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Abstract
Image Segmentation in Histopathology with Limited Labeled Data

by

Payden McBee

Doctor of Philosophy in Systems and Information Engineering

University of Virginia

Detecting and quantifying cellular features via deep neural networks informs
understanding of disease progression in digital histopathology. Biopsies from patients are
placed on slides, then stained and digitized to create whole-slide images (WSIs). Medical
experts provide pixel-level and image-level annotations that outline cell types and disease
information on image patches from the WSI. Segmentation neural networks trained on
these annotations provide pixel-wise predictions of cell types and tissue disease. However,
due to the large amount of tissue imaged for every biopsy, medical experts only label a
small portion of the imagery per patient. This results in a large amount of unlabeled data
that standard supervised algorithms cannot use. The main question of this research is: How
do we optimize segmentation performance in histopathology in limited labeled data
settings?

First, model initialization in limited data settings is addressed. Transfer learning
techniques have proven more bene�icial than random initialization of model weights in
many settings. In transfer learning, a model developed for a speci�ic task is reused as the
initial model for a second task with limited labeled data. Many models are pre-trained on
natural image sets, such as ImageNet, and �ine-tuned on medical images. Additionally, some
models are pre-trained on one set of medical images and �ine-tuned on another set.
However, most models are only pre-trained with ImageNet, and there is no standardized
medical equivalent of ImageNet. Thus, what type of model initialization is optimal in
limited data settings? My published results show the optimality of model weights
pre-trained with ImageNet over those pre-trained with histopathology images when the
labeled dataset is small. This allows for a broader range of architectures, saving time and
preventing expensive gathering of histopathology data and pre-training.

Second, I consider how unlabeled data can be used to optimize segmentation
performance. Pseudo-labeling is an existing semi-supervised learning technique that uses
unlabeled data to train a model. Existing techniques utilize con�idence and uncertainty
quanti�ication to select images for pseudo-labeling from a classi�ication standpoint, but the
literature does not extend them to the segmentation context. Furthermore, techniques that
use pseudo-labels for segmentation either do not specify how the unlabeled data was
selected or use a deterministic threshold. Due to the large amount of unlabeled imagery,
using all of the WSI in training is not practical. The literature does not address the
trustworthiness of the model’s uncertainty quanti�ication. Thus, the second contribution of
this research is to adapt and verify the utility of con�idence and uncertainty quanti�ication
methods from a classi�ication setting to the segmentation setting and to inform image-level



selection. My published results show the importance of assessing the correlation between
the image-level uncertainty metric and the model performance on a labeled set as a
precondition for using the model to select unlabeled images. My approach enables the
prioritization of images that maximize performance and provide trust in the model via an
intuitive visualization of uncertainty.

Third, I consider how biases inherent in unlabeled and labeled data can be identi�ied
that would hinder the generalization of semi-supervised algorithms. Existing methods
address differences in labeled and unlabeled sets but do not provide clinically actionable
interpretations. I use Gaussian Mixture Models to cluster the unlabeled and labeled sets to
identify sampling and labeling biases and demonstrate the effect of these biases in
semi-supervised learning algorithms. My method provides clear interpretability about
biases that enables the correct clinical solution, reducing cost and minimizing procedures
necessary for the patient.
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Chapter 1
Introduction

1.1 Image Classi�ication Levels
In computer vision, there are different levels of image classi�ication. Figure 1.1

shows four types: image classi�ication, object localization, instance segmentation, and
semantic segmentation. In the context of cell detection, the simplest level of an image
classi�ication algorithm outputs a probability determining whether the image contains cells
or not. Object localization predicts a bounding box containing each object or cell of interest.
Instance segmentation identi�ies the pixels of each distinct cell, such as the pixels of cell 1,
cell 2, et cetera. The focus of this research is the last type, semantic segmentation. Each
pixel is assigned a probability of belonging to a given cell class or the background class. To
do this, a segmentation model, such as a U-Net (Ronneberger et al., 2015), trains on a set of
images and the corresponding pixel-wise class annotations and then, given a new image,
predicts the class predictions per pixel.

Figure 1.1 Types of Image Classi�ication: This �igure shows 4 image classi�ication levels and
their associated annotations.

1.2 Digital Histopathology
In addition to the engineering focus of semantic segmentation within computer

vision, the medical background of this research includes digital histopathology. Digital
histopathology concerns the study of digitized pictures of tissue with the intention of better
understanding underlying diseases. Biopsies are taken from a patient to create these
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digitized images.
Tissue samples are then placed on slides, stained with hematoxylin and eosin, and

imaged to create a whole-slide-image (WSI). WSIs are large, containing multiple tissue
regions where each region is on the order of 10,000 x 10,000 pixels. Medical professionals
then provide pixel-wise annotations for a small portion of the imagery to train a model.
This results in a large amount of the WSI that is left unlabeled. Given the labeled data, a
model can be trained and used to quantify cell count and prevalence, which informs
understanding of disease progression. Figure 1.2 shows an image patch from a patient with
esophageal esophagitis, where medical professionals have annotated the eosinophils and a
model’s output.

Figure 1.2 Histopathological Segmentation Example: This �igure shows a U-Net being
trained on a 3-channel RGB image of tissue stained with hematoxylin and eosin sampled
from the esophagus of a patient with eosinophilic esophagitis with annotations for
eosinophils. The output of the model is the segmentation map for the predicted locations of
the eosinophils.

1.3 The Problem
Next, I de�ine the problem this research is addressing. Since segmentation labeling

requires a signi�icant time commitment from experts, not all tissue can be labeled. This
leaves large portions of unlabeled tissue that traditional supervised learning algorithms
cannot utilize in training. Furthermore, no large segmentation labeled histopathology
dataset exists on the scale that does for common objects. Thus, the main research question
is: How do we maximize segmentation performance in histopathology in limited labeled
data settings? This work breaks this problem down into subcomponents: model
initialization, incorporation and trustworthiness of unlabeled data, and identi�ication and
evaluation of bias in unlabeled and labeled datasets. When training a segmentation model,
one of the �irst issues to address is how to initialize the model weights. Current techniques
leverage transfer learning, where a model is trained on a large labeled dataset and then
�ine-tuned on the smaller target dataset. Since no such large labeled dataset exists in
histopathology, multiple smaller histopathological segmentation datasets are examined in
the transfer learning context, as well as a large, mostly unlabeled histopathological dataset.
Second, I investigate using the unlabeled data to increase the segmentation model
performance. The literature shows that pseudo-labeling can leverage unlabeled data to
increase model performance. However, in the context of whole-slide-imagery, using the
entire unlabeled set would be infeasible due to its immense size. Thus, a method to select a
subset of images from the unlabeled set for pseudo-labeling is needed. Existing techniques
use empirical thresholds or expensive pixel-level uncertainty quanti�ication. Current
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techniques also do not address the trustworthiness of the model’s uncertainty metric on
unlabeled data. Third, differences between the labeled and unlabeled data can degrade the
performance of segmentation algorithms. Existing techniques identify these differences and
even correlate the size of the difference with performance. However, there is no root cause
analysis that identi�ies the biases that occur in the data that lead to the differences in
distributions.

1.4 Dissertation Overview
The following is an overview of the �indings and impact of this research in answering the
main problem, broken out by the subcomponents.

1. How should models be initialized for histopathological segmentation in limited
labeled data settings?

Contribution: Showed optimality of ImageNet pre-trained weights over
histopathology weights when the dataset is small.

Impact: Allows for a wider range of architectures, saving time and preventing
expensive gathering of histopathology data and pre-training.

2. How can unlabeled data be incorporated and trusted for image-level selection?

Contribution: Adapted con�idence and uncertainty quanti�ication methods from
classi�ication to segmentation setting for image-level selection and leveraged
uncertainty correlation on the training set.

Impact: Enables prioritization of images that maximize performance and provide
trust in the model via intuitive uncertainty visualization.

3. How can biases inherent in unlabeled and labeled data be identi�ied that would
hinder the generalization of semi-supervised algorithms?

Contribution: Used clustering to identify sampling and labeling biases and
demonstrated effect on semi-supervised learning techniques.

Impact: Gives clear interpretability about biases that enables the correct clinical
solution, reducing cost and minimizing unnecessary procedures for patients.
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Chapter 2
Segmentation Datasets

2.1 Histopathological Datasets
In histopathological image analysis, biopsies are typically stained with hematoxylin

and eosin (H&E). The images analyzed in this work, as is the case with most publicly
available histopathological datasets, are H&E stained (Komura and Ishikawa, 2018).
Hematoxylin stains the nuclei in cells blue, and eosin stains the cytoplasm and extracellular
matrix features varying shades of pink (Fischer et al., 2008). For the purposes of
segmentation, medical professionals provide labels for cell types and cellular features for
an algorithm to learn. In this work, 5 different histopathological segmentation datasets are
examined, as described in the following sections.

2.1.1 Eosinophilic Esophagitis (EoE) Dataset

The EoE dataset consists of images from 30 patients diagnosed with eosinophilic
esophagitis (EoE), where the biopsies are taken from the esophagus during an endoscopy.
EoE is a progressive disease that presents as episodes of vomiting, dysphagia, and
heartburn. Chronic in�lammation and tissue remodeling can lead to luminal narrowing due
to the formation of strictures and extensive �ibrosis. The gold standard for diagnosis is
tissue biopsy with greater than or equal to 15 intraepithelial eosinophils per high power
�ield on light microscopy (Aceves 2011; Gonsalves and Aceves, 2020). Eosinophils are
proin�lammatory cells with bilobed nuclei which appear as two nuclei pressed into one
another to make a �igure 8 pattern. The cytoplasm is �illed with red-staining secretory
granules on H&E staining (Rosenberg et al., 2013). Tissue eosinophils can be seen on light
microscopy in various states of degranulation. Intact eosinophils are annotated in this
dataset. The EoE dataset consists of 514 labeled and 240,526 unlabeled images, each with a
size of 512 x 512 pixels at 40x magni�ication. The use of the EoE data was approved under
IRB-HSR 19562, Eosinophilic Esophagitis Patient Database and Biorepository.

2.1.2 Crohn’s Disease (CD) Dataset

The CD dataset consists of images from 51 patients, where the biopsies were taken
during a colonoscopy, with varying levels of disease presence. Each image is annotated for
eosinophils. Eosinophil density may correlate with disease activity in other in�lammatory
gastrointestinal diseases, such as Crohn’s disease and ulcerative colitis (UC) (Alhmoud et
al., 2020). The CD dataset consists of 200 labeled images and 291,779 unlabeled images,
each with a size of 512 x 512 pixels at 40x magni�ication.
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2.1.3 Colorectal Nuclear Segmentation and the Phenotypes (CoNSeP) Dataset

The CoNSeP dataset consists of images from 16 patients suffering from colorectal
adenocarcinoma (CRA) (Graham et al., 2019). Each image is annotated for 6 classes of
nuclei: normal epithelial, tumor epithelial, in�lammatory, necrotic, muscle, and �ibroblast.
The CoNSeP dataset consists of 41 labeled images of size 1000 x 1000 pixels at 40x
magni�ication.

Figure 2.1: Patches from CoNSeP dataset from Graham et al. (2019)

2.1.4 PanCancer Histology Dataset for Nuclei Instance Segmentation and Classi�ication
(PanNuke)

PanNuke consists of images from 19 different organs with various kinds of cancer.
(Gamper et al., 2019). Each image is annotated for 5 classes of nuclei: neoplastic,
in�lammatory, connective, dead, and non-neoplastic epithelial. PanNuke consists of 1,485
labeled images of size 256 x 256 pixels at varying levels of magni�ication.

2.1.5 Multi-Organ Nuclei Segmentation (MoNuSeg) Dataset

The MoNuSeg dataset consists of images from 30 patients and 7 different organs,
such as the kidney and liver (Kumar et al., 2020). Each image was derived from one WSI per
patient from The Cancer Genomic Atlas (TCGA 2016). The dataset is annotated for nuclei
and non-nuclei pixels. The MoNuSeg dataset consists of 44 images of size 1000 x 1000
pixels at 40x magni�ication. The pre-processing of each dataset is described in the
following chapters. Of note, each of the labeled datasets are relatively small, with PanNuke
having the largest labeled set of only 1,495 images. In the following chapter, how to address
model initialization with small labeled datasets is addressed.
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Chapter 3
Model Initialization

3.1 Summary
In limited data settings, transfer learning has proven useful in initializing model

parameters. In this chapter, I compare random initialization, pre-training on ImageNet, and
pre-training on histopathology datasets for 2 model architectures across 4 segmentation
histopathology datasets. I show that pre-training on histopathology datasets does not
always signi�icantly improve performance relative to ImageNet pre-trained weights for both
model architectures. I conclude that unless larger labeled datasets or semi-supervised
techniques are leveraged, ImageNet pre-trained weights should be used in initializing
segmentation models for histopathology.

3.2 Literature Review
Transfer learning is a technique where a model developed for a speci�ic task can be

reused as the initial model for a second task with limited labeled data. A common transfer
learning approach for medical images is to start with the standard network architectures,
e.g., VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016) pre-trained on the
large-scale natural images such as ImageNet (Deng et al., 2009) and PASCAL VOC
(Everingham et al., 2010), and then �ine-tune them on medical images, as in Figure 3.1.

Figure 3.1: This �igure shows the transfer learning process of a model training on natural
image datasets and being �ine-tuned on medical images.

The effectiveness of pre-trained deep convolutional neural networks (CNNs) with
suf�icient �ine-tuning was investigated on four medical imaging applications in Tajbakhsh et
al. (2016). This study demonstrated that, in most cases, �ine-tuning a pre-trained model
achieved better performance and robustness than those trained from scratch with random
initialization. Similarly, Devan et al. (2019) demonstrated that transfer learning with
ImageNet can signi�icantly enhance model performance in detecting herpesvirus capsids in
microscopy images, particularly when labeled data is limited. Conze et al. (2020) utilized a
VGG-11 encoder pre-trained on ImageNet for the shoulder muscle MRI segmentation task.
These results indicate that a CNN pre-trained on ImageNet learns features that are
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applicable to both natural and medical images. However, the gap in features between
medical and natural images has motivated pre-training on medical datasets. Ray et al.
(2022) demonstrated an increase in performance and faster convergence for CNNs
pre-trained on histopathological datasets relative to a model pre-trained on ImageNet.
Similarly, Ciga et al. (2022) used self-training on unlabeled histopathology images to
improve segmentation results.

3.3 Discussion and Limitations of Literature

Ray et al. (2022) and Ciga et al. (2022) demonstrate pre-training on
histopathological datasets as superior to pre-training on ImageNet in classi�ication and
segmentation, respectively. In each case, large histopathological datasets are gathered for
pre-training and the model weights are trained. Speci�ically, Ray et al. (2022) pre-trained
with over 100,000 images distinguishing patches of cancer tissue from normal tissue. Ciga
et al. (2022) pre-trained with 400,000 images from several sources, mostly unlabeled.

This gathering of histopathological data was required because no standardized
version exists, nor do they approach the size of ImageNet, with 14 million labeled images.
Additionally, most models are not pre-trained on histopathological data, though they are
usually pre-trained on ImageNet. Thus, to use a new architecture, not only does a
histopathological dataset need to be assembled, but the architecture itself has to be trained
on it. Finally, pre-training on labeled histopathological data has not been tested for
segmentation, only encoders for classi�ication tasks or via unlabeled self-supervision as in
Ciga et al. have been explored. Speci�ically, the ef�icacy of utilizing a model pre-trained on
natural images compared to a medical image pre-trained model for nuclei segmentation
tasks has not been investigated.

In light of these limitations, this section seeks to answer the following: Does
pre-training on histopathology datasets improve segmentation performance relative to
encoders pre-trained on ImageNet?

The contribution of this chapter answers this question by showing the optimality of
ImageNet pre-trained weights over histopathology weights when the dataset is small. The
impact of this contribution allows for a wider range of architectures to be leveraged, saving
time and preventing the need for expensive gathering of histopathology data and
pre-training.

3.4 Pre-processing of Datasets

First, I discuss the pre-processing of 4 datasets derived from whole-slide-images in
my evaluation. The eosinophilic esophagitis (EoE) labeled dataset consists of 514 images at
512 x 512 pixels. Each image was divided into 4 via a sliding window with no overlap and
resized to 256, creating 2,056 images, which are annotated for eosinophils. The 200 images
in the Crohn’s Disease (CD) dataset are processed similarly to produce 800 images. The
Colorectal Nuclear Segmentation and the Pheno-types (CoNSeP) dataset (Graham et al.,
2019) was cropped to create 660 images. The PanCancer Histology Dataset for Nuclei
Instance Segmentation and Classi�ication (PanNuke) (Gamper et al., 2019) was cropped
into 7,901 images.
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3.5 Methodology

For this analysis, the HoVer-Net (Graham et al., 2019) and U-Net++ (Zhou et al.,
2018) models are used. HoVer-Net has three separate task-speci�ic decoders, which are
used for nuclei detection, separation, and classi�ication, respectively. U-Net++ has a single
decoder to provide pixel classi�ication. The Preact-ResNet50 is utilized as the encoder for
the HoVer-Net model and ResNet50 as the encoder for the U-Net++ model. For HoVer-Net,
the hyper-parameters and training strategies presented by Graham et al. (2019) are
followed. For U-Net++, each model is trained for 200 epochs and select the model that
minimizes the validation binary cross-entropy (EoE and Crohns) or cross-entropy (CoNSeP
and PanNuke) loss. Each of the models is trained and tested for each of the 4 datasets given
encoders with various pre-trained weights. The MoNuSAC ResNet50 encoder weights from
(Graham et al., 2019) are used, and the other weights are obtained by initializing a model
with ImageNet and training it on a given histopathology dataset.

3.6 Experiments and Results

Table 3.1 shows the average performance of the U-Net++ and HoverNet models
over 3 runs across the various pre-trained weights for EoE, Crohns, PanNuke, and CoNSeP. I
put the maximum performance for each test set and model across the pre-trained weights
in bold and put a star if optimal performance is statistically signi�icant. Notably, the models
pre-trained on histopathology and the models pre-trained on ImageNet do not have
differences that are statistically signi�icant, except for HoVer-Net pre-trained on MoNuSAC
for PanNuke, where p = 0.052499 from a Welch’s t-test comparing it with the ImageNet
pre-trained model performance. This indicates that pre-training on these histopathology
datasets does not increase the segmentation performance relative to ImageNet weights.
The randomly initialized weights are lower for all datasets except U-Net++ for EoE,
suggesting that some kind of pre-training is useful. Furthermore, the number of epochs
trained when using a model initialized with ImageNet weights is comparable to models
pre-trained on histopathology, being signi�icantly larger only for U-Net++ on PanNuke.
Thus, there is no set of consistently optimal pre-trained weights, and the ImageNet weights
provide the same or better performance than weights from a model pre-trained on multiple
histopathology datasets. Also, the time for training for models with ImageNet pre-trained
encoder is comparable to models pre-trained with histopathology.

3.7 Conclusion

Training a model with ImageNet pre-trained weights was shown to not have a signi�icantly
different performance than pre-training on multiple histopathology datasets for 2
state-of-the-art medical segmentation models, the U-Net++ and HoVer-Net. This is likely
partly due to the relatively small size of the datasets used in pre-training. Small datasets do
not allow the model to learn diverse features, even when they come from the target domain.
Furthermore, the number of training epochs to minimize the validation loss did not
increase for the models pre-trained with ImageNet relative to those trained on
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histopathology. Unless an abundant amount of histopathology data is available, pre-training
on relatively small histopathology datasets is not likely to increase performance or
decrease training time relative to an ImageNet baseline.

Table 3.1 Pre-training Model Performance: This table shows the average performance of the
U-Net++ and HoverNet models over 3 runs across the various pre-trained weights for EoE,
Crohns, PanNuke, and CoNSeP.
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Chapter 4
Incorporating Unlabeled Data and
Verifying Trustworthiness

4.1 Summary
Advancements in deep learning techniques have proved useful in biomedical image

segmentation. However, the large amount of unlabeled data inherent in biomedical imagery,
particularly in digital pathology, creates a semi-supervised learning paradigm. Speci�ically,
because of the time-consuming nature of producing pixel-wise annotations and the high
cost of having a pathologist dedicate time to labeling, there is a large amount of unlabeled
data that can be used to train segmentation algorithms. Pseudo-labeling is one method to
leverage the unlabeled data to increase overall model performance. In this chapter, I adapt a
method used for image classi�ication pseudo-labeling to select images for segmentation
pseudo-labeling and apply it to 3 digital pathology datasets. To select images for
pseudo-labeling, I create and explore different thresholds for con�idence and uncertainty on
an image-level basis. Furthermore, I study the relationship between image-level
uncertainty and con�idence with model performance. I �ind that the certainty metrics do
not consistently correlate with performance intuitively, and abnormal correlations serve as
an indicator of a model’s ability to produce pseudo-labels that are useful in training.

4.2 Literature Review
After the model has been initialized, the next question is how to incorporate

unlabeled images. All image patches are extracted from large whole-slide images (WSIs).
Each WSI is on the order of multiple gigabytes of data, and the segmentation annotations
are inherently cumbersome. Thus, a pathologist is only able to annotate a small portion of a
whole slide image per patient, leaving most of the WSIs unlabeled and unused. This context
invites the use of semi-supervised learning (SSL), which seeks to leverage both labeled and
unlabeled data to increase a model’s performance on a hold-out test set. One tool to utilize
this unlabeled data is pseudo-labeling.

4.2.1 Pseudo-Labels

Pseudo-labels were introduced by Lee (2013). Figure 4.1 shows the general �low of
using pseudo-labels. First, a model is trained on a labeled set. Then, the model is used to
predict the labels for the unlabeled data. The class, , with the maximum probability of𝑖 ∈ 𝐶
the model’s predictions over all classes is the pseudo-label for a given input.
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Equation 1 from Lee (2013) represents this as a one-hot embedding of each class, .𝑖

(Equation 1)

These pseudo-labels are then used along with the labeled set to train a new model
via the joint loss function in Equation 2, where is the number of samples and is the𝑛 𝐶
number of classes.

(Equation 2)

Lee (2013) used an annealing process to linearly increase the weight of the
pseudo-labels in the loss function over time, increasing the in�luence of the pseudo-labels
as the model grew more con�ident. Equation 3 describes this linear weighting by a stepwise
function .α(𝑡)

(Equation 3)

Figure 4.1: This �igure shows the process of pseudo-label training from AlZoubi et al.
(2020).
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4.2.2 Theory of Pseudo-Labels

Lee (2013) describes the rationale behind pseudo-labeling as entropy
regularization, where the conditional entropy of class probabilities for the unlabeled data is
minimized. The conditional entropy of the unlabeled data measures the amount of class
overlap. Thus, minimizing the conditional entropy of the class probabilities minimizes the
class overlap of the unlabeled data in the embedding space. This minimization results in a
low-density separation between the classes. Figure 4.2 from Lee (2013) shows the t-SNE
2D embedding of the network output on a test set that was trained with (a) and without (b)
pseudo-labels. The plot on the right shows how the entropy is minimized by the clear
separation between classes, achieved when training with pseudo-labels.

Figure 4.2: This �igure shows the embedding of the network’s output given test data from
Lee (2013).

4.2.3 Selecting and Using Pseudo-Labels in Image Classi�ication

Now, I examine how techniques in the literature select images to pseudo-label and
use them in training. From Equation 3, Lee (2013) slowly increases the weight of the
pseudo-labels in the loss over time, but does de�ine which data points to choose. Lee
(2013) assumes that all unlabeled data should be used.

From the image classi�ication literature, techniques exist to help select images in
pseudo-labeling and incorporating them into a semi-supervised training process. I provide
a brief overview of each technique and then thoroughly explain each one. The �irst
technique is deterministic con�idence thresholding, as de�ined in the FixMatch algorithm
(Sohn et al., 2020), which only selects images if the model prediction has a probability
greater than a given threshold, found empirically. The next technique, called FlexMatch
(Zhang et al., 2021), builds upon FixMatch by lowering the con�idence threshold for less
common classes, inversely proportional to the class frequency in the pseudo-labeled set.
This increases the likelihood of selecting less common classes for pseudo-labeling, resulting
in a model that learns from a more balanced distribution. The last classi�ication technique,
from Rizve et al. (2020), selects images for pseudo-labeling that meet both con�idence and
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uncertainty thresholds. The model produces an uncertainty score for each image, which
must be greater than an empirical threshold to be selected. Finally, I consider Zheng et al.
(2021), which uses adversarial examples to create a diverse ensemble of models. It also
uses pixel-wise uncertainty weighting in the loss functions for both labeled and unlabeled
data.

FixMatch: Simplifying semi-supervised learning with consistency and con�idence (Sohn et
al., 2020)

In FixMatch, pseudo-labels are used in a consistency regularization framework. An
image is weakly augmented (only �lipped and shifted), and a trained model predicts the
class probabilities. If the maximum probable class is greater than a deterministic threshold,
the pseudo-label is created as the one-hot encoding of the maximum probability class. That
same image is strongly augmented via heavy distortions such as color distortions and
shearing. The cross-entropy loss of the prediction probabilities and the pseudo-label is
computed. This loss, along with the cross entropy loss of the weakly augmented labeled
data are used to train the model. Figure 4.3 shows a diagram of this process.

Figure 4.3: This �igure shows the training process in the FixMatch algorithm using
unlabeled training data from Sohn et al. (2020).

One issue with translating this method to the segmentation context is that shearing,
the strong augmentation used, cannot be applied. This is because physical distortions of the
pixel-space would change the class of the pixels, and the wrong pixels would be matched in
the entropy minimization. Thus, the augmentation techniques would be limited to
non-geometric ones, such as color shifts.

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling (Zhang et
al., 2021)

FlexMatch builds upon FixMatch by adding curriculum pseudo-labeling, which seeks
to select unlabeled images for pseudo-labeling in an optimal order. To do so, an adaptive
threshold is created to allow classes which are infrequent in the unlabeled set to be
selected more often. To gauge this frequency, the authors calculate the “learning effect”,
which counts the number of unlabeled examples whose maximum class predictions are
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greater than a threshold for each given class, as shown in Equation 4.

(Equation 4)

This number is higher for classes which occur frequently and at higher con�idences.
The learning effect is then normalized by the maximum learning effect across all classes in
Equation 5.

(Equation 5)

The normalized learning effect per class, , then creates a new class-speci�icβ
𝑡
(𝑐)

scaled threshold, which lowers the con�idence threshold for less common classes, shown in
Equation 6.

(Equation 6)

Thus, more images of rarer classes in the unlabeled dataset are selected for
pseudo-labeling. With respect to transferring this technique to the segmentation context,
the strong augmentation limitations from FixMatch persist. Furthermore, the class
balancing method would need to be altered for segmentation datasets, which have multiple
classes per image.

In Defense of Pseudo-Labeling: An Uncertainty Aware Pseudo Label Selection Framework
for Semi-Supervised Learning (Rizve et al., 2020)

In Rizve et al. (2020), the authors train a model on a labeled set and then use the
model to predict class probabilities on an unlabeled set. They calculate the standard
deviation of the model predictions over 10 forward passes using Monte Carlo dropout. This
standard deviation functions as the uncertainty score. Images with maximum class
predictions greater than a threshold and uncertainty scores less than a threshold value are
then used to train the model. These thresholds are found empirically by a validation
dataset. To use this in the segmentation context, the uncertainty score and class prediction
would need to be adapted since each pixel has class predictions. In contrast, in the image
classi�ication problem, each image has a class prediction.

Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation
(Zheng et al., 2021)

To understand Zheng et al. (2021), I start with the co-training concept, which was
introduced by Blum and Mitchell (1998). Co-training trains classi�iers from multiple views
of the same scene. This creates viewpoint diversity and results in a more effective
ensemble.

In 2018, Qiao et al. extended the co-training concept to image classi�ication by using
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adversarial examples to enforce viewpoint diversity. Adversarial examples, brie�ly, are input
examples that are altered via knowledge of the model’s gradient in such a way as to cause
the model to incorrectly classify the image. Figure 4.4 shows how each model is trained on
the adversarial example of the other model, which creates a more robust ensemble.

Figure 4.4: This �igure shows the effect of adversarial training from Qiao et al. (2018).

Peng et al. (2020) then extend this co-training framework to the segmentation context.
They focus on three losses: one that uses the standard cross-entropy loss on the labeled
data, an ensemble agreement loss on the unlabeled data, and the diversity loss on both the
labeled and unlabeled data.

Zheng et al. (2021) build upon Peng et al. (2020), but add an uncertainty weight to
the supervised and unsupervised losses. The uncertainty is calculated per image for each
model by 10 stochastic forward passes using Monte Carlo dropout and taking the entropy
of the averaged output per pixel. Entropy is a measure of information spread, so if the
average output probability of the maximal class is low, then the model is not con�ident
about the prediction. Therefore the uncertainty of the pixel is higher. The uncertainty
scores are used differently for the supervised and unsupervised losses. In the supervised
loss, the cross entropy loss of each pixel is weighted by that pixel’s uncertainty score for
each model, resulting in the model learning more from the pixels with higher uncertainty,
since I have certainty of their labels. Figure 4.5 from Zheng et al. illustrates the supervised
learning process guided by uncertainty.

Figure 4.5: Supervised Learning with Uncertainty from Zheng et al. (2021).

For the unsupervised data, the uncertainty weights from each model are averaged,
scaled, and multiplied by -1, which results in learning more from the pseudo-labels from
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pixels about which the models are jointly certain. Figure 4.6 from Zheng et al. shows both
models being trained using their joint uncertainty on the unlabeled data.

Figure 4.6: Unsupervised Learning with Uncertainty from Zheng et al. (2021).

One issue with this approach is that all unlabeled images are used, but only certain
pixels are discounted according to the model uncertainty. Thus, this method does not
address how to downselect to a useful subset when the unlabeled data set is too large to be
feasibly used.

4.3 Discussion and Limitations of Literature

The FixMatch algorithm (Sohn et al., 2020) and the FlexMatch algorithm (Zhang et
al., 2021) use unlabeled data in a consistency regularization setup. FlexMatch additionally
has a threshold that adapts to under-observed classes in the multiclass classi�ication
problems. Rizve et al. (2020) used uncertainty quanti�ication, with a deterministic
threshold to select the images with the most con�idence and lowest uncertainty from the
unlabeled set. While these algorithms provide selection criteria on an image-level basis,
they are not adaptive in binary settings nor applied to segmentation problems. All three of
these algorithms concern classi�ication problems. While Zheng et al. (2021) address
segmentation problems, it sets no threshold for selecting unlabeled images. Additionally,
the uncertainty quanti�ication for weighting the loss function is expensive to calculate for
every iteration in an epoch. Furthermore, none of these metrics describe a process to verify
the trustworthiness of an uncertainty metric.

In light of these limitations, this section seeks to answer the following: How can
unlabeled data be incorporated and trusted for image-level selection?

The contribution of this chapter answers this question by adapting con�idence and
uncertainty quanti�ication methods from classi�ication to segmentation setting for
image-level selection. I also use the correlation of the uncertainty metric with the dice score
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on the training set to verify trustworthiness for the uncertainty quanti�ication. The impact
of this contribution is to enable the prioritization of images that maximize performance and
provide trust in the model via intuitive visualization of uncertainty.

4.4 Pre-processing of Datasets

First, I discuss the preprocessing of 3 datasets derived from whole-slide-images in
this evaluation. The eosinophilic esophagitis (EoE) labeled dataset consists of 514 images
at 512 x 512 pixels. Each image is used as it is with its binary mask for eosinophil pixel
annotations. The CoNSeP dataset consists of 41 images, each with a size of 1000 x 1000
pixels. The images are sliced into 500 x 500 pixel sub-image patches with no overlap,
resulting in 164 images. To simplify the problem, all nuclei are collapsed into a single type.
The MoNuSeg dataset consists of 44 images, each with a size of 1000 x 1000 pixels. Each
image is sliced into 500 x 500 pixels sub-images with no overlap, resulting in 176 images.
Each image has pixel-wise nuclei annotations.

4.5 Methodology

4.5.1 Examine Correlations

The correlations between image-level model performance on the labeled dataset,
referenced in Table 4.1 as the training dice, and the associated uncertainty and con�idence
measures are examined. 2 different types of uncertainty measures are used: 1) the standard
deviation uncertainty (Gal and Ghahramani 2016; Rizve et al., 2020), and 2) entropy
(Shannon 1948). The standard deviation uncertainty is the standard deviation of the
output probabilities for 20 forward inferences through a U-Net model using Monte Carlo
(MC) dropout. For entropy, the output probabilities of the MC dropout models are averaged,
and then the entropy per pixel is calculated. Since each pixel is assigned uncertainty and
con�idence values, the values are averaged across all pixels per image to achieve a single
image-level value, and they are plotted against the model performance per image. The
central assumption in using con�idence and uncertainty in pseudo-label selection is that as
con�idence increases and uncertainty decreases, the quality of the pseudo-labels should
also increase. Investigating these correlations allows us to assess the robustness of this
assumption for image-level con�idence and uncertainty values for the segmentation task.
Moreover, a model which violates this assumption would not be able to differentiate
between pseudo-labels of varying quality. Also, these correlations cannot be examined for
the unlabeled dataset, because, by de�inition, there are no true labels for them to use to
calculate the dice coef�icient. Thus, the magnitude and direction of these correlations for
the labeled dataset make the best proxy for how the model would behave on the unlabeled
data, indicating the model’s usefulness in pseudo-label image selection.
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4.5.2 Pseudo-Label Selection via Thresholds and Weighting

In line with Rizve et al. (2020), I set the minimum con�idence and maximum
uncertainty thresholds to select which unlabeled images to pseudo-label and use for
training for each dataset. Additionally, I propose adaptive thresholds that are determined
by a given model’s baseline uncertainty, this is because the distribution of uncertainty
values varies per model, as shown in Figure 4.8. For the �ixed thresholds, empirically select
values by looking at the histogram of the image-level uncertainty and con�idence values
produced by 8 different random seeds per dataset. Figure 4.7 shows the con�idence
histogram for the images in MoNuSeg.

Figure 4.7: This �igure shows the histogram of the model’s con�idence for each image for the
MoNuSeg dataset.

The con�idence, standard deviation, and entropy thresholds are 0.99, 0.02, and 0.04
for EoE, 0.75, 0.135, and 0.55 for CoNSeP, and 0.92, 0.09, and 0.14 for MoNuSeg,
respectively. In Table 4.1, the thresholding techniques are referred to as ”Conf τ StD τ” for
con�idence and standard deviation and ”Conf τ E τ” for con�idence and entropy. The
adaptive thresholds are: minimum 25% percent entropy and sigmoid-weighted entropy.For
minimum 25% entropy, I select the images with entropy values in the lowest 25% of the
unlabeled set for pseudo-labeling. These images are more likely to be helpful because the
model has greater certainty about them. The other 75% of the unlabeled set is not used for
pseudo-labeling. Figure 4.8 shows this threshold for 2 different models. For the sigmoid
weighted entropy, the weight of each image in the loss function during training is set by

, where α is a tunable scaling hyperparameter set𝑆(𝑥) = 1

1+𝑒−𝑥 𝑥 = α(𝐻(𝑖) − µ
𝐻(𝑙𝑎𝑏)

)𝑟
𝑙𝑎𝑏

,

empirically to 1000, is the image-level entropy for image i, is the mean entropy𝐻(𝑖) µ
𝐻(𝑙𝑎𝑏)

value of the labeled dataset and is the correlation of the image-level entropy and with𝑟
𝑙𝑎𝑏

the dice coef�icient of the labeled dataset. The sigmoid function assigns larger weights to
images with lower entropy values, focusing the model on pseudo-labels with higher
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expected accuracy. This weighting has the effect of creating an adaptive, gradual threshold
that weights each image’s pseudo-labels in relation to the model’s certainty about the
image and in relation to the uncertainty of the trained dataset. I compare the results of
using these methods to not using pseudo-labels and using all pseudo-labels with equal
weights in the loss function during training.

Figure 4.8: This �igure shows the correlation of entropy and dice from 2 different models
trained on the CoNSeP dataset. The threshold line splits the 25% lower entropy values.

4.5.3 Model Setup and Training

A U-Net architecture was used with randomly initialized weights for each seed per
dataset. The Adam optimizer and a learning rate of 2e-4 were used. Each model was trained
on half of the training data and the other half was used as the unlabeled set for
pseudo-labeling. For the initial labeled training, I used early stopping of 12 epochs without
improvement in the validation loss, up to 100 epochs total. After this, uncertainty and
con�idence values were quanti�ied for each unlabeled image. Then, the relevant images
were selected for pseudo-labeling and assigned weights for the loss function for each
technique mentioned. The model was trained for 3 epochs using labeled and
pseudo-labeled data, where the model with the best validation accuracy was saved. No
pseudo-labels were included in the validation set. The process repeated until the model
performance on the validation set did not increase for 3 rounds of training on
pseudo-labels. The converged model was then evaluated against a hold-out test set.

4.6 Experiments and Results
I �irst examine the correlations of the image-level con�idence and uncertainty values

with the model performance per image. This is realized as the dice coef�icient of the
pseudo-labels and the true labels using 8 randomly initialized models on the labeled
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dataset. Each model’s dice coef�icient against a test set is also evaluated. Additionally, the
expected calibration error (ECE) (Naeini et al., 2015) is used to determine whether model
calibration corresponds to changes in the correlations or performance. Each model for a
given dataset has the same validation set, but the labeled and unlabeled datasets are
randomly partitioned for each seed and are equal in size.

4.6.1 Correlation Results

For the EoE dataset in Table 4.1, the image-level uncertainty values for images in
seeds 4 and 6 have a positive or zero correlation with the image-level training dice
coef�icients. Also, the image-level con�idence values for these seeds have a negative
correlation with dice coef�icients. This signi�ies that as the uncertainty for a given image
decreases and its con�idence increases, the model’s performance on that image decreases.
This is counter-intuitive since the assumption of pseudo-labeling is that as uncertainty
decreases and con�idence increases, the pseudo-labels’ usefulness in an image, measured
here by the dice coef�icient between the pseudo-labels and the true labels, should increase.
This correlation, though in the minority of the randomly initialized runs, does demonstrate
an instance where the image-level con�idence and uncertainty values from a model are not
useful in selecting pseudo-labels, since minimizing image-level uncertainty results in
selecting images with less accurate pseudo-labels. Furthermore, the models with these
unexpected correlations do not present a consistently poor test dice coef�icient or low ECE
compared to those with the expected correlations. Thus, neither poor initialization nor
calibration accounts for this correlation phenomenon.

For the CoNSeP dataset in Table 4.1, the image-level con�idence and entropy values
for images in seeds 2, 3, 4, 5, and 7 have negative and positive correlations, respectively,
with the image-level training dice values. Again, these correlations undermine the central
assumption in selecting pseudo-labels. However, these seeds have a noticeably lower test
dice coef�icient than those with the expected correlations, seeds 0, 1, and 6. Welch’s t-test
con�irms with a p-value of 0.007 that the average test dice coef�icient of the seeds with the
expected correlation is higher than those without it. The ECE values do not account for the
correlation or performance differences. For the MoNuSeg dataset in Table 4.1, the
image-level entropy values for seeds 0 and 2 have a positive correlation with the
image-level training dice values. Again, this indicates that as uncertainty increases the
accuracy of the pseudo-labels increases as well. The image-level con�idence values for seed
0 correlate negatively with image-level training performance. The test performance for
seed 0 is low, which is statistically signi�icant according to a t-test comparing it to the other
models’ test dice scores. The test dice score is not abnormal for seed 2, possibly due to its
positive con�idence correlation with the dice score. The model for seed 2 has the lowest
ECE value, and the ECE values for other seeds are closely grouped. Thus, poor model
calibration does not account for these correlation or performance differences.

4.6.2 Pseudo-Label Selection Results

Table 4.2 shows that most pseudo-label selection methods give a statistically
signi�icant boost to the model’s test performance for EoE, but this occurs for all models,
regardless of whether the correlation is as expected. Table 4.2 shows that no pseudo-label
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selection method gives a statistically signi�icant boost to the model’s test performance for
the CoNSeP dataset. This holds for the models with the expected correlations, seeds 0, 1,
and 6, and the poorly correlated models, seeds 2, 3, 4, 5, and 7. For the minimum 25%
entropy pseudo-label method, the seeds with the expected correlations did not differ
signi�icantly from the average dice coef�icients of the models before pseudo-labeling.
However, the seeds that were poorly correlated did have a lower dice performance on the
test set that was statistically signi�icant.

Table 4.2 shows that no pseudo-label selection method gives a statistically
signi�icant boost to the model’s test performance for the MoNuSeg dataset. This holds for
the models with the expected correlations, seeds 1, 3-7, and the poorly correlated models,
seeds 0 and 2. The pseudo-labels worsen the training for the models, though only so in a
statistically signi�icant way for ”same” and ”Conf τ StD τ.”

4.7 Discussion
Across the three datasets, randomly initialized models did not always have the

expected correlations of image-level con�idence and uncertainty with image-level
performance. This contradicts an intuitive assumption of pseudo-labels: as model certainty
increases, the quality of the pseudo-labels should also increase. It is possible that the
differences in these metrics are averaged out when the entire image is taken into account.
Furthermore, models for the EoE dataset increased performance when trained on
pseudo-labels, regardless of the individual model’s correlations. This may be due in part to
the sparsity of the EoE dataset. Since very few Eos are contained in each image, the model
may be too conservative due to class imbalance. Pseudo-labels, even if not always correct,
may help with addressing the bias in the data of a lack of Eos. Though not robust, the
correlations did prove informative in certain contexts. For MoNuSeg and CoNSeP, the
models where the con�idence correlated negatively and the entropy correlated positively
with the training dice performed worse than those models with the opposite correlations in
a manner that was statistically signi�icant. This indicates that if a model has certainty
metrics that do not correlate with the performance as expected, it may have worse
performance on the test set than a model that has the expected correlations. For CoNSeP,
using the minimum 25% entropy pseudo-labels worsened the model performance for the
poorly trained seeds, whereas the models with the expected correlations were not
negatively impacted in a signi�icant way by any of the pseudo-label weightings.

4.8 Conclusion
Before using pseudo-labeling, examining the correlations between certainty metrics

and a model’s performance on labeled imagery may help indicate whether a model’s
uncertainty about an image is informative. Thus, a positive correlation for con�idence and a
negative correlation for uncertainty are necessary but insuf�icient indicators of the utility of
pseudo-labeling for a given model. Furthermore, averaging certainty metrics across an
image may obfuscate the complexity inherent in segmentation, particularly when there is a
class imbalance. Further work examining these correlations on a pixel-wise basis would be
insightful.
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Table 4.1 This table shows the correlation of the con�idence, the standard deviation of MC
dropout predictions, and the entropy with dice coef�icient on the training set, as well as the
test dice coef�icient and expected calibration error, for multiple model runs across the EoE,
CoNSeP, and MoNuSeg datasets.
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Table 4.2 Pseudo-Label vs No Pseudo-Label with Welch’s t-test: This table gives the test dice
coef�icients for the EoE, CoNSeP, and MoNuSeg datasets averaged over multiple runs across
multiple types of pseudo-label selection.
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Chapter 5
Identi�ication and Effect of Bias in
Histopathological Segmentation

5.1 Summary
Segmentation algorithms in histopathology provide a basis for scalable disease

quanti�ication and classi�ication. Labeled data guides the training of these algorithms to
learn a feature representation of the cells of interest. However, labeled training data is not
always available for all patients. This leads to poor performance on patients with only
unlabeled data. Semi-supervised learning (SSL) is used to tackle this scenario where
labeled patient data is leveraged with unlabeled target patient data to improve the model
performance. Even so, SSL techniques may fail to generalize to unlabeled patient data due
to shifts in the patient’s histological features. In this chapter, I apply an unsupervised
clustering technique to provide a distributional understanding of multiple patients’ tissue
features. This clustering enables the identi�ication of different types of biases that can occur
in histopathological datasets. These biases have interpretable clinical action steps that I
address.

5.2 Literature Review
The incorporation of unlabeled data concerns not only the image-level selection and

trustworthiness of the model’s uncertainty quanti�ication but also the identi�ication of bias
between the labeled and unlabeled sets. This bias can prevent models from generalizing
well to unseen data. In the following sections, I describe the existing approaches to
identifying differences in the feature distribution of labeled and unlabeled sets and the
semi-supervised algorithms I use.

5.2.1 Distribution Mismatch and Bias

Semi-supervised learning (SSL) techniques encounter issues when the assumption
that the labeled and unlabeled sets are drawn independently from identical distributions is
violated (Calderon-Ramirez et al., 2023). These issues occur because differences between
labeled and unlabeled data sets can lower SSL model performance, as demonstrated in
image classi�ication tasks in Oliver et al. (2018) and Calderon-Ramirez et al. (2022).
Existing techniques to address the distributional mismatch between labeled and unlabeled
sets in SSL identify when the unlabeled set contains data that are out-of-distribution (OOD)
(Calderon-Ramirez et al., 2022), quantify the dataset dissimilarity (Calderon-Ramirez et al.,
2023), and aim to lessen any negative effect on model performance (Kurian et al., 2023).
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Speci�ically within histopathology, mismatch in dataset distribution manifests as
various types of biases. Burkhardt et al. (2011) note the inherent presence of sampling bias
in tissue selection, despite the standardization of sampling techniques to reduce variability
(Bucci, 2002). Institutional bias also plays a role, where a model learns features speci�ic to
the image's source, such as Hospital A or Hospital B. Learning these differentiating features,
which are not medically relevant, can interfere with deep learning applications
(Dehkharghanian et al., 2023). Many works seek to reduce that bias via stain normalization
(Bejnordi et al., 2016; Ciompi et al., 2017) and color augmentation (Lafarge et al., 2017; Lin
et al., 2018), as noted in Komura and Ishikawa (2018). Bigdoli et al. (2022) also minimize
institutional bias but do so through an evolutionary feature selection algorithm to select
deep learning features of histopathological signi�icance that do not contribute to
institutional differentiation. Hägele et al. (2020) used heatmaps to visualize different types
of bias in histopathological images. In the following section, I examine the methods in the
literature.

Dealing with distribution mismatch in semi-supervised deep learning for COVID-19
detection using chest X-ray images: A novel approach using feature densities
(Calderon-Ramirez et al., 2022)

Calderon-Ramirez et al. (2022) uses labeled and unlabeled X-ray images from
various clinics to detect COVID-19 with the MixMatch algorithm. They analyze the impact of
mismatches in the labeled and unlabeled distributions, and they contribute 2 methods to
score data as coming from the labeled distribution. They use these scores to �ilter unlabeled
data, which may harm the performance of an SSL algorithm. To create the scores, they pass
each image through a classi�ier pre-trained on ImageNet and extract the feature embedding.
Then, for each element in the n’ dimensional feature embedding, a density function is
approximated via a set of normalized histograms. Each element in the set is a density
function. Given an unlabeled image, the feature embedding is created similarly via the
pre-trained CNN. Then, the probability of each element in the feature embedding of the
unlabeled image is found using the corresponding histograms created by the labeled set.
The negative log-likelihood of the product of each of the unlabeled features’ probabilities is
calculated to give the score. For the second score, a Gaussian distribution is assumed over
the features, and the Mahalanobis distance between the unlabeled image embedding and
the mean values and covariance from the labeled set is calculated. Unlabeled data with high
scores, signifying greater differences with the labeled feature set, are discarded. Thus, these
scores do provide a way to �ilter out unlabeled images that present a large covariate shift.
However, the nature or cause of the difference is not further examined. Also, this method
would likely have trouble in sparsely labeled datasets that failed to produce density
functions corresponding to the full range and complexity of naturally occurring features.
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Dataset Similarity to Assess Semi-Supervised Learning Under Distribution Mismatch
Between the Labeled and Unlabeled Datasets (Calderon-Ramirez et al., 2023)

Calderon-Ramirez et al. (2023) builds dataset dissimilarity measures to select an
optimal subset from the unlabeled set for maximizing performance in the SSL Mixmatch
algorithm for evaluation on MNIST, CIFAR-10, and Fashion MNIST. They use a feature
embedding via a pre-trained CNN as in Calderon-Ramirez et al. (2022) and create four
measures between subsets of the labeled and unlabeled sets. Two of the distances are
based on the Euclidean and Manhattan distances between the feature embeddings of
samples from the labeled and unlabeled sets. The other 2 measures are based on the
Jensen–Shannon and cosine distance and measure the divergence in probability densities
between the histograms derived from the feature embeddings in the labeled and unlabeled
datasets. They show that the unlabeled subsets with the smallest distance to the labeled set
correlate with higher accuracy when used in the MixMatch algorithm.

These scores provide a way to select an optimal subset of unlabeled images for use
in SSL algorithms. However, as in Calderon-Ramirez et al. (2022), the nature or cause of the
difference between the subsets is not further examined, nor are the sparsity concerns
addressed.

Robust Semi-Supervised Learning for Histopathology Images through Self-Supervision
Guided Out-of-Distribution Scoring (Kurian et al., 2023)

Kurian et al. (2023) creates a score to detect samples that are out-of-distribution for
SSL algorithms using histopathology images. First, they use the self-supervised framework
SimCLR (Chen et al., 2020), which learns the underlying structure of all the labeled and
unlabeled data via consistency regularization and a contrastive loss. They then use the
latent features from the model trained via SimCLR from both datasets to create a Gaussian
Mixture Model (Reynolds, 2009). Each Gaussian is assigned an impurity score, which
describes the probability of labeled samples in a cluster relative to the probability of all
samples in a cluster, with the idea that a cluster with fewer labeled samples has outlier
data. An out-of-distribution score is calculated for each unlabeled sample by a summation
of the product of the cluster impurity and the posterior probability of the sample belonging
to the cluster over all clusters. In training an SSL algorithm, a cluster is chosen with
probability inversely proportional to its impurity score. Then, the unlabeled data are
sampled from that cluster with probability inversely proportional to their OOD scores. In
this way, the method prioritizes unlabeled samples that are less likely to be
out-of-distribution. Figure 5.1 below shows the full process from Kurian et al. (2023).

This approach allows for sampling unlabeled data in SSL that probabilistically
prioritizes data from feature distributions similar to the labeled set. However, the clusters
are not examined for any bias they might reveal. Furthermore, this is applied to a
classi�ication problem and does not address the segmentation context or sparse
segmentation labels. The contrastive learning setup is an additional expensive step that
may be unnecessary, given the prevalence of pre-trained networks.
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Figure 5.1: The �igure shows the process from Kurian et al. (2023) of using self-supervised
contrastive learning to train a classi�ier on the labeled and unlabeled data, projecting the
unlabeled data into an embedding space from that classi�ier, performing GMM clustering
and OOD score estimation, and then using those values to probabilistically unlabeled data
with features more similar to the labeled set.

Bias Reduction in Representation of Histopathology Images using Deep Feature Selection
(Bidgoli et al., 2022)

Bidgoli et al. (2022) starts with feature vectors from the embedding of
histopathology patches passed through two networks; KimiaNet, pre-trained on
histopathology images and DenseNet-121, pre-trained on ImageNet. The feature vectors
are then sub-selected via an evolutionary algorithm to maximize the image search quality,
minimize the number of features, and minimize institutional bias. While this method may
reduce the dimensionality of the embeddings and the effect of the bias, it does not reveal
the cause. Rather, the institutional bias in the only one assumed to occur.

Resolving challenges in deep learning-based analyses of histopathological images using
explanation methods (Hägele et al., 2020)

Hägele et al. (2020) visualize the heatmaps of CNNs to detect bias. The heatmaps are
produced via backpropagation of the activated neurons to the input pixels with respect to
their contribution to the classi�ication. In examining the heatmaps, they reveal and examine
three kinds of bias: dataset bias, class-correlated bias, and sampling bias. Dataset bias
concerns non-medically relevant features which persist throughout the dataset. An example
they give is when the feature determining the classi�ication always appears in the same
location in the image. The heatmap reveals that a model trained on a dataset with this bias
focuses on the center of the image for the classi�ication, even when the distinguishing
feature is not in the center in the test set example. The class-correlated bias is similar in
that it is an over�itting error, where the model learns features that co-occur with the class of
interest even though they are unrelated to the classi�ication. Sampling bias deals with
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issues such as not sampling a representative sample of features for training. For all three
biases, the heatmaps are used per patch to identify them. Since the heatmaps relate to the
activation backpropagation of the activated neurons for classi�ication, this method makes
the most sense in the classi�ication context. This process would not translate as clearly to
the segmentation context because each pixel receives a class label rather than the image as
a whole. Additionally, the visual inspection of the heatmaps requires aggregation and
analysis of the dataset as a whole to establish common patterns, which may be subjective in
interpretation if the feature is not prevalent throughout the dataset.

5.2.2 Stain Normalization and Color Augmentation

Stain normalization and color augmentation techniques minimize the effect of institutional
biases but do not analyze their root causes or characterize them. Lafarge et al. (2017) use
adversarial training to encourage the model to learn a domain invariant space that does not
allow for differentiation of the institutional source for mitosis detection in breast cancer
histopathology images. Ciompi et al. (2017) show the importance of stain normalization
for classi�ication accuracy of colorectal cancer in histopathology images. More generally, if
tissue is sampled in a region with a much lower probability of the class of interest
occurring, then the sparsity of the data will remain constant, regardless of how much it is
augmented or normalized. The signal of the class of interest would still not be present
because it was not sampled, so its feature distribution would still evade thorough
characterization. Thus, they do not address the prior probability shift that occurs in
sampling bias. Next, I describe an SSL algorithm that is adapted in this chapter for use in
the bias analysis.

Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision (Chen et al., 2021)

Chen et al. (2021) train two models on the output of the other on unlabeled data.
That is, each model is trained on the pseudo-labels of the other model on the unlabeled and
unlabeled data, along with each model’s supervised loss, as shown in Figure 5.2. This
method combines a form of consistency regularization and supervised learning, and I build
on it for this work.

Figure 5.2: Cross-Pseudo Supervision from Chen et al. (2021).
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5.3 Discussion and Limitations of Literature

While individual data points are �iltered via an out-of-distribution score to improve
SSL performance in Calderon-Ramirez et al. (2022), the bias itself is not identi�ied or
characterized. Similarly, the dataset dissimilarity measures in Calderon-Ramirez et al.
(2023) enable the selection of an optimal subset from the unlabeled set for maximizing SSL
performance. However, the cause of the difference in the subsets is not further examined.
Both works do not account for sparse feature representation in limited labeled settings.

Kurian et al. (2023) present a sampling method that draws unlabeled samples from
distributions that have features similar to the labeled set, but the clusters themselves are
not examined for what kind of bias exists. The sampling process depends on the feature
distribution similarity of the labeled and unlabeled sets. This is problematic for the
per-patient approach described in my methodology because it would require the cluster
parameters to be calculated for each patient analyzed, greatly increasing the complexity of
the analysis. Additionally, contrastive learning pre-training is an additional costly step,
likely unnecessary given the availability of pre-trained networks.

In their dimensionality reduction method, Bidgoli et al. (2022) only address
institutional bias. Hägele et al. (2020) visualize the heatmaps of CNNs to detect bias, but
this requires aggregation and analysis that may be dif�icult to interpret. The heatmaps only
apply in classi�ication settings and are not clearly extensible to segmentation problems.
Stain normalization and color augmentation techniques minimize the effect of institutional
biases but do not analyze their root causes or characterize them. Nor do they address the
prior probability shift that occurs in sampling bias.

Overall, these methods focus on mitigating the effects of institutional bias and
outlier features, but they do not produce a distributional understanding of the features that
characterize the biases. Furthermore, none consider the setting of withholding a single
patient’s labeled data while training on that patient’s unlabeled data and the other patients’
labeled data. Such a distributional understanding would help reveal the bias inherent not
only with respect to the institution but due to the individual patient’s data.

In light of these limitations, this section seeks to answer the following: How can
biases inherent in unlabeled and labeled data be identi�ied that would hinder the
generalization of semi-supervised algorithms?

The contribution of this chapter answers this question by clustering the unlabeled
and labeled patients’ data in a classi�ier’s embedding space and using the distribution
of each patient’s images across the clusters as a means for understanding when the SSL
models will not generalize well on a given patient’s data. I then show how clustering the
unlabeled and labeled data reveals the different types of bias present, speci�ically sampling
bias and labeling bias. The impact of this contribution gives clear interpretability about
biases that enables the correct clinical solution, reducing cost and minimizing procedures
necessary for patients.
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5.4 Pre-processing of Datasets

I examine two datasets in this chapter, the EoE and CD datasets. Each dataset has
patches of 512 x 512 pixels at 40x magni�ication. I consider all labeled and unlabeled
patches in both datasets. The EoE dataset consists of 514 labeled and 240,526 unlabeled
images, and the CD dataset contains 200 labeled images and 291,779 unlabeled images.
Each labeled image has a binary mask for eosinophil pixel annotations.

5.5 Methodology

I examine the performance of semi-supervised learning (SSL) algorithms to segment
eosinophils in 2 datasets on a per-patient basis. I train a model on N−1 patients’ labeled
data and the unlabeled data from the Nth patient, then test on the Nth patient’s labeled
data. For certain patients, the SSL methods struggle to increase performance relative to a
supervised baseline. I hypothesize this is due to a shift in the patients’ feature distributions.
Instead of casting such a shift as a domain adaptation problem, I seek to provide
interpretability behind the feature shifts. Speci�ically, a Gaussian Mixture Model is learned
from the unlabeled images of all patients to cluster each image by tissue type. My analysis
of the clustering results reveals biases in the data for each patient for which the SSL
methods do not increase performance. Furthermore, each bias has a clinically interpretable
solution.

5.5.1 Experimental Setup on a Patient-by-Patient Basis

I consider bias on a patient-by-patient basis. This setup mimics real-world settings,
where the data is �irst digitized before it is labeled, if at all. Also, I want to identify the
clinical action step required to maximize segmentation performance for the individual
patient. For example, another biopsy may be required if sampling bias is detected in a
patient’s data. Conversely, if no bias is detected, the model is more likely to generalize well
without further invasive procedures.

This paradigm of patient-based bias has not been explored in the literature. Instead,
the focus has been on minimizing the effect of institutional bias or images with
out-of-distribution features. I show bias can also exist per patient, where the clinically
interpretable solution applies to a particular patient.

5.5.2 Semi-Supervised Segmentation Approaches

I found that the basic CPS setup did not perform well on my datasets, so I augmented
it. I build upon CPS by specifying a balanced batch sampling process and by selecting
unlabeled data that are more likely to bene�it from pseudo-labeling, which I call
CPS-Adapted (CPSA). Furthermore, I incorporate image-level con�idence estimation in
weighting the loss for the unlabeled data in Equation 8, inspired by Xie et al. (2022). I also
incorporate data augmentations optimized for histology (Tellez et al., 2019), such as color
jitter and leaving out greyscale.



31

(Equation 8)𝐶
𝑥

= 1
|𝑊𝑥𝐻|

𝑖∈𝑥
∑ 1(𝑝

𝑖
> τ)

is the maximum class probability for pixel i. τ is a deterministic threshold, where τ𝑝
𝑖

= 0.968 in Xie et al. (2022), which I also �ind suf�icient for my experiments. Next, I de�ine
the CPSA loss with con�idence weighting in Equation 9.
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prediction probabilities of the other model, and Du is the unlabeled set. The CPSA loss is a
more straightforward case of the CPSA with con�idence weighting, where the weighting 𝐶

𝑥
is always 1. Furthermore, I only use those unlabeled images which contain eosinophils for
the CPSA methods, as estimated by the baseline model trained on the labeled set. Since
learning the representation of eosinophils is the primary goal, cutting down on images
without any eosinophils helps reduce the class imbalance. This loss is computed for each
model with respect to the pseudo-label provided by the other model.

Figure 5.3 shows the training setup for CPSA.

Figure 5.3: This �igure shows the cross-pseudo supervision augmented with con�idence
estimation training.
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5.5.3 Clustering Approach

I hypothesize that a lack of generalizability of the SSL methods is due to a difference
in histological features between the patients’ datasets. This hypothesis has grounding in the
medical literature, which has observed histological features and their distributions differ by
race and ethnicity (Li et al., 2002; Schwimmer et al., 2005). To examine the patients’ feature
distributions, I implement the following method. For each dataset, I pass the unlabeled
images through a classi�ier pre-trained via self-supervised contrastive loss on 57 datasets,
most of which are H&E stained (Ciga et al., 2022), as in Figure 5.4.

Figure 5.4: This �igure shows the process of projecting an image into the embedding space.

The output is a feature vector with 512 components. The feature embeddings of the
unlabeled patches are clustered via a Gaussian Mixture Model (GMM). To learn the
parameters of the Gaussians, the GaussianMixture package from the scikit-learn library
(Pedregosa et al., 2011) in Python is used. This uses the k-means algorithm to initialize the
means of the Gaussians. Then, the expectation-maximization (EM) algorithm is used to
iteratively update the parameters of the Gaussians until convergence. This is performed for
2 to 19 clusters.

To determine the optimal number of clusters amongst that range, I select the
number that minimizes the Bayesian information criterion (Schwarz, 1978), given the
unlabeled data and learned model parameters. Equation 10 de�ines the measure.

(Equation 10)𝐵𝐼𝐶 =  𝑘 * 𝑙𝑜𝑔(𝑛) − 2𝑙𝑜𝑔(𝐿)

is the number of model parameters of the Gaussian distributions, n is the number𝑘
of unlabeled images and is the maximum likelihood of the unlabeled image feature𝐿
embeddings given the learned model parameters, as calculated in the bic function of the
scikit-learn package. Increasing the number of Gaussians results in a higher likelihood of
the data, but it also causes an increase in the number of parameters, which is penalized.
Figure 5.5 shows the clustering process and selecting the optimal number of clusters.



33

Figure 5.5: Finding the Optimal Number of Gaussian Clusters

Once the optimal number of Gaussian distributions is found, I use the learned GMM
to cluster the unlabeled and labeled patches.

Figure 5.6: Assigning Cluster Labels using the Learned GMM

Once all the images have been assigned to a cluster, I analyze the percentages of
images per patient in each cluster. Notably, the Gaussian parameters are learned from the
unlabeled data only, as opposed to a mix of the labeled and unlabeled data in Kurian et al.
(2023). If both labeled and unlabeled sets were used in this work, it would need to be
performed for each patient, using the labeled data from the patients in the training set and
the unlabeled data from the held-out patient. This would increase the complexity of the
analysis since an optimal number of clusters would need to be found for each patient. Not
only would the number of clusters likely be different, but also, the clusters would not be
comparable across patients. Thus, standardizing the number and parameter values of the
Gaussian clusters by using the unlabeled dataset makes the analysis more tractable.

5.6 Experiments

5.6.1 Dataset Quanti�ication

From both the EoE and CD datasets, I select the top 5 patients with the most labeled
data for analysis. Some patients do not have many labeled images, so drawing statistically
signi�icant conclusions from their data would be dif�icult. Also, the models are trained and
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tested per patient for multiple iterations, so capping the limit at ten total patients makes
this analysis more feasible for this study. Table 5.1 shows the number of images per patient.
Eo=0 means that a supervised baseline model trained on the other patients’ labeled data
predicted the unlabeled image to contain no eosinophils, where Eo>0 signi�ies the
presence of eosinophils. The patients with “E” at the beginning are EoE patients; the others
are patients from the CD dataset.

Table 5.1 Number of Images per EoE and CD Patients: This table shows the number of
images from each patient in the labeled set and unlabeled set, as well as the unlabeled
images predicted to have and not have eosinophils by a baseline model.

5.6.2 Implementation Details and Evaluation Metrics

For the supervised baseline, CPSA, and CP models, I use a U-Net++ architecture
initialized with the Ef�icientNet-B0 encoder pre-trained on ImageNet, a learning rate of
5e-4, a batch size of 8, and binary cross-entropy loss. For each patient’s baseline model,
which is trained on the labeled set of the other patients, I train for 85 epochs. I train the
CPSA and CPSA with con�idence weighting models for 25 epochs for the CD dataset and 40
epochs for the EoE dataset. Following Peng et al. (2020), I train the CPSA models only using
labeled data for a warm-up period of 10 epochs before incorporating the unlabeled data
and con�idence estimation. This allows the model to �ind a suf�icient signal resulting in
more informative and less noisy pseudo-labels. Furthermore, Chen et al. (2021) present no
clear batch sampling strategy for CPS. Since the unlabeled set is much larger than the
labeled set for all patients, combining them into a single pool from which to sample batches
is not practical. Instead, I follow the sampling procedure in Yang et al. (2021), where half
the batch is sampled with replacement from the labeled set and half from the unlabeled set
without replacement for pseudo-labeling. This allows the labeled set to continue providing
a baseline signal to anchor the learning. Additionally, the validation set consists only of
labeled data and does not include any data from the test patient for the pseudo-labeling
methods. I use the dice coef�icient to compare the baseline supervised and semi-supervised
techniques, averaged across three runs.
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5.7 Results

5.7.1 Segmentation Performance

The CPSA method with con�idence weighting achieved the optimal performance
for �ive patients, three in the EoE dataset and two in the CD dataset. The CPSA without
con�idence weighting was optimal for three patients, 1 in the EoE dataset and 2 in the CD
dataset. The supervised baseline was optimal for patient E-25 in the EoE dataset and
RK10373 in the CD dataset, as shown in Table 5.2. The con�idence weighting helps
performance in most patients, but not all. Still, my primary focus is that no SSL method
could improve the segmentation performance for the two patients mentioned, E-25 in the
EoE dataset and RK10373 in the CD dataset. Furthermore, these two patients have the
lowest supervised segmentation performance among patients in their respective datasets.
Next, I turn to examining the clustering results.

Table 5.2: This table shows the model performance on the EoE and CD datasets via dice
coef�icient per patient across multiple methods.
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5.7.2 Clustering Results

The optimal number of clusters was 4 for both the EoE and CD datasets. Figures 5.7
and 5.8 show the Bayesian information criteria scores for GMMs with 2 to 19 clusters for
the EoE and CD datasets, respectively, averaged over three runs.

Figure 5.7: BIC Scores of GMMs for EoE Dataset

Figure 5.8: BIC Scores of GMMs for CD Dataset
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Figure 5.9: This �igure shows samples from each of the clusters in the EoE dataset.

Figure 5.9 shows samples from the 4 cluster types, with six examples per row. Each
row is a separate cluster. Table 5.3 shows the percentage of images belonging to each
cluster in the EoE and CD datasets, as well as the percentage of total labeled eosinophils in
each cluster. For the patients where the SSL methods did not outperform the supervised
baseline method, E-25 and RK10373, there were clear abnormalities in the distribution of
their images among the learned clusters.

Table 5.3 shows that for E-25, no images in the labeled set come from cluster 4.
Furthermore, only 2% of the unlabeled images belonged to cluster 4. Figure 5.9 shows that
cluster 4 contains images densely populated with nuclei cells. Table 5.3 shows that this
cluster makes up 61% of the eosinophils in the other EoE patients. Cluster 4 has the
majority of eosinophils for all labeled data. Also, the second largest number of images are in
cluster 2 for the labeled and unlabeled set for E-25. Upon review from a doctor in my lab,
cluster 2 represents tissue in the epithelial layer. This is the topmost layer and has the
smallest number of eosinophils, at 6%. Thus, E-25 has an over-representation of images
from cluster 2, which has the least amount of eosinophils, and an under-representation of
images from cluster 4, which has the most number of eosinophils. This demonstrates a
sampling bias in the data for E-25, where the biopsy was not deep enough but primarily
taken from tissue with the least signal. This bias has an interpretable clinical solution of
taking another biopsy that captures deeper tissue.
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Figure 5.10: This �igure shows samples from each of the clusters in the CD dataset.

For RK10373 in the CD dataset, no labeled images occur from cluster 1 in the labeled
set, which has the highest amount of eosinophils. However, 29% of the images from
RK10373’s unlabeled set are in cluster 1. The issue here is not a sampling bias but a
labeling bias. None of the images from cluster 1 were labeled for this patient. Instead, only
the sparsest clusters were labeled, making the test set more dif�icult. The clinical solution
here would be to label more data from cluster 1 for patient RK10373.

5.8 Conclusion

In this chapter, I applied SSL methods to address segmenting eosinophils without
using a given patient’s labeled data in training or validation. I found that for patients where
the SSL methods failed to improve performance, either a sampling or labeling bias
occurred. Though each bias dealt with the sparsity of eosinophils, my distributional
analysis identi�ied precisely where it occurred. The implications for the clinical solutions to
address these biases are profound. Additional labeling would likely not help with the
sampling bias for E-25, since my clustering analysis revealed that the biopsy did not contain
a suf�icient amount of deep tissue, where the eosinophils are more likely to occur.
Conducting another biopsy for patient RK10373 would be unnecessary since the tissue
with the most eosinophils exists but is not yet labeled. If another biopsy were taken, the
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bias would not be addressed unless the images from the deeper clusters were labeled. My
clustering analysis helps us understand which clinical solutions would have the greatest
ef�icacy in increasing model performance for each patient.

Table 5.3: Clustering Unlabeled and Labeled Data on EoE and CD: This table shows the
percentage of image patches belonging to each cluster for each patient. The percent of
eosinophils per cluster is presented for the labeled set as well.
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Chapter 6
Conclusion

In this dissertation, I addressed optimizing segmentation performance in
histopathology with limited labeled data. To address that question, I broke the problem into
three subcomponents: model initialization, incorporating unlabeled data with reliable
uncertainty quanti�ications, and identifying biases in the data. The model initialization
results showed that using weights pre-trained with ImageNet was optimal when labeled
histopathology was limited. This is likely due to differences in the features between the
source and target histopathology datasets. These differences occur due to various forms of
institutional bias, such as variance in staining techniques and magni�ication, and domain
shifts, such as biopsies from different organs. This �inding is helpful since most model
architectures are pre-trained with ImageNet. Also, since no histopathological equivalent of
ImageNet exists, the requisite dataset would need to be gathered, and time-consuming
pre-training would need to be performed.

Next, I incorporated unlabeled data by adapting the uncertainty quanti�ication from
the classi�ication setting. Notably, the correlation between the model’s entropy estimation
and the dice performance on the training dataset proved helpful in communicating the
trustworthiness of the uncertainty quanti�ication. Speci�ically, when the correlation was
negative, the model could not be trusted to give an informative uncertainty quanti�ication
for prioritizing unlabeled images. This can be understood as a type of miscalibration of the
model, exacerbated by the sparsity of the segmentation dataset.

Finally, I addressed the issue of identifying bias in the unlabeled and labeled sets,
which hinder the generalization of semi-supervised segmentation models. I focused my
study in the context of individual patients, replicating the real-world setting where a
patient’s whole-slide image may not have any labels. My clustering process used only the
unlabeled set for learning the parameters, which allowed for the comparison of clusters
across patients. Analyzing the clusters revealed different types of biases, namely labeling
and sampling bias, which required different clinical interventions for two outlier patients
from the EoE and CD datasets.

I conclude by considering the broader implications of this work. The question
considered at the outset recognizes that the amount of labeled data is limited. While I
worked within this constraint with semi-supervised approaches, such a constraint need not
persist. Rather, a standard community dataset for histopathology images could be
generated, similar to ImageNet. While privacy is often cited as a primary roadblock to this,
the existing published unlabeled data could be labeled to produce a standardized set. The
more dif�icult task, in my view, is a consistent taxonomy with ubiquitous medical relevance.
A starting point could be nuclei segmentation and classi�ication, as mentioned in this work.
Once such a dataset existed, a more thorough comparison to using ImageNet for
pre-training could be conducted.

Another important consideration of this work is the focus on the trustworthiness of
a model’s uncertainty quanti�ication. This relates to the greater need for transparency in
the model’s decisions. If a model’s decisions cannot be explained well, we may be unable to
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detect when inherent biases in the data adversely in�luence those decisions. As we enter an
age of increasing reliance on statistical and generative machine learning models, we must
continue to develop means of establishing and verifying the trustworthiness of models.

Also, I approach bias identi�ication on a patient-by-patient basis. This is a paradigm
rarely considered in the literature. Namely, a patient’s unlabeled dataset can enable
tailoring an algorithm to maximize performance on that speci�ic patient. As we move
towards personalizing healthcare, our solutions should be tailored to each patient.
Hopefully, this work will encourage greater consideration of each patient’s feature
distribution that can be appropriately and thoroughly characterized.
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