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Abstract 

Recent developments in both the quality and processing of Interferometric Synthetic 

Aperture Radar (InSAR) data have allowed for remote analysis of ground deformation 

with unprecedented accuracy. SAR images acquired via the COSMO-SkyMed satellite 

constellation provide spatial resolutions on the order of a couple of meters per pixel; with 

a reasonable number of these images, SAR-processing algorithms known as PSInSAR 

and SqueeSAR can yield ground deformation information with millimeter accuracy. In 

this thesis, I present two novel approaches which utilize the aforementioned ground 

displacement measurements in order to detect and monitor geological hazards known 

colloquially as sinkholes. The first algorithm employs a graph theoretic approach to 

accomplish this goal, while the second utilizes a spatiotemporal parametric matching 

approach; both of these methods demonstrate strong efficacy in locating sinkholes from 

satellite-based InSAR-derived data. 
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1. Introduction 

Headlines describing an anthropormic earth opening up and swallowing people are 

quite the attention-grabber, as are the geological hazards which cause them—sinkholes. 

The term ‘sinkhole’ refers to a ground depression which occurs in Karst geologies; Karst 

areas are composed of carbonate rocks such as limestone, dolomite, etc. The action of 

slightly acidic water leads to the dissolution of these underlying rocks, which in turn can 

eventually lead to a sudden or gradual formation of a sinkhole. These phenomena can 

deleteriously impact housing, transportation, and various infrastructures—sometimes 

even in a life-threatening way. Importantly, it is possible to locate these sinkholes before 

they collapse, and remediate them accordingly [1]. In this thesis, I describe two automatic 

approaches which aim to accomplish this goal. 

1.1 InSAR-based General Detection of Geohazards 

There are numerous potential routes which can be taken in an effort to detect 

sinkholes; while the foremost amongst these—electrical resistivity, ground penetrating 

radar, microgravimetry, and cross-hole tomography [2]—are certainly viable options in 

estimating subsurface soil/rock/void characteristics and locations, they present salient 

disadvantages in terms of speed, efficacy, and coverage. However, another method is 

available in the pursuit of sinkhole location and monitoring: Interferometric Synthetic 

Aperture Radar, InSAR. In particular, satellite-based InSAR is well-suited for this 

application, as it is capable of nearly instantaneously surveying large areas with a reliable 

repeat cycle. This is accomplished by acquiring at least three SAR images of the same 
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scene at different times, then calculating the phase difference between all combinations 

of these images—once these resulting images have been processed (phase unwrapping, 

atmospheric corrections, etc) it is possible to determine the elapsed vertical displacement 

of the ground with respect to the line of sight of the satellite to an accuracy of centimeters 

[3]. 

In this study, we employ SAR data which has been processed much more extensively 

than simply combinatorially evaluating SAR images. With the application of an 

algorithm developed by a research partner, TRE, known as PSInSAR/SqueeSAR, we are 

able to utilize displacement data which provides information to an accuracy of 

millimeters. In short, these proprietary algorithms process large stacks of SAR images 

(on the order of 20+) of a scene, identify permanent scatterers in the scene, and use these 

to correct various distortions such as atmospheric variations [4]. Additionally, the 

algorithm also identifies statistically homogenous regions which exhibit similar scattering 

characteristics (distributed scatterers) and is able to extract accurate displacement 

characteristics for that area [5]. The result of this processing is a point cloud of 

spatiotemporal displacement data where each spatial point corresponds to either a PS 

(permanent scatterer) or DS (distributed scatterer); moreover, this point cloud is both 

sparse and non-uniformly distributed. This is the finalized data upon which our 

algorithms operate. 

Hazard detection via satellite-based InSAR has seen some exposure in the literature; 

there are a couple of previous studies which have taken this approach. Paine et. alia [6] 

utilized InSAR in order to find subsiding locations of interest, then deployed 

microgravity measurements to further characterize those locations. The addition of 
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microgravimetry to finely characterize potential sinkholes is distinct from our study, 

where we defer to more generalized field verification carried out by a geologist. 

However, the process of acquiring these microgravity measurements is painstaking and 

requires direct access to a site—i.e. one must physically drive over the location, after 

setting up calibration stations on either side of the measurement path. Additionally, the 

aforementioned study only uses a single SAR interferogram upon which potential 

detections are identified; as such, this interferogram provides rough displacements on the 

order of centimeters. Our study employs a much more sophisticated process in addition to 

a large stack of SAR images, and we operate upon a time-series of displacement 

information accurate to the order of millimeters. 

Another group [7] employed InSAR in Arizona in order to measure subsidence at 

various sites of interest. Their study used three InSAR images acquired over three years, 

and after applying phase-unwrapping, DEM correction, and speckle reduction techniques, 

claimed an ability to measure displacements on the order of millimeters. The authors 

identified four potential subsidence features with their method. However, this method 

does not make any efforts to numerically characterize any of these features, nor does it do 

so automatically. Additionally, the resolution of the SAR images used is on the order of 

30m x 30m, and combined with their application of a spatial moving average filter in 

smoothing noise, yields a very low amount of spatial information. This is in stark contrast 

to our SAR images and respective processing, which yield a pixel resolution of a couple 

of meters. 
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2. Automatic Sinkhole Detection via Graph Cuts 

In this section, I present the first of two potential avenues for the automatic detection 

of sinkholes; in both cases, this detection is carried out upon InSAR image stacks 

processed with the aforementioned PSInSAR and SqueeSAR algorithms. Thus, the 

following approach deals with the sparse, nonuniformly-sampled, spatio-temporal 

displacement point clouds. 

2.1 Graph Cuts 

The sparse and nonuniform nature of our data precludes the possibility of directly 

employing typical image processing techniques—however, approached from a graph-

theoretic perspective, these Cartesian aspects of the data become irrelevant. One can 

efficiently and meaningfully process as well as make conclusions with the rich set of 

tools which graph theory provides. 

Specifically, we employ a powerful subset of graph theory known as the graph cut. A 

graph cut is a segmentation of an arbitrary graph via the ‘cutting’ of edges; the optimal 

cut is defined as that which yields minimum energy 

 ���� = � �(	, �)
�∈�,�∈�

 
( 2.1 ) 

where A and B are the disjoint sets of vertices created by the cut, and w(u,v) is the weight 

of a given edge between vertices (u,v). Typically, the energy of a cut is expanded to 

include a measure of association between the ‘cut’ sets [8] A and B—this promotes 

spatial coherence, preventing small, isolated vertices from being unnecessarily cut away. 

This expansion is sometimes termed the normalized cut: 
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 ����� = ����(�, �)�����(�, �) +
����(�, �)�����(�, �) 

( 2.2 ) 

and 

 �����(�, �) = � �(	, �)
�∈�,�∈�

 
( 2.3 ) 

 �����(�, �) = � �(	, �)
�∈�,�∈�

 
( 2.4 ) 

In ( 2.3 ) and ( 2.4 ), z is any other vertex in the set of all vertices, V.  

Alternatively, the min-cut partition can be found via its strong optimization dual, 

maximizing flow in the graph (max-flow). Flow can most intuitively be grasped in terms 

of a water analogy: edges function as pipes for flow, with capacities for flow equal to 

their respective weights. Predetermined nodes called sources produce flow, while nodes 

termed sinks absorb flow. With the aid of a clever labeling algorithm, calculating the 

state which maximizes the flow from the sources to the sinks also identifies the 

minimum-energy cuts in the graph [9]—the sources and sinks reside in disjoint sets A and 

B, respectively. Thus an equivalent expression to ( 2.2 ) is the functional [10] 

 ����(�) = ��� !" # + � �$ ,%&(" , "%)
$ ,%&∈' ∈(

 
( 2.5 ) 

where p and q are vertices, B is an associativity term, R is analogous to the traditional 

energy assigned to an edge, and λ is a weighting factor.  

2.2 Method 

In order to leverage graph cuts in the automatic analysis of our data, unsurprisingly 

one must first construct a graph. Doing so with a sparse point cloud is straightforward; 

the points are taken as vertices, and edges are derived via a Delaunay triangulation. The 
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two-dimensional Delaunay triangulation has the virtue of maximizing the minimum angle 

of each triangle produced—this avoids the creation of long ‘skinny’ triangles—in 

addition to creating non-overlapping edges. These two features result in an edge construct 

which accurately and densely reflects local neighborhood relationships within the point 

cloud. 

Segmentation via graph cuts is by no means a novel development; the approach is 

very well-represented in the literature. However, this segmentation is typically applied to 

the realm of images—the graph is constructed from rasterized data, and segmentation is 

based upon pixel intensity and location information. This presents a large informational 

disparity with respect to our unique data, which supports a much broader feature set. In 

addition to location information, each point also has an associated displacement time 

series, coherence, velocity, acceleration, physical area represented, etc. This amounts to a 

greatly expanded realm of possibilities for edge weighting schemes. As a result, it 

became possible to devise a clever edge-weighting functional which allows for the 

detection of spot-like, subsiding regions—i.e. sinkholes. In order to accomplish this, the 

energy functional must favor a minimum when on an edge which intersects the boundary 

of a spot-like, subsiding region. Thus, minimum-energy cuts will follow these boundaries 

and correspondingly segment suspected sinkholes in the desired fashion.  

Three major nodal properties were chosen to accurately indicate the presence of a 

sinkhole-forming region: 

• displacement difference between two nodes 

• displacement range 

• coherence 
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An edge which resides on the boundary of a spot will have a large displacement 

difference between its respective nodes, and will encompass a specified negative 

displacement range—essentially a level set. The coherence is a direct measure of the 

accuracy of a node, and thus helps to ensure that the most accurate points drive the 

detections (or lack thereof). For each edge, ei, connecting vertices (vi1,vi2) with 

displacements (di1,di2) where )*2 > )*1, and average coherence cohavg, we arrive at: 

 �./01(�23, �24) = 5 0 if	)23 < )� < )24;*<(|)24 − )�|, |)23 − )�|) ?@�?  ( 2.6 ) 

 �12AA = 1
|)24 − )23| ( 2.7 ) 

 �BCD2/.DC = 1
��ℎ/�F ( 2.8 ) 

 �DC0F�G = @?<HIℎ(?2) ( 2.9 ) 

Elength is included to give priority to cuts that pass through shorter, and thus more 

accurate, edges, in turn increasing the accuracy of the cut. In order to facilitate a 

meaningful combination of these energies, each energy is normalized and combined to 

form a total edge energy 

 � = J ∙ �./01 + L ∙ �12AA + M ∙ �BCD2/.DC + N ∙ �DC0F�G ( 2.10 ) 

where α, β, γ, and δ are inter-category weighting parameters. This energy intentionally 

omits an associativity measure, as spatial coherence is not a concern in this application—

individual points can potentially represent quite large areas, and potential detections 

which include only these points are also factoring in numerous neighborhood relations. 

Once this conglomerate energy function has been calculated, the minimum-energy 

graph cuts are then located. After fitting a spline to each cut to create smooth contours, 

the final segmentation of spot-like, subsiding regions is achieved. This entire process is 
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summarized in Figure 2-1, where α = 0.1, β = 1, γ = 2, δ = 0.5, and dc = -107 mm. An 

input displacement point cloud at time t is shown in (a), the graph structure and resulting 

edge weights are shown in (b), where the color scale retains the same proportional 

meaning. The segmentation of the subsiding spot-like region is then overlaid upon the 

graph structure (c) and the original point cloud (d). 

 
Figure 2-1 The graph cut segmentation process, pictorially. The input displacement point cloud (a) is 

transformed into a weighted graph structure (b), the optimal cuts located (c) and final segmentation overlaid (d) 

At this point, the algorithm is capable of detecting spot-like, subsiding regions at a 

specified time t and spot depth cutoff dc. In order to expand this analysis to include 

multiple significant displacement depths as well as temporal evolution of these suspected 

sinkholes, the sparse spot detection described above is implemented in a highly iterative 

fashion and its outputs are combinatorially analyzed. 

To this end, the algorithm seeks to capture both the global—in a time sense of the 

word—behavior of the point cloud in addition to its more mercurial aspects. In measuring 

these characteristics, one must still account for the level-set ‘slice’ aspect of the sparse 
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spot detection. Intuitively, subsiding spot-like regions which are consistently detected 

across numerous slice level sets present a more coherent threat; additionally, those 

regions which also present a detection for lower level sets are further increased in 

precedence. Thus, for a given temporal sample of interest, one can iteratively run the 

previously described sparse spot detector for a range of displacement level sets, and 

assign a proportionally higher detection value to those regions which are segmented 

across multiple levels—with an emphasis upon deeper levels. 

The algorithm proceeds as follows: 

• Measure temporally global behavior by analyzing the final displacement point 

cloud—normalize these displacements by time elapsed, then iteratively employ 

the spot-like subsiding region detector with a range of (normalized) displacement 

level sets dc1, dc2, …,dcN. Lastly, overlap detected regions and assign a detection 

value proportional to the number of overlaps which occur, as well as the deepest 

dc at which a region was first detected. 

• Measure temporal evolution by analyzing time-windowed, normalized 

displacements. For a dataset with M displacement time entries, employ a sliding 

temporal window which captures three contiguous displacement time entries. For 

each spatial point, calculate a normalized displacement via a linear regression in 

time. Next, iteratively employ the sparse spot detector (as in the global case) with 

a range of normalized displacement level sets dc1, dc2, …,dcN, and assign detection 

values for each window as described in the case above. 

• Combine the detection scores for the O − 3 windows via a simple average, then 

synthesize a final score with the combined window scores and the global score  
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QA20/D = R ∙ QFDS./D � T ∙ QU201SU, where ε and µ determine the proportional 

influence of each factor; this could depend upon the types of sinkholes being 

looked for, whether one wishes to include the influence of other temporal facets 

such as rainfall, etc. 

2.3 Results and Analysis 

2.3.1 Wink Sinks 

The aforementioned algorithm was tested upon a training dataset supplied by TRE 

Canada known as the Wink Sink dataset. 

This data is derived from 22 InSAR 

images acquired by the ERS satellites 

from 1992 through 1998; interestingly, the 

area imaged contains four notable 

geological hazards.  The first hazard, 

Wink 1, is the large sinkhole at top in 

Figure 2-2 which collapsed in 1980 

(before the data was acquired). The 

second, Wink 2, is also a massive sinkhole 

which had the virtue of collapsing after 

the acquisition period, in 2002. This 

sinkhole is the larger black spot in the middle of the image. The last two hazards, Winks 

3 and 4, do not present a large footprint in the visible light spectrum, but are strongly 

suspected to be sinkholes in a pre-collapse state. This 22-image stack was processed with 

Figure 2-2: Aerial imagery of the area imaged for the 

Wink dataset 
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PSInSAR and SqueeSAR analysis, yielding 95,513 data points over an area 55.37 km
2
 in 

size. 

Parsing this data cloud with the graph-cut-based segmentation algorithm yielded the 

sequence of images on the following page. Parameters implemented were as follows: α = 

0.1, β = 1, γ = 2, δ = 0.5, dc1 = -4mm/month, dc2 = -3.75 mm/month, … , dc15 = -0.5 

mm/month, ε = 0.25, and µ = 0.75. Figure 2-3a illustrates the detection score from the 

global analysis, Sglobal; scored regions are here depicted by the data points which lie in 

their interiors, and a score of 0 represents the most severe potential sinkhole detection. 

The global scoring picks up the collapsed sinkholes Wink 1 and Wink 2 well, and also is 

able to detect the suspected sinkholes Winks 3 and 4. Figure 2-3b shows the detection 

score from the temporal analysis, Swindow, which seems to support the results from the 

global analysis. However, this temporal version picks up far more of a response from 

other areas which perhaps exhibit behaviors associated with sinkholes but in a less 

coherent, significant way. Combined, these two corroborate the original main four 

detections (Figure 2-3c) while still giving some credence to other potential movements. 
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(a)  

(b) 

 
(c)  

(d) 

 
Figure 2-3: Temporal, graph-cut segmentation routine processing on the Wink dataset; (a) displays the global 

score, (b) the temporal score, (c) the combination of the two, and (d) the overlay of the binned results 
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In the last image, Figure 2-3d, the combined detection scores are binned into four main 

detection rankings, and overlaid upon satellite imagery. Here red corresponds to severe 

risk, orange with moderate risk, and yellow with slight risk. The fourth risk color, blue, is 

completely transparent in this depiction. With this binning, the algorithm pinpoints all 

four of the geohazards as mostly severe-moderate detections, and exhibits some minor 

detections on the periphery of the image as well. Specifically, 100% of Wink 1 is 

detected—37.5% is labeled as severe, 57.8% as moderate, and 4.7% as slight; 100% of 

Wink 2 is detected—17.2% is labeled as severe and 82.8% is labeled as moderate. It is 

worth noting here that Wink 1, because it collapsed before the dataset was acquired, 

presented very little in the way of coherent radar scattering characteristics, and thus 

yields few points in the vicinity of the actual hole. This most likely accounts for the 

increased difficulty in capturing a greater portion of the hole with the severe label. 
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3. Automatic Sinkhole Detection via Parametric 

Spatiotemporal Matching 

In this next section, I discuss the second algorithm for the automatic detection of 

sinkholes based upon spatiotemporal point cloud displacement data derived from 

PSInSAR/SqueeSAR processing of InSAR image stacks. 

3.1 Sinkhole Model 

In an effort to generate a formal spatiotemporal model for a solution sinkhole, it 

became advantageous to generate and analyze profiles of such known sinkholes. To this 

end, the Wink Sink dataset was briefly employed in an observational, exploratory 

analysis. 

Extracting displacement profiles from a sparse, nonuniformly-sampled point cloud 

presents a slight problem. However, 

we were able to rectify this without 

needing to employ any sort of 

interpolation techniques via the 

generation of an average profile—

essentially, somewhat of a 

transformation from a 3D point 

cloud into a one-dimensional 

profile. This was accomplished by generating a series of concentric annuli, centered 

approximately on the origin of a known sinkhole. Each annulus is about five meters in 

Figure 3-1: Example profile generated from Wink 3 at a sampled 

time t; the same general color scale applies as in Figure 2-1. 
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width, and any points falling within are simply averaged together to form a new 

displacement point on the 1D displacement profile (Figure 3-1). 

This profile generation was carried out for Wink Sinks 1-3, and for each available 

time sample. The spatial extent of the profile generation reaches somewhat far beyond the 

actual area covered by the sinkholes (and suspected sinkhole), as each geological hazard 

wields influence significantly beyond its collapsed region. Figure 3-2 displays the results 

for Winks 2 and 3, which are most densely graced with data points. In (a) we see the 

spatiotemporal plot of these profiles for each Wink, where every solid line in the spatial 

axis corresponds to a temporal sample, and every solid line in the time axis corresponds 

to an annulus location. Upon projecting to the spatial axis, it becomes evident that these 

profiles exhibit a strongly Gaussian shape throughout their lifetimes (c), and projecting to 

the temporal axis interestingly seems to suggest a definite linear behavior in the evolution 

of these sinkhole profiles (b). 

  



16 

 

(a) (b) 

(c) (d) 

(e) (f) 
Figure 3-2: Profile generation for Winks 2 and 3 

In pursuit of demonstrating the validity of the exhibition of spatially Gaussian profiles 

in displacement trends of forming sinkholes, we first attempt to fit our generated profiles 

(above) with Gaussian curves of amplitude αt and standard deviation (scale parameter) σt. 
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H��V� � J�exp	Z>V
4

2[�4\ ( 3.1 ) 

Here the subscript t indicates that these parameters were evaluated independently at each 

time t.  

With these fits in hand, we then 

numerically substantiate the suitability 

of this Gaussian approximation by 

calculating the normalized cross-

correlation between the actual profile 

and fit Gaussian at each timeframe. 

The results are shown for Winks 1-3 

(Figure 3-3). In all cases, the correlation coefficient was relatively weak in the first few 

time frames (t < 7 months), as at that point there is no significant deformation which has 

yet occurred and the measurements are contending with noise. However, once beyond 

this point in time, Winks 2 and 3—both of which exhibit a strong sampling of data points 

in their immediate and surrounding vicinities—exhibited correlation coefficients 

approaching unity. Wink 1 on the other hand, as discussed earlier, collapsed before the 

dataset was acquired; the hole presented very poor scattering characteristics for our 

acquisitions as it had, among other things, filled with water. Thus we see a lesser 

correlation at about 0.75—this is still encouraging, as the points surrounding Wink 1 still 

indicate a Gaussian shape despite the lack of any data within about 1 - 2 standard 

deviations of its optimal model fit. 

Next, we analyzed the temporal evolution of the amplitude and standard deviation 

parameters for each Wink Sink (Figure 3-4).  

Figure 3-3: Normalized cross-correlations between profiles 

and their respective Gaussian fits 
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(a) (b) 
Figure 3-4: Temporal evolution of amplitude (a) and standard deviation sigma, σt , (b) 

For all three cases, the amplitude displays a strong linear behavior (a), while the standard 

deviation parameter seems to jitter around for a bit then acquiesces to some asymptotic 

value (b). As mentioned previously, the Gaussian fits for about t < 7 months are 

somewhat suspect, as the data itself is still obfuscated by noise, and no obvious 

deformation trends have yet presented themselves. 

Formalizing the observation of 

linearity in amplitude of the Gaussians 

over time,  

 J� � J�I� � JI ( 3.2 ) 

a normalized cross-correlation measure 

was once again employed upon the 

original amplitudes αt and their 

temporal linear regressions αt. The 

results are shown in Figure 3-5, and yield a correlation coefficient of nearly one for all 

three Wink Sinks. 

Figure 3-5: Temporal evolution of amplitude vs. linear 

regression 
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To eliminate the standard deviation σt as a time-varying parameter, we repeated the 

above analyses with Gaussian fits generated with a  fixed standard deviation σ—this 

standard deviation was chosen to provide the optimal fit across all times. Fortuitously, 

this yielded essentially identical results as compared to the time-varying standard 

deviation case. 

Based on this preceding analysis, a spatiotemporal model for the displacement of a 

sinkhole was formulated: a Gaussian with a fixed standard deviation σ and linearly 

increasing amplitude. Thus the displacement incurred by a growing sinkhole centered at 

]^ � �V_, `_� is given by 

 

H�], I� � J ∙ I ∙ ?Va Z−(] − ]^)42[4 \ ( 3.3 ) 

This is the model used in the detection and classification algorithm which follows. 

3.2 Method 

The inherent spatial sparsity and non-uniformity of the data poses difficulties in the 

task of evaluating if, where, and to what extent subsets of the data agree with the 

postulated spatiotemporal sinkhole model. To address these issues, an algorithm was 

formulated which augments aspects of the Hough Transform with elements of matched 

filtering and residual measurement. We employ a parameter space search as in the Hough 

Transform; however, in lieu of the typically used ‘voting’ approach we instead make use 

of an approach similar to that in matched filtering—but the correlation operation is 

replaced with a residual-based measure. This blending allows for a fine control over 

parametric resolution, avoids the thresholding nature of Hough voting, and allows for one 

to robustly evaluate a match when presented with only a few data points. 
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Initially, we generate a parameter vector to index the desired parameter space. In the 

case of sinkhole detection, this amounts to accessing a four-dimensional parameter space 

with the vector b � []^, J, [], where ]^ is a 2d spatial parameter, α refers to a coefficient 

for the linear amplitude, and σ a fixed standard deviation. From here the algorithm 

proceeds as follows: for each point in the parameter space, p, a corresponding 

spatiotemporal model H �], I� is generated. The aptitude of this model is then evaluated 

with respect to the spatiotemporal point cloud )�]e, I� over a region of influence ��b�, 
where i indexes a point contained within ��b� and t refers to a time sample, via a residual 

f�b� calculated from a metric µ. 

In this application, a custom metric µ is used; this metric is based upon the notion of 

an absolute residual, i.e. the absolute difference between actual data values and their 

corresponding model predictions f?��]e, I� � g)�]e, I� > Hb�]e, I�g. While one could 

simply use a standard metric such as the ℓ
1
 or ℓ

2
 norms (normalized by the number of 

points in �b� ), these metrics would inherently be biased toward shallower (and less 

interesting) features. For example, given a sample dataset and a suitable fit Hbh�]e, I� the 

ℓ
1
 norm might yield a residual �i. Simply scaling the dataset and fit by the same constant 

β will result in a residual L�i, even though the fit is intuitively just as suitable for the data 

as in the first case. Thus we desire a metric which yields amplitude scale-invariance in 

evaluating potential matches. To this end, we designed a metric µ which can factor in 

proportionality in quantifying a match: 

 

T�]e, I� � ;*< Z f?��]e, I�
;�V!|)�]e, I�|, gHb�]e, I�g# , 1\ ( 3.4 ) 
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Here f?��]e, I� refers to the absolute residual, )�]e, I� is the data point being compared, 

and Hb�]e, I� is the value of the model at the same spatiotemporal coordinates �]e, I�. For 

the case where a data point and the model fit at that point have opposite signs, the 

measure is capped at a maximum value of 1. With this metric, we are able to accurately 

quantify the extent to which our displacement point cloud behaves like our sinkhole 

model in a spatiotemporal sense. 

Because our model is by its definition Gaussian, we choose an influence region ��b� 
which spans a circular region around the space being considered, ]^. The radius of this 

circle is designated by the fixed standard deviation in p, and chosen to be 3σ; this 

distance limits the scope of the residual calculation to relevant and significant data points, 

as the amplitude of the model beyond 3σ is less than 0.012% of the maximum. 

Due to the non-uniform spatial distribution of the data, it falls into the realm of 

possibility that one might attempt to fit a spatiotemporal Gaussian specified by the model 

in a location where there is insufficient information for any measurements taken to be 

truly meaningful. For example, a ring of points which are present only on the outside of a 

Gaussian fit may lead to numerous spurious low-residual Gaussian fits, as the measure is 

only evaluated where there are data points in the first place. To address this informational 

disparity, we augment our calculation by partitioning the influence region ��b� into 

subregions—each subregion has the measure µ applied separately and yields an 

independent residual. 

 �3�b� � $]e ∈ )�]e, I� ∶ 0 ≤ ‖]e > ]^‖ < [& ( 3.5 ) 

 �4�b� � $]e ∈ )�]e, I� ∶ [ ≤ ‖]e > ]^‖ < 2[& ( 3.6 ) 
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 �m(b) = $]e ∈ )(]e, I) ∶ 2[ ≤ ‖]e − ]^‖ < 3[& ( 3.7 ) 

Thus in order to even use the measure in the first place, there must be data present in 

each significant region of the spatiotemporal Gaussian fit being considered. Once these 

partitions are created, we calculate an independent, normalized residual for each: 

 fn�b� � 1
��n ∙ o�� � T�]e, I�

]epqr�b��
 ( 3.8 ) 

Nk refers to the number of points in subregion �n�b�, T is the number of time samples in 

the dataset, and t indexes into T. These k residuals are then combined via a simple 

average f�b� � [f3�b� � f4�b� � fm�b�]/3 yielding a four-dimensional matrix where 

each element is indicative of the extent to which the model Hb matches the data. 

3.3 Results and Analysis 

3.3.1 Validation—Simulated Data 

Initially, the algorithm was tested upon simulated data in order to verify its 

functionality—both the case of sparse vs. uniformly-sampled data, as well as simply 

proving its ability to detect the model it sets out to find. To accommodate these goals, we 

generated three distinct datasets (Figure 3-6): 

(a) (b) (c) 
Figure 3-6: Simulated Datasets 
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• In the first set (a), we compute a spatiotemporal Gaussian which perfectly adheres 

to the previously determined sinkhole model ( 3.1 ). Here b^ � []^, J, [] �
t�0	;, 0;�,>5.5 ww

wS0�G , 10;x. This instance of the model was sampled with a 

uniform grid spanning ] � �V, `� where >50	; ≤ V ≤ 50	;	�∆V � 2.5;) and 

−50	; ≤ ` ≤ 50	;	(∆` = 2.5;) which yielded 1681 spatial samples for each 

corresponding temporal sample. 

• The second set (b), employs the same spatiotemporal Gaussian as described in (a); 

however, this model was instead sampled at 200 spatial locations selected from a 

bivariate uniform distribution ]	~	{4(−50,50) 
• The third set (c) utilizes a different model from (a) and (b), in that all temporal 

variation has been removed: H(], I) = J ∙ I3_ ∙ ?Va |}(]}]^)~4�~ �. Succinctly, one 

time-sample has been isolated and duplicated for all times in T. In attempting to 

measure the spatiotemporal match of this dataset, it will still be matched against 

the original sinkhole model which varies with time ( 3.1 ). 

Each of the three datasets was analyzed with our spatiotemporal matching algorithm, 

and a resulting four-dimensional residual f(b) was calculated for every case. The 

parameter space b^ = c]^, J, [d used in this analysis is as specified: −50;	 ≤ V ≤
50;	(∆V = 2.5;), 	−50; ≤ ` ≤ 50;	(∆` = 2.5;), −10 ww

wS0�G ≤ J ≤ 3_ww
wS0�G 	|∆J =

0.25 ww
wS0�G�, and 2.5; ≤ [ ≤ 30;	(∆[ = 2.5;). In order to visualize and interpret the 

residual f(b), we collapsed it from four dimensions into a two-dimensional form. 

Intuitively we are most interested in the ‘best case’ match at each spatial point in the 

residual ]^; thus we take 
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 ;(V_, `_) = min�,� f�b� ( 3.9 ) 

and term ;�V_, `_� the minimum residual image. The results are displayed in figure 3-7. 

(a) (b) (c) 

 
Figure 3-7: Minimum Residual Images 

As anticipated, in case (a) we ascertain a perfect match when the model is perfectly 

overlaid with the template ;�V_, `_� � ;�0;, 0;� � 0. We also achieve a perfect 

match in the case of sparse, non-uniform sampling (b), with a minimum residual value of 

0 in the same location. Interestingly, we still obtain somewhat of a response in the third 

case (c), with ;�0;, 0;� � 0.42. This result is actually desirable, as it demonstrates the 

capacity for our matching algorithm to pick up on spatiotemporal data which adheres in a 

spatial sense, but not a temporal sense; additionally, it can handily differentiate between 

such data and that which adheres in a spatiotemporal way. Physically, in the context of 

detecting sinkholes, this is also a good thing—we achieve strongest results from those 

geohazards which evolve in a fashion most akin to our ground truth, but we also are able 

to detect (to a lesser extent) geohazards which move in more discrete motions. 

For each case, the minimum-residual images also exhibit a response beyond the 

actual location of the ‘perfect’ overlay between the model and the data: in (a), a clear 
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radial fringing pattern presents itself. This is commensurate with lower-amplitude 

tangential fits between the data and smaller templates which are slightly offset from the 

center of the actual feature. This pattern also shows up in (b) and (c), but in less of a clear 

fringe. Some of the outlying pixels have somewhat stronger detections than those in (a), 

as the sparsity of the data allows for smaller (albeit still poorly-fitting) templates to 

slightly register in emptier areas. 

In an effort to both further enhance visualization of the minimum residual and to 

accurately reflect the areal influence of a match, I here introduce the notion of the 

propagated minimum residual. Because the standard deviation parameter (σt) in our 

model inherently changes the footprint over which that model is applicable, a singular 

pixel in the original minimum residual ;�V_, `_� can correspond to a detection which 

encompasses and eclipses multiple other pixel residual values. Thus, for each spatial 

point in the minimum residual image we determine the corresponding σ which produced 

that value 

 [w � argmin� tmin� f(b)x ( 3.10 ) 

With this in hand, we then determine the corresponding influence region of each pixel in 

the minimum residual image—a circle of radius [w—overlap all of the regions, and take 

the minimum residual value at each pixel location from all of the overlays. The results of 

this operation are shown in figure 3-8. 
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(a) (b) (c) 

 
Figure 3-8: Propagated minimum residual images 

For cases (a) and (b), this propagated residual image very clearly shows a strong 

detection which has roughly the same size as its corresponding displacement 

spatiotemporal Gaussian depression. Case (c) shows a similar region of influence, but for 

a diminished residual value. 

These results on our simulated data verify the core functionality of our spatiotemporal 

matching algorithm, and illustrate that functionality remains effective in the case of 

sparse, non-uniformly distributed data. Additionally, this simulation also demonstrates 

the capacity our algorithm has for detecting behavior resembling our model, but with a 

diminished fit evaluation. 

3.3.2 Wink Sinks 

Next, the spatiotemporal matching algorithm was applied to the Wink Sink dataset, 

elaborated upon in section 2.3.1. Again, the spatiotemoral sinkhole model specified in ( 

3.1 ) was employed as a matching template; the parameter space b^ � []^, J, [d here was 

chosen to encapsulate a broad range of potential sinkhole physical extents, as well as a 

healthy span of sinkhole deformation rates of interest. Thus we selected: 0;	 k V k
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6,670;	�∆V = 10;�, 	0; k ` k 8290;	�∆` = 10;�, 

−5 ww
wS0�G k J k −1 ww

wS0�G 	|∆J = 0.25 ww
wS0�G�, and 5; k [ k 185;	�∆[ = 10;�. The 

resulting propagated minimum residual is shown in Figure 3-9a. While this image is 

informative as is, in analyzing an actual dataset it is desirable to make a distinction 

between low-residual detections which subside at a large rate, and those which subside 

more slowly. Thus we employ a straightforward mapping upon the residual r 

 ��]^, J, [� = c1 − f�]^, J, [�dexp	�1J� ( 3.11 ) 

In this way, we prioritize first low-residual matches, then further those low-residual 

matches which are subsiding at a faster rate. By virtue of this mapping, high-risk matches 

now correspond to maxima in the risk matrix �. This risk mapping can be visualized in a 

manner analogous to the residual visualization, i.e. collapsing � into its spatial 

dimensions (as in Equation 3.9, but with a maximum operation instead) to generate a 

maximum risk image, and using a propagation technique (via Equation 3.10, but also 

with maximum operations) to accurately portray the areal influence of risk detections. 

Figure 3-9b shows the resulting propagated maximum risk image for the Wink dataset; 

here one can see that some regions which displayed a low-residual in Figure 3-9a have 

attenuated risk values due to their low subsidence rates. However, more significant 

detections retain a large risk value. 
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(a) 

 

 
(b) 

 
Figure 3-9: Propagated minimum residual image for the Wink dataset (a), corresponding propagated maximum 

risk image (b) 

Applying a binning similar to that used in the display of graph cut detections (2.3.1) upon 

the propagated maximum risk image yields 

detections shown in Figure 3-10. As before, 

the binning encompasses three visible 

detection rankings—red is indicative of 

severe risk, orange with moderate risk, and 

yellow with slight risk. As can be seen, our 

spatiotemporal matching algorithm handily 

locates all four of the prominent Wink 

geohazards; additionally, several smaller 

detections present themselves as well 
Figure 3-10: Binned propagated maximum risk 

overlaid upon visual satellite imagery 



29 

 

(predominantly on the right side of the image). Specifically, 100% of Wink 1 is 

detected—52.6% is labeled as severe and 47.4% is labeled as moderate; 100% of Wink 2 

is detected—81.6% is labeled as severe and 18.4% is labeled as moderate. 
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4. Approach Comparison 

Both of the methods introduced, the graph theoretic method and the parametric 

spatiotemporal matching method, display efficacy in locating sinkholes. Because they are 

entirely independent processes, it raises the question whether one might supplant the 

other in use, or if they can exhibit complementary functions. This section compares 

various aspects of each method and determines an answer to the previously posed 

question concerning method necessity and exclusivity. 

4.1 Simulated Data 

In an initial foray into determining superiority, I revisit the case of simulated data, 

first presented in section 3.3.1. As elaborated before, this data consists of three distinct 

sets (Figure 4-1): a grid-sampled, spatiotemporal Gaussian with amplitude that evolves 

linearly in time; a randomly-sampled version of the exact same model; and a randomly 

sampled spatiotemporal Gaussian which exhibits a constant amplitude with respect to 

time. 

(a) (b) (c) 
Figure 4-1: Simulated datasets 

First, I apply the graph cut sinkhole detection algorithm upon each of the three 

datasets. In Figure 4.2, a-c show the nodal scores which result. For case I, the graph cut 

algorithm displays very low (ergo good) scores (a), and the resulting segmentation (d) 
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very cleanly outlines the spot as expected. The graph cut algorithm is able to achieve 

similar results in the case of sparse data (b); this is not surprising, as the method is non-

Cartesian at its core and only operates upon relational neighborhood characteristics. 

However, because the algorithm attempts to translate nodal detections into Cartesian 

regions as its final output, the resulting segmentation in (e) is not quite as clean as that 

achieved in the case of dense, grid-based data. In the third case, i.e. a spot which does not 

evolve with time, the graph cut algorithm is extremely harsh. This makes sense, as 75% 

of the calculated score is obtained from time-windowed linear regressions of 

displacement—in this case, those linear regressions yield lines with a zero-slope for the 

majority of the temporal windows. Thus, there is no displacement change upon which to 

operate, and nearly the maximum (worst) score is assigned for this temporal component. 

As a result, there is no sinkhole segmentation (f) whatsoever. 

Next I evaluate the dataset for second sinkhole detection algorithm, spatiotemporal 

matching. In order to avoid repeating results from 3.3.1, I here calculate the propagated 

maximum risk extracted from each dataset (employing the spatiotemporal Gaussian in 

Equation 3.3, established as our sinkhole model). These propagated risk images are 

shown in Figure 4.2, g-i. Reassuringly, they are consistent with the conclusions garnered 

earlier from the analysis of the propagated minimum residual images. Additionally, I bin 

these propagated risk images and display the resulting risk segmentations (i-l). It is clear 

that the spatiotemporal matching detector is able to operate with more fidelity in sparse 

conditions, as its detections more accurately reflect the areal influence and implications 

of the data. Also, the spatiotemporal algorithm displays a lone ability to detect sinkholes 



32 

 

which evolve in a more discrete fashion time-wise, and with a lesser score as well. The 

graph cut algorithm fails completely in this case. 

(a) (b)  (c)  

(d) (e) 

 

 

 

 

 

 

 

 

(f) 

 

(g) (h) (i)  

(j) (k) (l) 

 

Figure 4-2: Comparison of the two methods on simulated dataset 
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4.2 Wink Dataset 

In addition to revisiting the simulated dataset, I here re-employ the Wink dataset with 

which both algorithms have seen use. This is the only dataset for which we have ground 

truth—albeit limited—and thus provides a foundational metric upon which comparisons 

can be made between the two methods. The general segmentations are shown side-by-

side in Figure 4-3, where (a) displays the segmentation obtained from the graph cut 

routine, while (b) gives that generated by the spatiotemporal matching algorithm. As can 

be seen, both approaches identify the same general areas as threats—particularly, the four 

Wink geohazards. However, the graph cut method (a) looks to have a slightly higher 

sensitivity for peripheral detections (large, yellow areas on the right side of the image), 

but at the expense of accurately portraying the severity of the main four detections. This 

downfall is handily covered by the matching algorithm. 

(a) (b) 
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Figure 4-3: Resulting segmentation of the Wink dataset for the graph cut algorithm (a) and the spatiotemporal 

matching approach (b). 

This aforementioned coverage is well-illustrated in Figure 4-4, which immediately 

follows. This figure shows the two collapsed sinkholes, Winks 1 and 2, with their 

respective segmentations from both algorithms. Neither segmentation of Wink 1 is 

particularly satisfactory—this is attributed to the lack of data in the immediate vicinity of 

the sinkhole, which collapsed before the data was acquired. As elaborated previously, the 

graph cut algorithm labels 37.5% of Wink 1as severe, 57.8% as moderate, and 4.7% as 

slight. The matching approach has a superior detection, labeling 52.6% of Wink 1 as 

severe and 47.4% as moderate. Wink 2, however, clearly sets the two algorithms apart in 

terms of detection coverage and accuracy. One might argue this is the most important of 

the two ground truth sinkholes, as it collapsed shortly after the dataset was acquired, and 

displayed the most pertinent and immediate characteristics of a collapsing sinkhole. The 

graph cut method manages to squeeze only 17.2% of the sinkhole into the severe 

category, with the remaining 82.8% pinned as moderate. The matching technique excels, 

attributing 81.6% of Wink 2 as a severe detection and a mere 18.4% as moderate. 
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(a) (b) 

(c) (d) 

Figure 4-4: Detailed view of Winks 1 and 2 (top and bottom rows) for graph cut algorithm (a,c) and 

spatiotemporal matching (b,d) 

4.3 Virginia Data—General Comparisons 

As part of our study, we also ordered the acquisition of InSAR images for a small 

portion of Virginia. Specifically, this area spanned 160 square kilometers around the city 

of Staunton, and 32 SAR scenes were obtained from August 29, 2011 through October 

25, 2012. This InSAR stack was processed with the PSInSAR/SqueeSAR processing 

suites, and yielded 296,121 spatial data points with 31 temporal displacement samples. 
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Both algorithms were used to analyze this Virginia data, resulting in the detections 

shown (Table 4-1). For the latter algorithm, the parameter space was chosen to span the 

data spatially, and provide coverage of various sinkhole sizes and deformation rates: 

0;	 k V k 43,235;	�∆V = 2.5;�, 	0; k ` k 51,768;	�∆` = 2.5;�, −5 ww
wS0�G k

J k −1 ww
wS0�G 	|∆J = 0.25 ww

wS0�G�, and 5; k [ k 100;	�∆[ = 5;�. The base images 

yield a spatial resolution on the order of a couple of meters per pixel. 

Algorithm Total 

Detections 

Severe 

Detections 

Moderate 

Detections 

Slight 

Detections 

Graph Cut 675 0 503 170 

Matching 793 7 124 598 
Table 4-1: Overall detection distributions 

In terms of sensitivity, both algorithms seem to result in a similar number of overall 

detections, with the matching algorithm yielding slightly more segmented regions. 

However, the severity distribution of detections is vastly different between the two. A 

whopping 74.7% of the detections yielded by the graph cut approach are classified as 

moderate, while the remainder are classified as slight risk. This provides a stark contrast 

to results from the matching algorithm, which is more heavily predisposed to slight 

detections (82.0% of results) but does offer higher-confidence, severe detections. This 

departure between the two algorithms is surprising, as the risk binning for both are 

calibrated using the Wink dataset; thus one would expect more consistent results from 

both. Potentially, this is to be expected from the fundamental differences between the two 

algorithms. The graph cut algorithm performs more admirably in particularly data-sparse 

areas—it requires that there be neighboring data points a reasonable distance away which 

support a subsiding, spot-like detection, while the matching algorithm is more stringent in 

its requirements for the presence of data. This most likely explains why there are 
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numerous, small moderate sinkhole detections from the first approach. The contrast in 

sensitivity to slight detections is most likely due to the aptitude of the matching approach 

in evaluating partial matches to the prescribed sinkhole model. As shown and discussed 

in Figure 4-2, the graph cut approach does not display the same level of nuance in 

quantifying borderline detections. 

Lastly, I discuss concurrency between the detections of the two methods—does one 

or the other provide coverage for detections made by the alternative, or do both yield 

unique information? To this end, the spatial commonalities were measured with respect 

to the segmentations from both approaches—overlap for a given segmentation is 

approximated for the case where a segmentation for a corresponding algorithm occluded 

by at least 10% of the area. 

Algorithm Total   

Overlap 

Severe Risk 

Overlap 

Moderate Risk 

Overlap 

Slight Risk 

Overlap 

Graph Cut 29.8% N/A 31.4% 25.3% 

Matching 20.7% 57.1% 52% 18.1% 
Table 4-2: Detection overlap between methods 

From these results (Table 4-2), it looks as if both methods provide valuable 

information; in particular, the matching algorithm provides more uniqueness (in addition 

to far more detections) for borderline segmentations, and the graph cut routine yields less 

redundant moderate detections. Additionally, many of the severe risk detections achieved 

from the matching approach are corroborated by lesser-risk conclusions from the graph 

cut implementation; the same is true for moderate segmentations made by the matching 

routine. 
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(a) (b) 

Figure 4-5: Example overlap and uniqueness between graph cut detector (a) and matching algorithm (b) 

As illustrated in Figure 4-5, these detections can often line up quite well, 

substantiating results from the corresponding algorithm. Additionally, the absence of a 

detection from a competing algorithm can result in the loss of potentially worthwhile 

information. Thus, this analysis of concurrency between the two methods leads to two 

distinct conclusions: one can veer towards a conservative standpoint by taking the union 

of detections from both algorithms—this would increase the number of false positives, 

but also lower the number of missed detections. Alternatively, one could minimize the 

need for extensive in-field surveying and verification by taking the intersection of these 

detections—this would have the opposite effect, lowering false positives but increasing 

the number of missed sinkholes. 
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5. Conclusions 

Both of the methods deliberated upon in this thesis present viable options in the 

pursuit of automatic sinkhole detection. Moreover, as discussed in the previous section 

they offer complementary functionality, with the spatiotemporal matching approach 

demonstrating a marked superiority in its detections. 

Qualitatively, the main qualm leading to this gap in efficacy lies in the graph cut 

detector’s lack of a hard model upon which to base detections. This detector is truly a 

combination of sparse spot detections, and because it operates on a relational graph 

structure these spots can be quite amorphous in shape. Essentially, the process amounts to 

locating regions which are subsiding in a spot-like fashion, and gives more credence to 

those regions which are subsiding more significantly and in a more coherent fashion. 

However, this shortfall is completely made up for with the second sinkhole detection 

method, spatiotemporal matching. The foundation of the algorithm is based entirely upon 

validation of a prescribed model—adherence to this model in a spatiotemporal sense 

results in a strong detection. There is one caveat to be mentioned here; this method is 

only as potent as the model in question is accurate. 

Given the results from Section 4.3, I contend that neither method be discarded in the 

endeavor to detect sinkholes; instead, I think the most prudent route is to combine the 

segmentations from both algorithms. Thus we can exploit the various advantages of each 

method—the graph cut algorithm deals better with very sparse conditions, the matching 

algorithm can pick up on nuanced detections, etc.—but at the same time give priority to 

the demonstrated superior approach where overlaps do occur. Additionally, this allows 
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for corroboration between methods, which could perhaps raise the risk factor for areas 

which are verified as such. 

5.1 Applicability/Generality 

If one seeks to apply a similar approach to a different problem which can be 

measured with ground deformation, the work in this thesis—specifically, the parametric 

spatiotemporal matching approach—can be adapted to suit the needs of this new 

problem. Namely, this is accomplished by virtue of the generality of the method such that 

any potential model might be employed (with an implementation alteration to the region 

partitioning used for the sinkhole model) in determining a spatiotemporal match. The 

same parametric search and residual generation can be leveraged, potentially with a 

custom-defined risk mapping as well. 

Additionally, the model generality provided by the algorithmic framework provides a 

measure of adaptability for our original problem, sinkhole detection. Should our 

originally prescribed model prove inadequate in any way, the matching algorithm offers 

flexibility in refining/replacing this model via analysis from field verification, or perhaps 

a computational simulation involving soil/rock mechanics and interactions with water 

activity.   
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