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Abstract

This dissertation examines the empirical performance of several complete and in-

complete market models of stock price dynamics using S&P 500 options and stock

market data. The main contribution of this work is that it suggests and implementsg

an empirical approach to estimating a complete model with uncertain volatility, and

then judges it against other popular option pricing processes. The performance of al-

ternative models is evaluated from four perspectives: (1) in-sample �t to stock returns

data, (2) in-sample �t to options data, (3) consistency of physical and risk-neutral pa-

rameter estimates and (4) out-of-sample option pricing. Overall, the complete model

with uncertain volatility is found to �t the data much better than models with con-

stant and price-level-dependent volatilities, and the variance gamma process, and its

performance is comparable to that of a stochastic volatility model.
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Chapter 1

Introduction

Numerous models for stock price processes have been proposed in the �nancial

literature over the past several decades. All these models can be grouped into two

broad categories: complete market models and incomplete market models. Complete

markets allow replicating and therefore hedging any conceivable payo¤structure using

a portfolio of traded assets, while in incomplete markets such replication is generally

impossible. On the other hand, incomplete market models have richer structure than

complete models since they contain more sources of uncertainty.

A considerable practical interest to stock price models comes from markets for

derivative securities, and options in particular.1 In general, a good model is expected

to give an adequate representation of the stock price dynamics, and, at the same

time, to provide a reasonable instrument for derivative pricing. In particular, as will

be discussed in the next section, a good model should be able to explain such empirical

anomalies as "implied volatility smile" and term structure of implied volatilities.

The goal of this dissertation is to compare the empirical performance of several

option pricing models of complete and incomplete nature, including an uncertain

1Financial derivatives are contracts whose payo¤s and prices depend upon the stochastic dynamics
of associated underlying �nancial assets.
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volatility model of Hobson and Rogers (1998). There are several motives for this

research. First, even though the Hobson-Rogers model is intuitively appealing and

potentially able to reproduce the stylized empirical features of the market data, and

there is a growing body of recent theoretical studies devoted to its analysis, this

dissertation is the �rst known attempt to estimate rather than calibrate all model

parameters using the empirical data. Second, the empirical performance of this model

is compared to that of such popular stock price processes as the classic geometric

Brownian motion (Black and Scholes,1973, and Merton, 1973), the constant elasticity

of variance (CEV) model (Cox, 1975, and Cox and Ross, 1976), the variance-gamma

(VG) model (Madan and Seneta, 1990) and the Heston model of stochastic volatility

(Heston, 1993). Third, even though a large number of papers is devoted to the VG

model, its performance is usually tested only against the GBM or the CEV models,

but not against more complex models of incomplete nature. The empirical evidence

of this study con�rms the results of other authors that the VG model outperforms

the GBM or CEV processes, but yields to a stochastic volatility model.

The main contribution of this dissertation is in developing an empirical approach

to estimating the parameters of the Hobson-Rogers model using stock returns and

option prices data. The general strategy is to approximate a continuous-time model by

a discrete-time process, which is then used either to formulate a likelihood function

to estimate model parameters from stock returns, or to simulate option prices to

estimate the parameters from options data.

The empirical performance of alternative models is evaluated along four dimen-

sions. First, in-sample �t of the models to stock price data is compared. Second,

in-sample �t to the options data (both option prices and implied volatilities) is eval-

uated. Third, out-of-sample option pricing errors are investigated, as more complex

models are generally expected to o¤er a superior in-sample �t, but in the case of over-
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�tting their out-of-sample performance is not necessarily better. Finally, the model

parameter estimates obtained from the stock price data are compared to the relevant

parameter estimates implicit in option prices. The reasoning is that in a correctly

speci�ed model these two sets of parameters must be consistent.

The paper is organized as follows. In Chapter 2, a brief overview of the �ve

alternative pricing models of interest is given. Chapter 3 discusses the empirical

approaches to estimating the models parameters on the stock price time-series data

and option price cross-section data. Chapter 4 describes the data. Chapter 5 presents

and discusses the results. Chapter 6 concludes.
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Chapter 2

Overview of Stock Price Models

A large number of stock price processes have been proposed in the �nancial liter-

ature over the past several decades. This chapter reviews several major stock pricing

models that are the most relevant to the research subject of this thesis.

To start with, the classic geometric Brownian motion (GBM) model employed by

Black and Scholes (1973) and Merton (1973) in their seminal papers is discussed. This

model is then used to illustrate the basic idea of the risk-neutral approach to pricing

European options. Even though this modelling framework falls short of explaining

a number of empirical features of stock and option market data, it still provides an

important benchmark in empirical tests of more complex models.

There are numerous extentions to the GBM model in the literature. Merton

(1976) suggested to include jumps in the stock dynamics to handle the observation

that stock prices can change suddenly in response to news, which usually comes at

random times and has varying impact. Even though Merton�s model will not be used

in empirical tests in this dissertation, its discussion is helpful in terms of revealing

the distinction between complete and incomplete market models.

Cox (1975, 1996) and Cox and Ross (1976) allowed the stock volatility to depend
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on the stock price itself. Their constant elasticity of variance (CEV) model is another

important yardstick in the option pricing literature along with the GBM model.

One more appealing modi�cation of the baseline GBM model embraced by many

researchers assumes that stock volatility is stochastic rather than constant, as in the

GBM model, or dependent on the current level of the stock price, as in the CEV

model. A model of this class, developed by Heston (1993), is considered next. This

model is one of the most popular option pricing models in the contemporaneous

empirical �nance literature.

The Variance-Gamma model introduced by Madan and Seneta (1990) and further

extended by Madan et al. (1998) is an alternative extension to the GBM model based

on a very di¤erent modeling framework. In particular, it assumes that operational

time is random and follows a gamma process, to which the Brownian motion process

for stock returns is subordinated. As a result, the model is able to overcome some

of the empirical biases of the GBM process. Empirical studies demonstrate that this

model performs better than the GBM or CEV models, but so far no research has

been done to compare the VG model to other, more complex processes.

The last but by far not the least model to be discussed is the model of path-

dependent volatility recently suggested by Hobson and Rogers (1998). This disser-

tation is the �rst known attempt to estimate this model empirically and compare

its performance to that of other popular models. Our �nding is that this complete-

market model �ts the data much better than the GBM, CEV and VG models, and

at least as well as the Heston model.
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2.1 The Black-Scholes Model andMartingale Pric-

ing

The geometric Brownian motion (GBM) model, also known as the Black-Scholes

model, stipulates that increments of the logarithm of stock price over non-overlapping

time intervals of equal length are independently and identically normally distributed.

In particular, the evolution process of a stock price St over time is described by the

stochastic di¤erential equation

dSt=St = �dt+ �dWt; (2.1)

where � and � are constants, and fWtgt�0 is a standard Brownian motion. Then,

conditional on St, the stock price ST ; T � t; is distributed lognormally as

ST � St exp
��
�� 1

2
�2
�
(T � t) + �

p
T � tZ

�
; (2.2)

where Z � N(0; 1): The model can be extended to allow deterministic variation in

drift and volatility processes.

A substantial interest to the GBM process from both researchers and practitioners

is driven by the elegant expression for European option prices, known as the Black-

Scholes formula, that results from this model. This option pricing formula can be

derived using an equivalent-martingale technique, which states that if there are no

opportunities for arbitrage, then there exists a probability measure under which nor-

malized values of traded assets are martingales. A natural candidate for a numeraire

asset is the money-market fund, whose price at t � 0; given the initial value of the
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fund M0; is determined by

Mt =M0 exp

�Z t

0

rudu

�
;

where frtgt�0 is the short-rate process.

More formally, assume that a probability space consists of a set of outcomes 
;

a �ltration fztg0�t�T of information sets that evolve on some �nite time interval

[0; T ] ; an overall �-�eld z with zT � z; and a (natural) probability measure P on

(
;z) that determines distributions of prices of all assets for all t 2 [0; T ] : Then, in

the absence of arbitrage, there exists an equivalent measure bP such that an integrable
normalized price process fA�t � At=Mtgt�0 of any traded asset is a martingale adapted

to information process fztg0�t�T .Moreover, if such an equivalent measure does exist,

then markets o¤er no opportunities for arbitrage.

Therefore, the (normalized) price of any traded asset can be found as

A�t =
bEt (A�T ) ;

where the expectation is taken under the measure bP and the subscript on Ê indicates
conditioning on zt: Additionally, assuming that interest rate process frtg0�t�T is

known (riskless), the (original) price of the asset is determined as

At =Mt
bEt (AT=MT ) =Mt=MT

bEt (AT ) = exp��Z T

t

rudu

� bEt (AT ) :
In this case, the probability measure bP is referred to as the risk-neutral measure
because the asset�s expected return is the same as that of the riskless money fund.

Black and Scholes (1973) showed that in the case of constant known riskless rate
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r and dividend yield �; the stock price dynamics under the risk-neutral measure is

dSt=St = (r � �)dt+ �dcWt; (2.3)

where
ncWt

o
t�0

is a standard Brownian motion under bP: Therefore, under bP; the
distribution of the stock price ST ; conditional on St, T � t; is given by

ST � St exp
��
r � � � 1

2
�2
�
(T � t) + �

p
T � t bZ� ; (2.4)

where bZ � N(0; 1):
The price of a European put option with strike price K with maturity date T can

be found as

Pt (St; T � t; �; r;K) = e�r(T�t) bEt (max (K � ST ; 0)) ;

and the celebrated Black-Scholes formula results:

Pt (St; T � t; �; r;K) = e�r(T�t)K� (d1)� e��(T�t)St�(d2); (2.5)

where � is the cumulative standard normal distribution function and

d1 =
ln
�
K
St

�
� (r � � � 1

2
�2)(T � t)

�
p
T � t

d2 = d1 � �(T � t):

Notice that if the options data rather than stock price series are used in empirical

analysis, the risk-neutral rather than natural parameters of the model will be esti-

mated. While the natural and risk-neutral probability measures are related, and may
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share some common parameters, they are not identical.1 In the case of the GBM

model, the volatility parameter � is the same under both measures (expressions (2.2)

and (2.4)) and therefore can be estimated using any of the two data sets, while the

natural drift parameter � can be estimated using the stock series but not the options

data.

Given that the natural and risk-neutral parameters can be obtained independently

using distinct data sources, comparing these estimates, whenever it is possible, is an

interesting exercise, since a large discrepancy in the parameter estimates indicates

model misspeci�cation. The existing empirical evidence suggests that for many mod-

els, including the GBM process, the estimates of the physical parameters of the stock

price process obtained from stock price series are inconsistent with their risk-neutral

counterparts obtained from option prices.

An extensive empirical literature documents that the GBMmodel fails to replicate

a number of stylized features of stock and options market data. Epps (2007) surveys

the literature and describes the predictions of the model that are systematically vi-

olated by the empirical data. Speci�cally, empirical distributions of stock returns

usually have thicker tails than does a normal distribution, and squared returns are

generally found to be highly predictable, indicating that return volatility is variable

and persistent.

In addition, when taken to the options data, the model produces the famous

implied volatility "smile". Since the volatility parameter � is the only unobserv-

able parameter of the model, it can be inferred from option prices by inverting the

Black-Scholes formula. Implied volatility is de�ned as the volatility that makes the

theoretical option price coincide with the observed market price. As it turns out, im-

plied volatilities computed for options with low strike prices tend to be substantially

1These two measures would be identical only if all relevant risks had zero risk premia.
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higher than those computed for contracts with strikes that are close to and above the

current price of the underlying asset. A typical relation between implied volatility

and the �moneyness�of options, de�ned as the ratio of option�s strike price to current

stock price, is illustrated on Figure 2.1.

1 K/St

Im
pl

ie
d 

V
ol

at
ili

ty

Figure 2.1: An Implied Volatility "Smile" Curve

These smile e¤ects are considerably more pronounced in prices of short-term op-

tions than in prices of longer-term options, and contracts with longer maturities gen-

erally yield lower implied volatilities. Thus, there is also a term structure of implied

volatilities.

Even though the GBM model remains an important benchmark in the literature,

these observations have motivated the development of alternative models capable of

capturing at least some of the documented empirical discrepancies.
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2.2 The Merton Model

Merton (1976) proposed a jump-di¤usion model for stock prices. The idea was

that since new information about the economy or the company may cause stock prices

to change suddenly, it is reasonable to allow asset price paths to be discontinuous.

The model is intuitively appealing and addresses the issue of "fat tails" in stock

returns, since jumps add mass to the tails of the distribution.

The model extends the stock price dynamics (2.1) in the following way:

dSt=St = �dt+ �dWt + dJt;

where fWtgt�0 is a standard Brownian motion, and fJtgt�0 is a compound-Poisson

process with a lognormal distribution of jump sizes. That is, the jumps follow a

Poisson process fNtg with intensity �; independent of fWtgt�0 : The magnitudes of

jumps are determined by random variables U such that ln f1 + Ujg1j=1 are i.i.d. normal

with parameters ln (1 + �)� �2=2 and �2; and which are independent of both Nt and

Wt: Hence, dJt = UdNt:

The stock price process is therefore divided into two parts: �normal vibrations�,

modeled by a standard Brownian motion, and �abnormal vibrations�, resulting from

�rm-speci�c factors, modeled by a jump process.

In the GBM model payo¤s of options can be replicated with self-�nancing portfo-

lios of the underlying asset and riskless bonds or money fund, but replication is not

possible in the Merton framework. The reason is that randomly-arriving jumps add

an extra dimension to the space of possible states of the world that cannot be spanned

by existing assets, making the markets incomplete. In general, incomplete markets

allow replicating derivative assets that are linear in the terminal stock price (e.g., a
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forward contract), which can be achived via a "buy-and-hold" strategy, regardless of

the underlying dynamics. In contrast, reproducing a nonlinear payo¤, such as that

of an option, requires a dynamic portfolio strategy involving as many traded assets

as there are sources of risk. This condition is violated in incomplete markets, and

dynamic portfolios of existing assets can only be used to set boundaries on prices of

nonlinear derivatives, but not to uniquely value them.

This indeterminacy in prices suggests that there exist in�nitely many risk-neutral

measures such that a price process is a martingale.2 In the context of the Merton

model, Epps (2007, pp.411-412) shows that all equivalent martingale measures bPmust
have �� = b�b�; where variables with "hats" describe the parameters of the risk-neutral
process, and this relation is the only restriction between the two sets of parameters.

Therefore, there are in�nitely many ways to choose a martingale measure.

There are two approaches to picking a martingale measure (determining its para-

meters) among in�nitely many of them. The �rst approach relies on the argument

that since the risk of holding a nonlinear derivative security cannot be hedged away,

its price must depend on risk preferences and required compensation for risk by mar-

ket participants. Then, such a preference-dependent martingale measure can be found

from a general equilibrium problem that relies on strong assumptions about prefer-

ences and market processes. However, this approach is likely to be of very limited

practical relevance, precisely because of these strong assumptions.

An alternative approach is to infer the parameters of the martingale measure

directly from the set of traded derivative prices. One limitation of this approach is

that an assumption about the structure of the stock price process under the risk-

neutral measure must be made, since in general it can di¤er from the structure of the

2At the same time, all such martingale measures price traded assets as well as assets with replica-
ble payo¤s equivalently.
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physical process. In addition, in this case there is no theoretical ground for matching

up the two sets of parameters. Nevertheless, this approach is the one that is most

commonly used in empirical studies.

To price options using his model, Merton (1976) suggested picking a martingale

measure that has exactly the same parameters as the physical measure for the di¤usion

and jump parts, but with di¤erent drift. This choice is consistent with the assumption

that jump risk is asset-speci�c and therefore diversi�able. Then, using a conditioning

argument, a computational formula of European options can be developed (as in Epps

(2007, pp. 413-414)).

Epps (2007, p.415) shows that the Merton model can produce both an implied

volatility smile and a term structure of implied volatilities. However, Bates (1996a)

found that a stochastic volatility model without jumps �ts the data (currency options)

even better than this jump-di¤usion process.3 Therefore, a stochastic volatility model

by Heston (1993) rather than the Merton model will be investigated in the empirical

part of this dissertation. In addition, since the primary subject of this research is

the Hobson-Rogers model, which contains no discontinuities in the stock price path,

taking the Merton model as a performance benchmark seems to be less appropriate.

2.3 The Constant Elasticity of Variance Model

Cox (1975) and Cox and Ross (1976) proposed an extention to the GBM model

that allows volatility to change over time but maintains the continuity of stock price

paths. The model is known as the constant elasticity of variance (CEV) model. Since

no new source of uncertainty is introduced, the model belongs to the class of complete

market models.
3Bates (1996a) suggested a model that combines jumps with stochastic volatility, which is even

better able to account for the implied volatility smile.
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The stock price process is described by the stochastic di¤erential equation

dSt=St = �tdt+ �0S

�1
t dWt; (2.6)

where 
�1 gives the elasticity of the volatility function �t(St) = �0S
�1t with respect

to the underlying price. Important special cases of the CEV model are the GBM

process (
 = 1), the absolute process (
 = 0), and the square-root process (
 = 0:5).

When the coe¢ cient 
 is less than unity, there is an inverse relation between the

stock price and the instantaneous volatility, which is consistent with the empirical

phenomenon sometimes referred to as the �leverage e¤ect�4.

As for the GBM model, when riskless rate r and dividend yield � are known and

constant, the drift process �t in expression (2.6) is just replaced by r�� in translating

from the physical to the risk-neutral measure.

Cox (1975) shows that for 
 2 (0; 1) the price of the European call option can be

found as

C (St; T � t; �; r;K)

= Ste
��(T�t)

1X
k=1

g (�0t; k)G

�
�0tK

2�2
; k +
1

2� 2


�
(2.7)

�Ke�r(T�t)
1X
k=1

g

�
�0t; k +

1

2� 2


�
G
�
�0tK

2�2
; k
�
;

4The �leverage e¤ect� describes the phenomenon of increasing stock volatility when the stock
price is falling. Black (1976) and Christie (1982) suggested an explanation that focuses on the e¤ect
of change in market valuation of a �rm�s equity on the degree of its capital leverage. An increase in
leverage produces an increase in stock risk and stock volatility.
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where

�0t � r � �
�20(1� 
)(e2(1�
)(r��)(T�t) � 1)

;

�0t � S2�2
t �0te
2(1�
)(r��)(T�t):

Here g(x;�) is the gamma p.d.f. with shape parameter � and G(x;�) is the com-

plementary gamma c.d.f. Shroder (1989) states that this formula is applicable for all


 < 1: Emmanuel and MacBeth (1982) show how to extend the formula to the case

of 
 > 1:

The price P (St; T � t; �; r;K) of a European put option can be determined from

the European put-call parity relation:

C (St; T � t; �; r;K)� P (St; T � t; �; r;K) = Ste��(T�t) � e�r(T�t)K (2.8)

This model produces thick tails in the distribution of asset returns, and can ac-

comodate the smirk pattern of implied volatilities. However, it cannot account for

the other side of the volatility smile, and fails to produce the term structure of im-

plied volatilities.5 Nevertheless, researchers still frequently use it as a performance

benchmark for more complex models.

2.4 The Heston Model

In the CEV model future volatility is uncertain only because future price is uncer-

tain. What are now called �stochastic volatility�models are those in which volatility

is driven by a separate source of risk. In general, these models do not yield simple

formulas for prices of options; however, Heston (1993) developed a model of this class

5Epps (2007) provides a more detailed analysis of the model.
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that does generate computationally feasible formulas. The Heston model is described

by the following two processes:

dSt=St = �tdt+ �tdW1t; (2.9)

and

d�2t = �(�1 � �2t )dt+ 
�t(�dW1t + �dW2t); (2.10)

where � �
p
1� �2 and fW1t;W2tg are two independent standard Brownian motions.

The model reduces to geometric Brownian motion when 
 and � are both zero. Unlike

some other models of stochastic volatility, this setup rules out negative volatility, and

it allows increments in the asset�s price and volatility to be correlated.

Since (2.9) and (2.10) involve two independent sources of risk, and since volatility

is not a traded asset, it is impossible to replicate a derivative asset using the underlying

stock and a riskless asset. Therefore, the model is incomplete and there are in�nitely

many equivalent martingale measures that can be used to price options. Again,

to distinguish among these equivalent measures and uniquely determine prices, one

could model preferences and solve a general equilibrium problem. However, a simpler

approach is just to assume that the risk-neutral dynamics are of the same general

form; that is,

dSt=St = (r � �) dt+ �tdcW1t;

and

d�2t = (�� ��2t )dt+ 
�t(�dcW1t + �dcW2t);

wherecW1t andcW2t are independent Brownian motions under the risk-neutral measure.

Notice that this approach basically assumes that the change of measure maintains the

same type of processes, with only the drift parts being adjusted. While this choice is
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essentially arbitrary, it has the virtue of making it relatively easy to price European

options.

The model yields the following formula for the time-t price of a European put

with strike K and expiry at T :

P (St; T � t; �; r;K) = e�r(T�t)KF (St; T � t; �; r;K) (2.11)

�e��(T�t)StG(St; T � t; �; r;K);

with the expressions for F and G given in Appendix A.

Even though several more complex models were developed on the basis of this

model (e.g., Bates (1996a), Eraker (2004), Du¢ e et al. (2000)), the Heston model will

be used to represent the stochastic volatility class in our analysis. There are several

reasons: First, it has become a sort of benchmark among successors to the GBMmodel

in the empirical �nance literature. Second, the relative ease of computing option

prices simpli�es the process of estimating parameters from options data. Finally, the

model has the same number of parameters as does the Hobson-Rogers model, which

makes their comparison more equitable.

2.5 The Variance-Gamma Model

The variance-gamma (VG) model, proposed by Madan and Seneta (1990), is an

extension of the GBM model that arises from a very di¤erent modeling framework.

Rather than allowing volatility to vary, the geometric Brownian motion is assumed to

evolve at a pace governed by a gamma process that relates operational time to calen-

dar time. The qualitative e¤ect is much the same, in that the marginal distributions

of stock returns are skewed and thick-tailed and option prices show volatilty smiles;
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however, the underlying mechanism is much simpler and more elegant.

The generalized variance gamma process for stock price of Madan et al. (1998) is

given by

St = S0 exp f�t+ 
Tt + �WTtg ; (2.12)

where fWsgs�0 is Brownian motion, and the operational time fTtgt�0 is an indepen-

dent gamma process with parameters t=� and � and density

fTt(�) =
� t=��1e��=�

�(t=�)�t=�
; t > 0; � > 0; (2.13)

where �(x) is the gamma function.

Madan et al. (1998) show that the skewness of the distribution is determined by

sign of the parameter 
 (the distribution is symmetric when 
 = 0; positively skewed

when 
 > 0 and negatively skewed when 
 < 0); and � controls the degree of excess

kurtosis. The model implies in�nitely many jumps in the stock price process in any

time interval. Similarly to the Merton model, jumps make it impossible to perfectly

replicate nonlinear derivatives with the underlying stock and a riskless asset.

Therefore, the VG model belongs to the class of incomplete market models, which

means that explicitly relating the physical and the risk-neutral measures requires

making some additional assumptions about agents�preferences. Again, it is simplest

just to assume that the risk-neutral process for the stock price has the same structure

as (2.12) but with di¤erent parameters:

St = S0 exp
n
(r � � + �)t+ b
bTt + b�cWbTt

o
;

where � = ln
�
1� b� �b
 + b�2=2�� =b�; ncWt

o
t�0

is a Brownian motion under bP, and the
risk-neutral operational time process

nbTto
t�0

has parameters t=b� and b�. Then, to
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price a European put option we can follow the approach of Madan and Milne (1991);

that is, exploiting the conditional lognormality of stock price St, express the price of

a put with strike K and expiration T as

P (St; T � t; �; r;K) = e�r(T�t)cEtmax (K � St; 0) =
1Z
0

p(�)
� t=b��1e��=b�
�(t=b�)b�t=b� d� ;

with

p(�) � K�(d(�))� S0e(r��+�)t+b
�+ 1
2
b�2��(d(�)� b�p�);

where

d(�) =
ln (K=S0)� (r � � + �) t� b
�b�p� ;

and � is standard normal cumulative distribution function (see Appendix B for deriva-

tion). Madan et al. (1998) derive an explicit formula for the price in terms of modi�ed

Bessel functions. Carr and Madan (1998) suggest that it is faster to invert a Fourier

transform of a �damped�price function.

The VG model was found to outperform the GBM model for S&P 500 index and

options data (Madan et al. (1998), Lam et al. (2002)), as well as the Merton model

for forein currency options (Daal and Madan (2005)). In particular, the model o¤ers a

superior �t to the moneyness and maturity structures of implied volatilities. However,

no one has yet compared the VG model with more competitive models such as that

of Heston (1993).

2.6 The Hobson-Rogers Model

Our main focus in this disertation is on a complete-market model recently sug-

gested by Hobson and Rogers (1998), in which volatility depends on the historical
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sample path of the underlying price. The assumption is that the discounted log-price

process, eSt = ln(e��ttSt); where �t is the factor that corrects for trend, is an Ito

process of the form

deSt = �(�t)dt+ �(�t)dWt: (2.14)

Here �t is referred to as the �o¤set�function, de�ned as

�t =

Z 1

0

�e��u(eSt � eSt�u)du: (2.15)

The function �t resides at zero as long as the stock price does not deviate from

its trend, and is "set o¤" by unexpected price movements.6 The constant � > 0

describes the rate at which past information is discounted. Intuitively, the o¤set

function summarizes the history of stock price shocks, assigning higher weight to

more recent events and making the e¤ect of older shocks dissipate with time.

The appeal of the model is that any functional form of �(�t) and �(�t) that

makes economic sense can be assumed. For instance, market turmoil is likely to result

in an increase of expected volatility by market participants, which can be captured

by a quandratic volatility function of the form �(�t) = �
p
1 + "�2

t ^ N; where N

is a some large constant. Hobson and Rogers (1998) have shown that this simple

model speci�cation can accomodate much richer moneyness and term structures of

volatilities than the CEV model, which also has a price driven volatility process.

Despite the appeal of model, there are still relatively few research papers devoted

to it. Di Francesco and Pascucci (2004) and Di Francesco, Foschi and Pascucci (2006)

focus on the numerical solution to the option pricing problem in the model by several

�nite-di¤erences schemes. Hallulli and Vargiolu (2005) analyze the issues related to

6A more general version of the model de�nes the discounted log-price process eSt in terms of the
o¤set function of order m, denoted by �mt ; where �

m
t =

R1
0
�e��u(eSt � eSt�u)mdu:
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�nite observation horizon and speci�cation of the o¤set function. Among empirical

studies, Foschi and Pascucci (2005) propose a calibration procedure for the volatility

function �(�t) in (2.15) and then test it with S&P 500 option data. Platania and

Rogers (2005) also calibrate the model using S&P 500 option data, and then compare

its performance to the performances of the Black-Scholes model, the CEV and the

Heston models. Figa-Talamanca and Guerra (2006) present a technique to estimate

the discount parameter �, and they calibrate the parameters of the volatility function

�(�t) using sets of the S&P 500 and FTSE 100 options. However, so far as we

know, no one has tried to estimate all the parameters of the model simultaneously

from historical underlying price data. Our research aims at �lling this gap in the

literature. The problem of obtaining empirical estimates of the model parameters

becomes particularly relevant in the light of the claim by Hubalek, Teichmann and

Tompkins (2005) that unreasonable values for the parameters would be required to

match the observed smiles and term structure in implied volatilities.7

7Hubalek, Teichmann and Tompkins (2005) suggest a generalization of the Hobson-Rogers model
that, according to the authors, provides a better �t to the market data.
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Chapter 3

Empirical Methodology

Following the literature, we use two di¤erent approaches to estimate the parame-

ters of the models described above. The �rst approach allows estimating the parame-

ters of the models under physical measure P using the returns on the underlying asset

exclusively. In the second approach, the risk-neutral parameters under measure P̂ are

estimated using cross-sections of option prices. For complete-markets models, these

sets of parameters can be mapped directly into each other, and therefore their com-

parison is straightforward. For incomplete-market models such mapping is generally

possible only for a subset of parameters.

3.1 Estimation Under Measure P from Underlying

Prices

To estimate the physical parameters of the �ve models, we use the standard

maximum-likelihood approach. However, since the conditional probability density

functions of underlying price in the Hobson-Rogers and Heston models are not avail-

able in closed form, we must work with discrete-time versions of these two models. As
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to the GBM, CEV and VG models, both discrete-time and continuous-time versions

of these models can be estimated. Indeed, the two versions of the GBM and VG mod-

els are essentially identical. As to the CEV model, the two versions will be estimated

separately to facilitate comparison with Hobson-Rogers and Heston. Comparing the

two sets of results for CEV will shed light on the extent of discretization bias.

3.1.1 The Black-Sholes Model

Given a known starting value of underlying price St�1, the solution to equation

(2.1) for price after �t = 1 time units is

St = St�1 exp
�
�� �2=2 + � (Wt �Wt�1)

�
; (3.1)

or, in terms of the continuously compounded return over (t� 1; t],

Rt � ln (St=St�1) = �� �2=2 + � (Wt �Wt�1) : (3.2)

The likelihood function of a sample fRtgnt=1 of returns is easily constructed, since

increments fWt �Wt�1g over non-overlapping intervals of length �t = 1 are identi-

cally and independently distributed (i.i.d.) as N(0; 1): Notice that the standard Euler

discretization scheme applied to (2.1) would omit the term �2=2 in the drift.

3.1.2 The CEV Model

The problem of estimating the parameters of the CEV process from the stock

market data is not new to the literature. A number of early empirical studies, includ-

ing Macbeth and Merville (1980), Beckers (1980), Christie (1982), Ang and Peterson

(1984), and a more recent study by Yuen et al. (2001 ) employ least-squares methods
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for this purpose. Ours appears to be the �rst application of maximum likelihood.

The discrete-time version of the model for continuously compounded returns over

a unit time interval is formulated as

Rt � ln(St=St�1) = �t � �2t=2 + �tZt; (3.3)

where Zt � N (0; 1) and �t = �0S
�1t�1 : Again, returns over nonoverlapping periods of

equal length are i.i.d. We will experiment with two speci�cations for the f�tg process:

(1) �t = �; and (2) �t = �1 + �2�t + �3�
2
t : The latter formulation allows expected

return to depend on volatility, although it is not consistent with the usual view that

it is nondiversi�able risk that matters. Since returns are conditionally normal in this

model, it is again straightforward to express the likelihood function of sample fRtgnt=1.

To estimate the original continuous-time version of model (2.6), we will use the

expression for the risk-neutral probability density function of stock price derived by

Shroder (1989) under the assumption of constant drift �t = �: For this we take the

approximation provided by Epps (2007), under which the conditional p.d.f. of stock

price is

fCEV (St+1 jSt ) =
1X
k=1

g

�
�t; k +

1

2� 2


�
g
�
�S2�2
t+1 ; k

�
�(2� 2
)S1�2
t+1 ;

where

�t � �

�20(1� 
)(e2�(1�
) � 1)
;

�t � S2�2
t �te
2�(1�
);

and g(x;�) is the gamma p.d.f. with unit scale and shape parameter �. This ex-

pression is used to set up the conditional likelihood function for the continuous-time
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model.

3.1.3 The Heston Model

Di¤erent ways of discretizing stochastic volatility (s.v.) models have been pro-

posed in the literature. The standard Euler scheme yields the following discrete-time

equivalent of the Heston model:

Rt � ln (St=St�1) = �t�1 � �2t�1=2 + �t�1Z1t (3.4)

and

�2t � �2t�1 = �(�1 � �2t�1) + 
�t�1(�Z1t + �Z2t); (3.5)

where Z1t and Z2t are i.i.d. as standard normal and � �
p
1� �2:This procedure is

easy to implement, and Eraker et al. (2003) show that the resulting discretization bias

is negligible with daily data. Although the process for f�tg could be modelled as a

function of f�2tg ; we shall simplify the already high-dimensional estimation problem

by putting �t = �. We show later in the context of other models that allowing

non-constant drift adds little to explanatory power.

Estimating both discrete- and continuous-time versions of a stochastic volatility

model using only the time series of underlying prices poses substantial challenges.

Since volatility �t is unobservable, expressing the likelihood function of observed re-

turns requires this latent variable to be integrated out of the density. However, the

exact closed-form expression for the marginal density function of St is not available.

Several empirical techniques to solve this problem have been suggested in the litera-

ture. Among other authors, Durham and Gallant (2002) and Brandt and Santa-Clara

(2002) use simulated maximum likelihood; Bakshi, Cao and Chen (1997) resort to cal-
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ibration; Pan (2002) employs an implied-state GMM approach; Eraker et al. (2003)

develop a likelihood-based MCMC approach; and Ait-Sahalia and Kimmel (2007) use

an approximate maximum likelihood method that replaces the characteristic function

of unobserved volatility by a gamma characterisitc function at each step.

Since the goal of this paper is to compare the various models, it is important that

comparable estimation approaches be used. Therefore, rather than adopting any of

the methods mentioned above, we will employ a technique that allows calculating the

marginal likelihoods directly. To do this we discretize the support of unobservable

volatility as well as time. This approach is in the same spirit as the approximate

maximum likelihood method used by Bates (2006), but it computes the conditional

distribution function of volatility at each time step directly from the data rather

than approximating it with a formal model. Although our approach was developed

independently, it is similar to the method of Friedman and Harris (1998), who apply

it to a di¤erent type of s.v. model. They show in that application that it produces

comparable results to those obtained with other popular estimation techniques.

The following algorithm describes the method.

Step 0: At t = 0; initialize �2t = �20, where �0 is treated as a parameter to be

estimated.

Step 1: At t = 1; given �20; an expression for �
2
1 conditional on the data observed

at t = 1 can be deduced from expressions (3.4) and (3.5) as

�21 � �20 = �(�1 � �20) + 
�
�
R1 � �+ �20=2

�
+ 
�0�Z; (3.6)

where Z � N (0; 1). Then, �21 is distributed conditionally on R1 and �0 as normal

with mean

E�21 = �
2
0 + �(�1 � �20) + 
�

�
R1 � �1 + �20=2

�
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and variance V �21 = (
�0�)
2 : The support of this distribution is then partioned into

k points, the grid being centered at the conditional mean and stretching out to m

conditional standard deviations from the mean in each direction.

The value of the probability distribution functionf�21j�20 at each cell j 2 f1; 2; :::; kg

is then computed as f�21j�20(j) = ��21j�20(�
2
1;j) � ��21j�20(�

2
1;j�1);where ��21j�20(�) is the

normal cumulative distribution function with mean E�21 and variance V �
2
1; and

f�21j�20(j) = 1 � �(Zt;k�1) when j = k: Finally, cells with negative values for �21 are

assigned zero probabilities, and the probabilities in the remaining cells are normalized

to sum to unity.

Step 2: At each t 2 f2; 3; :::; ng; given the mean and the variance of �2t�1 and the

data observed at t; the mean and the variance of �2t can be computed as

E�2t = E�
2
t�1 + �(�1 � E�2t�1) + 
�

�
Rt � �1 + E�2t�1

�
and

V �2t = (1� � + 0:5
�)
2 V �2t�1 + (
�)

2E�2t�1:

The grid for �2t is then constructed in the same way as at Step 1, and the probabilities

are calculated as

f�2t (j) =

kX
i=1

f�2t j�2t�1=�2t�1;i(j)f�2t�1(i);

where f�2t j�2t�1=�2t�1;i is the probability of �
2
t conditional on �

2
t�1 = �2t�1;i. This is

computed as

f�2t j�2t�1=�2t�1;i(j) = ��2t j�2t�1=�2t�1;i(�
2
1;j)� ��2t j�2t�1=�2t�1;i(�

2
1;j�1):

Again, zero probabilities are assigned to cells with negative values of �2t ;and remaining



28

probabilities are normalized to sum to unity.

Step 3: Given parameter values and conditional on the past data, the value of the

likelihood function for the return observed at time t is computed as

kX
i=1

fRtj�2t�1 (Rt) f�2t�1(i);

where fRtj�2t�1 (Rt) is the probability distribution function of stock return Rt condi-

tional on �2t�1; which is normal with mean and variance implied by expression (3.4).

After experimenting with the number of grid points and the spread of the distribu-

tion, the values for parameters k andm were set at 150 and 3 respectively. This setup

ensures that the grid covers virtually all of the support of the conditional distribution

of �2t .

For completeness, one more estimation technique for the Heston model should

be mentioned. Bates (2006), Bakshi, Cao and Chen (1997), Chernov and Ghysels

(2000), Pan (2002), Ait-Sahalia and Kimmel (2007) and other authors employ both

option prices and underlying price series in estimation. Option prices are used to

infer current levels of volatility, which are then employed in estimation as observable

quantities. Two implications of this approach make it less suitable for our purposes.

First, to have comparable results, all option pricing models must be estimated using

the same data set. Second, we would like to be able to perform a speci�cation test

that compares the physical parameter estimates with the risk-neutral estimates from

options. Since estimating a model using both stock and option price data implicitly

imposes restrictions on risk-neutral and physical parameters of the model, this test

becomes less meaningful.

Despite the mentioned downsides of this estimation technique for the Heston

model, it is still interesting to compare its results to those obtained with our method.
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Ait-Sahalia and Kimmel (2007) suggested a shortcut to this approach, which is much

less computationally intensive than the exact procedure, and, according to these

authors, has negligible approximation error for the Heston model. The idea is to

proxy unobserved volatility with the VIX index rather than infer it from market op-

tion prices.1 We will use this alternative technique as a complementary estimation

method for the discrete-time Heston model.

3.1.4 The Variance Gamma Model

The VG model is given by the following expression

Rt � ln(St=St�1) = �+ 
��t + �
p
��tZt; (3.7)

where Zt � N(0; 1) and �t � Gamma(1): The conditional likelihood function can be

constructed using the fact that the continuously compounded return is distributed

as normal conditionally on �t; then integrating the conditional p.d.f. f (Rt j�t ) over

the support of �t. Madan et al. (1998) show that the unconditional density of stock

returns is given by the following expression:

fRt(R) =
2e
(R��)=�

2

�1=�
p
2��2�(1=�)

 ����� R� �p
2�2=� + 
2

�����
!1=��0:5

�

K1=��0:5

0@
���(R� �)p2�2=� + 
2���

�2

1A ;
where K is the modi�ed Bessel function of the second kind. This expression can be

used to construct the conditional likelihood function of stock returns.
1VIX is the volatility index of the Chicago Board of Options Exchange (CBOE) introduced in

1993. The value of the index is computed using SP500 option prices of maturities up to two months.
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3.1.5 The Hobson-Rogers Model

To estimate the parameters of the Hobson-Rogers model from underlying price

data, we use the following discrete-time version:

eSt � eSt�1 = �t�1 � �2t�1=2 + �t�1Zt; (3.8)

where Zt � N(0; 1) and eSt = ln(e��ttSt): Similarly, we de�ne the discrete-time equiv-
alent of the o¤set function as

�t =
1X
j=1

�e��j

A
(eSt � eSt�j); (3.9)

where division by A =
P1

i=1 �e
��i = �

e��1 makes the weights sum to unity. This can

be re-written in the recursive form

�t =
1X
j=1

�e��j

A
(eSt � eSt�j) = ::: = �eSt � eSt�1�+ e���t�1: (3.10)

This form is particularly useful for estimation.

We experiment with three possible speci�cations for the drift process f�tg : (1)

�t = �1; (2) �t = �1 + �2�t + �3�
2
t and (3) �t = �1 + �2�t + �3�

2
t : The second

speci�cation is intended to account for the compensation for risk, while the third is

a polynomial approximant of some more general function of o¤set. The variance �2t

is assumed to be a quadratic function of o¤set �t, as

�2t (�t) = �
2
1

�
1 + �2�t + �3�

2
t

�
: (3.11)

This can accomodate di¤erent responses of variance to positive and negative o¤sets.

The disadvantage is that it allows variance to be negative for certain combinations
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of parameters and o¤set, but in the estimation stage constraints will be imposed to

eliminate this problem.2

Notice that Rt+1 � ln(St+1=St); is distributed as normal conditionally on �t; i.e.,

Rt+1j�t � N(�(�t) + �t; �
2(�t)): (3.12)

3.1.6 Comparing Models

Our main goal is to compare the descriptive accuracy of the HR model to that of

the other four models. It is easy to see that GBM is nested within HR and all the

other models, so that comparison of goodness of �t under measure P can be based

on the standard likelihood-ratio test. Unfortunately, comparisons of the CEV, HR,

Heston and VG models are much more complicated. For HR versus CEV, we can

propose the following hybrid model that nests both:

dSt=St = �tdt+ �tdWt; (3.13)

�2t (�t; St) = �21
�
1 + �2�t + �3�

2
t

�
S
2(
�1)
t : (3.14)

When �2 = �3 = 0; this reduces to CEV, and when 
 = 1 it reduces to HR. This

speci�cation makes it easy to test whether the CEV term S2(
�1)t helps to explain the

dynamics once the HR term �21 (1 + �2�t + �3�
2
t ) is accounted for.

Unfortunately, there is no obvious way to combine HR with Heston or VG in such

a way, so we rely on formal tests of non-nested models in these cases. Common model

selection criteria include Akaike�s information criterion (Akaike, 1974) and Schwartz�s

Bayesian Information Criterion (Schwartz, 1978). However, these measures simply

2The exponential form �2(�t) = �
2
1 exp

�
1 + �2�t + �3�

2
t

	
was also considered, but it resulted

in a signi�cant drop in the value of the likelihood function.
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rank the models and do not constitute formal tests. Cox�s test (Cox, 1961) for non-

nested hypotheses is such a formal test, but it is di¢ cult to carry out with these

elaborate models.

Vuong (1989) proposed a testing procedure that is easier to implement. It re-

lies on a popular measure of distance between distribution functions known as the

Kullback-Leibler information criterion. Following Clarke�s (2007) notation, consider

two models, F� = f(Yi jXi; �)and G� = g(Yi jZi; �) ; where f and g are probability

density functions with p and q parameters respectively. Under the null hypothesis

that the two models are observationally equivalent as judged by their likelihoods,

Vuong�s test statistic is:
LR�(b�;b�)p

nb� ;

where b� and b� are maximum likelihood estimators and n is sample size; LR�(b�;b�) is
the ratio of likelihood functions with a correction for degrees of freedom,

LR�(b�;b�) = nX
i=1

h
ln f(Yi

���Xi; b�) � ln g(Yi ���Zi;b�)i� 1
2
[p� q] lnn;

and b� is the estimated standard deviation of the di¤erences in log-likelihoods, com-
puted as

b�2 � 1

n

nX
i=1

24ln f(Yi
���Xi; b�)

g(Yi

���Zi;b�)
352 �

24 1
n

nX
i=1

ln
f(Yi

���Xi; b�)
g(Yi

���Zi;b�)
352 :

Vuong (1989) shows that this statistic converges in distribution to N (0; 1) under the

null that the two models have equivalent explanatory power. He also shows that the

test is asymptotically equivalent to the classical LR test when the two models are

nested. Vuong�s test will be used as a formal criterion to select the best model.

Recently, Clarke (2003) suggested a distribution-free test of non-nested models.

This test utilizes the signs of the di¤erences in the individual log-likelihoods rather
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than their actual values. The advantage of this nonparametric test is that it does not

rely on the asymptotic theory underlying Vuong�s procedure. The test is as follows.

Letting di = f �(Yi

���Xi; b�) � g�(Yi ���Zi;b�) ; where f � � ln f �
�
p
2n
lnn
�
and g� �

ln g �
�
q
2n
lnn
�
represent the individual lig-likelihoods corrected for dimensionality,

the test statistic is

B =
nX
i=1

I(0;+1) (di) ;

where I is the indicator function. This is distributed as binomial with parameters n

and 1
2
under the null that the two models have the same explanatory power. Below

we report the results of both the Vuong and Clarke tests in comparing the non-nested

models.

3.2 Estimation underMeasure P̂ with Option Prices

The previous section described estimation of the physical, or natural, parameters

of the various models. However, to value derivative assets, risk-neutral parameters

are required. There are two general ways to estimate these.

The �rst approach relies on the theoretical relation between the physical and risk-

neutral parameters. When the model is complete, the parameters are the same, so

maximum likelihood estimates from the previous section can be used. However, it is

well known that even in the complete-markets case the risk-neutral parameters can be

quite far from those obtained from the underlying prices. For example, Christo¤ersen

and Jacobs (2004) show that the �t of option pricing models deteriorates drastically

when pricing formulas are evaluated with physical parameter estimates.

In the case of incomplete models, the two sets of parameters can be related if

additional assumptions about agents�preferences are made and a general equilibrium



34

model is formulated. Unfortunately, the hierarchy of strong assumptions that this

requires leaves one with little con�dence in the results. Moreover, one must recognize

that the historical price data used in estimated physical parameters are backward

looking and may not re�ect current beliefs about the future dynamics of the under-

lying asset. Therefore, even though a �nding of consistency between risk-neutral and

physical estimates would clearly support a model, one cannot rely on it for pricing

options.

For these reasons the common approach is to estimate risk-neutral parameters

directly from options data. This is usually done by applying nonlinear least squares

to minimize the sum of squared di¤erences between market prices (market implied

volatilities) and prices (implied volatilities) based on a particular model. Most of-

ten, parameters are estimated separately from cross-sections of option prices having

di¤erent strikes and expiration dates that are traded on the same day.

This section describes how this procedure was implemented to estimate the risk-

neutral parameters of the �ve alternative models. Two strategies were pursued. First,

the (computational) closed-form formulas for option prices available for the GBM,

CEV, VG and Heston models are used to represent model-based prices. Second, since

no such option pricing formula is available for HR, model-based prices have to be

estimated by simulation. To faciliate comparison with the other models, separate

simulation-based estimates were also obtained for all except GBM. Having dual re-

sults for three of the models makes it possible to judge the extent of bias due to

discretization and the sampling error associated with simulation.

Two criteria are employed to judge the various models: (1) in-sample �t, as mea-

sured by mean-squared errors; and (2) errors from out-of-sample forecasts. For the

latter, the parameter values implied by any particular day�s data are used as inputs for

model-based option prices one to �ve days ahead. In addition, consistency of physical
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and risk-neutral parameters of the models is analyzed whenever this is possible.

3.2.1 The Nonlinear Least Squares Algorithm

To describe the estimation in more detail, let � be the vector of parameters of a

given model. (This includes the initial values of volatility and o¤set in the Heston and

HR models, respectively.) At date t we collect Nt put option prices, where Nt exceeds

the maximum number of parameters of the �ve models. Let P jt be the observed price

of option j 2 f1; 2; :::; Ntg with time-to-maturity T j and strike price Kj; and letbP jt (�t) be the price determined from the model, as computed either from a formula

or by simulation.

Two di¤erent loss functions are considered: mean squared errors of prices,

MSEPt

�b�t� � min
�t

vuut 1

Nt

NtX
j=1

h bP jt (�t)� P jt i2; (3.15)

and mean squared errors of implied volatilities,

MSEIVt

�e�t� � min
�t

vuut 1

Nt

NtX
j=1

hbV jt (�t)� V jt i2: (3.16)

The mean-squared pricing error is most commonly used in empirical studies, but it

puts most of the weight on options that are deep in the money those with longer

maturities, both of which have relatively high prices; and these are the classes of

options that the standard Black-Scholes model handles reasonably well. These e¤ects

of �moneyness� and term are mitigated by converting model and market prices to

implicit volatilities. This MSEIV criterion puts more weight on options that are far

from the money in either direction and especially on those with short maturities.
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These are precisely the options whose prices are least satisfactorily explained by

the standard Black-Scholes formulas. Since both optimization problems are highly

nonlinear in the parameters and there are no analytical solutions for the gradient,

numerical optimization techniques must be used. For this purpose we made use of

several di¤erent routines from the IMSL and Numerical Recipes libraries for Fortran

77.

3.2.2 Option Pricing With Simulations

To compute option prices by simulation the following steps are taken. First, for

each options sample at date t a model-speci�c risk-neutral price process was used to

generate a sample path for underlying price at daily frequency, starting with St and

extending to the longest maturity date in the sample of options. The exercise value of

each option j 2 f1; 2; :::; Ntg at the appropriate expiration date was then computed

as max (Kj � ST j ; 0). After M such paths were generated, the price of each option

was estimated as

P jt = e
�r(T j�t) 1

M

MX
m=1

max
�
Kj � SmT j ; 0

�
:

Our estimates were based on M = 100; 000 sample paths. This large number was

needed to give the simulated prices a degree of accuracy comparable to those obtained

from the explicit formulas. The antithetic variable technique was used throughout to

reduce standard errors. This involved pairing each sequence fZtg of normal variates

with a sequence of identical magnitude but opposite sign.
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Chapter 4

The Data

The procedures described above were carried out with prices and options for the

S&P 500 index, a value-weighted index of common stocks meant to be representative

of various industries. Listed options on the S&P are of the European type, to which

our pricing formulas apply, and they are very actively traded. For these reasons they

have become the standard vehicle for testing advanced theories of option pricing.

Here we describe some general features of the data. How well they are �t by the

various models will be considered in the following section.

4.1 Index Price Series

The physical parameters of all models are estimated from daily closing prices of

the S&P for the three years beginning on January 1, 2004� a total of 756 observations.

Figures 4.1 and 4.2 depict time-series plots of index levels and daily returns, along

with the time path of the volatility index VIX.

The graphs illustrate the variable and persistent nature of volatility, a feature that
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Figure 4.1: S&P 500 Index Levels, January 2003-January 2007
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Figure 4.2: S&P 500 Index Daily Returns and VIX Volatility Index
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Table 4.1: Descriptive Statistics of S&P 500 Index Returns and VIX Series.
The table describes daily returns and VIX volatility series (in annual terms) collected from January

1, 2004 to January 1, 2007.

S&P 500 Daily Returns VIX
Mean 0.081 0.137
Standard Deviation 0.105 0.023
Median 0.182 0.132
Min -4.661 0.099
Max 5.377 0.238
1st quartile -0.928 0.119
3rd quartile 1.073 0.152
Skewness -0.019 0.805
Excess kurtosis 0.256 0.440
Correlation of returns and VIX -0.205 �

several of our models are intended to capture. Table 4.1 summarizes the data.1

4.2 Options Data

To estimate the models�risk-neutral parameters, we use daily option prices for

the period from March 23, 2005 to May 23, 2005� a total of 43 days. The data were

collected from the Chicago Board Options Exchange (CBOE) website. For each date

the market price is taken as the average of the last reported bid and asked quotations.

The data were �ltered as follows. Excluded from the sample were (1) options with

fewer than 20 days and more than 252 days to expiration; (2) options with trading

volume below 50 contracts or open interest less than 100; (3) options with prices

below $3/8; (4) options whose calculated prices violated no-arbitrage bounds:

max
�
0; e�r(T�t)K � e��(T�t)St

	
� Pt � e�r(T�t)K

1At an earlier stage of this research, we have also experimented with a much longer sample, cov-
ering the period from January 1, 1997 till January 1, 2007. However, the use of this extended sample
made it much harder to rationalize the consistency tests of physical and risk-neutral parameters,
since the options data described below were sampled over considerably shorter time interval.
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and (5) options that were far away from the money (K=St < 0:8 and K=St > 1:3).

Excluding such low-priced and illiquid options gives us more con�dence in the cur-

rency of price quotations and mitigates the e¤ect of price discreteness. The same sort

of �ltering process has been used by Bakshi, Cao and Chen (1997), Christo¤ersen

and Jacobs (2004) and other authors. To broaden the sample of put prices across the

range of strikes, the European put-call parity relation (2.8) was used to transform

calls into puts when put quotations were not available or did not meet the selection

criteria.

Besides prices of the options themselves, we require data for daily Treasury-bill

rates and S&P 500 futures prices in order to estimate implicit dividend rates on the

index. Assuming that the riskless rate is known over the life of a futures contract

with maturity T and price Ft;T , the dividend yield � of the underlying asset can be

calculated as

� = r +
1

T � t ln
�
Ft;T
St

�
:

Treasury-bill rates and S&P 500 futures prices were obtained from Barron�s.

After �ltering and transforming selected calls, we were left with a total sample

of 2,777 puts, the daily number ranging from 44 to 105 contracts. All options are

divided into several categories according to their moneyness and maturity. Following

standard classi�cation, a put option is said to be at-the-money (ATM) if the ratio

of its strike price to current stock price, K=St, is between 0:97 and 1:03, a put is

in-the-money if K=St � 1:03 and out-of-the-money if K=St � 0:97: By the term to

expiration, an option is short-term if (T � t) is less than 60 days, medium-term if

(T � t) is between 60 and 180 days and long-term if (T � t) is more than 180 days.

Tables 4.2, 4.3, and 4.4 summarize the data by moneyness and maturity and

illustrate the inclusiveness of the sample.
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Table 4.2: Number of Contracts by Moneyness and Maturity

Maturity (days)
21-44 45-89 90-134 135-252 Total

Moneyness (K/S)
0.80-0.94 352 138 121 205 816
0.94-0.97 142 56 34 58 290
0.97-1.00 185 67 44 97 393
1.00-1.03 236 87 46 86 455
1.03-1.06 237 78 46 56 417
1.06-1.33 132 55 63 156 406
Total 1,284 481 354 658 2,777

Table 4.3: Average Prices by Moneyness and Maturity

Maturity (days)
21-44 45-89 90-134 135-252 Total

Moneyness (K/S)
0.80-0.94 2.39 4.89 9.16 16.58 7.38
0.94-0.97 6.66 12.25 22.03 33.83 14.98
0.97-1.00 14.08 20.64 31.16 45.12 24.77
1.00-1.03 29.37 32.54 43.53 57.51 36.72
1.03-1.06 56.24 53.63 64.35 76.13 59.32
1.06-1.33 102.44 98.14 116.14 133.07 115.75
Total 46.78 52.26 39.46 87.26 39.09

Table 4.4: Mean Implied Volatilities by Moneyness and Maturity

Maturity (days)
21-44 45-89 90-134 135-252 Total

Moneyness (K/S)
0.80-0.94 0.2037 0.1767 0.1775 0.1879 0.1913
0.94-0.97 0.1551 0.1387 0.1509 0.1581 0.1520
0.97-1.00 0.1341 0.1284 0.1403 0.1497 0.1377
1.00-1.03 0.1185 0.1154 0.1287 0.1425 0.1235
1.03-1.06 0.1098 0.1031 0.1215 0.1358 0.1133
1.06-1.33 0.1274 0.1035 0.1145 0.1227 0.1204
Total 0.1475 0.1341 0.1455 0.1538 0.1464
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Figure 4.3: S&P500 Returns, Implied Volatilities and VIX Index Values, March to
June 2005

The maturity and moneyness patterns of implied volatilities are consistent with

our discusion in section 2.1 and are similar to those found in other studies. In par-

ticular, the implied volatilities of in-the-money options and long-term options are

generally higher than those of short-term and out-of-the-money contracts, and as

moneyness increases, implied volatilities �rst go down and then slightly increase again.

Figure 4.3 plots the S&P 500 daily log returns, the daily VIX index, and the

average implied volatilities of nearest-to-money options for the option sample period.

Notice that although this sample covers a relatively short time interval, there is ample

variation in volatilities to test the �exibility of the various models.
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Chapter 5

Parameter Estimates and Tests of

Fit

This section presents the empirical �ndings. First, the results from maximum

likelihood estimation of the parameters under the physical probability measure are

presented. Then, the relative performance of alternative models is evaluated using

several tests of nested and non-nested models. Next, the risk-neutral parameters of

the models are estimated using option data, and the in-sample �ts of the models

for each option sample date are compared. Finally, we look at how well models can

forecast option prices one to �ve days ahead. All computations were done using codes

in Fortran 77.
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5.1 Maximum Likelihood Estimation from Index

Returns

5.1.1 The Hobson-Rogers Model

Recall that the Hobson-Rogers model is descibed by the following process for the

discounted stock price eSt = ln(e��ttSt):
deSt = �(�t)dt+ �(�t)dWt;

where fWtgt�0 is a standard Brownian motion and the o¤set function �t is de�ned

as

�t =

Z 1

0

�e��u(eSt � eSt�u)du:
Unlike the other models, the Hobson-Rogers model is formulated in terms of the

discounted log-price process, eSt; rather than in terms of index price St itself. Ac-
cordingly, a process for discount factor �t must be speci�ed before estimation can

proceed. Hobson and Rogers (1998) set �t equal to a constant short rate r; and we

follow that convention here. A seemingly plausible alternative would be to represent

� by the long-run steady-state growth rate of fStg; however, when taken to the stock

price data, this parameter cannot be identi�ed separately from the constant in the

drift in fStg. Thus, it is necessary to �x � exogenously.

The parameters to be estimated are �1; �2; �3; �1; �2; �3; and �: In addition, the

initial value of the o¤set function �0 is estimated as one more parameter of the

model.1 The likelihood function is highly nonlinear and nonmonotone, and analytical

1Alternatively, this variable can be computed from past stock price data given the value of the
parameter �: Experiments with this setup indicated that the di¤erence in results is negligible, but
this procedure is more involved computationally.
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expressions for the maximum likelihood estimators are not available. The estimation

strategy is �rst to �concentrate�the likelihood, expressing �1; �2; �3; and �1 in terms

of �2; �3; � and �0 and the data using their �rst-order conditions, then to apply a

numerical algorithm (a simplex method with simulated annealing) in an e¤ort to �nd

the global maximum. This approach reduces the dimension of the numerical search

problem from eight to four parameters. Several di¤erent sets of starting values for

�2; �3; � and �0 were used to help locate the global maximum.

Table 5.1 presents the results for three alternative speci�cations of the drift process.

Entries below the parameter estimates are standard errors obtained via the BHHH

algorithm and the negative inverse of the Hessian matrix, respectively.2 Estimates of

�1; �2; �3; and � are statistically signi�cant for all speci�cations of the drift process,

while the parameters of the mean� �1; �2 and �3� are all individually insigni�cant.

The likelihood ratio test of the the joint signi�cance of the ��s (H0 : �2 = �3 = 0)

fails to reject the null in both samples at the 10% level. Therefore, unlike the volatil-

ity of returns, it appears that expected returns do not exhibit predictable variation.

The negative value of �̂2 indicates that volatililty tends to be high after a period of

low returns, the o¤set then being negative, and low after a period of high returns.

The positive value of �̂3 indicates that large current price shocks of either sign predict

high future volatility.

The ex-ante daily expected volatilities implied by drift speci�cation 1 (�t = �1)

are depicted in Figure 5.1, and their descriptive statistics are presented in Table 5.2.3

The average volatility of returns is 10:2%; and the volatility varies between 7:0%

and 17:1% respectively. Notice that the estimated average volatility is very close to

the standard deviation of sample returns reported in Table 4.1, and the estimated

2In computing these matrices both �rst- and second-order conditions were derived analytically.
3Speci�cations 2 and 3 produce virtually identical volatility series.
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Table 5.1: The Discrete-Time Hobson-Rogers Model: ML Estimates of
Physical Parameters Using Returns Data

I II III
�t = �1 �t = �1 + �2�t + �3�

2
t �t = �1 + �2�t + �3�

2
t

�1 0.025 1.309 0.035
0.057 4.611 0.078
0.056 0.046 0.080

�2 -482.2 -7.257
1,133 13.87
1,307 13.81

�3 42,865 129.4
66,122 155.4
70,127 154.2

�1 0.105 0.104 0.104
0.004 0.003 0.004
0.003 0.003 0.003

�2 -23.47 -22.21 -22.61
4.804 2.681 4.781
4.709 3.792 4.850

�3 260.2 243.8 230.6
145.3 11.06 146.0
140.2 33.74 140.4

� 9.498 9.082 9.597
2.868 2.377 2.844
2.908 1.199 3.063

�0 -0.031 -0.037 -0.032
0.023 0.019 0.023
0.019 0.009 0.019

-logL 2,611 2,610 2,611
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Table 5.2: The Discrete-Time Hobson-Rogers Model: Summary Statistics
of Estimated Daily Volatilities (in annual terms)

mean 0.102
median 0.098
standard deviation 0.021
min 0.070
max 0.171
skewness 0.794
kurtosis 3.021
1st quartile 0.086
3rd quartile 0.114

volatility of volatility is comparable to that of the VIX index.

Estimates of the decay parameter � are particularly interesting. So far as we know,

the only previous estimate from time series data is in the paper by Figa-Talamanca

and Guerra (2006), who derive it from an autoregression of squared log-returns. Using

750 observations on S&P 500 index (up to February 2002), these authors obtain the

parameter value of 12:6; which is argued to be a reasonable estimate then used to

price options. In their original paper, Hobson and Rogers take the values of 1 and

5 for this parameter merely to illustrate di¤erent volatility patterns. Given such a

wide range of the values for � used in the literature, the formal estimation of this

parameter on the basis of stock price data is therefore of particular interest.

As Table 5.1 shows, all our estimates of � fall in the relatively narrow range from

9:08 to 9:60 and are highly signi�cant. Decay rates of this magnitude indicate that

the weights of the index returns from two months and four months earlier are only

about 0:20 and 0:05, respectively, while the behavior of prices more than six months

in the past has negligible e¤ect on future volatility.
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Figure 5.1: Estimated Daily Volatilities in the Hobson-Rogers Model

5.1.2 The Black-Scholes Model

The maximum likelihood estimates for the GBM model, in which the stock price

process is given by dSt=St = �dt + �dWt (where fWtgt�0 is a standard Brownian

motion), are presented in Table 5.3. Entries below the parameter estimates are stan-

dard errors obtained via the BHHH algorithm and the negative inverse of the Hessian

matrix, respectively. The drift parameter � is insigni�cant, while the volatility pa-

rameter � is strongly signi�cant, which parallels the results for the Hobson-Rogers

model.
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Table 5.3: The Black-Scholes Model: ML Estimates of Physical Parameters
Using Returns Data

� 0.082
0.060
0.060

� 0.104
0.003
0.003

-logL 2,644

5.1.3 The CEV Model

Table 5.4 contains the estimates of the discrete-time CEV model. Recall that the

dynamics of the return is assumed to be

Rt � ln(St=St�1) = �t � �2t=2 + �tZt;

where Zt � N (0; 1) and �t = �S
�1t�1 ; and the drift process is speci�ed either as a con-

stant or as a quadratic function of volatility. Entries below the parameter estimates

are the BHHH and inverse Hessian standard errors. The additional parameters of

the drift process in the unrestricted version of the model are both individually and

jointly insigni�cant. To help interpret volatility parameter estimates, the initial value

of volatility, �tjt=0 = �=S

�1
0 ; is also reported. Notice that this is the same for both

drift speci�cations despite the di¤erences in the estimates of � and 
. 4

To assess the magnitude of potential biases due to discretization of a continuous-

time model, the parameter estimates from the continuous-time version of the CEV

4At an earlier stage of this research, a sample of S&P500 prices over the period from January
1, 1997 till January 1, 2007 was used, producing b
 = 0:34 with standard error of 0:05; suggesting
that the estimates are very sensitive to the choice of the sample period. Other studies �nd that for
individual stocks this coe¢ cient ranges from -2 to 2.
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Table 5.4: The Discrete-Time CEV Model: ML Estimates of Physical Pa-
rameters Using Returns Data

I II
�t = �1 �t = �1 + �2�t + �3�

2
t

�1 0.044 3.127
0.059 2.513
0.058 3.495

�2 -1,020
868.747
923.514

�3 82,958
212,312
231,563

� 83,976 56,021
27,594 15,865
32,886 19,942


 -0.917 -0.860
0.387 0.233
0.396 0.298

-logL 2,632 2,631
�0 0.122 0.122
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Table 5.5: The Continuous-Time CEV Model: ML Estimates of Physical
Parameters Using Returns Data

�1 0.076
0.059
0.058

� 73,229
24,960
29,880


 -0.898
0.393
0.404

-logL 2,628
�0 0.122

model with constant drift are reported in Table 5.5.

Notice that all estimates are very similar, in particular the elasticity of variance

parameter 
. The estimates of the initial volatility are identical at the chosen precision

level. The results suggest that the discrete-time approximation to a continuous time

model is a reasonable alternative, at least in the context of the CEV model.

5.1.4 The Heston Model

Table 5.6 presents the estimates for the discrete-time Heston model. There are

two versious, corresponding to whether the volatility is regarded as unobservable or as

represented by VIX. Standard errors of estimates computed with BHHH and inverse

Hessian approaches respectively are reported below the parameter values .

Several observations are noteworthy. First, the estimates under di¤erent assump-

tions about initial volatility are quite similar, suggesting that both estimation tech-

niques are valid. Speci�cally, this similarity supports the use of VIX, thereby sim-
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Table 5.6: The Discrete-Time Heston Model: ML Estimates of Physical
Parameters Using Returns Data

Unobserved VIX
� 0.045 0.054

0.042 0.080
0.043 0.012

� 7.129 10.408
2.456 3.015
2.746 3.872

�21 0.011 0.013
0.002 0.003
0.001 0.001


 0.298 0.226
0.047 0.040
0.013 0.037

� -0.835 -0.784
0.057 0.017
0.032 0.013

�0 0.144
0.022
0.023

-logL 2,611 2,624
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plifying estimation.5 Second, the long-term value of volatility, given by
p
�21; in the

case of unobservable volatility is equal to 0:105 matching the standard deviation of in-

dex returns reported in Table 4.1. Next, the correlation � between the innovations to

stock price and volatility is strongly negative and quite close for both versions of the

model. However, its estimate is somewhat lower in absolute value when the volatility

is represented by VIX, and, as we will see later, is closer to the estimate implied from

options data. This corresponds to the usual �nding that the informational content of

the VIX index, which itself is computed from options data, di¤ers from that inferred

from historical returns.

5.1.5 The Variance Gamma Model

Finally, Table 5.7 reports the estimates for the VG model, in which stock returns

are governed by the process

Rt � ln(St=St�1) = �+ 
��t + �
p
��tZt;

where Zt � N(0; 1) and �t � Gamma(1): Again, entries below the parameter esti-

mates are standard errors obtained via the BHHH algorithm and the negative inverse

of the Hessian matrix, respectively.

Again, the drift parameter is insigni�cant, while � is highly signi�cant The hy-

pothesis that the distribution is symmetric (H0 : 
 = 0) cannot be rejected. This

supports the conclusion by Madan, Carr and Chang (1998) that S&P 500 returns are

well described by a symmetric VG process. On the other hand, the kurtosis parameter

� is highly signi�cant and yields a daily excess kurtosis coe¢ cient of 3���252;or ap-
5The estimates are also comparable to those reported by Ait-Sahalia and Kimmel (2007) for

S&P500 returns for a period from January 2, 1990 till September 30, 2003.
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Table 5.7: The VG Model: ML Estimates of Physical Parameters Using
Returns Data

� 0.094
0.067
0.059

� 0.109
0.005
0.004


 -0.231
0.156
0.173

� 0.003
0.001
0.001

-logL 2,641

proximately 2 for both samples. This is much higher than the sample excess kurtosis

of 0:256 reported in Table 4.1.

5.1.6 Comparing the Models

Having estimated the models, we are now interested in evaluating their relative

performances. For this purpose, we �rst compare each model to GBM using a nested

model test. Then, two non-nested tests by Vuong (1989) and Clarke (2003) are em-

ployed to compare all models pairwise.Finally, the hybrid CEV-HRmodel is estimated

to judge the relative contributions of these two alternatives.

Since GBM is nested within the other four models, it can be compared using

the likelihood-ratio test. Table 5.8 presents the log-likelihood functions for all mod-

els and the corresponding likelihood-ratio (LR) statistics versus GBM, computed as

�2(lnLrestricted� lnLunrestricted). Comparisons for CEV and HR are for the restricted

versions of the drift process. The numbers beneath the LR statistics are p-values of
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Table 5.8: Likelihood Ratio Tests With Respect to the GBM Model

GBM CEV Heston VG HR

Log-likelihoods -2,644 -2,632 -2,611 -2,641 -2,610

LR statistics � 22.87 66.08 6.23 66.90
p-values � 1.73e-6 1.52e-13 4.44e-02 2.97e-15

one-sided test that CEV/Heston/VG/HR model is better than GBM

Clearly, the LR tests soundly reject GBM in favor of any of these models. THe

likelihoods for the Hobson-Rogers and Heston models are very similar, and both are

much higher than the others.

Next, we will compare the CEV, HR, Heston and VG models relatively to each

other. We start with the pair of CEV and HRmodels. To compare them, CEV-HR hy-

brid model, where dSt=St = �tdt+�tdWt and �2t (�t; St) = �
2
1 (1 + �2�t + �3�

2
t )S

2(
�1)
t ;

is estimated. Notice that when �2 = �3 = 0; the model reduces to the CEV model,

and when 
 = 1; the model reduces to the standard HR speci�cation. The assump-

tion of the constant drift can be easily relaxed to incorporate the dependence of the

expected return process on o¤set or volatility. However, since a more general drift

process was found to be adding little to the explanatory power of the models, the

assumption of constant expected return is not crucial.

The estimation results for this hybrid model are presented in Table 5.9. Entries be-

low the parameter estimates are standard errors obtained via 1) the BHHH algorithm

and 2) the negative inverse of the Hessian matrix.

The likelihood-ratio test easily rejects the CEVmodel in favor of the hybrid model,

while the Hobson-Rogers model cannot be rejected (the p-value of the hypothesis

�2 = �3 = 0 is 0:178). In addition, we cannot reject the hypothesis of 
 = 1.



56

Table 5.9: The Discrete-Time Hybrid HR-CEV Model: ML Estimates of
Physical Parameters Using Returns Data

� 0.040
0.056
0.056

�1 31.13
7.560
10.01

�2 -22.70
5.401
4.904

�3 233.5
159.4
142.6

� 11.92
4.187
3.932


 0.201
0.464
0.485

F0 -0.017
0.026
0.022

logL -2,610
�0 0.168
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Table 5.10: Non-Nested Tests

Panel A: Vuong�s (1989) test
Model F Model G

CEV HR Heston VG
GBM 1.758 2.251 2.274 0.736

0.079 0.024 0.023 0.462
CEV 1.254 1.399 -1.772

0.210 0.162 0.076
HR 0.475 -2.703

0.635 0.007
Heston -3.109

0.002
Panel B: Clarke�s (2003) �sign test�
Model F Model G

CEV HR Heston VG
GBM 0.528 0.537 0.460 0.499

0.118 0.038 0.032 0.971
CEV 0.501 0.448 0.454

0.913 0.005 0.012
HR 0.467 0.421

0.075 0.000
Heston 0.422

0.000

Therefore, the results suggest that the CEV component of the hybrid model does not

makes a signi�cant contribution to its explanatory power.

Next, we compare all models with each other using formal non-nested tests by

Vuong (1989) and Clarke (2003). The results are reported in Table 5.10. A p-value

of each two-sided test (that Model G and Model F explain the data equally good) is

given below its statistics.

For completeness, all models, including the GBM, have been compared pairwise.

As expected, both these tests are less powerful than the LR test in their ability to

reject the null that CEV/HR/Heston/VGmodels are "equal" to GBM. However, both

tests imply the same ranking of the modes as the likelihood ratio statistics. Several
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observations deserve mentioning. While the HR models is still clearly favored over

the GBM and VG models by both tests, it cannot be di¤erentiated from the CEV

model. In addition, the HR and Heston models are indistinguishable according to

Vuong�s test, but the Heston model is actually doing worse in terms of frequency of

observations with higher likelihoods. Interestingly, the sign test �nds that the Heston

model yields to the GBM and CEV models as well. The performance of the VG

model is found to be equal to that of the GBM, but signi�cantly worse than that of

the other three models.

The apparent ambiguity of the results with respect to the HR and Heston mod-

els can be explained by looking at the graph of the di¤erences of their individual

log-likelihood functions (Figure 5.2).The graph shows that the di¤erences in esti-

mated probabilities of individual data points are fairly evenly distributed around zero,

with the exception of several outliers. These outliers correspond to extreme market

observations with particularly small likelihoods implied by both models, which are

however still much higher in the Heston model than in the HR model. These out-

liers are driving the Vuong�s statistics, as well as the likelihood-ratio statistics, but

Clarke�s test by construction is relatively immune to them. Therefore, even though

the Heston model seems to be better able to handle large negative market shocks, the

HR model performs at least as well as the Heston model under less extreme market

circumstances.

5.2 Least Squares Estimation from Options Data

This section presents non-linear least squares estimation results obtained using

the sample of options data. Two alternative loss functions, mean-squared error of

dollar option prices (MSEP) and mean-squared error of implied volatilities (MSEIV)
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Figure 5.2: Di¤erences of the Individual HR and Heston Log-Likelihoods
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Table 5.11: Black-Scholes and CEV Models: NLLS Estimates of Risk-
Neutral Parameters Using Options Data

Parameters
GBM CEV

Loss Function: � � 

MSEP 0.1386 0.1384 -3.2442

0.0075 0.0075 0.4780
0.0063 0.0054 0.3017

MSEIV 0.1451 0.1375 -3.6852
0.0112 0.0082 0.0903
0.0092 0.0078 0.1587

MSEP: simulations 0.1422 -1.7271
0.0080 0.2040
0.0061 0.1962

are assumed. For GBM, CEV, Heston and VG models, closed-form expressions for

option prices are used to evaluate loss functions. The Hobson-Rogers model, for which

no such formula is available, is estimated via simulations. To evaluate the e¤ect of

discretization bias and to make meaningful comparisons, the discrete-time versions of

the CEV, Heston and VG models are also estimated via simulations under the MSEP

criterion.

5.2.1 Risk-Neutral Parameter Estimates

Tables 5.11, 5.12, 5.13 and 5.14 report the daily averages and standard errors of

parameters estimates under di¤erent loss functions for the HR, GBM, CEV, Heston

and VG models. Two approximations of standard errors are provided beneath each

parameter estimate: a sample standard deviation of the estimate and the average of

sample asymptotic standard errors, taken from the asymptotic covariance matrices of

the non-linear least-squares regression coe¢ cients.

Several observations are in order. First, there is some variation in the estimates
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Table 5.12: Heston Model: NLLS Estimates of Risk-Neutral Parameters
Using Options Data

Parameters
Loss Function: �20 � � 
 �

MSEP 0.0164 0.1058 3.3792 0.6556 -0.6226
0.0035 0.0138 0.6511 0.0748 0.0454
0.0003 0.0096 0.4193 0.0418 0.0157

MSEIV 0.0168 0.1253 4.1547 0.8242 -0.5975
0.0039 0.0181 0.8778 0.1363 0.0469
0.0005 0.0087 0.3965 0.0337 0.0196

MSEP: simulations 0.0165 0.1185 4.5641 0.8017 -0.6218
0.0039 0.0218 1.5650 0.1624 0.0493
0.0004 0.0122 0.6748 0.0697 0.0177

Table 5.13: Variance-Gamma Model: NLLS Estimates of Risk-Neutral Pa-
rameters Using Options Data

Parameters
Loss Function: � 
 �

MSEP 0.1293 -0.1495 0.3411
0.0049 0.0295 0.0953
0.0031 0.0123 0.0149

MSEIV 0.1234 -0.1818 0.2205
0.0049 0.0295 0.0953
0.0033 0.0177 0.0267

MSEP: simulations 0.1315 -0.1441 0.3345
0.0082 0.0205 0.0456
0.0032 0.0084 0.0014
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Table 5.14: Hobson-Rogers Model: NLLS Estimates of Risk-Neutral Para-
meters Using Options Data

Parameters
Loss Function: �1 �2 �3 � F0

MSEP: simulations 0.1359 -26.404 361.999 8.254 0.012
0.0078 4.9446 125.51 1.7709 0.0074
0.0018 1.3890 50.656 0.7072 0.0015

MSEIV: simulations 0.1332 -28.628 451.193 9.997 0.0100
0.0055 4.6404 83.421 1.5096 0.0079
0.0020 1.8333 66.555 1.3187 0.0017

of instantaneous volatility across models: in the Heston model, average �0 is 0:128

and 0:130 for the MSEP and MSEIV loss functions respectively, the average initial

volatility in the HR model is 0:116 for both loss functions, and the average volatilities

in the BS, CEV and VG models are given by parameters � in Tables 5.11 and 5.13.

Interestingly, the options-implied volatility estimate from the HR model is the closest

to the ex-post realized volatility of 0:111 observed in the spot market, computed as

the standard deviation of index returns over the four-month period centered around

the option data interval.

The inconsistency between option-implied volatility and ex-post spot market volatil-

ity, which is particularly noticeable in the settings of the BS and CEV models (Table

5.11), is indicative of model misspeci�cation.6 An explanation for this volatility bias

is that in the case when the data-generating process involves uncertain volatility, then

option prices contain additional risk-premium component, and a model that does not

appropriately account for it translates this premium into higher implicit volatilities.

Second, even though the parameter estimates vary from one sample date to an-

other, as can be seen from graphs presented in Appendix C, their averages are quite

6Similar �ndings are reported by Jackwerth and Rubinstein (1996) for the BS model and Pan
(2000) for the BS and Heston models.
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robust to the choice of the loss function and estimation procedure, and mostly fall

into � two standard deviations intervals. One notable exception is the CEV model

(Table 5.11), in which the elasticity of volatility parameter 
 is considerably larger in

absolute value when estimated using a continuous-time version of the model than in a

discrete-time setup. This observation is particularly surprising in view of the �ndings

presented in Tables 5.4 and 5.5 that suggest that the two versions of the CEV model

produce quite similar results on stock data.

Third, comparing the risk-neutral parameters of the models to their physical coun-

terparts provides a number of interesting insights. However, even though the con-

clusions from this exercise are potentially informative of model misspeci�cation, they

should be taken with caution since the stock index sample period extends far beyond

the options sample dates.

In the context of the CEV model, the di¤erence between the estimates of volatility

elasticity 
 from the options data (Table 5.11) and those from the stock index series

(Table 5.4 and 5.5) is remarkable. As Epps (2007, p. 378) demonstrates, lower

elasticity is associated with steeper implied volatility smile, which suggests that the

structure of implied volatilities embedded in options data is considerably steeper than

that in stock index series.

To formally relate the risk-neutral and physical parameters of the Heston model,

the general-equilibrium models of Bakshi and Chen (1997) and Bates (1996a) can

be employed. The models assume that volatility premium is proportional to the

volatility risk factor, implying that the physical and risk-neutral stock return and

volatility dynamics share the same stochastic structure. Moreover, the parameters 


and � should be the same under either probability measure.7 Therefore, under the

7In addition, Bates (1991) argues that in a representative-agent model with the risk-aversion
coe¢ cient bounded within a reasonable range, the parameters of the two distributions will not di¤er
signi�cantly.
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hypothesis that this model is correctly speci�ed, the average value of option-implied

coe¢ cients 
 and � must be equal to their time-series counterparts.

The estimation results presented in Tables 5.6 and 5.12 do not support this hypoth-

esis. In particular, the coe¢ cient of correlation between daily returns and volatility

changes of the S&P 500 index, which determines the magnitude of implied volatility

skew, for the discrete-time model is equal to �0:62 when estimated from options data,

and is signi�cantly higher than the MLE estimate of �0:84 obtained from the index

price series.8

The estimates of the volatility of variance parameter 
, which controls the con-

vexity of volatility smile, are also signi�cantly di¤erent : 0:802 vs. 0:298 from the

options and stock data respectively. Therefore, the variance process implicit in option

prices is much too volatile to be consistent with stock price series.9

The results for Hobson-Rogers model, presented in Tables 5.1 and 5.14, seem to

be more consistent under two alternative probability measures. In particular, while

the parameters of the volatility process �1 and �3 implied by the options data are

signi�cantly higher than those obtained from the stock series, the estimate of �2 is

indistinguishable in these two data sets. As it has already been mentioned, despite

the di¤erence in volatility process parameters the average instantaneous volatility

extracted from options prices is still very close to the ex-ante realized stock volatility

over the options sample period.

Another interesting result is that the estimate of the decay factor �; at which past

information is discounted in the o¤set function, is also statistically the same in stock

returns and options samples. The �nding that both data sets imply the same memory

8Interestingly, the correlation of S&P 500 returns and VIX series of -0.205 provided in Table 4.1
is quite di¤erent from both of these estimates. The correlation of these two series over the option
sample period is -0.338.

9Bakshi et al (1997) arrive to a similar conclusion using S&P 500 index options data for the
period from June 1, 1988 till May 31, 1991.
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Table 5.15: In-Sample Fit to Options Data

Model MSEP RMSEP NP MSEIV RMSEIV NIV
BSformula 14.1734 3.7381 0.00 1.24E-03 3.48E-02 0.00

(3.4601) (0.4528) � (3.73E-04) (5.20E-03) �
CEVsimulations 4.5674 2.1135 0.00 � � �

(1.3414) (0.3207) � � � �
CEVformula 2.6091 1.5971 0.00 1.73E-04 1.29E-02 0.00

(0.7633) (0.2445) � (7.83E-05) (2.71E-03) �
Hestonsimulations 0.2071 0.4468 0.16 � � �

(0.0780) (0.0876) � � � �
Hestonformula 0.1972 0.4373 0.30 3.36E-05 5.33E-03 0.09

(0.0694) (0.0785) � (3.85E-05) (2.31E-03) �
VGsimulations 1.6636 1.2769 0.00 � � �

(0.4709) (0.1845) � � � �
VGformula 1.7648 1.3174 0.00 1.11E-04 1.03E-02 0.00

(0.4505) (0.1728) � (5.33E-05) (2.24E-03) �
HRsimulation 0.1644 0.3963 � 2.33E-05 4.18E-03 �

(0.0725) (0.0867) � (3.68E-05) (2.44E-03) �

process is particularly encouraging.

In summary, while all models10 fail to produce systematically consistent parameter

estimates implied by the stock price series and options panel data, there is some

evidence in support of the Hobson-Rogers model but not the others.

5.2.2 In-Sample Option Pricing

Table 5.15 describes the in-sample �t of alternative option pricing models to the

options data. The numbers reported in the MSEP (MSEIV) column are the average

mean squared errors of dollar option prices (mean squared error of implied volatilities)

across the option sample and their sample standard deviations(in parentheses). The

RMSEP (RMSEIV) column gives the respective average root mean squared errors

10Unfortunately, so far no general equilibrium model involving the VG process has been suggested
in the literature. Therefore, this process was excluded from the discussion of consistency between
physical and risk-neutral parameter estimates.
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and their standard deviations (in parentheses). The NP (NIV) column contains the

percentage of data points for which the model has lower MSEP (MSEIV) than the

Hobson-Rogers model.

Under both loss functions, the HR and Heston models are by far performing

better in terms of average mean squared errors than the three other models, which is

consistent with the evidence from index returns discussed earlier. The GBM model

clearly demosntrates the worst �t to the data.

As to the relative performance of the HR and Heston models, when estimated with

the MSE of dollar option prices criterion the HR model is producing lower MSEs for

approximately 84% of data points if compared to the discrete-time version of Heston

model, and for 70% of data points if compared to the continuous-time version of

Heston model. With the MSE of implied volatilities loss function, the Heston model

is doing better than the HR model only in approximately 9% of cases. None of the

other models is able to outperform the HR model on at least one occasion.

One more interesting result concerns the relative �t of the VG and CEV models.

Recall that the �t of the VG model to stock returns data was inferior to that of

the CEV model (see Table 5.10). However, the estimation results from the options

data set strongly favor the VG model over the CEV model. Such reversal of relative

performance is an indication of model misspeci�cation.

5.2.3 Implied Volatility Patterns

Following Bakshi, Cao and Chen (1997), Chernov and Ghysels (2000) and other

authors, we assess in-sample performance of all models from a di¤erent angle by

comparing their implied-volatility patterns across both moneyness and maturity. This

approach allows analyzing pricing errors without putting undue weight on expensive
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options (deep-in-the-money or longer-term contracts).

For each model, in-sample implied volatilities are backed out frommodel-predicted

option prices using the Black-Scholes option pricing formula. The basic procedure

is as follows First, at date t compute model-predicted option prices using date t

parameter estimates, spot index value and interest rates. Next, for every contract

�nd a value of parameter � that equates an estimated option price with Black-Scholes

price computed from expression (2.5), in which � is the only unknown input.

The obtained implied volatilities are grouped into same maturity and moneyness

categories as in Tables 4.2-4.4. The average model-predicted implied volatilities are

reported in Tables 5.16, 5.17, 5.18 and 5.19. To interprete the results, compare these

model-predicted implied volatilties to market volatilities described in Table 4.4.

The structure of implied volatilities produced by both the GBM11 and the CEV

models is much �atter than that implied by the data, in particular for shorter-term

contracts. The short-term volatility smiles in the VG model are more pronounced

than in the CEV model, but while the CEV model underprices (overprices) in-the-

money (out-of-the-money) puts, the pricing errors of the VG model are reversed. The

�t of both models seems to improve with options maturity.

The HR and Heston models generate virtually indistinguishable implied volatility

curves, that closely follow the market. This result is not suprizing given that the

estimated mean squared errors of these two models are very similar and small.

To further illustrate the results, we plot market and model implied volatilities for

options traded on an average-volatility day (March 29, 2005) in Appendix D.

11The di¤erences in GBM implied volatilities in Tables 5.16 and 5.18 across cells is due to aver-
aging.
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Table 5.16: Average In-Sample Implied Volatilities in the GBM, CEV and
VG Models: MSEP Loss Function

Maturity (days)
Moneyness (K/S) 21-44 45-89 90-134 135-252 Total

Panel A: GBM Model
0.80-0.94 0.1395 0.1274 0.1307 0.1387 0.1359
0.94-0.97 0.1374 0.1245 0.1362 0.1367 0.1346
0.97-1.00 0.1388 0.1303 0.1357 0.1391 0.1371
1.00-1.03 0.1375 0.1276 0.1332 0.1396 0.1356
1.03-1.06 0.1404 0.1248 0.1359 0.1398 0.1369
1.06-1.33 0.1436 0.1287 0.1395 0.1395 0.1394
Total 0.1394 0.1272 0.1344 0.1390 0.1365

Panel B: CEV Model
0.80-0.94 0.1795 0.1647 0.1729 0.1888 0.1784
0.94-0.97 0.1518 0.1374 0.1503 0.1521 0.1489
0.97-1.00 0.1441 0.1350 0.1413 0.1457 0.1426
1.00-1.03 0.1342 0.1249 0.1310 0.1383 0.1329
1.03-1.06 0.1289 0.1145 0.1255 0.1304 0.1260
1.06-1.33 0.1318 0.1105 0.1158 0.1139 0.1196
Total 0.1488 0.1359 0.1450 0.1499 0.1463

Panel C: VG Model
0.80-0.94 0.2228 0.1824 0.1717 0.1746 0.1963
0.94-0.97 0.1692 0.1442 0.1525 0.1525 0.1591
0.97-1.00 0.1377 0.1325 0.1425 0.1487 0.1401
1.00-1.03 0.1044 0.1134 0.1309 0.1438 0.1163
1.03-1.06 0.1100 0.1009 0.1232 0.1379 0.1135
1.06-1.33 0.1346 0.1111 0.1194 0.1277 0.1264
Total 0.1530 0.1372 0.1453 0.1506 0.1487
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Table 5.17: Average In-Sample Implied Volatilities in the Heston and HR
Models: MSEP Loss Function

Maturity (days)
Moneyness (K/S) 21-44 45-89 90-134 135-252 Total

Panel A: Heston Model
0.80-0.94 0.1966 0.1739 0.1768 0.1870 0.1874
0.94-0.97 0.1567 0.1403 0.1512 0.1585 0.1533
0.97-1.00 0.1363 0.1286 0.1397 0.1499 0.1387
1.00-1.03 0.1186 0.1137 0.1276 0.1429 0.1232
1.03-1.06 0.1099 0.1014 0.1202 0.1354 0.1129
1.06-1.33 0.1226 0.1051 0.1158 0.1238 0.1196
Total 0.1456 0.1332 0.1451 0.1539 0.1453

Panel B: Hobson-Rogers Model
0.80-0.94 0.1994 0.1784 0.1801 0.1879 0.1901
0.94-0.97 0.1537 0.1396 0.1512 0.1579 0.1515
0.97-1.00 0.1341 0.1285 0.1401 0.1496 0.1376
1.00-1.03 0.1188 0.1149 0.1288 0.1431 0.1236
1.03-1.06 0.1092 0.1028 0.1218 0.1358 0.1130
1.06-1.33 0.1131 0.1036 0.1141 0.1226 0.1156
Total 0.1446 0.1346 0.1463 0.1538 0.1453
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Table 5.18: Average In-Sample Implied Volatilities in the GBM, CEV and
VG Models: MSEIV Loss Function

Maturity (days)
Moneyness (K/S) 21-44 45-89 90-134 135-252 Total

Panel A: GBM Model
0.80-0.94 0.1469 0.1330 0.1365 0.1454 0.1426
0.94-0.97 0.1441 0.1293 0.1430 0.1428 0.1408
0.97-1.00 0.1453 0.1352 0.1413 0.1454 0.1431
1.00-1.03 0.1441 0.1326 0.1392 0.1462 0.1418
1.03-1.06 0.1474 0.1294 0.1418 0.1474 0.1434
1.06-1.33 0.1517 0.1335 0.1460 0.1469 0.1465
Total 0.1464 0.1323 0.1405 0.1458 0.1431

Panel B: CEV Model
0.80-0.94 0.1751 0.1676 0.1782 0.1944 0.1791
0.94-0.97 0.1517 0.1368 0.1503 0.1523 0.1488
0.97-1.00 0.1428 0.1333 0.1398 0.1444 0.1413
1.00-1.03 0.1320 0.1226 0.1288 0.1363 0.1307
1.03-1.06 0.1255 0.1111 0.1215 0.1269 0.1226
1.06-1.33 0.1283 0.1068 0.1101 0.1086 0.1150
Total 0.1460 0.1350 0.1449 0.1497 0.1448

Panel C: VG Model
0.80-0.94 0.2127 0.1736 0.1649 0.1670 0.1875
0.94-0.97 0.1656 0.1403 0.1493 0.1482 0.1553
0.97-1.00 0.1396 0.1322 0.1408 0.1458 0.1400
1.00-1.03 0.1101 0.1156 0.1312 0.1422 0.1194
1.03-1.06 0.1087 0.1020 0.1250 0.1374 0.1131
1.06-1.33 0.1308 0.1073 0.1199 0.1280 0.1248
Total 0.1505 0.1343 0.1428 0.1472 0.1459
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Table 5.19: Average In-Sample Implied Volatilities in the Heston and HR
Models: MSEIV Loss Function

Maturity (days)
Moneyness (K/S) 21-44 45-89 90-134 135-252 Total

Panel A: Heston Model
0.80-0.94 0.2029 0.1778 0.1792 0.1867 0.1911
0.94-0.97 0.1596 0.1405 0.1513 0.1580 0.1546
0.97-1.00 0.1359 0.1274 0.1388 0.1509 0.1385
1.00-1.03 0.1167 0.1119 0.1262 0.1440 0.1219
1.03-1.06 0.1104 0.1003 0.1192 0.1363 0.1130
1.06-1.33 0.1269 0.1059 0.1166 0.1243 0.1214
Total 0.1476 0.1337 0.1457 0.1542 0.1465

Panel B: Hobson-Rogers Model
0.80-0.94 0.2030 0.1795 0.1802 0.1867 0.1915
0.94-0.97 0.1566 0.1407 0.1517 0.1580 0.1532
0.97-1.00 0.1360 0.1293 0.1408 0.1501 0.1389
1.00-1.03 0.1198 0.1156 0.1296 0.1439 0.1245
1.03-1.06 0.1104 0.1035 0.1235 0.1376 0.1142
1.06-1.33 0.1202 0.1042 0.1172 0.1252 0.1195
Total 0.1473 0.1355 0.1474 0.1544 0.1470
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5.3 Out-of-Sample Pricing Performance

The in-sample �t of the models to daily option prices becomes increasingly better

as we move from the GBMmodel to the CEV model, and then to the VG, Heston and

HRmodels. Since the number of parameters in each consecutive model is increasing12,

the issue of over�tting might be raised. To address this issue, the out-of-sample pricing

performance of the models is examined next. If extra parameters cause over�tting but

do not improve the structural performance of the model, then its forecasting ability

will not necessarily be superior to that of more parsimonious models.

To price out-of-sample, the day t model parameter estimates are used as inputs to

compute date t+1; :::; t+5 model-based option prices. In the Heston model, the value

of initial volatility
�
�2t+s

	5
s=1

is computed from the estimate of �2t according to the

following naive undating rule: �2t+1 = �
2
t + (�� ��2t ) + 
� (ln (St+1=St)� r + 0:5�2t ) :

This rule gives the expected conditional variance of the model under the risk-neutral

measure.13 The value of the initial o¤set in the HR model is updated using expression

(3.10).

Table 5.20 reports average and median mean squared errors and root mean squared

errors of forecasted option prices and their sample standard deviations computed

with parameter estimates obtained under the MSEP loss function. In addition, the

percentage of sample dates on which a model is producing lower mean squared errors

of forecasts than its closest alternative (in terms of in-sample MSEP) is reported.

The MSE column reports the average (AVG), median (MED) and standard deviation

(SD) of daily mean squared errors of forecasts. The RMSE column reports the average

(AVG), median (MED) and standard deviation (SD) of daily root mean squared errors

of forecasts. The % column reports the number of days on which the MSE of the

12the Heston model and the HR model have the same number of estimated parameters
13This rule closely resembles the conditional variance process (3.6) under the physical measure.



73

GBM/CEV/VG/Heston model was lower than than of the CEV/VG/Heston/HR

model.

The pricing errors of all model progressively deteriorate as forecasting horizon

increases, but their ranking measured by mean squared errors of prices is preserved.

The GBMmodel shows the worst �t, and is able to outperform the CEV model in less

than 5% of cases only for 4- and 5-days-ahead forecasts. Interestingly, even though

the CEV model shows considerably worse in-sample �t and its average forecast MSEs

are still consistently higher, it is producing lower mean squared forecast errors than

the VG model in about 30% of cases over all forecasting horizons. The VG model is

almost never able to outperform the Heston model.

The HR model, which delivered lower in-sample pricing errors than the Heston

model (Table 5.15), is producing better average predictions only over one day fore-

casting horizon, but even in this case yields to the Heston model on 49% of sample

days. The relative forecasting power of the HR model over all other forecasting hori-

zons is progressively worse. Similar conclusions can be drawn from Appendix E, which

reports the out-of-sample �t results for the MSEIV loss function.

In summary, the relative quality of forecasts produced by alternative option pricing

models is closely related to their in-sample performance. However, while the HR

model outperforms the Heston model in terms of in-sample �t, the Heston model

demonstrates superior out-of-sample forecasting ability over longer-term horizons.



74

Table 5.20: Out-of-Sample Fit to Option Prices: MSEP Loss Function

MSE RMSE %
horizon AVG MED SD AVG MED SD

GBM Model 1 day 14.970 13.884 3.648 3.842 3.726 0.463 0.000
2 days 16.060 15.418 4.547 3.969 3.927 0.561 0.000
3 days 16.962 16.290 5.719 4.065 4.036 0.668 0.000
4 days 18.027 17.678 6.270 4.187 4.204 0.711 0.023
5 days 18.823 17.933 6.559 4.277 4.235 0.737 0.047

CEV Model 1 day 4.325 3.793 2.317 2.021 1.948 0.498 0.279
2 days 4.798 4.036 2.250 2.139 2.009 0.478 0.279
3 days 5.469 4.498 3.343 2.254 2.121 0.632 0.326
4 days 6.790 4.831 6.092 2.450 2.198 0.899 0.349
5 days 7.105 4.496 6.255 2.493 2.120 0.955 0.372

VG Model 1 day 2.980 2.556 1.559 1.679 1.599 0.408 0.047
2 days 3.873 2.885 2.879 1.874 1.698 0.610 0.023
3 days 4.870 3.489 4.397 2.056 1.868 0.811 0.000
4 days 5.861 3.951 5.039 2.249 1.988 0.907 0.023
5 days 6.649 3.553 5.512 2.387 1.885 0.988 0.000

Heston Model 1 day 0.613 0.469 0.633 0.726 0.685 0.297 0.488
2 days 0.831 0.482 0.788 0.839 0.695 0.362 0.605
3 days 0.923 0.776 0.638 0.908 0.881 0.318 0.605
4 days 1.036 0.853 0.688 0.964 0.923 0.331 0.628
5 days 1.067 1.025 0.649 0.985 1.013 0.317 0.651

HR Model 1 day 0.556 0.393 0.454 0.696 0.627 0.272 �
2 days 0.891 0.512 0.956 0.846 0.715 0.423 �
3 days 1.151 0.926 0.971 0.997 0.962 0.400 �
4 days 1.427 1.039 1.130 1.105 1.019 0.458 �
5 days 1.591 1.144 1.218 1.169 1.070 0.478 �
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Chapter 6

Conclusion

The motivation for this dissertation was to empirically investigate a complete-

market uncertain volatility option pricing model recently proposed by Hobson and

Rogers (1998), and compare its performance to that of several other well-known mod-

els of complete and incomplete nature. For this purpose, a methodology whereby this

model can be estimated using stock price series and options cross-sections was de-

veloped and implemented. The Black-Scholes (BS) and the Constant Elasticity of

Variance (CEV) models were taken as complete-market benchmarks, and the Heston

and Variance Gamma (VG) models were used as incomplete-market alternatives.

The appeal of complete markets is that any possible payo¤ structure can be repli-

cated using a (dynamic) portfolio of traded assets, which is essential for modern

hedging and portfolio management techniques. However, the existing empirical evi-

dence demonstrates that such popular complete-market models as the BS and CEV

models by far yield in terms of both in-sample and out-of-sample �t to the data to

more complex incomplete-market processes, including the Heston and VG models.

In the light of such results, testing a new complete-market model potentially able to

generate a rich structure of volatility patterns becomes particularly interesting. Even



76

though a number of papers tried to calibrate the Hobson-Rogers model using di¤erent

approaches, the author is not aware of any attempts in the literature to rigorously

estimate the model by maximum-likelihood or nonlinear least squares techniques.

The empirical strategy is to estimate the physical and risk-neutral parameters of

all models separately on S&P 500 index returns and options data using both discrete-

time and continuous time versions of the models whenever feasible. This approach is

common to the literature and therefore permits comparing the results, in particular

for the BS, CEV, Heston and VG models, with those obtained by other authors. Also,

in addition to being technically more straightforward than the one employing both

available data sets simultaneously, this approach produces two, rather than one, sets

of parameter estimates that can then be used in model misspeci�cation tests.

The results indicate that the Hobson-Rogers model consistently outperforms the

BS, CEV and VG models on both returns and option prices data. As to the Heston

model, the returns data cannot distriminate generally between the two processes.

The evidence from options data supports the Hobson-Rogers model in-sample and

out-of-sample with one-day-ahead forecasts, while the Heston model produces better

forecasts over longer horizons.

The general conclusion is that this type of complete-market uncertain volatility

models is indeed capable of capturing a number of stylized features of empirical data,

such as implied volatility smiles and volatility term structure, and is a viable alter-

native to an acknowledged stochastic volatility process. In addition, misspeci�cation

tests based on consistency of physical and risk-neutral parameter estimates seem to

o¤er more support to this model than to any other model being investigated in this

dissertation.

The methods and results of this research can be re�ned in a number of ways.

First, taking a longer sample of option data and bringing it closer to the returns
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sample would make the conclusions much more substantiated. Second, developing an

approach to pricing options in the Hobson-Rogers model that does not rely on sim-

ulations would permit to drastically reduce the required computational time. Third,

since both the returns and options data contain information about the stock price

process, estimating the models using these two data sets simultaneously, and Chernov

and Ghysels (2000) did with the Heston model, would make the results more precise,

more consistent and easier to interprete.

In the light of the empirical success of the Hobson-Rogers model, an interesting

question is how comparable this model is to yet more complex incomplete market

models proven to �t the data even better than the Heston model, such as, for ex-

ample, stochastic volatility models with jumps. Moreover, extending the model to

allow discontinuities in volatility (and stock) price process seems to be a particularly

promising direction for future research.
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Appendix A: The Heston Put

Formula

.

Cumulative distribution functions F and G in expression (2.11) can be computed

from the following formula:

J(x) =
1

2
� lim

c!1

Z c

�c

e�i&x

2�i&
	J (&) d&; J 2 fF;Gg ;

where

	F (&) = exp
�
i& lnSt + g (T � t; &) + h (T � t; &)�2t

	
;

	G (&) = 	F (& � i) =	F (�i) ;

g (T � t; &) = i&r(T � t) + �


2

�
(�B + C) (T � t)� 2 ln

�
1�DeC(T�t)
1�D

��
; 
 6= 0;

h (T � t; &) =
B � C

2

eC(T�t) � 1
1�DeC(T�t) ;

A � �
�
i& + &2

�
=2

B � i&�
 � �

C �

8<:
p
B2 � 2A
2; when 
& 6= 0

��; otherwize
D � (B � C) = (B + C) :
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Appendix B: The VG Put Formula

.

In the VG model, the price of a European put option with strike K,which matures

t periods from now, can be found as

P0(S0; K; t) = e�rt bE0 (max (K � St; 0)) = e�rt
Z

St<K

(K � S) fSt(S)dS

= e�rt
Z
Tt

Z
St<K

(K � S) fStjTt=� (S)dS fTt (�)d� = e
�rt
Z
Tt

p(�)fTt (�)d� ;

where

p(�) =

Z
St<K

(K � S) fStjTt=� (S)dS:

Then, the conditional distribution of the stock price St given Tt = � is

St � S0 exp
�
(r � � + �)t+ b
� + b�p�Z	 ;
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where Z � N(0; 1); and it follows that

p(�) =

Z
Z<d

�
K � S0e(r��+�)t+b
�+b�p�Z

� 1p
2�
e�

1
2
Z2dZ

= K�(d)� S0e(r��+�)t+b
�
Z
Z<d

eb�p�Z 1p
2�
e�

1
2
Z2dZ

= K�(d)� S0e(r��+�)t+b
�+ 1
2
b�2� Z

X<d�b�p�
1p
2�
e�

1
2
X2

dX

= K�(d)� S0e(r��+�)t+b
�+ 1
2
b�2��(d� b�p�);

where

d =
ln (K=S0)� (r � � + �) t� b
�b�p�

and � is standard normal cumulative distribution function.
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Appendix C: NLLS Estimates

.
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Appendix D: Implied Volatilities

.
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Appendix E: Out-Of-Sample Fit to

Option Prices

.
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The MSE column reports the average (AVG), median (MED) and standard deviation (SD) of daily

mean squared errors of forecasts. The RMSE column reports the average (AVG), median (MED)

and standard deviation (SD) of daily root mean squared errors of forecasts. The % column reports

the number of days on which the MSE of the GBM/CEV/VG/Heston model was lower than than

of the CEV/VG/Heston/HR model.

MSE RMSE %
days AVG MED SD AVG MED SD

GBM 1 1.21e-03 1.21e-03 3.3e-04 3.54e-02 3.48e-02 4.7e-03 0.00
2 1.27e-03 1.22e-03 3.7e-04 3.50e-02 3.49e-02 5.1e-03 0.00
3 1.31e-03 1.23e-03 4.3e-04 3.57e-02 3.50e-02 5.7e-03 0.00
4 1.34e-03 1.24e-03 4.3e-04 3.61e-02 3.53e-02 5.6e-03 0.00
5 1.38e-03 1.31e-03 4.3e-04 3.67e-02 3.62e-02 5.6e-03 0.00

CEV 1 2.08e-04 1.82e-04 8.4e-05 1.42e-02 1.35e-02 2.7e-03 0.26
2 2.31e-04 1.97e-04 1.1e-04 1.48e-02 1.40e-02 3.3e-03 0.30
3 2.50e-04 1.92e-04 1.5e-04 1.53e-02 1.39e-02 4.1e-03 0.28
4 2.78e-04 2.05e-04 1.9e-04 1.60e-02 1.43e-02 4.8e-03 0.35
5 2.95e-04 2.10e-04 2.1e-04 1.63e-02 1.45e-02 5.4e-03 0.42

VG 1 1.60e-04 1.29e-04 8.6e-05 1.23e-02 1.14e-02 3.0e-03 0.07
2 1.93e-04 1.48e-04 1.4e-04 1.32e-02 1.22e-02 4.2e-03 0.02
3 2.27e-04 1.63e-04 1.8e-04 1.42e-02 1.28e-02 5.1e-03 0.09
4 2.62e-04 1.77e-04 2.2e-04 1.52e-02 1.33e-02 5.6e-03 0.05
5 2.76e-04 2.01e-04 2.1e-04 1.56e-02 1.42e-02 5.7e-03 0.02

Heston 1 6.79e-05 4.69e-05 7.0e-05 7.50e-03 6.84e-03 3.4e-03 0.16
2 6.74e-05 4.92e-05 6.8e-05 7.61e-03 7.01e-03 3.1e-03 0.26
3 8.04e-05 4.31e-05 8.8e-05 8.08e-03 6.56e-03 3.9e-03 0.40
4 8.38e-05 6.27e-05 8.0e-05 8.43e-03 7.92e-03 3.6e-03 0.42
5 7.81e-05 5.97e-05 6.4e-05 8.27e-03 7.73e-03 3.1e-03 0.49

HR 1 6.65e-05 2.80e-05 1.1e-04 6.51e-03 5.29e-03 4.9e-03 �
2 1.08e-04 3.33e-05 2.2e-04 7.98e-03 5.77e-03 6.7e-03 �
3 1.57e-04 5.55e-05 2.7e-04 9.94e-03 7.45e-03 7.7e-03 �
4 1.45e-04 5.17e-05 2.4e-04 9.68e-03 7.19e-03 7.2e-03 �
5 1.41e-04 6.15e-05 2.3e-04 9.89e-03 7.84e-03 6.6e-03 �


