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UNIVERSITY OF VIRGINIA

Abstract
Department of Engineering Systems and Environment

Master of Science

The Utility of Data Science Applied to Military Assessment and Selection for
Holistic Systems Improvement

by Hayden Deverill

Elite military units use an in-depth assessment and selection (A&S) process to ac-
quire the most qualified candidates. A unique challenge is to objectively evaluate
the human dimension of attributes like leadership, resilience, and initiative in can-
didates. The A&S process requires significant time and resources to execute. The
specific A&S studied for this research is eight weeks long and has a high logistical
demand between supplies, personnel, and facilities. Effective screening of candi-
dates prior to the A&S saves resources and selecting the best candidates enables the
unit to better conduct highly specialized missions. Improving the system will reap
dividends for the military.

Most studies about military A&S have used small data sets, used descriptive
statistics for analysis, and focused on identifying predictors of candidate success.
This research was broader in scope. We used 11,885 candidate records taken over
a five-year period with 89 total features that included administrative, performance,
and psychological data on each candidate. We applied a robust data science ap-
proach involving feature engineering, feature selection, optimized predictive mod-
els, and data subsets analysis to extract meaningful information from the data. Our
objective for this research was to evaluate the utility of applying data science tech-
niques to a specific military A&S data set with the goal of improving the holistic
A&S system.

We applied ten classification models to a variety of feature, candidate, and fea-
ture engineering data subset combinations created using data science techniques.
Using all candidates, the best model performance yielded a kappa score of 52 and
77% accuracy. Candidate non-selection prediction accuracy (86% Negative Predic-
tive Value) was higher than candidate selection (68% Positive Predictive Value). The
strongest predictors of candidate success were performance features, followed by
administrative, and lastly psychological features. Although prediction accuracy was
modest (<90%), we discovered utility in applying data science techniques to the A&S
data. We extracted valuable insights from the data, found features highly predictive
of candidate non-selection, and learned methods to modify the existing data to im-
prove predictive capability. In conclusion, this research 1) validates the importance
of an A&S to observe the human dimension of candidates and 2) proposes recom-
mendations to add value to the holistic A&S system.
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Chapter 1

Introduction

1.1 Problem Definition

Elite military units use an in-depth assessment and selection (A&S) process to ac-
quire the most qualified candidates. One unique challenge is to objectively evaluate
the human dimension of attributes like leadership, resilience, and grit in candidates.
Often, data is collected on candidates who attend the A&S that is analyzed to aide
in selecting the best candidates.

The specific A&S we researched has detailed data on all candidates who have
attended the A&S since 2016 (11,885 candidates). The unit collects administrative,
performance, and psychological data on each candidate. Currently, the data is pri-
marily used for robust record keeping and descriptive statistic reports. Likewise, the
performance and psychological data is also used to screen candidates prior to entry
into the A&S. However, "data science" methods have not been applied to the data
with the goal of process improvement.

In recent years, data science has emerged as a field of it’s own, distinct from other
disciplines such as statistics or machine learning [1]. It is broader and more holis-
tic in scope than any one discipline. Rather, "data science is a new interdisciplinary
field that synthesizes and builds on statistics, informatics, computing, communi-
cation, management, and sociology to study data and its environments (including
domains and other contextual aspects, such as organizational and social aspects) in
order to transform data to insights and decisions by following a data-to-knowledge-
to-wisdom thinking and methodology" [2]. When we use the term "data science",
this is what we mean as it relates to this research.

Data science has led to many breakthroughs and insights across numerous do-
mains [3]. We believe we can gain valuable insights about the holistic A&S system by
applying data science to the existing data collected. Our objective for this research
was to evaluate the utility of applying data science techniques to a specific military
A&S data set with the goal of improving the holistic A&S system.

1.1.1 Research Questions

1. Is application of data science techniques to military A&S data useful to gain
insight on ways to holistically improve the system?

2. Are predictive models useful and accurate to model selection in Military A&S?

3. Are there any features that are indicative of a candidate being selected or not
selected?
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1.2 Motivation

The broad motivation for this research is to add value to the military unit that con-
ducts this A&S. As an Army officer, I am personally invested in trying to improve
the organization that I serve. More specifically, there are two motivations for this
research:

1. Evaluate the utility of applying data science techniques to this military A&S
data set for holistic system improvement. This type of analysis has not been
done before and we believe the potential value to be gained is large.

2. Make recommendations based on the results and conclusions that add value
to the A&S system. Ultimately, we want our efforts to lead to actionable rec-
ommendations that may improve the existing A&S system.

We think this research is significant because any value that is added to A&S sys-
tem directly translates to selecting more qualified candidates. Selecting better can-
didates results in a better fighting force to conduct the military’s most challenging
missions; in turn, returning value to the military on a macro-level scale.

1.3 Results Summary

We applied ten classification models to a variety of feature, candidate, and feature
engineering data subset combinations created using data science techniques. Using
all candidates, the best model performance yielded a kappa score of 52 and 77% ac-
curacy. Candidate non-selection prediction accuracy (86% Negative Predictive Value
[NPV]) was higher than candidate selection (68% Positive Predictive Value [PPV]).
The strongest predictors of candidate success were performance features, followed
by administrative, and lastly psychological features. The penalized logistic regres-
sion and ensemble models performed the best across all data subset combinations,
with KNN and CART performing the worst. The best performing feature subset
used all the features and resulted in the highest kappa score of 52. All of the 10
feature subsets resulted in higher NPV scores than PPV scores, with sensitivity and
specificity varying between subsets. Feature engineering techniques resulted in bet-
ter results and changed feature importance values compared to using the data as is.
Using all candidates yielded higher kappa scores in prediction compared to using
only candidates who scored above the minimum fitness scores.

Although prediction accuracy was modest (<90%), we discovered utility in ap-
plying data science techniques to the A&S data. We extracted valuable insights from
the data, found features highly predictive of candidate non-selection, and learned
methods to modify the existing data to improve predictive capability. In conclusion,
this research 1) validates the importance of an A&S to observe the human dimen-
sion of candidates and 2) proposes recommendations to add value to the holistic
A&S system.
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Chapter 2

Background

2.1 Understanding the Problem

The following are definitions specific to the A&S process:

1. Candidate: A Soldier who is actively participating in the A&S (screening or
A&S phase).

2. Screening: An objective criteria candidates must meet in the screening phase
prior to starting the A&S phase.

3. Selection: Evaluation of candidates in the A&S phase for selection into the
military unit. Candidates who complete the entire A&S are either selected to
join the unit or dropped (removed from the selection and sent home).

Elite units in the military use an A&S process to choose the most qualified candi-
dates for the unit. The A&S process we studied includes a screening phase to ensure
candidates meet baseline requirements followed by the A&S phase to assess candi-
dates abilities. Examples of performance tasks candidates may complete in military
A&S are shown in Figure 2.1. A systems diagram of the specific A&S that we studied
for this research is shown in Figure 2.2.

FIGURE 2.1: Examples of Performance Tasks at Military A&S

Left: Candidates performing push-ups in the water.
Right: Candidates carrying a log as a team.

Note: Photos taken from dvidshub and Military Times.

https://www.dvidshub.net/image/6160718/special-forces-assessment-and-selection
https://www.militarytimes.com/news/your-military/2021/04/30/as-counterterror-missions-fade-special-operations-finds-time-to-fix-its-own-problems/
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FIGURE 2.2: Military A&S Process

Soldiers from all over the military attend the A&S. In the screening phase, all
candidates are required to take psychological tests, comprised of two personality
tests and one intelligence quotient (IQ) test. All three tests are written, multiple
choice Scantron tests. Candidates also take a fitness test in the screening phase that
includes: two minutes of sit-ups and push-ups, a two-mile run, and pull-ups. There
are objective minimum standards that candidates must score on the both the psy-
chological tests and fitness tests to advance to the A&S phase. If candidates do not
meet the minimum standards, they are dropped. For those candidates who meet the
minimum standards, an order of merit list is created that ranks candidates from 1 to
"n" based on their performance. The top "n" candidates advance to the A&S phase
based on the space available in the specific class (usually about 50% of candidates
advance).

The A&S phase is eight weeks long and includes many performance and leader-
ship tasks used to assess candidates. During this phase candidates can be dropped
or recycled (removed from the selection to restart at a later time). Candidates who
complete the A&S phase are either selected for the unit or not selected for the unit
(usually 50% of candidates are selected in the A&S phase; 25% overall of all candi-
dates that arrive during the screening phase). If they are selected, they proceed onto
further training. If candidates are not selected, they return to the military unit from
which they came.

2.2 Existing Solutions

The existing solutions for screening and selecting candidates in the current A&S
process are:

• Screening: In the screening phase, candidates are required to meet objective
standards on all psychological and fitness tests. If a candidate does not meet
the objective standard, that candidate is dropped in the screening phase prior
to the A&S phase. Currently, the only two screening criteria used are the psy-
chological and fitness tests.

• Selection:

– Objective Criteria. In the A&S phase, candidates are required to meet
objective standards on "critical events" (e.g., fitness tests, ruck marches,
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and land navigation). If candidates fail a critical event, they are given one
opportunity to retest. If candidates fail the retest, they are dropped from
the course. Additionally, integrity violations (e.g., a candidate steals, lies,
or cheats) are automatic drops.

– Subjective Criteria. Candidates complete peer evaluations on each other
two times during the A&S phase. The lowest scoring candidates on the
peer evaluations could be referred to a Commander’s Board if instruc-
tors judge the candidate to be unfit for the unit. A Commander’s Board
requires the instructors submit their recommendations and evidence to
have a candidate dropped to the A&S unit commander. At the Board, the
commander, instructors, and candidate meet in person to discuss the evi-
dence presented. At the conclusion of the Board, the commander decides
if that candidate will be dropped or retained. Candidates can be dropped
through a Commander’s Board even if they meet all the objective stan-
dards.

The A&S instructors also provide a more subjective evaluation of the
candidates’ abilities in the human dimension (e.g. leadership, resilience,
integrity, initiative, etc). If an instructor thinks a candidate is not fit to
be selected for the unit, he can recommend a Soldier be dropped to the
commander through a Commander’s Board.

2.3 Barriers to Solutions

The barriers to solutions for screening and selecting candidates in the current A&S
process are:

• Screening:

1. Ethical. Some screening criteria are objective and ethical, such as a min-
imum fitness standard. However, other screening criteria raise ethical
questions. For example, females have historically not performed well at
the A&S; however, there are ethical issues that arise if the A&S were to
ban females. Even if banning females from the selection resulted in lower
attrition rates, that criteria discriminates against females. Ethical consid-
erations such as this example are necessary when deciding on the appro-
priate screening criteria using empirical data.

2. Data. The objective candidate data is easy to retrieve, record and save
in a database (e.g., fitness and psychological test scores). However, the
human dimension of candidates is very challenging to measure, record
and obtain on candidates (e.g., leadership, resilience, integrity, and ini-
tiative). The human dimension data is especially challenging to obtain
prior to the screening phase of the A&S, as Soldiers are not required to do
any assessments prior to attending the A&S. In the screening phase, there
are limited time and resources to assess a candidate’s human dimension
attributes. This challenge makes robust screening of candidates difficult.

• Selection:

1. Limited Time and Resources. The A&S has a required number of classes
that it must complete each year. Likewise, for each class, the A&S fills as
many candidates as possible given the resources available. The set class
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length is eight weeks, the class sizes range between 100-165 candidates,
and the number of instructors is between 12-15. Additionally, there are
only specific facilities and training areas that can be used for the assess-
ment. These constraints generally cannot be changed and make modify-
ing methods to evaluate candidates difficult.

2. Instructor to Student Ratio. An essential part of the A&S is the instruc-
tors observing the candidates to evaluate the human dimension. With
over 100 candidates and only 12-15 instructors, it is impossible for in-
structors to observe all the candidates effectively on all tasks.

2.4 Literature Review

2.4.1 Military Special Operations Forces

Military Special Operations Forces (SOF) exist to perform "special operations" on a
global scale in order "to protect and advance U.S. policies and objectives" [4]. The
missions are considered special operations because they require more specialized
training and equipment, are higher risk, are more complex, and contain more sen-
sitive information compared to conventional missions. Given the nature of these
special operations, it is imperative that the right Soldiers are selected for the SOF
units.

Each military branch in the Department of Defense (DoD) holds high standards
and targets specific attributes in Soldiers who wish to join a SOF unit. The Navy
SOF (Navy Seals) value traits of maturity, self-assurance, and self-confidence [5].
The Army SOF (Green Berets) uses eight attributes as their "benchmark" for se-
lection: integrity, courage, perseverance, personal responsibility, professionalism,
adaptability, team player, and capability [6]. The Army 75th Ranger Regiment (an-
other Army SOF unit) emphasizes four competencies for candidates seeking to join:
integrity/honesty, mental and physical fortitude, initiative, and resilience [7]. The
Marine SOF seeks Soldiers who are mature, intelligent, mentally agile, determined,
ethical, and physically fit [8]. The Air Force SOF espouses 13 "Critical Attributes": in-
tegrity, self-motivation, intelligence, self-discipline, perseverance, adaptability, ma-
turity, judgment, selflessness, leadership, skilled, physical fitness, and family strength
[9].

All military branches target similar attributes, most of which are in the human
dimension such as integrity, maturity, and perseverance. However, physical fitness,
an objective attribute, is also required given the grueling physical demands of the
missions. To assess these attributes and select the best candidates, each branch has
robust and lengthy A&S processes. To aid in the A&S, many data points are col-
lected on candidates that can be used to more objectively assess the attributes. Our
research focus deals with how to best use the data collected to holistically improve
A&S process.

2.4.2 Previous Military A&S Data Analysis Research

Previous research using Military A&S data have focused on identifying predictors
of candidate success. The studies have used physical [10, 11, 12, 13, 14, 15, 16, 17,
18, 19], psychological [10, 14, 16, 18, 19, 20, 21, 22], and demographic [10, 19, 23]
predictors to model candidate success. The scope and amount of data varied widely
for each study. The smallest scope was for a specific A&S class that was four-weeks
long and 104 candidates [11]. The largest scope was for multiple A&S classes over
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a year time period with 821 candidates [10]. Most studies used a year of data that
included multiple A&S classes with over 300 candidates. The majority of the studies
only used descriptive statistics and statistical testing between groups for analysis.
We found four previous studies that used logistic regression or classification tree
modeling techniques [10, 16, 17, 23]. Of the studies using these models, accuracy
ranged between 60-78%. We did not find any studies that used data science tech-
niques such as feature engineering, feature selection, or multiple optimally tuned
classification models.

The one study that used physical, psychological, and demographic predictors
together found that the most predictive features were (in order) physical, demo-
graphic, and psychological [10]. Studies that used physical predictors all used fit-
ness test scores as their primary measure. These fitness tests involved push-ups,
sit-ups, a 2-mile run, pull-ups, and/or a ruck march. All the study results showed
that as physical performance increases, candidate selection success increases [10, 11,
12, 13, 14, 15, 16, 17, 18, 19]. The studies that used psychological predictors collected
the predictors through written tests. The studies used the Minnesota Multiphasic
Personality Inventory (MMPI) personality test, Jackson Personality Inventory - Re-
vised (JPI-R) personality test, IQ test, and custom "mental toughness" tests. Studies
showed specific features from the MMPI, JPI-R, and mental toughness measures to
be indicative of candidate success [10, 14, 16, 18, 19, 20, 21, 22]. The studies that used
demographic predictors found a candidate’s rank and military experience to be the
most significant predictors of candidate success [10, 19, 23].

Our research uses similar predictors to the previous studies. We use a combi-
nation of administrative (including demographic), performance (primarily physical
predictors), and psychological predictors (MMPI, JPI-R, and IQ tests) in our analysis.
We will use the knowledge of previous studies as a baseline to compare our results
with. We then hope to build on these findings by applying novel data science meth-
ods with the goal of extracting meaningful information and conclusions to improve
the A&S.
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Chapter 3

Methodology

3.1 Holistic Approach

FIGURE 3.1: Research Methodology

Figure 3.1 shows the methodology we used to approach our research. We first vis-
ited the A&S prior to doing any data analysis. The goal of the visit was to learn
more about the A&S system. During the visit we observed multiple A&S training
events and interviewed key stakeholders including the unit leadership, psycholo-
gist, instructors, and data managers. The visit equipped us with key insights about
the unique A&S nuances that we would not have otherwise understood from only
looking at the data. This was arguably the most important step to provide analysis
that was useful and actionable to the unit. With the contextual understanding from
the visit, we were able to perform a much more informed analysis.

Next we applied data science techniques to the A&S data. The seven steps were
used in sequence to holistically analyze the Military A&S data and draw insight-
ful conclusions about the system. These steps were adopted from the general ap-
proaches described in [24, 25, 26]. Our approach incorporates multiple data science
techniques to extract the most meaningful information out of the data and modeling
techniques. Each of the seven steps are described in detail in chapter 4. The data
science analysis is the focus of the presentation of work.

Lastly, we interpreted the results, drew conclusions, and made recommendations
with the goal of improving the system. Not only did we focus on the results them-
selves, but also what the results and conclusions imply about the A&S holistically.
Our goal was to add value to the A&S from the analysis conducted.
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3.2 Data

The data used for this research was provided by the unit that conducts the A&S.
The data set includes 11,885 candidates (observations/rows) with 89 features (vari-
ables/columns) that was collected over the time period from February 2016 - June
2021 (Note: Not all candidates have all data complete; this data set includes missing
data).

There are three primary sources of data that are recorded on each candidate
shown in Table 3.1. The response variable is binary: selected or not selected. The
full list of features used for analysis are shown in Table 3.2 Complete Feature List.

TABLE 3.1: Primary Data Types

Feature Source Total Features # Continuous # Categorical
Administrative 10 1 9

Performance 5 5 0
Psychological 74 74 0

Total 89 80 9

The administrative data is retrieved from a military human resource database.
The performance data is collected during the A&S and manually entered into a dig-
ital database by the unit. The psychological data is collected using written, multiple
choice Scantron tests and entered directly into a digital database by a Scantron scan-
ner machine.

TABLE 3.2: Complete Feature List

Feature Name Description Type Format/Example Feature Source
pass Indicates if a candidate was selected categorical Selected Response Variable

mos Candidate military occupational special-
ity (MOS) (i.e. job they do in military) categorical 11B Admin

rank Candidate military rank categorical PFC Admin
race Candidate race categorical WHITE Admin

arrival_month Month candidate arrived for A&S categorical APRIL Admin
tis_at_arrival Time in service candidate at arrival to A&S continuous 500 Admin

parents_together States if a candidates parents are married categorical TRUE/FALSE Admin
has_airborne States if a candidate has attended airborne school categorical TRUE/FALSE Admin

glasses States if a candidate wears glasses categorical TRUE/FALSE Admin

civilian_education_certification Civilian education certificate candidate has categorical [HIGH SCHOOL
DIPLOMA] Admin

age_at_arrival Candidate age at arrival categorical 21 Admin
gt_score Candidate score on military GT test continuous 141 Performance

apft_1_pu Number of push-ups candidate completed on fitness test continuous 50 Performance
apft_1_su Number of sit-ups candidate completed on fitness test continuous 50 Performance

apft_1_run 2-mile run time of candidate on fitness test period 870 Performance
apft_1_score Total score on fitness test continuous 240 Performance

s1 Complexity of thought (abstract vs. concrete) continuous 10 Psychological
s2 Breadth of Interest (intellectual curiosity) continuous 10 Psychological
s3 Innovation continuous 10 Psychological
s4 Tolerance (openness to new beliefs) continuous 10 Psychological
s5 Empathy continuous 10 Psychological
s6 Anxiety continuous 10 Psychological
s7 Cooperativeness continuous 10 Psychological
s8 Sociability (introverted vs. extroverted) continuous 10 Psychological
s9 Social Confidence continuous 10 Psychological

s10 Energy Level continuous 10 Psychological
s11 Social Astuteness (ability to read and persuade others) continuous 10 Psychological
s12 Risk Taking (mostly monetary questions) continuous 10 Psychological
s13 Organization continuous 10 Psychological
s14 Traditional Values continuous 10 Psychological
s15 Responsibility continuous 10 Psychological
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Table 3.2 continued from previous page
Feature Name Description Type Format/Example Feature Source

rci response consistency index (validity scale) continuous 0.5 Psychological
inf infrequent responding scale (validity scale) continuous 20 Psychological
mis items left blank continuous 20 Psychological

verbal_iq Verbal IQ Standard Score continuous 70 Psychological
performance_iq Performance IQ Standard Score continuous 70 Psychological

full_scale_iq Full Scale IQ Standard Score continuous 70 Psychological
vri_nr Response consistency (higher = less consistent) continuous 70 Psychological

tri_nr Portion of answers marked True or False. Too high of
one is another indicator of inconsistent responding continuous 70 Psychological

fr All of these are validity measures.
More endorsed items will elevate these. continuous 70 Psychological

fpr All of these are validity measures.
More endorsed items will elevate these. continuous 70 Psychological

fs All of these are validity measures.
More endorsed items will elevate these. continuous 70 Psychological

fb_sr All of these are validity measures.
More endorsed items will elevate these. continuous 70 Psychological

rbs All of these are validity measures.
More endorsed items will elevate these. continuous 70 Psychological

lr Fake good scales continuous 70 Psychological
kr Fake good scales continuous 70 Psychological

eid Emotional Dysregulation: a combination of
scales that tap into emotional dysregulation continuous 70 Psychological

thd Thought Dysfunction: a combination of
scales that look at odd thinking styles continuous 70 Psychological

bxd Behavioral Dysfunction: a combination of
scales that measure acting out behaviors continuous 70 Psychological

r_cd demoralization continuous 70 Psychological
rc1 Somatic complaints continuous 70 Psychological
rc2 Low positive emotions continuous 70 Psychological
rc3 Cynicism continuous 70 Psychological

rc4 Antisocial Behavior (antisocial in
the sense of violating others’ rights) continuous 70 Psychological

rc6 Paranoia continuous 70 Psychological
rc7 Dysfunctional negative emotions continuous 70 Psychological
rc8 Abberant Thinking continuous 70 Psychological
rc9 Hypomanic Activation (abnormally high energy) continuous 70 Psychological
mls malaise continuous 70 Psychological
hpc head pain complaints continuous 70 Psychological
nuc neurological complaints continuous 70 Psychological
gic gastrointestinal complaints continuous 70 Psychological
sui suicidal ideation continuous 70 Psychological
hlp Helplessness continuous 70 Psychological
sfd self doubt continuous 70 Psychological
nfc inefficacy continuous 70 Psychological
cog cognitive complaints continuous 70 Psychological
stw stress and worry continuous 70 Psychological
axy anxiety continuous 70 Psychological
anp anger proneness continuous 70 Psychological
brf behavioral restricting fears continuous 70 Psychological
msf multiple specific fears continuous 70 Psychological
jcp juvenile conduct problems continuous 70 Psychological
sub substance use problems continuous 70 Psychological
agg aggression continuous 70 Psychological
act activation: another high energy scale continuous 70 Psychological
fml family problems continuous 70 Psychological
ipp interpersonal passivity continuous 70 Psychological
sav social avoidance continuous 70 Psychological
shy shyness continuous 70 Psychological
dsf disaffiliativeness continuous 70 Psychological
aes artistic interestes continuous 70 Psychological
mec mechanical interests continuous 70 Psychological

agg_rr aggressive personality (goal-oriented aggression) continuous 70 Psychological
psy_cr odd personality (weird thinking and behaviors) continuous 70 Psychological
dis_cr discontraint (problems with impulse control) continuous 70 Psychological
neg_er personality with negative emotionality continuous 70 Psychological
int_rr introverted personality continuous 70 Psychological

cannot_say number of items left blank continuous 20 Psychological
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Table 3.2 continued from previous page
Feature Name Description Type Format/Example Feature Source

pct_true % marked true continuous 30 Psychological

3.3 Models

We used 10 binary classification models to compare performance along with pros
and cons of each model. For the scope of this research, we will provide a brief sum-
mary of how each model works, but not an in-depth mathematical explanation of
the models.

The models we used were:

1. Penalized Logistic Regression (using Elastic Net)

2. Linear Discriminant Analysis (LDA)

3. Quadratic Discriminant Analysis (QDA)

4. Support Vector Machines (SVM)

5. Classification Tree (from Classification and Regression Trees - CART)

6. K-Nearest Neighbor (KNN)

7. Random Forest (Ensemble Model)

8. xgboost (Ensemble Model)

9. Stack - Logistic Regression Aggregation (Ensemble Model)

10. Stack - Random Forest Aggregation (Ensemble Model)

3.3.1 Penalized Logistic Regression (using elastic net)

Penalized Logistic regression is used to predict the posterior probability, p, of a cate-
gorical feature being a certain class using the logistic function. An example of what
the function looks like for number of hours studying for a test (input feature) and
probability of passing the test (response feature) is shown in Figure 3.2. For our
model, the predicted probability, p̂, represents the probability of a candidate being
selected or p̂ = Pr(Candidate Selected | Data) ⇐⇒ Pr(Y = 1 | X = x).

FIGURE 3.2: Logistic Regression Example

https://en.wikipedia.org/wiki/Logistic_function
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The added benefit to using Penalized Logistic Regression compared to baseline
Logistic Regression is that the model incorporates embedded feature selection by
penalizing the coefficients (β). The specific variant of penalized logistic regression
we used was the the elastic net model shown in Equation 3.1. The model seeks to
optimize the loss (ℓ(β)) plus the penalty (λ) applied to coefficients (β) with the goal
to decrease coefficients of features that are less important. The elastic net allows
for a distinct advantage in choosing the optimal coefficient penalty by weighting
the lasso and ridge penalties using the alpha (α) tuning parameter. We used the
"glmnet" R package to implement this model [27]. Specific details about the model
tuning parameters are below.

The creators of the elastic net penalized logistic regression model note a key
strength in using the model:

It is known that the ridge penalty shrinks the coefficients of correlated
predictors towards each other while the lasso tends to pick one of them
and discard the others. The elastic net penalty mixes these two: if predic-
tors are correlated in groups, an α = 0.5 tends to either select or leave out
the entire group of features. This is a higher level parameter, and users
might pick a value upfront or experiment with a few different values.
One use of α is for numerical stability; for example, the elastic net with
α = 1− ϵ for some small ϵ > 0 performs much like the lasso, but removes
any degeneracies and wild behavior caused by extreme correlations. [28]

argmax
β

ℓ(β) + λ
p

∑
j=1

[
(1 − α)

|β j|2

2
+ α|β j|

]
(3.1)

The model tuning parameters are:

• α = The weight assigned to each penalty (value between 0 and 1).

– α = 0: Ridge penalty

– α = 1: Lasso penalty

• λ = The penalty applied to the model coefficients.

– λ = 0: No penalty applied to model coefficients. Same outcome as maxi-
mizing the negative log loss function (ℓ(β)).

– λ > 0: The larger the penalty, the smaller the model coefficients become
(i.e. coefficients shrink closer to zero). If all model coefficients = 0, model
becomes intercept only (extreme case of large penalty).

3.3.2 Linear Discriminant Analysis (LDA)

LDA is a classification model that uses linear combinations of features to separate
(or discriminate) between two or more classes (categories). The LDA model results
in a linear decision boundary to choose the predicted class, as shown on the left in
Figure 3.3. There are no tuning parameters for this model. We used the "MASS" R
package to implement this model [29].
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FIGURE 3.3: LDA and QDA Decision Boundaries

Left: LDA.
Right: QDA.

The LDA method makes the following assumptions:

1. Data Normality. The model assumes that all the data is normally distributed
(or Gaussian; i.e. bell curve distribution). This assumption is generally true for
the data (see subsection 4.5.1).

Note: LDA models can only use continuous features based on this assumption.
Thus, all data subsets used for this model only used continuous features.

2. Data Independence. The model assumes that the data is independent from
one another. We assume this assumption is generally true, as each candidate is
a different person with unique circumstances.

3. Equal Class Covariance. The model assumes that feature covariances are the
same for both classes: selected and not selected. We compared the class covari-
ances and discovered this assumption is true for most features, but not all. We
expect it may have some impact on model performance, but that performance
will still be reliable.

3.3.3 Quadratic Discriminant Analysis (QDA)

This method is very similar to LDA. QDA seeks to discriminate using a decision
boundary like the LDA model does and has the same assumptions with the excep-
tion of the Equal Class Covariance. This assumption is relaxed for QDA and the
classes can have different covariances. This allows for more flexible, non-linear deci-
sion boundaries as shown on the right in Figure 3.3. There are no tuning parameters
for this model. We used the "MASS" R package to implement this model [29].

3.3.4 Support Vector Machines (SVM)

SVM seeks to find the optimal decision boundary between classes by maximizing
the "margin" or distance between observations from each class. SVM can use a linear
(as shown in Figure 3.4) or a non-linear decision boundary. There is also a "kernel
trick" that can be applied to the SVM model resulting in a transformed, non-linear
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feature space. In the transformed feature space, the SVM classifier is still a linear
hyperplane, but in the original feature space it may be non-linear. We chose to use
the SVM model with a linear kernel. We used the "kernlab" R package to implement
the model [30]. For our analysis, we only used the SVM model with a linear kernel.

FIGURE 3.4: SVM visualization

Note: Figure taken from Wikipedia

The model tuning parameters for the SVM linear kernel model are (taken from
the "kernlab" R package):

• cost = cost of constraints violation (default: 1) this is the ‘C’-constant of the
regularization term in the Lagrange formulation.

3.3.5 Classification Tree (from Classification and Regression Trees - CART)

The classification tree model conducts binary splits of input features (branches) that
maximize a specified metric to make predictions about the response feature (leaves).
An example of this using our data set is: splitting the number of push-ups candidates
perform such that candidates with less than the split value are more likely to be
not selected and candidates with more than the split value are more likely to be
selected. Splits like this are performed with multiple features to form a final tree with
multiple, subsequent splits. An example of a regression tree (continuous response
variable) that estimates the probability of kyphosis after spinal surgery, given patient
age and vertebra started on is shown in Figure 3.5.

FIGURE 3.5: Regression Tree example

Left: The colored leaves show the probability of kyphosis after spinal surgery
(inside leaf), and percentage of patients in each category under the leaf.

Middle: The tree as a 3d perspective plot, showing probability of kyphosis given surgery start and patient age.
Right: Top view of the middle plot. The probability of kyphosis after surgery is higher in the darker areas.

Note: Figure and explanation taken from Wikipedia.

https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Decision_tree_learning#Decision_tree_types
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Tree-based models are very flexible with no formal assumptions. For example,
normality of data does not matter. Likewise, it can handle both continuous and
categorical variables without any standardizing or encoding, respectively. These
models are easy to interpret as one can follow the tree "rules" to make decisions.
However, the models can be sensitive to changes in data and over fitting, especially
with limited data. For example, if the test and train data is modified slightly, the
classification tree could produce very different results. A classification tree (what
we used) is the same as the regression tree example in Figure 3.5, except it has a
categorical response feature instead of continuous. We used the "rpart" R package to
implement this model [31].

The model tuning parameters are (taken from the "rpart" R package):

• minsplit = The minimum number of observations that must exist in a node in
order for a split to be attempted.

• minbucket = The minimum number of observations in any terminal leaf node.
If only one of minbucket or minsplit is specified, the code either sets minsplit
to minbucket*3 or minbucket to minsplit/3, as appropriate.

• complexity parameter (cp) = Any split that does not decrease the overall lack
of fit by a factor of cp is not attempted. For instance, with anova splitting,
this means that the overall R-squared must increase by cp at each step. The
main role of this parameter is to save computing time by pruning off splits
that are obviously not worthwhile. Essentially, the user informs the program
that any split which does not improve the fit by cp will likely be pruned off by
cross-validation, and that hence the program need not pursue it.

• maxcompete = The number of competitor splits retained in the output. It is
useful to know not just which split was chosen, but which variable came in
second, third, etc.

• maxsurrogate = the number of surrogate splits retained in the output. If this is
set to zero the compute time will be reduced, since approximately half of the
computational time (other than setup) is used in the search for surrogate splits.

• usesurrogate = How to use surrogates in the splitting process. 0 means dis-
play only; an observation with a missing value for the primary split rule is not
sent further down the tree. 1 means use surrogates, in order, to split subjects
missing the primary variable; if all surrogates are missing the observation is
not split. For value 2, if all surrogates are missing, then send the observation
in the majority direction. A value of 0 corresponds to the action of tree, and 2
to the recommendations of Breiman et.al (1984).

• surrogatestyle = Controls the selection of a best surrogate. If set to 0 (default)
the program uses the total number of correct classification for a potential sur-
rogate variable, if set to 1 it uses the percent correct, calculated over the non-
missing values of the surrogate. The first option more severely penalizes co-
variates with a large number of missing values.

• maxdepth = Set the maximum depth of any node of the final tree, with the root
node counted as depth 0.

• xval = Number of cross-validations.
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3.3.6 K-Nearest Neighbor (KNN)

The K-Nearest Neighbor model is a non-parametric model that predicts classifica-
tions based on how many "k-neighbors", or training observations, are closest to the
test observation. The model estimates the conditional probability (soft classification)
of the test observation being a specific class as points in class j

k neighbors . To predict a class (hard
classification), the model selects that class with the most neighbors or highest condi-
tional probability [32]. We used the "FNN" R package to implement this model [33].
Figure 3.6 shows an example of how a specific test observation would be classified
using KNN as k changes.

FIGURE 3.6: KNN visualization

The test observation (green dot) should be classified either to blue squares or to red triangles. If k = 3 (solid line
circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle.
If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle).

Note: Figure and explanation taken from Wikipedia

The model tuning parameter is: k = number of neighbors.

3.3.7 Ensemble Models

Ensemble models are models that use multiple "base" models and combine their
strengths to form an aggregate or "ensemble" final model. There are two tasks in
ensemble learning: 1) develop a variety of base models trained on the training data
and 2) combine the models to form a holistic model to evaluate test data with one
outcome prediction [34].

The three types of ensemble methods are:

1. Bootstrap Aggregating (Bagging)

2. Boosting

3. Stacking

1. Bootstrap Aggregating (Bagging)
The bootstrap is a powerful resampling technique used for a variety of purposes.

When applied to bagging, the bootstrap can help reduce the variance of machine
learning models. More specifically, when bagging is applied to classification trees, it
is often very effective at reducing the variance as classification trees can have a lot of
variance depending on the variability of test/train data splits [32]. For the bagging
ensemble technique, we used the Random Forest model with the "randomForest" R
package implementation [35].

The random forest model is a method of bootstrap aggregating (creating mul-
tiple classification trees using bootstrap samples of same data and aggregating the

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
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results) with the goal of building de-correlated trees (created in parallel) by only us-
ing a random sub-sample of features at each tree split. Based on the results of the
random forest, the classification prediction is made by the aggregated output. This
can be in the form of majority vote (hard classification, i.e. selected or not selected)
or aggregated probabilities (soft classification, i.e. probability between [0,1]) for each
class. A visualization of how the random forest model works is shown in Figure 3.7.

FIGURE 3.7: Random forest visualization

Note: Figure taken from Wikipedia

The model tuning parameters are (taken from the "randomForest" R package):

• ntree. Number of trees to grow. This should not be set to too small a number,
to ensure that every input row gets predicted at least a few times.

• mtry. Number of variables randomly sampled as candidates at each split. Note
that the default values are different for classification (sqrt(p) where p is number
of variables in x) and regression (p/3).

• nodesize. Minimum size of terminal nodes. Setting this number larger causes
smaller trees to be grown (and thus take less time). Note that the default values
are different for classification (1) and regression (5).

• maxnodes. Maximum number of terminal nodes trees in the forest can have.
If not given, trees are grown to the maximum possible (subject to limits by
nodesize). If set larger than maximum possible, a warning is issued.

2. Boosting
The main idea behind boosting ensemble models is that many "weak learners"

(or base models) can be combined to form a "strong" final model while also reducing
bias. Boosting is a sequential learning technique where each successive model learns
from the previous model performance. As a result, using different weights or loss
functions allow model performance to be continually improved with each iteration.

We used Extreme Gradient Boosting (xgboost) for this ensemble model. xgboost
uses parallel shallow depth trees as weak learners to fit models at each step. The
model optimizes performance by minimizing a loss function from each tree using
gradient descent. The loss function includes a penalty term that seeks to minimize
over fitting. When the algorithm is complete, an aggregate ensemble is created from

https://en.wikipedia.org/wiki/Random_forest
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all trees to predict the optimal classifications. Figure 3.8 shows a visualization of
xgboost. We used the "xgboost" R package implementation [36].

FIGURE 3.8: xgboost visualization

Note: Figure taken from ResearchGate

The model tuning parameters are (taken from "xgboost" package documentation):

• nrounds. max number of boosting iterations.

• max_depth. maximum depth of a tree. Default: 6

• eta. control the learning rate: scale the contribution of each tree by a factor
of 0 < eta < 1 when it is added to the current approximation. Used to prevent
overfitting by making the boosting process more conservative. Lower value for
eta implies larger value for nrounds: low eta value means model more robust
to overfitting but slower to compute. Default: 0.3

• gamma. minimum loss reduction required to make a further partition on a leaf
node of the tree. The larger, the more conservative the algorithm will be.

• colsample_bytree. subsample ratio of columns when constructing each tree.
Default: 1

• min_child_weight. minimum sum of instance weight (hessian) needed in a
child. If the tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, then the building process will give up fur-
ther partitioning. In linear regression mode, this simply corresponds to min-
imum number of instances needed to be in each node. The larger, the more
conservative the algorithm will be. Default: 1

• subsample. subsample ratio of the training instance. Setting it to 0.5 means
that xgboost randomly collected half of the data instances to grow trees and
this will prevent overfitting. It makes computation shorter (because less data
to analyze). It is advised to use this parameter with eta and increase nrounds.
Default: 1

3. Stacking
Stacking is an ensemble method that uses multiple base learners that all individually
are fit to training data. After each model is fit, the models are combined using some
kind of "generalizer" model that uses all the base learner predictions to make an

https://www.researchgate.net/figure/A-general-architecture-of-XGBoost_fig3_335483097
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aggregate final prediction. Figure 3.9 shows a visualization of stacking. We used the
"caretEnsemble" R package implementation of the model [37]. There are no tuning
parameters for this model. Our stack ensemble model used LDA, SVM, penalized
logistic regression, CART, KNN, Random Forest, and xgboost as base models with
both logistic regression and random forest generalizer functions.

FIGURE 3.9: Stacking visualization

Note: Figure taken from ResearchGate

3.4 Evaluation Methods

Model performance will be evaluated using metrics from a confusion matrix. An
example confusion matrix is shown in Table 3.3.

TABLE 3.3: Example Confusion Matrix

Predicted
(Model Outcome)

Observed (True Outcome)

Selected Not Selected Total

Selected
True
Positive
(TP)

False
Positive
(FP)

TP + FP
(Predicted
Selected)

Not Selected
False
Negative
(FN)

True
Negative
(TN)

FN + TN
(Predicted

Not Selected)

Total
TP + FN

(Observed
Selected)

FP + TN
(Observed

Not Selected)

N
(Total

Observations)

The diagonals in the confusion matrix ("True Positive" (TP) and "True Negative"
(TN)) represent those candidates correctly classified by the model for both Selected
(TP) and Not Selected (TN). The off-diagonals represent those candidates that were
not classified incorrectly by the model for both Selected ("False Positive" (FP)) and
Not Selected ("False Negative" (FN)). More specifically:

• TP: Candidate predicted selected and observed selected.

https://www.researchgate.net/figure/An-example-scheme-of-stacking-ensemble-learning_fig3_324552457
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• FP: Candidate predicted selected and observed not selected.

• TN: Candidate predicted not selected and observed not selected.

• FN: Candidate predicted not selected and observed selected.

Table 3.4 shows the metrics that we used to evaluate models from a confusion
matrix and their interpretation.

TABLE 3.4: Confusion Matrix Metrics

Metric Interpretation Equation

Accuracy

For overall classification (both Selec-
tion and Non-Selection), how accu-
rate was the model? Total of TP and
TN divided by Total Observations.

TP+TN
N

Precision
Positive Predicted Value (PPV)

Given the model predicts Selected, how
accurately does the model predict Pre-

dicted Selected? The number of TP predic-
tions divided by total Predicted Selected.

TP
TP+FP

Sensitivity
Recall

True Positive Rate (TPR)

Given the model predicts Selected, how
accurately does the model predict Ob-

served Selected? The number of TP predic-
tions divided by total Observed Selected.

TP
TP+FN

Specificity
True Negative Rate (TNR)

Given the model predicts Not Selected, how
accurately does the model predict Observed
Not Selected? The number of TN predictions

divided by total Observed Not Selected.

TN
TN+FP

Negative Predicted Value (NPV)

Given the model predicts Not Selected, how
accurately does the model predict Predicted
Not Selected? The number of TN predictions

divided by total Predicted Not Selected.

TN
TN+FN

Receiver Operator Characteristic (ROC)
Score

A plot that shows true positive rate (TPR)
and false positive rate (FPR) as a function of
the classification threshold. The closer the

curve is to TPR=1, the better the performance.
Figure 3.10 shows an example ROC curve.

Maximum score on ROC Curve

ROC Area Under Curve
(ROC AUC)

Calculates the total area under the
ROC curve, creating an average perfor-
mance metric for the whole ROC curve.

Area under ROC curve

F1 Score
Combines precision and recall into one
metric by taking the mean of the two.

2(TP)
2(TP)+FP+FN

Kappa

Uses TP, TN, FN, and FP with the goal to com-
pare "expected" to "observed" accuracy. Goal

is to account for the accuracy that happens "by
chance" vs. what the model actually predicted.

2[(TPxTN)+(FNxFP)]
[(TP+FP)x(FP+TN)]+[(TP+FN)x(FN+TN)]

FIGURE 3.10: Receiver Operating Characteristic (ROC) Curve Exam-
ple

Note: Figure taken from Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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The data set we are using has a large class imbalance, meaning one class has far
more observations than the other. Specifically, selected candidates only represent
25% of the data, while not selected candidates represent 75%. The class imbalance
varies given the specific data subset, but in general, the selected candidate class is
much less than the not selected class. As a result, it is necessary to select an evalua-
tion metrics that account for this class imbalance.

Likewise, choosing evaluation metrics to meet the goals and objectives of the
stakeholder is important. For example, if the military unit only prioritized correctly
classifying selected candidates, then we would tune models by maximizing preci-
sion and sensitivity. Likewise, if the military only prioritized correctly classifying
candidates not selected, then we would tune models by maximizing specificity and
NPV. Often, the goal is to optimize models using an evaluation metric that can bal-
ance a variety of metrics and best classify both classes. A metric that optimizes
classifying both selection and non-selection is our goal for this research.

The accuracy metric can be misleading with a class imbalance. For example, our
data set contains 75% of candidates who were not selected and 25% of candidates
who were selected. If all of the not selected candidates were correctly classified, and
none of the selected candidates were correctly classified, the accuracy would still
be 75%. However, the overall accuracy is misleading, because while the model is
perfect at classifying non-selection, it is useless at classifying selection.

Considering the class imbalance and stakeholder input, we sought to choose a
"well-balanced" metric to use for optimizing our models. Due to the class imbal-
ance, accuracy is not a good choice as it will be biased. ROC and AUC are other
common metrics; however, these too are sensitive to class imbalances and can be
misleading. F1 Score is a better metric for our data, but there are still some draw-
backs. It is effective at providing a metric specifically for the TP classification, but
does not account for the TN classification. For our objectives, considering the TN
classification is important because there is a cost associated with not screening those
candidates out.

As a result, we chose to use the kappa evaluation metric. The kappa metric is
holistic in that it incorporates TP, TN, FP, and FN scores. Likewise, it inherently
accounts for class imbalances based on its calculations using all four metrics to nor-
malize the score [38]. The kappa metric can range from -1 to 1 and can be understood
similarly to a correlation statistic. Kappa can be interpreted as the accuracy that hap-
pens "by chance" vs. what the model actually predicted. A negative score indicates
that the model prediction is worse than random chance, a score of 0 indicates that
the model has no agreement with the data, and a positive score indicates some level
of agreement between the predicted outcome and the true outcome. The larger the
kappa score, the greater the agreement (or disagreement).
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Chapter 4

Presentation of Work

4.1 Data Tidying

Tidying the data involved the the following steps:

1. Merge Separate Data

2. Address Missing Data

3. Fix Incorrect Data

4.1.1 Merge Separate Data

We received three data sets (administrative, performance, and psychological) that
had different features on each candidate. Each data set contained a common "key"
to combine a candidate’s data from all three data sets into one holistic data set. This
was done using functions in R that join or merge data using a common key. Af-
ter merging all three data sets, the data was composed of 369 features and 11,885
observations (this included missing data).

4.1.2 Address Missing Data

Missing data proved to be a challenge as 55% of the observations from the data
set were missing. A helpful visualization of this is shown in Figure 4.1, where the
observation number (candidate) is on the x-axis and the features on the y-axis.

While each individual feature on the y-axis cannot be easily read, the overall
trends are evident. The top 3/4 of the plot contains features from the three psy-
chological tests. That is why there are sets of features that have the same shape of
missing data: a candidate either took the entire personality test or not at all. The
bottom 1/4 of the chart represents administrative and performance features, which,
in general had more complete fields. It is also easy to visualize how the missing
data relates across all features (e.g. all candidates in a certain range missing the
psychological features, but may have the performance and psychological features).
Candidates having all the features complete with no missing data are represented
by a black vertical line.

The reason most data is missing is due to data collection methods and require-
ments changing over the five-year period. For example, one of the psychological
tests was implemented in 2018; therefore, the candidates that attended between
2016-2018 are all missing those features.

To deal with the missing data, we created two data sets.

1. Non-imputed Data Set.
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FIGURE 4.1: Missing data visualization

Note 1: The chart is in chronological order from 2016-2021.
Note 2: This data is the final data set after feature screening.

• Categorical Features. We created an "UNKNOWN" category for all miss-
ing values of categorical variables. This allowed us to still retain some
information about the categories without removing the missing data.

• Continuous Features. We removed all missing observations.

Note: After doing this, there were 3,095 / 11,885 observations that were
complete with all features.

2. Imputed Data Set.

• We imputed all missing data (both continuous and categorical) using a
bagged tree implementation. We used the "step_impute_bag" method in
the caret R package [25]. Using this method, features are imputed indi-
vidually using all other features (except the response feature: selection)
as the inputs using bootstrap aggregated trees. We chose this method be-
cause it can use input predictors that are missing data and can impute
both categorical and continuous features. Likewise, the method consis-
tently outperforms methods like mean imputation and better maintains
the feature distributions and relationships [26].

For the final results, we only used the non-imputed data to ensure a non-biased
analysis. However, we did compare performance of the non-imputed data to the
imputed data to understand what impact data imputation had on our results.

4.1.3 Fix Incorrect Data

After examining the data, we discovered errors (less than 100 observations) that
were likely due to an inaccurate manual entry (e.g. fitness score outside of 0-100
range). To ensure only accurate data is used, we went through each feature and re-
moved the data that was inaccurate. Likewise, there were some categorical features
that had "typos" (e.g., rank of "PVTT" instead of "PVT") or redundant categories



Chapter 4. Presentation of Work 24

(e.g. education level of "Bachelor’s" and "Bachelor’s Degree" both meaning the same
thing). To address this, we standardized the categorical features by fixing all the
"typos" and redundancies. After doing this, we assume the data is accurate.

4.2 Feature Screening

Feature screening is defined as removing features that are not informative prior to
doing any analysis. This is valuable in the modeling process because screening re-
moves features that add noise to the model. The goal in removing them is to yield
more representative, accurate and interpretative results. We used multiple feature
screening techniques described below.

4.2.1 All Features

We applied the following methods to both categorical and continuous features. The
number next to each method is the number of features we screened using that spe-
cific method.

1. Incomplete Features (77): These were features that had a large amount of miss-
ing data (greater than 75% of the data). Most of the data that was this incom-
plete were performance scores collected during the A&S phase. Due to the
high attrition rates, a small amount of candidates have all the scores collected
in each event. Likewise, these features were outside the scope as our analysis
uses features common to all candidates in the screening phase.

2. Character Features (20): These features were free text entry (e.g. reason why
a candidate quit). While these features could be informative by transforming
the information, it was outside the scope for this research.

3. Response Features (18): Response features that are only known upon a candi-
date completing the assessment (e.g. reason a candidate dropped or the candi-
date’s class number) were removed as this is data leakage.

4. Redundant Features (12): Features that captured the same information (e.g.
civilian education certification, civilian education degree, and number of years
of civilian education all contained redundant information) were consolidated
to more concisely represent the information. For cases like these, we reduced
the number of features to what was necessary capture the redundant informa-
tion.

4.2.2 Continuous Features

Specifically for continuous features, we screened for highly correlated features (131).
Features that had a correlation of more than 90% were removed due to collinearity, as
these features contain the same information and can lead to unstable model results.
In our data set, some examples included raw fitness scores and point fitness scores.
For example, doing 80 push ups is equal to 100 points; the values are a function of
each other and represent the same information. Likewise, most of the psychological
features were highly correlated. One of the psychological tests included 15 main at-
tributes and 128 other features that were percentiles scores or combinations of those
15 main attributes, all of which were highly correlated. Figure 4.2 shows an exam-
ple of one of the personality tests where the 15 main attributes (s1-s15) are perfectly
correlated (correlation=1) to the percentile scores (mts1-mts15).



Chapter 4. Presentation of Work 25

FIGURE 4.2: Example of highly correlated features

4.2.3 Categorical Features

Specifically for categorical features, we used contingency table analysis (22). For
each categorical feature, we created a contingency table to see the relationship be-
tween the input feature and the response feature (selected or not selected). Table 4.1
shows an example of screening the "pov", or "privately owned vehicle" column
which indicates whether a candidate drove themselves to the assessment or not.
We screened categorical features for the following reasons:

1. Many categories. Features that 10 or more categories that couldn’t easily be
"lumped" (see subsection 4.3.2) required screening, because large dimension-
ality makes modeling results unreasonable. For example, "city_of_birth" had
over 3,000 categories with most having 20-100 observations. While there are
feature engineering techniques to handle categorical features with many cate-
gories, it was outside the scope of this research.

2. Similar Ratio to Response. Features where all the categories that had similar
ratio to the selection rate required screening. This is comparable to having al-
most no correlation to the response. There is little information in these features
that is valuable to prediction.

3. Most Observations in a Single Category. Features that had almost all obser-
vations in a single category required screening. This is comparable to having
a low variance. For example, less than 1% of candidates were female. Keeping
this feature would add little information to the modeling process and therefore
was dropped.
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TABLE 4.1: Example of categorical feature screening using contin-
gency tables

pov Selected Not Selected Total
Percent
Selected

Percent
of Data

FALSE 2,874 8,727 11,601 24.8 97.6
TRUE 65 219 284 22.3 2.4
Total 2,939 8,946 11,885 24.7 100

Remove "pov" feature because:
1. "FALSE" and "TRUE" categories have similar ratio to response (within 2%) [Blue Highlight]

2. "FALSE" category has almost all candidates in category (97%) [Gray Highlight]

After screening all the features, we removed 280 features total. These techniques
reduced the total features from 369 to 89 that were used for analysis.

4.3 Feature Engineering

The goal of feature engineering is to modify existing features or create new features
to better represent the information contained in the data. Ideally, the changes made
should reveal additional insight about the data and/or improve model performance.
We applied the following feature engineering methods.

4.3.1 Continuous Features

1. Log transformation. We applied a log transformation of all the continuous
features. With skewed data, this can help make the data more normal (i.e., bell
curve shaped distribution) and improve model performance.

2. Quantile (Binned) Transformation. For each continuous feature, we divided
the values into four equal quantiles or bins. Each bin contained approximately
25% of the data in each feature. Although with this transformation information
is lost by aggregating values, it can be effective at returning more interpretable
results.

3. Principle Component Analysis (PCA) Transformation. The goal of the PCA
transformation is to reduce the data from a high-dimensional space into a low-
dimensional space, such that the low-dimensional representation retains some
meaningful properties of the original data. The method involves orthogonal
projections of the data onto a specified number of principle components (PCs).
We applied PCA to all the continuous features.

Figure 4.3 shows an example of a biplot used to show the relationship
between number of PCs and amount of variance in the data accounted for. As
evident in the biplot, the vast majority of the variance in the data is contained
in the first three PCs (where the "elbow" is in the line).

PCA also allows us to visualize many features projected on a two-dimensional
space. For example, Figure 4.4 shows two scatter plots of a personality test
with 53 features projected onto the first two PCs. Sub figure (a) is the data pro-
jected without any other transformations. It appears that there is not a large
difference between selected and non selected candidates (one large grouping
of blue and red dots mixed together). Sub figure (b) shows the same psy-
chological test with the binned transformation prior to projecting it onto two
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FIGURE 4.3: Biplot showing number of PCs and cumulative vari-
ance

PCs. Interestingly, applying PCA on that same personality test with the binned
transformation shows are more clear groupings between selected and not se-
lected candidates. Most of the candidates who were selected are in the top left
of the plot (red dots), while those who were not selected are in the bottom right
(blue dots).

(a) (b)

FIGURE 4.4: Scatter plots of personality test with 52 features pro-
jected on first two PCs

(a) Projection on first two PCs with no feature engineering
(b) Projection on first two PCs with binned transformation

To choose the optimal number of PCs for each data set, we fit a LDA model
with 1 to up to 40 PCs on each data subset (using only continuous features).
After getting all the results, we then found the PC number with the highest
kappa value. After plotting the results and visually inspecting them, it was
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evident that for most data subsets the performance stayed about the same after
the first 5 PCs. Given this, we chose the lowest number of PCs with a kappa
score within 2% of the highest kappa score to avoid over fitting. Figure 4.5
shows a plot of the results for the data subset using all features. For this specific
data set, the performance is optimized at 7 PCs and then does not improve as
PCs increase. The complete PCA analysis results are in section C.1.

FIGURE 4.5: Results of predicting on PCs 1-40 for dataset_all using
LDA

4.3.2 Categorical Features

We transformed categorical features using lumping. Lumping is reducing the num-
ber of categories in a categorical feature by combining (or "lumping") them together.
To do this, we created a contingency table with each categorical feature and the
response feature. We then compared the percent pass rate of each category and
grouped categories within a 2% pass rate together (with some exceptions if the group
size was less than 50 candidates). For example, see how the "race" feature was re-
duced from 11 categories to three in Table 4.2. After lumping all categorical features,
we reduced the total categories for all nine categorical features from 167 to 30. Ta-
ble 4.3 shows the feature and number of categories before and after lumping.

TABLE 4.2: Lumping example using the "race" feature

race Selected Not Selected Total Percent
Selected

Percent
of Data

UNREPORTED 2 4 6 33.3 0.05
WHITE 2,347 6,266 8,613 27.2 72.5

ASIAN/PACIFIC ISLANDER 75 273 348 21.6 2.9
AMER INDIAN OR ALASKA NATIVE 15 55 70 21.4 0.5

ASIAN 1 4 5 20 0.04
BLACK OR AFRICAN AMERICAN 1 4 5 20 0.04

BLACK 158 663 821 19.2 6.9
UNKNOWN 333 1,634 1,967 16.9 16.6

OTHER 7 39 46 15.2 0.4
AMERICAN INDIAN OR ALASKA NATIVE 0 1 1 0 0.008
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Table 4.2 continued from previous page

race Selected Not Selected Total Percent
Selected

Percent
of Data

Z 0 3 3 0 0.03
Total 2,939 8,946 11,885 24.7 100

New categories: WHITE OTHER UNKNOWN

TABLE 4.3: Categorical Feature Lumping Summary

Feature Categories Before Categories After
mos 87 4
rank 6 4
race 12 3

arrival_month 12 5
parents_together 2 2

has_airborne 2 2
glasses 2 2

civilian_education_certification 19 5
age_at_arrival 25 3

Total 167 30

4.3.3 Creating New Features

We created two features using existing features in the data.

1. time_in_service = arrival date to A&S - date joined military
• goal is to capture military experience (i.e., how long has the candidate been
in the military?)

2. arrival_month = arrival date month
• goal is to capture seasonality impact (e.g., difference in summer vs. winter
months)

4.4 Feature Selection

The goal of feature selection to choose the subset of features that best represent the
data. Feature selection methods are not a definitive answer on what the most im-
portant features are, but rather give an intuition of what may be the most important
features given a specific selection method. Feature importance can only fully be
understood after applying predictive models and analyzing the results. The three
primary techniques for feature selection we used were:

1. Filter. The main idea behind filter based feature selection is to use some type
of statistical method or criterion to filter "important" features prior to any type
of model being applied to the data. Often this is done by comparing individual
input features to the response feature and computing a metric [38].

2. Wrapper. The wrapper based approach works by first searching for a subset
of features from the data’s feature space to be used to fit the model. After the
model is fit, model performance is measured with an evaluation metric. These
steps are iterated for all the different feature combinations available and a final
"best feature subset" is returned based on the number of features chosen for
the subset size.
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3. Embedded. Embedded feature selection techniques are "embedded" into ma-
chine learning models. For example, penalized models (e.g., lasso or ridge)
and tree-based models have an embedded way to assign feature importance
in the model itself. As a result, machine learning models like these do feature
selection by means of fitting the model. We applied the following models that
use embedded feature selection: penalized logistic regression, classification
trees, random forest, and xgboost.

4.4.1 Filter Methods

We used the following filter feature selection methods. All methods were imple-
mented using the "FSelector" R packages [39].

1. Chi Square. This method compares each individual input feature with the re-
sponse feature (pass) using Pearson’s chi-square test. The result given is the
Cramer’s V coefficient. Figure 4.6 shows the output of each features impor-
tance. The fitness test scores were the top four most important features and
almost double as important as the fifth most important feature. There were 20
features that had a Cramer’s V score of 0, indicating those features have little
relation to the response feature.

2. Information Gain. This method is an entropy based method that compares
each individual input feature with the response feature (pass) using informa-
tion gain. The result is transformed using log.

3. Gain Ratio. This method is an entropy based method that compares each in-
dividual input feature with the response feature (pass) using gain ratio. The
result is transformed using log.

4. Symmetrical Uncertainty. This method is an entropy based method that com-
pares each individual input feature with the response feature (pass) using sym-
metrical uncertainty. The result is transformed using log.

FIGURE 4.6: Feature selection results using chi-square
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After doing all these methods, we compared the results and found that most of
the methods returned similar feature importance rankings.

4.4.2 Wrapper Method

We used two wrapper methods for feature selection.

1. Backward Feature Selection. We used the recursive feature elimination method
that implements backward feature selection for feature selection. Using back-
ward feature selection, all of the features are used to build the initial model
and the performance is evaluated. Then, a single feature is removed and the
remaining features are used to build the model. All different combinations of
removing one feature are used to build the model. The N-1 subset of features
that yields the best model performance is then selected. This process of remov-
ing a single feature at each step is repeated until the specified number features
are chosen. We used the "caret" R package implementation of the recursive
feature elimination method [25].

We used the recursive feature elimination method to find the best feature
subsets using 1-10, 15, 20, 25, 30, and 89 features. The results are summarized
graphically in Figure 4.7. Optimal performance was when n=25 features, while
20 and 30 features were near the best. The caret function outputs a ranked 1-
n output of feature importance. Like filter-based methods, the fitness scores
were the top four most important features.

FIGURE 4.7: Backwards Feature Selection Results Using Caret

2. Forward Feature Selection. Using this method, a null model is initiated. A
model is built for each individual feature. The feature that yields the best
model performance is selected. Then, all the different combinations between
the first selected feature and the rest of the features are used to build the model.
The two features that yield the best model performance are selected. This pro-
cess of adding a single feature at each step is repeated until the specified num-
ber features are chosen. We implemented this method using the "varrank" R
package [40]. The "varrank" method uses mutual information as the criteria to
evaluate the importance of features at each step.
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While it is difficult to see all the specific features and forward steps used
for the forward feature selection method, Figure 4.8 provides some useful in-
sights. The features on the y axis show the most important features ranked 1-n
(most important on top). The features on the x axis show the features added at
each step and associated redundancy/relevancy to the response feature. The
key takeaway is most features appeared to be redundant using this approach.
In other words, as more and more features were added at each step, there was
little increase in information gain. This feature selection method also returns
a ranked list of most important features from 1-n. The most important feature
was apft_1_score like the rest of the methods; however, the rest of the top five
differed. The next most important features were mos, glasses, s10, and rank.

FIGURE 4.8: Feature selection results using "varrank" method

4.4.3 Best Feature Subsets

After completing all these feature selection methods, we created two final best fea-
ture subsets by aggregating all the results. One subset has the 10 best features and
the other subset has the 20 best features. To choose the features for the subsets, we
aggregated all the results by adding all the 1-n ranked results from each method
and selecting the top n results with the lowest scores. Table 4.4 shows the features in
each subset. Figure 4.9 shows the plot of the aggregated feature importance analysis.
Doing this analysis revealed 1) the methods seemed to rank feature importance sim-
ilarly (length of stacked bars for each feature about the same) and 2) the fitness test
features (apft_1_score, apft_1_su, apft_1_pu, and apft_1_run) were the top 4 highest
ranked features most methods. We used these feature subsets as part of the analysis.
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FIGURE 4.9: Feature selection results using combined method ranks

TABLE 4.4: Best feature subsets

Subset Features
best_10 apft_1_score, apft_1_su, apft_1_pu, apft_1_run, rank, mos, sfd, s10, mls, r_cd

best_20
apft_1_score, apft_1_su, apft_1_pu, apft_1_run, rank, mos, sfd, s10, mls, r_cd,

cog, eid, fr, s13, full_scale_iq, verbal_iq, vir_nr, tis_at_arrival, rbs, kr

4.5 Data Exploration

To explore the data, we looked at a variety of descriptive statistics and created visu-
alizations to better understand the data. We explored the following:

1. Descriptive Statistics and Plots

2. Comparisons Between Groups

3. Feature Comparison to Response

4. Indicator Variables Analysis

4.5.1 Descriptive Statistics and Plots

Data Normality

The data normality assumption is not always required, but may impact model
performance when using some parametric modeling approaches such as the Linear
Discriminant Analysis (LDA) model used in this research. Other models such as
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random forest do not require this assumption, however. Regardless, to better under-
stand the data, we chose to check normality of all the features. To visually check, we
created a histogram and quantile-quantile (QQ) plot for each feature.

Most of the data appeared to be normal, such as the number of push ups done
on the fitness test shown in Figure 4.10. It is clear that the number of push ups can
be assumed to be normal based on the bell shaped histogram and QQ plot with the
data empirical quantiles largely in line with the theoretical quantiles.

(a) (b)

FIGURE 4.10: Histogram (a) and QQ Plot (b) of Number of Push Ups
Completed on the Fitness Test

Some of the data did not look normal, however. For example, the "tis_at_arrival"
feature, or "Time in service at arrival" that is the amount days a Soldier has served
in the military. The data appeared to be highly right skewed (far more lower values
than higher) as shown in Figure 4.11.

(a) (b)

FIGURE 4.11: Histogram (a) and QQ Plot (b) of Time in Service at
Arrival

Data with a skewed distribution requires further investigation to understand.
Based on knowledge about the A&S, this distribution makes sense as over 70% of
the Soldiers who attend the A&S have limited experience in the military. After fur-
ther examination of the data, we discovered that 74% of the candidates (8,624/11,689
records) had between 100 - 240 days time in service, with the rest being largely out-
liers. A histogram and QQ plot showing the time in service values between 100 -
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240 days is shown in Figure 4.12 where the data appears to be more normally dis-
tributed.

(a) (b)

FIGURE 4.12: Histogram (a) and QQ Plot (b) of Time in Service at
Arrival for values between 100-240 days

After visually inspecting all of the continuous features and investigating features
that had non-normal looking distributions to understand our data, we moved for-
ward in analysis. We understand that all the data may not be perfectly normal, and
this may impact the results in the models that assume this.

Correlation

To improve our understanding of how the features related to each other, we
looked at correlation plots for different subsets of features and candidates. For ex-
ample, Figure 4.13 shows side-by-side correlation plots for the JPI_R psychological
test for candidates who were selected (a) and not selected (b). Both groups appear to
have similar correlations, indicating that both groups answered questions similarly
on the psychological test.

(a) (b)

FIGURE 4.13: JPI_R Psychological Test Correlation Plots

(a) Candidates who were selected
(b) Candidates who were not selected

However, looking at the MMPI psychological test, there was an observable dif-
ference in correlation between candidates selected (a) and not selected (b) as shown
in Figure 4.14. In general, selected candidates responses were less correlated (i.e.
lighter in color) compared to candidates who were not selected. This indicates that
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there is a difference between the two groups in how they answer questions on the
psychological test.

(a) (b)

FIGURE 4.14: MMPI Psychological Test Correlation Plots

(a) Candidates who were selected
(b) Candidates who were not selected

Plots

We created plots with many combinations of features to learn more about feature
relationships. For continuous features, we primarily used scatter plots. The fitness
test was an area of interest as candidates are screened using this (see section 2.2).
Figure 4.15 shows two scatter plots of fitness test events. Sub figure (a) shows a
scatter plot for all candidates number of sit ups (x axis) and push ups (y axis) with
associated histograms on the top and right of the plots. Sub figure (b) uses the same
features, but only for those candidates who met the minimum fitness test screening
criteria.

(a) (b)

FIGURE 4.15: Scatter plot of push ups and sit ups

(a) All candidates
(b) Candidates who passed the minimum fitness test screening criteria

From sub figure (a), it is evident that only candidates who perform well on sit
ups and push ups (top right area on plot) are selected. This makes sense, because
1) candidates are dropped who do not meet the minimum screening criteria score
and 2) generally the more fit a candidate is, the more disciplined and motivated he
or she is and more likely to be selected. From sub figure (b), it is evident that, of the
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candidates who met the minimum fitness score, candidates who performed more
sit ups and push ups were selected at a higher rate compared to those with lower
scores. However, there are still approximately 50% candidates who met the mini-
mum fitness standards who were not selected. This includes some of the candidates
who performed in the top quantile on both push ups and sit ups. This is interesting
because it reveals that even if a candidate performs exceptionally on the fitness test,
it does not imply he or she will be selected.

For categorical features, we primarily used box plots for analysis. Figure 4.16
shows a box plot of a candidates rank (x axis) and number of push ups performed (y
axis). Candidates who were selected are represented by the purple box and candi-
dates not selected are represented by the yellow box for each rank. Candidate ranks
from lowest to highest are: PVT_PV2, PFC, SPC, CPL_SGT. The small black dots
show the number of candidates who were in each category (i.e. the more black dots,
the more candidates in that category).

FIGURE 4.16: Box plot of candidate rank and number of push ups

A box plot showing a candidates rank and the number of push ups performed. Se-
lected candidates are the purple boxes. Not selected candidates are the yellow boxes.

Some key observations from this box plot are:

1. On average, the higher a candidate’s rank, the larger percentage of candidates
were selected (larger proportion of black dots in selected box for higher rank).

2. On average, the higher a candidate’s rank, the more push ups he or she per-
formed (purple and yellow boxes higher on y axis as rank gets higher).

3. On average, for each rank, candidates who were selected performed more
push ups compared to those candidates not selected (purple box higher than
yellow box for each rank).

4. The vast majority of candidates are lower rank (PVT_PV2 and PFC). SPC and
CPL_SGT are the minority of candidates. (Almost all of the total black dots are
in PVT_PV2 and PFC. Very few are in CPL_SGT and SPC.)
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4.5.2 Comparisons between Groups

To compare different groups we used visualizations and statistical tests. For visu-
alizations, we plotted each feature with candidates split into a Selected and Not
Selected group using both a box plot and a density plot. These two plots show sim-
ilar information, but offer unique insights. A box plot clearly shows the quantiles,
means, and outliers; however, understanding the distribution of the data is less clear.
Whereas a density plot clearly shows the distribution of the data, but the quantiles,
mean, and outliers are less apparent. Comparing both of these plots gives a more
full picture of the data distributions.

Figure 4.17 shows an example of both of a box plot (sub figure (a)) and den-
sity plot (sub figure (b)) for the features apft_1_run, apft_1_score, s1, and s2 using
all data. apft_1_run and apft_1_score show a visually clear difference between the
group scores and distributions, while s1 and s2 had almost no difference.

(a) (b)

FIGURE 4.17: Comparison between Selected and Not Selected
groups using all data

(a) Box plot
(b) Density plot

After visually inspecting each feature, we conducted a Welch’s two sample t-test
on each feature to compare the means of candidates selected and not selected to more
objectively understand the differences. Figure 4.18 shows a plot of the T-test statistic
scores between candidate selected and not selected using all candidates (blue) and
using only those who met the minimum fitness test standards (red).
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FIGURE 4.18: T-test Comparison Between Selected and Not Selected
Groups

For both candidate subsets, there were statistically significant differences be-
tween group means for a majority of the features at the α = 0.05 level (test statistic
value >= 1.96). Specifically, for all candidates, 71/89 features and for candidates who
met the minimum fitness test screening criteria, 66/89 features. Some key observa-
tions from the t-test comparison are:

1. All of the features that were significant were more significant using all data
compared to only the subset of candidates who met the minimum fitness test-
ing screening criteria (blue bars larger than red bars).

2. For both candidate subsets, fitness test scores were the four most significant
features between selected and not selected candidates.

4.5.3 Feature Comparison to Response

To understand input feature relationships to the response feature, we created con-
tingency tables with each category (categorical feature) or score (continuous feature)
and how it related to the response feature (pass). An example table is shown in Ta-
ble 4.5. Using each table, we created plots that included: 1) a histogram with all
candidates (grey bars), 2) a histogram with only selected candidates (green bars),
and 3) a line showing the percent of candidates selected at each value (black line).
These plots make clear the input feature relationships to the response feature and
underlying distributions. section C.2 shows the plots for all features.

TABLE 4.5: Contingency Table for age_at_arrival

age_at_arrival Selected Not_Selected total percent_pass percent_data
UNKNOWN 87 107 194 44.85 1.63

>20 1,479 3,441 4,920 30.06 41.4
<=20 1,373 5,398 6,771 20.28 56.97
Total 2,939 8,946 11,885 24.73 100

Figure 4.19 shows an example of two of these plots. (a) is the Risk Taking ("s12")
feature from one of the psychological tests and (b) is the Anti Social Behavior ("rc4")
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feature from another psychological test. s12 did not seem to have strong correlation
to the response feature (black line is horizontal across all s12 scores), while rc4 did
seem to have a correlation (the lower the score, the greater percent of candidates
who were selected). It is also clear the distributions are different. The s12 feature
had a normal distribution, while the rc4 had a skewed distribution.

(a) (b)

FIGURE 4.19: Psychological Features Compared to Selected Candi-
dates

(a) Risk Taking ("s12")
(b) Anti Social Behavior ("rc4")

Figure 4.20 shows two other plots of education level (a) and fitness test score
(b). In both cases, there is a clear linear trend between category/score and percent
of candidates who were selected. More specially, the higher a candidate’s educa-
tion, the greater percentage of candidates who were selected. Likewise, the higher a
candidate’s fitness test score, the greater percent of candidates who were selected.

(a) (b)

FIGURE 4.20: Admin and Performance Features Compared to Se-
lected Candidates

(a) Civilian Education Certification
(b) Total Fitness Score

We also did this same analysis using the quantile (binned) data (see section 4.3).
Using the binned features, we combined multiple features together to better under-
stand the interaction effects. Figure 4.21 shows a plot of a candidate’s sit up, push
up, and 2 mile run score combined bins compared to candidate selection rate. There
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is a clear linear trend that shows the higher a candidate’s score in all three events,
the greater percent of candidates were selected.

FIGURE 4.21: Push up, sit up, and run bin feature comparison to
"selected" candidates

While comparing the input feature to response feature uses descriptive statistics
and is not predictive in any way, it is useful in providing key relationships between
the features that can help interpret model results.

4.5.4 Indicator Variables Analysis

Due to the amount of missing data, we performed analysis on the value of the miss-
ing data to see if it was missing at random or not. To do this, we first created binary
indicator features for each feature. If the observation was complete, the indicator
feature value was 1 and if missing, 0. Then for each indicator feature, we calculated
the percent of candidates who were selected for values of 1 and 0, respectively. This
allowed us to examine if the data for each feature was missing at random or not. If
missing at random, we would expect the selection rates to be close to even for both
missing and complete data for each feature. However, if the data was not missing at
random, we would expect a large difference in selection rates (indicating that there
is a systematic reason why the data is missing).

Figure 4.22 shows a plot of each indicator feature (x axis), the percent of candi-
dates who were selected with the feature data missing ("Percent Pass 0"; red line),
the percent of candidates who were selected with the feature data complete ("Per-
cent Pass 1"; green line), and the percent of overall observations complete from each
feature ("Percent Data Complete"; black line). Notably, all of the features appear to
be missing systematically except for civilian education certification. Our hypotheses
as to why each feature is missing systematically are:

• age_at_arrival, arrival_month. These two features have nearly all the data
complete (98%). For both features, the percent of selected candidates is higher
for candidates missing the data compared to candidates with the data. Inter-
estingly for the arrival_month feature, all 86 candidates missing the data were
all selected. We think that in both cases there was systematic missed data entry
for groups of candidates who were selected.

• apft_1_pu, apft_1_su, apft_1_run, apft_1_score. For all candidates missing
fitness test scores, there was a 3% selection rate. For candidates with fitness
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FIGURE 4.22: Analysis of indicator features

test scores, there was a 34% selection rate. The data is 68% complete. We think
that the vast majority of candidates missing this data were likely screened out
early in the screening phase and their scores not recorded as only 3% were
selected.

• IQ, JPI_R, and MMPI. These features are the three psychological tests. Each
test is missing between 45-60% of the observation on candidates. Likewise,
candidates with the psychological test data were selected 15% more compared
to candidates missing the data. We know that some of the psychological tests
were not implemented until 2018 (two years after the data starts: 2016). This
explains some of the missing data. However, after 2018 we believe that, similar
to the fitness data, the candidates missing the data were dropped early in the
screening phase prior to taking the psychological tests.

After conducting this indicator feature analysis, we now understand that the
missing data is almost all systematically missing.

4.6 Create Data Subsets

We created data subsets using combinations of feature subsets, candidate subsets,
and feature engineering methods to better understand specific dynamics of each
of these aspects in analysis. We did not conduct analysis on every possible com-
bination of these subsets, but instead created specific subsets for specific analysis
purposes. Figure 4.23 shows a diagram of how the final data subsets were cre-
ated. We labeled the data in the following way: "candidate subset"_"feature sub-
set"_"feature engineering technique". For example, a data subset name could be
"dataset_below_apft_minimum_psych_log". In total, we used 66 different combina-
tions of subsets shown in Table A.2.

4.6.1 Feature Subsets

We created 10 feature subsets shown in Table 4.6. The subsets represent the dif-
ferent types of data collected on each candidate. Specifically for the psychological
data, the "Psych" data set is all three psychological tests combined ("Psych_JPI_R",
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FIGURE 4.23: Visualization of creating final data subset combina-
tions

"Psych_IQ", and "Psych_MMPI"). For a full list of all features in each subset, see Ta-
ble A.1. To create each subset, we selected the features and then removed all missing
data from the non-imputed data set to maximize observations in each data subset.
This resulted in different amounts of observations and percent of candidates selected
in each data subset. All of the data subsets still had 3,095 or more observations and
a class imbalance with selected candidates being only around 30%.

TABLE 4.6: Data Subsets Summary

Number Data Subset Total Features Continuous Categorical Observations
Percent of

Candidates Selected
1 All 89 80 9 3,095 36%
2 Admin 10 1 9 11,689 24%
3 Numeric 80 80 0 3,095 36%
4 Performance 5 5 0 8,084 34%
5 Psych 74 74 0 3,544 33%
6 Psych_JPI_R 18 18 0 5,506 32%
7 Psych_IQ 3 3 0 7,286 31%
8 Psych_MMPI 53 53 0 5,298 33%
9 Best_10 10 8 2 3,295 37%
10 Best_20 20 18 2 3,096 36%

4.6.2 Candidate Subsets

1. Above minimum fitness screening score. (n=4,969) In the screening phase,
there is a minimum fitness score candidates must achieve (see section 2.2 Ex-
isting Solutions) or they will be dropped. To better understand how to model
fully qualified candidates, we wanted to analyze this candidate subset.

2. Below minimum fitness screening score. (n=3,272) We created this data sub-
set to explore if there are any additional features that are predictive of a candi-
date performing poorly on the fitness test.

3. Above psychological screening scores. (n varied based on chosen thresh-
old) We chose specific psychological features to set empirical thresholds. Our
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goal with analyzing this candidate subset is to see the relationship that scoring
above the threshold has with other features.

4. Below psychological screening scores. (n varied based on chosen threshold)
We chose specific psychological features to set empirical thresholds. We then
fit models to the data subset with candidates who scored below that threshold
to understand how effective different thresholds are as screening criteria.

4.7 Model Fitting

We fit each model (see section 3.3) to each data subset combination (see section 4.6)
to gain specific insights into model performance with different combinations of fea-
tures, observations, and feature engineering. We used the following steps to fit each
model to each data set.

1. Data Preprocessing

2. Model Training and Parameter Tuning

3. Model Testing

4.7.1 Data Preprocessing.

Each model requires the data be preprocessed in a way that is compatible for the
model to use. All of the models that use distance-based loss functions required stan-
dardizing continuous features and one-hot encoding the categorical features. These
models require standardizing (centering [mean = 0] and scaling [standard deviation
= 1)]) to prevent the scale of some features from dominating others when estimating
model coefficients. Likewise, the models require one-hot encoding (making each
level of the categorical features a binary vector of 1 and 0) to represent the cate-
gorical relationships in numerical form. After the categorical features were one-hot
encoded, the features increased from 9 to 30. Table 4.7 shows the required prepro-
cessing steps required for each specific model.

TABLE 4.7: Data pre-processing required for each model

Model Standardized One Hot Encoding Type of Features
LDA No NA Continuous Only
QDA No NA Continuous Only

Penalized Logistic Regression Yes Yes Continuous and Categorical
SVM Yes Yes Continuous and Categorical

CART No No Continuous and Categorical
KNN Yes Yes Continuous and Categorical

Random Forest Ensemble No No Continuous and Categorical
xgboost Ensemble No No Continuous and Categorical
Stacked Ensemble Yes NA Continuous Only

4.7.2 Model Training and Parameter Tuning

We did the following steps to train and tune the model for each data subset. We
used the "caret" R package to tune and train all of our models [25]. It has a "train"
function that allows customization of specific training and tuning parameters. Fig-
ure 4.24 shows an overview of the model training and testing procedure for each
model applied to each data subset combination.
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FIGURE 4.24: Model training and testing procedure

1. Split the data into a training and test set. We performed random, stratified
sampling to split the data into 70% training data and 30% test data. We used
stratified sampling because this keeps the class distribution the same for both
training and test data sets based on the class distribution in using all the data.
This was important for our data due to the class imbalances, as some data
subsets had less than 25% of selected candidates in them. We chose to train
on 70% of the training data because most of the data subsets had more than
3,000 observations. Training on 70% of 3,000 or more observations provides
adequate data to train a robust model, but avoids over fitting by using too
much of the data. Likewise, using the model to test on 30% of the data provides
enough data to have a representative sample of the whole data set.

2. Select the best model tuning parameters. For each model, with each com-
bination of tuning parameters, we trained the model on the training data set
using a resampling method to find the optimal tuning parameters. For most
models, we 10 fold Cross Validation (CV) with 5 repeats. We chose to use 10-
fold CV because there is enough observations to use 10 folds and still have
it be representative of the data in each fold. We chose to use 5 repeats of 10
fold CV to account for any bias that could exist in only tuning the parame-
ters on one 10 fold CV iteration. To find the optimal tuning parameters, we
calculated the average performance of each tuning parameter combination on
each validation fold for all five 10-fold CV repeats and chose the combination
with the highest kappa value. We did not use 10 fold CV with 5 repeats on the
ensemble models due to 1) embedded methods of resampling and 2) compu-
tation time. Figure 4.25 shows the procedure as an algorithm that is used by
the caret package for tuning parameter selection. Table 4.8 shows the training
resampling method used for each model.

When training the model using k fold CV, we also used "up sampling" for
each training fold to account for the class imbalance. Up sampling is randomly
sampling (with replacement) the minority class (selected) to be the same size as
the majority class (not selected). This is the best option for our data set because
we do not lose information from the majority class (not selected), but also have
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FIGURE 4.25: Caret Model Tuning Parameter Procedure

enough observations from the minority class (selected) with which to train the
model. We only used up sampling for training folds, not for validation fold, as
up sampling on the validation fold would be data leakage and not represent
the true distribution. The "caret" R package contains a function (upSample) to
do this.

Each model has different tuning parameters used (see section 3.3). As a
result, we used different tuning parameter combinations for each model. The
"caret" package has a built in parameter "tuneLength" where you can set the
number of values to try for each tuning parameter. We used this for some of the
models, where other models we set our own tuning parameter grid to search.
Table 4.8 shows the tuning parameter combinations used for each model.

TABLE 4.8: Model training and tuning method for each model

Model Training Resampling Method Tuning Parameter Search
LDA 5 x 10 Fold CV N/A (No tuning parameters)
QDA 5 x 10 Fold CV N/A (No tuning parameters)

Penalized Logistic Regression 5 x 10 Fold CV tuneLength=10
SVM 5 x 10 Fold CV tuneLength=10

CART 5 x 10 Fold CV tuneLength=10
KNN 5 x 10 Fold CV k=seq(3,63,by=4)

Random Forest 10 Fold CV
mtry=seq(3,13,by=2)

ntree=seq(500,1500,by=500)
xgboost 10 Fold CV tuneLength=3
Stacked 10 Fold CV base model tune

3. Determine the Optimal Classification Threshold Setting. In order to make
best classification from the model predicted posterior probability (soft classi-
fication) for the validation folds, it is necessary to understand the impact of
changing the classification threshold from 0.5 (default) to a range of values
0-1. The goal of the model is what drives the classification threshold, as the
classification threshold is linked to the idea of classification costs [32]. Classifi-
cation costs are set based on the cost of making FP and FN classifications. After
specifying the costs given to the FP and FN based on domain knowledge, we
can then set the best classification threshold. To understand the relationship,
see Table 4.9 that shows how they relate.

Our goal is to have the best holistic model for both selection and non-
selection prediction. There is a high cost for both FN (predicted not selected,
actually selected) and FP (predicted selected, actually not selected). A FN error
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TABLE 4.9: Example Classification Cost Matrix

Predicted
(Model Outcome)

Observed (True Outcome)

Selected Not Selected

Selected TP
Cost=0

FP
Cost=1

Not Selected FN
Cost=5

TN
Cost=0

To minimize expected cost, set threshold to:
Pr(Selected) > FN

FP+FN
In this example, the optimal threshold would be: 5

1+5 = 5
6 = 0.833

results in a candidate that is qualified for the unit that was missed. A FP error
results in a candidate being an additional cost the system. As a result, we
allowed the data to empirically choose the threshold that maximizes the kappa
value. We then use the same probability threshold chosen based on the 10 fold
CV validation folds in the training data on our test data.

Figure 4.26 shows an example plot of the classification threshold impact
on different metrics. In this example, the optimal classification threshold was
0.58 based on the kappa metric. As the threshold increases, the NPV and Sensi-
tivity decrease while PPV and Specificity increases. This makes sense, as when
the threshold is near 0, nearly all classifications will be Selected and only the
candidates with a very low posterior probability will be classified as not se-
lected. As a result, most of the candidates classified as not selected will be
accurate, causing high NPV and Sensitivity scores. As the threshold increases,
a balance happens (usually near 0.5) and then the opposite effect happens as
the threshold approaches 1.

FIGURE 4.26: Optimal Threshold Analysis Example
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4.7.3 Model Testing and Evaluation

Model Testing. To test each model, we used the optimal final model trained on the
training data. We tested (or predicted) the models on the testing data (30%) using
the optimal classification threshold from the training data.

Model Evaluation. Based on the model prediction results from the test data, we
created a confusion matrix to evaluate using the metrics discussed in section 3.4.
Additionally, we saved the following results from each model and data subset com-
bination:

1. Optimal Tuning Parameters Search Results

2. Model Coefficients (if applicable to model)

3. Feature Importance

4. Classification Cost and Threshold Analysis

5. Test Data Predictions (both soft and hard)

6. Confusion Matrices

7. Visualizations (e.g. Classification Tree)

8. Final Results Summary (using optimal tuning parameters and classification
threshold)

As part of the model evaluation, we reviewed all the relevant output data from
the model to understand how the model performed, why it performed that way, and
if the results made sense. The process was iterative, and if something needed to be
adjusted, we made the adjustment and fit the model again.
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Chapter 5

Results

We will use the abbreviations in Table 5.1 for brevity.

TABLE 5.1: Abbreviations

Name Model Name
Feature

Engineering
Type

Name Candidate
Subset

pen_log_reg
Penalized
Logistic

Regression
none None all All Candidates

LDA LDA log Log above_apft
Candidates who scored above

the minimum fitness test
screening criteria

QDA QDA binned Binned
(4 quanitles)

SVM_lin SVM
(using linear kernel) pca

Principle
Component

Analysis

CART CART log_pca Log first,
then PCA

KNN KNN binned_pca Binned first,
then PCA

rf Random Forest

stack_glm

Stack Ensemble
(using

logistic regression
generalizer)

stack_rf

Stack Ensemble
(using

random forest
generalizer)

5.1 Results Summary

The results for all models and data subset combinations are in section C.3. For all
sections of the results, we only used non-imputed data subsets to avoid creating
bias in our results. In section 5.7 we specifically discuss the impact of data imputa-
tion on results.

Figure 5.1 shows the results for all models on all candidate, feature, and fea-
ture engineering data subset combinations using kappa score. Kappa scores ranged
from -0.56 (negative score indicates that prediction was worse compared to what is
expected by random chance) to 52.16. The black line indicates the range in scores
between models for each individual data subset. In general, the more features in the
subset, the wider the kappa range.
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FIGURE 5.1: Results for all models on all candidate, feature, and
feature engineering data subset combinations using kappa

Figure 5.2 shows the best results for all models on all candidate, feature, and
feature engineering data subset combinations using kappa. The model results were
overall generally modest (< 80% accuracy and < 0.5 kappa). Likewise, for almost all
subsets, candidate non-selection prediction accuracy (77% NPV average) was much
higher than candidate selection (47% PPV average). Despite the modest model per-
formance, however, the results revealed other useful insights that we will discuss.

Notably, 9 of the 10 models scored best on at least one of the data subsets. Like-
wise, all of the five feature engineering methods used produced optimal results on
at least one of the data subsets. The variation in scores between accuracy, NPV,
specificity, PPV, sensitivity, and kappa are also evident. Overall, the scores trended
the same (when one increased so did the others). However, there are observable
differences for the other metric scores with similar kappa scores.
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FIGURE 5.2: Best results for all models on all candidate, feature, and
feature engineering data subset combinations using kappa

Kappa balanced all metrics and was best when all confusion matrix categories
were all collectively better (i.e. TN and TP were high; FP and FN were low). Kappa
was not impacted by the peaks and troughs in other metrics, but instead normal-
ized all metrics by aggregation. This validates our choice for a performance metric
described in section 3.4 to provide a balanced, holistic metric.

5.2 Models

The model tuning parameters and optimal thresholds for all models are in sec-
tion B.1. The model coefficients for all applicable models are in section B.3. The
CART trees for each data subset are in section B.4.

Figure 5.3 shows the total counts of best and worst performance for each model
on all data subsets using kappa. This plot informs an aggregate idea of model per-
formance.
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FIGURE 5.3: Count of Best and Worst Model Performance for all
Data Subsets

Key Findings:

• Overall, the ensemble models performed best (with the exception of stack_rf).
The aggregation and weighting methods of the ensemble models consistently
outperformed other models.

• xgboost, penalized logistic regression, stack_glm, SVM, and LDA performed
most consistently across all subsets (worst model <= 5 times).

• Random forest, KNN, QDA, CART, and stack_rf performance varied signifi-
cantly across subsets (worst model >= 7 times).

Table 5.2 shows the best model kappa score on all feature, subset, and feature
engineering combinations with all candidates. All of the models scored the best
kappa score using the "all", "numeric", or "best_10" feature subsets.

TABLE 5.2: Best kappa scores on all models using all feature subset
and feature engineering combinations with all candidates

Model Feature
Subset

Feature
Engineering

Type
Kappa Accuracy Precision

PPV Sensitivity NPV Specificity

pen_log_reg all binned 52.08 76.83 64.95 78.64 86.15 75.8
rf all binned 51.69 76.62 64.63 78.64 86.1 75.47

svm_lin all log 49.67 75.75 63.93 76.26 84.79 75.47
xgb all binned 48.33 75.11 63.18 75.37 84.22 74.96

stack_glm numeric none 47.62 74.46 61.85 77.45 84.98 72.76
CART numeric binned 44.14 72.41 59.14 77.74 84.54 69.37
LDA numeric binned 44.09 73.17 61.11 71.81 82.14 73.94
QDA numeric pca 43.97 72.2 58.76 78.64 84.91 68.53

stack_rf numeric pca 43.05 73.49 63.11 64.99 79.69 78.34
KNN best_10 none 42.42 70.92 57.89 80.71 85.02 65.11

Figure 5.4 shows Table 5.2 plotted. The best model performance shown in Fig-
ure 5.4 is characteristic of model performance on other data subsets where kappa
was sub-optimal. By visualizing model performance, we can understand the strengths
and weaknesses of each model.
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FIGURE 5.4: Best model kappa score on all feature subset and fea-
ture engineering combinations using all candidates

Key Findings:

• pen_log_reg performed best and KNN worst.

• All models scored within 7% NPV, PPV, and accuracy using the best kappa
model score. These metrics indicate that models performed similarly in pre-
dicting both selection and non-selection.

• xgb, pen_log_reg, stack_glm, random forest, SVM, and LDA all scored over
70% and had 5% or less difference between specificity and sensitivity. These
models were best at detecting which candidates actually were selected and not
selected.

• KNN, QDA, CART, and stack_rf had a difference of 8% or more between sen-
sitivity and specificity. KNN, QDA, CART had a higher sensitivity than speci-
ficity (i.e., the models classified more candidates as not selected than observed
not selected), while stack_rf had a higher specificity than sensitivity (i.e., the
model classified more candidates as selected than observed selected).

• Kappa scores ranged from 42-52. The higher the NPV, PPV, sensitivity, and
specificity; the better the kappa score.

Figure 5.5 shows the best model performance on each feature subset using kappa
with associated NPV, PPV, sensitivity, and specificity scores. There was not any spe-
cific model that dominated performance for all subsets. Instead, model performance
varied based on the candidate, feature, and feature engineering subset combination.
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FIGURE 5.5: Best kappa score for all models on all feature subsets

The best model performance for all candidate, feature, and feature engineering
type subsets were comparable on most subsets using kappa, NPV, and PPV (within
a range of 10%). However, the sensitivity and specificity varied widely between
models (12% or more) on all feature subsets with the exception of the "best_10" fea-
ture subset. This means that models performed similarly predicting selection and
non-selection (NPV and PPV), but differed in the amount observed selected (sen-
sitivity) and not selected candidates (specificity) classified correctly. pen_log_reg
scored within the top three kappa scores on all feature subsets. KNN scored in the
bottom three for all subsets except "psych_IQ", "psych_MMPI", and "admin" feature
subsets.

5.3 Feature Subsets

Even though we are discussing feature subsets, it is important to note the distinc-
tions between the candidate subsets as results varied significantly. Table 5.3 shows
the best model score using kappa on all feature subset and feature engineering com-
binations for both "all" and "apft_min" candidate subsets.

TABLE 5.3: Best model score using kappa on all feature subset, can-
didate subset, and feature engineering combinations

Model Feature
Subset

Feature
Engineering

Type

Candidate
Subset Kappa Accuracy Precision

PPV Sensitivity NPV Specificity

xgb admin binned all_candidates 28.94 72.5 44.43 50.88 83.38 79.48
xgb admin none above_apft 27.43 63.71 62.9 64.64 64.54 62.8

pen_log_reg all binned all_candidates 52.08 76.83 64.95 78.64 86.15 75.8
svm_lin all none above_apft 34.48 67.13 71.09 60.87 64 73.76
svm_lin best_10 none all_candidates 46.14 72.75 59.57 83.7 87.23 66.24

pen_log_reg best_10 none above_apft 31.74 65.91 68.35 66.06 63.37 65.75
pen_log_reg best_20 none all_candidates 44.55 72.59 60.53 77.12 83.6 69.88
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Table 5.3 continued from previous page

Model Feature
Subset

Feature
Engineering

Type

Candidate
Subset Kappa Accuracy Precision

PPV Sensitivity NPV Specificity

pen_log_reg best_20 none above_apft 32.42 66.16 69.42 64.13 63.07 68.44
rf numeric log all_candidates 49.08 75.22 62.77 78.04 85.46 73.6

LDA numeric none above_apft 28.29 64.54 61.6 82.61 71.11 45.39
xgb performance binned all_candidates 40.74 71.95 57.54 69.61 82.18 73.18

svm_lin performance none above_apft 26.33 63.19 60.45 76.92 68.04 49.39
rf psych binned_pca all_candidates 29.92 66.48 49.78 64.97 79.33 67.23

KNN psych none above_apft 24.16 62.81 61.54 78.73 65.46 45.04
KNN psych_IQ pca all_candidates 9.16 52.75 35.48 63 74.15 48.1
QDA psych_IQ none above_apft 16.58 58.52 58.94 65.62 57.95 50.88

pen_log_reg psych_JPI_R binned all_candidates 28.22 67.05 49.21 58.43 78.17 71.17
stack_glm psych_JPI_R none above_apft 11.16 55.79 58.32 58.92 52.86 52.24

xgb psych_MMPI binned all_candidates 27.84 63 46.14 75.48 82.59 56.89
QDA psych_MMPI none above_apft 18.71 60.23 59.27 78.51 62.45 39.85

Figure 5.6 shows Table 5.3 with all candidates (left) and "above_apft" (right) plot-
ted side by side. The best subsets using all data are in order as shown on the left plot
in Figure 5.6.

FIGURE 5.6: Best kappa score for each feature subset

Left: all candidates
Right: above_apft candidates

Key findings for candidate subset differences:

• For all feature subsets, the "all" candidate subset performed better at predict-
ing non-selection (higher NPV and specificity) compared to the "above_apft"
subset. This is because 1) there are more observations to classify non-selection
using all candidates and 2) it is more difficult to discriminate non-selection
after removing candidates screened out for fitness test scores.

• For all feature subsets, the "above_apft" candidate subset performed better at
predicting selection (higher PPV and similar sensitivity) compared to the "all"
subset. The classes were nearly balanced (51.5% selected; 48.5% not selected)
in this candidate subset (n = 4,969). Given 1) the fewer observations and class
balance and 2) having only fully qualified candidates after removing those
screened out for fitness scores, this candidate subset had more variation in
the selected class to inform better predictions.

• The "all" feature subset resulted in the best overall performance using both "all"
and "apft_min" candidate subsets.
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Key findings for feature subsets using all candidates:

• All candidate subsets had high NPV scores (74%-87%), while other metrics
varied. This is significant because it shows that all subsets have unique infor-
mation effective at discriminating not selected candidates.

• The "all" and "numeric" subsets were holistically the best feature subsets on
almost all metrics. We think this is due to finding unique interaction effects
using all the data compared only to specific subsets.

• The "best_10" and best_20" feature subsets performed only slightly worse than
"all" and "numeric". This indicates that the feature selection methods (sec-
tion 4.4) were effective at selecting the most important features in the data. The
"best_10" subset had a lower specificity than "best_20", meaning it did not cor-
rectly classify as many candidates who were observed not selected compared
to "best_20".

• The "performance" subset metrics almost mirrored the "best_20", with a small
decrease in sensitivity and increase specificity. This is significant because the
"performance" subset only has five features (4 of the 5 being fitness test re-
lated) and still performed comparable to the best subsets. This indicates phys-
ical fitness is highly predictive and is consistent with what we discovered in
section 4.5 and section 4.4 about the importance of performance features.

• The "admin" subset performed best at non-selection (high NPV and highest
specificity), but performed worst on selection classification (lowest sensitivity
and second lowest PPV). The "admin" feature subset had the most observations
(n=11,689) which is why the accuracy was still so high. Despite PPV being 44%,
the model NPV was 83%. With the 75% class imbalance of candidates being not
selected, the number of negative classifications caused the accuracy to still be
greater than 70%, which is misleading. This is significant because only using
administrative features was best at predicting non-selection.

• Psych feature subsets. Combining all three psych tests (the "psych" feature
subset) yielded better results compared to any of the three individually. The
"psych" resulted in a marginally better kappa score (2% increase) with a closer
range between sensitivity and specificity compared to the other three tests. All
psych tests performed poorly at candidate selection (< 50% PPV).

"psych_IQ" resulted in the worst kappa across all subsets and is the least
predictive psych test.

Comparing the MMPI and JPI_R tests. "psych_MMPI" had a slightly
better NPV (83%; 4% improvement over "psych_JPI_R"), but a lower speci-
ficity (56%; 14% lower than "psych_JPI_R") compared to "psych_JPI_R". Given
the high NPV and specificity of the "psych_JPI_R" test, it yielded the best re-
sults for classifying non-selection for all psych tests, including compared to the
"psych" subset that uses all three tests.

5.4 Feature Importance

The feature importance for all models using the "all" feature subset for both "all" and
"above_apft" candidate subsets are in section B.2. Feature importance is calculated
different ways for different models. The main idea is to give the most importance to
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the features that most impacted the model prediction. The feature importance score
is standardized to a scale between 0-100, with the most important feature having a
score of 100. Features with a score of 0 means that that feature was not used in model
prediction at all. The full details for how feature importance is calculated for each
model is in the caret package documentation.

Although this section is focused on feature importance, we will compare feature
importance between "all" and "above_apft" candidate subsets. Aggregating feature
importance between these two groups results in a loss of many important insights.
Table 5.4 shows the top three most important features for all feature subsets using
both "all" and "above_apft" candidate subsets for the "pen_log_reg" model. This
model resulted in the best results for the "all" feature subset (see Figure 5.6) and per-
formed in the top three on all subsets (see Figure 5.5). We argue this model provides
a more objective interpretation of feature importance because the embedded feature
selection removes features that are not important.

TABLE 5.4: Top 3 most important features for each candidate subset
feature subset using Penalized Logistic Regression

All Candidates Above APFT Minimum Candidates
Feature Subset 1 2 3 1 2 3

All mos_18X rank_CPL_SGT mos_OTHER_MOS rank_PVT_PV2 mos_OTHER_MOS apft_1_score
Admin mos_OTHER_MOS arrival_month_MAY rank_PVT_PV2 mos_OTHER_MOS arrival_month_MAY rank_PVT_PV2

Numeric apft_1_score rc4 apft_1_run apft_1_score rc4 s10
Performance apft_1_score gt_score apft_1_pu apft_1_score gt_score apft_1_run

Psych s10 sfd rc4 s4 rc4 s13
Psych_JPI_R mis s10 s13 s4 s10 s1

Psych_IQ full_scale_iq performance_iq verbal_iq performance_iq full_scale_iq verbal_iq
Psych_MMPI pct_true rc4 vri_nr rc4 aes rbs

Best_10 apft_1_score mos_OTHER_MOS rank_PVT_PV2 rank_PVT_PV2 mos_OTHER_MOS rank_SPC
Best_20 apft_1_score mos_OTHER_MOS rank_PVT_PV2 rank_PVT_PV2 mos_OTHER_MOS rank_SPC

Key Findings:

• After aggregation (Figure 5.9), the overall the most important feature cate-
gories (in order) were 1) performance, 2) administrative, and 3) psychologi-
cal. The most important performance feature was "apft_1_score" (higher score
better; lower score worse). The most important administrative feature was
"mos_OTHER_MOS" (combat specialty better; non-combat specialty worse).
The most important psychological feature was "s10" or organization (higher
score better; lower score worse).

• Using all candidates, "apft_1_score" was most important for all feature subsets
that had that feature except the "all" subset. For the "above_apft" candidates,
"apft_1_score" decreased in importance to the third most important. Removing
all candidates who score low on the fitness test makes the fitness score have
less variance and less predictive power.

• Using "above_apft" candidates, "rank_PVT_PV2" and "mos_MOS_OTHER" were
the two most important features. This means that low rank and a non-combat
specialty are highly predictive of candidate non-selection.

• The top three most important features changed between "all" candidates and
"above_apft" candidates for all feature subsets except the performance subset.
This is significant because it means different things matter between those can-
didate subsets.

Figure 5.7 shows both the top 20 feature importance for the "all" feature sub-
set for both "all" (left) and "above_apft" (right) candidate subsets. This plot makes

https://topepo.github.io/caret/variable-importance.html
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clear the magnitude of difference between the feature importance. Using "all" can-
didates (left), the feature importance distribution is more balanced. However, using
"above_apft" candidates (right), the top three features were two times as important
as the fourth feature ("rank_PVT_PV2" = 100, "mos_OTHER_MOS"=98, "apft_1_score"=76,
and arrival_month_MAY=41).

FIGURE 5.7: Top 20 Most Important Features for dataset_all using
Penalized Logistic Regression

Left: "all" candidate subset
Right: "above_apft" candidate subset

Figure 5.8 shows both the top 20 feature importance for the "all" feature subset
for both "all" (red) and "above_apft" (blue) candidate subsets. This shows similar
information to Figure 5.7, but shows the features side by side to better visualize
the change in feature importance between candidate subsets. "rank_PVT_PVT2",
"mos_OTHER_MOS", and "apft_1_score" are the three most important for the "above_apft"
candidate subset, but are less important for the "all" subset.

FIGURE 5.8: Top 20 Most Important Features for dataset_all using
Penalized Logistic Regression
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Figure 5.9 shows the combined feature importance for all models with all candi-
dates for "dataset_all". The feature importance was aggregated by adding up all the
values from each of the six models (max score = 600; 6 different models). The plot
makes clear how important each feature was in each respective model. In general,
feature importance was similar across all models with "apft_1_score" being the best
ranked feature by all models except pen_log_reg (which performed the best).

FIGURE 5.9: Combined Feature Importance for all models with all
candidates for dataset_all (Top 30 Features)

It is evident how the "pen_log_reg" model only selected features that are most
important using the embedded feature selection. For example, all other models
ranked "apft_1_score" as the most important (100); the "pen_log_reg" instead as-
signed it an importance of 58. With the "psych" features, "pen_log_reg" assigned
most importance to "rc4", "s10", and "s13"; while other models assigned similar im-
portance to 15 other psych features. By removing features that provide the same
predictive power from the model, the "pen_log_reg" model was able to identify other
features that were important (e.g., "rank_PVT_PV2", "mos_18X" and "mos_OTHER_MOS")
and outperform the other models. For these reasons, we conclude that the "pen_log_reg"
model provides the best representation of most important features.

Figure 5.10 shows the combined feature importance for all models for the "psych"
feature subset. The feature importance was aggregated by adding up all individ-
ual model feature importance scores (max score = 800; 8 different models). With
the above comments in mind about the "pen_log_reg" model’s ability to best rep-
resent feature importance, this plot still informs an overall idea of aggregate fea-
ture importance. In general, psych feature importance was similar (both blue and
red lines overall trend the same way); however, there were clear changes between
candidate subsets. For example, "full_scale_iq" and "s13" were more important for
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"above_apft" candidates, while "axy" and "mis" were more important for "all" can-
didates. There are other features like "nfc" that had similar importance for both
candidate subsets.

FIGURE 5.10: Combined feature importance for all models for
dataset_psych

5.5 Candidate Subsets

We performed analysis on four candidate subsets (see subsection 4.6.2). While we
learned valuable insights from all four subsets, we discuss the "above_apft" candi-
date subset in this section, as this subset informed the most valuable insights.

Table 5.5 shows the best performance of all models on all feature and candidate
subsets using kappa. Figure 5.11 shows Table 5.5 visually. Each feature subset is
on the x axis and the respective metric score on the y axis. The red line represents
candidates who scored above the minimum APFT score and the blue line represents
all candidates.

TABLE 5.5: Best model performance using kappa for all feature sub-
sets and candidate subsets

feature_subset candidate_subset feature_engineering_type model kappa accuracy NPV specificity precision_PPV sensitivity
admin above_apft none xgb 27.43 63.71 64.54 62.8 62.9 64.64
admin all_candidates binned xgb 28.94 72.5 83.38 79.48 44.43 50.88

all above_apft none svm_lin 34.48 67.13 64 73.76 71.09 60.87
all all_candidates binned pen_log_reg 52.08 76.83 86.15 75.8 64.95 78.64

best_10 above_apft none pen_log_reg 31.74 65.91 63.37 65.75 68.35 66.06
best_10 all_candidates none svm_lin 46.14 72.75 87.23 66.24 59.57 83.7
best_20 above_apft none pen_log_reg 32.42 66.16 63.07 68.44 69.42 64.13
best_20 all_candidates none pen_log_reg 44.55 72.59 83.6 69.88 60.53 77.12
numeric above_apft none LDA 28.29 64.54 71.11 45.39 61.6 82.61
numeric all_candidates log rf 49.08 75.22 85.46 73.6 62.77 78.04

performance above_apft none svm_lin 26.33 63.19 68.04 49.39 60.45 76.92
performance all_candidates binned xgb 40.74 71.95 82.18 73.18 57.54 69.61

psych above_apft none KNN 24.16 62.81 65.46 45.04 61.54 78.73
psych all_candidates binned_pca rf 29.92 66.48 79.33 67.23 49.78 64.97

psych_IQ above_apft none QDA 16.58 58.52 57.95 50.88 58.94 65.62
psych_IQ all_candidates pca KNN 9.16 52.75 74.15 48.1 35.48 63

psych_JPI_R above_apft none stack_glm 11.16 55.79 52.86 52.24 58.32 58.92
psych_JPI_R all_candidates binned pen_log_reg 28.22 67.05 78.17 71.17 49.21 58.43
psych_MMPI above_apft none QDA 18.71 60.23 62.45 39.85 59.27 78.51
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Table 5.5 continued from previous page
feature_subset candidate_subset feature_engineering_type model kappa accuracy NPV specificity precision_PPV sensitivity
psych_MMPI all_candidates binned xgb 27.84 63 82.59 56.89 46.14 75.48

FIGURE 5.11: Max performance of feature subsets comparing can-
didate subsets using kappa, accuracy, PPV, sensitivity, NPV, and

specificity

Key findings:

• Kappa was higher using "all" candidates for all subsets except "psych_IQ". This
is because the "psych_IQ" subset increased in PPV by 26% in the "above_apft"
candidates, while other metrics were similar. Despite this improvement, the
"psych_IQ" still had an overall low kappa score (17).

• PPV was higher for all feature subsets and sensitivity was higher for all subsets
except the "all", "best_10", and "best_20" feature subsets for "above_apft" can-
didates. This indicates that the "above_apft" candidate subset provided more
predictive power for selected candidates.
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• NPV and specificity was higher for "all" candidates for all feature subsets (ex-
cept specificity for the "psych_IQ" feature subset). This means models could
better discriminate and predict not selected candidates using "all" candidates.

5.6 Feature Engineering

This section only includes the "all" candidate subset as we only performed feature
engineering on that candidate subset. Additionally, we did not perform feature en-
gineering on the "best_10" or "best_20" feature subsets. Figure 5.12 shows the feature
engineering method impact on performance for the "dataset_psych" feature sub-
set. All methods except "log_pca" resulted in the same or better kappa score with
"binned" and "binned_pca" improving results in all metrics.

FIGURE 5.12: Feature engineering method impact on performance
for the dataset_psych feature subset

Table 5.6 shows shows the best model performance using kappa for all feature
subsets using feature engineering compared to not using feature engineering. Fig-
ure 5.13 shows Table 5.6 visually. The red line shows scores using feature engineer-
ing and the black line shows scores without feature engineering for each metric.

TABLE 5.6: Best model performance using kappa for all feature sub-
sets and feature engineering types

feature_subset feature_engineering_type model kappa accuracy NPV specificity precision_PPV sensitivity
admin binned xgb 28.94 72.5 83.38 79.48 44.43 50.88
admin none rf 27.75 71.51 83.36 77.86 43.01 51.81

all binned pen_log_reg 52.08 76.83 86.15 75.8 64.95 78.64
all none rf 51.1 76.19 86.42 74.28 63.81 79.53

numeric log rf 49.08 75.22 85.46 73.6 62.77 78.04
numeric none rf 48.37 74.46 86.72 70.73 61.21 81.01

performance binned xgb 40.74 71.95 82.18 73.18 57.54 69.61
performance none xgb 40.66 71.38 83.32 70.57 56.41 72.94

psych binned_pca rf 29.92 66.48 79.33 67.23 49.78 64.97
psych none stack_glm 21.63 61.11 77.16 59.18 44.32 64.97

psych_IQ pca KNN 9.16 52.75 74.15 48.1 35.48 63
psych_IQ none CART 6.54 47.71 74.16 36.86 33.96 71.66
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Table 5.6 continued from previous page
feature_subset feature_engineering_type model kappa accuracy NPV specificity precision_PPV sensitivity

psych_JPI_R binned pen_log_reg 28.22 67.05 78.17 71.17 49.21 58.43
psych_JPI_R none svm_lin 18.02 62.39 74.36 67.77 43.13 51.12
psych_MMPI binned xgb 27.84 63 82.59 56.89 46.14 75.48
psych_MMPI none rf 19.53 62.43 74.79 66.45 44.15 54.21

FIGURE 5.13: Max performance of data subsets comparing feature
engineering vs. none using kappa, accuracy, PPV, sensitivity, NPV,

and specificity for all candidates

Key findings:

• For all feature subsets, feature engineering resulted in better kappa, accuracy,
and PPV scores.

• The "psych_JPI_R" and "psych_MMPI" feature subsets had the greatest im-
provement using feature engineering. The "binned" transformation improved
the "psych_JPI_R" in all metrics and the "psych_MMPI" in all but specificity.
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This finding is significant, because it means that predictive power is increased.
We think this is because all the features were related (i.e., come from the same
psych test) so binning and/or PCA was effective at extracting additional infor-
mation from the data.

• Feature engineering led to least improvement on the "numeric", "all", "admin",
and "performance" feature subsets.

Feature engineering also impacted feature importance. Figure 5.14 shows fea-
ture importance with no feature engineering (left) compared to using the "binned"
technique (right) for the "all" feature subset using the "pen_log_reg" model. For this
specific model and feature subset, binning improved kappa, accuracy, NPV, PPV,
sensitivity, and specificity by 2% (and resulted in the best overall performance out
of all data subset combinations). Binning the continuous features changed their dis-
tributions such that their interaction effects made other features more important for
an overall better model. In this case, the feature distribution was more evenly dis-
tributed with admin features becoming more important than performance.

FIGURE 5.14: Feature importance for "all" feature subset with no
feature engineering vs. binned using pen_log_reg

Feature engineering methods prove to be highly valuable. They enabled us to
discover more meaningful feature relationships and improve model performance.

5.7 Data Imputation

While we did not use imputed data for any of our final analysis results, we wanted to
understand the impact it had on model performance. Table 5.7 shows the best model
performance on all feature subsets using kappa with imputed versus missing data
with associated accuracy, PPV, sensitivity, NPV, and specificity metrics. Figure 5.15
shows Table 5.7 visually for each respective metric. The black line represents missing
data and the red line represents imputed data.
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TABLE 5.7: Best model performance using kappa for all feature sub-
sets using imputed data vs. missing data

feature_subset data_imputation feature_engineering_type model kappa accuracy NPV specificity precision_PPV sensitivity
admin imputed none KNN 31.02 73.71 83.32 81.36 47.03 50.4
admin missing binned xgb 28.94 72.5 83.38 79.48 44.43 50.88

all imputed none rf 52.16 80.61 90.65 82.78 58.53 74.01
all missing binned pen_log_reg 52.08 76.83 86.15 75.8 64.95 78.64

numeric imputed none xgb 47.62 77.89 90.65 78.76 53.77 75.26
numeric missing log rf 49.08 75.22 85.46 73.6 62.77 78.04

performance imputed pca stack_glm 47.76 76.18 93.83 73.16 51.09 85.36
performance missing binned xgb 40.74 71.95 82.18 73.18 57.54 69.61

psych imputed none rf 23.49 69.14 82.14 75.4 40.05 50.06
psych missing binned_pca rf 29.92 66.48 79.33 67.23 49.78 64.97

psych_IQ imputed none xgb 13.5 59.79 80.79 61.13 32.01 55.73
psych_IQ missing pca KNN 9.16 52.75 74.15 48.1 35.48 63

psych_JPI_R imputed none xgb 20.7 64.59 82.91 66.72 36.44 58.12
psych_JPI_R missing binned pen_log_reg 28.22 67.05 78.17 71.17 49.21 58.43
psych_MMPI imputed none rf 23.32 71.02 81.23 79.99 41.76 43.7
psych_MMPI missing binned xgb 27.84 63 82.59 56.89 46.14 75.48
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FIGURE 5.15: Best model performance on all feature subsets using
kappa with imputed vs. missing data with associated accuracy, PPV,

sensitivity, NPV, and specificity metrics

Key findings:

• Imputed data improved NPV, specificity, and accuracy on 8/9 feature subsets.
We think that the imputed data created similar observations to existing can-
didates, enabling models to better predict non-selection. Because of the class
imbalance, it improved accuracy.

• Non-imputed data outperformed imputed data for PPV and sensitivity on 8/9
subsets. This likely means the imputed data added more noise to the selected
candidates to make them more difficult to discriminate.

• The kappa score was better in all non-imputed data subsets except "perfor-
mance" and "admin" feature subsets. This is because, for both subsets, even
though PPV decreased, sensitivity, specifity, and NPV increased. The amount
of observations in each subset caused kappa to slightly increase.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

Answers to research question:

1. Is application of data science techniques to military A&S data useful to gain
insight on ways to holistically improve the system?

Yes. Although prediction accuracy is modest (<90%), applying data science
techniques adds value to the A&S.

The following are value added to the A&S:

• Data Tidying. By creating a combined data set using administrative, per-
formance, and psychological features (section 4.1), we learned holistic fea-
ture relationships (section 4.5) and importance (section 5.4) across all fea-
tures combined instead of "stove-piped". Analysis on the three types of
feature subsets together had not been done before using this data.

• Feature Screening. By screening features (section 4.2), we removed noise
from the data, using only features containing the most useful information
and returning the best results.

• Data Exploration. By exploring the data (section 4.5), we visualized the
data in powerful ways to observe different data distributions, meaningful
relationships between the features, and why data was missing. We also
performed statistical testing to provide a more objective understanding of
the differences between selected and not selected candidates. All of these
insights are valuable for the A&S unit to make informed decisions.

• Feature Engineering. By performing feature engineering (section 4.3),
we modified the existing features and created new features to better rep-
resent the information contained in the data. Through this analysis we
were: 1) able to extract and visualize unique underlying relationships of
features that we would not have otherwise and 2) improve holistic model
performance on all feature subsets (section 5.6).

• Feature Selection. By performing feature selection (section 4.4), we de-
veloped an informed intuition behind what features were most important
and why. This importance was later confirmed by the model results for
feature importance (section 5.4).

• Creating Data Subsets. By creating numerous subset combinations using
feature subsets, candidate subsets, and feature engineering techniques
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(section 4.6); we learned unique relationships that exist and what combi-
nations achieved the best results (section 5.3, section 5.5, and section 5.6).

• Model Fitting. By fitting ten optimally tuned models to the data (sec-
tion 4.7), we learned more objective information about what models per-
form best given the unique subset combinations and how to best predict
candidate selection and non-selection (section 5.1).

*** After considering these insights from the holistic data science approach
applied to that A&S data, we made actionable recommendations to the
A&S unit (section 6.2).

2. Are predictive models useful and accurate to model selection in Military A&S?

Useful: Yes. We demonstrated how the predictive models revealed meaning-
ful and useful things about the data to add value to the A&S. See answer to
research question 1 above.

Accurate: Yes and No.

Yes for predicting non-selection. Using all candidates, the best model had a
NPV of 86% and sensitivity of 75% (see Figure 5.6). The results indicate that
the features within our data set have a more objective predictive capability
to predict non-selection. This idea is also visually evident by comparing fea-
tures to the response, such as in Figure 4.19. Looking at the "rc4" feature, it
is evident that candidates who had low scores were selected at a lower rate,
making it easier for models to correctly classify candidates. We submit that the
non-selection prediction can be value added for the unit to incorporate into its
current screening criteria (see section 6.2).

No for predicting selection. Using all candidates, the best model had a PPV
of 65% and specificity of 78% (see Figure 5.6). We conclude that models per-
formed poorly on classifying candidate selection due to intangible features in
the human dimension that are highly variable and difficult to model. For ex-
ample, a candidate’s grit may be indicative of if a candidate will quit or not.
Likewise, a candidate may fit the mold of an "all-star" candidate, but get in-
jured or unexpectedly quit. Figure 4.15 highlights this idea using fitness fea-
tures. This idea is also evident looking at Figure 4.20. While the fitness score
shows a clear linear trend of the higher a candidate’s score, the greater per-
cent of candidates were selected; only 68% of the candidates who scored the
highest fitness score were selected. Most other features only had around a 50%
maximum of candidates who were selected at best.

The modest selection accuracy is significant because it validates the need for
an in-person assessment to observe the human dimension of how candidates
respond to challenges.

Candidates who scored above the fitness test screening score. Using "above_apft"
candidates, the best model had a PPV of 71% and NPV of 64% (see Figure 5.6).
In this candidate subset, the results indicate there is more information to clas-
sify candidate selection (6% higher PPV compared to all candidates), but less
information in the data to classify non-selection (22% lower NPV compared
to all candidates) compared to all candidates. Removing all candidates who
scored above the minimum fitness test screening criteria removed information
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in the data to discriminate non-selection, but added more information to dis-
criminate selection. We think this further points to the importance of the hu-
man dimension for this subset, because of the decreased model performance
compared to using all candidates (17% lower kappa score).

3. Are there any features that are indicative of a candidate being selected or not
selected?

Yes. See section 5.4.

6.2 Recommendations

1. Screening criteria. We recommend using our models for consideration in the
A&S unit screening criteria. The best performing models classified more than
85% of not selected candidates correctly (NPV), that included more than 75%
of the candidates who were actually selected (sensitivity) (see Figure 5.6). We
think using a soft classification (i.e., percent chance of a candidate being se-
lected) for candidates would be value added to consider when screening can-
didates. For example, if a candidate’s soft classification is 0.05, that candidate
should be screened. However, if a candidates soft classification is 0.95, that
candidate should be retained.

We acknowledge there is an ethical consideration to using a predictive
model as screening criteria (section 2.3). As a result, we are not suggesting the
models be used as the primary screening criteria, but rather as another tool
to consider. Further, the models are not "black box" and provide associated
feature importance in making the classification.

We have some other specific recommendations for objective screening cri-
teria with different combinations of features (e.g., candidate scores more than
X score on Y feature); however, the specific details are outside the scope of this
report.

2. Psychological Tests. The psychological testing consumes time and resources.
If the purpose of the psychological testing is exclusively for screening candi-
dates, we recommend using only the JPI_R as it proved to be holistically the
best test at screening candidates section 5.3.

Additionally, we discovered which specific features were most important
from the psychological features (see Table 5.4). We think it is worth exploring
other options to measure only the most important psychological features that
are predictive. There may be a more efficient solution possible compared to
using an entire psychological test.

3. Additional Data Collection. It is evident that the predictors using the data set
for this research does not contain the information needed for high predictive
capability (>90% PPV, NPV, sensitivity, and specificity).

Does the modest model performance (best model: 86% NPV, 75% specificity,
65% PPV, and 79% specificity) imply anything about the A&S? We think it
may imply that there remains additional data that could be collected that may
be more predictive of candidate selection and non-selection. We think these
predictors would likely be in the human dimension. There has been research
on how to best capture these features (e.g., grit or mental toughness) that we
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recommend the unit investigating. This data could be collected during the
screening phase and considered when ranking candidates on the order of merit
list.

4. Evaluation Criteria. We think the feature importance may provide insight to
evaluation criteria (see section 5.4). Using "pen_log_reg", for "all" candidates
(the best model results), feature importance was (in order) "mos_18X" (100%),
"rank_CPL_SGT" (83%), and "mos_OTHER_MOS" (71%). For "above_apft"
candidates, feature importance was (in order) "rank_PVT_PV2" (100%), "mos_OTHER_MOS"
(98%), and "apft_1_score" (76%) (Figure 5.7). For both candidate subsets, fit-
ness test score was in the top five most important features, which aligns with
physical fitness being an important attribute in candidates for military A&S
(see subsection 2.4.1). However, for both candidate subsets, combat specialty
and senior ranking candidates were most important for selection, while non-
combat specialty and junior ranking candidates were most important in non-
selection.

Does feature importance imply anything about the A&S? Could junior Sol-
diers be lacking general military experience to be successful? Are non-combat
specialties expected to do the same things combat specialties do in the unit?
Are there systematic reasons why these two features are among the most im-
portant? Does this align with unit expectations and goals for the A&S? Could
this be accounted for somehow in the screening criteria, evaluation criteria,
and/or modifying the A&S? While we do not have answers to these questions,
we think the feature importance warrants an investigation of these questions.

6.3 Future Work

We plan to explore the following items for future work:

1. Long-Term Candidate Data. The scope of this research focused only on candi-
date selection or non-selection during the A&S. While this is important, the
question remains: Are the right candidates being selected at that A&S? To
more objectively answer to this question, long-term data about selected can-
didate performance in the elite military unit needs to be analyzed to verify the
candidate performance in the unit in comparison to performance at the A&S.

2. Apply Data Science to other A&S Data. We think there would be value in do-
ing similar analysis to other military A&S and comparing results. This would
add value to other A&S and better inform what matters in A&S. We would
also like to apply these data science methods using additional features not in
our data to explore other features that may be predictive.
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Appendix A

Data Details

A.1 Complete List of Feature Subsets

TABLE A.1: Complete list of features in data subsets

Number Feature All Admin Numeric Performance Psych Psych_JPI_R Psych_IQ Psych_MMPI Best_10 Best_20
1 mos x x x x
2 rank x x x x
3 race x x
4 arrival_month x x
5 tis_at_arrival x x x x
6 parents_together x x
7 has_airborne x x
8 glasses x x
9 civilian_education_certification x x

10 age_at_arrival x x
11 gt_score x x x
12 apft_1_pu x x x x x
13 apft_1_su x x x x x
14 apft_1_run x x x x x
15 apft_1_score x x x x x
16 s1 x x x x
17 s2 x x x x
18 s3 x x x x
19 s4 x x x x
20 s5 x x x x
21 s6 x x x x
22 s7 x x x x
23 s8 x x x x
24 s9 x x x x
25 s10 x x x x x x
26 s11 x x x x
27 s12 x x x x
28 s13 x x x x x
29 s14 x x x x
30 s15 x x x x
31 rci x x x x
32 inf x x x x
33 mis x x x x
34 verbal_iq x x x x x
35 performance_iq x x x x
36 full_scale_iq x x x x x
37 vri_nr x x x x
38 tri_nr x x x x
39 fr x x x x x
40 fpr x x x x
41 fs x x x x
42 fb_sr x x x x
43 rbs x x x x x
44 lr x x x x
45 kr x x x x x
46 eid x x x x x
47 thd x x x x
48 bxd x x x x
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Table A.1 continued from previous page
Number Feature All Admin Numeric Performance Psych Psych_JPI_R Psych_IQ Psych_MMPI Best_10 Best_20

49 r_cd x x x x x x
50 rc1 x x x x
51 rc2 x x x x
52 rc3 x x x x
53 rc4 x x x x
54 rc6 x x x x
55 rc7 x x x x
56 rc8 x x x x
57 rc9 x x x x
58 mls x x x x x x
59 hpc x x x x
60 nuc x x x x
61 gic x x x x
62 sui x x x x
63 hlp x x x x
64 sfd x x x x x x
65 nfc x x x x
66 cog x x x x x
67 stw x x x x
68 axy x x x x
69 anp x x x x
70 brf x x x x
71 msf x x x x
72 jcp x x x x
73 sub x x x x
74 agg x x x x
75 act x x x x
76 fml x x x x
77 ipp x x x x
78 sav x x x x
79 shy x x x x
80 dsf x x x x
81 aes x x x x
82 mec x x x x
83 agg_rr x x x x
84 psy_cr x x x x
85 dis_cr x x x x
86 neg_er x x x x
87 int_rr x x x x
88 cannot_say x x x x
89 pct_true x x x x

A.2 Complete list of Data Subsets

TABLE A.2: Complete List of Data Subset Combinations

Number Data Subset
1 dataset_numeric
2 dataset_performance
3 dataset_psych
4 dataset_psych_IQ
5 dataset_psych_JPI_R
6 dataset_psych_MMPI
7 dataset_imputed_numeric
8 dataset_imputed_performance
9 dataset_imputed_psych

10 dataset_imputed_psych_JPI_R
11 dataset_imputed_psych_IQ
12 dataset_imputed_psych_MMPI
13 dataset_log_numeric
14 dataset_log_performance
15 dataset_log_psych
16 dataset_log_psych_JPI_R
17 dataset_log_psych_IQ
18 dataset_log_psych_MMPI
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Table A.2 continued from previous page
Number Data Subset

19 dataset_binned_numeric
20 dataset_binned_performance
21 dataset_binned_psych
22 dataset_binned_psych_JPI_R
23 dataset_binned_psych_IQ
24 dataset_binned_psych_MMPI
25 dataset_numeric_pca_best
26 dataset_performance_pca_best
27 dataset_psych_pca_best
28 dataset_psych_IQ_pca_best
29 dataset_psych_JPI_R_pca_best
30 dataset_psych_MMPI_pca_best
31 dataset_imputed_performance_pca_best
32 dataset_imputed_psych_pca_best
33 dataset_imputed_psych_JPI_R_pca_best
34 dataset_imputed_psych_IQ_pca_best
35 dataset_imputed_psych_MMPI_pca_best
36 dataset_log_performance_pca_best
37 dataset_log_psych_pca_best
38 dataset_log_psych_JPI_R_pca_best
39 dataset_log_psych_IQ_pca_best
40 dataset_log_psych_MMPI_pca_best
41 dataset_binned_performance_pca_best
42 dataset_binned_psych_pca_best
43 dataset_binned_psych_JPI_R_pca_best
44 dataset_binned_psych_IQ_pca_best
45 dataset_binned_psych_MMPI_pca_best
46 dataset_apft_minimum_numeric
47 dataset_apft_minimum_performance
48 dataset_apft_minimum_psych
49 dataset_apft_minimum_psych_JPI_R
50 dataset_apft_minimum_psych_IQ
51 dataset_apft_minimum_psych_MMPI
52 dataset_admin
53 dataset_all
54 dataset_imputed_all
55 dataset_imputed_admin
56 dataset_log_all
57 dataset_log_admin
58 dataset_binned_all
59 dataset_binned_admin
60 dataset_all_pca_best
61 dataset_apft_minimum_all
62 dataset_apft_minimum_admin
63 dataset_best_10
64 dataset_best_20
65 dataset_apft_minimum_best_10
66 dataset_apft_minimum_best_20
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Appendix B

Model Details

B.1 Model Optimal Tuning Parameters and Thresholds

B.1.1 Penalized Logistic Regression (using Elastic Net)

TABLE B.1: Penalized Logistic Regression Optimal Tuning Parame-
ters and Thresholds

number dataset alpha lambda threshold FP_Cost FN_Cost
6 dataset_admin_std_one_hot_all 0.7 0.029133 0.56 56 44

12 dataset_all_std_one_hot_all 0.9 0.015311 0.52 52 48
17 dataset_numeric_std 0.5 0.035371 0.5 50 50
19 dataset_performance_std 0.3 0.002812 0.5 50 50
33 dataset_psych_IQ_std 0.5 0.003239 0.5 50 50
35 dataset_psych_JPI_R_std 0.8 0.000536 0.52 52 48
37 dataset_psych_MMPI_std 0.3 0.001314 0.54 54 46
38 dataset_psych_std 0.4 0.007387 0.54 54 46
48 dataset_imputed_all_std_one_hot_all 1 0.000073 0.6 60 40
55 dataset_imputed_admin_std_one_hot_all 0.5 0.030442 0.56 56 44
57 dataset_imputed_performance_std 0.8 0.000391 0.56 56 44
59 dataset_imputed_psych_std 0.8 0.000319 0.5 50 50
61 dataset_imputed_psych_JPI_R_std 0.2 0.001133 0.52 52 48
63 dataset_imputed_psych_IQ_std 1 0.001386 0.52 52 48
65 dataset_imputed_psych_MMPI_std 0.4 0.001702 0.5 50 50
74 dataset_log_all_std_one_hot_all 0.8 0.014836 0.5 50 50
81 dataset_log_admin_std_one_hot_all 0.7 0.029133 0.56 56 44
83 dataset_log_performance_std 0.2 0.014240 0.5 50 50
85 dataset_log_psych_std 0.7 0.017196 0.52 52 48
87 dataset_log_psych_JPI_R_std 0.8 0.001207 0.54 54 46
89 dataset_log_psych_IQ_std 0.6 0.040898 0.5 50 50
91 dataset_log_psych_MMPI_std 0.5 0.003070 0.52 52 48
100 dataset_binned_all_std_one_hot_all 0.9 0.006675 0.52 52 48
107 dataset_binned_admin_std_one_hot_all 0.7 0.029133 0.54 54 46
109 dataset_binned_performance_std 0.3 0.002940 0.5 50 50
111 dataset_binned_psych_std 0.8 0.008134 0.48 48 52
113 dataset_binned_psych_JPI_R_std 1 0.049354 0.52 52 48
115 dataset_binned_psych_IQ_std 0.7 0.006334 0.5 50 50
117 dataset_binned_psych_MMPI_std 0.5 0.000294 0.48 48 52
141 dataset_all_pca_best 0.5 0.001091 0.5 50 50
142 dataset_numeric_pca_best 0.2 0.031059 0.5 50 50
143 dataset_performance_pca_best 0.9 0.080985 0.5 50 50
144 dataset_psych_pca_best 0.7 0.000629 0.52 52 48
146 dataset_psych_JPI_R_pca_best 0.7 0.001935 0.54 54 46
147 dataset_psych_MMPI_pca_best 0.9 0.007201 0.52 52 48
148 dataset_imputed_performance_pca_best 0.4 0.024162 0.54 54 46
149 dataset_imputed_psych_pca_best 0.1 0.001625 0.5 50 50
150 dataset_imputed_psych_JPI_R_pca_best 0.5 0.034816 0.52 52 48
151 dataset_imputed_psych_IQ_pca_best 0.9 0.003190 0.52 52 48
152 dataset_imputed_psych_MMPI_pca_best 1 0.003136 0.48 48 52
154 dataset_log_psych_pca_best 0.1 0.001470 0.5 50 50
155 dataset_log_psych_JPI_R_pca_best 0.8 0.004371 0.52 52 48
157 dataset_log_psych_MMPI_pca_best 1 0.001365 0.52 52 48
158 dataset_binned_performance_pca_best 0.8 0.006825 0.5 50 50
159 dataset_binned_psych_pca_best 0.2 0.004356 0.5 50 50
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Table B.1 continued from previous page
number dataset alpha lambda threshold FP_Cost FN_Cost

160 dataset_binned_psych_JPI_R_pca_best 0.3 0.080723 0.52 52 48
162 dataset_binned_psych_MMPI_pca_best 0.3 0.052389 0.46 46 54
223 dataset_apft_minimum_all_std_one_hot_all 0.3 0.049894 0.48 48 52
230 dataset_apft_minimum_admin_std_one_hot_all 0.6 0.030798 0.5 50 50
232 dataset_apft_minimum_performance_std 0.7 0.008478 0.46 46 54
234 dataset_apft_minimum_psych_std 0.1 0.073382 0.5 50 50
236 dataset_apft_minimum_psych_JPI_R_std 0.6 0.000862 0.52 52 48
238 dataset_apft_minimum_psych_IQ_std 1 0.019931 0.5 50 50
240 dataset_apft_minimum_psych_MMPI_std 0.4 0.029778 0.5 50 50
269 dataset_best_10_std_one_hot_all 1 0.015999 0.48 48 52
270 dataset_best_20_std_one_hot_all 1 0.006945 0.5 50 50

B.1.2 LDA

TABLE B.2: LDA Optimal Thresholds

number dataset threshold FP_Cost FN_Cost
16 dataset_numeric 0.58 58 42
18 dataset_performance 0.54 54 46
31 dataset_psych 0.56 56 44
32 dataset_psych_IQ 0.5 50 50
34 dataset_psych_JPI_R 0.54 54 46
36 dataset_psych_MMPI 0.54 54 46
49 dataset_imputed_numeric 0.52 52 48
56 dataset_imputed_performance 0.54 54 46
58 dataset_imputed_psych 0.52 52 48
60 dataset_imputed_psych_JPI_R 0.52 52 48
62 dataset_imputed_psych_IQ 0.54 54 46
64 dataset_imputed_psych_MMPI 0.54 54 46
75 dataset_log_numeric 0.48 48 52
82 dataset_log_performance 0.52 52 48
84 dataset_log_psych 0.56 56 44
86 dataset_log_psych_JPI_R 0.54 54 46
88 dataset_log_psych_IQ 0.5 50 50
90 dataset_log_psych_MMPI 0.54 54 46

101 dataset_binned_numeric 0.54 54 46
108 dataset_binned_performance 0.46 46 54
110 dataset_binned_psych 0.5 50 50
112 dataset_binned_psych_JPI_R 0.56 56 44
114 dataset_binned_psych_IQ 0.5 50 50
116 dataset_binned_psych_MMPI 0.48 48 52
142 dataset_numeric_pca_best 0.46 46 54
143 dataset_performance_pca_best 0.5 50 50
144 dataset_psych_pca_best 0.52 52 48
145 dataset_psych_IQ_pca_best 0.5 50 50
146 dataset_psych_JPI_R_pca_best 0.5 50 50
147 dataset_psych_MMPI_pca_best 0.54 54 46
148 dataset_imputed_performance_pca_best 0.54 54 46
149 dataset_imputed_psych_pca_best 0.48 48 52
150 dataset_imputed_psych_JPI_R_pca_best 0.52 52 48
151 dataset_imputed_psych_IQ_pca_best 0.52 52 48
152 dataset_imputed_psych_MMPI_pca_best 0.46 46 54
153 dataset_log_performance_pca_best 0.52 52 48
154 dataset_log_psych_pca_best 0.52 52 48
155 dataset_log_psych_JPI_R_pca_best 0.52 52 48
156 dataset_log_psych_IQ_pca_best 0.5 50 50
157 dataset_log_psych_MMPI_pca_best 0.54 54 46
158 dataset_binned_performance_pca_best 0.5 50 50
159 dataset_binned_psych_pca_best 0.5 50 50
160 dataset_binned_psych_JPI_R_pca_best 0.52 52 48
161 dataset_binned_psych_IQ_pca_best 0.5 50 50
162 dataset_binned_psych_MMPI_pca_best 0.44 44 56
224 dataset_apft_minimum_numeric 0.4 40 60
231 dataset_apft_minimum_performance 0.46 46 54
233 dataset_apft_minimum_psych 0.44 44 56
235 dataset_apft_minimum_psych_JPI_R 0.5 50 50
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Table B.2 continued from previous page
number dataset threshold FP_Cost FN_Cost

237 dataset_apft_minimum_psych_IQ 0.52 52 48
239 dataset_apft_minimum_psych_MMPI 0.5 50 50

B.1.3 QDA

TABLE B.3: QDA Optimal Thresholds

number dataset threshold FP_Cost FN_Cost
16 dataset_numeric 0.7 70 30
18 dataset_performance 0.56 56 44
31 dataset_psych 0.9 90 10
32 dataset_psych_IQ 0.52 52 48
34 dataset_psych_JPI_R 0.64 64 36
36 dataset_psych_MMPI 0.98 98 2
49 dataset_imputed_numeric 0.5 50 50
56 dataset_imputed_performance 0.66 66 34
58 dataset_imputed_psych 0.18 18 82
60 dataset_imputed_psych_JPI_R 0.4 40 60
62 dataset_imputed_psych_IQ 0.56 56 44
64 dataset_imputed_psych_MMPI 0.26 26 74
75 dataset_log_numeric 0.56 56 44
82 dataset_log_performance 0.68 68 32
84 dataset_log_psych 0.84 84 16
86 dataset_log_psych_JPI_R 0.62 62 38
88 dataset_log_psych_IQ 0.52 52 48
90 dataset_log_psych_MMPI 0.94 94 6

101 dataset_binned_numeric 0.12 12 88
108 dataset_binned_performance 0.46 46 54
110 dataset_binned_psych 0.3 30 70
112 dataset_binned_psych_JPI_R 0.54 54 46
114 dataset_binned_psych_IQ 0.48 48 52
116 dataset_binned_psych_MMPI 0.34 34 66
142 dataset_numeric_pca_best 0.54 54 46
143 dataset_performance_pca_best 0.6 60 40
144 dataset_psych_pca_best 0.76 76 24
145 dataset_psych_IQ_pca_best 0.52 52 48
146 dataset_psych_JPI_R_pca_best 0.62 62 38
147 dataset_psych_MMPI_pca_best 0.7 70 30
148 dataset_imputed_performance_pca_best 0.66 66 34
149 dataset_imputed_psych_pca_best 0.36 36 64
150 dataset_imputed_psych_JPI_R_pca_best 0.46 46 54
151 dataset_imputed_psych_IQ_pca_best 0.52 52 48
152 dataset_imputed_psych_MMPI_pca_best 0.54 54 46
153 dataset_log_performance_pca_best 0.62 62 38
154 dataset_log_psych_pca_best 0.8 80 20
155 dataset_log_psych_JPI_R_pca_best 0.56 56 44
156 dataset_log_psych_IQ_pca_best 0.48 48 52
157 dataset_log_psych_MMPI_pca_best 0.68 68 32
158 dataset_binned_performance_pca_best 0.56 56 44
159 dataset_binned_psych_pca_best 0.48 48 52
160 dataset_binned_psych_JPI_R_pca_best 0.56 56 44
161 dataset_binned_psych_IQ_pca_best 0.5 50 50
162 dataset_binned_psych_MMPI_pca_best 0.5 50 50
224 dataset_apft_minimum_numeric 0.4 40 60
231 dataset_apft_minimum_performance 0.46 46 54
233 dataset_apft_minimum_psych 0.5 50 50
235 dataset_apft_minimum_psych_JPI_R 0.5 50 50
237 dataset_apft_minimum_psych_IQ 0.5 50 50
239 dataset_apft_minimum_psych_MMPI 0.46 46 54

B.1.4 SVM
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TABLE B.4: SVM Optimal Tuning Parameters and Thresholds

number dataset cost threshold FP_Cost FN_Cost
6 dataset_admin_std_one_hot_all 1 0.56 56 44
12 dataset_all_std_one_hot_all 1 0.52 52 48
17 dataset_numeric_std 1 0.44 44 56
19 dataset_performance_std 1 0.52 52 48
33 dataset_psych_IQ_std 1 0.5 50 50
35 dataset_psych_JPI_R_std 1 0.54 54 46
37 dataset_psych_MMPI_std 1 0.54 54 46
38 dataset_psych_std 1 0.56 56 44
48 dataset_imputed_all_std_one_hot_all 1 0.56 56 44
55 dataset_imputed_admin_std_one_hot_all 1 0.58 58 42
57 dataset_imputed_performance_std 1 0.56 56 44
59 dataset_imputed_psych_std 1 0.52 52 48
63 dataset_imputed_psych_IQ_std 1 0.52 52 48
65 dataset_imputed_psych_MMPI_std 1 0.52 52 48
74 dataset_log_all_std_one_hot_all 1 0.52 52 48
81 dataset_log_admin_std_one_hot_all 1 0.6 60 40
83 dataset_log_performance_std 1 0.54 54 46
85 dataset_log_psych_std 1 0.54 54 46
87 dataset_log_psych_JPI_R_std 1 0.54 54 46
89 dataset_log_psych_IQ_std 1 0.5 50 50
91 dataset_log_psych_MMPI_std 1 0.54 54 46

100 dataset_binned_all_std_one_hot_all 1 0.5 50 50
107 dataset_binned_admin_std_one_hot_all 1 0.58 58 42
109 dataset_binned_performance_std 1 0.5 50 50
111 dataset_binned_psych_std 1 0.5 50 50
113 dataset_binned_psych_JPI_R_std 1 0.56 56 44
115 dataset_binned_psych_IQ_std 1 0.5 50 50
117 dataset_binned_psych_MMPI_std 1 0.48 48 52
141 dataset_all_pca_best 1 0.46 46 54
142 dataset_numeric_pca_best 1 0.44 44 56
143 dataset_performance_pca_best 1 0.48 48 52
144 dataset_psych_pca_best 1 0.54 54 46
145 dataset_psych_IQ_pca_best 1 0.5 50 50
146 dataset_psych_JPI_R_pca_best 1 0.5 50 50
147 dataset_psych_MMPI_pca_best 1 0.54 54 46
148 dataset_imputed_performance_pca_best 1 0.56 56 44
149 dataset_imputed_psych_pca_best 1 0.5 50 50
151 dataset_imputed_psych_IQ_pca_best 1 0.48 48 52
152 dataset_imputed_psych_MMPI_pca_best 1 0.44 44 56
153 dataset_log_performance_pca_best 1 0.48 48 52
154 dataset_log_psych_pca_best 1 0.54 54 46
155 dataset_log_psych_JPI_R_pca_best 1 0.52 52 48
156 dataset_log_psych_IQ_pca_best 1 0.5 50 50
157 dataset_log_psych_MMPI_pca_best 1 0.52 52 48
159 dataset_binned_psych_pca_best 1 0.48 48 52
160 dataset_binned_psych_JPI_R_pca_best 1 0.52 52 48
161 dataset_binned_psych_IQ_pca_best 1 0.5 50 50
162 dataset_binned_psych_MMPI_pca_best 1 0.44 44 56
223 dataset_apft_minimum_all_std_one_hot_all 1 0.52 52 48
230 dataset_apft_minimum_admin_std_one_hot_all 1 0.5 50 50
232 dataset_apft_minimum_performance_std 1 0.46 46 54
234 dataset_apft_minimum_psych_std 1 0.48 48 52
236 dataset_apft_minimum_psych_JPI_R_std 1 0.5 50 50
238 dataset_apft_minimum_psych_IQ_std 1 0.5 50 50
240 dataset_apft_minimum_psych_MMPI_std 1 0.5 50 50
269 dataset_best_10_std_one_hot_all 1 0.46 46 54
270 dataset_best_20_std_one_hot_all 1 0.56 56 44

B.1.5 CART

TABLE B.5: CART Optimal Tuning Parameters and Thresholds

number dataset cp threshold FP_Cost FN_Cost
1 dataset_admin 0.001753 0.58 58 42
7 dataset_all 0.008249 0.42 42 58
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Table B.5 continued from previous page
number dataset cp threshold FP_Cost FN_Cost

16 dataset_numeric 0.008883 0.54 54 46
18 dataset_performance 0.002552 0.64 64 36
31 dataset_psych 0.010064 0.5 50 50
32 dataset_psych_IQ 0.001256 0.44 44 56
34 dataset_psych_JPI_R 0.005012 0.48 48 52
36 dataset_psych_MMPI 0.007155 0.46 46 54
43 dataset_imputed_all 0.003887 0.66 66 34
49 dataset_imputed_numeric 0.003158 0.64 64 36
50 dataset_imputed_admin 0.002268 0.58 58 42
56 dataset_imputed_performance 0.002106 0.64 64 36
58 dataset_imputed_psych 0.004130 0.6 60 40
60 dataset_imputed_psych_JPI_R 0.001984 0.58 58 42
62 dataset_imputed_psych_IQ 0.000292 0.5 50 50
64 dataset_imputed_psych_MMPI 0.004252 0.58 58 42
69 dataset_log_all 0.008249 0.42 42 58
75 dataset_log_numeric 0.008883 0.54 54 46
76 dataset_log_admin 0.001753 0.58 58 42
82 dataset_log_performance 0.002552 0.64 64 36
84 dataset_log_psych 0.010064 0.5 50 50
86 dataset_log_psych_JPI_R 0.005012 0.48 48 52
88 dataset_log_psych_IQ 0.001256 0.44 44 56
90 dataset_log_psych_MMPI 0.007155 0.46 46 54
95 dataset_binned_all 0.005922 0.62 62 38

101 dataset_binned_numeric 0.006345 0.58 58 42
102 dataset_binned_admin 0.001502 0.58 58 42
108 dataset_binned_performance 0.139357 0.5 50 50
110 dataset_binned_psych 0.007649 0.56 56 44
112 dataset_binned_psych_JPI_R 0.006816 0.56 56 44
114 dataset_binned_psych_IQ 0.000105 0.48 48 52
116 dataset_binned_psych_MMPI 0.003695 0.58 58 42
141 dataset_all_pca_best 0.004442 0.56 56 44
142 dataset_numeric_pca_best 0.004442 0.56 56 44
143 dataset_performance_pca_best 0.004594 0.58 58 42
144 dataset_psych_pca_best 0.010870 0.44 44 56
145 dataset_psych_IQ_pca_best 0.001884 0.5 50 50
146 dataset_psych_JPI_R_pca_best 0.005079 0.58 58 42
147 dataset_psych_MMPI_pca_best 0.009442 0.5 50 50
148 dataset_imputed_performance_pca_best 0.001458 0.62 62 38
149 dataset_imputed_psych_pca_best 0.002672 0.58 58 42
150 dataset_imputed_psych_JPI_R_pca_best 0.002915 0.56 56 44
151 dataset_imputed_psych_IQ_pca_best 0.001361 0.54 54 46
152 dataset_imputed_psych_MMPI_pca_best 0.001701 0.56 56 44
153 dataset_log_performance_pca_best 0.002188 0.56 56 44
154 dataset_log_psych_pca_best 0.013285 0.5 50 50
155 dataset_log_psych_JPI_R_pca_best 0.004010 0.52 52 48
156 dataset_log_psych_IQ_pca_best 0.002513 0.5 50 50
157 dataset_log_psych_MMPI_pca_best 0.009442 0.42 42 58
158 dataset_binned_performance_pca_best 0.002042 0.58 58 42
159 dataset_binned_psych_pca_best 0.009662 0.66 66 34
160 dataset_binned_psych_JPI_R_pca_best 0.005613 0.56 56 44
161 dataset_binned_psych_IQ_pca_best 0.000126 0.48 48 52
162 dataset_binned_psych_MMPI_pca_best 0.002258 0.64 64 36
218 dataset_apft_minimum_all 0.007092 0.6 60 40
224 dataset_apft_minimum_numeric 0.018237 0.44 44 56
225 dataset_apft_minimum_admin 0.002071 0.5 50 50
231 dataset_apft_minimum_performance 0.005233 0.5 50 50
233 dataset_apft_minimum_psych 0.019727 0.56 56 44
235 dataset_apft_minimum_psych_JPI_R 0.084592 0.5 50 50
237 dataset_apft_minimum_psych_IQ 0.071807 0.5 50 50
239 dataset_apft_minimum_psych_MMPI 0.007837 0.54 54 46
267 dataset_best_10 0.004646 0.6 60 40
268 dataset_best_20 0.006844 0.5 50 50

B.1.6 KNN
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TABLE B.6: KNN Optimal Tuning Parameters and Thresholds

number dataset k threshold FP_Cost FN_Cost
6 dataset_admin_std_one_hot_all 50 0.6 60 40

12 dataset_all_std_one_hot_all 50 0.6 60 40
17 dataset_numeric_std 45 0.56 56 44
19 dataset_performance_std 30 0.56 56 44
33 dataset_psych_IQ_std 60 0.5 50 50
35 dataset_psych_JPI_R_std 60 0.54 54 46
37 dataset_psych_MMPI_std 60 0.58 58 42
38 dataset_psych_std 60 0.58 58 42
48 dataset_imputed_all_std_one_hot_all 60 0.54 54 46
55 dataset_imputed_admin_std_one_hot_all 55 0.6 60 40
57 dataset_imputed_performance_std 40 0.58 58 42
59 dataset_imputed_psych_std 25 0.54 54 46
61 dataset_imputed_psych_JPI_R_std 60 0.54 54 46
63 dataset_imputed_psych_IQ_std 30 0.52 52 48
74 dataset_log_all_std_one_hot_all 45 0.58 58 42
81 dataset_log_admin_std_one_hot_all 50 0.62 62 38
83 dataset_log_performance_std 25 0.5 50 50
85 dataset_log_psych_std 40 0.62 62 38
87 dataset_log_psych_JPI_R_std 45 0.52 52 48
89 dataset_log_psych_IQ_std 60 0.5 50 50
91 dataset_log_psych_MMPI_std 60 0.6 60 40
100 dataset_binned_all_std_one_hot_all 30 0.5 50 50
107 dataset_binned_admin_std_one_hot_all 40 0.6 60 40
109 dataset_binned_performance_std 60 0.54 54 46
111 dataset_binned_psych_std 60 0.54 54 46
113 dataset_binned_psych_JPI_R_std 60 0.54 54 46
117 dataset_binned_psych_MMPI_std 60 0.52 52 48
141 dataset_all_pca_best 60 0.56 56 44
142 dataset_numeric_pca_best 60 0.5 50 50
143 dataset_performance_pca_best 55 0.56 56 44
144 dataset_psych_pca_best 50 0.56 56 44
145 dataset_psych_IQ_pca_best 25 0.5 50 50
146 dataset_psych_JPI_R_pca_best 60 0.54 54 46
147 dataset_psych_MMPI_pca_best 60 0.54 54 46
148 dataset_imputed_performance_pca_best 60 0.62 62 38
149 dataset_imputed_psych_pca_best 25 0.58 58 42
150 dataset_imputed_psych_JPI_R_pca_best 20 0.54 54 46
154 dataset_log_psych_pca_best 50 0.56 56 44
155 dataset_log_psych_JPI_R_pca_best 45 0.52 52 48
156 dataset_log_psych_IQ_pca_best 5 0.46 46 54
157 dataset_log_psych_MMPI_pca_best 60 0.56 56 44
158 dataset_binned_performance_pca_best 60 0.54 54 46
159 dataset_binned_psych_pca_best 60 0.5 50 50
160 dataset_binned_psych_JPI_R_pca_best 60 0.54 54 46
161 dataset_binned_psych_IQ_pca_best 55 0.48 48 52
162 dataset_binned_psych_MMPI_pca_best 60 0.48 48 52
223 dataset_apft_minimum_all_std_one_hot_all 30 0.48 48 52
230 dataset_apft_minimum_admin_std_one_hot_all 40 0.52 52 48
232 dataset_apft_minimum_performance_std 60 0.5 50 50
234 dataset_apft_minimum_psych_std 55 0.5 50 50
236 dataset_apft_minimum_psych_JPI_R_std 60 0.5 50 50
238 dataset_apft_minimum_psych_IQ_std 60 0.48 48 52
240 dataset_apft_minimum_psych_MMPI_std 35 0.52 52 48
269 dataset_best_10_std_one_hot_all 60 0.54 54 46
270 dataset_best_20_std_one_hot_all 60 0.58 58 42

B.1.7 Random Forest

TABLE B.7: Random Forest Optimal Tuning Parameters and Thresh-
olds

number dataset mtry ntree threshold FP_Cost FN_Cost
1 dataset_admin 3 500 0.64 64 36
7 dataset_all 13 1500 0.44 44 56
16 dataset_numeric 7 1500 0.42 42 58
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Table B.7 continued from previous page
number dataset mtry ntree threshold FP_Cost FN_Cost

18 dataset_performance 3 500 0.38 38 62
31 dataset_psych 13 1500 0.44 44 56
32 dataset_psych_IQ 9 1000 0.24 24 76
34 dataset_psych_JPI_R 5 500 0.42 42 58
36 dataset_psych_MMPI 13 500 0.42 42 58
43 dataset_imputed_all 9 1000 0.42 42 58
49 dataset_imputed_numeric 13 1000 0.46 46 54
50 dataset_imputed_admin 3 500 0.7 70 30
56 dataset_imputed_performance 3 500 0.36 36 64
58 dataset_imputed_psych 3 1500 0.42 42 58
60 dataset_imputed_psych_JPI_R 11 500 0.34 34 66
62 dataset_imputed_psych_IQ 13 1500 0.52 52 48
64 dataset_imputed_psych_MMPI 3 500 0.42 42 58
69 dataset_log_all 13 1000 0.44 44 56
75 dataset_log_numeric 9 1500 0.44 44 56
76 dataset_log_admin 3 1500 0.7 70 30
82 dataset_log_performance 3 1000 0.42 42 58
84 dataset_log_psych 5 1000 0.44 44 56
86 dataset_log_psych_JPI_R 5 1000 0.4 40 60
88 dataset_log_psych_IQ 11 1500 0.38 38 62
90 dataset_log_psych_MMPI 7 500 0.42 42 58
95 dataset_binned_all 13 1000 0.46 46 54

101 dataset_binned_numeric 9 1000 0.46 46 54
102 dataset_binned_admin 3 1500 0.56 56 44
108 dataset_binned_performance 3 500 0.5 50 50
110 dataset_binned_psych 11 1000 0.46 46 54
112 dataset_binned_psych_JPI_R 13 1500 0.46 46 54
114 dataset_binned_psych_IQ 9 1000 0.18 18 82
116 dataset_binned_psych_MMPI 3 1500 0.44 44 56
141 dataset_all_pca_best 13 1500 0.52 52 48
142 dataset_numeric_pca_best 3 500 0.44 44 56
143 dataset_performance_pca_best 11 1000 0.32 32 68
144 dataset_psych_pca_best 11 500 0.42 42 58
145 dataset_psych_IQ_pca_best 5 1500 0.32 32 68
146 dataset_psych_JPI_R_pca_best 9 1500 0.4 40 60
147 dataset_psych_MMPI_pca_best 3 1000 0.48 48 52
148 dataset_imputed_performance_pca_best 3 500 0.38 38 62
149 dataset_imputed_psych_pca_best 5 1500 0.38 38 62
150 dataset_imputed_psych_JPI_R_pca_best 11 1000 0.34 34 66
151 dataset_imputed_psych_IQ_pca_best 13 1500 0.52 52 48
152 dataset_imputed_psych_MMPI_pca_best 9 500 0.34 34 66
153 dataset_log_performance_pca_best 3 500 0.14 14 86
154 dataset_log_psych_pca_best 11 1000 0.42 42 58
155 dataset_log_psych_JPI_R_pca_best 11 1500 0.48 48 52
156 dataset_log_psych_IQ_pca_best 13 1500 0.56 56 44
157 dataset_log_psych_MMPI_pca_best 3 500 0.44 44 56
158 dataset_binned_performance_pca_best 11 1500 0.48 48 52
159 dataset_binned_psych_pca_best 7 500 0.42 42 58
160 dataset_binned_psych_JPI_R_pca_best 9 500 0.4 40 60
161 dataset_binned_psych_IQ_pca_best 9 500 0.34 34 66
162 dataset_binned_psych_MMPI_pca_best 9 1500 0.36 36 64
218 dataset_apft_minimum_all 7 1000 0.5 50 50
224 dataset_apft_minimum_numeric 13 500 0.48 48 52
225 dataset_apft_minimum_admin 3 500 0.5 50 50
231 dataset_apft_minimum_performance 9 500 0.44 44 56
233 dataset_apft_minimum_psych 5 1000 0.5 50 50
235 dataset_apft_minimum_psych_JPI_R 9 500 0.48 48 52
237 dataset_apft_minimum_psych_IQ 5 1000 0.28 28 72
239 dataset_apft_minimum_psych_MMPI 13 1000 0.5 50 50
267 dataset_best_10 3 500 0.42 42 58
268 dataset_best_20 5 1000 0.42 42 58

B.1.8 xgboost
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TABLE B.8: xgboost Optimal Tuning Parameters and Thresholds

number dataset nrounds max_depth eta gamma colsample_bytree
min
child

weight
subsample threshold FP_Cost FN_Cost

1 dataset_admin 100 3 0.3 0 0.8 1 1 0.58 58 42
7 dataset_all 50 3 0.3 0 0.6 1 1 0.5 50 50

16 dataset_numeric 50 2 0.3 0 0.8 1 0.75 0.5 50 50
18 dataset_performance 50 1 0.3 0 0.6 1 0.5 0.58 58 42
31 dataset_psych 100 1 0.4 0 0.8 1 0.5 0.54 54 46
32 dataset_psych_IQ 50 3 0.3 0 0.6 1 0.75 0.52 52 48
34 dataset_psych_JPI_R 50 2 0.3 0 0.8 1 0.75 0.54 54 46
36 dataset_psych_MMPI 50 3 0.3 0 0.8 1 1 0.5 50 50
43 dataset_imputed_all 100 3 0.3 0 0.8 1 1 0.5 50 50
49 dataset_imputed_numeric 100 3 0.3 0 0.6 1 1 0.52 52 48
50 dataset_imputed_admin 50 3 0.3 0 0.6 1 1 0.58 58 42
56 dataset_imputed_performance 50 2 0.4 0 0.6 1 1 0.5 50 50
58 dataset_imputed_psych 150 2 0.3 0 0.6 1 1 0.5 50 50
60 dataset_imputed_psych_JPI_R 100 1 0.3 0 0.6 1 0.5 0.5 50 50
62 dataset_imputed_psych_IQ 150 1 0.4 0 0.8 1 1 0.5 50 50
64 dataset_imputed_psych_MMPI 50 1 0.4 0 0.6 1 1 0.5 50 50
69 dataset_log_all 50 3 0.3 0 0.6 1 1 0.5 50 50
75 dataset_log_numeric 50 2 0.3 0 0.8 1 0.75 0.5 50 50
76 dataset_log_admin 100 3 0.3 0 0.8 1 1 0.58 58 42
82 dataset_log_performance 50 1 0.3 0 0.6 1 0.5 0.58 58 42
84 dataset_log_psych 100 1 0.4 0 0.8 1 0.5 0.54 54 46
86 dataset_log_psych_JPI_R 50 2 0.3 0 0.8 1 0.75 0.54 54 46
88 dataset_log_psych_IQ 50 3 0.3 0 0.6 1 0.75 0.52 52 48
90 dataset_log_psych_MMPI 50 3 0.3 0 0.8 1 1 0.5 50 50
95 dataset_binned_all 50 3 0.3 0 0.6 1 0.75 0.5 50 50
101 dataset_binned_numeric 100 1 0.3 0 0.6 1 0.75 0.52 52 48
102 dataset_binned_admin 150 2 0.4 0 0.8 1 1 0.58 58 42
108 dataset_binned_performance 100 1 0.3 0 0.8 1 0.75 0.6 60 40
110 dataset_binned_psych 150 1 0.4 0 0.8 1 1 0.52 52 48
112 dataset_binned_psych_JPI_R 50 1 0.4 0 0.6 1 0.5 0.54 54 46
114 dataset_binned_psych_IQ 50 2 0.3 0 0.8 1 1 0.5 50 50
116 dataset_binned_psych_MMPI 50 2 0.4 0 0.6 1 0.75 0.48 48 52
141 dataset_all_pca_best 150 1 0.4 0 0.6 1 1 0.48 48 52
142 dataset_numeric_pca_best 50 2 0.3 0 0.6 1 1 0.52 52 48
143 dataset_performance_pca_best 150 1 0.3 0 0.6 1 1 0.54 54 46
144 dataset_psych_pca_best 100 1 0.3 0 0.6 1 0.75 0.5 50 50
145 dataset_psych_IQ_pca_best 50 1 0.4 0 0.6 1 0.75 0.5 50 50
146 dataset_psych_JPI_R_pca_best 150 1 0.3 0 0.8 1 0.75 0.5 50 50
147 dataset_psych_MMPI_pca_best 100 1 0.3 0 0.6 1 0.5 0.5 50 50
148 dataset_imputed_performance_pca_best 150 2 0.3 0 0.8 1 0.75 0.52 52 48
149 dataset_imputed_psych_pca_best 50 3 0.3 0 0.6 1 0.5 0.48 48 52
150 dataset_imputed_psych_JPI_R_pca_best 100 1 0.3 0 0.8 1 0.5 0.5 50 50
151 dataset_imputed_psych_IQ_pca_best 100 1 0.4 0 0.6 1 1 0.5 50 50
152 dataset_imputed_psych_MMPI_pca_best 150 2 0.4 0 0.8 1 0.75 0.54 54 46
153 dataset_log_performance_pca_best 50 1 0.4 0 0.8 1 0.5 0.56 56 44
154 dataset_log_psych_pca_best 100 1 0.3 0 0.8 1 0.75 0.54 54 46
155 dataset_log_psych_JPI_R_pca_best 150 1 0.3 0 0.6 1 0.5 0.52 52 48
156 dataset_log_psych_IQ_pca_best 50 1 0.4 0 0.8 1 0.5 0.52 52 48
157 dataset_log_psych_MMPI_pca_best 50 1 0.4 0 0.6 1 0.75 0.56 56 44
158 dataset_binned_performance_pca_best 100 2 0.4 0 0.8 1 1 0.5 50 50
159 dataset_binned_psych_pca_best 50 1 0.3 0 0.6 1 1 0.5 50 50
160 dataset_binned_psych_JPI_R_pca_best 50 1 0.3 0 0.6 1 0.75 0.52 52 48
161 dataset_binned_psych_IQ_pca_best 100 1 0.3 0 0.6 1 0.75 0.5 50 50
162 dataset_binned_psych_MMPI_pca_best 50 2 0.4 0 0.8 1 1 0.54 54 46
218 dataset_apft_minimum_all 100 1 0.3 0 0.8 1 1 0.5 50 50
224 dataset_apft_minimum_numeric 50 1 0.4 0 0.8 1 1 0.48 48 52
225 dataset_apft_minimum_admin 50 1 0.3 0 0.6 1 0.5 0.5 50 50
231 dataset_apft_minimum_performance 50 1 0.3 0 0.8 1 0.75 0.5 50 50
233 dataset_apft_minimum_psych 50 1 0.3 0 0.8 1 0.75 0.5 50 50
235 dataset_apft_minimum_psych_JPI_R 100 1 0.3 0 0.6 1 0.5 0.48 48 52
237 dataset_apft_minimum_psych_IQ 50 1 0.3 0 0.8 1 0.5 0.5 50 50
239 dataset_apft_minimum_psych_MMPI 100 1 0.3 0 0.6 1 0.5 0.5 50 50
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B.1.9 Stack
Stack GLM

TABLE B.9: Stack GLM Model Weights for each Data Subset

number dataset (Intercept) lda svm_lin pen_log_reg CART knn rf xgb
17 dataset_numeric_std 3.123 -0.28 -1.172 -1.941 0.169 -0.444 -3.37 0.499
19 dataset_performance_std 3.111 -6.172 -2.516 5.888 0.194 -0.906 -0.149 -2.066
33 dataset_psych_IQ_std 2.077 -0.469 -1.069 -2.262 -0.288 0.969 -0.125 -0.958
35 dataset_psych_JPI_R_std 2.104 0.761 -2.714 -2.448 0.295 -0.242 -1.58 1.422
37 dataset_psych_MMPI_std 1.96 0.954 -0.994 -1.363 -0.489 0.466 -2.696 -0.461
38 dataset_psych_std 2.004 0.846 0.208 -2.426 0.11 -0.269 -2.349 -0.678
57 dataset_imputed_performance_std 2.732 0.528 0.079 -1.163 -0.817 -2.062 -0.508 -1.498
59 dataset_imputed_psych_std 2.019 -0.866 1.596 -1.524 -0.233 -0.863 -1.232 -1.51
83 dataset_log_performance_std 2.825 -4.049 -2.073 3.346 0.398 -0.223 -0.247 -2.488
85 dataset_log_psych_std 2.23 0.888 -0.044 -3.007 0.243 -0.684 -2.478 0.185
87 dataset_log_psych_JPI_R_std 2.368 0.685 -0.291 -3.992 0.328 0.025 -1.394 -0.397
89 dataset_log_psych_IQ_std 2.105 -1.086 -0.728 -1.788 -0.288 0.64 -0.132 -0.871
91 dataset_log_psych_MMPI_std 1.982 0.533 -0.545 -1.324 -0.516 0.501 -2.828 -0.453

109 dataset_binned_performance_std 2.654 0.89 -0.286 -0.753 0.473 -0.018 0.148 -5.601
111 dataset_binned_psych_std 2.536 2.33 -0.462 -3.235 0.335 0.996 -4.268 -1.598
113 dataset_binned_psych_JPI_R_std 2.344 -2.321 -0.953 2.348 -0.439 -0.625 -1.611 -1.409
117 dataset_binned_psych_MMPI_std 2.248 0.864 1.207 -2.041 -0.115 -0.392 -3.765 -0.992
142 dataset_numeric_pca_best 2.853 -6.415 1.964 0.895 -0.118 -0.365 -1.614 0.063
143 dataset_performance_pca_best 4.794 -31.414 32.267 -6.171 -0.14 -0.362 0.096 -2.417
144 dataset_psych_pca_best 2.383 -1.18 1.816 -3.746 -0.117 -0.234 -1.307 -0.215
146 dataset_psych_JPI_R_pca_best 2.328 1.724 -4.795 0.545 -0.366 -0.645 -0.842 -0.441
147 dataset_psych_MMPI_pca_best 2.006 3.259 -1.038 -5.398 -0.156 0.634 -1.163 -0.428
148 dataset_imputed_performance_pca_best 3.042 2.754 -2.626 -1.252 -0.211 -2.998 -0.331 -1.257
149 dataset_imputed_psych_pca_best 2.169 -0.742 2.078 -1.869 -0.24 -1.28 -0.731 -1.845
154 dataset_log_psych_pca_best 2.193 -0.966 0.324 -2.551 0.3 -0.498 -1.641 0.414
155 dataset_log_psych_JPI_R_pca_best 2.605 2.024 -1.103 -3.183 0.347 -0.639 -1.342 -1.593
157 dataset_log_psych_MMPI_pca_best 1.94 2.802 -2.173 -3.293 0.316 0.4 -0.717 -1.425
159 dataset_binned_psych_pca_best 2.253 -1.787 2.403 -3.354 -0.461 -0.022 -2.632 0.898
160 dataset_binned_psych_JPI_R_pca_best 2.11 0.172 -4.067 2.977 -0.114 -0.914 -0.888 -1.565
162 dataset_binned_psych_MMPI_pca_best 2.051 2.362 -7.211 4.335 0.204 -2.061 0.195 -1.89
234 dataset_apft_minimum_psych_std 2.815 -0.463 -0.642 -3.115 -0.376 1.164 -2.292 0.123
236 dataset_apft_minimum_psych_JPI_R_std 2 -3.28 3.067 -1.262 -0.811 -0.657 -0.561 -0.441
238 dataset_apft_minimum_psych_IQ_std 2.474 19.438 -17.089 -6.806 1.607 -0.93 0.123 -1.311
240 dataset_apft_minimum_psych_MMPI_std 1.904 0.224 1.739 -3.516 0.227 0.647 -2.532 -0.549

Stack Random Forest

TABLE B.10: Stack Random Forest Optimal Tuning Parameters

number dataset mtry
17 dataset_numeric_std 2
19 dataset_performance_std 2
33 dataset_psych_IQ_std 2
35 dataset_psych_JPI_R_std 2
37 dataset_psych_MMPI_std 4
38 dataset_psych_std 2
57 dataset_imputed_performance_std 2
59 dataset_imputed_psych_std 2
83 dataset_log_performance_std 2
85 dataset_log_psych_std 2
87 dataset_log_psych_JPI_R_std 4
89 dataset_log_psych_IQ_std 4
91 dataset_log_psych_MMPI_std 7

109 dataset_binned_performance_std 2
111 dataset_binned_psych_std 2
113 dataset_binned_psych_JPI_R_std 2
117 dataset_binned_psych_MMPI_std 2
142 dataset_numeric_pca_best 2
143 dataset_performance_pca_best 2
144 dataset_psych_pca_best 2
146 dataset_psych_JPI_R_pca_best 2
147 dataset_psych_MMPI_pca_best 2
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Table B.10 continued from previous page
number dataset mtry

148 dataset_imputed_performance_pca_best 2
149 dataset_imputed_psych_pca_best 2
154 dataset_log_psych_pca_best 4
155 dataset_log_psych_JPI_R_pca_best 7
157 dataset_log_psych_MMPI_pca_best 4
159 dataset_binned_psych_pca_best 2
160 dataset_binned_psych_JPI_R_pca_best 2
162 dataset_binned_psych_MMPI_pca_best 2
234 dataset_apft_minimum_psych_std 4
236 dataset_apft_minimum_psych_JPI_R_std 4
238 dataset_apft_minimum_psych_IQ_std 7
240 dataset_apft_minimum_psych_MMPI_std 2

B.2 Feature Importance
To be concise, but also show the holistic feature importance measures, we will share
the feature importance of only the data sets using all features with no feature en-
gineering, for both all candidates and candidates who scores above the minimum
fitness screening criteria. We will first provide a plot of the top 20 most important
features for each respective model and data set for an intuitive visualization, and
then the complete feature importance results using a table.

B.2.1 Penalized Logistic Regression (using Elastic Net)

FIGURE B.1: Top 20 Most Important Features with all candidates for
dataset_all using Penalized Logistic Regression
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TABLE B.11: Feature Importance with all candidates for dataset_all
using Penalized Logistic Regression

Feature Importance
apft_1_score 100

mos_OTHER_MOS 29.69
rank_PVT_PV2 28.57

rc4 13.9
glasses_FALSE 13.84

mos_18X 13.39
arrival_month_JAN_FEB_MAR_AUG_NOV 10.64

arrival_month_MAY 10.39
s10 10
aes 8.56

has_airborne_FALSE 8.01
rank_CPL_SGT 7.75

s13 7.27
s4 5.19

glasses_TRUE 4.05
race_WHITE 3.77

hlp 3.6
has_airborne_TRUE 2.99

rank_SPC 2.95
rbs 2.79
hpc 2.74

performance_iq 2.54
cog 2.45
sub 1.88

‘civilian_education_certification_HIGH SCHOOL DIPLOMA‘ 1.28
apft_1_run 1.25

mls 0.7
sfd 0.39
rc2 0.2
s1 0.12
sui 0.04

mos_19D_68W_11C_13F_11B 0
mos_35G_M_N_P 0

rank_PFC 0
race_OTHER 0

race_UNKNOWN 0
arrival_month_APR_JUN_DEC 0
arrival_month_JUL_SEP_OCT 0
arrival_month_UNKNOWN 0

tis_at_arrival 0
parents_together_FALSE 0
parents_together_TRUE 0

‘civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE‘ 0
‘civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE‘ 0

‘civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE‘ 0
civilian_education_certification_UNKNOWN 0

‘age_at_arrival_<=20‘ 0
‘age_at_arrival_>20‘ 0

age_at_arrival_UNKNOWN 0
gt_score 0

apft_1_pu 0
apft_1_su 0

s2 0
s3 0
s5 0
s6 0
s7 0
s8 0
s9 0
s11 0
s12 0
s14 0
s15 0
rci 0
inf 0
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Table B.11 continued from previous page
Feature Importance

mis 0
verbal_iq 0

full_scale_iq 0
vri_nr 0
tri_nr 0

fr 0
fpr 0
fs 0

fb_sr 0
lr 0
kr 0
eid 0
thd 0
bxd 0
r_cd 0
rc1 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
nuc 0
gic 0
nfc 0
stw 0
axy 0
anp 0
brf 0
msf 0
jcp 0
agg 0
act 0
fml 0
ipp 0
sav 0
shy 0
dsf 0
mec 0

agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0
pct_true 0
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FIGURE B.2: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

Penalized Logistic Regression

TABLE B.12: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using Penalized Logis-

tic Regression

Feature Importance
rank_PVT_PV2 100

mos_OTHER_MOS 97.97
apft_1_score 76.42

arrival_month_MAY 40.92
rank_SPC 39.1

rc4 39
s10 34.12

apft_1_su 31.67
s4 23.88
s13 22.32

full_scale_iq 21.91
aes 19.71
nfc 13.3

apft_1_pu 11.81
r_cd 8.78

has_airborne_FALSE 8.14
has_airborne_TRUE 7.72

rbs 6.62
inf 6.07
s1 5.76

performance_iq 5.18
parents_together_FALSE 4.91

sub 4.82
parents_together_TRUE 4.34

verbal_iq 3.47
rc2 3.18
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Table B.12 continued from previous page
Feature Importance

dsf 2.23
fs 0.92

tri_nr 0.17
mos_18X 0

mos_19D_68W_11C_13F_11B 0
mos_35G_M_N_P 0

rank_CPL_SGT 0
rank_PFC 0

race_OTHER 0
race_UNKNOWN 0

race_WHITE 0
arrival_month_APR_JUN_DEC 0

arrival_month_JAN_FEB_MAR_AUG_NOV 0
arrival_month_JUL_SEP_OCT 0
arrival_month_UNKNOWN 0

tis_at_arrival 0
glasses_FALSE 0
glasses_TRUE 0

‘civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE‘ 0
‘civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE‘ 0

‘civilian_education_certification_HIGH SCHOOL DIPLOMA‘ 0
‘civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE‘ 0

civilian_education_certification_UNKNOWN 0
‘age_at_arrival_<=20‘ 0
‘age_at_arrival_>20‘ 0

age_at_arrival_UNKNOWN 0
gt_score 0

apft_1_run 0
s2 0
s3 0
s5 0
s6 0
s7 0
s8 0
s9 0
s11 0
s12 0
s14 0
s15 0
rci 0
mis 0

vri_nr 0
fr 0

fpr 0
fb_sr 0

lr 0
kr 0
eid 0
thd 0
bxd 0
rc1 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
mls 0
hpc 0
nuc 0
gic 0
sui 0
hlp 0
sfd 0
cog 0
stw 0
axy 0
anp 0
brf 0
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Table B.12 continued from previous page
Feature Importance

msf 0
jcp 0
agg 0
act 0
fml 0
ipp 0
sav 0
shy 0
mec 0

agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0
pct_true 0

B.2.2 LDA

FIGURE B.3: Top 20 Most Important Features with all candidates for
dataset_numeric using LDA

TABLE B.13: Feature Importance with all candidates for
dataset_numeric using LDA

Feature Importance
apft_1_score 100
apft_1_pu 79.06
apft_1_su 73.63
apft_1_run 73.05
s13 39.69
r_cd 39.36
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Table B.13 continued from previous page
Feature Importance
s10 38.57
rc4 38.04
kr 37.76
cog 35.46
pct_true 35.25
eid 34.84
rc7 31.62
nfc 30.6
tis_at_arrival 30.57
fml 29.98
neg_er 29.42
rc3 28.79
vri_nr 28.46
fr 28.36
mls 27.49
sfd 27.17
rc2 26.31
jcp 26.23
psy_cr 26.08
bxd 26.06
rc8 26.01
thd 24.76
shy 24.43
dis_cr 23.16
fs 22.93
rc1 22.48
fpr 22.27
rc6 22.21
anp 22.03
sub 21.49
stw 21.37
s9 21.21
act 20.94
agg 20.17
lr 20.12
hlp 19.28
full_scale_iq 19.06
rc9 18.99
aes 17.44
nuc 17.41
performance_iq 17.14
s14 16.92
rbs 16.62
s15 16.22
s6 15.77
verbal_iq 15.5
rci 15.25
gt_score 15.09
sav 14.02
s8 12.28
int_rr 11.59
s1 11.45
brf 10.32
hpc 10.19
dsf 9.79
axy 8.17
s2 8.13
s12 7.2
msf 6.89
mec 6.63
tri_nr 4.84
inf 4.69
agg_rr 4.63
s11 4.62
gic 4.47
sui 4.34
s3 2.5
fb_sr 2.1
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Table B.13 continued from previous page
Feature Importance
mis 1.95
s4 0.65
s5 0.56
ipp 0.33
s7 0.03
cannot_say 0

FIGURE B.4: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_numeric

using LDA

TABLE B.14: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_numeric using LDA

Feature Importance
apft_1_score 100

apft_1_su 80.79
apft_1_pu 73.02

s10 67.22
rc4 64.17
s13 63.67

r_cd 62.84
nfc 62.29

apft_1_run 58.75
vri_nr 53.65

kr 50.64
neg_er 48.37

rc7 47.7
pct_true 47.12

jcp 46.31
eid 45.41
cog 44.66
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Table B.14 continued from previous page
Feature Importance

bxd 44.12
rc3 42.69

full_scale_iq 41.52
fr 41.07
fs 39.78

gt_score 39.76
psy_cr 39.1

thd 39.01
fml 39
rc1 38.49

dis_cr 37.89
rc8 37.4
sub 36.38
fpr 36.29

verbal_iq 36.22
rci 36.19
rc6 35.56

performance_iq 35.44
stw 35.41
mls 34.59
aes 34.2
rc2 33.89
shy 32.73
sfd 31.86
rbs 30.3
s15 29.35
s6 29.05

tis_at_arrival 28.46
act 25.98
rc9 25.22
nuc 25.21
sav 23.65
s9 22.92

agg 22.4
anp 22.1

tri_nr 19.41
s8 18.83

int_rr 18.09
brf 17.43
s1 17.22
lr 15.34

hlp 14.19
hpc 14.18
axy 13.92
msf 12.37
s4 10.63
s12 9.79
s14 9.78
inf 9.55
dsf 9.11

cannot_say 8.77
agg_rr 8.04

gic 7.58
s2 6.15

mec 3.84
s7 3.69
sui 3.56
s5 3.11

ipp 1.73
s11 1.32

fb_sr 1.03
s3 0.31

mis 0
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B.2.3 QDA

FIGURE B.5: Top 20 Most Important Features with all candidates for
dataset_numeric using QDA

TABLE B.15: Feature Importance with all candidates for
dataset_numeric using QDA

Feature Importance
apft_1_score 100

apft_1_pu 79.06
apft_1_su 73.63

apft_1_run 73.05
s13 39.69

r_cd 39.36
s10 38.57
rc4 38.04
kr 37.76

cog 35.46
pct_true 35.25

eid 34.84
rc7 31.62
nfc 30.6

tis_at_arrival 30.57
fml 29.98

neg_er 29.42
rc3 28.79

vri_nr 28.46
fr 28.36

mls 27.49
sfd 27.17
rc2 26.31
jcp 26.23

psy_cr 26.08
bxd 26.06



Appendix B. Model Details 93

Table B.15 continued from previous page
Feature Importance

rc8 26.01
thd 24.76
shy 24.43

dis_cr 23.16
fs 22.93

rc1 22.48
fpr 22.27
rc6 22.21
anp 22.03
sub 21.49
stw 21.37
s9 21.21
act 20.94
agg 20.17
lr 20.12

hlp 19.28
full_scale_iq 19.06

rc9 18.99
aes 17.44
nuc 17.41

performance_iq 17.14
s14 16.92
rbs 16.62
s15 16.22
s6 15.77

verbal_iq 15.5
rci 15.25

gt_score 15.09
sav 14.02
s8 12.28

int_rr 11.59
s1 11.45
brf 10.32
hpc 10.19
dsf 9.79
axy 8.17
s2 8.13
s12 7.2
msf 6.89
mec 6.63

tri_nr 4.84
inf 4.69

agg_rr 4.63
s11 4.62
gic 4.47
sui 4.34
s3 2.5

fb_sr 2.1
mis 1.95
s4 0.65
s5 0.56

ipp 0.33
s7 0.03

cannot_say 0
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FIGURE B.6: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_numeric

using QDA

TABLE B.16: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_numeric using QDA

Feature Importance
apft_1_score 100

apft_1_su 80.79
apft_1_pu 73.02

s10 67.22
rc4 64.17
s13 63.67

r_cd 62.84
nfc 62.29

apft_1_run 58.75
vri_nr 53.65

kr 50.64
neg_er 48.37

rc7 47.7
pct_true 47.12

jcp 46.31
eid 45.41
cog 44.66
bxd 44.12
rc3 42.69

full_scale_iq 41.52
fr 41.07
fs 39.78

gt_score 39.76
psy_cr 39.1

thd 39.01
fml 39
rc1 38.49

dis_cr 37.89
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Table B.16 continued from previous page
Feature Importance

rc8 37.4
sub 36.38
fpr 36.29

verbal_iq 36.22
rci 36.19
rc6 35.56

performance_iq 35.44
stw 35.41
mls 34.59
aes 34.2
rc2 33.89
shy 32.73
sfd 31.86
rbs 30.3
s15 29.35
s6 29.05

tis_at_arrival 28.46
act 25.98
rc9 25.22
nuc 25.21
sav 23.65
s9 22.92

agg 22.4
anp 22.1

tri_nr 19.41
s8 18.83

int_rr 18.09
brf 17.43
s1 17.22
lr 15.34

hlp 14.19
hpc 14.18
axy 13.92
msf 12.37
s4 10.63
s12 9.79
s14 9.78
inf 9.55
dsf 9.11

cannot_say 8.77
agg_rr 8.04

gic 7.58
s2 6.15

mec 3.84
s7 3.69
sui 3.56
s5 3.11

ipp 1.73
s11 1.32

fb_sr 1.03
s3 0.31

mis 0
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B.2.4 SVM

FIGURE B.7: Top 20 Most Important Features with all candidates for
dataset_all using SVM

TABLE B.17: Feature Importance with all candidates for dataset_all
using SVM

Feature Importance
apft_1_score 100

apft_1_pu 79.07
apft_1_su 73.64

apft_1_run 73.06
s13 39.72

rank_PVT_PV2 39.42
r_cd 39.38
s10 38.59
rc4 38.07
kr 37.79

cog 35.49
pct_true 35.28

eid 34.87
has_airborne_TRUE 31.72
has_airborne_FALSE 31.72

rc7 31.65
nfc 30.63

tis_at_arrival 30.6
fml 30.01

neg_er 29.45
rc3 28.82

vri_nr 28.49
fr 28.39

mls 27.52
sfd 27.2
rc2 26.34
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Table B.17 continued from previous page
Feature Importance

jcp 26.26
psy_cr 26.11

bxd 26.1
rc8 26.04
thd 24.8
shy 24.46

dis_cr 23.19
fs 22.97

rc1 22.51
fpr 22.3

rank_SPC 22.27
rc6 22.25
anp 22.07
sub 21.52
stw 21.41
s9 21.24
act 20.98
agg 20.21
lr 20.15

hlp 19.31
full_scale_iq 19.09

rc9 19.03
aes 17.48
nuc 17.44

performance_iq 17.17
s14 16.95
rbs 16.66
s15 16.25

age_at_arrival_<=20 16.17
age_at_arrival_>20 15.94

s6 15.81
verbal_iq 15.54

rci 15.29
mos_18X 15.17
gt_score 15.13

mos_OTHER_MOS 14.73
sav 14.05
s8 12.31

rank_PFC 11.92
int_rr 11.62

s1 11.48
civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE 10.38

brf 10.36
hpc 10.23
dsf 9.83

arrival_month_JAN_FEB_MAR_AUG_NOV 9.23
axy 8.21
s2 8.17
s12 7.24
msf 6.93
mec 6.67

race_WHITE 6.55
glasses_TRUE 5.94
glasses_FALSE 5.94

civilian_education_certification_HIGH SCHOOL DIPLOMA 5.78
rank_CPL_SGT 5.24

tri_nr 4.89
inf 4.73

agg_rr 4.68
s11 4.66
gic 4.51
sui 4.38

arrival_month_MAY 4.03
race_OTHER 3.9

civilian_education_certification_UNKNOWN 3.8
mos_19D_68W_11C_13F_11B 3.23

civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE 3
parents_together_FALSE 2.88
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Table B.17 continued from previous page
Feature Importance

parents_together_TRUE 2.88
mos_35G_M_N_P 2.78

arrival_month_APR_JUN_DEC 2.75
race_UNKNOWN 2.65

s3 2.54
arrival_month_JUL_SEP_OCT 2.46

civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE 2.2
fb_sr 2.15
mis 1.99
s4 0.69
s5 0.6

ipp 0.37
age_at_arrival_UNKNOWN 0.22

s7 0.07
cannot_say 0.04

arrival_month_UNKNOWN 0

FIGURE B.8: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

SVM

TABLE B.18: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using SVM

Feature Importance
apft_1_score 100

apft_1_su 81.06
apft_1_pu 73.4

s10 67.67
rank_PVT_PV2 65.65

rc4 64.67
s13 64.18
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Table B.18 continued from previous page
Feature Importance

r_cd 63.36
nfc 62.81

apft_1_run 59.33
vri_nr 54.3

kr 51.33
neg_er 49.09

rc7 48.43
pct_true 47.85

jcp 47.06
eid 46.17
cog 45.43
bxd 44.9
rc3 43.49

full_scale_iq 42.34
fr 41.89
fs 40.62

gt_score 40.59
psy_cr 39.95

thd 39.85
fml 39.85
rc1 39.35

dis_cr 38.75
rc8 38.27

rank_SPC 38.22
sub 37.27
fpr 37.17

verbal_iq 37.11
rci 37.08
rc6 36.45

performance_iq 36.33
stw 36.31
mls 35.5
aes 35.12
rc2 34.81
shy 33.66
sfd 32.81
rbs 31.27

mos_OTHER_MOS 30.96
has_airborne_FALSE 30.67
has_airborne_TRUE 30.67

s15 30.33
s6 30.04

tis_at_arrival 29.45
act 27.01

age_at_arrival_<=20 26.99
age_at_arrival_>20 26.51

rc9 26.26
nuc 26.25
sav 24.71
s9 23.99

agg 23.48
anp 23.19

rank_PFC 20.86
civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE 20.8

tri_nr 20.54
mos_18X 20.31

s8 19.96
int_rr 19.23

brf 18.57
s1 18.37
lr 16.52

hlp 15.38
hpc 15.38

race_WHITE 15.32
axy 15.12
msf 13.59

civilian_education_certification_HIGH SCHOOL DIPLOMA 12.37
s4 11.87
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Table B.18 continued from previous page
Feature Importance

parents_together_TRUE 11.07
parents_together_FALSE 11.07

s12 11.04
s14 11.04
inf 10.81
dsf 10.37

cannot_say 10.04
agg_rr 9.32

gic 8.86
arrival_month_JAN_FEB_MAR_AUG_NOV 8.83

race_OTHER 8.04
mos_19D_68W_11C_13F_11B 7.57

s2 7.45
race_UNKNOWN 7.29

glasses_FALSE 7.1
glasses_TRUE 7.1

arrival_month_MAY 7.05
rank_CPL_SGT 6.57

civilian_education_certification_UNKNOWN 6.11
mec 5.18
s7 5.03
sui 4.9

arrival_month_JUL_SEP_OCT 4.6
s5 4.46

civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE 3.16
ipp 3.09

mos_35G_M_N_P 3.07
arrival_month_APR_JUN_DEC 2.81

s11 2.69
fb_sr 2.41

s3 1.7
mis 1.39

civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE 0.85
age_at_arrival_UNKNOWN 0.48
arrival_month_UNKNOWN 0
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B.2.5 CART

FIGURE B.9: Top 20 Most Important Features with all candidates for
dataset_all using CART

TABLE B.19: Feature Importance with all candidates for dataset_all
using CART

Feature Importance
apft_1_score 100

apft_1_pu 55.7
apft_1_su 48.98

apft_1_run 45.33
rankPVT_PV2 30.57

rc4 9.4
pct_true 8.81

cog 5.6
has_airborneTRUE 4.42

r_cd 3.65
nfc 2.92
stw 2.81

mos19D_68W_11C_13F_11B 0
mos35G_M_N_P 0

mosOTHER_MOS 0
rankPFC 0
rankSPC 0

raceUNKNOWN 0
raceWHITE 0

arrival_monthJAN_FEB_MAR_AUG_NOV 0
arrival_monthJUL_SEP_OCT 0

arrival_monthMAY 0
arrival_monthUNKNOWN 0

tis_at_arrival 0
parents_togetherTRUE 0

glassesTRUE 0
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Table B.19 continued from previous page
Feature Importance

‘civilian_education_certificationBACHELORS DEGREE/MASTERS DEGREE‘ 0
‘civilian_education_certificationHIGH SCHOOL DIPLOMA‘ 0

‘civilian_education_certificationSOME COLLEGE/ASSOCIATES DEGREE‘ 0
civilian_education_certificationUNKNOWN 0

‘age_at_arrival>20‘ 0
age_at_arrivalUNKNOWN 0

gt_score 0
s1 0
s2 0
s3 0
s4 0
s5 0
s6 0
s7 0
s8 0
s9 0
s10 0
s11 0
s12 0
s13 0
s14 0
s15 0
rci 0
inf 0
mis 0

verbal_iq 0
performance_iq 0

full_scale_iq 0
vri_nr 0
tri_nr 0

fr 0
fpr 0
fs 0

fb_sr 0
rbs 0
lr 0
kr 0
eid 0
thd 0
bxd 0
rc1 0
rc2 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
mls 0
hpc 0
nuc 0
gic 0
sui 0
hlp 0
sfd 0
axy 0
anp 0
brf 0
msf 0
jcp 0
sub 0
agg 0
act 0
fml 0
ipp 0
sav 0
shy 0
dsf 0
aes 0
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Table B.19 continued from previous page
Feature Importance

mec 0
agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0

FIGURE B.10: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

CART

TABLE B.20: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using CART

Feature Importance
apft_1_score 100

rankPVT_PV2 80.06
apft_1_su 77.79

rc4 50.11
full_scale_iq 45.54

mosOTHER_MOS 43.4
apft_1_pu 37.37

nfc 33.48
s4 30.92

mos19D_68W_11C_13F_11B 28.9
s10 21.26

rankSPC 18.44
aes 18.19

verbal_iq 16.91
apft_1_run 14.95

r_cd 12.4
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Table B.20 continued from previous page
Feature Importance

sub 12.2
rankPFC 11.34

rc1 11.26
sfd 10.41

parents_togetherTRUE 8.2
fpr 5.34

mos35G_M_N_P 0
raceUNKNOWN 0

raceWHITE 0
arrival_monthJAN_FEB_MAR_AUG_NOV 0

arrival_monthJUL_SEP_OCT 0
arrival_monthMAY 0

arrival_monthUNKNOWN 0
tis_at_arrival 0

has_airborneTRUE 0
glassesTRUE 0

‘civilian_education_certificationBACHELORS DEGREE/MASTERS DEGREE‘ 0
‘civilian_education_certificationHIGH SCHOOL DIPLOMA‘ 0

‘civilian_education_certificationSOME COLLEGE/ASSOCIATES DEGREE‘ 0
civilian_education_certificationUNKNOWN 0

‘age_at_arrival>20‘ 0
age_at_arrivalUNKNOWN 0

gt_score 0
s1 0
s2 0
s3 0
s5 0
s6 0
s7 0
s8 0
s9 0
s11 0
s12 0
s13 0
s14 0
s15 0
rci 0
inf 0
mis 0

performance_iq 0
vri_nr 0
tri_nr 0

fr 0
fs 0

fb_sr 0
rbs 0
lr 0
kr 0
eid 0
thd 0
bxd 0
rc2 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
mls 0
hpc 0
nuc 0
gic 0
sui 0
hlp 0
cog 0
stw 0
axy 0
anp 0
brf 0
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Table B.20 continued from previous page
Feature Importance

msf 0
jcp 0
agg 0
act 0
fml 0
ipp 0
sav 0
shy 0
dsf 0
mec 0

agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0
pct_true 0

B.2.6 KNN

FIGURE B.11: Top 20 Most Important Features with all candidates
for dataset_all using KNN

TABLE B.21: Feature Importance with all candidates for dataset_all
using KNN

Feature Importance
apft_1_score 100

apft_1_pu 79.07
apft_1_su 73.64

apft_1_run 73.06
s13 39.72
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Table B.21 continued from previous page
Feature Importance

rank_PVT_PV2 39.42
r_cd 39.38
s10 38.59
rc4 38.07
kr 37.79

cog 35.49
pct_true 35.28

eid 34.87
has_airborne_TRUE 31.72
has_airborne_FALSE 31.72

rc7 31.65
nfc 30.63

tis_at_arrival 30.6
fml 30.01

neg_er 29.45
rc3 28.82

vri_nr 28.49
fr 28.39

mls 27.52
sfd 27.2
rc2 26.34
jcp 26.26

psy_cr 26.11
bxd 26.1
rc8 26.04
thd 24.8
shy 24.46

dis_cr 23.19
fs 22.97

rc1 22.51
fpr 22.3

rank_SPC 22.27
rc6 22.25
anp 22.07
sub 21.52
stw 21.41
s9 21.24
act 20.98
agg 20.21
lr 20.15

hlp 19.31
full_scale_iq 19.09

rc9 19.03
aes 17.48
nuc 17.44

performance_iq 17.17
s14 16.95
rbs 16.66
s15 16.25

age_at_arrival_<=20 16.17
age_at_arrival_>20 15.94

s6 15.81
verbal_iq 15.54

rci 15.29
mos_18X 15.17
gt_score 15.13

mos_OTHER_MOS 14.73
sav 14.05
s8 12.31

rank_PFC 11.92
int_rr 11.62

s1 11.48
civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE 10.38

brf 10.36
hpc 10.23
dsf 9.83

arrival_month_JAN_FEB_MAR_AUG_NOV 9.23
axy 8.21
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Table B.21 continued from previous page
Feature Importance

s2 8.17
s12 7.24
msf 6.93
mec 6.67

race_WHITE 6.55
glasses_TRUE 5.94
glasses_FALSE 5.94

civilian_education_certification_HIGH SCHOOL DIPLOMA 5.78
rank_CPL_SGT 5.24

tri_nr 4.89
inf 4.73

agg_rr 4.68
s11 4.66
gic 4.51
sui 4.38

arrival_month_MAY 4.03
race_OTHER 3.9

civilian_education_certification_UNKNOWN 3.8
mos_19D_68W_11C_13F_11B 3.23

civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE 3
parents_together_FALSE 2.88
parents_together_TRUE 2.88

mos_35G_M_N_P 2.78
arrival_month_APR_JUN_DEC 2.75

race_UNKNOWN 2.65
s3 2.54

arrival_month_JUL_SEP_OCT 2.46
civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE 2.2

fb_sr 2.15
mis 1.99
s4 0.69
s5 0.6

ipp 0.37
age_at_arrival_UNKNOWN 0.22

s7 0.07
cannot_say 0.04

arrival_month_UNKNOWN 0
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FIGURE B.12: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

KNN

TABLE B.22: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using KNN

Feature Importance
apft_1_score 100

apft_1_su 81.06
apft_1_pu 73.4

s10 67.67
rank_PVT_PV2 65.65

rc4 64.67
s13 64.18

r_cd 63.36
nfc 62.81

apft_1_run 59.33
vri_nr 54.3

kr 51.33
neg_er 49.09

rc7 48.43
pct_true 47.85

jcp 47.06
eid 46.17
cog 45.43
bxd 44.9
rc3 43.49

full_scale_iq 42.34
fr 41.89
fs 40.62

gt_score 40.59
psy_cr 39.95

thd 39.85
fml 39.85
rc1 39.35
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Table B.22 continued from previous page
Feature Importance
dis_cr 38.75

rc8 38.27
rank_SPC 38.22

sub 37.27
fpr 37.17

verbal_iq 37.11
rci 37.08
rc6 36.45

performance_iq 36.33
stw 36.31
mls 35.5
aes 35.12
rc2 34.81
shy 33.66
sfd 32.81
rbs 31.27

mos_OTHER_MOS 30.96
has_airborne_FALSE 30.67
has_airborne_TRUE 30.67

s15 30.33
s6 30.04

tis_at_arrival 29.45
act 27.01

age_at_arrival_<=20 26.99
age_at_arrival_>20 26.51

rc9 26.26
nuc 26.25
sav 24.71
s9 23.99

agg 23.48
anp 23.19

rank_PFC 20.86
civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE 20.8

tri_nr 20.54
mos_18X 20.31

s8 19.96
int_rr 19.23

brf 18.57
s1 18.37
lr 16.52

hlp 15.38
hpc 15.38

race_WHITE 15.32
axy 15.12
msf 13.59

civilian_education_certification_HIGH SCHOOL DIPLOMA 12.37
s4 11.87

parents_together_TRUE 11.07
parents_together_FALSE 11.07

s12 11.04
s14 11.04
inf 10.81
dsf 10.37

cannot_say 10.04
agg_rr 9.32

gic 8.86
arrival_month_JAN_FEB_MAR_AUG_NOV 8.83

race_OTHER 8.04
mos_19D_68W_11C_13F_11B 7.57

s2 7.45
race_UNKNOWN 7.29

glasses_FALSE 7.1
glasses_TRUE 7.1

arrival_month_MAY 7.05
rank_CPL_SGT 6.57

civilian_education_certification_UNKNOWN 6.11
mec 5.18
s7 5.03
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Table B.22 continued from previous page
Feature Importance

sui 4.9
arrival_month_JUL_SEP_OCT 4.6

s5 4.46
civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE 3.16

ipp 3.09
mos_35G_M_N_P 3.07

arrival_month_APR_JUN_DEC 2.81
s11 2.69

fb_sr 2.41
s3 1.7

mis 1.39
civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE 0.85

age_at_arrival_UNKNOWN 0.48
arrival_month_UNKNOWN 0

B.2.7 Random Forest

FIGURE B.13: Top 20 Most Important Features with all candidates
for dataset_all using Random Forest

TABLE B.23: Feature Importance with all candidates for dataset_all
using Random Forest

Feature Importance
apft_1_score 100

apft_1_pu 79.06
apft_1_su 73.63

apft_1_run 73.05
s13 39.69

r_cd 39.36
s10 38.57
rc4 38.04
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Table B.23 continued from previous page
Feature Importance

kr 37.76
cog 35.46

pct_true 35.25
eid 34.84

has_airborne 31.69
rc7 31.62
nfc 30.6

tis_at_arrival 30.57
fml 29.98

neg_er 29.42
rc3 28.79

vri_nr 28.46
fr 28.36

mls 27.49
sfd 27.17
rc2 26.31
jcp 26.23

psy_cr 26.08
bxd 26.06
rc8 26.01
thd 24.76
shy 24.43
mos 23.9

dis_cr 23.16
fs 22.93

rc1 22.48
fpr 22.27
rc6 22.21
anp 22.03
sub 21.49
stw 21.37
s9 21.21
act 20.94
agg 20.17
lr 20.12

hlp 19.28
full_scale_iq 19.06

rc9 18.99
aes 17.44
nuc 17.41

performance_iq 17.14
s14 16.92
rbs 16.62

age_at_arrival 16.22
s15 16.22
s6 15.77

verbal_iq 15.5
rci 15.25

gt_score 15.09
sav 14.02
s8 12.28

int_rr 11.59
s1 11.45
brf 10.32
hpc 10.19
dsf 9.79
axy 8.17
s2 8.13
s12 7.2

civilian_education_certification 7.07
msf 6.89
mec 6.63
race 6.62

glasses 5.9
tri_nr 4.84

inf 4.69
agg_rr 4.63

s11 4.62
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Table B.23 continued from previous page
Feature Importance

gic 4.47
sui 4.34

arrival_month 3.8
parents_together 2.83

s3 2.5
fb_sr 2.1
mis 1.95
rank 1.53

s4 0.65
s5 0.56

ipp 0.33
s7 0.03

cannot_say 0

FIGURE B.14: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

Random Forest

TABLE B.24: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using Random Forest

Feature Importance
apft_1_score 100

apft_1_su 80.79
apft_1_pu 73.02

s10 67.22
rc4 64.17
s13 63.67

r_cd 62.84
nfc 62.29

apft_1_run 58.75
vri_nr 53.65
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Table B.24 continued from previous page
Feature Importance

kr 50.64
neg_er 48.37

rc7 47.7
pct_true 47.12

jcp 46.31
eid 45.41
cog 44.66
bxd 44.12
rc3 42.69

mos 41.72
full_scale_iq 41.52

fr 41.07
fs 39.78

gt_score 39.76
psy_cr 39.1

thd 39.01
fml 39
rc1 38.49

dis_cr 37.89
rc8 37.4
sub 36.38
fpr 36.29

verbal_iq 36.22
rci 36.19
rc6 35.56

performance_iq 35.44
stw 35.41
mls 34.59
aes 34.2
rc2 33.89
shy 32.73
sfd 31.86
rbs 30.3

has_airborne 29.69
s15 29.35
s6 29.05

tis_at_arrival 28.46
age_at_arrival 26.17

act 25.98
rc9 25.22
nuc 25.21
sav 23.65
s9 22.92

agg 22.4
anp 22.1

tri_nr 19.41
s8 18.83

int_rr 18.09
brf 17.43
s1 17.22

civilian_education_certification 16.8
lr 15.34

hlp 14.19
hpc 14.18
race 14.1
axy 13.92
msf 12.37

arrival_month 11.23
s4 10.63

parents_together 9.82
s12 9.79
s14 9.78
inf 9.55
dsf 9.11

cannot_say 8.77
agg_rr 8.04

gic 7.58
s2 6.15
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Table B.24 continued from previous page
Feature Importance
glasses 5.79

rank 4.27
mec 3.84
s7 3.69
sui 3.56
s5 3.11

ipp 1.73
s11 1.32

fb_sr 1.03
s3 0.31

mis 0

B.2.8 xgboost

FIGURE B.15: Top 20 Most Important Features with all candidates
for dataset_all using xgboost

TABLE B.25: Feature Importance with all candidates for dataset_all
using xgboost

Feature Importance
apft_1_score 100
tis_at_arrival 10.92

apft_1_pu 10.1
rc4 6.81
s13 5.16
rci 4.27

mosOTHER_MOS 4.2
verbal_iq 3.6

s4 3.42
performance_iq 3.37

s10 3.31
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Table B.25 continued from previous page
Feature Importance

rankPVT_PV2 3.24
s5 3.22

cog 3.07
mec 2.85

apft_1_run 2.76
full_scale_iq 2.63

aes 2.46
int_rr 2.31

pct_true 2.13
act 1.96
s15 1.93
jcp 1.87

r_cd 1.8
inf 1.77

gt_score 1.75
shy 1.72
s12 1.69
kr 1.55

agg 1.47
hpc 1.39
dsf 1.39
rbs 1.33
s7 1.33

ipp 1.29
s11 1.27
mis 1.22

psy_cr 1.2
arrival_monthJAN_FEB_MAR_AUG_NOV 1.17

has_airborneTRUE 1.13
s8 1.01

arrival_monthMAY 1
rc3 0.99
rc2 0.95
mls 0.93

apft_1_su 0.86
rankSPC 0.84

sub 0.83
glassesFALSE 0.81

s1 0.81
fr 0.77

thd 0.76
stw 0.75
msf 0.73
rc8 0.71
rc7 0.68

agg_rr 0.66
s3 0.66
rc6 0.63
rc1 0.61
eid 0.6
fpr 0.59
s14 0.56

has_airborneFALSE 0.55
rc9 0.54

raceOTHER 0.52
s6 0.5

neg_er 0.47
lr 0.46

fb_sr 0.45
sav 0.43
fs 0.43

vri_nr 0.4
s2 0.39

hlp 0.33
bxd 0.29
sfd 0.25
nuc 0.22
fml 0.2



Appendix B. Model Details 116

Table B.25 continued from previous page
Feature Importance

sui 0.18
age_at_arrival<=20 0.16

tri_nr 0.01
mos18X 0

mos19D_68W_11C_13F_11B 0
mos35G_M_N_P 0

rankCPL_SGT 0
rankPFC 0

raceUNKNOWN 0
raceWHITE 0

arrival_monthAPR_JUN_DEC 0
arrival_monthJUL_SEP_OCT 0
arrival_monthUNKNOWN 0

parents_togetherFALSE 0
parents_togetherTRUE 0

glassesTRUE 0
civilian_education_certificationALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE 0

civilian_education_certificationBACHELORS DEGREE/MASTERS DEGREE 0
civilian_education_certificationHIGH SCHOOL DIPLOMA 0

civilian_education_certificationSOME COLLEGE/ASSOCIATES DEGREE 0
civilian_education_certificationUNKNOWN 0

age_at_arrival>20 0
age_at_arrivalUNKNOWN 0

s9 0
gic 0
nfc 0
axy 0
anp 0
brf 0

dis_cr 0
cannot_say 0
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FIGURE B.16: Top 20 Most Important Features with candidates who
scored above the minimum fitness test score for dataset_all using

xgboost

TABLE B.26: Feature Importance with candidates who scored above
the minimum fitness test score for dataset_all using xgboost

Feature Importance
apft_1_score 100

rankPVT_PV2 46.19
rc4 28.21
s10 26.22

mosOTHER_MOS 21.28
apft_1_su 20.21

full_scale_iq 19.88
s13 16.33
nfc 16.2
s4 15.42

pct_true 10.65
gt_score 9.93

apft_1_pu 8.69
rci 8.46
s1 7.62
dsf 6.78
lr 6.71

tis_at_arrival 5.56
performance_iq 5.4

int_rr 4.97
inf 4.28
rc1 4.06

apft_1_run 4.02
s9 3.86
s15 3.46
eid 3.16

psy_cr 2.69
rbs 2.35
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Table B.26 continued from previous page
Feature Importance

shy 2.25
mls 2.14

verbal_iq 2.09
rc9 1.96
s11 1.79
ipp 1.73
mis 1.64
jcp 1.62

cannot_say 1.62
fr 1.61

cog 1.56
hpc 1.52
fml 1.5
sub 1.48
msf 1.44
sfd 1.39
s2 1.38
s5 1.37
rc3 1.32

mos19D_68W_11C_13F_11B 0
mos35G_M_N_P 0

rankPFC 0
rankSPC 0

raceUNKNOWN 0
raceWHITE 0

arrival_monthJAN_FEB_MAR_AUG_NOV 0
arrival_monthJUL_SEP_OCT 0

arrival_monthMAY 0
arrival_monthUNKNOWN 0

parents_togetherTRUE 0
has_airborneTRUE 0

glassesTRUE 0
civilian_education_certificationBACHELORS DEGREE/MASTERS DEGREE 0

civilian_education_certificationHIGH SCHOOL DIPLOMA 0
civilian_education_certificationSOME COLLEGE/ASSOCIATES DEGREE 0

civilian_education_certificationUNKNOWN 0
age_at_arrival>20 0

age_at_arrivalUNKNOWN 0
s3 0
s6 0
s7 0
s8 0
s12 0
s14 0

vri_nr 0
tri_nr 0

fpr 0
fs 0

fb_sr 0
kr 0

thd 0
bxd 0
r_cd 0
rc2 0
rc6 0
rc7 0
rc8 0
nuc 0
gic 0
sui 0
hlp 0
stw 0
axy 0
anp 0
brf 0
agg 0
act 0
sav 0
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Table B.26 continued from previous page
Feature Importance

aes 0
mec 0

agg_rr 0
dis_cr 0
neg_er 0

B.3 Model Coefficients
The only models that used coefficients were Penalized Logistic Regression and LDA.
To be concise, but also show the holistic feature importance measures, we will share
the feature importance of only the data sets using all features with no feature en-
gineering, for both all candidates and candidates who scores above the minimum
fitness screening criteria.

The coefficients are ordered by the maximum absolute value to least. The larger
the coefficient, the more important it is in prediction. Also, coefficients have an in-
verse relationship to the response feature. If the coefficient is negative, it means
that it impacted selection positively (e.g. apft_1_score is negative so it means can-
didates with high fitness test scores were more likely to be selected). If the coeffi-
cient is positive, it means that it impacted selection negatively (e.g. if a candidate is
rank_PVT_PVT, then it means they were less likely to be selected).

B.3.1 Penalized Logistic Regression (using Elastic Net)

TABLE B.27: Model Coefficients with all candidates for dataset_all
using Penalized Logistic Regression

Feature Coefficient
apft_1_score -1.39455
(Intercept) 0.41729

mos_OTHER_MOS 0.41406
rank_PVT_PV2 0.39843

rc4 0.19387
glasses_FALSE -0.19306

mos_18X -0.18679
arrival_month_JAN_FEB_MAR_AUG_NOV -0.14838

arrival_month_MAY 0.14485
s10 -0.13951
aes 0.11933

has_airborne_FALSE 0.11169
rank_CPL_SGT -0.10809

s13 -0.10137
s4 0.07238

glasses_TRUE 0.05641
race_WHITE -0.05255

hlp 0.05015
has_airborne_TRUE -0.0417

rank_SPC -0.04118
rbs 0.0389
hpc -0.03819

performance_iq -0.03542
cog 0.0342
sub 0.02624

‘civilian_education_certification_HIGH SCHOOL DIPLOMA‘ -0.01791
apft_1_run 0.01742

mls 0.00978
sfd 0.00544
rc2 0.00281
s1 0.00165
sui 5.80E-04

mos_19D_68W_11C_13F_11B 0
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Table B.27 continued from previous page
Feature Coefficient

mos_35G_M_N_P 0
rank_PFC 0

race_OTHER 0
race_UNKNOWN 0

arrival_month_APR_JUN_DEC 0
arrival_month_JUL_SEP_OCT 0
arrival_month_UNKNOWN 0

tis_at_arrival 0
parents_together_FALSE 0
parents_together_TRUE 0

‘civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE‘ 0
‘civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE‘ 0

‘civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE‘ 0
civilian_education_certification_UNKNOWN 0

‘age_at_arrival_<=20‘ 0
‘age_at_arrival_>20‘ 0

age_at_arrival_UNKNOWN 0
gt_score 0

apft_1_pu 0
apft_1_su 0

s2 0
s3 0
s5 0
s6 0
s7 0
s8 0
s9 0
s11 0
s12 0
s14 0
s15 0
rci 0
inf 0
mis 0

verbal_iq 0
full_scale_iq 0

vri_nr 0
tri_nr 0

fr 0
fpr 0
fs 0

fb_sr 0
lr 0
kr 0
eid 0
thd 0
bxd 0
r_cd 0
rc1 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
nuc 0
gic 0
nfc 0
stw 0
axy 0
anp 0
brf 0
msf 0
jcp 0
agg 0
act 0
fml 0
ipp 0
sav 0
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Table B.27 continued from previous page
Feature Coefficient

shy 0
dsf 0
mec 0

agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0
pct_true 0

TABLE B.28: Model Coefficients with candidates who scored above
the minimum fitness test score for dataset_all using Penalized Logis-

tic Regression

Feature Coefficient
rank_PVT_PV2 0.38842

mos_OTHER_MOS 0.38054
apft_1_score -0.29684
(Intercept) -0.2826

arrival_month_MAY 0.15892
rank_SPC -0.15189

rc4 0.15148
s10 -0.13254

apft_1_su -0.12301
s4 0.09276
s13 -0.08668

full_scale_iq -0.08509
aes 0.07655
nfc 0.05165

apft_1_pu -0.04588
r_cd 0.03412

has_airborne_FALSE 0.03162
has_airborne_TRUE -0.02998

rbs 0.02571
inf -0.02357
s1 0.02236

performance_iq -0.02013
parents_together_FALSE 0.01906

sub 0.01873
parents_together_TRUE -0.01684

verbal_iq -0.01347
rc2 0.01234
dsf -0.00868
fs 0.00359

tri_nr 6.60E-04
mos_18X 0

mos_19D_68W_11C_13F_11B 0
mos_35G_M_N_P 0

rank_CPL_SGT 0
rank_PFC 0

race_OTHER 0
race_UNKNOWN 0

race_WHITE 0
arrival_month_APR_JUN_DEC 0

arrival_month_JAN_FEB_MAR_AUG_NOV 0
arrival_month_JUL_SEP_OCT 0
arrival_month_UNKNOWN 0

tis_at_arrival 0
glasses_FALSE 0
glasses_TRUE 0

‘civilian_education_certification_ALTERNATIVE HIGH SCHOOL/EQUIVALENCY CERTIFICATE‘ 0
‘civilian_education_certification_BACHELORS DEGREE/MASTERS DEGREE‘ 0

‘civilian_education_certification_HIGH SCHOOL DIPLOMA‘ 0
‘civilian_education_certification_SOME COLLEGE/ASSOCIATES DEGREE‘ 0

civilian_education_certification_UNKNOWN 0
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Table B.28 continued from previous page
Feature Coefficient

‘age_at_arrival_<=20‘ 0
‘age_at_arrival_>20‘ 0

age_at_arrival_UNKNOWN 0
gt_score 0

apft_1_run 0
s2 0
s3 0
s5 0
s6 0
s7 0
s8 0
s9 0
s11 0
s12 0
s14 0
s15 0
rci 0
mis 0

vri_nr 0
fr 0

fpr 0
fb_sr 0

lr 0
kr 0
eid 0
thd 0
bxd 0
rc1 0
rc3 0
rc6 0
rc7 0
rc8 0
rc9 0
mls 0
hpc 0
nuc 0
gic 0
sui 0
hlp 0
sfd 0
cog 0
stw 0
axy 0
anp 0
brf 0
msf 0
jcp 0
agg 0
act 0
fml 0
ipp 0
sav 0
shy 0
mec 0

agg_rr 0
psy_cr 0
dis_cr 0
neg_er 0
int_rr 0

cannot_say 0
pct_true 0

B.3.2 LDA
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TABLE B.29: Model Coefficients with all candidates for
dataset_numeric using LDA

Feature Coefficient
rci -0.40045

full_scale_iq -0.18929
verbal_iq 0.10102

performance_iq 0.08463
rc4 0.04826
eid -0.04676
s10 -0.03658
s13 -0.03252
s15 0.03036

r_cd 0.03
s4 0.02957

psy_cr 0.02889
s9 0.02695
aes 0.02683

apft_1_score -0.02607
anp 0.02462
hpc -0.02361
s1 0.02283
rc2 0.02156
bxd -0.02084
s2 -0.02012
s5 -0.01888

thd -0.01758
s11 -0.01583
rc8 -0.01554
rc9 -0.01518
s6 -0.01499

agg_rr 0.01495
shy 0.01413
cog 0.01396
s12 0.01363

apft_1_pu -0.01286
hlp 0.01186
sui 0.01133
dsf -0.01078
stw 0.00976
rbs 0.0092
jcp -0.00893
mis -0.00888

dis_cr 0.00848
s14 0.00802
rc7 -0.00778

vri_nr -0.00741
agg -0.00738
act 0.00709
rc6 0.00696
kr -0.00694

sav 0.0067
mec -0.00668
fb_sr 0.006
tri_nr -0.00589

fs 0.00586
fr -0.00582

rc1 -0.00528
rc3 0.00525
s3 0.00524

apft_1_su -0.00487
inf -0.00487
axy -0.00465
s7 -0.00452

sub 0.00444
msf -0.00384
mls 0.00363
fpr 0.00344

pct_true 0.00324
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Table B.29 continued from previous page
Feature Coefficient

fml -0.00242
nuc -0.0019

neg_er -0.00188
nfc -0.00185
ipp -0.00172
brf 0.00155

apft_1_run 0.00139
int_rr 0.00123

gt_score -0.0012
s8 0
lr 0

sfd 0
tis_at_arrival 0

gic 0
cannot_say 0

TABLE B.30: Model Coefficients with candidates who scored above
the minimum fitness test score for dataset_numeric using LDA

Feature Coefficient
rci -0.32582
s10 -0.09178

full_scale_iq -0.08013
s4 0.0725
rc4 0.07101
s9 0.06379
s13 -0.05606
eid -0.05096
s1 0.04434
s5 -0.0413

verbal_iq 0.03961
dis_cr -0.03775

s11 -0.03347
apft_1_score -0.0307

agg -0.03038
rc2 0.02955

pct_true 0.02769
r_cd 0.02499
rc8 -0.02475

performance_iq 0.02197
cannot_say 0.02184

aes 0.02098
hpc -0.01997
sfd 0.01986
s14 0.01941

apft_1_su -0.01917
inf -0.01842
sui 0.01838
s15 0.01814
dsf -0.0172

tri_nr 0.01639
psy_cr 0.01627

bxd 0.01626
apft_1_pu -0.01476

nfc 0.01461
msf -0.01449

int_rr 0.01438
fml -0.01355
shy 0.01298
rc7 0.01259
mis 0.01207
nuc -0.01177
rc9 0.01132
thd 0.01117
rc3 0.01106
kr 0.01048
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Table B.30 continued from previous page
Feature Coefficient
agg_rr 0.0098

jcp -0.00891
rbs 0.00799
fs 0.00795
fr -0.00777

ipp -0.00744
s8 -0.00743
lr 0.00724

anp 0.00677
sav 0.00675

gt_score -0.00614
cog 0.00508
gic 0.0049
brf 0.00487

mec 0.00467
vri_nr 0.00419

s6 -0.00406
rc1 0.00404
s7 -0.0037
fpr -0.00308

fb_sr 0.00301
neg_er -0.00286

stw 0.00284
s2 -0.00278

mls 0.00274
rc6 0.00244
s3 -0.0021

sub -0.0019
act -0.00176
s12 -0.00107

apft_1_run 0
hlp 0
axy 0

tis_at_arrival 0

B.4 CART Trees
This section has all the CART trees for all 9 data subsets using all candidates and
candidates who scored above the minimum fitness screening criteria.
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B.4.1 All candidates

FIGURE B.17: CART Tree with all candidates for dataset_admin

FIGURE B.18: CART Tree with all candidates for dataset_all
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FIGURE B.19: CART Tree with all candidates for dataset_numeric

FIGURE B.20: CART Tree with all candidates for
dataset_performance
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FIGURE B.21: CART Tree with all candidates for dataset_psych

FIGURE B.22: CART Tree with all candidates for
dataset_psych_JPI_R
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FIGURE B.23: CART Tree with all candidates for dataset_psych_IQ

FIGURE B.24: CART Tree with all candidates for
dataset_psych_MMPI
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FIGURE B.25: CART Tree with all candidates for dataset_best_10

FIGURE B.26: CART Tree with all candidates for dataset_best_20
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B.4.2 Candidates who met minimum fitness screening criteria

FIGURE B.27: CART Tree with candidates who scored above the
minimum fitness test score for dataset_admin

FIGURE B.28: CART Tree with candidates who scored above the
minimum fitness test score for dataset_all
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FIGURE B.29: CART Tree with candidates who scored above the
minimum fitness test score for dataset_numeric

FIGURE B.30: CART Tree with candidates who scored above the
minimum fitness test score for dataset_performance
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FIGURE B.31: CART Tree with candidates who scored above the
minimum fitness test score for dataset_psych

FIGURE B.32: CART Tree with candidates who scored above the
minimum fitness test score for dataset_psych_JPI_R
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FIGURE B.33: CART Tree with candidates who scored above the
minimum fitness test score for dataset_psych_IQ

FIGURE B.34: CART Tree with candidates who scored above the
minimum fitness test score for dataset_psych_MMPI
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Appendix C

Tables and Figures

C.1 PCA Analysis Results

TABLE C.1: PCA Analysis Results Summary

number dataset PCs Cumulative
Variance accuracy precision_PPV NPV sensitivity specificity kappa f1

1 dataset_all_pca 6 0.47 0.72 0.58 0.87 0.83 0.65 0.44 0.68
2 dataset_numeric_pca 6 0.47 0.72 0.58 0.87 0.83 0.65 0.44 0.68
3 dataset_performance_pca 2 0.77 0.7 0.54 0.85 0.78 0.66 0.39 0.64
4 dataset_psych_pca 24 0.76 0.61 0.44 0.77 0.63 0.6 0.21 0.52
5 dataset_psych_IQ_pca 1 0.86 0.53 0.34 0.71 0.53 0.53 0.05 0.41
6 dataset_psych_JPI_R_pca 14 0.91 0.58 0.4 0.75 0.62 0.55 0.15 0.49
7 dataset_psych_MMPI_pca 7 0.6 0.62 0.44 0.77 0.61 0.62 0.21 0.51
8 dataset_imputed_performance_pca 5 1 0.78 0.54 0.87 0.63 0.83 0.43 0.58
9 dataset_imputed_psych_pca 19 0.72 0.63 0.36 0.83 0.6 0.65 0.2 0.45
10 dataset_imputed_psych_JPI_R_pca 17 0.98 0.7 0.39 0.8 0.38 0.81 0.19 0.39
11 dataset_imputed_psych_IQ_pca 2 0.99 0.62 0.29 0.77 0.39 0.69 0.07 0.33
12 dataset_imputed_psych_MMPI_pca 12 0.72 0.65 0.36 0.81 0.51 0.7 0.19 0.42
13 dataset_log_performance_pca 1 0.56 0.7 0.54 0.85 0.77 0.66 0.39 0.64
14 dataset_log_psych_pca 22 0.73 0.6 0.43 0.75 0.62 0.59 0.18 0.51
15 dataset_log_psych_JPI_R_pca 11 0.82 0.59 0.41 0.76 0.61 0.58 0.17 0.49
16 dataset_log_psych_IQ_pca 1 0.86 0.52 0.34 0.72 0.56 0.5 0.05 0.42
17 dataset_log_psych_MMPI_pca 10 0.65 0.62 0.44 0.77 0.63 0.61 0.22 0.52
18 dataset_binned_performance_pca 4 0.98 0.7 0.55 0.83 0.74 0.68 0.39 0.63
19 dataset_binned_psych_pca 18 0.7 0.65 0.48 0.8 0.68 0.63 0.28 0.56
20 dataset_binned_psych_JPI_R_pca 6 0.6 0.64 0.46 0.77 0.59 0.67 0.24 0.52
21 dataset_binned_psych_IQ_pca 1 0.81 0.52 0.33 0.71 0.54 0.51 0.04 0.41
22 dataset_binned_psych_MMPI_pca 2 0.43 0.6 0.44 0.83 0.79 0.52 0.25 0.57



Appendix C. Tables and Figures 136

C.2 Contingency Table Plots for All Features
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C.3 Complete Results
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TABLE C.2: Complete Results for all models and data subsets

Model Data Subset n Selected Not
Selected

Percent
Selected Accuracy PPV NPV Sensivitiy Specificity Kappa F1

LDA dataset_numeric 3095 1125 1970 36.35 73.06 62.25 79.76 65.58 77.33 42.42 63.87
LDA dataset_performance 8156 2798 5358 34.31 70.77 55.46 84.05 75.09 68.51 40.2 63.8
LDA dataset_psych 3544 1182 2362 33.35 63.09 45.52 74.76 54.52 67.37 20.86 49.61
LDA dataset_psych_IQ 7286 2273 5013 31.2 52.98 33.92 71.48 53.6 52.69 5.43 41.55
LDA dataset_psych_JPI_R 5506 1781 3725 32.35 61.66 42.28 73.96 50.75 66.88 16.75 46.13
LDA dataset_psych_MMPI 5298 1740 3558 32.84 60.29 42.18 74.44 56.32 62.23 17.09 48.24
LDA dataset_imputed_numeric 11885 2939 8946 24.73 77.86 53.99 89.26 70.6 80.25 46.09 61.19
LDA dataset_imputed_performance 11885 2939 8946 24.73 77.64 54.11 87.1 62.77 82.52 42.98 58.12
LDA dataset_imputed_psych 11885 2939 8946 24.73 68.57 39.15 81.73 48.92 75.03 22.1 43.49
LDA dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 70.31 39.72 80.06 38.82 80.66 19.63 39.27
LDA dataset_imputed_psych_IQ 11885 2939 8946 24.73 67.54 31.4 77.04 26.45 81.03 7.89 28.71
LDA dataset_imputed_psych_MMPI 11885 2939 8946 24.73 69.39 39.22 80.73 43.36 77.94 20.57 41.19
LDA dataset_log_numeric 3095 1125 1970 36.35 71.55 57.95 84.86 78.93 67.34 42.94 66.83
LDA dataset_log_performance 8156 2798 5358 34.31 70.4 54.87 84.9 77.23 66.83 40.16 64.16
LDA dataset_log_psych 3544 1182 2362 33.35 62.99 45.41 74.73 54.52 67.23 20.71 49.55
LDA dataset_log_psych_JPI_R 5506 1781 3725 32.35 60.99 41.67 73.86 51.5 65.53 16.04 46.06
LDA dataset_log_psych_IQ 7286 2273 5013 31.2 52.29 33.87 71.64 55.65 50.77 5.46 42.11
LDA dataset_log_psych_MMPI 5298 1740 3558 32.84 60.67 42.44 74.34 55.36 63.26 17.28 48.05
LDA dataset_binned_numeric 3095 1125 1970 36.35 73.17 61.11 82.14 71.81 73.94 44.09 66.03
LDA dataset_binned_performance 8156 2798 5358 34.31 69.91 54.3 84.92 77.59 65.9 39.45 63.89
LDA dataset_binned_psych 3544 1182 2362 33.35 63.37 46.49 78.33 65.54 62.29 25.24 54.4
LDA dataset_binned_psych_JPI_R 5506 1781 3725 32.35 66.87 48.91 76.99 54.49 72.78 26.49 51.55
LDA dataset_binned_psych_IQ 7286 2273 5013 31.2 52.06 33.27 70.92 53.45 51.43 4.19 41.01
LDA dataset_binned_psych_MMPI 5298 1740 3558 32.84 62.68 45.76 81.52 73.37 57.45 26.71 56.36
LDA dataset_numeric_pca_best 3095 1125 1970 36.35 71.66 57.64 86.94 82.79 65.31 43.98 67.97
LDA dataset_performance_pca_best 8156 2798 5358 34.31 69.79 54.15 85 77.83 65.59 39.31 63.86
LDA dataset_psych_pca_best 3544 1182 2362 33.35 61.11 44.18 76.58 63.28 60.03 21.03 52.03
LDA dataset_psych_IQ_pca_best 7286 2273 5013 31.2 52.93 33.86 71.42 53.45 52.69 5.31 41.46
LDA dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 57.54 39.98 75.43 62.36 55.24 15.35 48.72
LDA dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 61.55 43.9 76.51 61.3 61.67 20.86 51.16
LDA dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.64 54.11 87.1 62.77 82.52 42.98 58.12
LDA dataset_imputed_psych_pca_best 11885 2939 8946 24.73 63.47 35.73 83.05 59.82 64.67 19.96 44.74
LDA dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 70.26 39.43 79.87 37.91 80.88 19.04 38.66
LDA dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 61.64 29.16 77.44 38.59 69.21 7.04 33.22
LDA dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 65.46 36.04 81.43 51.31 70.11 18.75 42.34
LDA dataset_log_performance_pca_best 8156 2798 5358 34.31 69.87 54.29 84.58 76.88 66.21 39.19 63.64
LDA dataset_log_psych_pca_best 3544 1182 2362 33.35 59.79 42.83 75.41 61.58 58.9 18.46 50.52
LDA dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 59.06 41.01 75.61 60.67 58.28 16.85 48.94
LDA dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 52.06 33.81 71.63 56.09 50.23 5.36 42.19
LDA dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 61.93 44.41 77.3 63.22 61.29 22.12 52.17
LDA dataset_binned_performance_pca_best 8156 2798 5358 34.31 70.28 54.96 83.38 73.9 68.39 39.07 63.04
LDA dataset_binned_psych_pca_best 3544 1182 2362 33.35 64.78 48 79.72 67.8 63.28 28.17 56.21
LDA dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 64.2 45.85 77.28 58.99 66.7 23.9 51.6
LDA dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 52.06 33.3 70.96 53.6 51.36 4.25 41.08
LDA dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 60.42 44.23 83.08 78.54 51.55 25.11 56.59
LDA dataset_apft_minimum_numeric 1938 998 940 51.5 64.54 61.6 71.11 82.61 45.39 28.29 70.57
LDA dataset_apft_minimum_performance 4927 2470 2457 50.13 62.58 60.15 66.67 75.17 49.93 25.12 66.83
LDA dataset_apft_minimum_psych 1994 1053 941 52.81 60.64 60.26 61.35 74.6 45.04 19.92 66.67
LDA dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 55.57 58.35 52.53 57.26 53.65 10.89 57.8
LDA dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 54.6 58.31 52.28 43.26 66.78 9.95 49.67
LDA dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.5 60.48 56.22 61.4 55.26 16.67 60.94
QDA dataset_numeric 3095 1125 1970 36.35 69.83 58.77 75.79 56.68 77.33 34.27 57.7
QDA dataset_performance 8156 2798 5358 34.31 68.97 53.13 86.3 80.93 62.73 38.8 64.15
QDA dataset_psych 3544 1182 2362 33.35 61.02 42.54 72.27 48.31 67.37 15.16 45.24
QDA dataset_psych_IQ 7286 2273 5013 31.2 53.21 33.78 71.23 52.13 53.69 5.07 40.99
QDA dataset_psych_JPI_R 5506 1781 3725 32.35 56.75 39 74.19 59.74 55.33 13.23 47.19
QDA dataset_psych_MMPI 5298 1740 3558 32.84 64.07 45.33 73.31 45.59 73.1 18.67 45.46
QDA dataset_imputed_numeric 11885 2939 8946 24.73 71.66 44.86 86.23 63.9 74.21 33.36 52.72
QDA dataset_imputed_performance 11885 2939 8946 24.73 78.48 54.98 89.59 71.4 80.81 47.44 62.12
QDA dataset_imputed_psych 11885 2939 8946 24.73 62.88 36.14 84.52 65.38 62.06 21.57 46.55
QDA dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 62.65 33.67 80.92 52.67 65.93 15.64 41.08
QDA dataset_imputed_psych_IQ 11885 2939 8946 24.73 62.57 31.72 79.01 44.61 68.47 11.51 37.08
QDA dataset_imputed_psych_MMPI 11885 2939 8946 24.73 65.18 35.71 81.29 51.08 69.81 18.25 42.04
QDA dataset_log_numeric 3095 1125 1970 36.35 69.18 57.43 76.07 58.46 75.3 33.62 57.94
QDA dataset_log_performance 8156 2798 5358 34.31 69.83 54.07 86.06 79.98 64.53 39.93 64.52
QDA dataset_log_psych 3544 1182 2362 33.35 62.24 44.14 73.22 50 68.36 17.77 46.89
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QDA dataset_log_psych_JPI_R 5506 1781 3725 32.35 54.82 37.95 74.06 62.55 51.12 11.69 47.24
QDA dataset_log_psych_IQ 7286 2273 5013 31.2 49.73 33.06 71.25 59.77 45.18 4.05 42.57
QDA dataset_log_psych_MMPI 5298 1740 3558 32.84 63.31 44.46 73.31 46.93 71.32 18 45.67
QDA dataset_binned_numeric 3095 1125 1970 36.35 66.59 53.22 77.6 66.17 66.84 31.37 58.99
QDA dataset_binned_performance 8156 2798 5358 34.31 70.07 54.48 84.92 77.47 66.21 39.68 63.98
QDA dataset_binned_psych 3544 1182 2362 33.35 59.98 41.49 71.94 48.87 65.54 13.79 44.88
QDA dataset_binned_psych_JPI_R 5506 1781 3725 32.35 64.99 46.59 76.82 56.37 69.11 24.16 51.02
QDA dataset_binned_psych_IQ 7286 2273 5013 31.2 47.3 32.7 71.31 65.2 39.19 3.45 43.55
QDA dataset_binned_psych_MMPI 5298 1740 3558 32.84 59.41 42.56 77.69 67.43 55.48 19.94 52.19
QDA dataset_numeric_pca_best 3095 1125 1970 36.35 72.2 58.76 84.91 78.64 68.53 43.97 67.26
QDA dataset_performance_pca_best 8156 2798 5358 34.31 69.71 54.25 83.46 74.49 67.21 38.29 62.78
QDA dataset_psych_pca_best 3544 1182 2362 33.35 60.45 43.29 75.26 60.17 60.59 18.92 50.35
QDA dataset_psych_IQ_pca_best 7286 2273 5013 31.2 52.29 33.64 71.32 54.48 51.3 4.94 41.59
QDA dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 54.75 38.07 74.41 63.67 50.49 12.05 47.65
QDA dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 61.74 41.79 71.55 41.95 71.42 13.36 41.87
QDA dataset_imputed_performance_pca_best 11885 2939 8946 24.73 78.48 54.98 89.59 71.4 80.81 47.44 62.12
QDA dataset_imputed_psych_pca_best 11885 2939 8946 24.73 64.34 36.81 83.84 61.75 65.19 21.94 46.12
QDA dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 63.47 33.92 80.62 50.4 67.76 15.61 40.55
QDA dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 63.95 31.6 78.35 39.39 72.01 10.53 35.07
QDA dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 67.31 36.9 80.6 45.4 74.51 18.48 40.71
QDA dataset_log_performance_pca_best 8156 2798 5358 34.31 69.46 53.9 83.97 75.8 66.15 38.24 63
QDA dataset_log_psych_pca_best 3544 1182 2362 33.35 61.49 43.71 73.92 53.95 65.25 18.15 48.29
QDA dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 54.57 38.51 75.81 67.79 48.25 13.39 49.12
QDA dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 44.37 33.6 75.9 80.32 28.08 6.09 47.38
QDA dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 59.03 39.94 71.94 49.04 63.92 12.25 44.02
QDA dataset_binned_performance_pca_best 8156 2798 5358 34.31 70.73 55.73 82.45 71.28 70.44 39.11 62.55
QDA dataset_binned_psych_pca_best 3544 1182 2362 33.35 63.37 46.72 80.15 70.34 59.89 26.83 56.14
QDA dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 64.93 46.31 75.82 52.81 70.73 22.7 49.34
QDA dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 52.06 33.3 70.96 53.6 51.36 4.25 41.08
QDA dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 61.36 44.64 80.98 73.37 55.48 24.78 55.51
QDA dataset_apft_minimum_numeric 1938 998 940 51.5 57.31 56.56 58.85 73.58 40.07 13.77 63.95
QDA dataset_apft_minimum_performance 4927 2470 2457 50.13 63.13 60.56 67.45 75.84 50.34 26.2 67.35
QDA dataset_apft_minimum_psych 1994 1053 941 52.81 57.12 57.66 56.13 70.48 42.2 12.84 63.43
QDA dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 54.69 55.45 52.73 74.9 31.76 6.82 63.72
QDA dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 58.52 58.94 57.95 65.62 50.88 16.58 62.1
QDA dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 60.23 59.27 62.45 78.51 39.85 18.71 67.55

pen_log_reg dataset_admin 11689 2852 8837 24.4 69.22 40 82.94 52.4 74.65 24.48 45.37
pen_log_reg dataset_all 3095 1125 1970 36.35 74.89 62.56 84.82 76.85 73.77 48.26 68.97
pen_log_reg dataset_numeric 3095 1125 1970 36.35 73.17 59.95 85.19 78.64 70.05 45.63 68.04
pen_log_reg dataset_performance 8156 2798 5358 34.31 70.52 55.03 84.77 76.88 67.21 40.26 64.15
pen_log_reg dataset_psych_IQ 7286 2273 5013 31.2 53.21 34.17 71.73 54.04 52.83 5.92 41.87
pen_log_reg dataset_psych_JPI_R 5506 1781 3725 32.35 59.54 40.64 74.01 54.49 61.95 15.1 46.56
pen_log_reg dataset_psych_MMPI 5298 1740 3558 32.84 60.79 42.78 74.94 57.28 62.51 18.21 48.98
pen_log_reg dataset_psych 3544 1182 2362 33.35 62.81 45.2 74.65 54.52 66.95 20.42 49.42
pen_log_reg dataset_imputed_all 11885 2939 8946 24.73 80.53 59.51 88.53 66.4 85.17 49.64 62.77
pen_log_reg dataset_imputed_admin 11885 2939 8946 24.73 72.67 45.06 82.58 48.13 80.73 28.21 46.54
pen_log_reg dataset_imputed_performance 11885 2939 8946 24.73 77.61 54.07 87.03 62.54 82.56 42.85 58
pen_log_reg dataset_imputed_psych 11885 2939 8946 24.73 67.26 38.56 82.76 54.71 71.38 22.87 45.24
pen_log_reg dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 70.29 39.55 79.94 38.25 80.81 19.27 38.89
pen_log_reg dataset_imputed_psych_IQ 11885 2939 8946 24.73 61.34 28.71 77.22 38.02 68.99 6.33 32.71
pen_log_reg dataset_imputed_psych_MMPI 11885 2939 8946 24.73 68.24 38.58 81.46 48.13 74.84 21.21 42.83
pen_log_reg dataset_log_all 3095 1125 1970 36.35 74.78 61.78 86.35 80.12 71.74 48.75 69.77
pen_log_reg dataset_log_admin 11689 2852 8837 24.4 69.88 40.53 82.62 50.29 76.2 24.49 44.89
pen_log_reg dataset_log_performance 8156 2798 5358 34.31 70.32 54.83 84.49 76.4 67.14 39.8 63.84
pen_log_reg dataset_log_psych 3544 1182 2362 33.35 61.86 44.68 75.99 60.45 62.57 21.16 51.38
pen_log_reg dataset_log_psych_JPI_R 5506 1781 3725 32.35 60.75 41.31 73.57 50.75 65.53 15.37 45.55
pen_log_reg dataset_log_psych_IQ 7286 2273 5013 31.2 52.75 34.32 72.11 56.39 51.1 6.37 42.67
pen_log_reg dataset_log_psych_MMPI 5298 1740 3558 32.84 60.54 43.19 76.89 63.79 58.95 20.27 51.51
pen_log_reg dataset_binned_all 3095 1125 1970 36.35 76.83 64.95 86.15 78.64 75.8 52.08 71.14
pen_log_reg dataset_binned_admin 11689 2852 8837 24.4 68.48 39.39 83.2 54.27 73.07 24.23 45.65
pen_log_reg dataset_binned_performance 8156 2798 5358 34.31 70.11 54.75 83.44 74.14 68.01 38.86 62.99
pen_log_reg dataset_binned_psych 3544 1182 2362 33.35 62.62 45.95 79.28 68.93 59.46 25.24 55.14
pen_log_reg dataset_binned_psych_JPI_R 5506 1781 3725 32.35 67.05 49.21 78.17 58.43 71.17 28.22 53.42
pen_log_reg dataset_binned_psych_IQ 7286 2273 5013 31.2 52.06 33.27 70.92 53.45 51.43 4.19 41.01
pen_log_reg dataset_binned_psych_MMPI 5298 1740 3558 32.84 61.8 44.82 79.95 70.5 57.54 24.46 54.8
pen_log_reg dataset_all_pca_best 3095 1125 1970 36.35 75 62.9 84.45 75.96 74.45 48.26 68.82
pen_log_reg dataset_numeric_pca_best 3095 1125 1970 36.35 73.92 61.07 84.97 77.74 71.74 46.75 68.41
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pen_log_reg dataset_performance_pca_best 8156 2798 5358 34.31 70.03 54.51 84.41 76.4 66.71 39.33 63.62
pen_log_reg dataset_psych_pca_best 3544 1182 2362 33.35 61.49 44.58 76.94 63.84 60.31 21.8 52.5
pen_log_reg dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 61.54 41.82 73.31 48.31 67.86 15.54 44.83
pen_log_reg dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 59.72 42.8 77.76 67.24 56.04 20.32 52.31
pen_log_reg dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.5 53.81 87.22 63.34 82.15 42.93 58.19
pen_log_reg dataset_imputed_psych_pca_best 11885 2939 8946 24.73 65.54 36.73 82.23 54.48 69.18 20.35 43.88
pen_log_reg dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 71.02 38.69 78.53 29.51 84.64 15.38 33.48
pen_log_reg dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 61.5 28.78 77.23 37.8 69.29 6.41 32.68
pen_log_reg dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 66.33 36.61 81.25 49.49 71.86 19.09 42.08
pen_log_reg dataset_log_psych_pca_best 3544 1182 2362 33.35 59.32 43.01 77.38 67.8 55.08 20 52.63
pen_log_reg dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 58.87 40.86 75.52 60.67 58.01 16.59 48.83
pen_log_reg dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 59.47 42.65 77.87 67.82 55.39 20.17 52.37
pen_log_reg dataset_binned_performance_pca_best 8156 2798 5358 34.31 70.03 54.73 82.96 73.06 68.45 38.44 62.58
pen_log_reg dataset_binned_psych_pca_best 3544 1182 2362 33.35 65.25 48.48 79.89 67.8 63.98 28.9 56.54
pen_log_reg dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 64.99 46.54 76.55 55.43 69.56 23.81 50.6
pen_log_reg dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 60.79 44.44 82.65 77.39 52.67 25.28 56.46
pen_log_reg dataset_apft_minimum_all 1938 998 940 51.5 64.03 63.8 64.31 69.57 58.16 27.8 66.56
pen_log_reg dataset_apft_minimum_admin 4888 2414 2474 49.39 62.69 62.38 62.98 61.6 63.75 25.35 61.99
pen_log_reg dataset_apft_minimum_performance 4927 2470 2457 50.13 62.72 60.22 66.97 75.57 49.8 25.39 67.03
pen_log_reg dataset_apft_minimum_psych 1994 1053 941 52.81 62.14 63.78 60.22 65.4 58.51 23.94 64.58
pen_log_reg dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 52.59 56.74 49.52 45.44 60.71 6.06 50.46
pen_log_reg dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 56.56 58.11 54.91 57.73 55.3 13.03 57.92
pen_log_reg dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.61 60.21 56.62 63.38 53.3 16.73 61.75
pen_log_reg dataset_best_10 3295 1229 2066 37.3 72.14 59.28 85.39 80.71 67.04 44.49 68.35
pen_log_reg dataset_best_20 3155 1182 1973 37.46 72.59 60.53 83.6 77.12 69.88 44.55 67.83

svm_lin dataset_admin 11689 2852 8837 24.4 69.68 39.62 81.71 46.43 77.18 22.31 42.76
svm_lin dataset_all 3095 1125 1970 36.35 74.78 63.04 83.49 73.89 75.3 47.43 68.03
svm_lin dataset_numeric 3095 1125 1970 36.35 71.66 57.58 87.27 83.38 64.97 44.11 68.12
svm_lin dataset_performance 8156 2798 5358 34.31 70.52 55.12 84.23 75.69 67.83 39.95 63.79
svm_lin dataset_psych_IQ 7286 2273 5013 31.2 52.93 33.83 71.38 53.3 52.76 5.24 41.39
svm_lin dataset_psych_JPI_R 5506 1781 3725 32.35 62.39 43.13 74.36 51.12 67.77 18.02 46.79
svm_lin dataset_psych_MMPI 5298 1740 3558 32.84 60.48 42.23 74.2 55.17 63.07 16.92 47.84
svm_lin dataset_psych 3544 1182 2362 33.35 63.94 46.35 74.44 51.98 69.92 21.25 49
svm_lin dataset_imputed_all 11885 2939 8946 24.73 79.38 56.65 89.5 70.6 82.26 48.82 62.86
svm_lin dataset_imputed_admin 11885 2939 8946 24.73 72.17 44.62 83.38 52.21 78.72 29.26 48.12
svm_lin dataset_imputed_performance 11885 2939 8946 24.73 77.69 54.17 87.25 63.34 82.41 43.29 58.4
svm_lin dataset_imputed_psych 11885 2939 8946 24.73 67.45 38.21 81.98 51.31 72.75 21.58 43.8
svm_lin dataset_imputed_psych_IQ 11885 2939 8946 24.73 62.29 29.24 77.34 37 70.59 6.97 32.67
svm_lin dataset_imputed_psych_MMPI 11885 2939 8946 24.73 67.12 37.57 81.57 49.94 72.75 20.44 42.88
svm_lin dataset_log_all 3095 1125 1970 36.35 75.75 63.93 84.79 76.26 75.47 49.67 69.55
svm_lin dataset_log_admin 11689 2852 8837 24.4 70.42 40.38 81.52 44.68 78.73 22.59 42.42
svm_lin dataset_log_performance 8156 2798 5358 34.31 70.97 55.78 83.7 74.14 69.32 40.29 63.66
svm_lin dataset_log_psych 3544 1182 2362 33.35 63.18 45.75 75.28 56.21 66.67 21.64 50.44
svm_lin dataset_log_psych_JPI_R 5506 1781 3725 32.35 60.93 41.42 73.51 50.19 66.07 15.41 45.39
svm_lin dataset_log_psych_IQ 7286 2273 5013 31.2 52.11 33.69 71.46 55.36 50.63 5.1 41.89
svm_lin dataset_log_psych_MMPI 5298 1740 3558 32.84 61.42 42.95 74.05 53.07 65.51 17.52 47.47
svm_lin dataset_binned_all 3095 1125 1970 36.35 75 63.57 83.18 73 76.14 47.62 67.96
svm_lin dataset_binned_admin 11689 2852 8837 24.4 69.79 39.66 81.59 45.73 77.56 22.14 42.48
svm_lin dataset_binned_performance 8156 2798 5358 34.31 69.71 54.06 84.98 77.83 65.46 39.18 63.8
svm_lin dataset_binned_psych 3544 1182 2362 33.35 63.75 46.8 77.99 64.12 63.56 25.34 54.11
svm_lin dataset_binned_psych_JPI_R 5506 1781 3725 32.35 67.35 49.57 77.11 54.31 73.59 27.22 51.83
svm_lin dataset_binned_psych_IQ 7286 2273 5013 31.2 52.06 33.27 70.92 53.45 51.43 4.19 41.01
svm_lin dataset_binned_psych_MMPI 5298 1740 3558 32.84 61.99 45.06 80.5 71.65 57.26 25.12 55.33
svm_lin dataset_all_pca_best 3095 1125 1970 36.35 73.71 60.4 86.07 80.12 70.05 46.88 68.88
svm_lin dataset_numeric_pca_best 3095 1125 1970 36.35 71.77 57.83 86.64 82.2 65.82 44.03 67.89
svm_lin dataset_performance_pca_best 8156 2798 5358 34.31 69.75 54.16 84.49 76.76 66.09 38.96 63.51
svm_lin dataset_psych_pca_best 3544 1182 2362 33.35 62.43 44.83 74.64 55.08 66.1 20.04 49.43
svm_lin dataset_psych_IQ_pca_best 7286 2273 5013 31.2 52.98 33.86 71.4 53.3 52.83 5.3 41.41
svm_lin dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 58.39 40.73 76.03 62.92 56.22 16.76 49.45
svm_lin dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 61.36 43.8 76.74 62.26 60.92 20.93 51.42
svm_lin dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.67 54.12 87.25 63.34 82.37 43.24 58.37
svm_lin dataset_imputed_psych_pca_best 11885 2939 8946 24.73 65.97 37.05 82.21 53.92 69.92 20.68 43.92
svm_lin dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 51.49 27.68 78.67 59.7 48.79 6.12 37.83
svm_lin dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 62.99 34.49 81.69 55.28 65.52 17.3 42.48
svm_lin dataset_log_performance_pca_best 8156 2798 5358 34.31 69.71 54.06 84.92 77.71 65.53 39.15 63.77
svm_lin dataset_log_psych_pca_best 3544 1182 2362 33.35 60.92 42.96 73.29 52.54 65.11 16.72 47.27
svm_lin dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 59.48 41.36 75.75 60.49 59 17.39 49.13
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svm_lin dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 51.97 33.6 71.37 55.36 50.43 4.92 41.82
svm_lin dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 59.35 42.55 77.81 67.82 55.2 19.99 52.29
svm_lin dataset_binned_psych_pca_best 3544 1182 2362 33.35 63.84 47.15 80.22 70.06 60.73 27.46 56.36
svm_lin dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 63.9 45.52 77.16 58.99 66.25 23.43 51.39
svm_lin dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 52.06 33.3 70.96 53.6 51.36 4.25 41.08
svm_lin dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 60.35 44.22 83.36 79.12 51.17 25.21 56.73
svm_lin dataset_apft_minimum_all 1938 998 940 51.5 67.13 71.09 64 60.87 73.76 34.48 65.59
svm_lin dataset_apft_minimum_admin 4888 2414 2474 49.39 63.37 62.72 64.02 63.67 63.07 26.74 63.19
svm_lin dataset_apft_minimum_performance 4927 2470 2457 50.13 63.19 60.45 68.04 76.92 49.39 26.33 67.7
svm_lin dataset_apft_minimum_psych 1994 1053 941 52.81 61.64 61.88 61.28 71.11 51.06 22.37 66.17
svm_lin dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 54.69 57.7 51.57 55.19 54.12 9.28 56.42
svm_lin dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 56.98 58.43 55.42 58.72 55.12 13.84 58.57
svm_lin dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.61 60.43 56.46 62.28 54.52 16.83 61.34
svm_lin dataset_best_10 3295 1229 2066 37.3 72.75 59.57 87.23 83.7 66.24 46.14 69.6
svm_lin dataset_best_20 3155 1182 1973 37.46 72.59 62.03 80.18 69.21 74.62 42.83 65.42
CART dataset_admin 11689 2852 8837 24.4 67.11 38.88 84.58 60.94 69.11 25.2 47.47
CART dataset_all 3095 1125 1970 36.35 69.5 55.6 84.53 79.53 63.79 39.65 65.45
CART dataset_numeric 3095 1125 1970 36.35 68.43 54.51 83.86 78.93 62.44 37.73 64.48
CART dataset_performance 8156 2798 5358 34.31 70.36 55.14 83.01 72.94 69.01 38.95 62.8
CART dataset_psych 3544 1182 2362 33.35 60.26 42.54 73.6 54.8 62.99 16.6 47.9
CART dataset_psych_IQ 7286 2273 5013 31.2 47.71 33.96 74.16 71.66 36.86 6.54 46.08
CART dataset_psych_JPI_R 5506 1781 3725 32.35 56.03 38.06 73.08 57.3 55.42 11.24 45.74
CART dataset_psych_MMPI 5298 1740 3558 32.84 58.28 40.11 73.06 54.79 59.98 13.51 46.32
CART dataset_imputed_all 11885 2939 8946 24.73 75.36 50.12 88.42 69.13 77.41 41.28 58.11
CART dataset_imputed_numeric 11885 2939 8946 24.73 74.97 49.57 89.09 71.62 76.07 41.49 58.59
CART dataset_imputed_admin 11885 2939 8946 24.73 67.76 40.3 85.15 63.22 69.25 27.27 49.23
CART dataset_imputed_performance 11885 2939 8946 24.73 75.9 50.89 89.11 71.17 77.45 42.88 59.35
CART dataset_imputed_psych 11885 2939 8946 24.73 68.24 37.54 80.33 42.91 76.56 18.57 40.04
CART dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 62.71 34.44 81.87 56.3 64.82 17.41 42.74
CART dataset_imputed_psych_IQ 11885 2939 8946 24.73 57.04 30.63 80.54 58.34 56.62 11.47 40.17
CART dataset_imputed_psych_MMPI 11885 2939 8946 24.73 64.96 35.71 81.5 52.21 69.14 18.48 42.42
CART dataset_log_all 3095 1125 1970 36.35 69.5 55.6 84.53 79.53 63.79 39.65 65.45
CART dataset_log_numeric 3095 1125 1970 36.35 68.43 54.51 83.86 78.93 62.44 37.73 64.48
CART dataset_log_admin 11689 2852 8837 24.4 67.11 38.88 84.58 60.94 69.11 25.2 47.47
CART dataset_log_performance 8156 2798 5358 34.31 70.36 55.14 83.01 72.94 69.01 38.95 62.8
CART dataset_log_psych 3544 1182 2362 33.35 60.26 42.54 73.6 54.8 62.99 16.6 47.9
CART dataset_log_psych_JPI_R 5506 1781 3725 32.35 56.03 38.06 73.08 57.3 55.42 11.24 45.74
CART dataset_log_psych_IQ 7286 2273 5013 31.2 47.71 33.96 74.16 71.66 36.86 6.54 46.08
CART dataset_log_psych_MMPI 5298 1740 3558 32.84 58.28 40.11 73.06 54.79 59.98 13.51 46.32
CART dataset_binned_all 3095 1125 1970 36.35 72.63 60.95 80.69 68.55 74.96 42.37 64.53
CART dataset_binned_numeric 3095 1125 1970 36.35 72.41 59.14 84.54 77.74 69.37 44.14 67.18
CART dataset_binned_admin 11689 2852 8837 24.4 67.68 38.9 83.67 56.96 71.14 24.28 46.23
CART dataset_binned_performance 8156 2798 5358 34.31 69.71 54.06 84.98 77.83 65.46 39.18 63.8
CART dataset_binned_psych 3544 1182 2362 33.35 60.36 43.12 74.96 59.32 60.88 18.46 49.94
CART dataset_binned_psych_JPI_R 5506 1781 3725 32.35 65.96 47.89 78.12 59.55 69.02 26.87 53.09
CART dataset_binned_psych_IQ 7286 2273 5013 31.2 48.26 32.69 71.03 62.26 41.92 3.35 42.87
CART dataset_binned_psych_MMPI 5298 1740 3558 32.84 62.62 45.29 78.67 66.28 60.82 24.24 53.81
CART dataset_all_pca_best 3095 1125 1970 36.35 69.72 56.33 81.89 73.89 67.34 38.64 63.93
CART dataset_numeric_pca_best 3095 1125 1970 36.35 69.83 56.38 82.33 74.78 67.01 39.04 64.29
CART dataset_performance_pca_best 8156 2798 5358 34.31 67.5 51.59 88.16 84.98 58.37 37.55 64.21
CART dataset_psych_pca_best 3544 1182 2362 33.35 57.91 39.36 70.88 48.59 62.57 10.54 43.49
CART dataset_psych_IQ_pca_best 7286 2273 5013 31.2 50.73 34.63 73.75 65.35 44.11 7.61 45.27
CART dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 60.87 37.16 69.38 30.34 75.47 6.1 33.4
CART dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 60.1 41.36 73.01 51.34 64.39 14.81 45.81
CART dataset_imputed_performance_pca_best 11885 2939 8946 24.73 73.82 48.31 93.19 84.34 70.37 43.75 61.43
CART dataset_imputed_psych_pca_best 11885 2939 8946 24.73 69.87 40 80.95 43.81 78.42 21.54 41.82
CART dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 62.12 34.19 82.03 57.55 63.62 17.22 42.89
CART dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 55.58 30.97 81.98 64.81 52.55 12.7 41.91
CART dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 64.37 35.79 82.19 55.62 67.24 19.27 43.56
CART dataset_log_performance_pca_best 8156 2798 5358 34.31 69.87 54.34 84.25 76.16 66.58 39 63.42
CART dataset_log_psych_pca_best 3544 1182 2362 33.35 58 41.19 74.26 60.73 56.64 15.53 49.09
CART dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 51.61 36.74 74.39 68.73 43.42 9.9 47.88
CART dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 48.95 33.56 72.45 65.05 41.65 5.33 44.28
CART dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 59.97 41.2 72.9 51.15 64.29 14.55 45.64
CART dataset_binned_performance_pca_best 8156 2798 5358 34.31 70.52 55.39 82.77 72.23 69.63 39.03 62.7
CART dataset_binned_psych_pca_best 3544 1182 2362 33.35 63.47 45.87 74.62 53.39 68.5 21.03 49.35
CART dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 63.9 44.38 73.7 45.88 72.52 18.24 45.12
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CART dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 45.28 33.38 74.14 75.77 31.47 5.37 46.34
CART dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 65.2 47.54 76.77 57.28 69.07 25.04 51.95
CART dataset_apft_minimum_all 1938 998 940 51.5 62.31 68.69 58.58 49.16 76.24 25.19 57.31
CART dataset_apft_minimum_numeric 1938 998 940 51.5 60.59 61.01 60.08 64.88 56.03 20.95 62.88
CART dataset_apft_minimum_admin 4888 2414 2474 49.39 62.28 60.75 64.08 66.71 57.95 24.63 63.59
CART dataset_apft_minimum_performance 4927 2470 2457 50.13 62.25 60.32 65.14 72.2 52.24 24.45 65.72
CART dataset_apft_minimum_psych 1994 1053 941 52.81 57.62 57.24 58.58 77.78 35.11 13.16 65.95
CART dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 56.23 56.57 55.38 75.93 33.88 10.05 64.84
CART dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 56.98 55.72 61.17 82.57 29.51 12.29 66.53
CART dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 56.42 58.39 54.06 60.31 52.08 12.41 59.33
CART dataset_best_10 3295 1229 2066 37.3 70.82 57.81 84.84 80.43 65.11 42.19 67.27
CART dataset_best_20 3155 1182 1973 37.46 69.52 55.94 88.95 87.85 58.54 41.63 68.35
KNN dataset_admin 11689 2852 8837 24.4 71.11 42.15 82.76 49.59 78.05 26.08 45.57
KNN dataset_all 3095 1125 1970 36.35 70.15 58.82 76.7 59.35 76.31 35.59 59.08
KNN dataset_numeric 3095 1125 1970 36.35 68.32 55.21 78.83 67.66 68.7 34.67 60.8
KNN dataset_performance 8156 2798 5358 34.31 69.01 53.42 83.66 75.45 65.65 37.41 62.55
KNN dataset_psych_IQ 7286 2273 5013 31.2 49.68 32.73 70.74 58.15 45.84 3.29 41.88
KNN dataset_psych_JPI_R 5506 1781 3725 32.35 59.12 39.33 72.32 48.69 64.1 12.04 43.51
KNN dataset_psych_MMPI 5298 1740 3558 32.84 60.04 42.4 75.53 60.34 59.89 18.26 49.8
KNN dataset_psych 3544 1182 2362 33.35 56.12 37.61 69.84 48.02 60.17 7.66 42.18
KNN dataset_imputed_all 11885 2939 8946 24.73 74.61 48.83 84.97 56.64 80.51 35.25 52.44
KNN dataset_imputed_admin 11885 2939 8946 24.73 73.71 47.03 83.32 50.4 81.36 31.02 48.66
KNN dataset_imputed_performance 11885 2939 8946 24.73 76.04 51 91.25 77.98 75.4 45.33 61.67
KNN dataset_imputed_psych 11885 2939 8946 24.73 65.38 36.11 81.6 52.1 69.74 19.01 42.66
KNN dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 65.01 36.01 81.83 53.46 68.8 19.15 43.03
KNN dataset_imputed_psych_IQ 11885 2939 8946 24.73 60.77 31.31 79.46 49.15 64.59 11.53 38.25
KNN dataset_log_all 3095 1125 1970 36.35 67.24 54.73 74.78 56.68 73.27 29.71 55.69
KNN dataset_log_admin 11689 2852 8837 24.4 72.25 43.66 82.57 47.49 80.23 26.92 45.49
KNN dataset_log_performance 8156 2798 5358 34.31 68.72 52.82 87.19 82.72 61.42 38.88 64.47
KNN dataset_log_psych 3544 1182 2362 33.35 61.21 41.42 70.44 39.55 72.03 11.71 40.46
KNN dataset_log_psych_JPI_R 5506 1781 3725 32.35 54.75 37.03 72.29 56.93 53.72 9.33 44.87
KNN dataset_log_psych_IQ 7286 2273 5013 31.2 49.54 32.73 70.78 58.59 45.44 3.32 42
KNN dataset_log_psych_MMPI 5298 1740 3558 32.84 61.04 42.6 73.98 53.45 64.76 17.1 47.41
KNN dataset_binned_all 3095 1125 1970 36.35 66.38 52.63 80.79 74.18 61.93 33.19 61.58
KNN dataset_binned_admin 11689 2852 8837 24.4 71.71 43 82.83 49.24 78.95 26.87 45.91
KNN dataset_binned_performance 8156 2798 5358 34.31 69.42 53.77 84.67 77.35 65.28 38.59 63.44
KNN dataset_binned_psych 3544 1182 2362 33.35 61.68 44.79 77.22 64.41 60.31 22.28 52.84
KNN dataset_binned_psych_JPI_R 5506 1781 3725 32.35 64.2 45.38 75.44 52.43 69.83 21.4 48.65
KNN dataset_binned_psych_MMPI 5298 1740 3558 32.84 62.05 45.14 80.69 72.03 57.17 25.34 55.5
KNN dataset_all_pca_best 3095 1125 1970 36.35 71.66 59.84 79.71 66.77 74.45 40.22 63.11
KNN dataset_numeric_pca_best 3095 1125 1970 36.35 68.32 54.29 84.78 80.71 61.25 37.99 64.92
KNN dataset_performance_pca_best 8156 2798 5358 34.31 70.65 55.29 84.11 75.33 68.2 40.06 63.77
KNN dataset_psych_pca_best 3544 1182 2362 33.35 56.03 40.57 76.03 68.64 49.72 15.65 51
KNN dataset_psych_IQ_pca_best 7286 2273 5013 31.2 52.75 35.48 74.15 63 48.1 9.16 45.4
KNN dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 57.36 38.42 72.52 52.81 59.53 11.24 44.48
KNN dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 59.41 41.68 74.82 59 59.61 16.82 48.85
KNN dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.44 53.02 91.04 76.73 77.67 47.3 62.71
KNN dataset_imputed_psych_pca_best 11885 2939 8946 24.73 66.02 36.69 81.67 51.65 70.74 19.69 42.9
KNN dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 63.97 35.32 81.93 55.05 66.9 18.49 43.03
KNN dataset_log_psych_pca_best 3544 1182 2362 33.35 57.44 41.28 75.6 65.54 53.39 16.5 50.66
KNN dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 53.97 36.12 71.33 55.06 53.45 7.48 43.62
KNN dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 48.99 32.58 70.67 59.47 44.24 3.03 42.1
KNN dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 58.78 40.4 72.99 53.64 61.29 13.78 46.09
KNN dataset_binned_performance_pca_best 8156 2798 5358 34.31 69.75 54.21 84.16 76.04 66.46 38.77 63.29
KNN dataset_binned_psych_pca_best 3544 1182 2362 33.35 58.95 42.98 78.45 70.9 52.97 20.53 53.52
KNN dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 65.17 46.54 75.61 51.69 71.62 22.65 48.98
KNN dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 47.48 33.66 73.48 70.48 37.06 5.81 45.56
KNN dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 58.09 42.53 82.08 78.54 48.08 21.89 55.18
KNN dataset_apft_minimum_all 1938 998 940 51.5 58.69 58.04 59.81 71.24 45.39 16.74 63.96
KNN dataset_apft_minimum_admin 4888 2414 2474 49.39 62.35 61.53 63.19 63.4 61.32 24.71 62.45
KNN dataset_apft_minimum_performance 4927 2470 2457 50.13 61.64 60.14 63.71 69.64 53.6 23.24 64.54
KNN dataset_apft_minimum_psych 1994 1053 941 52.81 62.81 61.54 65.46 78.73 45.04 24.16 69.08
KNN dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 56.01 57.19 53.94 68.46 41.88 10.49 62.32
KNN dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 52.47 53.42 50.9 64.14 39.93 4.1 58.3
KNN dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 56.53 59.3 53.79 55.92 57.21 13.09 57.56
KNN dataset_best_10 3295 1229 2066 37.3 70.92 57.89 85.02 80.71 65.11 42.42 67.42
KNN dataset_best_20 3155 1182 1973 37.46 71.11 59.14 81.67 74.01 69.37 41.3 65.75
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rf dataset_admin 11689 2852 8837 24.4 71.51 43.01 83.36 51.81 77.86 27.75 47
rf dataset_all 3095 1125 1970 36.35 76.19 63.81 86.42 79.53 74.28 51.1 70.81
rf dataset_numeric 3095 1125 1970 36.35 74.46 61.21 86.72 81.01 70.73 48.37 69.73
rf dataset_performance 8156 2798 5358 34.31 66.93 51.2 83.36 76.28 62.04 34.31 61.27
rf dataset_psych 3544 1182 2362 33.35 62.62 44.36 72.83 47.74 70.06 17.46 45.99
rf dataset_psych_IQ 7286 2273 5013 31.2 47.34 32.25 70.45 62.56 40.45 2.39 42.56
rf dataset_psych_JPI_R 5506 1781 3725 32.35 61.84 41.43 72.32 43.45 70.64 13.9 42.41
rf dataset_psych_MMPI 5298 1740 3558 32.84 62.43 44.15 74.79 54.21 66.45 19.53 48.67
rf dataset_imputed_all 11885 2939 8946 24.73 80.61 58.53 90.65 74.01 82.78 52.16 65.36
rf dataset_imputed_numeric 11885 2939 8946 24.73 79.41 57.16 88.41 66.63 83.6 47.58 61.53
rf dataset_imputed_admin 11885 2939 8946 24.73 73.29 46.1 82.62 47.67 81.7 29.04 46.88
rf dataset_imputed_performance 11885 2939 8946 24.73 75.76 50.64 90.77 76.62 75.48 44.44 60.98
rf dataset_imputed_psych 11885 2939 8946 24.73 69.14 40.05 82.14 50.06 75.4 23.49 44.5
rf dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 64.87 36.43 82.57 56.53 67.61 20.36 44.31
rf dataset_imputed_psych_IQ 11885 2939 8946 24.73 63.24 29.63 77.34 35.41 72.38 7.32 32.26
rf dataset_imputed_psych_MMPI 11885 2939 8946 24.73 71.02 41.76 81.23 43.7 79.99 23.32 42.71
rf dataset_log_all 3095 1125 1970 36.35 75.54 63.1 85.83 78.64 73.77 49.77 70.01
rf dataset_log_numeric 3095 1125 1970 36.35 75.22 62.77 85.46 78.04 73.6 49.08 69.58
rf dataset_log_admin 11689 2852 8837 24.4 72.73 44.2 82.16 45.03 81.67 26.53 44.61
rf dataset_log_performance 8156 2798 5358 34.31 68.64 53.09 82.76 73.66 66.02 36.32 61.71
rf dataset_log_psych 3544 1182 2362 33.35 63.28 45.16 73.04 47.46 71.19 18.41 46.28
rf dataset_log_psych_JPI_R 5506 1781 3725 32.35 60.45 41.29 73.97 52.81 64.1 15.76 46.34
rf dataset_log_psych_IQ 7286 2273 5013 31.2 52.56 33.7 71.32 53.89 51.96 5.03 41.47
rf dataset_log_psych_MMPI 5298 1740 3558 32.84 61.99 43.61 74.45 53.64 66.07 18.62 48.11
rf dataset_binned_all 3095 1125 1970 36.35 76.62 64.63 86.1 78.64 75.47 51.69 70.95
rf dataset_binned_numeric 3095 1125 1970 36.35 75.32 63.57 84.15 75.07 75.47 48.65 68.84
rf dataset_binned_admin 11689 2852 8837 24.4 68.88 40.53 84.51 59.06 72.05 26.94 48.07
rf dataset_binned_performance 8156 2798 5358 34.31 68.15 52.44 84.1 77 63.53 36.45 62.39
rf dataset_binned_psych 3544 1182 2362 33.35 66.38 49.64 77.13 58.19 70.48 27.49 53.58
rf dataset_binned_psych_JPI_R 5506 1781 3725 32.35 68.14 50.73 76.74 51.87 75.92 27.63 51.3
rf dataset_binned_psych_IQ 7286 2273 5013 31.2 46.79 33.61 73.78 72.39 35.2 5.77 45.9
rf dataset_binned_psych_MMPI 5298 1740 3558 32.84 64.44 46.89 77.95 62.07 65.6 25.56 53.42
rf dataset_all_pca_best 3095 1125 1970 36.35 75.22 68.26 78.43 59.35 84.26 44.87 63.49
rf dataset_numeric_pca_best 3095 1125 1970 36.35 71.77 59.89 79.96 67.36 74.28 40.55 63.41
rf dataset_performance_pca_best 8156 2798 5358 34.31 66.23 50.51 83.69 77.47 60.36 33.55 61.15
rf dataset_psych_pca_best 3544 1182 2362 33.35 61.39 43.64 73.95 54.24 64.97 18.11 48.36
rf dataset_psych_IQ_pca_best 7286 2273 5013 31.2 49.73 32.84 70.9 58.59 45.71 3.54 42.09
rf dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 59.3 40.03 73.2 51.87 62.85 13.66 45.19
rf dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 62.68 42.16 70.86 36.59 75.45 12.46 39.18
rf dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.02 52.37 91.28 77.64 76.82 46.86 62.55
rf dataset_imputed_psych_pca_best 11885 2939 8946 24.73 65.43 36.04 81.45 51.42 70.03 18.76 42.38
rf dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 64.45 35.72 82.01 54.82 67.61 19.02 43.26
rf dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 63.19 29.53 77.3 35.3 72.34 7.17 32.16
rf dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 63.86 36.03 83.1 59.59 65.26 20.38 44.91
rf dataset_log_performance_pca_best 8156 2798 5358 34.31 63.78 48.11 79.92 71.16 59.93 27.89 57.4
rf dataset_log_psych_pca_best 3544 1182 2362 33.35 62.05 44.26 74.02 53.39 66.38 18.8 48.4
rf dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 63.48 41.48 70.63 31.46 78.78 10.93 35.78
rf dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 56.09 33.72 70.45 42.29 62.34 4.33 37.52
rf dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 61.36 42.01 72.36 46.36 68.7 14.67 44.08
rf dataset_binned_performance_pca_best 8156 2798 5358 34.31 67.54 51.81 83.85 76.88 62.66 35.44 61.9
rf dataset_binned_psych_pca_best 3544 1182 2362 33.35 66.48 49.78 79.33 64.97 67.23 29.92 56.37
rf dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 61.48 42.76 75.4 56.37 63.92 18.73 48.63
rf dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 46.98 33.61 73.66 71.81 35.73 5.75 45.79
rf dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 58.9 41.74 76.01 63.41 56.7 17.76 50.34
rf dataset_apft_minimum_all 1938 998 940 51.5 65.58 65.81 65.3 68.9 62.06 31 67.32
rf dataset_apft_minimum_numeric 1938 998 940 51.5 62.13 61.38 63.25 71.24 52.48 23.84 65.94
rf dataset_apft_minimum_admin 4888 2414 2474 49.39 62.82 62.45 63.19 62.02 63.61 25.63 62.23
rf dataset_apft_minimum_performance 4927 2470 2457 50.13 59.54 57.92 62.09 70.58 48.44 19.03 63.63
rf dataset_apft_minimum_psych 1994 1053 941 52.81 60.3 61.54 58.69 66.03 53.9 20.02 63.71
rf dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 54.69 55.85 52.33 70.33 36.94 7.4 62.26
rf dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 52.39 52.82 51.15 75.49 27.56 3.1 62.15
rf dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.61 60.08 56.73 64.04 52.57 16.67 62
rf dataset_best_10 3295 1229 2066 37.3 70.72 57.52 85.71 82.07 63.97 42.37 67.64
rf dataset_best_20 3155 1182 1973 37.46 71.96 59.21 85.28 80.79 66.67 44.23 68.34

xgb dataset_admin 11689 2852 8837 24.4 72.22 43.8 82.92 49.12 79.67 27.65 46.31
xgb dataset_all 3095 1125 1970 36.35 74.25 61.5 85.06 77.74 72.25 47.31 68.68
xgb dataset_numeric 3095 1125 1970 36.35 73.17 59.87 85.48 79.23 69.71 45.76 68.2
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xgb dataset_performance 8156 2798 5358 34.31 71.38 56.41 83.32 72.94 70.57 40.66 63.62
xgb dataset_psych 3544 1182 2362 33.35 62.43 44.55 73.81 51.98 67.66 18.85 47.98
xgb dataset_psych_IQ 7286 2273 5013 31.2 52.7 31.55 69.11 44.2 56.55 0.68 36.82
xgb dataset_psych_JPI_R 5506 1781 3725 32.35 61.42 40.95 72.18 43.63 69.92 13.32 42.25
xgb dataset_psych_MMPI 5298 1740 3558 32.84 58.97 41.4 74.91 59.96 58.48 16.55 48.98
xgb dataset_imputed_all 11885 2939 8946 24.73 79.21 55.56 92.14 79.46 79.13 51.19 65.39
xgb dataset_imputed_numeric 11885 2939 8946 24.73 77.89 53.77 90.65 75.26 78.76 47.62 62.72
xgb dataset_imputed_admin 11885 2939 8946 24.73 74.05 47.57 83.07 48.92 82.3 30.92 48.24
xgb dataset_imputed_performance 11885 2939 8946 24.73 75.76 50.58 93.17 83.65 73.16 46.59 63.05
xgb dataset_imputed_psych 11885 2939 8946 24.73 67.06 38.33 82.68 54.6 71.15 22.54 45.04
xgb dataset_imputed_psych_JPI_R 11885 2939 8946 24.73 64.59 36.44 82.91 58.12 66.72 20.7 44.79
xgb dataset_imputed_psych_IQ 11885 2939 8946 24.73 59.79 32.01 80.79 55.73 61.13 13.5 40.66
xgb dataset_imputed_psych_MMPI 11885 2939 8946 24.73 66.89 37.88 82.24 53.01 71.45 21.56 44.18
xgb dataset_log_all 3095 1125 1970 36.35 74.25 61.5 85.06 77.74 72.25 47.31 68.68
xgb dataset_log_numeric 3095 1125 1970 36.35 73.17 59.87 85.48 79.23 69.71 45.76 68.2
xgb dataset_log_admin 11689 2852 8837 24.4 72.22 43.8 82.92 49.12 79.67 27.65 46.31
xgb dataset_log_performance 8156 2798 5358 34.31 71.38 56.41 83.32 72.94 70.57 40.66 63.62
xgb dataset_log_psych 3544 1182 2362 33.35 62.43 44.55 73.81 51.98 67.66 18.85 47.98
xgb dataset_log_psych_JPI_R 5506 1781 3725 32.35 61.42 40.95 72.18 43.63 69.92 13.32 42.25
xgb dataset_log_psych_IQ 7286 2273 5013 31.2 52.7 31.55 69.11 44.2 56.55 0.68 36.82
xgb dataset_log_psych_MMPI 5298 1740 3558 32.84 58.97 41.4 74.91 59.96 58.48 16.55 48.98
xgb dataset_binned_all 3095 1125 1970 36.35 75.11 63.18 84.22 75.37 74.96 48.33 68.74
xgb dataset_binned_numeric 3095 1125 1970 36.35 74.46 61.68 85.4 78.34 72.25 47.81 69.02
xgb dataset_binned_admin 11689 2852 8837 24.4 72.5 44.43 83.38 50.88 79.48 28.94 47.44
xgb dataset_binned_performance 8156 2798 5358 34.31 71.95 57.54 82.18 69.61 73.18 40.74 63
xgb dataset_binned_psych 3544 1182 2362 33.35 64.78 47.96 79.2 66.38 63.98 27.71 55.69
xgb dataset_binned_psych_JPI_R 5506 1781 3725 32.35 66.69 48.65 76.77 53.93 72.78 25.98 51.15
xgb dataset_binned_psych_IQ 7286 2273 5013 31.2 47.34 33.61 73.44 70.63 36.79 5.71 45.55
xgb dataset_binned_psych_MMPI 5298 1740 3558 32.84 63 46.14 82.59 75.48 56.89 27.84 57.27
xgb dataset_all_pca_best 3095 1125 1970 36.35 72.95 59.95 84.27 76.85 70.73 44.86 67.36
xgb dataset_numeric_pca_best 3095 1125 1970 36.35 73.28 61.38 81.94 71.22 74.45 44.15 65.93
xgb dataset_performance_pca_best 8156 2798 5358 34.31 70.07 54.59 84.15 75.8 67.08 39.24 63.47
xgb dataset_psych_pca_best 3544 1182 2362 33.35 58.76 41.6 74.02 58.76 58.76 15.88 48.71
xgb dataset_psych_IQ_pca_best 7286 2273 5013 31.2 47.8 33.96 74.1 71.37 37.13 6.53 46.02
xgb dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 55 37.05 72.16 55.99 54.52 9.28 44.59
xgb dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 60.04 42.54 75.96 61.69 59.23 18.76 50.35
xgb dataset_imputed_performance_pca_best 11885 2939 8946 24.73 76.54 51.59 92.89 82.63 74.54 47.57 63.53
xgb dataset_imputed_psych_pca_best 11885 2939 8946 24.73 64.37 36.46 83.22 59.48 65.97 21 45.21
xgb dataset_imputed_psych_JPI_R_pca_best 11885 2939 8946 24.73 63.41 35.66 83.01 59.7 64.63 19.84 44.65
xgb dataset_imputed_psych_IQ_pca_best 11885 2939 8946 24.73 58.73 31.54 80.82 57.21 59.22 12.91 40.66
xgb dataset_imputed_psych_MMPI_pca_best 11885 2939 8946 24.73 68.6 38.73 81.18 46.42 75.89 20.91 42.23
xgb dataset_log_performance_pca_best 8156 2798 5358 34.31 70.03 54.53 84.25 76.04 66.89 39.24 63.51
xgb dataset_log_psych_pca_best 3544 1182 2362 33.35 61.39 43.4 73.35 51.98 66.1 17.23 47.3
xgb dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 56.87 37.87 72.08 52.06 59.18 10.24 43.85
xgb dataset_log_psych_IQ_pca_best 7286 2273 5013 31.2 53.16 33.71 71.16 51.98 53.69 4.94 40.9
xgb dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 63.06 44.21 73.35 47.51 70.67 17.83 45.8
xgb dataset_binned_performance_pca_best 8156 2798 5358 34.31 68.89 53.23 84.17 76.64 64.84 37.54 62.82
xgb dataset_binned_psych_pca_best 3544 1182 2362 33.35 64.03 47.2 79 66.67 62.71 26.63 55.27
xgb dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 64.08 45.23 75.39 52.43 69.65 21.2 48.57
xgb dataset_binned_psych_IQ_pca_best 7286 2273 5013 31.2 48.31 33.63 72.92 67.55 39.59 5.59 44.9
xgb dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 64.07 46.24 76.44 57.66 67.2 23.38 51.32
xgb dataset_apft_minimum_all 1938 998 940 51.5 65.23 65.59 64.81 68.23 62.06 30.32 66.89
xgb dataset_apft_minimum_numeric 1938 998 940 51.5 63.51 63.22 63.89 69.57 57.09 26.74 66.24
xgb dataset_apft_minimum_admin 4888 2414 2474 49.39 63.71 62.9 64.54 64.64 62.8 27.43 63.76
xgb dataset_apft_minimum_performance 4927 2470 2457 50.13 62.92 61.21 65.32 71.12 54.68 25.81 65.79
xgb dataset_apft_minimum_psych 1994 1053 941 52.81 57.45 59.33 55.19 61.59 52.84 14.46 60.44
xgb dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 53.8 56.21 50.75 59.13 47.76 6.92 57.63
xgb dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 55.28 56.01 54.24 63.65 46.29 9.99 59.58
xgb dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.38 60.3 56.14 61.62 54.77 16.41 60.95
xgb dataset_best_10 3295 1229 2066 37.3 71.43 58.57 84.74 79.89 66.4 43.11 67.59
xgb dataset_best_20 3155 1182 1973 37.46 71.32 58.56 84.78 80.23 65.99 43.02 67.7

stack_glm dataset_numeric 3095 1125 1970 36.35 74.46 61.85 84.98 77.45 72.76 47.62 68.77
stack_glm dataset_performance 8156 2798 5358 34.31 69.75 54.03 85.56 79.02 64.9 39.56 64.18
stack_glm dataset_psych_IQ 7286 2273 5013 31.2 51.1 33.53 71.56 57.86 48.04 4.92 42.46
stack_glm dataset_psych_JPI_R 5506 1781 3725 32.35 58.33 39.73 73.81 55.81 59.53 13.88 46.42
stack_glm dataset_psych_MMPI 5298 1740 3558 32.84 59.35 42.09 76.15 63.22 57.45 18.32 50.54
stack_glm dataset_psych 3544 1182 2362 33.35 61.11 44.32 77.16 64.97 59.18 21.63 52.69
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Table C.2 continued from previous page

Model Data Subset n Selected Not
Selected

Percent
Selected Accuracy PPV NPV Sensivitiy Specificity Kappa F1

stack_glm dataset_imputed_performance 11885 2939 8946 24.73 75.9 50.75 93.47 84.45 73.09 47.05 63.4
stack_glm dataset_imputed_psych 11885 2939 8946 24.73 64.39 37.17 84.45 63.79 64.59 22.88 46.97
stack_glm dataset_log_performance 8156 2798 5358 34.31 70.11 54.5 85.15 77.95 66.02 39.87 64.15
stack_glm dataset_log_psych 3544 1182 2362 33.35 60.92 44.1 76.88 64.41 59.18 21.15 52.35
stack_glm dataset_log_psych_JPI_R 5506 1781 3725 32.35 57.78 40.12 75.42 61.99 55.77 15.55 48.71
stack_glm dataset_log_psych_IQ 7286 2273 5013 31.2 51.97 34.62 72.98 60.79 47.97 7.26 44.11
stack_glm dataset_log_psych_MMPI 5298 1740 3558 32.84 59.6 42.37 76.46 63.79 57.54 18.9 50.92
stack_glm dataset_binned_performance 8156 2798 5358 34.31 70.28 54.74 84.81 77.12 66.71 39.92 64.03
stack_glm dataset_binned_psych 3544 1182 2362 33.35 65.16 48.46 81.18 71.19 62.15 29.84 57.67
stack_glm dataset_binned_psych_JPI_R 5506 1781 3725 32.35 66.02 48.06 79.14 62.73 67.59 28.09 54.43
stack_glm dataset_binned_psych_MMPI 5298 1740 3558 32.84 62.87 45.8 80.62 71.07 58.86 26.23 55.71
stack_glm dataset_numeric_pca_best 3095 1125 1970 36.35 72.95 60.14 83.73 75.67 71.4 44.6 67.02
stack_glm dataset_performance_pca_best 8156 2798 5358 34.31 68.15 52.23 87.64 83.79 59.99 38.25 64.35
stack_glm dataset_psych_pca_best 3544 1182 2362 33.35 59.89 43.36 77.12 66.38 56.64 20.32 52.46
stack_glm dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 58.51 40.57 75.41 60.86 57.39 16.14 48.69
stack_glm dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 59.35 42.84 79.11 71.07 53.61 21.13 53.46
stack_glm dataset_imputed_performance_pca_best 11885 2939 8946 24.73 76.18 51.09 93.83 85.36 73.16 47.76 63.92
stack_glm dataset_imputed_psych_pca_best 11885 2939 8946 24.73 64.23 37.04 84.44 63.9 64.33 22.71 46.9
stack_glm dataset_log_psych_pca_best 3544 1182 2362 33.35 59.98 43.26 76.45 64.41 57.77 19.76 51.76
stack_glm dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 58.87 41.34 76.9 64.79 56.04 18.15 50.47
stack_glm dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 57.58 41.4 77.87 70.11 51.45 18.32 52.06
stack_glm dataset_binned_psych_pca_best 3544 1182 2362 33.35 64.69 47.87 79.26 66.67 63.7 27.65 55.73
stack_glm dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 62.99 44.8 77.8 62.17 63.38 23.21 52.08
stack_glm dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 60.35 43.88 80.91 74.14 53.61 23.59 55.13
stack_glm dataset_apft_minimum_psych 1994 1053 941 52.81 60.8 63.28 58.22 61.27 60.28 21.51 62.26
stack_glm dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 55.79 58.32 52.86 58.92 52.24 11.16 58.62
stack_glm dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 55.62 56.31 54.64 63.82 46.82 10.69 59.83
stack_glm dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 59.08 61.18 56.72 61.18 56.72 17.91 61.18

stack_rf dataset_numeric 3095 1125 1970 36.35 72.31 61.05 79.51 65.58 76.14 41.07 63.23
stack_rf dataset_performance 8156 2798 5358 34.31 70.77 55.98 81.63 69.13 71.62 38.59 61.87
stack_rf dataset_psych_IQ 7286 2273 5013 31.2 63.78 36.39 70 21.59 82.9 5.05 27.1
stack_rf dataset_psych_JPI_R 5506 1781 3725 32.35 64.75 43.65 71.01 30.9 80.93 12.81 36.18
stack_rf dataset_psych_MMPI 5298 1740 3558 32.84 63 42.73 71.1 37.16 75.63 13.24 39.75
stack_rf dataset_psych 3544 1182 2362 33.35 64.03 45.36 71.45 38.7 76.69 15.98 41.77
stack_rf dataset_imputed_performance 11885 2939 8946 24.73 77.78 54.43 86.95 62.09 82.93 42.99 58.01
stack_rf dataset_imputed_psych 11885 2939 8946 24.73 73.15 43.54 79 29.06 87.63 18.78 34.85
stack_rf dataset_log_performance 8156 2798 5358 34.31 71.18 56.43 82.12 70.08 71.75 39.55 62.52
stack_rf dataset_log_psych 3544 1182 2362 33.35 65.35 47.71 72.49 41.24 77.4 19.3 44.24
stack_rf dataset_log_psych_JPI_R 5506 1781 3725 32.35 63.17 41.06 70.57 31.84 78.16 10.61 35.86
stack_rf dataset_log_psych_IQ 7286 2273 5013 31.2 62.45 33.72 69.44 21.15 81.17 2.58 25.99
stack_rf dataset_log_psych_MMPI 5298 1740 3558 32.84 64 44.39 71.65 37.93 76.76 15.26 40.91
stack_rf dataset_binned_performance 8156 2798 5358 34.31 71.3 57.05 80.68 66.03 74.05 38.63 61.22
stack_rf dataset_binned_psych 3544 1182 2362 33.35 63.84 45.86 73.14 46.89 72.32 19.1 46.37
stack_rf dataset_binned_psych_JPI_R 5506 1781 3725 32.35 68.5 51.54 74.98 44.01 80.21 25.18 47.47
stack_rf dataset_binned_psych_MMPI 5298 1740 3558 32.84 64.38 45.94 73.93 47.7 72.54 20.04 46.8
stack_rf dataset_numeric_pca_best 3095 1125 1970 36.35 73.49 63.11 79.69 64.99 78.34 43.05 64.04
stack_rf dataset_performance_pca_best 8156 2798 5358 34.31 68.77 53.89 78.46 61.98 72.31 33.1 57.65
stack_rf dataset_psych_pca_best 3544 1182 2362 33.35 63.47 44.55 71.33 39.27 75.56 15.28 41.74
stack_rf dataset_psych_JPI_R_pca_best 5506 1781 3725 32.35 61.24 34.77 68.3 22.66 79.68 2.57 27.44
stack_rf dataset_psych_MMPI_pca_best 5298 1740 3558 32.84 64.95 45.5 71.25 33.91 80.13 15.02 38.86
stack_rf dataset_imputed_performance_pca_best 11885 2939 8946 24.73 77.41 53.88 86.34 59.93 83.15 41.52 56.74
stack_rf dataset_imputed_psych_pca_best 11885 2939 8946 24.73 72.31 40.64 78.29 26.11 87.48 15.44 31.79
stack_rf dataset_log_psych_pca_best 3544 1182 2362 33.35 63.84 45.19 71.6 39.83 75.85 16.16 42.34
stack_rf dataset_log_psych_JPI_R_pca_best 5506 1781 3725 32.35 62.51 39.45 69.95 29.78 78.16 8.47 33.94
stack_rf dataset_log_psych_MMPI_pca_best 5298 1740 3558 32.84 64.51 45.33 72.08 39.08 76.94 16.61 41.98
stack_rf dataset_binned_psych_pca_best 3544 1182 2362 33.35 67.23 51.01 73.5 42.66 79.52 23.12 46.46
stack_rf dataset_binned_psych_JPI_R_pca_best 5506 1781 3725 32.35 65.66 46.37 72.99 39.51 78.16 18.38 42.67
stack_rf dataset_binned_psych_MMPI_pca_best 5298 1740 3558 32.84 62.81 43.55 72.58 44.64 71.7 16.23 44.09
stack_rf dataset_apft_minimum_psych 1994 1053 941 52.81 59.97 61.18 58.37 66.03 53.19 19.31 63.51
stack_rf dataset_apft_minimum_psych_JPI_R 3026 1608 1418 53.14 50.28 52.91 46.52 58.51 40.94 -0.56 55.57
stack_rf dataset_apft_minimum_psych_IQ 3917 2028 1889 51.77 55.37 56.95 53.68 56.58 54.06 10.64 56.77
stack_rf dataset_apft_minimum_psych_MMPI 2887 1521 1366 52.68 58.15 60.31 55.75 60.31 55.75 16.05 60.31
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