints with light-emitting diode (LED) feedback, validates moves according to standard rules, and transcribes games automatically. The bulk of the system is built inside a custom wood and acrylic enclosure and a separate 3D-printed container (``clock box'') houses the computers. The CHESSBOARD uses linear Hall effect sensors to measure the magnetic field strength from custom magnetic chess pieces in order to detect their type and color. An MSPM0G3507 microcontroller reads from these sensors, detects game updates like a player making a move, lights up the LEDs in response to new game information, and forwards this new game information to a secondary Raspberry Pi computer. The Raspberry Pi interprets these updates, records new game conditions, and plays the changes against the Stockfish chess engine to get new lists of legal moves, new hints, and new special information as applicable. Every aspect of the system design was designed and built with users and their experience in mind.

\end{abstract}

\begin{IEEEkeywords}
Chess, teaching, magnetic sensors, human computer interaction, consumer products.
\end{IEEEkeywords}

\tableofcontents
\listoffigures
\listoftables

\section{Statement of Work}

\subsection{John Berberian Jr.}

John was primarily responsible for the embedded firmware that ran on the MSPM0G3507 microcontroller (``MSPM0''), including the drivers, real-time operating system (RTOS), and communication logic. He was also the primary team member responsible for the power subsystem and its associated design features like communication and level shifting. He designed the filter component values for the sensor subsystem and carried out noise and switching time simulations in PSPICE. In addition, he assisted with soldering and hardware testing, and advised design decisions in other areas of the project. He helped with the design of the electronics contained in the clock box, including the buttons and liquid crystal display (LCD) interface.

John was also involved to a lesser extent in the implementation of the Raspberry Pi system. His main contribution to the Raspberry Pi was debugging the issues with powering over the header pins, leading to the team's decision to switch to a Raspberry Pi 4 from a Raspberry Pi 5. Additionally, he wrote extra firmware to verify the functionality of each hardware subsystem, and helped debug hardware issues.

\subsection{Kevin Dang}

Kevin was the primary person working on the design of the enclosures. All enclosures were modeled in SolidWorks. For the main chessboard, the enclosure used both acrylic and wood, materials which required Kevin to perform machining on the laser cutter and woodworking machines, respectively. Additionally, Kevin 3D printed an I/O shield to cover the cutout for port access. Another significant area of Kevin's work encompassed PCB layout. Kevin was the primary person designing the I/O board. First, Kevin created a power budget using the maximum load of each device in the system to size the connectors and traces on the board. Then, Kevin helped with testing of the first revision of the I/O board which revealed many issues with mismatched pins caused by erroneous footprints. This meant that stray pins had to be bent and fly-wired. Kevin either replaced or manually modified footprints in a second revision of the board. Along with his work on the I/O board, Kevin assisted the other team-members with reviewing the layouts of the sensor board and clock box board.

\subsection{Paul Diaz Karhnak}

Paul was the primary team member responsible for operating and administering the Raspberry Pi, which included installing necessary packages like \code{stockfish}, installing necessary Python modules like \code{chess} and \code{pyserial}, and dealing with file-mapped UART through the Linux file system. Paul wrote the Stockfish wrapper code which interacted with Stockfish in a subprocess and engaged with the \code{chess} module to perform chess game state tracking and move registration (including move undo requests and game restarts). Paul worked closely with John on aspects of the MSPM0 code base by writing the first draft of the MSPM0 UART driver; reviewing John's application programming interface (API) and business logic on the MSPM0; adding UART task management into the main task; writing the first draft of pushbutton interrupt handlers; and debugging UART on the two devices. Lastly, Paul wrote the first draft of the data copying code on the Raspberry Pi to enable games to be written to removable persistent storage when connected to the Pi.

\subsection{Lourdes Leung}

Lourdes was primarily responsible for the design and testing of the piece detection system. In the early stages of the project, she conducted preliminary testing of the sensing system and decided on which type of sensors and magnets to purchase. She performed several rounds of testing to determine the heights for the magnets inside the chess pieces so that the sensing system could accurately differentiate between chess piece types. Using these results, Lourdes designed the chess pieces in AutoCAD and 3D printed them. Along with the piece detection system, she designed and produced schematics for the clock box boards. Lourdes also aided in the physical enclosure design and manufacturing process. During the manufacturing process, she helped solder several of the LED strips and sensor printed circuit boards (PCBs). While performing exhaustive testing and debugging after the hardware assembly, she identified the factors contributing to the range variations of the sensors and made several revisions to the chess piece designs and sensors PCBs.

\subsection{Liam Timmins}

Liam was primarily responsible for several aspects of the hardware design and assembly. For instance, Liam designed the printed circuit board (PCB) layouts for the sensor boards and clock box boards in KiCAD. These consisted of efficiently laying out components in order to mitigate the effects of noise and minimize dimensions to effectively fit within the enclosures. When filtering became a higher priority partway through the semester, he revised these designs to better accommodate the additions while maintaining the small form factor. Liam also contributed to the sensor testing process, determining the feasibility of the use of Hall effect sensors and the sensitivity to choose.

Beyond design and testing, Liam contributed to a significant portion of the hardware assembly, including soldering the LED arrays and all of the PCBs made for the project. This included soldering all of the clock box boards, most of the sensor boards, and parts of the I/O board. After the assembly was completed, he assisted in the hardware testing process, including sensor functionality in the context of the rest of the system. This process consists of tuning the individual sensors to best read the anticipated piece type from the sensor's output to minimize the chance of misreading said piece type. Liam also resoldered components when he localized issues during the hardware testing process, including bridges forming between \vcc and ground and faulty ICs.

\section{Background}\label{sec:background}
%Here you should lay the groundwork for your project. Why you chose it, what similar projects have been done in the past (include references as necessary), what differentiates your project from past work by others, and how your coursework background has prepared you to work on this project.
\subsection{Initial Idea}

As we worked to come up with ideas in Summer 2024, Liam suggested making an automatic chess transcriber. The original idea was that automatic transcription would be an aid observers of speed chess tournaments. With an automatic transcriber, they would not have to wait for manual transcription of the game or watch a video recording. Under a strict 15-week timeline (ECE 4440/4991 formally met from August 2024 to December 2024), we needed a project that would demonstrate our technical proficiency while being achievable in a relatively short period of time. We were confident in our capabilities to implement an automatic chess transcriber, felt that a successful design did not need to incorporate potential hazards like heating components or high voltage,\footnote{Other ideas proposed included a robot that wound transformers and an electric kettle. In addition to being perceived as infeasible, these designs were rejected due to involving potentially dangerous high voltage and heating, respectively.} and thought that there was ample flexibility to expand the scope of the project if needed. Based on this, the team selected the transcriber for further development.

\subsection{Rationale}
After re-evaluating the target audience, we reasoned that gearing the design toward a less competitive user, like a beginner, opened up more design options that would result in an more compelling overall product. A beginner-focused chess aid gave the project more utility, since on top of transcription for post-game analysis such a chess aid could interactively provide insights for players during games. For complete beginners, the chess aid could teach them standard rules; for players looking to learn more, they could study the strategy of an advanced chess engine like Stockfish. Since discussion with the team favored this new direction, we chose to modify the project to become a chess learning aid for beginner and intermediate players instead of simply a chess transcriber.

\subsection{Comparison with Prior Art}

Many similar ``smart chessboard'' projects have been designed in the past. Three examples were designed here at the University of Virginia: a self-rearranging chessboard \parencite{autonomous_camera}, an autonomous chessboard \parencite{autonomous_magnet}, and an assistive chessboard \parencite{LEDs_digital_magnet}. The self-rearranging chessboard was a project that aimed to speed up the process of resetting a board to begin a new game. The project was focused on moving chess pieces and detecting pieces via visual means. The autonomous chessboard had the goal of creating a mechanism that could play against a human user. Like the self-rearranging chessboard, the autonomous chessboard's main feature was its ability to manipulate piece positioning. The system utilized binary reed sensors to detect changes in board state. The last of the prior capstone examples is the assistive chessboard, which sought to improve chess learning and practice. It did this by retaining the physical interaction of a chess set and adding visual elements and cues to assist a player in remembering strategy.

Of the three examined projects, the assistive chessboard was the most similar to our project: we also planned to make a learning aid, use LEDs to provide live feedback, and use Hall effect sensors to record changes in board state. Our project focuses less on the integration of the chess engine and more on the user experience. This was evident in our design decisions from the beginning. For example, by choosing to use analog Hall effect sensors, the team gained the ability to tell exactly what piece is present on a tile. Eliminating ambiguity in detecting piece types was important to correctly allow for certain ``special moves'' (\eg, promotion, castling, \textit{en passant} captures) and verify board conditions (\eg, piece placement at the beginning of each game). The undo feature in our project provided a better experience for the players who are trying to learn through experimentation and want to see how different options can affect a game. Building the majority of our features into the product itself allowed for a more approachable experience that was meaningfully similar to playing a normal game of chess. The self-rearranging chessboard and autonomous playing chessboard had less in common with our goal but did have features that related to our design like identifying invalid or illegal moves, and recording the board state. The value of understanding these projects was in understanding the reasoning behind the design choices and hurdles they faced.

The most similar capstone design that we could find was from students at Carnegie Mellon University. In their project, ``Tactile Chess'' \parencite{cmu_tactile_chess}, the students created an accessible interface to online chess tools for blind people. They used a sensing system almost identical to ours (analog hall effect sensors, two layers of 8:1 multiplexers) and they ran Stockfish on a Raspberry Pi, but the remainder of their system differed. They communicated with the user through a web-based GUI and speakers rather than an LED array embedded in the board, and they performed move validation through online APIs rather than locally. Because the ``Tactile Chess'' team was writing for a web-based platform, their board requires internet access to work, and their move validation was much slower than ours. Also, the team chose to house their complete system in a single module, unlike our choice to house the computer systems in the separate clock box.

The team also looked into miscellaneous designs from the Internet. One of the designs was a demo application of giant magnetoresistance sensors (GMR) by NVE Corporation \parencite{NVE_AD024-10E} which seemed to be built for transcription. As pieces moved, the move was displayed in chess notation on a small screen with time stamps and read aloud with a speaker. NVE's sensor implementation seemed to be digital like the assistive chessboard capstone project. A hobbyist implementation of a smart chessboard was also considered \parencite{DIY_Smart_Chessboard}. The hobbyist design had a hint feature and established wireless communication with another board to allow for remote play. LEDs illuminated tiles to communicate hints and to indicate where the remote opponent had moved. All moves had to be manually input with a keypad system. These two prior projects overlap with many features that we planned to integrate in our board. We wanted to use Hall effect sensors in a similar capacity to the NVE GMR sensors, although we used analog sensors to distinguish piece color and type. We wanted to have an LED array to show all available moves as well as recommended moves. Our board combined these features to make a product more suited for our target audience: a chessboard that can transcribe and inform without any input other than the movement of pieces like in a traditional chess game.

One challenge we anticipated was detecting when a turn was over. We initially planned to automatically detect turn completion without requiring players to hit a clock button. When we changed our focus to beginner players, we quickly realized that automatic detection would be inappropriate for our customer base. Beginner players cannot always be expected to play their final choice of a move simply by placing a piece down once per turn: they might want to look at the resulting board state before they finalize their move, and might change their mind halfway through a turn. A player changing their mind might, in turn, mean that the player has to revert a new board state and make a different move that has a different result. After some consideration, we decided on an interface inspired by a chess clock: we designed and implemented the clock box with turn switching buttons on top to definitively end turns and with displays which can optionally act as chess clocks. Even when the chess clock is disabled, the players still need to use the turn-switching buttons to indicate to our system that the current turn is complete.

\subsection{Relevant Coursework}

Throughout the project, we drew upon our experience from the Electrical and Computer Engineering Fundamentals sequence (ECE 2630, ECE 2660, and ECE 3750) to design the project's PCBs. In the Fundamentals series, we practiced circuit analysis and simulation as well as PCB design, which were skills used to design the sensor, I/O, and clock box PCBs. Most of the team had taken Electromagnetic Fields (ECE 3209) and Electromagnetic Energy Conversion (ECE 3250), so they were comfortable in their understanding of what was fundamentally happening in the interaction between magnets in the chess pieces and the Hall effect sensors in the board. Every member of the team had taken the Introduction to Embedded Computer Systems course (ECE 3430), which taught the essentials of embedded systems programming in C. Two team members, including the primary embedded programmer on the team (Paul), had taken Advanced Embedded Computing Systems (ECE 4501): a course which teaches more complex embedded programming in C, including RTOS kernel development. The two embedded systems courses (particularly ECE 4501) were immediately useful in the project: they enabled us to orchestrate the RTOS which interprets changes in the CHESSBOARD's sensor readings and manages the associated changes in chess game logic. FreeRTOS was deployed on the MSPM0 and skills from ECE 4501 were used to understand the FreeRTOS kernel and analyze aspects such as its multitasking behavior, methods of software interaction with peripherals, and thread and process management.

\section{Project Description}\label{sec:project description}
%This is a detailed description of the project. It should explain in sufficient detail that would allow a 4th year undergrad to duplicate your results at the beginning of their fall semester. You should include the following, with each bullet point having its own subsection:

\subsection{Performance Objectives and Specifications}\label{sec:performance objectives and specification}
% Include features geared specifically for the end-user. Note that these may have evolved from the ones in your proposal; be sure to explain why
The team designed CHESSBOARD to be an intuitive learning resource for beginner and intermediate chess players. We intended for the primary means of communication to be an array of LEDs that light up specific tiles as needed. The value of CHESSBOARD is that basic information such as which pieces can move, where can they move, and when an illegal move has been made can be communicated in real time. Additionally, tools like post-game transcription and an undo move queuing system help improve the experience by giving the user the ability to easily analyze how they played and learn by trying out different options from one position.

The CHESSBOARD features a $20\inch\times 20\inch\times 1.5\inch$ board. The base is made of wooden materials like composite wooden panels and planks and is topped with layers of acrylic. To reduce the number of manufactured components, the tiles were made from one solid sheet of clear acrylic. The white tiles were etched into the acrylic and further sanded to whiten the surface appearance. A sheet of window tint underneath the acrylic gives the board the appearance of having black and white tiles while maintaining the translucent characteristics necessary for observing the LEDs underneath the tiles (\fref{fig:chessboard}).

To teach players the movement rules of each chess piece, the LEDs light up to show all possible tiles to which a player may move a piece when it is lifted. The LEDs are placed beneath the Hall effect sensors. The Hall effect sensors are used to detect which piece has been picked up; specifically, they observe the change in a square's output voltage from a bin associated with that specific chess piece to the bin associated with an empty square. Each chess piece has a slotted magnet in its center at a varying distance from the base, producing a specific voltage output from the Hall effect sensors. Our goal was to make the response time of the entire system faster than human reaction time (around 250ms). We were able to exceed this goal: based on our calculations, we believe our system is able to keep response times under 150ms.

Another main feature that helps players develop their skills is the hint button. Once pressed, tiles light up to display the best possible move a player can make during their turn. Once players learn the rules of the game, they can start to learn new strategies using the suggested moves. Because the goal of CHESSBOARD is to be a learning aid, the board also features an undo button to allow players to retry their last move. As their skills develop to a more intermediate level, users may practice faster thinking during a game with the use of the built-in chess clock. When a player's clock starts, that clock will count down when the clock is reset or when the opposing player ends their turn. The chess clocks are displayed on seven-segment LCD screens that can display six digits for the remaining time in hours, minutes, and seconds.

The last feature is the automatic chess transcriber that logs each move as it is made and thus immediately provides a full list of moves for each game. Using this transcription, players may analyze how the game played out and study or revise their strategies to become better chess players. The transcription may be retrieved by plugging a thumb drive into the USB port on the side of the clock box. The Raspberry Pi automatically recognizes the new device and copies recent transcriptions (stored as text files) onto the thumb drive. While this requires that the thumb drive be formatted with a supported file system, the copying script assumes that every thumb drive is formatted for FAT32, which is a common and widely supported format.

\begin{figure}
 \centering
 \includegraphics[width=\linewidth]{figures/CAD Chessboard Rev 1.png}
 \caption{Initial CAD model of CHESSBOARD physical structure made for project proposal.}
 \label{fig:chessboard}
\end{figure}

\input{blockdiagram}
\subsection{Block Diagram and Functionality}\label{sec:block diagram}

The system is physically split into two modules: the chessboard itself and the separate clock box. The two modules are connected by a high-density D-Bus 15-pin (DE15) connector. The entire system is powered by an external 5V DC power supply, which plugs into a barrel jack on the chessboard I/O PCB. The block diagrams for the chessboard and the clock box are shown in \fref{fig:block:board} and \fref{fig:block:box}, respectively. In this section, we traverse the block diagram and explain how the components work together to produce the intended functionality.

The user expects to move pieces and see the LEDs in the board respond to the movement. For this to be possible, we needed a mechanism for detecting the movement of a piece. We chose to put magnets in each piece and place Hall effect sensors under the squares of the board. Well-defined spacing and offsets for the magnets allowed us to detect the type and color of any piece on the board. Since our MSPM0 microcontroller did not have enough pins to uniquely connect to each square's sensor (64 total), we decided to place analog multiplexers in two stages (8:1 to select one column from each row, then 8:1 to select between the row results) to reduce the number of analog wires to just 1. This did, however, require six digital wires for selection ($64=2^6$). Because sensors we chose are ratiometric---they will scale their output domain to their power rails, within some range---we were able to choose which power supply level to place them on. The microcontroller requires $3.3\volt$ power (and the ADCs will range from 0 to $3.3\volt$) so we decided to place the Hall effect sensors on $3.3\volt$ power.

The red-green-blue (RGB) LEDs we selected run off of $5\volt$ power and use a digital protocol for control which permits them to be daisy-chained to an arbitrary length. This protocol means that we only need to use two pins for communication with the LEDs: one for data in and one for a clock. The LEDs expect $5\volt$ logic levels but the microcontroller that we selected used $3.3\volt$ logic levels, so we needed a level shifter to translate the signals. After reviewing our power requirements, we decided it was prudent to isolate the 5V components from the 3.3V components to reduce power supply noise. The components we expected to be noisiest (the LEDs and the Raspberry Pi) were on 5V power and the components that are sensitive to noise (MSPM0 and sensors) are on 3.3V power, so we decided on an isolated 3.3V switched-mode power supply and an isolated level shifter. We expected that this would protect the sensor output signal from any voltage drops due to high currents through the 5V-ground.

The whole system is controlled by the MSPM0 microcontroller \parencite{ti:msp-datasheet} \parencite{ti:mspm0_sdk} on a Launchpad development board \parencite{ti:mspm0g3507_lp}. The MSPM0 runs the code to measure the positions of the pieces, control the LEDs under the squares, respond to button presses, and keep a chess clock running. The MSPM0 has many integrated peripherals that we used for communication with the various system components. The data protocol our selected LEDs use is similar to a simplified version of the Serial Peripheral Interface (SPI), so we used one of the MSPM0's two built-in SPI hardware modules to offload the work of communication. SPI was likewise a logical choice to communicate with the LCDs, so our driver used the MSPM0's other SPI module. The Raspberry Pi 4 \parencite{rpi:rpi4}, which runs a chess engine for producing the hints, communicates with the MSPM0 via UART; both the Raspberry Pi 4 and MSPM0 have hardware support for UART, and both of the MSPM0's hardware SPI modules were already occupied with the previously mentioned uses. Though the Pi 4 uses $3.3\volt$ logic levels, it uses $5\volt$ power, so we needed an isolator within the UART link to keep the two power domains isolated. The Pi 4 also logs a text representation of the game (chess notation) to a USB flash drive if one is plugged into the system.

Because the digital signals to communicate with the LEDs were relatively high-frequency ($1.6\MHz$), we expected to see some coupling between those signal lines and the sensor subsystem's analog signal lines. Fortunately, the frequencies present in the coupled noise were substantially higher than in the sensor signal. To attenuate the noise, we added low-pass Bessel filters, placing second-order filters after each row multiplexer and a fourth-order filter directly next to the analog-to-digital converter (ADC) pin on the microcontroller board. To avoid using inductors, we built the filters with operational amplifiers using the Sallen-Key topology. To attenuate any 60Hz environmental noise that we have picked up from power supplies, we also added first-order RC filters to each sensor line. This was in accordance with the stability recommendations in our Hall effect sensors' datasheet \parencite{ti:drv5055}.

We wished to support users in their competitive development, so we decided to integrate a chess clock to optionally simulate the conditions of a competitive game. The time remaining for each player is displayed on two six-digit seven-segment LCDs. LCD segments must be driven with an AC signal, so we connected them to an LCD driver chip that could be chained and which used an SPI-like protocol.

Aside from the sensors, the main means of user input is through the button system. To prevent mechanical bouncing from generating erroneous signal edges on the general-purpose input/output (GPIO) pins (which could then be incorrectly interpreted as multiple button presses), we added an RC network and Schmitt trigger to each button as described in \textcite{ti:debounce}.

\subsection{Hardware Design Details} \label{sec:hardware design}
%Technical details of your design decisions, modifications, and engineering tradeoffs you made. Include mathematical analysis and references that document your work on the project. This should include 10 to 15 references to journal papers, parts specs, and technical documents (Wikipedia does not count).
\subsubsection{Sensor PCBs}
\begin{figure*}
 \centering
 \centerline{\includegraphics[width=\linewidth,height=\linewidth]{figures/sensor_schematic.png}}
 \caption{The sensor board schematic used in the final design. In the PCB layout, the sensors are spaced two inches apart from each other.}
 \label{fig:sensor_schematic}
\end{figure*}

The initial criteria and components were for 8 boards with 8 sensors each. The sensors collect into an 8:1 mux with three select pins on each sensor board. The TMUX1208 \parencite{ti:tmux1208} satisfied our requirements for a multiplexer: it had easily accessible documentation, a relatively low price, low on-resistance, and high switching speed. The decision to make the system as a unified PCB rather than as a network of wired components was made to introduce a greater level of regularity in spacing, which is critical for piece sensing accuracy. The schematic for this board can be seen in \fref{fig:sensor_schematic}. The team tested a sample group of three sensors to establish sensitivity bins: the DRV5055A1QLPG (``A1''), DRV5055A3QLPG (``A3''), and DRV5055A4QLPG (``A4'') \parencite{halleffect}. These sensors were chosen due to their availability and price at the scale that we required in addition to satisfying our technical requirements for sensing. The A1 sensor was selected since the greater sensitivity allowed for the highest resolution within the expected height range (3mm to 13mm) of the six discrete magnet height bins. When we tested with the magnet we selected \parencite{magnet:flat}, this range gave us reasonable space between the different pieces' voltage bins while avoiding significant overlap. Each sensor required a bypass capacitor of at least $0.01\microfarad$ according to the datasheet \parencite{ti:drv5055}.

Initially, we planned to use a single set of voltage bins for all the squares. As the project moved into the manufacturing phase, it became clear that this was infeasible. Our final design for the height choices and their respective voltage outputs is visible in \tref{tab:sensor_bin_final}. When we tested pieces with these magnet heights on different squares, we saw substantial discrepancies. We believe this was caused by slight variations in the angle and position of the sensor soldered onto the board. We were unable to precisely fix the sensor positions while soldering them by hand, so manufacturing differences occurred despite our efforts. After a few failed solutions, we decided to fix this in software. We measured the minimum and maximum voltage values for each piece type on each square, and created a separate set of bins for each individual square. The firmware required for this is discussed in \sref{sec:software:design_details}.

\begin{table*}
 \centering
 \caption{Final sensor height and voltage bins used for the piece bases. The height represents where the magnet is positioned from the bottom of the piece.}
 \centerline{
 \begin{tabular}{|c|c|c|c|}
 \hline
 Piece Type & Height (mm) & White Voltage Range (V) & Black Voltage Range (V) \\
 \hline
 Pawn & 1 & 0.040 - 0.200 & 3.28 - 3.40\\
 Rook & 3.2 & 0.560 - 0.960 & 2.40 - 2.60\\
 Knight & 4.5 & 1.00 - 1.12 & 2.20 - 2.40 \\
 Bishop & 6 & 1.08 - 1.24 & 2.04 - 2.14\\
 Queen & 8 & 1.20 - 1.32 & 2.00 - 2.08\\
 King & 11 & 1.44 - 1.56 & 1.76 - 1.80\\
 \hline
 \end{tabular}}
 \label{tab:sensor_bin_final}
\end{table*}

The first major modification to the sensor boards was the inclusion of filtering. It occurred to the team that the long traces in the board would be prone to picking up 60Hz environmental noise. First-order low-pass filters with a corner frequency of 10Hz were deemed sufficient to attenuate this noise. The sensor output was assumed to be nearly DC, though AC components were expected to be introduced into the signal by the high-speed switching of the mux selection as the system scanned the board. To filter the output of an individual sensor, we selected $10\kohm$ resistors and $2.2\microfarad$ capacitors. This RC filter results in a corner frequency of 7.2Hz, which met our specification for a satisfactory filter. Higher order filtering was also introduced in other sections to better attenuate the high frequency noise coupled from digital signals within the system.

A problem was found in the footprints of the the Hall effect sensors: the pins were in reverse order relative to the schematic symbol. The problem was resolved by flipping the orientation of the sensors and bending the sensor in such a way that the flat face of the sensor head was close to flush with the ceiling of the enclosure. The voltage bins corresponding to black and white had to be swapped to compensate for the sensors' orientation change. Brief testing concluded that aside from this, the change would result in negligible differences from the anticipated orientation. A few sensor boards are shown installed in the acrylic board top in \fref{fig:sensor_in_acrylic}.

\begin{figure*}
 \centering
 \includegraphics[width=\linewidth]{figures/sensors_installed_cropped.jpg}
 \caption{Sensor boards installed into the acrylic surface sheet.}
 \label{fig:sensor_in_acrylic}
\end{figure*}

\subsubsection{LED Arrays}
The original design for the LED array was to wire together a matrix of 64 addressable LEDs arranged in rows. Power was distributed from a central I/O board to each row in parallel. This wiring arrangement allows the power bearing wires to remain relatively short, so the current load of each LED only compounds within the row instead of through the whole array. Because the LEDs selected used a serial protocol for programming, clock and data had to be routed through each of the rows, alternating direction each time. We decided to use RGB LEDs to give us flexibility to use color as a means of conveying different meanings without text or audio.

In choosing which RGB LED chip to use, we faced a complex decision. Serial addressable RGB LEDs can be generally considered within two categories: synchronous 4-pin (APA102-like) LEDs \parencite{shenzhen:apa102} and asynchronous 3-pin (WS2812-like) LEDs \parencite{worldsemi:ws2812}. The synchronous type requires four pins: clock, data, power, and ground. The asynchronous type is able to function without a clock, but this introduces some downsides: the asynchronous protocol relies on very precise timing to signal the data. We found that the 3-pin protocol was unsuitable for our application: the timing sensitivity would necessitate that we disable interrupts while signaling the LEDs, but our product needed to be able to tolerate interruptions in LED programming to achieve the low latency we were targeting. After reviewing the synchronous LED products available on the market, we selected the AdaFruit DotStar LED strips \parencite{adafruit:dotstar}, which use the SK9822 (APA102-compatible) chip \parencite{opsco:sk9822}. The synchronous protocol they use is compatible with SPI, so we were able to take advantage of the MSPM0's built-in SPI hardware modules when using them. Because these LEDs use 5V logic and our MSPM0 uses 3.3V, we had to add a level shifter (ISO6731) \parencite{ti:iso6731} in the middle.

One modification to this design was to add 18 additional LEDs. These LEDs were added underneath the piece silhouettes at the edge of the board, to allow software to highlight a specific piece type during gameplay. These silhouettes help in setting up the initial board state and in reverting to prior board states. For instance, if a piece has been captured, reverting that move will light the indicator to display which piece type was captured and should be placed in the empty square.

Another modification to the LED array was the inclusion of an RC circuit at the beginning of both the clock and data lines. Initial testing showed substantial flickering when the LEDs were connected to the level shifter. This issue was made more challenging to debug by the fact that connecting an oscilloscope probe made the oscillation disappear. From this, we decided to add an equivalent circuit model of the oscilloscope probe (an RC circuit in parallel) to the clock and data lines. We only had a limited range of values in our laboratory, so we scaled the resistance and capacitance to maintain the same time constant, ending up with $220\kohm$ and $1\text{nF}.$ This successfully resolved the flickering issue.

The completed LED array can be seen installed into the board in \fref{fig:LED strips}.

\subsubsection{I/O PCB}
\begin{figure*}
 \centering
 \includegraphics[width=\linewidth]{figures/Layout IO Board Rev 2.png}
 \caption{Revised I/O board layout.}
 \label{fig:IO_layout}
\end{figure*}

The I/O board is a hub for power, sensor, and control distribution between the chessboard and clock box. It has 6-pin connectors for the sensor boards, 4-pin connectors for the LEDs, the second-stage 8:1 mux, a barrel socket, a 5V-3.3V DC-DC converter, a level shifter, and a DE15 connector. The 6-pin connector was chosen to provide simple header pins for debugging when the harness was not attached. The 4-pin connector was only necessary for the one LED strip that started the clock and data chain. However, using 4-pin connectors for all of the strips simplified parts logistics, and a bag of JST connector pairs was already available in the lab. The barrel socket was sized to match the 2.10 mm standard of the power supply and to handle the maximum wattage of 50W (10A at 5V) \parencite{globtek:plug}. Our system has both 5V and 3.3V loads. Given that power flow is more efficient at higher voltages, we decided it was best to start with a 5V supply and step down to 3.3V with a DC-DC converter as needed. The DC-DC also isolated the 5V and 3.3V power domains and mitigated some of our noise concerns. The exact model used was the RECOM R3K-053.3S/H3 \parencite{recom:dcdc} since it could supply above the required 3W, had isolation, and was the cheapest option from one major distributor. The level shifter was necessary to translate the MSPM0's 3.3V control signals for the 5V LEDs. Since the two power domains needed to be isolated, we used an isolated level shifter \parencite{ti:iso6731}. The DE15 was an acceptable choice since it had sufficient pins for the number of connections we needed between the chessboard and clock box: 13 unique nodes. It is a relatively simple connector with easily accessed, direct pinouts. Moreover, the shielding built into the cable helped to address some environmental noise concerns. The additional two pins were necessary, though, because each pin is only rated for 3A \parencite{amphenol:dsub}. Our initial design used a Raspberry Pi 5 in place of the eventual Pi 4; the Pi 5 which draws up to $5\amp$ from its $5\volt$ power supply \parencite{rpi:rpi5}, so we used the extra two pins as extra rails (in parallel) for the $5\volt$ power system to support the needed current.

The I/O board had one major modification to its design prior to the manufacturing of the first PCB set. Like the sensor board, filters were added to the design to address noise concerns. Unlike the sensor boards, though, we decided to use active filters: eight second-order Sallen-Key filters were used, one for each row. Having second-order active filters allowed us to effectively remove high-frequency noise while keeping step response times tight. The expected input to these filters was a rapidly switching DC value; to keep latency as low as possible and accommodate these inputs, we optimized the step response of the filter to converge very quickly without oscillating. These filters were designed as Bessel filters to produce an ideal step response for the effectively DC values being read from the sensors. Using the Texas Instruments analog filter designer, resistor values of $1.5\kohm$ and $2.7\kohm$ and capacitor values of 15nF and 10nF were found to produce the desired step response: a convergence to 0.5% within $150\us$. These choices resulted in a passband gain of $0\dB$ and a corner frequency of $5\khz$, which were within our design parameters. The operational amplifier chosen for the filters was the TLV9052 \parencite{ti:tlv9052IDR}, which was relatively cheap and had sufficient bandwidth for our application.

We ended up making a second revision of the I/O board to address footprint issues. Numerous devices whose symbols and footprints were imported from UltraLibrarian had mismatched pin numbering. In the barrel jack, the polarity was reversed and pads needed to be widened. The DE15 connector's middle row of pins needed to be shifted one position to the left so that the ``arrow'' formed by the pins pointed the other direction. The DC-DC enable pin needed to be disconnected from \vcc instead of shorted. Lastly, the pin 1 silkscreen dots for the operational amplifiers needed to be shifted down to make them visible. Although footprint issues also existed for the CHESSBOARD's other PCBs, the I/O board's issues were significant enough to justify the manufacture of a formally revised board. Without the revision, the chances of introducing noise or bridging due to faulty soldering would have increased greatly. The revised version of the I/O board can be seen in \fref{fig:IO_layout}.

\subsubsection{Clock Box PCBs}

As a cost saving measure, two different PCBs were arranged on the same PCB and cut apart later. One board was a header board to interface with the microcontroller; the other was the display board, housing the LCD timing display \parencite{lumex:7seg} and the buttons through which the users can interact with the device. These two boards can be seen conjoined in the KiCad layout (\fref{fig:Clock_box_board_layout}).

The MSPM0 header board takes the power and data from the main DB-15 connector and routes it to the appropriate pins on the MSPM0 development board, which plugs in from jacks on its underside. The header board also contains the necessary filtering and isolation blocks for the sensor and UART signals. To filter out the interference from the nearby high-frequency digital traces, we added a 4th-order Bessel filter composed of two cascaded Sallen-Key blocks. The Bessel filter response was selected for similar reasons as it was for the I/O board: the Bessel step response was preferred because the expected input signal was entirely composed of discontinuous transitions between stationary values. To achieve the desired response, resistor values of $4.7\kohm$ and $6.2\kohm$ and capacitor values of 1nF and 1.1nF were used for the first filter; for the second, resistor values of $2.4\kohm$ and $3.9\kohm$ and capacitor values of 1nF and 2.7nF were used. These values produced a corner frequency of $20\khz$ and a passband gain of 0dB. Besides this filtering, the board featured various header pins for interfacing with the MSPM0 and routing signals and power to the display board, which is also stored within the clock box. For noise shielding, we grounded the casing of the DE15 connector on the MSPM0 header board. To avoid a ground loop, we left the other side disconnected.

The display board is relatively simple in terms of functionality. The desired display state is sent from the MSPM0 to the device's LCD driver chip \parencite{microchip:AY0438/P} over an SPI-like communication protocol. This signal is routed to the display board via the header pins installed onto the board, which also supply power and ground. When the load pin on the LCD drivers is pulled high, the LCD driver outputs the correct AC waveforms to produce the display state it received from the MSP. Alongside the displays, this board houses 5 of the buttons on the clock box. These buttons are connected to the MSPM0 through a Schmitt trigger buffer \parencite{ti:sn74} which debounces the signal. The time constant of the debouncing circuit was tuned by adjusting the values of the capacitors soldered in parallel with the buttons and the values of the pulldown resistors. Given the complexity of the code required for button debouncing, we decided that a hardware solution was more practical and simpler. The debouncing circuit is nearly identical to that described in \textcite{ti:debounce}, but with the polarity of the output flipped: the resistor pulls the output down, rather than up.

Compared to the I/O board, there were fewer issues in the design and assembly of these boards. The display board needed to be expanded from what was initially designed to account for the footprint of the LCD drivers. The header board also expanded unexpectedly: an improper board cutting job resulted in excess PCB dielectric on the header board compared to what was designed. By the time we noticed this, the board had already been completely soldered. After some consideration, we decided that a redesign of the clock box enclosure to account for the slightly larger dimensions was the most efficient option.

Unfortunately, like with the I/O board, the clock box PCBs encountered footprint problems. Though we were able to overcome these issues without a second revision, the solutions were not straightforward. The most significant footprint issue to deal with for this board was that of the LCD itself. This board fit the pins horizontally, but not vertically: the vertical spacing was 7mm too small. We were able to work around this by bending the pins of the LCD inward. This increased the vertical distance of the clock box's face, necessitating another alteration to the enclosure's design.

These footprint issues notwithstanding, we encountered relatively fewer problems when designing the clock box PCBs. There was an unforeseen issue with the Raspberry Pi, though. Initially, we had set up the system so that the Raspberry Pi would be powered from the same 5V power supply as the rest of the system; we justified this after reading online that a Raspberry Pi could be powered either from the USB port or the header pins. Since we had an easy way to bring 5V jumpers across, we planned to power the Pi over the headers. Unfortunately, testing showed that this somehow was not the case for the Pi 5. We briefly considered cutting another hole in the clock box enclosure for a separate power cable (supporting USB-PD negotiation) or trying to emulate the USB-PD protocol in a customized USB-C cable, but decided that downgrading to a Pi 4 was the most straightforward option. This design modification was not of consequence, though: the Pi 4 was still sufficiently powerful to run Stockfish with enough resources to produce powerful insights.

\begin{figure*}
 \centering
 \centerline{\includegraphics[width=\linewidth,height=\linewidth]{figures/Layout Clock Box Board Rev 1.png}}
 \caption{Revised clock box board layout.}
 \label{fig:Clock_box_board_layout}
\end{figure*}

\subsubsection{Power Budget Design}\label{sec:hardware design:power}
\begin{table*}
 \centering
 \caption{Power Budget for 3.3V System.}
 \centerline{
 \begin{tabular}{|c||c|c|c|c|}
 \hline
 Part & Max Current (mA) & Quantity & Net Current (mA) & Power (mW)\\\hline\hline
Hall effect & 10 & 64 & 640 & 2112\\\hline
Isolated Level Shifter & 5.8 & 2 & 11.6 & 38.28\\\hline
Muxes & $1\cdot10^{-5}$ & 9 & $9\cdot10^{-5}$ & $2.97\cdot10^{-4}$\\\hline
7-Segment AC Generator & 0.06 & 3 & 0.18 & 0.594\\\hline
Op-Amps & 50 & 5 & 250 & 825\\\hline
MSPM0 & 7.68 & 1 & 7.68 & 25.3\\\hline\hline
Total & \multicolumn{2}{c|}{} & 909.46 & 3001.22 \\\hline
 \end{tabular}}
 \label{tab:power:3.3}
\end{table*}
\begin{table*}
 \centering
 \caption{Power Budget for 5V System.}
 \centerline{
 \begin{tabular}{|c||c|c|c|c|}
 \hline
 Part & Max Current (mA) & Quantity & Net Current (mA) & Power (W)\\\hline\hline
LEDs & 60 & 82 & 4920 & 24.6\\\hline
Isolated Level Shifter & 5.8 & 1 & 5.8 & 0.029\\\hline
3.3V DC-DC & 909.46 & 1 & 909.46 & 4.5473\\\hline
RPi4 & 1800 & 1 & 1800 & 9\\\hline\hline
Total & \multicolumn{2}{c|}{} & 7635.26 & 38.1763 \\\hline
 \end{tabular}}
 \label{tab:power:5}
\end{table*}

In order to help with sizing traces and finding a proper power supply, the team assembled a power budget sheet using the maximum power draw of each component. This was performed separately for the two power domains. The 3.3V power budget (\tref{tab:power:3.3}) was used in the selection of the DC-DC converter to ensure that it would be able to supply sufficient power. For the 5V system (\tref{tab:power:5}), we designed conservatively by assuming that the DC-DC converter was as inefficient as a three-terminal regulator. The team made sure to add margins either for discrepancies from datasheets or modifications to the power budget. For the entire system, we selected the Adafruit 658 power supply \parencite{adafruit:psu}, which is rated for 50W (a 25% margin above the expected maximum).

\subsection{Software Design Details} \label{sec:software:design_details}

Software was designed in two fundamental modules: the firmware deployed on the MSPM0 and the software deployed on the Raspberry Pi. The MSPM0 firmware was based on FreeRTOS and was responsible for managing the project hardware, including the sensors, buttons, clock display, and LEDs. The Raspberry Pi ran the latest (as of November 2024) version of Raspberry Pi OS, which is a port of Debian Linux. Many common and useful utilities were thus provided ``out of the box'' either as default software or accessible packages, including Python, a character device mapping for UART, and Stockfish. The Python modules \code{chess} and \code{serial} were ultimately incorporated into the overall Raspberry Pi script; each of the modules was a stable, functional option for offloading software tasks and reducing the scope of new software which needed to be written.

\subsubsection{MSPM0 Firmware}

The entirety of the firmware was written in C. When deciding between real-time operating systems, we had two options: a lightweight RTOS written by John and Paul during ECE 4501 or the community-supported FreeRTOS \parencite{freertos}. Our team selected FreeRTOS as the base for the firmware because of its extensive testing and official support from Texas Instruments on the MSPM0. In a similar vein, we chose not to write our own peripheral drivers to the extent possible: instead of interacting directly with the memory-mapped peripheral registers on the MSPM0, we used TI's DriverLib library \parencite{ti:mspm0_sdk}, which provides a convenient interface for configuring and operating the peripherals. We still needed to write drivers to generate data in the format expected by the hardware connected to the peripherals, but being able to use well-tested and well-documented peripheral drivers undoubtedly saved us substantial development and debugging time.

Deadlock, race conditions, and state corruption were primary concerns when designing the firmware. To prevent these issues, the firmware was designed in a modular fashion, and each peripheral was only accessed from one thread. The SPI hardware for the LEDs, for example, is only accessed from a dedicated LED thread. Communication between the threads was accomplished through synchronized FIFO queues that FreeRTOS provided. This project's philosophy toward inter-thread communication followed the Go language proverb: ``Do not communicate by sharing memory; instead, share memory by communicating'' \parencite{gosharemem}. Instead of using global state, we chose to use a system of message passing to ensure consistent state with no race conditions or deadlocks. Following this philosophy required using more memory but resulted in much greater flexibility and maintainability: for example, all the hardware driver logic could be logically from the main state machine logic. Splitting the firmware into these modules was also helpful from a testing perspective, allowing us to independently test each hardware driver with minimal changes to the rest of the code base. The block diagram for the firmware is shown in \fref{fig:block:software} and depicts the interactions between the various threads and peripherals within the MSPM0. The arrows between separate threads indicate communication through a synchronized FIFO.

\input{firmwarediagram}

\subsubsection{Internal 32-Bit Protocol}

Communication between the microcontroller and the Raspberry Pi occurs over UART. To facilitate this, we designed a custom 32-bit protocol for encoding chess moves in both directions. The protocol has four modes: RPi\rightarrowMSP normal, RPi\rightarrowMSP undo, MSP\rightarrowRPi normal, and MSP\rightarrowRPi calibration. We designed the protocol to be able to encode any valid chess move and any valid chessboard action, including hints, undo moves, multi-piece moves (\eg, castling, \textit{en passant}), and piece promotion. The calibration also allowed us to quickly and efficiently collect calibration data for creating per-square bins to correct for differences in sensor height under the board. The calibration data, once received on the Raspberry Pi, was saved to a cloud-synchronized file for analysis. The protocol is described in further detail in \apref{app:protocol}.

\subsubsection{Stockfish Wrapper}
The Stockfish wrapper code deployed on the Raspberry Pi (\code{sf_wrapper.py}, plus a helper module \code{wrapper_util.py}) ran in an infinite loop in a similar fashion as the embedded code deployed on the MSPM0. Once setup is complete, the wrapper script effectively runs as a finite state machine that generates predictable responses to the limited changes of turn switches, undo button presses, restart button presses, and hint button presses.

\begin{figure}
 \centering
 \centerline{\includegraphics[width=1\linewidth,height=\linewidth]{figures/RPi_SF_Wrapper_FSM_v2.png}}
 \caption{Finite state machine (FSM) diagram representation of the Stockfish wrapper script, which was the main code run on the Raspberry Pi.}
 \label{fig:rpi-fsm}
\end{figure}

\fref{fig:rpi-fsm} demonstrates the finite state machine behavior in \code{sf_wrapper.py} and its helper module. At the beginning of every loop iteration, the wrapper blocks until it receives a custom UART packet from the MSPM0 (represented by the \code{ReadPacket} state). When a packet is received, the wrapper decodes this and detects special conditions based on specific packet encodings. A zero packet indicates a sentinel move with a special meaning that the player has finished requesting undos. If the packet encodes a hint request from the MSPM0, meaning a player has pressed the hint button, the wrapper sends the MSPM0 the most recently computed best (\ie, most skilled) move from Stockfish, then continues a new iteration. If the packet encodes an undo request, meaning a player has pressed the undo button, the wrapper rewinds the internal chessboard data structure by one move, sends the MSPM0 back the undone move, and continues a new iteration. If the packet encodes a restart, meaning a player has pressed the start/restart button, the wrapper clears its internal chessboard data structure and confirms this board state to the MSPM0 (including by sending the initial legal moves), then continues a new iteration.\footnote{The diagram hides these extra steps within the \code{Reset} state for readability reasons. Sending the MSPM0 the legal moves effectively means that the \code{Reset} state transitions to the \code{SendLegal} state, then to the \code{ReadPacket} state.} Otherwise, the wrapper decodes the packet as a regular move and plays the move using Stockfish. When the new turn is played, Stockfish gives a new best move and list of legal moves.

Based on the results from the new turn play, the wrapper indicates endgame conditions or otherwise sends the new list of legal moves to the MSPM0 and transitions back to \code{ReadPacket}. If the wrapper detects through \code{chess} module routines a checkmate has occurred, the wrapper sends a special checkmate packet to the MSPM0; similarly, if the wrapper detects a stalemate, it sends a special stalemate packet. In either case, the wrapper transitions back to listening for a packet from the MSPM0. This is, however, a no-op until a start/restart packet is received and the wrapper begins recording a new game.

The wrapper runs its main event loop as an infinite loop. The only disruptions that can occur are due to loss of system power or from interruption due to catastrophic errors on the system.

\subsubsection{Raspberry Pi Administration}

As the Raspberry Pi ran a fully functional Linux instance, it required careful system administration. The Pi ran a Secure Shell (SSH) server to allow the team to remotely develop on the system; the server allowed only public key authentication, however, rather than the simpler password authentication. The configuration was sufficient for prototyping with the caveat that, if the CHESSBOARD was mass-produced, such networking capabilities would likely be disabled and the wrapper script would effectively run as firmware. Configuration tasks for the Raspberry Pi included creating a Python virtual environment for the wrapper script to run within; installing the \code{chess} and \code{pyserial} (aliased in code as \code{serial}) packages within the Python virtual environment; installing Stockfish; ensuring Git was installed if not already present; and cloning the Git repository containing the code to be run on the Raspberry Pi. Like the SSH server, Git was used solely for development and prototyping and would be omitted from the Raspberry Pi's software if the CHESSBOARD was mass-produced. Lastly, for file retrieval purposes, a special data directory was created, and a \code{systemd} rule was written to automatically mount any detected USB drives and copy game data over accordingly.

While using Git version control and relying on commonly available packages increased system reliability, it became apparent during development that the Raspberry Pi was only as reliable as the microSD card it booted Linux from. Unlike systems like laptop and desktop computers that use larger hard drives, the smaller Raspberry Pi boots from a microSD card. If the microSD card broke (most commonly due to accidental bending), a new microSD card had to be flashed with a Raspberry Pi OS image and set up according to the procedure described above. Recovery was doable in a development setting but could pose significant risks in an environment where the CHESSBOARD is a mass-produced consumer product. In a real product, protections like better casing and padding around the microSD card, which was otherwise exposed when using the available Raspberry Pi case, would significantly improve the microSD card's resistance to bending and breaking. This would reduce the likelihood that consumers would experience a sudden malfunction in their product due to an unexpected failure in a delicate microSD card.

\subsection{Manufacturing Design Details}
\subsubsection{Chessboard}
\begin{figure}
 \centering
 \centerline{\includegraphics[width=\linewidth,height=\linewidth, angle = 90]{figures/LED Arrays.jpg}}
 \caption{LED strips glued to the bottom of the chessboard enclosure.}
 \label{fig:LED strips}
\end{figure}

The chessboard houses the sensor boards, LED array, cell dividers, and I/O board. The computational devices (Pi and MSPM0) were kept external to the chessboard to keep the profile as slim as possible and reminiscent of a traditional chessboard (see \fref{fig:chessboard}). Although we were willing to compromise where necessary, the team wanted the CHESSBOARD to resemble a normal chessboard in order to make the process of switching between the CHESSBOARD and a normal chessboard easy. The base and walls were intended to be made of a solid block of wood milled out with a cavity, but time constraints prevented this. On the floor of the enclosure the LED array was hot glued in position. The cell dividers were made from sheets of composite wood, then cut with a laser cutter to have cutouts that interlocked with the other dividers and supported the placement of the other components in the enclosure. The use of cell dividers helped isolate light produced by LEDs to a distinct cell---we wanted to avoid confusion for the user when we tried to light up a particular tile.

The last major component of the design was the lid. The lid is a composite of three layers that were originally intended to be acrylic, polycarbonate, and acrylic, in that order. Polycarbonate was the only offering from McMaster Carr for translucent, colored plastic with dimension $24\inch\times24\inch$ (determined by the smallest acceptable FIDE tile length of $2\inch$ multiplied out by the eight rows plus extra for a border). We needed a colored middle layer so we could laser etch in any white detailing (\eg tiles, borders, coordinates). The composite would be held together with glue. Functionally, the top layer would be for piece alignment with the sensor: it consisted of hole cutouts to help center a chess piece in a square above the corresponding sensor. The middle layer was the layer on which the pieces rested and in which aesthetic details were etched. The lowest layer would help align the sensor boards using specifically shaped cutouts (see \fref{fig:sensor_in_acrylic}). The composite panel would be secured to the base with bolts.

After discussing the manufacturing of the enclosure with staff from UVA makerspaces, the base design was changed to suit traditional woodworking methods (see \fref{fig:cad_chessboard_rev_2}). It was the opinion of the staff that the time investment to get trained on the CNC would have been too great for the timeline of this project and that the milling process would have been relatively wasteful (about half of the material would have been lost). Instead, scrap wood planks were planed and glued together for the base. The base was surrounded by composite wood panels with miter joints. Square wooden posts were glued to the inner corner of the base to provide something for the top panel (lid) screws to bite into. Also, we found that polycarbonate could not be laser cut without producing toxic gases, so the team pivoted to applying color to another layer of clear acrylic. When a dyeing method did not work, the team instead used a film of window tint. Applying the window tint was difficult since the adhesive left many bubbles on the surface. We compromised by using no adhesive for the tint or the acrylic and using thin strips of double sided tape instead, which limited the air bubbles to less visually important areas of the board. We added silhouettes of each piece on the border of the board to help guide the player with initial game setup and to give us a method to signal what piece to place at the identified tile when reverting to a prior board state. After manufacturing, the team was dissatisfied with the hatching density, which made it a bit difficult to tell what tile was white. To make the tiles appear whiter, we sanded the tile parallel to the edges of the square.

\begin{figure}
 \centering
 \includegraphics[width=\linewidth]{figures/CAD Chessboard Rev 2.png}
 \caption{Revised CAD model of CHESSBOARD physical structure with simplified geometry, expanded I/O shield, and added piece silhouettes.}
 \label{fig:cad_chessboard_rev_2}
\end{figure}

\subsubsection{Clock Box Module}

The clock box contains the clock box PCBs, the Raspberry Pi, and the MSPM0. The display was angled up at the user and the Pi and the MSPM0 were housed in a cavity at the bottom of the clock box. We chose to use 3D printing to make the enclosure since it gave us the flexibility to custom-fit the cavity to the devices so mounting would be ``friction fit.''

We held off on making the clock box enclosure until the end to give us the flexibility to adapt its layout in response to any unforeseen issues. Some examples of changes that occurred were expanding the cavity in response to board misalignment, moving port windows after swapping from the Pi 5 to the Pi 4, and placing button cutouts on the display face of the enclosure as well as on top of the enclosure to accommodate the final PCB layout. Additionally, the LCD screens were mounted at a greater height above the display PCB than anticipated, resulting in another adjustment to the enclosure model. Vents were added above the Pi to ensure it would have sufficient air flow to prevent thermal throttling. The revised model can be seen in \fref{fig:cad_clock_box_rev_2}.

Due to limited printer bed size, the enclosure was segmented into four separate prints (two for the top and two for the bottom) that were glued together. The top and bottom halves can be screwed together, but we often kept them unscrewed during the development phase for ease of access.

\begin{figure}
 \centering
 \includegraphics[width=\linewidth]{figures/CAD Clock Box Rev 2.png}
 \caption{Revised CAD model of clock box enclosure with button ports, ventilation grill, and horizontal split line.}
 \label{fig:cad_clock_box_rev_2}
\end{figure}

\subsubsection{Chess Pieces}
In our initial design, we planned to 3D print the chess pieces with a hollow cavity to fit the magnets. Chess piece models were taken from Thingiverse and modified to hold the magnets. The original project is the OpenSCAD Chess by TimEdwards \parencite{OpenSCADChess}. Initially, a separate cylindrical plug would have been printed to secure the magnets inside the chess pieces. The height of the plug would vary depending on the type of chess piece to position the magnet at a certain distance from the Hall effect sensors. This setup allowed each chess piece to be associated with a specific magnetic field strength. However, after printing a few test pieces, we encountered issues when inserting the plugs and attempting to align the bottoms of the plugs with the chess pieces. In the redesign, the chess pieces were split into base and body segments. The bases held the magnets at a certain distance from the Hall effect sensors. The upper sections of the chess pieces were bonded to the bases using acrylic glue. The initial and final designs are visualized in \fref{fig:chess pieces}.
\begin{figure}
 \centering
 \includegraphics[width=0.75\linewidth]{figures/chess piece design.png}
 \caption{Initial chess piece design with a slot and plug (left) and final design with a base and body (right).}
 \label{fig:chess pieces}
\end{figure}

\subsubsection{LED Array and Soldering}

A total of ten LED strips were manufactured, each consisting of eight LEDs (or nine LEDs to light up the pawn silhouettes). For each strip, the LEDs were connected by wire groups of a 2-inch length. To ensure that the LEDs would be evenly spaced and centered with each chessboard tile, a wooden jig was designed to hold the LEDs during soldering as shown in \fref{fig:led jig}. While soldering the LEDs strips, we performed connectivity tests to ensure that the rails were electrically connected. Next, the LED strips were soldered together along with their connectors. When trying to install the LED network into the chessboard enclosure for testing, though, there were several instances where the wires became disconnected. To cushion the solder joints, we applied hot glue across the wire and LED contacts. Hot glue was also used to secure the LEDs to the bottom of the chessboard as shown in \fref{fig:LED strips}.

\begin{figure}
 \centering
 \includegraphics[width=0.75\linewidth]{figures/LED Jig.jpg}
 \caption{Manufacturing tool to ensure consistent distances between LEDs.}
 \label{fig:led jig}
\end{figure}

\subsubsection{Computer Systems}

The MSPM0 (formally, the Texas Instruments MSPM0G3507-LP) and the Raspberry Pi (formally, the Raspberry Pi 4B) were directly sourced from their respective vendors. Manufacturing for these components was controlled through external processes.

\subsection{Testing and Verification}
%The test plans that were used to verify the project functionality for each subsystem and overall performance. Include any modifications you made to the test plans in your proposal and explain any redesigns you made as a result of your testing.

\subsubsection{PCBs}\label{desc:test:pcbs}
As a general testing process for all PCBs, we first checked for continuity between ground and \vcc to detect errant shorts. We also checked for continuity between small SMD component leads with other nodes on the board sharing the net to find poor solder joints. In most cases through-hole components were reliably soldered and did not need special attention prior to supplying power and testing system behavior. If the continuity checks produced correct results, the PCBs were powered with an external bench power supply with current limits close to the theoretical maximum power draw. If the voltage sagged, indicating that the supply's current limit had been reached and a short probably existed, the PCB was sent back for visual inspection under a microscope to try to find the issue. Disconnecting devices where reasonable was a strategy used to try to isolate the source of the problem. If the boards cleared all basic inspection, they would be then examined based on their respective requirements and expectations as outlined in the following sections.

\subsubsection{Sensing System}\label{desc:test:sensing}
% Chess piece bins - preliminary, printed pieces, on chessboard
To determine if our sensing method with the Hall effect sensors worked, we performed preliminary testing with the three different sensors: A1, A3, and A4 (see \sref{sec:hardware design}). To vary the magnetic field strength that would be detected by the Hall effect sensors, we varied the distance between the sensors and the magnets. With the Hall effect sensors connected to $3.3\volt$ and ground, we laid the sensors face-up on a tabletop. The magnets were displaced a certain distance from the sensors by placing a number of printer paper sheets between the face of the sensors and bottom of the magnets. Since printer paper has a standard thickness, we assumed it would work well as a variable spacer. Starting with 16 sheets of paper, we measured the height of the paper medium with calipers. The voltage output of the sensors was measured with an oscilloscope for both cases where the magnet poles were faced down. Next, we added another 16 sheets of paper and repeated this process until we reached 128 sheets.

Based on the preliminary testing, we decided to use the A1 sensors as they provided the best resolution of the output voltages. Using these results, bins for the output voltages and distances (between magnet and sensor) for each of the chess piece types (\eg, pawn) were initially determined.

The next stage of sensor testing involved the 3D printed bases that held the magnets. Test tiles were also modeled to have a 32mm diameter divot to center the chess pieces at a standard height of 1/16 inches to replicate the physical design of the chessboard enclosure. The sensors were placed against the bottom of the 3D printed test tiles at their center and the 3D printed bases rested inside the divot. Each base and its associated bin were measured by moving the base around within the divot and recording minimum and maximum output voltages produced. The magnet was then flipped inside the base and the same procedure was performed. This process was repeated for each of the 3D printed bases and six different sensors.

First, we tested the original design for the chess pieces with the plug-and-cavity method described in \sref{sec:hardware design}. When inserting the plugs into the chess pieces, we found it difficult to align the bottoms of the plugs with the bottoms of the chess pieces. This led us to redesign the chess pieces with the base-and-body design. In the later rounds of testing, we also realized that the sensors were not perfectly centered when taped to the test tiles. The test tiles were then redesigned to have a bottom slot for the sensor, centered in the correct location (see \fref{fig:test tiles}).

There were some complications in the displacement tests: the sensors were not perfectly centered and were slightly mobile during testing as tape was used to secure the sensors to the test tile. The test tiles were redesigned to perfectly align the sensors with the center of the divots. Bottom and top layers sandwiched the sensors to minimize air distance between the top of the sensors and bottom of the magnets.

\begin{figure}
 \centering
 \includegraphics[width=0.75\linewidth]{figures/test tiles.png}
 \caption{Model of test tiles with the bottom layer (right) to fit the sensors and top layer (left) with 32 mm divot.}
 \label{fig:test tiles}
\end{figure}

% Testing sensor boards
After manufacturing the sensor PCB boards and the chessboard enclosure, we retested the chess piece bins with the prototype model. In this testing procedure, we interfaced to the analog multiplexer on the I/O board through the MSPM0 breakout board. First, we confirmed column and row selection by inputting 3.3 V logic levels to the appropriate pins. To determine which sensors were selected, we observed whether the data pin output varied from the idle state voltage (\approx1.64 V) when a magnet was placed on the above tile.

When we first tested the sensor boards, we realized that the Hall effect sensor footprints were incorrect as 3.3 V was traced to the ground pin of the sensors and ground was traced to the supply pin. To resolve this issue without purchasing new PCBs, we flipped the sensors so that they were face-down. We also had to bend the pins to align the sensors with the PCB edge so that they were flushed against the middle acrylic layer. The resulting voltage bins were different from when we tested the bases using the test tile, which was partially a result of the middle acrylic layer being slightly lifted from the bottom layer near the center of the board. To resolve this, we applied double-sided tape between the bottom acrylic layer, window tint, and middle acrylic layer. After this redesign, we performed another round of sensor testing and adjusted the heights of the chess piece bases accordingly.

% Software integration
When integrating the software system, a testing procedure was developed to verify the voltage bins. The LED under a specific tile would light up to indicate which sensor was selected and actively reading. Two buttons on the clock box were set up to allow us to select adjacent sensors. When a chess piece base was placed on the active tile, the silhouette of the detected chess piece (\eg, white pawn) lit up. We discovered that many of the sensors detected different chess pieces when measuring the same base. This variability must have been from errors introduced by bending the Hall effect sensor pins. A calibration procedure was then created to measure the full output range produced by each of the 64 sensors when testing each type of base. Three more clock box buttons were utilized to start and end calibration and to select which type of base was being measured.

\subsubsection{LED Arrays}\label{desc:test:leds}
Two tests were performed regarding the LEDs: one to verify the operation of an individual row and a second to test the entire LED array.

When the LED data and clock lines were connected directly to the MSPM0, the single-row test worked perfectly, cycling through a wide range of colors and brightnesses as expected. However, after it was connected through the level shifter, we found that the data was being corrupted, resulting in rapid flickering. It was determined during this test that it would be necessary to add a parallel input RC network for the LED data and clock lines. After the input network was added, the row's data was observed to output the expected result at all 8 LEDs. After verifying functionality on a single row, the array was constructed.

After the LED array was assembled and installed, this code was flashed onto the MSPM0 to observe the LED output. Compared to the response of the individual row, there was far more noise introduced into the full array, with an expanded version of the row code resulting in LED values seeming to randomly change. The root of this problem was found to be poor soldering between some of the data and clock lines throughout the system. Resoldering some of the most obviously problematic joints and applying hot glue to provide flex resistance resulted in a system that acted exactly as designed.

\subsubsection{UART Communication}\label{desc:test:uart}

Loopback tests were conducted for both the MSPM0 and the Raspberry Pi to verify as a ``ground truth'' that UART for both devices worked. At first, the MSPM0 and the Raspberry Pi were respectively isolated, had their UART TX connected to their UART RX, and were programmed with code that sent test messages to UART TX and immediately read from UART RX. This verified that, independently of the integrity of the communication medium between them, TX could correctly encode serial messages according to the expected UART protocol and RX could correctly decode serial messages by the same standard. UART data sizes were fixed at 8 bits for both devices, and a standard 1-bit start bit and 1-bit stop bit were used with no parity bit included with the word. Not only were test words verified for correctness in software, but oscilloscope captures were taken for both devices to verify electrically that their UART peripherals behaved as expected.

For the Raspberry Pi, a reference to file-mapped UART (at \code{/dev/serial0} on the Raspberry Pi 4B) was first opened. In the initial version of the UART interaction code which used C, this directly invoked the Linux \code{open}, \code{write}, and \code{read} system calls to operate on 4 bytes at a time. Loopback testing on the Raspberry Pi using this version of the UART interaction code (referred to during the design process as the ``UART booster'') first revealed that a kernel patch unexpectedly altered direct memory access (DMA) and inhibited UART communication. After the UART interaction code was replaced with invocations of the \code{pyserial} module and its routines (specifically \code{serial.Serial} to create the file reference and \code{serial.Serial.read}, \code{serial.Serial.write}, and \code{serial.Serial.read_until} for byte-level I/O), the loopback tests were repeated. It was at this point that the kernel version had been reverted in an effort to fix the DMA issues. Using \code{pyserial} quickly and conclusively verified that, in fact, loopback testing was successful on the Raspberry Pi. The change to \code{pyserial} was maintained even after the team concluded that the Pi's UART DMA issue was resolved since using the trusted \code{pyserial} library instead of the previous custom driver code saved further development and debugging time.

The MSPM0 firmware was all C-based, so loopback testing occurred in C. Unlike blocking Linux file operations, which introduced complexity that using \code{pyserial} was necessary to deal with, the MSPM0 UART device was simpler and more straightforward to test. Conducting a loopback test on the MSPM0 involved calling lower-level Texas Instruments driver functions that directly moved bytes to and from the memory-mapped UART device. First, the custom UART routines written for the project (which still used the TI drivers but wrapped repeated invocations of them to deal with 32-bit UART protocol words) were invoked for loopback testing. When these drivers busy-waited indefinitely for space to become available (for TX) and for FIFO entries to become available (for RX), loopback testing was done using simpler examples sourced directly from TI rather than from more complex derived code. Using the simpler TI code examples was unsuccessful, however. Faced with no other software-based explanations for the MSPM0's UART failures, the team repeated the test while attaching oscilloscope probes to the configured UART TX and RX, discovering that no part of the UART communication appeared to occur. Bolstering this conclusion was the fact that the logic level was never pulled high (\ie, to 3.3V) during testing. Because no part of the UART initialization appeared to occur successfully, the team concluded that some underlying hardware defect caused the UART failure on the MSPM0. When the team repeated the loopback testing using the same code and oscilloscope setup but with the UART module configured to use different pins, the loopback testing succeeded. A quick fix was implemented in which the functional pins were physically shunted to the nonfunctional GPIO pins (which nonetheless remained connected to maintain compatibility with PCBs that had already been manufactured). While the team could not have anticipated the UART failures for either the Raspberry Pi or the MSPM0, the team's loopback testing approach allowed for the most accurate attribution of these issues and, therefore, for the best solutions (in the context of this project) to be implemented.

Once loopback testing was successful on both the Raspberry Pi 4B and the MSPM0, the devices were programmed with testing code that propagated a duplex communication (\ie, two-way with reception and transmission on both ends) over UART using the custom 32-bit protocol. With some initial hurdles in verifying \code{pyserial} usage overcome, breakpoints on the MSPM0 allowed halting the microcontroller and viewing variables in watch windows to verify that words sent by the Raspberry Pi were correctly received on the MSPM0. Duplex testing was done interactively in that specific words and byte sequences were sent from the Raspberry Pi using an interactive Python shell with \code{pyserial}, received on the MSPM0 using code that triggered breakpoints, viewed in a debugger connected to the MSPM0 to verify proper receipt, transmitted back on the MSPM0 UART TX to the Raspberry Pi, and read back on the Raspberry Pi. Thus, data integrity was verified at all points of the communication (first transmission, first reception, second transmission, and second reception), and the overall accuracy of the transmission was verified by successfully comparing the words transmitted from the Raspberry Pi to the MSPM0 with the words subsequently received by the Raspberry Pi from the MSPM0.

When we connected the entire system together, we ran into one last set of problems with the UART protocol. The Raspberry Pi and the MSP have different startup timings: the MSP comes up within fractions of a second, but the RPi takes 20-30 seconds. The word size supported by the UART hardware is a single byte; each protocol packet consists of four. Depending on the specific timing of the boot process, the first word received by the UART on the RPi might be halfway through a packet. Similarly, the first word received by the MSP might be erroneous noise generated during the boot process, rather than the start of a packet. To remedy this, we introduced a handshake protocol (similar to TCP's three-way handshake) that runs during the start-up, to synchronize the packet frames on both sides. Upon starting up, the MSP sends \code{0x00000008} (``SYN'') every 100ms until it receives a response. Because the first (least significant) byte is unique in this frame, it can be used to align the framing on the RPi side. When the RPi program starts, it waits for a \code{0x08} byte and then begins processing packets. It sends back \code{0x00000001} (``SYNACK'') for each SYN it receives, which is similarly used to align the MSP's framing. To acknowledge this reception, the MSP sends back \code{0xFFFFFFFF}. This triggers the start of the chess move list generation.

\subsubsection{Stockfish Wrapper}

The Stockfish wrapper was best tested with all hardware subsystems working to replicate a live chess game. Before all subsystems were assembled into a complete prototype, the wrapper's helper module was extensively tested using a set of white-box unit tests that covered various code paths and checked correctness.

First, the \code{parse_button_event} function which decodes the least significant two bits of every packet to check for button event indicators was tested. The intended behavior was verified in each case: for lowest two bits \code{01}$_2$\footnote{Binary values are written as literals in base two with a subscript $_2$ appended for clarity, \eg, 1 = \code{01}$_2$.}, \code{parse_button_event} flagged the packet as indicating a start/restart button press; for lowest two bits \code{10}$_2$, \code{parse_button_event} flagged the packet as indicating a hint button press; for lowest two bits \code{11}$_2$, \code{parse_button_event} flagged the packet as indicating an undo button press; and in all other cases (\ie, lowest two bits \code{00}$_2$), \code{parse_button_event} indicated that the packet represented a normal move.

Next, the \code{decode_packet} function was tested to ensure it properly constructed an intended move from a packet. The custom UART protocol encodes the source and destination squares within the most significant 16 bits of the word. Unit tests confirmed that, for an arbitrary setting of bits to indicate squares, these squares were transcribed as intended according to rank and file (\ie, \{\code{000}, \code{001}, ..., \code{111}\} \rightarrow \{\code{a}, \code{b}, ..., \code{h}\} file translation occurred and \{\code{000}, \code{001}, ..., \code{111}\} \rightarrow \{\code{1}, \code{2}, ..., \code{8}\} rank translation occurred). Accompanying unit tests confirmed that, as intended, the encoding of any bits except for those in the specifically designated source and destination square fields did not influence the decoded source and destination squares. These moves were ultimately decoded and stored as \code{chess.Move} objects and, in unit tests, their representation as move strings was quickly verified for successful decoding.

The Stockfish wrapper's business logic was enforced in the functions \code{encode_packet}, \code{encode_undo}, and \code{encode_mtype}. Unit tests for \code{encode_packet} were first written to reverse the process of \code{decode_packet} and encode a custom packet from a \code{chess.Move} object. White-box tests ensured that when \code{chess.Move} objects were encoded as packets, these new packets matched the original packets the \code{chess.Move} objects were decoded from. Next, \code{encode_mtype} was verified through a series of unit tests to return valid encodings whenever move objects indicated that castling conditions, check conditions, or castle conditions were present, or otherwise to return an encoding indicating that the move had a ``normal'' type. Since \code{encode_packet} calls \code{encode_mtype} as part of its logic, verifying \code{encode_mtype} proved not only its own correctness, but helped prove the correctness of its parent function \code{encode_packet}. Lastly, \code{encode_undo} was tested to not only encode the source and destination squares for the most recent move, but also to indicate which type of piece had been moved. A series of unit tests proved that \code{encode_undo} correctly marked a packet with the source and destination squares; that the function queried the chessboard correctly to get the type of piece that was moved; and that the encoded packet reflected that a special move (castling, capture, promotion) occurred if applicable. The helper utilities were comprehensively verified using this testing framework; thus, there was an assurance of software correctness as the prototype was assembled.

The overall product (including the main event loop) is currently being tested as part of whole-system testing, and is showing promising results thus far. The team is confident that further testing will show where bugs exist as applicable and that the demonstrated final product will exhibit software behavior that meets the design requirements.

One of the more interesting features we wanted to support is automatic transcription. From the chess wrapper side, this is straightforward enough: we write a text file to a special directory for each game. It is slightly more complicated to automatically copy this to a USB drive. We initially planned to use a \code{udev} rule to trigger a script that would mount the drive, copy the files, and unmount the drive. This turned out to be more difficult than expected: \code{udev} does not permit mounting or network access inside the rule handlers. Instead, we made a \code{systemd} one-shot service template that runs a shell script to perform the mount-copy-unmount procedure. We were able to configure the \code{udev} rule to trigger our custom service with the correct device as its argument. Because this service was spawned in normal userspace (rather than in the \code{udev} sandbox) it was able to perform privileged operations like mounting.

\section{Constraints}\label{sec:physical constraints}
\subsection{Parts and Resource Availability}\label{sec:constraints:parts}
%Design and manufacturing constraints, such as CPU limitations, software availability, manufacturing limitations, the limits imposed by our PCB suppliers, parts availability in the necessary timeframe, etc.
The MSPM0 had a very small amount of memory: only 32 KiB of RAM. This was far too small to store the data structures necessary for a chess engine, so we chose to separate tasks. The MSPM0 manages the hardware and the board state machine, while the Raspberry Pi coprocessor manages the more complex state machine of the game itself. Based on the power calculations for the board performed in \sref{sec:hardware design:power}, we ordered a 50W AC power supply, which was sufficient for our immediate needs and should provide enough headroom to support a variety of future extensions.

The enclosure had minimal manufacturing constraints. One goal was that we wanted to follow FIDE's standard of tile sizes. Otherwise, the only limits were our own capability to manufacture the design, our skill, and our access to resources. Factors which limited our manufacturing capacity included restricted access to machining tools and special training requirements. This was the cause for decisions like making the enclosure with traditional woodworking instead of CNC milling (in this case, for instance, the makerspace staff believed it would take too long to get trained). Another manufacturing constraint was the 400mm \times 500mm limit set by the chosen PCB supplier (JLCPCB). The team followed the design flow that a PCB was designed with all of the necessary components. The enclosures were then built around the dimensions of the PCB and other components like the MSPM0 and Raspberry Pi.

\subsection{Software Tools}\label{sec:constraints:software}

FreeRTOS provided the threading, synchronization, and multitasking primitives used in this project. The FreeRTOS implementation of queues was particularly widely used throughout the firmware.

Raspberry Pi OS was installed on the Raspberry Pi to provide a powerful general-purpose operating system that supported Stockfish, file persistence for recording game data, and I/O processing for UART, at minimum. While the lead team member in charge of the Raspberry Pi (Paul) began the project with Linux system administration experience, this project's requirements dealt with lower-level Linux operations (character devices for UART) than he had encountered before. The team, especially Paul, needed to learn how to bridge applications traditionally held to be in the domain of embedded C programming (\eg, UART and other byte-level serial protocols) with comprehensive operating systems and their features (Linux with its I/O system). Furthermore, the team had to gain practice with mounting removable drives and automating software to run when such drives were connected. In addition to the mounting and unmounting, the team ended up having to learn the format of \code{systemd} services and their limitations to successfully automate the Raspberry Pi's intended behaviors (running the wrapper on boot and running the transcription copy script upon detecting a removable drive). While not without technical hurdles along the way, the project was an ultimately successful exercise in extending Linux skills to leverage the Linux file system in more powerful ways than the team had done before.

The team used Python and Bash as needed to administer the Raspberry Pi and run the desired code. Python was selected for its breadth of modules and for its ease of implementing features in code which would have required a substantially greater amount of lower-level C code. While Python's internal complexity does typically make the language slower than C, this was a trade-off the team willingly made since the tolerable latency on the Raspberry Pi---targeted at one-quarter of a second for move computation based on human reaction time estimates---was lenient enough to accommodate any overhead that Python introduced. In other words, using Python never seriously prompted concerns since other features of the system (chiefly the physical realities of chess) contributed far more to overall latency. Like with Linux, the lead team member for Python programming (also Paul) began the project with significant experience; in this area, the project required extending existing skills rather than learning new skills altogether. Nonetheless, Paul and the team had to learn the details of Python's \code{chess} and \code{pyserial} modules (and how to test code which relied on them) to effectively meet the project demands.

For the PCB designs, we used KiCAD, which is a free cross-platform application with much better library support than alternatives like Ultiboard. Since some team members were already familiar with KiCAD from prior projects, this helped the other team members learn the software more easily. Schematic and PCB files were uploaded to a shared drive for collaboration.

The modeling software used for the design of the chessboard and clock box enclosures was SolidWorks. Fusion 360 was used to model the chess pieces. We used two different 3D CAD software tools was because the two team members responsible for the physical design of the project were familiar with different programs. Since the team members worked on separate design parts of the project, there were no issues in using different modeling software. Ultimaker Cura was used as the slicing software for the 3D prints since we were using the Ultimaker S3 printers available in the lab. Our choices of modeling software were necessarily contingent on the prior experience of the team members and the resources the team had access to. Modifying these constraints (team expertise and available resources) would likely modify the specific design software used.

%Tools utilized on the project. You should list and explain the application of all of the major tools you used this semester. This includes software for math analysis (e.g. MATLAB), software for programming, i.e. LabVIEW or C/C++ including Code Composer, and tools for simulation and design, e.g. Multisim. Explain what role each played in your work, and which tools you had to learn, or improve your skills on, in doing your project.

\subsection{Prototype Cost Constraints}\label{sec:constraints:costs}
%Cost constraints that affect the price of the prototype and the projected price of a production version.
For this project, our team was given a \$500 budget. Initial estimates suggested that this project would cost \$470. However, this excluded the costs of items that the group already owned personally (most significantly the Raspberry Pi 4B 8GB, which cost \$80). Additional salvaged and personally owned component including buttons, passive electrical components, 3D printing material, and an SD card had an estimated total cost of \$32. In all, our actual initial budget would be approximately \$582, with \$30 left over to supply changes for any unforeseen issues.

Over the course of development, several adjustments needed to be made that resulted in budget increases. Such adjustments included purchasing an official power supply for testing purposes, creating a second revision of the I/O board, and purchasing surplus multiplexers and Hall effect sensors. These increased the spent budget to \$520 (\$20 over the provided budget), or \$635 after accounting for the provided or personally owned materials. Though we were able to cover cost overruns for our prototype using personal funds, these excess costs would need to be considered and handled differently if the CHESSBOARD was manufactured at scale.

If we were to manufacture this prototype in its current state as a production version, the costs would decrease compared to the development costs as testing, revision, and surplus components would be removed from the production budget. Ignoring the taxes and shipping associated with our purchases, the cost of a production version of this product would cost approximately \$346.05. This includes estimates for products that the team did not order but used from personal or lab inventory, like the Raspberry Pi 4B and 3D printing PLA. Further discussion about market-ready production can be found in \sref{sec:costs}, and the tables in \apref{app:cost} shows the final budget as discussed in this section.

\subsection{Manufacturability}\label{sec:constraints:manufacturing}
%Consider what would need to be done to make a production version of the prototype
% Enclosure, acrylic tops, chess pieces, clock box module, LEDS, sensor boards and pin bending

The design of the CHESSBOARD prototype has many aspects which could be changed to reduce cost of components and simplify manufacturing. Many choices were made to make the system modular and allowed for separate tasks to run in parallel and be tested independently. For example, jumper pins allowed for the team to have the flexibility of probing pins for testing while providing an interface to connect subsystems together when assembled as a full product.

The first aspect we would change for manufacturing is the sensor boards. We believe the sensor boards should be oriented horizontally, rather than vertically, in future versions of the product. This would have a slight drawback of making a very visible, opaque strip down each tile, but would allow for a reduced number of components and would help with sensor consistency. Horizontal sensor boards could be combined into a larger board with I/O board components integrated into it. In the PCB layout, we would just need to specify cutout regions in a grid fashion to allow light to wrap around the PCB and show through to the user. A horizontal board would also eliminate a large number of wires and connectors. Instead of cutting and soldering wires to LEDs, we could solder the LEDs directly to the underside of the sensor board and have a reflective coating on the cell dividers reflect the light up to the user. There would be no need to include connectors from I/O board to the sensors or LED array since those connections could all be internalized to the new PCB design.

Additionally, a new horizontal board would be a much better basis for an SMD-only design. From the standpoint of a product brought to market, the team believes it would be cheaper and faster to solder a board with exclusively SMD components with a stencil and solder paste. A reflow oven could practically solder every component simultaneously. Moreover, an SMD sensor would eliminate the process of bending leads to get the sensor head as close to the ceiling of the enclosure, reducing manufacturing time and improving consistency.

Improvements to the chessboard enclosure would be minor. The advice to use traditional woodworking as opposed to CNC milling was probably better for cost and manufacturing time. We did observe variability in the floor height in our prototype, but that was largely a byproduct of a nonstandard assembly process. A machine-driven drilling process for screws rather than glue would likely reduce that variability. The more significant change would be in the top panel. The tint proved problematic to use, so avoiding it completely in a consumer product would be best. Finding a supplier that makes translucent black acrylic would solve that issue. We still believe using laser etching for white detailing is better than independently coloring or machining tiles. When made from a single piece, there is no need to join together many parts, so there would be less irregularity in surface finish. Instead of an adhesive, using rivets periodically at the intersection of tiles would apply compression to the acrylic panels in a fashion that is readily performed by a robot.

Anything that was 3D printed could be manufactured at scale with injection molding techniques. To guarantee the precision of the magnet depth the magnet cavity would be mechanically milled.

A market-ready product would have the MSPM0G3507 chip installed directly to the breakout board without the rest of the development board, reducing package size and cost. Instead of placing jumpers between standalone header pins and MSPM0 launchpad header pins, traces on a new version of the breakout board could route peripherals directly to the MSPM0G3507 chip's pins for its various hardware modules. This also means the breakout board could reasonably be connected directly to the Raspberry Pi header pins using traces, eliminating wires and again reducing package size. This could allow us to build a smaller clock box that needs less plastic to form the housing.

The overall dimension of the chessboard and associated components could be scaled down so that the maximum dimensions are reduced from $20\inch\times20\inch$ to $16\inch\times16\inch.$ This would violate FIDE regulations for tile size, but it will allow us to reduce costs substantially. The price point would drop since less material would be needed for each board. The noise captured in long traces would also be slightly reduced since traces could be shortened.

Our last few changes from the prototype would be to fix any remaining PCB design issues (formalizing any flywired solutions), add a power switch, and change the D-Bus connector to a standard 15-pin connector instead of the high-density version. These are mostly quality-of-life changes that either help simplify the PCB layout or provide user safety.

\section{Societal Impact}\label{sec:societal impact}
%Considerations for all the stakeholders with relation to public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors as appropriate. You should be thorough in your analysis here; consider it an ethical, even moral, obligation. Or if you are short on morals, consider it a way to cover all your bases in case you get sued for negligence.

In this project, the main group of stakeholders are the users: chess students ranging anywhere from a complete beginner to an intermediate level player. This group is the most at risk for any technical issues that compromise the safety of the board such as a fault in the power supply. We hold a responsibility as designers to appropriately and safely create a product that can withstand the wear and tear that a standard chessboard would be expected to tolerate. We operated with the mindset that our design process should account for this and that a thorough testing procedure would assist in guaranteeing a safe experience for our users. Although we expect adults to use our device, children are a significant subset of our expected user base. Designing an appropriate digital product for children required special attention to data collection and retention; since the CHESSBOARD employs computer systems to collect data about any chess games that are played, which may involve child players, the CHESSBOARD was designed in accordance with the IEEE 2089-2021 standard. More information about IEEE 2089-2021 compliance is documented herein in \sref{sec:external standards}.

Another important group to consider is the purchasers, more often than not being the parents of child users. If mass-produced, this product would likely still be prohibitively expensive for several intended purchase groups. This price point means that an average household likely could not purchase this product on a whim.

In lieu of use by individuals or their households, the device could appeal to school-affiliated and independent chess clubs who could integrate it into their activities and could be likelier to afford it based on their pooled resources. Although there were some concerns about equitable access with the assumption that only parents would be purchasing this, assuming this secondary group of potential purchasers lowers the barrier to access for the CHESSBOARD. The implications of this help to maintain the low barrier of entry for chess as a whole, further supporting the traditional game for anyone interested in playing it.

The technologies which constitute the CHESSBOARD have minimal potential for misuse and abuse. The computer systems involved can be arbitrarily reprogrammed assuming an individual has physical access to the device and sufficient time and resources; in fact, this is a risk for any consumer product that incorporates a computer system. Thus, the risks of physical access are, unfortunately, impossible to account for absent the incorporation of extreme and expensive security measures. However, the CHESSBOARD follows other, more reasonable measures when it can to be a secure product. Since the CHESSBOARD does not maintain an Internet connection and does not require an Internet connection to interface with an end-user's computer and dump transcriptions, fewer vectors exist for cyberattacks on the CHESSBOARD than exist for many other consumer technologies. Bugs and vulnerabilities likely exist within our code that we wrote to run on the CHESSBOARD; this is, unfortunately, not unusual, and it is also true that the libraries and operating systems we depend on may have vulnerabilities we could not have anticipated. Apart from reasonable testing for functionality, implementing additional security measures was not practical, nor would it have offset the greatest threat (physical access). Thus, the CHESSBOARD meets a similar ethical standard for protecting its intended application from unwanted interference that similar computer systems on the market meet.

\section{External Standards}\label{sec:external standards}
%In this section, you should explain any external industry standards that came into play during the course of your project. For example, if your project uses a wireless interface then you dealt with IEEE standards for wireless Ethernet. If your project dealt with AC line voltages in anything other than a wall transformer you dealt with NEMA standards. The part spacing and track spacings on your PCBâ��s were derived from IPC standards. You should provide references to these standards and explain how they were considered in your project.

In comparison to many other engineering projects, the CHESSBOARD has fewer standards it must uphold. Nevertheless, there are relevant standards worth discussing in relation to the product's design. These include standards relating to child safety \parencite{Child_standard}, chessboard and piece regulations \parencite{Chess_standard}, LED brightness \parencite{LED_standard}, and power safety \parencite{power_standard}.

\subsection{IEEE 2089-2021: IEEE Standard for an Age Appropriate Digital Services Framework Based on the 5Rights Principles for Children}

Since the CHESSBOARD was developed for a general audience that may include children, designing the computer systems and their code to interact ethically with child users was paramount. Specifically, the CHESSBOARD was designed in accordance with the IEEE 2089-2021 standard, which describes an ``Age Appropriate Digital Services Framework'' (AADSF) based on prior children's rights literature \cite{Child_standard}. IEEE 2089-2021 was an appropriate choice since the burden of compliance was relatively low: a team or developer ``is not required to engage an expert to conform with the standard'' \cite{Child_standard}. Rather, Square Dance needed to demonstrate that the outcomes, activities, and tasks in Clauses 7 through 15 of the standard had been achieved \cite{Child_standard}.

For the purposes of Clause 7 of the standard, the CHESSBOARD design features and data processing which interact with children are those features which support the transcription of moves that child players may make into chess notation. This notation is completely severed from a player's personally identifying characteristics like age or other status. Children's rights are thus inherently protected as users are not identified to begin with.

Pursuant to Clause 8, Square Dance has identified that the CHESSBOARD product and its associated services are appropriate for all children. Outside of standard variation in players' ability to understand the game of chess, there is no content within the product and services the CHESSBOARD provides that are appropriate for some children but not for others. Square Dance asserts that the product and its services are appropriate for all children and that, correspondingly, no engagement with an ``age assurance'' mechanism is needed on the part of the end user \cite{Child_standard}.

Pursuant to Clause 9, Square Dance has ensured that ``children's rights are realized in the product or service'' of the CHESSBOARD and that the terms of use which accompany the CHESSBOARD uphold children's rights \cite{Child_standard}. For an example of upholding children's rights, in accordance with Section 22580 of the California Business and Professions Code \cite{CA_BUS_PROF_22580}, the CHESSBOARD does not advertise a variety of drug- or weapons-related products to child users because the CHESSBOARD does not advertise any product to any user.

Pursuant to Clause 10, Square Dance does not subject child users of the CHESSBOARD to inappropriate commercial advertising techniques; completely separates player data from player identity and personally identifying characteristics; and collects the minimal amount of necessary data regarding chess moves themselves and the sequences in which they were made. Square Dance has not, and does not, put ``commercial considerations'' over children's rights \cite{Child_standard}.

Pursuant to Clause 11, Square Dance provides fair terms to child users that treat child users as equally capable as adult users. The actual CHESSBOARD products and its services uphold these terms, which are in the best interests of children \cite{Child_standard}. The CHESSBOARD is a learning device that operates equally for child and adult users; since the CHESSBOARD serves to increase chess skills, which is an age-appropriate skill that engages with no adult concepts, the CHESSBOARD acts in the best interests of children.

Pursuant to Clause 12, if the CHESSBOARD is released for a consumer audience, Square Dance will publish CHESSBOARD terms of use to the extent necessary that are easily understood. Since the CHESSBOARD uses universal chess symbols and only involves culturally specific glyphs (\ie, A-G for files and 1-8 for ranks) to mark different portions of the board, the device and its services are available to children of many different backgrounds. The underlying product of a chess game with anonymous transcription is age-appropriate; thus, the CHESSBOARD terms of use do ``render an age appropriate service'' \cite{Child_standard}.

Pursuant to Clause 13, Square Dance is ``explicitly [adopting] and [implementing]'' the AADSF standard, and the supply chain which provides the electronics, materials, and computer systems for the CHESSBOARD can be reasonably verified as offering ``age appropriate digital services'' \cite{Child_standard}. Since the only digital services offered to the child end user are those which Square Dance create, there is practically no supply chain to verify. Correspondingly, the Square Dance member primarily responsible for the portions of the CHESSBOARD design which interact with children (Paul Karhnak) has read through the IEEE 2089-2021 standard and is making reasonable efforts to be trained in child compliant design. Lastly, Square Dance has consistently upheld children's interests in design and business decisions \cite{Child_standard} and will continue to do so.

Pursuant to Clause 14, Square Dance is making a ``best effort'' attempt to incorporate the CHESSBOARD's impacts on children in the product and service design, noting various scenarios that child users may encounter, and prioritizing children's rights and development in the product \cite{Child_standard}. The remaining risks in the product, which are hereby published, mainly encompass the inherent risks that unrestricted physical access to computer systems entail (see \sref{sec:societal impact} for a detailed description). That is, the computer systems on the CHESSBOARD have the inherent risk of being reprogrammed with malicious software because anyone with enough time and access to such systems has unlimited control over them. Reasonable efforts have been taken to ensure that only with physical access is this the case, however; because network-based authentication on the system is based on a secure public key infrastructure rather than on passwords which are often easily cracked, any attacker would almost certainly need physical access. If the CHESSBOARD were developed into a mass-market device, network services would be disabled entirely; they were only enabled during prototyping for live testing and debugging purposes.

Lastly, pursuant to Clause 15, Square Dance has monitored and will, to the best of its ability, continue to monitor the CHESSBOARD prototyping and deployment, iterating wherever and whenever possible to best protect children's rights. If the device is developed into a mass-market consumer product and actually made available to children, Square Dance will publish a corresponding AAR. Furthermore, Square Dance by default shreds user data (completely overwriting it and deallocating the file system space associated with the data) once it is copied to an external flash drive. This respects the wishes of customers, including children, and their ``right to be forgotten'' \cite{Child_standard}.

\subsection{FÃ©dÃ©ration Internationale des Ã�checs (FIDE) Handbook: General Rules and Technical Recommendations for Tournaments}

In an ideal scenario, we would comply completely to FIDE's General Rules and Technical Recommendations for Tournaments \parencite{Chess_standard}. However, many of our alterations from a standard chessboard, though vital to the functionality of our subsystems, violate the regulations outlined in this section of the FIDE Handbook. One such example is the divots that are to be incorporated into every square for our pieces. In our design, it is required that the piece be placed within a very specific proximity to the sensor to properly trigger the Hall effect sensor. These divots are all the same size, so the pieces we constructed all needed to be of the same base size. This violates regulation C.02.2.2, which states that piece's bases must be 40--50\% of their heights. To comply with another element of the same regulation, dictating specific piece heights, this portion must be ignored.

The regulations also have several key features that we wished to include in our board design, including sufficient contrast between the two colors of pieces, a square size of at least 2\inch, and the previously mentioned piece heights.

With the understanding that these violations of chess tournament procedure were necessary to ensure the functionality of our product, we attempted to apply as many standards present as possible but accepted that violations were necessary. The intended goal of this product was to provide a tool for beginners moreso than an instrument for competitive play in tournaments. Adhering to as many standards as possible should produce a project that is ergonomic and comfortable for most users, so it is still important to consider these standards.

\subsection{Other Standards to Consider}

According to the Power Supply Safety Standards, Agencies, and Marks published by CUI, inc. \parencite{power_standard}, the device we are operating is Class III equipment, as we are supplying it with a $5\volt$ DC power supply. This is well below the $42\volt$ AC peak established by the Safety Extra Low Voltage (SELV), meaning hazardous voltages are unable to be generated by the system. These systems do not require extensive safety testing and are considered safe for operator access.

According to the IEEE Recommended Practices for Modulating Current in High-Brightness LEDs \parencite{LED_standard}, flickering LEDs could pose a minor health risk to epileptic individuals when flickering at a rate below 90 Hz, especially considering that they would be expected to stare directly at the board for extended periods of time. Although the risks are minor considering that the view of the LED is obfuscated by the board's surface, it is still worth considering the recommendations outlined in the document to mitigate the adverse effects. Considering that 60 Hz is generally the limit for discernible flicker, it is important to be considerate when designing the system and guaranteeing that the power is sufficiently provided for each LED, while not being so bright as to be uncomfortable. Part of the way we addressed LED flickering was to ensure LEDs were connected in such a way that code written to consistently light up LEDs did not result in unexpected flickering: this is documented in \sref{desc:test:leds}. LED brightness is likely to be a subjective metric considering that we would be unable to measure the brightness across the board's surface. Though the majority of the document is dedicated to general LED lighting, it is still worth considering the implications of an LED that is expected to be stared at for an extended period of time.

\section{Intellectual Property Issues}\label{sec:ip issues}
%In this section you should discuss the patentability of your project. You should include references to 3 US patents whose claims encompass material similar to your project and explain why (or why not!) you feel your project might be patentable in light of those claims. Your project does not have to be patentable, but you need to explain why, or why not. You should list specific claims in the patents and explain if they are dependent or independent claims.

In light of the more novel aspects of this design, the device's patentability is worth considering. The concept of a ``smart chessboard'' is already a widely commercially available product as well as a common electronics hobbyist project. Due to this lack of novelty, the idea of a smart chessboard itself likely has little or no patentability. In fact, a patent granted in 2022 features a smart chessboard that communicates with a computer by sensing chess pieces with RFID \parencite{US11369862B2}; this patent is set to remain active until 2039. Since patents exist for similar ``smart chessboards'', this would have to be taken into consideration for a patent application for the CHESSBOARD.

In addition to the concept of a smart chessboard, several aspects of the design originate from other projects. This includes the idea of using Hall effect sensors as the means by which to determine the piece type. A patent from 1974 uses similar magnetic based sensors in order to determine the presence of a piece on a specific square \parencite{US3843132A}. Although our method of sensing determines the type of piece in comparison to just the presence, the preexisting magnetic board patent can be used to demonstrate that several aspects of this project are not novel. Another patent approved in 1978 describes an electronic chessboard which uses a push-button display to indicate the location of a set of chess pieces for any given board state \parencite{US4082285A}. This provides the ability to display a similar degree of information as we are able to with our LEDs, albeit with a different form factor and technology.

Beyond the sensing and communication approaches, the project uses the open source Stockfish chess engine and chess piece modeling files from Thingiverse. The chess piece models are modified versions of the OpenSCAD Chess project by Tim Edwards \parencite{OpenSCADChess}; this OpenSCAD project is licensed under the Creative Commons BY-SA license, which allows for the copying or modification of the material to be commercially distributed so long as attribution is given to the original creator. If modifications are made (the original material is ``remixed''), the remixed material must be released under the same license. Through this, we would be able to include our remix versions of the chess pieces in a patent application of our own. Similarly, Stockfish is open source software released under the GNU General Public License version 3 (GPLv3) \parencite{stockfish_license}, so using Stockfish does not impede the creation of a patent because our system is a derivative work, rather than simply a redistribution, of Stockfish.

Despite these features that are reused from previous work, the CHESSBOARD's overall approach is nonetheless novel. The CHESSBOARD's use case and specific application---a smart chessboard designed for learners with supplemental features like a hint button, undo button, and LED feedback---is unique. Although many of these aspects have appeared individually within other patents, our overall combination to support our goal can be argued to be novel. Indeed, some of the prior projects have aspects that overlap with each other, and they could still each be patented. Approaching the patent with this in mind while emphasizing the more unique aspects of our CHESSBOARD could give a potential patent application more merit.

\section{Timeline}\label{sec:timeline}
%This section should include the Gantt chart from your proposal as well as a final chart (showing the differences). You should explain the following and how your timelines changed throughout the course of the semester. Make sure your Gantt chart is legible! You may need to alter the format or break the Gantt chart up into sections so that when it is presented in the report, the text will still be large enough to be read.

\begin{figure*}
 \centering
 \centerline{\includegraphics[width=\linewidth,height=\linewidth]{figures/Gantt-1&2.png}}
 \caption{Initial Gantt Chart of the Project Conception and Initiation and the Research Phases.}
 \label{fig:Gantt:ini:research}
\end{figure*}

\begin{figure*}
 \centering
 \centerline{
 \includegraphics[width=\linewidth,height=\linewidth]{figures/Gantt_3.png}
 }
 \caption{Initial Gantt Chart of the Design Phase.}
 \label{fig:Gantt:ini:design}
\end{figure*}

\begin{figure*}
 \centering
 \centerline{
 \includegraphics[width=\linewidth,height=\linewidth]{figures/Gantt-4.1.png}}
 \centerline{
 \includegraphics[width=\linewidth,height=\linewidth]{figures/Gantt-4.2.png}
 }
 \caption{Initial Gantt Chart of the Manufacturing Phase.}
 \label{fig:Gantt:ini:manu}
\end{figure*}

\begin{figure*}
 \centering
 \centerline{
 \includegraphics[width=\linewidth,height=\linewidth]{figures/Gantt-5&6&7.png}
 }
 \caption{Initial Gantt Chart of the Testing and Finalization Phases and Other Important Dates.}
 \label{fig:Gantt:ini:testing}
\end{figure*}

\begin{figure*}
 \centering
 \centerline{\includegraphics[width=1\linewidth]{figures/gantt_final_manu.png}}
 \caption{Final version of the manufacturing Gantt chart. .}
 \label{fig:Gantt:fin:manufacturing}
\end{figure*}

\begin{figure*}
 \centering
 \centerline{\includegraphics[width=1\linewidth]{figures/gantt_final_test.png}}
 \caption{Final version of the testing Gantt chart.}
 \label{fig:Gantt:fin:test}
\end{figure*}

Over the course of the semester, there were several points of divergence from our initial estimate of the project timeline that became increasingly apparent. Chief among these were assembly and manufacturing processes that were significantly longer than expected. Nonetheless, we allowed ourselves a period of nearly three spare weeks at the end of the semester in our timeline, so we still completed this project on time before our major deadlines.

Our hardware development schedule changed dramatically over the course of the design process. During this process, we realized that there were several less critical elements such as the enclosure design. This part of the design required modification after having a better understanding of the PCB dimensions, so pushing the completion of this aspect of the project back was an appropriate action to take. Even after the PCBs were designed, some issues with assembly required adjustments to the enclosure, as discussed in \sref{sec:hardware design}. Aside from this, the design largely aligned with our initial expectations (see \fref{fig:Gantt:ini:design}).

Our software design schedule also changed. Although the preliminary hardware design phase was completed early in the semester, later changes to the hardware systems necessitated restructuring and rewriting substantial sections of code. In addition, the delays caused by unexpected issues related to UART communication momentarily prevented the development of other sections that were dependent on it. Much of the software logic was completed early, but because the hardware was unavailable until later, we were unable to test large portions of the software until the last few weeks of the development period (see \fref{fig:Gantt:fin:test}).

After the design phase, the assembly process experienced the most significant increase in time relative to our expectations. Initially, our expectations were to complete this over an approximately 4-week span in October and early November. However, this significantly underestimated the amount of soldering that needed to be conducted. The LED array and PCB soldering processes took until late November to be fully completed. As the team members doing the soldering were largely the same as those in charge of the enclosure manufacturing, the enclosure manufacturing was also impacted (see \fref{fig:Gantt:fin:manufacturing}).

Hardware testing was ongoing during the entirety of this process, from simple beep testing and visual inspection which verified proper soldering to power or sensor testing that guaranteed we were adhering to our calculations. Other kinds of testing were also performed. This testing was largely consistent between our initial (\fref{fig:Gantt:ini:testing}) and final (\fref{fig:Gantt:fin:test}) Gantt charts: we expected the testing process to occur simultaneously with the assembly process. After assembly was completed, the sole focus could be placed on guaranteeing hardware functionality. This last objective was a continuous task that was not complete until our final demonstration, so the task is not marked completed on our attached Gantt charts.

For reference, initial Gantt charts that reflected our expectations for the timeline of the project's research, design, manufacturing, and testing phases are given in \fref{fig:Gantt:ini:research}, \fref{fig:Gantt:ini:design}, \fref{fig:Gantt:ini:manu}, and \fref{fig:Gantt:ini:testing}, respectively. Our final Gantt charts which measure our actual project timeline as it proceeded are given in \fref{fig:Gantt:fin:manufacturing} and \fref{fig:Gantt:fin:test}.

\section{Costs}\label{sec:costs}
%In this section, you should outline your costs, with a detailed spreadsheet in your appendix. You should also consider how costs would change if you were to manufacture in 10000 unit quantities, i.e. look at Digi-key to get estimates of costs in large quantities, and consider if automated equipment could be used to assemble your device and how that might influence costs.

In this section we outline a potential mass production scenario for an order of 10,000 units. As mentioned in \sref{sec:constraints:manufacturing}, there are many adjustments to the design that could be made to reduce costs. To summarize, we could consolidate subsystems to reduce the number of components to assemble, simplify parts logistics by using a narrower variety of parts with similar functions, and more loosely follow FIDE guidance to reduce the size of the device and its material costs. Automated manufacturing would also have a significant impact on the effective cost of the product. Using stencils and solder paste to assemble the PCBs and injection molds for the chess pieces would all allow for much more rapid production times.

Conservative estimates of costs for a 10,000-unit production order may thus be made. In \tref{tab:cost breakdown 1}, the far right column shows the ordering the parts in volume provides a substantial reduction in cost from \$346.05 per unit to \$262.55, a 24\% reduction. This could be only be reduced further with the manufacturing changes we previously discussed.

\section{Final Results}\label{sec:results}
%In this section you should explain the functionality of your final prototype in detail. You should honestly assess and explain which of the success criteria defined in your proposal you met and which you did not.

\begin{figure}
 \centering
 \includegraphics[width=1\linewidth]{figures/clockbox_complete.jpg}
 \caption{Final version of the clock box. The top two buttons correspond to each of the players' turn swap, the while the others correspond to clock, hint, undo, pause, and restart, respectively.}
 \label{fig:clockbox_completed}
\end{figure}

On December 6, 2024, the original publication date of this report, the functionality of the project was as follows: when the user plugged in the power cable into the I/O board, the game automatically began if the pieces were in the correct starting position. If this was not the case, the lights would not turn on until the board was in the correct position. In this state, the white player's movable pieces were highlighted. When any piece was picked up, all available moves for that piece were indicated by the LEDs. For pieces that were not movable, no LEDs were highlighted. An issue prevented the turns from swapping to the other player. The piece movement is visible in \fref{fig:board_start} and \fref{fig:board_pawn_move}.

However, what was present at that point indicated that we had a complete understanding of the board state and accurate readings of our sensors. Additionally, the LEDs were functioning as expected. Further testing and debugging showed errors in the Stockfish wrapper on the Raspberry Pi that caused the code to crash and prevented the entire CHESSBOARD system from functioning as intended as a result.

\begin{figure}
 \centering
 \includegraphics[width=1\linewidth]{figures/board_operation_start.jpg}
 \caption{The start state of the untimed board. All available moves are highlighted with the LEDs.}
 \label{fig:board_start}
\end{figure}

\begin{figure}
 \centering
 \includegraphics[width=1\linewidth]{figures/board_operation_pawnmove.jpg}
 \caption{The white D pawn being moved. The LEDs light to indicate which spaces are available for movement.}
 \label{fig:board_pawn_move}
\end{figure}

For the project proposal, we outlined five items to aim for completing by the day of the demonstration to achieve full marks. Firstly, we needed a proper enclosure and all physical elements required to play chess. Secondly, we needed an LED array that allows us to communicate with the players to indicate what pieces they can interact with. We also decided to include the ability to transmit a complete game transcript via USB to study and import into other chess software. Additionally, to facilitate newer players, hint and undo buttons were designed and included. Lastly, we decided it was important to include a chess clock to encourage newer players to approach the game with a different mindset.

First, it is apparent based on \fref{fig:board_top-down} or \fref{fig:board_side} that all of the physical materials necessary for chess are present. All pieces, as well as additional pieces to accommodate pawn promotion, are present. Additionally, based upon \fref{fig:board_start} and \fref{fig:board_pawn_move}, the LEDs can be seen to function as intended, highlighting available moves and guiding the players into legal moves.

\begin{figure}
 \centering
 \includegraphics[width=1\linewidth]{figures/board_top-down.jpg}
 \caption{A top down view of the completed chessboard.}
 \label{fig:board_top-down}
\end{figure}

\begin{figure}
 \centering
 \includegraphics[width=1\linewidth]{figures/board_and_clockbox.jpg}
 \caption{A side view of the chessboard and clock box.}
 \label{fig:board_side}
\end{figure}

The remainder of the features (hint, undo, clock, and transcript) were implemented in software but had bugs as of this report's initial publication. All the hardware required for these features was functional, however. We expected that these bugs would be resolved during the period from December 6, 2024, to December 9, 2024, between this report's initial submission and the final demonstration of the project. Since transcription depended on a fully functional game to be tested, the transcription feature also could not be verified to work as of December 6, 2024.

Based on the outline established, the work that we achieved as of December 6 would be deserving of a B. However, considering our proximity to full functionality at that point and our confidence in achieving these aspects of the project by the time of the prototype demonstration, we still believed that the effort that had been placed into the project was deserving of an A.

We have preserved the above paragraphs in order to document the state of the project when we turned in this report in Fall 2024, three days before the demonstration. Over the weekend that followed, we worked ceaselessly toward full functionality. We are very pleased to report that we successfully achieved every goal laid out in this project and scored an A+ for our efforts. Every system worked completely on demo day\footnote{Punctuated by the successful application of a ``hotfix'' for the Stockfish wrapper's Python code approximately 15 minutes before our demonstration.}---though one of the turn-switching buttons needed to be re-glued after an enthusiastic child hit it too hard. A quick demonstration video, filmed and edited by Lourdes, may be found \href{https://pub.eldamar.org/projects/capstone-vid.mp4}{here}.

\section{Engineering Insights}\label{sec:insights}
%What did you learn working on this project? Include both new technical skills you had to develop, and important lessons you learned about the engineering process, particularly with regard to time and resource management, teamwork, communication, and morale. If you had to give advice to a future Capstone student, what would you tell them?

\subsection{Reinventing the Wheel}

One of the foremost lessons from this project was to not ``reinvent the wheel'' and instead employ existing stable tools as project components wherever possible. For example, software tasks were progressively offloaded to well-tested external libraries, packages, and projects. Initially, the team planned to write a bespoke RTOS kernel and manually port a chess engine to the MSPM0's limited embedded environment. Using the stable, professionally maintained FreeRTOS for the MSPM0, however, proved a superior alternative. With FreeRTOS's comprehensive interfaces for task management, data structures, and synchronization, among other features, the team saved countless hours of development time by using existing ``off-the-shelf'' products instead of opting for a ``do-it-yourself'' approach. Moreover, when the more powerful Raspberry Pi emerged as a platform to run a chess engine on, the team elected to run Stockfish on the Raspberry Pi and engineer communication between the Raspberry Pi and MSPM0 rather than engineer a full-fledged stripped-down chess engine on the MSPM0 itself. Yet more time was saved by using Python's \code{chess} and \code{serial} modules to use trusted code for chess game management and UART communication, respectively. In all, reducing the scope of novel software we developed allowed for easier testing and debugging. If existing libraries and projects could simply be assumed to work \textit{a priori} (often, though not always, justified), we could, and did, ultimately concern ourselves with simply testing the bespoke code written to interface with those software tools rather than testing all software involved in the project.

In comparison to software, the hardware side of the project largely avoided this issue by prioritizing the aspects of design that only we could implement, such as the filter values and the overall block diagram. Even in these aspects, we utilized tools to make them as simple as possible, such as the Texas Instruments analog filter designer. For other aspects, we used widely available and common standards to have as much information and references to take from as possible. For instance, we used a commonly available DE-15 adapter and cable to transmit power and information between the clock box and chessboard. These actions meaningfully avoided ``reinventing the wheel'' with respect to the hardware.

\subsection{Trust, but Verify}

Another critical lesson we learned through this experience was to trust our judgment but also verify our work. Assumptions that critical project software worked were always justified with extensive testing and, where needed, debugging. One of the foremost software examples to demonstrate this was the UART testing (see \sref{desc:test:uart}). Initially, UART was configured properly and appeared to work on the Raspberry Pi. When a new microSD card had to be prepared to replace a broken one, however, the new kernel version bundled with the installation contained a patch that disrupted the ability to access memory necessary for UART communication. While further kernel patches have since addressed this problem, the original solution was to revert the kernel version to one issued before the patch. This put into practice the principle that no software was treated as infallible.

This lesson was especially relevant for the hardware. Testing our system, much like with the software, was a critical part of guaranteeing correct functionality. To this end, we took great care to check our work throughout the assembly and design process. However, there were still aspects of the project in which our overconfidence led to problems that could have been prevented with more careful reflection. One such issue was the faulty footprints on our PCBs. This issue was largely preventable---indeed, it should have been caught during the design phase of the project---but was able to go unnoticed until the assembly phase, resulting in the need for several unexpected modifications to the components to allow them to fit within their expected positions. In the case of the I/O PCB, a second revision needed to be ordered to resolve the footprint issues. Although trust in our capabilities was critical to actually creating a functional end product, verifying our work thoroughly was a key factor we needed to pay more attention to during the development of the project. A hardware problem with UART on the MSPM0 also demonstrated this principle. Like with the Raspberry Pi, basic examples were used to verify that the UART functioned as expected for simple TI-provided code snippets. This helped diagnose a UART issue on the MSPM0 where a hardware defect led to two of the GPIO pins failing to propagate the intended UART messages electrically. A hasty fix somewhat analogous to the kernel reversion on the Raspberry Pi was soon put in place to address the underlying problem.

One way we were able to proactively follow this lesson was by providing ample surplus parts during prototyping. This was initially avoided because we trusted our soldering ability. Although our soldering ability by itself was generally sufficient, other design issues meant that additional multiplexers and sensors needed to be ordered individually, which incurred fairly expensive shipping costs. This shipping is what caused us to exceed the budget cap of \$500, and it could have been avoided if additional parts were ordered from the beginning. A better approach would have been to order at least 20\% more of every part than we really needed, to account for adjustments that needed to be performed; this would have become valuable as certain aspects of the design demonstrated that they would not function as intended without alteration.

For both software and hardware, thorough testing that implemented conservative assumptions allowed the team to catch potentially product-breaking errors. Especially for UART, discarding the assumption that UART drivers and hardware simply worked as-is enabled the team to catch critical errors. While the team could not always anticipate these errors ahead of time (especially for UART, where the errors were unusual), the team could nonetheless pinpoint the source of the problem immediately rather than have to repeatedly vet the entire project's hardware and software every time an error presented itself.

\subsection{Nights and Weekends}

Lastly, an important lesson emerged from the pace at which this project was developed. Initially, we expected this project would proceed at a constant pace. To start from the best place possible, we all put ourselves into this project completely and get a great work pace even before the start of this semester. However, we failed to anticipate our external obligations and struggled to properly balance this project with many of our competing priorities. By the midpoint of the semester, this project was just meeting the deadlines established by the class. With the addition of underestimations for the assembly period, this project was completed only with great time commitments during the last few weeks of the semester.

The main takeaway from this section is that even with intentions of maintaining a good development pace, without the will to act and a thorough plan of doing so, said pace can fall below the established expectations.

\section{Future Work}\label{sec:future work}
%In this section you should offer suggestions as to how the project might be improved or expanded upon if a future group of students wished to create a new project based upon yours. You should consider difficulties that were not foreseen at the beginning and offer advice on pitfalls to watch for.

Many of the changes the team would have made to the design have been outlined in \sref{sec:constraints:manufacturing}. The main changes would be to reduce the number of parts and simplify manufacturing. The sensor boards should be turned horizontally in future versions of the product and combined together with the I/O board into fewer, larger parts. Components should be standardized across PCBs in the system and be SMD only rather than a mix of SMD and through-hole. The D-Bus connector should be swapped for the low density variant with only two rows to help ensure it is easy to run properly sized traces to each pin. Compression of the acrylic should be done mechanically with rivets rather than with adhesives.

For future student teams who may want to tackle a similar project concept, we would like to preface that some of these changes anticipate industrial manufacturing capacities that student teams may not have. The choice of SMD components, for example, is great for package size and manufacturing time if a designer has access to a system that allows for large scale solder paste and stencil methods. One might be able to achieve similar results with a heat gun but may deem it more practical to use through-hole component since many students are more likely to be comfortable soldering through-hole components.

The aesthetics and interface could also be improved upon to enhance user experience during gameplay. Since we spent the majority of the semester manufacturing and debugging the project (even up until the day of our showcase), we did not have time to make all the redesigns and implement all the features we wanted to. Features and components the team would like to add or change beyond those geared toward mass production include adding puzzle modes, using a more complex display option, trying out omnidirectional Hall effect sensors, and trying out a resistor-based piece identification system. With the limited time we had, we did not expect to be able to implement many more features than those outlined in our original proposal. However, that does not mean these additional features are unimportant. For instance, the team thinks a commercial learning aid with the option for puzzles to give the user more options for learning how to strategize and think about playing chess. Other improvements could be made to the aesthetics and interfaces to enhance user experience during game play. For example, the current end player buttons should be replaced by larger buttons that are also possibly external to the clock box module to prevent the wearing down of both the buttons and the clock box enclosure. This would be important as players may try to hit the buttons to end their turn as soon as possible. As such, durability of the buttons is important to consider, especially for Blitz games.

The more complex display idea of the project is driven by a desire to make this product more accessible. Currently, the only way to access the transcription feature is to have a USB flash drive and a computer to read the output file. This makes owning a computer a limiting factor for the accessibility of our device. A more complex display could offer the ability to use the transcription feature without additional financial investments (owning a computer).

Omnidirectional Hall effect sensors and the resistor concept are all ideas the team thought of as we progressed further into the project and ran into concerns with piece detection consistency. Needing to bend the through-hole sensors to reduce the space between the sensors' face and the ceiling of the enclosure allows for deviations in distances and angles relative to the enclosure ceiling. The omnidirectional sensor would help with issue of the relative angle.

The resistor option would be an attempt to completely circumvent the magnetic system. Magnets may still be desirable to snap the pieces into the same position every time, but they would not be essential for the core piece detection system. In a resistive design, two circular, concentric contacts could be put on the board, with pieces containing corresponding contacts and an internal resistor of a value unique to the piece's color and type. The probability of misidentification with this system is far smaller than with the magnetic system, where any physical difference in the position of the piece relative to the sensor could result in misidentification. One downside would be the aesthetic of the board, which would have visible ring contacts on every tile.

The team generally advises future teams to put more thought into manufacturing and system integration. When reviewing PCB layouts, read the datasheet for major components and make sure the connections align with what the pinout is on the datasheet. Avoid soldering to wires wherever possible and use standard, pre-made wire harnesses if this type of soldering is still needed. Try to use harness or connector standards with locking mechanisms to make electrical connections more reliable. Minimize the use of adhesives and use mechanical joining systems instead. When there are repeated manufacturing processes, try making rigs to help with consistency and reduce time spent on the task. Include tolerance in manufactured components that give room for small mistakes and individual differences between parts. Lastly, buy backups of critical components. Planning ahead might save money since bulk orders result in reduced costs per unit.

In the Spring 2025 semester, following the completion of this initial project, Liam, Kevin, Lourdes, and John worked on a second revision of the CHESSBOARD with an entirely different sensing system based on resistors and contact pads. This engaged with one of the major areas of future work outlined here. The simplicity of manufacturing the design was also improved substantially: we designed it such that the majority of the soldering could be performed with a single bake in a reflow oven. A more detailed technical description of the second revision may be found \href{https://pub.eldamar.org/projects/capstone-v2.pdf}{here}.

\section{Using This Report}

The technical team (John Berberian Jr., Kevin Dang, Paul Karhnak, Lourdes Leung, and Liam Timmins) wish to license this technical report under a Creative Commons BY-NC-SA license to allow noncommercial use that attributes the authors so long as works which derive from our report reproduce our licensing conditions. While the SA provision of our license may introduce some hurdles, we believe this provides the greatest protection against the commercialization of our work without our permission or involvement. We do not wish our license terms to be an undue burden on scholarly use, however, and invite any questions about using this report to any of the authors via the email addresses given on the title page.

%\section{References}\label{sec:references}
\begin{sampleText}
 These should be done in IEEE reference format [1]. An example is shown below. A great tool for doing this is found at Zotero.org [2]. You should have 10 to 15 references for a good proposal, none of which should be Wikipedia. One of your sources may be a â��popular scienceâ�� reference; the rest should be professional sources. This can include manufacturersâ�� websites and .edu sites. If you use hobby sites, you should reference them, but they do not count toward your reference total. At least 2 sources should come from IEEE or ACM databases
\end{sampleText}
\phantomsection
\addcontentsline{toc}{section}{References}
\printbibliography
\clearpage
\appendix
\section{Appendices}
\FloatBarrier
\subsection{32-bit Protocol Specification}\label{app:protocol}
The protocol has four modes. They are detailed in their respective subsections. The general protocol details are described below. Example packets (with packing order) are shown in \fref{fig:protocol}, on the next page.

The ranks and files of the chessboard are encoded as 3-bit integers, starting at 0 (\eg File A$\rightarrow0$, Rank 1$\rightarrow0$). This allows us to encode a square in 6 bits: file, then rank. Each move includes a source and destination square. Some moves also include a ``second move,'' if a second piece is moved as a result of the chess move (\eg en passant, castle in normal mode or undoing a take in undo mode). In order to support piece promotion, the protocol also sometimes includes a field to indicate the type of piece expected to be placed on the destination square. The piece type is encoded as a 3-bit integer, with the mapping below:
\begin{enumerate}[start=0]
\itemsep0em
 \item Empty square
 \item Pawn
 \item Knight
 \item Bishop
 \item Rook
 \item Queen
 \item King
 \item Empty square
\end{enumerate}
\subsubsection{RPi\texorpdfstring{\rightarrow}{->}MSP normal}
The normal protocol includes two additional fields not described above: move type (normal, check, capture, castle/promote), second move piece type (empty or rook), and last (not last or last). Move type is encoded as a two-bit integer, with the options numbered from 0 to 3 in the order listed above. The move type is required for the differences in LED rendering (red for takes, purple for promotion, etc.). Similarly, the second move piece type, describing the expected piece type on the destination square of the second move, is either nothing (en passant) or rook (castle). The ``last'' bit indicates whether a move is the last one in the sequence of legal moves that are being sent.
\subsubsection{RPi\texorpdfstring{\rightarrow}{->}MSP undo}
The undo packet type must also encode the information required to reverse a take, so we expanded the piece type specifications by removing the last-move and move type fields. Because the second move piece color could be either the same (castle) or different (take) from the color of the main move, we also added a single bit to indicate whether the second move piece was white (0) or black (1). The encoding and packing is otherwise identical to allow for maximum compatibility with the tools developed to parse the normal protocol.
\subsubsection{MSP\texorpdfstring{\rightarrow}{->}RPi normal}
Valid moves may be uniquely identified by the source and destination square along with the type of piece placed on the destination square. The moves are validated on the MSP side, so every move encoded with this scheme is guaranteed to be correct. This obviates the need for much of the information in the move packet, freeing up enough space for the MSP to encode button presses. Again, the fields were aligned to provide maximum compatibility with the other protocol modes' parsing code.
\subsubsection{MSP\texorpdfstring{\rightarrow}{->}RPi calibration}
The calibration code needs to send only a few pieces of information: for each square and each piece type of each color, we should record the maximum and minimum sensor values measured. The sensor value is a 12-bit integer, so encoding all of this information required splitting up the data into two packets: one for max and one for min. There is an indicator bit in the same position as the second-move indicator to discriminate between these two packet types.
\onecolumn
\begin{landscape}
\begin{figure}[!h]
 \centering
 \includegraphics[height=\textwidth,width=\linewidth]{figures/protocol.png}
 \caption{Sample 32-bit Protocol Field Packing.}
 \label{fig:protocol}
\end{figure}
\end{landscape}
\FloatBarrier
\subsection{Cost Breakdown Tables}\label{app:cost}
\begin{table}[H]
 \centering
 \caption{Cost breakdown for full order cost, cost of prototype unit, and bulk manufacturing costs.}
 %\centerline{\includegraphics[width=\linewidth,height=\linewidth]{figures/Cost breakdown 1.png}}
 \includegraphics[width=\textwidth]{figures/Cost breakdown 1_old.png}
 \includegraphics[width=\textwidth]{figures/Cost breakdown 2.png}
 \includegraphics[width=\textwidth]{figures/Cost breakdown 3.png}
 \label{tab:cost breakdown 1}
\end{table}

\end{document}

