
Explainability in GNNs: A Step Towards Global Self-Explainable GNNs

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Wendy Zheng

Spring 2024

Technical Project Team Members

Yinhan He

Carter Bassler

Alexander Shen

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Jundong Li, Department of Computer Science

Explainability in GNNs: A Step Towards Global Self-Explainable
GNNs

Wendy Zheng
Computer Science

University of Virginia
Charlottesville, Virginia, USA

ncd9cf@virginia.edu

ABSTRACT
Graph Neural Networks (GNNs) offer extensive capabilities regard-
ing graph-based tasks. Despite existing efforts, the explainability
of predictions made by GNNs is still underexplored. It is uncertain
how GNNs obtain specific predictions for certain inputs, which
can raise ethical concerns when using GNNs in critical real-world
situations, such as healthcare and financial analysis. One approach
to this problem is graph counterfactual explanations (GCE), i.e.,
finding the minimal modification to the input graph so that the
GNN changes its prediction to an alternative class. Current GCE
methods are mainly post hoc, meaning they rely on an external
explainer model to interpret GNN output. However, since the ex-
plainer and the GNN are trained separately, this poses the question
of whether the explainer is correctly learning because it lacks access
to the learning trajectory of the GNN. Furthermore, global counter-
factual explanations, which help explain many input graphs, give
deeper insight into the model’s average behavior, making them
more useful for interoperability than local, i.e., individual, expla-
nations. In this work, we propose Global Counterfactual-based
Self-explainable GNN (GCSGNN). GCSGNN is self-explainable; the
model is simultaneously learning to predict graph labels and ex-
plain the predictions. The framework learns the latent patterns of
the data and the modifications to those patterns that cause the GNN
to change its predictions. As GCSGNN works in the latent space, it
includes a decoder to map the latent space back to the input space
to make the explanations more human-interpretable. This approach
allows the explanations to reveal the essence of the GNN prediction
scheme more effectively. Moreover, using latent patterns allows for
global explanations, which enhances the human interpretability of
the acquired graph explanations.

1 INTRODUCTION
Graph Neural Networks (GNNs) have many real-world applica-
tions, such as in finance [10], medical diagnosis [1], and traffic
forecasts [6], achieving substantial performance in handling graph-
structured data. However, GNNs lack explainability, as they are
often considered black-box models, meaning it is difficult to under-
stand how the model obtained its output for a specific input graph.
Thus, there is a significant concern when using GNNs in critical
fields where a small error can result in dangerous consequences.

Current works provide various approaches to explain GNN pre-
dictions [5, 7–9, 11], with one of them being graph counterfactual
explanations (GCE). GCE aims to find the minimal modification to
an input graph predicted as undesired such that the model would
change its prediction to the desired class given the input graph with
modifications (i.e., the counterfactual graph). The modification here

can be a combination of adding or removing edges and nodes or
changing the attributes of nodes and edges. The undesired and
desired classes are predefined depending on real-world rules. For
example, if given the chemical composition of a harmful drug, the
counterfactual would be the minimal changes to make the drug
harmless, the desired class.

Although existing GCE methods provide sufficient explanations
for model outputs, they have two main limitations: (1) External
Explainer Model. Most GCE approaches use an external explainer
model to generate counterfactuals and treat the GNN as an oracle [7,
8, 12]. The explanations and the predictions are learned separately,
raising the question of whether the explainer model is correctly
learning because it lacks access to the learning trajectory of the
GNN. Therefore, the explainer model can misinterpret the true
explanations and generate poor-quality counterfactuals. (2) Lack
of Global Explainability. Global explanations are where each
explanation can apply to many input graphs, providing insight
into the patterns in the GNN predictions. Local explanations offer
counterfactuals for each graph, but using a local explanation to
explain a different graph might not make sense.

As a solution, we propose GCSGNN (Global Counterfactual-
based Self-explainable GNNs). GCSGNN counteracts the first lim-
itation as it is self-explainable, which means it is simultaneously
learning to predict and explain. The built-in interpretability re-
moves the need for an external explainer, and the explanations and
predictions are tightly coupled, i.e., the learning trajectory of the
predictor influences the explainer module and vice versa). Thus,
the model can better learn the significant information in the graphs,
providing better quality counterfactuals. The proposed framework
also overcomes the second limitation by learning the significant
sub-patterns in the latent embeddings; it aims to recognize the class-
specific features that cause the model to classify it as a particular
class and replace it with counterfactual sub-patterns to change the
model prediction. Thus, GCSGNN gives a global approach to gener-
ating counterfactuals by learning the patterns in GNN predictions.

Our main contribution is that we propose the novel model GCS-
GNN, which provides global self-explanable graph counterfactual
explanations. It allows for built-in interpretability of the model,
addressing the limitations of post-hoc GCE methods.

2 RELATEDWORKS
2.1 Counterfactual-based Self-Explainable

Networks for Tabular Data
Current works typically combine the neural network and the coun-
terfactual explainer model into one pipeline and simultaneously
train the two. For example, CounterNet [3] comprises three simple

multilayer perceptrons (MLPs): an encoder, a predictor, and a gen-
erator. The encoder maps the input data to the latent space to get
the latent embeddings, which are then passed to the predictor to
obtain the prediction. Lastly, the generator uses latent embeddings
and the prediction to generate counterfactuals. VCNet [4] extends
CounterNet by replacing the counterfactual generator MLP with
a conditional variational autoencoder (cVAE). In these works, the
explainer component is decoupled from the neural network in that
its outputs do not influence the rest of the model. On the other
hand, GCSGNN unifies the counterfactual generation process with
the encoder and decoder, meaning that the explanations can affect
the learning process of these components.

2.2 Global Prototype-based Self-Explainable
GNNs

The field of global self-explainable GNNs is mainly understudied.
Some recent works use prototypes as a global explanation method.
Prototypes are exemplar graphs that are representative of all the
data. ProtGNN [13] learns the latent representation of prototypes
by minimizing the similarity between the embeddings of the input
graphs and the prototype embeddings. The authors design the loss
objective to ensure that the prototype embeddings are diverse and
representative of the data. Lastly, the authors use the Monte Carlo
tree search algorithm to project the prototype embeddings onto
the input graphs to get the graph representations of the prototypes.
ProtoVAE [2] builds on top of ProtGNN by incorporating an au-
toencoder. By doing so, the framework uses the decoder to obtain
the graph representation of the prototype embeddings and elimi-
nate the prototype projection step. Like these methods, GCSGNN
uses learnable parameters to learn the significant inherent sub-
patterns in the latent embeddings and counterfactual sub-patterns
to generate counterfactual latent embeddings.

3 METHODOLOGY
3.1 Model Overview
Fig. 1 gives an overview of GCSGNN. The framework has four
components: a graph encoder 𝑓𝑒 , a graph decoder 𝑓𝑑 , a graph pre-
dictor 𝑓𝑝 , and the Global Counterfactual Generation module 𝑓𝑐 . We
define the 𝑖th input graph with 𝑛 nodes as 𝐺𝑖 = (𝑋𝑖 , 𝐴𝑖 , 𝐸𝑖) where
𝑋𝑖 ∈ R𝑛×𝑑𝑋 ,𝐴𝑖 ∈ R𝑛×𝑛 , and 𝐸𝑖 ∈ R𝑛×𝑛×𝑑𝐸 . Here, 𝑑𝑋 is the dimen-
sion of the node attributes, and 𝑑𝐸 is the dimension of the edge
attributes. 𝐺𝑖 has the label 𝑦𝑖 ∈ {0, 1}.

First, 𝑓𝑒 maps the input graph 𝐺𝑖 to a graph embedding ℎ𝑖 of
length 𝑑𝑒 . Then, 𝑓𝑐 applies the learnable masks𝑀 and counterfac-
tual sub-patterns 𝑆 to generate the counterfactual latent embed-
dings ℎ̂𝑖 .𝑀 ∈ R𝑑𝑚×𝑑𝑒×𝑑𝑠 where 𝑑𝑚 is a hyperparameter equal to
the number of classes 𝑐 times the number of masks / sub-patterns
per class 𝑠 and 𝑑𝑠 is the sub-pattern dimension. It learns the signifi-
cant inherent sub-patterns of each class in the graph embeddings.
𝑆 ∈ R𝑑𝑚×𝑑𝑠 learns the counterfactual sub-patterns to replace the
inherent ones. Each sub-pattern in 𝑆 has a one-to-one correspon-
dence to a mask in𝑀 . Lastly, the graph decoder reconstructs the
original input graphs𝐺 ′ and the counterfactual graphs 𝐺 , and the
graph predictor classifies each embedding.

3.2 Global Counterfactual Generation
The Global Counterfactual Generation module consists of two com-
ponents: Significant Inherent Sub-pattern Filtering (SISF) and Coun-
terfactual Sub-pattern Substitution (CSS). For a graph embedding
ℎ𝑖 , SISF masks the inherent sub-patterns in ℎ𝑖 with 𝑀 to get the
filtered embeddings ℎ′

𝑖
∈ R𝑑𝑚×𝑑𝑒 :

ℎ′𝑖, 𝑗 = ℎ𝑖 × (𝐼𝑑𝑒 −𝑀𝑗 ×𝑀𝑇
𝑗),∀𝑗 ∈ {1, ..., 𝑑𝑚} (1)

Then, CSS uses 𝑆 to replace the masked parts with the counter-
factual sub-patterns to generate the counterfactual embeddings
ℎ̂𝑖 ∈ R𝑑𝑚×𝑑𝑒 :

ℎ̂𝑖, 𝑗 = ℎ𝑒𝑖, 𝑗 + (𝑆 𝑗 ×𝑀𝑇
𝑗),∀𝑗 ∈ {1, ..., 𝑑𝑚} (2)

3.3 Graph Decoder
The graph decoder in GCSGNN takes either the graph embedding or
counterfactual embedding ℎ𝑖 and obtains its graph representation
𝐺 ′
𝑖
= (𝑋 ′

𝑖
, 𝐴′

𝑖
, 𝐸′

𝑖
). The implementation uses three MLPs: a shared

decoder, a node attribute decoder, and an edge attribute decoder.
The input embedding ℎ𝑖 is first passed to the shared decoder and
then to the node attributes decoder and edge attributes decoder,
respectively, to get the corresponding attributes as logits, which are
continuous. As 𝐺 ′

𝑖
should have discrete values, we create one-hot

vectors for the node and edge attributes such that the largest entry
is assigned 1 and the other entries are assigned 0 to obtain𝑋 ′

𝑖
and 𝐸′

𝑖
.

Furthermore, because the edge attributes matrix and the adjacency
matrix should correlate with each other, the adjacency matrix is
constructed with the following:

𝐴′
𝑖 𝑗𝑘

= 1 − 𝜎 (𝐸′
𝑖, 𝑗𝑘,𝑙=0),∀𝑖 ∈ {1, ..., 𝐵} ∀𝑗, 𝑘 ∈ {1, ..., 𝑛} (3)

where B is the batch size. We use sigmoid to obtain the probability
of each edge attribute, and the adjacency matrix equals 1 minus the
probability that the edge attribute is 0.

3.4 Model Objective Function
The loss objective of the model consists of 6 components: graph
prediction loss (𝐿𝑔), counterfactual prediction loss (𝐿𝑐), mask loss
(𝐿𝑚), intra-pattern distance (𝐿𝑖), reconstruction loss (𝐿𝑟), and graph
counterfactual distance (𝐿𝑑).

𝐿 = 𝐿𝑔 + 𝐿𝑐 + 𝐿𝑚 + 𝐿𝑖 + 𝐿𝑟 + 𝐿𝑑 (4)

𝐿𝑔 aims to optimize the probability that the prediction from the
graph predictor 𝑓𝑝 matches the input graph label 𝑦𝑖 . Thus,

𝐿𝑔 =
1
𝐵

𝐵∑︁
𝑖=1

− log 𝑃 (𝑓𝑝 (ℎ𝑖) = 𝑦𝑖) (5)

On the other hand, 𝐿𝑐 forces the counterfactual embeddings to learn
the class label 𝑌𝑗 ∈ {0, 1} assigned to each mask / sub-pattern:

𝐿𝑐 =
1
𝑠𝐵

𝐵∑︁
𝑖=1

𝑑𝑚∑︁
𝑗=1

− log 𝑃 (𝑓𝑝 (ℎ′𝑖, 𝑗) = 𝑌𝑗) (6)

𝐿𝑚 and 𝐿𝑖 are used to influence the learnable parameters𝑀 and
𝑆 . Because𝑀 is a selection matrix that selects the values to mask

2

Significant
Inherent

Sub-pattern
Filtering
(SISF)

Counterfactual
Sub-pattern
Substitution

(CSS)

Predictor

...
Input Graphs

...

0 1
0.234 0.766
0.638 0.362

... ...
0.841 0.159

0 1
0.148 0.852
0.367 0.633

... ...
0.426 0.574

...

Matrix Filtering
...

...

Sub-pattern
Substitution

...

Encoder

Original Graph
Embeddings

Global Counterfactual Generation

Decoder

...

Decoded Input
Graphs

Decoded Counterfactual
Graphs

Input Graph
Predictions

Counterfactual
Graph Predictions

Global Counterfactual Generation
SISF

Removed
Node
Removed
Edge

Added
Node
Added
Edge

Counterfactual
Graph Embeddings

...

Original Graph
Embeddings

CSS

.....
.

...
...

.....
.

...
...

...

Figure 1: A overview of the proposed GCSGNN model.

in the embeddings, each mask can only have a 𝑑𝑠 number of ones;
otherwise, the masks would modify unrelated parts. Therefore,

𝐿𝑚 =
1
𝑠𝑑𝑠

©«
𝑑𝑚∑︁
𝑗=1

𝑑𝑠∑︁
𝑙=1

(
���max

𝑘
𝑀𝑗,𝑘𝑙 − 1

��� + ���� ©«
𝑑𝑒∑︁
𝑘=1

|𝑀𝑗,𝑘𝑙 |
ª®¬ − 1

����)ª®¬ (7)

𝐿𝑖 is to encourage diversity between the masks / sub-patterns of the
same class by minimizing the dot product between different mask
and sub-pattern pair. To do so, we first expand the sub-patterns
by multiplying it with the masks: 𝑠𝑚 = 𝑆 ×𝑀𝑇 . This ensures that
the positioning of the sub-patterns are incorporated. Then, 𝐿𝑖 is
calculated with the following:

𝐿𝑖 =
1
𝑠2

1∑︁
𝑎=0

���𝑠𝑚𝑌=𝑎
× 𝑠𝑚𝑇

𝑌=𝑎
− 𝐼𝑠 (𝑑𝑌=𝑎)

��� (8)

where 𝑑 =
∑𝑑𝑒
𝑘=1 𝑆

2
𝑗,𝑘𝑙

,∀𝑗 ∈ {1, ..., 𝑑𝑚} ∀𝑙 ∈ {1, ..., 𝑑𝑠 }. Forcing the
diagonal to equal the squared sum of each pair ensures that values
in𝑀 are binary.

The last two components influence the decoder. 𝐿𝑟 is the en-
tropy loss between 𝑋𝑖 , 𝐴𝑖 , 𝐸𝑖 and 𝑋 ′

𝑖
, 𝐴′

𝑖
, 𝐸′

𝑖
. It uses weights (i.e.,

𝑤𝐴,𝑤𝑋 ,𝑤𝐸) as the graph data are sparse, meaning it consists mostly
of zeros.

𝑅𝐴𝑖,𝑗𝑘
= 𝐴𝑖, 𝑗𝑘 log(𝐴′

𝑖, 𝑗𝑘
) + (1 −𝐴𝑖, 𝑗𝑘) log(1 −𝐴′

𝑖, 𝑗𝑘
)

𝐿𝑟,𝐴 =
1

𝐵𝑛2

𝐵∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

(
−𝑤𝐴,𝑗𝑘 · 𝑅𝐴𝑖,𝑗𝑘

)
𝑅𝑋𝑖,𝑗

= log ©«
exp𝑋 ′

𝑖, 𝑗,𝑘=𝑋𝑖,𝑗∑𝑑𝑋 −1
𝑘=0 exp𝑋 ′

𝑖, 𝑗,𝑘

ª®¬
𝐿𝑟,𝑋 =

1

𝐵 · ∑𝑑𝑋 −1
𝑘=0 𝑤𝑋,𝑘

𝐵∑︁
𝑖=1

𝑛∑︁
𝑗=1

(
−𝑤𝑋,𝑋𝑖,𝑗

· 𝑅𝑋𝑖,𝑗

)
𝑅𝐸𝑖,𝑗𝑘 = log ©«

exp𝐸′
𝑖, 𝑗𝑘,𝑙=𝐸𝑖,𝑗𝑘∑𝑑𝐸−1

𝑙=0 exp𝐸′
𝑖, 𝑗𝑘,𝑙

ª®¬
𝐿𝑟,𝐸 =

1

𝐵 · ∑𝑑𝐸−1
𝑙=0 𝑤𝐸,𝑙

𝐵∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

(
−𝑤𝐸,𝐸𝑖,𝑗𝑘 · 𝑅𝐸𝑖,𝑗𝑘

)
𝐿𝑟 = 𝐿𝑟,𝐴 + 𝐿𝑟,𝑋 + 𝐿𝑟,𝐸

(9)

𝐿𝑑 aims to force the decoded counterfactual graphs𝐺𝑖 = (𝑋𝑖 , 𝐴𝑖 , 𝐸𝑖)
to be more similar to 𝐺 ′ = (𝑋 ′, 𝐴′, 𝐸′).

𝐷
�̂�𝑖 𝑗 ,𝑎

=
1
𝑑𝑋

𝑛∑︁
𝑘=1

©«
𝑑𝑋 −1∑︁
𝑙=0

(𝑋
𝑌=𝑎,�̂�=𝑎,𝑖 𝑗𝑘𝑙

− 𝑋 ′
�̂�=𝑎,𝑖𝑘𝑙

)2ª®¬
1/2

𝐷
�̂�𝑖 𝑗 ,𝑎

=
1
𝑛

(
𝑛∑︁

𝑘=1

𝑛∑︁
𝑙=1

(
𝐴
𝑌=𝑎,�̂�=𝑎,𝑖 𝑗𝑘𝑙

−𝐴′
�̂�=𝑎,𝑖𝑘𝑙

)2)1/2
𝐷
𝐸𝑖 𝑗 ,𝑎

=
1

𝑛𝑑𝐸

𝑛∑︁
𝑘=1

𝑛∑︁
𝑙=1

©«
𝑑𝐸−1∑︁
𝑚=0

(
𝐸
𝑌=𝑎,�̂�=𝑎,𝑖 𝑗𝑘𝑙𝑚

− 𝐸′
�̂�=𝑎,𝑖𝑘𝑙𝑚

)2ª®¬
1/2

𝐿𝑑 =
1

𝐵𝑛𝑠

1∑︁
𝑎=0

𝐵∑︁
𝑖=1

𝑠∑︁
𝑗=1

𝐷
�̂�𝑖 𝑗 ,𝑎

+ 𝐷
�̂�𝑖 𝑗 ,𝑎

+ 𝐷
𝐸𝑖 𝑗 ,𝑎

(10)

where 𝑦 is the list of the counterfactual graph labels, i.e., the oppo-
site of the original labels 𝑦.

4 CONCLUSION
This paper explores a new approach to graph counterfactual ex-
planations: GCSGNN. It uses learnable parameters and the loss
objective to learn to simultaneously generate counterfactuals and
make predictions to couple the two processes tightly. However,
some areas require future work. One issue is that the current frame-
work may be unstable as it is likely dependent on the initial random
state of the parameters. A potential solution is to investigate the the-
oretical foundation behind generating counterfactuals to obtain the
best values. Another possible direction is to unify further counter-
factual generation and graph prediction by using the explanations
to determine the graph predictions. We hope our contributions will
pioneer a new avenue for global self-explainable counterfactual-
based models.

5 ACKNOWLEDGEMENTS
This endeavor would not have been possible without Yinhan’s
contributions to developing the framework and his guidance. In
addition, I am grateful to Professor Jundong Li for his mentorship.
Lastly, I would like to thank Carter Bassler and Alexander Shen for
all their efforts throughout the process.

3

REFERENCES
[1] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton

Fookes, and Lars Petersson. 2021. Graph-Based Deep Learning for Medical
Diagnosis and Analysis: Past, Present and Future. Sensors 21, 14 (July 2021), 4758.
https://doi.org/10.3390/s21144758

[2] Srishti Gautam, Ahcene Boubekki, Stine Hansen, Suaiba Amina Salahud-
din, Robert Jenssen, Marina MC Höhne, and Michael Kampffmeyer. 2022.
ProtoVAE: A Trustworthy Self-Explainable Prototypical Variational Model.
arXiv:2210.08151 [cs.LG]

[3] Hangzhi Guo, Thanh Hong Nguyen, and Amulya Yadav. 2023. Counter-
Net: End-to-End Training of Prediction Aware Counterfactual Explanations.
arXiv:2109.07557 [cs.LG]

[4] Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, and Alexan-
dre Termier. 2022. VCNet: A self-explaining model for realistic counterfactual
generation. arXiv:2212.10847 [cs.AI]

[5] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi
Chang. 2020. GraphLIME: Local Interpretable Model Explanations for Graph
Neural Networks. arXiv:2001.06216 [cs.LG]

[6] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traffic forecasting:
A survey. Expert Systems with Applications 207 (Nov. 2022), 117921. https:

//doi.org/10.1016/j.eswa.2022.117921
[7] Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke, and Fabrizio

Silvestri. 2022. CF-GNNExplainer: Counterfactual Explanations for Graph Neural
Networks. arXiv:2102.03322 [cs.LG]

[8] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. 2022. Inter-
preting Graph Neural Networks for NLP With Differentiable Edge Masking.
arXiv:2010.00577 [cs.CL]

[9] Yong-Min Shin, Sun-Woo Kim, andWon-Yong Shin. 2024. PAGE: Prototype-Based
Model-Level Explanations for Graph Neural Networks. arXiv:2210.17159 [cs.LG]

[10] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. 2022. A Review on
Graph Neural Network Methods in Financial Applications. arXiv:2111.15367 [q-
fin.ST]

[11] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. GNNExplainer: Generating Explanations for Graph Neural Networks.
arXiv:1903.03894 [cs.LG]

[12] Jiaxing Zhang, Zhuomin Chen, Hao Mei, Dongsheng Luo, and Hua Wei. 2023.
RegExplainer: Generating Explanations for Graph Neural Networks in Regression
Task. arXiv:2307.07840 [cs.LG]

[13] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. 2021. Prot-
GNN: Towards Self-Explaining Graph Neural Networks. arXiv:2112.00911 [cs.LG]

4

https://doi.org/10.3390/s21144758
https://arxiv.org/abs/2210.08151
https://arxiv.org/abs/2109.07557
https://arxiv.org/abs/2212.10847
https://arxiv.org/abs/2001.06216
https://doi.org/10.1016/j.eswa.2022.117921
https://doi.org/10.1016/j.eswa.2022.117921
https://arxiv.org/abs/2102.03322
https://arxiv.org/abs/2010.00577
https://arxiv.org/abs/2210.17159
https://arxiv.org/abs/2111.15367
https://arxiv.org/abs/1903.03894
https://arxiv.org/abs/2307.07840
https://arxiv.org/abs/2112.00911

	Abstract
	1 Introduction
	2 Related Works
	2.1 Counterfactual-based Self-Explainable Networks for Tabular Data
	2.2 Global Prototype-based Self-Explainable GNNs

	3 Methodology
	3.1 Model Overview
	3.2 Global Counterfactual Generation
	3.3 Graph Decoder
	3.4 Model Objective Function

	4 Conclusion
	5 Acknowledgements
	References

