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Abstract 

Decarbonization of the electric grid is necessary to limit the impact of climate change, however 

important questions remain about the architecture and operation of a grid heavily dependent on intermittent 

renewable generation. Four emerging technologies are evaluated here to understand their ability to support 

the decarbonization of electricity generation: distributed electric grids, supercritical carbon dioxide power 

cycles (sCO2), offshore compressed air energy storage (OCAES), and bioenergy with carbon capture and 

storage (BECCS). Distributed electric grids are expected to be more resilient to severe weather and may be 

well-suited to wind turbines and solar photovoltaics which are inherently distributed as they require large 

areas of land. sCO2 cycles offer high efficiencies and have compact machinery making them of interest for 

fast response. OCAES is a novel type of energy storage that combines isothermal thermodynamic cycles 

with aquifer air storage. BECCS power plants offer the ability to produce electricity while reducing 

atmospheric CO2 levels. These technologies could be deployed independently or in tandem. It is understood 

that energy technologies are not selected for technical feasibility alone, thus a systems perspective is used 

to interpret results, considering environmental impact, cost, and grid resilience. 

This work makes the following contributions to the academic literature: (1) quantified the impact of grid 

topology (distributed vs. centralized) and fuel mix (natural gas vs. natural gas, wind and solar) on costs, 

emissions and grid resilience; (2) modeled the feasibility and cost of sCO2 power cycles for delivering load-

balancing when integrated into a grid involving high deployment of solar photovoltaics; (3) evaluated the 

performance, cost and value of OCAES to the electric grid; and (4) identified locations off the United States 

Mid-Atlantic coast suitable for OCAES; (5) performed a life cycle assessment of power plant and carbon 

capture technologies for BECCS; and (6) projected the impact of emerging energy technologies on the cost 

of decarbonized electricity generation. These outcomes further the understanding of each technology and 

consider their ability to support the transition to a decarbonized electric grid. This understanding contributes 

to the discussion of what energy technologies should be deployed to meet the climate goals set by the United 
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Nations. Additionally, the research used and developed open source models and datasets that enable 

verification of results by third parties and future collaboration. 
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1 Introduction 

1.1 Background and Motivation 

In 2015, the United Nations agreed to take climate action with the target of limiting global warming to 

1.5°C [1]. The Intergovernmental Panel on Climate Change has shown that limiting global warming to 

1.5°C will require net zero CO2 emissions by 2050 [2]. Transforming the electric grid is especially important 

because 89% of CO2 emissions are from the consumption of fossil fuel [3], and in the United States, 28% 

of fossil fuels are used to generate electricity [4]. Eliminating CO2 emissions from the production of 

electricity, or decarbonization, is challenging and needs to be done while also considering the other 

Sustainable Development Goals outlined by the United Nations [2]. The goals of “Affordable and Clean 

Energy,” “Clean Water and Sanitation,” and “Industry, Innovation and Infrastructure” are especially 

pertinent, as decarbonization of the electric grid with today's technology would be expensive, could have 

large impacts on water consumption, and as demonstrated by severe weather events, needs to be resilient. 

During the writing of this dissertation, severe weather events in the United States have raised questions 

about the design of the modern electric grid including the 2017 devastation of Puerto Rico’s electric grid 

due to Hurricane Maria [5], 2019 power outages due to wildfires in California [6], and the 2021 failure of 

the Texas electric grid due to severe cold [7]. Technological advancements are needed in order to provide 

affordable, carbon-free and resilient electricity. 

Decarbonization of the electric grid is expected to rely largely on renewable energies [2], including wind 

and solar. Wind turbines and solar photovoltaics (PV) are the least expensive energy generation 

technologies today [8], and are expected to provide 70% of new generation in 2021 [9]. However, electricity 

supply must always match demand, therefore the inherently variable generation of wind and solar means 

that the grid cannot rely on these technologies alone (Figure 1-1). At low deployment levels, diurnal and 

weather-related fluctuations in solar and wind power generation are balanced by conventional fossil-based 

generation. At 80% wind and solar deployment levels, Denholm and Hand have projected that enabling 
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technologies such as energy storage and/or 

demand response are required, and that the 

remaining 20% of generation would come 

from dispatchable technologies with fast 

start times and quick ramp rates [10]. Full 

decarbonization, as projected with the 

Integrated Assessment Models used by the 

Intergovernmental Panel on Climate 

Change, also rely on fossil fuels with carbon 

capture and storage, and bioenergy with 

capture and storage (BECCS) [11]. 

In many regions of the world, the generation landscape is dominated by power plants that are not 

particularly well suited to balance wind and solar. In the United States, 19% of installed generation capacity 

came from large coal turbines and 20% came from nuclear plants in 2020 [12], both use steam cycles that 

are slow to adjust power output. This makes the transition to high deployment of solar and wind power 

challenging. Gonzalez-Salazar et al. provide a comparison of power plant flexibilities which show that 

responsive dispatchable generation is limited to open cycle gas turbines and combined cycle gas turbine 

power plants [13]. It is not understood whether these technologies will be capable of balancing high 

deployment of intermittent renewables or if advanced power plant technologies are needed as countries 

transition to decarbonization. 

Energy storage enables temporal decoupling of electricity production and consumption [14], which is 

ideal for the variability of wind and solar power. Long duration energy storage, capable of storing energy 

for more than 10 hours, has been shown by Dowling et al. to reduce the cost of decarbonization [15]. The 

most widely investigated forms of energy storage include pumped hydro, flywheels and batteries. Pumped 

 

 
Figure 1-1. Solar and wind generation do not reliably align 

with electricity demand. 
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hydro is the most deployed, however the remaining technically and economically feasible sites are limited 

[16]. Flywheels have seen limited success due to cost and safety concerns [17]. Although the cost of battery 

energy storage has decreased; they are not well-suited to long duration storage and concerns remain over 

the toxicity of the construction materials [18]. Energy storage continues to be limited at the grid scale 

because it is not cost-effective [14], thus alternative are needed. 

Power plants with carbon capture and storage are of high interest for deep decarbonization. Carbon 

capture and storage (CCS) is the process of reducing power plant CO2 emission and storing the CO2 in the 

subsurface. When applied to power plants that use fossil fuels such as coal and natural gas, the result is a 

power plant with low emissions across the lifecycle of the plant. When applied to bioenergy power plants, 

the resulting emissions can be negative, meaning that it actively reduces atmospheric levels of CO2 [19]. 

With limited deployment to date of power plants with CCS, more research is needed before they can be 

relied on for deep decarbonization. 

Conventional electric grids utilize a centralized architecture, where a major power plant generates 

electricity that is carried by transmission lines to substations where a distribution system then delivers the 

electricity to consumers. A single critical failure in a centralized electric grid can lead to widespread power 

loss [20]. Solar PV and wind turbines are inherently distributed generators; thus, they may be better suited 

to an alternative electric grid architecture. Therefore, grid architectures also need to be considered in 

addition to exploring advanced power plants, and energy storage. 
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1.2 Problem Statement 

This dissertation seeks to answer several fundamental research questions related to the feasibility of 

emerging technologies to enable deep decarbonization of the electric grid while considering impacts on 

cost, emissions and grid resilience. The motivation behind this work is to identify engineering solutions to 

climate change that complement low-cost wind turbine and solar PV technologies. Four emerging 

technologies are considered here; distributed electric grids, supercritical carbon dioxide power cycles 

(sCO2), offshore compressed air energy storage (OCAES) and bioenergy with carbon capture and storage 

(BECCS). These technologies could be implemented separately or in tandem. 

1.3 Emerging Energy Technologies 

This section provides a review of knowledge gaps with respect to the four emerging energy technologies 

considered. 

1.3.1 Grid Architecture: Distributed Electric Grids 

Distributed grid architectures employ widespread generation intermixed with consumers, which provide 

several advantages over conventional centralized architectures (Figure 1-2). One benefit shown by Jufri et 

al. is that a distributed grid architecture is less affected by a single point of failure [21]. Other benefits 

include reduced transmission losses [22], the potential to combine power generation with heating and 

cooling [23] and reduced construction time through modular designs [24]. Distributed generation also 

enables the operation of microgrids, 

which operate independently from the 

larger grid, and could continue operating 

even if the larger grid were to shut down 

[25,26]. Although the modern electric 

grid is centralized, there are some 

 

Figure 1-2. Comparison of A) centralized and B) distributed 

electric grid architectures. 
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localized applications of distributed grids. Distributed thermal plants face several challenges as compared 

with centralized plants including generally lower thermal efficiency, inability to share auxiliary systems, 

and coordinating fuel delivery [27]. Solar and wind energy are naturally distributed power plants; thus, they 

may be well-suited for a distributed architecture, however they need to be accompanied by a load-balancing 

technology, and their impact on grid resilience is unexplored.  

1.3.2 Load-Balancing: Supercritical Carbon Dioxide Power Cycles 

Supercritical carbon dioxide (sCO2) power cycles offer an alternative to the widespread steam cycles 

used in coal, nuclear and biomass power plants [28]. sCO2 cycles use CO2 in a supercritical state as the 

working fluid (>74 bar and >31°C) [29]. At these conditions CO2 is very dense, has a high heat capacity, 

and very low viscosity, thus it offers the potential for compact machinery, expected to be ten times smaller 

than conventional steam turbines (Figure 1-3) [30]. Smaller machines could result in machinery that is able 

to respond more quickly to transient events. Additionally, sCO2 cycles are projected to be more efficient 

than steam at firing temperatures greater than 450°C [31]. A variety of sCO2 cycles have been proposed 

including the recompression cycle which could be used with any fuel source, and the Allam cycle which is 

designed to combust natural gas and output pipeline ready CO2, ready for CCS [32]. Crespi et al. have 

reviewed sCO2 cycle configurations for a variety 

of applications and found that many designs 

achieve cycle efficiencies greater than 50% [33]. 

The sCO2 cycle has been demonstrated at several 

scales including a 100 kW cycle [34], 250 kW 

cycle [35], 1 MW turbine tests [36], a 10 MW 

plant is under construction, expected to start-up in 

2021 [37] , and a 300 MW with CCS expected in 

2022 [38]. These experiments have so far focused 

 

Figure 1-3. sCO2 cycles are an emerging power plant 

technology that offers higher efficiency and smaller 

footprints than conventional steam power plants. 
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on steady state operation, thus transient abilities remain unproven. sCO2 power cycles present a variety of 

challenges for modeling including rapidly changing fluid properties near the critical point and the nature of 

a closed thermodynamic cycle [39]. Modeling studies have provided predictions of transient behavior 

[40,41], however they have yet to explore their ability to perform in a dynamically varying electric grid 

with renewable generation. It is also not understood what role sCO2 when combined with CCS could play 

in deep decarbonization. 

1.3.3 Energy Storage: Offshore Compressed Air Energy Storage (OCAES) 

Compressed air energy storage (CAES) systems operate by storing energy in the form of compressed 

air and later expand the air through a turbine to produce electricity when generation is required. There are 

two utility scale CAES plants; a 321 MW plant located in Huntorf, Germany and a 110 MW plant in 

McIntosh, Alabama [42]. The Huntorf and McIntosh CAES plants operate with a diabatic thermodynamic 

cycle which requires the use of natural gas for the turbine and store air in an underground solution mined 

salt cavern [42]. Alternative thermodynamic cycles and storage options have been proposed for CAES that 

may be more suitable for deep decarbonization, 

including Offshore Compressed Air Energy 

Storage (OCAES). OCAES was first proposed by 

Seymour and was envisioned for storing air in an 

open-ended container at the bottom of the ocean 

[43]. Li and DeCarolis showed the techno-

economic potential of OCAES using isothermal 

cycles but did not examine the air storage in detail 

[44]. Isothermal cycles do not require the use of 

fossil fuels, and are expected to have much higher 

efficiencies than diabatic cycles [42]. The limited 

Figure 1-4. Offshore Compressed Air Energy Storage 

using saline aquifers for air storage and isothermal 

thermodynamic cycles provide high round-trip 

efficiencies, use abundant geologic formations and can be 

co-located with wind farms. 
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availability of salt caverns [45] has led to investigations into other air storage structures such as abandoned 

mines, saline aquifers and other porous media in the subsurface [42]. Mouli-Castillo et al. evaluated the 

potential for OCAES using saline aquifers, but used a diabatic thermodynamic cycle [46]. OCAES systems 

combining isothermal thermodynamics cycles with saline aquifers for storage have not been investigated 

(Figure 1-4).  

1.3.4 Negative Emissions: Bioenergy with Carbon Capture and Storage (BECCS) 

BECCS power plants use a bioenergy crop (for example poplar) for fuel, capture the CO2 and then store 

the CO2 in the subsurface [47]. BECCS power plants have the potential to reduce atmospheric CO2 levels 

by temporarily storing atmospheric CO2 in the 

bioenergy crop and then storing the captured CO2 in the 

subsurface (Figure 1-5). However, if the harvesting and 

transportation of the bioenergy crop produces excessive 

emissions then the power plant may not provide 

negative emissions. Therefore, Stavrakas et al., and 

others have highlighted the importance of life cycle 

assessment to determine whether a BECCS power plant 

is indeed a negative emission technology [48]. Today, 

there are two BECCS power plants in operation, a 

demonstration plant in the United Kingdom and a 50 

MW plant in Japan [49,50]. Both are retrofitted coal 

plants. With limited BECCS power plants in operation, 

it is unknown what the optimal BECCS power plant 

configuration is, and what the deployment of BECCS 

will be like as countries decarbonize their electric grid. 

 

Figure 1-5. Bioenergy with carbon capture and 

storage (BECCS) power plants store use bioenergy 

crops as a medium for moving CO2 from the 

atmosphere into the subsurface while co-producing 

electricity. 
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1.4 Research Objectives and Overview of Dissertation 

The emerging technologies considered in this dissertation are at various stages of development, therefore 

research questions were selected to advance their respective state-of-the-art (Table 1-1). It is understood 

that energy system planning is not based on technical feasibility alone, thus many of the questions utilize a 

systems perspective to also consider cost, environmental impact and grid resilience. A secondary goal of 

this work was to develop open source simulation tools for further development and collaboration with other 

researchers. The models and datasets used to create this dissertation are available at 

https://github.com/EnergyModels.  

The organization of the dissertation is shown in Table 1-2. Chapters 2 through 5 each evaluate a single 

emerging energy technology. Chapter 2 presents a novel method for energy system planning that is used to 

evaluate the resilience of distributed electric grids. Chapter 3 evaluates sCO2 power cycles for balancing 

deep deployment of solar and wind. Chapter 4 projects the system performance, cost and value to the grid 

for OCAES. Chapter 5 estimates the geospatial potential for OCAES in the northeastern United States. 

Chapter 7 then builds on the work of the previous chapters by using an energy system planning model to 

investigate the role of emerging technologies. Chapter 7 uses the analysis codes developed for Chapter 2 

and represents distributed generation with rooftop solar. The energy system planning of chapter 7 also 

includes fossil generation with CCS (one type of sCO2 cycle, Chapter 3), OCAES (Chapters 4 and 5) and 

BECCS (Chapter 6). 

  

https://github.com/EnergyModels


 

9 

 

Table 1-1. Research questions addressed in this dissertation.  

Question Chapter Primary Research Question 

1 2 
What is the impact of grid topology (distributed vs. centralized) and fuel mix 

(natural gas vs. natural gas, wind and solar) on costs, emissions and resilience? 

2 3 

How do existing and proposed advanced power cycles (sCO2 power cycles) 

perform delivering load-balancing when integrated into a grid involving high 

deployment of solar PV? 

3 4 What is the techno-economic performance of OCAES? 

4 5 What is the geospatial potential of OCAES in the United States Mid-Atlantic? 

5 6 
What is the environmental impact of carbon capture and power plant 

technologies for BECCS? 

6 7 
What is the role of emerging technologies on decarbonization of the electric 

grid? 

 

Table 1-2. Dissertation organization showing the research questions (Q) and corresponding chapter number 

(Ch).  

Emerging Technology 

Analysis type 

Technical 

performance 

Economic 

performance 

Life cycle 

assessment 

Geospatial 

potential 

Grid 

planning 

Distributed electric grids  

 

  

Q1 (Ch. 2) 

and 

Q6 (Ch. 7) 

Advanced Fossil (sCO2) Q2 (Ch. 3)   

Q6 (Ch. 7) 

Offshore Compressed Air 

Energy Storage (OCAES) 
Q3 (Ch. 4)  Q4 (Ch. 5) 

Bioenergy with Carbon Capture 

and Storage (BECCS) 
Q5 (Ch. 6) 

 
Q5 (Ch. 6)  
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2 Extending energy system modelling to include extreme weather risks and application to 

hurricane events in Puerto Rico1 

2.1 Summary 

Energy system optimization models are used to examine different energy futures and draw insights that 

inform policy. I present an energy system optimization model that incorporates hurricane risks by 

combining storm probabilities with infrastructure fragility curves, and demonstrate its utility in the context 

of Puerto Rico, an island territory of the United States that had its energy system severely damaged by 

Hurricane Maria in 2017. The model assesses the potential to change grid architecture, fuel mix, and grid 

hardening measures considering hurricane impacts as well as climate mitigation policies. When hurricane 

trends are included, 2040 electricity cost projections increase by 32% based on historical hurricane 

frequencies and by 82% for increased hurricane frequencies. Transitioning to renewables and natural gas 

reduces costs and emissions independent of climate mitigation policies. This framework can be adapted to 

other contexts, enabling energy planners to explicitly consider extreme weather risks before making large 

infrastructure investments. 

2.2 Introduction 

In many regions of the world, extreme weather events such as hurricanes [51], floods, and wildfires [52] 

are increasingly impacting the provision of electricity through a centralized power grid. There is increasing 

evidence that the frequency and severity of these events is connected to changes in the climate system, 

suggesting this risk will only grow in the coming years [53]. Power grids are susceptible primarily because 

 

1 This chapter was adapted from: Bennett, J.A., Trevisan, C.N., DeCarolis, J.F., Ortiz-García, C., Pérez-Lugo, M., 

Etienne, B.T., Clarens, A.F., (2021). “Extending energy system modelling to include extreme weather risks and 

application to hurricane events in Puerto Rico”, Nature Energy, 6, 240-249. 

The published paper and Supplementary Information are available at https://www.nature.com/articles/s41560-020-

00758-6 

https://www.nature.com/articles/s41560-020-00758-6
https://www.nature.com/articles/s41560-020-00758-6
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they rely on a centralized architecture that is dependent on a large network of overhead power lines that are 

vulnerable to weather extremes. A more decentralized grid would reduce the impact of single points of 

failure on the network [21], increase synergies with district heating [23], and reduce transmission losses 

[22]. Unfortunately, smaller thermal power plants typically have lower efficiencies and higher costs than 

larger counterparts [54]. These concerns about efficiency could be overcome by deploying increasingly low 

cost solar and wind generation, but high deployment of renewables requires storage that would increase 

costs (Figure 2-1). While ad hoc interventions to improve grid resilience have been proposed, these are 

generally expensive [55] or would increase emissions at a time of growing pressure to cut CO2 emissions 

from the power sector [56].  
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Figure 2-1. Stylized grid topologies reveal some of the choices in grid architecture and power generation 

facing planners. Here I consider five possibilities: a, business-as-usual (centralized with coal, petroleum and 

natural gas), b, centralized - hybrid (natural gas, solar and wind), c, centralized – natural gas, d, distributed – 

hybrid (natural gas, solar and wind), e, distributed – natural gas. High renewable energy deployment 

requires load-balancing from natural gas or battery storage [57]. Not shown here is the option to bury power 

lines in regions subject to extreme weather. 

 

Quantitative evaluation of these competing objectives is typically performed using energy system 

optimization models (ESOMs) that use linear programming and stochastic optimization approaches to 

project power plant capacity investments and dispatch to meet demand over a given time horizon while 

minimizing cost [58]. ESOMs represent a critical tool to explore power plant investment decisions, 

including the identification of interactions that are often counterintuitive or difficult to project in the face 

of uncertainty (Figure 2-2). For example, McCollum et al. considered uncertainty in fuel prices [59] and 

Spyrou et al. and Patankar et al. considered the possibility of conflict in unstable political regions [60,61]. 
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Recently, effects of climate change have been considered in ESOMs; for example, Perera et al. and Abdin 

et al. considered heat waves [62,63], Mukhi et al. examined stochastic linear programming to consider 

flooding uncertainty in Bangladesh [64], and Labriet et al. considered uncertainty of climate mitigation 

policies and emission impacts [65]. Newlun et al. used a mixed integer linear program to project capacity 

expansion in Puerto Rico assuming historic hurricane events repeated in a prescribed order once every 4 

years and limited the consideration of damage to transmission and distribution lines [66]. However, prior 

to this study, the explicit consideration of extreme storms within a stochastic optimization framework has 

not been included in ESOMs, which limits the ability of the models to inform decision making under 

uncertainty about future storms.  

Projecting the impact and cost of storms on energy systems has traditionally been carried out separately 

from energy system planning. For example, Nateghi et al. projected power outage durations due to 

hurricanes [67], Winkler et al. estimated storm damage using fragility curves [68], Ji et al. analysed the 

impact of Hurricane Sandy on New York [53], and Panteli and Mancarella assessed power system resilience 

[69]. These models provide high resolution details of hurricane impacts for a well-defined energy system, 

but are unable to help energy system planners project storm impacts for a future grid that does not yet exist.  

Here, I develop a method to incorporate extreme weather events and the damage they inflict into 

ESOMs. The method can be adopted to various extreme weather events such as high winds, flooding, and 

fires. Here I demonstrate its utility for Puerto Rico’s electric grid considering high winds produced by 

hurricanes.  
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Figure 2-2. Interactions of electric grid planning options. Planners have a large number of factors to consider 

when selecting investment decisions, and the system-level interactions are not straightforward. This causal 

loop diagram shows some of the factors that are traditionally considered in these problems and the factors 

considered here including (1) extreme weather events (2) regulations intended to curb emissions and (3) the 

availability of renewable generation capacity. These factors have derivative impacts on stranded assets 

associated with premature retirement of high emissions technologies.  

 

2.3 Puerto Rico and Hurricane Maria 

Many of the grid fragility challenges faced by planners were highlighted by Hurricane Maria, which 

made landfall in Puerto Rico on September 20, 2017. By the end of that day, the Puerto Rico Electric Power 

Authority (PREPA) reported nearly 100% of their nearly 3.3 million customers without power [5]. Over 

the subsequent months, it would become the worst blackout in the history of the United States and one of 

the worst worldwide in terms of customer hours lost [70]. The extensive damage resulted in the majority of 

the island remaining without electricity for over 6 months [71]. While it is common to think of Maria as an 

isolated, worst case scenario, Puerto Rico has been hit directly or indirectly by thirteen named storms over 
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the past thirty years [72] and a number of these have caused widespread damage. Maria was particularly 

destructive because the highest wind speeds were recorded near the population-dense regions surrounding 

the capital, San Juan (Figure 2-3). Power generation in Puerto Rico is centralized in five locations, so a few 

critical failures can trigger widespread power loss. Puerto Rico has 6,023 MW of generating capacity [73] 

and most of the electric infrastructure has exceeded its design life and needs modernization [74,75]. 

Moreover, because of its remote location, power on the island is very expensive. In 2016, 97% of power 

generation was produced using imported fossil fuels [76], leading to higher emissions and electricity costs 

when compared to the mainland United States [77]. However, Puerto Rico is rich in renewable energy 

resources. Figure 2-3e and 3f show the energy production potential from wind and solar, respectively. 

Utilizing a fraction of this potential would provide enough energy to power the island residents.  
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Figure 2-3. Hurricane Maria revealed the vulnerability of Puerto Rico’s current electric grid. Here I present 

maps of a, peak wind speeds during the storm [78], b, distribution networks [79], c, transmission network 

with power plants [79], d, land classifications, highlighting areas that are excluded from consideration 

[80,81], e, average wind speeds [82] and corresponding electricity produced by a 2MW turbine in a year and 

f, average solar irradiation [83]. Data sources and methods used to produce these maps are described in the 

Methods section. 
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Puerto Rico is an ideal case study for exploring the effect of grid topology because it is isolated, heavily 

populated, and vulnerable to extreme weather. Puerto Rico lacks a neighbour with an electric grid that can 

provide backup or repair crews that can easily assist in times of crisis, and the power system is large enough 

that there are no silver bullets, e.g., switching to 100% hydropower. In 2019, the Puerto Rico Energy Public 

Policy Act was passed which included a renewable portfolio standard (RPS) setting 40% by 2025, 60% by 

2040 and 100% by 2050 as well as retiring coal power generation by 2028 and goals for electricity to cost 

less than $0.20/kWh [84]. In addition, Puerto Rico faces economic hardships that make it representative of 

other regions with limited financial capacity to adapt to a changing climate. The large investment and 

corresponding long payback time of electric infrastructure also means that today’s design decisions will 

lock Puerto Rican infrastructure in for decades amidst a rapidly changing energy landscape in which the 

prices of natural gas, renewable energy, and energy storage are decreasing rapidly [85]. 

2.4 Extending energy system modelling tools  

Here I propose an energy system model that explicitly incorporates projected hurricane risks to inform 

investment decisions. I use the open source Tools for Energy Model Optimization and Analysis (Temoa) 

to examine grid design and operation over time [58], an ESOM model similar in structure to 

MARKAL/TIMES [86], OSeMOSYS [87], ReEDS [88] and IPM [89]. Temoa uses linear optimization of 

installed technology-specific capacity and dispatch to minimize costs subject to a range of a constraints, 

including time-of-day resource availability. This study considers, within an ESOM, the potential damage 

to infrastructure associated with future storm events and the impact those storms would have on investment 

decisions today. Cases representing policy decisions are simulated through a scenario tree using stochastic 

optimization (Figure 2-4) that delineates storms into three components: impacts, probability and severity. 

For this analysis, scenarios are defined as an individual path through the tree, and cases as all possible 

scenarios for a given set of conditions. Extreme weather impacts are based on the storm type. For a 

hurricane, most damage comes from high winds and/or flooding. To model the impacts of Hurricane Maria, 
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I focused on high winds but the model is easily extended. The probability of a hurricane occurring was 

quantified probabilistically using historical data (detailed in Supplementary Note 6). I binned historical 

storms and their strength into three levels to simplify simulations. Severity was quantified in terms of peak 

wind speed. Over the past 25 years, Puerto Rico has experienced nine Category 1 hurricanes or tropical 

storms/depressions with an average peak wind speed of 10 m/s, two Category 2-3 hurricanes with an 

average peak wind speed of 51 m/s, and two Category 4-5 hurricanes with an average peak wind speed of 

69 m/s [72].  Based on data for the past 25 years, I built a probabilistic distribution for the strongest storm 

to hit the island over 5-year intervals, which are the time periods represented within the model. The 

possibility that a Category 1 or lower storm will be the strongest in a future 5-year interval is 52%, the 

possibility that a Category 2-3 storm will be the strongest is 32%, and the probability that a Category 4-5 

storm will be the strongest is 16% [72].  

I incorporated a second level of uncertainty into the model by adjusting the hurricane probabilities based 

on the anticipated influence that climate change will have on storm frequency. Grinsted et al. has projected 

a 2-7 times increase in severe storm frequency for 1°C of warming [90], and Staid et al. considered adjusting 

historical storm frequencies by 0.5-4 times in projecting tropical cyclones in the United States [91]. Knutson 

et al. shows that projections of Category 4-5 storms are expected to increase 10% on average in the North 

Atlantic, but could be from -75% up to +697% [92]. To account for this increased frequency, I include an 

“increased storm frequency” case, which runs the model under constant future climate risks that assumes 

the probability of a Category 4-5 storm would triple to 48%, the chance of a Category 2-3 would remain at 

32%, and a Category 1 would represent the remainder of occurrences. 

 A scenario tree was used to assess the possible combinations of storm events over a 25-year time 

horizon (Figure 2-4b). Each node represents a 5-year period. All scenarios start with no storm event (2016-

20) and operate with infrastructure existing in Puerto Rico in 2016, including overhead power lines and 

predominantly fossil-fuel power plants. Scenarios then proceed to a branch with its assigned probability 
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representing either a Category 1, 2-3 or 4-5 hurricane where average wind speeds are correlated to 

infrastructure damage. The ESOM then optimizes the operation of the remaining undamaged infrastructure 

and builds new infrastructure accordingly to meet electricity demand.  

 

Figure 2-4. Overview of framework for grid planning with extreme weather. All stochastic optimization runs 

start with existing power plant capacity and build-out capacity from options available within each case to 

meet demand over a 25-year time horizon. a, Cases are developed for each permutation of the three grid 

design options (power plant types, grid architecture, and infrastructure hardening) and external factors 

(climate mitigation and storm frequency), as well as a case with all technologies available (no policy decision). 

b, Scenarios face varying storm severities every five-years throughout the time horizon. During the first time 

period there are no hurricanes and each subsequent period experiences a hurricane of three possible severity 

levels (Category 1, 2-3 or 4-5). The probability of no hurricane within a five-year period is sufficiently close to 

zero, so it was excluded. The probability of each severity level depends on the scenario’s storm frequency 

(historical or increased); historical probabilities are illustrated above. There are 81 possible combinations of 

hurricanes associated with each case.  
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The damage caused by a storm is dependent on the fragility of infrastructure. A class of functions called 

fragility curves are used to estimate component damage based on a given threat. Several classes of grid 

fragility models have been developed including simulation-based, analytical, and statistical, each with 

different data requirements [93]. Here, a combination of historical and probabilistic fragility curves were 

selected to correlate storm wind speeds to infrastructure damage used in studies by Ouyang et al. [94], 

Winkler et al. [68], and Watson [95]. Projected storm wind speeds are mapped to the fragility curves to 

quantify the amount of damage, which is treated as unusable capacity. Figure 2-5 shows the relationship 

between wind speed and damage for a variety of components within the power grid. The impact of high 

winds varies with the type of infrastructure. The majority of power lines in Puerto Rico are overhead, 

making them very susceptible to hurricane Category 2-3 and higher wind speeds. The distribution lines are 

the most fragile component in the system, in line with findings from Ji et al. [53]. 

  

Figure 2-5. Technology fragility curves. Fragility curves for each technology show the amount of damage 

expected for each of the three hurricane severities possible in each model year. Storm damage is represented 

as a fraction of existing capacity that is no longer useable to meet demand. 
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2.5 Hurricane impacts on cost, emissions, and fuel use 

Stochastic optimization was used to find the least cost means of providing electricity from all 

technologies, grid architectures, and grid hardening options considered here. Figure 2-6 presents electricity 

costs, emissions, and technology activity across nine cases representing different storm frequencies (none, 

historical and increased) and climate mitigation policies (no policy, US$ 100 t-1 CO2, RPS including 40% 

by 2025 and coal retirement by 2028). Given the scenario tree shown in Figure 2-4, there are a number of 

conditional pathways based on the possible realized storms at each time stage. Thus, the results shown for 

2036-2040 include 81 leaf nodes for each case considered. Adding hurricanes greatly increases cost 

projections. By 2040, cost projections under the RPS increase relative to the ‘no storms’ scenario on average 

by 32% for historical storm frequency and 82% for increased storm frequency, with maximum projected 

costs 153% increased. In all cases, projections of electricity costs (Figure 2-6a) show a short-term decrease, 

as the grid moves away from imported fossil fuels, only to rise over time, as future storms require that 

infrastructure be rebuilt following storms. The uncertainty of these forecasts increases over time, as the 

order and severity of hurricanes varies across scenarios. Scenarios with only Category 1 hurricanes result 

in the minimum values and those with only Category 5 hurricanes the maximum values; by 2040 there is 

two times difference. Increased storm frequency shifts the cost distributions upwards such that outlier 

conditions become the new average cost over the coming two decades. Emissions significantly decrease 

across all cases, most quickly under a carbon tax. 

The investment decisions of the optimized case can be seen in Figure 2-6c, which shows the fuel use, 

grid architecture, and grid hardening measures (i.e. burying transmission and distribution lines) with and 

without climate mitigation policies. The fuel mix results suggest that the least cost option for Puerto Rico 

is to move rapidly away from coal and petroleum to solar, wind and natural gas for load balancing. Despite 

the potential for stranding assets, i.e., the premature retirement of power generation capacity due to fleet 
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wide carbon constraints, all cases significantly reduce coal and petroleum usage by 2021-25. 

Implementation of the RPS and carbon tax reduces natural gas use in favor of wind.  

Grid architecture was compared by grouping power plant activity based on architecture (centralized vs. 

distributed) and fuel type (fossil or renewable) in the middle row of Figure 2-6c. All variations start with 

the majority of fuel use coming from a centralized grid with predominantly fossil generation representing 

the current grid configuration. As storm frequency increases, the fraction of fossil fuel energy decreases 

and the grid tends to be built-back in a more distributed fashion. The trade-off of centralized and distributed 

fossil power can be attributed to a balance of lower cost and higher efficiency centralized natural gas plants 

coupled with storm-prone transmission systems. Conversely, centralized and distributed solar and wind 

power are both based off of modular utility-scale technology (i.e. single-axis tracking solar and 2.3 MW 

wind turbines), so they have the same installation costs, but only centralized has the transmission system. 

Under the presumed cost of buried lines, which is 14 times higher than overhead lines, their cost is not 

justified under the storm conditions modelled here (Figure 2-6c). 
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Figure 2-6. Projections of electricity costs, emissions and activity for stochastic optimization including 

reconstruction after severe weather events. Here I show a, electricity costs, b, emissions and c, activity when 

all technologies are available. Box edges (a and b) indicated the 25th and 75th percentiles, the box centre the 

median, and whisker edges represent the extent of the distribution with outliers indicated as points. Shading 

in c indicates the minimum and maximum values for each simulation. The carbon tax is included in the cost 

of electricity. 
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Five additional cases were considered to help understand model sensitivity and identify a suitable grid 

planning policy: (1) business-as-usual (centralized grid architecture with coal, petroleum and existing 

natural gas); (2) centralized grid architecture using natural gas and renewable power generation hybrids; 

(3) centralized grid architecture using natural gas power generation; (4) distributed grid architecture using 

natural gas and renewable power generation hybrids; (5) distributed grid architecture using natural gas 

power generation. To understand the economic and environmental trade-offs, Figure 2-7 presents costs and 

emissions for all cases considered with overhead power lines. I also show the impact of setting the RPS and 

a carbon tax. The RPS eliminates the business-as-usual and centralized/distributed natural gas cases. 

Cost projections suggest that a business-as-usual strategy, which relies on a centralized electric grid 

fueled by petroleum and coal, will always result in the highest cost. The proposed alternatives to the current 

grid architecture will lower the cost of electricity. Further, it is not expected that the RPS will significantly 

increase costs. Increased storm frequency and the carbon tax shifts costs upward across all policies. The 

difference in anticipated electricity cost under historical storm frequencies is small between the centralized 

and distributed cases, but increases with storm frequency. As storm frequency increases, distributed electric 

grids begin to show decreased costs with less variance. This demonstrates that the benefits of distributed 

generation become apparent under increased storm frequencies when the cost of hurricane rebuilding is 

included. Based on existing fragility curves for solar panels and wind turbines, renewable energy generation 

is resilient, however future work could further refine fragility curves to be specific to Puerto Rico.  

In line with the energy use, emission projections show that business-as-usual conditions always result 

in the highest emissions and costs. The ‘all technologies’ case always has the lowest emission levels 

suggesting that it is possible to significantly reduce emissions while having cost-competitive electricity 

prices. Storm frequency does not have a significant impact on emission levels, suggesting that less carbon 

intensive energy technologies are financially competitive even with increased severe weather events. 
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Emission differences between the centralized and distributed systems can be attributed to the higher 

efficiencies of centralized thermal power plants.  

 

Figure 2-7. Projections of electricity costs and emissions for case-based simulations. Electricity costs and 

emissions are compared for cases with overhead power lines. Results are colored by combination of grid 

architecture and fuel mix, and then grouped by combinations of storm frequency (historical vs. a climate-

induced increase in frequency) and renewable portfolio standard (none vs. 25% by 2025 with coal eliminated 

by 2028). Shading indicates the minimum and maximum levels projected across all scenarios within each 

case. The carbon tax is included in the cost of electricity. 
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2.6 Discussion and conclusions 

Many regions of the world are vulnerable to extreme storms that may become more severe and frequent 

as a result of climate change. Here, I present an ESOM that explicitly incorporates the expected wind 

damage to electricity infrastructure caused by hurricanes to evaluate grid design alternatives. Puerto Rico, 

a hurricane prone territory of the United States, is grappling with how to make investments to modernize 

its electric power grid in the wake of a devastating 2017 hurricane. The results identify several planning 

alternatives that could reduce costs and improve resilience for the people of Puerto Rico. Transitioning to 

an electric grid fueled by a mix of natural gas and renewables significantly reduces costs and emissions, 

independent of the implementation of a 40% by 2025 renewable portfolio standard. 

Under my assumptions about damage, distributed grid architectures cost less than centralized grids for 

increased storm frequencies. Further research into electric infrastructure fragility curves for ESOMs and 

consideration of spatially explicit topologies could provide additional insight, particularly for meshed 

transmission networks used in many regions The model does not consider the provision of the United States 

Stafford Act of 1988, which requires that infrastructure be replaced as it previously was before a storm [96], 

which makes it difficult for Puerto Rico to make their grid more resilient after a storm. The cost of power 

outages caused by hurricanes were also not considered in the model, and could be considered for future 

work. This modelling platform can be extended to other weather extremes by collecting event probabilities 

and fragility curves. This work suggests that energy planning decisions change when different climate 

scenarios are studied related to extreme weather and climate mitigation through either a carbon tax or RPS 

policy, which could result in less expensive and more resilient power systems.  
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2.7 Methods 

2.7.1 Energy System Optimization Model 

I used the open source Tools for Energy Model Optimization and Analysis (Temoa) to perform 

stochastic optimization. Because the model is open source, it enables third party replication of the results. 

The objective function of Temoa minimizes the present cost of total system-wide energy supply. The full 

algebraic formulation for Temoa is well-documented in Hunter et al. [58], with updates to the formulation 

provided in the model documentation [97]. Briefly here, the costs considered include capital costs, operation 

and maintenance (O&M) costs, and fuel prices, but excludes loan payments on capacity installed prior to 

the start of the model time horizon in 2016. New plants are purchased via a loan that lasts either the lifetime 

of the plant or 30 years, whichever is less, and with an interest rate equal to the model’s discount rate of 

9% [98]. The levelized cost of electricity is estimated by normalizing total annual costs by electricity 

demand. 

Temoa performs capacity expansion over a set of user-defined future time periods that usually extend 

several decades into the future. For this work, the model time horizon starts in 2016 and extends to 2040 in 

five-year periods defined at 2016, 2021, 2026, 2031 and 2036. Stochastic optimization resolves hurricane 

uncertainty in the latter four periods. System level inputs are summarized in Supplementary Note 3. 

The model optimizes a representative year within each time period, and therefore all years within the 

same time period are assumed identical. To capture sub-annual variations in energy supply and demand, 

each year is broken down into a set of seasons and times-of-day within each season, forming a set of time 

slices over which supply and demand must be balanced. Energy system optimization models must balance 

the number of time periods with computational run time. Teichgraeber et al. found that increasing the 

number of time periods improves the model accuracy, but that it is more important to include extreme time 

periods [99]. In this study, I use a capacity reserve margin to capture time periods of high demand and 

extreme weather events are considered in-between model years through stochastic optimization. 
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For a Caribbean island like Puerto Rico, seasonal variability is relatively small with two main seasons. 

To represent the variability of renewable resources, the model includes two typical days per year, one for 

the wet season, and one for the dry season. Each typical day is broken into 24 segments, to represent hourly 

wind and solar availability as well as electricity demand, which are estimated with historical data as 

described in the Supplementary Note 3. Upper bound capacity factors are included for solar and wind power 

plants, which ensure that generation within a given year is constrained. Here, I use forty-eight time segments 

(two days in twenty-four hour periods) to provide insight into renewable resource variations while 

balancing the computational demand of stochastic optimization to consider the probabilities of extreme 

weather events.  

Our implementation of Temoa performs multi-stage stochastic optimization extending the two-stage 

cost optimization approach used by Mavromatidis et al. [100]. Across the model time horizon, different 

scenarios (i.e. pathways through the scenario tree) correspond to different combinations of three hurricane 

severities that can occur in each time period. Optimization is performed to decide how to rebuild the grid 

after hurricane damage. New generating capacity is built to compensate for capacity no longer available 

due to hurricane damage. Transmission towers, substations, distribution lines and distribution towers are 

also rebuilt in order to meet demand in future time periods. The model does not include specific network 

connections, so I do not evaluate reconstruction time or grid security metrics. 

2.7.2 Electric Grid Characterization 

GIS data from the Government of Puerto Rico was analyzed to tabulate the total length of transmission 

and distribution lines as well as number of substations, shown in Supplementary Table 1 [79]. For the 

energy system optimization model, it is assumed that this infrastructure will not be replaced, instead it 

would be repaired if there is damage from a hurricane. Repair costs along with typical pole spacing is from 

Ouyang et al. [94]. Substation repair cost is based on moderate damage.  
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The ESOM presented here considers the Puerto Rico electric grid in aggregate without an explicit spatial 

representation. Representing in aggregate reduces the computational demand. It is also appropriate, because 

the electric network topology in 10-20 years may be very different than today. In my model, power plants 

are linked in series with demand through transmission and distribution lines. Centralized power plants send 

electricity through the transmission lines and through substations before entering the distribution system, 

which consists of distribution towers and distribution lines. The inclusion of both distribution towers and 

lines allows the model to separately consider the extreme weather damages to both of these components. 

Distributed power plants bypass the transmission and substation components and send electricity directly 

into the distribution system. In addition to maintaining power generation capacity, the model also maintains 

sufficient transmission and distribution system capacity to deliver electricity. The model also has a reserve 

margin constraint to ensure that additional capacity exists in case of operational failures, further detailed in 

Supplementary Table 9. 

2.7.3 Renewable Resource Evaluation 

To provide a realistic limit of available solar and wind energy resources for the energy system 

optimization model, a GIS-based evaluation was performed, following an approach developed by the 

International Renewable Energy Agency (IRENA) [101]. This approach first determines land tracts that are 

viable for building wind and solar power plants. Digital elevation models (DEM) were used to calculate the 

slope of the land, and only areas with a slope less than 45 degrees were used. DEM data was taken from 

the HydroSHEDS dataset [102]. Next land cover data from the 0.5 km MODIS-based Global Land Cover 

Climatology dataset [80] was used to identify regions that were free of forest, cropland, waterbodies and 

urban development. The cropland restriction is only applied to solar resource potential, not wind. Protected 

zone data from [81] was used to exclude additional areas not suitable for development. After the exclusion 

zones were developed, wind and solar resources were combined with assumptions about spacing and 

efficiency to project the maximum yearly potential. Average wind speed data was taken from the DTU 
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Global Wind Atlas [82], and average solar (global horizontal irradiance) data was taken from SOLARGIS 

[83]. An empirical correlation from Hoogwijk et al. [103] was then used to estimate the yearly amount of 

electricity produced based on the average wind speed. The renewable resource evaluation model was 

implemented in a Python script for use with ArcMap v10.6 and is available for download at 

https://github.com/EnergyModels/RenewableResourceEval. 

The total estimated wind resources are 20.9 TWh y-1 and total solar resources are 205 TWh y-1. In an 

NREL study, it was estimated that Puerto Rico has the capacity potential for 0.84 GW (1.84 TWh y-1 at 

25% capacity factor) of onshore wind power and 1.1 GW (2.11 TWh y-1 at 22% capacity factor) of solar 

power available [104], however it is not clear what method was used to make these estimates. For 

comparison, the 2016 power plant capacity of Puerto Rico was over 6 GW. Also, Puerto Rico’s 2019 

Integrated Resource Plan explored installing up to 4.1 GW of solar power [105]. Based on my estimates, 

Puerto Rico has adequate renewable energy potential to meet existing demand. These estimates were 

included in the energy system model as resource limits, shown in Supplementary Table 5. 

2.7.4 Input Dataset for Puerto Rico 

The general methodology for collecting data was to first collect data from Puerto Rico sources including 

PREPA [106] and PREC [76]. When Puerto Rico specific data was not available, data was taken from 

NREL [107], US EIA [108], and IEA-ETSAP [109]. When possible, the same source was used for the same 

type of data, i.e. the majority of new plant costs and capacity factors were taken from 2020 Mid projections 

from the NREL Annual Technology Baseline (ATB) [107].  

The centralized and distributed power plants were selected to represent utility-scale installations of 

varying capacity. Centralized natural gas power plants were based on a 1 GW combined cycle plant, and a 

500 MW open cycle plant to represent state-of-the-art utility-scale gas turbine technology. Distributed 

natural gas plants were based on a 200 MW combined cycle plant and a 100 MW open cycle plant to 

represent medium utility-scale gas turbine technology. Both centralized and distributed solar installations 

https://github.com/EnergyModels/RenewableResourceEval
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are simulated as utility-scale based on a 23 MW, single-axis tracking system. Similarly, centralized and 

distributed wind power is based on utility-scale 2.3 MW wind turbines in a 50-100 MW facility. Batteries 

are simulated as having 4 hours of storage [107]. It is expected that the installed capacity of solar and wind 

farms would be larger in the centralized case, but would still be classified as utility scale by the NREL 

ATB.  

The model utilized fuel price rate increases based on price rate increases from the baseline projection 

by the US EIA [108]. Wind and solar capacity factors are from Puerto Rico’s Integrated Resource Plan 

[105]. Model data is summarized in Supplementary Notes 2 and 3. 

2.7.5 Model Verification 

To verify the model results, fuel resources used in the first model year, 2016, were compared against 

actual usage recorded by the Autoridad de Energía Eléctrica in 2016 [76]. Cases are limited to using existing 

capacity in 2016. All projections of actual energy use are within 2.1 percentage points, as shown in the 

Supplementary Note 4. 

2.7.6 Selection and Usage of Fragility Curves 

Fragility curves for critical infrastructure were taken from a combination of historical and probabilistic 

fragility curves that correlate wind speeds to outages. Ideally, fragility curves would be specific to the 

region they are applied, but because no curves exist for Puerto Rico, a review of literature was used to find 

curves that fit best under similar conditions. Much of the infrastructure in Puerto Rico is aging - most of it 

has exceeded its design life [74,75]. Transmission line fragility curves were based on a computational 

analysis of United Kingdom transmission towers [110]. Fragility curves for the distribution towers and lines 

were based on work by Quanta Technology and also used by Ouyang et al. and Watson [94,95,111]. 

Substation fragility curves were based on HAZUS data for suburban terrain tabulated by Watson [95,112]. 

Solar panel fragility curves are based on a performance based approach by Goodman of a residential system 

[113] with a modification proposed by Watson [95] to better represent utility scale solar installations. Wind 
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turbine fragility comes from an estimate of the impact of hurricanes on offshore wind turbines by Rose et 

al. [114]. These curves are based on hub height wind speeds of 90m, so a study by Franklin et al. was used 

to relate wind speeds at this height during a hurricane [115].  

When fragility curves were unavailable for a type of power plant I followed Watson’s use of building 

functions from HAZUS [95,112]. Based on Watson [95], natural gas and coal plants are represented by the 

HAZUS damage functions SECBM (Steel Engineered Commercial Building, 3-5 stories) and SECBH 

(Steel Engineered Commercial Building, 6 or more stories), respectively [95,112]. It is expected that oil, 

diesel and landfill gas plants are similar in size to natural gas plants, so SECBM was also used for these 

technologies. Biomass plants are expected to be similar in structure to coal plants, so SECBH was selected. 

The same family of HAZUS damage functions are used to represent hydro plants by CECBL (Concrete 

Engineered Commercial Building, 3-5 stories) and batteries by SECBL (Steel Engineered Commercial 

Building, 1-2 stories). Fragility curve values for each technology are tabulated for each storm condition in 

the Supplementary Table 14. 

Fragility curves represent the failure probability of the ith component [94]. They assume that a piece of 

equipment is either useable or unusable. However, the ESOM is a linear program that does not track 

components individually. Instead, the ESOM determines the optimal capacity of a given technology. For 

example, 200 MW of gas turbines could refer to any number of plant configurations such as one 200 MW 

plant or two 100 MW plants. Therefore, I assumed that the fragility curve could be used to estimate the 

remaining operable infrastructure capacity following a hurricane, 

𝑋𝑡,𝑛 = 𝑋𝑡,𝑛−1 ⋅ (1 − 𝑝𝑓(𝑤𝑠))     (2-1)  

where Xt,n is the operable capacity of technology t during the nth model year, Xt,n-1 is the operable existing 

capacity of technology t during the previous model year, pf is the probability of failure from the fragility 

curve, and ws is the peak hurricane wind speed of the nth model year. This approach assumes that all 

electrical infrastructure is identically and independently distributed with the probability of being unusable 
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taken from the fragility curve. Because calculations are performed on a capacity basis instead of a 

component basis, it is possible that a fraction of a single power plant could be damaged. This outcome can 

be interpreted as the need for significant repairs in order to resume output at the original capacity. After the 

ESOM uses the fragility curves to assess the amount of capacity that is undamaged and still operable, it 

then finds the least cost means to meet demand, using the remaining operable capacity and deploying new 

capacity as required. With this simplified approach, within a given year, the model can choose to replace 

the amount of capacity that was damaged or build capacity of a different type. The model does not 

separately report costs for repairing damaged capacity from new capacity installations. 

2.7.7 Benefits and Costs of Grid Hardening 

I considered one form of grid hardening, burying power lines. Burying power lines has the benefit of 

greatly reducing susceptibility to wind damage. Therefore, I assumed that buried power lines would have a 

fragility curve equivalent with the most robust curve considered, which was the SECBH curves used to 

represent natural gas power plants.  

Based on a report prepared by Hall for the Edison Electric Institute, burying transmission lines is 

estimated to cost 3,780 thousand US$ per km [116], or a total of 14 billion US$. In comparison, replacement 

costs from Ouyang et al. for downed transmission lines is 400 thousand US$ per pole [94], with poles 

spaced every 0.23 km [94] or  a total of 6.4 billion US$ (2 times higher to bury). Burying distribution lines 

is estimated to cost 850 US$ thousand per km [116] or a total of 22 billion US$. In comparison, replacement 

cost for downed distribution lines (tower and conductor) is 4.0 US$ thousand per 0.042 km [94] or a total 

of 2.4 billion US$ (14 times higher to bury). 

2.7.8 Data Availability 

To enable replication of my work, the model, input dataset, and analysis code is open source and 

available for download at https://doi.org/10.18130/V3/QB0NPX. This includes the Python package and all 

scripts used to instantiate Temoa, run the analyses, and create the plots in this article, which are also 

https://doi.org/10.18130/V3/QB0NPX


 

34 

 

available for download at https://github.com/EnergyModels/temoatools. All model inputs are summarized 

in Supplementary Notes 2 and 3.   
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3 Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of 

Solar Generation2 

3.1 Summary 

Solar photovoltaic power generation capacity is growing rapidly, increasing the need for dynamic load 

balancing when solar production dips. This balancing might be delivered using energy storage and/or 

advanced power generation cycles, that are compact, dynamic, and highly efficient, such as supercritical 

carbon dioxide (sCO2) cycles. Here, the load balancing capability of a sCO2 combined cycle plant was 

compared to open cycle and steam combined cycle gas turbines. A characteristic-based transient model was 

developed to evaluate the impact of machinery ramp rates, minimum part loads, and cycle efficiencies. 

High resolution demand and solar irradiance data from the University of Virginia, before and after 

installation of a major solar project, was used to represent low and high levels of solar deployment in the 

grid. The results suggest that under high deployment of solar power, sCO2 cycles and steam combined cycle 

systems with ramp rates greater than 5.75%/min can balance load and provide comparable levelized costs 

of electricity ($0.057/kWh). Solar curtailment was driven by the minimum part load capabilities. A sCO2 

cycle with a minimum part load of 30% was predicted to have a curtailment of 15% in the high solar 

scenario without a battery, and 4% with a 30MWh battery.  

  

 

2 This chapter was adapted from: Bennett, J.A., Fuhrman, J., Brown, T., Andres, N., Fittro, R., & Clarens, A.F. 

(2019), Feasibility of Using sCO2 Turbines to Balance Load in Power Grids with a High Deployment of Solar 

Generation, Energy 181(15), 548-560.  

The published paper and supporting information are available at https://doi.org/10.1016/j.energy.2019.05.143 

https://doi.org/10.1016/j.energy.2019.05.143
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Table 3-1. Abbreviations. 

CCGT Combined Cycle Gas Turbine 

CO2 Carbon Dioxide 

DHI Direct Horizontal Irradiance 

DNI Direct Normal Irradiance 

EIA Energy Information Agency 

GE General Electric 

GHI Global Horizontal Irradiance 

HRES Hybrid Renewable Energy Systems 

LCOE Levelized Cost of Electricity 

NREL National Renewable Energy Laboratory 

OCGT Open Cycle Gas Turbine 

O&M Operation and Maintenance 

PV Photovoltaic 

sCO2  Supercritical Carbon Dioxide 

UVA University of Virginia 

VPP Virtual Power Plant 
 

Table 3-2. Nomenclature. 

A2,A1,A0 Off-Design Efficiency Coefficients 

C Capacity 

E Energy 

F Fuel Costs 

I Investment Costs 

L Power Plant Load (%) 

M O&M Costs 

N System Lifetime 

P Power 

�̇�  Ramp Rate 

Q Emissions factor 

R Discount rate 

V Present Value 

ΔT Model time step 

𝜂  Efficiency 
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Table 3-3. Subscripts. 

B Battery 

D Demand 

F Fixed 

MAX Maximum 

MIN Minimum 

NG Natural Gas Power Plant 

NGLS Natural Gas Power Plant Load Shed 

PV Photovoltaic 

PVC Photovoltaic Curtailment 

REQ Requested 

V Variable 

Y Year 

 

3.2 Introduction 

Natural gas and solar-based power production are the two fastest growing sources in many regions of 

the world. In the U.S. state of Virginia, installed natural gas capacity grew 47% over the past 5 years, and 

solar-based capacity grew from negligible levels to 406 MW, but the absolute installed capacity of solar 

photovoltaic (PV) power is still relatively small, accounting for only 0.35% of statewide consumption in 

2017 [117] (Figure 3-1). The intermittent diurnal and weather-related fluctuations that are inherent in solar 

generation were thus easily absorbed by conventional fossil-based generation. At current growth rates, PV 

power production will require increased grid flexibility and storage to balance load variations inherent in 

its deployment [10]. As installed solar capacity grows, it will present a challenge for turbine based power 

to provide the rapid change in power output or ramp rates required to ensure grid stability. Huber et al. 

reviewed ramp rate needs in the European electric grids and found that deployment of renewable generation 

above 30% will dramatically change grid flexibility requirements [118]. Denholm et al. have shown that 

increasing solar deployment above 20% of yearly demand can result in unusable generation necessitating 

cutting back or curtailing of solar production [119]. 
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Figure 3-1. Deployment of utility natural gas and solar power plants in Virginia compared against solar 

deployment target [117,120]. 

 

Several groups have investigated changes in power plant generation in response to solar deployment. 

As solar deployment increases, the operating range of thermal power plants becomes important and is 

characterized by the minimum power output or minimum plant load. Denholm and Margolis scaled solar 

irradiance data from nine locations in the Texas electric grid and showed that some PV generation will 

become surplus after providing 4% of annual electricity demand assuming a minimum plant load of 35% 

[121]. Research into managing high deployment of renewable resources has been focused in the areas of 

hybrid renewable energy systems (HRES) and Virtual Power Plants (VPP). HRES are micro-grids that 

combine renewable and conventional power generation to meet demand either in stand-alone operation or 

grid-connected operation [122]. The VPP concept is based on the idea of operating and controlling a 

collection of distributed generators such as solar PV and energy storage as a single power plant [123]. VPP 

are connected to the greater electric grid, but focus on issues similar to HRES in terms of managing 

intermittent renewable resources [123]. Nostratabadi et al. provide a review of scheduling techniques 
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including strategies to manage demand response, minimize emissions, and manage reactive power [124]. 

Bajpai and Dash provide a review of HRES modeling methods and show that conventional generation is 

usually limited to diesel generators and is represented by one or two equation models [122]. Dufo-Lopez et 

al. limit simulation of the diesel generation to fuel consumption [125]. Das et al. include diesel generators 

and micro gas turbines up to 65 kW and include efficiency corrections for ambient temperature and part-

load operation, but do not include transient effects [126]. Kalantar and Mousavi simulated a hybrid system 

that included a 230 kW microturbine and used a physics-based system of equations to capture the dynamics 

of each system component [127]. These papers have been limited in the scale of power generation, and do 

not offer a flexible simulation strategy when the full system dynamics cannot be determined. 

The most cost-effective and technically viable way to deliver solar load balancing will likely involve 

some combination of energy storage and advanced power generation with the capability to cycle rapidly 

[121]. The future of energy storage is focused on batteries, and to a lesser extent supercapacitors [128]. The 

principal drawback to using energy storage alone is that the costs of grid-scale batteries are prohibitively 

expensive and the charging and discharging cycles of batteries may be misaligned with variation in demand 

[14]. Increased solar deployment leads to the integration challenges of over-producing renewable electricity 

and reduced full-load hours for conventional power generation [129]. This creates a need for power plants 

that can start up rapidly and achieve high plant efficiencies across a range of operating conditions. Demand 

typically fluctuates by time of day and season resulting in a highly variable load balance as shown by the 

net power plant load based on PV generation and demand data for the University of Virginia (UVA) (Figure 

3-2). 
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Figure 3-2. Characteristic power data from clear and intermittently cloudy days in the winter and summer 

are used to illustrate impacts of solar PV variability on net load for the University of Virginia. 

 

Gonzalez-Salazar et al. provide a comparison of power plant flexibilities which show that responsive 

dispatchable generation are currently limited to open cycle gas turbines (OCGT) and combined cycle gas 

turbine (CCGT) power plants [13]. State-of-the-art OCGTs and CCGTs have much faster ramp rates and 

higher efficiencies than conventional simple steam turbines used in coal and nuclear power plants. 

Hydroelectric power plants are also a responsive generation (and storage) source, but limited in terms of 

geographic availability. 

Supercritical carbon dioxide (sCO2) power cycles are a promising alternative to the steam turbines used 

in CCGTs. In these cycles, CO2 is used instead of steam as the working fluid. These cycles are expected to 
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achieve rapid start-up and shutdown times in part because the turbines have physical footprints that are ten 

times smaller than conventional turbines [130]. They are also more efficient (system efficiencies greater 

than 50%) and potentially less expensive than conventional steam turbines. Several notable demonstrations 

of the sCO2 cycle include 100 kW cycle [34], 250 kW cycle [35], and 1 MW turbine [36] tests, and a 10 

MW cycle is currently under development [131]. These studies have demonstrated the on-design and off-

design potential of these cycles to meet levelized cost of electricity (LCOE) targets, but have not yet proven 

transient capabilities of the cycles. sCO2 cycles can be designed to operate using waste heat recovery 

(WHR), stored thermal fluids, biofuels, geothermal, or fossil fuel combustion [28]. Echogen Power Systems 

is focused on the WHR market, and while a number of waste heat sources exist, the most commonly utilized 

is gas turbine exhaust. In other words, Echogen’s WHR design could replace a steam cycle in a combined 

cycle power plant. Currently, Echogen offers three WHR units; the EPS30[132], EPS35[133] and 

EPS100[134] which have power outputs of 1.35 MW, 1.8 MW and 8.6 MW, respectively. Each unit uses 

dry cooling technology thus no water is required for operation. The reduced size of the sCO2 unit plus the 

elimination of water cooling auxiliary equipment reduces the overall system footprint by approximately 

25% [135]. With less auxiliary systems and smaller turbine sizes, sCO2 units are expected to start quickly. 

sCO2 plant characteristics are compared against OCGT and CCGT in Figure 3-3 on the basis of plant size, 

start time, minimum plant load, and ramp rates. Faster ramp rates, indicated by larger circles in Figure 3-3B, 

are better suited for solar integration. 
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Figure 3-3. Grid balancing options for deep deployment of photovoltaic power production have a variety of 

tradeoffs including those between A) efficiency and plant size and B) minimum plant load and start time. 

sCO2 cycles could represent an important bridge between efficient but slower combined cycle gas turbines 

and less efficient but quick starting open cycle gas turbines. 

 

sCO2 cycles present a number of challenges from a modeling perspective [39]. At the fluid level, the 

CO2 properties can change very rapidly near the critical point, which many studies have found to be optimal 

compressor inlet conditions, and vary drastically between start-up conditions and full-power operation 

[130]. At the machine level, complex interactions between components exist which can result in non-linear 

responses unlike those of conventional turbines [136]. While the ongoing transient modeling work of sCO2 

cycles has provided important insight into how this class of turbine will behave [137] [138] [41], the recent 

modeling has yet to explore in aggregate how these power plants will perform as part of a dynamic grid 

with high renewable deployment. 

Rooftop solar installations at the University of Virginia (UVA) account for 1.0% of peak demand (635 

kW), representative of today’s statewide deployment of solar power in Virginia. In late 2018, two solar 

farms came online (32 MW) which supply 20% of UVA’s annual electricity demand and up to 63% of 

peak. Thus, UVA’s demand and solar capacity are good surrogates for studying grid balancing under current 
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and projected levels of solar deployment. The University made data available at temporal resolutions that 

enabled the modeling needed to understand how advanced turbines might be deployed to deliver grid 

balancing. Here, I investigate the ability of natural gas power plants to balance the load in an electric grid 

with increasing amounts of solar generation by combining the elements of measured data from UVA, the 

solar prediction library PVLib and the mathematical model BLIS, Balancing Load of Intermittent Solar as 

shown in Figure 3-4. 

 

Figure 3-4. A) Measured data from UVA, B) Solar generation modeled using PVLib [139], and C) 

Mathematical model “BLIS” developed in this study. 

 

The goal of this paper is to explore the ways in which sCO2 cycles might be used to provide load 

balancing in a dynamic grid dominated by renewable energy production. A set of high-resolution generation 

and demand data and forecasting capabilities for the University of Virginia’s microgrid was used to inform 

this analysis. This work seeks to answer two principal research questions. First, how do existing and 
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proposed advanced power cycles perform for delivering load balancing when integrated into a grid 

involving high deployment of solar photovoltaic? Second, what sCO2 power cycle characteristics are 

necessary for them to provide load balancing in a grid with high PV deployment?  

This analysis seeks to fill several gaps in the existing literature. First, the effect of natural gas plant ramp 

rate, minimum plant load and efficiency were investigated for increasing solar. Second, sCO2 turbines in 

combined cycle, which are just starting to enter the market, are compared against state-of-the-art OCGT 

and CCGT, providing insight into the future of the natural gas power market. Third, the methodology of 

this work improves upon prior HRES studies by introducing a characteristic-based model that includes 

power plant dynamics thus providing a more realistic power plant operation and relies on publicly available 

manufacturer specifications, making it more accessible for users to get model inputs. Fourth, the demand 

and solar data used are in fine enough intervals (5 minutes) to be useful for modern grid dispatch, represent 

production large enough to represent a small city, and small enough to allow analysis of a single power 

plant, to understand the implications of individual power plant requirements.  

3.3 Methods 

To understand the impact of power plant characteristics in grids with high solar deployment, a transient 

characteristic-based mathematical model was developed. The mathematical model was developed to rely 

on manufacturer advertised characteristics as inputs, such as ramp rate, max efficiency, and minimum plant 

load, for power plants. To make the simulations as realistic as possible, the model is designed to take one 

year of demand and solar irradiance data as inputs. The model operates on one-minute increments to make 

it useful to represent a power grid control scheme which increasingly occurs on 5 minute intervals [119]. 

Frequency control is omitted from the model. The mathematical model along with the solar and demand 

data are available for download as an open source Python package, entitled blis (Balancing Load of 

Intermittent Solar) at https://github.com/EnergyModels/blis. 

https://github.com/EnergyModels/blis
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3.3.1 Demand 

Here, electricity demand data at a 5-minute temporal resolution was obtained from the UVA Facilities 

Management office for the period July 1, 2017 to July 1, 2018. The mathematical model ran on 1-minute 

increments; thus data was backfilled to provide a worst-case scenario with respect to changes in demand. 

For the time period investigated, UVA consumed 294 GWh with peak consumption at 51.3 MW. Based on 

EIA’s average household electricity use, this is equivalent to roughly 28,000 typical American households 

[140] or 0.2% of Virginia’s annual consumption [141]. 

3.3.2 Solar PV 

UVA’s installed rooftop solar capacity consists of approximately 0.635 MW of fixed tilt systems, or just 

over 1% of the peak electricity demand for the analysis period. Additionally, UVA has a power purchase 

agreement with two remote PV plants that came online late in 2018. These are single-axis tilt systems and 

have capacities of 17MW and 15MW, which represent 63% of the total university peak demand, and are 

expected to provide 20% of annual electricity demand.  

To model the combined production of the solar PV systems at high temporal resolution over the full 

year, PVLib, an open source Python library developed by Sandia National Laboratory was used. Global 

horizontal irradiance (GHI), ambient air temperature, and windspeed data sampled every 4-8 minutes from 

a weather station installed on top of UVA’s football stadium were used as model inputs [142]. During this 

time period, UVA experienced 169 sunny days, 75 cloudy days, and 121 days of intermittent clouds [143]. 

Solar angular position data at each timestep was obtained using NREL’s solar position algorithm [144]. 

The GHI data was then decomposed into its direct normal (DNI) and diffuse horizontal (DHI) components 

using the Direct Insolation Simulation Code (DISC) model [145]. The single-axis tilt systems were assumed 

to be oriented facing due south and capable of backtracking to avoid shading. A module temperature loss 

coefficient of 0.47% oC-1 (for a standard PV module with a glass cover) was assumed, and a derate factor 

of 0.825 was applied to convert the peak AC capacity to a nominal DC capacity for the models [146]. While 
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producing solar power from multiple locations attenuates some of the high frequency fluctuations in 

aggregated fleet production relative to a single location [147], it was assumed the large single axis tilt 

systems to be co-located with UVA’s campus in order to magnify the effects of ramp rates.  Production 

data for the rooftop solar systems (5 min resolution) and large PV plants (hourly resolution) were also 

provided by the UVA Facilities Management office and used to validate the model for the rooftop systems, 

with results shown in Appendix B.  

The produced solar generation data sets were then analyzed to determine the corresponding ramp rate 

required by a natural gas and/or battery system to meet the demand. Figure 3-5 shows the distribution of 

net load ramp rates for every 5-minute period over the analysis timeframe with 1% and 63% solar 

deployment. The deep deployment of solar PV shifts the distribution to the right such that there are many 

more instances with high ramp rates. Few cases at 1% solar exist where ramp rates exceed 0.1 MW/min, 

however at 63% the probability of experiencing ramp rates above 1 MW/min are substantial.  

 

Figure 3-5. Histogram of ramp rate events with A) 1% solar deployment and B) 63% solar deployment. 
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3.3.3 Battery 

The available battery discharge is calculated using the battery characteristics maximum discharge rate 

and time constant along with the current amount of energy stored 

𝑃𝐵,𝑂𝑈𝑇,𝑀𝐴𝑋 = min⁡(𝑃𝐵,𝐷𝐸𝑆𝐼𝐺𝑁,
𝐸𝐵

30⁡ΔT
)      (3-1) 

Where 𝑃𝐵,𝑂𝑈𝑇,𝑀𝐴𝑋 is the battery discharge available at the current time step, 𝑃𝐵,𝐷𝐸𝑆𝐼𝐺𝑁 is the maximum 

allowable battery discharge rate, 𝐸𝐵 is the energy stored in the battery at the current time step, ΔT is the 

time step. The dimensionless constant 30 is included to simulate a bumpless controller to ensure a smooth 

transition to other generation sources when the battery level is low. The available battery charge rate 

𝑃𝐵,𝐼𝑁,𝑀𝐴𝑋⁡is calculated as, 

𝑃𝐵,𝐼𝑁,𝑀𝐴𝑋 = min⁡(𝑃𝐵,𝐷𝐸𝑆𝐼𝐺𝑁,
𝐸𝐵,𝑀𝐴𝑋−𝐸𝐵

ΔT
)     (3-2) 

Where 𝐸𝐵,𝑀𝐴𝑋 is the maximum battery storage level.  

3.3.4 Power Plants 

To simulate the three types of natural gas power plants being investigated, OCGT, CCGT and sCO2, the 

mathematical model focused on four major characteristics: design efficiency, off-design efficiency curves, 

minimum load and ramp rate. To incorporate on-design and off-design efficiency, the efficiency 𝜂 for load 

L is, 

𝜂 = 𝜂𝑁𝐺,𝑑𝑒𝑠𝑖𝑔𝑛 ∗ (𝐴2 ⋅ 𝐿
2 + 𝐴1 ⋅ 𝐿 + 𝐴0)   (3-3) 

where 𝜂𝑁𝐺,𝑑𝑒𝑠𝑖𝑔𝑛 is the rated efficiency of the natural gas power plant and A0, A1, and A2 are regression 

constants to represent off-design curves. Minimum plant load is enforced by limiting the requested plant 

load LREQ, 

𝐿𝑅𝐸𝑄 = max(𝐿𝑀𝐼𝑁, 𝐿𝐼𝐷𝐸𝐴𝐿)    (3-4) 

Where LIDEAL is the ideal plant load which is calculated to optimize usage of the solar power plant and 

battery storage system by, 
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𝐿𝐼𝐷𝐸𝐴𝐿⁡(%𝐹𝐿) =
𝑃𝐷−𝑃𝐵,𝑂𝑈𝑇,𝑀𝐴𝑋−𝑃𝑃𝑉

𝐶𝑁𝐺
∗ 100     (3-5) 

Where PD is power demand and PPV is PV power generation. To include the transient behavior of the power 

plant, the ramp rate is constrained by, 

|
𝐶𝑁𝐺⋅(𝐿−𝐿𝑅𝐸𝑄)

ΔT
| ≤ �̇�𝑁𝐺,𝐷𝐸𝑆𝐼𝐺𝑁      (3-6) 

Where �̇�𝑁𝐺,𝐷𝐸𝑆𝐼𝐺𝑁 is the manufacturer rated ramp rate, CNG is the capacity of the natural gas power plant, 

and ΔT is the time step. 

3.3.5 Metrics 

Modeling of power systems that includes a significant amount of renewable generation typically 

employs a number of metrics to quantify the flexibility of the power system to handle the variable nature 

of this resource [148]. Financial metrics are also important when modeling power systems, and therefore 

two costs were included in this model. In total, seven performance indices were selected to evaluate the 

performance of the natural gas power plants: curtailment, natural gas load shed, peak deficit, time of day 

emissions, yearly fuel costs, and LCOE. Solar curtailment is the fraction of solar power that is unused by 

the energy system. 

𝐶𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡(%) =
∑𝑃𝑃𝑉𝐶⋅Δ𝑇

∑𝑃𝑃𝑉⋅ΔT
      (3-7) 

Where PPVC is the amount of solar power curtailed per time step. Natural gas load shed represents the 

amount of electricity produced by the natural gas power plant that must be curtailed due to excess supply 

that cannot be absorbed by the battery. It is normalized by the yearly demand, 

𝑁𝑎𝑡𝑢𝑟𝑎𝑙⁡𝐺𝑎𝑠⁡𝐿𝑜𝑎𝑑⁡𝑆ℎ𝑒𝑑⁡(%) =
∑𝑃𝑁𝐺𝐿𝑆⋅ΔT

∑𝑃𝐷⋅ΔT
     (3-8) 

where PNGLS is the amount of load shed per time step. The peak deficit represents that largest failure of the 

energy system with respect to being able to meet demand and is defined as, 

𝐷𝑒𝑓𝑖𝑐𝑖𝑡(𝑀𝑊) = max⁡(𝑃𝐷 − 𝑃𝑁𝐺 − 𝑃𝑃𝑉 − 𝑃𝐵)    (3-9) 
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The time-of-day emissions represents the total amount of natural gas emissions during each hour 

weighted by the amount of demand in that hour, or, 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(ℎ𝑟) =
∑
𝑃𝑁𝐺⋅ΔT

𝜂𝑁𝐺

∑𝑃𝐷⋅ΔT
∗ 𝑄      (3-10) 

where Q is the emission factor for natural gas, signifying the tons of carbon dioxide that are produced per 

thermal MW consumed. 

3.3.6 LCOE 

The mathematical model operates with one year’s worth of data, thus by assuming that costs and 

operation are constant throughout the system lifetime, the Levelized Cost of Electricity [149], LCOE, was 

simplified to, 

𝐿𝐶𝑂𝐸 =
∑

𝐼𝑌+𝑀𝑌+𝐹𝑌
(1+𝑅)𝑡

𝑁
𝑡=1

∑
𝐸𝑌

(1+𝑅)𝑡
𝑁
𝑡=1

=
𝐼𝑌+𝑀𝑌+𝐹𝑌

𝐸𝑌
      (3-11) 

where IY are investment costs in year Y, MY are O&M costs in year Y, FY are fuel costs in year Y, EY is the 

energy demand during year Y, R is the discount rate, and N is the life of the system. Investment costs are 

assumed to be financed thus, it is also a constant yearly value. The yearly investment cost is calculated by 

applying the Python numpy function pmt [150] to the present value, V, of the power plant,  

𝑉 = 𝐶𝑁𝐺 ∗ 𝐼𝑁𝐺 + 𝐶𝑃𝑉 ∗ 𝐼𝑃𝑉 + 𝐶𝐵 ∗ 𝐼𝐵     (3-12) 

The yearly O&M costs MY are calculated as, 

𝑀𝑌 = 𝐸𝑁𝐺 ⋅ 𝑀𝑉,𝑁𝐺 +⁡𝐶𝑁𝐺 ∗ 𝑀𝐹,𝑁𝐺 + 𝐶𝑃𝑉 ∗ 𝑀𝐹,𝑃𝑉 + 𝐶𝐵 ∗ 𝑀𝐹,𝐵  (3-13) 

where MV and MF are variable and fixed O&M costs, respectively. 

3.3.7 Model Inputs 

To find comparable performance statistics, a comprehensive review was performed of open cycle 

(OCGT) [151,152,161–164,153–160] and combined cycle (CCGT) [151,154–160,163,164] gas turbines 

sold by GE, Siemens and Mitsubishi Hitachi Power Systems for packages rated for 20 – 80 MW. 
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Approximately 15-20 configurations were found for both OCGT and CCGT, where both plant capacity and 

peak efficiency were reported. Off-design efficiency curves for OCGT and CCGT were obtained from the 

literature [165]. Each off-design curve was normalized to the peak efficiency, similar to that presented in 

[166], so that a unique efficiency curve could be generated for each peak efficiency used in subsequent 

simulations. Cost information was not readily available from manufacturers, so operation and maintenance 

data was obtained from EIA [167]. Open cycle cost data was taken for the LM2500, a 25MW gas turbine, 

using a price reported in [168]. The price for a combined cycle gas turbine was calculated using the GTW 

Handbook cost estimate based on a plant size of 51.3 MW [54]. 

Crespi et al. summarize studies predicting sCO2 power cycle efficiencies, the few that focused on 

combined cycle applications did not vary with plant size [33], thus an average of the 4 cases found was 

used [169–173]. Only two part-load efficiency curves were found in the literature, one for the direct-fired 

Allam cycle [166] and one for concentrated solar power [174]. The curve for the Allam cycle was selected 

for this study, as it was expected that a natural gas fuel source would be more representative than a thermal 

solar application. Transient characteristics are unknown for sCO2 power plants, so a uniform range of values 

were investigated. A larger range than CCGT was investigated for sCO2 turbines as they have a much 

smaller rotor size, and may be able to react more quickly for the same power rating [30]. Walnum et al. 

included 60% as the minimum part-load for a combined cycle application [169]. This is on the high end of 

CCGT, so this was kept as the upper limit for the range investigated. Install cost and operation and 

maintenance (O&M) costs are based on [168]. Echogen’s EPS100 [134] WHR unit uses dry cooling, thus 

they expect operational costs to be much lower than a CCGT system based on steam [135]. Echogen has 

not released price information, so operation and maintenance (O&M) costs, as well as installation costs are 

based on [168]. Power plant specific inputs are summarized in Table 3-4 and common inputs in Table 3-5. 

Note that variable O&M costs are excluded from PV and battery calculations, as the model did not track 
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usage of these resources alone. For reference, EIA reports variable O&M costs of 0.0$/MWh for PV plants 

and 7.12$/MWh for battery storage [167]. 

 

Table 3-4. Power plant modeling inputs used in system-dynamics model with sources. Values reported are 

averages with minimum and maximum values shown in parenthesis. 

 Name Open Cycle Gas Turbine Combined Cycle Gas 

Turbine 

Gas Turbine combined with 

sCO2 Turbine 

 Abbr. OCGT CCGT sCO2 

  Performance Characteristics 

Variable Units Estimate (+/-) Reference Estimate 

(+/-) 

Reference Estimate 

(+/-) 

Reference 

Max Plant 

Efficiency 

(% LHV) 38.3 

(33.5-43.3) 

[151,152,16

1–164,153–

160] 

53.4 

(49.9-58.0) 

[151,154–

160,163,16

4] 

53.1 

(43-59.1) 

[169–173] 

Off-Design 

Efficiency 

Coefficients 

(A2,A1,A0) 

(-) -1.09E-02 
2.03 

5.44 

[165] -6.94E-03 
1.28 

40.8 

[165] -5.60E-03 
1.05 

50.00 

[166] 

 Dynamic Characteristics 

Variable Units Estimate (+/-) Reference Estimate 

(+/-) 

Reference Estimate 

(+/-) 

Reference 

Hot Start-up 

Time 

(min) 10.0 

(5-22) 

[151,152,16

1–164,153–

160] 

33.1 

(30-55) 

[151,154–

160,163,16

4] 

10.0 [175] 

Minimum 

Plant Load 

(% full load) 46.1 

(25-50) 

[151,152,16

1–164,153–

160] 

36.4 

(19-59) 

[151,154–

160,163,16

4] 

15-60 Assumption 

Ramping Rate (% full 

load/min) 

72.8 

(8.3-129.3) 

[151,152,16

1–164,153–

160] 

64.9 

(29.4-90.4) 

[151,154–

160,163,16

4] 

30-110 Assumption 

 Costs 

Variable Units Estimate (+/-) Reference Estimate 

(+/-) 

Reference Estimate 

(+/-) 

Reference 

Install $/kW 750 [168] 1260 [54] 962 [168] 

O&M Variable $/MWh 3.54 [167] 3.54 [167] 8.00 [168] 

O&M Fixed $/kW/year 17.67 [167] 11.11 [167] 0.00 [168] 
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Table 3-5. Common power plant model inputs and assumptions. 

Variable Units Value Reference 

Interest Rate % 2.0 [168] 

Timestep min 1 Input 

System Lifetime years 20 [168]  

Natural Gas Plant 

Plant Capacity MW 51.3 Sized to peak demand 

CO2 Emissions Metric ton/MWh 0.18 [176] 

Fuel Cost $/MWh 10.58 [177] 
Battery 

Discharge Rate MW/MWh 1.0 [178] 

Efficiency % 85.0 [14] 

Initial Charge Cost $/MWh 100.0 [179] 

Install cost $/kW 2067 [167] 

O&M Fixed $/kW/year 35.6 [167] 

Solar PV 

Install cost $/kW 2004 [167] 

O&M Fixed $/kW/year 22.02 [167] 

 

3.3.8 Verification of Grid Operation 

The model used in this study used a control strategy that first prioritizes use of solar power produced. It 

also slows the battery discharge with battery charge level to allow a smooth transition to the natural gas-

powered cycle. Figure 3-6 verifies that the control strategy responded appropriately to the generation and 

demand on a representative sunny day. With a 30.0 MWh battery, there is not enough storage capability to 

permit shutting down the natural gas plant, thus it is cycled to balance the difference between solar 

generation and battery discharge to meet demand. As solar generation increases, the natural gas plant 

decreases its output until it reaches its minimum plant load, at which point the system begins to create more 

electricity than can be used. To handle excess, the first step is to charge the battery. The battery can only 

charge at 30 MW, so if necessary, curtailment is used to cut solar production. If any additional electricity 

remains then the natural gas load would be shed.  
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Figure 3-6. Operational control scheme for October 30, 2017 with 63% solar: A) Electricity generation by 

source, B) Electricity consumption by use, C) Battery charge level. 

 

3.3.9 Scenarios 

Three categories of simulations were performed, summarized in Table 3-6. First Monte Carlo 

simulations were used to compare the performance of sCO2 plants with OCGT and CCGT for two levels of 

solar deployment (1% and 63%) and two levels of battery size (0 and 30 MWh). 100 iterations were 

performed per configuration. Next sCO2 plants were studied in more detail to understand the impact of the 

ramp rate characteristic, while holding other plant characteristics constant. Lastly, the impact of battery size 

was investigated for three levels of minimum plant load, holding other characteristics constant for sCO2 

cycles. 
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Table 3-6. Scenarios. 

# 

Power Plant Types Solar Capacities Battery Capacity Ramp Rate Min Load 

sCO2 OCGT CCGT 

0.6 MW 

(1 % Peak) 

32.6 MW 

(63% Peak) 

MW(MWh) % % 

1 Y Y Y Y Y 0 and 30 NC NC 

2 Y   Y Y 0 and 30 0 - 16 30 

3 Y    Y 0 – 100 50 30,40,50 

3.4 Results and Discussion 

3.4.1 Levelized Cost of Electricity 

The LCOE was calculated for each of the three cycle configurations modeled and the results are 

presented in Figure 3-7. The probability density functions for each turbine type are presented in four plots 

that show the impact of solar deployment and battery size. Results show that across all conditions, combined 

cycle (both CCGT and sCO2) systems have considerably lower costs than open cycle gas turbines. The 

higher efficiency of the combined cycle systems is great enough that these systems generally produce 

electricity that is at least 0.005 $/kWh less expensive than open cycle turbines. The OCGT LCOE results 

are driven by its lower efficiencies and corresponding higher fuel consumption. The addition of a battery 

(here assumed to be 30 MWh) increases the cost of electricity by 0.015 $/kWh. The increase in LCOE when 

moving from 1% to 63% solar deployment is approximately 0.013 $/kWh. The distributions for CCGT are 

the narrowest, which reflect the higher certainty associated with this well-established and commercialized 

technology. In contrast, sCO2 results have longer tails associated with higher uncertainty in input 

parameters. While the distributions do hint at the potential for sCO2 cycles to reduce LCOE relative to 

CCGTs, especially at higher solar deployment, current performance data suggest the impact of these 

advanced power cycles may be small from an overall systems perspective. To verify the model, LCOE 

predictions were compared to reports in the literature for sCO2 cycles without solar or battery, which were 

found to be comparable to the estimates forecast in this model. Wright et al. report an LCOE of 0.029-0.034 
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$/kWh for a fuel cost of $10.2/MWh [172] and Persichilli et al. reports an LCOE for baseload operation 

from 0.05-0.06 $/kWh for a fuel cost of $12.2/MWh [135].  

 

Figure 3-7. LCOE frequency of occurrence: A) 1% Solar with No Battery; B) 1% Solar with 30.0 MWh 

Battery; C) 63% Solar with No Battery; D) 63% Solar with 30.0 MWh Battery. 

 

3.4.2 Time-of-Day Emissions 

To understand the interaction of plant type, solar production, and battery storage on CO2 emissions, a 

comparison was made on an hourly basis and weighted by demand (Figure 3-8). On the whole, CCGT had 
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marginally lower emissions than sCO2 cycles. sCO2 cycles performed better at 63% solar and 30 MWh 

around mid-day which shows the impact of higher off-design efficiency. Emission levels of OCGT were 

consistently higher, even the addition of 63% solar and a 30 MWh battery did not reduce levels below 

CCGT and sCO2 at 1% solar. The 95% confidence interval was largest for the 1% solar case with a battery 

which demonstrates that certain power plant characteristics enable higher battery utilization and thus lower 

emissions. 

 

Figure 3-8. Annual time of day carbon dioxide emissions weighted by hourly demand shown with 95% 

confidence interval, A) 1% Solar with No Battery; B) 1% Solar with 30.0 MWh Battery; C) 63% Solar with 

No Battery; D) 63% Solar with 30.0 MWh Battery. 
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3.4.3 Solar Curtailment 

Solar curtailment and natural gas load shed were quantified to determine how well the system utilizes 

electricity produced. The battery had a significant impact by greatly reducing the magnitude of solar 

curtailment occurring. Interestingly, sCO2 cycles are shown to have higher curtailment than the other power 

sources. As previously demonstrated, sCO2 cycle curtailment was driven by the minimum plant load, and 

of the plant types investigated, the largest range of minimum plant load was assumed for sCO2 cycles due 

to the lack of real-world application data. Based on the control scheme used, load shedding only occurs 

when battery charging and solar curtailment are not available or insufficient. Figure 3-9B and D shows that 

only one configuration had any appreciable load shedding, and it was minimal. Based on Figure 3-9A, it is 

not a surprise that sCO2 cycles are the cases that needed to use load shedding, as they also had the highest 

amount of solar curtailment. 
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Figure 3-9. Percentage of energy wasted via solar curtailment (A and C) and natural gas load shed (B and D) 

for 63% solar without a battery (A and B) and with a 30 MWh battery (C and D). Distributions show 

frequency of occurrence from the 100 sample Monte Carlo simulation. 

 

3.4.4 sCO2 Cycle Sensitivity 

To better understand which characteristics of the sCO2 cycle are driving the trends, the effect of 

maximum efficiency, ramp rate and minimum load were quantified with respect to fuel cost and solar 

curtailment. Fuel cost provides an understanding of the financial impact and amount of natural gas being 

consumed while solar curtailment represents the system flexibility by showing what percentage of solar 

energy was not utilized during the year. Fuel cost and efficiency showed a very strong negative correlation 
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(Figure 3-10A) as expected. Fuel cost decreases with increased solar deployment and further with the use 

of battery storage. There is no apparent correlation between curtailment and either efficiency or ramp rate, 

which was unexpected. This suggests that the range of values considered are fast enough that it does not 

become a limiting characteristic. There is a weak positive correlation between the minimum load (Figure 

3-10C) and fuel cost which demonstrates the inability of systems with higher minimum part loads to 

effectively balance solar power. This relationship is most apparent in Figure 3-10F, which shows a strong 

nonlinear correlation between solar curtailment and minimum part load. To have curtailment less than 2%, 

a plant needs a minimum part load of 55% for the 1% solar scenario and would need to be less than 15% 

for the 63% solar scenario. The addition of a 30.0 MWh battery relaxes the minimum part load needed to 

25%, for the 63% solar deployment case. Only one CCGT was close to the minimum load required for 63% 

solar without a battery (with a minimum load of 18.9%) and none of the OCGT models reviewed would be 

capable of achieving this minimum load level. In addition to the changes in fuel cost and part load 

requirements, batteries may be needed to handle fluctuations on a less than 1-minute basis depending on 

the responsiveness of the power plant controls. The cost of a 30 MWh battery would be 60M$ at current 

market prices, which corresponds to ten years of fuel. However, a system with a peak demand of 51.3 MW 

can only be partially supplemented by a 30 MWh battery discharging at 30 MW. 
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Figure 3-10. Sensitivity of sCO2 plant inputs to fuel cost and solar curtailment A) Fuel cost vs. max efficiency, 

B) Fuel cost vs. ramp rate, C) Fuel cost vs. minimum load, D) Curtailment vs max efficiency, E) Curtailment 

vs. ramp rate, F) Curtailment vs. minimum load. 

 

3.4.5 Impact of Ramp Rate 

Although ramp rate was not found to have a significant impact on either LCOE or solar curtailment, it 

is expected that cycles with a slower ramp rate may be unable to respond to fluctuations in demand and 

solar supply. To determine what the critical values of ramp rate were, a sweep of simulations was performed 

on the baseline sCO2 system using median values for efficiency and minimum part load while varying the 
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ramp rate to compare against other generating technologies. Initial simulations analyzed ramp rates below 

30% which was the low end of the Monte Carlo analysis, but results showed more interesting trends below 

16%, which are presented in Figure 3-11 To analyze the impact of ramp rate, the maximum deficit was 

measured, which captures the maximum difference between demand and supply that neither the power 

plant, solar panels nor battery were able to meet. Figure 3-11 shows that the critical values of ramp rate are 

3.25%/min, 5.75%/min and 4.75%/min, for the 1% solar, 63% solar without a battery and 63% solar with 

a 30.0 MWh battery cases, respectively. The addition of the battery decreases the critical ramp rate by 1%. 

Gonzalez-Salazar et al. presented a review of ramp rates for a variety of technologies which are overlaid 

for comparison and Nuclear power plants would be unable to handle the fluctuations of 63% solar, and coal 

plants would have to run at their limits which may be undesirable for long term operation [13]. Gonzalez-

Salazar et al. also reported the ramp rate of CCGT to be 8%/min which is understood to represent a larger 

or older generation CCGT than those reviewed in this work [13]. 
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Figure 3-11. Sensitivity of energy system deficit to power plant ramp rate, technology characteristics from 

[13]. 

 

3.4.6 Impact of Battery Size 

The results of the Monte Carlo simulations demonstrated that a 30 MWh battery would not completely 

prevent solar curtailment. For reference, a 90-kW/180-kWh zinc-bromine battery fits inside a 20-foot 

shipping container, and 168 of these batteries would be required to store 30 MWh [178]. This raised the 

question of how large a battery is necessary to prevent solar curtailment. To answer this question, baseline 

sCO2 combined cycle efficiencies and ramp rates were held constant and a distribution of battery sizes from 

1 to 100 MWh were analyzed at 63% solar deployment. Solar curtailment was previously shown to be a 

function of minimum plant load, therefore these simulations were repeated at three different minimum plant 

loads, 30%, 40% and 50% to represent the range currently available in CCGTs. Resulting curtailment, fuel 
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cost and LCOE are shown in Figure 3-12. Figure 3-12A shows that in order to prevent more than 2% 

curtailment with a plant capable of 30% minimum load, a 48 MWh battery, expected to cost 96 M$, is 

needed [167], [178]. For a plant capable of 40% minimum load, twice the battery size would be required. 

And a plant with a 50% minimum load would require a battery greater than 100 MWh to prevent solar 

curtailment. The goal of preventing solar curtailment intuitively gives the impression that it will accompany 

a large reduction in fuel costs. However as shown in Figure 3-12B, fuel costs remain nearly constant 

because the majority of energy provided during the year still comes from natural gas, even with fully 

utilizing solar generation at 63% solar deployment. In order to meet demand completely with solar power, 

the solar capacity would need to be much larger than peak demand and accompanied by a large energy 

storage system. Despite fuel costs remaining constant, the LCOE experiences a linear increase as more 

batteries are added to the system. 
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Figure 3-12. Impact of battery size on A) solar curtailment, B) fuel cost, and C) LCOE for a sCO2 cycle with 

63% solar deployment. 

 

3.5 Conclusions 

A power system analysis was performed to understand the ways in which load balancing can be 

delivered to a grid with deep deployment of solar power generation. Demand, solar irradiation and rooftop 

solar data were obtained from the University of Virginia and modeled to understand how increased solar 

deployment will impact the required performance characteristics of natural gas power plants providing grid 
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balancing. The modeling suggests that state-of-the-art OCGT and CCGT are capable of providing the load 

balancing that would be needed in the system with high deployment (63% peak demand) of installed solar. 

CCGT operate with a much lower LCOE than OCGT due to their much higher efficiencies. It was shown 

that ramp rates of modern OCGT and CCGT are sufficient to keep up with solar generation ramp rates at 

63% deployment whereas nuclear plants cannot and coal plants would be at their limits. Simulations of 

sCO2 cycles operating in a combined cycle configuration with a gas turbine have shown that operating costs 

are expected to be comparable to CCGT, despite the promise of higher cycle efficiencies. In order to handle 

fluctuations in solar generation at 63% deployment without battery storage, sCO2 cycles need to have ramp 

rates above 5.75% full load/min. To maximize their utility in grids with high solar deployment, sCO2 cycles 

will need to operate with as low a minimum plant load as possible. This may be limited by the capabilities 

of the gas turbine it is combined with.  

The results of this study suggest that in order to enable increased usage of solar PV, OCGT and CCGT 

designs should focus on lowering their minimum part load capabilities. For example, some manufacturers 

are combining two gas turbines with one steam turbine to allow the flexibility of two gas turbines while 

still achieving efficiencies of CCGT operation. It is expected that using smaller gas turbines in this 

configuration will reduce efficiencies, but expand the operational range. The fast start times, and high off-

design efficiencies expected for sCO2 cycles will be valuable as solar deployment increases. To gain a 

competitive edge over CCGT at low solar deployment, sCO2 cycle research may consider focusing on 

reducing costs, both capital and operating. The results of balancing the solar generation have shown that a 

system with 63% solar deployment would require a large battery (48 MWh at 30% minimum load and 96 

MWh at 40% minimum load) in order to avoid solar curtailment. Even with a battery this large, the majority 

of the electricity would come from burning natural gas. The model ran on a 1-minute interval and found 

that power plants operating with this degree of control would be able to adequately handle 63% solar 

deployment. Some degree of battery or capacitors may be necessary to handle fluctuations on the less than 
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1-minute interval in addition to the 30 MWh battery considered. As solar deployment continues to increase, 

the electric grid will increasingly rely on state-of-the-art natural gas fired plants to balance intermittent 

fluctuations. For the electric grid to operate completely on solar power the installed solar and storage 

capacity would need to far exceed what was modeled here. Such a transition will require natural gas power 

plants that in addition to having fast ramp rates will also require faster start-up times. 
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4 Techno-economic analysis of offshore isothermal compressed air energy storage in saline 

aquifers co-located with wind power3 

4.1 Summary 

Offshore wind power projects are increasingly attractive in many regions even though capacity is 

impacted by intermittency as it is with other renewable power sources. I examine balancing the 

intermittency with an Offshore Compressed Air Energy Storage (OCAES) system that combines near-

isothermal compression and expansion processes via water spray injection with air storage in saline 

aquifers. Spray injection maintains the air at nearly constant temperatures to improve round-trip efficiency, 

and saline aquifers are abundant in near-shore environments at suitable depths. This techno-economic 

analysis estimates the efficiency, cost, and value of OCAES, and demonstrates it in the context of the 

Atlantic coast of the United States, for a wind lease near Virginia. The round-trip efficiency of the OCAES 

system is projected using a thermal fluid process model that accounts for machinery performance as well 

as geophysical subsurface characteristics and gradients. Cost estimates are based on combining axial gas 

turbine technology with water spray injection retrofits and drilling experience from the oil and gas industry. 

Value to the electric grid is quantified with a price-taker dispatch model that optimizes the value of 

delivered electricity. The results show that for the geophysical conditions considered, a 200 MW OCAES 

system is expected to have a round-trip efficiency of 77% and a capital cost of $1457/kW. When paired 

with a 500 MW wind farm, OCAES is able to increase revenue from $0.031/kWh, without storage, to 

$0.048/kWh. I also show that a 350 MW OCAES system with 168 hours of storage is able to make the 

wind farm power output constant with an LCOE of $0.22/kWh, 81% less than with 10-hour lithium-ion 

battery technology.   

 

3 This chapter was adapted from: Bennett, J.A., Simpson, J.G., Qin, C., Fittro, R., Koenig, G.M., Clarens, A.F., 

Loth, E. (2020), Techno-economic analysis of offshore compressed air energy storage in saline aquifers co-located 

with wind power. Manuscript submitted for publication.  
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4.2 Nomenclature 

Table 4-1. Acronyms and Abbreviations. 

CAES Compressed Air Energy Storage 

COVE Cost of Valued Energy 

DOE Department of Energy 

ICAES Isothermal Compressed Air Energy Storage 

LCOE Levelized Cost of Energy 

LMP Locational Marginal Price 

NREL National Renewable Energy Laboratory 

OCAES Offshore Compressed Air Energy Storage 

O&M Operation and Maintenance 

RPS Renewable Portfolio Standard 

RTE Round-Trip Efficiency 

VRE Variable Renewable Energy 
 

Table 4-2. Symbols. 

A Constant 

AEP Annual Energy Production 

c Specific heat 

C Cost 

CC Capacity Credit 

CP Capacity Payment 

CR Capacity Revenue 

CRF Capital Recovery Factor 

D Diameter 

E Energy demand 

f Friction coefficient 

g Gravitational constant 

G Hourly generation 

h Formation thickness 

i Real interest rate 

k Permeability 

l Length 

ṁ Mass flow rate 

M O&M costs 

ML Mass Loading 

n Polytropic exponent 

N Lifetime  

p Pressure 

P’ Normalized spot market price 

Q Volumetric flow rate 

R Gas constant 

Re Reynolds number 

r Radius 
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T Temperature 

U Mean flow velocity 

v Specific volume 

V Volume 

w Work 

ẇ Power 

z Depth 

Z Gas compressibility 

𝛾 Specific heat ratio 

𝜖 Roughness 

𝜂 Efficiency 

𝜇 Viscosity 

𝜌 Density 
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4.3 Introduction 

By 2050, solar and wind energy are projected to provide 30% of electricity generation in the United 

States and 50% in the world due to large reductions in capital costs combined with the establishment of 

policy incentives such as renewable portfolio standards (RPS) [180]. The intermittency of these Variable 

Renewable Energy (VRE) sources introduces grid integration challenges that require energy storage or fast-

acting power plants for load-balancing [57]. Arbabzadeh et al. found that complementing renewables with 

energy storage will prevent curtailment and reduce the emissions of generating electricity [181]. However, 

the ability of VRE and energy storage to effectively mitigate climate change relies on cost improvements 

in energy storage, according to Braff et al. [182]. The most widely discussed energy storage technology is 

batteries because they are a proven modular technology with fast response times and high efficiency. 

However, the high costs [183], calendar and cycle life limitations [183], manufacturing and waste 

management environmental concerns [184], and the coupling of power output and energy stored [185] has 

led to a search for alternatives. Jafari et al. found short-term battery storage with offshore wind energy to 

be unprofitable based on data from 2010 to 2013; the breakeven price needed for batteries was below current 

cost of battery energy storage systems [186]. Energy storage technologies may need to be tailored to the 

region and installation location of the VRE production. For example, legislation passed in the United States 

for Virginia in 2020 and for New York in 2019 requires utilities to install 5.2 GW by 2034 and 9 GW by 

2035 of offshore wind, respectively [187,188]. Co-locating these offshore wind farms with energy storage 

could smooth energy production and make the VRE dispatchable. The corrosive environment offshore is 

unsuitable for batteries but could be an opportunity for compressed air energy storage.  

Compressed air energy storage (CAES) systems use electricity to pressurize and store air and then 

expand the air later to produce electricity at times in need of the generation. Combining wind power with 

CAES has been investigated as a way to meet baseload electricity demand [189] or even provide constant 

power [44]. Over 20 years ago, Seymour presented a concept of offshore compressed air energy storage 
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(OCAES) as storing air in an open-ended container at the bottom of the ocean and then piping the air back 

to an onshore expander [43]. Alternative air storage has been considered for OCAES, such as the use of 

underwater accumulators by Cheung et al. and Wang et al. [190–192]. Other forms of pressurized air storage 

for OCAES have been presented but not analyzed by Boehme et al. including floating sections of pipe, 

undersea caverns, and depleted gas reservoirs [193]. Mouli-Castillo et al. analyzed the potential of saline 

aquifers to store compressed air offshore of the United Kingdom for seasonal storage (multiple months) 

[46].  

Saline aquifers or other porous media are advantageous offshore because they are geographically 

widespread and have a large capacity. There are many areas of overlap between subsurface saline aquifer 

formations and planned offshore wind farms for the eastern coast of the United States, as shown in Figure 

4-1 for the Mid-Atlantic. Fukai et al. identified the Middle Cretaceous, Lower Cretaceous, and Upper 

Jurassic formations in the Mid-Atlantic, all strata in the Baltimore Canyon Trough, with a caprock suitable 

for pressurized storage [194]. Air storage has previously been considered in aquifers or other subsurface 

porous media for onshore applications as summarized by Li et al. [195]. Studies by Oldenburg and Pan, 

Guo et al. and others have performed two-dimensional multiphase numerical simulations of the porous 

media and wellbore [196–199]; however, these are computationally intensive and therefore limit the 

number of cases that can be considered. Other aspects of operating CAES in a porous media have included 

work by Sopher et al. that evaluated the total storage potential in Gotland, Sweden [200] and Yang et al. 

that examined daily, weekly, and monthly cycling of CAES in onshore aquifers [201]. As of 2020, no CAES 

plants are operating using a porous subsurface formation, such as a saline aquifer. The Iowa Stored Energy 

Park was a CAES plant planned to operate in an aquifer, but it was not ultimately built in part because the 

permeability was found to be insufficient late in the planning process [202]. 

Although OCAES faces the challenges of offshore installation costs and a corrosive environment, 

OCAES wells will have a higher formation pressure as compared to onshore, due to the hydrostatic pressure 
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of being under the ocean, increasing the potential energy for the same amount of air stored. Using saline 

aquifers for CAES that are offshore will avoid concerns from adjacent landowners over induced seismicity 

[203,204]. It is also noted that monopile offshore wind turbine foundations are vulnerable to extreme 

earthquakes [205], thus co-locating with CAES would require additional review to make sure any risk of 

induced seismicity would not affect their structure. 

 

Figure 4-1. Comparison of offshore wind energy leases and underground saline aquifer formations. The inset 

shows Dominion Energy’s renewable energy lease, which is the study area considered here. Lease data is 

from US Bureau of Ocean Energy Management [206]. The formation shown is the lower Cretaceous with 

data from Fukai et al. [194]. 

 

In addition to the type and location of the storage reservoir, CAES systems can also be classified by the 

type of thermodynamic cycle employed. Several thermodynamic cycles have been presented for OCAES, 
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including diabatic, adiabatic, and isothermal. Conventional CAES uses a diabatic cycle, which requires 

combustion of a fuel such as natural gas before the expansion phase, and is used by the two utility-scale 

CAES plants in operation today: a 290 MW plant in Huntorf, Germany operated since 1978 and a 110 MW 

plant in McIntosh, Alabama operated since 1991 [14]. Mouli-Castillo et al. considered diabatic CAES in 

their study of OCAES in saline aquifers, but did not consider the need to meet or balance electricity demand 

[46]. Adiabatic CAES is the concept of capturing the heat of compression, storing it in thermal storage 

tanks, and re-using the heat in the expansion step. The development of adiabatic CAES has been limited by 

the need for a high-temperature thermal energy storage sub-system and a high-temperature electrically-

driven compressor [42]. Isothermal CAES (ICAES) relies on near-isothermal compression and expansion 

processes, which eliminates the need for a heat source prior to the expansion process and is expected to 

have the highest round-trip efficiency (RTE) of CAES thermodynamic cycles [207]. In order to achieve a 

near-isothermal process, a large surface area is required to improve heat transfer during compression or 

expansion, which has been met through combinations of porous media [208], liquid pistons [207,209], and 

spray injection [210,211]. Injecting a small amount of atomized water droplets can provide a large surface 

area [212]; additionally, water has a large heat capacity to mitigate air temperature change. Water injection 

has also been demonstrated in a conventional solid piston for CAES [213], and is commonly used in 

industrial gas turbines [214] and aero engines [215] for the purpose of heat transfer enhancement. ICAES 

could be well-suited for OCAES because there is no need to burn fuel (as in diabatic CAES) or store heat 

for a long time (as in adiabatic CAES) offshore. Patil and Ro compared liquid piston-based ICAES systems 

storing air in an underwater container and found that round-trip efficiencies varied between 49% and 62% 

depending on the type of heat transfer enhancement used [207]. Li and DeCarolis performed a techno-

economic analysis of OCAES that assumed a round-trip efficiency in the range of 70-80% for ICAES, but 

did not calculate the efficiency or consider the value of the electricity to the electric grid [44]. A 

comprehensive round-trip efficiency analysis has not been performed for ICAES in offshore saline aquifers.  
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In addition to considering the technical constraints of the storage system, it is important to analyze how 

the technology will be used and its economic trade-offs. Two ways energy storage is monetized are by spot 

market prices for energy sold to the grid and capacity value for guaranteed generation capacity. To 

capitalize on variable spot market prices, energy storage can implement energy arbitrage or time-shifting. 

Energy arbitrage involves buying energy when the spot market price is low and selling to the grid when the 

price is high to maximize revenue. With current energy storage technology, energy arbitrage revenue is not 

enough to offset the cost of storage in most markets [186,216]. Time-shifting is similar to energy arbitrage, 

but instead of buying electricity from the grid, energy storage is used to temporally decouple a generator 

from the grid and shift when energy is produced. Capacity markets provide another direct revenue source 

for energy storage but vary significantly by region [217]. In PJM, the regional transmission organization 

covering Virginia and several other Mid-Atlantic states, capacity payments are provided based on the 

Reliability Pricing Model, where power generators are paid for a commitment to provide electricity when 

needed by the electrical grid [217,218]. As VRE provides a larger share of the electrical grid, capacity 

prices are likely to rise and provide more revenue for energy storage systems. 

The standard metric for comparing energy systems is Levelized Cost of Energy (LCOE), which 

normalizes annual costs by the annual energy produced [149]. Despite the many applications of energy 

storage, using LCOE to compare combined energy storage and generation systems will result in a no-

storage solution because storage increases the cost of the system without increasing the amount of energy 

generated. A metric that includes the benefits and effects of adding storage is needed to evaluate systems 

with storage. A recent study by Simpson et al. proposed using the Cost of Value Energy (COVE) as an 

alternative metric that values energy based on when it is delivered to the electric grid [219]. COVE provides 

a single metric for optimization that includes both the cost of the system and a time-dependent value of 

energy, and therefore is a more accurate economic assessment than using just LCOE.  
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Various aspects of OCAES have been previously explored, but the optimal combination of storage 

medium, thermodynamic cycle, and operational timescale remains unknown. I hypothesize that an 

isothermal thermodynamic process combined with a saline aquifer will provide more value to the electric 

grid than Li-ion batteries. Near-isothermal compression and expansion processes are expected to have high 

efficiencies and require neither natural gas nor a separate thermal energy storage system. Saline aquifers 

confined by a caprock or impermeable layer are abundant in many coastal regions around the world, making 

this work broadly applicable to many regions. This paper aims to develop a methodology to assess the 

performance and value of OCAES for use with an offshore wind farm. I quantify the value of using OCAES 

for time-shifting with both LCOE and COVE. This is the first study to quantify the efficiency of an 

isothermal compressed air energy storage system using a saline aquifer for air storage. The framework 

presented here may be applicable to any site suitable for an offshore wind farm and adjacent to a saline 

aquifer. I demonstrate the methodology for the case of offshore Virginia because of significant potential 

related to the plans to install 5.2 GW of offshore wind by 2034 in leases that overlap the saline aquifers of 

the Baltimore Canyon Trough [187].  

4.4 Methodology 

To quantify the performance and economic value of OCAES, three models were developed and coupled. 

First, I formulated a thermal fluid process model to estimate the system Round-Trip Efficiency (RTE). 

Next, a cost model was created to estimate the capital costs. Finally, I developed an optimization model 

that uses the RTE and costs as inputs to quantify the value of OCAES to the electric grid. The 

interconnection of these models is shown in Figure 4-2.  
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Figure 4-2. Optimization model system diagram where wind speeds and spot market prices are input from 

hourly datasets, efficiency, and storage capacity are input from the thermal fluid process model, and system 

cost is input from the cost model. The model then optimizes the hourly energy balance between wind power, 

OCAES, and the electrical grid over a year while minimizing COVE as the objective function. 

 

4.4.1 Thermal fluid process model 

The thermal fluid process model estimates the RTE of the OCAES system by simulating the 

performance of the major components and expected loss mechanisms. As shown in Figure 4-3, during 

charging, air at atmospheric temperature and pressure is compressed with a near-isothermal compressor 

(Comp.) with spray injection of desalinated water. The air then travels down the wellbore for which the 

pressure changes due to frictional losses and the change in gravitational potential. Next, the air exits a 

screened well and radially moves into the saline aquifer formation. Within the formation, the movement of 

air will result in pressure drops due to aerodynamic friction losses and the high pressure will lead to mass 
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leakage due to the aquifer structure and permeability. During discharging, the air travels back through the 

aquifer formation and wellbore and is then expanded through a turbine (Turb.) with spray injection. The 

compression and expansion processes take place in 3-stages of machinery. Electrical losses in the motor 

and generator are also included as well as mechanical losses and pressure losses between machinery stages. 

 

Figure 4-3. The thermal fluid process model estimates system round-trip efficiency by simulating air injection 

through a single charge (a) and discharge (b) cycle while calculating power inputs (c) and maintaining the 

aquifer pressure below the maximum operating pressure (d). Example simulation shown for a 200 MW, 24-

hour duration system. 

 

The thermal fluid process model uses empirical and physics-based relationships to assess a wide range 

of power capacities and storage durations. The model operates by simulating a single charge and discharge 

cycle, as shown in Figure 4-3. The operation cycle is dictated by the operating pressure range. The formation 

is simulated to start at hydrostatic pressure, and the pressure in the formation increases as air is injected 

until it reaches the maximum operating pressure, which is based on the expected fracture pressure with a 

safety factor. Geophysical and machinery parameters for the process model are summarized in Table 4-3. 
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Two other model inputs are radius of the air plume (formation volume occupied by air) and the mass flow 

rate. The model is run iteratively, varying the air plume radius and mass flow rate until it is sized at the 

intended power rating and storage duration. The primary output of the model is RTE. The geophysical 

parameters represent the conditions of the Lower Cretaceous formation in the Baltimore Canyon Trough, 

which is located under the Dominion Energy lease offshore Virginia (Figure 4-1) based on Fukai et al. 

[194].  

Table 4-3. Summary of process model parameters. 

Variable Value Reference 

Geophysical Parameters (symbols)   

Depth and wellbore length (l) 1402 m Fukai et al. [194] 

Thickness 62.44 m Fukai et al. [194] 

Porosity 0.23 Fukai et al. [194] 

Permeability (k) 38.67 mD Fukai et al. [194] 

Hydrostatic pressure 14.02 MPa Fukai et al. [194] 

Fracture pressure 20.66 MPa Fukai et al. [194] 

Fracture safety margin 0.5 Allen et al. [220] 

Maximum Operating Pressure 17.34 MPa Calculated 

Formation temperature 42.87 °C Calculated from [194] 

Formation mass leakage 3.5% Oldenburg and Pan [196] 

Machinery Parameters   

Mass loading (ML) [Stage 1, Stage 2, Stage 3] 2, 1.5, 1.0 Assumption 

Interstage pressure loss between stages 0.1 % Assumption 

Mechanical efficiency 99.0 % Dixon and Hall [221] 

Generator efficiency 98.9 % Siemens [222] 

Pump efficiency 75% Assumption 

Wellbore   

Inner Diameter (D) 0.41 m Adams et al. [223] 

Internal Roughness (𝜖  stainless steel) 0.002 mm White [224] 

Atmospheric   

Sea-level Air Temperature 16.85 °C NOAA [225] 

 

4.4.1.1 Near-isothermal compression and expansion machinery 

To provide sufficient storage capacity and power density for a wind farm, the compression and 

expansion system will need to handle high flow rates of air while compressing up to the formation pressure 

of 14 MPa. For example, at 300 MW, an air flow rate 825 kg/s is required. Depending on the design storage 
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power, the system will likely involve multiple compressors in series and parallel to reach the desired 

compression ratio and flow rate. For example, a large flow rate axial compressor [226] followed by a 

smaller, high pressure axial or centrifugal compressor would be appropriate to reach the prescribed pressure 

ratio and flow rates.   

No one has previously proposed performing isothermal compression with axial compressors. However, 

the same principle of water spray has been previously applied to piston compressors, where sufficiently 

small droplets and high mass loading can maintain a near isothermal environment while compressing or 

expanding the gas [213]. Water spray can be operated with axial compressors, although detailed concept 

design should be further explored in future research.  

The high air flow rates for the upper end of OCAES power ratings considered herein will require even 

higher water flow rates and injection work. Cross-flow atomization has been shown to produce tiny drops 

while maintaining high mass flow rates [227] and thus will be used in the compression and expansion 

processes to meet the required mass loading and reduce injection work consumption. The water droplets 

generated by cross-flow atomization have tiny diameters, and the droplets can stay aloft and may carry over 

from one stage to the next. This can help to reduce the spray mass flow rate to a minimum of the highest 

mass loading stage; herein, the highest mass loading is in stage 1 with twice the air mass flow rate. 

The spray system needed for isothermal compression will require a closed-loop clean water system. 

While minimal water loss to the air is expected, there will need to be a system for makeup water, likely via 

a desalination system for seawater. 

The specific work of the near-isothermal machinery is represented as a polytropic process, which is 

expressed as, 

𝑤 =
𝑛⁡𝑅⁡𝑇1

𝑛−1
(1 − (

𝑝2

𝑝1
)

𝑛−1

𝑛
)      (4-1) 
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where n is the polytropic exponent, R the gas constant, T1 the temperature at state 1, p1 the pressure at state 

1, and p2 the pressure at state 2. From Qin and Loth [210], the polytropic exponent for a near-isothermal 

spray injection process can be calculated as, 

𝑛 = 𝛾 ⋅
1+𝑀𝐿⁡(𝑐𝑑/𝑐𝑝)

1+𝑘⋅𝑀𝐿⁡(𝑐𝑑/𝑐𝑝)
        (4-2) 

where γ⁡is the gas specific heat ratio (1.4 for air), cd is the specific heat capacity of the droplets (water) and 

cpthe specific heat of the gas at constant pressure (air). The water Mass Loading, ML, for a continuous flow 

system is defined as, 

𝑀𝐿 =
�̇�𝑤𝑎𝑡𝑒𝑟

�̇�𝑎𝑖𝑟
       (4-3) 

where �̇�𝑤𝑎𝑡𝑒𝑟 is the mass flow rate of water and �̇�𝑎𝑖𝑟 the mass flow rate of air [210]. Spray injection of 

water also requires pump work, 

𝑤𝑝𝑢𝑚𝑝 =
𝑣1(𝑝2−𝑝1)

𝜂𝑝𝑢𝑚𝑝
       (4-4) 

where v1 is the specific volume at the pump inlet, p2 the pressure at the pump outlet, p1 the pressure at the 

pump inlet, and 𝜂𝑝𝑢𝑚𝑝 the isentropic efficiency [228].  

4.4.1.2 Wellbore 

The air flow in the wellbore is assumed to be steady, incompressible and thus constant density along a 

streamline. The mean flow velocity of the compressed air in the wellbore is constrained to stay below 0.3 

Mach to avoid compressibility effects and maintain the validity of equations shown here. Therefore, the 

mass flow rate is constrained based on the current air density in the system. The change in pressure due to 

a change in potential energy is calculated using Bernoulli’s equation. Bernoulli’s equation is then combined 

with the change in pressure due to viscous friction losses along the wellbore, resulting in equation 4-5, 

𝑝1 − 𝑝2 = 𝜌𝑔(𝑧2 − 𝑧1) + 𝑓
𝑙

𝐷

𝜌𝑈2

2
    (4-5) 
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where 𝑝1 and 𝑝2 are the pressures at the top and bottom of the well respectively, 𝜌 is the density of the air 

going into the well, 𝑧1and 𝑧2 are the heights of the top and bottom of the wellbore respectively, 𝐷 is the 

internal diameter of the wellbore, 𝑙 is the length of the wellbore, and 𝑈 is the average speed of the gas over 

the pipe cross-section. The friction coefficient 𝑓 is found by iterating over equation 6, where 𝜖 is the pipe 

roughness and 𝑅𝑒𝐷 is the Reynolds number within the wellbore [229].  

1

√𝑓
= −2 log [

𝜖
𝐷⁄

3.7
+

2.51

𝑅𝑒𝐷√𝑓
]⁡     (4-6) 

Heat transfer along the wellbore is expected at the beginning of operation, but after many cycles the 

temperature in the adjacent formation is expected to stabilize and result in low heat loss [195,199]. 

Depending on the thermal diffusivity of the subsurface formation, pipe casing design and insulation may 

be important to reduce heat loss along the wellbore. Here, the insulation is assumed to be sufficient such 

that heat loss is negligible along the wellbore.  

4.4.1.3 Porous media aquifer formation 

The pressure drop in the aquifer formation is based on radial Darcy steady-state flow [200] and is 

calculated using, 

𝑄 =
𝐴⁡𝑘⁡ℎ(𝑝𝑓

2−𝑝𝑤
2 )

𝜇⁡𝑇⁡𝑍⁡ ln(
𝑟𝑓

𝑟𝑤⁡⁡
)
     (4-7) 

where Q is the volumetric flow rate, k is the permeability, h is the aquifer height, pf is the pressure at the 

formation edge, pw the pressure at the wellbore, 𝜇 is the viscosity, Z is the gas compressibility factor, rf is 

the radius of the formation, rw the radius of the wellbore and A is a constant equal to 0.008834 m2-cP-

K/mD-MPa-s that combines 𝜋 with unit conversions. The compressor outlet pressure is operated such that 

once the air has traveled through the wellbore and formation, it is the same pressure as the air in the 

formation. Injection of air into the aquifer will change the temperature of the formation over time [197] and 

may approach the injection temperature with frequent cycling [201]. Here, it is assumed that the air becomes 

the same temperature as the formation once it has traveled through the formation. For my simulations, the 
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air injection temperature is higher than the formation temperature, so there is an implicit amount of heat 

lost. The amount of energy stored in the formation is represented as mass accumulation. Li et al. provide a 

review of other high-level methods to track energy stored in porous media [195]. The accumulated gas mass 

m, leads to an increased pressure, which is calculated using the ideal gas law, 

𝑝 =
𝑚⁡𝑅⁡𝑇

𝑉
⁡      (4-8) 

where V is formation volume that is filled by the air (excludes any volume that is solid or liquid). Based on 

experience by Katz et al., the air plume is not expected to decrease in size if pressures are maintained above 

the initial reservoir pressure [230]. Additionally, the model includes a mass leakage rate of 3.5% based on 

Oldenburg and Pan [196]. 

4.4.2 Cost Model 

The capital cost of the OCAES installation was estimated by considering the three main cost components 

to be the compression and expansion equipment, the well, and the offshore platform. The offshore wind 

farm costs are taken directly from the 2018 Cost of Wind Energy Review [231] for fixed bottom turbines.  

4.4.2.1 Compression and expansion equipment 

Due to the high design flow rates and high cost for space on an offshore platform, the first stages of 

compression and expansion will be done with axial compressors. Later stages may be completed with axial 

or centrifugal compressors but will be assumed to be axial for the purpose of the cost model. The cost for 

axial compressors and turbines (expanders) is based on gas turbine capital costs from the EIA 2020 Capital 

Cost and Performance Report [232]. The capital cost (excluding Owner’s Cost) for 100 MW simple cycle 

aeroderivative gas turbines is $1050/kW, which includes the compressor, combustor, expander, generator, 

inlet filtration, and installation.  
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An additional motor is needed to run the compressor, and its cost (𝐶𝑚𝑜𝑡𝑜𝑟) is estimated based on 

Aminyavari et al. [233] as follows where �̇�, the power input work in units of kW, is related to cost in dollars 

as,  

𝐶𝑚𝑜𝑡𝑜𝑟(𝑈𝑆$) = 26.18⁡(�̇�)
0.95     (9) 

While the gas turbine capital cost estimate does include installation, the total cost of the 

compression/expansion system is increased by 15% to account for the complexities of installing this system 

offshore.  

4.4.2.2 Isothermal retrofit cost 

Many of the components included in the capital cost for a gas turbine are unnecessary or over-sized for 

the ICAES system, such as the oversized compressor or the turbine made to withstand high temperatures 

of combustion. It is assumed that the additional cost to retrofit the compressor and expansion system to be 

isothermal is covered by the unused parts in the gas turbine system.  

The spray water system is designed as a closed-loop system, so the injected water needs to be collected, 

recycled, and supplied. The isothermal retrofit would also include an atomization system, which has a 

configuration of nozzles, pumps, and heat exchangers.   

4.4.2.3 Drilling 

For a conservative estimate, offshore well drilling costs were based on offshore CO2 sequestration 

drilling cost estimates in the Pale Blue Dot report [234] previously used by Mouli-Castillo et al. [46] to 

estimate offshore diabatic CAES well costs. From the report, the median well cost for depths 700-3000 m 

was €7.2 million, which was then converted into 2020 USD as $8.6 million. Cost estimates are performed 

for one well. 

This cost is significantly higher than other well cost estimates based on oil and gas drilling experience. 

For example, an estimated mid-range cost of $2 million for drilling the well was based on [235,236]. 

However, the cost of drilling for a CAES system is likely to be higher than traditional oil and gas drilling 
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since the wellbore needs to be wider than standard sizes. For example, geothermal wells tend to have ~20 

cm completion (internal) diameters and oil and gas wells tend to have ~12 cm completion diameters [237]. 

Oldenburg and Pan explored a 50 cm well diameter for CAES [196]. Adams et al. explored using wells 

with diameters up to 41 cm with depths as great as 5 km for geothermal applications [223], so I assumed a 

well diameter of 41 cm.  

4.4.2.4 Offshore platform 

The isothermal compression and expansion system will be located on an offshore platform, similar to 

platforms used for offshore substations. If the system is small enough, it may be co-located with the offshore 

wind farm substation platform. Cost estimates are performed assuming the OCAES system requires the 

construction of a separate platform, with costs based on offshore substations.  

The area needed for the system was estimated based on square footage requirements for a gas turbine 

axial compressor first stage and centrifugal compressor second stage. A strong correlation between power 

and area was found by comparing the compression systems needed for set mass flow rates to the area of 

those systems. The area was then doubled to represent including the expansion system, and then doubled 

again account for maintenance access space based on spacing recommendations for an industrial gas turbine 

[226]. The cost for the platform was based on the NREL Balance of Station model documentation, which 

provides equations to estimate offshore substation cost based on substation mass [238]. That model was 

used in conjunction with an article detailing the London Array offshore wind farm substation [239], which 

provided an estimate for area to mass ratio. The final cost estimate used 250 MW of compression/expansion 

equipment to find an area and corresponding mass, and subsequently a cost. Based on cost estimates from 

BVG [240], an additional 29% cost was added for installation, resulting in a final cost for the offshore 

platform of $37.8 million.   
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4.4.2.5 Other considerations 

Fixed and variable maintenance costs were applied to the OCAES system. Variable operating and 

maintenance (O&M) costs were estimated by starting with diabatic CAES variable O&M cost estimates 

[14,241], converting to 2020 USD, adding an estimated 20% increase for isothermal machinery 

maintenance [242], and finally adding an additional 100% for offshore maintenance costs, resulting in 

$9.24/MWh. Fixed O&M costs were based on gas turbine O&M at $16,300/MW-yr. [232]. 

Transmission lines from the wind farm (and offshore energy storage system) to shore could be adjusted 

in size to reduce cost or increase value to the system. This was done by Li and DeCarolis and Jafari et al. 

[44,186]. Instead, the OCAES system was treated as an addition to an existing wind farm, and thus 

transmission costs were not varied.  

The lifetime of each loan and interest rate can significantly affect the annual cost projections for the 

system. The wind farm loan is annualized over 25 years with a 2.5% real discount rate (based on [231]), 

and the same lifetime and interest rate are applied to the OCAES system. A CAES system is expected to 

have a life of at least 20 years [14,44], and it is assumed to be 25 years to align with the wind farm.  

Finally, the cost of electricity to fill the initial air plume in the saline aquifer before beginning operation 

of the OCAES system is not included. This cost is assumed to be negligible compared to capital costs when 

annualized over the expected lifetime of the system. Cost model inputs are summarized in Table 4-4. 
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Table 4-4. Summary of cost model parameters. 

Variable Value References 

Wind Farm   

Capital Cost $4,444/kW Stehly & Beiter [231] 

Fixed O&M Cost (annual) $129/kW Stehly & Beiter [231] 

Lifetime 25 years Stehly & Beiter [231] 

OCAES   

Isothermal compression/expansion 

equipment 

$1,225/kW Calculated from EIA [232], 

Aminyavari et al. [233] 

Fixed O&M (annual) $16.30/kW Calculated from EIA [232] 

Variable O&M $0.00924/kWh Calculated from Gu et al. [241], 

Luo et al. [14], Qin et al. [242] 

Platform $37.8M/platform Calculated from Maness et al. 

[238], Froese [239] 

Well $8.6M/well Calculated from Mouli-Castillo et 

al. [46], Pale Blue Dot Energy 

[234] 

Lifetime 25 years Assumption (same as wind farm) 

Li-ion Battery (Benchmark)   

4-hour battery $2,248/kW Mongird et al. [183] 

10-hour battery $5,038/kW Calculated from Mongird et al. 

[183] 

Fixed O&M (annual) $10/kW Mongird et al. [183] 

Variable O&M $0.03/kWh Mongird et al. [183] 

Lifetime 10 years Mongird et al. [183] 

Economics   

Interest rate 5% Stehly & Beiter [231] 

Inflation rate 2.5% Stehly & Beiter [231] 

 

4.4.3 Battery Model 

Li-ion battery storage will be used for comparison as it is currently the most common battery type 

installed for grid-scale energy storage [243]. The battery storage was assumed to be located onshore with 

either a 4-hour or 10-hour capacity, with 4-hour duration grid battery storage being used in multiple current 

installations and 10-hour duration relevant for comparison to OCAES. Based on the Department of Energy 

HydroWIRES report, the Li-ion battery storage was assumed to have a round-trip efficiency of 86%, a 

lifetime of 10 years, and a depth of discharge limit of 80% [183]. While the efficiency and capacity of 

batteries are likely to fade over time, these effects were not accounted for in the model used. Note that the 
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low charge/discharge rate (e.g., C-rate [244]) of the system, with a maximum rate ¼ of the energy capacity 

(e.g., C/4), may result in a higher efficiency and longer lifetime, but those potential advantages were not 

considered. For financial analysis, the same interest rate as the wind farm is applied, but with a lifetime of 

10 years.  

Battery storage costs from the HydroWIRES report [183] were given for a 4-hour battery, with costs 

comparable to the median long-duration battery storage from the US EIA report on US Battery Storage 

Market Trends [243]. To better compare with an OCAES system, the cost of a 10-hour system was 

estimated by scaling up the costs of a 4-hour battery, and then the 80% depth of discharge limit was 

incorporated for both the 4-hour and 10-hour systems to find the cost of “working” power and energy rather 

than “nameplate” power and energy. Thus, for a working 400 MWh battery storage system, the 

corresponding nameplate cost would be for a 500 MWh system. This resulted in working costs of $5038/kW 

for a 10-hour system and $2248/kW for a 4-hour system.  

4.4.4 Optimization model 

Ultimately the value of energy storage is not based on its efficiency and capital cost alone, but rather its 

ability to balance the grid and shift the time when renewable generation is dispatched. An optimization 

model using linear programming was developed in Pyomo [245] to evaluate the value of OCAES to the 

electric grid. The model framework started with the optimization model presented by Li and DeCarolis [44] 

and extended the system boundary to include the price of electricity when selling to the grid. This enables 

time-shifting to sell wind energy when it is most valuable. This model is categorized as a “price-taker 

model” because it assumes that generation of energy from the proposed project will not affect energy prices. 

When wind energy makes up a small portion of the energy portfolio, this can be a reasonable assumption. 

However, as wind capacity for a reginal grid increases, energy prices would be expected to go down when 

wind energy production is high. In addition to the costs presented in Table 4-4, the model is also provided 

with one year of wind speed data off the Virginia coast from DOE BUOY data based on a 90 m wind turbine 
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hub height [246] and day ahead hourly locational marginal prices (LMP) for Dominion’s region in PJM 

[247]. The amount of wind energy is then estimated using the NREL 5 MW power curve [248], ignoring 

wind farm losses. The optimization model operates with perfect foresight and decides when to charge and 

discharge the OCAES system to minimize COVE. The amount of energy stored in the system is balanced, 

and the starting storage level in the system is a decision variable. The value of OCAES was measured with 

two metrics, LCOE and COVE. The Levelized Cost of Electricity [149], LCOE, can be simplified to, 

𝐿𝐶𝑂𝐸 =
(𝐶𝑓𝑖𝑥𝑒𝑑∗𝐶𝑅𝐹)+𝑀𝑓𝑖𝑥𝑒𝑑

𝐴𝐸𝑃
+𝑀𝑣𝑎𝑟 =

𝐶𝑡𝑜𝑡𝑎𝑙

𝐴𝐸𝑃
     (4-10a) 

Real 𝐶𝑅𝐹 =
𝑖(1+𝑖)𝑁

(1+𝑖)𝑁−1
     (4-10b) 

where Cfixed are the total capital costs, Mfixed are the annual fixed O&M costs, Mvar are the variable O&M 

costs, AEP is expected annual energy production, and Ctotal is the total annualized cost. The Real Capital 

Recovery Factor (CRF) is used to annualize capital costs based on lifetime N and real interest rate i (discount 

rate less inflation rate) [231,249]. COVE is evaluated as, 

𝐶𝑂𝑉𝐸 =
𝐶𝑡𝑜𝑡𝑎𝑙

∫ 𝑃′∗𝐺⁡𝑑𝑡
         (4-11) 

where P’ is normalized spot market price and G is hourly generation, integrated over a year. While wind 

farm and energy storage size are specified in each simulation, hourly dispatch of the energy storage system 

is allowed to vary, affecting both the variable costs in the numerator and the weighted energy in the 

denominator. Due to this nonlinearity of COVE, the implemented objective function is to maximize the 

denominator of COVE, or the value of energy, to make it compatible with the linear program. This ignores 

the potential trade-off with variable O&M costs and assumes that those costs are small relative to the value 

gained by operating the energy storage system.  

The revenue output from the optimization model includes electricity revenue from 2019 PJM spot 

market prices and capacity revenue. Capacity revenue (CR) is related to capacity value (CV) and capacity 

credit (CC) as follow. 
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𝐶𝑅 = 𝐶𝑉 ∗ 𝐶𝐶 ∗ (
365⁡𝑑𝑎𝑦𝑠

𝑦𝑟
)                 (4-12) 

Capacity value is $140/MW-day based on the 2021/2022 PJM capacity auction results [218]. The 

offshore wind farm was assumed to have a capacity credit in PJM of 20%, increased slightly from Byers et 

al. [217] to account for higher offshore wind capacity factors. Energy storage systems with storage capacity 

of 10 hours or greater received 100% capacity credit in PJM. Based on current PJM capacity requirements 

[250], the 4-hour battery system power was de-rated to reach 10 hours capacity, and thus received a capacity 

credit of 40%. The combined wind farm and energy storage capacity credit was limited to the 500 MW 

capacity of the wind farm transmission line.  

A sample of the optimization model operation is shown in Figure 4-4. In this example, the algorithm 

identifies three local peaks in electricity prices around hours 15, 40 and 64. The storage system charges in 

the hours leading up to these peaks and then discharges at the peaks to maximize the value of electricity 

generated. 
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Figure 4-4. The optimization model minimizes the cost of valued energy (COVE) by storing wind power when 

electricity prices are low and selling it to the grid when prices are high. Shown for a 200 MW, 10-hour 

system. 

 

4.5 Results and Discussion 

4.5.1 Cost estimates 

The total capital cost for an OCAES system with one well is shown in Figure 4-5 for varying power 

output. This cost is compared to the overall cost of a wind farm to illustrate the cost of storage relative to 

new generation. The cost of the OCAES system drops with increasing power because some costs are fixed 

for each well, such as drilling the well and building an offshore platform, while others vary directly with 

the power rating of the system, such as the compression and expansion machinery. The change in cost (in 
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terms of $/kW) is small after 200 MW of power capacity. Capital costs are not annualized in Figure 4-5 

and thus do not take into account the years of life expected. OCAES systems may be able to last through 

the entire lifetime of the wind farm. In comparison, Li-ion batteries are expected to be operational for 10 

years or 3500 cycles [183], and would need to be replaced at least once during the lifetime of a wind farm. 

Battery storage costs $2,248/kW for a 4-hour system and $5,038/kW for a 10-hour system, while a 200 

MW OCAES system is estimated to cost $1,457/kW. It is difficult for Li-ion batteries to compete on cost 

with OCAES in long-duration storage because of their inability to decouple energy and power. Albertus et 

al. has shown the importance of decoupling energy and power in their finding that long-duration storage 

will need significantly reduced energy capital costs with marginally reduced power capacity costs to be 

competitive with 100 hours of storage versus 10 hours of storage [251]. 

 

Figure 4-5. Capital cost vs. machinery capacity. 

 

The distribution of annual costs for a 200 MW, 24-hour OCAES system ($21 M/yr in total) is shown in 

Figure 4-6. Estimated O&M costs are included based on an expected run time from the optimization model 

of 297,341 MWh/yr. The capital costs of the isothermal compression and expansion equipment contribute 

the most to the annual cost, but O&M costs are significant and should be considered in addition to capital 

costs when designing such a system.  
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Figure 4-6. Breakdown of annual expected capital and operational costs for a 200 MW, 24-hour ICAES 

system. 

 

4.5.2 Round-trip efficiency 

Projected OCAES system round-trip efficiencies are shown in Figure 4-7 for a single well. Increasing 

the power rating requires higher injection flow rates and results in increased wellbore and aquifer frictional 

losses leading to decreased efficiencies. Power ratings above 400 MW are not shown because the injection 

pressure required to overcome frictional losses is so great that injection pressures would be larger than the 

maximum operating pressure of the formation as shown in Table 4-3 (including a safety factor with respect 

to the formation fracture pressure). The storage duration of the OCAES system is increased by expanding 

the radius of the air plume. The increased air plume radius results in increased frictional losses and 

decreased system efficiencies. The major losses for a 200 MW OCAES system are the near-isothermal 

system which is responsible for an 18-percentage point reduction. This is followed by air leakage and pipe 

friction, responsible for three percentage points each, and aquifer frictional losses at one percentage point. 

For comparison, the ICAES round-trip efficiency range is higher than that estimated by Patil and Ro [207] 

and in the same range as that estimated by Li and DeCarolis [44]. 
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Figure 4-7. OCAES system sizing results using the performance model show the round-trip efficiency by 

power rating and storage duration. 

 

4.5.3 OCAES value to the electric grid 

To understand the value of OCAES to the electric grid, the dispatch model was run for two scenarios. 

Under the first scenario, the operation of the storage system was optimized for a fixed wind farm of 500 

MW in order to minimize COVE over a range of energy storage power ratings. The purpose of this scenario 

was to simulate the wind farm and storage acting as a single entity selling to the electric grid. COVE is a 

more comprehensive approach to value the energy produced since LCOE does not consider the variability 

of prices. Figure 4-8 shows that adding storage significantly increased revenue over wind-only by up to 

55% for one week (168-hours) of OCAES storage through a combination of capacity credits and shifting 

when generated electricity is sold to the grid. The LCOE of OCAES is 40% less than Li-ion batteries for 

10-hour systems with 300 MW (3000 MWh) of storage (0.186 $/kWh vs. 0.113 $/kWh). With the given 

electricity market data, the revenue of wind is approximately one-third of the cost without storage; 
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therefore, offshore wind with or without storage is not able to break even with current costs. Optimal 

operation of the OCAES storage systems was able to maintain a COVE close to the original wind baseline 

despite the added cost of storage, while increasing the flexibility and dispatchability of the system. Storage 

currently does not provide a net profit based on spot price revenue and capacity payments (consistent with 

results from Jafari et al. in the PJM region [186]). However, price variations in the future are likely to grow 

(Virginia will have time of day pricing starting in January 2021 [252]) and may become negatively 

correlated with wind energy availability. This will effectively increase COVE for conventional wind farms, 

while plants with storage may be able to mitigate the effects of these negative correlations.    
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Figure 4-8. Comparison of battery and OCAES system capacity using 2019 day ahead prices on the basis of 

A) revenue, B) levelized cost of electricity (LCOE), C) Cost of Valued Energy (COVE). 
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The variability of wind combined with high levels of renewable deployment will result in high levels of 

curtailment without energy storage or increased grid flexibility as demonstrated by Denholm and Hand 

[10]. A second scenario was run to investigate the potential of relying on a wind farm with storage as a 

dispatchable power source. Under this scenario, the storage operation was optimized to maintain a constant 

amount of power delivered to the electric grid, again for a fixed wind farm size, to minimize COVE for a 

range of energy storage power ratings. Figure 4-9 shows that increasing storage duration results in higher 

possible constant dispatch power outputs and a much lower LCOE. Note that the LCOE in Figure 4-9 is 

influenced both by changes to the total system cost (based on storage technology) and by annual energy 

production (based on constant power output). The capacity factor of the wind farm is 46% for the given 

wind data, and thus 228 MW is the maximum constant power that could be delivered from the wind farm 

with perfectly efficient storage and infinite capacity. The storage options considered are only able to provide 

a fraction of that power at constant dispatch. Dispatchable wind power can cost as low as $0.224/kWh with 

OCAES for a week of storage at a storage rating of 350 MW, 81% lower than a 10-hour battery system. 

For comparison, the average July 2020 price of electricity in the US was $0.111/kWh, with maximum 

electricity prices at $0.261/kWh [253]. Therefore, 168 hours of OCAES storage is able to make wind 

dispatchable at a price worth considering in today’s electric grid, though only in the most expensive of 

markets.  
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Figure 4-9. Comparison of battery and OCAES systems operating as dispatchable electricity generation using 

2019 day ahead prices on the basis of A) constant power output to the electric grid, and B) levelized cost of 

electricity (LCOE). 

 

4.6 Conclusions 

Large-scale deployment of offshore wind energy will require energy storage for load-balancing to 

prevent curtailment. This study focused on the performance of a single-well compressed air energy storage 

system based on fixed geophysical parameters. When suitable geophysical conditions are present, offshore 

compressed air energy storage can provide the opportunity to co-locate energy storage with a wind farm. 

This study showed the engineering and economic viability of OCAES for 10+ hours of storage. 
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A thermal fluid process model was developed to estimate OCAES round-trip efficiencies based on given 

geophysical conditions. An OCAES system installed with geophysical parameters representative of the 

coast of Virginia is expected to have an efficiency between 61% and 82% depending on the energy storage 

capacity and power delivery rate. Efficiency decreases with increased power rating for a single wellbore 

due primarily to friction losses in the wellbore and aquifer. 

This study estimated the capital costs to build and install an isothermal compressed air energy storage 

system using spray injection with air storage in a saline aquifer. The capital investment cost for a 10-hour 

200 MW system is $1457/kW, half that of current Li-ion capital costs. Additionally, OCAES is expected 

to have an operational lifetime on the timescale of a wind farm, much longer than Li-ion batteries. The 

availability of OCAES does not lower either LCOE or COVE compared to the baseline, but does increase 

participation in the capacity market. 

To quantify the value of OCAES to an offshore wind farm, a price-taker dispatch model was used. The 

model was optimized to decrease the cost of valued electricity (COVE), similar to LCOE. Based on hourly 

spot market prices from 2019 and a year of wind speed data, I estimated that OCAES will increase the 

revenue of an offshore wind farm by as much as 55%. Note that COVE results are likely to improve in the 

future as increased wind penetration in the electricity grid is expected to increase spot market price 

variability and thus increase the value of time-shifting. Additionally, increased capacity prices would help 

the OCAES system break even. I also investigated producing wind energy at regular dispatch of a constant 

output with energy storage and found that OCAES costs are 79% lower than Li-ion battery storage.  
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5 Isothermal Compressed Air Energy Storage Capacity of Offshore Saline Aquifers4 

5.1 Summary 

Plans for offshore wind energy has led to a search for energy storage technologies able to provide 

temporal balancing of electricity generation and demand. Offshore compressed air energy storage (OCAES) 

is a nascent energy storage option that uses saline aquifers as storage reservoirs and isothermal 

thermodynamic cycles to inject and extract air. Here, I present a method to assess the round-trip efficiency 

of OCAES when considering the uncertainty of geophysical parameters and machinery performance using 

the Baltimore Canyon Trough off the coast of the Mid-Atlantic United States as a case study. My results 

show that OCAES round-trip efficiencies of 60-62% could provide 23.6 TWh of storage in water depths 

less than 60 m. I also identify permeability and thickness as critical subsurface parameters, and show the 

need to develop isothermal cycles at the commercial scale. At a projected $61/kWh, isothermal OCAES 

compares well against current energy storage technologies. 

5.2 Introduction 

The growth in wind and solar energy production, both of which generate intermittently, will require 

increased grid flexibility to reliably meet electricity demand [10,254]. Grid flexibility could include fast-

acting power plants [57] or demand response [10], however many regions expect to rely primarily on energy 

storage [187,255]. Initially, short duration storage, such as 4-hour lithium-ion batteries, are expected to 

have the largest impact [256]; however, as the amount of variable renewable energy grows, long duration 

energy storage will also be needed [251]. Batteries have fixed ratios of power capacity and energy storage 

making them costly to scale to long duration storage. Dowling et al. has shown that long duration storage 

(greater than 10 hours) is expected to lower electricity costs with high renewable installations [15]. As 

 

4 This chapter was adapted from: Bennett, J.A., Fitts, J.P., Clarens, A.F. (2021), Isothermal Compressed Air Energy 

Storage Capacity of Offshore Saline Aquifers. Manuscript in preparation. 
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governments with offshore access, such as Virginia and New York, develop plans for multi-GW offshore 

wind farms [187,188], they will need to determine the most suitable long duration energy storage 

technology to temporally balance generation and demand. High real estate prices on the United States 

eastern coast, especially near New York City, could motivate energy storage to be located offshore. Co-

locating long duration energy storage with offshore wind presents an opportunity to share transmission, 

permitting, planning and construction vessel costs. Although the corrosive offshore environment is very 

challenging for some energy storage technologies such as batteries, the offshore environment could be 

manageable for offshore compressed air energy storage (OCAES) with proper air inlet filtration, as used 

extensively for machinery in the oil and gas industry. 

OCAES plants can be categorized based on both the type of thermodynamic cycle used and the type of 

storage (Figure 5-1). Whether onshore or offshore, compressed air energy storage (CAES) systems operate 

by storing compressed air in subsurface formations and later expand the air through a turbine to produce 

electricity when generation is required. Two utility-scale onshore CAES plants; a 321 MW plant located in 

Huntorf, Germany and a 110 MW plant in McIntosh, Alabama, combine a diabatic cycle with a salt cavern 

for storage [42]. Diabatic cycles have low round-trip efficiencies and require a fossil fuel to operate, so they 

emit carbon dioxide [42]. Further, salt caverns are not geographically widespread, so this combination of 

CAES is limited [45]. Schmidt et al. found conventional, onshore diabatic CAES to be competitive in only 

a few long duration storage applications [257].  

Recent advancements in adiabatic and isothermal thermodynamic cycles for CAES show the 

opportunity for increased round-trip efficiencies and warrant new investigations into its potential for 

offshore. Adiabatic cycles and isothermal thermodynamic cycles are expected to have higher round-trip 

efficiencies than diabatic cycles and they also do not require fossil fuels (Figure 5-1B and C). The 

development of adiabatic cycles has been limited by the high temperature components [42], and was found 

by Beuse et al. to not be competitive with other energy storage technologies [258]. Isothermal cycles use a 
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heat transfer enhancement to achieve near-isothermal compression and expansion, such as, spray injection 

[210,213,259], wire mesh [260], and aqueous foam [261]. While bench-scale experiments have shown 

promising potential at low pressure ratios [213,259–261], uncertainty remains in the performance of 

isothermal cycles at the high pressure ratios required for CAES at a commercial scale. I use an uncertainty 

analysis to project the system performance based on the range of anticipated isothermal cycle performance. 

There is growing interest in considering geological alternatives to salt caverns for CAES. Succar et al. 

suggested exploring the potential for abandoned oil and gas wells (Figure 5-1G) [45]. Mouli-Castillo et al. 

explored the use of saline aquifers in combination with a diabatic thermodynamic cycle [46]. When a saline 

aquifer is used for air storage, the air displaces the brine and creates an air plume. Another advantage of 

saline aquifers is that the storage duration can be increased without altering the machinery or wellbore, only 

by injecting more air and increasing the size of the air plume. The performance and capital costs of an 

OCAES system using saline aquifers combined with isothermal cycles has previously been estimated for a 

single site by the authors [262]. CAES using saline aquifers has faced limited deployment due to unsuitable 

subsurface conditions. For example, the Iowa Stored Energy Park was planned to provide 270 MW of 

storage using a sandstone aquifer but due to geologic site conditions, including low permeability, it was 

abandoned [202]. When evaluating the use of saline aquifers for CAES, it is necessary to consider the 

uncertainty of the subsurface conditions. Fukai et al. recently assessed saline aquifers in the Mid-Atlantic 

United States continental shelf as a CO2 storage resource and made available the subsurface properties as 

part of a project for the United States Department of Energy [194]. Here, I explore the storage potential for 

OCAES in the United States Mid-Atlantic using saline aquifers and isothermal thermodynamic cycles 

(Figure 5-1C and F). 



 

103 

 

 

Figure 5-1. Offshore compressed air energy storage could be co-located with offshore wind (D) and used to be 

balance the intermittent generation. Offshore compressed air energy storage systems combine a 

thermodynamic cycle (A, diabatic, B, adiabatic, C, isothermal) with subsurface storage (E, solution mined salt 

cavern, F, saline aquifer, G, abandoned oil or gas well). 

 

The uncertainty and geospatial heterogeneity of subsurface properties is expected to have a large impact 

on system performance and economics. For example, Pollack and Mukerji performed a techno-economic 

analysis of enhanced geothermal systems and found that considering uncertainty resulted in a 66% lower 

net present value [263]. Here, I consider the Baltimore Canyon Trough, a geologic formation that contains 

three sandstone saline aquifers with potential to be viable storage formations; Middle Cretaceous, Lower 

Cretaceous and Upper Jurassic (Figure 5-2A and B). The study by Fukai et al. estimated the depth, 
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thickness, porosity, and permeability for 20 km by 20 km parcels of these three saline aquifers below the 

continental shelf [194]. Estimates are based on a limited number of well logs, such that the coarse resolution 

leaves the potential for unaccounted heterogeneities, as found in related studies [264]. Bowen et al. found 

in the Mount Simon sandstone formation that porosity varied both laterally and with depth due to facies, 

composition and diagenetic modifications such as clay mineral precipitation and iron oxide cementation 

[265]. Medina et al. used a curve fit to relate permeability to porosity measurements in the Mount Simon 

basin with a least squares fit of 41% [266]. Fukai et al. performed a similar curve fit for the Baltimore 

Canyon Trough with a least squares fit of 16 to 58%, depending on the formation [194]. Other sources of 

subsurface uncertainty that would influence storage performance include the aquifer temperature and 

pressure. 

Here, I present a method to evaluate OCAES performance considering the uncertainty of the subsurface 

and machinery performance, and use the results to identify optimal locations and potential storage capacity 

(Figure 5-2C). The modeling framework could be applied anywhere, and here I demonstrate it for the United 

States Mid-Atlantic. First, I sized a 200 MW, 24-hour duration OCAES system for each parcel in the 

Baltimore Canyon Trough. Next, I performed an uncertainty analysis on the system and quantified its 

round-trip efficiency and storage duration. The uncertainty analysis used Monte Carlo sampling to consider 

the uncertainty of subsurface parameters (porosity, permeability, depth, thickness, temperature, fracture 

pressure, aquifer pressure, and air leakage) and machinery performance (polytropic index). A sample output 

of the OCAES system model which calculates the performance of a single charge and discharge cycle is 

shown in Figure 5-2D.  
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Figure 5-2. To explore the potential of offshore compressed air energy storage, I studied the A) Baltimore 

Canyon Trough (BCT), a subsurface formation along the coast of the northeastern United States. B) A cross-

section of the BCT based on Miller et al. [267]. C) An overview of the simulation process that incorporates 

geophysical and machinery uncertainty. First (1) a 200 MW, 24-hour system is iteratively sized using the 

OCAES system model. Second (2) The sized system undergoes an uncertainty analysis. Finally (3), the 

efficiency and storage potential are analyzed. D) A sample output from the thermal fluid process model used 

for the simulations. In A), Formation data is from Battelle [194,268], lease data from the Bureau for Ocean 

Energy Management [206], ocean depth from NOAA Office for Coastal Management [269], and state 

boundaries from the US Census [270]. 
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5.3 Results 

5.3.1 Vast OCAES Energy Storage Potential 

Figure 5-3 illustrates the total storage potential of OCAES in the Baltimore Canyon Trough based on 

round-trip efficiency and water depth. This estimate conservatively assumes that 10% of the brine in the 

saline aquifer would be displaced by air for OCAES systems, to limit installations to locations with a 

caprock structure conducive to trapping air. Water depth is expected to be a major cost driver, with depths 

less than 60 m suitable for fixed bottom structures [269], whereas depths greater than 60 m will require 

more advanced and expensive wind turbine foundations, such as a floating platform. The total storage 

potential in water less than 60 m was found to be 23.6 TWh with a round-trip efficiency (RTE) of 60-62% 

and 858 TWh with an efficiency of at least 50%. The highest efficiency sites in less than 60 m water depth 

were found closest to New Jersey with efficiencies up to 61%. To put this storage potential in perspective, 

there are currently 0.000124 TWh of battery storage installed in the United States [243]. The 2020 Net-

Zero America Interim report by Larson et al. projects that up to 1.24 TWh (190 GW with an average 

duration of 7-hours) of grid battery capacity will be needed in the United States by 2050 [271]. The OCAES 

storage potential is nineteen times this projected battery capacity. If commercialized, OCAES is more likely 

to be limited by the amount of nearby wind turbines than subsurface capacity. 
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Figure 5-3. Estimate of total storage potential in the Baltimore Canyon Trough by water depth and round-

trip efficiency. This figure highlights the maximum water depth currently accessible to fixed bottom offshore 

wind turbines, where OCAES is envisioned to be co-located [269]. Deeper waters require floating structures 

which are more expensive, but there are many high efficiency OCAES sites in water depths greater than 200 

m. Round trip efficiency estimates are the average results from the Monte Carlo simulation.   
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5.3.2 OCAES Compares Well Against Other Energy Storage Technologies 

Our results show very large capacity for OCAES in near shore saline aquifers even with uncertainty in 

the subsurface and machine performance. It can be challenging to valorize energy storage technologies 

because the traditional energy system metric of levelized cost of electricity (LCOE) will always increase 

when storage is added. Table 5-1 presents a comparison of OCAES with other energy storage technologies 

on the basis of capital costs normalized by power and energy ratings. The OCAES configuration I present, 

isothermal OCAES, does not operate with CO2 emissions, although all energy technologies generate some 

amount of CO2 emissions during their construction [56]. The CO2 emissions presented in Table 5-1 only 

includes those generated during normal operation. To compare the different lifetimes of energy storage, I 

also show costs on an energy basis normalized by expected lifetime. On this basis, CAES is the least 

expensive. I assumed a lifetime of 25 years for the OCAES plant to match the expected lifetime of the co-

located wind farm, although the OCAES machinery may operate much longer. For comparison, Ziegler et 

al. project that energy storage costs less than $20/kWh would be competitive with a nuclear fission plant 

[254]. Unlike Li-ion batteries or conventional CAES plants using a salt cavern of a fixed size, the storage 

duration of an OCAES system using a saline aquifer can be increased without any structural modifications; 

simply by injecting more air into the aquifer. An OCAES system with 72-hour storage duration would then 

cost $20/kWh.  
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Table 5-1. Comparison of offshore CAES to other energy storage technologies. The calculations of the 

expected operational emissions are presented in Appendix C. The capital costs for the operating CAES 

systems are taken from Beuse et al. and are meant to represent the cost of installing this technology today 

[258]. The Li-ion battery capital cost are moderate 2021 projections from the 2020 NREL Annual Technology 

Baseline [8]. 

Technology 

(-) 

Operational 

CO2 

emissions 

(gCO2/kWh) 

Storage 

duration 

(hours) 

Round-trip 

efficiency 

(%) 

Lifetime 

(years) 

Capital cost 

Power 

($/kW) 

Energy 

($/kWh) 

Energy 

/lifetime 

($/kWh-

year) 

Li-ion Batteries 0 4 [8] 

75 – 97 [14], 

85 [8],  

95 [258] 

 

15 [8] 1365 [8] 341 22.8 

Vanadium Flow 

Batteries 
0 24** 

65 – 85 [14], 

74 [258] 
19 [258] 

7533 

[258] 
314 16.5 

Pumped hydro 0 24** 70 - 87 [14] 60 [258] 
1691 

[258] 
70 1.2 

Supercapacitor 0 1 [42] 84 - 97 [14] 20 [14] 275 [14] 275 13.8 

Operating CAES 

(Huntorf, 

Germany) 

290 2 [42] 42* [42] 60 [258] 
1317 

[258] 
659 11.0 

Operating CAES 

(McIntosh, USA) 
212 24 [42] 54* [42] 60 [258] 

4507 

[258] 
188 3.1 

Diabatic OCAES 212 830 [46] 54 - 59* [46] 40 [46] 
9191 

[46] 
11 0.3 

Isothermal OCAES 

(this study) 
0 24 

Up to 62% in 

shallow 

ocean 

25 [262] 
1457 

[262] 
61 2.4 

*Efficiency for diabatic systems includes the heat input of natural gas. **The duration is assumed to be 24 hours to be 

comparable to Isothermal OCAES. 
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5.3.3 Opportunities for OCAES Across the Baltimore Canyon Trough 

Figure 5-4 shows the mean round-trip efficiency (RTE) from the uncertainty analysis results across the 

Baltimore Canyon Trough (BCT). There is a wide range of results, with some locations having a mean RTE 

up to 62.2%, and others less than 10%. Some combinations of geophysical parameters require an injection 

pressure greater than the maximum operating pressure which is assigned an efficiency of zero, lowering the 

mean RTE. Within the BCT, the Lower Cretaceous is the most suitable for OCAES with a majority of the 

formation having a mean RTE greater than 40%. However, all sites with an efficiency greater than 60% 

and in water depths less than 80 m are in the Upper Jurassic (Table 5-2). In general, the Middle Cretaceous 

and Upper Jurassic formations have limited locations with a high RTE. Also shown in Figure 5-4 are the 

renewable energy leases and wind energy planning areas from the Bureau of Ocean Energy Management 

[206]. My results show that regions identified by Fukai et al. to have high CO2 storage potential [194], are 

generally suitable for OCAES with an expected RTE greater than 30%. I expect that RTE numbers would 

be lower for alternative CAES systems such as diabatic or adiabatic, however this will depend on the 

isothermal machinery performance. I project that all Mid-Atlantic states adjacent to the Baltimore Canyon 

Trough (Virginia, Maryland, Delaware, New Jersey, New York, Rhode Island, and Massachusetts) can 

access ample OCAES capacity with an RTE greater than 50% within 60 m water depth and 100 km of 

shore. 
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Figure 5-4. Mean round-trip efficiency (RTE) for OCAES in the Baltimore Canyon Trough based on 100 

Monte Carlo simulations per location representing the expected distribution of geophysical conditions. A) 

Middle Cretaceous (average depth 1800 m), B) Lower Cretaceous (average depth 2110 m), C) Upper Jurassic 

(average depth 2960 m). 

 

  



 

112 

 

Table 5-2. Sites with the highest round-trip efficiency expected for OCAES sorted by water depth. 

Water 

depth 

(m) 

Distance 

to shore 

(km) 

Round-trip 

efficiency 

(%) 

Nearest 

State 

(-) 

Formation 

(-) 

Permeability 

(mD) 

Thickness 

(m) 

Porosity 

(-) 

Formation 

depth 

(m) 

38 54 60.7 New Jersey Upper Jurassic 217 704 0.25 3177 

51 86 61.0 New Jersey Upper Jurassic 63 596 0.22 3791 

53 89 60.9 New Jersey Upper Jurassic 66 1017 0.22 3760 

61 94 61.5 New Jersey Upper Jurassic 90 1096 0.23 3856 

62 97 60.6 Maryland Upper Jurassic 57 399 0.22 4135 

63 108 60.4 New York Upper Jurassic 126 544 0.24 3489 

68 82 61.9 Maryland Upper Jurassic 60 355 0.22 3880 

69 112 60.4 New Jersey Upper Jurassic 72 1200 0.22 4537 

78 121 60.9 New Jersey Upper Jurassic 422 411 0.27 3921 

80 118 60.4 New Jersey Upper Jurassic 59 404 0.22 4090 

 

5.3.4 Permeability and Thickness are Critical Parameters 

Next, I investigated the relationships between geophysical parameters and RTE. I hypothesized that 

porosity and permeability would be the most important geophysical parameters, however I found that 

permeability and thickness had the largest impacts. Figure 5-5 shows the relationship between permeability 

and thickness for all of the Monte Carlo simulation results grouped by formation. These results demonstrate 

general threshold values for permeability and thickness of 10 mD and 10 m, respectively. Permeability and 

thickness values less than the threshold tend towards a RTE less than 10% and above the threshold to RTE 

greater than 50%. Porosity is often correlated to permeability [194]. It might be possible to have successful 

operation of very thin formations with very high permeability, however this could be challenging to drill. 

These results demonstrate the importance of selecting sites with adequate permeability and thickness which 

must be verified through seismic studies and pump tests. 
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Figure 5-5. Permeability and thickness have a disproportionately large impact on the success of the OCAES 

system.  
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5.3.5 Machinery Performance, Formation Depth and Air Leakage Impact Round-trip Efficiency 

After determining the permeability and thickness threshold values required for successful operation, I 

wanted to understand which parameters led to highly efficient systems. Figure 5-6 explores the relationship 

between system parameters and RTE for Monte Carlo simulations within the Upper Jurassic formation. The 

strongest correlations were with polytropic index, air leakage and depth. The polytropic index determines 

the amount of heat transfer during compression and expansion with a value of 1 representing an ideal 

isothermal process and 1.4 an adiabatic process. The next generation isothermal cycle analyzed here, 

benefits from a low polytropic index, as shown by round-trip efficiencies greater than 70% for a polytropic 

index of 1.06. RTE exhibits a negative correlation with air leakage which is understandable as the 

compressor work to inject the lost air is wasted energy. A positive correlation between RTE and depth 

suggests that moving to a deeper formation would be advantageous. A deeper location has a higher storage 

pressure which translates to reduced mass flow rates and therefore lower friction losses for the same power 

rating. Disadvantages of a deeper location include increased drilling costs and the challenge of performing 

isothermal heat transfer enhancements at higher pressures. The Middle Cretaceous and Lower Cretaceous 

formations exhibit similar trends. 
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Figure 5-6. Investigating the impact of uncertain machinery and subsurface variables on round-trip 

efficiency. A) polytropic index representing machinery performance, B) air leakage to represent uneven 

saline aquifer morphology and C) depth. Each point represents one Monte Carlo run for one location in the 

Upper Jurassic formation within the Baltimore Canyon Trough. The range of values investigated for each 

parameter is further explained in Table 5-3. 

 

5.4 Discussion 

This study presented a method to estimate the performance and storage potential of OCAES systems 

using isothermal thermodynamic cycles and saline aquifers. I used the approach to evaluate the potential of 

OCAES in the Baltimore Canyon Trough off the coast of the northeastern United States. I estimate that 

23.6 TWh of storage with a round trip efficiency of at least 60% are within water depths less than 60 m. 

This is nineteen times the battery storage projected for the United States by 2050 [271], and the water depth 
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is suitable to pair with fixed bottom offshore wind turbines. I also found that OCAES systems with an RTE 

greater than 50% are possible within 60 m water depth and 100 km of shore for all U.S. Mid-Atlantic states 

adjacent to the Baltimore Canyon Trough. 

By exploring the uncertainty of geophysical conditions and machinery performance, I identified the 

critical parameters for high efficiency operation. The aquifer permeability and thickness are the most 

limiting geophysical parameters; below 10 mD and 10 m, respectively, the system will not operate. 

Independent of the subsurface, the performance of the isothermal machinery is critical. Other important 

factors that need to be considered for economic feasibility include the water depth and distance to shore. 

The method presented here can be adapted to other world regions after collecting measurements of 

subsurface conditions. 

The geophysical data used for this analysis was based on square grids of 20 km by 20 km; future research 

is needed to characterize prospective high efficiency OCAES sites in detail. Measurements (such as pump 

tests and high-resolution seismic surveys) to identify the permeability, aquifer thickness and determine the 

shape of the subsurface including anticlines and synclines would be valuable to determine the full techno-

economic potential. Expanding the open source NATCARB data set would be advantageous to making the 

information widely available [272]. Future research is also needed to demonstrate the performance of 

isothermal machinery at high pressure ratios and an industrial scale, including part-load operation and start-

up times to understand integration potential with offshore wind. 

5.5 Experimental Procedures 

5.5.1 Data and Software Availability 

The model and analysis scripts were developed in Python 3 using the open source libraries CoolProp 

[273], pandas [274], Numpy [275], Seaborn [276], Matplotlib [277], and Joblib [278]. The model and data 

are available at https://www.github.com/EnergyModels/caes. 

https://www.github.com/EnergyModels/caes/
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5.5.2 Method Overview 

To understand the impact of uncertainty on the OCAES potential, I used a deterministic thermal fluid 

process model to estimate the viability and round-trip efficiency under fixed geophysical, machinery and 

engineering parameters. First, I used the model to determine the mass flow rate and well radius necessary 

for the intended storage duration and power rating. Next, I compiled distributions of geophysical and 

machinery parameters to represent the system uncertainty. I then performed an uncertainty analysis using 

Monte Carlo sampling. An overview of the method is shown in Figure 5-7. I applied the method to the 

Baltimore Canyon Trough as a case study. 

 

Figure 5-7. Overview of computational strategy to first size the system to reach 200 MW and 24 hours in 

duration before applying the Monte Carlo distributions of uncertain geophysical parameters. 
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5.5.3 Study Area 

The Baltimore Canyon Trough (BCT) was characterized by the Mid-Atlantic U.S. Offshore Carbon 

Storage Resource Assessment Project (MAOCSRAP) as reported by Fukai et al. and Battelle et al. 

[194,268]. Using the historical data, MAOCSRAP estimated the depth, thickness and porosity at 300 grid 

points for three formations in the BCT including the Middle Cretaceous, Lower Cretaceous and Upper 

Jurassic [194,268]. Permeability was estimated at each location using a curve fit, however the curve had a 

correlation coefficient between 16% and 58% depending on the formation [194]. 

5.5.4 OCAES System Model 

A thermal fluid process model of the OCAES system was used that represents the major components 

including aquifer, wellbore, and machinery. The model was first developed for Chapter 4, and for this study 

was updated to represent the machinery using a polytropic index, further detailed in the Supplemental 

Information [262]. The model tracks the temperature, pressure and mass flow rate at each location. The 

thermal fluid process model simulates a single cycle of charging and discharging. Simulations operate with 

a fixed mass flow rate and the total amount of air injected depends on the initial aquifer conditions and 

maximum operating pressure. Charging and discharging are each simulated in 100 timesteps to capture the 

varying work required at different pressures. An overview of the model equations is presented in the 

Supplemental Information. 

5.5.5 System Sizing 

Each location in the BCT was sized for a 200 MW, 24-hour duration OCAES system. The sizing 

represents an engineering firm designing and building the machinery to operate at a range of pressures at 

the design mass flow rate. It also includes fixing the air plume radius, which represents a pre-determined 

spacing between wells. If only a single well were installed, then this could be adjusted on site. 
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5.5.6 Uncertainty Analysis 

To represent the uncertainty in the subsurface, each geophysical and machinery parameter was 

represented with a distribution as shown in Table 5-3. Geophysical parameters were grouped into those that 

apply to the entire BCT, general, and location-specific parameters that are based on their spatial position. 

General parameters used the same distribution across the BCT. 
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Table 5-3. Uncertainty distributions used in the Monte Carlo sampling. 

Variable Distribution Mean Value Distribution Parameters 

General Parameters 

Polytropic index Triangle 1.1 
Minimum: 1.04 [259] 

Maximum: 1.21 [213] 

Temperature gradient Triangle 23 °C/km [268] 
Minimum: 16 °C/km [268] 

Maximum: 24 °C/km [268] 

Aquifer pressure gradient Triangle 10.0 MPa/km [268] 
Minimum: 9.42 MPa/km [268] 

Maximum: 11.1 MPa/km [268] 

Fracture pressure gradient Uniform 
14.703 MPa/km 

[194,268] 

Minimum: 13.6 MPa/km [268] 

Maximum: 15.8 MPa/km [268] 

Air leakage Triangle 3.5 %  [196] 
Minimum: 0% 

Maximum: 20% 

Location-specific Parameters 

Depth Uniform Location specific [194] +/- 10% 

Thickness Uniform Location specific [194] +/- 20% 

Porosity Normal [279] Location specific [194] Variance of 0.05% [279] 

Permeability Lognormal [279] Location specific [194] Variance of 2.448 [279] 

 

5.5.6.1 Machinery Parameters 

A variety of heat transfer enhancements have been tested for near-isothermal processes including spray 

injection [210,213,259], wire mesh [260], hollow spheres [280], and aqueous foam.[261] Based on a review 

summarized in Appendix C, a triangle distribution of polytropic indices between 1.04 and 1.21 were used.  

5.5.6.2 General Geophysical Parameters 

Variations in the geothermal gradient have previously been considered by Liu and Zhang which 

considered a gradient between 25 °C/km and 50 °C/km [281]. Battelle et al. found a range of geothermal 

gradients between 16 °C/km and 24 °C/km with an average of 23 °C/km and attributed the differences to 

variations in seawater depth and being near oceanic crust [268]. I applied a triangle distribution to represent 

the range of values found in the BCT. Battelle et al. found a very high correlation between aquifer pressure 

gradient with depth, therefore a triangle distribution was used to include the range of values while heavily 

weighting the expected value of 10 MPa/km [268]. Allen et al. have shown that the threshold pressure 

(difference between aquifer pressure and fracture pressure) depends on the rock type [220]. Conservative 

relationships use a threshold pressure maximums of 5 to 6.6 MPa, but they can be as high as 20.7 MPa 
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[220]. A uniform distribution was selected for the fracture pressure gradient based on sensitivity study by 

Battelle et al. that considered fracture gradients of 13.6, 14.7 and 15.8 MPa/km [268].  

The model always starts with an air plume at the initial aquifer pressure that is not recovered during 

normal operation. Air leakage represents the amount of air injected during normal operation that is not 

recoverable.  Oldenburg and Pan estimated a 3.5% air leakage for a compressed air energy storage system 

using a saline aquifer based on numerical reservoir simulations [196]. In comparison, the Huntorf CAES 

plant that operates with a salt cavern also requires 3.5% make-up air [196]. Succar and Williams also present 

a ranking criteria for aquifer suitability for CAES, that ranks sites with no leakage as shown by pumped 

tests to be the most suitable [45]. I used a triangular distribution for air leakage centered at 3.5% based on 

Oldenburg and Pan, and extended the distribution to 0% as a best cast and 20% as a worst case. 

5.5.6.3 Location-specific Parameters 

Location-specific parameters used results from the MAOCSRAP as the expected value. Based on the 

subsurface heterogeneity, variations in depth and thickness are expected, however due to limited data, these 

parameters were represented with uniform distributions. It is more common to vary porosity and 

permeability in studies that consider subsurface uncertainty. Pollack and Mukeriji varied porosity uniformly 

from 5% to 30% and permeability uniformly from log(0 mD) to log(5 mD) [263]. Jung et al. varied 

permeability +/-50% and also performed a sensitivity study that varied +/- permeability an order of 

magnitude [282]. Here I based distributions for porosity and permeability on the characterization of the 

Mount Simon sandstone formation by Barnes et al. [279], because the BCT formations are also sandstone. 

Barnes et al. used a normal distribution for porosity with variance of 0.05% and a lognormal distribution 

for intrinsic permeability with a variance of 2.448 mD [279]. I applied the same distributions as Barnes et 

al. while drawing the mean value from the MAOCSRAP. 
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6 Life Cycle Meta-Analysis of Carbon Capture Pathways in Power Plants: Implications for 

Bioenergy with Carbon Capture and Storage5 

6.1 Summary 

Bioenergy with carbon capture and storage (BECCS) is one possible approach to decarbonization by 

reducing atmospheric carbon dioxide levels at large scale. To support sustainable decarbonization, this 

study evaluates the environmental impacts of leveraging existing power plants for BECCS. I performed a 

life cycle meta-analysis of eight carbon capture technologies, including five previously simulated only for 

coal and natural gas, for both steam cycle and integrated gasification combined cycle (IGCC) power plants. 

I found that IGCC plants offer the best balance of negative emissions, energy return on investment (EROI) 

and low water use irrespective of capture technologies. However, current coal IGCC plants tend to be large 

whereas biomass-fired power plants are often small and distributed in the landscape, because of the 

distributed nature of the fuel. Steam cycle plants had larger negative emissions, but also lower EROI, and 

so blending with coal may be necessary to achieve a suitable EROI. Steam cycles were sensitive to capture 

technology type, and results found membrane and calcium looping capture technologies offer a balance 

between negative emissions, EROI and water use when fired using coal-biomass blends. These results 

suggest that steam-powered plants may be the most desirable candidates to support early-stage deployment 

of BECCS.  

  

 

5 This chapter was adapted from: Bennett, J.A., Abotalib, M., Zhao, F., Clarens, A.F. (2020), Life Cycle Meta-

Analysis of Carbon Capture Pathways in Power Plants: Implications for Bioenergy with Carbon Capture and Storage. 

Manuscript submitted for publication. 
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6.2 Chapter Nomenclature 

Table 6-1. Acronyms and Abbreviations. 

BECCS Bioenergy with Carbon Capture and Storage 

CaL Calcium Looping 

CC Carbon Capture 

CCS Carbon Capture and Storage 

CL Chemical Looping 

EROI Energy Return on Investment 

EU Energy Use 

FU Functional Unit 

GWP Global Warming Potential 

HHV Higher Heating Value 

IGCC Integrated Gasification Combined Cycle 

LCA Life Cycle Assessment 

LHV Lower Heating Value 

MDEA Methyl Diethanolamine 

MEA Monoethanolamine 

MWe Megawatt electric 

NET Negative Emission Technology 

NGCC Natural Gas Combined Cycle 

NIST National Institute of Standards and Technology 

NG Natural Gas 

SEWGS Sorption Enhanced Water Gas Shift 

US United States 

WTP Well-to-pump 

WTW Well-to-wheels 

WU Water Use 
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Table 6-2. Symbols. 

D Distance traveled 

ICC Impact of Carbon Capture 

IFP Impact of Fuel Production and Transport 

IPG Impact of Power Generation 

ISP Impact of Solvent Production 

IST Impact of Solvent Transport 

�̇�𝐶𝑂2 CO2 flow rate 

�̇�𝐶𝑂2,𝐵 CO2 flow rate of baseline GREET plant 

�̇�𝑆 Solvent Mass consumption rate 

qFUEL Fuel specific emission rate 

WU Water Use 

�̇� Plant Power Output 

�̇�𝐶𝑀𝑃 Compressor Power 

𝛽 Carbon Capture Rate 

Δh Enthalpy change 

Δ𝜂 Total efficiency reduction 

Δ𝜂𝐶𝐶 Efficiency reduction due to CC 

Δ𝜂𝐶𝑀𝑃 Efficiency reduction due to compression power 

𝜂𝑃𝑃 Power Plant Efficiency without CC 

𝜂𝑃𝑃,𝐵 Baseline Power Plant Efficiency without CC 

𝜂𝑃𝑃+𝐶𝐶 Power Plant Efficiency with CC 
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6.3 Introduction 

The 2°C target of the 2015 Paris Climate Agreement requires that nations drastically reduce their CO2 

emissions [283]. Achieving these reductions as nations move towards decarbonization will likely require 

the adoption of Negative Emission Technologies (NETs) [284]. NETs are a group of technologies under 

development that actively reduce the amount of carbon dioxide (CO2) in the atmosphere via direct air 

capture using chemical separations, enhanced weathering of silicate materials, and bioenergy with carbon 

capture and storage (BECCS). Direct air capture consumes energy to separate CO2 from the air before 

storing it in the subsurface and enhanced weathering accelerates the rate of carbon mineralization in rocks 

[19]. Unlike other NETs, the BECCS power plant concept combines the storage of CO2 with electricity 

production, and is based on a number of separately proven technologies: biomass-fired power plants are 

already in use and several existing demonstration-scale power plants actively capture and store CO2 [48]. 

6.3.1 Concept and status 

In BECCS power plants, perennial (for example, switchgrass) or woody (for example, pine) bioenergy 

crops are grown, harvested, and transported to a power plant where it is burned to generate electricity. 

Whereas in a conventional biomass-fired power plant, the carbon in the biomass is re-released to the 

atmosphere resulting in net positive CO2 emissions across the life cycle, because of the gross emissions 

from biomass cultivation and power production [285]. BECCS power plants capture CO2 at the power plant, 

and then store it in the deep subsurface, which creates the potential for net negative life cycle emissions 

[47]. 

There are currently two BECCS power plants in operation, the Drax pilot plant in North Yorkshire, 

United Kingdom and the 50 MWe (MW electric) Mikawa Power Plant in Omuta, Japan; both are retrofitted 

coal power plants [49,50]. BECCS has not been deployed in the United States (US) for power generation, 

however there are five facilities that combine ethanol production from biomass with carbon capture and 

storage [286].  
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Selecting the type of power plant and capture technology to use for BECCS requires balancing costs and 

environmental impacts. Fajardy et al. also examined the economic impact of BECCS and found that wide 

spread deployment would not be detrimental to agricultural commodity prices [287]. Emenike et al. 

performed a techno-economic analysis of BECCS and found that the break-even price depends on both the 

biomass feedstock and power plant type [288]. For fossil fuel fired power plants, a meta-analysis of carbon 

capture costs by Akbilgic et al. found the major driving factors to be capital costs and efficiency penalty 

[289]. With so many existing fossil-fuel power plants and so few operational BECCS power plants, 

questions remain over the optimal carbon capture technology for retrofitting existing power plants with 

respect to environmental impacts. 

6.3.2 Environmental impacts of BECCS 

Environmental impacts can be quantified with life cycle assessment which Stavrakas et al. and others 

assert is necessary to confirm that BECCS power plants have net negative emissions [48]. Global warming 

potential (GWP) is the most commonly used metric for quantifying the equivalent amount of CO2 emissions 

[290]. Mac Dowell and Fajardy have highlighted a paradox that less efficient BECCS power plants result 

in more negative CO2 emissions [291]. This is attributed to the fact that a less-efficient plant requires more 

biomass to produce the same amount of electricity, so it stores more CO2. This was re-affirmed in a study 

by Cumicheo et al. that compared combining biomass and natural gas fuel sources which also found that 

plants that fired biomass alone had the largest negative emissions [292].  

BECCS projects will also be evaluated on the basis of other environmental impacts such as water use, 

and energy use to support sustainable operation. Thermal power plants have large water demands, which is 

a concern because Gosling and Arnell and others have projected water scarcity to increase with climate 

change [293]. One motivation to deploy a BECCS power plant is that it offsets fossil electricity production, 

so minimizing energy use is important to maximize electricity outputs. Hetland et al. found that the low 
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initial efficiencies of bioenergy plants combined with the efficiency penalties of carbon capture could 

jeopardize the commercial viability of BECCS [294].  

Increasingly, energy return on investment (EROI) is also being used to evaluate novel energy generation 

pathways [295]. EROI is defined simply as the ratio of energy produced to energy consumed. While an 

EROI of 1 would be energetically balanced (energy in equals energy out), King and van den Bergh suggest 

that an EROI of 3 would be insufficient for an affluent society, and that present society relies on EROIs 

greater than 20 [296]. In contrast, Sgouridis et al. found that fossil power plants with carbon capture (CC) 

have EROIs of 6.6 to 21.3, and Moeller and Murphy found unconventional gas in the Marcellus Shale to 

have an EROI of 10.72 [295,297]. A comparison of biomass feedstocks on EROI performed by Fajardy and 

Mac Dowell found EROIs ranging from 0.5 to 5.7 [298]. EROI has direct implications for the economic 

viability of a technology, particularly those that generate or consume energy. For example, Heun and Wit 

found that there is a high probability of increased oil prices when EROI drops below 10 [299]. There is a 

research need to concurrently consider trade-offs between GWP, EROI, water use and energy use for the 

sustainable operation of BECCS. 

6.3.3 BECCS power plant configurations 

A growing body of literature is exploring some of the life cycle dimensions of BECCS power plant 

configurations. Existing BECCS Life Cycle Assessment (LCA) studies have considered the role of biomass 

feedstocks including biomass residue [300], wood [285,301–305], switchgrass [306], straw [304] and crops 

[304,306]. Many of these studies exclusively considered co-firing biomass with coal; for example, Schakel 

et al. compared co-firing coal with a 30% blend of biomass in large plants but did not consider biomass-

dedicated plants [304]. These studies have primarily focused on two types of power plants; the steam or 

Rankine cycle based on burning pulverized coal and the integrated gasification with combined cycle 

(IGCC) which combines a gas turbine and steam cycle [307]. Supercritical carbon dioxide power cycles 

have also been considered as an alternative to steam and IGCC [308].  
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Only a limited number of carbon capture technologies have been considered in the life cycle assessment 

literature for the context of BECCS power plants: amine-based, oxy-fuel and Selexol [285,300–306]. CO2 

capture at the power plant occurs following either post-combustion i.e., removal of CO2 after the fuel is 

burnt in air or pre-combustion i.e., first converting the fuel into a mixture of hydrogen and CO2, followed 

by CO2 capture. The most common type of carbon capture is performed via chemical sorption using amine-

based solvents such as monoethanolamine (MEA) or methyl diethanolamine (MDEA). Amine-based 

capture has been considered for BECCS power plants in a number of studies [285,300–303]. In oxy-fuel 

carbon capture, the fuel is burned in pure oxygen obtained from the cryogenic distillation of air, which 

creates a pure CO2 stream, eliminating the need to separate the flue gas following combustion. Herron et 

al. and Falano et al. analyzed oxy-fuel for BECCS power plants and found that auxiliary power requirements 

increase greatly, primarily due to the air separation [285,305]. Selexol is a type of physical solvent that 

relies on the physical sorption of CO2 to the solvent [309]. Schakel et al. and Black et al. evaluated Selexol 

for BECCS power plants [304,306]. Black et al. noted that a 300-500 MWe plant would be logistically 

constrained to operating with 66% biomass by weight, because there would not be enough biomass 

available [306]. Schakel et al. found that pre-combustion with Selexol was more favorable than amine-

based with respect to net negative emissions [304].  

The life cycle assessment literature for carbon capture from fossil fuel power plants is much more 

extensive. Cúeller-Franca and Azapagic compared 27 different carbon capture approaches using life cycle 

meta-analysis and found that oxy-fuel had the lowest GWP [310]. In addition to considering amine-based 

[311,312], oxy-fuel [312] and Selexol [312], recent fossil fuel studies have highlighted five emerging 

carbon capture technologies: ammonia [313], chemical looping [314], calcium looping [313–316], 

membrane [317] and sorption enhanced water gas shift [311]. Ammonia is an alternative choice for 

chemical sorption to replace amine-based solvents [313]. Chemical looping (CL) is similar to oxy-fuel in 

that fuel is combusted in pure oxygen but uses a metal oxide such as an oxide of iron or copper to produce 
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oxygen instead of air separation [318]. Calcium looping (CaL) is an emerging carbon capture technique in 

which calcium oxide (CaO) reacts with CO2 to create calcium carbonate (CaCO3), which is subsequently 

heated to release the CO2 and recycle the calcium [319]. Membrane-based capture uses physical separation 

typically with advanced materials such as polymers, palladium, and ceramics [318]. Another recently 

considered capture technology is sorption enhanced water gas shift (SEWGS) which is a pre-combustion 

carbon capture technology based on using pressure swing adsorption to produce syngas [311]. The 

development of advanced carbon capture technologies for fossil fuel power plants asks whether these could 

lead to BECCS configurations with reduced environmental impacts. 

6.3.4 Need for harmonization 

Comparing carbon capture technologies for power plants is challenging because of differences in 

modeling assumptions and system boundaries [320]. Corsten et al. performed a review of existing LCAs 

and highlighted differences in the inclusion or exclusion of CO2 transport and storage within power plant 

life cycle boundaries [321]. Heath and Mann have shown that harmonization of system boundaries and 

inputs is necessary to make life cycle assessment studies directly comparable [322]. Additionally, 

challenges exist for comparing carbon capture technologies for different fuels. Vasudevan et al. highlighted 

that accounting must be done for differences in exhaust CO2 partial pressures [323]. These studies have 

shown the importance of harmonizing system boundaries and model inputs while accounting for differences 

in exhaust gas composition, however a methodology to combine these steps has not been demonstrated. 

6.3.5 Siting challenges and opportunities 

Siting a BECCS power plant is challenging because it must be near energy crop feedstocks, a geologic 

formation suitable for CO2 storage, and electricity infrastructure. Baik et al. performed a comparison of 

crops and storage locations in the US and found that transportation barriers and unsuitable storage reduce 

the negative emission potential of BECCS by 73% [324].  
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Even though BECCS power plants have not been deployed in the US to date, there are currently 22 

biomass-fired power plants with a capacity of at least 10 MWe, with the largest having a capacity of 113 

MWe (Figure 6-1A) [325]. There are also 32 biomass-fired power plants in the US with a capacity less than 

10 MWe [325]. Biomass transportation costs increase with plant capacity due to increased fuel consumption 

[326,327]; thus, bioenergy plants are typically much smaller than their fossil fuel counterparts [108]. 

Another challenge with biomass is its seasonal availability [328]. 

In contrast to the US biomass-fired power plant infrastructure, there are hundreds of coal and natural 

gas power plants (Figure 6-1B, C). If US policies were to shift towards large deployment of low carbon 

fuels, this could leave many stranded assets in the form of existing coal and natural gas power plants. 

Stranded assets are infrastructure investments that become uneconomic to operate and must close before 

they reach the end of their design life due to a change in the regulatory environment [329]. In the US, the 

location of many coal and natural gas plants overlaps with the location (Figure 6-1D) of much of the 

biomass resources suggesting there may be opportunities to retrofit some of these ageing power plants for 

BECCS. For example, the recent conversion from coal to biomass for 4 units built in the 1960-70’s at the 

Drax Power Plant is also expected to extend the lifetime and had a total cost of 964 million USD (730 

million pounds) or 365 USD/kW [330,331]. Converting a coal power plant to biomass requires biomass-

dedicated covered storage and conveying systems as well as combustor modifications [332]. Although a 

major investment, the Drax Power Plant conversion is equivalent to approximately 8% of the anticipated 

capital costs for a new biomass-fired power plant [8]. Co-firing with coal is another option that can lead to 

higher power plant efficiencies as compared with firing biomass alone [328]. Further analysis is required 

to understand whether it is better to retrofit existing power plants, or to a construct a state-of-the-art BECCS 

power plant. 
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Figure 6-1. A comparison of existing A) biomass-fired, B) coal, C) natural gas electric utility power plants, 

and D) total biomass resources in the United States illustrates the opportunity to convert existing fossil power 

plants to bioenergy [325,333]. 

 

6.3.6 Study overview 

The goal of this study is to support electric grid decarbonization by identifying carbon capture 

technologies with minimal environmental impacts for retrofitting coal power plants into BECCS power 

plants. I use a meta life-cycle-assessment methodology to compare the environmental impact of emerging 

carbon capture technologies with carbon capture technologies previously considered for BECCS power 

plants. Specifically, I analyze, for the first-time, ammonia, chemical looping, calcium looping, membrane 

and sorption enhanced water gas shift for retrofitting existing steam and IGCC power plants into BECCS 

power plants. To consider these emerging technologies, I developed a method to harmonize and apply 

carbon capture technologies from one power plant to another, and made the model publicly available. In 

order to sustainably decarbonize the electric grid, negative emissions need to be balanced with other 
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environmental impacts, so I investigate trade-offs with energy use, water use and EROI. I also used my 

model to consider trade-offs in burning biomass with and without coal. Using these results, I explore the 

potential to retrofit existing coal and natural gas power plants in the United States for BECCS. 

6.4 Methodology 

A comparative life cycle meta-analysis was performed by combining the harmonization approach 

outlined in Heath and Mann [322] with a BECCS performance projection. Harmonization was necessary 

because my review of recent published studies included LCAs as well as techno-economic and 

thermodynamic-based analyses found varying model inputs, system boundaries, and fuel inputs. For this 

meta-analysis I selected published studies from 2012-2019 that had similar system boundaries and provided 

the capture rate (percent of CO2 captured) as well as the power plant efficiency before and after the addition 

of carbon capture. From the studies I also extracted the CO2 outlet pressure and whether the efficiency was 

based on the Higher Heating Value (HHV) or Lower Heating Value (LHV) of the fuel. A summary of the 

literature is shown in Table 6-3 with full model inputs presented in Appendix D. 
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Table 6-3. A summary of the literature review highlights the number of data points used in addition to an 

overview of model parameters. Some of the studies used were meta-analyses or contained analyses of multiple 

plant configurations, therefore each data point refers to a unique combination of a power plant with and 

without carbon capture. 

 Data points (-) All Fuel and Power Plant Combinations 

Fuel Biomass Coal 
Natural 

Gas 
All Capture rate 

(%) 

Outlet Pressure 

(MPa) 

Efficiency 

Reduction 

(%) Power Plant Steam Steam IGCC NGCC All 

Amine-based 1 2 6 6 15 88.3 – 90.5 11.0 – 20.2 5.1 – 6.8 

Ammonia   1  1 85.0 12.0 8.1 

CaL  3 9  12 77.0 – 92.7 10.0 – 15.0 3.5 – 11.6 

CL  1   1 99.5 12.0 6.2 

Membrane   2  2 90.0 15.0 5.6 – 5.9 

Oxy-fuel 1  6  7 90.0 – 98.0 11.0 – 15.3 8.3 – 9.9 

Selexol  4   4 90.0 15.3 – 20.2 7.1 – 12.0 

SEWGS    2 2 85.7 – 91.1 11.0 12.1 – 12.5 

 

The published studies were harmonized by using common model inputs and compensating for 

differences in the system boundary. Specifically, the studies were harmonized to have a common 

compressed CO2 outlet pressure of 15.3 MPa, which was the most common in Rubin et al. [312]. Next, an 

efficiency reduction parameter was calculated based on power plant efficiencies before and after carbon 

capture that accounted for differences in fuel inputs, which enabled projecting the capture technology 

performance for BECCS. Environmental impacts for each configuration were calculated by applying the 

efficiency reduction to the common model inputs. Capture rates were not harmonized.  

6.4.1 Model inputs 

To compare combinations of capture technologies and power plant configurations, life cycle inventory 

data and power plant performance data was taken from the 2019 version of the Greenhouse gases, Regulated 

Emissions, and Energy use in Transportation Model (GREET) using the target year 2020 [334]. The power 

plant data is summarized below in Table 6-4. Additional GREET data for fuel gathering including biomass 
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cultivation, amine production and transportation is shown in Table 6-5. All simulations use switchgrass as 

a representative biomass source. Switchgrass is similar in its cultivation and combustion to straw or corn 

stover and was included in GREET.  

 

Table 6-4. Processed “Non Distributed - U.S. Mix” Power Plant Data from GREET 2019, with target year 

2020 [334]. Raw data and calculations are shown in Appendix D. 

Power Plant Type 
Biomass 

(IGCC) 
Biomass (Steam) Coal (IGCC) Coal (Steam) NG (NGCC) 

GREET Process 

Electricity: 

Switchgrass 

IGCC Power 

Plant* 

Electricity: 

Switchgrass 

(Steam Turbine) 

Power Plant 

Electricity: Coal-

Fired (IGCC 

Turbine) Plant 

Electricity: Coal-

Fired (Steam 

Turbine) Plant 

Electricity: 

NG-Fired 

(Combined-

cycle Gas 

Turbine) Plant 

Type Well-to-pump Well-to-pump Well-to-pump Well-to-pump Well-to-pump 

Functional Unit kWh kWh kWh kWh kWh 

Efficiency (fr) 0.45 0.25 0.39 0.38 0.60 

Well-to-use           

GWP (g CO2eq) 63.96 77.76 931.72 956.77 402.29 

Energy Use (MJ) 0.33 0.59 0.19 0.20 70.52 

Water Use (l) 0.09 1.68 1.51 1.65 0.67 

Onsite           

CO2 (g) 813.17 1457.47 875.25 898.26 337.72 

GWP (g CO2eq) 22.90 3.85 878.69 902.35 338.24 

Energy Use (MJ) 0.00 0.00 0.00 0.00 0.00 

Water Use (l) 1.38* 1.51 1.38 1.52 0.60 

*GREET did not include Onsite water use for biomass IGCC so I assumed it to be the same per kWh as coal IGCC 
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Table 6-5. Processed Fuel Gathering, Chemical Production, and Transport Data from GREET 2019, with 

target year 2020 [334].  Raw data and calculations are shown in Appendix D. 

Product Biomass Coal Methyl Amine Natural Gas Transport 

GREET Product 

Switchgrass 

Production for 

Ethanol Plant 

Coal for Power 

Plants 

Production 

Pathway for 

Methyl Amine 

NA NG from 

Shale and 

Regular 

Recovery for 

Electricity 

Generation 

HD Truck: 

Combination 

Short-Haul 

CIDI - Low 

Sulfur Diesel 

Type Well-to-pump Well-to-pump Well-to-pump Well-to-pump Well-to-wheels 

Functional Unit MJ MJ g MJ tonne-km 

Well-to-use      

GWP (g CO2eq) 5.13 5.74 2.66 10.68 70.84 

Energy Use (MJ) 0.04 0.02 0.07 0.09 0.92 

Water Use (l) 0.011 0.014 0.002 0.011 0.064 

 

6.4.2 System boundary 

Recent carbon capture studies of coal and natural gas plants consider system boundaries that include 

fuel gathering through compression of CO2 at the power plant, thus I used the same boundary (Figure 6-2). 

Cúellar-Franca and Azapagic report that infrastructure production had a negligible impact on life cycle 

GWP for a carbon capture and storage project comparing pulverized coal, IGCC, and combined cycle gas 

turbine power plants [310]. BECCS power plants are not expected to be significantly different in 

construction from this set of power plants, thus the construction phase of the life cycle was excluded from 

the analysis. For the analysis it was assumed that solvent would need to be transported 100 km.  
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Figure 6-2. The system boundary of the life cycle assessment was selected to include upstream impacts of fuel 

gathering through compression of CO2 at the power plant. The energy stored in the fuels i.e., due to 

photosynthesis is excluded from the system boundary. 

 

Based on my review of solvent consumption (Table 6-6), an average consumption of 1.76 kg/tonne CO2 

was calculated and assumed for all amine-based systems using a generic MEA [335–337]. This is a 

conservative assumption for MEA systems with new products such as KS-1 advertising reduced 

degradation [338]. Based on Pehnt and Henkel, it was assumed that Selexol consumption was negligible 

[336].  
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Table 6-6. Solvent Consumption of Power Plants with Carbon Capture from Literature. 

Study 

[-] 

Solvent 

[-] 

Consumption 

[kg / tonne CO2] 

Koorneef et al., 2008 [335] MEA 2.34 

Pehnt and Henkel 2009 [336] MEA 1.50 

Pehnt and Henkel 2009 [336] Selexol 0.00 

Giordano et al., 2018 [337] MEA 1.44 

 

6.4.3 Efficiency reduction 

An efficiency reduction parameter Δ𝜂 was developed to provide a universal method to account for the 

change in power plant efficiency due to the implementation of a carbon capture technology. Once 

calculated, it is applied to the GREET baseline power plant efficiencies, η𝑃𝑃,𝐵,  

η𝑃𝑃+𝐶𝐶 = η𝑃𝑃,𝐵 − Δ𝜂       (6-1) 

to calculate the efficiency of the power plant with carbon capture η𝑃𝑃+𝐶𝐶. It is nontrivial to compare the 

impact of carbon capture systems across the literature because few assumed the same operating conditions 

and outlet pressure. To make studies comparable, I focused on the reduction in plant efficiency due to 

carbon capture Δ𝜂𝐶𝐶, 

Δ𝜂𝐶𝐶 = 𝜂𝑃𝑃 − η𝑃𝑃+𝐶𝐶       (6-2) 

where 𝜂𝑃𝑃 is the efficiency of the power plant without carbon capture and 𝜂𝑃𝑃+𝐶𝐶 the efficiency of the 

power plant with carbon capture. The majority of studies reported efficiencies on a LHV basis, however 

some also used HHV. Where applicable, efficiency reductions were corrected using values from Table 6-5. 

In addition to different operating conditions, studies also varied the CO2 outlet pressure of the capture 

system. To harmonize results, an efficiency correction was developed for differences in compression work 

Δ𝜂𝐶𝑀𝑃, 

Δ𝜂𝐶𝑀𝑃 =
�̇�𝐶𝑀𝑃

�̇�
       (6-3) 

where �̇�𝑐𝑚𝑝 is the compressor power, and �̇� the plant power. 
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�̇�𝐶𝑀𝑃 =
�̇�𝐶𝑂2⋅Δℎ

𝜂𝑖𝑠𝑒𝑛
      (6-4) 

where �̇�𝐶𝑂2is the mass flow rate of carbon dioxide, Δℎ is the enthalpy change using real gas properties 

from NIST miniREFPROP [339] using the Span and Wagner equation of state [340] assuming a starting 

temperature of 25 °C and outlet pressure of 15.3 MPa which was the most common in the review by Rubin 

et al. [312] and 𝜂𝑖𝑠𝑒𝑛 an isentropic efficiency of 80% [315]. The CO2 flowrate of the compressor is evaluated 

as, 

�̇�𝐶𝑂2⋅ = β ⋅ q𝐹𝑈𝐸𝐿 ⋅
�̇�

𝜂𝑃𝑃+𝐶𝐶
      (6-5) 

where β⁡is the rate of carbon capture, and 𝑞𝐹𝑈𝐸𝐿 the fuel specific carbon dioxide emission rate. Equations 

6- through 6-5 can then be combined to, 

Δ𝜂CMP =
�̇�𝐶𝑀𝑃

�̇�
=

�̇�𝐶𝑂2⋅
Δℎ

�̇�
=

𝑞𝐹𝑈𝐸𝐿⋅𝛽⁡⋅Δℎ

𝜂𝑃𝑃+𝐶𝐶
     (6-6) 

The total efficiency reduction Δη  is then computed as, 

Δη = Δ𝜂𝐶𝐶 + Δ𝜂𝐶𝑀𝑃      (6-7) 

Predicting the efficiency reduction for another fuel type, here biomass, requires consideration of the 

exhaust gas CO2 concentration, which is highly correlated with capture energy requirements. A proportional 

correction was developed to predict the efficiency reduction for using biomass Δ𝜂𝑏𝑖𝑜𝑚𝑎𝑠𝑠, 

Δ𝜂𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = (
𝑞𝐹𝑈𝐸𝐿

𝑞𝐹𝑈𝐸𝐿,𝑏𝑖𝑜𝑚𝑎𝑠𝑠
) ⋅ Δ𝜂     (6-8) 

Fuel-specific emission factors derived from GREET 2019 are shown in Table 6-7. 

.  
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Table 6-7. Emission factors and ratio of higher heating value (HHV) to lower heating value (LHV) by fuel 

source, derived from GREET 2019 [334]. 

Fuel 
Emission Factors 

[g CO2/MJ] 

HHV/LHV ratio 

[-] 

Switchgrass 101.43 1.11 

Coal 94.82 1.11 

Natural Gas 56.29 1.14 

 

6.4.4 Environmental impacts 

For this analysis, I considered four environmental impacts: global warming potential (GWP), energy 

use (EU), water use (WU) and energy return on investment (EROI). GWP calculations are made on a 100 

year basis and are from GREET [334]. Literature was reviewed to select the functional unit for the impacts. 

In Cúellar-Franca and Azapagic’s review of CCS technology studies, 1 kWh was the most common 

functional unit [310]. Schakel et al.’s LCA of a power plant co-fired with biomass and coal also used a 

functional unit of 1 kWh [304]. Therefore, a functional unit of 1 kWh of produced electricity was selected 

to be consistent with similar LCAs to enable comparisons of results. The process of calculating the 

environmental impacts is based on scaling the baseline power plant environmental impacts from GREET 

with the efficiency reduction parameter and the addition of solvent production if applicable. The detailed 

process of calculating the environmental impacts using the efficiency reduction parameter is shown in 

Appendix D.  

6.5 Results and Discussion 

6.5.1 GWP vs. EROI 

Figure 6-3 presents system global warming potential and energy return on investment for each BECCS 

configuration considered here. The ideal power plant would have high EROI and low GWP which 

corresponds to the bottom right corner of the figure. Instead of identifying a single best configuration, I see 

a Pareto front representing the trade-off between EROI and GWP. Some power plant configurations in the 
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bottom left-hand corner of the plot (for example, steam power plants burning only biomass and capturing 

CO2 with amine-based scrubbers) have high rates of CO2 removal, but these power plants have very low 

EROI that could influence the economic competitiveness of the plants. Conversely, power plants in the 

upper right-hand corner of the plot (for example, steam power plants burning only coal and capturing CO2 

using calcium looping) have very high EROI but are net carbon positive. The power plants located in the 

elbow of the curve present a balance between GWP and EROI.  

The inset (Figure 6-3B) provides a higher resolution depiction of the power plant configurations with 

this balance. The results suggest that IGCC plants that burn biomass or a blend of coal and biomass provide 

the most balance between EROI and GWP. However, steam-based co-firing of coal and biomass provides 

EROI values that are almost as high as IGCC plants with biomass, particularly for those plants that deploy 

membrane or calcium-looping based separation. In all cases, NGCC plants are dominated, so regardless of 

preference for EROI or GWP, there are better options.  

Chemical looping (CL) based separation produces the best EROI and GWP results with SEWGS, CaL 

and Selexol following close behind. Amine-based steam cycles offer the lowest GWP at the expense of the 

lowest EROI. Conversely, IGCC plants with a 50% blend of biomass and coal offer the highest EROI with 

net negative emissions. Negative GWP only occurs for power plants that use 100% biomass or a 50% blend 

of biomass and coal, as would be expected. I explored additional co-firing fractions and found that EROI 

did not vary significantly between 25% and 50% co-firing (see Appendix D for more detail). For 

comparison, corn ethanol CCS is projected to have an EROI of 1.54 and sugarcane ethanol an EROI of 3.89 

based on Cheng et al [341]. I also verified GWP and EROI results by comparing my results with estimates 

reported in the literature, as shown in Table 6-8.  
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Figure 6-3. Comparison of GWP vs. EROI for power plants equipped with carbon capture. Negative GWP 

(indicated by horizontal dashed line) is necessary for lowering atmospheric CO2 levels and EROI values 

greater than one (vertical dashed line) indicate energetically balanced processes. 50% Blend refers to 50% 

biomass and 50% coal by mass. 
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Table 6-8. Verification of EROI and GWP outputs. 

 EROI (-) GWP (kg CO2eq/kWh) 

Technology [296] This study [56] This study 

Coal with CC 9 – 13 7.9 – 16.3 0.079 – 0.147 0.100 – 0.314 

NGCC with CC 4 – 7 5.0 – 5.7 0.063 – 0.097 0.11 – 0.14 

Biomass with CC N/A 1.9 – 9.6 -1.490 – -0.368  -3.096 – -0.725 

 

Table 6-9 presents the two capture technologies with the highest EROI for each plant that burns or 

partially burns biomass. Full results for all configurations including minimum and maximum values as well 

as results for fossil-fuel power plants are provided in Appendix D. The configurations are ordered from 

highest to lowest EROI. As EROI decreases from within these select results, GWP decreases and water use 

increases. 

 

Table 6-9. Leading biomass configurations based on EROI. The mean performance of biomass power plants 

with carbon capture is shown in terms of GWP, EROI, and WU (water use). Pre/post indicates whether it is 

pre- or post-combustion capture. Blend refers to 50% biomass and 50% coal by mass. 

Power Plant Type Capture Type Pre/Post 
EROI 

[-] 

GWP 

[kg CO2/kWh] 

WU 

[l/kWh] 

Blend (IGCC) CL Pre 11.65 -0.40 1.73 

Blend (IGCC) SEWGS Pre 11.31 -0.30 1.79 

Biomass (IGCC) CL Pre 9.64 -0.86 1.69 

Biomass (IGCC) SEWGS Pre 9.39 -0.77 1.73 

Blend (Steam) Membrane Post 8.41 -0.66 2.02 

Blend (Steam) CaL Post 8.14 -0.67 2.09 

Biomass (Steam) Membrane Post 4.83 -1.57 2.13 

Biomass (Steam) CaL Post 4.64 -1.63 2.24 

 

6.5.2 Water use 

In Figure 6-4, water use is compared against EROI for both pre-combustion and post-combustion 

capture technologies. The bar at the bottom of each panel reports the average switchgrass cultivation water 

use for a steam-power plant fueled using biomass based on GREET data for a 25% efficient plant without 

carbon capture. This value is presented to illustrate just how much of the overall life cycle water burdens 
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are attributed to power plant cooling and CCS. Each family of power plant results has an optimal carbon 

capture technology that achieves low water use and high EROI. Thus, if water use and EROI were the only 

metrics of interest, neither would have to be compromised. In general, IGCC plants were found to have a 

lower water use and higher EROI than steam cycle counterparts for the same fuel. Pre-combustion capture 

technologies for IGCC biomass had higher EROI and similar water use to the post-combustion alternatives. 

The leading IGCC biomass configuration used an average of 1.69 l/kWh with chemical looping having an 

EROI of 9.6. The leading biomass with steam plants used membrane capture technology and achieved a 

water use of 2.13 l/kWh and EROI of 4.8. Blending with coal improves EROI (1-2 points) over pure 

biomass for IGCC, but greatly improves it for steam (4-5 points) with similar water use. The leading blend 

with steam used post-combustion membrane capture and had a water use of 2.02 l/kWh and EROI of 8.4. 
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Figure 6-4. Water use vs. EROI is compared for a) pre-combustion and b) post-combustion configurations. 

Here oxy-fuel is included in post-combustion. Blend refers to 50% biomass and 50% coal by mass. 

Switchgrass Cultivation Water Use refers to the water use for a steam cycle plant fueled with switchgrass 

based on GREET data for a 25% efficient plant without carbon capture [334]. 

 

6.5.3 Life cycle stage analysis 

To identify which life cycle stages were driving the results for biomass-based configurations, I 

performed a life cycle stage analysis (Figure 6-5). If GWP were the only consideration, then biomass with 

steam would be the best option. With respect to energy use, IGCC plants consume much less energy than 

steam cycles. The best water use cases are comparable between steam and IGCC, however some steam 



 

146 

 

capture technologies have very high water use (amine-based). There is little variation across capture 

technologies for IGCC plants. Most impacts were dominated by a single life cycle stage: GWP by carbon 

capture, energy use by carbon capture, and water use by power generation (cooling). This identifies where 

research is needed to improve a particular environmental impact. Solvent production and transportation 

were found to have negligible impacts. The GWP of fuel production and transport for biomass was 

negligible based on GREET data when compared with negative emissions.  
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Figure 6-5. A life cycle stage analysis of biomass power plants identifies the stages with the most impact for 

further improvement and to help identify the optimal configuration. 
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EROI is often correlated to cost, so my identification of IGCC as having a balance between EROI and 

GWP is reaffirmed by a recent report for the state of California, which identifies IGCC as a cost-effective 

option for negative emissions [342]. Although IGCC appears to be the leading option for BECCS, with 

respect to retrofitting it is a different story. Based on EIA data, there is currently only one operational IGCC 

plant in the United States with a rated capacity of 756 MWe [343]. The limited deployment of IGCC plants 

to date is based on technical and economic challenges associated with the technology. Another plant started 

in Kemper County, Mississippi with a planned capacity of 582 MWe was abandoned due to cost overruns 

[344]. Therefore, the conversion of existing power plants to BECCS is more likely to take place at coal 

plants that operate using steam cycles. Patrizio et al project that repurposing coal power plants for BECCS 

and replacing coal plants beyond their design life with natural gas will create 22,000 jobs in the United 

States [345]. Additional workforce training would be necessary if BECCS were to be deployed using IGCC 

configurations, due to the limited experience managing and staffing these kinds of facilities. In theory, it 

could also be possible to convert a natural gas combined cycle plant by adding a gasification system, but 

this would be a very large additional infrastructure investment. Additional concerns of retrofitting existing 

large capacity fossil fuel power plants are the transportation costs and logistics required to provide sufficient 

feedstock [326,327]. This is further challenged by the need to be located near a suitable CO2 storage site 

[324]. Belmont has highlighted other challenges of the potential for combustion-based BECCS in the United 

States including slow increase in baseload power plants, inconsistent regulatory policies and staying 

competitive with current natural gas prices [346]. 

6.5.4 Impact of capture technology characteristics 

Each capture technology has a number of unique characteristics in my analysis including efficiency 

reduction (Δη), capture rate (𝛽), and solvent consumption. To understand how these characteristics were 

driving the results previously shown in Figure 6-3 through Figure 6-5, I took a detailed look at the impact 
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of efficiency reduction and capture rate on GWP, EROI, and water use in Figure 6-6. Solvent consumption 

was not included because it was found to have a negligible impact.  

Figure 6-6 shows that chemical looping is advantageous due to its high capture rate combined with a 

low efficiency reduction. Most studies published to date assume a capture rate of 90%, which is why many 

of the results are clustered in that range. Steam plants have significantly lower GWP compared to IGCC 

plants independent of efficiency reduction and capture rate, due to a much lower starting power plant 

efficiency (45% versus 25%). Although carbon capture results in an efficiency reduction, when accounting 

for the differences in CO2 concentration in the feedstock, BECCS plants have lower efficiency reductions 

and thus higher power plant efficiencies than coal or natural gas power plants with carbon capture. Within 

steam plants, amine-based separations have the lowest GWP, followed by oxy-fuel due to the highest 

efficiency reductions. IGCC plants have similar GWP across configurations. 

IGCC plants have much higher EROI values than steam plants. Of capture technologies, amine-based 

processes have the lowest EROI which is correlated with large efficiency reductions. For water use, IGCC 

has lower water use than steam plants, which can also be correlated to the efficiency reduction. IGCC has 

similar water use levels across configurations. Water use for steam plants however is a function of 

efficiency reduction, with more water used by less efficient plants. Large efficiency reductions are 

associated with lower GWPs. Modest negative correlation was found between capture rate and GWP and 

no strong correlation between capture rate and EROI. 

Figure 6-6 also confirms the paradox that low efficiency power plants result in the largest negative 

emissions [291]. This is based on the fact that CO2 capture rates are directly proportional to biomass 

consumption. A less efficient plant requires more biomass to produce the same amount of electricity so it 

stores more CO2. However, my analysis shows that this comes at the cost of high water use and a low EROI.  
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Figure 6-6. The meta-analysis model relies heavily on two inputs, capture technology efficiency reduction and 

capture rate. Here they are compared against GWP, EROI and water use to better understand the influence 

of these parameters. 

 

6.5.5 Other considerations 

In this study, I applied equal weight to the metrics of GWP, EROI, energy use and water use. However, 

in practice, the selection of the optimal BECCS power plant configuration for sustainable decarbonization 

will require weighting these metrics with respect to regional goals and impacts. For example, environmental 

constraints such as water availability or carbon emission regulations will vary by region. If the primary goal 

is net zero emissions by mid-century, then the focus will be on maximizing negative emissions, regardless 



 

151 

 

of the resulting EROI. Alternatively, climate mitigation measures such as carbon pricing or cap and trade 

systems will reinforce the need for negative emissions while creating trade-offs with economic value. 

BECCS power plants could be used primarily for power production, however due to their increased water 

use and decreased EROI compared to fossil fuel power plants, the success of BECCS power plants is 

expected to rely on successfully providing negative emissions. Future work can further consider metric 

weighting in a system analysis. 

6.6 Conclusions 

Negative emission technologies are necessary for achieving carbon neutrality goals and stabilizing 

atmospheric CO2 levels. Bioenergy with carbon capture is expected to be an important source of negative 

emissions that could leverage existing power plant infrastructure. Detailed comparisons of carbon capture 

technologies with biomass were previously limited to only a few different types of power plant capture 

technologies. Here I harmonized carbon capture estimates from fossil fuel studies to forecast the emissions 

factors from biomass plants, and compare life cycle impacts across operational configurations. The results 

reveal important trade-offs between global warming potential and energy return on investment for different 

power plant and carbon capture configurations. IGCC plants were found to have higher EROI values while 

still achieving negative emissions which makes them the best candidate for conversion. However, IGCC 

plants are typically very large and bioenergy plants tend to be small. Further, the US currently has only one 

IGCC plant which is in stark contrast with hundreds of steam plants currently operating. Transitioning to 

low-carbon fuels would leave existing fossil-fuel power plants as stranded assets, because they will no 

longer be economically viable to operate. Many of the existing steam plants are in close proximity to 

biomass sources. Successful BECCS operation will also require close proximity to suitable carbon storage 

sites.  

Chemical looping was found to be marginally better than other capture technologies for IGCC, however 

future work could consider infrastructure and operational costs. Biomass plants operating with a steam 
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cycle and amine-based capture technologies were found to have the lowest GWP but this was accompanied 

by significant increase in water use and low EROI.  Retrofitting steam plants to burn biomass will likely 

require blending with coal to achieve negative emissions along with a suitably high EROI. Steam cycles 

were more sensitive to capture technologies than the IGCC power plant configurations. Steam-based coal 

plants with membrane or calcium looping-based separations performed almost as well as IGCC, especially 

when the plants burned a blend of coal and biomass. 
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6.8 Data Availability 

The model and analysis programs are available for download at 

http://www.github.com/EnergyModels/BECCS-LCA-MetaAnalysis. The model was created in Excel 2016, 

data analysis performed in R version 4.02 [347] using dplyr [348] and readxl [349], and plotting performed 

in Python 3.7.6 [350] using numpy [275], pandas [351], matplotlib [277], seaborn [352] and xlrd [353]. 

  

http://www.github.com/EnergyModels/BECCS-LCA-MetaAnalysis
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7 The Role of Long Duration Storage and Negative Emissions in Meeting Decarbonization Goals 

at the Regional Scale 

7.1 Summary 

This chapter uses an energy system optimization model to evaluate the role of the emerging technologies 

considered in this dissertation by projecting their deployment in the grid planning of Virginia. Virginia has 

targeted decarbonization by 2050, therefore I explore the impact of grid planning with long duration storage 

(i.e. offshore compressed air energy storage), negative emission technologies (i.e. bioenergy with carbon 

capture and storage), fossil infrastructure (i.e. sCO2 power cycles with carbon capture and storage), and 

distributed generation (i.e. rooftop solar). The results show that including long duration storage and negative 

emission technologies in decarbonization planning results in 31% lower 2050 electricity costs. I also show 

that the deployment of OCAES depends on its cost, but that BECCS will be deployed based on biomass 

availability. Rooftop solar is only installed after utility scale solar has reached its limit and natural gas with 

CCS is deployed when available. 

7.2 Introduction 

In order to limit the world to 2° C of warming, countries need to go above and beyond their original 

targets for the 2015 Paris Agreement [283]. While many countries are planning for decarbonization by 2050  

[1], some countries (i.e. Finland [354]) and institutions (i.e. University of Virginia [355]) also aim to be 

fossil-free. In the United States, energy sector planning is led by the Energy Information Agency (EIA), 

however their modeling only incorporates established and close to market energy technologies into their 

planning through 2050 [356]. As countries plan for electric sector decarbonization, they need to consider 

emerging energy technologies such as long duration energy storage, and negative emission technologies. 

Long duration energy storage technologies capable of storing energy for more than 10 hours has been shown 

by Dowling et al. to reduce costs in comparison with batteries [15]. Negative Emission Technologies 
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(NETs) actively reduce atmospheric CO2 concentrations and are relied on by Integrated Assessment Models 

(IAM) that project future CO2 concentrations [357]. Although some institutions are moving away from 

fossil fuels, the EIA Annual Energy Outlook projects increased consumption of petroleum and natural gas 

[356]. Natural gas has been presented as a bridge fuel, however Zhang et al. has shown that it could offset 

benefits by preventing earlier deployment of low-emission technologies [358]. Here, I explore the effects 

of long duration storage, negative emission technologies, and fossil infrastructure on the regional 

decarbonization of the electric sector using Virginia as a case study. 

7.2.1 Long duration storage 

Transitioning the electric sector to be carbon-neutral will rely heavily on variable wind and solar power, 

which in turn will depend on energy storage to balance intermittent generation. Lithium-ion batteries are 

the most commonly discussed energy storage technology; however, they have fixed ratios of power and 

energy [185] that do not work well for long duration storage. Although a range of energy storage 

technologies exist [14], energy systems are expected to rely on long duration storage, which commonly 

refers to energy storage with a duration greater than 10 hours [251]. Two examples of long duration energy 

storage technologies are offshore compressed air energy storage (OCAES), and vanadium flow batteries 

(VFB). OCAES has been evaluated for the United Kingdom by Mouli-Castillo [46] and North Carolina by 

Li and DeCarolis [44]. In this dissertation, OCAES has been explored for Virginia and is projected to cost 

$1457/kW (less than Lithium-ion), with a round-trip efficiency of 70% for 200 MW, 24-hour storage [262]. 

Virginia does not have the geology for onshore compressed air energy storage [45]. VFB are a next 

generation battery design that overcomes the challenges of traditional batteries by decoupling the energy 

storage from the power conversion components [14]. VFB have recently been demonstrated at the 15 MW 

scale with 4 hours of storage [359]. Although it is expected that energy systems will rely on long duration 

storage, the EIA currently only includes 4-hour lithium-ion storage [356]. Therefore, I explore the role of 

OCAES, and VFB as examples of long duration emerging technologies in energy system planning. 
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7.2.2 Negative emission technologies 

Negative Emission Technologies (NETs) are a group of technologies that actively reduce atmospheric 

carbon dioxide levels. Two commonly discussed NETs are Bioenergy with Carbon Capture and Storage 

(BECCS) and Direct Air Capture (DAC). BECCS refers to the conversion of crops such as wood or 

switchgrass to energy and to store the CO2 generated in the process [19]. The two BECCS power plants in 

operation are retrofitted coal plants; a pilot scale power plant in the United Kingdom, and a 50 MW in Japan 

plants [49,50]. One challenge with BECCS, and all NETs, is to ensure that the lifecycle emissions of the 

technology are in fact negative [48]. Since BECCS is still in the development phase, a variety of BECCS 

power plant configurations have been evaluated (Chapter 6) [308,360]. DAC is an alternative NETs that 

uses either chemical or physical processes to remove CO2 from the air [19]. A number of DAC 

demonstration plants are in operation with capture capacities up to 1000 tonne CO2/year [19] Although the 

cost of DAC is currently high, Keith et al. project costs could get as low as 94$/t-CO2 [361]. The EIA 

currently does include NETs in the United States energy system plan, so I evaluate the role of BECCS and 

DAC to explore the potential impact for this group of technologies. 

7.2.3 The role of natural gas 

The need to decarbonize has led to developments in carbon capture and storage for fossil fuel power 

plants that enables the majority of the CO2 generated to be captured and stored in the ground. Natural gas 

in particular has been presented as a bridge fuel because it produces fewer CO2 emissions as compared to 

petroleum and coal. With the shale gas revolution, natural gas has also led to reduced energy prices and a 

shift from coal generation to natural gas power plants [362]. Advances in natural gas power plants, such as 

supercritical CO2 power cycles [28] and in particular the Allam cycle have led to capture levels near 100% 

[32]. Supercritical CO2 cycles were explored for their ability to provide balancing to renewable energy 

deployment in Chapter 3 [57]. Although natural gas has been presented as a cleaner fuel, there is a large 

body of evidence that shows concerns over methane leakage and water contamination [363]. The persistent 
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low price of natural gas provides an apparent justification for continued investment in gas-fired generation, 

but the potential for economic stranding of these new assets  (power plants that become uneconomical to 

operate before the end of their design life) is high, as states announce aggressive decarbonization plans 

[11]. Therefore, in this study, I also examine the issue of whether or not to continue building new natural 

gas power plants, alongside the decision about the deployment of new storage and carbon capture 

technologies in decarbonizing electricity sectors. 

7.2.4 Hypotheses, research questions and contributions 

I investigate the role of long-duration storage (OCAES and VFB), negative emission technologies 

(BECCS, DAC) and the role of new fossil infrastructure. I hypothesize that long duration storage (LDS) 

and negative emission technologies (NETs) will enable a faster and less expensive transition to 

decarbonization. I also evaluate the decision whether or not to build new fossil fuel infrastructure based on 

power sector monetary costs. To explore the effects of LDS and NETs, I use Virginia as a case study. In 

2021, Virginia established a legal mandate for the decarbonization of its electric sector by 2050 [187]. 

7.3 Methods  

7.3.1 Energy System Optimization Model 

7.3.1.1 Tools for Energy Model Optimization and Analysis 

To explore the role of emerging energy technologies I used an energy system optimization model 

(ESOM) calibrated for Virginia. The ESOM was created using the Tools for Energy Model Optimization 

and Analysis (Temoa). Temoa is an open source, ESOM that projects power plant deployment and operation 

to meet demand while minimizing costs [58]. Temoa has been used to project energy system planning from 

the national [364] to the state level (Chapter 2) [365]. 
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7.3.1.2 Virginia model 

Virginia is used as a case study because it is similar to many locations in that it experiences four seasons, 

and has limited renewable energy resources. As shown in Figure 7-1, I simulated Virginia with six 

representative seasons. In addition to the standard calendar seasons, two synthetic seasons were added, to 

also account for times of year with limited solar and wind resources. Although Virginia does not have the 

largest solar resource potential [366], solar deployment has increased from 139 MW in 2016 to 626 MW in 

2019 [367]. Utility-scale wind has not yet been installed onshore in Virginia. Virginia had 12 MW of 

offshore wind in place at the end of 2020 [368], and the 2020 Virginia Clean Economy Act requires the 

addition of over 5 GW of offshore wind capacity by 2035 [187]. Here, I assume that offshore wind beyond 

5 GW would take the form of floating wind turbines based on Shobe et al. [369]. With respect to biomass 

availability, 3.87% of electricity produced in Virginia in 2019 was from biomass [370], which equates to 

52.6 PJ of biomass fuel assuming a power plant efficiency of 25% [8]. In comparison, based on the NREL 

biofuels atlas, there is an estimated 78 PJ of biomass fuel currently available in Virginia [371,372]. 



 

158 

 

 

Figure 7-1. Wind and solar resource availability and electricity demand by time of day and season. To 

represent the variability in wind and solar resources and demand, the model used six representative seasons. 

The Fall and Spring seasons each constitute 25% of the year, the high renewable seasons each 20% of the 

year and the low renewables seasons 5% of the year [248,373–375]. 

 

7.3.2 Technology cost projections 

7.3.2.1 Established technologies 

Temoa performs a least-cost optimization; therefore, the cost of technologies will determine their 

deployment and operation. For more established and common technologies, I used cost projections based 

on moderate estimates from the NREL Annual Technology Baseline (ATB) [8]. Due to the uncertainty of 
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the future costs and performance of direct fired sCO2 power plants with CCS, I evaluated natural gas power 

plants with CCS from NREL ATB as a surrogate. Direct fired sCO2 power plants are expected to have 

higher system efficiencies and higher capture rates, so if natural gas with CCS is found to be competitive, 

than it can be expected that if direct fired sCO2 cycles are commercialized with a similar cost, then they 

too, would be competitive. When technology costs were not available in the ATB, I used estimates from 

the EIA Annual Energy Outlook [356]. For pumped hydro I used estimates from Beuse et al. [258] and Luo 

et al. [14]. Power plant and energy storage installation costs are presented in Figure 7-2 along with fuel 

costs. Additional details such as operating and maintenance costs are presented in Appendix E. 
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Figure 7-2. a) Technology capital costs and b) fuel price projections until 2050. Technologies from the NREL 

ATB follow the moderate price projection [8]. 

7.3.2.2 Long duration storage and negative emission technologies 

The future cost of long duration storage and negative emission technologies is considerably less certain 

than for established energy technologies. For this study, I surveyed the literature and found a range of cost 

estimates for the LDS and NETs considered here. A summary of the low and high cost estimates are shown 
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in Table 7-1. I used Monte Carlo sampling with uniform distributions to investigate the uncertainty of the 

technology capital costs. I assumed that the operation and maintenance costs, both fixed and variable, would 

remain constant. Additional details on the representation of each technology are presented in Appendix E. 

 

Table 7-1. Investment costs of the long duration storage and negative emission technologies considered in this 

study. Additional details regarding the calculations of the low and high cost are provided in Appendix E. 

Category Technology Low Cost High Cost 

Long 

Duration 

Storage 

(LDS) 

Offshore Compressed Air Energy Storage (OCAES), 

24-hour duration 
$1457/kW [262] $9191/kW [46] 

Vanadium Flow Batteries (VFB), 

10-hour duration 
$1820/kW  [376] $3781/kW [258] 

Negative 

Emission 

Technology 

(NET) 

BioEnergy with Carbon Capture and Storage (BECCS) 
$4781/kW [285] 

($571/t CO2/year) 

11714 $/kW [287] 

($1400/t CO2/year) 

Direct Air Capture (DAC) 
$795/t CO2/year 

[361] 

$1150/t CO2/year 

[361] 

 

7.3.3 Scenarios 

To evaluate the impact and need for long duration storage and negative emission technologies, I 

simulated scenarios over a range of planning options. The scenarios were developed around three decisions: 

the use of LDS/NET (long duration storage and negative emission technologies), the building of fossil fuel 

infrastructure and the biomass resources available for the energy sector. First, I developed energy planning 

scenarios with and without LDS/NET. For the Monte Carlo sampling, I made 100 random draws from the 

uniform-cost distributions for each of the emerging technologies (Table 7-2). Scenarios that did not include 

LDS/NET had constant model inputs, therefore only one iteration was necessary for these simulations. I 

repeated this analysis for two scenarios differing only by whether they did or did not allow new fossil fuel 

power plants. Lastly, I developed scenarios that either limited biomass consumption for power generation 

to current levels or allowed it to double. A doubling of biomass is meant to represent the higher limit 

estimated based on data from NREL in combination with policies to increase biomass production. All 

scenarios were simulated over the same time horizon from 2018 to 2050. Decarbonization in Virginia is 
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expected to be challenging because electricity demand is expected to increase due to plans for data centers 

in Virginia [369]. Therefore, each scenario also used the same electricity demand and emission limit leading 

to decarbonization in 2050 (Figure 7-3). 

Table 7-2. Overview of cases studied. 

Scenario Biomass 

Conditions 

Long Duration 

Storage and 

Negative 

Emission 

Technologies 

(LDS/NET) 

New Fossil 

Infrastructure 

Iterations 

Without Emerging Tech - With New Fossil Current, Double No Yes 1 

Without Emerging Tech - Without New Fossil Current, Double No No 1 

With Emerging Tech - With New Fossil Current, Double Yes Yes 100 

With Emerging Tech - Without New Fossil Current, Double Yes No 100 

 

 

Figure 7-3. Decarbonization emission timeline and projected electricity demand. 
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7.4 Results and Discussion 

7.4.1 Cost projections 

Figure 7-4A shows the projected annual cost of electricity for each scenario. With and without long 

duration storage (LDS) and negative emission technologies (NET) follow a similar trend until 2050. In 

2050, the average cost without LDS/NET is between 28% and 45% higher, highlighting the value of 

LDS/NET. The narrow range of the simulations with LDS/NET suggests that the price is less important 

than the unique function that long duration storage and negative emission technologies can perform. 2050 

costs without LDS/NET are lower without new fossil infrastructure, whereas with LDS/NET the costs are 

lower with new fossil infrastructure. All simulations followed the emission constraint (Figure 7-4B), 

showing that decarbonization is not faster with LDS/NET, although it is less expensive. Figure 7-4C shows 

the capacity investments made in wind, solar, natural gas and batteries. The most notable difference is in 

batteries. Without LDS/NET, the average investment in batteries is up to 270% higher at current biomass 

levels, and up to 213% higher with doubled biomass. 
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Figure 7-4. Projections of A) cost of electricity, B) emissions and C) capacity of wind, solar, batteries and 

natural gas. 
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7.4.2 Projected technology operation 

Figure 7-5 shows the annual activity of power plants, energy storage, and negative emissions 

technologies with current biomass resources. The majority of batteries installed have 4-hour durations, and 

although simulations without LDS/NET have much higher deployment, the usage of the battery systems is 

similar. Natural gas remains an important fuel source across the scenarios. Simulations that can build new 

fossil infrastructure invest in carbon capture and storage, however without a negative emission technology, 

fossil with CCS must by retired by 2050 to comply with the decarbonization requirement. The relative 

usage of biomass and BECCS is low in comparison to the others, showing that it is not a large source of 

power generation. The lower costs of utility solar lead to it being fully utilized before distributed solar 

becomes the optimal choice. This shows that without incentives or extreme events (Chapter 2), higher-cost 

distributed generation has a lower value in a capacity expansion planning. All simulations that have access 

to fossil with CCS use it, showing the benefit of further developing these technologies (i.e. sCO2 power 

cycles). However, without negative emission technologies, decarbonization cannot include fossil with CCS. 

The usage of DAC refers to the amount of natural gas consumed for operation, with operation increasing 

after 2035. Flow batteries and commercial solar are not shown because they are not deployed in any of the 

scenarios. The overall trends remain the same for doubled biomass levels. 
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Figure 7-5. Activity transition with current biomass resource available. The activity of DAC refers to the heat 

content of natural gas consumed. 

 

7.4.3 Long duration storage 

Figure 7-6 shows the projected deployment of batteries and OCAES as a function of OCAES cost. At 

costs lower than $3200/kW, OCAES is competitive (dashed line), reaching a peak deployment of 6.4 GW. 

Once OCAES is competitive, there is a shift in battery deployment where 2-hour batteries start being used 

in place of 4-hour batteries. This demonstrates that the long duration storage of OCAES pairs well with the 

short duration storage of a 2-hour battery. At the lowest OCAES price without new fossil infrastructure, the 
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combined energy storage capacity (batteries and OCAES) is 32 GW, as compared to 40 GW when OCAES 

is expensive. In general, the installation trends are similar regardless of either the biomass availability or 

the option to build new fossil, except when it comes to 4-hour batteries. When OCAES prices are above 

$3200, the 4-hour battery deployment is 67% higher without new fossil versus with new fossil. Across all 

simulations pumped hydro is always built to the maximum available (300 MW new and 3200 existing). 

 

Figure 7-6. Projected 2050 capacity of OCAES and battery technologies. 
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7.4.4 Negative emission technologies 

The deployment of negative emission technologies is shown Figure 7-7 against the capital costs. The 

results show that the deployment of BECCS is nearly always at a maximum and is independent of the cost 

of either BECCS or DAC. Compared to other power plants, the capital costs of BECCS are high and the 

efficiencies are low. Therefore, the high deployment of BECCS regardless of cost shows that it is most 

valued for its negative emission potential. A techno-economic analysis of BECCS by Mac Dowell and 

Fajardy suggested that low cost, low efficiency BECCS is preferred over high cost, high efficiency BECCS 

[291]. Here, I show the cost of BECCS is less important than its function. DAC is only deployed when the 

biomass availability remains at current levels. As expected, more DAC is deployed at lower costs. Below 

$1025/t-CO2/year, DAC is deployed at higher levels without new fossil than with new fossil. This is because 

simulations that are able build new fossil utilize CCS plants. For comparison, Section 45Q of the United 

States Tax Code will credit up to $50/t CO2 for injection into the subsurface [377]. 
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Figure 7-7. Projected 2050 capacity of negative emission technologies. 

7.5 Conclusions 

This study examined the value of long duration storage and negative emission technologies in regional 

energy system planning for decarbonization. Decarbonization is realized across all planning decisions 

including whether or not to build long duration storage (LDS), negative emission technologies (NETs), new 

fossil infrastructure, or to increase the amount of biomass available for the energy sector. Although there is 

high uncertainty in the future costs of LDS and NETs, together they are able to significantly reduce 

electricity costs in 2050. Choosing to build new fossil infrastructure reduces annual costs during the 

transition due to natural gas with CCS, but results in higher 2050 costs. This suggests that 

commercialization of direct fired sCO2 power plants with CCS would also be deployed, and therefore 
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should be evaluated further. The amount of biomass available also did not greatly impact costs, but when 

BECCS is deployed, this resource was primarily used for BECCS over conventional biomass energy. This 

suggests that more in-depth assessments should be performed to determine the amount of biomass available 

for BECCS in Virginia. DAC deployment also depends on biomass availability; when it remains low, DAC 

is installed to provide the negative emissions in place of more BECCS. With respect to long duration 

storage, pumped hydro was built to its limited potential of 300 MW, flow batteries were not used, and large 

amounts of OCAES were used to provide balancing of offshore wind. Although distributed generation was 

available in the form of rooftop solar, this resource was rarely selected due to its higher price, this shows 

that without an impetus in planning for extreme events, distributed generation will not be selected. 

In this study, I assumed that 5.2 GW of fixed bottom offshore wind could be developed, and any 

additional wind development would be built as floating offshore wind. Floating offshore wind depends on 

a number of technological advancements, so future work should also consider the potential for onshore 

installations in Virginia. 

Future work should also compare the impact of high and low pricing pathways for long duration storage 

and negative emission technologies to further investigate their impact on future energy technology 

investments. Long duration storage could be paired with a large deployment of renewables and negative 

emission technologies with fossil with CCS, but it is expected that these pathways are highly dependent on 

future costs. 
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8 Conclusions and Future Work 

8.1 Conclusions 

This dissertation investigated the role of emerging technologies in the transition to a decarbonized 

electric grid. The four technologies considered were distributed electric grids, supercritical CO2 power 

cycles, offshore compressed air energy storage (OCAES) and bioenergy with carbon capture and storage 

(BECCS). Each was found to provide value to a decarbonized electric grid. This section summarizes the 

main contributions of this dissertation by revisiting the primary research questions of Chapter 1. 

 

1) What is the impact of grid topology (distributed vs. centralized) and fuel mix (natural gas vs. natural 

gas, wind and solar) on costs, emissions and resilience? 

• To answer this question, I developed a novel methodology that enabled explicit consideration of 

extreme weather events in energy system planning. 

• I found that distributed grid architectures are less expensive when considering the risk of increased 

hurricane frequency. 

• A grid based on renewables and natural gas reduces costs and emissions independent of climate 

policy. 

• Including the expected impact of hurricanes enables grid planners to understand the trade-offs 

between the high capital costs of grid hardening measures with reduced repair costs after future 

storms. 
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2) How do existing and proposed advanced power cycles (sCO2 power cycles) perform delivering load-

balancing when integrated into a grid involving high deployment of solar PV? 

• To evaluate this question, I developed a novel characteristic-based transient model to understand 

the impact of ramp rates, part-load operation and power plant efficiency. 

• I found that existing and advanced natural gas power plants with ramp rates greater than 5.75%/min 

are well-suited to balance high solar power deployment 

• This study focused on sCO2 power cycles in combined cycle (i.e. replacing the steam cycle in a 

combined cycle natural gas turbine) and found that this configuration does not provide significant 

advantages over conventional natural gas combined cycle power plants. However, the wide range 

of applications possible for sCO2 cycles, and the ability of direct-fired cycles to provide storage-

ready CO2 led to further examination of its potential in Chapter 7.  

 

3) What is the techno-economic performance of OCAES? 

• Using a thermal fluid process model, I projected that OCAES can have round-trip efficiencies up 

to 77% off the coast of Virginia. 

• OCAES is expected to cost less than batteries at $1457/kW for a 200 MW system. 

• A system that combines offshore wind with OCAES is expected to provide dispatchable power at 

$0.22/kWh. 
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4) What is the geospatial potential of OCAES in the United States Mid-Atlantic? 

• There is the potential for 24 TWh of OCAES in the Mid-Atlantic with round-trip efficiencies 

greater than 60% and in water depths less than 60 m (suitable for fixed bottom wind turbines). 

• For comparison, this is nineteen times the battery storage projected for the United States by 2050. 

• There is even more storage potential further offshore with round-trip efficiencies greater than 60%. 

 

5) What is the environmental impact of carbon capture and power plant technologies for BECCS? 

• A life cycle assessment identified Integrated Gasification and Combined Cycle (IGCC) power 

plants with chemical looping as offering a balance of negative emissions, water use and energy use. 

• The United States experience with IGCC power plants is limited with only one plant in operation, 

therefore BECCS plants are more likely to adopt steam cycle plants, perhaps by retrofitting existing 

coal power plants.  

• Membrane and calcium looping capture offer balanced environmental impacts with steam cycles. 

• If the primary goal of BECCS is negative emissions, then amine-based carbon capture offers the 

largest negative emissions, at the expense of large water use and energy use. 
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6) What is the role of emerging technologies on decarbonization of the electric grid? 

• 2050 electricity costs are projected to be up to 31% less expensive when including emerging 

technologies as demonstrated through studying the build-out of Virginia’s electric grid. 

• Residential solar (i.e. distributed generation) was built out when new fossil infrastructure was not 

permitted and after utility scale solar had reached its maximum potential. 

• Natural gas with CCS (i.e. direct fired sCO2 with carbon capture and storage), is deployed whenever 

new fossil infrastructure is allowed. 

• Using Monte Carlo sampling, I demonstrated that OCAES is deployed when capital costs are less 

than $3200/kW ($1457/kW was projected in Chapter 4). 

• BECCS was always deployed when available, despite the wide range of costs investigated 

($4781/kW to $11714/kW), demonstrating its high value to a decarbonized electric grid. 

8.2 Future Work 

Distributed electric grids and micro-grids are commercialized technologies with limited deployment. I 

found that they are economically beneficial when considering risks not included in traditional electric grid 

planning. Therefore, future research is needed to incorporate more extreme events into electric grid 

planning so that planners can better understand the value of these technologies. 

Two versions of sCO2 power cycles were considered in this dissertation, combined cycle (Chapter 3) 

and direct-fired with CCS (Chapter 7). Both are being demonstrated in the United States at the writing of 

this dissertation. When operating in combined cycle, I did not see a clear advantage for sCO2 over 

conventional natural gas plants. However, direct-fired sCO2 plants with CCS are expected to be highly 

valued in a decarbonized electric grid by providing low-carbon emitting generation. Next steps for direct-

fired sCO2 power cycles would be to evaluate their transient performance and use this data to update their 

performance in dispatch and capacity expansion models.  
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OCAES is the least developed technology investigated in this dissertation. I presented a novel concept 

that combined isothermal cycles and aquifer storage. In order for OCAES to be successful, the performance 

of isothermal cycles needs to be investigated at the pressure ratios needed for OCAES. The previous failure 

of CAES in aquifers for Iowa requires a proof-of-concept demonstration. 

The two BECCS plants currently in operation are expected to help gain confidence in the technology, 

however future research is still needed. Membrane and calcium looping capture technologies showed 

reduced environmental impacts therefore, they need to be demonstrated at large scale in order to encourage 

their use in future power plants. Another challenge for BECCS is to better understand the availability of 

biomass. I found in Chapter 7 that BECCS deployment is limited by the biomass available. 

  



 

176 

 

Appendix A: Supplementary Information for Chapter 2 - Extending energy system modelling to 

include extreme weather risks and application to hurricane events in Puerto Rico 

 

An energy system optimization model (ESOM) of Puerto Rico was built by reviewing existing 

infrastructure, resource availability and variations in electricity demand.  

Supplementary Note 1: Electric grid Characterization 

The total length of transmission and distribution lines as well as the number of substations shown in 

Table A-1 is from PREPA’s operational profile [73]. Infrastructure spacing and repair costs were taken from 

Ouyang et al. [94] with substation costs selected to represent severe damage. The existing capacity of 

transmission, substation and distribution infrastructure was estimated as the capacity required by the ESOM 

to operate during the first model year. Cost inputs to the ESOM were in the units of $/kW, therefore an 

average capacity-based repair cost was calculated as, 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑏𝑎𝑠𝑒𝑑⁡𝑟𝑒𝑝𝑎𝑖𝑟⁡𝑐𝑜𝑠𝑡 =
𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦⋅

1

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⁡𝑆𝑝𝑎𝑐𝑖𝑛𝑔
⋅𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⁡𝑅𝑒𝑝𝑎𝑖𝑟⁡𝑐𝑜𝑠𝑡

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔⁡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦⁡
   (A-1) 

where quantity is either the length of transmission and distribution lines, or number of substations. 

Component spacing refers to the distance between transmission and distribution poles. Component spacing 

is not applicable to substations so a value of 1 is used. Component repair cost refers to the cost to repair 

either a transmission pole, substation, distribution tower or distribution span after a hurricane. This 

capacity-based repair cost is included in Table A-8 as the investment costs for electric grid infrastructure. 
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Table A-1. Electric Grid Characterization. 

System Quantity 
Component 

Spacing 

Component 

Repair Cost 

(k$) 

Entire System 

Repair Cost 

(M$) 

Existing 

Capacity 

(MW) 

Capacity-

based 

Repair 

Cost 

($/kW) 

Transmission 3,988 km[73] 
0.23 km/ pole 

[94] 
400/pole [94] 6,936 3080 2252 

Substations 
279 

stations[73] 
- 

5,500/station 

[94] 
1,535 3068 500 

Distribution 

towers 
50,670 km[73] 

0.042 km/ pole 

[94] 
2.5/pole [94] 3,016 2853 1057 

Distribution lines 50,670 km[73] 
0.042 km/span 

[94] 
1.5/span [94] 1,810 2853 634 

 

Supplementary Note 2: Technology representation 

Technology model inputs are summarized below in Tables A-2 through A-8 with corresponding 

references. In addition to the costs shown in Table A-2, the investment cost of natural gas ports was also 

included. Puerto Rico currently has one natural gas import terminal, that prior to Hurricane Maria connected 

two tankers per month to provide 159 MMcf d-1 [378] or 1.92 GW. A recent study projected the cost to 

install a new gas port in Puerto Rico which would have cost US 382 M$[379] for a capacity of 500 MMcf 

d-1 [380] or 6.04 GW. Therefore, an investment cost of US 63.3 M$/GW was used for additional capacity. 
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Table A-2. Fuel Costs and CO2 Emission. 

Fuel 
Variable Cost 

CO2 Emission activity 

Carbon 

Tax (US 

$100 

tonne-1) 

2016 Yearly Increase 2041  

- 
US 

M$/PJ 
Ref. % Ref. 

US 

M$/PJ 
kton/PJ Ref. 

US M$/PJ 

Biomass 5.70 [381] 0.72 [108] 6.82 0.00 

Assumed to 

be carbon 

neutral 

0.0 

Coal 4.03 [382] -0.16 [108] 3.87 90.37 [176] 9.04 

Diesel 11.46 [382] 0.23 [108] 12.14 69.34 [176] 6.93 

Hydro 0.00 N/A N/A N/A 0.00 0.00 N/A 0.0 

Landfill Gas 0.00 N/A N/A N/A 0.00 39.51 [176] 3.95 

Oil 7.19 [382] 1.20 [108] 9.70 67.58 [176] 6.76 

Natural Gas 7.62 [382] 1.14 [108] 10.12 50.30 [176] 5.03 

Solar 0.00 N/A N/A N/A 0.00 0.00 N/A 0.00 

Wind 0.00 N/A N/A N/A 0.00 0.00 N/A 0.00 

 

 

For data from the NREL ATB[107], 2020 pricing with Biomass power plants as “Dedicated – Mid”, 

Coal plants are represented as “Coal-new-HighCF-Mid”, Solar as “Utility PV – Los Angeles – Mid”, Hydro 

Electric as “NPD 4 - mid”, Natural Gas Open Cycle as “Gas-CT-HighCF-Mid”, and Natural Gas Combined 

Cycle as “Gas-CC-HighCF-Mid”. Investment costs are taken as the CAPEX costs in the NREL ATB[107]. 

Battery storage is represented as having 4 hours of storage available, based on the pricing from the NREL 

ATB[107]. For data from the EIA[383], new diesel and oil power plants are represented by “Conv gas/oil 

combined cycle (CC)”. 
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Table A-3. Power Plant Investment, Fixed and Variable Costs. 

Technologies Investment Cost Fixed Cost Variable Cost 

- US$/kW Ref. US$/kW Ref. 

US 

M$/PJ Ref. 

Existing Centralized Power Plants 

Coal N/A - 75.97 [382] 1.92 [382] 

Diesel N/A - 19.60 [382] 2.84 [382] 

Diesel Combined Cycle N/A - 24.63 [382] 0.99 [382] 

Heavy Fuel Oil Combustion Turbine Type 1 N/A - 30.57 [382][379] 0.60 [382] 

Heavy Fuel Oil Combustion Turbine Type 2 N/A - 34.31 [382] 0.72 [382] 

Heavy Fuel Oil Combustion Turbine Type 3 N/A - 45.56 [382] 1.03 [382] 

Hydro Electric 4022 [107] 43.00 [107] 0.00 [107] 

MSW - Landfill Gas N/A - 425.38 [383] 2.63 [383] 

Natural Gas Combined Cycle N/A - 18.10 [382] 0.00 [382] 

Solar Photovoltaic Plant N/A - 13.00 [107] 0.00 [107] 

Wind On-Shore N/A - 42.00 [107] 0.00 [107] 

New Centralized Power Technologies 

Battery 1284 [107] 32.10 [107] 0.00 [107] 

Biomass 3908 [107] 112.00 [107] 1.67 [107] 

Coal 3981 [107] 33.0 [107] 1.39 [107] 

Diesel Combined Cycle 999 [383] 11.33 [383] 1.00 [383] 

Oil Combined Cycle 999 [383] 11.33 [383] 1.00 [383] 

Natural Gas Combined Cycle 613 [54] 11.00 [107] 0.83 [107] 

Natural Gas Open Cycle 188 [54] 12.00 [107] 1.94 [107] 

Solar Photovoltaic Plant 1075 [107] 13.00 [107] 0.00 [107] 

Wind On-Shore 1528 [107] 42.00 [107] 0.00 [107] 

New Distributed Power Technologies 

Battery 1284 [107] 32.10 [107] 0.00 [107] 

Biomass 3908 [107] 112.00 [107] 1.67 [107] 

Natural Gas Combined Cycle 861 [54] 11.00 [107] 0.83 [107] 

Natural Gas Open Cycle 305 [54]  12.00 [107] 1.94 [107] 

Solar Photovoltaic Plant 1075 [107] 13.00 [107] 0.00 [107] 

Wind On-Shore 1528 [107] 42.00 [107] 0.00 [107] 
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In Table A-4, “MSW – Landfill Gas” is assumed to have the same capacity factor and expected lifetime 

as Biomass. All new combined cycle plants are assumed to have the same capacity factor and expected 

lifetime, based on Natural Gas Combined Cycle power plants. 

 

Table A-4. Power Plant capacity factors, efficiencies and expected lifetime. 

Technologies Capacity Factor Efficiency Expected Lifetime 

- % Ref. % Ref. Years Ref. 

Existing Centralized Power Plants 

Coal 91.4 [106] 34.8 [382] 75 [107] 

Diesel 76.0 [106] 29.9 [382] 50 Still active 

Diesel Combined Cycle 80.0 [106] 40.0 [382] 50 Still active 

Heavy Fuel Oil Combustion Turbine Type 1 89.0 [106] 35.3 [382] 55 Still active 

Heavy Fuel Oil Combustion Turbine Type 2 58.0 [106] 34.6 [382] 65 Still active 

Heavy Fuel Oil Combustion Turbine Type 3 78.5 [106] 34.1 [382] 65 Still active 

Hydro Electric 28.0 [105] 36.8 [167] 100 [107] 

MSW - Landfill Gas 56.0 [107] 19.0 [383] 45 [107] 

Natural Gas Combined Cycle 93.0 [106] 45.5 [382] 55 [107] 

Solar Photovoltaic Plant 22.0 [105] 36.8 [167] 30 [107] 

Wind On-Shore 25.0 [105] 36.8 [167] 30 [107] 

New Centralized Power Technologies 

Battery 50.0 N/A 85.0 [107] 15 [107] 

Biomass 56.0 [107] 25.3 [107] 45 [107] 

Coal 85.0 [107] 38.8 [107] 75 [107] 

Diesel Combined Cycle 87.0 [107] 51.7 [383] 55 [107] 

Oil Combined Cycle 87.0 [107] 51.7 [383] 55 [107] 

Natural Gas Combined Cycle 87.0 [107] 62.12 [54] 55 [107] 

Natural Gas Open Cycle 30.0 [107] 42.34 [54] 55 [107] 

Solar Photovoltaic Plant 22.0 [105] 36.8 [167] 30 [107] 

Wind On-Shore 25.0 [105] 36.8 [167] 30 [107] 

New Distributed Power Technologies 

Battery 50.0 N/A 85.0 [107] 15 [107] 

Biomass 56.0 [107] 25.3 [107]  45 [107] 

Natural Gas Combined Cycle 87.0 [107] 54.17 [54] 55 [107] 

Natural Gas Open Cycle 30.0 [107] 37.11 [54] 55 [107] 

Solar Photovoltaic Plant 22.0 [105] 36.8 [167] 30 [107] 

Wind On-Shore 25.0 [105] 36.8 [167] 30 [107] 
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Table A-5. Power Plant Ramp Rates, Capacity and Activity Limits 

Technologies Ramp Rate Max Capacity Max Activity 

- [Fr/Hr] Ref. [MW] Ref. [TWh/yr] Ref. 

Existing Centralized Power Plants 

Coal 0.01 [382] N/A - N/A - 

Diesel 1 [382] N/A - N/A - 

Diesel Combined Cycle 0.93 [382] N/A - N/A - 

Heavy Fuel Oil Combustion Turbine Type 1 0.67 [106,382] N/A - N/A - 

Heavy Fuel Oil Combustion Turbine Type 2 0.73 [106,382] N/A - N/A - 

Heavy Fuel Oil Combustion Turbine Type 3 0.92 [106,382] N/A - N/A - 

Hydro Electric N/A - 102.7 [104] N/A - 

MSW - Landfill Gas N/A - N/A - N/A - 

Natural Gas Combined Cycle N/A - N/A - N/A - 

Solar Photovoltaic Plant N/A - N/A - N/A - 

Wind On-Shore N/A - N/A - N/A - 

New Centralized Power Technologies 

Battery N/A - N/A - N/A - 

Biomass N/A - 290 [104] N/A - 

Coal 0.01 [382] N/A - N/A - 

Diesel Combined Cycle 0.93 [382] N/A - N/A - 

Oil Combined Cycle 0.93 [106,382] N/A - N/A - 

Natural Gas Combined Cycle 1 [106,382] N/A - N/A - 

Natural Gas Open Cycle N/A - N/A - N/A - 

Solar Photovoltaic Plant N/A - N/A - 205 Model 

Wind On-Shore N/A - N/A - 20.9 Model 

New Distributed Power Technologies 

Battery N/A - N/A - N/A - 

Biomass N/A - 290 [104] N/A - 

Natural Gas Combined Cycle 1 [106,382] N/A - N/A - 

Natural Gas Open Cycle N/A - N/A - N/A - 

Solar Photovoltaic Plant N/A - N/A - 205 Model 

Wind On-Shore N/A - N/A - 20.9 Model 
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Capacity credits in Table A-6 are based on 2020 values from a Temoa model of the United States electric 

grid [364] where solar farms are represented by E_SOLPVCEN_N (existing solar PV plant), wind farms 

by E_WND_R (existing wind plant), hydro electric by E_HYDCONV_R (existing conventional 

hydroelectric power plant), coal power plants by E_COALSTM_R (existing coal steam power plant), 

biomass plants, including landfill gas, by E_BIOIGCC_N (new BioIGCC plant), battery storage by 

E_BATT (battery storage), combined cycle power plants by E_NGACC_R (existing natural gas combined 

cycle power plant) and remaining fossil fuelled power plants by E_NGACT_N (existing natural gas 

combustion turbine power plant). 
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Table A-6. Power Plant Capacity Credits, used in Reserve Margin Calculations. 

Technologies Capacity Credit 

- [Fr] Ref. 

Coal 0.9 [364] 

Diesel 0.91 [364] 

Diesel Combined Cycle 0.95 [364] 

Heavy Fuel Oil Combustion Turbine Type 1 0.91 [364] 

Heavy Fuel Oil Combustion Turbine Type 2 0.91 [364] 

Heavy Fuel Oil Combustion Turbine Type 3 0.91 [364] 

Hydro Electric 0.95 [364] 

MSW - Landfill Gas 0.95 [364] 

Natural Gas Combined Cycle 0.95 [364] 

Solar Photovoltaic Plant 0.29 [364] 

Wind On-Shore 0.36 [364] 

Battery 0.75 [364] 

Biomass 0.95 [364] 

Coal 0.9 [364] 

Diesel Combined Cycle 0.95 [364] 

Oil Combined Cycle 0.95 [364] 

Natural Gas Combined Cycle 0.95 [364] 

Natural Gas Open Cycle 0.91 [364] 

Solar Photovoltaic Plant 0.29 [364] 

Wind On-Shore 0.36 [364] 

Battery 0.75 [364] 

Biomass 0.95 [364] 

Natural Gas Combined Cycle 0.95 [364] 

Natural Gas Open Cycle 0.91 [364] 

Solar Photovoltaic Plant 0.29 [364] 

Wind On-Shore 0.36 [364] 

 

  



 

184 

 

Table A-7. Power Plant Existing Capacity by Year Installed. 

Technologies 
50-

54 
55-59 60-64 65-69 70-74 75-79 95-99 00-04 05-09 10-14 

15-

Pres 
Ref. 

Existing Centralized Power Plants (MW) 

Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 454.0 0.0 0.0 0.0 [73] 

Diesel 0.0 0.0 0.0 0.0 378.0 0.0 247.5 0.0 220.0 0.0 0.0 [106] 

Diesel Combined Cycle 0.0 0.0 0.0 0.0 0.0 592.0 0.0 0.0 440.0 0.0 0.0 [106] 

Heavy Fuel Oil 

Combustion Turbine 

Type 1 

0.0 0.0 0.0 0.0 900.0 0.0 0.0 0.0 0.0 0.0 0.0 [106] 

Heavy Fuel Oil 

Combustion Turbine 

Type 2 

0.0 0.0 170.0 410 410.0 0.0 0.0 0.0 0.0 0.0 0.0 [106] 

Heavy Fuel Oil 

Combustion Turbine 

Type 3 

0.0 170.0 200.0 632.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [106] 

Hydro Electric 34.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [105] 

MSW - Landfill Gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 [384] 

Natural Gas Combined 

Cycle 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 507.0 0.0 0.0 0.0 [73] 

Solar Photovoltaic Plant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.1 30.0 [106,384] 

Wind On-Shore 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 102.0 0.0 [384] 
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Transmission, substation, and distribution losses are based on International Energy Agency Energy 

Technology Systems Analysis Program (ETSAP) [109]. Transmission losses are based on 100 km of 

distance and a loss rate of 7%/1000 km [109]. The values of existing capacity and expected lifetime were 

selected so that the model would start with sufficient capacity for operation, and that rebuilding of these 

systems was limited to damage from hurricanes (Table A-8). The assumed year built was selected so that 

new capacity does not need to be added unless there is hurricane damage. The assumed life was selected so 

that the purchase of new equipment is paid back on a 30-year basis, similar to most power plants. Repair 

from hurricane damage is represented by the investment cost which is based on Table A-1, normalized by 

the existing capacity. Investment costs for underground transmission and distribution lines are based on 

average conversion costs for suburban areas [116] to capture the mix of development areas in Puerto Rico. 

Operational maintenance is based on 2014-2015 costs [385], normalized by demand expected in the first 

model year [379].  

 

Table A-8. Transmission System Loss, Lifetime and Costs. Assumptions denoted by “Asm.”.  

Technologies Loss 
Existing Capacity and 

Expected Lifetime 

Investment (Repair) 

Cost 
Variable Cost 

- % Ref. MW Built Life Ref. US$/kW Ref. 
US 

M$/PJ 
Ref. 

Transmission Lines 0.7 [109] 3080 2015 30 Asm. 2252 Calc. 0.86 [385] 

Buried Transmission Lines 0.7 Asm.   30 Asm. 4868 Calc. - Asm. 

Substations 0.4 [109] 3068 2015 30 Asm. 500 Calc. - - 

Distribution Towers 0.0 Asm. 2853 2015 30 Asm. 1057 Calc. - Asm. 

Distribution Lines 7.0 [109] 2853 2015 30 Asm. 634 Calc. 1.15 [385] 

Buried Distribution Lines 7.0 Asm.   30 Asm. 15084 Calc. - Asm. 
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Supplementary Note 3: Electricity demand and system parameters 

The model includes two typical days per year, one for the wet season, and one for the dry season. Each 

typical day is broken into 24 segments, to represent each hour of the day and the corresponding wind and 

solar availability [98] and electricity demand [384,386–388] are prescribed based on historical data as 

shown in Figure A-1. System level inputs are summarized in Table A-9, and electricity in Table A-10. The 

basis for the reserve margin is a 6.2% difference between peak demand in the model versus historical data 

[384,386–388], plus an additional 30% of planning capacity reserves based on the 2019 Integrated Resource 

Plan [105]. Reserve margins might differ in practice based on electric grid configurations (i.e. centralized 

vs. decentralized), however this is not typically captured in ESOMs and could be investigated by other 

types of models. The 2016-20 value for demand is from a 2017 PREPA study [379] and the remaining 

projected demand values from the 2019 Integrated Resource Plan [105]. 

 

Figure A-1. To capture seasonal and daily variations, the energy system model was provided with solar and 

wind capacity factors [98] and demand [384,386–388] in hourly increments. 
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Table A-9. Puerto Rico Electric System Inputs. 

Parameter Value Ref. 

Model time horizon [years] 25 User defined 

Seasons 2 User defined 

Times of day 24 User defined 

Discount Rate 0.09 [98,105] 

Reserve Margin 36.2% [384,386–388] 

 

 

Table A-10. Yearly Demand Projection [105,379] and Renewable Portfolio Standard (RPS) [84]. 

Year [-] 2016-20 2021-25 2026-30 2031-35 2036-40 

Demand [PJ] 75.24 66.49 67.28 65.32 63.75 

RPS 0% 0% 40% 40% 40% 

 

Supplementary Note 4: Model verification 

To verify the model, fuel resources used in the first model year, 2016, were compared against actual 

usage recorded by the Autoridad de Energía Eléctrica in 2016 [76], shown in Table A-11.  

 

Table A-11. The energy system model was validated by comparing the results of the first model year (2016) to 

actual fuel consumption in 2016. 

% of Total Electricity Production 

Energy Source 
2016 Actual 

[76] 
2016-20 Model 

Petroleum + Diesel 61.8 63.9 

Natural Gas 18.5 18.2 

Coal 17.2 16.0 

Hydroelectric 0.5 0.4 

Wind 1.3 1.0 

Solar PV 0.6 0.4 

Other Renewable 0.2 0.1 
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Supplementary Note 5: Grid topology cases 

Cases were selected to represent the two scales of topology being proposed by PREPA, and are shown 

in Table A-12. The cases with centralized grid topologies maintain the existing grid structure. The 

distributed topologies represent a system that relies only on the distribution network, thus spreading power 

generation throughout the municipalities.  

 

Table A-12. Cases considered to evaluate the impact of grid topology and power plant types. This table 

reveals which power plant options were available in each case. 

  New Installation Options 

  Renewable Fuel 
Fossil Fuel 

(imported) 
Storage 

Case 

 

Grid 

Architecture 

B
io

m
as

s 

H
y

d
ro

 

S
o

la
r 

W
in

d
 

C
o

al
 

D
ie

se
l 

O
il

 

N
at

u
ra

l 
G

as
 

B
at

te
ri

es
 

All technologies Not fixed X X X X X X X X X 

Business-as-usual Centralized  X   X X X   

Centralized – hybrid Centralized X X X X    X X 

Centralized – natural gas Centralized  X      X  

Distributed – hybrid Distributed X X X X    X X 

Distributed – natural gas Distributed  X      X  

 

Supplementary Note 6: Hurricane damage value estimation 

Historical hurricane data from NOAA was reviewed for occurrences where the eye of the storm was 

within 65 nautical miles of striking Puerto Rico since 1979, which is the closest range that includes 2017 

Hurricane Irma [72]. The maximum windspeed and category shown is within range of Puerto Rico. 
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Table A-13. Forty years of hurricanes within 65 nautical miles of Puerto Rico. 

Year Name Max. Category 
Max. 

Windspeed 
(knots) 

Max. 
Windspeed 

(mph) 

1979 Frederic Tropical Storm 45 51.8 

1979 Claudette Tropical Depression 30 34.5 

1981 Gert Tropical Storm 50 57.5 

1984 Klaus Tropical Storm 45 51.8 

1988 Chris Tropical Depression 30 34.5 

1989 Hugo Category 3 110 126.6 

1995 Marilyn Category 2 95 109.3 

1996 Hortense Category 1 70 80.6 

1998 Georges Category 3 100 115.1 

2000 Derby Category 1 65 74.8 

2004 Jeanne Tropical Storm 60 69.0 

2007 Noel Tropical Depression 25 28.8 

2007 Olga Tropical Storm 40 46.0 

2008 Fay Tropical Depression 30 34.5 

2011 Irene Category 1 60 69.0 

2014 Bertha Tropical Storm 40 46.0 

2015 Erika Category 1 45 51.8 

2017 Irma Category 5 150 175.6 

2017 Maria Category 5 135 155.4 

 

The historical hurricane data was analyzed to find the probability of the maximum strength storm and 

average windspeed that would occur within a given five-year period (Figure A-2). Analysis was performed 

over ranges of the past 25, 30, 35, and 40 years. The start year of the analysis was varied to avoid influence 

of the start year, thus the error bars showing variation. The number of scenario branches considered in the 

model was limited to three in order to balance computational resources. The first branch, named category 

1 was created to capture instances of no hurricane, tropical depressions, tropical storms and category 1 

hurricanes. A second branch included category 2 and 3 hurricanes, and a third branch for category 4 and 5 

hurricanes. This recategorization is shown in Figure A-3. 
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Figure A-2. Historical A) storm probability and B) average storm windspeeds based on 5-year increments 

(TD – Tropical Depression, TS- Tropical Storm, H# - Category # Hurricane). 

 

 

Figure A-3. The historical storm data was binned into three representative groups and displayed by A) storm 

probability and B) average storm windspeeds based on 5-year increments. 
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Table A-14 summarizes the projected undamaged capacity for each technology based on the fragility 

curves. 

Table A-14. Fraction of undamaged capacity for technologies based on representative hurricane categories. 

  
Hurricane Category 

(windspeed) 

Technology Ref. 
1 

(10 m/s) 

2-3 

(51 m/s) 

4-5 

(69 

m/s) 

Distribution lines [111] 1.000 0.666 0.000 

Wind turbines [114] 1.000 0.985 0.201 

Distribution towers [111] 1.000 0.739 0.177 

Solar panels [95,113] 1.000 1.000 0.602 

Coal & biomass power plants 
SECBH [95,112] 

Severe 1.000 1.000 0.573 

Battery storage plants 
SECBL[112] 

Severe 0.998 0.989 0.554 

Hydroelectric power plants 
CECBL[112] 

Severe 0.998 0.989 0.582 

Substations Suburban[95] 1.000 0.999 0.785 

Transmission Lines [110] 1.000 0.967 0.739 

Natural Gas, Oil, Diesel, and Landfill Gas  

(Open Cycle and Combined Cycle) 

SECBM [95,112] 

Severe 1.000 1.000 0.913 

Buried lines 
SECBM [112] 

Severe 1.000 1.000 0.913 

 

Supplementary Note 7: New and repaired capacity projections 

The inclusion of storm damage in my model is represented as capacity that is damaged and inoperable. 

The model is not required to repair the damaged infrastructure, instead it starts with the undamaged capacity 

and then builds any new capacity required to meet demand for the lowest cost. This formulation does not 

distinguish between new capacity additions and capacity that is being repaired. For some storms, the amount 

of damage is quite low. For example, a Category 1 hurricane damages 0.2% of the hydroelectric capacity 

(see Table A-14). So, it is possible that a small amount of new capacity will be added to reach the 102.7 

MW capacity limit shown in Table A-5.  

An example of capacity installations for a stochastic simulation is shown in Figure A-4 for the case with 

all technologies without a climate mitigation policy. Figure A-5 is shown to summarize capacity 

installations across all cases presented in this study. The installations per time period represent the total 
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amount of capacity added in the 5-year time periods considered in this study. For example, 1.5 GW of gas 

turbine capacity would be interpreted as a number of gas turbine power plants that total 1.5 GW within a 

5-year period. For comparison, recent EIA data shows that California installed 6 GW of solar power in 4 

years and North Carolina installed 2.9 GW of solar power in 4 years [389]. 

 

 

Figure A-4. Non-zero capacity installations for the ‘all technologies’ case without a climate mitigation 

strategy. No capacity installations were allowed during the first model time period of 2016-2020. 
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Figure A-5. Summary of non-zero capacity installations across all stochastic optimization cases presented in 

this study. No capacity installations were allowed during the first model time period of 2016-2020. 
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Supplementary Note 8: Tabulated cost results 

Tabulated cost of electricity projections for Figure 2-6A are presented in Table A-15 and for Figure 2-7 

in Table A-16. 

 

Table A-15. Cost of electricity ($/kWh) for All Technologies Case, graphically presented in Figure 2-6A. 

Storm 

frequency 

Climate 

mitigation policy 
Quantity 2016-20 2021-25 2026-30 2031-35 2036-40 

None 

No policy Deterministic 0.091 0.081 0.080 0.080 0.081 

RPS Deterministic 0.091 0.081 0.086 0.087 0.088 

US$ 100 t-1 CO2 Deterministic 0.164 0.110 0.109 0.109 0.110 

Historical 

storm 

frequency 

No policy 

 

Minimum 0.091 0.081 0.080 0.080 0.081 

Mean 0.091 0.086 0.092 0.099 0.107 

Maximum 0.091 0.104 0.134 0.167 0.201 

RPS 

Minimum 0.091 0.081 0.086 0.087 0.089 

Mean 0.091 0.086 0.098 0.107 0.117 

Maximum 0.091 0.104 0.137 0.180 0.223 

US$ 100 t-1 CO2 

Minimum 0.164 0.107 0.106 0.107 0.109 

Mean 0.164 0.112 0.118 0.127 0.137 

Maximum 0.164 0.130 0.164 0.214 0.267 

Increased  

storm 

frequency 

No policy 

Minimum 0.091 0.081 0.080 0.080 0.081 

Mean 0.091 0.094 0.109 0.127 0.147 

Maximum 0.091 0.104 0.134 0.167 0.201 

RPS 

Minimum 0.091 0.081 0.086 0.087 0.089 

Mean 0.091 0.094 0.114 0.137 0.161 

Maximum 0.091 0.104 0.137 0.180 0.223 

US$ 100 t-1 CO2 

Minimum 0.164 0.107 0.106 0.107 0.109 

Mean 0.164 0.119 0.137 0.159 0.185 

Maximum 0.164 0.130 0.164 0.214 0.267 
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Table A-16. Mean cost of electricity ($/kWh) for cases graphically presented in Figure 2-7. 

Storm 

frequency 

Climate 

mitigation policy 
Case 2016-20 2021-25 2026-30 2031-35 2036-40 

Historical 

storm 

frequency 

 

No policy 

 

All technologies 0.091 0.086 0.092 0.099 0.107 

Business-as-usual 0.091 0.094 0.101 0.110 0.119 

Centralized-hybrid 0.091 0.088 0.094 0.103 0.112 

Centralized - natural gas 0.091 0.086 0.092 0.100 0.108 

Distributed - hybrid 0.091 0.090 0.096 0.103 0.111 

Distributed - natural gas 0.091 0.090 0.095 0.102 0.110 

Increased 

storm 

frequency 

 

No policy 

All technologies 0.091 0.094 0.109 0.127 0.147 

Business-as-usual 0.091 0.104 0.121 0.141 0.161 

Centralized - hybrid 0.091 0.097 0.116 0.137 0.160 

Centralized - natural gas 0.091 0.095 0.111 0.130 0.150 

Distributed - hybrid 0.091 0.097 0.112 0.130 0.149 

Distributed - natural gas 0.091 0.097 0.110 0.125 0.141 

RPS 

All technologies 0.091 0.094 0.114 0.137 0.161 

Centralized - hybrid 0.091 0.097 0.122 0.148 0.175 

Distributed - hybrid 0.091 0.097 0.118 0.141 0.165 

US$ 100 t-1 CO2 

All technologies 0.164 0.119 0.137 0.159 0.185 

Business-as-usual 0.164 0.157 0.174 0.194 0.215 

Centralized - hybrid 0.164 0.123 0.143 0.165 0.190 

Centralized - natural gas 0.164 0.128 0.145 0.164 0.184 

Distributed - hybrid 0.164 0.127 0.143 0.165 0.191 

Distributed - natural gas 0.164 0.136 0.149 0.164 0.180 

 

Supplementary Note 9: Computational resources 

The stochastic simulations were performed on University of Virginia’s High-Performance Computing 

System, Rivanna. Each of the stochastic optimization simulations required 4-9 hours to run on 8 cores or 

33-72 CPU-hours. Simulations were performed using Python 2.7 and Gurobi 9.0.1 from a Linux 

environment. More information about Rivanna can be found at https://rc.virginia.edu. 
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Appendix B – Supporting Information for Chapter 3 - Feasibility of Using sCO2 Turbines to Balance 

Load in Power Grids with a High Deployment of Solar Generation 

 

Models and Data 

The source code and data used to perform this study has been archived and is available for download at 

https://doi.org/10.18130/V3/IKPFBV. Additionally, the most recent version of the BLIS model is available 

at https://github.com/EnergyModels/blis. 

 

Rooftop solar validation 

PVLib solar predictions were validated by comparing against production data for the rooftop solar 

systems (5 min resolution) provided by the UVA Facilities Management office, as shown in Table B-1. 

 

Table B-1. Validation metrics for rooftop PV systems 

Rooftop Array Peak Capacity r2 % Diff (Cumulative) 

1 10 kW 0.95 -5.0 

2 126 kW 0.88 -15.0 

3 15 kW 0.91 -13.0 

4 224 kW 0.92 3.0 

5 140 kW 0.94 3.0 

  

https://github.com/EnergyModels/blis
https://doi.org/10.18130/V3/IKPFBV
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Appendix C – Supporting Information for Chapter 5 - Saline Aquifer Suitability for Long Duration 

Offshore Compressed Air Energy Storage 

 

Nomenclature 

Acronyms and Abbreviations 

CAES Compressed Air Energy Storage 

NOAA National Oceanic and Atmospheric Administration 

OCAES Offshore Compressed Air Energy Storage 

PM-CAES Porous Media Compressed Air Energy Storage 

RTE Round-Trip Efficiency 

 

Symbols 

 

  

h Formation thickness 

k Permeability 

�̇� Mass flow rate 

M Mass 

n Polytropic index 

N System life 

p Pressure 

Q Volumetric flow rate 

r Radius 

R Gas constant 

SF Safety Factor 

T Temperature 

V Volume 

w Specific work 

V Volume 

z Depth 

Z Gas compressibility 

𝜇 Viscosity 

𝜙 Porosity 
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Thermal fluid process model 

Estimating subsurface conditions 

In the absence of site-specific measurements, empirical relations are used to estimate the temperature 

and pressure of the saline aquifer prior to air storage. The geothermal gradient is used to estimate the 

temperature Taq, of the aquifer, 

𝑇𝑎𝑞 =
𝜕𝑇

𝜕𝑧
⋅ 𝑧 + 𝑇0⁡      (C-1) 

where 
𝜕𝑇

𝜕𝑧
⁡is the geothermal gradient, z is the aquifer depth and T0 is the geothermal intercept. Based on 

Battelle et al., the geothermal intercept was calculated to be 10.62 °C [268]. The initial pressure of the 

aquifer, Paq, is represented as,  

𝑝𝑎𝑞 =
𝜕𝑝𝑎𝑞

𝜕𝑧
⋅ 𝑧       (C-2) 

where 
𝜕𝑝𝑎𝑞

𝜕𝑧
⁡is the aquifer pressure gradient, and z is the aquifer depth. The composition of materials in 

overlying formations varies therefore an empirical relation is preferred over the hydrostatic pressure of 

water alone. An impermeable caprock overlying the saline aquifer is necessary to contain the air. The 

composition and thickness of the caprock will determine the maximum air pressure that it can contain. The 

pressure at which the caprock will fracture, pf, is estimated as, 

𝑝𝑓 =
𝜕𝑝𝑓

𝜕𝑧
⋅ 𝑧       (C-3) 

where 
𝜕𝑝𝑓

𝜕𝑧
⁡is the fracture pressure gradient, and z is the aquifer depth. A factor of safety is used to minimize 

the risk of fracture. The maximum operating pressure, pmax, allowed during operation is defined as, 

𝑝𝑚𝑎𝑥 = 𝑝𝑎𝑞 + 𝑆𝐹 ⋅ (𝑝𝑓 − 𝑝𝑎𝑞)     (C-4) 

where SF is the safety factor. 
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Air storage 

The injected air is expected to radially spread into a plume in the saline aquifer. It is assumed that the 

air becomes the temperature of the aquifer upon injection. Based on Katz et al.’s work with underground 

gas storage, it will take months to years to develop the air plume in a saline aquifer, but once developed, it 

is expected to maintain its volume as long as the plume pressure is greater than the aquifer [230]. This is 

reiterated by Oldenburg and Pan explaining that water movement after initial injection is expected to be 

limited to vaporization [196]. The development of the air plume is a complex phenomenon that depends on 

the formation thickness, slope of the caprock, and buoyancy forces. Studies such as Nordbotten and Celia 

have projected the plume development for CO2 with a level caprock [390] and Guo et al. and Oldenburg 

and Pan estimated the plume development for air with an assumed formation thickness and caprock slope 

[196,199]. Other studies such as Li et al. have considered the influence of changing the well screening 

height, which found that increased well screening is advantageous [391]. Katz et al. presented several 

simple methods to estimate the plume shape including as a disk when the thickness of the aquifer is limiting 

and as a hemisphere when the aquifer thickness is very large [392]. Here, I represent the air plume as a disk 

with volume Vp, 

𝑉𝑝 = 𝜋 ⋅ 𝑟𝑝⁡
2 ⋅ ℎ𝑝𝑙𝑢𝑚𝑒 ⋅ 𝜙      (C-5) 

where rp is the plume radius, h is the plume thickness, and 𝜙 is the porosity. In order to also capture the 

possibility that the aquifer thickness is not limiting, leading to a hemisphere-like plume, hplume is defined as 

the lesser of the aquifer thickness, h, and the plume radius. The simulation is initialized with an established 

air plume at the aquifer pressure and temperature based on Equations C-1 and C-2. As air is injected into 

the aquifer, energy is stored as accumulated mass. The pressure of the plume, pp, is estimated using the 

ideal gas law, 

𝑝𝑝 =
𝑚⋅𝑅⋅𝑇𝑎𝑞

𝑉𝑝
⁡      (C-6) 
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where m is the total mass of air in the aquifer and R is the gas constant. Depending on the temperature of 

the injected fluid, it is expected that the aquifer temperature will change over time, such as shown by Guo 

et al. [197]. This model simulates one cycle; therefore, the temperature is assumed to be constant. 

Aquifer friction losses 

As the air travels through the aquifer, it will experience resistance to the porous medium and undergo 

friction losses. It is assumed that the air will uniformly travel radially throughout the air plume. The thermal 

fluid process model uses a form of the radial Darcy-flow equation from Sopher et al. [200] to represent the 

aquifer friction losses for a given volumetric flow rate, Q, 

𝑄 =
8.834⋅10−3𝑘⋅ℎ(𝑝𝑝

2−𝑝𝑤
2 )

𝜇⋅𝑇𝑎𝑞⋅𝑍⋅ln(
𝑟𝑝

𝑟𝑤⁡⁡
)

     (C-7) 

where k is the permeability (mD), h is the aquifer height (m), pp is the pressure at the air plume edge (MPa), 

pw the pressure at the wellbore (MPa), 𝜇 is the viscosity (cP), Z is the compressibility (-), rp is the radius of 

the plume (m), and rw the radius of the wellbore (m). With the substitution of the continuity equation, 

Equation 7 is rearranged to solve for pressure drop. Air fluid properties including viscosity, density and 

compressibility are calculated with CoolProp [273]. Previous PM-CAES studies have considered a range 

of diameters and flow rates. Oldenburg and Pan used a 0.5 m wellbore, with a depth of 720 m with a flow 

rate of 54-209 kg/s [196]. Yang et al. used a 0.2 m well diameter, 200 m depth and for the plume 

development, a flow rate from 2 to 5 kg/s [201]. Here I assume a well diameter of 0.41 m, based on the 

enhanced geothermal study by Adams et al. [223]. Figure C-1 illustrates the impact of permeability and 

flow rate on the expected pressure loss in Equation C-7. 
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Figure C-1. Aquifer pressure drop expected for air at 12 MPa and 35 °C in an aquifer 50 m thick, well 

diameter of 0.41 m and plume radius of 100 m. 

Air leakage 

In addition to friction losses, it is expected that some quantity of injected air will not be recoverable. If 

the air is injected into an anticline, then it is expected that a larger portion of air will migrate away from the 

plume. An air leakage term is incorporated into the model to capture this effect. Due to the lack of CAES 

plants in porous media, Oldenburg and Pan assumed a mass leakage of 3.5% which is based on the Huntorf, 

Germany CAES plant in a solution mined salt cavern [196]. 

Near-isothermal machinery  

Compression and expansion processes for isothermal CAES systems are commonly represented 

analytically as polytropic processes. Polytropic processes are quasi-equilibrium and take the form, 

𝑝𝑉𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (C-8) 

where p is pressure, V is volume and n is the polytropic index [228]. The polytropic index is process 

dependent. A polytropic index of 1 is an idealized isothermal process and an index equal to the ratio of 
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specific heats (1.4 for air) is an adiabatic process. The work of the near-isothermal machinery in the thermal 

fluid process model is represented as a polytropic process which is expressed as, 

𝑤 =
𝑛⁡𝑅⁡𝑇1

𝑛−1
(1 − (

𝑝2

𝑝1
)

𝑛−1

𝑛
)      (C-9) 

where w is the specific work, T1 the temperature at state 1, p1 the pressure at state 1, and p2 the pressure at 

state 2. Near-isothermal compression and expansion processes use heat transfer enhancements to reduce 

the polytropic index. It is desirable to reduce the polytropic index because it results in less work for the 

same pressure rise.  

Wellbore 

The wellbore is represented with the Bernoulli equation to include changes in gravitational potential and 

friction losses based on the well casing roughness [229].  

Metrics and sizing 

The primary metric of the thermal fluid process model is round-trip efficiency (RTE).  

𝑅𝑇𝐸 =
∑𝑤𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛

∑𝑤𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
      (C-10)  

Other model outputs include storage duration and average power output. For a given set of geophysical 

parameters, the output power is dependent on the mass flow rate, and the storage duration on the plume 

radius. The focus of this study is on an OCAES system with an output power of 200 MW and 24-hour 

duration storage that uses a single wellbore. In order to size a system at this rating, the model was run 

iteratively, varying mass flow rate and plume radius until both output power and duration converged with 

an error less than 1e-6. 
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Fixed model inputs 

A summary of fixed model inputs is shown in Table C-1. 

Table C-1. Summary of fixed model parameters. 

Variable Value Reference 

Geophysical Parameters   

Safety Factor 0.5 Allen et al. [220] 

Machinery Parameters   

Mechanical efficiency 99 % Dixon and Hall [221] 

Generator efficiency 98.9 % Siemens [222] 

Wellbore   

Diameter 0.41 m Adams et al. [223] 

Roughness (stainless steel) 0.002 mm White [224] 

Atmospheric   

Temperature 16.85 °C NOAA [225] 

Review of Polytropic indices 

I reviewed near-isothermal simulations and experiments and summarized the resulting polytropic 

indexes in Table C-2. Zhang et al. [213] and Patil et al. [259,261] did not directly report the polytropic 

index and instead presented the isothermal efficiency which was defined in these studies as, 

𝜂𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
ln(𝑃𝑟)−1+

1

𝑃𝑟

𝑃𝑟

(
𝑛−1
𝑛

)
−1

𝑛−1
+𝑃𝑟

−
1
𝑛−1+(𝑃𝑟−1)(𝑃𝑟

−
1
𝑛−

1

𝑃𝑟
)

    (C-11) 

where Pr is pressure ratio. For these results, the polytropic index was computed based on the given 

isothermal efficiency and pressure ratio. 
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Table C-2. Review of studies that examined the effect of machine type and near-isothermal enhancements on 

the polytropic index. 

Study Study Type Machine Type Heat Transfer 

Enhancement 

Pressure 

Ratio 

Polytropic 

Index 

Park et al. [393] Experiment Liquid piston compressor n/a 2.2 1.25 

Ramakrishnan et al. [280] Experiment Liquid piston compressor n/a 2 1.15 

Ramakrishnan et al. [280] Experiment Liquid piston compressor n/a 5 1.09-1.17 

Patil and Ro [207] Experiment Liquid piston compressor n/a 6 1.14 

Dolatabadi et al. [394] Experiment Liquid piston compressor n/a 5 1.19 

Ramakrishnan et al. [280] Experiment Liquid piston compressor Hollow spheres 2 1.08 

Ramakrishnan et al. [280] Experiment Liquid piston compressor Hollow spheres 5 1.07-1.9 

Qin and Loth [210] 
Computational Fluid 

Dynamics 
Liquid piston compressor Spray injection 10 1.05-1.3 

Li [Reference 23 in  

[213]] 
Experiment Reciprocating compressor Spray injection - 1.161 

Patil et al.  [260] Experiment Liquid piston compressor Wire mesh 2.8 1.08-1.12 

Patil et al. [259] Experiment Liquid piston compressor Spray injection 2.5 1.04* 

Patil et al. [261] Experiment Liquid piston compressor Aqueous foam 2.5 1.07* 

Zhang et al. [213] Experiment Reciprocating expander Spray injection 10 1.21* 

*Calculated using equation 13 

Estimating Storage Potential 

The thermal fluid process model was used to calculate the round-trip efficiency for a 200 MW, 24-hour 

duration OCAES systems for each of the three formations (Middle Cretaceous, Lower Cretaceous and 

Upper Jurassic) for each GIS cell. The total energy storage available per GIS cell, S, was calculated as 

𝑆 = 𝐸
𝐴

𝜋𝑟2
       (C-12) 

where E is the energy storage per OCAES system, A is the aquifer area available, and r is the radius of the 

OCAES system’s air plume within the saline aquifer system. Details on the calculation of E and A are 

shown below in Table C-3. The OCAES air plume radius is unique to each GIS site based on the subsurface 

conditions. 
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Table C-3. Summary of parameters used to calculate the storage duration available per location in the 

Baltimore Canyon Trough. 

OCAES System Size 

Power rating 200 MW 

Storage duration 24 Hours 

E, Energy storage 4800 MWh 

GIS Cell details 

GIS cell size 19.79 km x 19.79 km [194] 

GIS cell area 391 km2 

Available for OCAES 10% 

A, Area available for 

OCAES 
39.1 km2 

Estimating Emissions 

Table C-4 presents a calculation of the specific emissions from the diabatic CAES systems compared in 

Table 5-1. 

Table C-4. Diabatic CAES system specific emissions. 

 Huntorf, Germany McIntosh, USA Mouli-Castillo (Mid-range) 

Electricity output [kWh] 1 [42] 1 [42] 8.82e9 [46] 

Fuel costs [pounds] - - 3.97e8  [46] 

Cost of fuel [pound/MMBtu] - - 11.25  [46] 

Fuel input [kWh] 1.6 [42] 1.17 [42] 1.03e10 

Fuel specific emissions [gCO2/MBtu] 53.07 [176] 53.07 [176] 53.07 [176] 

Fuel specific emissions [gCO2/kWh] 181.08 181.08 181.08 

Fuel emissions [gCO2] 289.7 211.9 1.87e12 

System specific emissions [gCO2/kWh] 289.7 211.9 212.3 
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Full Monte Carlo Simulation Results 

The full results of the Monte Carlo simulations are presented in Figure C-2. 

 

Figure C-2. Monte Carlo simulation results show the impact of the nine uncertainty variables on the round-

trip efficiency. 

Water Depth vs Distance to Shore 

Figure C-3 shows the water depth and distance to shore for sites with a mean RTE of at least 50%. Most 

regions in the Baltimore Canyon Trough show a similar trend in increasing water depth as moving away 
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from shore that steeply decreases around 100 to 150 km when dropping off the continental shelf. The 

exception to this is a bifurcation for Massachusetts primarily near Cape Cod. To highlight the most realistic 

OCAES sites, Figure C-3B shows locations with depths less than 60m and less than 100 km from shore. 

Sites with an OCAES RTE greater than 50% are expected for all Mid-Atlantic states examined here. 

 

Figure C-3. Comparison of distance to shore and water depth for sites identified with a mean OCAES RTE of 

at least 50%. 
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Model sensitivity 

A sensitivity study was performed in order to compare the impact of geophysical parameters against 

engineering design variables. For this analysis, simulations were run where one model input was perturbed 

at a time, either increased or decreased by 10%. All model inputs other than polytropic index were 

investigated because it was previously demonstrated to have a large impact in Figure 5-6. Figure C-4 shows 

the impact of model inputs that affected the RTE by at least 0.01 efficiency points. The efficiency of the 

baseline scenario was 62.6% and is based on the PJM analysis location. In addition to the geophysical 

parameters which have already been shown to have a significant impact on RTE, I see that atmospheric 

conditions are very important. This analysis assumed a constant atmospheric temperature and pressure, 

corresponding to the average conditions off the coast of Virginia. In reality, these results show that the RTE 

will change seasonally with the air temperature. Several engineering parameters are also important 

including the wellbore radius as well as the generator and mechanical losses. 

 

Figure C-4. Model sensitivity study for parameters with that affected RTE by at least 0.01 %. 
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Appendix D – Supporting Information for Chapter 6 - Life Cycle Meta-Analysis of Carbon Capture 

Pathways in Power Plants: Implications for Bioenergy with Carbon Capture and Storage 

Literature Inputs 

The technical data from literature used in this study are summarized in Table D-1 through Table D-4.
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Table D-1. Performance of integrated gasification combined cycle coal power plants with carbon capture and compression from literature. 

Publication Case –Capture Type 𝜼𝑷𝑷 𝜼𝑷𝑷+𝑪𝑪 

HHV 

or 

LHV 

Capture 

Rate 

Outlet 

Pressure 

(MPa) 

Cormos et al., 2018 [395] Case 1a vs. Case 1b Amine-based (Post, MDEA) 46.05 36.03 LHV 90.00 12.00 

Cormos et al., 2018 [395] Case 1a vs. Case 1c Amine-based (Pre, MDEA) 46.05 36.59 LHV 90.00 12.00 

Cormos et al., 2018 [395] Case 1a vs. Case 1d CaL (Post) 46.05 34.35 LHV 90.00 12.00 

Cormos et al., 2018 [395] Case 1a vs. Case 1e CaL (Pre) 46.05 36.10 LHV 90.00 12.00 

Petrescu and Cormos, 2017 [314] Case 1 vs Case 2 CaL (Pre) 45.09 36.44 LHV 91.56 12.00 

Petrescu and Cormos, 2017 [314] Case 1 vs Case 3 CL (Pre, iron-based) 45.09 38.76 LHV 99.45 12.00 

Rubin et al., 2015 [312] USDOE 2013 Selexol (Selexol, Pre) 39.00 32.60 HHV 90.00 15.30 

Rubin et al., 2015 [312] USDOE 2013 Selexol (Selexol, Pre) 39.70 31.00 HHV 90.00 15.30 

Rubin et al., 2015 [312] USDOE 2013 Selexol (Selexol, Pre) 42.10 31.20 HHV 90.00 15.30 

Rubin et al., 2015 [312] GCCSI 2011 Selexol (Selexol NS, Pre) 41.10 32.00 HHV 90.00 20.20 
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Table D-2. Performance of pulverized coal power plants with carbon capture and compression from literature. 

Publication Case Capture Type 𝜼𝑷𝑷 𝜼𝑷𝑷+𝑪𝑪 

HHV 

or 

LHV 

Capture 

Rate 

Outlet Pressure 

(MPa) 

Rubin et al., 2015 [312] ZEP 2011 Amine-based (Post, Adv.amine) 44.20 36.50 HHV 90.00 11.00 

Rubin et al., 2015 [312] GCCSI 2011 Amine-based (Post, Amine) 39.10 27.20 HHV 90.00 20.20 

Rubin et al., 2015 [312] IEAGHG 2014 Amine-based (Post, Cansolv) 42.30 33.80 HHV 90.00 11.00 

Rubin et al., 2015 [312] USDOE 2013 Amine-based (Post, Econ FG+) 39.30 28.40 HHV 90.00 15.30 

Cormos et al., 2018 [395] Case 2a vs. Case 2b Amine-based (Post, MDEA) 43.33 34.29 LHV 90.00 12.00 

Petrescu et al., 2017 [313] Case 1 vs 2 Amine-based (Post, MDEA) 43.33 34.29 LHV 90.49 12.00 

Petrescu et al., 2017 [313] Case 1 vs 3 Ammonia (Post) 43.33 35.09 LHV 85.00 12.00 

Ozcan et al., 2015 [315] Case A CaL (Ca-Cu, Post) 40.10 35.60 LHV 90.00 15.00 

Ozcan et al., 2015 [315] Case D CaL (Ca-Cu, Post) 40.10 36.60 LHV 90.00 15.00 

Ozcan et al., 2015 [315] Case E CaL (Ca-Cu, Post) 40.10 34.80 LHV 90.00 15.00 

Cormos et al., 2018 [395] Case 2a vs. Case 2c CaL (Post) 43.33 35.91 LHV 90.00 12.00 

Ortiz et al., 2016 [316] N/A CaL (Post) 33.50 28.00 HHV 77.00 10.00 

Ozcan et al., 2015 [315] Case A CaL (Post) 40.10 31.60 LHV 90.00 15.00 

Ozcan et al., 2015 [315] Case D CaL (Post) 40.10 32.30 LHV 90.00 15.00 

Ozcan et al., 2015 [315] Case E CaL (Post) 40.10 30.90 LHV 90.00 15.00 

Petrescu et al., 2017 [313] Case 1 vs 4 CaL (Post) 43.33 35.91 LHV 92.66 12.00 

Kotowicz and Bartela, 2012 [317] Fig. 4 Membrane (Post) 48.78 42.92 LHV 90.00 15.00 

Kotowicz and Bartela, 2012 [317] Fig. 6 Membrane (Post) 48.78 43.18 LHV 90.00 15.00 

Rubin et al., 2015 [312] USDOE 2010 Oxy-fuel 38.70 31.00 HHV 90.80 15.30 

Rubin et al., 2015 [312] USDOE 2010 Oxy-fuel 38.90 30.10 HHV 90.60 15.30 

Rubin et al., 2015 [312] EPRI 2011 Oxy-fuel 39.00 31.50 HHV 90.00 15.30 

Rubin et al., 2015 [312] EPRI 2011 Oxy-fuel 39.00 31.50 HHV 90.00 15.30 

Rubin et al., 2015 [312] EPRI 2011 Oxy-fuel 39.00 31.00 HHV 98.00 15.30 

Rubin et al., 2015 [312] IEAGHG 2014 Oxy-fuel 42.20 34.10 HHV 90.00 11.00 
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Table D-3. Performance of natural gas combined cycle power plants with carbon capture and compression from literature. 

Publication Case Capture Type 𝜼𝑷𝑷 𝜼𝑷𝑷+𝑪𝑪 

HHV 

or 

LHV 

Capture 

Rate 

Outlet 

Pressure 

(MPa) 

Rubin et al., 2015 [312] IEAGHG 2012 Amine-based (Post, Adv.amine) 53.20 47.00 HHV 90.00 11.00 

Rubin et al., 2015 [312] USDOE 2011 Amine-based (Post, Econamine FG+) 50.50 42.90 HHV 90.00 15.20 

Rubin et al., 2015 [312] Rubin and Zhai 2012 Amine-based (Post, Econamine FG+) 50.00 42.60 HHV 90.00 13.70 

Rubin et al., 2015 [312] USDOE 2013 Amine-based (Post, Econamine FG+) 50.20 42.80 HHV 90.00 15.20 

Gazzani et al., 2013 [311] MEA Amine-based (Post, MEA) 58.34 45.06 LHV 88.30 11.00 

Rubin et al., 2015 [312] IEAGHG 2012 Amine-based (Post, MEA) 53.20 46.10 HHV 90.00 11.00 

Gazzani et al., 2013 [311] SEWGS Case 4 SEWGS (Pre) 58.34 46.18 LHV 85.70 11.00 

Gazzani et al., 2013 [311] SEWGS Case 5 SEWGS (Pre) 58.34 45.78 LHV 91.10 11.00 

 

Table D-4. Performance of biomass power plants with carbon capture and compression from literature. 

Publication Case Capture Type 𝜼𝑷𝑷 𝜼𝑷𝑷+𝑪𝑪 

HHV 

or 

LHV 

Capture 

Rate 

Outlet 

Pressure 

(MPa) 

Herron et al., 2012 [285] 100% Poplar (P.N.1 vs P.A.1) Amine-based (Post, Econamine FG+) 35.80 22.60 HHV 90.00 15.30 

Herron et al., 2012 [285] 100% Poplar (P.N.1 vs P.O.1) Oxy-fuel 35.80 27.10 HHV 90.00 15.30 
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GREET Data 

To compare combinations of capture technologies and power plant configurations, life cycle inventory 

data and power plant performance data was taken from GREET 2019 using target year 2020 [334].  

Select data from the GREET model requires pre-processing because the model did not track energy use 

directly. GREET does track the amount of fossil and non-fossil energy used, thus to calculate the well-to-

use energy use (EU) for a given product or process, it was defined as, 

𝐸𝑈 = 𝑁𝑜𝑛⁡𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦    (D-1) 

The fuel gathering processes in GREET contains the energy content of the fuel produced, thus an 

additional equation was developed for this case, 

𝐸𝑈𝑓𝑢𝑒𝑙 = 𝑁𝑜𝑛⁡𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦 − 1𝑀𝐽    (D-2) 

Similarly, power plants include the energy content of the fuel as energy used, thus an additional equation 

was developed for this case, 

𝐸𝑈𝑝𝑜𝑤𝑒𝑟⁡𝑝𝑙𝑎𝑛𝑡 = {
𝑁𝑜𝑛⁡𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑜𝑠𝑠𝑖𝑙⁡𝐸𝑛𝑒𝑟𝑔𝑦 − 1𝑀𝐽, 𝑓𝑜𝑟⁡𝑊𝑒𝑙𝑙 − 𝑡𝑜 − 𝑢𝑠𝑒

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0, 𝑓𝑜𝑟⁡𝑜𝑛𝑠𝑖𝑡𝑒
  (D-3) 

Onsite energy use impacts of the power plant only track fuel used in GREET, thus the special case of 

zero shown. A summary of the GREET data used in the model is shown below in Table D-5 and D-6. 
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Table D-5. “Non Distributed - U.S. Mix” Power Plant Data from GREET 2019, with target year 2020 [334]. (WTP 

– well-to-pump, FU – functional unit, GWP – global warming potential, EU – energy use and WU – water 

use). 

Power Plant Type 

Biomass 

(IGCC) 

Biomass 

(Steam) Coal (IGCC) Coal (Steam) NG (NGCC) 

GREET Process 

Electricity: 

Switchgrass 

IGCC Power 

Plant* 

Electricity: 

Switchgrass 

(Steam 

Turbine) Power 

Plant 

Electricity: 

Coal-Fired 

(IGCC 

Turbine) Plant 

Electricity: 

Coal-Fired 

(Steam 

Turbine) Plant 

Electricity: 

NG-Fired 

(Combined-

cycle Gas 

Turbine) Plant 

Type WTP WTP WTP WTP WTP 

FU kWh kWh kWh kWh kWh 

Efficiency (fr) 0.45 0.25 0.39 0.38 0.60 

Data - Well to use (used for baseline comparison)       

CO2 (g) 834.74 1496.30 889.21 912.59 367.57 

CO2 Biogenic (g)               -813.58 -1464.45 -0.02 -0.02 -0.01 

GHG-100 (g CO2eq)      A 63.96 77.76 931.72 956.77 402.29 

Non Fossil Energy (MJ) B 8.01 14.41 0.01 0.01 0.00 

Fossil Energy (MJ)        C 0.32 0.57 9.42 9.67 76.52 

Water Total (cm3)          D 89.91 1676.00 1506.35 1654.20 668.54 

Data – Onsite           

CO2 (g)                            E 813.17 1457.47 875.25 898.26 337.72 

CO2 Biogenic (g)               -813.56 -1464.41 0.00 0.00 0.00 

GHG-100 (g CO2eq)      F 22.90 3.85 878.69 902.35 338.24 

Fuel Use (MJ)                 G  8.00 14.40 9.23 9.47 6.00 

Water Cooling (cm3)      H 0.00 1514.17 1377.89 1522.47 601.19 

Calculations - Well to use           

GWP (g CO2eq)           =A 63.96 77.76 931.72 956.77 402.29 

EU (MJ)         = B + C – G 0.33 0.59 0.19 0.20 70.52 

WU (cm3)             = D + H 89.91 1676.00 1506.35 1654.20 668.54 

Calculations – Onsite           

CO2 (g)                        = E 813.17 1457.47 875.25 898.26 337.72 

GWP (g CO2eq)          = F 22.90 3.85 878.69 902.35 338.24 

EU (MJ)                   = -3.60 -3.60 -3.60 -3.60 -3.60 -3.60 

WU (cm3)                     = G 1377.89 1514.17 1377.89 1522.47 601.19 

*GREET did not include Onsite water use for biomass IGCC, assumed to be the same per kWh as coal IGCC 
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Table D-6. Fuel Gathering, Chemical Production, and Transport Data from GREET 2019, with target year 

2020 [334]. (WTP – well-to-pump, WTW – well-to-wheels, FU – functional unit, GWP – global warming 

potential, EU – energy use, WU – water use). 

Product Biomass Coal Methyl Amine Natural Gas Transport 

GREET Product 

Switchgrass 

Production for 

Ethanol Plant 

Coal for Power 

Plants 

Production 

Pathway for 

Methyl Amine 

NA NG from 

Shale and 

Regular 

Recovery for 

Electricity 

Generation 

HD Truck: 

Combination 

Short-Haul 

CIDI - Low 

Sulfur Diesel 

Type WTP WTP WTP WTP WTW 

FU MJ MJ g MJ tonne-km 

Data - Well to use      

CO2 (g) 2.70 1.51 2.31 4.98 68.25 

CO2 Biogenic (g) 0.00 0.00 0.00 0.00 -0.01 

GHG-100 (g CO2eq)  A 5.13 5.74 2.66 10.68 70.84 

Non-Fossil Energy      B 1.00 0.00 0.00 0.00 0.00 

Fossil Energy              C 0.04 1.02 0.07 1.09 0.92 

Water Total (cm3)      D 11.24 13.92 2.20 11.22 64.11 

Calculations - Well to 

use           

GWP (g CO2eq)     = A 5.13 5.74 2.66 10.68 70.84 

EU (MJ)          = B+C-X 0.04 0.02 0.07 0.09 0.92 

WU (cm3)                 = D 11.24 13.92 2.20 11.22 64.11 

*X=1 for fuels and 0 for other entries 
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Environmental Impacts 

Three environmental impacts, global warming potential (GWP), Energy Use (EU) and water use (WU) 

were calculated using Equations D- through D-9 below by replacing the quantity I, with the desired impact 

of interest. A fourth environmental impact, Energy Return on Investment (EROI) was derived based on EU 

using Equations D-10 and D-11. 

Fuel Production and Transport 

The impact of fuel production is IFP, 

𝐼𝐹𝑃 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
) =

1

𝜂𝑃𝑃+𝐶𝐶
⋅ 𝑖𝐹𝑃 (

𝑢𝑛𝑖𝑡

𝑀𝐽
) ⋅

3.6⁡𝑀𝐽

1⁡𝑘𝑊𝐻
    (D-4) 

where iFP is the environmental impact of the fuel production from GREET per MJ including transport and 

𝜂𝑃𝑃+𝐶𝐶 ⁡is the power plant efficiency including carbon capture. 

Power Generation 

The environmental impact of power generation IPG is calculated as, 

𝐼𝑃𝐺 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
) =

𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
⋅ 𝑖𝑃𝐺 (

𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
)    (D-5) 

where iPG is the environmental impact of fuel combustion from the baseline GREET model per kWh, and 

𝜂𝑃𝑃,𝐵 the baseline efficiency from GREET. 

Carbon Capture 

The environmental impact of the carbon capture process, ICC, , is calculated as, 

𝐼𝐶𝐶 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
) =

{
 
 

 
 −𝛽 ⋅

𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
⋅ �̇�𝐶𝑂2,𝐵 (

𝑔⁡𝐶𝑂2

𝑘𝑊ℎ
) , 𝑓𝑜𝑟⁡𝐺𝑊𝑃

⁡⁡⁡⁡⁡⁡⁡⁡⁡3.6 ⋅ ⁡(
𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
− 1) , 𝑓𝑜𝑟⁡𝐸𝑈

𝛽 ⋅
𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
⋅ �̇�𝐶𝑂2,𝐵 (

𝑔⁡𝐶𝑂2

𝑘𝑊ℎ
) ⋅ �̇�𝑤 (

𝑐𝑚3⁡𝑤𝑎𝑡𝑒𝑟

𝑔⁡𝐶𝑂2
) , 𝑓𝑜𝑟⁡𝑊𝑈

  (D-6) 

where⁡𝛽⁡is the capture rate, �̇�𝐶𝑂2,𝐵 is the amount of CO2 emitted by the baseline power plant, and �̇�𝑤 is 

the amount of water used by the capture system. Only several studies specify the water consumed by the 

capture system, summarized in Table D-7.  
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Table D-7. Water Use for the Carbon Capture Process of Power Plants with Carbon Capture from 

Literature. 

Study 

[-] 

Capture Technology 

[-] 

Water Use Rate 

[m3/hr] 

CO2 Capture Rate 

[tonne/hr] 

Water Use 

[cm3/ g CO2] 

Herron et al., 2012 [285], PA1 Amine-based (Econamine) 11.4 210.9 0.054 

Herron et al., 2012 [285], PA2 Oxy-fuel 0.0 194.7 0.000 

Petrescu et al., 2017 [313] Ammonia 25.5 326.7 0.078 

Petrescu et al., 2017 [313] CaL 0 485.8 0.000 

 

Solvent 

The environmental impacts of solvent processes are, 

𝐼𝑆𝑃 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
) = �̇�𝑆 (

𝑘𝑔⁡𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑡𝑜𝑛𝑛𝑒⁡𝐶𝑂2⁡
) ⋅ 𝛽 ⋅

𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
⋅ �̇�𝐶𝑂2,𝐵 (

𝑔⁡𝐶𝑂2

𝑘𝑊ℎ
) ⋅ 𝑖𝑆𝑃 (

𝑢𝑛𝑖𝑡

𝑔⁡𝑠𝑜𝑙𝑣𝑒𝑛𝑡
) ⋅

1000⁡𝑔

1⁡𝑘𝑔
⋅
1⁡𝑡𝑜𝑛𝑛𝑒

1𝐸6⁡𝑔
 (D-7) 

𝐼𝑆𝑇 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ⁡
) = �̇�𝑆 (

𝑘𝑔⁡𝑠𝑜𝑙𝑣𝑒𝑛𝑡

𝑡𝑜𝑛𝑛𝑒⁡𝐶𝑂2⁡
) ⋅ 𝛽 ⋅

𝜂𝑃𝑃,𝐵

𝜂𝑃𝑃+𝐶𝐶
⋅ �̇�𝐶𝑂2,𝐵 (

𝑔⁡𝐶𝑂2

𝑘𝑊ℎ
) ⋅ 𝐷(𝑘𝑚) ⋅ 𝑖𝑆𝑇 (

𝑢𝑛𝑖𝑡

𝑡𝑜𝑛𝑛𝑒−𝑘𝑚
) ⋅

1⁡𝑡𝑜𝑛𝑛𝑒

1000⁡𝑘𝑔
⋅
1⁡𝑡𝑜𝑛𝑛𝑒

1𝐸6⁡𝑔
  (D-8) 

where �̇�𝑆 is consumption rate of solvent, ISP the calculated environmental impact of solvent production, iSP 

the environmental impact of solvent production from GREET, IST the calculated environmental impact of 

solvent transport, iST the environmental impact of solvent transport from GREET, and D the distance that 

the solvent is transported. 

Total Impact 

The total environmental impact of, 𝐼𝑡𝑜𝑡𝑎𝑙, is defined as the summation of the impacts from the above 

processes, 

𝐼𝑡𝑜𝑡𝑎𝑙 (
𝑢𝑛𝑖𝑡

𝑘𝑊ℎ
) = 𝐼𝐹𝑃 + 𝐼𝑃𝐺 + 𝐼𝐶𝐶 + 𝐼𝑆𝑃 + 𝐼𝑆𝑇⁡    (D-9) 

EROI 

The energy return on investment (EROI) is calculated as, 

𝐸𝑅𝑂𝐼 =
1⁡𝑘𝑊ℎ

𝐸𝐼𝑁
       (D-10) 

where EIN is energy in, defined as, 

𝐸𝐼𝑁 = 𝐸𝑈𝑡𝑜𝑡𝑎𝑙 − 𝐸𝑂𝑈𝑇 = 𝐸𝑈𝑡𝑜𝑡𝑎𝑙 + 3.6    (D-11) 

where -3.6 MJ represents the 1 kWh of electricity generation. 
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Tabulated Model Results 

Table D-8. Summarized performance of biomass power plants with carbon capture and compression. 

Power Plant 

Type 
Capture Type Pre/Post # 

GWP [kg CO2/kWh] EROI [-] WU [l/kWh] EU [MJ/kWh] 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Biomass (IGCC) Amine-based Post 7 -0.84 -0.76 -0.73 6.9 7.7 8.0 1.65 1.72 1.90 -3.15 -3.13 -3.08 

Biomass (IGCC) Amine-based Pre 1 -0.82 -0.82 -0.82 7.0 7.0 7.0 1.87 1.87 1.87 -3.09 -3.09 -3.09 

Biomass (IGCC) CaL Post 1 -0.88 -0.88 -0.88 8.4 8.4 8.4 1.93 1.93 1.93 -3.17 -3.17 -3.17 

Biomass (IGCC) CaL Pre 2 -0.84 -0.83 -0.83 8.8 9.0 9.1 1.78 1.81 1.84 -3.20 -3.20 -3.19 

Biomass (IGCC) CL Pre 1 -0.86 -0.86 -0.86 9.6 9.6 9.6 1.69 1.69 1.69 -3.23 -3.23 -3.23 

Biomass (IGCC) Selexol Pre 4 -0.89 -0.84 -0.78 8.3 8.8 9.4 1.72 1.84 1.96 -3.22 -3.19 -3.17 

Biomass (IGCC) SEWGS Pre 2 -0.80 -0.77 -0.74 9.4 9.4 9.4 1.73 1.73 1.74 -3.22 -3.22 -3.22 

Biomass (Steam) Amine-based Post 7 -3.10 -2.18 -1.79 1.9 2.8 3.3 2.55 3.11 4.42 -2.52 -2.29 -1.73 

Biomass (Steam) Ammonia Post 1 -1.66 -1.66 -1.66 3.4 3.4 3.4 2.55 2.55 2.55 -2.55 -2.55 -2.55 

Biomass (Steam) CaL Post 9 -1.88 -1.63 -1.34 4.0 4.6 5.3 1.93 2.24 2.55 -2.93 -2.82 -2.71 

Biomass (Steam) Membrane Post 2 -1.58 -1.57 -1.56 4.8 4.8 4.9 2.12 2.13 2.15 -2.86 -2.85 -2.85 

Biomass (Steam) Oxy-fuel Oxy 7 -2.05 -1.89 -1.79 3.7 4.1 4.2 2.43 2.53 2.78 -2.75 -2.71 -2.63 

Blend (IGCC) Amine-based Post 7 -0.34 -0.30 -0.29 7.8 8.8 9.2 1.69 1.77 1.98 -3.21 -3.19 -3.14 

Blend (IGCC) Amine-based Pre 1 -0.33 -0.33 -0.33 8.0 8.0 8.0 1.95 1.95 1.95 -3.15 -3.15 -3.15 

Blend (IGCC) CaL Post 1 -0.36 -0.36 -0.36 10.0 10.0 10.0 2.03 2.03 2.03 -3.24 -3.24 -3.24 

Blend (IGCC) CaL Pre 2 -0.34 -0.34 -0.34 10.5 10.7 10.9 1.85 1.88 1.92 -3.27 -3.26 -3.26 

Blend (IGCC) CL Pre 1 -0.40 -0.40 -0.40 11.7 11.7 11.7 1.73 1.73 1.73 -3.29 -3.29 -3.29 

Blend (IGCC) Selexol Pre 4 -0.36 -0.34 -0.31 9.8 10.5 11.4 1.77 1.92 2.06 -3.28 -3.26 -3.23 

Blend (IGCC) SEWGS Pre 2 -0.33 -0.30 -0.27 11.3 11.3 11.4 1.78 1.79 1.79 -3.28 -3.28 -3.28 

Blend (Steam) Amine-based Post 6 -0.92 -0.80 -0.73 4.4 5.1 5.6 2.32 2.54 2.92 -2.96 -2.89 -2.79 

Blend (Steam) Ammonia Post 1 -0.64 -0.64 -0.64 5.7 5.7 5.7 2.32 2.32 2.32 -2.97 -2.97 -2.97 

Blend (Steam) CaL Post 9 -0.76 -0.67 -0.48 7.3 8.1 9.1 1.86 2.09 2.31 -3.20 -3.16 -3.11 

Blend (Steam) Membrane Post 2 -0.66 -0.66 -0.66 8.4 8.4 8.4 2.01 2.02 2.03 -3.17 -3.17 -3.17 

Blend (Steam) Oxy-fuel Oxy 6 -0.88 -0.77 -0.73 7.2 7.5 7.6 2.23 2.27 2.37 -3.13 -3.12 -3.10 
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Table D-9. Summarized performance of fossil fuel power plants with carbon capture and compression. 

Power Plant 

Type 

Capture 

Type 
Pre/Post/Oxy # 

GWP [kg CO2/kWh] EROI [-] WU [l/kWh] EU [MJ/kWh] 

Min Mean Max Min Mean Max Min Mean Max Min Mean Max 

Coal (IGCC) Amine-based Post 1 0.20 0.20 0.20 9.3 9.3 9.3 2.08 2.08 2.08 -3.21 -3.21 -3.21 

Coal (IGCC) Amine-based Pre 1 0.19 0.19 0.19 9.5 9.5 9.5 2.04 2.04 2.04 -3.22 -3.22 -3.22 

Coal (IGCC) CaL Post 1 0.20 0.20 0.20 13.0 13.0 13.0 2.14 2.14 2.14 -3.32 -3.32 -3.32 

Coal (IGCC) CaL Pre 2 0.17 0.18 0.19 13.8 14.1 14.4 1.93 1.97 2.01 -3.35 -3.34 -3.34 

Coal (IGCC) CL Pre 1 0.07 0.07 0.07 15.5 15.5 15.5 1.79 1.79 1.79 -3.37 -3.37 -3.37 

Coal (IGCC) Selexol Pre 4 0.18 0.19 0.21 12.8 13.9 15.1 1.84 2.02 2.18 -3.36 -3.34 -3.32 

Coal (Steam) Amine-based Post 6 0.20 0.21 0.23 7.9 8.9 9.5 2.18 2.34 2.62 -3.22 -3.19 -3.14 

Coal (Steam) Ammonia Post 1 0.25 0.25 0.25 9.7 9.7 9.7 2.18 2.18 2.18 -3.23 -3.23 -3.23 

Coal (Steam) CaL Post 9 0.15 0.19 0.31 13.6 14.9 16.3 1.82 2.01 2.18 -3.38 -3.36 -3.34 

Coal (Steam) Membrane Post 2 0.17 0.17 0.18 15.2 15.3 15.3 1.94 1.95 1.96 -3.37 -3.36 -3.36 

Coal (Steam) Oxy-fuel Oxy 6 0.10 0.17 0.19 13.4 13.9 14.1 2.12 2.15 2.22 -3.34 -3.34 -3.33 

NG (NGCC) Amine-based Post 6 0.11 0.12 0.14 5.0 5.5 5.7 0.77 0.80 0.88 -2.97 -2.95 -2.89 

NG (NGCC) SEWGS Pre 2 0.12 0.13 0.14 5.5 5.5 5.5 0.84 0.84 0.84 -2.95 -2.94 -2.94 
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Comparison of co-firing blends 

 

 

Figure D-1. Comparison of running the model with varying co-firing blends. 
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Appendix E – Supporting Information for Chapter 7 - The Role of Long Duration Storage and 

Negative Emissions in Meeting Decarbonization Goals at the Regional Scale 

 

Model inputs 

An energy system optimization model of Virginia was built by reviewing existing infrastructure, 

resource availability and variations in electricity demand.  

Electricity demand and system parameters 

System level inputs are summarized in Table E-1. The global discount rate applies to all technologies 

except wind and solar. The value is meant to be representative of United States inflation. Wind and solar 

power plants are assumed to have a higher discount rate of 8%. The basis for the reserve margin is a 36.4% 

difference between peak hourly demand in the model versus historical data, plus an additional 15% of 

planning capacity reserves based on the Dominion Integrated Resource Plan [396]. Annual electricity 

demand and the corresponding annual emission limit is shown in Table E-2. The annual electricity demand 

is calculated by applying expected transmission, substation and distribution losses to the total 2019 

generation from the EIA [370]. The annual emission limit is a linear path to zero starting with current 

emission levels for 2025. 

Table E-1. Virginia Electric System Inputs. 

Parameter Value Ref. 

Global Discount Rate 0.02 Assumption 

Reserve Margin 41.86% [373,396] 
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Table E-2. Yearly Demand Projection and Renewable Portfolio Standard (RPS). The 2019 value for demand 

is from EIA [370] and the remaining projected demand values from a projection by Weldon Cooper Center 

[369]. 

Year 

- 

Annual Demand 

PJ 

Annual Emission Limit 

Mt CO2  

2019 315 N/A 

2025 461.4 23.8 

2030 509.7 19.04 

2035 564.8 14.28 

2040 616.8 9.52 

2045 668.8 4.76 

2050 720.8 0.0 

 

Transmission and Distribution 

Transmission, substation, and distribution losses are based on International Energy Agency Energy 

Technology Systems Analysis Program (ETSAP)[109]. Transmission losses are based on 350 km of 

distance to represent half the length of Virginia and a loss rate of 7%/1000 km [109]. Costs of building and 

maintaining new transmission and distribution capacity are included in the CAPEX costs of powerplants as 

listed in NREL ATB 2020.  

Table E-3. Transmission System Losses. 

Technologies Loss 

- % Ref. 

Transmission Lines 2.45 [109] 

Substations 0.4 [109] 

Distribution Lines 7.0 [109] 
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Fuel 

Fuel model inputs are summarized below in Table E-4. Biomass is assumed to be a carbon neutral fuel. 

The max activity values for biomass and natural gas were calibrated to match 2019 fuel consumption. The 

maximum natural gas pipeline capacity is based on the Dominion Integrated Resource Plan [396] and is 

equivalent to all of Dominion’s currently installed 7.9 GW of natural gas generation operating 

simultaneously. 

 

Table E-4. Fuel Costs and CO2 Emissions. 

Fuel Fuel Costs 
Emission Activity 

Max Activity Max Capacity 

 2019 Yearly Increase   

- US M$/PJ Ref. % Ref. kt/PJ Ref. PJ GW 

Biomass 2.41 [397] 0 [8] 0.00 N/A 52.6 N/A 

Coal 2.94 [370] -0.31 [356] 88.43 [176] N/A N/A 

Hydro 0.00 N/A N/A N/A 0.00 N/A N/A N/A 

Natural Gas 2.99 [370] 1.57 [356] 50.30 [176] 391 19.89 [396] 

Nuclear 0.63 [8] 0.15 [8] 0.0 N/A N/A N/A 

Oil 11.27 [370] 2.41 [356] 67.58 [176] N/A N/A 

Solar 0.00 N/A N/A N/A 0.00 N/A N/A N/A 

Wind 0.00 N/A N/A N/A 0.00 N/A N/A N/A 
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Power Plant and Energy Storage Technologies 

Power plant and energy storage technology model inputs are summarized below in Table E-5 through 

Table E-8. For data from the 2020 NREL ATB, Biomass was represented as “Dedicated”, Coal – Steam as 

“Coal-new-AvgCF”  for existing and  “Coal-new-HighCF” for new builds, Coal + CCS as “Coal-CCS 90%-

HighCF”, Coal – IGCC as “Coal-IGCC-HighCF”, Hydro Electric as “NPD4”, Natural Gas Combined Cycle 

as “Gas-CC-HighCF”, Natural Gas Combustion Turbine as “Gas-CT-HighCF”, Natural Gas + CCS as 

“Gas-CC-CCS-HighCF”, Wind – Offshore Fixed as “Class 4 – Offshore Fixed”, Wind – Offshore Floating 

as “Class 12 – Offshore Floating.” The model uses solar capacity factors from the NREL ATB based on 

Kansas City because of its similar latitude to Virginia. The Moderate cost projections were used from the 

NREL ATB, and investment costs are taken as the CAPEX costs. Existing technologies use pricing from 

2019 and new power plants use pricing from 2025, the first model year when power plants are built. For 

data from the EIA, new oil power plants are represented by “Conv gas/oil combined cycle (CC)”. 

Existing coal steam power plants in Virginia operated with 16% capacity factors in 2019 [370], therefore 

variable costs were taken from Eshraghi et al. for legacy coal plants to represent the expected higher 

operational costs [364]. Power plants with carbon capture are assumed to have 90% capture rates. 

Additional information about the calculation of the values for the long duration storage and negative 

emission technologies are presented in the following section. 

In Table E-6, Oil Combined Cycle power plants are assumed to have the same capacity factor and 

expected lifetime as Natural Gas Combined Cycle power plants. The 100-year lifetime of Nuclear assumes 

re-permitting of existing power plants. Renewables use a value of 100% for efficiency because the fuel is 

free, and the resource is not limited. 
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Table E-5. Power plant and energy storage investment, fixed and variable costs. (The annual change in costs 

is shown in parentheses, if applicable – otherwise it remains constant). 

Technologies Investment cost Fixed cost Variable cost 

- US$/kW (%/yr) Ref. US$/kW (%/yr) Ref. US M$/PJ Ref. 

Existing Technologies 

Biomass N/A N/A 123.0 [8] 1.31 [8] 

Coal – Steam N/A N/A 0 [364] 2.12 [364] 

Hydro Electric N/A N/A 43.6 [8] 0 [8] 

Natural Gas Combined Cycle N/A N/A 12.9  [8] 0.6 [8] 

Natural Gas Combustion Turbine N/A N/A 11.4  [8] 1.25 [8] 

Nuclear N/A N/A 119.0  [8] 0.64 [8] 

Oil Combined Cycle N/A N/A 12.9  [8] 0.6 [8] 

12-hour Pumped Hydro Storage N/A N/A 3.00 [14] 1.11 [14] 

Solar Photovoltaic – Utility N/A N/A 16.1 [8] 0 [8] 

New Centralized Technologies 

2-hour Battery 592 (-1.97) [8] 25.1 (-1.97) [8] 0 [8] 

4-hour Battery 1004 (-1.97) [8] 25.1 (-1.97) [8] 0 [8] 

Biomass 4247 (-0.53) [8] 123.00 [8] 1.31 [8] 

Coal – Steam 4099 (-0.35) [8] 39.7 [8] 1.22 [8] 

Coal + CCS 6635 (-0.63) [8] 58.2 [8] 2.98 [8] 

Coal – IGCC 4426 (-0.46) [8] 56.1 [8] 2.19 [8] 

Natural Gas Combined Cycle 1008 (-0.40) [8] 12.9 [8] 0.60 [8] 

Natural Gas Combustion Turbine 925 (-0.41) [8] 11.4 [8] 1.25 [8] 

Natural Gas + CCS 2474 (-0.89) [8] 27.0 [8] 1.59 [8] 

Oil Combined Cycle 1008 (-0.4) [8] 12.9 [8] 0.60 [8] 

12-hour Pumped Hydro Storage 1439 [258] 3.00 [14] 1.11 [14] 

Solar Photovoltaic – Utility 1095 (-1.86) [8] 12.8 (-1.86) [8] 0 [8] 

Wind – Offshore Fixed 3245 (-1.7) [8] 88.6 (-1.88) [8] 0 [8] 

Wind – Offshore Floating 4289 (-2.14) [8] 78.7 (-2.05) [8] 0 [8] 

New Distributed Technologies 

Solar Photovoltaic – Commercial 1390 (-2.23) [8] 10 (-2.23) [8] 0 [8] 

Solar Photovoltaic – Residential 1884 (-3.15) [8] 14.1 (-3.15) [8] 0 [8] 

Emerging Technologies 

BECCS 

Determined with Monte Carlo 

Sampling 

 

141 Calculated 3.33 Calculated 

DAC 0 [361] 4.09 [361] 

24-hour OCAES 16.3 [262] 2.57 [262] 

10-hour VFB 70 [14] 0 [14] 
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Table E-6. Power plant and energy storage capacity factors, efficiencies and expected lifetime. *Existing 

natural gas plants are divided into two groups based on year built (pre/post 2000), with different efficiencies. 

Technologies Capacity Factor Efficiency Expected Lifetime 

- % Ref. % Ref. Years Ref. 

Existing Technologies 

Biomass 63 [370] 25.3 [8] 45 [8] 

Coal – Steam 54 [8] 32.2 [396] 75 [8] 

Hydro Electric 20.0 [370] 100 - 100 [8] 

Natural Gas Combined Cycle* 87 [8] 43.6/54.2 [396] 55 [8] 

Natural Gas Combustion Turbine* 30 [8] 28.9/34.0 [396] 55 [8] 

Nuclear 94.4 [370] 32.6 [8] 100 Assumption 

Oil Combined Cycle 87 [8] 53.3 [8] 55 [8] 

12-hour Pumped Hydro Storage 50 Assumption 70 [14] 150 [398] 

Solar Photovoltaic – Utility 26.3 [370] 100 - 30 [8] 

New Centralized Technologies 

2-hour Battery 50 Assumption 85 [8] 15 [8] 

4-hour Battery 50 Assumption 85 [8] 15 [8] 

Biomass 61 [8] 25.3 [8] 45 [8] 

Coal – Steam 85 [8] 39.5 [8] 75 [8] 

Coal + CCS 85 [8] 27.3 [8] 75 [8] 

Coal – IGCC 85 [8] 39.2 [8] 75 [8] 

Natural Gas Combined Cycle 87 [8] 53.3 [8] 55 [8] 

Natural Gas Combustion Turbine 30 [8] 35.9 [8] 55 [8] 

Natural Gas + CCS 87 [8] 45.3 [8] 55 [8] 

Oil Combined Cycle 87 [8] 53.3 [8] 55 [8] 

12-hour Pumped Hydro Storage 50 Assumption 80 [14] 150 [398] 

Solar Photovoltaic – Utility 27 [8] 100 - 30 [8] 

Wind – Offshore Fixed 44 [8] 100 - 30 [8] 

Wind – Offshore Floating 46 [8] 100 - 30 [8] 

New Distributed Technologies 

Solar Photovoltaic – Commercial 15 [8] 100 - 30 [8] 

Solar Photovoltaic – Residential 17 [8] 100 - 30 [8] 

Emerging Technologies 

BECCS 61 [8] 21.5 [360] 45 [8] 

DAC 90 [361] 100 - 25 [361] 

24-hour OCAES 50 Assumption 70 [262] 25 [262] 

10-hour VFB 50 Assumption 74 [258] 19 [258] 
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Capacity credits in Table E-8 are based on 2020 values from a Temoa model of the United States electric 

grid by Eshraghi et al. [364], with the model data available at 

https://raw.githubusercontent.com/TemoaProject/data/master/US_National.sql. Biomass plants are 

represented by E_BIOIGCC_N (new BioIGCC power plant), Coal – Steam by E_COALSTM_N (new 

pulverized coal steam power plant), Coal + CCS by E_COAL_IGCC_CCS (new coal IGCC with CCS 

power plant), Coal – IGCC by E_COAL_IGCC (new coal IGCC power plant), hydroelectric by 

E_HYDCONV_R (existing conventional hydroelectric power plant), combined cycle power plants by 

E_NGACC_R (existing natural gas combined cycle power plant), combustion turbine power plants by 

E_NGACT_R (existing natural gas combustion turbine power plant), natural gas with CCS by 

E_NGACC_CCS_N (new natural gas combined cycle with ccs power plant), solar farms are represented 

by E_SOLPVCEN_R (new solar photovoltaic centralized power plant), wind farms by E_WNDCL4_N 

(New wind class 4 power plant), and BECCS by E_BECCS_N (bio-energy with carbon capture and 

storage). Storage, including batteries, pumped hydro, OCAES and VFB are represented by battery storage 

by E_BATT (battery storage). 

  

https://raw.githubusercontent.com/TemoaProject/data/master/US_National.sql
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Table E-7. Power plant and energy storage ramp rates, capacity limits and capacity credits. 

Technologies Ramp rate Max capacity Capacity credits 

- Fr/Hr Ref. MW Ref. - %/yr 

Existing Technologies 

Biomass     0.95 0.0 

Coal – Steam 0.01 Baseload  
 

0.90 0.0 

Hydro Electric 
 

  
 

0.95 0.0 

Natural Gas Combined Cycle 
 

  
 

0.95 0.0 

Natural Gas Combustion Turbine 
 

  
 

0.91 0.0 

Nuclear 0.01 Baseload  
 

0.98 0.0 

Oil Combined Cycle     0.95 0.0 

12-hour Pumped Hydro Storage     0.75 0.0 

Solar Photovoltaic – Utility     0.29 -3.23 

New Centralized Technologies 

2-hour Battery   
 

 
 

0.75 0.0 

4-hour Battery     0.75 0.0 

Biomass     0.95 0.0 

Coal – Steam 0.01 Baseload   0.90 0.0 

Coal + CCS 0.01 Baseload   0.95 0.0 

Coal – IGCC 0.01 Baseload   0.95 0.0 

Natural Gas Combined Cycle     
 

0.95 0.0 

Natural Gas Combustion Turbine   
 

 
 

0.91 0.0 

Natural Gas + CCS     0.95 0.0 

Oil Combined Cycle     0.95 0.0 

12-hour Pumped Hydro Storage    300 [396] 0.75 0.0 

Solar Photovoltaic – Utility   
 

40000 [399] 0.23 -2.95 

Wind – Offshore Fixed 
  

5200 [396] 0.33 -2.00 

Wind – Offshore Floating      0.33 -2.00 

New Distributed Technologies 

Solar Photovoltaic – Commercial  
 

10200 [400] 0.23 -2.95 

Solar Photovoltaic – Residential   18300 [400] 0.23 -2.95 

Emerging Technologies 

BECCS     0.95 0.0 

DAC     0.0 0.0 

24-hour OCAES     0.75 0.0 

10-hour VFB     0.75 0.0 
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Table E-8 Existing power plant and energy storage installations along with estimated year built [370]. (Year 

input as year built in the model). 

Technology 

- 

Capacity installation (GW) 

Pre-1990 

(1990) 

1991-1995 

(1995) 

1996-2000 

(2000) 

2001-2005 

(2005) 

2006-2010 

(2010) 

2011-2015 

(2015) 

2016-2019 

(2018) 

Biomass 401.1 75 11 4 43.6 270.2 0 

Coal – Steam 1007 1778 9 0 84.9 0 0 

Hydro Electric 671.8 0 0 0 194.2 0 0 

Natural Gas Combined Cycle 297.4 1069.5 363 1651 0 2033.5 3453.6 

Natural Gas Combustion Turbine 330.5 1069.5 363 1651 785.7 279.1 346.2 

Nuclear 3347 10 75 0 69 67 0 

Oil Combined Cycle 1299.1 0 972 28 41.7 0 0 

12-hour Pumped Hydro Storage 2345 0 0 572 324 0 0 

Solar Photovoltaic – Utility 0 0 0 0 0 0 556.1 
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Model verification 

To verify the model, fuel resources used in the first model year, 2019, were compared against actual 

usage recorded by EIA in 2019 shown in Table E-9. It was expected that all biomass available in 2019 

would have been used, however only 74% was used. Based on Brown et al., the production of electricity 

with biomass is expensive and therefore there are expected to be other non-economic factors pushing 

towards the consumption of biomass [401]. 

 

Table E-9. The energy system model was verified by comparing the results of the first model year (2019) to 

actual fuel consumption in 2019. 

Total Electricity Production 

Energy Source 

- 

2019 Actual [370] 

% 

2019 Model 

% 

Biomass 3.87 2.88 

Coal 3.53 5.68 

Hydroelectric 1.57 1.59 

Natural Gas 59.88 59.91 

Nuclear 30.46 30.86 

Petroleum  0.27 0.00 

Pump -1.14 -2.24 

Solar PV 0.98 1.32 

Others 0.58 0.00 

 

Emerging energy technologies 

This section presents the calculations behind the cost and performance parameters for the emerging 

technologies considered in this analysis. 

Negative Emissions Technology - Bioenergy with Carbon Capture and Storage (BECCS) 

BECCS – High capital cost 

Fajardy et al. estimate that a BECCS plant will cost 11714 $/kW [287]. 



231 

 

 

BECCS – Low capital cost 

The National Energy Technology Laboratory (NETL) estimated the costs of a BECCS plant operating 

with 90% capture as shown in NETL Vol. 2  (Herron et al 2012) [285]. The total as spent costs includes 

overnight costs, owner’s costs and financing costs. 

Table E-10. BECCS power plant capital cost estimate from NETL (Herron et al 2012) [285]. 

Case P.A.1 

Plant type 

Greenfield supercritical 

100% biomass 

Capture method Amine 

Capture rate 90% 

Total Overnight Cost [$/kW] 4216 

Total As Spent Costs [$/kW] 4781 

 

BECCS - O&M Estimates 

Estimates of BECCS O&M costs were made by applying the relative price difference between coal 

power plants with and without capture to dedicated biomass plants without capture, using 2018 data from 

NREL ATB [8]. Calculations are shown in Table E-11 and E-12. 

 

Table E-11. BECCS Fixed O&M Cost estimate based on NREL ATB [8]. 

Coal plant [$/kW] 40 

Coal w/ CCS [$/kW] 58 

Difference 18 

Bio dedicated [$/kW] 123 

BECCS [$/kW] 141 
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Table E-12. BECCS Variable O&M Cost estimate based on NREL ATB [8]. 

Coal plant [$/MWh] 4 

Coal w/ CCS [$/MWh] 11 

Difference 7 

Bio dedicated [$/MWh] 5 

BECCS [$/MWh] 12 

BECCS [M$/PJ] 3.33 

BECCS - Capture rate and negative emissions 

A capture rate of 90% was assumed based on NETL [285]. Based on GREET [334], 103.91 kt CO2 are 

emitted per PJ of biomass. I assume that conventional biomass power plants are carbon-neutral so that the 

emitted CO2 would be reabsorbed by the biomass used to supply the power plant. For BECCS plants, I 

assume that 90% of those emissions are stored in the subsurface. This equates to an emission factor of – 

93.52 kt CO2/PJ. 

Table E-13. Bioenergy emissions and performance from GREET 2019, based on “Switchgrass (Steam 

Turbine) Power Plant” [334]. 

Efficiency 25% GREET [334] 

Emissions [kt CO2 /PJ-out] 415.63 GREET [334] 

Emissions [kt CO2 /PJ-in] 103.91 Calculated 
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Based on the expected range of capital costs, this capture rate equates to costs between $571 and $1400 

per tonne of CO2/year (Table E-14). 

Table E-14. BECCS capital costs in terms of negative emissions. 

 Low High 

Plant size [kW] 1 1 

Capital Cost [$/kW] 4781 [285] 11714 [287] 

Capacity Factor [%] 61 [8] 61 [8] 

Annual power produced [kWh] 5344 5344 

Efficiency [%] 21.5 [360] 21.5 [360] 

Annual biomass consumed [MWh] 24.86 24.86 

Annual biomass consumed [GJ] 89.5 89.5 

Negative emission rate [kt CO2 /PJ] -93.52 -93.52 

Annual negative emissions [t CO2] 8.37 8.37 

Capital cost [$/t CO2] 571 1400 

 

Negative Emissions Technology - Direct Air Capture (DAC) 

DAC - Operation in Temoa 

In order to model Direct Air Capture in Temoa, it was modeled as a power plant. The power plant is 

given an efficiency of 100% to simplify calculations, however the “electricity” output by DAC then goes 

through unique transmission lines with 99.99999% losses, effectively preventing it from being used to 

generate electricity. 
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DAC - Negative emissions 

DAC is modeled as a consumer of natural gas in Temoa, therefore the negative emission potential of 

DAC is calculated in Table E-15 based on the consumption of natural gas. 

Table E-15. DAC operation and negative emissions for a unit process based on Keith et al. [361]. 

Quantity Value Reference 

Atmospheric CO2 captured [t-CO2] 1.0 Keith et al. [361] 

Natural gas consumption [GJ] 8.81 Keith et al. [361] 

Natural gas emissions captured [t-CO2/GJ] 0.0503 EIA Emission limit (50.3 kt CO2/PJ) 

Total CO2 to storage [t-CO2] 1.44 Calculated (For comparison, Keith et al. projects 1.3—1.5 t CO2) 

CO2 to storage per natural gas [t-CO2/GJ] 0.16345 Calculated 

CO2 to storage per natural gas [kt-CO2/PJ] 163.45 Calculated 

 

DAC - Costs 

Keith et al. estimates the cost of DAC in the near-term and after further development [361]. Estimates 

of the capital and O&M costs for Temoa are shown in Table E-16 and Table E-17. Keith et al. assumes no 

fixed O&M costs, only variable. In Temoa, I use the average of the Early and Nth plant for the variable 

O&M cost. These calculations assume a capacity factor of 90% and 100% efficiency. 

 

Table E-16. DAC plant capital costs based on Keith et al. [361]. 

System cost Early Plant Nth Plant Reference 

CAPEX [M$] 1126.8 779.5 Keith et al. [361] 

Capacity [atmospheric MT-CO2/year] 0.98 0.98 Keith et al. [361] 

Capacity [atmospheric t-CO2/s] 0.0345 0.0345 Calculated 

Natural gas consumption rate [GJ/t-CO2] 8.81 8.81 Keith et al. [361] 

Capacity in terms of natural gas consumption [GJ/s] [GW] 0.3042 0.3042 Calculated  

CAPEX [M$/GW = $/kW] 3704 2562 Calculated 

CAPEX [$/t CO2] 1150 795 Calculated 
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Table E-17. DAC variable costs based on Keith et al. [361]. 

Quantity Early Plant Nth Plant Reference 

Variable O&M [$/atmospheric t-CO2] 42 30 Keith et al. [361] 

Heat input [GJ / atmospheric t-CO2] 8.81 8.81 Keith et al. [361] 

Variable O&M [$/GJ = M$/PJ] 4.767 3.405 Calculated 

 

Long Duration Storage - Offshore Compressed Air Energy Storage (OCAES) 

OCAES - High capital cost 

An OCAES capital cost of 9191 $/kW was estimated in Table E-18 based on Mouli-Castillo 2019 [46]. 

Table E-18. OCAES mid-range capital cost estimates from Mouli-Castillo et al. [46]. Conversion from pounds 

to dollars from [402]. 

Component Cost 

Wells [2015 million £] 5550 

Turbine [2015 million £] 93 

Compressor [2015 million £] 607 

Total [2015 million £] 6250 

Power Output [MW] 1020 

CAPEX [2015 £/kW] 6130 

CAPEX [2015 $/kW] 9191 

 

OCAES - Low capital cost 

The authors estimate that the capital cost of a 200 MW OCAES system would cost $1457/kW, fixed 

O&M would be 16.3 $/kW and variable O&M 9.24 $/kWh (equal to 2.57 M$/PJ) [262]. 
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Long Duration Storage - Vanadium flow batteries (VFB) 

VFB - High capital cost 

Beuse et al. 2020 estimates that the capital costs of VFBs can be calculated as,  [258] 

Cost = 268 $/kWh + 1101 $/kW     (E-1) 

Therefore, a 10-hour system would cost 3781 $/kW. 

VFB - Low capital cost 

Li et al. 2020 estimates that a 10 hour system costs 182 $/kWh, equivalent to 1820 $/kW [376]. 

Biomass Resources 

An evaluation of the available biomass energy in Virginia was made by combining EPA estimates of 

energy density [372] with annual harvest from the NREL Biofuel Atlas [371], summarized in Table E-19. 

Table E-19. Estimate of biomass energy available in Virginia by fuel type. 

Crop Energy Density [372] Annual Harvest [371] Harvest Energy Content 

[-] [Btu/lb] [1000 Dry t/year] [PJ] 

Primary Mill Residue 8750 1883 38.33 

Corn Stover 7560 255 4.48 

Wheat Straw 6840 157 2.50 

Forest Residues 8570 418 8.33 

Urban Wood 6150 1308 18.71 

Secondary Mill Residues 8750 269 5.48 

Total - - 77.83 
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