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Abstract 

 

Modulation of the actin cytoskeleton dictates the morphological changes 

associated with dendritic spine dynamics, which serve as the structural basis underlying 

learning and memory.  These micron-sized protrusions mature from a filopodia-like 

morphology into a mushroom-shape with an enlarged post-synaptic density (PSD).  The 

PSD contains an assembly of synaptic adhesion molecules, glutamate receptors, and 

signaling scaffolds; many of which respond to glutamate receptor activation and relay 

signals to the underlying cytoskeleton to induce structural changes in spine and PSD 

morphology.  

Non-muscle myosin IIB (MIIB) and α-actinin-2 (ACTN2) directly effect actin 

organization and both proteins localize to dendritic spines.  Both molecules cross-link 

actin filaments and MIIB also mediates contraction through its ATPase activity.  

Knockdown of either ACTN2 or MIIB creates an immature spine morphology that fails 

to mature into a mushroom-shaped spine during development and in response to chemical 

stimulation.  Additionally, loss of ACTN2 increases spine density.  Expression of an actin 

cross-linking, non-contractile mutant, MIIB R709C, showed that spine maturation 

requires contractile activity.  Additionally, di-phosphorylation of the myosin regulatory 

light chain (RLC) by Rho kinase is required for spine maturation.  Inhibition of MIIB 

activity via blebbistatin treatment, knockdown, or expression of a mono-phosphomimetic 

mutant of RLC similarly abrogated spine maturation. 

MIIB and ACTN2 also determine PSD size, morphology, and placement in the 

spine.  Loss of ACTN2 prevents the recruitment and stabilization of a PSD and NMDA-
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type glutamate receptors in the spine, resulting in defective synaptic formation.  

Conversely, a PSD is still seen in neurons with MIIB knocked down, but its loss creates 

an elongated PSD morphology that is no longer restricted to the spine tip, resulting in a 

less-clustered distribution of NMDA receptors.  In contrast, increased MIIB activity, 

through either over-expression of wild type MIIB or a RLC di-phosphomimetic mutant, 

enlarges the PSD area and creates an increased density of mature spines.  These 

observations support a model whereby ACTN2 nucleates PSD formation and recruits the 

NMDA-type glutamate receptor to the spine, which leads to a functioning synapse.  

Subsequent NMDA receptor activation increases RLC di-phosphorylation to stimulate 

MIIB contractility, resulting in a mushroom-shaped spine with an enlarged PSD. 
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Dendritic Spines 

Dendritic spines are specialized postsynaptic structures of excitatory, glutamate-

releasing synapses, which serve as the main sites of excitatory neurotransmission in most 

principal neurons of the mammalian brain, e.g., pyramidal cells of the cortex and 

hippocampus, and Purkinje neurons of the cerebellum (Yuste and Denk, 1995; Sheng and 

Hoogenraad, 2007).  These dendritic structures are micron-sized, actin-rich protrusions 

that undergo dynamic changes in morphology during development, as well as in response 

to synaptic neurotransmission.  Dendritic spines develop from exploratory, filopodial-like 

processes that protrude from the dendrite (Sekino et al., 2007).  These highly mobile 

protrusions undergo continual extension and retraction until physical contact is made 

with an axon.  A combination between adhesive contact and excitatory, synaptic input 

from the pre-synaptic axon is thought to trigger maturation of the post-synaptic structure.   

Spine maturation is characterized by a morphological change from a filopodial-

like protrusion into a mushroom-shaped structure consisting of a bulbous head attached to 

the dendrite by a narrow stalk or neck (Sekino et al., 2007).  Imaging of spines in vitro 

show that the filopodia-like protrusions transition through a lollipop-like stage, 

characterized by a long protrusion with a small head, before enlarging at the head and 

shortening at the neck into a mushroom shape.  Live imaging of individual spines 

undergoing spine maturation, in response to pharmacological stimulation of the post-

synaptic membrane, exhibit expansion of the spine head with concomitant shortening of 

the neck (Yuste and Bonhoeffer, 2004).  While thin, filopodial-like spines are 

spontaneously generated and eliminated throughout development and adulthood, mature, 

mushroom-shaped spines are more stable (Kasai et al., 2003).  The mature spine head 
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represents the structural entity with greatest synaptic strength, as it contains a greater 

number of adhesion receptors and glutamate receptors at the post-synaptic membrane 

mediating a strong connection to an axon. 

The morphological plasticity of the spine dictates synaptic strength; 

neurophysiologic studies show that a thin, immature protrusion is not as effective in 

integrating and propagating neuronal signals as a mature spine with a larger membrane-

surface area (Kasai et al., 2003; Sheng and Hoogenraad, 2007).  Aberrant spine 

morphology and density, characterized by long tortuous spines lacking a bulbous head or 

dendrites lacking spines, is seen in neurons of human cadaver brains of individuals with 

various forms of neurodevelopmental disorders, including severe metal retardation, 

autism spectrum disorders, and Down’s syndrome, as well as psychoses such as 

schizophrenia (Fiala et al., 2002; Penzes et al., 2011).  Synapse loss is observed in 

neurodegenerative diseases such as dementia, mild cognitive impairment, Parkinson’s 

disease, and Alzheimer’s disease (Day et al., 2006; Penzes et al., 2011).  Perturbations in 

spine morphology precede synapse loss and the neurofibrillary tangles that accompany 

neuronal degeneration in Alzheimer’s Disease (Selkoe, 2002; Tackenberg et al., 2009).  

Thus, the structure of the spine directly relates to its function and a further understanding 

of the molecular mechanisms dictating spine dynamics and morphology is critical to 

unraveling the pathological causes of various neuropsychiatric disorders. 

Interestingly, while the mushroom-shaped morphology represents the mature 

spine structure in most mammalian brains, the neck size of mature spines in the human 

cortex is significantly longer (Elston et al., 2001; Benavides-Piccione et al., 2002).  The 

increased neck length found in the human brain is thought to better compartmentalize 
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calcium signaling from the dendrite (Elston et al., 2001).  Greater spine densities are 

also observed in the human cortex and they are hypothesized to accommodate higher 

input integration and information processing (Benavides-Piccione et al., 2002).  A recent 

study (Charrier et al., 2012) found that an ancestral gene duplication of SRGAP2, a Rho-

GAP, yielded a human-specific SRGAP2 paralog that encodes a truncated domain, which 

mediates inhibition of the ancestral gene product.  Expressing the human-specific paralog 

of SRGAP2 in utero of the mouse creates a spine anatomy in vivo resembling the human 

cortex, including an increased spine density and longer spine necks (Charrier et al., 

2012).  This study connects the functional outcome of human-specific gene duplication to 

human brain speciation and provides a potential genetic mechanism for the enhanced 

cognitive abilities of the human species.  In addition to longer necks and greater spine 

densities, the spines of the human cortex harbor larger head volumes than other species, 

(Benavides-Piccione et al., 2002) contributing to its increased synaptic strength.   

The ability of two neurons to change the strength of their connection, referred to 

as synaptic plasticity, is considered a key component of the molecular basis for learning 

and memory.  The phenomena associated with the strengthening and weakening of 

existing synapses is respectively referred to as long-term potentiation (LTP) and long-

term depression (LTD). Hallmarks of LTP include an increase in the volume of the spine 

head, accompanied by an increase in the size of the post-synaptic density, and the number 

of AMPA-type glutamate receptors inserted at the post-synaptic membrane (Matsuzaki et 

al., 2004).  These larger spines are most adept to memory storage (Matsuzaki et al., 

2004).  In contrast, LTD causes spine head shrinkage and a corresponding decrease in the 

size of the post-synaptic density and the number of AMPA receptors docked at the post-
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synaptic membrane.  Structural plasticity also involves the formation and elimination of 

spines, which mediates changes in the brain circuitry.  This can be seen in the 

corresponding region of the mouse neocortex in vivo in direct response to sensory or 

motor experience, or whisker trimming (Zuo et al., 2005; Holtmaat et al., 2006; Xu et al., 

2009).  Experience-dependent rewiring of cortical circuits provide flexibility to choose 

which pre-synaptic cells provide input to each post-synaptic cell, and therefore enhances 

the storage capacity of the brain (Chklovskii et al., 2004; Holtmaat and Svoboda, 2009).  

Thus structural plasticity of the spine, albeit formation, elimination, or morphology 

changes associated with LTP or LDP, directly corresponds to functional plasticity of the 

brain, as synapses along neural networks store information in response to experience. 

Emerging evidence suggests a prominent role for glia cells in shaping dendritic 

spine morphology and synapse maturation.  For example, mutant astrocytes from a Rett 

syndrome mouse model caused aberrant dendritic morphologies in co-cultured 

hippocampal neurons derived from a normal mouse (Ballas et al., 2009).  Signaling 

between neuronal EphA receptors and Ephrin-A ligands expressed on glia cells modifies 

dendritic spine morphogensis (Murai et al., 2003).  Specifically, glia-expressed ephrin-A3 

binds to EphA4 receptor expressed on dendritic spines of hippocampal neurons and 

regulates the morphological plasticity of spines by modulating integrin activity (Bourgin 

et al., 2007).  Glia cells occupy more than half the volume of the human brain and are an 

integral part of synapses as they release soluble factors, maintain ion homeostasis by 

regulating extracellular potassium concentrations and pH, and express adhesion receptors 

that interact with receptors on the spine surface (Eroglu and Barres, 2010).  
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How does a spine form?  The molecular mechanisms of spinogenesis have yet to 

be unraveled; but the process requires both mechanical and chemical activity.  Synaptic 

adhesion proteins expressed on both the post-synaptic and pre-synaptic side mediate a 

mechanical connection that initiates synaptogenesis.  Non-neuronal cells expressing 

neurexins, a pre-synaptic adhesion protein that binds to post-synaptic neuroligins, cause 

the clustering of PSD-95, a canonical marker of the post-synaptic density, in contacting 

dendrites of hippocampal neurons (Nam and Chen, 2005).  Likewise, non-neuronal cells 

expressing the EphB2 receptor, which binds to the pre-synaptic ephrin-B ligand, generate 

pre-synaptic differentiation of contacting axons in co-cultured neurons (Kayser et al., 

2006).  Although, post-synaptic specializations can form on either non-neuronal cells or 

on contacting dendrites, these specializations are without a spine structure.  Since in vivo 

imaging shows that spine growth precedes synapse formation (Knott, 2006), spinogenesis 

likely occurs before synaptogenesis.   

A dendritic filopodium, dominant in early post-natal development, serves as a 

precursor to spine development (Sekino et al., 2007).  These filopodia-like spine 

precursors, seen between days in vitro (DIV) 6-10 in dissociated cultures, lack a post-

synaptic density and do not appose a pre-synaptic terminal (Figure 1).  Although their 

morphology is similar, filopodia-like dendritic protrusions are not the same structures as 

the filopodia seen on growth cones or fibroblasts.  Specifically, filopodia-like spine 

precursors do not contain a tight bundle of parallel actin filaments cross-linked by fascin, 

which characterizes the actin organization constituting growth cone filopodia (Korobova 

and Svitkina, 2008).  Growing axons release neurotransmitter before synaptic 

connections are formed (Scheiffele, 2003), therefore molecular mechanisms must exist  
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Figure 1: Spine and synaptic development in dissociated hippocampal cultures. 

A) Hippocampal neurons transfected with GFP at DIV 6 were fixed and 

immunostained for endogenous PSD-95 (magenta) at DIV 12, 16, and 21.  Top 

row is GFP and bottom row is the overlay image.  Boxed area in DIV 21 overlay 

image is magnified to the right.  Scale bar = 5 µm. 

B) Hippocampal neurons transfected with GFP at DIV 6 were fixed and 

immunostained for endogenous synaptophysin (magenta) at DIV 9, 12, and 21. 

Top row is GFP and bottom row is the overlay image. Boxed area in DIV 21 

overlay image is magnified to the right.  Scale bar = 5 µm. 
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among filopodia-like dendritic protrusions to chemotactically respond to extracellular 

glutamate in search for a potentiated axon.  To address this, one study induced 

spinogenesis by uncaging glutamate less than 1 µm away from the dendrites of cortical 

layer 2/3 pyramidal neurons in acute cortical brain slices from young mice (Kwon and 

Sabatini, 2011).  They found that glutamate-induced de novo growth of spines requires 

the NMDA-type glutamate receptor coupled to the activation of intracellular pathways, 

cyclic AMP (cAMP)-activated kinase PKA and Ras-GTP-dependent mitogen-activated 

protein kinase (MAPK).  Spinogenesis may also be facilitated by activation of G protein-

coupled receptors that respond to dopamine, serotonin, or adrenalin (Kwon and Sabatini, 

2011). 

  Interestingly, highly dynamic filopodia-like protrusions can be observed growing 

and retracting from pre-synaptic boutons of axons in young dissociated cultures (Figure 

2), suggesting that axonal varicosities also actively participate in the search for a synaptic 

connection.  These axonal outgrowths depend on activation of NMDA-type glutamate 

receptors and the retrograde release of nitric oxide from spines (Chang and De Camilli, 

2001; Nikonenko et al., 2003; Tashiro et al., 2003).  Once mechanical stabilization with a 

pre-synaptic contact occurs, many post-synaptic proteins are recruited to the spine 

(Figure 1).  While some post-synaptic proteins form de novo in the spine, a pre-formed 

mobile complex of the postsynaptic proteins, PSD-95, GKAP, and Shank, has been 

observed to rapidly traffic to nascent post-synaptic synapses in an actin-dependent 

manner (Marrs et al., 2001; Gerrow et al., 2006).  Rapid morphological changes in the 

spine and axonal varicosity continue to occur without losing their synaptic contact, and 

these overall structural changes between varicosities and spines are correlated  
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Figure 2: Protrusive outgrowth from dendrites and axonal varicosities. 

Hippocampal neurons were nucleofected with GFP or DsRed2 at DIV 0 and plated 

together onto poly-L-lysine-coated glass-bottomed dishes.  Time-lapse confocal imaging 

was performed on DIV 16.  Axonal varicosities on neurons expressing DsRed2 are seen 

protruding and retracting (arrowheads) from the axon.  Some of these axonal protrusions 

are interacting with dendritic spines (arrows) on neurons expressing GFP.  Time stamp 

represents minutes.  Scale bar = 5 µm. 
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(Umeda et al., 2005), suggesting there is bi-directional control between pre- and post-

synaptic components.  As the synapse matures, the spine head increases in size with a 

coordinate increase in the post-synaptic density and pre-synaptic active zone (Figure 1).  

The larger spine volume is thought to better support the post-synaptic density, which 

contains many PDZ domain-containing proteins that cluster glutamate receptors, 

adhesion proteins, and signaling molecules at the post-synaptic membrane (Kasai et al., 

2003).  Thus, the morphology of the spine and organization of the post-synaptic density is 

crucial for responding to the strength of the synaptic input received and for effectively 

propagating excitatory synaptic transmission. 

 

Post-synaptic density 

The post-synaptic density, PSD, is an electron-dense structure on the cytoplasmic 

face of the post-synaptic membrane of most excitatory synapses in the brain.  This 

structure is ~30-50 nm thick and ~200-800 nm wide, depending on the spine type, and 

maturation state (Sheng and Hoogenraad, 2007).  It contains cell adhesion proteins like 

cadherins and integrins, G protein-coupled receptors, ionotropic glutamate receptors, 

receptor tyrosine kinases, and a plethora of cytoskeletal and signaling scaffold proteins at 

the post-synaptic membrane (Kennedy, 1997; Peng et al., 2004; Sheng and Hoogenraad, 

2007).  Core constituents of the PSD make up a well organized lattice with laminar 

organization of scaffolding molecules, as indicated by electron microscopy (Valtschanoff 

and Weinberg, 2001; Chen et al., 2008), and more recent super resolution imaging (Dani 

et al., 2010).  This highly ordered structure supports the signaling scaffolds that are 

precisely arranged in space and time, effectively allowing the post-synaptic structure to 



 13 
respond to synaptic input, propagate the message, and adapt.  Mutations in human 

genes encoding PSD proteins cause approximately 133 neurological and psychiatric 

diseases (Bayés et al., 2011), therefore the organization of the PSD is central to its 

function.   

A common feature to several PSD proteins is the PDZ-domain, which has a multi-

domain structure enabling PDZ-containing proteins to interact with multiple binding 

partners simultaneously, thereby assembling into supramolecular complexes (Hung and 

Sheng, 2002).  PSD-95 is a canonical molecule of the PSD as it contains many PDZ-

domains, an SH3 domain, and directly binds to several transmembrane proteins, 

including the NR2 domain of the NMDA-type glutamate receptor (Kornau et al., 1995), 

and is thought to anchor them to the actin cytoskeleton.  The number of PSD-95 

molecules determines the size and strength of the synapse (Gray et al., 2006) and is 

required for stabilization of the synapse following synaptic activity (Ehrlich et al., 2007).   

Other major scaffolding proteins at the PSD that contain PDZ and PDZ-like 

domains include Homer and ProSAP/Shank family members.  Homer binds to group I 

metabotropic glutamate receptors (mGluR1 and mGluR5), which activate phospholipase 

C and couple to inositol 1,4,5-triphosphate/Ca++ (IP3) signaling (Okabe, 2007).  Homer 

arranges the mGluRs around the outer rim of the ionotropic glutamate receptors 

(Kennedy, 2000).  Shank proteins are layered at the cytoplasmic face of the PSD 

(Valtschanoff and Weinberg, 2001) and can bind to both the intracellular domains of 

membrane-associated molecules and several cytoskeletal proteins and regulators, 

including cortactin (Naisbitt et al., 1999), Abp1 (Qualmann et al., 2004), α-fodrin 

(Böckers et al., 2001), and the Rac1/Cdc42 GEF, βPIX (Okabe, 2007).  Shank can also 
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bind to Homer, and multimerize with itself to create a sheet-like structure hypothesized 

to provide the foundation for the assembly of a higher order PSD structure (Baron et al., 

2006).  It is therefore no surprise that mutations in Shank genes are directly linked to 

synaptopathies, such as the neuropsychiatric disease Phelan-McDermid syndrome 

(Verpelli et al., 2012), schizophrenia (Gauthier et al., 2010), and autism (Grabrucker et 

al., 2011), as aberrant Shank proteins would affect the molecular framework of the PSD.  

Thus, organization of the PSD is paramount to post-synaptic functioning. 

Adhesion proteins organized at the post-synaptic membrane mediate a mechanical 

connection of the PSD to the pre-synaptic bouton of an axon and induce bidirectional-

signaling pathways to mediate the formation and maturation of excitatory synapses.  

Neuroligins, EphB receptors, cadherins, and SynCaMs (synaptic cell adhesion molecules) 

are major classes of post-synaptic proteins that mediate trans-synaptic adhesion.  Post-

synaptic neuroligins bind to neurexins expressed on the pre-synaptic surface, and PDZ 

domains within the intracellular portion of neuroligin connect the molecule to post-

synaptic scaffolding proteins, including PSD-95 (Irie et al., 1997).  Neuroligins play a 

key role in synaptogenesis and neuronal circuitry, as different types of neuroligin-

neurexin interactions control the formation of inhibitory versus excitatory synapses 

(Dalva et al., 2007).  Alterations in post-synaptic neuroligins are linked to autism 

spectrum disorders (Jamain et al., 2003).   

Post-synaptic EphB receptor tyrosine kinase binds to the pre-synaptic, 

transmembrane ligand ephrin-B, and together orchestrate many aspects of excitatory 

synaptogenesis (Dalva et al., 2007).  EphB2 interacts with AMPA receptors via its 

intracellular PDZ domain and increases their retention at the post-synaptic membrane 
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surface, thereby enhancing synaptic strength (Kayser et al., 2006).  EphB receptor 

tyrosine kinase signaling leads to downstream organization of the actin cytoskeleton as it 

activates the Rho GTPases Rac1 and Cdc42, via activation of the GEF’s kalirin (Penzes 

et al., 2003) and intersectin (Irie and Yamaguchi, 2002).  EphB receptor tyrosine kinase 

signaling also results in the phosphorylation and increased association between Src, FAK, 

and paxillin at the post-synaptic membrane (Moeller et al., 2006).  On the extracellular 

side, EphB directly interacts with the glutamate NMDA receptor and induces its 

clustering in non-neuronal cells (Dalva et al., 2000).  The importance of EphB-ephrin-B 

interactions at excitatory synapses is highlighted by the findings that hippocampal 

neurons cultured from mice lacking EphB receptors 1-3 show complete loss of dendritic 

spines and excitatory post-synaptic specializations (Henkemeyer et al., 2003).   

Classical cadherins mediate the assembly of specialized cell-cell junctions in 

many different cell types, including epithelia, neurons, and glia (Yamada and Nelson, 

2007a).  Neuronal (N)-cadherins found on both pre- and post-synaptic terminals form 

calcium-dependent homophilic interactions at the synapse.  N-cadherin couples to the 

actin cytoskeleton through its intracellular interactions with α-catenin, β-catenin, and 

p120 catenin.  Unlike neuroligins and EphB receptors, N-cadherin is dispensable for 

triggering synaptogenesis but does play a major role in directing spine morphogenesis 

and motility through its signals to Rho-GTPases (Dalva et al., 2007).  Loss of function 

studies with any component of the N-cadherin, β-catenin, α-catenin, p120 catenin 

complex results in aberrant Rho-GTPase signaling and abnormal spine morphology due 

to erroneous organization of the actin cytoskeleton (Togashi et al., 2002; Elia et al., 

2006).  A common feature to trans-synaptic adhesion molecules is their ability to bind to 
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several components of the PSD through PDZ-domain interactions, which are critical 

for synapse formation, maturation, and maintenance.   

Other adhesion proteins expressed on dendritic spines, but not discussed here, 

include integrins, the IgG superfamily of SALMs, SynCaMs and nectins, NCAMs, 

Netrin-G ligands, and LRRTMs (Benson and Huntley, 2012).  The structural organization 

of these adhesion proteins in the PSD helps to align post-synaptic glutamate receptors in 

direct apposition of glutamate-containing pre-synaptic vesicles, mediate a mechanical 

connection to the pre-synaptic axon, the extracellular matrix, and glia cells, and finally 

induce intracellular signaling pathways to bidirectionally coordinate morphological 

synapse differentiation.  

The ionotropic glutamate receptors α-amino-3-hydroxy-5- methyl-4-

isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) are found at the post-

synaptic membrane of glutamatergic synapses.  These transmembrane receptors respond 

to the excitatory neurotransmitter glutamate (Kennedy, 2000).  When glutamate binds to 

AMPA receptors, the ion channel opens and sodium and potassium ions pass through; 

this depolarizes the membrane and mediates and an excitatory postsynaptic potential 

(EPSP).  Extracellular magnesium occludes the NMDA receptor channel and requires, in 

addition to glutamate binding, a strong enough membrane depolarization mediated by 

AMPA receptors in order to relieve the blockade.  Once activated, the NMDA receptors 

allow passage of sodium and calcium ions into the cell (Kennedy et al., 2005).  Thus, the 

number of AMPA receptors expressed at the membrane surface directly correlates with 

NMDA receptor activation and the strength of the synapse.  Indeed, the exocytic and 

endocytic machinery that traffics AMPA receptors to and from the membrane, 
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respectively, is an important mechanism regulating synaptic plasticity (Malinow and 

Malenka, 2002).  The NMDA receptor is a heteromer composed of multiple NR1 

subunits in combination, with at least one type of NR2 subunit (A, B, C, and/or D), and 

an NR3 subunit that can co-assemble with NR1/NR2 heteromers (Sugihara et al., 1992). 

NMDA receptor subtypes have different receptor properties and are expressed 

differentially throughout the brain and during development, and are implicated in normal 

and disease states (Cull-Candy et al., 2001).  The glutamate receptors are spatially 

compartmentalized, such that NMDA receptors cluster in the center of the PSD with 

PSD-95, while AMPA receptors arrange around the periphery of the PSD (Chen et al., 

2008), leading to spatially confined signal transduction pathways (Newpher and Ehlers, 

2009).   

 A plethora of signal transduction pathways in the spine are triggered by 

the intracellular rise in calcium, mediated by activation of NMDA receptors (Kennedy, 

2000).  The large holoenzyme, calcium-calmodulin-dependent kinase II (CaMKII), is a 

serine/threonine kinase that is activated by calcium-bound calmodulin, and thereby 

amplifies the calcium signal by interacting with many downstream members of signaling 

scaffolds positioned at the PSD.  CaMKII constitutes 1-2% of the total protein in the 

forebrain and is the most abundant signaling protein in the PSD (Erondu and Kennedy, 

1985), priming a series of signaling cascades via phosphorylation. Many of the signaling 

pathways nucleated at the PSD involve the morphological maturation of the spine, such 

as activation of RhoGTPases that control organization of the actin cytoskeleton (Rao and 

Craig, 2000), and presumably spine morphology.  
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Signaling triggered by NMDA-type glutamate receptor activation 

Signaling via the NMDA-type glutamate receptor at the post-synaptic membrane 

initiates spine maturation.  Many signaling scaffolds are clustered at the PSD and 

presumably transduce the signal from the NMDA receptor to various effector targets 

responsible for maturation.  Calcium-influx through activated NMDA receptors activates 

protein kinases that amplify the calcium signal, including CaMKII, protein kinase A 

(PKA), and phosphatidylinositide 3-kinase (PI3K) (Sheng and Kim, 2002).  CaMKII 

primes a series of signaling cascades involved in the morphological maturation of the 

spine, and insertion of more glutamate receptors into the membrane via increased 

exocytosis of dendritic Golgi-derived vesicles (Rao and Craig, 2000).  For example, the 

GIT1-βPIX-PAK1 signaling scaffold localizes to dendritic spines, and activation of 

CaMKII leads to the direct phosphorylation of the Rac-GEF, β-PIX, which enhances its 

GEF activity and consequently increases Rac GTPase activity (Zhang et al., 2003; 

Saneyoshi et al., 2008).  A point mutation in β-PIX that disrupts its phosphorylation by 

CaMKII causes decreased spine density and reduction in the frequency of mEPSCs in 

cultured neurons, demonstrating the significance of this pathway and Rac activation in 

spine morphogenesis (Saneyoshi et al., 2008).  Other examples of Rac GEFs directly 

phosphorylated by activated CaMKII include kalirin-7 and Tiam1 (Penzes and Jones, 

2008).  Many of these signaling cascades converge on the activation of the Rho-GTPases, 

which control the downstream activation or de-activation of different actin associated 

proteins.  A fine-tuned balance between RhoA, Rac1, and Cdc42 signaling, mediated by 

upstream signaling pathways triggered by glutamate receptors, is thus important for 

modulating the actin cyotoskeleton in response to synaptic neurotransmission.  
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Several diseases and neurological disorders are directly linked to genetic 

mutations in regulators and effectors of Rho-GTPases.  Of the seven genes implicated in 

families with a high incidence of non-syndromic mental retardation {(Kutsche et al., 

2000; Ramakers, 2000; Anon, 2002; Ramakers, 2002), three are direct regulators or 

effectors of Rho GTPases; including the Rho GAP, Oligophrenin1 (Billuart et al., 1998), 

the Rac1 and Cdc42 effector, PAK3 (Allen et al., 1998), and the Rac1/Cdc42 GEF, α-

PIX (Kutsche et al., 2000).  Moreover, the Cdc42 GEF, FGD1, is mutated in Aarskog-

Scott syndrome, an X-linked developmental disorder associated with mental retardation 

and cognitive impairment (Pasteris et al., 1994).  LIM domain kinase 1, LIMK1, is a 

downstream effector of Rho and Rac1 and stabilizes actin filaments by inhibiting the 

depolymerization factor, cofilin/ADF.  Interestingly, a loss of function mutation in 

LIMK1 is implicated in the cognitive deficits associated with Williams syndrome 

(Frangiskakis et al., 1996).  Thus, proper polymerization and organization of actin 

filaments is necessary for the morphological plasticity of the spine and dictates cognitive 

functioning.   

 

F-actin organization underlies spine morphology 

Actin is the primary structural molecule present in dendritic spines (Figure 3) 

(Matus, 2000).  Although microtubules are observed to transiently invade the spine and 

modulate spine maturation by trafficking certain proteins to the spine that regulate actin 

(Jaworski et al., 2009; Hu et al., 2011; Merriam et al., 2011), they don’t serve as the 

dominant structure underlying spine shape.  While neurofilaments, a specialized type of 

intermediate filament, are also found in axons and dendrites, they do not localize  
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Figure 3: Actin is the primary structural determinant of dendritic spines. 

A) DIV21 hippocampal neuron expressing RFP-actin.  Neurons were transfected 

with RFP-actin on DIV6 and fixed on DIV21. 

B) Outlined region of dendrite in figure 3A is magnified.  After fixation on DIV21, 

neurons were immunostained for the endogenous microtubule marker, MAP2 

(green).  RFP-actin is colored magenta. 
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to dendritic spines (Fifková, 1985; Steward, 1989).  The F-actin content of dendritic 

spines increases in response to LTP and actin polymerization is required for LTP 

maintenance (Fukazawa et al., 2003; Okamoto et al., 2004).  This requirement is 

highlighted by the finding that treatment with the actin depolymerization agent, 

latrunculin B, causes a significant decrease in the number of AMPA receptors docked at 

the post-synaptic membrane, which is a measure of LTP (Allison et al., 1998; Kim and 

Lisman, 1999).  

The post-synaptic density also undergoes rapid fluctuations in morphology driven 

by the actin cytoskeleton in response to synaptic activity (Marrs et al., 2001; Blanpied et 

al., 2008).  Actin and actin-associated molecules such as cortactin, Arp2/3 complex, α-

actinin, and others make up 12% of the PSD fraction, as estimated by mass spectrometry 

(Sheng and Hoogenraad, 2007).  The post-synaptic reorganization underlying plasticity 

relies on dynamic remodeling of the actin cytoskeleton (Okamoto et al., 2004).  For 

example, highly heterogeneous rates of filament polymerization occur within sub-

domains of the spine (Frost et al., 2010b), such as the synapse region, peri-synaptic 

endocytic zone, and neck.  This supports the proposed existence of a distinct set of actin 

filament networks within the micron-sized volume of the spine that serve multiple roles 

to support synaptic activity.  Electron microscopy reveals a mixture of long actin 

filaments and short cross-linked filaments that exist in the spine (Korobova and Svitkina, 

2010). 

From studies in other systems, actin mediates a variety of activities and is under 

complex regulation, involving many actin-binding proteins that mediate its 

polymerization, localization, and organization.  The Arp2/3 complex nucleates branches 



 23 
off existing actin filaments and creates a branched, or dendritic actin filament network.  

The formins are a family of proteins that catalyze the elongation of actin filaments.  In 

migrating cells, protrusion of the leading edge is driven by actin polymerization through 

formin proteins and the Arp2/3 complex: generation of a branched actin network, through 

the Arp2/3 complex, comprises the broad lamellipodium, and formation of parallel actin 

bundles, via formin proteins, constitutes a filopodium (Vicente-Manzanares et al., 

2009a).  Severing proteins, gelsolin and cofilin, depolymerize actin filaments and thereby 

control protrusion rates.  Capping proteins also control protrusion rates by preventing 

filament elongation.  α-Actinin cross-links actin filaments into various arrays and myosin 

II crosslinks actin filaments into antiparallel bundles, and its ATPase activity moves actin 

filaments past each other, which mediates contraction.  Furthermore, the actin cross-

linker fascin, which bundles F-actin into a tight parallel filament within filopodia of 

fibroblasts, is not expressed in dendritic protrusions (Sekino et al., 2007; Korobova and 

Svitkina, 2010).  Several of these actin-associated molecules localize to spines and when 

mutated or impaired have deleterious effects on spine morphogenesis (Table 1).  Many of 

these effects on spine morphology are discussed below. 

The Arp2/3 complex-mediated branching of actin contributes to mature spine 

growth, since knock down of Arp3 or inhibition of its activator, N-WASP, dramatically 

decreased the number of mature spines and excitatory synapses formed, but did not 

perturb formation of filopodia-like spines (Wegner et al., 2008; Hotulainen et al., 2009).  

Similar spine pathologies were observed in the WAVE1 -/- knockout mouse (Kim et al., 

2006; Soderling et al., 2007), and the consequence for knocking out an Arp2/3 activator 

was a decrease in hippocampal learning and memory (Soderling et al., 2003).  
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Table 1: Loss- and gain-of-function studies for different actin-binding proteins in 

spines. 

Actin 
Regulator 

Description Approach Spine 
Phenotype 

Reference 

Arp2/3 Nucleates 
branched 
actin 
filaments 

-RNAi – Arp3 
subunit 
-RNAi – p34 
subunit 
-Scar1-WA 
fragment over-
expression 
 

 Spine density 
 Excitatory 
synapses 
 Filopodia-like 
protrusions 
 Mushroom-
shaped spines 

(Wegner et al., 
2008; Hotulainen 
et al., 2009) 

N-WASP Activates 
Arp2/3 
complex 

-RNAi 
-Wiskostatin 
treatment 
-Dominant-
negative 
expression of N-
WASP- ∆VCA 

 Spine density 
 Excitatory 
synapses 
 

(Wegner et al., 
2008) 

WAVE1 Activates 
Arp2/3 
complex 

-RNAi 
-Knockout mouse 
-/- 

 Spine density 
 Filopodia-like 
protrusions 
 Mushroom-
shaped spines 
 Learning and 
Memory 

(Soderling et al., 
2003; Kim et al., 
2006; Soderling et 
al., 2007) 

Abp1 -Actin 
filament side-
binding 
molecule 
-Links N-
WASP with 
actin 

-RNAi 
-Over-expression 
of Abp1 SH3-
domain  
-Over-expression 
of Abp1 actin-
binding domain 

 Mushroom-
shaped spines 
 Excitatory 
Synapses 
 Spine density 
 
 

(Haeckel et al., 
2008) 

  -Abp1 over-
expression 

 Length of 
mushroom –
shaped spines 
 Mushroom-
shaped spines 
 Synapses 

(Haeckel et al., 
2008) 

PICK1 Inhibits 
Arp2/3 
complex 

-RNAi 
-DN expression 
of PICK1 
 

 Spine area 
- Prevents LTD-
dependent spine 
shrinkage 

(Nakamura et al., 
2011) 
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PICK1 over-
expression 

 Spine area 
 Spine length 

(Lee et al., 2010; 
Nakamura et al., 
2011) 

mDia2 Formin-
nucleates and 
elongates 
actin 

-RNAi 
-DN-mDia2 
expression 

 Spine density 
 Filopodia-like 
protrusions 
 Spine length 
 Spine head 
width 

(Hotulainen et al., 
2009) 

  CA-mDia2 over-
expression 

 Filopodia-like 
protrusions 
 Mushrooms 
 

(Hotulainen et al., 
2009) 

Daam1 Formin-
nucleates and 
elongates 
actin 

Daam1 over-
expression 

 Spine density 
 Spine length 
 Thin 
protrusions 
 

(Salomon et al., 
2008) 

LIMK1 Inactivates 
cofilin 

Knockout mouse 
-/- 

 Spine area 
 PSD size 
 Filopodia-like 
protrusions 
-abnormal LTP 
 Spatial 
learning 
 

(Meng et al., 
2002) 

Cofilin-1 Depolymerize
s actin 
filaments 

RNAi  Mushroom-
shaped spines 
 Spine length 
 Spine 
branching 

(Hotulainen et al., 
2009) 

Gelsolin Severs actin 
filaments and 
caps barbed 
ends in a 
calcium-
dependent 
manner 

Knockout mouse 
-/- 

Impaired the 
decrease in F-
actin turnover in 
response to 
NMDA receptor 
activation 

(Star et al., 2002) 

Cortactin Facilitates 
Arp2/3-
nucleation of 
actin branches 

RNAi  Spine density 
 

(Hering and 
Sheng, 2003) 

  Cortactin over-
expression 

 Spine neck 
length 
 

(Hering and 
Sheng, 2003) 
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Cortactin-∆SH3 
over-expresion 

 
 Spine head 
width 

 
(Hering and 
Sheng, 2003) 

Drebrin A Actin-binding 
protein 

RNAi  Excitatory 
Synapses 
 Mature actin-
enrichment 
spines 
 

(Takahashi et al., 
2003) 

  Drebrin over-
expression 

 Spine density 
 Spine length 
 

(Hayashi and 
Shirao, 1999) 

Spinophilin
/Neurabin 
II 

Bundles actin 
filaments 

Knockout mouse 
-/- 

 Spine density 
 Filopodia-like 
protrusions 

(Feng et al., 2000) 

VASP Bundles F-
actin and 
protects 
barbed-ends 
from capping  

RNAi  Spine density 
 Excitatory 
synapses 
 

(Lin et al., 2010) 

  VASP over-
expression 

 Spine density 
 Excitatory 
synapses 
 Spine head 
area 
 Actin 
polymerization 
 
 
 

(Lin et al., 2010) 

β-adducin Caps F-actin 
barbed ends 
and recruits 
spectrin to 
actin 

β-adducin 
knockout -/- 

 Synapse 
assembly 
following 
learning 
 LTP 
 

(Rabenstein et al., 
2005; Bednarek 
and Caroni, 2011) 

Eps8 Caps F-actin 
barbed ends  

-RNAi 
-DN expression 
of Eps8TM -
(abolishes actin-
capping activity) 

 Spine density 
 Filopodia-like 
protrusions 
 Spine head 
irregularity 
 F-actin 
turnover 
 
 

(Stamatakou et 
al., 2013) 
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  Eps8 over-

expression 
 Spine density 
 Excitatory 
synapses 
 Filopodia-like 
protrusions 
 Stubby spines 

 
(Stamatakou et 
al., 2013) 

CP Caps F-actin 
barbed ends 
-Facilitates 
Arp2/3-
mediated 
nucleation 

RNAi  Spine density 
 Filopodia-like 
protrusions  
 Spine head 
branching 
 Excitatory 
synapses 

(Fan et al., 2011) 

Spar Actin-binding 
protein  
-Recruits 
PSD-95 to F-
actin in 
heterologous 
cells 

Spar over-
expression 

 Spine head 
width 
 Spine head 
irregularity – 
less circular in 
shape 
 Spine density 
 

(Pak et al., 2001) 

α-actinin-2 Cross-links 
actin 
filaments 

ACTN2 over-
expression 

 Spine length (Nakagawa et al., 
2004) 

  RNAi  Filopodia-like 
protrusions 
 Spine length 
 Spine head 
width 
 Excitatory 
synapses 

Unpublished 
observations – 
Chapter 4 

Myosin IIB Cross-links 
and contracts 
actin 
filaments 

-RNAi 
-Blebbistatin 

 Filopodia-like 
protrusions 
 Spine length 
 Spine head 
width 
 Spine head 
branching 
 LTP 
 

(Ryu et al., 2006; 
Rex et al., 2010; 
Hodges et al., 
2011) 

  -MIIB over-
expression 
-RLC-DD over-
expression 

 Excitatory 
synapses 
 Mushroom-
shaped spines 

(Hodges et al., 
2011) 

Key: CA = constitutive active, DN = dominant negative 
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Additional evidence for actin polymerization being necessary for spine 

development and maturation comes from the observation that profilin, the actin monomer 

binding partner that promotes F-actin polymerization, is redistributed to spine heads in 

response to synaptic activity (Ackermann and Matus, 2003).  In contrast, excess F-actin 

elongation induced by the loss of actin-capping proteins (Mejillano et al., 2004), 

epidermal growth factor receptor pathway substrate 8 (Eps8) (Stamatakou et al., 2013) 

and capping protein (CP) (Fan et al., 2011), results in excessive filopodia-like 

protrusions.  Therefore, actin-capping proteins in the spine provide a balance for actin 

filament elongation to control spine morphogenesis, and direct evidence for their 

importance in spine plasticity comes from the fact that decreased levels of CP are found 

in fetal brains of Down syndrome (Gulesserian et al., 2002).  

The Diaphanous-related formin proteins, Dia1 and Dia2, which are regulated by 

RhoA and Cdc42, also localize to dendritic spines and overexpression of either protein 

led to spines with an increased protrusion length, exhibiting filopodia-like features 

(Salomon et al., 2008; Hotulainen et al., 2009).  In spines, Dia2 promotes spine 

elongation, while Arp2/3 complex mediates spine head expansion (Hotulainen et al., 

2009).  This same study further showed that the F-actin severing molecule, cofilin, is 

expressed in dendritic spines and controls the proper length of actin filaments to prevent 

abnormal protrusions from the spine head (Hotulainen et al., 2009).  Phosphorylation of 

cofilin by Lim kinase-1 (LIMK1), inactivates cofilin’s actin depolymerization activity 

(Bamburg et al., 1999), and elevated levels of phosphorylated cofilin is thought to be a 

readout of LTP (Chen et al., 2007).  LIMK1 -/- mice show diminished phosphorylated 

cofilin and consequently display immature spine morphologies with smaller PSD sizes 
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(Meng et al., 2002); therefore the temporal activity of these molecules to regulate actin 

filament arrangement, such as cofilin inactivation, is critical to spine morphogenesis and 

synaptic plasticity.   

Cortactin and drebin A are two examples of actin-associated molecules that are 

temporally regulated.  Cortactin facilitates Arp2/3-mediated nucleation of actin branches 

and stabilizes these newly formed branches (Weaver et al., 2001), and drebrin A is an 

actin side-binding protein that promotes formation of thick, curving bundles of actin 

(Shirao et al., 1994).  Cortactin and drebin A are redistributed from spines to the dendritic 

shaft in response to NMDA-type glutamate receptor activation(Hering and Sheng, 2003; 

Sekino et al., 2007).  In contrast, activation of the MAP kinase pathway via stimulation of 

the trkB receptor tyrosine kinase with brain-derived neurotrophic factor (BDNF), causes a 

dramatic redistribution of cortactin to dendritic spines, particularly during a time period 

when synapses are developing (Iki et al., 2005).  Therefore, cortactin and drebrin A 

activity appear to be temporally regulated such that they promote formation of dendritic 

protrusions that mature into spines (Hayashi and Shirao, 1999; Hering and Sheng, 2003; 

Takahashi et al., 2003), but are down-regulated after the synapse engages in neuronal 

activity, thereby coupling activity-dependent spine morphogenesis to actin remodeling.  

Spatial regulation of these actin-binding proteins is also critical for spine plasticity.  For 

example, Abp1 promotes the expansion of the spine head by spatially confining Arp2/3 

nucleation at the PSD, via simultaneously binding to F-actin, ProSAP/Shank, and N-

WASP (Haeckel et al., 2008). 

Lastly, actin cross-linking proteins that localize to dendritic spines include 

spinophilin/neurabin II (Allen et al., 1997), VASP (Lin et al., 2010), α-actinin, and 
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myosin IIB.  Loss-of-function for any of these actin cross-linkers results in the 

elongation of dendritic protrusions, resembling filopodia-like spine precursors (Feng et 

al., 2000; Ryu et al., 2006; Lin et al., 2010; Hodges et al., 2011), therefore organization 

of actin filaments through actin cross-linking is critical to dictating spine morphology.  

The roles of α-actinin and myosin IIB in spine morphogenesis are discussed in more 

detail below.   

 

Rationale for the study 

Regulation of spine morphology and organization of the PSD points to a key role 

for actin polymerization, depolymerization, and organization.  The broad goal of this 

dissertation was to investigate some of the activities that mediate actin organization in the 

spine.  My focus is on myosin II and α-actinin.  While little is known about their 

functions in spine development, both of these molecules have been well studied in 

fibroblasts providing a starting foundation to study these proteins in cultured 

hippocampal neurons and interpret their neuronal functions in spine development from 

our findings. 

 

Myosin II 

Non-muscle myosin II is a hexameric protein complex composed of two heavy 

chains that dimerize, two essential light chains, and two regulatory lights chains; each 

essential and regulatory light chain binds to a heavy chain.  The long C-terminal helical 

coiled-coil domain of the dimerized heavy chains mediates bipolar filament bundling in 

an antiparallel fashion through self-association with other myosin II molecules  
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Figure 4: Domain structure of myosin II and myosin IIB is the predominant isoform 

expressed in hippocampal neurons. 

A) Domain structure of non-muscle myosin II adapted from (Vicente-Manzanares et 

al., 2009c).  

B) Myosin IIB is the only myosin II isoform expressed in DIV 13 hippocampal 

neurons derived from E19 rats.  All three isoforms are present in glia cells and 

CHO-K1 cells.  CHO-K1 cells were also transfected with GFP-MIIC as a positive 

control for the MIIC antibody.  Actin immunoblot serves as a loading control. 
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(Hostetter et al., 2004).  The N-terminal globular head domain of the heavy chain binds 

to actin filaments in a specific orientation, such that the bipolar association of myosin 

filaments cross-links and organizes actin into an antiparallel bundle (Figure 4A).  ATPase 

activity in the head domain induces head movement, which drives movement of actin  

filaments and corresponds to contraction as oppositely oriented actin filaments slide past 

one another (Clark et al., 2007).  Therefore, bundling and contracting actin filaments 

constitute myosin’s direct mechanical actions on the cytoskeleton.  Evidence for the 

organization of antiparallel filaments along with the presence of branched actin networks 

in spines comes from EM analysis and barbed-end staining of actin, showing that actin 

polymerization and elongation occurs not only at the tip of dendritic protrusions, but also 

at the root (Hotulainen et al., 2009; Korobova and Svitkina, 2010). 

Myosin II activity is regulated by phosphorylation of the regulatory light chain 

(RLC) and its heavy chain tail domain.  Phosphorylation of RLC on Ser19, or on Thr18 

and Ser19, is required for myosin’s ability to assemble into bipolar filaments and activate 

its motor activity cycle, which binds too and contracts actin filaments (Figure 4A) 

(Vicente-Manzanares et al., 2009c).  Rho GTPases control myosin II activity by turning 

on and off the kinases that directly regulate it, such as Rho-associated, coiled-coil 

containing protein kinase (ROCK) and myosin light chain kinase (MLCK).  In contrast to 

RLC, phosphorylation of myosin heavy chain promotes myosin filament disassembly 

(Vicente-Manzanares et al., 2009c), and therefore provides another mechanism for 

dictating myosin II activity.  It is clear that MIIB activity is present within dendritic 

protrusions, since the active, phosphorylated form of RLC, pRLC, localizes to spines.  

Intriguingly, quantification of the dendritic spine to shaft ratio shows that active pRLC is 
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~2-fold more concentrated in spines than total RLC, suggesting that myosin-dependent 

contractile events localize to dendritic spines (Zhang et al., 2005).  Furthermore, ectopic 

expression of the constitutively active mutant, RLC-18, 19 DD, promotes spine and 

synapse formation by inducing an increase in dendritic spine density (Zhang et al., 2005). 

There are three isoforms of non-muscle myosin II, including myosin IIA, -B, and 

-C.  Myosin IIB (MIIB) is most highly expressed in brain and heart tissues, and its 

ablation results in severe cardiovascular and neuronal defects (Uren et al., 2000; Ma et 

al., 2007).  MIIB is the only isoform expressed in hippocampal neurons derived from 

embryonic day 19 (E19) rats (Figure 4B).  Inhibition of ATPase activity by blebbistatin 

inhibits contractility and induces the formation of long thin processes extending from the 

spine head with concomitant collapse of spine-head width (Ryu et al., 2006).  Inhibition 

of myosin II activity also reduced the number of excitatory synapses in cultured 

hippocampal neurons (Zhang et al., 2005).  Furthermore, in vivo inhibition of myosin II 

abrogated LTP maintenance and memory consolidation in mice (Rex et al., 2010).  Taken 

together, these studies implicate myosin II in the maintenance of spine morphology and 

long-term memory.  

Despite the importance of MIIB in spine morphology and long-term memory, 

many outstanding questions remain regarding the mechanism(s) by which MIIB dictates 

spine morphology and excitatory synapse formation.  How do the individual functions of 

MIIB on organizing actin filaments, specifically cross-linking and contracting actin, 

determine spine morphology?  How is MIIB regulated to dictate spine morphology 

changes?  Does synaptic activity regulate MIIB activity?  In addition to regulating spine 
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morphology, does MIIB activity dictate the organization of the post-synaptic density?  

Rationales for these questions are discussed below. 

The organization of the post-synaptic density in response to myosin II regulation 

has not been studied to date.  When myosin is knocked down in fibroblasts the adhesions 

disperse and the cells become highly protrusive (Vicente-Manzanares et al., 2009a).  Just 

as the forces that hold together an adhesion are lost when myosin is knocked down in 

fibroblasts, we hypothesized that myosin activity may pull on actin filaments tethered to 

PSD molecules, to stabilize adhesions at the post-synaptic membrane and promote 

clustering of PSD molecules, thereby organizing the post-synaptic density.  We further 

postulate that MIIB-mediated contractility enhances spine maturation through 

enlargement of the post-synaptic density.  By pulling on actin filaments tethered to 

proteins within the PSD, MIIB-mediated contractility can induce conformation changes 

in PSD proteins thereby revealing new binding sites for the recruitment of additional 

proteins to the PSD.  Support for this comes from the observation that exogenous 

expression of myosin II promotes the growth of adhesions in fibroblasts (Vicente-

Manzanares et al., 2007).  

Bundling and contracting actin filaments can serve different effects on cell 

migration; bundling is responsible for the initial events controlling adhesion maturation, 

whereas contractility controls protrusion rates (Vicente-Manzanares et al., 2009a).  We 

therefore proposed that bundling and contractility via MIIB could mediate different 

effects on spine and PSD morphology.  To separate myosin’s bundling activity from 

contractility, we utilized a myosin mutant, MIIB-R709C, which has a mutation in its 

ATPase motor domain that abolishes contractility, but still allows the molecule to bind 
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tight too and cross-link actin (Ma et al., 2004).  MIIB-R709C homozygous mice 

display significantly retarded migration of distinct groups of neurons in the developing 

mouse brain (Ma et al., 2004), demonstrating an importance for MIIB-directed 

contractility in the nervous system.  We therefore test whether myosin’s actin cross-

linking activity versus contraction impose different behaviors on spine morphology and 

post-synaptic organization. 

Phosphorylation of myosin regulatory light chain is a read-out for myosin 

activation and can be used as a diagnostic tool to study whether the NMDA receptor 

signals to MIIB.  Support for NMDA receptor signaling to myosin comes from studies 

showing that GIT1 localizes the GIT1-βPIX-PAK signaling module to dendritic spines 

and functions upstream of myosin activity (Zhang et al., 2003; 2005).  Where and when 

myosin induces contractility throughout spine development, and whether it mediates a 

response to synaptic stimulation, was unknown prior to this study.  Furthermore, 

monophosphorylation versus diphosphorylation of RLC on MIIB induces different 

phenotypes in fibroblasts (Vicente-Manzanares and Horwitz, 2010).  Specifically, a RLC-

di-phosphomimetic mutant, RLC-T18D/S19D (RLC-DD) generates very large adhesions, 

whereas a RLC-mono-phosphomimetic mutant, RLC-T18D/S19A (RLC-DA) does not 

produce large adhesions (Vicente-Manzanares and Horwitz, 2010).  We therefore 

proposed that phosphorylation of these two residues in RLC may serve different 

functions in spine development and growth of the PSD.  Regulation of myosin activity 

through phosphorylation of its heavy chain has not been studied in neurons.  Thus, 

regulation of myosin filament assembly through phosphorylation of the RLC and its 
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heavy chain provides an attractive mechanism to dictate myosin activity in driving 

spine morphogenesis.   

The goal of this project was to elucidate the mechanisms by which myosin IIB 

organizes and regulates actin filaments within dendritic protrusions through its cross-

linking function, and how contractility dictates post-synaptic organization and spine 

maturation in response to synaptic stimulation.  

 

α-Actinin 

α-Actinin is another molecule that bundles anti-parallel actin filaments and localizes to 

many sub-cellular structures, including sarcomeres of muscle and heart cells, cell-cell and 

cell-matrix contact sites, lamellipodia of cellular protrusions, and stress fibers (Otey and 

Carpen, 2004).  α-Actinin is has an actin-binding domain at its N-terminus, followed by 

four spectrin repeats, and calmodulin-like domain at its C-terminus.  The spectrin repeats 

mediate bipolar dimerization such that there is an actin-binding domain on either end of 

the molecule, allowing α-actinin to cross-link actin filaments.  In contrast to myosin II, 

α-actinin does not bind to F-actin in specific orientations, and can therefore adopt various 

cross-linking patterns.  α-Actinin not only cross-links anti-parallel actin filaments like 

myosin II, but promiscuously cross-links actin filaments over all angles (Courson and 

Rock, 2010).  This reveals how α-actinin is observed in both orientations of actin-

filament cross-linking, including anti-parallel arrays with myosin II and parallel bundles 

with fascin.  In this regard, ACTN2 could localize to multiple actin networks in the spine, 

involved in both the organization of anti- parallel actin filaments with MIIB, and the 

branched actin networks observed in the spine head.  
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There are four highly conserved α-actinin isoforms (Figure 5), two Ca2+-

sensitive isoforms (α-actinin-1 and -4) and two Ca2+-insensitive isoforms (α-actinin-2 

and -3) (Otey and Carpen, 2004).  The Ca2+-insensitive isoforms are highly enriched 

within muscle and heart tissues, while the Ca2+-sensitive isoforms, whose binding to actin 

is regulated by calcium, are more ubiquitously expressed in other tissues (Djinović-

Carugo et al., 1999).  The difference in calcium sensitivity between the α-actinin 

isoforms resides in the EF1 hand repeat of the calmodulin-like domain; α-actinin-2 and -

3 are missing several amino acids within the EF1 hand repeat, which confers Ca2+-

insensitivity in these isoforms (Figure 5).  Of the three α-actinin isoforms (α-actinin-1, -

2, and -4) found via mass spectrometry of rat brain (Walikonis et al., 2000; Peng et al., 

2004), interestingly, most data points to the localization of Ca2+-insensitive, α-actinin-2 

(ACTN2) at post-synaptic sites of excitatory neurons of the hippocampus and cortex 

(Wyszynski et al., 1997; 1998; Dunah et al., 2000).  ACTN2 may play a pivotal role in 

regulating spine morphogenesis through its cross-linking function, since over expression 

of ACTN2 in cultured hippocampal neurons increases the length and density of dendritic 

protrusions, and this phenotype was dependent on its actin-binding domain and spectrin 

repeats (Nakagawa et al., 2004).  However, over expression studies can induce artificial 

phenotypes, and a more thorough study of ACTN2, via RNAi-mediated knock down, is 

needed to ascertain its function in dendritic spines. 

In addition to cross-linking actin, α-actinin also binds to a number of other 

proteins, including membrane receptors, adhesion molecules, and signaling proteins 

(Sjöblom et al., 2008).  In vitro binding assays reveal a direct interaction between 

ACTN2 and the cytoplasmic domains of the NMDA receptor subunits, NR1 and NR2B 
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Figure 5: α-Actinin isoforms are highly conserved. 

Clustal W multi-alignment of human α-actinin isoforms.  Similarities at each aligned 

amino acid position were scored and grouped by shade using the Clustal W2 matrix.  

White indicates little similarity; gray indicates high similarity; and black indicates highest 

similarity. 
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ACTN-1  1 --MDHYDSQQ------------------TNDYMQPEEDWDRDLLLDPAWEKQQRKTFTAW 
ACTN-4  1 -MVDYHAANQSYQYGPSSAGNGAGGGGSMGDYMAQEDDWDRDLLLDPAWEKQQRKTFTAW 
ACTN-2  1 --MNQIEPGVQYNYVYD-----------EDEYMIQEEEWDRDLLLDPAWEKQQRKTFTAW 
ACTN-3  1 MMMVMQPEGLGAGEGRFAGG------GGGGEYMEQEEDWDRDLLLDPAWEKQQRKTFTAW 
 
 
ACTN-1  40CNSHLRKAGTQIENIEEDFRDGLKLMLLLEVISGERLAKPERGKMRVHKISNVNKALDFI 
ACTN-4  59CNSHLRKAGTQIENIDEDFRDGLKLMLLLEVISGERLPKPERGKMRVHKINNVNKALDFI 
ACTN-2  47CNSHLRKAGTQIENIEEDFRNGLKLMLLLEVISGERLPKPDRGKMRFHKIANVNKALDYI 
ACTN-3  54CNSHLRKAGTQIENIEEDFRNGLKLMLLLEVISGERLPRPDKGKMRFHKIANVNKALDFI 
 
 
ACTN-1 100ASKGVKLVSIGAEEIVDGNVKMTLGMIWTIILRFAIQDISVEETSAKEGLLLWCQRKTAP 
ACTN-4 119ASKGVKLVSIGAEEIVDGNAKMTLGMIWTIILRFAIQDISVEETSAKEGLLLWCQRKTAP 
ACTN-2 107ASKGVKLVSIGAEEIVDGNVKMTLGMIWTIILRFAIQDISVEETSAKEGLLLWCQRKTAP 
ACTN-3 114ASKGVKLVSIGAEEIVDGNLKMTLGMIWTIILRFAIQDISVEETSAKEGLLLWCQRKTAP 
 
 
ACTN-1 160YKNVNIQNFHISWKDGLGFCALIHRHRPELIDYGKLRKDDPLTNLNTAFDVAEKYLDIPK 
ACTN-4 179YKNVNVQNFHISWKDGLAFNALIHRHRPELIEYDKLRKDDPVTNLNNAFEVAEKYLDIPK 
ACTN-2 167YRNVNIQNFHTSWKDGLGLCALIHRHRPDLIDYSKLNKDDPIGNINLAMEIAEKHLDIPK 
ACTN-3 174YRNVNVQNFHTSWKDGLALCALIHRHRPDLIDYAKLRKDDPIGNLNTAFEVAEKYLDIPK 
 
 
ACTN-1 220MLDAEDIVGTARPDEKAIMTYVSSFYHAFSGAQKAETAANRICKVLAVNQENEQLMEDYE 
ACTN-4 239MLDAEDIVNTARPDEKAIMTYVSSFYHAFSGAQKAETAANRICKVLAVNQENEHLMEDYE 
ACTN-2 227MLDAEDIVNTPKPDERAIMTYVSCFYHAFAGAEQAETAANRICKVLAVNQENERLMEEYE 
ACTN-3 234MLDAEDIVNTPKPDEKAIMTYVSCFYHAFAGAEQAETAANRICKVLAVNQENEKLMEEYE 
 
 
ACTN-1 280KLASDLLEWIRRTIPWLENRVPENTMHAMQQKLEDFRDYRRLHKPPKVQEKCQLEINFNT 
ACTN-4 299KLASDLLEWIRRTIPWLEDRVPQKTIQEMQQKLEDFRDYRRVHKPPKVQEKCQLEINFNT 
ACTN-2 287RLASELLEWIRRTIPWLENRTPEKTMQAMQKKLEDFRDYRRKHKPPKVQEKCQLEINFNT 
ACTN-3 294KLASELLEWIRRTVPWLENRVGEPSMSAMQRKLEDFRDYRRKPPRIQEKCQLEINFNTNT 
 
 
ACTN-1 340LQTKLRLSNRPAFMPSEGRMVSDINNAWGCLEQVEKGYEEWLLNEIRRLERLDHLAEKFR 
ACTN-4 359LQTKLRLSNRPAFMPSEGKMVSDINNGWQHLEQAEKGYEEWLLNEIRRLERLDHLAEKFR 
ACTN-2 347LQTKLRISNRPAFMPSEGKMVSDIAGAWQRLEQAEKGYEEWLLNEIRRLERLEHLAEKFR 
ACTN-3 354LQTKLRLSHRPAFMPSEGKLVSDIANAWRGLEQVEKGYEDWLLSEIRRLQRLQHLAEKFR 
 
 
ACTN-1 400QKASIHEAWTDGKEAMLRQKDYETATLSEIKALLKKHEAFESDLAAHQDRVEQIAAIAQE 
ACTN-4 419QKASIHEAWTDGKEAMLKHRDYETATLSDIKALIRKHEAFESDLAAHQDRVEQIAAIAQE 
ACTN-2 407QKASTHETWAYGKEQILLQKDYESASLTEVRALLRKHEAFESDLAAHQDRVEQIAAIAQE 
ACTN-3 414QKASLHEAWTRGKEEMLSQRDYDSALLQEVRALLRRHEAFESDLAAHQDRVEHIAALAQE 
 
 
ACTN-1 460LNELDYYDSPSVNARCQKICDQWDNLGALTQKRREALERTEKLLETIDQLYLEYAKRAAP 
ACTN-4 479LNELDYYDSHNVNTRCQKICDQWDALGSLTHSRREALEKTEKQLEAIDQLHLEYAKRAAP 
ACTN-2 467LNELDYHDAVNVNDRCQKICDQWDRLGTLTQKRREALERMEKLLETIDQLHLEFAKRAAP 
ACTN-3 474LNELDYHEAASVNSRCQAICDQWDNLGTLTQKRRDALERMEKLLETIDQLQLEFARRAAP 
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ACTN-1 520FNNWMEGAMEDLQDTFIVHTIEEIQGLTTAHEQFKATLPDADKERLAILGIHNEVSKIVQ 
ACTN-4 539FNNWMESAMEDLQDMFIVHTIEEIEGLISAHDQFKSTLPDADREREAILAIHKEAQRIAE 
ACTN-2 527FNNWMEGAMEDLQDMFIVHSIEEIQSLITAHEQFKATLPEADGERQSIMAIQNEVEKVIQ 
ACTN-3 534FNNWLDGAVEDLQDVWLVHSVEETQSLLTAHDQFKATLPEADRERGAIMGIQGEIQKICQ 
 
 
ACTN-1 580TYHVNMAGTNPYTTITPQEINGKWDHVRQLVPRRDQALTEEHARQQHNERLRKQFGAQAN 
ACTN-4 599SNHIKLSGSNPYTTVTPQIINSKWEKVQQLVPKRDHALLEEQSKQQSNEHLRRQFASQAN 
ACTN-2 587SYNIRISSSNPYSTVTMDELRTKWDKVKQLVPIRDQSLQEELARQHANERLRRQFAAQAN 
ACTN-3 594TYGLRPCSTNPYITLSPQDINTKWDMVRKLVPSRDQTLQEELARQQVNERLRRQFAAQAN 
 
 
ACTN-1  640VIGPWIQTKMEEIGRISIEMHGTLEDQLSHLRQYEKSIVNYKPKIDQLEGDHQLIQEALI 
ACTN-4  659VVGPWIQTKMEEIGRISIEMNGTLEDQLSHLKQYERSIVDYKPNLDLLEQQHQLIQEALI 
ACTN-2  647AIGPWIQNKMEEIARSSIQITGALEDQMNQLKQYEHNIINYKNNIDKLEGDHQLIQEALV 
ACTN-3  654AIGPWIQAKVEEVGRLAAGLAGSLEEQMAGLRQQEQNIINYKTNIDRLEGDHQLLQESLV 
 
ACTN-1  700FDNKHTNYTMEHIRVGWEQLLTTIARTINEVENQILTRDAKGISQEQMNEFRASFNHFDR 
ACTN-4  719FDNKHTNYTMEHIRVGWEQLLTTIARTINEVENQILTRDAKGISQEQMQEFRASFNHFDK 
ACTN-2  707FDNKHTNYTMEHIRVGWELLLTTIARTINEVETQILTRDAKGITQEQMNEFRASFNHFDR 
ACTN-3  714FDNKHTVYSMEHIRVGWEQLLTSIARTINEVENQVLTRDAKGLSQEQLNEFRASFNHFDR 
 
 
ACTN-1  760DHSGTLGPEEFKACLISLGYDIGNDPQGEAEFARIMSIVDPNRLGVVTFQAFIDFMSRET 
ACTN-4  779DHGGALGPEEFKACLISLGYDVENDRQGEAEFNRIMSLVDPNHSGLVTFQAFIDFMSRET 
ACTN-2  767RKNGLMDHEDFRACLISMGYDL-----GEAEFARIMTLVDPNGQGTVTFQSFIDFMTRET 
ACTN-3  774KRNGMMEPDDFRACLISMGYDL-----GEVEFARIMTMVDPNAAGVVTFQAFIDFMTRET 
 
 
ACTN-1  820ADTDTADQVMASFKILAGDKNYITMDELRRELPPDQAEYCIARMAPYTGPDSVPGALDYM 
ACTN-4  817TDTDTADQVIASFKVLAGDKNFITAEELRRELPPDQAEYCIARMAPYQGPDAVPGALDYK 
ACTN-2  800ADTDTAEQVIASFRILASDKPYILAEELRRELPPDQAQYCIKRMPAYSGPGSVPGALDYA 
ACTN-3  807AETDTTEQVVASFKILAGDKNYITPEELRRELPAKQAEYCIRRMVPYKGSGAPAGALDYV 
 
 
ACTN-1  880SFSTALYGESDL 892 
ACTN-4  877SFSTALYGESDL 911 
ACTN-2  860AFSSALYGESDL 894 
ACTN-3  867AFSSALYGESDL 901 
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(Wyszynski et al., 1997).  Although this interaction has not been shown in neurons, 

ACTN2 is proposed to link the NMDA receptor to the actin cytoskeleton and hold the 

receptor in an open state, which mediates calcium influx.  The interaction between 

ACTN2 and the NMDA receptor is directly antagonized by Ca2+/calmodulin in vitro, and 

therefore calcium influx through activated NMDA receptors triggers displacement of 

ACTN2 from the receptor, detaching the NDMA receptor from the actin cytoskeleton 

(Wyszynski et al., 1997).  It is hypothesized, but not proven, that NMDA receptor release 

from the actin cytoskeleton destabilizes channel opening and causes its closure, thus 

terminating calcium influx through the channel.  The significance of the Ca2+-

insensitivity displayed by ACTN2 comes from findings that Ca2+-sensitive α-actinin 

isoforms could not mediate NMDA receptor inactivation in non-neuronal cells, since 

calcium weakens the affinity of these α-actinin isoforms for actin (Krupp et al., 1999).   

The best evidence for ACTN2 regulating calcium influx through the NMDA 

receptor comes from electrophysiological studies of cultured hippocampal neurons 

expressing exogenous wild type ACTN2 or a mutant ACTN2 that is unable to bind to 

PtdIns(4,5)P2 , PIP2 (Michailidis et al., 2007).  Binding to PIP2 tethers the molecule to 

the membrane, which is crucial for maintaining the open state of the NMDA receptor in 

Xenopus oocytes (Michailidis et al., 2007).  Neurons expressing the ACTN2 mutant 

unable to interact with PIP2 significantly reduced peak and steady-state NMDA current 

compared to neurons expressing wild type ACTN2, suggesting that ACTN2 can’t link 

NMDA receptors to the actin cytoskeleton and promote calcium influx without binding to 

PIP2 at the membrane (Michailidis et al., 2007). 
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Other in vitro binding assays indicate a direct interaction between ACTN2, 

densin-180, a major constituent of the PSD, and CaMKIIα (Robison et al., 2005a).  

Therefore, ACTN2 may serve to connect PSD molecules to the actin cytoskeleton, and 

thereby play a significant role in organizing the PSD.  In fibroblasts, α-actinin is 

implicated to regulate the strength of adhesions by clustering β-integrins at focal 

adhesions via direct binding, as well as indirectly through interactions with vinculin 

(Wichert et al., 2003).  Similarly, though not directly shown, α-actinin may strengthen 

synaptic adhesions through its reportedly direct interactions with the NMDA receptor, 

actin, and other components of the PSD.  

It is not known how ACTN2 may be regulated in dendritic spines, and we can 

speculate based on regulation of α-actinin in other cells.  In fibroblasts, α-actinin-1 is 

phosphorylated on its actin-binding domain at Tyr12 by focal adhesion kinase (FAK), 

which mediates its dissociation from actin and weakens the strength of the connection 

formed between integrins and the actin cytoskeleton (Izaguirre et al., 1999; 2001; 

Wichert et al., 2003).  Phosphorylation of α-actinin-1 by FAK and its subsequent 

dissociation from actin is thought to enhance adhesion turnover, since α-actinin-1-driven 

crosslinking of actin nucleates adhesion formation.  The amino acid sequence between all 

α-actinin isoforms is highly conserved, including the tyrosine residue phosphorylated by 

FAK, which corresponds to Tyr19 on ACTN2 (Figure 5).   FAK is an important signaling 

molecule in dendritic spines as its conditional ablation is shown to block EphB-mediated 

dendritic filopodia morphogenesis into mature spines, due to failure of FAK-mediated 

RhoA activation (Moeller et al., 2006).  Therefore, FAK may regulate ACTN2 in 

dendritic spines through a similar manner to weaken its association with actin.  This 
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could have implications on the ability of ACTN2 to regulate spine morphology and 

possibly PSD organization.  Furthermore, if the hypothesis that ACTN2 couples the 

NMDA receptor to actin is true, then regulating the affinity of ACTN2 for actin could 

have profound effects on synaptic activity. 

Cross-linking is a defining factor in organizing actin filaments within focal 

adhesions.  Knock-down of α-actinin leads to a loss of large, centripetally polarized 

adhesions and displays short, randomly oriented adhesions and actin filaments in 

fibroblasts (Choi et al., 2008).  Just as actin cross-linking is important for organizing F-

actin in adhesions, it may be critical to organizing adhesive molecules of the PSD within 

the spine.  Futhermore, the significance of ACTN's function to cross-link actin in the 

spine and interact with the NMDA receptor, adhesion molecules, and members of the 

PSD is largely unknown, since most of these interaction studies were performed in non-

neuronal cells or immunoprecipitations from neuronal lysates.  The goals of this study, 

discussed in Chapter 4, were to determine a post-synaptic phenotype for ACTN2, induced 

by its loss of function, and deduce a functional role for ACTN2 in dendritic spine 

development and organization of the PSD.   

From the above it should be apparent that there are many parallels between spine 

morphogenesis and adhesion maturation of fibroblasts (Vicente-Manzanares et al., 

2009b).  This dissertation applied the knowledge learned about myosin II and α-actinin in 

the cell migration field to study their roles in post-synaptic organization and spine 

morphogenesis during development and in response to chemical stimulation of the 

NMDA receptor.     

 



 45 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

Chapter 2 -- Dendritic Spines: Similarities with Protrusions and Adhesions in 

migrating cells 

 

This chapter is based on previously published work. 

Vicente-Manzanares M, Hodges J, Horwitz AR (2009) Dendritic spines: similarities with 

protrusions and adhesions in migrating cells. Open Neurosci J. 3: 87-96. 

doi:10.2174/1874082000903020087. 
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Abstract 

Dendritic spines are specialized, micron-sized post-synaptic compartments that 

support synaptic function.  These actin-based protrusions push the post-synaptic 

membrane, establish contact with the presynaptic membrane and undergo dynamic 

changes in morphology during development, as well as in response to synaptic 

neurotransmission.  These processes are propelled by active remodeling of the actin 

cytoskeleton, which includes polymerization, filament disassembly, and organization of 

the actin in supramolecular arrays, such as branched networks or bundles.  Dendritic 

spines contain a plethora of adhesion and synaptic receptors, signaling, and cytoskeletal 

proteins that regulate their formation, maturation and removal.  Whereas many of the 

molecules involved in dendritic spine formation have been identified, their actual roles in 

spine formation, removal and maturation are not well understood. Using parallels 

between migrating fibroblasts and dendritic spines, we point to potential mechanisms and 

approaches for understanding spine development and dynamics. 

 
Introduction 

Dendritic spines are small protrusions that decorate the dendrites of Purkinje 

neurons in the cerebellum and pyramidal neurons in the cortex and hippocampus (Yuste 

and Bonhoeffer, 2004).  Dendritic spines function as specialized post-synaptic structures 

that support excitatory neurotransmission (Zhang and Benson, 2000; Bonhoeffer and 

Yuste, 2002; Ethell and Pasquale, 2005).  They contain ion channels and adhesive 

receptors, as well as a multitude of signaling intermediates and cytoskeletal components 

(Ethell and Pasquale, 2005; Sheng and Hoogenraad, 2007).  These molecules are 
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essential for transmission of synaptic input and also support long-term responses to 

stimulation, which are central for learning and memory.  

Dendritic spines adopt varied morphologies, from long, filopodia-like to short and 

stubby, and have a well-defined life cycle (Figure 6A).  During spinogenesis, dendritic 

spines appear as immature precursors, which are usually long and thin (Figure 6A, left).  

A fraction of these undergo maturation, becoming shorter, thicker and wider, i.e. 

mushroom-shaped or stubby; and those spine precursors that are not innervated tend to 

turn over, undergoing cycles of growth and shrinkage (Figure 6A, middle and right) (Ziv 

and Smith, 1996; Yuste and Bonhoeffer, 2001; 2004; Schubert et al., 2006; Knott and 

Holtmaat, 2008).  

Morphological maturation of spines can be induced by physical contact with an 

axon and associated with synaptic stimuli.  For example, mature spines of pyramidal cells 

are stabilized by synaptic input; but removal of afferent input, such as whisker trimming, 

results in the selective spines loss (Lendvai et al., 2000; Nimchinsky et al., 2002).  On the 

other hand, dendritic spines on Purkinje cells of the cerebellum form and stabilize in the 

absence of afferent input (Sotelo et al., 1975).   

The increase in contact area with the presynaptic terminal correlates with synaptic 

strength, which contributes to long-term potentiation (LTP) by increasing synaptic 

receptor density at the synaptic cleft.  Electrophysiologic studies show that the bulbous 

head morphology of the mature spine is better suited to receive and propagate neuronal 

signals than the thin structure of the immature spine (Kasai et al., 2003).  Synaptic input 

itself may also induce such an increase in surface contact area (Harris et al., 2003; Park et 

al., 2006). 
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Figure 6: Formation and evolution over time of dendritic spines and adhesions in 

migrating cells 

A) Dendritic spine formation.  Left, immature spine precursors form along the 

dendritic shaft, driven by actin polymerization.  Middle, pre-synaptic contact 

and/or neurotransmitter secretion stabilizes an immature dendritic spine, whereas 

immature precursors that are not contacted by pre-synaptic portals disassemble 

(represented by breaking actin filaments in protrusions).  Right, stable contact 

with a pre-synaptic terminal induces active remodeling of the postsynaptic 

terminal, which becomes shorter and wider.  This process is driven by the 

combination of synaptic input (dark blue spheres) and adhesive signaling (green-

red receptor pairs).  The unselected precursors are reabsorbed in the dendritic 

shaft.  A single actin filament in each protrusion is shown for simplicity. 

B) Adhesion assembly, maturation and turnover in migrating cells.  Left, nascent 

adhesions form inside the branched actin network at the leading edge (indicated 

by arrowhead and arrow).  Middle, as the protrusion advances, some adhesions 

elongate centripetally as the actin filaments with which they associate become 

larger and thicker (arrowhead); newly formed adhesions are stable as long as they 

are associated to the branched actin network (arrow).  Right, maturing adhesions 

(arrowhead) continue growing as the actin bundles become thicker and more 

stable.  Adhesions not associated with growing actin bundles turn over and 

disappear as the branched actin network moves past them (arrow). 
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Actin is a major component of dendritic spines.  Its polymerization and 

organization dictate the size, motility, and morphology of the spines and has a profound  

impact on synaptic transmission (Sekino et al., 2007).  For example, inhibition of actin 

polymerization or depolymerization using chemical inhibitors disrupts LTP (Fukazawa et 

al., 2003).  Furthermore, LTP induction causes an increase in F-actin, which may underlie 

the structural enlargement of spine heads (Okamoto et al., 2004).  One mechanism is the 

recruitment or activation of actin regulators.  For example, the actin-binding protein 

profilin, is targeted to spine heads in response to postsynaptic glutamate receptor 

activation; this increases the pool of actin monomers available for filament assembly.  

Profilin enrichment in spine heads also inhibits spine motility and promotes maturation 

(Ackermann and Matus, 2003).   

The organization of actin in spines is tightly controlled by a multitude of signaling 

proteins.  Interestingly, some diseases characterized by cognitive decline or impairment, 

such as nonsyndromic mental retardation, schizophrenia, Down’s syndrome or 

Alzheimer’s disease, display abnormal spine morphology and/or a decreased number of 

dendritic spines as a result of alterations in actin regulatory molecules.  For example, long 

tortuous spines lacking a bulbous head and dendrites lacking spines have been described 

in individuals with nonsyndromic mental retardation, schizophrenia, and Down’s 

syndrome (Fiala et al., 2002).  Genomic mutation of different modulators, activators and 

effectors of Rho GTPases involved in actin reorganization have been linked to families 

with a high incidence of non-syndromic mental retardation (Allen et al., 1998; Billuart et 

al., 1998; Kutsche et al., 2000; Ramakers, 2002).  Also, the beta-amyloid oligomers that 

cause inflammatory damage to the brain in Alzheimer’s disease also alter the function of 
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key Rho GTPases that regulate actin organization, causing long-term disassembly of 

the synaptic actin filaments and cognitive decline (Zhao et al., 2006; Ma et al., 2008).  

Thus, proper regulation of the actin cytoskeleton is crucial for the morphological 

plasticity of the spine and provides a mechanistic link to cognitive function.  

Adhesion is another critical component of dendritic spines.  In general, adhesion 

provides anchoring, traction and communication with the cellular environment to 

optimize cell behavior, or to ensure a specialized response, such as immune activation, or 

transmission of synaptic input (Dustin and Colman, 2002).  From this point of view, 

dendritic spines comprise the post-synaptic half of a highly specialized cell-cell adhesion 

structure that forms between pre-synaptic and post-synaptic terminals.  Several families 

of adhesion receptors are found in dendritic spines, including integrins (Hynes, 2002; 

Geiger et al., 2009), cadherins (Takeichi, 1995; Gumbiner, 2005), neurexins/neuroligins 

(Lisé and El-Husseini, 2006; Craig and Kang, 2007), Eph receptors (Klein, 2009) and 

other families of specific neuronal receptors, such as Syn-CAMs and SALMs (Gerrow 

and El-Husseini, 2006; Han and Kim, 2008).  These receptors are involved in both 

spinogenesis and synaptogenesis (Takeichi and Abe, 2005; Shi and Ethell, 2006; Webb et 

al., 2007).   

A common property of adhesion receptors is that ligand binding induces the 

formation of supramolecular complexes that contain signaling adaptors and cytoskeletal 

molecules (Zaidel-Bar et al., 2007a).  These “adhesions” are signaling centers that 

provide anchorage and traction for the organization of the actin cytoskeleton, which 

drives protrusion, adhesion modulation, and also controls gene expression (Smith et al., 

2007; Geiger et al., 2009; Vicente-Manzanares et al., 2009a).  Thus, actin and adhesion 
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are critical components not only in a variety of cell types and processes, e.g. migratory 

lamellipodia and filopodia in motile cells, growth cones in neurons, cell-matrix adhesions 

and cell-cell junctions in epithelial cells, but also in dendritic spine formation (Lin et al., 

1994; Cramer et al., 1997; Svitkina and Borisy, 1999; Hartsock and Nelson, 2008; 

Mattila and Lappalainen, 2008).  Furthermore, many regulators of both actin and 

adhesion are common throughout the different cellular systems.  This striking 

resemblance is clear at a molecular level but has not been exploited explicitly and 

aggressively to develop insights into dendritic spine formation and structure and synaptic 

function. 

 In this mini-review, we discuss what is known about the function of actin and 

adhesion in nonneuronal systems and its implications and parallels for dendritic spine 

formation and organization.  We highlight the critical role of the actin cytoskeleton and 

its regulators in the development, removal and maintenance of dendritic spines, pointing 

out the common players and their spatiotemporal regulation.  Since other reviews in this 

volume are specifically devoted to the detailed description of some of the cytoskeletal 

and regulatory molecules in the synapse, we will not address their molecular 

characterization, but rather focus on their role in the morphological and compositional 

changes that take place during the lifetime of dendritic spines. 

 

Spinogenesis, like protrusion and adhesion, is driven by actin polymerization 

Two hypotheses have been postulated to explain initial spinogenesis (Yuste and 

Bonhoeffer, 2004).  One hypothesis proposes that contact of a pre-synaptic terminal with 

the shaft of the post-synaptic membrane induces the formation of a protrusion.  
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Conversely, another hypothesis proposes the spontaneous initial formation of multiple 

immature dendritic protrusions, followed by contact with presynaptic terminals, which 

induces their maturation.  

Immature dendritic protrusions seem to have an active function in this process; 

their motion in time-lapse movies suggests they may play an exploratory role, cycling 

between protrusive elongation and retraction until physical contact with a pre-synaptic 

terminal is made (Fischer et al., 1998; Holtmaat et al., 2005).  Immature spines (or 

dendritic spine precursors) are usually long, thin actin rich protrusions.  Actin 

polymerization, which creates protrusions in migrating cells and growth cones, is likely 

to drive the initial emergence of immature dendritic precursors as well.  There are two 

main modes of actin polymerization: a linear mode that is propelled by formins (e.g. 

mDia1, 2 and 3) (Figure 7); and a branched mode nucleated by the Arp2/3 complex, 

which binds to the side of an actin filament and promotes growth of another actin 

filament at a 70° angle (Figure 7) (Pollard and Borisy, 2003).   

The thin, linear shape of dendritic precursors suggests the involvement of 

mechanisms used to generate filopodia in other cell types; however, it seems clear that 

these precursors are not identical to filopodia.  They do not contain typical filopodial 

markers such as fascin, which bundles F-actin into tight parallel arrays (Sekino et al., 

2007).  Rather, barbed ends of F-actin are seen at the base of dendritic protrusions in 

addition to their tips, suggesting the existence of anti-parallel arrangements of actin 

filaments in immature spine precursors (Hotulainen et al., 2009).  Also, Cdc42, which 

generates filopodia in migrating cells via activation of the formin mDia3, does not 

produce an increase in dendritic spine precursors (Hotulainen et al., 2009).  Rather,  
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Figure 7: Mechanisms of actin regulation in dendritic spines. 

The cartoon depicts the main molecules that control actin polymerization and 

organization in dendritic spines.  Actin polymers are represented as coiled chains of 

yellow beads. The regulatory molecules include: 1) the Arp2/3 complex, which binds to 

the side of a pre-existing actin filament and promotes formation of a branched actin 

filament. Arp2/3 is activated by NWASP/WASP under the control of the small GTPase 

Cdc42, and WAVE, which is activated by the small GTPase Rac.  2) formins, including 

mDia1 (activated by the small GTPase RhoA), mDia2 (small GTPase Rif) and mDia3 

(Cdc42), which bind to the barbed (polymerizing) end of the actin filament and promote 

processive incorporation of actin monomers. 3) actin crosslinkers such as α-actinin and 

myosin II.  Myosin II activity and assembly are controlled through phosphorylation.  

Kinases like ROCK and MLCK can activate myosin II. ROCK is controlled by RhoA, 

and also inhibits the phosphatase that dephosphorylates myosin II. Finally, ADF/cofilin 

(yellow pac-man) severs actin filaments. It is inhibited by LIMK phosphorylation, which 

in turn is activated by phosphorylation via ROCK and PAK, which is regulated by Rac 

and Cdc42. 

 

 

 

 

 

 

 



 55 

 

PAK 

• '{ASP 
W P 

It 

Rif 



 56 
expression of a constitutively active mutant of Cdc42 promotes spine head formation, 

causing an increase in the number of mushroomshaped and stubby spines (Hotulainen et 

al., 2009).  RNAi inhibition or a dominant negative form of Cdc42 inhibits dendritic 

spine and synapse formation (Wegner et al., 2008), suggesting that Cdc42 is necessary 

for maturation; but its activation is not sufficient to induce the initial outgrowth of spine 

precursors from the shaft of dendrites.  Interestingly, a similar GTPase/formin tandem, 

Rif/mDia2 may fulfill this role in hippocampal neurons; exogenous expression of either 

Rif or mDia2 promotes formation of long and thin dendritic spines (Figure 7) (Hotulainen 

et al., 2009).  Arp2/3, which produces branched actin, also localizes to dendritic 

precursors and is involved in dendritic spine formation.  RNAi knockdown of the Arp2/3 

complex or its upstream activator N-WASP inhibited spine and synapse formation, as 

shown by a decrease in the total number of dendritic spines and synapses (Wegner et al., 

2008).  Similar results were observed in hippocampal sections from mice deficient for 

WAVE-1, another upstream activator of Arp2/3 (Soderling et al., 2007).  This study also 

revealed altered neuritogenesis and field excitatory post-synaptic potential (fEPSP) in 

WAVE-1-deficient mice (Soderling et al., 2007).  Several other studies have ascribed an 

important role to the small GTPase Rac and its downstream effectors in dendritic spine 

formation (Luo et al., 1996; Nakayama and Luo, 2000; Tashiro and Yuste, 2004).   

The complementary function of the Arp2/3 complex and formins in the formation 

of immature spine precursors can be inferred from studies in motile cells, in which actin 

polymerization drives formation of filopodia and advancing protrusions.  Filopodia are 

generated by formin-driven actin polymerization into thin parallel filaments.  Close to the 

leading edge of the protrusion, actin is organized in a branched network nucleated by the 



 57 
Arp2/3 complex (Svitkina and Borisy, 1999; Pollard and Borisy, 2003).  Formins also 

participate in this process by inducing polymerization at the growing (barbed) ends of 

these branches (Yang et al., 2007).  Often, advancing protrusions contain embedded 

filopodia that emanate from Arp2/3-dependent branching points (Korobova and Svitkina, 

2008), suggesting that Arp2/3 may also participate in filopodia formation. Translating 

these observations to immature spine formation suggests that activation of the Arp2/3 

complex in the dendritic shaft could generate a branching point, which could be 

subsequently extended by the action of mDia2 or Rif/mDia3, resulting in linear actin 

arrays typical of immature spine precursors. However, the localization of barbed ends and 

the Arp2/3 complex at both the tip and the base of the spine (Hotulainen et al., 2009) 

suggests that actin polymerization is active at both locations, where they generate 

antiparallel arrays of actin filaments.  Also, the localized activity of ADF/cofilin, which 

severs actin filaments, could generate new barbed-ends within the spine. 

The role of adhesion in initial spinogenesis may also parallel its role in migrating 

cells.  As motile cells extend new protrusions, they attach to the substratum via small 

adhesions that form within the protrusion.  These adhesions provide traction through their 

linkage to the actin cytoskeleton (Figure 6B, left) (Beningo et al., 2001), and they 

accumulate regulatory proteins that control actin polymerization, reorganization and 

adhesive strength.  A complex network of signaling pathways originating in adhesions 

converge on Rac (Clark et al., 1998; Price et al., 1998; Nayal et al., 2006; Zaidel-Bar et 

al., 2007b), which triggers actin polymerization through binding to downstream effectors, 

e.g., the WAVE/Scar family, which in turn activate the Arp2/3 complex (Figure 7) 

(Machesky and Insall, 1998).  Other adhesion-related signaling proteins, such as FAK 
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(Focal Adhesion Kinase) are also essential for dendritic spine formation (Rico et al., 

2004).  FAK also modulates the function of the actin cross-linker α-actinin (Izaguirre et 

al., 2001), suggesting that this pathway might be important in actin bundling during 

initial spinogenesis. 

In addition to its role in generating signals that regulate actin, adhesion also 

fulfills an exploratory role.  Migrating cells use filopodia and nascent adhesions as small 

chemo- and mechano-sensitive devices to guide cell migration (Carter, 1967; Lo et al., 

2000).  Similarly, immature dendritic spines seek presynaptic terminals to undergo 

stabilization.  This process is likely to involve chemotactic, chemorepellent and/or 

mechanotactic signals emanating from the pre-synaptic terminal or the microenvironment 

of the protrusion, which is stabilized by adhesion to the presynaptic terminal.  Once 

contacted, actin organization, contraction, and adhesion mediated signaling could drive 

subsequent spine maturation as these adhesions do in other cell types. 

 
Adhesive signaling and actin depolymerization regulate adhesion and turnover, and 

dendritic spine removal 

More than a hundred years ago, Ramon y Cajal reported that the processes of the 

pyramidal neurons of newborns contained more protrusions than later in development.  

This early observation suggested that synaptic connectivity is fine-tuned through the 

disassembly of unused or defective spines (Feldman, 2009).  Later studies confirmed that 

the initial proliferation of spines is followed by a marked decrease in their number at later 

developmental stages (Weiss and Pysh, 1978; Rakic et al., 1986). 

In one model, the removal of immature spine precursors is caused by the lack of 
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contact and/or pre-synaptic input; accordingly, those precursors not making contact 

with pre-synaptic structures would be reabsorbed into the dendritic shaft, whereas those 

that establish contact with pre-synaptic terminals would evolve into mature spines. A 

separate population of mature spines is selectively eliminated during functional rewiring 

of neural circuits in response to sensory experience [(Chklovskii et al., 2004). 

Turnover of immature spine precursors or selective elimination of mature, 

innervated spines is probably linked to actin filament disassembly, or a contraction-

induced retraction of actin filaments back into the dendritic shaft.  Filament disassembly 

is more likely.  Contraction requires activation of proteins like non-muscle myosin II 

(NM II), and the present evidence suggests that NM II activation induces maturation of 

precursors into dendritic spines (see below) (Zhang et al., 2005; Ryu et al., 2006).  

However, some synapses can survive active actin disassembly; for example, actin 

depolymerization induces a significant, but not complete elimination of synapses when 

cells are treated with the actin polymerization inhibitor latrunculin A (Allison et al., 

1998).  Actin filament disassembly can occur via two complementary mechanisms: an 

increase in barbed end capping, which would block actin polymerization, and actin 

depolymerization, mediated by filament severing proteins, such as gelsolin or 

ADF/cofilin (Pollard and Borisy, 2003).  Gelsolin is a dual-function, calcium-sensitive 

actin filament-severing protein that also caps the newly formed barbed ends, impeding 

further polymerization (Kwiatkowski, 1999).  Gelsolin-null neurons contain numerous 

spines that are not stabilized by synaptic stimulation, implicating gelsolin in activity-

induced spine maturation and removal of unstable, immature precursors (Star et al., 

2002). 
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The other severing protein, ADF/cofilin, is required for actin depolymerization 

in protrusions of migrating cells (Bamburg et al., 1999).  Expression of an active mutant 

of cofilin, S3A, induces accumulation of branched actin, suggesting that the increased 

treadmilling of actin monomers and creation of new barbed ends supersede its filament-

severing activity (Delorme et al., 2007).  In hippocampal neurons, cofilin activity is 

required for the spine shrinkage observed during long-term depression (LTD), which is 

the activity-dependent elimination of synaptic connections (Zhou et al., 2004).  

Consistently, RNAi-mediated cofilin inhibition induced longer dendritic protrusions 

(Hotulainen et al., 2009).  Expression of a constitutively active cofilin mutant 

significantly decreased the area of the spine head, but did not lead to its disappearance 

(Shi et al., 2009).  These results can be explained by the dual function of cofilin.  On one 

hand, it severs actin filaments; but it also provides the actin monomers that are recycled 

into de novo polymerization at the barbed end, via treadmilling (Bamburg et al., 1999; 

Pollard and Borisy, 2003).   Therefore, the activation and inactivation of cofilin is a key 

regulatory step in maintaining an adequate balance of actin depolymerization and 

polymerization and acts in concert with capping factors.  The key role of cofilin in actin 

function is further supported by studies of its regulation.  LIMK is activated by Rho-

associated kinase (ROCK) and p21-associated kinase (PAK) (Edwards et al., 1999; 

Maekawa et al., 1999), which are under the control of the small GTPases RhoA and 

Rac/Cdc42, respectively (Figure 7).  LIMK phosphorylates cofilin and inhibits its binding 

to actin filaments, thus preventing filament severing (Arber et al., 1998; Yang et al., 

1998).  Consistent with this, altered cofilin phosphorylation, abnormal spine morphology 

and synaptic function are observed in LIMK1-deficient mice (Meng et al., 2002; Asrar 
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and Jia, 2009).  Interestingly, a loss-of-function mutation in LIMK1 is implicated in 

the cognitive deficit associated with Williams’ syndrome (Frangiskakis et al., 1996). 

Adhesion formation in protrusions is linked to polymerized actin; adhesions 

disassemble or mature when and where branched actin undergoes depolymerization or 

reorganization, respectively (Figure 6B, middle) (Alexandrova et al., 2008; Choi et al., 

2008).  This constitutes a putative feedback loop: polymerized actin provides a physical 

scaffold for the formation of adhesions, which in turn generate Rac dependent signals that 

promote actin polymerization and inhibit filament severing.  In a similar manner, filament 

disassembly in immature spine precursors would disrupt adhesion, also suggesting that 

adhesion to the pre-synaptic terminal may induce spine maturation by inhibiting filament 

disassembly. 

In summary, the removal of immature spine precursors during development 

involves actin filament disassembly, presumably through a combination of actin 

depolymerization and inhibition of actin polymerization; the resulting actin monomers 

treadmill and are used to generate new dendritic precursors during the maturation of a 

subpopulation of dendritic spines. 

 
Myosin II in actin organization during dendritic spine maturation 

Maturing spines undergo dramatic morphological changes, including shortening, 

formation of a neck, widening of the head and organization of the post-synaptic density 

(PSD), which is an accumulation of synaptic and adhesion receptors, signaling adaptors 

and cytoskeletal proteins (Ethell and Pasquale, 2005; Okabe, 2007; Sheng and 

Hoogenraad, 2007; Feng and Zhang, 2009).  The PSD itself undergoes rapid morphology 
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fluctuations in response to synaptic activity, and also widens concomitantly with 

expansion of the spine head during its maturation (Blanpied et al., 2008). 

Non-muscle myosin II (NM II) is a key contractile protein that organizes and 

contracts actin in migrating cells.  It regulates front-back polarity and modulates adhesion 

organization, inducing maturation (Meng et al., 2002; Vicente-Manzanares et al., 2007; 

2008).  It is likely that it plays an analogous role in spine and PSD organization. 

NM II is a hexameric complex formed by two heavy chains (NMHC-II), two 

regulatory light chains (RLC), and two essential light chains (ELC).  NM II binds to actin 

filaments and promotes their bundling; it also mediates filament contraction through ATP 

hydrolysis.  The three isoforms of NMHC-II, NMHC II-A, II-B and II-C, are encoded by 

three genes, Myh9, Myh10 and Myh14, respectively (Vicente-Manzanares et al., 2009c).  

Of these, NMHC II-B, is the most prominently expressed in neurons (Takahashi et al., 

1992; Cheng et al., 2000).  It plays a pivotal role in growth cone dynamics and in the 

development of the CNS.  Mice ablated for NM II-B exhibit profound developmental 

defects, including hydrocephalus (Ma et al., 2007).  NM II-B down-regulation inhibits 

dendritic spine maturation.  RNAi targeting of NM II-B in in vitro cultured hippocampal 

neurons or acute treatment with the NM II inhibitor blebbistatin drastically reduced the 

number of mature spines and synapses (Zhang et al., 2005; Ryu et al., 2006). 

 
Spine Shortening: Role of Myosin II 

Spine shortening occurs concomitant with a dramatic reorganization of the actin 

and is likely mediated by NM II, which induces actin contraction and reorganization.  

NM II activation inhibits protrusion in motile cells and causes retraction of the leading 
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edge.  It also promotes adhesion maturation and actin filament thickening (Figure 6B, 

right) (Vicente-Manzanares et al., 2007; Choi et al., 2008).  In epithelial cells, NM II 

promotes the consolidation of the cell-cell junction, by generating contractile actin 

bundles parallel to the plasma membrane, increasing the contact surface between cells 

(contact compaction), and inducing cadherin clustering (Shewan et al., 2005; Yamada 

and Nelson, 2007b). 

NM II-B-mediated spine shortening is likely related to its contractile activity, 

exerting force that would pull on the actin filaments tethered to the tip of the spine or the 

PSD, causing spine retraction and compaction of the material inside the spine (Figure 8).  

In addition, data from epithelial cell studies suggest that NM II-driven contraction may 

enhance adhesive strength between pre- and post-synaptic terminals by promoting 

clustering of adhesion receptors, e.g. cadherins (Yamada and Nelson, 2007b). 

NM II function is regulated by phosphorylation of the RLC; therefore 

phosphorylated RLC is a marker for active NM II.  Phosphorylated RLC localizes to 

dendritic spines, and a phosphomimetic form of RLC induces dendritic spine formation 

(Zhang et al., 2005).  In addition, adhesion and LTP induction activate multiple signaling 

pathways, including RhoA/ROCK (Ren et al., 1999; Moeller et al., 2006; Rex et al., 

2009), which increase the level of RLC phosphorylation in fibroblasts (Amano et al., 

1996). 

 
Formation of a Spine Neck 

The spine neck is thought to be an important geometrical feature of mature spines 

by serving to confine neurotransmission to the spine and blocking diffusion of the signal  
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Figure 8: Hypothetical model of dendritic spine organization. 

The cartoon represents activation of NM II (blue) at the base of the spine, which triggers 

retraction of the spine by pulling the actin filaments tethered to the PSD, and/or 

constriction of the spine neck. These movements are represented by dashed arrows.  

Other cross-linkers, e.g., α–actinin (shown in red), also mediate actin bundling in the 

spine.  NM II is also found in the PSD, and controls its integrity. At the tip of the spine, 

activation of adhesive molecules (integrins, cadherins, neurexins/neuroligins, Eph 

receptors and others) or synaptic receptors (metabotropic Glu and AMPA/NMDA 

receptors) associated to the PSD trigger the local activation of Rac and branched actin 

growth by the Arp2/3 complex to support spine widening, as well as RhoA inactivation.  

Rac activation could be supported by the translocation of membrane domains (shown in 

yellow) required for spine membrane expansion under the control of the small GTPase 

Arf6. 
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into the shaft and adjacent spines (Ethell and Pasquale, 2005).  NM II participates in 

actin bundles of different geometries.  In migrating cells, it mainly forms thick linear 

actomyosin bundles (Chrzanowska-Wodnicka and Burridge, 1996); but in dividing cells 

it is involved in the formation of the contractile ring during cytokinesis (Matsumura, 

2005).  Also, NM II activation at cell-cell junctions promotes the compaction of the 

contact (Yamada and Nelson, 2007b).  Interestingly, similar phenomena are observed at a 

multi-cellular level, in which coordinated cohorts of cells integrate their contractile 

activities: an outstanding example is the “purse-string” model of epithelial dorsal closure, 

which is driven by NM II activation (Young et al., 1993). 

Analogously, NM II could mediate the formation of a small contractile ring-like 

structure that constricts the contact area of the spine with the dendritic shaft.  

Alternatively, the spine neck can be comprised of linear actin bundles generated during 

the formation of the immature spine precursor that does not undergo complete retraction. 

Both these possibilities are shown in Figure 8. 

 
Spine Head Expansion 

During maturation, the tip of the dendritic spine expands to provide a larger 

surface area of interaction with the pre-synaptic terminal; this is a hallmark of activity-

induced plasticity.  There are at least two coordinated mechanisms for controlling spine 

head expansion.  One is an increase in membrane surface area, which is mediated by 

increased targeted delivery of vesicles under the control Rab/Arf family of GTPases like 

Arf6 (Park et al., 2006).  The other is the reorganization of the actin cytoskeleton, in 

which branched actin filaments replace the linear arrays observed in immature spine 
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precursors.  In this manner, actin branching at the tip of the spine potentially sustains 

the increase in volume and surface area, much like the extension of a protrusion in 

migrating cells. 

The morphological changes that take place during spine maturation can be 

integrated into a model in which the local activation of Rac and Arp2/3 (and local 

inactivation of RhoA) at the tip of the spine supports the formation of a branched actin 

network that expands the head.  In migrating cells, there is evidence that the activation of 

Rac and Rho is spatially and temporally segregated.  Rac is active at the protruding edges 

of migrating cells, where it triggers dendritic actin formation (Nayal et al., 2006; 

Alexandrova et al., 2008; Choi et al., 2008).  In addition, Rac signaling suppresses RhoA 

activation (Sander et al., 1999).  On the other hand, RhoA is more active in the more 

posterior part of the protrusion and the center of the cell, where it induces thick 

actomyosin filaments, stable adhesions and inhibition of Rac activation (Chrzanowska-

Wodnicka and Burridge, 1996; Sander et al., 1999). 

Similarly, Rac activation closer to the synaptic cleft would promote branched 

actin to widen the spine head (Figure 8, insert), whereas activation of RhoA closer to the 

dendrite shaft would promote bundling of actin tethered to the PSD, possibly by forming 

an actomyosin cup, or pedestal (Figure 8).  Supporting this model, it has been proposed 

that Arf6, which regulates vesicle trafficking and provides membrane for membrane 

expansion during spine widening, creates sites for targeting of Rac to the membrane 

(Balasubramanian et al., 2007). 

 

CONCLUDING REMARKS 
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In this review, we have used insight from studies on adhesion and protrusion in 

migrating cells as a model for dendritic spine and PSD organization.  In migrating cells, 

protrusions form using two actin regulators, Arp2/3 and formins, and adhesion 

maturation is determined by the organization of the actin cytoskeleton.  Both of these are 

regulated by signals emanating from adhesions.  Finally, the formation of epithelial 

adherens junctions is also mediated by actin and is accompanied by the cessation of 

Arp2/3 activity and stimulation of actomyosin contraction as the junctions form.  

Emerging evidence suggests that dendritic spine maturation is similarly mediated by actin 

organization and driven by contact with the pre-synaptic terminal.  Thus, actin 

polymerization and the organization of the actin cytoskeleton remains a centerpiece of 

these processes, which share many common regulatory elements. 

Despite the different repertoire of receptors between fibroblasts and neurons, most 

of the signaling pathways originate with membrane receptors and converge on the 

regulation of adhesion and the actin cytoskeleton through Rho GTPases.  The regulators 

that control actin polymerization and filament disassembly downstream of the GTPases 

are also the same (formins and the Arp2/3 complex, and cofilin, respectively).  Finally, 

actin cross-linkers and contractile proteins, like NM II, play similar roles in the two 

processes, facilitating actin reorganization and reshaping of the stable structure through 

actin bundling and/or contraction. 

The discovery that some mental retardations are accompanied by altered Rho 

GTPase regulation and abnormal morphology of dendritic spines highlights the 

importance of understanding how the actin cytoskeleton regulates the morphological 

changes that dendritic spines undergo upon activation.  It also points to therapeutic 
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targets using gene-based therapy and interventions directed at neuron specific isoforms 

of key adhesion and actin related molecules for the treatment of diseases with cognitive 

decline, such as Alzheimer’s or Parkison’s disease, senile dementia, or congenital and 

non-syndromic mental retardation.  

While some clear parallels exist, many aspects of dendritic spine and PSD 

development remain unstudied; hopefully this discussion will provide one blueprint for a 

useful approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 – Myosin IIB activity and phosphorylation status determines 

dendritic spine and post-synaptic morphology 

 

This chapter is based on previously published work. 

Hodges JL, Newell-Litwa K, Asmussen H, Vicente-Manzanares M, Horwitz AR  (2011) 

Myosin IIB activity and phosphorylation status determines dendritic spine and post-

synaptic morphology.  PLoS One 6(8): e24149. doi:10.1371/journal.pone.0024149 
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Abstract 

Dendritic spines in hippocampal neurons mature from a filopodia-like precursor 

into a mushroom-shape with an enlarged post-synaptic density (PSD) and serve as the 

primary post-synaptic location of the excitatory neurotransmission that underlies learning 

and memory.  Using myosin II regulatory mutants, inhibitors, and knockdowns, we show 

that non-muscle myosin IIB (MIIB) activity determines where spines form and whether 

they persist as filopodia-like spine precursors or mature into a mushroom-shape.  MIIB 

also determines PSD size, morphology, and placement in the spine.  Local inactivation of 

MIIB leads to the formation of filopodia-like spine protrusions from the dendritic shaft.  

However, di-phosphorylation of the regulatory light chain on residues Thr18 and Ser19 

by Rho kinase is required for spine maturation.  Inhibition of MIIB activity or a mono-

phosphomimetic mutant of RLC similarly prevented maturation even in the presence of 

NMDA receptor activation.  Expression of an actin cross-linking, non-contractile mutant, 

MIIB R709C, showed that maturation into a mushroom-shape requires contractile 

activity.  Loss of MIIB also leads to an elongated PSD morphology that is no longer 

restricted to the spine tip; whereas increased MIIB activity, specifically through RLC-

T18, S19 di-phosphorylation, increases PSD area.  These observations support a model 

whereby myosin II inactivation forms filopodia-like protrusions that only mature once 

NMDA receptor activation increases RLC di-phosphorylation to stimulate MIIB 

contractility, resulting in mushroom-shaped spines with an enlarged PSD.   

 

Introduction 

Dendritic spines are the primary post-synaptic sites of excitatory 
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neurotransmission in the brain (Bourne and Harris, 2008).  They are highly dynamic 

structures that develop from exploratory, filopodia-like processes into a compact, 

mushroom-shaped structure with a highly organized post-synaptic density (PSD) located 

at the tip (Yuste and Bonhoeffer, 2004; Sekino et al., 2007).  The PSD contains cell 

adhesion proteins, glutamate receptors, cytoskeletal molecules, and a complex 

membrane-associated, cytoplasmic signaling network (Peng et al., 2004; Cheng et al., 

2006; Sheng and Hoogenraad, 2007). Appropriate spine density, morphology, and PSD 

organization are critical for the neuronal function that underlies learning and memory 

(Lynch et al., 2007; Bayés et al., 2011).  As such, a diverse spectrum of learning and 

memory disorders exhibit dendritic spine abnormalities, including neurodevelopmental 

disorders, such as autism, Down’s syndrome, non-syndromic mental retardation, 

neurodegenerative diseases, like Alzheimer’s, and psychoses, such as schizophrenia 

(Fiala et al., 2002; Newey et al., 2005). 

Despite the importance of proper spine morphology and PSD organization, the 

structural and regulatory mechanisms that organize them are not understood.  Recent 

evidence implicates the polymerization and organization of actin in spine organization, 

although how it does this is unclear (Hotulainen et al., 2009; Frost et al., 2010a).  Myosin 

IIB (MIIB), the predominant non-muscle myosin II isoform found in brain, contributes to 

actin organization in most cell types through its cross-linking and contractile properties 

and is implicated in spine morphology (Kawamoto and Adelstein, 1991; Ryu et al., 2006; 

Vicente-Manzanares et al., 2009c).  MIIB activity is regulated by phosphorylation on 

residues Thr18 and/or Ser19 in its regulatory light chain (RLC); simultaneous 

phosphorylation on both residues promotes maximal myosin ATPase activity and 
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formation of large actin bundles (Ikebe and Hartshorne, 1985; Vicente-Manzanares et 

al., 2009c; Vicente-Manzanares and Horwitz, 2010).  We have previously identified a 

signaling cascade that functions through RLC phosphorylation to regulate spine density 

(Zhang et al., 2005).  More recent evidence points to MIIB as a potentially important 

regulator of the spine dynamics underlying learning and memory (Zhang et al., 2005; 

Ryu et al., 2006; Rex et al., 2010).  In particular, short-term inhibition of MIIB activity 

induces immature filopodia-like spines and results in a corresponding disruption of long-

term potentiation (LTP) and memory acquisition (Ryu et al., 2006; Rex et al., 2010).  

While the importance of MIIB seems clear, the mechanism by which it shapes spine 

morphology is unknown.   

In addition to spine morphology, proper organization of the PSD is also important 

for synaptic signaling, as PSD size is related to spine head area and directly correlated 

with synaptic strength (El-Husseini et al., 2000; Bredt and Nicoll, 2003).  While many 

molecules that reside in the PSD have been identified, much less is known about the 

mechanisms that determine its morphology and organization (Peng et al., 2004; Cheng et 

al., 2006).  The PSD is now thought to be dynamic and undergo rapid fluctuations in 

morphology (Blanpied et al., 2008; Frost et al., 2010b).  Several proteins within the PSD 

scaffold reportedly interact with the actin cytoskeleton (Böckers et al., 2001; Sheng and 

Hoogenraad, 2007), raising the possibility that actin organization may underlie PSD 

morphology.  The dramatic effect of MIIB on actin organization points to a likely role for 

it in the organization of the PSD and regulation of synaptic plasticity.  

In this study, we dissect the contributions of MIIB activity to spine morphology 

and PSD organization during maturation and in response to stimuli.  We find that MIIB 
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activity restricts the formation of nascent protrusions on dendrites.  However, MIIB 

activity subsequently mediates spine maturation, with RLC T18, S19 di-phosphorylation 

required for mature, compact spines.  This maturation is mediated by the contractile 

activity of MIIB since an actin-cross linking, contractile-deficient mutant of MIIB, MIIB-

R709C, does not promote maturation.   Stimulation induced maturation of spines also 

requires di-phosphorylated RLC.  MIIB also plays a central role in PSD organization. 

When inhibited, it creates elongated PSDs localized away from the spine tip; however, 

when fully active, it drives PSD compaction and localization to the spine tip.  Thus, MIIB 

activity determines spine formation and orchestrates the spine and PSD morphologies 

that underlie post-synaptic plasticity. 

 

Results 

Myosin IIB Regulates Spine Morphology and Dynamics  

MIIB localizes to dendritic protrusions of various morphologies, including 

filopodia-like protrusions, as well as thin, stubby and mushroom-shaped spines (Figure 

9A).  Chronic inhibition of MIIB by shRNA knockdown does not change spine density 

detectably (~1.2 spines/µm dendrite for both day in-vitro (DIV) 21 control and MIIB-

deficient neurons) (Ryu et al., 2006).  Instead, it produces longer spines as measured from 

base to tip (including protrusions emanating from the spine head) (Figure 9B-C) (Ryu et 

al., 2006; Rubio et al., 2011).  Spine heads were identified as focal expansions, which 

contain a PSD (see PSD-95 immunostaining in Figure 15).  Noticeably, there is an 

increase in the number of long protrusions branching from MIIB-deficient spine heads, 

resulting in the spine head positioned away from the spine tip (Figure 9B, D, E).  
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Figure 9: Inhibition of myosin IIB activity increases the number and length of 

filopodia-like protrusions.  

A) Hippocampal neurons transfected with GFP at DIV 6 were fixed and 

immunostained for endogenous MIIB at DIV 9, 16, and 21.  Arrows point to different 

spine morphology types.   

B) Hippocampal neurons were co-transfected at DIV 6 with GFP and either an 

shRNA vector against MIIB (pSUPER-IIB) or a control empty vector (pSUPER).  

Neurons were fixed at DIV 21 and scored for  

(C-G) changes in spine length, branching number and length, morphology and 

head area.  Knockdown of MIIB in hippocampal neurons causes a ~2-fold increase in 

spine length, C.  Knockdown of MIIB causes a large increase in the number of 

protrusions branching from the spine head.  Spine heads were identified by morphology 

and localization of PSD-95.  Note the small fraction of spines that contain protrusions 

branching from the spine head in the controls, D.  MIIB knockdown produces many long 

protrusions branching from the spine head, which results in spine head positioning away 

from the spine tip, E.  MIIB knockdown creates an increase in the fraction of thin (long 

protrusions with small head at tip) and filopodia-like spines (long protrusions without a 

spine head) with a concomitant decrease in the fraction of mushroom and stubby spines, 

F.  Spine heads present in MIIB knockdown neurons are larger in area, G.  For each 

quantification, 512 spines from 23 control neurons and 619 spines from 36 MIIB 

knockdown neurons were analyzed.  Error bars represent SEM.  p-values were derived 

using the Mann-Whitney test (C, D, E, G) and Chi-square test (F).  Scale bar = 5µm for 

all panels.   
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At DIV 21, control neurons predominantly display mushroom-shaped spines, 

consisting of a large bulbous spine head on top of a short spine neck.  However, MIIB 

knockdown neurons display significantly less mushroom-shaped spines and more 

filopodia-like protrusions than controls (note: mushroom-shaped spines with emanating 

protrusions were classified as “mushroom”) (Figure 9B, F).  While these MIIB-deficient 

spine heads exhibit a significantly larger area than controls, they are often more elongated 

in shape (Figure 9B, G).  Thus, MIIB is required for spines to develop and maintain a 

mushroom-shape. 

To monitor the acute effects of MIIB inhibition on spine dynamics, we used time-

lapse confocal imaging of local application of blebbistatin using a micropipette.  Nascent 

spines emerge and protrude in response to the local application of blebbistatin (Figure 

10A), showing that local MII inhibition leads to formation of new protrusions (Figure 

10B).  However, blebbistatin micropipetting also increased spine retraction (Figure 10C), 

demonstrating that MIIB does not disrupt spine pruning, but promotes the dynamic 

assembly and disassembly of spines.  Similarly, in MIIB knockdown neurons, we 

observed that protrusions extend and retract more frequently and were substantially 

longer than those in the corresponding controls (Figure 10D, E).  Despite their length, 

these protrusions are not de novo dendrites, as post-imaging fixation and immunostaining 

reveal actin-rich structures that do not contain the dendrite marker, MAP2 (data not 

shown).   

 

Myosin IIB is required for Spine Maturation in Response to NMDA Receptor Stimulation 

Since MIIB inhibition creates filopodia-like protrusions and inhibits spine  
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Figure 10: Inhibition of myosin IIB activity affects spine dynamics.  

A) A DIV 7 cortical neuron expressing DsRed2 was locally micropipetted with 

either DMSO or 100µM blebbistatin at the indicated times. Note the increase 

in the fraction of spines that appear and extend in response to blebbistatin. 

Arrowheads indicate either nascent or elongating spines.  Scale bar = 5µm.   

B-C) Quantification of new spine formation (B) or loss of spines (C) following 

blebbistatin micropipetting (micropipetting of 5 different cortical neurons). The 

number of new or lost spines is corrected for the number of new or lost spines 

observed prior to micropipetting, i.e. the control period.   

D-E) Time-lapse confocal imaging was performed on DIV 13-14 hippocampal 

neurons co-expressing GFP and either an shRNA vector against MIIB or a control 

empty vector.  Scale bar = 5µm.  Spines from MIIB knockdown neurons extend 

and retract more frequently (arrows) than spines in control neurons (arrowheads), 

D. MIIB knockdown increases the frequency of spine protrusion and retraction,  

E. Note the unusual length of the protrusions in the MIIB knockdown neurons.  

Quantification in (E) is based on 3 MIIB knockdown neurons and 5 control 

neurons each acquired for 15 minutes.  Error bars represent SEM. *p<0.01, Mann-

Whitney test. 
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development into compact, mushroom-shaped structures, we hypothesized that MIIB 

also mediates the acute, activity-induced morphology changes that underlie spine 

maturation.  To test this, we selectively activated synaptic NMDA receptors with the co-

agonist glycine and assayed for morphological changes indicative of spine maturation, 

including decreased spine length and increased spine tip width (i.e., mushroom-shaped) 

(Park et al., 2004).  At DIV 14-17, neurons display many immature filopodia-like spines, 

allowing us to observe an accelerated, acute maturation response to stimulation.  Glycine 

stimulation of control neurons promotes extensive maturation, including spine shortening 

and spine tip enlargement, resulting in the appearance of numerous mushroom-shaped 

spines (Figure 11).  In contrast, acute inhibition of MIIB with blebbistatin prevented both 

spine shortening and increased spine tip width; instead, spines persisted as filopodia-like 

projections even when stimulated with glycine (Figure 11A-D).  However, shRNA 

knockdown of MIIB did not prevent spine shortening in response to glycine, but did 

prevent an increase in spine tip width (Figure 11E-G).  Thus, shRNA knockdown of 

MIIB also leads to the persistence of filopodia-like protrusions (Figure 11H).  Together 

these results demonstrate that MIIB mediates the morphological transition from immature 

filopodia-like protrusions into mature mushroom-shaped spines. 

 

Myosin IIB-mediated Contractility Underlies Spine Maturation 

MIIB organizes actin filaments by two mechanisms: it cross-links to form 

actomyosin bundles, and it also moves antiparallel filaments in an ATPase-dependent 

manner, thereby contracting them (Vicente-Manzanares et al., 2009c).  Overexpression of 

wild type (WT) MIIB accelerates spine maturation into a mushroom-shape, suggesting  



 81 
Figure 11: Inhibition of myosin IIB activity prevents spine morphological changes in 

response to NMDA receptor activation.   

A, E) When MIIB is inhibited using blebbistatin (A) or MIIB knockdown (E), 

spines do not shorten or assume a “mushroom” morphology in response to glycine.  

Hippocampal neurons either transfected on DIV 6 with GFP or co-transfected with GFP 

and either an shRNA vector against MIIB or a control empty vector.   Neurons were 

treated with glycine on DIV14 (in the presence of DMSO or blebbistatin, A) or DIV16 

(MIIB knockdown or empty vector control, E) to activate NMDA receptors.   

B-D, F-H) Quantification of spine morphology in response to MIIB inhibition and 

glycine stimulation.  Blebbistatin (B) or MIIB knockdown (F) prevents spine shortening 

in response to glycine stimulation and increases spine length compared to controls; note 

some decrease in spine length in the knockdown in response to glycine.  Fraction of 

spines with a large head, spine tip width ≥ 0.4 µm, increases in response to glycine 

stimulation but is prevented by blebbistatin (C) or MIIB knockdown (G).  In the presence 

of blebbistatin (D) or MIIB knockdown (H), glycine does not increase the fraction of 

mushroom-shaped spines in contrast to stimulated controls.  For each condition, 530-895 

spines from 15-21 neurons were analyzed.  Error bars represent SEM. *p<0.001, Mann-

Whitney test (B, F), t-test (C, G), Chi-square test (D, H).  Scale bar = 5µm for all panels.  
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Figure 12:  Myosin contractility promotes spine maturation.   

A) Hippocampal neurons were co-transfected at DIV 6 with DsRed2 and either 

GFP, GFP-MIIB WT (wild type), or GFP-MIIB-R709C (an actin-binding but 

contractile-deficient mutant) and fixed at DIV 14 or 15.  Note the increased 

length of the non-contractile mutant and increase in mushroom-shaped spines 

in the cells expressing ectopic MIIB.  

B-D) Spine length, measured via DsRed2, is significantly longer in neurons 

expressing GFP-MIIB-R709C but is not different between GFP control and 

neurons expressing GFP-MIIB WT, B.  Spine head width, visualized using 

cytoplasmic DsRed2, is greater in neurons expressing GFP-MIIB WT; but there is 

no difference in the spine head width of neurons expressing GFP-IIB-R709C and 

GFP control neurons, C.  The fraction of mushroom shaped spines is greater in 

neurons expressing GFP-MIIB WT; whereas the fraction of filopodia-like spines 

is greater in neurons expressing GFP-MIIB-R709C, D.  

E-F) The PSD area increases in DIV 21-23 neurons expressing WT-MIIB, but not 

in the controls or neurons expressing R709C.  For each condition, 424-582 spines 

from 6-15 neurons were analyzed.  Error bars represent SEM.  *p<0.001, Mann-

Whitney test (B, C, F), Chi-square test (D).  Scale bar = 5µm for all panels. 
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that MIIB-mediated contractility enhances spine maturation (Figure 12A-D).  To 

determine whether contractility, per se, is sufficient to create mushroom-shaped spines, 

we expressed a mutant, MIIB R709C, which has inhibited ATPase activity but is locked 

inan actin-bound state.  This mutant incorporates into actomyosin bundles with high 

effective affinity and promotes actomyosin bundling, but not contraction (Ma et al., 2004; 

Vicente-Manzanares et al., 2007).  When MIIB-R709C is expressed in hippocampal 

neurons, it leads to the persistence of filopodia-like spines, even into later stages of 

neuronal development (data not shown).  It also induces a two-fold longer spine length 

when compared to WT MIIB- or GFP-expressing controls (Figure 12A, B). Furthermore, 

WT-MIIB, but not MIIB-R709C, increased PSD size (Figure 12E), which correlates with 

spine head volume and LTP (Holtmaat and Svoboda, 2009).  Finally, WT-MIIB, but not 

MIIB-R709C, induces a significant (p < 0.001) increase in the number of post-synaptic 

sites per µm dendrite (1.29 PSDs/µm dendrite for WT-MIIB, 0.81 PSDs/µm dendrite for 

GFP, and 0.75 PSDs/µm dendrite for MIIB-R709C).  These results suggest that MIIB 

contractility mediates spine and PSD maturation. 

 

Differential Myosin Regulatory Light Chain (RLC) Phosphorylation Dictates Distinct 

Spine Morphologies 

MIIB localizes to both immature filopodia-like protrusions as well as mature 

mushroom-shape spines (Figure 9A).  How MIIB activity is regulated to determine spine 

morphology is unclear.  In fibroblasts, simultaneous RLC phosphorylation on residues 

T18 and S19 increases MIIB activity and creates front-back polarity (Vicente-

Manzanares et al., 2008; Vicente-Manzanares and Horwitz, 2010).  We therefore asked 
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whether RLC phosphorylation regulates post-synaptic MIIB activity to create mature 

mushroom-shaped spines. In response to NMDA receptor activation by glycine, we 

stained for di-phosphorylated RLC (T18, S19), and observed a significant increase 

(Figure 13A-B).  To determine whether RLC-T18~P, S19~P di-phosphorylation is 

necessary for spine maturation, we activated NMDA receptors with glycine in neurons 

expressing RLC-T18A, S19D (RLC-A, D), which mimics mono- but prevents di-

phosphorylation (Vicente-Manzanares and Horwitz, 2010).  While control neurons 

matured into a mushroom-shaped spine, RLC-A,D prevented spine maturation; instead 

they persisted as filopodia-like protrusions (Figure 13C-D).  In contrast, expression of a 

di-phosphomimetic mutant, RLC-T18D,S19D (RLC-D,D) increased spine maturation and 

PSD area when compared to GFP or RLC-AD expressing neurons (Figure 13E-G).  

Therefore, while mono-phosphorylation inhibits spine maturation and PSD enlargement, 

RLC di-phosphorylation is necessary for and promotes it.  

 

Rho Kinase (ROCK) regulates RLC T18, S19 di-phosphorylation and spine maturation.   

ROCK is a kinase that increases RLC phosphorylation on T18 and S19 both 

directly and indirectly through inhibition of myosin light chain phosphatase (Kimura et 

al., 1996; Yoneda et al., 2005).  We therefore determined whether ROCK regulates post-

synaptic RLC di-phosphorylation and spine morphology.  Neurons treated with the 

ROCK inhibitor, Y-27632, showed long-filopodia like spines with an increased length 

(Figure 14A-B) and similar to those observed when RLC di-phosphorylation is inhibited 

by expression of RLC-AD (Figure 13) (Tashiro and Yuste, 2004). In contrast, inhibition 

of myosin light chain kinase, another RLC kinase, did not increase spine length (data not  
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Figure 13:  RLC T18, S19 di-phosphorylation mediates spine maturation.  

 A) Glycine-activation of NMDA receptors stimulates spine maturation and 

increases RLC-T18, S19 di-phosphorylation in spines (arrowheads indicate increased 

RLC-T18, S19 ~P in glycine-stimulated spines). DIV 21 neurons expressing GFP were 

chronically treated with the NMDA receptor antagonist AP-5 to inhibit spine maturation.  

Neurons were acutely stimulated by AP-5 withdrawal and the addition of 200µM glycine, 

while control neurons were continuously treated with AP-5.   

B) Quantification of spine-associated RLC-T18, S19 di-phosphorylation by 

staining reveals a significant increase following NMDA receptor activation.  706 spines 

from 7 neurons were analyzed for AP5 controls and 843 spines from 8 glycine stimulated 

neurons.   

C) RLC-AD inhibits spine maturation in response to glycine activation of NMDA 

receptors. DIV 21 neurons were treated as described in (A) and immunostained for the 

dendrite marker, MAP-2 (magenta).   

D) RLC-AD prevents spine shortening in response to glycine (4C, arrows).  We 

analyzed 2032 spines from 12 AP-5-treated GFP neurons, 1698 spines from 15 glycine 

stimulated GFP neurons, 1017 spines from 7 AP-5-treated RLC-AD neurons, 1116 spines 

from 8 glycine-stimulated RLC-AD neurons.   

E) RLC-AD expression creates filopodia-like spine precursors, while RLC-DD 

contracts spines into a mushroom-shaped morphology with increased PSD area.  Neurons 

between DIV 21-33 expressing GFP, RLC-AD GFP or RLC-DD GFP were fixed and 

immunostained for the PSD marker, PSD-95.  
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F) RLC-DD significantly increases PSD area in comparison to GFP or RLC-

AD.  PSD measurements are from neurons between DIV 21-33.  We analyzed 442 PSDs 

from 4 GFP neurons, 2204 PSDs from 16 RLC-AD neurons, and 2167 PSDs from 15 

RLC-DD neurons.  

G) RLC-DD expression increases the percentage of mushroom-shape spines, 

while RLC-AD increases the percentage of filopodia-like spines.  Spine morphology 

distribution of a representative culture is shown. Error bars represent SEM.  *p<0.001, 

Mann Whitney test (B,D,F), t-test (G).  Scale bar = 5µm for all panels. 
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Figure 14:  ROCK regulates spine morphology through RLC-T18, S19 di-

phosphorylation.   

A) ROCK inhibition (Y-27632) produces filopodia-like spines (arrowheads).  

DIV14 neurons expressing GFP were treated with 120µM Y-27632 for 2 hours or left 

untreated as a control.   

B) RLC-DD prevents the increase in spine length with Y-27632 We analyzed 

1199 spines from 13 GFP untreated neurons, 1056 spines from 9 GFP neurons treated 

with Y-27632, 1142 spines from 6 RLC-DD untreated neurons, and 809 spines from 8 

RLC-DD neurons treated with Y-27632.   

C) Y-27632 decreases endogenous RLC-T18, S19 di-phosphorylation 

concomitant with the formation of filopodia-like spines.  In contrast, inhibition of myosin 

light chain phosphatase with calyculin A (CalA), increases RLC-T18, S19 di-

phosphorylation.  Arrowheads indicate spine-associated RLC-PP.  Neurons were treated 

with 100µM Y-27632 for 2 hours or 20nM calyculin A for 20min or left untreated.   

D) Y-27632 decreases the levels of spine-associated RLC-PP staining; whereas 

calyculin A increases it. We analyzed 855 spines from 10 untreated neurons, 901 spines 

from 9 Y-27632-treated neurons, and 989 spines from 9 calyculin A-treated neurons.  E-

F) Calyculin A increases PSD area in comparison with untreated or Y-27632-treated 

neurons. Neurons were treated as in C.  We analyzed 499 PSDs from 10 untreated 

neurons, 519 PSDs from 9 Y-27632-treated neurons, and 452 PSDs from calyculin A-

treated neurons. Error bars represent SEM.  *p<0.001, Mann-Whitney test.  Scale bar = 

5µm. 
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shown) (Potier et al., 1995). Furthermore, expression of the di-phosphomimetic RLC-

D,D mutant superseded the effects of Y-27632 on spine length, suggesting that RLC is a 

major post-synaptic target of ROCK activity (Figure 14B).  Using an antibody specific 

for di-phosphorylated RLC T18P, S19P, we observed an ~20% decrease in the post-

synaptic levels of di-phosphorylated RLC with Y-27632, coincident with an increase in 

spine length (Figure 14C-D).   Calyculin A, which inhibits myosin light chain 

phosphatase (Iizuka et al., 1999) increased RLC-P,P and induced the formation of 

mushroom-shaped spines with enlarged PSDs (Figure 14C-F).   Thus, post-synaptic 

regulation of RLC di-phosphorylation underlies spine maturation.   

 

Myosin IIB Regulates Post-Synaptic Density Organization 

The PSD is a highly ordered, yet dynamic structure, undergoing continual 

variations in morphology (Blanpied et al., 2008).  We therefore asked whether 

actomyosin activity regulated the size, shape, or location of the PSD in the spine.  To 

study PSD morphology, we stained for the PDZ-containing synaptic scaffold protein 

PSD-95, which is a canonical PSD marker that appears early during PSD formation (Rao 

et al., 1998).  Whereas control spines exhibit a compact, round, or slightly elliptical PSD, 

MIIB knockdown spines displayed an elongated PSD with larger perimeters (Figure 15A-

C). Furthermore, in control cells, PSD-95 localizes mainly to the spine tip; however, in 

MIIB-deficient neurons, the elongated PSD localizes away from the spine tip and base, 

toward the center of the filopodia-like spine (Figure 15D, E).  Similar results were 

observed using another PSD marker, shank (Figure 15F) (Böckers et al., 2001), 

suggesting that MIIB controls the morphology of the PSD globally, rather than through  
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Figure 15: Myosin IIB regulates post-synaptic density morphology.  

 A) Myosin IIB knockdown alters PSD morphology and positioning.  

Hippocampal neurons were co-transfected on DIV 6 with GFP and either an shRNA 

vector against MIIB or a control empty vector and fixed and immunostained for 

endogenous PSD-95 at DIV 21.  

 B) The PSD axis ratio (B) is expressed as the long axis (y) of each PSD divided 

by the short axis (x).  The PSD axis ratio is significantly greater in neurons with MIIB 

knocked down.  

C) shRNA knockdown of MIIB increases the PSD perimeter.   

D) Distance from PSD-95 to the spine tip (D in diagram) is significantly greater in 

neurons with MIIB knocked down.   

E) Distance from PSD-95 to the spine base (E in diagram) is significantly greater 

in neurons with MIIB knocked down. For each condition, 524-738 spines of 10-14 

neurons were analyzed.   

F) Immunostaining for Shank confirms the elongated PSD morphology in 

response to MIIB knockdown.  Error bars represent SEM.  *p<0.001, Mann-Whitney test. 

Scale bar = 5µm. 
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specific effects on some of its constituents. 

 

Discussion 

Non-muscle myosin II plays a major role in the organization of actin filaments 

and dictates the diverse morphologies and directional movement of various cell types. 

These include the apical constriction of epithelial cells, nuclear positioning, orientation of 

the microtubule-organizing center, Golgi and the contractile ring of dividing cells, and 

polarization of migrating fibroblasts (Vicente-Manzanares et al., 2009c).  Of the MII 

isoforms, MIIB is the predominant one found in hippocampal neurons, and its activity 

and effective affinity for actomyosin filaments is regulated by RLC (Kawamoto and 

Adelstein, 1991; Vicente-Manzanares et al., 2009c).  Previous studies have implicated 

MIIB as a target of a signaling pathway that is mutated in non-syndromic mental 

retardation and in spine development and memory formation (Zhang et al., 2005; Ryu et 

al., 2006; Vicente-Manzanares et al., 2009b; Rex et al., 2010).  We now address the 

mechanisms by which MIIB acts on spines and show that differential MIIB activity 

determines where spines form, creates diverse post-synaptic spine morphologies, and 

mediates the morphology, size, and positioning of the PSD.  It also mediates the changes 

in spine morphology in response to stimuli. Thus, MIIB emerges as a major downstream 

regulator of the component processes underlying post-synaptic plasticity, and implicitly, 

learning and memory.   

Spine maturation consists of three stages: emergence of protrusions along the 

dendritic shaft, spine elongation, and maturation into a mushroom-shape (Yuste and 

Bonhoeffer, 2004).  Our results demonstrate that differential MIIB activity mediates and 
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coordinates these diverse stages of spine development.  Highly branched and dynamic 

spines emerge along the dendritic shaft and proceed to develop into the long dendritic 

protrusions that characterize immature spines, which persist in the absence of full, i.e., di-

phosphorylated RLC, MIIB activation.  This suggests that MIIB normally functions to 

restrict membrane protrusion and branching (Lin et al., 1994; Medeiros et al., 2006).  It 

also suggests that the elongation of filopodia-like protrusions occurs in the absence of 

strong MIIB contractile activity.  Several observations support this hypothesis.  Myosin 

IIB inhibition or knockdown produces numerous long filopodia that do not mature (Ryu 

et al., 2006).  In addition, the contractile-deficient myosin IIB mutant, R709C, cross-links 

but does not contract actin and results in persistently long spines.  Similarly, inhibition of 

RLC T18, S19 di-phosphorylation by expressing RLC T18A, S19D or inhibiting ROCK 

activity using Y-27632 similarly produces filopodia-like spine precursors; however we 

cannot exclude contributions from other ROCK targets, like LIMK1 (Meng et al., 2002; 

Tashiro and Yuste, 2004; Shi et al., 2009). 

Excitatory stimulation increases PSD size, which directly correlates with synaptic 

strength and leads to long-term potentiation (Kasai et al., 2003; Lynch et al., 2007; 

Holtmaat and Svoboda, 2009).  MIIB determines PSD positioning as well as its 

morphology.  When MIIB is inhibited, the PSD becomes elongated and is no longer at 

the spine tip.  An analogous change is seen in migrating fibroblasts, where large central 

adhesions tend to disperse when MII activity is inhibited (Galbraith et al., 2002; Chen, 

2008; Choi et al., 2008).  In addition, increased myosin IIB activity via RLC T18, S19 di-

phosphorylation, enlarges both the PSD and fibroblast adhesions (Vicente-Manzanares 

and Horwitz, 2010).  In this context, the combination of crosslinking and contraction 
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induced by MII activity, likely serves to cluster the numerous PDZ- and SH3-domain 

containing actin binding proteins found within the PSD (Hung and Sheng, 2002; Kim and 

Sheng, 2004; Collins et al., 2006).  MIIB-generated forces could also increase PSD size 

by inducing conformational changes in PSD components that present new binding sites 

for the recruitment of additional molecules, as also reported in fibroblasts (Sawada et al., 

2006; Del Rio et al., 2009).   

 During post-synaptic development, changes in spine morphology correlate with 

changes in PSD organization and synaptic signaling.  Specifically, maturation of spines 

into a mushroom-shape and PSD enlargement at the spine tip enhance the synaptic 

signaling that underlies learning and memory formation (Lynch et al., 2007).  Our 

findings show that myosin IIB coordinates the spine and PSD morphological changes that 

occur in response to excitatory stimulation. Furthermore, differential regulation of MIIB 

activity through RLC phosphorylation states switches spine and PSD shape from 

filopodia-like spine precursors with smaller PSDs to mature mushroom-shape spines with 

larger PSDs.   Thus, myosin IIB serves as a critical regulator of post-synaptic plasticity, 

consistent with the observation that myosin IIB is necessary for memory formation (Rex 

et al., 2010).  

Our observations and previous literature lead to a model for the role of MIIB in 

spine formation and maturation.  Spines form in regions of inactive MIIB and can extend 

into long filopodia-like structures in the absence of high MIIB activity.  The most likely 

mechanism for this formation and extension is due to localized activation of Rac.  The 

GIT1/PIX/PAK complex, which contains the Rac-activator PIX and Rac-effector PAK, is 

one mechanism by which Rac activation is localized to generate spines (Zhang et al., 
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2003; 2005).  These filopodia-like spines are highly dynamic and protrude and retract 

frequently; since MIIB is not required for this activity, it is likely that this arises largely 

from actin polymerization and depolymerization.  In contrast, the maturation into a 

compact, mushroom-shaped structure requires MIIB contractile activity; however, 

Arp2/3-driven actin polymerization may contribute as well to drive spine head expansion, 

in analogy with the broad protrusions it mediates in migrating fibroblasts (Rácz and 

Weinberg, 2008; Hotulainen et al., 2009; Korobova and Svitkina, 2010).  Finally, MIIB 

may also serve to localize signals that affect spine morphology and function, such as 

GEFs that mediate Rac activity, e.g., β-PIX and Kalirin-7, or other mechanoresponsive 

molecules that regulate signaling in other cell types (Zhang et al., 2005; Xie et al., 2007; 

Kuo et al., 2011).  Our holistic view of the effect of myosin II on the component 

processes of post-synaptic development provides the framework for the identification of 

critical therapeutic targets, such as ROCK, for the treatment of learning and memory 

disorders. 

 

Materials and Methods 

Antibodies and reagents.  Postsynaptic density-95 (PSD-95) monoclonal antibody 

was purchased from Santa Cruz Biotechnology (Santa Cruz, CA) and used at ratio of 

1:100 for immunostaining.  Non-muscle myosin heavy chain II-B polyclonal antibody 

was obtained from Covance (Emeryville, CA) and used at a ratio of 1:1000. A polyclonal 

antibody against phosphorylated RLC-T18, S19 was purchased from Cell Signaling 

Technologies and used at a ratio of 1:100-1:200 (Danvers, MA). Secondary anti-mouse 

and anti-rabbit antibodies conjugated to Alexa488, 568 and 647 were from Invitrogen. 
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Blebbistatin, Calyculin A, and Y-27632 were purchased from Calbiochem (La Jolla, 

CA) and used at the concentrations indicated in the figures.  Tetrodotoxin and strychnine 

were purchased from Sigma and reconstituted in dH2O. 

Plasmids. The shRNA knockdown vector for MIIB has been described elsewhere 

(Vicente-Manzanares et al., 2007).  GFP-MIIB was a gift from Robert S. Adelstein (Wei 

and Adelstein, 2000). RNAi-insensitive GFP-MIIB and GFP-MIIB-R709C mutants have 

been described previously (Vicente-Manzanares et al., 2007).  The 3’-UTR encompassing 

1500nt’s was cut out of both GFP-MIIB and GFP-MIIB-R709C vectors using XmaI 

restriction enzyme.  The 1.5kb DNA piece was ligated into the 9kb vector backbone and 

sequenced to verify correct orientation of the insert. PSD-95-GFP was a gift from David 

Bredt (Topinka and Bredt, 1998).  RLC-GFP constructs (WT, DD) were kindly provided 

by Kathleen Kelly (National Cancer Institute, Bethesda, MD), and RLC-AD-GFP was 

generated as previously described (Vicente-Manzanares and Horwitz, 2010). 

Neuronal culture and transfection.  Low-density hippocampal cultures were 

prepared from E19 rat embryos as described previously.  All experiments were carried 

out in compliance with the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health and approved by the University of Virginia Animal Care and 

Use Committee (Protocol Number: 2884).  Neurons were plated on glass coverslips 

coated with 1 mg/ml poly-L-lysine at an approximate density of 70 cells/mm2 and were 

transfected using a modified calcium phosphate precipitation method as described 

previously (Zhang et al., 2005).  Cortical neurons were nucleofected with DsRed as 

described by (Zeitelhofer et al., 2007), and plated on poly-L-lysine coated imaging 

dishes.  DIV 5-12 cortical neurons were micropipetted with 100uM-1mM blebbistatin for 
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10 msec-1 sec with 5psi pressure using an IM 300 Microinjector from Narishige 

International USA, Inc. (East Meadow, NY).  For the chemical stimulation experiments 

involving knockdown or inhibition of MIIB (Figure 11), DIV14-17 neurons were 

removed from the glia-feeder layer and placed in 1 X Mg2+-free extracellular solution 

containing 15mM NaCl, 0.5mM KCl, 0.2mM CaCl2, 3mM glucose, 1mM Hepes, 0.5uM 

tetrodotoxin, and 1uM strychnine, pH7.4 (Park et al., 2004).  Stimulated neurons are 

treated with 200uM glycine and incubated at 35°C, 5% CO2 for 3 min.  The solution is 

removed and replaced with 1 X Mg2+-free extracellular solution with tetrodotoxin and 

strychnine and incubated at 35°C, 5% CO2 for 20 minutes before fixation.  For inhibition 

of MIIB activity with blebbistatin, neurons were pre-treated for 30 minutes and 

throughout the protocol with either 100µM blebbistatin or a corresponding volume of 

DMSO as a control.  Alternatively (Figure 13), neurons were chronically treated with 

100uM of the NMDA receptor antagonist, AP-5, from DIV 6-21 to inhibit NMDA 

receptor activation and spine maturation.  Neurons were then stimulated by AP-5 

withdrawal and 200uM glycine, while control neurons continued in the presence of AP-5 

(200uM), as described by others (Liao et al., 2001; Lin et al., 2004).   

 Immunocytochemistry. Neurons were fixed in PBS containing 4% formaldehyde, 

methanol-free, ultra-pure EM grade (Polysciences, Inc., Warrington, PA) with 4% 

sucrose for 20 min at room temperature and permeabilized with 0.2% Triton X-100 for 

10 min. Alternatively, for PSD-95 and RLC-T18P, S19P staining, neurons were 

simultaneously fixed and permeabilized in 2% formaldehyde with 4% sucrose for 10 min 

at room temperature and then with cold methanol for 10 min at -20°C. After blocking 

with 20% goat serum/PBS for one hour at room temperature, the neurons were incubated 
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with the appropriate antibodies in 5% goat serum/PBS for one hour at 37°C. RLC-PP 

staining was performed in PBS only. Coverslips were mounted with Vectashield 

mounting media (Vector Laboratories, Burlingame, CA). 

Imaging and analysis.  Confocal images were collected on an Olympus Fluoview 

1000 microscope (IX81 base) equipped with a 60X/1.35 NA (oil) UPLSAPO 60X 

objective (Olympus). Green probes (GFP and Alexa488) were excited using the 488 nm 

laser line of a multi Ar laser; red probes (DsRed2 and Alexa568) were excited with the 

543 nm laser line of a He-Ne laser; the far-red probe Alexa647 was excited with the 635 

nm line of an LD laser. Fluorescence emission was collected using the following dichroic 

mirror/filter combinations: SDM560/BA505-525 (GFP), SDM640/BA560-620 (DsRed2, 

Alexa568 and RhodamineX) and BA655-755 (Alexa647). Two-color fluorescence 

images of Alexa488 (GFP)/Alexa568 (RhodamineX/DsRed2) were collected in a Z-stack 

and in sequential mode.  Images were acquired using Fluoview software (Olympus).  

Spine length, width, PSD-95 long and short axis, area, and perimeter were quantified 

using Image J software.  Statistical analysis was performed using Sigma Plot 11. Spine 

morphologies were defined as either filopodia-like, thin, mushroom, or stubby (Yuste and 

Bonhoeffer, 2004).  Filopodia-like spines are long and thin without a spine head, whereas 

thin spines contain a small head at the spine tip.  Mushroom-shaped spines are shorter 

with a large spine head atop a neck.  Stubby spines are short protrusions, either thin or 

wide, with no discernable neck.   Statistical analysis of spine morphology in Figures 1, 3 

and 4 were performed with SAS 9.2. 
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Addendum 

These studies are unpublished research collected after submission, which supports 

our published findings. 
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Myosin IIB regulates clustering and localization of post-synaptic molecules 

As previously shown, MIIB regulates organization of the post-synaptic density.  

Knockdown of MIIB in neurons causes the PSD to elongate in morphology and become 

mis-localized away from the spine tip (Hodges et al., 2011).  NMDA-type glutamate 

receptors localize to the post-synaptic membrane and are clustered by PSD-95 (Lim et al., 

2003).  Therefore, we sought to determine whether mis-organization of PSD-95, via loss 

of MIIB activity, affects NMDA-type glutamate receptor localization and clustering 

within the spine.  We co-expressed the ubiquitous NR1 subunit of the NMDA receptor 

fused to a super-ecliptic pHluorin (SEP-NR1), which displays GFP fluorescence at the 

membrane surface when SEP is exposed to a neutral environment (Kopec et al., 2006).  

Rhodamine-phalloidin, which clearly shows actin-rich spines, was used to visualize them.  

While a discrete cluster of SEP-NR1 was seen in the spine heads of control neurons, 

SEP-NR1 was distributed into punctate clusters throughout the filopodia-like spines of 

neurons lacking MIIB (Figure 16A).  Larger clusters of SEP-NR1 were seen at the base 

of the filopodia-like spines, mis-localized from the tip of the spine, in neurons with MIIB 

knocked down.  Therefore, as a consequence of a mis-organized PSD, due to MIIB 

knockdown, the NMDA-type glutamate receptor is no longer clustered appropriately at 

the post-synaptic membrane.   This illustrates the importance of an organized actin 

network dictated by MIIB to properly localize and cluster glutamate receptors at the post-

synaptic membrane. 

The actin cross-linker α-actinin-2 (ACTN2) directly binds to NMDA-type 

glutamate receptors in vitro and this interaction is proposed to couple the glutamate 

receptors to the actin cytoskeleton (Wyszynski et al., 1997).  Therefore, we sought to  
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Figure 16: Myosin IIB regulates clustering of NMDA receptors and α-actinin-2. 

A) MIIB regulates clustering and localization of NMDA-type glutamate 

receptors.  Hippocampal neurons were co-transfected with SEP-NR1 and 

either an shRNA vector against MIIB or a control empty vector at DIV 6 and 

fixed and immunostained for GFP and rhodamine-phallodin at DIV 21.  

Boxed region is enlarged to right.  Scale bar = 5 µm. 

B) MIIB regulates clustering and localization of α-actinin-2 (ACTN2). 

Hippocampal neurons were co-transfected with GFP and either an shRNA 

vector against MIIB or a control empty vector at DIV 6 and fixed and 

immunostained for endogenous ACTN2 at DIV 21.  Boxed region is enlarged 

to right.  Scale bar = 5 µm. 
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determine whether MIIB activity had an effect on the localization of ACTN2 in the 

spine.  In comparison to control neurons where ACTN2 localized close to the spine tip 

within the spine head, ACTN2 was also mis-localized away from the spine tip in the 

filopodia-like protrusions of neurons with MIIB knocked down (Figure 16B).  

Interestingly, ACTN2 was distributed into multiple, small clusters in spines of neurons 

lacking MIIB, whereas ACTN2 distributed as a single, large cluster in the spine heads of 

control neurons (Figure 16B).  This indicates that the loss of MIIB has an effect on the 

distribution of other actin-associated molecules in the spine.  

Since knockdown of MIIB affects the clustering and distribution of ACTN2, we 

asked whether these two actin cross-linking molecules, ACTN2 and MIIB, co-localize in 

dendritic spines.  We specifically assayed localization of endogenous ACTN2 with 

respect to the non-contractile MIIB-R709C mutant.  As expected, GFP-MIIB-R709C 

localized to the spine neck and base (Figures 17 and 12).  Interestingly, we saw little 

overlap between ACTN2 and GFP-MIIB-R709C (Figure 17).  ACTN2 localized to the tip 

of most dendritic protrusions (Figure 17), similar to PSD-95 (Figure 12).  Some co-

localization could be seen between the base of ACTN2 and the tip of GFP-MIIB-R809C.  

These results suggest that ACTN2 localizes predominantly to the PSD and not with 

actomyosin filaments.   
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Figure 17: MIIB and ACTN2 do not co-localize in dendritic spines. 

Hippocampal neurons were transfected at DIV 6 with GFP-MIIB-R709C and fixed and 

immunostained for endogenous ACTN2 at DIV 21.   Upper images were taken with 2x 

zoom and lower images (boxed region) were taken with 6x zoom.  
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Chapter 4 -- α-Actinin-2 dictates spine morphology and nucleates assembly of the 

post-synaptic density 

 

This chapter is comprised of unpublished data. 
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Abstract 

Abundant evidence indicates that modulation of the actin cytoskeleton dictates the 

morphological changes associated with dendritic spine dynamics, which functions as the 

structural basis underlying learning and memory.  Dendritic spines are micron-sized 

protrusions that serve as the primary post-synaptic sites of excitatory neurotransmission 

in the brain.  Spines mature from a filopodia-like morphology into a mushroom-shape 

with an enlarged post-synaptic density (PSD).  This electron-dense PSD contains an 

assembly of synaptic adhesion molecules, glutamate receptors, and signaling scaffolds; 

many of which respond to glutamate receptor activation and relay signals to the 

underlying actin cytoskeleton to induce structural changes in spine and PSD morphology.  

α-actinin-2 (ACTN2) cross-links actin filaments, localizes to dendritic spines, and is 

enriched with the post-synaptic density.  We show that loss of ACTN2 creates an 

increased density of immature, filopodia-like protrusions that fail to mature into a 

mushroom-shaped spine during development and in response to chemical stimulation of 

the glutamate NMDA receptor.  Knockdown of ACTN2 prevents the recruitment and 

stabilization of a PSD in the spine, resulting in the loss of NMDA receptors and synaptic 

formation.  Furthermore, phosphorylation within its actin-binding domain can create 

distinct spine morphologies.  These observations support a model whereby ACTN2 

nucleates PSD formation in the spine to mediate synaptogenesis and promote spine 

maturation. 

 

Introduction    
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Dendritic spines are micron-sized, actin-rich protrusions that constitute the 

post-synaptic sites of excitatory glutamatergic neurotransmission in the mammalian brain 

(Matus, 2000; Bosch and Hayashi, 2011).  Spine morphology and organization of the 

post-synaptic density (PSD), which contains a dense cluster of adhesion molecules, 

glutamate receptors, and signaling scaffolds at the post-synaptic membrane, underlies the 

molecular basis of learning and memory (Nimchinsky et al., 2002; Sheng and 

Hoogenraad, 2007).  Spines develop from an immature filopodia-like structure, lacking a 

PSD, into a mature mushroom-shaped morphology containing an enlarged PSD, that is in 

synaptic contact with a pre-synaptic bouton (Yuste and Bonhoeffer, 2004; Ethell and 

Pasquale, 2005; Sekino et al., 2007).  Actin filaments are the primary structural 

determinant of spines, and its remodeling in response to NMDA-receptor activation is 

critical for spine plasticity (Allison et al., 1998; Rao and Craig, 2000; Brünig et al., 2004; 

Okamoto et al., 2004; Cingolani and Goda, 2008; Honkura et al., 2008; Hotulainen and 

Hoogenraad, 2010).  Several genes encoding post-synaptic molecules that modulate the 

architecture of the actin cytoskeleton are mutated in non-syndromic mental retardation, 

autism, and schizophrenia (Allen et al., 1998; Kaufmann and Moser, 2000; Fiala et al., 

2002; Carlisle and Kennedy, 2005; Penzes et al., 2011).  Thus, gaining insight into the 

mechanisms that directly regulate actin filament dynamics in dendritic spines is crucial to 

understanding the cellular foundation of cognition. 

Actin filament bundling by α-actinin is implicated in a variety of cellular 

structures such as focal adhesions, adherens junctions, and dendritic spines (Otey and 

Carpen, 2004). α-Actinin has an actin binding domain at its N-terminus, followed by four 

tandem spectrin repeats, and a calmodulin-like domain at its C-terminus that determines 
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each isoform’s calcium sensitivity (Dixson et al., 2003; Broderick and Winder, 2005; 

Sjöblom et al., 2008).  The functional molecule exists as an antiparallel homodimer with 

an actin-binding site on either end that mediates actin filament cross-linking (Djinović-

Carugo et al., 1999).  Although three of the four α-actinin isoforms, α-actinin-1, -2, and -

4, have been identified in rat forebrain post-synaptic density fractions via mass 

spectrometry (Walikonis et al., 2000; Peng et al., 2004), immunofluorescence and 

electron microscopy studies have only shown isoform 2 (ACTN2) enriched in the post-

synaptic density of glutamatergic, excitatory synapses in pyramidal neurons of the cortex 

and hippocampus (Wyszynski et al., 1997; 1998; Dunah et al., 2000).  The sub-cellular 

localization of ACTN2 to dendritic spines is dependent on its interaction with actin 

(Allison et al., 2000; Nakagawa et al., 2004).  

In addition to cross-linking actin filaments, α-actinin can interact with various 

membrane-associated proteins and link them to the actin cytoskeleton, including vinculin, 

integrins, and α-catenin (Belkin and Koteliansky, 1987; Wachsstock et al., 1987; Otey et 

al., 1990; Knudsen et al., 1995; Otey and Carpen, 2004).  In synapses, in vitro binding 

assays suggest a direct interaction occurs between ACTN2 and the NR1 and NR2B 

subunits of the NMDA receptor, which is competitively inhibited by Ca2+-bound 

calmodulin binding to NR1 (Wyszynski et al., 1997; Krupp et al., 1999).  Although these 

interactions have not been shown to occur in intact neurons, the biochemical data 

proposes that ACTN2 couples the NMDA receptor to the actin cytoskeleton promoting 

calcium influx, until Ca2+-bound calmodulin inhibits their interaction and inactivates the 

NMDA receptor (Krupp et al., 1999).  The significance of the calcium insensitivity 

exhibited by ACTN2 is illustrated by the finding that Ca2+-sensitive, α-actinin isoforms 
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cannot prevent NMDA receptor inactivation in vitro, as they dissociate from actin in 

response to calcium (Krupp et al., 1999).  In vitro binding assays also indicate that 

ACTN2 can bind to the PSD-enriched molecule, densin-180, and form a ternary complex 

with CaMKIIα, and NR2B (Robison et al., 2005b), suggesting that ACTN2 can nucleate 

a CaMKII-driven signaling scaffold at the post-synaptic membrane that regulates 

glutamate receptors.  In support for this, ACTN2 targets CaMKIIα to F-actin in HEK293 

cells and enhances the interaction between CaMKII and GluN2B subunits of AMPA 

receptors (Jalan-Sakrikar et al., 2012).  Although these interactions with ACTN2 are 

speculative, it points to a possible role for ACTN2 in integrating signals between PSD 

components and the actin cytoskeleton, and highlights the importance for determining the 

function of ACTN2 in spine morphogenesis and post-synaptic organization.  

α-Actinin can be regulated in vitro to modify its actin-binding properties.  

PtdIns(4,5)P2 , PIP2, binds to the actin-binding domain of ACTN2 and tethers it to the 

plasma membrane, a function that is critical for maintaining the open state of the NMDA 

receptor in Xenopus oocytes (Michailidis et al., 2007).  Neurons expressing an ACTN2 

mutant unable to interact with PIP2 significantly reduced peak and steady-state NMDA 

current compared to neurons expressing wild-type ACTN2, suggesting that ACTN2 can’t 

link NMDA receptors to the actin cytoskeleton and promote calcium influx without 

binding to PIP2 at the membrane (Michailidis et al., 2007).  Focal adhesion kinase (FAK) 

phosphorylates α-actinin-1 in fibroblasts, which induces its dissociation from actin and 

promotes adhesion turnover (Izaguirre et al., 1999; 2001; Wichert et al., 2003).  All α-

actinin isoforms share this conserved tyrosine residue within their actin-binding domain, 

and FAK is an important signaling molecule in dendritic spines (Moeller et al., 2006), 
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and could therefore play a role in regulating ACTN2-mediated reorganization of actin 

to sculpt dendritic spines.  Thus far, the putative interactions between components of the 

PSD and ACTN2, and its implication in modulating NMDA receptor activity have all 

been based on in vitro binding assays and studies in non-neuronal cells.  One study found 

that overexpression of ACTN2 increased the length and density of dendritic protrusions 

in cultured hippocampal neurons, suggesting a biological role for ACTN2 in determining 

spine morphology (Nakagawa et al., 2004).  However, over-expression studies can 

produce non-specific effects in cells.  Despite recognition of its post-synaptic enrichment 

and possibly coupling membrane-associated proteins to the actin cytoskeleton, additional 

studies must be performed to gain a clear understanding of a function for ACTN2 in 

spine morphogenesis and confirm its interaction with post-synaptic proteins.  

To ascertain a biological function for ACTN2 in shaping dendritic spines and 

organizing the post-synaptic density, we knocked down ACTN2 in hippocampal neurons 

via small hairpin (sh) RNA.  We find that loss of ACTN2 induces an increased spine 

density composed of filopodia-like spine morphologies that does not mature in response 

to chemical stimulation.  These immature spines lack a post-synaptic density and a 

functional synapse.  Importantly, these effects could be rescued with co-expression of 

RNAi-resistant ACTN2.  Loss of ACTN2 at later stages in spine development when 

synaptic contact has been established also induces an increased density of immature 

spines that lack a synapse, suggesting that ACTN2 is not only required for the 

recruitment of post-synaptic molecules, but is also required for the maintenance of the 

synapse.  In agreement with previous findings (Nakagawa et al., 2004), over-expression 

of ACTN2 creates a thinner spine morphology, but expression of a non-phosphorylatable 
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ACTN2-Y19F mutant restores the mature, mushroom-shaped spine morphology, 

suggesting that ACTN2 can be regulated by phosphorylation on its actin-binding domain 

to create distinct spine morphologies.  These studies lead us to propose a model for spine 

morphogenesis, whereby ACTN2 re-organizes the actin cytoskeleton in filopodia-like 

dendritic protrusions to promote assembly of the PSD in the spine, and mediate its 

transition to a mature, mushroom-shaped morphology via scaffolding PSD molecules to 

the actin cytoskeleton. 

 

Results 

ACTN2 Regulates Spine Morphology and Density 

ACTN2 is specifically enriched in hippocampal neurons and is not in the 

surrounding glia cells (Figure 18A).  Moreover, an antibody is specific for ACTN2 and 

does not cross-react with α-actinin isoforms 1 and 4, which are enriched within CHO-K1 

and COS-7 cells (Figure 18A).  ACTN2 localizes to dendritic spines and does not co-

localize with the pre-synaptic molecule, synaptophysin, indicating that ACTN2 is solely 

enriched within the post-synaptic side of synapses (Figure 18B, C).  To determine the 

role of ACTN2 in dendritic spine morphogenesis, we silenced endogenous expression of 

ACTN2 with shRNA expressed by the pSUPER vector (Brummelkamp et al., 2002).  The 

shRNA sequence targeting ACTN2 mRNA is isoform-specific, and 72hrs after 

transfection immunofluorescence indicates the shRNA expression significantly reduced 

endogenous ACTN2 protein levels (Figure 18D).  Co-expression of human ACTN2-SS 

with a silent mutation in a serine residue of the target sequence, conferring resistance to 

RNA inhibition (RNAi), rescued expression (Figure 18D). 
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Figure 18: ACTN2 localizes to post-synaptic hippocampal neurons. 

A) ACTN2 is enriched within hippocampal neurons and is not in glia cells or 

COS-7 cells.  Cells were lysed and immunoblotted for ACTN2.  Actin serves 

as a loading control. 

B) ACTN2 localizes to dendritic spines.  Hippocampal neurons were transfected 

at DIV 6 with GFP (green) and fixed and immunostained for endogenous 

ACTN2 (magenta) at DIV 16.  Scale bar = 10 µm. 

C) ACTN2 does not co-localize with a pre-synaptic marker.  Hippocampal 

neurons were fixed at DIV 16 and immunostained for endogenous ACTN2 

(green) and endogenous synaptophysin (magenta). 

D) shRNA vector targeting ACTN2 is specific.  Hippocampal neurons were co-

transfected at DIV 14 with GFP and either a control empty vector or an 

shRNA vector against ACTN2, with or without an ACTN2 vector conferring 

resistance to RNAi, and fixed and immunostained for endogenous ACTN2 at 

DIV 17.  Arrows point to the neurons expressing GFP and its immunostaining 

for ACTN2.  Scale = 20 µm. 

 

 

 

 



 117 

 

 

 

 

 

A 

100-

75-

50-

37- -

B 

-ACTN2 

-actin c ACTN2/ 



 118 
Chronic inhibition of ACTN2 by shRNA knockdown significantly increased 

spine density throughout development (Figure 19A, B).  The spines on neurons with 

diminished ACTN2 expression were significantly longer and thinner (Figure 19A, C, D).  

While control neurons at days in vitro (DIV) 19-22 exhibited many spines with a 

“mushroom” morphology, consisting of a large bulbous spine head on top of a short spine 

neck, neurons with ACTN2 knocked down displayed significantly less mushroom-shaped 

spines and more headless, filopodia-like protrusions (Figure 19A).   To determine that 

this phenotype was specific for knockdown of ACTN2 and did not arise from off-target 

effects, we co-transfected an RNAi-resistant ACTN2-SS with the shRNA at different 

days during development and fixed the neurons 72hrs later.  At an early stage in spine 

development, DIV 11, spine density could be rescued to control numbers, but the spines 

still displayed an immature, filopodia-like morphology at this early time point (Figure 

19E).  At mid-development, DIV 16, spine density and the thin spine morphology, 

characterized by a small spine head on top of a long spine neck, could be rescued (Figure 

19E).  Finally, at later stages in development, DIV 20-24, spine density and the classic 

mushroom-shaped spine morphology could be rescued by exogenous expression of 

ACTN2-SS (Figure 19E).  This suggests that the effects induced by shRNA-mediated 

knockdown of ACTN2 are specific and that ACTN2 is necessary for the proper 

development of spines. 

 

ACTN2 is required for Spine Maturation in Response to NMDA Receptor Stimulation 

Since neurons lacking normal levels of ACTN2 created an increased density of 

immature, filopodia-like protrusions that failed to develop into mushroom-shaped spines,  
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Figure 19: Inhibition of ACTN2 increases spine density and length and decreases 

width. 

A) Chronic inhibition of ACTN2 causes an increase in spine density, spine 

length, and a decrease in spine head width.  Hippocampal neurons were co-

transfected at DIV 6 with GFP and either a control empty vector or an shRNA 

vector against ACTN2 and fixed on DIV 16 and DIV 22.  Scale = 5 µm. 

B) ACTN2 knockdown causes a significant increase in spine density.  Error bars 

represent standard deviation. 

C) ACTN2 knockdown causes a significant increase in spine length.  Error bars 

represent standard deviation. 

D) ACTN2 knockdown causes a significant decrease in the fraction of spine tip 

widths > 0.4 µm.  Error bars represent standard deviation. 

E) Spine density and morphology can be rescued. Hippocampal neurons were co-

transfected at DIV 8, DIV 13, or DIV 21 with GFP and either a control empty 

vector or an shRNA vector against ACTN2, with or without an ACTN2 vector 

conferring resistance to RNAi, and fixed 72 hours later on DIV 11, DIV 16, or 

DIV 24. 
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we hypothesized that ACTN2 was required for the acute, activity-induced spine 

morphology changes (Harris et al., 2003; Kopec et al., 2006).  To test this, we selectively 

activated synaptic NMDA receptors with the co-agonist glycine (Lu et al., 2001; Park et 

al., 2004).  As expected, 20 min following brief treatment with glycine (200 uM for 3 

min), control neurons displayed a significant increase in the fraction of spines with wider 

heads and mushroom-shaped spines in comparison to unstimulated neurons (Figure 20A, 

B, C).  In contrast, neurons with ACTN2 knocked down, under both conditions, 

continued to display an increased density of filopodia-like protrusions that failed to 

expand the spine head (Figure 20A, B, C).  This demonstrates that ACTN2 is required for 

the acute morphogenesis to an enlarged, mushroom-shaped spine and corroborates our 

finding that ACTN2 is necessary for proper spine development. 

 

ACTN2 is required for Synapse Formation 

The morphological changes associated with spine maturation require that the 

spine contacts a potentiated pre-synaptic bouton and for proper arrangement of post-

synaptic molecules, which nucleate a signaling platform to orchestrate the structural 

response to NMDA receptor activation (Kennedy, 2000; Dalva et al., 2007; Chen et al., 

2008).  We previously found that inhibition of myosin IIB-mediated contractility in 

spines creates a mis-organized PSD and inhibited spine maturation in response to 

chemical stimulation (Hodges et al., 2011).  PSD-95 is a key molecule regulating 

synaptic plasticity and a good marker for PDS location and organization; it is also found 

in synapses at early stages (Ehrlich et al., 2007).  To address whether ACTN2 contributes  
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Figure 20: Knockdown of ACTN2 prevents spine morphological changes in response 

to NMDA receptor activation. 

A) When ACTN2 is knocked down spines do not shorten or assume a 

‘‘mushroom’’ morphology in response to glycine.  DIV 21 neurons co-expressing 

GFP and either a control empty vector or an shRNA vector against ACTN2 were 

chronically treated with the NMDA receptor antagonist AP-5 to inhibit spine 

maturation.  Neurons were acutely stimulated by AP-5 withdrawal and the 

addition of 200 µM glycine, while unstimulated neurons were continuously 

treated with AP-5.  Scale = 5 µm. 

B, C) Quantification of spine tip width and spine morphology in response to 

ACTN2 knockdown and glycine stimulation.  Fraction of spines with a large 

head, spine tip width > 0.4 µm, increases in response to glycine stimulation but is 

prevented by ACTN2 knockdown (B).  Glycine does not increase the fraction of 

mushroom-shaped spines nor decrease the fraction of filopodia-like protrusions in 

neurons with ACTN2 knocked down in contrast to stimulated controls (C).  For 

each condition, 301 - 583 spines from 7 - 11 neurons were analyzed.  Error bars 

represent SEM. *p = 0.001, Student t-test.  
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to PSD organization we immunostained for PSD-95 in control and knockdowns.  In 

contrast to control neurons, in which PSD-95 was observed in most spines, the spines of 

neurons with diminished levels of ACTN2 lacked PSD-95 (Figure 21A, B).  In these 

neurons, PSD-95 only localized to a few regions on the dendrite shaft (Figure 21A, C).   

Since PSD-95 interacts with the NR2 subunit of NMDA receptors (Kornau et al., 

1995) and ACTN2 directly binds to the NR1 subunit in vitro (Wyszynski et al., 1997), we 

asked whether the NMDA receptor assembled at spines of neurons lacking ACTN2.  We 

co-expressed the ubiquitous NR1 subunit of the NMDA receptor fused to a super-ecliptic 

pHluorin (SEP-NR1), which displays GFP fluorescence at the membrane surface when 

SEP is exposed to a neutral environment (Kopec et al., 2006).  Rhodamine-phalloidin, 

which clearly shows actin-rich spines, was used to visualize them.  While discrete 

clusters of SEP-NR1 were seen in the spines of control neurons, SEP-NR1 clusters did 

not localize to spines in neurons co-expressing the shRNA (Figure 21D).  Instead, SEP-

NR1 clustered within the dendrite shaft at the base of some filopodia-like protrusions 

(Figure 21D).  Therefore, ACTN2 is essential for the synaptic targeting of PSD-95 and 

NMDA receptors.   

Even though key components of the PSD were not observed in spines lacking 

ACTN2, these filopodia-like protrusions could potentially interact with axons of normal, 

untransfected neurons in the cell culture.  To determine whether excitatory, pre-synaptic 

molecules could synapse with spines lacking a functional PSD, we immunostained for the 

excitatory pre-synaptic marker, VGLUT1, and did not find VGLUT1 apposed to spines in 

neurons with ACTN2 knocked down (Figure 22A, B).  In these neurons, VGLUT1 only 

juxtaposed spines in a few places along the dendrite shaft, presumably in synaptic 
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Figure 21: ACTN2 knockdown prevents assembly of post-synaptic molecules. 

A) ACTN2 knockdown prevents the recruitment and assembly of PSD-95 to 

spines.  Hippocampal neurons were co-transfected at DIV 6 with GFP and 

either a control empty vector or an shRNA vector against ACTN2 and fixed 

and immunostained for endogenous PSD-95 (magenta) on DIV 22.  Scale = 5 

µm. 

B) Quantification of the number of spines with co-localization of PSD-95 per 

total number of spines on DIV 19-24 neurons.  Significantly fewer spines on 

neurons with ACTN2 knocked down harbor PSD-95.  For each condition, 21 

– 25 neurons were analyzed.  Error bars represent SEM. *p = 0.001, Student t-

test.  

C) On DIV 19 – 24 neurons, significantly more PSD-95 co-localizes with the 

dendrite shaft in neurons with ACTN2 knocked down in comparison to 

control neurons.  For each condition, 24 – 25 neurons were analyzed.  Error 

bars represent SEM. *p = 0.002, Student t-test.  

D) ACTN2 knockdown prevents the recruitment of the NMDA-type glutamate 

receptor to the spine.  Hippocampal neurons were co-transfected at DIV 6 

with SEP-NR1 (magenta) and either a control empty vector or an shRNA 

vector against ACTN2 and fixed and immunostained for rhodamine-phalloidin 

(green) on DIV 22.  Scale = 5 µm. 
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Figure 22: ACTN2 knockdown prevents excitatory synapse formation. 

A) ACTN2 knockdown prevents synapse formation with excitatory pre-synaptic 

axons.  Hippocampal neurons were co-transfected at DIV 6 with GFP and 

either a control empty vector or an shRNA vector against ACTN2 and fixed 

and immunostained for endogenous VGLUT1 (magenta) on DIV 15.  Scale = 

5 µm.  

E) Quantification of the number of spines juxtaposed to VGLUT1 per total spine 

number on DIV 21 neurons.  Significantly fewer spines are in contact with 

excitatory pre-synaptic boutons in neurons with ACTN2 knocked down in 

comparison to control neurons.  For each condition, 8 neurons were analyzed.  

Error bars represent SEM. *p = 0.001, Student t-test.  

B) Actively firing pre-synaptic boutons do not synapse with dendritic protrusions 

on neurons lacking ACTN2.  Hippocampal neurons were co-transfected at 

DIV 6 with GFP and either a control empty vector or an shRNA vector against 

ACTN2 and treated with FM4-64 (magenta) for 5 min on DIV 19 and 

observed live.  Scale = 5 µm.  
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contact with non-glutamatergic synapses.  In contrast, VGLUT1 apposed most spines 

of control neurons (Figure 22A, B).  We found the same results with neurons briefly 

exposed to the lipophilic styryl dye, FM4-64, which marks actively firing synapses 

(Figure 22C).  This implies that the filopodia-like protrusions of neurons deficient of 

ACTN2 do not form synapses with potentiated axons, as they lack functional components 

of the PSD, including PSD-95 and the NMDA receptor. 

 

ACTN2 Phosphorylation Determines Unique Spine Morphologies 

It is uncertain how ACTN2 is regulated to determine spine morphology and post-

synaptic organization.  Interestingly, both over expression and depletion of ACTN2 result 

in thinner spines (Figures 19A, D and 23C, D) (Nakagawa et al., 2004), therefore it is 

possible that ACTN2 activity is controlled to fine tune its interactions with putative 

binding partners in the PSD.  Within its actin-binding domain, ACTN2 shares a 

conserved tyrosine residue with α-actinin-1 (Figure 5), which is phosphorylated by FAK 

in migrating cells (Izaguirre et al., 2001; Wichert et al., 2003).  In fibroblasts, 

phosphorylation on α-actinin-1-Y12 by FAK reduces its binding affinity for actin 

filaments (Izaguirre et al., 2001), and thereby promotes adhesion and actin bundle 

disassembly (Wichert et al., 2003).  To assess whether ACTN2 is similarly tyrosine 

phosphorylated, exogenous ACTN2 was immunoprecipitated from COS-7 cells treated 

with or without orthovanadate, a tyrosine phosphatase inhibitor, and immunoblotted for 

phospho-tyrosine (p~Tyr).  The p~Tyr signal on ACTN2 was significantly higher in cells 

treated with orthovanadate (Figure 23A), suggesting that ACTN2 is phosphorylated on 

tyrosine residues in intact cells.  To determine whether tyrosine phosphorylation  
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Figure 23: ACTN2 phosphorylation determines unique spine morphologies. 

A) ACTN2 is phosphorylated on tyrosine residues in vitro.  COS-7 cells were 

transfected with ACTN1-GFP or ACTN2-GFP and treated with or without 

orthovanadate for 24 hours before lysis and immunoprecipitation of GFP.  

Immunoprecipitates were immunoblotted with a p~Tyr antibody (4G10).  GFP 

immunoblot serves as a loading control.  

B) Non-phosphorylatable ACTN2-Y19F causes a slight decrease in p~Tyr signal. 

COS-7 cells were transfected with ACTN1-GFP-WT, -Y12F, ACTN2-GFP-

WT, or –Y19F and treated with orthovanadate for 24 hours before lysis and 

immunoprecipitation of GFP.  Immunoprecipitates were immunoblotted with 

a p~Tyr antibody (4G10).  GFP immunoblot serves as a loading control.  

C) ACTN2-WT over-expression creates thin spine morphologies and ACTN2-

Y19F over-expression restores normal spine morphologies.  Hippocampal 

neurons were transfected with GFP alone or in combination with ACTN2-WT 

or ACTN2-Y19F and fixed on DIV 21. 

D) ACTN2-WT over-expression induces thinner spine heads. 

E) ACTN2-Y19F over-expression induces normal spine head widths.  
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occurs on ACTN2-Y19, the residue was mutated to a phenylalanine, rendering it non-

phosphorylatable.  In comparison to wild type ACTN2, the non-phosphorylatable mutant, 

ACTN2-Y19F, induced a slight decrease in p~Tyr signal (Figure 23B), indicating that 

Tyr19 is a potential site for phosphorylation.  However, ACTN2-Y19 is not a major site 

of tyrosine phosphorylation, as there was still a strong p~Tyr signal on ACTN2-Y19F, 

indicating there are other tyrosine residues on the molecule that are possibly 

phosphorylated.  To ascertain whether the non-phosphorylatable mutant could influence 

spine morphology, exogenous ACTN2-WT or ACTN2-Y19F were co-expressed with 

soluble GFP in neurons and imaged on DIV 21.  In agreement with previous findings 

(Nakagawa et al., 2004), ACTN2-WT over-expression induces significantly smaller spine 

head widths in comparison to neurons expressing only GFP (Figure 23C, D).  However, 

exogenous expression of the non-phosphorylatable ACTN2 mutant, ACTN2-Y19F, 

created mature spine morphologies with normal spine head widths in comparison to 

neurons expressing GFP alone (Figure 23C, E).  This suggests that ACTN2 can be 

dynamically regulated by phosphorylation on its actin-binding domain to create distinct 

spine morphologies. 

 

Discussion 

The actin cross-linking protein, α-actinin, plays a central role in organizing actin 

filaments at various sub-cellular locations, including stress fibers (Burridge and Wittchen, 

2013), the lamellipodia of migrating cells (Small et al., 2002), cell-matrix adhesions 

(Choi et al., 2008), cadherin-based cell-cell junctions (Knudsen et al., 1995), glomerular 

podoctyes (Dandapani et al., 2007), and neuronal synapses (Wyszynski et al., 1998; Otey 
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and Carpen, 2004).  In addition to cross-linking actin, α-actinin interacts with various 

transmembrane proteins, linking them to the cytoskeleton, and scaffolds signaling 

pathways at actin-rich regions (Otey and Carpen, 2004).  Thus, the versatile role of α-

actinin at sub-cellular locations directly contributes to the distinct cellular functions 

comprising different types of tissues.  Within excitatory hippocampal neurons, it is now 

clear from our work that ACTN2 serves to assemble key components of the PSD in 

dendritic spines, regulate synaptogenesis, and direct the morphogenesis of a filopodia-

like protrusion into a mature spine.  

 

Functional Mechanisms for ACTN2 in Dendritic Spines 

Despite the importance of ACTN2 in shaping dendritic spines and assembling the 

PSD at the synapse, a clear mechanism for its function in spines remains unresolved.  In 

fibroblasts and epithelial cells, α-actinin is involved in coupling integrins to actin 

filaments at focal adhesions and the cadherin complex to the actin cytoskeleton at cell-

cell junctions via an α-catenin-α-actinin linkage (Otey et al., 1990; Pavalko and 

LaRoche, 1993; Knudsen et al., 1995).  Biochemical studies in vitro suggest that ACTN2 

binds directly to the NR1 and NR2B subunits of the NMDA receptor (Wyszynski et al., 

1997)and functions to maintain the receptor in an open state (Krupp et al., 1999), 

coupling it to the actin cytoskeleton.  Domain mapping indicates that the binding site for 

NR1 is localized to the fourth spectrin repeat of ACTN2 (Wyszynski et al., 1997).  This 

is a hypothesis that we could test using an ACTN2 mutant with its fourth spectrin repeat 

deleted.  
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ACTN2 Regulation in Dendritic Spines 

The differences in spine morphology induced by over expression of ACTN2-WT 

versus non-phosphorylatable mutant, ACTN2-Y19F, suggest that ACTN2 may be 

regulated by phosphorylation within it actin-binding domain to create distinct spine 

morphologies. Since exogenous ACTN2-Y19F created normal, mature spine 

morphologies, mechanisms may exist within dendritic spines to prevent phosphorylation 

on ACTN2-Y19 during spine maturation.  In migrating fibroblasts, FAK phosphorylates 

α-actinin-1 on the conserved tyrosine residue (Y12), mediating its dissociation with actin 

and promoting focal adhesion turnover (Wichert et al., 2003). It remains to be determined 

whether FAK, which localizes to dendritic spines, phosphorylates ACTN2 in neurons or 

whether this tyrosine residue on ACTN2 is a substrate for tyrosine phosphorylation in 

dendritic spines.  FAK is an important signaling molecule in dendritic spines, as it 

traduces EphB2 signals to activate RhoA, which regulates the actomyosin to drive spine 

morphogenesis (Moeller et al., 2006).  Unlike fibroblasts where adhesions must 

disassemble for the cell to advance, post-synaptic adhesions of spines must be stabilized 

to remain in synaptic contact with an axon.  Therefore, it seems likely that endogenous 

ACTN2 is protected from phosphorylation at this site in order to promote spine 

maturation. 

Since in vitro studies found that phosphorylation on α-actinin-1-Y12 reduced its 

binding affinity to F-actin (Izaguirre et al., 2001), then the mature spine head 

morphology, induced by ACTN2-Y19F over expression, may be due to an increased 

interaction between ACTN2 and actin filaments.  This could also imply a stronger 

association between PSD molecules and the actin cytoskeleton, bridged through ACTN2-
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Y19F.  FAK-mediated phosphorylation on α-actinin-1 hinders the integrin-

cytoskeleton linkage, stimulating turnover of focal adhesions (Wichert et al., 2003).  The 

PSD can be thought of as an adhesive complex (Vicente-Manzanares et al., 2009b), and 

increased stability of the PSD, which reinforces trans-synaptic connections, is required 

for spine maturation (Dalva et al., 2007; Ehrlich et al., 2007; Lucido et al., 2009; Benson 

and Huntley, 2012).  Presumably, an increased interaction between ACTN2 and F-actin is 

concomitant with more F-actin bundling in the spine.  To address this, FRAP experiments 

are currently being performed on GFP-actin in spines of neurons co-expressing the 

shRNA with either RNAi-resistant ACTN2-WT or ACTN2-Y19F.  If ACTN2-Y19F 

enhances F-actin cross-linking activity, then GFP-actin should show significantly reduced 

turnover in spines expressing the non-phosphorylatable ACTN2 mutant.  Increased actin 

cross-linking could serve to cluster the myriad of PDZ- and LIM-containing proteins in 

the PSD, recruiting other actin-binding proteins to the PSD, and therefore promoting its 

enlargement.  This may account for the smaller PSD size that is observed in spines over-

expressing wild type ACTN2 (Nakagawa et al., 2004).    

It is particularly interesting that ACTN2, an isoform that is well known for it role 

in striated muscle, is also enriched within the PSD of dendritic spines.  ACTN2 is unique 

from the other α-actinin isoforms (1 and 4) reportedly enriched in PSD fractions, in that 

it’s EF-hand domain has several missing amino acids, rendering the molecule insensitive 

to calcium.  Calcium binding to non-muscle α-actinin isoforms (1 and 4) reduces their 

binding affinity for actin (Burridge and Feramisco, 1981), a major mechanism in 

regulating the biological activity of these isoforms in migrating cells.  Since the NMDA 

receptor mediates calcium influx and ACTN2 is proposed to couple the NMDA receptor 
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to the actin cytoskeleton, the calcium insensitivity displayed by ACTN2 may serve a 

unique function in dendritic spines, particularly in stabilizing the NMDA receptor at the 

PSD despite high concentrations of calcium.  Support for this comes from a study 

showing that calcium-sensitive α-actinin isoforms do not compete with Ca2+/calmodulin 

to prevent NMDA receptor inactivation in-vitro (Krupp et al., 1999).  To test the 

hypothesis that calcium-insensitivity is critical for the function of ACTN2, the EF-hand 

of ACTN2 is being swapped with the calcium-sensitive EF-hand of ACTN4.  We will co-

express the calcium-sensitive ACTN2 mutant (ACTN2-EF4) with the shRNA and 

observe whether ACTN2-EF4 can rescue the spine morphology effects induced by 

ACTN2 knockdown, as rescued by wild-type ACTN2.  

 

Conclusions 

The orchestrated actions of actin binding proteins that organize the actin 

cytoskeleton, such as ACTN2, appear to be essential to the structural stability of the 

neuronal synapse (Rajfur et al., 2002).  Here, we show that inhibition of ACTN2 during 

early spine development prevents the formation of a PSD, while inhibition during mid-

development causes the disassembly of the PSD within the spine.  ACTN2 serves as a 

platform that might affect the assembly of many protein constituents of the PSD through 

direct interactions with molecules like the NMDA receptor, densin-180, and CaMKII 

(Robison et al., 2005b).  Lacking a PSD, spines without ACTN2 do not form synapses, as 

the pre-synaptic marker V-GLUT1 is not juxtaposed to these spines (Figure 22).  Since 

neurons with ACTN2 knocked down do not have a functional synapse, they do not 

mature in response to chemical stimulation.  Neurons lacking ACTN2 have an increased 
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density of filopodia-like protrusions that fail to develop into mature, mushroom-

shaped spines.  Furthermore, ACTN2 can be regulated by phosphorylation within its 

actin-binding domain to create distinct spine morphologies.  Thus, its potential 

interactions with cytoskeletal, membrane-associated, and regulatory signaling molecules 

make ACTN2 an ideal constituent of the actin machinery to regulate synaptogenesis and 

spine maturation.  The loss of function data for ACTN2, provided here, serves as a 

framework upon which future studies can build to elucidate the many functions of 

ACTN2 in determining spine morphology and organizing the PSD, all of which are 

critical cellular processes underlying synaptic plasticity. 

 

Materials and Methods 

Antibodies and reagents.  α-Actinin-2 polyclonal antibody was obtained from 

Epitomics and used at a ratio of 1:100.  Postsynaptic density-95 (PSD-95) monoclonal 

antibody, used at ratio of 1:100 for immunostaining, and synaptophysin monoclonal 

antibody, used at a ratio of 1:1000 for immunostaining, were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA).  GFP polyclonal antibody was obtained from 

Invitrogen and used at a ratio of 1:250.  VGLUT1 monoclonal antibody was purchased 

from Synaptic Systems (Goettingen, Germany) and used at a ratio of 1:1000.  Secondary 

anti-mouse, anti-rabbit, and anti-guinea pig antibodies conjugated to Alexa488, 568 and 

647 were from Invitrogen.  Tetrodotoxin and strychnine were purchased from Sigma (St. 

Louis, MO) and reconstituted in dH2O.  Rhodamine phalloidin was purchased from 

Cytoskeleton (Denver, CO) and used at a ratio of 1:100.  FM4-64FX was purchased from 

Invitrogen.  Sodium vanadate was purchased from Fisher Scientific. 



 138 
Plasmids.  Human α-actinin-2-GFP was obtained from Origene (Rockville, 

MD) and cloned into a GFP-N1 vector via EcoRI and BsrG1, which cuts out the GFP tag.  

An ON-TARGETplus set of 4 siRNA sequences of rat ACTN2 were purchased from 

Dharmacon-Thermo Scientific and cloned into the pSUPER cassette according to the 

vector manufacturer’s instructions (Oligoengine).  The oligonucleotide 

ATGAGAGGCTAGCGAGTGA, corresponding to nucleotides 938 – 956 of rat α-

actinin-2 mediated knock down of endogenous ACTN2.  siRNA- insensitive α-actinin 

was generated by site-directed mutagenesis (Quickchange kit, Stratagene) introducing 

one silent mutation (AGT to TCC: Ser to Ser) in the RNAi target region of human α-

actinin2, which shares 100% homology with rat.  pC1-SEP-NR1 was obtained from 

Addgene (Kopec et al., 2006). 

Neuronal culture and transfection.  Low-density hippocampal cultures were 

prepared from E19 rat embryos as described previously (Zhang et al., 2003).  All 

experiments were carried out in compliance with the Guide for the Care and Use of 

Laboratory Animals of the National Institutes of Health and approved by the University 

of Virginia Animal Care and Use Committee (Protocol Number: 2884).  Neurons were 

plated on glass coverslips coated with 1 mg/ml poly-L-lysine at an approximate density 

of 70 cells/mm2 and were transfected using a modified calcium phosphate precipitation 

method as described previously (Zhang et al., 2003).  For the chemical stimulation 

experiments (Figure 20), neurons were chronically treated with 100uM of the NMDA 

receptor antagonist, AP-5, from DIV 6-21 to inhibit NMDA receptor activation and spine 

maturation.  Neurons were removed from the glia-feeder layer and placed in 1 X Mg2+-

free extracellular solution containing 15mM NaCl, 0.5mM KCl, 0.2mM CaCl2, 3mM 
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glucose, 1mM Hepes, 0.5uM tetrodotoxin, and 1uM strychnine, pH7.4 (Park et al., 

2004).  Neurons were then stimulated by AP-5 withdrawal and 200uM glycine, incubated 

at 35°C, 5% CO2 for 3 min, while control neurons continued in the presence of AP-5 

(200uM).  The solution is removed and replaced with 1 X Mg2+-free extracellular 

solution with tetrodotoxin and strychnine and incubated at 35°C, 5% CO2 for 20 minutes 

before fixation, as described by others (Liao et al., 2001; Lin et al., 2004).   

 Immunocytochemistry. Neurons were fixed in PBS containing 4% formaldehyde, 

methanol-free, ultra-pure EM grade (Polysciences, Inc., Warrington, PA) with 4% 

sucrose for 20 min at room temperature and permeabilized with 0.2% Triton X-100 for 

10 min. Alternatively, for PSD-95 and ACTN2 staining, neurons were simultaneously 

fixed and permeabilized in 2% formaldehyde with 4% sucrose for 10 min at room 

temperature and then with cold methanol for 10 min at -20°C. After blocking with 20% 

goat serum/PBS for one hour at room temperature, the neurons were incubated with the 

appropriate antibodies in 5% goat serum/PBS for one hour at 37°C.  Coverslips were 

mounted with Vectashield mounting media (Vector Laboratories, Burlingame, CA). 

Imaging and analysis.  Confocal images were collected on an Olympus Fluoview 

1000 microscope (IX81 base) equipped with a 60X/1.35 NA (oil) UPLSAPO 60X 

objective (Olympus). Green probes (GFP and Alexa488) were excited using the 488 nm 

laser line of a multi Ar laser; red probes (DsRed2 and Alexa568) were excited with the 

543 nm laser line of a He-Ne laser; the far-red probe Alexa647 was excited with the 635 

nm line of an LD laser.  Fluorescence emission was collected using the following 

dichroic mirror/filter combinations: SDM560/BA505-525 (GFP), SDM640/BA560-620 

(DsRed2, Alexa568 and RhodamineX) and BA655-755 (Alexa647). Two-color 
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fluorescence images of Alexa488 (GFP)/Alexa568 (RhodamineX/DsRed2) were 

collected in a Z-stack and in sequential mode.  Images were acquired using Fluoview 

software (Olympus).  Spine length, width, and PSD-95 area were quantified using Image 

J software.  Statistical analysis was performed using Sigma Plot 11. Spine morphologies 

were defined as either filopodia-like, thin, mushroom, or stubby (Yuste and Bonhoeffer, 

2004).  Filopodia-like spines are long and thin without a spine head, whereas thin spines 

contain a small head at the spine tip.  Mushroom-shaped spines are shorter with a large 

spine head atop a neck.  Stubby spines are short protrusions, either thin or wide, with no 

discernable neck. 
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Actin bundling and contractility are not functions typically associated with the 

nervous tissue; but we show here that contractility, mediated by MIIB, and actin cross-

linking, driven by both MIIB and ACTN2, are integral components of excitatory post-

synaptic development and plasticity.  Prior to this study, the role(s) of ACTN2 and MIIB 

in post-synaptic plasticity, and more specifically, the organization of the post-synaptic 

density concomitant with spine morphology dynamics, was unclear.  I have shown that 

ACTN2 is required for the recruitment and assembly of the PSD in dendritic spines; 

whereas MIIB is necessary for the localization of the PSD to the spine head and 

organization of the PSD (Hodges et al., 2011).  Both molecules are also required for the 

morphological maturation of the spine in response to chemical activation of the NMDA-

type glutamate receptor.  Furthermore, ACTN2 and MIIB activities are regulated during 

spine morphogenesis:  possible phosphorylation on the actin-binding domain of ACTN2 

and phosphorylation of the myosin II RLC.  Specifically, the di-phosphorylation of RLC 

by ROCK lies downstream of NMDA-type glutamate receptor activation and is required 

for spine and PSD maturation.  Thus, the coordinate actions of ACTN2 and MIIB in 

organizing the actin cytoskeleton are required for proper spine morphogenesis and post-

synaptic assembly. 

 

Coordinate actions of α-actinin and myosin II on spine and PSD morphogenesis 

Actin polymerization and organization of actin are the driving force behind 

dendritic spine morphogenesis, and ACTN2 and MIIB are integral components of the 

actin machinery in spines.  The possible mechanisms for the coordinate actions of 

ACTN2 and MIIB on spinogenesis, spine maturation, and assembly and organization of 
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the PSD, based on our studies, are discussed below.  All of this research has also 

drawn insight from their potential parallels in the adhesion and protrusion of migrating 

cells to elucidate their individual functions in driving spine morphogenesis and post-

synaptic organization.  

 

Spinogenesis 

 Spinogenesis involves the emergence of a filopodia-like protrusion from the 

dendrite.  Protrusion requires the polymerization of actin filaments pushing against the 

membrane.  The requirement for both the formin, Dia2, and the Arp2/3 complex in spine 

development (Wegner et al., 2008; Hotulainen et al., 2009) suggest that both branched 

and linear actin polymerization induce filopodia-like dendritic protrusions.  

Corroborating this, a mixture of branched and linear filaments are observed in dendritic 

spines (Korobova and Svitkina, 2010).  ACTN2 and MIIB appear to be dispensable for 

the growth of filopodia-like protrusions, since knock down of either molecule forms 

filopodia-like spine precursors.  However, the diminished amounts of F-actin observed in 

the filopodia-like protrusions of neurons lacking ACTN2 suggest that ACTN2-mediated 

actin-crosslinking stabilizes and enriches actin filaments in dendritic protrusions.  

Actin cross-linking through ACTN2 and MIIB may better stabilize the actin 

filaments polymerizing at the membrane, which mediate protrusion.  Support for this 

comes from findings that over-expression of either ACTN2 or the non-contractile myosin 

mutant, MIIB-R709C, which cross-links but does not contract actin, induces longer spine 

lengths.  This also indicates a requirement for contraction of actin, through MIIB, to 

produce normal protrusion lengths. 
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Spine maturation  

  Spine maturation involves expansion of the spine head and shortening at the neck 

to generate the mature, mushroom-shaped morphology, which is a structural hallmark of 

activity-induced plasticity (Sekino et al., 2007).  Spine head enlargement requires both 

exocytic trafficking of membrane components via the Rab/Arf family of GTPases to 

increase the post-synaptic membrane surface area (Park et al., 2006), and actin 

polymerization (Fukazawa et al., 2003).  Actin polymerization in the spine head appears 

analogous to the polymerization of actin filaments in the lamellipodium of migrating 

cells, where similar molecules localize, including the Arp2/3 complex, cofilin, and α-

actinin (Small et al., 2002; Pollard and Borisy, 2003).  Cooperation between these 

molecules mediates the broad expansion of the spine head during maturation.  For 

example, the severing of actin filaments by cofilin creates new barbed-ends within the 

spine for nucleation of branched filaments by Arp2/3 complex.  Since α-actinin can 

cross-link actin filaments over a wide spectrum of angles (Courson and Rock, 2010), 

ACTN2 may help to stabilize the branched network of actin filaments nucleated by the 

Arp2/3 complex; this is consistent with its presence in the dendritic actin network of 

lamellipodia.  Additionally, cofilin enhances the cross-linking of actin filaments by α-

actinin, by increasing potential binding sites for α-actinin-actin cross-linking (Bonet et 

al., 2010).  Therefore, the coordinate actions of ACTN2, Arp2/3, and cofilin may 

synergize to orchestrate organization and stabilization of actin polymerization within the 

spine head and direct its enlargement. 
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 Spine shortening during maturation requires contraction of actin filaments by 

MIIB.  Long protrusions extend from the spine head in neurons lacking MIIB (Hodges et 

al., 2011).  These observations suggest that MIIB restricts protrusiveness of the spine, 

analogous to how myosin II controls leading edge protrusion rates of migrating cells by 

increasing retrograde flow of actin.  Immunogold EM labeling reveals that MIIB 

localizes predominantly to the spine neck and the lower part of the spine head (Korobova 

and Svitkina, 2010).  Therefore, MIIB appears to contract actin filaments within the spine 

neck to control spine length and spine head protrusion.  

 Data from myosin II in migrating fibroblasts suggests that MIIB could localize 

protrusive signals, i.e., Rho GTPase activation, to the spine tip where dendritic actin 

polymerization mediates spine head expansion during maturation.  Fibroblasts expressing 

exogenous RLC-DD exhibit front-back polarity and localize Rac GEF’s, including 

Dock180 and β-Pix, in the protrusion away from actomyosin bundles that reside on the 

sides and rear of the polarized cell (Vicente-Manzanares et al., 2011).  Dock180 and β-

PIX are evenly distributed around the cell periphery in cells with MIIB knocked down, 

indicating that myosin activity, promoted by di-phosphorylation of its regulatory light 

chain, restricts protrusive signaling to the front of the migrating cell (Vicente-Manzanares 

et al., 2011).  Both β-PIX and Dock180 localize to dendritic spines and are important for 

spine formation, as inhibition of either GEF results in a decreased dendritic protrusion 

density (Zhang et al., 2003; Kim et al., 2011).  Furthermore, proper localization of β-PIX 

to dendritic spines is required for locally regulated Rac activity in spines (Zhang et al., 

2003; 2005).  Increased MIIB activity through RLC di-phosphorylation may reciprocally 

confine Dock180 and β-PIX to the spine tip away from MIIB, thereby restricting 
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protrusive signaling to the spine head.  Interestingly, MIIB activity functions 

downstream of the GIT1/PIX/Rac/PAK signaling module to promote spine and synapse 

formation (Zhang et al., 2005).  Therefore, an intriguing model of LTP-induced spine 

maturation involves signaling through the GIT1/PIX/Rac/PAK cascade in response to 

NMDA-type glutamate receptor activation, resulting in di-phosphorylated RLC and 

increased MIIB activity, which could further restrict protrusive signals to the spine head, 

thereby promoting polarized expansion of the spine head, concomitant with spine 

maturation. 

 

PSD assembly and organization 

 As the spine matures from a filopodia-like spine protrusion, PSD components are 

recruited (Gerrow et al., 2006) and assemble in spines (Figure 1A).  We find that ACTN2 

is indispensible for either the recruitment or assembly of a PSD in the spine (Figure 21).  

Nascent adhesion formation in migrating cells is coupled to polymerized actin and the 

adhesions then grow along an actin-α-actinin template (Alexandrova et al., 2008; Choi et 

al., 2008).  Using this as an analogy, we find that neurons lacking ACTN2 have 

diminished levels of F-actin content in their spines, which provides a possible mechanism 

for why a PSD does not assemble in these actin-attenuated protrusions.  In α-actinin-

deficient fibroblasts, the lamellipodium is aborted and adhesions are short and mis-

orientated and do not mature, suggesting that α-actinin is required to organize actin into 

an orientation appropriate for adhesion assembly (Choi et al., 2008).  Similarly, actin 

cross-linking by ACTN2 may be required to organize actin filaments in the dendritic 

protrusion, and promote formation and expansion of the PSD.  An additional mechanism 
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for recruitment of PSD molecules to the spine via ACTN2 could occur through its 

putative binding interactions with components of the PSD, including densin-180, 

CaMKIIα, and the NR1 and NR2B subunits of the NMDA-type glutamate receptor 

(Wyszynski et al., 1997; Robison et al., 2005a).  Therefore, ACTN2 may nucleate 

assembly and growth of the PSD through direct recruitment of PSD molecules, and 

scaffold these proteins to actin filaments. 

This model also suggests a mechanism for spine elimination via removal of 

ACTN2 and disassembly of the PSD.  This could occur by weakening the affinity of 

ACTN2 for actin, possibly through phosphorylation on its actin-binding domain.  In 

fibroblasts, adhesion disassembly can be mediated by a reduction in the affinity of α-

actinin for actin through phosphorylation of its actin-binding domain by FAK (Izaguirre 

et al., 2001; Wichert et al., 2003). This also suggests that there are mechanisms in place 

to prevent phosphorylation on the actin-binding domain of ACTN2 in dendritic spines, so 

that the PSD is stabilized at the post-synaptic membrane.  

Ultrastructural studies reveal that ACTN2 concentrates at the post-synaptic 

membrane co-localizing with the PSD (Wyszynski et al., 1998).  GFP-MIIB and 

endogenous ACTN2 are spatially segregated in the spine, with ACTN2 localizing 

towards the tip of the spine (Figure 17).  When MIIB is knocked down, ACTN2 becomes 

less clustered, similar to NMDA receptor mis-distribution and concomitantly with PSD 

disorganization (Figure 16).  These observations support the localization of ACTN2 in 

the spine head, where it can maintain the PSD scaffold. 

MIIB is dispensable for the initial assembly of a PSD in the spine.  Although 

knockdown of MIIB creates filopodia-like protrusions, these immature protrusions 
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contain PSD components, albeit they are mislocalized and not organized into a 

distinct cluster.  Studies of myosin II contractility in fibroblasts revealed that actin cross-

linking, not contraction, mediates the initial steps in adhesion maturation, since 

expression of a MIIA non-contractile mutant rescued adhesion elongation in MIIA 

knockdown cells (Choi et al., 2008).  Similarly, we find a normal-sized PSD in the spines 

of neurons over-expressing a non-contractile MIIB mutant (Figure 12) (Hodges et al., 

2011).   

MIIB, however, is indispensable for the organization of the PSD, as the PSD in 

neurons lacking MIIB is elongated in morphology, and mislocalized away from the spine 

tip (Figure 15) (Hodges et al., 2011).  Disorganization of the PSD via inhibition of MIIB 

activity leads to less clustering of the NMDA-type glutamate receptor (Figure 16), which 

may explain the inhibition of excitatory synaptic transmission in these neurons (Ryu et 

al., 2006).  Furthermore, increased MIIB activity through either exogenous expression of 

wild-type MIIB or RLC-DD, but not RLC-AD, creates a larger PSD area and promotes 

spine maturation (Figures 12, 13) (Hodges et al., 2011). Thus, MIIB activity localizes the 

PSD to the tip of the spine and promotes its growth. 

To dictate PSD maturation, I propose that myosin II filaments are organized 

within the spine neck, as supported by ultrastructural studies (Korobova and Svitkina, 

2010), and pull on actin in the spine head, tethered to PSD molecules.  Our 

immunofluorescence studies indicate a spatial segregation between GFP-MIIB and 

endogenous PSD-95, with only partial overlap between the molecules at the base of the 

PSD.  This would imply that MIIB activity dictates PSD maturation at a distance within 

the spine, similar to its behavior in fibroblast cells. 
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Parallels with cell-cell junctions 

 Synapse formation exhibits many similarities with junction assembly between 

epithelial and endothelial cells.  Analogous to spine growth and spine head expansion, 

formation of adherens junctions requires protrusion of the membrane via polymerization 

of both branched actin filaments, nucleated by Arp2/3 complex, and elongation of 

unbranched actin filaments, nucleated by formins (Collinet and Lecuit, 2013).  As the 

junction matures, myosin II activity re-organizes radial actin bundles into bundled actin 

filaments aligned parallel to the contact (Collinet and Lecuit, 2013).  Just as MIIB is 

required for the clustering of NMDA-glutamate receptors at the spine tip (Figure 16), 

myosin II activity regulates cell-cell adhesion by concentrating E-cadherins at the 

junction (Shewan et al., 2005).  Inhibition of myosin II activity or upstream Rho kinase 

signaling caused decreased accumulation of E-cadherin at cell-cell contacts without 

affecting the total surface expression of E-cadherin (Shewan et al., 2005).   

Unlike dendritic spines, which only contain MIIB, both myosin-IIA (MIIA) and –

IIB concentrate at cell-cell junctions and these isoforms serve different functions on 

junction formation.  Whereas MIIA is required for the clustering of E-cadherin at 

junctions, MIIB is necessary to support the integrity of the perijunctional actin ring to 

prevent fragmentation of E-cadherin clusters at the junction (Smutny et al., 2010).  

Furthermore, neither over-expression of MIIA nor expression of the motor-deficient 

MIIB mutant, MIIB-R709C, could rescue junction integrity in MCF-7 cells with MIIB 

knocked down, suggesting that MIIB-mediated contractility is necessary for its effects at 

cell-cell contacts to mechanically reinforce junctions to resist disruptive forces (Smutny 
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et al., 2010).  The differences between the functions of the myosin II isoforms on 

supporting adherens junctions are hypothesized to reflect the different motor properties 

displayed by the myosin isoforms (Smutny et al., 2010).  MIIB has a longer duty ratio 

than MIIA, which allows it to bind to actin longer and generate more contractile force (La 

Cruz and Ostap, 2004; Vicente-Manzanares et al., 2009c).  An attractive hypothesis for 

the expression of MIIB at hippocampal synapses, and not MIIA, is that the intrinsic 

motor properties of MIIB make it the ideal isoform to maintain adhesive strength at the 

synapse and prevent turnover of the adhesive PSD in the spine.  

 ACTN2 is required for synapse formation and dendritic spines on neurons with 

ACTN2 knocked down accumulate less actin, as seen by rhodamine-phalloidin staining 

(Figure 21C).  Similarly, knockdown of α-actinin-4 in MDCK cells inhibits actin 

assembly at the apical junction (Tang and Brieher, 2012).  Although a mechanism for α-

actinin-4-mediated nucleation of actin assembly at E-cadherin junctions is unclear, this 

group found that the association between α-actinin-4 and the membrane, rather than it’s 

F-actin bundling activity, was required for Arp2/3-dependent actin assembly (Tang and 

Brieher, 2012).  ACTN2 localizes to the post-synaptic membrane (Wyszynski et al., 

1998), and therefore its direct or indirect linkage to the post-synaptic membrane may 

nucleate actin accumulation at post-synaptic protrusions, followed by assembly of the 

PSD in actin-rich protrusions.  The association of ACTN2 with the post-synaptic 

membrane may occur indirectly through interactions with α-catenin (Knudsen et al., 

1995; Catimel et al., 2005), but whether the cadherin-α-catenin complex is required for 

the localization of α-actinin to the synapse or cell-cell junctions is unknown. 
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Tension-generated signaling at synapses 

Tension-generated signaling is an unexplored role for myosin II in spine 

development and response to stimuli.  Tension can modulate adhesive signaling through 

phosphorylation of adhesion molecules like FAK, Src, CrkII–p130(Cas) complex, and 

paxillin (Tilghman and Parsons, 2008).  These non-receptor tyrosine kinases localize to 

dendritic protrusions and may play a role in transducing tension-based signaling between 

trans-synaptic adhesion proteins and myosin II.  EphB-mediated morphogenesis of 

immature spines into mature, mushroom-shaped spines leads to increased tyrosine 

phosphorylation of FAK, Src, and paxillin, which is transduced onto RhoA activation.  

Cre-mediated excision of FAK blocked EphB-mediated morphogenesis of dendritic 

protrusions, due to decreased RhoA signaling (Moeller et al., 2006).  RhoA-GTP 

activates ROCK, which phosphorylates RLC and thereby activates myosin in dendritic 

spines (Hodges et al., 2011).  Thus, increased myosin II activity mediates EphB-induced 

spine morphogenesis, and pTyr levels may serve as a biochemical marker for the state of 

tension in the dendritic protrusion.  

The observation that RhoA-GTP signaling acts downstream of FAK activation to 

direct EphB-induced spine morphogenesis suggests that myosin II activity may positively 

feedback on the FAK/Src/paxillin complex to restrict their adhesive signaling to the spine 

head.  Highly Tyr-phosphorylated dynamic adhesions, including p130(Cas) and pY(118)-

paxillin, are seen at the protrusive leading-edge of migrating cells, and exogenous 

expression of RLC-DD in fibroblasts restricts this adhesive signaling to the front of the 

cell away from actomyosin bundles (Vicente-Manzanares et al., 2011).   Similarly, MIIB 

activity, via RLC-phosphorylation, may restrict adhesive signals to the spine tip.  
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Integrins have been shown to mediate functional maturation of hippocampal 

synapses (Chavis and Westbrook, 2001; Webb et al., 2007), and adhesion molecules, 

such as integrin or talin, are proposed to undergo conformational changes in response to 

tension applied to adhesions (Del Rio et al., 2009; Friedland et al., 2009).  

Mechanotransduction takes place at cell-cell junctions, specifically at the cadherin-F-

actin interface (Borghi et al., 2012; Huveneers and de Rooij, 2013).  N-cadherin and its 

associated molecules, α-catenin, β-catenin, and p120-catenin, play a major role in 

dictating spine morphogenesis (Mysore et al., 2008).  Furthermore, post-synaptic N-

cadherin affects pre-synaptic neurotransmitter release in trans (Vitureira et al., 2011), 

supporting a role for N-cadherins mediating mechanotransduction at neuronal synapses.  

MIIB-induced reorganization of the actin cytoskeleton may exert mechanical force at the 

post-synaptic membrane that is sensed by N-cadherin.  The finding that VE-cadherin 

signals to ROCK-dependent RLC phosphorylation to increase actomyosin contractility, 

supports the notion of actomyosin-generated tension signaling at synapses (Abraham et 

al., 2009).  

The observation that adhesive contact triggers development of an axon bouton, 

containing synaptic vesicles docked at the pre-synaptic membrane, provides further 

support for mechanotransduction between the pre- and post-synaptic (Lucido et al., 2009; 

Tyler, 2012).  Consistent with this, the NMDA receptor has mechanosensitive properties 

in the sense that procedures that increased membrane tension, such as membrane 

stretching, produced an increase in the NMDA response, whereas actions leading to a 

reduced tension had opposite effects (Paoletti and Ascher, 1994).  Actomyosin may likely 

be involved in a feedback loop with the NMDA receptor, where NMDA receptor 
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activation signals to myosin and myosin-induced tension feeds back on the PSD and 

adhesion proteins at the membrane to adjust the membrane tension required for optimal 

neurotransmission.  For example, the amount of contractility at the base of the spine 

could be fine-tuned, via RLC-phosphorylation, to adjust the protrusion rate of spine-head 

expansion for optimum synaptic contact with the pre-synaptic axon bouton.  Tension-

based signaling through actomyosin may be a provocative mechanism by which spines 

can adapt to changes in neurotransmission and store memory in response to learned 

experiences.   

 
Future Directions 

While tremendous research in understanding the molecular mechanisms 

underlying post-synaptic morphology and synaptic plasticity has been undertaken, the 

field is far from delineating the molecular signaling pathways that dictate spine 

morphogenesis.  The molecular pathways include, but is not limited too, organization and 

active polymerization of the actin cytoskeleton, formation and maturation of the post-

synaptic density, and trafficking of post-synaptic glutamate receptors.  Furthermore, the 

field requires a better understanding of how dynamic behavior in the pre-synaptic release 

machinery is coupled to the formation of the post-synaptic assembly, and vice-versa, to 

mediate synaptic strengthening or weakening.  

There is a plethora of actin-binding molecules present within the micron-sized 

volume of the spine to dynamically remodel the actin cytoskeleton during spine 

morphogenesis and in response to synaptic activity.  The spatiotemporal regulation of 

actin-binding proteins and signaling molecules that exert effects on the actin cytoskeleton 
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is largely unknown.  FRET-based probes and photoactivatable GFP-fused molecules 

are tools that should provide major insight into the spatiotemporal activity of these 

molecules within the spine.  Genetically encoded calcium indicators (GCaMP reporters) 

in combination with photoactivatable glutamate allow monitoring of calcium signals in 

precise time and space at synapses.  And finally, optogenetics with tools such as 

channelrhodopsin-2 (Nagel et al., 2003), which allows direct activation of genetically 

defined subpopulations of neurons with blue light, and halorhodopsin (Zhang et al., 

2007), which allows inactivation of neurons with yellow light, will test hypotheses 

regarding how specific brain cell types are interconnected and signal in neural circuits 

(Peron and Svoboda, 2011).  Dissecting these signaling networks is crucial to 

understanding the mechanisms underlying post-synaptic plasticity, so that we can deduce 

the causes of spine pathologies seen in numerous neurological diseases, and ultimately 

find treatments for these disorders.   
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Summary 

In conclusion, the overarching goal of this thesis was to examine the roles of 

MIIB and ACTN2 in dendritic spine morphogenesis and organization of the post-synaptic 

density.  We found that both of these actin cross-linking molecules were required for 

dendritic spine morphogenesis and the morphology changes underlying spine maturation 

in response to chemical activation of NMDA type glutamate receptors.  ACTN2 is 

required for the assembly of the PSD in the spine and MIIB-mediated contractility is 

required for the growth and maturation of the PSD.  We defined a mechanism for spine 

maturation whereby NMDA-receptor activation signals through Rho-GTPases to di-

phosphorylate RLC, leading to increased MIIB activity and re-organization of the actin 

cytoskeleton, which mediates morphogenesis of spines into mature, mushroom-shaped 

morphologies.  Our studies showing that ACTN2 is necessary for PSD assembly and 

spine morphogenesis, serves as a prelude for prospective examination of its mechanism 

to dictate these processes, possibly through interaction with the NMDA receptor or other 

components of the PSD.  The coordination of ACTN2 and MIIB to dictate spine 

morphology and PSD organization position these molecules at the center of the actin 

machinery that is integral to post-synaptic plasticity. 
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