
Composing with EncycloSpace: a Recombinant

Sample-based Algorithmic Composition Framework

Yury Viacheslavovich Spitsyn

Moscow, Russian Federation

A Dissertation presented to the Graduate Faculty

of the University of Virginia in Candidacy for the Degree of

Doctor of Philosophy

Department of Music

Advisor: Professor Judith Shatin, Ph.D.

University of Virginia

July 31, 2015

c⃝ Copyright by Yury V. Spitsyn, 2015.

All rights reserved.

Abstract

Recorded sounds have been in compositional circulation since the early days of

musique concrète, yet there have been major lacunae in the design of computer tools

for sample-based algorithmic composition. These are revealed by the absence of

algorithmic methods based on quantified representation of the sampled sounds con-

tent. With the exception of pitch-tracking and amplitude following, the parametric

utilization of recorded sounds lags far behind that of synthetic sound methods, which

are parametric by design.

During the last decade, musical informatics have established computational methods

to break through the informational opaqueness of sound recordings. By extracting

semantic data (called descriptors or features), sampled sounds can be converted

into quantifiable form and more easily described, diagrammed and compared.

This technology has resulted in numerous compositional applications focused on

descriptor-based sound manipulations and database usage. Surprisingly, com-

positional strategies have gravitated to a narrow range of manipulations, called

concatenative synthesis and music mosaicing. Inherent limitations in current ap-

proaches motivated a search for open-ended design principles for corpus-based

sample-oriented algorithmic composition.

This dissertation examines theoretical and practical ways to approach this problem

before proposing a solution. To avoid conceptual shortcomings, we start with an

overarching perspective by introducing the ontological topology of music as devel-

oped by Guerino Mazzola. We use his comprehensive analysis of activities, scientific

disciplines, ontological dimensions and informational processes in music as a basis for

our approach to system design in a balanced and deliberate way. Mazzola’s notion of

EncycloSpace, the knowledge base of musical process, and the concepts of receptive

and productive navigation serve as a conceptual core for the design. The overall

system’s structure is tripartite: an analytic subsystem, a compositional subsystem

iii

and EncycloSpace — database subsystem.

A methodology, termed NOTA-transform, is proposed as a general method for the

compositional use of EncycloSpace. It defines four consecutive transformations,

called navigation, ordering, temporalization and adaptation, as indispensable stages

of converting EncycloSpace into a musical object. Each of the stages is defined as

an independent decision-making site. With respect to ordering and temporalization,

most of the existing corpus-based algorithmic systems are either deterministic or

indifferent. The system design considerations are then used to implement a working

software prototype called sEl, described in detail in Chapter 3.

Finally, sEl is utilized to compose a piece, Ignis Fatuus (4), where I demonstrate the

resulting analytic and compositional algorithms.

iv

Acknowledgements

As I complete this dissertation, I am thankful to a great many people, whose diverse

contribution made this work possible (and much more enjoyable than it would be

otherwise).

I am grateful foremost to my thesis advisor, Judith Shatin, for her support, encour-

agement and guidance throughout this lengthy process. Her thoughtful comments and

profound editorial help were truly invaluable. Had she not cared about this work’s

progress as much as she did, it might still be in an unfinished state.

Thanks to my dissertation committee members, Ted Coffey, Luke Dahl and Wor-

thy Martin, for their time, interest and expertise in discussing/reviewing this project.

I deeply appreciate the UVa Music Department for being an open-minded col-

lective of music scholars and practitioners where wide range of research topics is

encouraged.

A very special thanks to Bonnie Gordon and Kyle Ruempler at the McIntire

Department of Music for their incredible administrative support, especially during

the last year, when it was the most needed.

I’d like to express my deepest gratitude to Jon Appleton for being a long-time

supporter and friend, which is very humbling. Among the innumerable occasions of

support, thanks for providing sanctuary where I could go on with my writing during

its most critical phase. Snowy winters in Vermont – my favorite season – have been

a wonderful place to concentrate without interruption.

Much gratitude to the people whom I was fortunate to meet and who, throughout

the years, influenced my understanding of all things musical through the meetings,

seminars, conversations and collaborations: Paul Bothello, Matthew Burtner, Michael

Casey, Ted Coffey, Nick Collins, Perry Cook, Roger Dannenberg, Charles Dodge, Kui

Dong, David Dunn, I-Jen Fang, Seppo Gruendler, Franz Hautzinger, Kurt Hebel,

Jaroslaw Kapuscinski, Lydia Kavina, Tatiana Komarova, Michael Kubovy, Paul Lan-

v

sky, Sergey Letov, Ted Levin, Lukas Ligeti, Victor Luferov, Eric Lyon, Max Mathews,

Paula Matthusen, Fred Maus, Gordon Monahan, Vladimir Nikolaev, Tae Hong Park,

Larry Polansky, Godfried-Willem Raes, Douglas Repetto, Paul Riker, Jean-Claude

Risset, Carla Scaletti, Elizabeth Schimana, Judith Shatin, Daniel Shorno, Andrey

Smirnov, Tom Stoll, James Tenney, Trimpin, Dave Topper, Dmitri Ukhov, Kojiro

Umezaki, Yiorgos Vassilandonakis, Barry Vercoe, German Vinogradov, Ge Wang,

Rebekah Wilson (aka Netochka Nezvanova), Christian Wolff, Maurice Wright and

Sergey Zagny.

Thanks to the outstanding music graduate student communities at Dartmouth,

where I worked, and at UVa, where I studied, and with whom I shared a perennial

appetite for musical matters. These include Scott Barton, Courtney Brown, Car-

men Caruso, Kevin Davis, Erik DeLuca, Charlie DeTar, Carlos Dominguez, Irina

Escalante-Chernova, Travis Garrison, Sarah O’Halloran, Will Haslett, Aurie Hsu,

Wendi Hsu, Kyle Kaplan, Angela Kim, Steve Kemper, Juraj Kois, Masaki Kubo, Liz

Lindau, Loren Ludwig, Ryan Maguire, Owen Osborn, Kevin Parks, Chris Peck, Sean

Pequet, Brent Reidy, Troy Rogers, Bruno Ruviaro, Lanier Sammons, Andy Sarroff,

Danny Shapira, Victor Shepardson, Braxton Sherouse, Beau Sievers, Ezra Teboul,

Peter Traub, Paul Turowski, Shannon Werle and Jonathon Zorn.

Special thanks to the open-source software community to which I am immensely

indebted.

An electrically-charged thanks goes to Ezra Teboul and Kyle Kaplan for the dili-

gence and fun of making it together through the last year in one piece.

Thanks to Jodie Mack for being great and always making it more interesting.

Two Charlottesville cats, Ami and Jemma, deserve to be mentioned for being my

only companions (as well as occasional furry combat entertainment) for six months.

Thanks to Jane and Bruce Penner for arranging things that way.

vi

Chirpful thanks to the Vermont birds for being a harmonious summer-time ac-

companiment to my writing.

Thanks to David Vincelette for his help with ceiling-mount of eight speakers in

my room and to Anna Vincelette for those frequent and tasty meals.

Thanks to my friends and colleagues in Russia who, after all these years of my

not being present, still remember my name.

Lastly, my undying appreciation to my family: my mother Alevtina Spitsyna

and my son Nikita Spitsyn, who watched my multi-year involvement in this project

with understanding and love. My great gratitude to Lorina Kaydanovskaya for her

incredible feat of patience and belief in me.

vii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xvi

List of Figures . xviii

1 Introduction 1

1.1 Music ontology and EncycloSpace . 2

1.1.1 Fundamental activities of music 2

1.1.2 Fundamental scientific domains 3

1.1.3 Coordinate space of ontological dimensions 4

1.1.3.1 Reality . 5

1.1.3.2 Communication . 6

1.1.3.3 Semiosis . 7

1.1.4 Music ontology cube . 8

1.1.5 EncycloSpace . 9

1.1.5.1 Receptive navigation 9

1.1.5.2 Productive navigation 9

1.2 Problematics of sample-based algorithmic composition tools 10

2 System design 13

2.1 General considerations . 13

viii

2.1.1 System identification . 13

2.1.1.1 Scale . 14

2.1.1.2 Process time . 14

2.1.1.3 Idiom affinity . 15

2.1.1.4 Extensibility . 16

2.1.1.5 Event production . 16

2.1.1.6 Sound source . 17

2.1.1.7 User environment . 17

2.1.2 Development platform and language 19

2.1.2.1 Platform . 19

2.1.2.2 Programming language 20

2.1.3 Dependencies . 20

2.2 System structure . 20

2.2.1 User interface . 20

2.2.2 Functional structure . 21

2.2.2.1 Productive function (Emittance) 22

2.2.2.2 Receptive function (Reception) 22

2.2.2.3 Trace function (Transport) 23

2.3 Transport layer: Media database . 23

2.3.1 General architecture . 23

2.3.2 Structure of database relations 25

2.3.3 Building-block element . 25

2.4 Receptive layer: Analysis subsystem 26

2.4.1 Audio segmentation . 26

2.4.1.1 Manual segmentation 28

2.4.1.2 Unsupervised (automatic) segmentation 28

2.4.1.3 Supervised segmentation 29

ix

2.4.1.4 Mixed-mode segmentation 29

2.4.2 Feature analysis . 29

2.4.2.1 Description level . 30

2.4.2.2 Temporal variability 31

2.4.2.3 Physical and psychometric 32

2.4.3 Categorical description . 32

2.4.3.1 Class taxonomy . 33

2.4.3.2 Classification methods 34

2.4.3.3 Ontological binding 35

2.5 Productive layer: Navigation, Composition, Rendering 36

2.5.1 Database navigation . 36

2.5.1.1 Flexibility of data acquisition 36

2.5.1.2 Receptive/Productive access 37

2.5.2 Composition subsystem . 37

2.5.2.1 Structure of Composition 39

2.5.2.2 Composing with EncycloSpace, or NOTA-transform 41

2.5.2.3 Navigation context 45

2.5.2.4 Ordering context . 45

2.5.2.5 Temporal context . 45

2.5.2.6 Adaptation context 46

2.5.2.7 Indeterminacy . 46

2.5.2.8 Parametric automation 47

2.5.3 Rendering subsystem . 47

3 sEl: An implementation of recombinant corpus-based omni-source

compositional software 48

3.1 General workflow . 48

3.1.1 Audio pool . 49

x

3.1.2 Registering sounds with database 50

3.1.2.1 Automatic segmentation import 51

3.1.2.2 Automatic categorization 51

3.1.2.3 Sound file overview 51

3.1.3 Assigning categories . 51

3.1.4 Segmentation . 54

3.1.5 Auditioning . 55

3.1.6 Creating database elements 55

3.1.7 Examining elements . 55

3.1.8 Extracting features . 57

3.1.9 Recombining elements . 58

3.1.10 Composing with collections 58

3.2 Database schema . 58

3.2.1 Material layer . 59

3.2.1.1 dbDataFile . 59

3.2.1.2 dbDataFileGroup . 59

3.2.1.3 dbElement . 61

3.2.1.4 dbElementParent . 62

3.2.1.5 dbElementNext . 62

3.2.1.6 dbElementLoop . 62

3.2.1.7 dbElementSegmentation 63

3.2.2 Semantics layer . 63

3.2.2.1 dbDescriptor . 64

3.2.2.2 dbClass . 64

3.2.2.3 dbSymbol . 66

3.2.2.4 dbFeatureStats . 67

3.2.2.5 dbElementCategory 68

xi

3.2.2.6 dbImaginaryCategory 68

3.2.2.7 dbAnalysisConfig . 68

3.2.2.8 dbAnalysisConfigFeature 69

3.2.2.9 dbElementFeature 69

3.2.2.10 dbElementFeatureCV 70

3.2.3 Recombinant layer . 70

3.2.3.1 dbCollection . 72

3.2.3.2 dbCollectionElements 73

3.2.3.3 dbSequenceElements 73

3.2.3.4 dbCollectionGroup 74

3.3 Analysis subsystem . 74

3.3.1 Compositional perspective on feature set 74

3.3.2 Temporal descriptors . 78

3.3.2.1 Timescale . 78

3.3.2.2 Event cardinality . 79

3.3.2.3 Temporal density . 79

3.3.2.4 Onset cardinality . 80

3.3.2.5 Dynamic complexity 80

3.3.2.6 Inter-onset intervals 81

3.3.2.7 Q-time . 81

3.3.3 Energy descriptors . 82

3.3.3.1 Dynamics . 82

3.3.3.2 ELF Loudness . 83

3.3.3.3 Bark bands energy 83

3.3.3.4 Spectral RMS . 85

3.3.4 Tonal descriptors . 86

3.3.4.1 Pitchiness . 88

xii

3.3.4.2 Strong pitch descriptors 88

3.3.4.3 Momentary pitch descriptors 89

3.3.4.4 Chroma descriptors 90

3.3.4.5 Chroma polyphony descriptors 91

3.3.5 Rhythm descriptors . 92

3.3.5.1 CPMs . 93

3.3.5.2 CPM strengths . 94

3.3.5.3 CPM evolve . 94

3.3.5.4 Tatum . 94

3.3.6 Spectral descriptors . 95

3.3.6.1 Spectral centroid . 96

3.3.6.2 Spectral complexity 96

3.3.6.3 Spectral decrease . 96

3.3.6.4 Spectral flux . 96

3.3.6.5 Spectral peakiness 97

3.3.6.6 Spectral rolloff . 97

3.3.6.7 Spectral skewness . 98

3.3.6.8 Spectral spread . 98

3.3.6.9 High frequency content (HFC) 98

3.3.7 Integrated architecture . 99

3.3.7.1 Integration layer . 99

3.3.7.2 External toolsets . 99

3.3.8 Flexibility . 101

3.3.9 Visualization . 101

3.3.10 Extensibility . 103

3.3.10.1 Analysis graph . 103

3.3.10.2 Extending the analysis library 105

xiii

3.3.11 Element features assessment 107

3.4 Compositional subsystem . 107

3.4.1 Navigation . 107

3.4.1.1 Navigation extensibility 108

3.4.2 Ordering . 108

3.4.2.1 Ordering extensibility 109

3.4.3 Temporalization . 109

3.4.3.1 Absolute time . 110

3.4.3.2 Symbolic time . 111

3.4.3.3 Hybrid time . 111

3.4.4 Adaptation . 111

3.4.5 Compositional objects . 111

3.4.5.1 Composition class 111

3.4.5.2 Section class . 112

3.4.5.3 Strand class . 112

3.4.5.4 Event class . 112

3.5 Rendering subsystem . 113

4 Ignis Fatuus: a recombinant piece composed with sEl 118

4.1 The composition’s EncycloSpace . 118

4.2 Movement I. Have I destroyed? (Intro) 119

4.3 Movement II. Vocalise . 120

4.4 Movement III. Upbound . 121

4.5 Movement IV. Toccata . 122

4.6 Movement V. Ignis Fatuus . 122

4.7 Movement VI. Have I destroyed? (Coda) 122

xiv

5 Postlude 125

5.1 Conclusion . 125

5.2 Future Work . 128

5.2.1 Expansions . 128

5.2.1.1 Sound material types 128

5.2.1.2 Rendering types . 128

5.2.1.3 Modality types . 129

5.2.1.4 Compositional vocabulary 129

5.2.1.5 Element matching 129

5.2.1.6 Elements containment 130

5.2.1.7 Data visualization 130

5.2.1.8 User interface and interactivity 130

5.2.1.9 Documentation and availability 131

5.2.2 Optimizations . 131

A Default descriptors 133

B Default category taxonomy 136

B.1 Morphology categories . 136

B.2 Source categories . 139

B.3 Resonator . 141

B.4 Instrument-wise . 141

B.5 Play-wise . 143

B.6 Spectromorphology . 146

C Comparison of External MIR Toolsets 149

D Dependencies 157

Bibliography 159

xv

List of Tables

3.1 dbDataFile (table datafile) . 60

3.2 dbDataFileGroup (table datafile group) 60

3.3 dbElement (table element) . 61

3.4 dbElementParent (table elem parent) 62

3.5 dbElementNext (table elem next) 62

3.6 dbElementLoop (table loop) . 63

3.7 dbElementSegmentation (table element segmentation) 63

3.8 dbDescriptor (table descriptor) . 65

3.9 dbClass (table class) . 67

3.10 dbSymbol (table symbol) . 67

3.11 dbFeatureStats (table feature stats) 67

3.12 dbElementCategory (table elem cat) 68

3.13 dbImaginaryCategory (table imagine) 68

3.14 dbAnalysisConfig (table analysis config) 69

3.15 dbAnalysisConfigFeature (table analysis config feature) 69

3.16 dbElementFeature (table element feature) 70

3.17 dbElementFeatureCV (table element feature cv) 71

3.18 dbCollection (table collection) . 73

3.19 dbCollectionElements (table collection elements) 73

3.20 dbSequenceElements (table sequence elements) 73

xvi

3.21 dbCollectionGroup (table collection group) 74

3.22 Timescale descriptor ranges . 79

3.23 Dynamics descriptor ranges . 83

3.24 Bark bands energy descriptor frequency ranges 84

3.25 Pitch classes symbols . 91

A.1 Temporal descriptors . 133

A.2 Energy descriptors . 133

A.3 Tonal descriptors . 134

A.4 Rhythm descriptors . 134

A.5 Spectral descriptors . 135

C.1 Toolsets Input/Output . 149

C.2 Features (Amplitude) . 150

C.3 Features (Chroma, harmony, key) . 150

C.4 Features (Energy) . 151

C.5 Features (Frequency, pitch) . 151

C.6 Features (Perceptual energy) . 151

C.7 Features (Spectral) . 152

C.8 Features (Temporal) . 153

C.9 Features (Volume) . 153

C.10 Features (Other) . 154

C.11 Transforms . 154

C.12 Auxiliary processing . 155

C.13 Additional algorihms . 156

xvii

List of Figures

1.1 Association graph of fundamental activities and scientific domains of

music . 4

1.2 The cube of music ontology . 8

2.1 System structure . 21

2.2 System communication schema . 21

2.3 Structural layout of composition . 40

2.4 Transforming EncycloSpace into musical object 41

2.5 NOTA-transform phases . 42

3.1 Database workflow . 49

3.2 Audio pool user interface . 50

3.3 Audio pool context menu commands 51

3.4 File information viewer . 52

3.5 Category editor . 53

3.6 Imaginary category assignment . 54

3.7 Segment editor window . 54

3.8 Segment editor commands . 55

3.9 Database elements editor . 56

3.10 Material layer of the database schema 61

3.11 Semantics layer of the database schema 65

xviii

3.12 Categoric generalization of french horn 66

3.13 Recombinant layer of the database schema 72

3.14 ER schema of sEl database. 75

3.15 ER schema of sEl database with semantic areas. 76

3.16 Naive elements temporalization . 82

3.17 Q-time guided elements temporalization 82

3.18 Rhythm transform plot in sEl. 93

3.19 External toolsets integration in sEl. 100

3.20 Pitch map analysis visualization. 102

3.21 Harmonic Pitch Class Profile (HPCP) visualization. 103

3.22 Example of analysis graph. 105

3.23 Feature analysis graph selection widget 115

3.24 Element features window . 116

3.25 Structural relationships between compositional objects 117

4.1 A set of glass objects used to record the sound material for Ignis Fatuus123

4.2 Pitch information extracted by sEl from the recordings for the Ignis-

Fatuus’ fifth movement . 124

xix

Chapter 1

Introduction

”Music is a research the result of

which is music.”

Unknown source

Music creativity, technology and music theory have been intertwined and have

increasingly influenced each other for centuries. From the standpoint of music

creation, the breakthroughs in music technology and theoretical thought have stim-

ulated new ideas and brought them under the spotlight of compositional research.

The motivation for this dissertation is no different — we are seeking to develop

a computer tool for algorithmic composition that uses theoretical frameworks and

recent music technologies to try to settle on a territory that can potentially expand

contemporary compositional practice. This territory is associated with methodolo-

gies based on the algorithmic treatment of sampled sound materials guided by the

usage of semantics extracted from the materials. In the history of computer-aided

algorithmic compositional (CAAC) software there has been a long-standing paucity

in that area because the aforementioned methodologies require technological tools

which, until recently, have not been widely available.

The theoretical basis of our project is supported by the research in music ontology

and its technical grounding is based on the recent technologies developed in the field

1

of musical informatics. The importance of both will be discussed in this introductory

chapter along with specific problematics of sample-based algorithmic composition.

1.1 Music ontology and EncycloSpace

The process of music creation is an intricate ontological tapestry of decisions, actions

and states, both objective and subjective. Reliance on music ontology equips one

with the theoretical apparatus suitable for any music-related task, including designing

compositional tools; it will also help to locate focal design areas and to understand

their relations within the larger context. A clear ontological taxonomy can also be

an indispensable tool for the disambiguation of semantics within the sophisticated

non-linearities of the music creation process, about which Horacio Vaggione writes in

[118]:

This task [composing] cannot be exhausted by a linear (a priori, non-

interactive) problem-solving approach. Interaction is here matching an

important feature of musical composition processes, giving room for the

emergence of irreducible situations through non-linear interaction.

Our design principles are inspired by the ontological schema presented in Guerino

Mazzola’s comprehensive treatise on music topology [76]. Since its concepts of Ency-

cloSpace and ontological dimensions of music are used throughout this work we will

briefly expound its core terminology in the following sections.

1.1.1 Fundamental activities of music

Mazzola defines four fundamental activity types that pertain to music, that of pro-

duction, reception, documentation and communication.

2

Production refers to any generative type of activity related to music making.

Reception encompasses activities by any agency, human or not, involved in the

evaluation of music.

Documentation refers to activities that attribute to music entities a state of per-

manency, such as symbolic notation, media recordings, database storage etc.

Communication represents activities involved in communication among the pro-

cesses of production, reception and documentation.

1.1.2 Fundamental scientific domains

Along with these core areas Mazzola names a set of fundamental scientific domains

related to the field of music and defined as follows ([76], p.6):

Now, if one has to locate a special research subject, such as music, within

the hierarchy of disciplines, one is looking for a minimal set, a kind of basis

of disciplines which are necessary to cover the subject. In this sense, we

argue that four sciences: semiotics, physics, mathematics, and psychology,

are such a basis.

This roster of scientific domains strongly supports the notion of music as a multidisci-

plinary field which, to adequately cover its meaning, requires the presence of multiple

descriptive languages.

Semiotics deals with music as a sign system, considering contexts such as symbolic

notation, referential properties of sound as a mimetic device, cultural referencing etc.

Mathematics is involved to describe the complex forms that music takes as a

system of proportions, as a temporal process and any other quantifiable aspect.

3

Physics covers descriptions of music processes on the level of physical reality.

Psychology deals with phenomenological aspects of music, such as perception and

cognition, musicological interpretation, culturological assessment etc. Fundamental

activities and scientific domains can be mutually associated as shown in figure 1.1.

Documentation

Production Reception

Mathematics Semiotics

Psychology

Physics

Communication

Figure 1.1: Association graph of fundamental activities and scientific domains of
music

1.1.3 Coordinate space of ontological dimensions

Mazzola approaches music ontology in a topographical sense — instead of defining

ontological categories as a set of spaceless determinants he first introduces three

4

ontological dimensions, Reality, Communication and Semiosis, as a coordinate basis

for holding any fact of music ([76], p.10):

To understand music as a whole, you have to specify simultaneously its

levels of reality, its semiotic character, and its communicative extension.

Being a fact of music means having these three perspectives or ontological

coordinates. Omitting any of these determinants is an abstraction ... from

the full ontology.

Each ontological dimension is further topologically subdivided onto three autonomous

layers. These will be briefly described in the following sections as we are using that

terminology in our work.

1.1.3.1 Reality

The substance of music occupies reality on a range of layers: physical, psychological

and mental. According to Mazzola, none of these can be eliminated without inducing

reductionist view. It is also not ”ontologically possible to reduce one reality to others”

([76], p.10), because music phenomena have different representation in each. Instead,

the problem is to describe the correspondence between representations in different

layers of reality.

Physical layer of reality has to do with music as a physical temporal process:

vibration of physical bodies, such as strings, membranes; radiation of an acoustic

wave through the acoustic medium, physical disturbance of cochlea, physiological

propagation via an auditory nerve etc.

Mental layer of reality deals with music entities realized as mental schemas, pro-

jections of musical ideas into physical reality: symbolic scores, algorithmic formalisms,

analytic reductions such as Schenkerian diagrams etc.

5

Psychological layer of reality includes aspects of music related to its ability to

create emotional response in the listener. It is a substantive and autonomous reality,

for the very same entities of physical and mental layers can produce very different

emotional responses on the psychological level.

1.1.3.2 Communication

The communication dimension’s definition is drawn from the music theory laid out by

Jean Molino in [83] and elaborated by Jean-Jacques Nattiez in [84]. The theory defines

music as a tripartite communication involving creative (poietic), neutral (trace) and

receptive (esthesic)1 components.

Emittance layer (poiesis) is associated with the combination of factors leading to

creation of a musical work; the poiesis layer involves any agency, human or automated,

that partakes in building the music ”message”.

Trace layer (neutral) refers to the ontological dimension of the music work itself.

With all the difficulties of identifying what exactly the music work is, its ontological

aspect does not require pinpoint precision in the definition or, as Molino puts it, ”the

idea is intuitively clear” ([83], p.152). The neutral layer defines the music work as a

trace produced by the poiesis layer and available for interpretation (re-construction

of trace) by the esthesis layer.

Reception layer (esthesis) refers to the receiving end of the communication

schema which is — the listener. The term listener should be taken in a general

sense — as a combination of factors involved in the valuation of music facts. For

instance, with respect to communication, a human listener and a music information

retrieval algorithm will be located at similar ontological coordinates.

1Notice special spelling in poietic and esthesic to divorce their meaning from the conventional
poetic and aesthetic

6

1.1.3.3 Semiosis

Involving intricate processes of signification, music can be characterized as ”one of

the most developed non-linguistic systems of signs” ([76], p.16). Signification takes

places on various levels of reality and communication, from symbolic notation to

production/reception of musical facts. Mazzola constructs the dimension of music

semiosis borrowing from the structuralist semiology as developed by F. de Saussure

in [38] and R. Barthes in [16]. It should be noted that applying semiological principles

to music does not entail attributing to it any properties of a language. A detailed

discussion of semiological aspects of music would go well beyond the scope of this

work; suffice is to say that musical meaning grows from very complex trajectories

of signification. With its spatio-temporal syntax, music does not convey clear and

unambiguous meaning; instead, it creates endless threads for emotional and mental

interpretation.

The dimension of semiosis has a tripartite layout corresponding to the components of

a sign realization in the structuralist semiology: signification, signifier and signified.

Signification is the act of using one entity to point to another. A simple example:

a sfz sign in Western notation points to the idea of playing sound with an accent.

During the signification act, a translation of the sign takes place that dereferences its

content in the form of meaning.

Signified is a content of signification pointed at by the signifier.

Signifier is a component of signification that has to be interpreted in order to

obtain meaning contained in signified. Signifier itself can become a complete sign

thus creating possibilities for an infinite chain of cascading interpretations.

7

1.1.4 Music ontology cube

Taking reality, communication and semiosis as an orthogonal basis, Mazzola defines

a finite three-dimensional space where each dimension is represented by discrete

values corresponding to the layers described above. Since there are three dimensions

and each one has three layers, there are 33 = 27 ontological coordinates collectively

forming a cube (see figure 1.2). Each coordinate is ontologically distinct and is

not reducible to any other combination of coordinates. Each coordinate repre-

sents one of 27 ontological positions that particular music object can occupy and

which is defined as a combination of locations in reality, communication and semiosis.

Reality

Mental

(Emittance, poiesis) (Trace, neutral) (Reception, esthesis)

Creator Work Listener

Psychic

Physical Signi�er

Signi�ed

Signi�cation

Semiosis

Communication

Figure 1.2: The cube of music ontology

An important property of the ontology cube is its local orientation and possibility

of recursion — each of its nodes can yield a whole cube for further navigation which

8

Mazzola terms as a ”conceptual zoom-in effect” ([76], p.21). Consequently, ontological

investigation about the fact of music is likely to form a path of ramifications through

the nodes of the cube.

1.1.5 EncycloSpace

Musical facts are not created and perceived in an informational vacuum. The concept

of EncycloSpace, defined in [76], postulates that a musical process takes place in

incessant communication with a dynamically changing body of knowledge. Stressing

the fact that knowledge has two parts, ”information and its mental organization”,

Mazzola points out the role of conceptually diverse arrangements of information,

crucial to the effectiveness of its access. In that sense, EncycloSpace is a conceptually

diverse, organized body of information which allows the optimized search for data.

Another crucial EncycloSpace’s characteristic is its dynamicity — in the presence

of newly appearing musical facts it constantly updates its informational volume and

its conceptual organization. The dynamicity of EncycloSpace leads to a distinction

between two counter-directional modes of its access: Receptive and Productive.

1.1.5.1 Receptive navigation

Receptive navigation corresponds to the method of access typical in traditional ency-

clopedias — when information is retrieved without altering the knowledge base. The

immutable character of receptive navigation reflects the esthesic dimension of music

ontology.

1.1.5.2 Productive navigation

In contrast with the previous, Productive navigation entails an accretion of informa-

tion in EncycloSpace and possibly, also an extension of its conceptual vocabulary.

This navigation mode is responsible for the EncyloSpace’s dynamicity.

9

1.2 Problematics of sample-based algorithmic

composition tools

In this section we are going to argue that, until recently, sample-based algorithmic

composition tools have not been in active development (and therefore lag behind

other automated composition computer tools) due to the intrinsic conflict between

the requirements of EncycloSpace access and the parametrically opaque nature of

sampled sounds.

Algorithmic systems of composition vary in the ways in which they approach

the formalization of decision-making strategies. As part of the strategy, most of

them have to deal with generative and evaluative parts of the compositional cycle

[109], which, in the above ontological terminology, belong to productive and receptive

dimensions correspondingly. Generative algorithmization is focused on productive

strategies, while evaluative formalisms are mainly concerned with the assessment of

generated structures in order to decide on their fitness for the inclusion in the final

result. More often than not, both generative and evaluative strategies are realized as

parametric systems endowed with elaborated semantical structures. In ontological

terms, both poietic and esthesic formalisms serve as parts of EncycloSpace in which

their semantic structure defines the conceptual organization for algorithmic access,

while their parameter values provide information which is being accessed and used

for the creation of music. This brings to the forefront an important consequence

of switching from traditional to algorithmic methods of composition: computer

formalisms should be capable of supporting the system’s EncycloSpace navigation,

preferably in both, receptive and productive, modes of access. Put another way,

delegating compositional decision-making to algorithms comes with the necessity of

algorithmic maintenance of the knowledge base of the system.

10

EncycloSpace navigation, being an intrinsic requirement for algorithmic implemen-

tation, has always been an obstacle for the realization of sample-based compositional

strategies due to the parametric opaqueness of sampled sound. On the contrary,

synthetic methods of sound computation never experienced similar problems due to

their inherently parametric nature and, therefore, effortless integration into algorith-

mic EncycloSpace. This difference, in our opinion, is responsible for the prevalence of

algorithmic systems whose compositional vocabulary is predominantly based either

on synthetic elements or on symbolic sign systems such as MIDI or notation.

Despite the parametric numbness of sampled sounds, their natural complexity

and unrefined character guaranteed their longevity as choice compositional material

since the dawn of musique concrète, although chiefly, in non-algorithmic contexts.

Whenever I used sampled materials in my algorithmic works there has always been

a great deal of manual labor combined with randomized material navigation —

obviously very limiting and an unsatisfying choice of strategy. An exception to

the rule is granular synthesis, which allows treatment of synthesized and recorded

material on an equal footing providing comparable levels of parameterization for

both. Still, this is not a general solution, because granular synthesis parameters, in

the case of samples, are agnostic to the grain’s content.

The situation with the algorithmic comprehension of sampled signals started to

change due to the technological advances in the field of speech synthesis in the middle

of 1990s [101]. Concatenation-based speech synthesis relied on large databases of

recorded speech elements, which had to be extensively parameterized in order to be

navigable. Over the last decade, technologies have emerged that brought recorded

sound data mining on the level of widespread availability in the form of commercial

and open-source music information retrieval toolsets. This technological surge en-

11

abled the new design of computer tools for sample-based algorithmic composition.

Indeed, numerous applications were developed that utilize sound production via

navigation of the sample-oriented EncycloSpace. This methodology of creating

music facts was termed corpus-based concatenative synthesis. Discussion in [112] and

[101] contains overviews and a description of strategies of a number of corpus-based

composition systems. The description shows that many of those systems are mostly

designed as synthesis tools, i.e. their compositional strategies are rather narrowly

designed and confined within the predetermined decision-making procedures. These

problematics will be addressed in more detail in 2.5.2.

The overall assessment of the state of corpus-based algorithmic compositional

systems, drawn from the above and other publications, shows that the need for a

general approach and balanced methodology in that area is still required. In the main,

our goal was to design and implement a computer system for algorithmic composition

which meets the following objectives:

• System design should include the concepts of musical ontology and Ency-

cloSpace (corpus-based)

• A general methodology of compositional use of EncycloSpace should be devised

• EncycloSpace should support recorded material of arbitrary provenance (omni-

source)

• The system should support receptive and productive modes of the EncycloSpace

navigation

• The system should support semiotic signification within EncycloSpace (recom-

binance)

• The system should provide full production cycle — from compositional design

to perceivable musical result.

In the following chapter the system design will be discussed in detail.

12

Chapter 2

System design

This chapter discusses structural and functional considerations for building compo-

sitional software based on the intended functionality (1.2). We will first examine

basic aspects such as system identification, choice of development platform, system

dependencies etc. The following specialized sections discuss the system architecture,

media database considerations and approaches to specific parts of the system.

2.1 General considerations

2.1.1 System identification

This software’s functional identification can be constructed from CAAC taxonomy1.

This taxonomy is not yet standardized and has a history of multiple development

stages. An attempt to systematize computer music tools, proposed in [93] in the

middle of 1990s, places Algorithmic and computer-aided composition tools in the

sectionMusic theory, composition and performance. There are only three subdivisions

in that taxonomy:

1. Compositional algorithms and languages

1Computer Aided Algorithmic Composition

13

2. Composition systems for score or sound synthesis

3. Artificial intelligence and composition

Divisions like this seem too general and not necessarily based on well-defined princi-

ples of categorization. A much more systematic approach was suggested in [12]:

In order to describe the landscape of software systems, it is necessary to

establish distinctions. Rather than focusing on chronology, algorithms, or

output types, seven descriptors of CAAC system design are proposed.

These descriptors are scale, process time, idiom affinity, extensibility,

event production, sound source, and user environment. All systems can,

in some fashion, be defined by these descriptors.

According to these seven descriptors our CAAC system can be characterized as fol-

lows:

2.1.1.1 Scale

The scale descriptor defines the level of temporal structures that the system can

produce. It changes from micro (sample level, grains, notes) to macro (sections,

movements, whole compositions). This range comprises five of nine time scales de-

fined in [97], namely sample, micro, sound object, mesa, macro.

With respect to the scale descriptor our project can be characterized as a Full-scale

system — it produces structures of all scales from micro objects to large-scale struc-

tures.

2.1.1.2 Process time

The process time descriptor assesses systems with respect to real-time operation, thus

differentiating between real-time (RT) and non-real-time (NRT) architectures.

14

Real-time operation means that in all relevant situations the system guarantees com-

putation of the audio frame in less time than it takes to play it back as sound. Nor-

mally, this is a welcome property and more often than not computer music systems

come equipped with it. Nevertheless, in select contexts real-time operation can be-

come a bottleneck for the functionality of the system. An example of such a context is

a situation when audio production depends on the analysis of incoming sound. In this

case, there will always be delays correlated with the analysis’ temporal parameters.

For instance, the rhythm transform can utilize analysis frames up to 6 seconds [55].

In such situations, real-time requirements should be lifted or they start conflicting

with computation of the sound data[34]. More examples of relaxed real-time sound

application contexts can be found in [104]

In the current project, compositional computation essentially relies on analytic pro-

cesses. Some production methods require multi-pass procedures to attain the nec-

essary perceptual precision. Stochastic aspects of rendering entail non-linear access

to audio buffers which is also incompatible with real-time linearity. While real-time

operation is still desirable, currently this requirement is lifted for the benefit of exac-

titude and quality of the resulting computation.

2.1.1.3 Idiom affinity

Idiom affinity is defined in [12] as

...the proximity of a system to a particular musical idiom, style, genre

or form. ... A system with a singular idiom affinity specializes in the

production of one idiom (or a small collection of related idioms), providing

tools designed for the production of music in a certain form, from a specific

time or region, or by a specific person or group. A system with a plural

idiom affinity allows the production of multiple musical styles, genres, or

forms.

15

Idiom affinity is here defined by its particular model of musical process based on the

following principles:

• Receptive/Productive behavior — the compositional process depends on an

analytic process.

• EncycloSpace — compositional models utilize semantic space.

• Recombinance — compositional API supports recombinant treatment of mate-

rial.

• Omni-source — sounds derived from any source, time-scale and character can

be processed by the system.

2.1.1.4 Extensibility

Extensibility of the system characterizes its possibility of functional expansion from

the user’s vantage point. Systems can be expanded in various ways and on various

levels. Plug-ins, extension modules, object macros, script engines, unit generators,

backends — these are just a few examples of expansion methods. Code-driven systems

are expanded by adding code, data-driven systems - by adding new data. Systems de-

signed for extension are called open, the opposite are called closed. Being open-source,

this system allows full code-driven extensibility to users who can program. The anal-

ysis subsystem also provides a modular interface to extend the system by adding new

analysis algorithms (3.3.10). On the data-driven side, this system supports expansion

via productive utilization of EncycloSpace.

2.1.1.5 Event production

The event production descriptor is concerned with ways in which new material is deliv-

ered. It discriminates between generative and transformative systems. In the current

implementation, this system mostly offers tools for recombinant transformations of

16

existing material. However, nothing precludes its future expansion with generative

objects.

2.1.1.6 Sound source

This descriptor characterizes how systems deal with sound realization:

• Internal — the sound result is produced by an internal processing engine.

• Exported — the system produces result in some descriptive format that can be

converted to sound by an external system

• Imported — ability of the system to import external system definitions and

convert them to sonic results

• External — the system produces results which can be only realized externally.

The main difference between this and exported modes is the level of the user’s

control over sound parameters: the exported mode allows such control while

the external mode does not.

This system produces sound results using the internal processing engine. It can also

import segmentation and analysis data from external sources.

2.1.1.7 User environment

As defined in [12], the user environment discerns compositional systems by the ways

in which they present their functionality to the user:

• Specialized Text Languages — programming language extensions and lan-

guages specialized for CAAC operation. Examples include LISP-based exten-

sions (e.g. Common Lisp Music[99], Nyquist[37], Extempore[108]), HMSL[27]

and JMSL[39], Csound[120], SuperCollider[77], ChucK[121]. RTcmix[51] uses

swappable front ends (Minc, Python, Ruby) which allows user to choose from

multiple syntaxes.

17

• Specialized Graphic Languages — visual language environments most notable

of which are Max/MSP[94], Pure Data[95], Kyma [30], OpenMusic[10] and

PWGL[69].

• Batch processors — software that provides little or no interactivity to the user

with the exception of specifying some system parameters before it starts process-

ing. Batch processors are often developed as algorithmic environments whose

generative decision-making process is ultimately automated. Examples include

early systems by Hiller and Isaacson[59], Koenig[66] and [65], Xenakis[61],

Zaripov[124], recombinant systems by Cope[36], some music mosaicing software

[125], [21], [58] to name just a few.

• Interactive Text interface systems — text-based interaction systems with more

specialized constructs than that of languages. As examples of software that

falls into this category could be mentioned compositional systems by composers

Barry Truax[114] and Trevor Wishart[45], Bol Processor[18], athenaCL[13] etc.

• Interactive Graphic interface systems — software in which user interaction is ad-

ministered via graphic elements. Examples include SoundLoom (GUI layer for

CDP software)[122], CsoundQt (GUI for Csound)[28], CataRT[102], Nodal[78]

and more.

Our system combines features of Interactive Graphic interface systems and Specialized

Text Languages.

The full seven-descriptor identification of our system includes:

• scale — full time-scale

• process time — relaxed real time

• idiom — recombinant, corpus-based

• extensibility — open

• event production — transformative (in the future will add generative)

18

• sound source — internal and imported

• user environment — interactive graphic interface

2.1.2 Development platform and language

Music-oriented software varies in its particular programming languages and plat-

forms. Platform contexts can significantly differ in scope — from operating systems

to specific software packages that attain platform capabilities via extension interfaces

(usually in the form of plugin APIs). The language and platform choice is informed

by functionality requirements, the targeted user base, and by logistics, such as devel-

opment timeframe, developer resources etc.

2.1.2.1 Platform

Computer-aided composition software can either be designed from scratch using gen-

eral operating system tools and run as a separate process or it can be hosted by spe-

cialized software that provides audio and other functionality thus reducing the amount

of development required. Some systems, like Csound ([120]) or RTcmix ([51]), which

were originally developed as standalone tools eventually added versions embeddable

in specialized platforms like MaxMSP ([94]).

However attractive the hosted development option, it comes with limitations imposed

by the hosting software’s architecture and conceptual idiosyncrasies. A hybrid ap-

proach can be developed in order to avoid such restrictions: the software is developed

on a general platform while integrating specialized third-party libraries. This allows

a reduction in development time without constraining functional coverage. On the

other hand some development overhead can be induced by the necessity of integration

tasks.

For this project a hybrid approach was adopted. Another example of an integrated

system can be found, for instance, in [50].

19

2.1.2.2 Programming language

At the current stage, this project’s software is a prototype (as opposed to a completed

system). For its development we chose the Python language. This decision was

informed by the availability of open-source third-party components and tools and

by Python’s suitability for rapid development. More details regarding preference for

Python for development of CAAC environment can be found in [13].

2.1.3 Dependencies

This project integrates the functionality of a number of open-source frameworks and

libraries to optimize the development cycle. Their roster is provided in Appendix D.

2.2 System structure

The software is designed as a set of collaborating subsystems each with its scope

and function. The structural components can be divided into two groups: a func-

tion carrying group and a user interaction (UI) group. Components of a functional

group do all the data computation work while UI components assist in accessing and

controlling the functional parts. Figure 2.1 shows principal design and channels of

communication among system components.

2.2.1 User interface

Software user interfaces range from simple command-line text input to elaborated

graphical systems. This project’s software manages large amounts of audio and ana-

lytic data that would be very unwieldy (if possible at all) to manipulate and under-

stand without graphical tools for navigation, visualization, data selection etc. The

project’s user interface uses windowing system based on an open-source cross-platform

framework called Qt[35]. The user interface is presented in more detail in 3.1.

20

Feature Database

Composition Object Music Result
Audio Pool

Analysis subsystem Navigation subsystem

User interface

Composition subsystem Rendering subsystem

Figure 2.1: System structure

2.2.2 Functional structure

The functional structure of the software follows the tripartite ontological communi-

cation scheme of music outlined in 1.1.3.2. In accordance with the schema’s layers,

the functional parts comprise three communication groups depicted in figure 2.2.

Feature Database

Analysis subsystem

Navigation subsystem Composition subsystem

Rendering subsystem

RECEPTION EMITTANCETRACE

EncycloSpace

esthesis

so
u

n
d

so
u

n
d

poiesisneutral

Figure 2.2: System communication schema

21

2.2.2.1 Productive function (Emittance)

The emittance layer of the system corresponds to its primary function of producing

the musical result. This function is carried out by two functional parts working in

concert:

• Composition subsystem

• Rendering subsystem

The composition subsystem comprises tools to create compositional structures

on the macro and micro time scales. It also resolves logic of temporal aspects of

composition. Its output consists of compositional objects which collectively contain

parametric definitions of the composition. This structure is then fed into the rendering

subsystem which parses parametric structures, resolves probabilistic constructs into

deterministic sequences, converts logical time into physical time, maps sound data

onto physical timeline and renders the result. Composition and rendering subsystems

are described in detail in sections 2.5.2, 3.4 and 2.5.3, 3.5 correspondingly.

2.2.2.2 Receptive function (Reception)

The reception layer represents the capacity of a system to evaluate entities. In the

context of this project, this can be specified as the ability to parameterize incoming

sounds via process of feature extraction. While the presence of the emittance function

is shared by all compositional software, the presence of the receptive function is not.

However in our project, both emittance and reception are inexorably intertwined

in order to achieve compositional goals. The reception layer is implemented as the

analysis subsystem. Implementation details are given in sections 2.4 and 3.3.

22

2.2.2.3 Trace function (Transport)

The transport layer is the glue of the system, operating as a bridge between productive

and receptive layers. Its physical organization provides a persistence means for the

EncycloSpace of the system. The receptive layer augments EncycloSpace by creating

new entries out of freshly segmented elements and newly analyzed features. The

productive layer uses the navigation subsystem to cruise EncycloSpace in search of

compositional data and also to create new entries from recombining elements.

Further sections discuss design considerations with respect to each functional layer.

2.3 Transport layer: Media database

Media database considerations will address:

• Database general architecture

• Structure of database relations

• Building-block elements

2.3.1 General architecture

The media database represents the system’s body of knowledge, EncycloSpace, mem-

ory. Structure, robustness and interface of the database are instrumental for the

functioning of both analytic and compositional phases of work with the system. The

requirements for media database come in a variety of aspects:

• Quantitative aspect: ability to store arbitrarily ample quantities of data.

• Speed: expedience in data creation, update, search and retrieval.

• Integrity: ability to protect data from ending up in inconsistent states.

• Flexibility: accommodating data of complex structures.

• Concurrency: allowing multiple simultaneous contexts of data access.

23

• Compression: ability to conserve storage space by applying data compression.

• Free access: database systems that offer free tools for non-commercial users.

• Availability of Python tools: this requirement is included due to our choice of

the development platform.

Different aspects may suggest different preferences in the choice of a database

management system. For instance, HDF2 platform [53] gained popularity as storage

model for scientific data due to its data structure flexibility, access speed and com-

pression. It is accepted in some music research and information retrieval systems

such as [75] and [19]. However, HDF, which is based on file access, does not respond

well to requirements of concurrency and data integrity. RDBMS3 systems are on the

opposite side — they support integrity, concurrency and distributed access to data

but they experience some processing overhead and require special tricks for handling

hierarchical data. Object-oriented DBMS could remedy the latter. Some specialized

media database approaches were also proposed usually with the goal of optimizing

some of the aspects listed above. For instance LSH4 format described in [106] dras-

tically reduces time of search by similarity in extra-large databases. This method

was employed in [31] and generally can be welcomed in any realtime concatenative

synthesis application.

Since no single DBMS solution seems to respond equally well to all of the media

database requirements the choice has to be informed by the priorities of the DBMS

client system. Settling on corpus data structures suggested a database architecture

approach based on ORM5 layer [17] running over PostgreSQL RDBMS [54].

2Hierarchical Data Format
3Relational Database Management System
4Locality-Sensitive Hashing
5Object-Relational Mapping

24

2.3.2 Structure of database relations

Providing material connection between poiesis and esthesis of the system6, the media

database needs proper planning of its data structures. This concerns specifications

of the database schema — a set of interconnected relations that define the structure

of the system’s EncycloSpace. Since the latter integrates circulation of data in both

directions of emittance and reception it is instrumental that the database schema

fully supports semiosis as defined in the ontological model (1.1.3.3). In other words,

the database schema should allow elements to refer to other elements when defining

their content thus supporting element’s appearance on either side of signification act,

i.e. signifier and signified.

A database schema for this project was devised after studying related work in other

corpus-based systems. The reception part is largely designed following the model

described in [100], with a number of modifications and extensions. The emittance

part of the database schema was designed afresh. Its structure facilitates manipula-

tions of sound elements on the basis of extracted semantics in order to foster their

compositional recombinations. Database schema details follow further in 3.2.

2.3.3 Building-block element

The building-block element is a data structure that serves as a functional template

which holds descriptions for any sound entity contained in the media database. This

structure defines properties of sound in terms of its physical storage location (typi-

cally — sound file) and temporal boundaries within the file. Building-block element

(or simply element) is also a structural unit to use for describing sound as ordered

aggregate of smaller elements. This allows the creation of structural hierarchies of

sound elements which also reflects how sounds are parsed by human perception and

cognition mechanisms[43].

6Both analysis and composition subsystems use the database to carry out their function

25

2.4 Receptive layer: Analysis subsystem

From the perspective of communicatiion with EncycloSpace the analysis subsystem

carries out one of the most important functions of the whole system - converting

real-world phenomena into knowledge. Real-world phenomena in this case includes

recorded sound, knowledge — features extracted from it and categories assigned to

it. By means of multi-dimensional analysis the system materializes an esthesis line

of ontological communication. Its primary function is not to create a musical result

by itself but rather to build an informational background that can be used to create

the musical result. Through this connection, the analytic subsystem influences the

potentiality of the system’s poiesis.

From a practical perspective sound analysis is a multiple-step process:

1. Audio segmentation

2. Feature extraction

3. Categorical description

the first two steps are executed in the given order — first segmental boundaries are

figured out and then feature analysis is executed with respect to material contained

in each segment. Category assignment can be done before and/or after segmenta-

tion/feature extraction due to its ability to translate class membership along lines of

structural inheritance (see details in 2.4.3).

2.4.1 Audio segmentation

As stated in [11]:

An important step towards a musically useful parametrization is the seg-

mentation of a sound into regions that are homogenous in terms of a set

of sound attributes. The goal is to identify regions that, using the sig-

nal properties, can then be classified in terms of their content. This way

26

we can identify and extract region attributes that will give higher-level

control over the sound.

Critical role of segmentation is also corroborated in [110]:

Segmentation alone can determine the quality of a corpus of sounds. Im-

proper segmentation can lead to a loss of information and sub-par search

results.

and in [25]:

Temporal segmentation of an audio stream into shorter elements is a fun-

damental step in the transformation of sounds into semantic objects.

Depending on application segmentation can significantly differ in terms of tem-

poral range within which segment boundaries are sought. For instance structural

segmentation, assisting in genre classification, would look for temporal boundaries

on a scale of musical sections, while melody analyzing segmentation will be more

interested in finding segments on a timescale of a single music event. Other segmen-

tation contexts can include: segmentation for the purpose of music practicing [123],

field recordings catalogization [71], temporal separation of speech and music in radio

signals [49] and more.

In the context of this project, analysis is applied to continuous regions of sound in or-

der to increase the volume of an EncycloSpace of the system. Each analyzed region is

assigned an id and becomes a navigational point of entrance within the EncycloSpace.

Methods of audio segmentation have a direct impact on the timescale structure of

the resulting searchable space.

Even though segmentation belongs to analytical processes, i.e. it is a component of

esthesis, it is also a part of the compositional strategy (poiesis). This is because it

defines navigable space for the productive phase which, in turn, can be invested in

very different time scales for search of composition elements. In general corpus-based

27

composition system should support all compositionally meaningful time scales.

Audio segmentation can be approached in four general modes:

• Manual segmentation

• Unsupervised segmentation

• Supervised segmentation

• Mixture of the above

2.4.1.1 Manual segmentation

In a manual mode, segment boundaries are obtained solely as a result of actions

administered by a human operator. In this mode, the software’s role is limited to

manual editing and visualization of segments. While hardly useful for musicological

tasks (except for specifying the ground truth7) the manual mode still can be helpful

for composition-grade segmentation where precision is critical. The serious downside

of this method is its impracticality in situations where hundreds or thousands of

segments have to be specified.

2.4.1.2 Unsupervised (automatic) segmentation

The segmentation algorithm goes without any guidance from a human expert (or any

other external source) and only needs sound input to generate segment boundaries.

Segmentation criteria can be chosen from wide variety of features and applied in

different combinations. Some approaches to unsupervised segmentation are discussed

in [92] and [15].

7Ground truth is a term used to designate absolutely correct solutions. It is omnipresent in
machine learning applications as a tool to evaluate validity of algorithmic output.

28

2.4.1.3 Supervised segmentation

To draw conclusions about segment boundaries supervised algorithms use pre-existing

knowledge. This group of methods is at home in the contexts where specific expec-

tations exist about the characteristics of a sound input. Supervised segmentation

works best when the score accompanies the recording that is a subject of segmenta-

tion or when the category space of intended classification is known beforehand. For

an omni-source compositional system this is unlikely the case — its knowledge base

should accommodate sounds brought in from arbitrary sources and of discretionary

spectro-morphological characteristics. Due to this openness and the significant inde-

terminacy of taxonomy space in the compositional process, supervised methods might

have limited applicability.

2.4.1.4 Mixed-mode segmentation

Segmentation modes can be mixed to improve the correctness and effectiveness of

analysis.

2.4.2 Feature analysis

Whereas segmentation is critical for temporal structuring of material, audio-content

based feature analysis is responsible for the parametric variety of its representation

inside EncycloSpace. Each feature represents a single dimension in multi-dimensional

semantic space. More analytic dimensions mean more possibilities in compositional

decision-making based on database navigation. Too many dimensions, however, can

create problems with processing time during proximity-based searches where all di-

mensions partake in computing the feature distance between sound elements. There-

fore, the set of analytic descriptors should be chosen amply but wisely in order to

represent the most compositionally salient characteristics while avoiding unnecessary

29

duplications or semantics of marginal importance. Literature on music informat-

ics has a broad range of publications directly or implicitly discussing sets of sound

descriptors for musicological tasks. Examples of such discussions can be found for

instance in [89], [11], [100]. Part 4 of MPEG-7 standard also contains definitions of

descriptors related to sound representations [9].

2.4.2.1 Description level

On the scale of description level feature descriptors are frequently divided into three

groups:

• Low-level descriptors

• Mid-level descriptors

• High-level descirptors

Low-level descriptors (LLDs) (also called instantaneous descriptors) are com-

puted across short-time window typically on a scale of up to one hundred millisec-

onds. This information averaged over an analysis frame is attributed to a specific

time point usually corresponding to the middle of the frame. Examples of LLDs that

can be extracted from time domain representation include energy, zero-crossing rate,

autocorrelation; examples of frequency domain LLDs — spectral moments (centroid,

spread, skewness and kurtosis), spectral energy, spectral roll-off etc.

Mid-level descriptors (MLDs) result from processing of low-level descriptors

normally without aggregation of LLDs over time. MFCCs8, BSCBs’9 energy, spectral

peaks, harmonic spectrum are examples of Mid-level descriptors.

High-level descriptors (HLDs) result from aggregation over time of low-level

and mid-level descriptors applied in various ways and combinations. They compute

8Mel-Frequency Cepstral Coefficients
9Bark Scale Critical Bands

30

characteristics more intuitively understood than LLDs and MLDs, such as melody,

rhythm, key and harmony.

2.4.2.2 Temporal variability

Sound is a time-varying phenomenon and so are some of its descriptors (especially

LLDs and MLDs). By temporal variability features can be:

• Static

• Dynamic

Static features describe sound as a whole using a single value. Examples of static

features are attack time, temporal mean, temporal density, onset cardinality etc.

Dynamic features depict changes of a given sound semantics over its lifetime and

result in a time series of values. This poses certain challenge to further usage of these

data. How much detail should we store in database and in what form? Keeping

all values will make the data unusable in a compositional context because there will

be no simple way to interpret their meaning. At the opposite extreme we could

simply store an average of the series, but that would be too reductive — no temporal

variability will be preserved in that case. A compromise can be found in a middle-

ground solution: to apply certain statistical post-processing to the time series. This

will reduce the amount of data to just a few scalars, but will sufficiently preserve

characterization of the descriptor’s temporal behavior. This approach is discussed in

detail in [100].

It is worth noting that not all time-varying features can be effectively processed that

way. As an example let’s consider a sound fragment where different pitches emerge

at different times for different durations. The aforementioned processing will treat

pitches as a statistical mass and will not preserve their vertical relations which can

31

be very useful in compositional context. With that sort of feature, we need to apply

strategies that don’t destroy their compositional merits.

2.4.2.3 Physical and psychometric

Sound is known as a double-faced phenomenon: on the one hand it has physical

properties such as frequency and intensity that can be measured objectively, and on

the other it has psychometric characteristics, such as pitch and loudness, that can

only emerge phenomenologically. In this example, two pairs are causally related but

have different scales of representation — linear growth in psychometric characteristics

corresponds to exponential growth in physical ones. This creates additional consid-

erations for choosing the proper feature scale. Designing a system for compositional

purposes dictates a preference for psychometric units as they are more closely related

to the listening experience. This preference is instantiated in the choice of analysis

descriptors presented further (see 3.3.1).

2.4.3 Categorical description

Whereas feature analysis unfolds quantitative characteristics of sound, categorical

description characterizes sounds qualitatively in the form of class membership. One

sound can belong to different category classes, each of which outlines different aspects

of its production: source, excitation material, resonator material, participating states

of matter, production techniques, location, spectro-morphological characteristics etc.

Due to its operational simplicity class membership is a convenient method of sounds

segregation and category space is a natural part of music EncycloSpace. To build the

sound classification system we have to answer two general questions:

1. What is the taxonomy of class categories for sound?

2. What are the methods of classification?

32

2.4.3.1 Class taxonomy

As stated in [76]:

Sound classification is one of the most complex unsolved problems in mu-

sicology. The reasons are triple: First, the communicative determinants

of sounds are not clear. Second, sound varieties are ... completely un-

classified objects. Third, the semantic charge of sounds is a substantial

constraint for classification; there is no good classification without seman-

tic constraints.

In view of the aforementioned problems, existing sound classification taxonomies vary

significantly depending on the context in which they are utilized. Typical contexts

in music informatics include genre classification and instrument classification. For an

omni-source compositional context, we are interested in the most general approach

capable of embracing arbitrary sound morphologies.

An initiative called Semantic Web features Music Ontology — a formal framework

that defines protocol called RDF10 for creating music taxonomies by the use of ma-

chine readable form[96]. The framework offers cross-class dereferencing and can be

expanded by any registered party. One of the framework’s goals is to create a platform

for the construction of music databases and information exchange. At the time of

this writing, there are 54 registered taxonomy classes[8]. Unfortunately, none of them

covers sound sources except for the class Instruments. For our project’s purposes this

scope is too narrow. Moreover, spectro-morphological sound characteristics are also

not present among Music Ontology classes.

However helpful a reference to standardized general sound taxonomy could be, its

absence is not necessarily critical for this project — given the appropriate tools, a

user of the system should be able to create sound taxonomies of her own choice.

10Resource Description Framework

33

2.4.3.2 Classification methods

Once the category taxonomy is established, the category space can be filled up by

applying sound classification methods. As in the case of segmentation classification,

this can be done with different degrees of automatization:

• Manual classification

• Automatic classification

• Hybrid classification

The manual classification method is self-descriptive — all category assignment

is done by a human expert. Considering that in omni-source environment a sound

taxonomy is likely to be unbound, we should expect much of category assignment be

done manually. For this scenario appropriate computer tools should be designed to

make manual assignment efficient.

Automatic classification is based on applying machine learning methods au-

tonomously. Classification mainly uses descriptors derived from audio but it can

also make inferences by parsing textual information obtained from file names and

file metadata. Some strategies of automatic classification are discussed in [91] and

[70]. Regardless of the strategy automatic classifiers operate within predefined tax-

onomies. Environments with unbound taxonomies (like ours) are likely to create

certain systemic problems for automatic classification.

Hybrid classification combines automatic and manual methods. This can be use-

ful in environments where automatic methods can cover only part of taxonomy. For

instance, in omni-source environment automatic classification could cover instrumen-

tal sources while the rest could be done manually.

34

2.4.3.3 Ontological binding

Sound classification can be done using either objective or subjective categories. The

former group describes sound as produced, the latter — as perceived. Examples of

objective taxonomies: instrument, object, material, playing technique; examples of

subjective ones: emotion, character, metaphor. Characterizing sound as violin pizzi-

cato or yarn mallet uses objective classifiers, referring to it as creepy, buzzy or uplifting

uses a subjective taxonomy.

In certain circumstances an objective category can be used in place of a subjective

one. For instance, if the sound of a cat reminds one of a baby crying — should it be

put in the database as a cat or as a baby? Certainly, we should keep both character-

izations with the distinction that the sound as produced is of a cat and as perceived

is of a baby. To make such a split classification the assigned categories should be

accompanied by flags with values showing whether the characterization is real (ob-

jective) or imaginary (subjective). Such a method would allow not only the search

for sounds which are something but also for sounds which sound like something or

remind one of something. There can be plenty of such cases especially in the presence

of abstract sounds, synthesized or otherwise produced. Because human perception

always attempts to resolve the provenance of acoustic phenomena[107], it invariably

takes sound as ”evidence to distinct environmental causes”[23]. Allowing categories

to have imaginary status provides a practical solution to this.

Along with the qualitative categorization for abstract sounds, we can also employ

spectro-morphological schemas such as Schaeffers Mass-Facture topology[81]. How-

ever, this aspect is left to the discretion of user.

35

2.5 Productive layer: Navigation, Composition,

Rendering

The productive layer comprises subsystems whose functions are combined in the pro-

duction of the musical result. Such subsystems are:

• Database navigation subsystem

• Composition subsystem

• Performance subsystem

2.5.1 Database navigation

Obtaining material from the media database during the compositional process is an

essential part of the functionality within corpus-based systems. The main aspects to

consider are:

• Flexibility of acquisition,

• Receptive/Productive access to EncycloSpace.

2.5.1.1 Flexibility of data acquisition

Access to EncycleSpace needs to be diversified as much as possible, i.e. database

navigation needs to be equipped with a flexible interface allowing a full search range.

Search contexts should be dynamically configurable allowing for vari-dimensional

queries. Large databases can present problems with scalability. In [105] algorithms

are proposed which address that problem by combining kD-trees and mass-spring

models for fast similarity searches in high-dimensional databases. The SQL syntax

traditionally lacks convenient clause constructs for proximity searches (this problem

is discussed in [14]). To amend that problem, on top of the SQL we utilize an object-

relational mapping layer.

36

2.5.1.2 Receptive/Productive access

Data sets, obtained via navigation (receptive access), should be able to obtain a per-

sistent state within EncycloSpace via accretion (productive access). Thus obtained,

these collections exemplify the first stage of data recombinance. They can be di-

rectly mapped to compositional objects. Receptive/Productive navigation is one of

the pivotal points in the system’s functionality.

2.5.2 Composition subsystem

The poiesis component is immanent to all computer-aided compositional systems.

Actual functionality differs in scope and structure depending on the software’s system

identification (2.1.1).

Inherent reliance on sound analysis and corpus makes this software’s compositional

subsystem share some functionality with other corpus-based compositional systems.

Most of these convey either concatenative synthesis or music mosaicing paradigms.

There is no standard or manifesto of how these terms are defined, but for the purpose

of this discussion we define them as follows:

• Music mosaicing — requires the so-called target sound to serve as a criterion for

database elements selection and as an organizational structure for their assembly

on the timeline. So, strategically the decision-making in music mosaicing is

considerably deterministic.

• Concatenative synthesis — allows interactive navigation through EncycloSpace,

which is usually presented as a two-dimensional field where each dimension

can represent one of sound descriptors stored in the database. This approach

allows improvisatory work with EncycloSpace but seems to lack in algorithmic

capacity.

37

Both methods use only receptive mode of navigation.

This project aims to steer away from these conceptual restraints and arrive at a

more general solution with full ontological access to EncycloSpace. Overcoming

compositional limitations of traditional concatenative synthesis and music mosaicing

are addressed, for instance, in [110] where the proposition is to combine navigational

strategies of both idioms to attain additional degrees of freedom in material selection.

Other useful techniques are suggested, such as alternative segmental projections for

sound units or dynamic unit definitions to promote hierarchical relationships and

mutability of database elements.

Another approach derived from the formalisms of a theory of sound-types is intro-

duced in [33] and further elaborated in [34]. The proposed model suggests a set

of methods towards sound hybridizations based on specific reduction and ordering

techniques. Reduction is done by signal automization, low-level feature computation

and subsequent clustering of sound atoms in order to infer sound-types — aggregated

representations of sound atoms. Along with sound-types, probability matrices are

computed that describe likelihoods of transitions between sound types thus capturing

temporal relationships on specified degrees of order. Sound synthesis is then done

on the basis of querying sound-types dictionary and applying transitional rules to

yield sound result. The dictionary and the rules function as the EncycloSpace for

the production phase. The overall functionality of the sound-types model, which is a

combination of audio compression and probabilistic production, somewhat deviates

from strictly compositional focus but it contains compelling ideas that could be

explored. From a compositional perspective perhaps the most problematic feature of

the model is that, as the sound database grows, its abstraction degree increases as

well, which diminishes the model’s relative diversity of sound representation.

The AudioGuide project presented in [56] bears a distinct compositional perspective

in approach to corpus-based synthesis. One of its main premises involves treating

38

sound as a source for extracting gestural trajectories and manipulating these in

order to derive degrees of behavioral variance. Features extracted from the target

are not necessarily immutable — they can be manipulated to warp database data

selection in order to derive new correlated gestural contours. Furthermore, during

segment selection in the presence of target sound, the AudioGuide considers different

methods of feature normalization to further negotiate between direct imitation and

metaphoric transcription. Applying weights to feature selection is another way

to influence matching process in favor of variability. Resulting solution space can

become high-dimensional which creates problems for its navigation. AudioGuide uses

dimensionality reduction methods, described in [103], based on multi-dimensional

scaling which allows to clusterize the solution space. One of the most notable features

in AudioGuide is a method of subtractive selection which matches target in multiple

steps: in each step residual spectrum is computed which is equal to spectral mismatch

between target and selected database segment; this residual spectrum becomes a new

target and the search continues until residual spectrum does not contain significant

energy anymore. Then thus obtained set of segments is applied in concert to replace

the target with minimal error. The subtractive selection’s principle of incremental

vertical superposition of segments allows to work towards better precision in the

synthesis process and use corpus with the feature space not necessarily overlapping

with that of a target’s.

2.5.2.1 Structure of Composition

Systems described above predominantly focus research on micro time-scales, i.e. from

the level of sample to gesture or phrase. Larger compositional structures, those of

macro time scales, are mostly left to one of two options: either free-form interactive

browsing of database (concatenative synthesis) or replicated from target sound (audio

39

mosaicing). In both scenarios macro structure emerges from prolonged execution of

a single process in a manner of bottom-up composing (as defined in [82]).

This project is driven by the motivation to create a full time-scale solution for corpus-

based composition. Along with researching micro-scale methods of sound synthesis,

this project also promotes the availability of the macro-scale constructs, which allows

this project to add top-down composing to the already available bottom-up counter-

part.

The overall structure of the compositional subsystem is a four-tier layout shown in

figure 2.3.

Composition

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

Section I

Strand 1

Strand M

Section N

event 1

event k

Figure 2.3: Structural layout of composition

Composition is a top-level structure that represents the whole piece. It consists

of sections which are deployed in succession during rendering.

40

Section represents a large-scale division of music similar to that of a movement.

Each section consists of strands which are deployed in parallel during rendering.

Strand is a construct similar to a single voice in instrumental music but this analogy

is rather relaxed. A strand consists of events which are deployed in succession during

rendering.

Event is the smallest unit, but only in the structural sense. Its duration is un-

restricted and is subject to compositional decision-making. A structural event, as

presented here, is not equal to a sound object — these are completely different en-

tities. In the simplest case, an event can contain a single sound element but most

of the time it will contain collections of sound elements. Details about relationships

between events and sound elements are provided in 3.4.5.4.

2.5.2.2 Composing with EncycloSpace, or NOTA-transform

To better describe and compare corpus-based strategies we define terminology based

on the operational pattern called NOTA-transform. It refers to general principles of

the compositional algorithmic process defined on EncycloSpace: NOTA-transform is

applied to the latter thus producing a new musical object (figure 2.4).

EncycloSpace Musical object:

piece, movement,

phrase, event

NOTA-transform

Figure 2.4: Transforming EncycloSpace into musical object

NOTA-transform designates four transformational phases disabbreviated as

Navigation, Ordering, Temporalization and Adaptation. The phases are chained

into a decision-making pipeline with each phase’s source domain being either the

whole EncycloSpace or a projection thereof. Transformation process goes through

41

producing successive projections until it reaches a renderable state in which it can

be utilized as musical object.

N-projection

O-projection

T-projection A-projection

Perceivable

music object

EncycloSpace

N
a

v
ig

a
ti

o
n

Te
m

p
o

ra
li

za
ti

o
n

Ordering

Adaptation

R
e

n
d

e
rin

g

Figure 2.5: NOTA-transform phases

NOTA-transform can be concisely defined as a four-step formalism. Let’s first

define EncycloSpace of length L as

E = {ε1, ε2, . . . , εl} (2.1)

where εi is element as defined in 2.3.3.

Step 1. Navigation transformation. Given an EncycloSpace E it is possible to

define N-projection as a result of navigation transformation applied to E:

E
ν(CN)−−−→ PN (2.2)

where ν is navigation transformation and CN — context which defines a set of con-

straints for navigation. N-projection is a E’s subset of N elements selected with

compliance to c:

PN = {ε1, ε2, . . . , εn} (2.3)

42

It should be noted that both E and PN are sets, i.e. there is neither ordering nor

duplication of elements.

Step 2. Ordering transformation. Given N-projection PN , O-projection PO is

defined as an outcome of ordering transformation applied to PN :

PN
ω(CO)−−−→ PO (2.4)

where ω is ordering transformation and CO — context which defines how ordering

should be applied to PN . O-projection is based on members of PN but it is not a set,

it is a sequence, i.e. duplication of elements is allowed and they are arranged in an

order of precedence with total length of r:

PO = {ε1,i(1), ε2,i(2), . . . , εr,i(r)} (2.5)

Elements indexing now has two parts: indices of the first half — 1, 2, . . . , r — de-

fine sequential ordering and indices of the second half i(1), i(2), . . . , i(r) refer to the

original index of an element in PN .

Step 3. Temporalization transformation. Given O-projection PO, T-projection

PT can be defined as a result of temporalization transformation applied to PO:

PO
τ(CT)−−−→ PT (2.6)

where τ is temporalization transformation and CT — context which defines how tem-

poral position and duration should be assigned to the elements of PO. The result is

the sequence of the same length as PO

PT = {εt1,d11,i(1), ε
t2,d2
2,i(2), . . . , ε

tr,dr
r,i(r)} (2.7)

43

where lower indices are the same as in PO, upper indices ti ∈ {t1, t2, . . . , tr} — com-

puted time locations and upper indices di ∈ {d1, d2, . . . , dr} — computed durations11.

Step 4. Adaptation transformation. And finally, with T-projection PT as input,

A-projection PA is defined as a result of adaptation transformation applied to PT :

PT
α(CA)−−−→ PA (2.8)

where α is adaptation transformation and CA — adaptation context which specifies

parameters of the signal processing to be applied to the elements of PT . The result

is the sequence of the same length and time positions as PT .

PA = {εt1,d11,i(1), ε
t2,d2
2,i(2), . . . , ε

tr,dr
r,i(r)} (2.9)

The adaptation phase takes care of the sound element’s final adjustments necessary

to produce the desirable aural result.

Each application of NOTA-transform creates processing pipeline E → PN →

PO → PT → PA which converts EncycloSpace into a renderable music object PA of

arbitrary timescale — from a single note-like event to the whole composition. The

exact result depends on four structures:

• Navigation context CN (2.2)

• Ordering context CO (2.4)

• Temporal context CT (2.6)

11Computed duration should not be confused with element’s natural duration produced by seg-
mentation. Computed durations result from temporalization transformation so they may or may not
coincide with the elements’ natural durations. In the latter case concatenation techniques should be
applied to resolve mismatch between natural and computed durations

44

• Adaptation context CA (2.8)

2.5.2.3 Navigation context

Navigation context is defined as a set of constraints applied to the process of elements

selection. It can be constructed as an SQL query combining series of SELECT and

JOIN clauses predicated upon elements features. Execution of such a query will

return a subspace of elements whose features satisfy the constraints.

2.5.2.4 Ordering context

Navigation transformation returns an unordered selection of elements. A decision has

to be made about the number and succession of elements for the actual use in the

composition. Ordering context is defined as an algorithmic construct which solves

this task by computing a sequence of elements indices which define their number and

order. Indices are allowed to duplicate which means that elements can participate in

the sequence an arbitrary number of times. More details on ordering contexts can be

found in 3.4.2.

2.5.2.5 Temporal context

In composition, each sound object has its time position and duration. Ordered se-

quence defines a progression of elements which certainly can be used verbatim for

compositional deployment. In such a case, each element would use its natural dura-

tion and its time position would be provided by the preceding element’s end time. This

scenario, however, leaves out the temporal plan which the composer might have and

which may arrange elements very differently in the contexts of temporal initiation

and duration. Temporal context is a construct dedicated to providing algorithmic

temporal control of compositional objects. It consists of time structures, each one

describing specific formation of time continuum in terms of divisions and propor-

45

tions. Temporal context is a part of section that uses it to apply temporal control to

strands. Usage of the temporal context is not mandatory, as strands can be perfectly

rendered without it. However, it is a convenient tool for rhythmic (or polyrhythmic)

organization of sound elements.

Time structure consists of symbolic units describing how temporal continuum

should be structured in terms of logical time points. Each strand can be bound to

exactly one time structure which should be selected from the temporal context of its

parent section. Strand can use time structure to align its events against specific types

of time points during rendering. Mapping of time structures to strands is flexible - a

single time structure can be assigned to all strands and equally each strand can be

assigned an individual time structure.

2.5.2.6 Adaptation context

To produce quality sound result, elements of T-projection may require an additional

processing concerned with possible concatenation issues12 or final morphological ad-

justments. The adaptation context describes the parameters of those adjustemnts.

2.5.2.7 Indeterminacy

The creation and usage of compositional structures can be completely deterministic

but it does not have to be. Four transformational contexts of NOTA-transform,

CN , CO CT and CA, epitomize decision-making nodes which can be constructed with

variable degrees of indeterminacy. Compositional events can be created in partially

abstracted state with respect to their content, elements order, their temporal position

and/or duration. The higher indeterminacy the closer compositional process to that

12Since overlapping neighbor elements of the T-projection may come from different sources, there
can be a perceivable discontinuity that impacts the quality of a sound result. This discontinuity is
called concatenation cost [100]

46

of meta-composition [109]. All compositional elements which were instantiated in

probabilistic space will be resolved during the initial phase of rendering.

2.5.2.8 Parametric automation

Strands and events can be controlled by assignable time functions. This allows fine-

grain control over their parameters during rendering. To add more layers of indeter-

minacy to the decision-making process automation functions can also be stochastic.

2.5.3 Rendering subsystem

Rendering process dereferences compositional symbolisms and converts them into

physical result. The result can be a waveform and/or symbolic notation. Ideally

the system should be able to assign preferred rendering mode to different parts of

composition thus allowing to mix acousmatic and instrumental writing.

The system design considerations discussed in this chapter were used as guidelines

to approach an implementation of the software presented in the next chapter.

47

Chapter 3

sEl: An implementation of

recombinant corpus-based

omni-source compositional software

This chapter describes sEl1 - a CAAC framework that implements concepts described

in the previous chapter. sEl is an open-source software written in the Python pro-

gramming language. It is implemented as an integrated system that incorporates a

number of third-party open-source components as a foundation to be used for adding

sEl’s own functionality. The following sections describe typical workflow and imple-

mentation details for each of the functional subsystems.

3.1 General workflow

The software has two core areas, analytic and compositional, the functionality of

which relies on sound material stored in a system database. Populating the database

with sound data is the earliest stage of the workflow.

1sEl stands for sound element

48

3.1.1 Audio pool

To organize sound files sEl uses a repository called audio pool which is simply a

dedicated file system location, either local or networked. All sound file paths stored

in the database are represented as relative with respect to the audio pool’s root. This

makes sound locations stored in the database independent from the location of the

audio pool itself.

Feature DatabaseAudio PoolFile system

Analysis subsystem

User interface

Figure 3.1: Database workflow

The audio pool can be populated with sounds either by using the sEl user interface

or by utilizing regular operating system tools. sEl audio pool interface is shown in

figure 3.2: the file system browser2 in the lower half is used to drag sounds to an

audio pool editor shown in the upper half. If the sound file is accompanied by a

segmentation file of a known format, that file will be automatically transferred to the

audio pool. The audio pool editor displays information about the pool’s structure

and containment. This information is presented as per-folder file counters and binary

flags marking the files’ registration with the database.

2File system browser shows only audio files

49

Figure 3.2: Audio pool user interface

3.1.2 Registering sounds with database

Files stored in an audio pool can be registered with the database by using context

menu commands shown in Fig.3.3. For each file registered with the database, a

corresponding database element is created which represents the whole file. Such an

element is called a root element.

50

Figure 3.3: Audio pool context menu commands

3.1.2.1 Automatic segmentation import

If a registered sound file is accompanied by a segmentation file or contains segments in-

ternally as metadata, the segmentation data is automatically used to create database

elements, one element per segment3. The segments are then further analyzed to infer

containment hierarchies and sequential ordering. These structural relationships are

also written to the database.

3.1.2.2 Automatic categorization

During the sound file registration an automatic categorization is attempted based

on textual analysis of the file’s path, name, internal metadata or the presence of a

categorization file prepared by an external utility.

3.1.2.3 Sound file overview

Detailed information about registered sound files can be examined in the File infor-

mation viewer shown in figure 3.4.

3.1.3 Assigning categories

During database registration categories can be automatically inferred and assigned to

sound files. In addition to automatic categorization more categories can be assigned

3Currently the following formats are recognized: SonicVisualizer XML export and Adobe Audi-
tion region markers metadata.

51

Figure 3.4: File information viewer

manually in the Category editor shown in figure 3.5. A taxonomy shown in the figure

comes with the software and defines six top category classes:

• Morphology class — represents nomenclature of sound sources as physical ob-

jects.

• Source class — taxonomy of sound excitation component’s form factor and state

of matter.

• Resonator class — taxonomy of resonating material.

• Instrument-wise class — a taxonomy applicable if sound source is a musical

instrument.

• Play-wise class — taxonomy representing performative aspects of sound pro-

duction.

• Spectro-morphology — taxonomy of perception related characteristics of sound.

The default taxonomy is presented in detail in Appendix B.

52

Figure 3.5: Category editor

The category editor also allows assigning of imaginary categories discussed in

2.4.3.3. Since an imaginary category is something associative rather than imperative

it is also given a numeric measurement of strength x where x ∈ (0, 1]. The strength

attribute allows to separate strong associations from weak ones and facilitates finer

53

degrees of control during search through imaginary categories. Figure 3.6 shows

imaginary category (in green) assigned with associative strength of 0.5.

Figure 3.6: Imaginary category assignment

The category taxonomy can be completely redefined by user. The category editor

allows renaming, adding or removing categories, including top-level ones.

3.1.4 Segmentation

Sound files that did not have accompanying segmentation files during database regis-

tration can be segmented with internal segmentation tools. In sEl a hybrid approach

is adopted: first an element is processed by automatic segmentation4, the results can

then be interactively edited in the Segment editor shown in figure 3.7.

Figure 3.7: Segment editor window

Segments can be selected, merged, deleted and converted to database elements

(Fig.3.8). Segmentation layout for each element is stored in a dedicated database

table.

4Automatic segmentation is realized by multi-pass onset-based algorithm.

54

Figure 3.8: Segment editor commands

3.1.5 Auditioning

sEl offers an intuitive auditioning scheme while browsing sound files, elements and

segments: audition can be initiated for a currently selected object and then automat-

ically continued for other sound objects while the user keeps changing the selection.

When several entities are selected simultaneously, audition will loop through them as

if they were a single sound region. This method works throughout the system and

allows quick evaluation of sound entities.

3.1.6 Creating database elements

Segments contain information about temporal bounds of sound regions but nothing

more. To be functionally useful, the segment has to be converted to a database

element designed to hold all the semantics extracted from the corresponding sound

region. There are two ways of how database elements can be created in sEl:

• automatic conversion of segments during sound file registration with database,

• interactive conversion of segments in Segment editor or Element editor.

3.1.7 Examining elements

Whenever a sound file is selected in the audio pool editor, if it is registered with

the database its structural content will be retrieved and displayed in the Element

55

editor shown in figure 3.9. The element editor has a tabular layout in which each row

corresponds to a single database element.

Figure 3.9: Database elements editor

Information being displayed contains:

• element’s database id,

• temporal bounds (start time and duration),

• element’s type,

• number of real and imaginary categories assigned to element,

• number of analyzed features (static and dynamic),

56

• element’s containment relationships (number of child and parental elements),

• element’s juxtaposition relationships (number of immediate preceding and fol-

lowing elements).

An example shown in the figure displays database elements for file C6_A#_Bow.wav.

The element editor uses color coding to allow quick identification of parent elements

(dark red) and child elements (blue) of a currently selected element.

It is in Element editor where analysis commands are issued with respect to selected

elements.

3.1.8 Extracting features

To make elements compositionally useful they have to be analyzed for features. This

can be done from either the Element editor or Audio pool editor by running analysis

commands on the selection of files or elements. Analysis is done for those database

features whose active5 state is on. A reasonably rich roster of features (49) is offered

by the system and it also can be expanded by user via

• constructing new analysis graphs from the system library’s processing units

and/or

• writing new feature extractor classes via inheriting from ProcessingNode class6.

Each feature extracted from the database element becomes a dimension along which

elements can be compared and the distance between them can be computed. Having

nearly fifty extractable features allows the establishment of a high-dimensional Ency-

cloSpace available for compositional navigation. As mentioned above, it is possible to

vary the dimensionality of EncycloSpace by adding new features or disabling existing

ones.

5Feature activity status is stored in its descriptor database record (see 3.8) and can be controlled
by user.

6ProcessingNote is a base class from which all analysis units of the system are created.

57

3.1.9 Recombining elements

The availability of multi-dimensional EncycloSpace makes it a perfect site for apply-

ing compositional strategies. The space can be navigated by search queries driven

by specific sets of constraints. Execution of such a process yields a collection of ele-

ments responding to those constraints. Thus obtained, collections become recombined

compositional subspaces — intentional extractions from the EncycloSpace. Such sub-

spaces can be further recombined by creating collections of collections.

The collection has double status in sEl: on one hand it is an aggregate entity consisting

of multiple objects, on the other hand it is a single object which can be manipulated

as such by compositional routines.

Composing collections is an important part of the workflow which can be referred to

as instrumentation phase.

3.1.10 Composing with collections

When necessary collections are assembled the further step is putting them into tem-

poral and vertical relationships. This can be done by using compositional objects of

sEl which offer a wealth of methods to unwrap potential richness of aggregate sound

entities. The compositional use of collections is described in more detail in 3.4.5.4.

3.2 Database schema

sEl’s database schema corresponds to the three-partite ontological layout of the sys-

tem’s EncycloSpace and contains:

• Material layer (neutral)

• Semantics layer (esthesis)

• Recombinant layer (poiesis)

58

3.2.1 Material layer

The Material layer of the database schema consists of relations that store a topology

of sound objects in the system. Its entity/relationship configuration is shown in figure

3.107. The material layer comprises the following relations:

• dbDataFile (table datafile) — information about files in Audio pool,

• dbDataFileGroup (table datafile group) — information about file groups,

• dbElement (table element) — information about specified sound file regions,

• dbElementParent (table elem parent) — information about elements contain-

ment in larger elements,

• dbElementNext (table elem next) — information about elements temporal jux-

tapositioning,

• dbElementSegmentation (table element segmentation) — information smaller

divisions within element.

3.2.1.1 dbDataFile

This ORM class (and underlying SQL table datafile) contains information about data

files stored in the scope of the system visibility (currently Audio pool8). Its structure

is shown in table 3.1.

3.2.1.2 dbDataFileGroup

dbDataFileGroup (SQL table datafile group) is a lightweight construct that describes

file groups (table 3.2). File group is essentially a folder where the file is contained. In

sEl folders can have additional semantics. For instance folder containing samples of a

single instrument has semantics of sampleset. This information helps sEl to fine-tune

processing of the folder’s content.

7Entities in the diagram are labeled with ORM classes names as defined in the program code
8In the future the visibility can be expanded to include more media types

59

Table 3.1: dbDataFile (table datafile)

Column name Type Key Comments

file id integer PK unique file identifier
group id integer FK file group identifier (from table 3.2)
name varchar(128) file name
path varchar(256) relative path to the file with respect to Au-

dio pool
type char(10) sound, graphics, video etc. Non audio

types are present to accommodate future
expansion of the system into media types
other than sound.

subtype char(16) waveform, feature, segmentation etc
format char(4) media file format, i.e. wav, aiff, mp4 etc
annotation varchar(128) comments
datetime timestamp file creation date and time
duration real data duration in seconds
num channels smallint number of data channels
num frames integer number of data frames in the file
frame rate real sampling rate, frame rate for multi-frame

file types
bit depth smallint number of bits per data value of a single

channel
data type char(10) type of data values stored in the file

Table 3.2: dbDataFileGroup (table datafile group)

Column name Type Key Comments

grp id integer PK unique file group identifier
type varchar(32) collection, sampleset etc
name varchar(250) group’s path with respect to Audio pool

60

dbDataFile

dbDataFileGroup

1

0..*

dbElement

dbElementNext

dbElementParent

dbElementLoop

dbElementSegmentation

1

1

1

1

1..*

0..*

0..*

0..*

0..*

1..*

Figure 3.10: Material layer of the database schema

3.2.1.3 dbElement

Class dbElement (SQL table element) is a central component not only of the Material

layer but also a main communication channel among all three layers of the database

(as we will soon see). The database element represents the navigational entry inside

EncycloSpace. All together, these entries constitute the navigable space of the system.

Table 3.3: dbElement (table element)

Column name Type Key Comments

el id bigint PK unique element identifier
root id bigint FK id of root element (from 3.3. Root element

is an element that represents whole file)
type integer element type
file id integer FK element’s file id (from 3.1)
start time real start time within the file (in seconds)
end time real end time within the file (in seconds)

61

3.2.1.4 dbElementParent

Elements can have hierarchical relationships of containment. However SQL syntax

lacks appropriate specifications. Class dbElementParent (SQL table elem parent) is

a way to circumvent this limitation by storing containment information in a separate

table.

Table 3.4: dbElementParent (table elem parent)

Column name Type Key Comments

chld id bigint FK child element id (from 3.3)
parent id bigint FK parent element id (from 3.3.

3.2.1.5 dbElementNext

An element can be related to other elements with which it shares a common temporal

border, i.e. immediately preceding or following them in the sound file. This informa-

tion can be valuable whenever element concatenation is considered, because it allows

the singling out of concatenation cases not requiring processing due to the elements’

natural order.

Table 3.5: dbElementNext (table elem next)

Column name Type Key Comments

prev id bigint FK preceding element id (from 3.3)
next id bigint FK subsequent element id (from 3.3.

3.2.1.6 dbElementLoop

An element can have internal time points within which it can be seamlessly looped.

This information can help to determine whether the element can be performed in a

sustained manner.

62

Table 3.6: dbElementLoop (table loop)

Column name Type Key Comments

loop id integer PK unique loop id)
elem id bigint FK id of containing element (from 3.3)
start time real loop’s starting time within element
end time real loop’s end time within element
reversible boolean whether loop points should wrap or bounce
full loop boolean whether whole element can be looped

3.2.1.7 dbElementSegmentation

An element, if it is not too short, can be a subject of segmentation. dbElementSeg-

mentation table stores information about elements’ segments.

Table 3.7: dbElementSegmentation (table element segmentation)

Column name Type Key Comments

el id bigint FK id of element (from 3.3) which owns the
segmentation

datetime timestamp segmentation creation date and time
segments real[] segments data

3.2.2 Semantics layer

The Semantics layer contains a knowledge base extracted from entities stored in the

Material layer. This knowledge base is organizationally structured as an ER layout

shown in figure 3.11. If the material layer represents navigational entries into the

EncycloSpace, the semantics layer betokens its informational body. Or in semiotics’

terms: with respect to EncycloSpace, the semantics layer is collection of signifier

entities while the material layer is an assemblage of signified entities.

Semantics layer consists of the following ORM classes and SQL relations:

63

• dbDescriptor (table descriptor) — contains semantics layer’s taxonomy: de-

scriptions of categories, features and tags,

• dbClass (table class) — information about descriptor hierarchies,

• dbSymbol (table symbol) — mapping between symbol names and integer ids by

which they are represented elsewhere in the system,

• dbFeatureStats (table feature stats) — feature related statistics used for data

normalization during analysis,

• dbElementCategory (table elem cat) — information about assignment of cate-

gories to elements,

• dbImaginaryCategory (table imagine) — information about assignment of

imaginary categories to elements,

• dbAnalysisConfig (table analysis config) — information about analysis graphs

configurations used to analyze features,

• dbAnalysisConfigFeature (table analysis config feature) — information about

analysis graphs’ feature capabilities,

• dbElementFeature (table element feature) — mean value of extracted feature.

• dbElementFeatureCV (table element feature cv) — stores temporal behavior of

dynamic features, i.e. those that change over time.

3.2.2.1 dbDescriptor

dbDescriptor (SQL table descriptor) stores the system’s vocabulary of categories and

features, i.e. its descriptive lexicon. The structure is shown in table 3.8.

3.2.2.2 dbClass

The Categories taxonomy forms a hierarchical tree-like structure. Except for the top

level, each category down the tree becomes part of the lineage of inheritance. Direc-

tion down the tree exemplifies specialization, direction up the tree - generalization.

64

dbDescriptor

dbFeatureStats

dbClass

dbSymbol

dbElementCategory

dbElement

dbImaginaryCategory

dbAnalysisCon gFeature

dbAnalysisCon g

dbElementFeature

dbElementFeatureCV

1

1

1

1

1

11

1

1

1..*

1..*

0..*

0..*

0..*

0..*

1..*

0..* 0..*0..* 0..*

0..* 0..*

Figure 3.11: Semantics layer of the database schema

Table 3.8: dbDescriptor (table descriptor)

Column name Type Key Comments

desc id integer PK unique descriptor id
parent id integer FK id of immediate parent (from 3.8)
desc name varchar(48) descriptor name
desc type varchar(10) descriptor type: category, feature or tag
data type varchar(32) descriptor data type: boolean, integer,

real, symbol, text, array or symbol array
tree level smallint a level down the hierarchy of containment
dynamic boolean whether descriptor represents feature that

changes over time and thus requires anal-
ysis of temporal behavior

active boolean pertains only to features and indicates
whether feature should be analyzed or
skipped

Class membership is promoted in the direction of generalization with inclusion of

all the tree nodes encountered in that direction. An example in figure 3.12 shows a

morphology generalization path for french horn with class membership in each layer

above.

65

Adding new category to the taxonomy spawns a generalization chain of class mem-

berships all the way to the top. All class memberships are stored in dbClass relation

(table 3.9).

acousticsynthetic

objectinstrument

chordophoneaerophone membranophoneidiophone

euphoniumcimbasso french horn

brass woodwinds

manmadehuman nature

morphology

...
Figure 3.12: Categoric generalization of french horn

3.2.2.3 dbSymbol

Symbolic descriptors9 need to dereference their numeric values into human readable

form. Relation dbSymbol is used to store those lookup tables. The structure is shown

in table 3.10.

9Symbolic descriptors are those whose data type field is symbol or symbol array

66

Table 3.9: dbClass (table class)

Column name Type Key Comments

desc id integer FK descriptor id (from 3.8)
class id integer FK id of immediate parent (from 3.8)
type varchar(8) differentiates between user created mem-

berships and automatically generated ones
for closure

distance smallint tree distance between category and class

Table 3.10: dbSymbol (table symbol)

Column name Type Key Comments

sym id integer PK unique symbol id
desc id integer FK id of descriptor (from 3.8) which uses this

symbol as its value
sym name varchar(48) symbol name

3.2.2.4 dbFeatureStats

In the course of feature analysis the results need to be normalized for compatibil-

ity during element distance computation. Relation dbFeatureStats stores necessary

feature-wise statistics which are used during normalization.

Table 3.11: dbFeatureStats (table feature stats)

Column name Type Key Comments

desc id integer FK feature id (from 3.8)
min real minimum value of feature across the

database
max real maximum value of feature across the

database
mean real average value of feature across the

database
std real standard deviation of feature across the

database

67

3.2.2.5 dbElementCategory

This relation stores information about elements category membership. Each assigned

category automatically promotes that membership to include the category’s general-

ization chain (see 3.2.2.2).

Table 3.12: dbElementCategory (table elem cat)

Column name Type Key Comments

el id bigint FK element id (from 3.3)
desc id integer FK feature id (from 3.8)

3.2.2.6 dbImaginaryCategory

This relation stores information about elements category membership. Each assigned

category automatically promotes that membership to include the category’s general-

ization chain (see 3.2.2.2).

Table 3.13: dbImaginaryCategory (table imagine)

Column name Type Key Comments

el id bigint FK element id (from 3.3)
desc id integer FK feature id (from 3.8)
strength real associative strength of the category assign-

ment ∈ (0, 1]

3.2.2.7 dbAnalysisConfig

To undertake feature analysis of an element first analysis graph has to be constructed.

Analysis graph is a configuration of processing pipeline(s) which interconnect anal-

ysis algorithms in order to extract specific features. Analysis graph’s component al-

gorithms receive specific parameter settings that influence various aspects of feature

computation. Since different settings of the same algorithms topology can produce

68

different results we need to store an exact fingerprint of the analysis graph that could

be used as an identifier for specific feature analysis. Moreover we need to store anal-

ysis graph in the form which can be later deserialized to reconstruct the graph in its

entirety. Relation dbAnalysisConfig stores that information.

Table 3.14: dbAnalysisConfig (table analysis config)

Column name Type Key Comments

graph id integer PK unique id of analysis graph
config varchar(3000) analysis graph encoded as text string from

which it can be deserialized
config id integer checksum of config string
date added timestamp creation date and time of analysis graph

3.2.2.8 dbAnalysisConfigFeature

Mapping between analysis graph and feature is one-to-many, i.e. a single graph can

compute more than one feature. Relation dbAnalysisConfigFeature stores information

about analysis graphs’ feature computation capabilities.

Table 3.15: dbAnalysisConfigFeature (table analysis config feature)

Column name Type Key Comments

graph id integer FK id of analysis graph (from 3.14)
desc id integer FK feature id (from 3.8)

3.2.2.9 dbElementFeature

dbElementFeature stores a single feature’s value extracted by analysis. This value

is averaged over the course of the element’s duration and thus represents temporally

aggregated perspective of the element. Since SQL has strongly typed field syntax and

since different features can be represented by different data types we cannot just use

69

one field to store any type of data. Instead we reserve fields of several types to store

any expected feature values.

Table 3.16: dbElementFeature (table element feature)

Column name Type Key Comments

el id bigint FK element id (from 3.3)
desc id integer FK feature id (from 3.8)
graph id integer FK id of analysis graph (from 3.14)
datetime timestamp feature computation date and time
int val integer integer value
real val real floating point value
text val varchar(64) textual value
array val real[] array value

3.2.2.10 dbElementFeatureCV

For features that change over time, e.g. pitch, loudness, spectral characteristics and

alike, we need to compute a set of scalar data that could sufficiently capture tempo-

ral behavior. A diversified set of parameters for exactly this purpose is described in

chapter 11 of [100] where it is called characteristic values. With some reductions we

adopt this set. Characteristic values of dynamic features are stored in dbElementFea-

tureCV table. The aforecited source can be consulted for the details on computation

formulae. The structure is shown in table 3.17.

3.2.3 Recombinant layer

The Recombinant layer is directly related to the compositional function of the sys-

tem for it stores information about recombinations of the elements produced in the

course of various compositional strategies execution. In the ontological communica-

tion schema with respect to EncycloSpace this layer epitomizes a material deployment

site for the poiesis channel — an accretion of the navigable space via productive effort.

Entities stored in recombinant layer are normally produced via use of both material

70

Table 3.17: dbElementFeatureCV (table element feature cv)

Column
name

Type Key Comments

el id bigint FK element id (from 3.3)
desc id integer FK feature id (from 3.8)
graph id integer FK id of analysis graph (from 3.14)
datetime timestamp feature computation date and time
geomean real geometric mean
std real standard deviation
startval real starting value
endval real closing value
minval real minimum value
maxval real minimum value
absrange real absolute range
slope real slope of linear approximation
curve real curve of 2nd order polynomial approxima-

tion
t mean real temporal centroid
t antimean real temporal anticentroid
t std real temporal standard deviation
t skew real temporal skewness
t kurt real temporal kurtosis
t atk real AR attack time
t rel real AR release time
t invatk real inverse AR attack time
t invrel real inverse AR release time
s mean real spectral average
s std real spectral standard deviation
s skew real spectral skewness
s kurt real spectral kurtosis
s band0 real spectral energy in [0, 1] Hz band
s band1 real spectral energy in [1, 10] Hz band
s band2 real spectral energy in [10, 20] Hz band
s band3 real spectral energy in [20, 40] Hz band
s band4 real spectral energy in [40, 100] Hz band

71

and semantics layers. However as far as database schema, the recombinant layer only

has relations to the material layer as shown in figure 3.13.

Recombinant layer consists of the following ORM classes and SQL relations:

• dbCollection (table collection) — stores metadata of element collections,

• dbCollectionElements (table collection elements) — stores collections content,

• dbSequenceElements (table sequence elements) — stores ordered collections

content.

• dbCollectionGroup (table collection group) — stores collection groups content,

dbElement

dbCollection dbCollectionGroup

dbCollectionElements

dbSequenceElements

1

1..*

1..* 1..*

1..*

1..*

Figure 3.13: Recombinant layer of the database schema

3.2.3.1 dbCollection

Collections are core elements of recombinant composition. Collection is a result of an

EncycloSpace navigation which extracts its parts under particular strategy and saves

them as a new entity. ORM class dbCollection and its underlying SQL table store

meta information about collections.

72

Table 3.18: dbCollection (table collection)

Column name Type Key Comments

coll id integer PK unique collection id
coll name varchar(48) collection name
coll type varchar(10) collection type: set, sequence or group
query context varchar(4096) database query context which produced

the collection
description varchar(128)

3.2.3.2 dbCollectionElements

This relation defines content of unordered collections by mapping elements to collec-

tions.

Table 3.19: dbCollectionElements (table collection elements)

Column name Type Key Comments

coll id integer FK collection id (from 3.18)
el id bigint FK element id (from 3.3)

3.2.3.3 dbSequenceElements

Collections can be unordered (set type) or ordered (sequence type). dbSequenceEle-

ments is the same as dbCollectionElements except that it also stores the elements’

order.

Table 3.20: dbSequenceElements (table sequence elements)

Column name Type Key Comments

coll id integer FK collection id (from 3.18)
el id bigint FK element id (from 3.3)
el ndx integer element index within sequence

73

3.2.3.4 dbCollectionGroup

One of the strongest features of collections is that they can contain other collections.

This kind is called a collection group which is a collection with type field set to group.

Self-referencing capability makes collections a powerful recombinant tool. Relation

dbCollectionGroup is used to map collections to groups.

Table 3.21: dbCollectionGroup (table collection group)

Column name Type Key Comments

group id integer FK group collection id (from 3.18)
coll id integer FK collection id (from 3.18)

sEl’s database schema with all layers assembled is shown in figures 3.14 and 3.15.

3.3 Analysis subsystem

Involvement of sampled sound semantics in the compositional process dictates the

necessity of a dedicated environment for administering audio information retrieval.

The analysis subsystem of sEl provides such an environment implemented with the

following goals in mind:

• Compositional perspective on selecting feature set

• Integration of tools

• Flexibility

• Visualization

• Extensibility

3.3.1 Compositional perspective on feature set

In sEl feature analysis has no bigger purpose than guiding compositional process.

The software comes with a default roster of 49 analyzable features (presented below)

74

d
b
D
a
ta
Fi
le

d
b
D
a
ta
Fi
le
G
ro
u
p

1 0
..*

d
b
D
e
sc
ri
p
to
r

d
b
Fe
a
tu
re
S
ta
ts

d
b
C
la
ss

d
b
E
le
m
e
n
tC
a
te
g
o
ry

d
b
E
le
m
e
n
t

d
b
C
o
ll
e
ct
io
n

d
b
E
le
m
e
n
tN
e
x
t

d
b
E
le
m
e
n
tP
a
re
n
t

d
b
E
le
m
e
n
tL
o
o
p

d
b
E
le
m
e
n
tS
e
g
m
e
n
ta
ti
o
n

d
b
Im

a
g
in
a
ry
C
a
te
g
o
ry

d
b
A
n
a
ly
si
sC
o
n

g
Fe
a
tu
re

d
b
A
n
a
ly
si
sC
o
n

g

d
b
E
le
m
e
n
tF
e
a
tu
re

d
b
C
o
ll
e
ct
io
n
G
ro
u
p

d
b
C
o
ll
e
ct
io
n
E
le
m
e
n
ts

d
b
S
e
q
u
e
n
ce
E
le
m
e
n
ts

d
b
E
le
m
e
n
tF
e
a
tu
re
C
V

1

1

1 1

1
1

1
1

1 1

1 1

1

1

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

in
yC
a
t

d
b
S
ym

b
o
l

F
ig
u
re

3.
14
:
E
R

sc
h
em

a
of

sE
l
d
at
ab

as
e.

75

d
b
D
a
ta
Fi
le

d
b
D
a
ta
Fi
le
G
ro
u
p

1 0
..*

d
b
D
e
sc
ri
p
to
r

d
b
Fe
a
tu
re
S
ta
ts

d
b
C
la
ss

d
b
E
le
m
e
n
tC
a
te
g
o
ry

d
b
E
le
m
e
n
t

d
b
C
o
ll
e
ct
io
n

d
b
E
le
m
e
n
tN
e
x
t

d
b
E
le
m
e
n
tP
a
re
n
t

d
b
E
le
m
e
n
tL
o
o
p

d
b
E
le
m
e
n
tS
e
g
m
e
n
ta
ti
o
n

d
b
Im

a
g
in
a
ry
C
a
te
g
o
ry

d
b
A
n
a
ly
si
sC
o
n

g
Fe
a
tu
re

d
b
A
n
a
ly
si
sC
o
n

g

d
b
E
le
m
e
n
tF
e
a
tu
re

d
b
C
o
ll
e
ct
io
n
G
ro
u
p

d
b
C
o
ll
e
ct
io
n
E
le
m
e
n
ts

d
b
S
e
q
u
e
n
ce
E
le
m
e
n
ts

d
b
E
le
m
e
n
tF
e
a
tu
re
C
V

1

1

1 1

1
1

1
1

1 1

1 1

1

1

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

1.
.*

d
b
S
ym

b
o
l

d
b
D
a
ta
Fi
le

d
b
D
a
ta
Fi
le
G
ro
u
p

1 0
..*
0
..*

d
b
E
le
m
e
n
tC
a
te
g
o
ry

d
b
E
le
m
e
n
t

d
b
E
le
m
e
n
tN
e
x
t

d
b
E
le
m
e
n
tP
a
re
n
t

d
b
E
le
m
e
n
tL
o
o
p

d
b
E
le
m
e
n
tS
e
g
m
e
n
ta
ti
o
n

d
b
Im

a
g
in
a
ry
C
a
te
g
o
ry

1

1 1

1 1

1

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

0.
.*

1.
.*

1.
.*

1.
.*

1.
.*

a
g
in
a
r

d
b
D
e
sc
ri
p
to
r

d
b
Fe
a
tu
re
S
ta
ts

d
b
C
la
ss

e
n
tC
a
te
g
o
ry

m
a
g
in
a
ry
C
a
te
g
o
ry

d
b
A
n
a
ly
si
sC
o
n

g
Fe
a
tu
re

d
b
A
n
a
ly
si
sC
o
n

g

d
b
E
le
m
e
n
tF
e
a
tu
re

d
b
E
le
m
e
n
tF
e
a
tu
re
C
V

11

1

1 1

1

1
1

1.
.*

1.
.*

1.
.*

0.
.*.*

0.
.*

0.
.*

0.
.*

0.
.*.*

1.
.*

1.
.*

0.
.*

0.
.*

0.
.*

0.

0.
.*.*

a
ry
C
a
te
g
o
r

d
b
S
ym

b
o
l

d
b
C
o
ll
e
ct
io
n

d
b
C
o
ll
e
ct
io
n
G
ro
u
p

d
b
C
o
ll
e
ct
io
n
E
le
m
e
n
ts

d
b
S
e
q
u
e
n
ce
E
le
m
e
n
ts

11

1.
.*

1.
.*

1.
.*

1.
.*

R
e
co
m
b
in
a
n
ce

S
e
m
a
n
ti
cs

M
a
te
ri
a
l

F
ig
u
re

3.
15
:
E
R

sc
h
em

a
of

sE
l
d
at
ab

as
e
w
it
h
se
m
an

ti
c
ar
ea
s.

76

that span most of the salient feature groups. The choice of default features was in

large part informed by studying related work and literature in music informatics on

audio feature sets.

Audio feature design is a separate discipline which is still far from reaching a conclu-

sive state. As pointed out in [62], contributions to this discipline are dominated by

”hand-crafted design” ingrained into ”shallow architectures” that overlook ”compo-

sitional containment hierarchy” pertaining to music. Even though the motivation for

a ”deep architecture” approach to audio feature design has been expressed no actual

implementation has been produced as of yet.

An additional challenge for omni-source systems like ours is to avoid features that

imply restrictions on sound. For instance ADSR envelope anticipates that sound am-

plitude fits into an attack-decay-sustain-release template which many sounds will not

comply with — therefore this feature cannot not be included in sEl feature set.

Intended as a full time-scale system (see 2.1.1.1) sEl requires feature design to account

for multi-scale signal representations. This sort of problematics is recognized in [57]:

Using representations at multiple scales allows much flexibility to model

the structure of the data. Multi-scale representations offer a natural way

to jointly model local and global aspects, without having prior knowledge

about the local and global structures.

In sEl problem of multi-scale representation is addressed by applying pre-processing

and multi-pass analyses aiming to adapt the analysis pipeline to process sounds with

arbitrary temporal and spectral characteristics.

Another facet of compositional perspective on features is making them represented

by psychometric units rather than physical ones (2.4.2.3). This allows to bring compo-

sitional planning as close as possible to the listening experience. However, in order to

aid switching between psychometric and physical units when necessary, sEl provides

a set of converting routines.

77

Modifying audio feature taxonomy facets, laid out in [42], [89] and [100], towards

compositional use sEl combines features into following groups:

• Temporal descriptors

• Energy descriptors

• Tonal descriptors

• Rhythm descriptors

• Spectral descriptors

Following sections describe each descriptor group. All descriptors are also pre-

sented in a table form in Appendix A.

3.3.2 Temporal descriptors

Group of temporal features includes characteristics of horizontal structure and vari-

ability of sound. Following descriptors are included in the temporal group:

• Timescale

• Event cardinality

• Temporal density

• Onset cardinality

• Dynamic complexity

• Inter-onset intervals

• Q-time

3.3.2.1 Timescale

This descriptor characterizes timescale class of sound elements following the taxonomy

shown in table 3.22. The taxonomy utilizes Western music durational terminology

to make this descriptor more intuitive. Each duration class is defined as range with

minimum duration corresponding to tempo of 160 pbm (ca allegro) and maximum

78

corresponding to 80 bpm (ca adagio). Not by any stretch these divisions are intended

as definitions but simply as intuitively understandable demarkations.

Table 3.22: Timescale descriptor ranges

Id Symbol Range

0 64th ∈ [23, 46)ms
1 32nd ∈ [46, 94)ms
2 16th ∈ [94, 188)ms
3 quaver ∈ [188, 375)ms
4 crotchet ∈ [375, 750)ms
5 2nd ∈ [0.75, 1.5)sec
6 whole ∈ [1.5, 3)sec
7 double ∈ [3, 6)sec
8 long ∈ [6, 12)sec
9 system ∈ [12, 48)sec
10 page ∈ [48sec, 3.2min)
11 section ∈ [3.2, 12.8)min
12 piece ∈ [12.8, 51.2)min
13 concert ∈ [51.2min,∞)

3.3.2.2 Event cardinality

Omni-source environment of sEl anticipates sound elements with arbitrary content.

One of the most general structural characteristics is containment degree, or the num-

ber of internal events, i.e. non-silent chunks divided by regions of silence. Event

cardinality represents such a quantity.

3.3.2.3 Temporal density

Temporal density is calculated as a ratio of sound’s non-silent portion to its overall

duration:

DT =
Lnon−silent

Ltotal

(3.1)

79

3.3.2.4 Onset cardinality

Onsets mark perceptual non-gradual changes discernible in the stream of sound.

Number of such changes is saved as onset cardinality descriptor which characterizes

structural complexity of sound elements on a finer level than that of event cardinality.

Onset detection can be approached by broad category of methods focused on mon-

itoring different characteristics of sound and combining those in a number of ways.

Many onset methods are developed for specific types of sound like singing voice [113]

or distinctly rhythmic formations [60]. Such methods would not be very useful for

omni-source application like sEl. It requires general solution for onset detection like

the ones described in [46] or [25]. In sEl we use methods designed in [25] which are

implemented as a C library with the Python front end[24].

3.3.2.5 Dynamic complexity

Music complexity is explored at depth in [111] where it is defined as

a high-level, intuitive attribute, which can be experienced directly or indi-

rectly by the active listener, so it could be estimated by empirical methods.

In particular we define the complexity as that property of a musical unit

that determines how much effort the listener has to put into following and

understanding it.

Dynamic complexity is a descriptor that evaluates dynamic component of acoustic

complexities via algorithm presented on page 24 of [111] with concluding formula:

CdynI =
1

M

M−1∑
i=0

|VdB(i)− L| (3.2)

where M is number of loudness measurements over the course of the sound element,

VdB(i) — individual loudness measurements and L is a weighted average thereof.

80

The signal is pre-filtered to approximate B-weighting curve to account for perceptual

non-uniformity of human ear.

3.3.2.6 Inter-onset intervals

Sequence of time intervals between neighboring onsets characterizes the evolution of

rate of change as the element progresses through time. This characteristic can vary

within a considerable range of values. Thus we store it not as an averaged scalar value

but as a dynamic feature described by a set of statistical characteristics (3.2.2.10).

3.3.2.7 Q-time

This descriptor is essentially an attack time, i.e. the location of a time point perceived

as the beginning of sound which normally coincides with the maximum of energy

after the start of an element. This descriptor is called Q-time to emphasize its role in

temporal placement of elements during temporalization transformation (see 2.5.2.2).

Temporalization defines time locations at which elements should be deployed as a

way to structurize psychological (musical) time. Difference between naive and q-time

guided temporalizations can be observed by comparing figures 3.16 and 3.17. Both

figures contain placement of three elements at intended time locations marked T1,

T2 and T3 (in black color). Time points labeled with red Q show q-time locations

within each element and red T1, T2 and T3 mark the time points where elements

start times will be perceived.

In figure 3.16 elements placement is done with respect to their physical start

which leads to perceptual distortion of temporalization (note the mismatch between

intended and perceptual locations). In figure 3.17 the elements are placed with respect

to their q-time descriptors which aligns intended and perceptual time points.

81

Q Q Q

T1 TimeT2 T3

T1 T2 T3

Figure 3.16: Naive elements temporalization

Q Q Q

T1 TimeT2 T3

T1 T2 T3

Figure 3.17: Q-time guided elements temporalization

3.3.3 Energy descriptors

This group of descriptors combines characteristics derived from aspects related to

sound energy. It includes following features:

• Dynamics

• ELF Loudness

• Bark bands energy

• Spectral RMS

3.3.3.1 Dynamics

This descriptor represents discrete groups of loudness values mapped to music dynam-

ics symbols. The groups use perceptually homogeneous partitioning with each group

occupying 10 decibels as shown in table 3.23. As in timescale descriptor (3.3.2.1) this

is not a definition of music symbols but a convenient subdivision of the loudness con-

82

tinuum allowing quick selection of volume ranges. Step size of 10 decibels is chosen

as an approximate loudness doubling/halving interval [73] so that neighboring groups

are twice as loud or soft. Dynamics is a global descriptor, i.e. its value describes

signal as a whole.

Table 3.23: Dynamics descriptor ranges

Id Symbol Range (dBFS)

0 ppppp ∈ [−∞,−90)
1 pppp ∈ [−90,−80)
2 ppp ∈ [−80,−70)
3 pp ∈ [−70,−60)
4 p ∈ [−60,−50)
5 mp ∈ [−50,−40)
6 mf ∈ [−40,−30)
7 f ∈ [−30,−20)
8 ff ∈ [−20,−10)
9 fff ∈ [−10, 0)

3.3.3.2 ELF Loudness

ELF loudness describes evolution of the perceived loudness over the course of the ele-

ment. ELF stands for equal-loudness filtered because before the loudness is measured

the signal is filtered by an approximated inversion of Fletcher-Munson equal-loudness

contour. This transfers the signal into psychometric domain where frequency-related

non-uniformity of loudness perception is eliminated. As dynamics this feature is also

represented in dBFS units.

3.3.3.3 Bark bands energy

Compared to the previous two descriptors Bark bands energy is a step towards ver-

tical, i.e. spectral, specificity. Whereas dynamics provides an aggregated view on

loudness and ELF loudness traces loudness evolution, Bark bands energy measures

83

sound energy in frequency terms related to human hearing. The bark scale pro-

posed in 1961 by Eberhard Zwicker [126] divides the audible range into juxtaposed

frequency intervals corresponding to the cochlear critical bands of frequency discrimi-

nation. Zwicker’s divison defines 24 bands covering frequency range of [20, 15500]Hz.

sEl uses slightly expanded set of 27 bands covering range of [0, 22050]Hz. Table 3.24

shows bands ranges (with three non-Zwicker bands printed in italics).

Table 3.24: Bark bands energy descriptor frequency ranges

Band id Center frequency, Hz Cut-off frequency, Hz Bandwidth, Hz

0
1 25 50 50
2 75 100 50
3 125 150 50
4 175 200 50
5 250 300 100
6 350 400 100
7 455 510 110
8 570 630 120
9 700 770 140
10 845 920 150
11 1000 1080 160
12 1175 1270 190
13 1375 1480 210
14 1600 1720 240
15 1860 2000 280
16 2160 2320 320
17 2510 2700 380
18 2925 3150 450
19 3425 3700 550
20 4050 4400 700
21 4850 5300 900
22 5850 6400 1100
23 7050 7700 1300
24 8600 9500 1800
25 10750 12000 2500
26 13750 15500 3500
27 18000 20500 5000

Barks bands energy feature arrays are computed for three critical time locations:

84

• Beginning of element

• Q-time of element (3.3.2.7)

• End of element

Besides participating in computation of inter-elements distance these descriptors

are also utilized for elements concatenation purposes to assess integration cost and

guide continuity processing.

For magnitude spectrum Mt computed at time location t Barks bands energy is

E = {B1, B2, . . . , B27} (3.3)

where Bi is energy at a specific bark band:

Bi =
max∑

j=min

M2
tj

(3.4)

where Mtj is magnitude of jth spectrum bin and min and max are Mt’s bin indexes

defining given bark band frequency range.

3.3.3.4 Spectral RMS

Spectral RMS computes quadratic mean of bark bands:

SRMS =

√√√√ 1

N

N∑
i=1

B2
i (3.5)

where Bi is a specific bark band’s energy and N is the number of bark bands.

Alike Barks bands energy this descriptor is also computed for three time locations of

element: beginning, q-time and end.

85

3.3.4 Tonal descriptors

Tonal descriptors contain two feature groups describing tonal characteristics of sound.

• Pitch group — represents pitch content

• Chroma group — depicts chroma generalizations of pitch

In following descriptions we will be using term quota to refer to percentage of the

element’s timespan during which some sound trait was observed. Commonly such

value is expressed in normalized form in range [0, 1].

Pitch descriptors group is based on pitch estimation analysis. Pitch estimation

is computed as instantaneous feature [89], i.e. per each short-time frame over the

course of sound element. Thus obtained estimated pitch sequence is further analyzed

to extract pitch features grouped into three categories:

1. General category

• Pitchiness

2. Strong pitch category

• Pitch cardinality

• Pitches

• Pitch durations

• Pitch quotas

• Starting pitch

• Ending pitch

3. Momentary pitch category

• Momentary pitches cardinality

• Momentary pitches

• Momentary pitches duration

• Momentary pitches quota

86

As can be seen from the above we define three pitch states: pitch, momentary pitch

and unpitched. Two first states differentiate between prominent pitches and percep-

tually insignificant ones due to their only momentary appearance. This distinction

helps to segregate pitches that carry out the element’s tonal character from those

that do not. Momentary pitches create tonal flickering rather than tonal character.

For elements longer than 1 sec they are defined as pitched regions shorter than 100

ms, otherwise — as pitched regions occupying less than 20 percent of sound duration.

Chroma descriptors group is focused on describing harmonic and polyphonic

properties of element, i.e. not only presence of specific pitch classes but also their

simultaneity. This feature group is based on computation of HPCP — harmonic pitch

class profile. The notion of pitch class profile was introduced in [48] where it is defined

as ”a twelve dimension vector which represents the intensities of the twelve semitone

pitch classes”. An extended approach to pitch class profile computation is proposed

in [52] in which granularity is decreased to allow for finer precision than semitone and

incorporates weighting and normalization into the processing.

HPCPs are computed as instantaneous vector and the resulting HPCP time series

are used to extract following descriptors:

1. Chroma

• Chroma cardinality

• Chromas

• Chroma durations

• Chroma quotas

2. Polyphony

• Chroma simultaneity ratio

• Maximum chroma simultaneity

87

• Maximum chroma simultaneity local ratio

3.3.4.1 Pitchiness

This descriptor expresses general aspects of the sound’s vertical regularity computed

as three quota values:

• Strong pitches quota PP

• Momentary pitches quota PM

• Unpitched duration quota PU

Together these three values add to 1:

PP + PM + PU = 1 (3.6)

This descriptor assists in quick assessment of the element’s pitch prominence. The tri-

partite structure allows to assess distribution of time between pitched and unpitched

durations as well as ratio between strong and momentary pitch spans.

3.3.4.2 Strong pitch descriptors

Strong pitches are those that last long enough to be perceptually salient, i.e. leave

trace in the auditory memory. During the analysis user can modify temporal and

quota thresholds that separate strong pitches from momentary ones. The default

values are: 100 ms for elements longer than 1 sec and 20 percent for shorter ones.

Pitch cardinality describes number of strong pitches observed in element. This

is the most general descriptor allowing quick interrogation into the pitch area of the

element.

Pitches descriptor lists strong pitches detected during the course of element. If

element contains multiple pitches they are listed in the order of prominence with the

88

longest sounding pitch coming first.

In sEl pitches are stored with one cent precision. They are encoded as real numbers

with the whole part representing MIDI note number and fractional part representing

cents. MIDI note numbers ∈ [0, 127] covering frequency range ∈ [8.18, 12544]Hz.

Middle C corresponds to the note number 60 and A4 (440 Hz) corresponds to note

number 69. We use following formulae to convert frequency to pitch and vice versa:

p = 69 + log2(
f − 440

12
) (3.7)

and correspondingly

f = 440 ∗ 2
p−69
12 (3.8)

where f is frequency in Hz and p is pitch as MIDI note number.cents formatted value.

As an example, detected frequency of 810 Hz will be stored as value of 79.565.

Pitch durations descriptor store each pitch’s extent in seconds. As an addition to

the above pitch list this array allows to inquire how long each pitch lasted.

Pitch quotas describe pitches durations in a relative way, i.e. how much each pitch

contributed to the overall pitched duration. As usual quotas sum up to 1.

Starting and ending pitch descriptors specify enclosing pitches of an element

3.3.4.3 Momentary pitch descriptors

This group describes volatile pitch content that does not last long enough to become

perceptually salient but nevertheless creates some statistical mass in tonal space.

Momentary pitches cardinality describes number of momentary pitches regis-

tered in the element.

89

Momentary pitches descriptor lists pitches in the order of duration with the

longest momentary pitch listed first.

Momentary pitches duration is a single number indicating compound duration

of momentary pitches in seconds.

Momentary pitches quota describes the extent of momentary pitches contribu-

tion to the overall pitched duration. If in formula 3.6 PP = 0.3 and PM = 0.2 then

momentary pitches quota will be

QPM
=

PM

PP + PM

= 0.4

3.3.4.4 Chroma descriptors

This group of descriptors characterizes chroma content of element.

Chroma cardinality stores number of chromas detected in element. This is the

most general descriptor to assess the chroma content of an element.

Chromas descriptor lists chromas obtained via HPCP extraction during the course

of element. In multiple chromas case they are ordered by duration with the longest

chroma first.

In sEl chromas are stored as integers ∈ [0, 11] indexing symbol array of twelve chro-

matic pitch classes as shown in table 3.25.

Chroma durations descriptor is an array with each chroma’s span stored in sec-

onds. Durations are listed in descending order which also corresponds to the order of

chromas in the above descriptor.

90

Table 3.25: Pitch classes symbols

Index Pitch class

0 A
1 A#
2 B
3 C
4 C#
5 D
6 D#
7 E
8 F
9 F#
10 G
11 G#

Chroma quotas describe each chroma’s durational offering to the overall pitched

time of the element. Chroma quotas sum up to 1.

3.3.4.5 Chroma polyphony descriptors

This descriptor group depicts aspects of chromas’ simultaneous occurence.

Global chroma simultaneity ratio depicts contribution of polyphonic time to

the overall duration of element:

SG =
DS

DT

where DS is duration of simultaneous chromas and DT is the total element’s duration.

Local chroma simultaneity ratio stores relation between polyphonic time and

pitched duration of element:

SL =
DS

DP

where DP is the pitched duration.

91

Maximum chroma simultaneity shows maximum number of concurrent chromas

observed in the element.

Maximum chroma simultaneity local ratio stores relation between time of

maximum chroma simultaneity and overall simultaneity time:

RMaxS =
DMaxS

DS

where DMaxS is duration of maximum chroma simultaneity.

3.3.5 Rhythm descriptors

In MIR applications rhythm-related descriptors are often utilized for tasks such as

genre recognition ([41]), signal similarity assessment ([88], [47]) and others. Semantic

access to rhythmic aspects of sound can be highly desirable for compositional decision-

making as well. Information about layers of sub-audio periodicity present in the signal

can be instrumental especially for temporalization phase of NOTA-transform pipeline

(2.5.2.2).

A variety of methods has been proposed for rhythm feature extraction that run on

a premise of dealing with inputs that actually contain rhythmic behavior. In an

omni-source environment like sEl no such promise can be made. To extract rhythm-

related descriptors from arbitrary signals we use general solution of rhythm transform

described in [55]. The rhythm transform computes a number of frequency-band spe-

cific periodograms which altogether represent the rhythmic periodicities of a signal in

rhythm domain similarly to how FFT depicts audio periodicities in frequency domain.

Example of rhythm transform performed in sEl is demonstrated in figure 3.18: the

plot shows four-five prominent peaks revealing polyvalent rhythmic structure. Each

colored curve represents separate time frame in the rhythm domain.

92

Figure 3.18: Rhythm transform plot in sEl.

Further analyzing rhythm transform of an element we extract the following fea-

tures:

• CPMs

• CPM strengths

• CPM evolve

• Tatum

3.3.5.1 CPMs

Rhythm transform bins correspond to specific periodicity rates. Examining the bins

we can find the energy of sub-audio periodicities found in the signal. From those

93

we pick energies rising above the minimum energy threshold and store corresponding

periodicities as CPMs descriptor. Rhythm periodicities are stored in cycles per minute

— a musically convenient unit similar to bpm. However we avoid using the term beats

as having too narrow semantics for our purpose here.

To convert rhythm domain bin index to cycles per minute we use formula:

cpmi = 30
i× fs
h× w

(3.9)

where i is a rhythm transfer bin index, fs — a signal sample rate, h and w — hop

size and frame size used to compute rhythm transform.

CPMs are stored in the decreasing order of prominence.

3.3.5.2 CPM strengths

Periodicities stored by the previous descriptor have energy levels associated with

them. These levels are converted into relative strengths via division by the strongest

level. The resulting coefficients are stored as CPM strengths. The order is the same

as that of CPMs.

3.3.5.3 CPM evolve

Rhythmic periodicities may not stay fixed but evolve over the course of sound element.

For each rhythm domain time frame we pick the strongest CPM and store it in a

time series describing an evolution of the most prominent periodicity. CPM evolve is

a dynamic descriptor for which characteristic values are computed (3.2.2.10).

3.3.5.4 Tatum

Tatum, a term coined in [20], refers to the high frequency pulse we often experience

when in presence of music. Disabbreviated as time quantum this term ”can be defined

94

as the lowest regular pulse train that a listener intuitively infers from the timing of

perceived musical events” [63]. In sEl this descriptor is stored with some tweaks

depending on the timescale (3.3.2.1) of a sound element:

• For elements that yield non-empty CPMs list the fastest rate is stored as tatum,

• For elements which are too short to contain rhythm cycles the very length of the

element becomes a parameter to compute tatum. In this case tatum describes

the rate of pulse that would result from the element’s continuous repetition.

This is a useful characteristic but nevertheless not a real tatum since the element

itself does not have any. To mark such cases tatum is stored as a negative value.

3.3.6 Spectral descriptors

Spectral group includes low-level descriptors calculated from audio spectrum and

characterizing various aspects of the sounds spectral shape. In sEl these features

are predominantly used for element similarity searches. All descriptors in this group

are dynamic thus characteristic attributes are computed to describe their temporal

evolution (3.2.2.10). The spectral group comprises following descriptors:

• Spectral complexity

• Spectral centroid

• Spectral decrease

• Spectral flux

• Spectral peakiness

• Spectral rolloff

• Spectral spread

• Spectral skewness

• High frequency content

95

3.3.6.1 Spectral centroid

This descriptor represents center of spectral mass which correlates with perception of

the sound’s brightness or dullness. It is computed as a mean value of frequency distri-

bution across the magnitude spectrum where magnitude values are used as frequency

weights:

Sµ =

∑N
k=1m[k]fk∑N
k=1m[k]

(3.10)

where N is number of spectrum bins, k — bin index, m[k] — magnitude and fk —

kth bin frequency. Spectral centroid is represented in Hz units.

3.3.6.2 Spectral complexity

This feature describes the complexity of a signal frame in terms of multiplicity of

frequency constituents. It is defined in [68] as the count of the spectral peaks. To

compute this descriptor we apply peak detection algorithm to the magnitude spectrum

and count peaks that surpass magnitude threshold — a user controllable parameter.

3.3.6.3 Spectral decrease

Taking spectral shape as a linear regression model this descriptor is a least squares

regression estimator that shows the linear degree of spectral decrease (or increase).

3.3.6.4 Spectral flux

This descriptor represents temporal variability of the magnitude spectrum on a frame-

to-frame basis. It can be computed as an X-norm difference between two consecutive

spectral frames. In some applications X=1 [40]:

Sf =
N∑
i=1

|mi −mi−1| (3.11)

96

while in others X=2 [116], [86]:

Sf =

√√√√ N∑
i=1

(mi −mi−1)2 (3.12)

where mi and mi−1 are magnitudes of current and preceding frames. In sEl X ∈ [1, 2]

is a user selectable parameter.

3.3.6.5 Spectral peakiness

Spectral peakiness (also called kurtosis) identifies the degree of flatness of the spectral

shape around the centroid. Lesser value accounts for smoother shape. This descriptor

is computed as fourth order central moment normalized by sum of magnitudes:

Sδ =
4

√∑N
k=1m[k](fk − Sµ)4∑N

k=1m[k]
(3.13)

3.3.6.6 Spectral rolloff

Spectral rolloff is a frequency below which the cumulative energy of the signal reaches

specific percent k of the total energy (usually k ∈ [85, 90]%):

fr∑
0

m2
f = k

fNy∑
0

m2
f (3.14)

where fr is rolloff frequency, fNy — Nyquist frequency and mf — magnitude of

frequency f within the spectrum.

This descriptor is measured in Hz, it delineates frequency range containing most of

the signal’s energy.

97

3.3.6.7 Spectral skewness

This descriptor outlines spectral shape’s asymmetry with respect to the spectral cen-

troid. Zero skewness corresponds to symmetric spectral shape, negative value indi-

cates prevalence of higher frequencies and positive value — the opposite. Spectral

skewness corresponds to the third central moment of frequency distribution:

Sγ = 3

√∑N
k=1m[k](fk − Sµ)3∑N

k=1m[k]
(3.15)

3.3.6.8 Spectral spread

Spectral spread characterizes concentration of spectral energy around the spectral

centroid and thereby delineates its global bandwidth. Spectral spread corresponds to

the spectrum’s standard deviation normalized over the sum of the magnitudes:

Sσ =

√∑N
k=1m[k](fk − Sµ)2∑N

k=1m[k]
(3.16)

3.3.6.9 High frequency content (HFC)

High frequency content sums up spectrum magnitudes while assigning progressively

more weight to higher frequencies. This descriptor’s sensitivity is honed towards the

higher end of the spectrum. Different applications differently boost high frequencies

weights during HFC computation. In [25] HFC is essentially a spectral centroid

without normaliztaion:

hfc =

fNy∑
0

fmf (3.17)

while in [72] magnitudes are squared:

hfc =

fNy∑
0

fm2
f (3.18)

98

and in [64] squared are the frequencies:

hfc =

fNy∑
0

f 2mf (3.19)

In sEl either option is available.

3.3.7 Integrated architecture

sEl’s analysis subsystem is implemented as integrated architecture that can take ad-

vantage of functionality provided by external third-party music information retrieval

toolsets. External functionality is added to sEl’s analysis subsystem via implementing

integration layer that adapts each toolset’s API to the internal analysis protocol.

3.3.7.1 Integration layer

Each external toolset that sEl embeds is communicated via dedicated integration ob-

ject (called engine) which translates calls between the system and a toolset. Every

toolset has its own API for setting parameters and formatting analysis input. Besides

resolving these, integration objects also publish their toolsets’ feature computing ca-

pabilities so that sEl can compile a system-wide library of computable features.

Normally features are computed as a chain of interconnected lower-level computations

compoundly called analysis graph. Due to the integration abstraction mechanism dif-

ferent toolsets can compute different parts of the same analysis graph without knowing

about each other. A general scheme of toolsets integration is shown in figure 3.19.

3.3.7.2 External toolsets

Two last decades of research in musical informatics brought to life numerous software

packages to assist in music information retrieval tasks. Varying in capabilities,

platform and licensing those toolsets form the computational resource base for

99

Toolset 1 API Toolset 2 API Toolset N API...

Toolset 1 Integrator Toolset 2 Integrator Toolset 3 Integrator

Analysis manager

Analysis request Analysis result

Feature challenge

Feature response

Figure 3.19: External toolsets integration in sEl.

researchers.

For a long time the natural platform choice for MIR toolsets has been Matlab, with

its wealth of tools for signal processing and multi-dimensional arrays manipulation.

Besides narrow-task MIR libraries, some general toolsets have been developed, such

as Timbre toolbox [90], MIRtoolbox [67], EASY [87] to name a few. A number of

general MIR toolsets have been implemented using Java language such as jAudio

[79] or AMUSE [119]. Third widespread language platform for developing MIR

libraries is C/C++ which was used to implement such commendable toolsets as

aubio [25], Essentia [22], LibXtract [26] and Marsyas [117], [115]. Some toolsets are

100

implemented as web service, e.g. Echonest [44] or jWebMiner [80].

During research into external toolsets to integrate with sEl we looked for those

that could be interfaced with Python. Some toolsets, like Bregman toolbox [32] and

YAAFE [74] were developed in Python which makes them obvious candidates for

integration. The aforementioned C/C++ toolsets (aubio, Essentia, LibXtract and

Marsyas) provide Python front-ends which also makes them directly accessibly from

sEl. In addition to this selection Echonest supplies Python API to connect to their

server. Appendix C provides a categorized comparison between capabilities of these

seven MIR toolsets.

Of all the candidate libraries, the easiest to integrate turned out to be aubio and

Essentia due to their modular architecture and seamless support of NumPy10 arrays.

Currently these two libraries are integrated into sEl and support for the rest is a work

for the future.

3.3.8 Flexibility

Analysis subsystem of sEl offers control over the actual set of features that will be

computed for new elements added to the material layer (3.2.1) of the database. By

manipulating active field of dbDescriptor (3.2.2.1) database object features can be

turned on and off.

3.3.9 Visualization

Initially sEl printed analysis data to the console but soon enough it became clear

that the amount of information exceeds any convenience thresholds with the chosen

10NumPy is Python library for working with multi-dimensional arrays. Backed by fast C-compiled
core, with its functionality and performance rivaling that of Matlab, NumPy became a de facto
standard for array and matrix manipulation in Python.

101

method of visual feedback. This necessitated implementation of data visualization

module to make working with elements analysis more efficient and enjoyable. The

current implementation is based on the functionality of matplotlib11 library [85] em-

bedded into sEl’s GUI. The module, which is still far from being complete, allows

to visualize analysis data for the user. In the future visualization module will be re-

designed towards integrated architecture with the ability to uniformly interface other

external visualization packages, especially OpenGL based, like Galry [98] or VISPY

[29]. Figures 3.20 and 3.21 show visualization examples for pitch map analysis and

HPCP descriptor.

Figure 3.20: Pitch map analysis visualization.

11Matplotlib is data plotting library designed to provide functionality similar to that of Matlab.

102

Figure 3.21: Harmonic Pitch Class Profile (HPCP) visualization.

3.3.10 Extensibility

sEl’s analysis subsystem is designed to encourage experimentation and facilitate ex-

tensions of the library of analysis elements. In addition to running analyses and

saving them to database user can experiment with different configurations of anal-

ysis pipelines by putting together available processing elements and modifying their

parameters. Processing construct that takes audio signal as input and produces one

or more extracted features is called analysis graph.

3.3.10.1 Analysis graph

Typically feature extraction process consists of a number of steps where each step

takes input data from a previous step, transforms data in a particular way and passes

it further. For instance, to compute HPCP of a signal we need to

1. Remove DC offset from the signal,

103

2. Apply equal loudness filter to better align the result with perceptual space,

3. Split the signal into overlapping short time frames,

4. Multiply each frame by specific window function,

5. Perform FFT on windowed frame,

6. Extract spectral peaks from magnitude spectrum of the FFT,

7. Extract chroma array energies from the spectral peaks.

In sEl’s parlance the overall analysis sequence is called analysis graph and each step

in this process is called analysis node. Analysis node’s structure involves

• a processing unit

• input(s)

• parameters

• output(s)

Figure 3.22 shows the above analysis realized a processing nodes’ graph. This par-

ticular calculation does not contain execution branching but other processes do. The

figure also shows that analysis graph allows processing nodes to communicate on pa-

rameter level to ensure consistency of parameters with identical semantics like sample

rate or frame size.

When various features are being computed for a sound element, it is certain that

the same processing nodes will be used multiple times. For instance, the magnitude

spectrum is used as input for all spectral descriptors (3.3.6), bark bands (3.3.3.3),

chroma descriptors (3.3.4.4) and more. To avoid unnecessary wasting of memory and

processing time due to duplication, sEl maintains internal caching of processing nodes

outcomes and returns the cached data whenever such a node is called for processing.

To put it differently, any node computes its data only once for a given input and

while having the same parameters settings. However, when parameters settings differ

104

AudioBu�er Monoizer
DC O�set

Remover

Equal Loudness

Filter

FrameSlicer Windowing FFT Spectral Peaks

HPCP

!le path
/process/test.wav

num channels 2
sample rate 44100
start time 0.0 40

sample rate

end time 4.45

frame size 4096
hop size 512
zero center True
valid frame ratio0.0

max freq 5000
max peaks 100
order by frequency
mag threshold 0.0

frame sizesize

window type hann
zero padding 0
zero phase True

mono type left
cuto� low freq

sample rate

sample rate

HPCP feature matrix: [num_frames x 12]

max freq
min freq 40
reference freq 440

band preset True
max shifted False
normalized True
nonlinear False

split freq 500

size 12
window size 1
weight type cos2

sample rate

Figure 3.22: Example of analysis graph.

even slightly, the result is computed anew (as it should). New computation does not

destroy any cached results because they may be called for by other nodes. Caching

optimization works automatically without requiring any control from the user.

3.3.10.2 Extending the analysis library

sEl comes with a set of pre-assembled analysis graphs sufficient to compute the default

features (3.3.1). For further experimentation and extension the software provides

different ways to do so.

105

Defining new analysis graphs can be done via GraphManager object which can

be used to assemble arbitrary graphs out of the available processing nodes. Currently

this can only be done by writing Python code. In the future for users who do not

program an audio graph editor will be implemented to allow assembling analysis

graphs by methods of visual programming (similar to PureData [95], OpenMusic [10]

and the like).

Adding new processing nodes is another method of extensibility in sEl’s anal-

ysis subsystem. New processing nodes can be written by subclassing ProcessingNode

base class and implementing few methods that describe new node’s parameters as well

as writing process method that does actual processing. This method will be called

by the analysis framework and passed the necessary input data for computation.

Despite being part of an analysis graph any node in its process method can internally

assemble its own working graphs out of other nodes to assist in computation.

After new processing node classes are implemented no additional effort is required

to make them part of the analysis library: GraphManager will collect all processing

node classes from the code automagically during the sEl’s start sequence so that they

will be available as building blocks for assembling analysis graphs.

For experimentation with analysis graphs sEl provides GUI interface which allows

to select specific graph, run it on sound elements and observe results in both console

window and visualization widget (3.3.9).

106

3.3.11 Element features assessment

Each database element’s computed features can be assessed via activating Analysis

window 12 shown in figure 3.24. For easier evaluation descriptors are grouped by

semantics and color-coded.

3.4 Compositional subsystem

The NOTA-transform described in (2.5.2.2) is an essential scheme of recombinant

usage of EncycloSpace in compositional context. Existence of semantic layer of the

EncycloSpace is a prerequisite for that process. This prerequisite is addressed by

Analysis subsystem which elevates the opaque material level of the EncycloSpace

(audio) to become a navigable semantic space of features. However descriptive this

space might be it does not contain any compositional structures. This is the task of

Compositional subsystem.

Implementation of Compositional subsystem complies with the tripartite structure of

NOTA-transform in offering tools for each of its transformational phases, i.e. Navi-

gation, Ordering and Temporalization.

3.4.1 Navigation

As detailed in 2.5.2.2 Navigation is the first phase of the recombinant process. It

creates projection of EncycloSpace, called N-projection (Eq. 2.2), containing elements

that satisfy a set of constraints called navigation context (2.5.2.3). sEl allows to create

navigation contexts of arbitrary complexity via Python classes dbSearchContext and

SearchClause. A single dbSearchContext object contains collection of SearchClause

objects each of which defines some aspect of navigation. These aspects are applied

12Analysis window shows static features data and mean values for dynamic features. Characteristic
data for dynamic features is not displayed. GUI element for assessing characteristic values of dynamic
features will be added in the future versions of sEl.

107

collectively during the database search.

SearchClause is an abstract class which defines interface for navigation elements. sEl

provides two classes derived from SearchClause to assist in specific types of navigation:

• FeatureSearchClause selects sound elements with specific feature having a cer-

tain value range or participating in a specific category.

• ChildrenSearchClause selects sound elements on the basis of containment within

other elements.

Once navigation context is established it can be passed to the sEl’s navigation API

which will administer database search and return N-projection — a specific collection

of elements which satisfied the navigation context. The returned collection can be

passed to the next NOTA-transform phase or saved to the database for later use as

a new dbCollection (3.2.3.1) of type set.

3.4.1.1 Navigation extensibility

Using SearchClause interface user of the system can expand navigation vocabulary

by deriving new navigation classes.

3.4.2 Ordering

Element collections obtained via navigation can be used to construct music entities

of very different time scales, the actual scale depending on the collection’s content

and the compositional strategy. In any case there is a distinct decision-making stage

defining which elements and in which order should the music object contain. This

process corresponds to the second phase of NOTA-transform called Ordering. As

shown in Eq. 2.4 ordering takes as input N-projection and outputs O-projection —

an ordered sequence of sound elements. This transformation requires an ordering

context (2.5.2.4) — a mechanism capable of converting unordered set of elements into

108

ordered sequences.

sEl offers an ordering interface defined in ElementOrderBase class. sEl comes with a

number of ordering classes derived from ElementOrderBase:

• FeatureOrder — creates sequence of elements based on values of specific fea-

tures,

• RandomOrder — creates randomized sequences,

• NaturalOrder — preserves whatever order the collection already has.

Orders can also be cascaded to create more sophisticated O-projections. Ordered

elements can be passed to the last NOTA-transform phase — temporalization but

they can also be save in the database for later use as a dbCollection (3.2.3.1) of type

sequence.

3.4.2.1 Ordering extensibility

The roster of ordering classes can be expanded: by deriving from ElementOrderBase

interface user can implement arbitrary element ordering strategies: deterministic and

non deterministic, using various mappings and probability distributions, but most

interestingly — strategies driven by expanding and utilizing sound descriptors se-

mantics.

3.4.3 Temporalization

Temporalization is the third phase of the NOTA-transform which allows recombina-

tion of elements on a temporal scale. This phase is defined in Eq. 2.6 as conversion

from O-projection to T-projection via usage of temporal context (2.5.2.5) — a collec-

tion of time structures that can be used to distribute elements along the timeline and

modify their temporal span.

sEl supports temporalization via Python classes TemporalContext and TimeStructure.

109

Each composition object in sEl contains TemporalContext which in turn can contain

a number of TimeStructures. Each TimeStructure can temporailze a single strand

(2.5.2.1) — a sequential line of compositional events. Once event is created within

the strand which has a TimeStructure associated with it, the event’s content (sound

elements) can be precisely aligned against the points of the TimeStructure.

Time structures can be created in a couple of different ways:

• As a sequence of absolute time points,

• As a symbolic time structure — a sequence of time signatures and tempi

Both approaches can be used either deterministically by direct specification or algo-

rithmically via arbitrary means of computation.

Time points can be assigned structural roles which allow precise control over the time

alignment. Currently supported roles are:

• Measure

• Beat

• Sub-beat

• Tatum

• Time point

Each element that can be a subject of temporalization can be given a list of roles

which it will respond to. For instance, elements that respond strictly to Measure role

can only be controlled by time points which have this role assigned.

The list of roles can be expanded by user to include arbitrary structural semantics.

3.4.3.1 Absolute time

Absolute time points specify time structure in terms of physical time units. This

method is favorable for rubato like time structuring.

110

3.4.3.2 Symbolic time

Symbolic time allows to use the language of musical time signatures and tempi to

specify how physical time points should be unwrapped. This syntax is beneficial for

well-structured temporal definitions.

3.4.3.3 Hybrid time

Both absolute and symbolic time notations can be freely mixed. In that mode absolute

time points represent the time elapsed since the beginning of the given absolute time

section.

3.4.4 Adaptation

Adaptation is the concluding stage of NOTA-transform which takes care of final

adjustments of sound elements in order to produce an expected sound result. In sEl

adaptation is realized as a feature-guided ability of compositional objects to modify

their content during the rendering. For instance, a sound element, given the reference

of another sound element, can adjust its loudness, pitch and duration accordingly,

administer edge-fading etc.

3.4.5 Compositional objects

Four types of compositional hierarchy objects described in 2.5.2.1 are implemented

in sEl as Python classes Composition, Section, PerformanceStrand and Perfor-

manceEvent.

3.4.5.1 Composition class

Composition class represents the whole music work and holds its metadata (title,

composer etc) and a list of sections.

111

3.4.5.2 Section class

Section class holds a list of section strands and a temporal context. Strands represent

parallel layers of sound. Temporal context contains time structures designed for the

section.

3.4.5.3 Strand class

Strand class consists of events — temporal containers that have time position and

duration. Strand can be assigned a time structure from the section’s temporal context

in which case the strand’s content will be temporally controlled by that structure’s

time points.

3.4.5.4 Event class

Event class represents actual sound content for which it defines temporal bounds

and position. The content can be any object derived from the class PerformanceOb-

ject which defines interface for any playable sound content. Currently there are three

playable classes — SoundElement, ElementCollection and MetaCollection. SoundEle-

ment represents a single material entry of EncycloSpace — audio element stored

in dbElement table (3.2.1.3). ElementCollection and MetaCollection embody N-

projections and O-projections of EncycloSpace stored in dbCollection (3.2.3.1) or

dbCollectionGroup (3.2.3.4) tables correspondingly. For the current version of sEl it

was crucial to implement these three content types but in the future versions other

sound production classes can be added.

Since single Event can contain whole collections of elements this opens up the poten-

tiality for different strategies of usage. Moreover, several Events can refer to the same

ElementCollection while occupying different time locations and having different dura-

tion spans. Via sEl’s ordering and temporalization API such ElementCollection can

be deployed, for instance, with or without re-triggering of collection, with or without

112

duplication of elements etc. Overall recombinant possibilities are too numerous to be

recounted here.

Figure 3.25 shows relationships between sEl’s compositional objects.

3.5 Rendering subsystem

Since the Composition object is only a symbolic specification of the composition,

rendering is required to obtain the final result (2.5.3). The rendering subsystem

takes the composition object, parses it, instantiates required performance objects

and creates a perceivable result. The rendering functionality is encapsulated in

the Python class called Performance. During the class construction, rendering

parameters can be passed to the constructor such as sample rate, number of output

channels etc. Performance object can also accept starting time position and duration

to allow selective rendering of composition’s segments.

Current implementation supports rendering result as a waveform. Future versions

will also implement symbolic rendering mode. This will allow to produce specific

parts of the composition as symbolic notation to facilitate inclusion of live instru-

mentalists into the performance.

Rendering starts with a pre-rendering phase whose objective is to resolve in-

determinacy contained in compositional structures. Indeterminacy can exists due

to probabilistic constructs created during compositional decision-making. After

pre-rendering the compositional model becomes wholly deterministic and thus

renderable. However, even then rendering might not be completely linear due to

possible element nudging during the mixing process. Element nudging has to do

with temporal tightening based on the usage of temporal descriptors such as Q-time.

113

Paragraph 3.3.2.7 explains this in detail.

114

Figure 3.23: Feature analysis graph selection widget

115

Figure 3.24: Element features window

116

C
o

m
p

o
si

ti
o

n

S
tr

a
n

d
 1

S
tr

a
n

d
 2

S
tr

a
n

d
 3

S
e

c
ti

o
n

 1

S
e

c
ti

o
n

 1

S
e

c
ti

o
n

 2
S

e
c

ti
o

n
 3

0
t1

t1

t2
t3

S
tr

a
n

d
 1

S
tr

a
n

d
 2

e
v

e
n

t
1

e
v

e
n

t
2

e
v

e
n

t
3

e
v

e
n

t
4

. .
 .

e
le

m
e

n
t

c
o

ll
e

c
ti

o
n

s
o

u
n

d
 e

le
m

e
n

t
s

o
u

n
d

 e
le

m
e

n
t

F
ig
u
re

3.
25
:
S
tr
u
ct
u
ra
l
re
la
ti
on

sh
ip
s
b
et
w
ee
n
co
m
p
os
it
io
n
al

ob
je
ct
s

117

Chapter 4

Ignis Fatuus: a recombinant piece

composed with sEl

This chapter describes Ignis Fatuus, a piece composed using sEl. Our objective

was to showcase compositional affordances of the software and to test its functional

performance in practice. The composition is an acousmatic work, that comprises six

movements, each employing particular strategy based on NOTA-transform.

The piece’s title reflects our intention of constructing illusory sonic identities based

on recombinant constructs of natural sounds.

4.1 The composition’s EncycloSpace

The material layer (3.2.1) of the piece’s EncycloSpace consists of 1,291 sound files.

The files comprise two types of material:

• Sampled sounds — personal recordings of voice, piano and variety of objects

made of glass, plastic, rubber, metal, stone etc

• Synthesized sounds — waveforms, algorithmically generated by a personal al-

gorithm called SpecGen created in the RTcmix environment ([51]).

118

The semantics layer (3.2.2) comprises 18,394 elements from which 764,403

descriptors were extracted by the analysis subsystem (3.3).

The recombinant layer (3.2.3) contains 133 collections, created in sEl both by

utilizing user interface and by executing navigation contexts (3.4.1) from composi-

tional scripts.

4.2 Movement I. Have I destroyed? (Intro)

The phrase ”Have I destroyed?” is both a key semantic motif for the piece and starting

words of a poem by an American poet Jeremy Ward who recited it for my recording

back in 2005. In this opening movement the first line of the poet’s recital is heard

untouched, after which it is algorithmically recombined using the height of the voice

tone as an ordering principle and the loudness threshold as a navigation criterion to

filter out segments representing pauses in the speech, breath and miscellaneous noises.

As a result the movement builds up to a culmination using natural characteristics of

the reader’s prosody.

NOTA-transform-related facts:

• Navigation is a two-step process:

1. selection of elements based on file membership

2. secondary selection based on the loudness threshold

• Ordering is based on increasing values of pitch and loudness combined.

• Temporalization is lazy, i.e. it uses time positions and durations produced as a

result of ordering.

• Adaptation includes 5 msec cross-fading between elements.

This movement was completely produced within sEl.

119

4.3 Movement II. Vocalise

This movement’s sound material is based on sound recordings of my voice: abstract

articulations, lip noises, breathing, glottal sounds etc. Some of the recordings were

processed by the SpecGen script before being placed in the database. A compositional

structure of the movement utilizes 6 collections subsequently distributed among 4

strands (3.4.5.3): a main voice strand, a low-register strand and two arrangement

strands.

The primary ordering principle, employed in Vocalise is automapping — a collection

orders itself by starting from some element (chosen deterministically or stochasti-

cally) and then replacing that element with another one, found via computation of

the descriptor-based distance. The selected (found) element replaces the first one and

vacates its own index in the sequence. To fill that index, another search takes place,

an so on until no elements are left to choose from. The last place is taken by the

element, from which the mapping has started. This provides closure for the mapping

procedure.

For the main strand’s temporalization, time points were produced by the ordering

stage, other strands derived their time structures from the main strand’s segmental

locations. Unlike the arrangement strands, the low-register strand’s collection was

ordered by method, called recombinant variation, which allows multiple instantia-

tion of elements and produces order variations which are seamless non-repeating and

texture-like. The final assembly of the strands was done using an external DAW1,

because the compositional subsystem does not yet have the necessary interface.

1Digital Audio Workstation

120

4.4 Movement III. Upbound

This movement is composed from synthetic material generated by the SpecGen algo-

rithm mentioned above. The compositional method is based on the intention to build

an artificial articulation stream imitating dynamics of the prosodic intonation with

rises and falls, intermittent rhythmicity, breathing and mixing the noisy and pitched

components. In parallel, the music traverses the registral space in an unnoticeably

slow gradual fashion so, when the movement ends, the listener finds herself at an

opposite end of the sound spectrum from that of the movement’s start.

To achieve this goal we created two collections from the SpecGen material using nav-

igation contexts based on the pitchiness (3.3.4.1) descriptor to separate noisy and

pitched elements. Both collections were individually ordered by using the following

multi-step process:

1. An ordering based on the strongest pitch (3.3.4.2) (for the pitched collection)

or spectral rolloff (3.3.6.6) (for the non-pitched collection) was applied first.

2. In a subsequent ordering the elements were rearranged based on their durations

to imitate prosodic irregular rhythmicity

During the temporalization stage the pitched collection, as smaller of the two, was

matched against the unpitched one in order to eliminate the temporal difference by

spreading the shorter collection’s elements along the larger collection’s duration. At

the adaptation phase, besides the usual 5-msec cross-fading, each element’s volume

was scaled to match -10 dB. For calculation the element’s ELF loudness descriptor

(3.3.3.2) was used. This movement was mostly produced in sEl with the exception of

the final assembly of strands.

121

4.5 Movement IV. Toccata

This movement was composed to showcase temporal synchronization capabilities of

sEl. It comprises 18 collections to build up the timbral space. These collections

were assembled by navigation based on file membership and, most critically, on the

timescale descriptor (3.3.2.1) to return elements shorter than 50 msec. Each collection

was then separately ordered: depending on the timbral properties, either pitch-based

or random ordering was used. Consequently, the collections were temporalized by time

structures (3.4.3) based on prestissimo tempo (200 bpm). Each element’s placement

was guided by its q-time descriptor (3.3.2.7) for precise temporal positioning. The

final assembly of the generated strands was administered in an external DAW.

4.6 Movement V. Ignis Fatuus

This penultimate movement is completely composed out of sounds produced by a

set of glass objects, shown in figure 4.1. This set was purposely assembled for the

composition of this movement. By navigation, out of about 6 hours of recordings, 22

collections were produced based on the criterion of performing technique. Further, sEl

was used to print the element-wise pitch information from which the compositional

pitch-plan was constructed. Due to the complexity of the sound material, the rest of

this movement’s composing was done manually.

4.7 Movement VI. Have I destroyed? (Coda)

The concluding movement reiterates the material from the beginning of the piece —

that of the poem recital by Jeremy Ward. A different strategy is used, however: the

narrator’s voice struggles to be heard through three consecutively emerging recom-

122

Figure 4.1: A set of glass objects used to record the sound material for Ignis Fatuus

binant versions of itself produced by the music mosaicing method (2.5.2). Three

different collections were used to produce mosaicing:

1. Synthetic sounds by SpecGen algorithm

2. Recordings of balloon rubbing

3. Recordings of a knitting needle vibrating.

Along with paying tribute to music mosaicing, this movement also demonstrates one

of the possibilities for a recombinant use of this synthesis method. The movement

was completely produced within the sEl environment.

123

Figure 4.2: Pitch information extracted by sEl from the recordings for the IgnisFatuus’
fifth movement

124

Chapter 5

Postlude

In this chapter we will summarize the findings and conclusions from the work on this

project, and then sketch a road map for future directions of development.

5.1 Conclusion

The motivation for this project goes back to the days before I started my graduate

study at the University of Virginia. Back then I developed a C++ application

called wEave to assist in the compositional use of my personal library of recordings.

It certainly lacked many features of sEl (I should not even compare these two

programs), but it had a conceptual structure of informational organization which

greatly optimized navigation through the library. It also had a compositional module

allowing for some combinatorial strategies which involved sampled materials. I used

wEave to assist in a few algorithmic compositional projects, the most complex of

which was The Jubjub’s Chronicles (2006), which used about 500 separate sound

clips selected from about 15,000 contained in the library. There was no doubt that

the utility of such tools will only grow with time due to the rapidly increasing size

of personal recording libraries. However, I decided to abandon further development

of wEave because its design was not systematic and it had reached its ceiling of

125

scalability.

The years of graduate study allowed the conceptual side of the project to mature

and also, as was mentioned in Chapter 1, the open-source music technology tools had

evolved tremendously and made it possible to approach this work with greater rigor.

Among the aspects that proved beneficial, one was the decision to base the sys-

tem’s design on the ontological topology of music (1.1). This created a comprehensive

perspective for approaching the general structure of the system and deliberation of

its functional modules. Recognizing the indispensability of EncycloSpace (1.1.5) in

the musical process and, most notably, respecting the equi-importance of receptive

and productive modes of navigation helped me find ways to overcome the limiting

view of the database as a composing-time-read-only entity. Taking EncycloSpace’s

dynamicity as semiotic process further aided in the development of recombinance

methods of the compositional subsystem (2.5.2, 3.4).

The concept of NOTA-transform (2.5.2.2) proved to be instrumental as it helped

to break down the compositional strategy problematics into smaller analytic parts

with mutually independent semantics. Isolating navigational, sequential and tempo-

ral aspects of the EncycloSpace’s utilization allowed to devise a clear and scalable

structure of the corresponding software modules.

The decision to design sEl as an integrated system played a critical role in allowing

this project to attain functional fullness within the designated time. Even though it

is still more of a prototype, all major parts of the framework are in place, the system

functions as a whole and its components are structurally set for further extensions.

This would not be possible without delegating parts of the job to third-party toolsets,

126

especially in the area of musical informatics. Also, since Python is not the fastest

language, the audio functionality vastly benefitted from using the SuperCollider

server as a real-time audio engine.

Modular architecture as a design principle is nothing new, but it found itself at

home with our project. The system’s open design stimulates unlimited extensibility

which has proven to be an important element of the compositional software. On a

number of occasions while composing music with sEl and driven by specific compo-

sitional needs, I found myself adding necessary algorithms to the NOTA-transform

stages without changing its principal architecture. So, the system can grow on

demand according to the user’s conceptual perspective.

Despite optimization via the integration with third-party tools, the most time-

consuming part of the development process turned out to be constructing the analysis

subsystem (2.4, 3.3) and putting together the database schema (2.3, 3.2). In the

EncycloSpace context, it was the construction of the ”mental organization” (1.1.5) of

the sound information — the phase of work which stipulated degrees of affordability

of that information for the compositional stage.

Since one of the main aspirations for this project was an attempt to upgrade the

design of corpus-based compositional software from a synthesis-oriented paradigm

to a composition-oriented one, an assessment of its validity cannot be done without

estimating how close we came to the above objective. This, in turn, might be logical

to evaluate by looking specifically at the affordances of the compositional part.

According to NOTA-transform, such an assessment has to consider four separate

but coordinated areas: EncycloSpace navigation, elements ordering, temporalization

and adaptation. Compared to concatenative synthesis and music mosaicing tools,

127

we observe the most difference in the second and third stages. Decision-making in

sEĺs ordering and temporalization stages is not predicated on any specific patterns of

causality. The closest application to sEl conceptually seems to be AudioGuide ([56])

but its unavailability did not let us to undertake any detailed analysis.

In the current scope of implementation, sEl is most suitable for acousmatic

composition. The possibility of expanding functionality into other compositional

areas is addressed below in 5.2.

5.2 Future Work

This project can be expanded in a number of directions. Below we sketch out some

of the expansions, improvements and optimizations that we would like to address in

future work.

5.2.1 Expansions

5.2.1.1 Sound material types

sEl was initially developed primarily to address the compositional usage of recorded

sounds. However, the open architecture allows to easily overcome this quasi-limitation

and develop classes to host other genotypes of element production such as sound

synthesis.

5.2.1.2 Rendering types

At the moment sEl delivers composition as a waveform. In the future, rendering

will be revised in a format-independent way to allow for different output domains:

waveform, symbolic notation, control data etc. Also it will be possible to assign spe-

128

cific output domains to particular compositional objects to allow for hybrid rendering

which can be useful for compositions that mix instrumental and acousmatic sound

sources.

5.2.1.3 Modality types

This is a far-reaching goal: to add more modalities to the system. In this view, the

software becomes a cross-modal compositional framework and EncycloSpace turns

into a multi-modal information base. Due to the semiosis of EncycloSpace, elements

of different modalities will be able to communicate and thus inform decision-making

across the modality border. Modalities can include visual data, textual data, scientific

data, network data or pretty much anything else.

5.2.1.4 Compositional vocabulary

The development of sEl is in a prototype stage. Many features of the compositional

API have still to be developed. For example, in all phases of NOTA-trasnform there

are openings to be filled by specific algorithms of navigation, ordering and temporal-

ization. Expansion of the compositional vocabulary is going to be addressed next in

the program’s future development.

5.2.1.5 Element matching

In most of the corpus-based applications, including sEl, element matching is ap-

proached as a one-to-one relationship. It seems beneficial though, to expand match-

ing schemas by adding one-to-many scenarios. This can substantially increase the

diversity of matching results. In such aggregate elements matching scenario several

elements cooperatively represent another element. This cooperation can be vertical,

i.e. across spectrum, and/or temporal. This expansion is inspired by the proposition

described in [56].

129

5.2.1.6 Elements containment

Currently there is one set of child elements per each parent element. This can be

expanded to allow for different subdivisions of the same element. Such a change

should improve elements representations on different time scales.

5.2.1.7 Data visualization

The matplotlib library, currently used for visualization, is not very well equipped

for displaying dynamically updated data. It saved some development time in the

process, but in the future it should be replaced by hardware-accelerated visualization.

OpenGL based libraries like Galry [98] or VISPY [29] seem to be good candidates.

Besides replacing the visualization library, new visualization modules should be

written to visualize:

• All element’s descriptors at once

• All characteristic values of the element’s dynamic descriptor in a single visual-

ization block

• Analysis graph

• Composition content

5.2.1.8 User interface and interactivity

At the moment, the usage of the compositional subsystem is done via scripting in the

code base and then running the software to compute the sound results. It would be

beneficial to add interactive elements to the user interface to allow:

• Display of the library of compositional objects

• Construction of the composition at run-time by scripting or visual programming

• Interactive assembling of analysis graphs by methods of visual programming

130

• Interactive testing and reprogramming of compositional substructures

• more...

5.2.1.9 Documentation and availability

To make this project useful for a wide audience, some time will be needed to create

user documentation and examples. After critical improvements and optimizations the

software’s code base will be uploaded to one of the publicly accessible repositories.

5.2.2 Optimizations

There are areas where the current implementation can be optimized, namely

• Audio data allocations. These are currently administered by each sound element

independently but should be managed from central location.

• Speed of database reflection. There can be hundreds of thousands of elements

and millions of extracted descriptors in the database. The database browser

needs to be optimized in order to decrease delays when database information is

being harvested for display.

• Speed of descriptor computation. Optimization of analysis computation can be

done by splitting the task into smaller chunks which can be separately computed

on different process threads or, for large number of elements, be scheduled for

cluster computing if it is available.

When sEl’s implementation reaches a degree of complete functional realization, it

will be ported to a faster language platform such as C++.

A summarized conclusion can be expressed as a belief, drawn from the experience

of working on this project, that it can furnish additional attention to the problematics

of the design of sample-based compositional methodologies and, hopefully, it will also

131

be able to contribute a number of constructive solutions to both theoretical and

practical aspects of the topic.

132

Appendix A

Default descriptors

Table A.1: Temporal descriptors

Feature Data type Dynamic Range

Timescale symbol [0,12]
Event cardinality integer [1,∞]
Temporal density real [0,1]
Onset cardinality integer [1,∞]
Dynamic complexity real [0,100]
Inter-onset intervals real[] X [0,dur]
Q-time real [0,dur)

Table A.2: Energy descriptors

Feature Data type Dynamic Range

Dynamics symbol [0,10]
ELF loudness real[] X [-100,0]
Start bark bands energy real[27] [0,1]
Q-time bark bands energy real[27] [0,1]
End bark bands energy real[27] [0,1]
Start spectral RMS real [0,1]
Q-time spectral RMS real [0,1]
End spectral RMS real [0,1]

133

Table A.3: Tonal descriptors

Feature Data type Dynamic Range

Pitchiness real[3] [0,1]
Pitches cardinality integer [1,∞]
Pitches real[] [0,127]
Pitch durations real[] [0,dur]
Pitch quotas real[] [0,1]
Starting pitch real [0,127]
Ending pitch real [0,127]
Momentary pitches cardinality integer [1,∞]
Momentary pitches real[] [0,127]
Momentary pitches duration real [0,dur]
Momentary pitches quota real [0,1]
Chroma cardinality integer [1,∞]
Chromas symbol[] [0,11]
Chroma durations real[] [0,dur]
Chroma quotas real[] [0,1]
Global chroma simultaneity ratio real [0,1]
Local chroma simultaneity ratio real [0,1]
Maximum chroma simultaneity integer [1,∞]
Maximum chroma simultaneity local
ratio

real [0,1]

Table A.4: Rhythm descriptors

Feature Data type Dynamic Range

CPMs real[] [0,640]
CPM strengths real[] [0,1]
CPM evolve real X [0,640]
Tatum real [0,2000]

134

Table A.5: Spectral descriptors

Feature Data type Dynamic Range

Spectral centroid real X [0,Nyquist]
Spectral complexity real X [0,100]
Spectral decrease real X [-∞,∞]
Spectral flux real X [0,1]
Spectral peakiness real X [-∞,∞]
Spectral rolloff real X [0,Nyquist]
Spectral skewness real X [-∞,∞]
Spectral spread real X [0,Nyquist/2]

135

Appendix B

Default category taxonomy

This appendix contains description of the default taxonomy of sEl’s categories.

There are six top categories:

1. Morphology — describes sound sources as entities

2. Source — describes material aspects of vibrating bodies

3. Resonator — describes material aspects of resonating bodies

4. Instrument-wise — describes aspects of sound source as instrument

5. Play-wise — describes performing aspects of sound production

6. Spectromorphology — describes phenomenological aspects of sound

B.1 Morphology categories

• Acoustic

• Human

• Body

• Voice

• Manmade

• Instrument

136

• Aerophone

• Accordion

• Brass

• Cimbasso

• Double horn

• Euphonium

• Flugelhorn

• etc

• Organ

• Electric organ

• Pipe organ

• Reed organ

• etc

• Woodwinds

• Bassoon

• Clarinet

• Contrabassoon

• English horn

• Flute

• etc

• Aquaphone

• Chordophone

• Banjo

• Dulcimer

• Guitar

• etc

137

• Keyboard

• Clavinet

• Harpsichord

• Piano

• Strings

• Cello

• Double bass

• Viola

• Violin

• Idiophone

• Pitched

• Agogo

• Almglocken

• Bian qing

• Bianzhong

• etc

• Unpitched

• Anvil

• Bell tree

• Bells

• Cabasa

• etc

• Membranophone

• Berkete

• Bodhran

• Bongo

138

• Boobam

• etc

• Pyrophone

• Object

• Nature

• Phenomena

• Fire

• Rain

• Water

• Wind

• etc

• Lifeforms

• Plants

• Animals

• Synthetic

• Instrument

• Analog

• Digital

• Virtual

• Soundobject

B.2 Source categories

• Form factor

• Bell

• Bellows

139

• Block

• Cone

• Conical bore

• Cube

• Cylinder

• Cylindrical bore

• Disc

• Hollow object

• Membrane

• Particles

• Pipe

• Reed

• Rod

• Sheet

• Sphere

• Stick

• String

• Stripe

• etc

• State of matter

• Fire

• Gas

• Liquid

• Plasma

• Solid

140

B.3 Resonator

• Ceramic

• Glass

• Metal

• Plastic

• Rubber

• Skin

• Stone

• Wood

B.4 Instrument-wise

• Beater

• Brush

• Hammer

• Hand

• Fingers

• Palm

• Mallet

• Plastic

• Yarn

• etc

• Group

• Ethnic

• General

• Historical

141

• Nontraditional

• Orchestral

• Location

• Center

• Edge

• Middle

• Rim

• Side

• Modification

• Mute

• Bucket

• Cup

• Hand

• etc

• Sizzle

• Sordino

• Stopped

• etc

• Range

• Alto

• Bariton

• Bass

• Contrabass

• Piccolo

• Soprano

142

• Tenor

• State

• Closed

• Open

• etc

B.5 Play-wise

• Articulation

• Arpeggio

• Attack

• Bend

• Bisbigliando

• Detachet

• Expressive

• Flatter

• Fluttertongue

• Harmonics

• Aritifical

• Natural

• Jazz tongued

• Legato

• Marcato

• Modulation

• Shake

• Tremolo

143

• Trill

• Vibrato

• Pizzicato

• Bartok

• Snap

• Portando

• Sforzando

• Staccatissimo

• Staccato

• Excitation

• Blown

• Bowed

• Hit

• Plucked

• Rubbed

• Scraped

• etc

• Multiplicity

• Duo

• Ensemble

• Octet

• Orchestra

• Quartet

• Quintet

• Section

144

• Septet

• Sextet

• Solo

• Trio

• Sequence

• Speed

• Change

• Accelerando

• Rallentando

• Level

• Fast

• Slow

• Technique

• Brush

• Choke

• Click

• Col legno

• Hit

• Overblown

• Pluck

• Pres de la table

• Ride

• Roll

• Saltando

• Scrape

145

• Shot

• Slap

• Slash

• Strike

• Sul ponticello

• Sul tasto

• Tap

• etc

• Tempo

• Adagietto

• Adagio

• Allegretto

• Allegro

• etc

• Vivace

• Vivacissimo

B.6 Spectromorphology

• Character

• Breathy

• Crisp

• Dirty

• Drone

• Growl

• etc

146

• Dynamics

• Change

• Crescendo

• Diminuendo

• Level

• f

• ff

• etc

• ppppp

• Motion

• Direction

• Dextrally

• Down

• Inward

• Outward

• Sinistrally

• Up

• Speed

• Type

• Fall

• Glide

• Glissando

• Rip

• Slide

• Smear

• etc

147

• Texture

• Dense

• Dynamic

• Granular

• Monotonous

• Sparse

• etc

148

Appendix C

Comparison of External MIR

Toolsets

In tables toolsets are encoded as

• A — aubio [24]

• B — Bregman toolbox [32]

• C — Echonest [44]

• E — Essentia [22]

• L — LibXtract [26]

• M — Marsyas [117]

• Y — YAAFE [75]

Table C.1: Toolsets Input/Output

Functionality A B C E L M Y

Audio input x x x x x x x
Audio output x x x x x x x
Features input x x x (YAML) x x x (HDF5)
Features output x x x x (YAML) x x x (HDF5)
Database support x

149

Table C.2: Features (Amplitude)

Functionality A B C E L M Y

Envelope x x
Envelope centroid x
Envelope flatness x
Envelope kurtosis x
Envelope skewness x
Envelope spread x
Log Attack time x
Max amp to total length x
Min amp to total length x

Table C.3: Features (Chroma, harmony, key)

Functionality A B C E L M Y

Chord detection x
Chords change rate x
Chords histogram x
Chords integration x
Chords Key x
Chords progression x
Chroma x x
Dissonance Measure x x
Equal-tempered deviation x
Harmonic Peaks x
Harmonic Pitch Class Profile
(HPCP)

x

Inharmonicity x x
Key detection x x
Log OBSI Ratio x
Non-tempered energy ratio x
Non-tempered peaks energy ratio x
Octave Band Signal Intensity
(OBSI)

x

Odd-to-Even Harmonic Energy
ratio

x x

Scale detection x x
Tonic detection x
Tuning frequency x
Tonality Coefficient x
Tristimulus x x

150

Table C.4: Features (Energy)

Functionality A B C E L M Y

Band energy x
Band Energy ratio x
Bands array energy x
dbPower x x
Replay Gain x
RMS energy x x x
Total energy x x x

Table C.5: Features (Frequency, pitch)

Functionality A B C E L M Y

Fundamental frequency (F0) x x x x x
Max magnitude Frequency x
Melody contour x x
Multipitch x
Noisiness x
Pitch contours x
Pitch salience x
PitchContourRatio x
Pitchiness x
Zero-crossing rate x x x x

Table C.6: Features (Perceptual energy)

Functionality A B C E L M Y

Bark bands x x x
Equivalent sound level (Leq) x
ERB bands x
Long-term Loudness (LARM) x
Mel bands x
Perceptual Sharpness x x
Perceptual Spread x
Total loudness x x x

151

Table C.7: Features (Spectral)

Functionality A B C E L M Y

Spectral periodicity
Auto-correlation x x x
Gammatone feature cepstrum co-
efficients (GFCC)

x

Linear Prediction Coefficients x x x
Mel-frequency cepstral coefficients
MFCCs

x x x x x

Spectral shape
High Frequency content (HFC) x
Spectal Contrast x
Spectral Centroid x x x x x
Spectral Complexity x
Spectral Crest x x
Spectral Decrease x
Spectral Flatness x x x
Spectral Kurtosis x x x
Spectral Peaks x x
Spectral Roll-off x x x x
Spectral Skewness x x x
Spectral Slope x x
Spectral Spread x x x x

Spectral temporal
Spectral Flux x x x
Spectral Variation x

152

Table C.8: Features (Temporal)

Functionality A B C E L M Y

Beat loudness x
Beat tracking (Tempo detection) x x x x
BPM harmonics x
BPM histogram x
Danceability x x
Dynamic Complexity x
Effecftive duration x
Grain detection x
Irregularity x
Large-scale Structure detection x
Liveness detection x
Measures detection x
Novelty curve x
Onset detection x x x
Onsets rate x
Rubato detection x
Segmentation x x x x
Smoothness x
Tatum detection x
Temporal Centroid x
Time signature detection x x
Transients separation x

Table C.9: Features (Volume)

Functionality A B C E L M Y

Fade in detection x x
Fade out detection x x
Silence detection x x
Silence rate x
Strong Decay x
Tremolo detection x

153

Table C.10: Features (Other)

Functionality A B C E L M Y

Quefrency (Cepstrum) Chroma x
Source detection x
Speech detection x

Table C.11: Transforms

Functionality A B C E L M Y

Cepstrum x
Constant-Q transform x
Discrete Cosine Transform x x
Harmonic Spectrum x
Inverse FFT x
Magnitude spectrum x x
Mel spectrum x
Power spectrum x x
STFT (complex spectrum) x x x
Rhythm transform x

154

Table C.12: Auxiliary processing

Functionality A B C E L M Y

All-pass filter x
Band-pass filter x
Band-reject filter x
DC removal x
Framing x x
Equal Loudness Filtering x
High-pass filter x
IIR filter x
Low-pass filter x
Metadata reader x
Moving average filter x
Multiplexing x
Noise adder x
Phase vocoder x x
Resampling x
Spectral Whitening x
Stereo Demuxing x
Test signals generation x
Tuning systems x
Visualization x x
Windowing x

155

Table C.13: Additional algorihms

Functionality A B C E L M Y

Central Moments x x
Crest computation x
Average Magnitude Difference
Function (AMDF)

x

Average Squared Difference Func-
tion (ASDF)

x

Bhattacharyya distance x
Cosine distance x
Cross correlation x
Decrease computation x
Derivatives x x
Dynamic Time Warping x
Flatness x
Histogram x
KMeans clustering x
Kullback-Leibler divergence x x
Multidimensional scaling x
Multivariate Gaussian model x
Normed dot-product distance x
Peak detection x
Pearson product-moment correla-
tion coefficient

x

Primary Component Analysis
(PCA)

x

Probabilistic Latent Component
Analysis (PLCA)

x

Shift-Invariant PLCA (SI-PLCA) x
Slope x
Support Vector Machines (SVM) x

156

Appendix D

Dependencies

This project integrates or depends on the functionality of the following open-source

frameworks and libraries:

aubio (aubio.org) — audio analysis library

Essentia (essentia.upf.edu) — audio analysis library

matplotlib (matplotlib.org) — Python plotting library

NumPy (numpy.org) — N-dimensional array processing

PostgreSQL (postgresql.org) — SQL database management system

PySide (pyside.org) — Python bindings for the Qt framework

Qt (qt.io) — multi-platform software development framework

SC (pypi.python.org/pypi/SC/0.2) — Python interface to SuperCollider server

SciPy (scipy.org) — Python scientific computing

157

SQLAlchemy (sqlalchemy.org) — Python SQL toolkit and Object Relational Map-

per

SuperCollider (supercollider.github.io) — audio synthesis and algorithmic com-

position language

158

Bibliography

[1] ISMIR 2009: Proceedings of the 10th International Society for Music Informa-
tion Retrieval Conference. ISMIR, Kobe, Japan.

[2] ISMIR 2010: Proceedings of the 11th International Society for Music Informa-
tion Retrieval Conference. ISMIR, Utrecht, Netherlands.

[3] ISMIR 2011: Proceedings of the 12th International Society for Music Informa-
tion Retrieval Conference. University of Miami, Florida.

[4] ISMIR 2012: Proceedings of the 13th International Society for Music Informa-
tion Retrieval Conference. Mosteiro S.Bento Da Vitória.

[5] ICMC International Computer Music Conference. Hong Kong University of
Science and Technology, China, 1996.

[6] ISMIR 2002: Proceedings of the 3rd International Society for Music Information
Retrieval Conference. Paris, France, October 2002.

[7] ISMIR 2007: Proceedings of the 8th International Society for Music Information
Retrieval Conference. Vienna, Austria, September 2007.

[8] The Music Ontology, musicontology.com/specification/, 2015. Accessed: 2015-
05-08.

[9] ISO/IEC 15938-4. Information technology – multimedia content description
interface – part 4: Audio, 06-15 2002.

[10] Carlos Agon, Gerard Assayag, and Jean Bresson. OpenMusic, rep-
mus.ircam.fr/openmusic/home, 2015. Accessed: 2015-05-13.

[11] Xavier Amatriain, Jordi Bonada, Alex Loscos, Josep Luis Arcos, and Vincent
Verfaille. Content-based transformations. Journal of New Music Research,
32:(95–114), 2003.

[12] Christopher Ariza. Navigating the landscape of computer aided algorithmic
systems: A definition, seven descriptors, and a lexicon of systems and research,
2005.

[13] Christopher Ariza. An Open Design for Computer-Aided Algorithmic Music
Composition: athenaCL. PhD thesis, New York University, September 2005.

159

[14] Maria Camila Barioni, Humberto Razente, Caetano Traina Jr., and Agma
Traina. Querying complex objects by similarity in SQL.

[15] Luke Barrington, Antoni B. Chan, and Gert Lanckriet. Modeling music as a
dynamic texture. IEEE Transactions On Audio, Speech, And Language Pro-
cessing, 18(3):602–612, 2010.

[16] Roland Barthes. Elements of semiology. Macmillan, 1977.

[17] Mike Bauer. SQL Alchemy — The Database Toolkit for Python,
www.sqlalchemy.org, 2015. Accessed: 2015-05-03.

[18] Bernard Bel. Migrating musical concepts: An overview of the bol processor.
Computer Music Journal, 2(2):56–64, 1998.

[19] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere.
The million song dataset. In ISMIR 2011: Proceedings of the 12th International
Society for Music Information Retrieval Conference [3].

[20] Jeffrey Adam Bilmes. Timing is of the essence: Perceptual and computational
techniques for representing, learning, and reproducing expressive timing in per-
cussive rhythm. Master’s thesis, Massachusetts Institute of Technology, 1993.

[21] Sturm Bob. Matconcat: An application for exploring concatenative sound
synthesis using matlab. In ICMC International Computer Music Conference.
ICMC, Miami, Florida, 2004.

[22] Dmitry Bogdanov, Nicolas Wack, Emilia Gomez, Sankalp Gulati, Perfecto Her-
rera, Oscar Mayor, Gerard Roma, Justin J. Salamon, Jose Zapata, and Xavier
Serra. ESSENTIA - an audio analysis library for music information retrieval.
pages 493–498, 2013.

[23] Albert S. Bregman. Auditory Scene Analysis. The perceptual organization of
sound. A Bradford Book, The MIT Press, Cambridge, Massachusetts, 1990.

[24] Paul Brossier. aubio: a tool for annotating audio signals, aubio.org, 2015. Ac-
cessed: 2015-05-26.

[25] Paul M. Brossier. Automatic Annotation of Musical Audio for Interactive Appli-
cations. PhD thesis, Queen Mary, University of London, Queen Mary, University
of London, 2006.

[26] Jamie Bullock. Libxtract: A lightweight library for audio feature extraction.
In ICMC International Computer Music Conference. ICMC, Copenhagen, Den-
mark, 2007.

[27] Phil Burk, Larry Polansky, and David Rosenboom. HMSL: the Hierarchical
Music Specification language, www.softsynth.com/hmsl/, 2015. Accessed: 2015-
05-13.

160

[28] Andres Cabrera. CsoundQt, qutecsound.sourceforge.net, 2015. Accessed: 2015-
05-13.

[29] Luke Campagnola, Almar Klein, Cyrille Rossant, and Nicolas Rougier. Vispy,
a modern and interactive scientific visualisation.

[30] Scaletti Carla and Kurt Hebel. Kyma: sound design inspiration,
kyma.symbolicsound.com, 2015. Accessed: 2015-05-13.

[31] Michael Casey. Audiodb: Scalable approximate nearest-neighbor search with
automatic radius-bounded indexing. Acoustical Society of America, 124(4):2571,
2008.

[32] Michael Casey. Bregman Audio-Visual Information Toolbox: Advanced Tools for
the Digital Arts and Humanities, digitalmusics.dartmouth.edu/bregman/, 2015.
Accessed: 2015-06-03.

[33] Carmine Emanuele Cella. Sound-types: A new framework for symbolic sound
analysis and synthesis. In ICMC International Computer Music Conference.
ICMC, Huddersfield, UK, July 2011.

[34] Carmine Emanuele Cella and J. J. Burred. Advanced sound hybridizations by
means of the theory of sound-types. 2013.

[35] The Qt Company. Qt: cross-platform application and UI development frame-
work, www.qt.io/qt-framework/, 2015. Accessed: 2015-05-03.

[36] David Cope. Experiments in Musical Intelligence. A-R Editions, 1996.

[37] Roger B. Dannenberg. The implementation of nyquist, a sound synthesis lan-
guage. Computer Music Journal, 21(3):71–82, 1997.

[38] Ferdinand De Saussure and Wade Baskin. Course in general linguistics.
Columbia University Press, 2011.

[39] Nick Didkovsky. JMSL: Java Music Specification Language,
www.algomusic.com/jmsl/, 2015. Accessed: 2015-05-13.

[40] Simon Dixon. Onset detection revisited. In DAFx International Conference on
Digital Audio Effects, pages 133–137. DAFx.

[41] Simon Dixon, Fabien Gouyon, and Gerhard Widmer. Towards characterisation
of music via rhythmic patterns. In ISMIR 2004: Proceedings of the 5th Inter-
national Society for Music Information Retrieval Conference. Barcelona, Spain,
October 2004.

[42] J Stephen Downie. Music information retrieval. Annual review of information
science and technology, 37(1):295–340, 2003.

161

[43] Jos J. Eggermont. Between sound and perception - reviewing the search for a
neural code. Hearing Research, 157:1–42, 2001.

[44] Daniel PW Ellis, Brian Whitman, Tristan Jehan, and Paul Lamere. The echo
nest musical fingerprint. In ISMIR 2010: Proceedings of the 11th International
Society for Music Information Retrieval Conference [2].

[45] Archer Endrich. Composers’ desktop project: a musical imperative. Organised
Sound, 2(1):29–33, 1997.

[46] Florian Eyben, Sebastian Böck, Björn Schuller, and Alex Graves. Universal
onset detection with bidirectional long short-term memory neural networks. In
ISMIR 2010: Proceedings of the 11th International Society for Music Informa-
tion Retrieval Conference [2].

[47] Jonathan Foote, Matthew L. Cooper, and Unjung Nam. Audio retrieval by
rhythmic similarity. In ISMIR 2002: Proceedings of the 3rd International Soci-
ety for Music Information Retrieval Conference [6].

[48] Takuya Fujishima. Realtime chord recognition of musical sound: A system
using common lisp music. In Proc. ICMC, volume 1999, pages 464–467. Bejing,
China, 1999.

[49] Richard Gael, Mathieu Ramona, and Slim Essid. Combined supervised and
unsupervised approaches for automatic segmentation of radiophonic audio
streams. In IEEE International Conference on Acoustics, Speech and Signal
Processing, volume II, pages 461–464. IEEE.

[50] Jorg Garbers. An integrated MIR programming and testing environment. In
ISMIR 2006: Proceedings of the 7th International Society for Music Information
Retrieval Conference. University of Victoria, Canada, October 2006.

[51] Brad Garton, John Gibson, Doug Scott, and Dave Topper. RTcmix: an open-
source digital signal processing and sound synthesis language, http://rtcmix.org,
2015. Accessed: 2015-05-13.

[52] Emilia Gómez. Tonal description of polyphonic audio for music content pro-
cessing. INFORMS Journal on Computing, 18(3):294–304, 2006.

[53] The HDF group. The HDF Group — Information, Support and Software,
www.hdfgroup.org, 2015. Accessed: 2015-05-03.

[54] The PostgreSQL Global Development Group. PostgreSQL: The world’s most
advanced open-source database, www.postgresql.org, 2015. Accessed: 2015-05-04.

[55] Enric Guaus and Perfecto Herrera. The rhythm transform: Towards a generic
rhythm description, 2004.

162

[56] Benjamin Hackbarth, Norbert Schnell, and Diemo Schwarz. Audioguide: A
framework for creative exploration of concatenative sound synthesis. IRCAM
research report, 2011.

[57] Philippe Hamel, Yoshua Bengio, and Douglas Eck. Building musically-relevant
audio features through multiple timescale representations. In ISMIR 2012:
Proceedings of the 13th International Society for Music Information Retrieval
Conference [4].

[58] Steven Hazel. Soundmosaic, awesame.org/soundmosaic/, 2015. Accessed: 2015-
05-13.

[59] Lejaren Hiller and Leonard Isaacson. Musical composition with a high-speed
digital computer. Journal of the Audio Engineering Society, 6(3):154–160, 1958.

[60] Jason Hockman, Matthew E. P. Davies, and Ichiro Fujinaga. One in the jungle:
Downbeat detection in hardcore, jungle, and drum and bass. In ISMIR 2012:
Proceedings of the 13th International Society for Music Information Retrieval
Conference [4].

[61] Peter Hoffmann. Music Out of Nothing? A Rigorous Approach to Algorith-
mic Composition by Iannis Xenakis. PhD thesis, der Technischen Universitaet
Berlin, April 2009.

[62] Eric J. Humphrey, Juan Pablo Bello, and Yann LeCun. Moving beyond feature
design: Deep architectures and automatic feature learning in music informat-
ics. In ISMIR 2012: Proceedings of the 13th International Society for Music
Information Retrieval Conference [4].

[63] Tristan Jehan. Creating Music by Listening. PhD thesis, Massachusets Institute
of Technology, 2005.

[64] Kristoffer Jensen and Tue Haste Andersen. Beat estimation on the beat. In
Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop
on., pages 87–90. IEEE, 2003.

[65] Gottfried Michael Koenig. Project 2. Electronic Music Report, 3, 1970.

[66] Gottfried Michael Koenig. Project one. Electronic Music Report, 2, 1970.

[67] Olivier Lartillot and Petri Toiviainen. MIR in matlab (II): A toolbox for mu-
sical feature extraction from audio. In ISMIR 2007: Proceedings of the 8th
International Society for Music Information Retrieval Conference [7].

[68] Cyril Laurier, Owen Meyers, Joan Serrà, Martin Blech, Perfecto Herrera, and
Xavier Serra. Indexing music by mood: Design and integration of an automatic
content-based annotator. Multimedia Tools and Applications, 48(1):161–184,
2010.

163

[69] Mikael Laurson and Mika Kuuskankare. PWGL: A Visual Programming Lan-
guage for Music and Sound, http://www2.siba.fi/PWGL/, 2015. Accessed:
2015-05-13.

[70] Arie A. Livshin, Geoffroy Peeters, and Xavier Rodet. Studies and improvements
in automatic classification of musical sound samples. In ICMC International
Computer Music Conference. ICMC, Singapore, Singapore, 2003.

[71] Matija Marolt. Probabilistic segmentation and labeling of ethnomusicological
field recordings. In ISMIR 2009: Proceedings of the 10th International Society
for Music Information Retrieval Conference [1].

[72] Paul Masri and Andrew Bateman. Improved modelling of attack transients in
music analysis-resynthesis. In ICMC International Computer Music Conference
[5], pages 100–103.

[73] Max Mathews. What is loudness? In Perry Cook, editor, Music, Cognition,
and Computerized Sound. An Introduction to Psychoacoustics, chapter 6, pages
71–78. The MIT Press, Cambridge MA, 2001.

[74] Benôıt Mathieu, Slim Essid, Thomas Fillon, Jacques Prado, and Gaël Richard.
Yaafe, an easy to use and efficient audio feature extraction software. In ISMIR
2010: Proceedings of the 11th International Society for Music Information Re-
trieval Conference [2].

[75] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques Prado, and Gael Richard.
YAAFE, an easy to use and efficient audio feature extraction software. 2010.

[76] Guerino Mazzola. The Topos of Music: Geometric Logic of Concepts, Theory,
and Performance. Birkhäuser, 2002.

[77] James McCartney. Supercollider: a new real time synthesis language. In ICMC
International Computer Music Conference [5].

[78] Jon McCormack. Nodal: Generative Music Software,
www.csse.monash.edu.au/ cema/nodal/, 2015. Accessed: 2015-05-13.

[79] Daniel McEnnis, Cory McKay, Ichiro Fujinaga, and Philippe Depalle. jaudio: A
feature extraction library. In ISMIR 2005: Proceedings of the 6th International
Society for Music Information Retrieval Conference. London, UK, September
2005.

[80] Cory McKay and Ichiro Fujinaga. jwebminer: A web-based feature extractor. In
ISMIR 2007: Proceedings of the 8th International Society for Music Information
Retrieval Conference [7].

[81] Adrien Merer, Sølvi Ystad, Richard Kronland-Martinet, and Mitsuko Ara-
maki. Abstract sounds and their applications in audio and perception research.

164

In Sølvi Ystad, Mitsuko Aramaki, Richard Kronland-Martinet, and Kristof-
fer Jensen, editors, Exploring Music Contents - 7th International Symposium,
CMMR 2010, Málaga, Spain, June 21-24, 2010. Revised Papers, volume 6684
of Lecture Notes in Computer Science, pages 176–187. Springer, 2010.

[82] Eduardo Miranda. Composing Music with Computers. Focal Press, 2001.

[83] Jean Molino, JA Underwood, and Craig Ayrey. Musical fact and the semiology
of music. Music Analysis, pages 105–156, 1990.

[84] Jean-Jacques Nattiez. Music and discourse: Toward a semiology of music.
Princeton University Press, 1990.

[85] Travis E Oliphant. Python for scientific computing. Computing in Science &
Engineering, 9(3):10–20, 2007.

[86] Tae Hong Park. Towards automatic musical instrument timbre recognition.
Princeton University, 2004.

[87] Tae Hong Park, Zhiye Li, and Wen Wu. Easy does it: The electro-acoustic
music analysis toolbox. In ISMIR 2009: Proceedings of the 10th International
Society for Music Information Retrieval Conference [1].

[88] Jouni Paulus and Anssi Klapuri. Measuring the similarity of rhythmic pat-
terns. In ISMIR 2002: Proceedings of the 3rd International Society for Music
Information Retrieval Conference [6].

[89] Geoffroy Peeters. A large set of audio features for sound description (similarity
and classification) in the GUIDADO project. April 2004.

[90] Geoffroy Peeters, Bruno L Giordano, Patrick Susini, Nicolas Misdariis, and
Stephen McAdams. The timbre toolbox: Extracting audio descriptors from
musical signals. The Journal of the Acoustical Society of America, 130(5):2902–
2916, 2011.

[91] Geoffroy Peeters and Xavier Rodet. Automatically selecting signal descriptors
for sound classification. In ICMC International Computer Music Conference.
ICMC, Goteborg, Sweden, 2002.

[92] Andre Pires and Marcelo Queiroz. Real-time unsupervised music structural seg-
mentation using dynamic descriptors. In SMC 2011: Sound and Music Com-
puting Conference. University of Padova, Italy.

[93] Stephen Travis Pope. A taxonomy of computer music. Contemporary Music
Review, 13(2):137–145, 1996.

[94] Miller Puckette. MAX/MSP: Visual programming language, cy-
cling74.com/products/max/, 2015. Accessed: 2015-05-13.

165

[95] Miller Puckette. Pure Data: Open-source visual programming language,
https://puredata.info/, 2015. Accessed: 2015-05-13.

[96] Yves Raimond, Samer Abdallah, Mark Sandler, and Frederick Giasson. The
music ontology. In ISMIR 2007: Proceedings of the 8th International Society
for Music Information Retrieval Conference [7].

[97] Curtis Roads. Microsound. MIT Press, Cambridge, 2002.

[98] Cyrill Rossant and Kenneth D. Harris. Hardware-accelerated interactive data
visualization for neuroscience in python. Frontiers in Neuroinformatics, 7(36),
2013.

[99] Bill Schottstaedt. CLM: Common Lisp Music,
ccrma.stanford.edu/software/clm/, 2015. Accessed: 2015-05-13.

[100] Diemo Schwarz. Data-Driven Concatenative Sound Synthesis. PhD thesis, Ir-
cam - Centre Pompidu, Ircam - Centre Pompidu, January 2004.

[101] Diemo Schwarz. Concatenative sound synthesis: The early years. Journal of
New Music Research, 35:(3–22), 2007.

[102] Diemo Schwarz. CataRT: Real-Time Corpus-Based Concatenative Synthesis,
imtr.ircam.fr/imtr/CataRT, 2015. Accessed: 2015-05-13.

[103] Diemo Schwarz and Benjamin Hackbarth. Navigating variation: Composing for
audio mosaicing. In ICMC International Computer Music Conference. ICMC,
Ljubljana, Slovenia, September 2012.

[104] Diemo Schwarz and Norbert Schnell. A modular sound descriptor analysis
framework for relaxed-real-time applications. In ICMC International Computer
Music Conference. ICMC, New York City, New York, June 2010.

[105] Diemo Schwarz, Norbert Schnell, and Sebastien Guillini. Scalability in content-
based navigation of sound databases. 2009.

[106] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for finding near-
est neighbors. IEEE Signal Processing Magazine, 2008.

[107] Denis Smalley. The listening imagination: Listening in the electroacoustic era.
Contemporary Music Review, 13(2):77–107, 1996.

[108] Andrew Sorensen. Extempore, extempore.moso.com.au, 2015. Accessed: 2015-
05-13.

[109] Yury Spitsyn. Music States and Decision-making Systems: A Symbolic Frame-
work for Assessment and Comparison of Automated Composition Paradigms,
2010.

166

[110] Thomas Stoll. Beyond concatenation: Some ideas for the creative use of corpus-
based sonic material. In ICMC International Computer Music Conference.
ICMC, Montreal, Canada, 2009.

[111] Sebastian Streich. Music Complexity: A Multi-Faceted Description of Audio
Content. PhD thesis, 2006.

[112] Bob L. Sturm. Adaptive concatenative sound synthesis and its application to
micromontage composition. Computer Music Journal, 30(4):46–66, 2006.

[113] Chee-Chuan Toh, Bingjun Zhang, and Ye Wang. Multiple-feature fusion based
onset detection for solo singing voice. In ISMIR 2008: Proceedings of the
9th International Society for Music Information Retrieval Conference. ISMIR,
Philadelphia, PA, USA, September 2008.

[114] Barry Truax. The podx system: Interactive compositional software for the
dmx-1000. Computer Music Journal, 9(1):29–38, 1985.

[115] George Tzanetakis. Marsyas-0.2: a case study in implementing music informa-
tion retrieval systems. Intelligent Music Information Systems. IGI Global, 14,
2007.

[116] George Tzanetakis and Perry Cook. Multifeature audio segmentation for brows-
ing and annotation. In Applications of Signal Processing to Audio and Acoustics,
1999 IEEE Workshop on, pages 103–106. IEEE, 1999.

[117] George Tzanetakis and Perry Cook. Marsyas: A framework for audio analysis.
Organised sound, 4(03):169–175, 2000.

[118] Horacio Vaggione. Some ontological remarks about music composition process.
Computer music journal, 25(1):54–61, 2001.

[119] Igor Vatolkin, Wolfgang M. Theimer, and Martin Botteck. AMUSE (advanced
music explorer) - A multitool framework for music data analysis. In ISMIR 2010:
Proceedings of the 11th International Society for Music Information Retrieval
Conference [2].

[120] Barry Vercoe. Csound, www.csounds.com, 2015. Accessed: 2015-05-13.

[121] Ge Wang. The ChucK Audio Programming Language: A Strongly-timed and
On-the-fly Environ/mentality. PhD thesis, 2008.

[122] Trevor Wishart. CDP: Composers Desktop Project,
www.unstablesound.net/cdp.html, 2015. Accessed: 2015-05-13.

[123] Guangyu Xia, Dawen Liang, Roger B. Dannenberg, and Mark J. Harvilla. Seg-
mentation, clustering, and display in a personal audio database for musicians.
In ISMIR 2011: Proceedings of the 12th International Society for Music Infor-
mation Retrieval Conference [3].

167

[124] Rudolf H. Zaripov. Cybernetics and Music (in Russian). Znanie, Moscow, 1963.

[125] Aymeric Zils and François Pachet. Musical mosaicing. In DAFx International
Conference on Digital Audio Effects. DAFx.

[126] Eberhard Zwicker. Subdivision of the audible frequency range into critical
bands (frequenzgruppen). The Journal of the Acoustical Society of America,
(33 (2)):248, 1961.

168

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Music ontology and EncycloSpace
	1.1.1 Fundamental activities of music
	1.1.2 Fundamental scientific domains
	1.1.3 Coordinate space of ontological dimensions
	1.1.3.1 Reality
	1.1.3.2 Communication
	1.1.3.3 Semiosis

	1.1.4 Music ontology cube
	1.1.5 EncycloSpace
	1.1.5.1 Receptive navigation
	1.1.5.2 Productive navigation

	1.2 Problematics of sample-based algorithmic composition tools

	2 System design
	2.1 General considerations
	2.1.1 System identification
	2.1.1.1 Scale
	2.1.1.2 Process time
	2.1.1.3 Idiom affinity
	2.1.1.4 Extensibility
	2.1.1.5 Event production
	2.1.1.6 Sound source
	2.1.1.7 User environment

	2.1.2 Development platform and language
	2.1.2.1 Platform
	2.1.2.2 Programming language

	2.1.3 Dependencies

	2.2 System structure
	2.2.1 User interface
	2.2.2 Functional structure
	2.2.2.1 Productive function (Emittance)
	2.2.2.2 Receptive function (Reception)
	2.2.2.3 Trace function (Transport)

	2.3 Transport layer: Media database
	2.3.1 General architecture
	2.3.2 Structure of database relations
	2.3.3 Building-block element

	2.4 Receptive layer: Analysis subsystem
	2.4.1 Audio segmentation
	2.4.1.1 Manual segmentation
	2.4.1.2 Unsupervised (automatic) segmentation
	2.4.1.3 Supervised segmentation
	2.4.1.4 Mixed-mode segmentation

	2.4.2 Feature analysis
	2.4.2.1 Description level
	2.4.2.2 Temporal variability
	2.4.2.3 Physical and psychometric

	2.4.3 Categorical description
	2.4.3.1 Class taxonomy
	2.4.3.2 Classification methods
	2.4.3.3 Ontological binding

	2.5 Productive layer: Navigation, Composition, Rendering
	2.5.1 Database navigation
	2.5.1.1 Flexibility of data acquisition
	2.5.1.2 Receptive/Productive access

	2.5.2 Composition subsystem
	2.5.2.1 Structure of Composition
	2.5.2.2 Composing with EncycloSpace, or NOTA-transform
	2.5.2.3 Navigation context
	2.5.2.4 Ordering context
	2.5.2.5 Temporal context
	2.5.2.6 Adaptation context
	2.5.2.7 Indeterminacy
	2.5.2.8 Parametric automation

	2.5.3 Rendering subsystem

	3 sEl: An implementation of recombinant corpus-based omni-source compositional software
	3.1 General workflow
	3.1.1 Audio pool
	3.1.2 Registering sounds with database
	3.1.2.1 Automatic segmentation import
	3.1.2.2 Automatic categorization
	3.1.2.3 Sound file overview

	3.1.3 Assigning categories
	3.1.4 Segmentation
	3.1.5 Auditioning
	3.1.6 Creating database elements
	3.1.7 Examining elements
	3.1.8 Extracting features
	3.1.9 Recombining elements
	3.1.10 Composing with collections

	3.2 Database schema
	3.2.1 Material layer
	3.2.1.1 dbDataFile
	3.2.1.2 dbDataFileGroup
	3.2.1.3 dbElement
	3.2.1.4 dbElementParent
	3.2.1.5 dbElementNext
	3.2.1.6 dbElementLoop
	3.2.1.7 dbElementSegmentation

	3.2.2 Semantics layer
	3.2.2.1 dbDescriptor
	3.2.2.2 dbClass
	3.2.2.3 dbSymbol
	3.2.2.4 dbFeatureStats
	3.2.2.5 dbElementCategory
	3.2.2.6 dbImaginaryCategory
	3.2.2.7 dbAnalysisConfig
	3.2.2.8 dbAnalysisConfigFeature
	3.2.2.9 dbElementFeature
	3.2.2.10 dbElementFeatureCV

	3.2.3 Recombinant layer
	3.2.3.1 dbCollection
	3.2.3.2 dbCollectionElements
	3.2.3.3 dbSequenceElements
	3.2.3.4 dbCollectionGroup

	3.3 Analysis subsystem
	3.3.1 Compositional perspective on feature set
	3.3.2 Temporal descriptors
	3.3.2.1 Timescale
	3.3.2.2 Event cardinality
	3.3.2.3 Temporal density
	3.3.2.4 Onset cardinality
	3.3.2.5 Dynamic complexity
	3.3.2.6 Inter-onset intervals
	3.3.2.7 Q-time

	3.3.3 Energy descriptors
	3.3.3.1 Dynamics
	3.3.3.2 ELF Loudness
	3.3.3.3 Bark bands energy
	3.3.3.4 Spectral RMS

	3.3.4 Tonal descriptors
	3.3.4.1 Pitchiness
	3.3.4.2 Strong pitch descriptors
	3.3.4.3 Momentary pitch descriptors
	3.3.4.4 Chroma descriptors
	3.3.4.5 Chroma polyphony descriptors

	3.3.5 Rhythm descriptors
	3.3.5.1 CPMs
	3.3.5.2 CPM strengths
	3.3.5.3 CPM evolve
	3.3.5.4 Tatum

	3.3.6 Spectral descriptors
	3.3.6.1 Spectral centroid
	3.3.6.2 Spectral complexity
	3.3.6.3 Spectral decrease
	3.3.6.4 Spectral flux
	3.3.6.5 Spectral peakiness
	3.3.6.6 Spectral rolloff
	3.3.6.7 Spectral skewness
	3.3.6.8 Spectral spread
	3.3.6.9 High frequency content (HFC)

	3.3.7 Integrated architecture
	3.3.7.1 Integration layer
	3.3.7.2 External toolsets

	3.3.8 Flexibility
	3.3.9 Visualization
	3.3.10 Extensibility
	3.3.10.1 Analysis graph
	3.3.10.2 Extending the analysis library

	3.3.11 Element features assessment

	3.4 Compositional subsystem
	3.4.1 Navigation
	3.4.1.1 Navigation extensibility

	3.4.2 Ordering
	3.4.2.1 Ordering extensibility

	3.4.3 Temporalization
	3.4.3.1 Absolute time
	3.4.3.2 Symbolic time
	3.4.3.3 Hybrid time

	3.4.4 Adaptation
	3.4.5 Compositional objects
	3.4.5.1 Composition class
	3.4.5.2 Section class
	3.4.5.3 Strand class
	3.4.5.4 Event class

	3.5 Rendering subsystem

	4 Ignis Fatuus: a recombinant piece composed with sEl
	4.1 The composition's EncycloSpace
	4.2 Movement I. Have I destroyed? (Intro)
	4.3 Movement II. Vocalise
	4.4 Movement III. Upbound
	4.5 Movement IV. Toccata
	4.6 Movement V. Ignis Fatuus
	4.7 Movement VI. Have I destroyed? (Coda)

	5 Postlude
	5.1 Conclusion
	5.2 Future Work
	5.2.1 Expansions
	5.2.1.1 Sound material types
	5.2.1.2 Rendering types
	5.2.1.3 Modality types
	5.2.1.4 Compositional vocabulary
	5.2.1.5 Element matching
	5.2.1.6 Elements containment
	5.2.1.7 Data visualization
	5.2.1.8 User interface and interactivity
	5.2.1.9 Documentation and availability

	5.2.2 Optimizations

	A Default descriptors
	B Default category taxonomy
	B.1 Morphology categories
	B.2 Source categories
	B.3 Resonator
	B.4 Instrument-wise
	B.5 Play-wise
	B.6 Spectromorphology

	C Comparison of External MIR Toolsets
	D Dependencies
	Bibliography

