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2 Abstract

The problem of spectrum allocation has become more pertinent in recent times, especially due to

the rapid increase in demand for mobile data. The majority of spectrum now is being statically

allocated according to usage functions. For example, 30-300MHz is reserved partly for radio and

TV broadcasts, and 300-3000MHz is reserved partly for mobile phone usage and wireless LAN.

Hence, there is high variance in the overall spectrum utilization, with certain frequencies being

underutilized and others facing spectrum shortages. In order to improve utilization rates, dynamic

spectrum access (DSA) methods are being used to match demand for spectrum with un-utilized

spectrum dynamically, using cognitive radio technology. DSA methods are computationally e�cient

to ensure that spectrum allocation to users is updated on a timely basis, to maximize utilization

rates.

The reusability property of radio spectrum allows a single channel to be allocated to multiple

users at the same time, subject to interference constraints. In this thesis, we look at the scenario

where the utility that di↵erent users derive from spectrum usage vary. The utility of each user is

expressed by the user in the form of an auction bid, of which the truthfulness is ensured by the

VCG pricing mechanism.

The allocation of radio spectrum to maximize social e�ciency, subject to interference constraint,

is the Maximum Weighted Independent Set (MWIS) problem. In this thesis, a new algorithm to

the MWIS problem is introduced. The first part of the algorithm identifies vertices that belong to

the MWIS using a O(N) complexity algorithm, where N is the number of vertices of the graph.

And the second part is a new greedy heuristic algorithm that is applied to the rest of the graph to

find the approximate MWIS. It computational complexity is O(ECN2Dlog(N2D)), where E is the

maximum number of second degree neighbors of a vertex, C is the size of the allocated clusters,

and D is the maximum degree of the graph. In the simulations ran, its performance was 89-97%

for network sizes of 80 to 200 on bipartite graphs.
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3 Introduction

This thesis seeks to find a computationally e�cient solution to the problem of centralized dynamic

spectrum allocation with the objective of maximizing social e�ciency, subject to the constraint

of interference. The ways of approaching this problem are diverse. In this thesis, we look at it

as a maximum weighted independent set (MWIS) problem, where each vertex represents a user

(transceiver), adjacencies between vertices on the graph represent interference, and vertex weights

represent the bid values of the respective users. We seek to allocate to users such that the sum of

weights of allocated vertices is maximized, and no two adjacent vertices are allocated. We then use

VCG pricing to ensure incentive compatibility, where each bid value corresponds to the utility of

the user.

The algorithm in this thesis for the maximum independent set problem consists of two parts.

The first part identifies vertices that belong to the MWIS. The principle is that if a vertex's weight

exceeds the sum of the weight of its neighbors, it belongs to the MWIS. This can be extended to a

cluster of non-adjacent vertices. Each cluster consists of non-adjacent vertices, where each newly

added vertex is separated from at least one vertex in the existing cluster by only one vertex. If the

sum of the weights of the vertices exceeds the sum of the weights of all their neighbors (that do

not belong to the cluster), they belong to the MWIS.

The second part of the algorithm allocates to the rest of the graph by such clusters, in descending

order of (sum of bid values of clusters)/(sum of bid values of neighbors of clusters). We found

that the performance of this algorithm surpasses that of allocating to single vertices, and does not

increase computational complexity substantially, and hence is quick to implement. We have also

found an e�cient way of generating clusters, which further reduces computation time.
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4 Background - Spectrum Market

Radio spectrum is utilized by television and radio broadcasts, cellular networks, wireless local area

networks (WLAN), bluetooth networks, communications satellites, aviation, and radars, amongst

others. It makes up the segment of the electromagnetic spectrum that is between 8.3 kHz to 3000

GHz in frequency.

The majority of radio spectrum is being allocated statically, where specific frequency bands are

being reserved for specific services, and companies are allocated licenses for long-term usage of a

particular bandwidth of a particular region. For example, 30-300MHz is reserved partly for radio

and TV broadcasters, and 300-3000MHz is reserved partly for mobile phone usage and Wireless

LAN [3], and each major telecommunications company like Verizon or AT&T owns licenses to

certain frequency bands for certain geographical locations within the 300-3000MHz bandwidth.

Companies can file for application for licenses electronically via FCC's Universal Licensing System.

Since 1994, the FCC has typically used auctions to allocate licenses to commercial services [4].

Prior to that, comparative hearings and lotteries were being utilized to select a single licensee for

a license [5]. The auction systems have advanced over the years, where package bidding is now

available since the first combinatorial spectrum auction in 2007.

Mobile data transmission is undergoing rapid growth and the trend will persist. According to

CISCO [1], Global IP tra�c has increased fivefold over the past five years, and will increase three-

fold over the next five years. The IP tra�c growth from 2014 to 2019 will increase at an overall

compound annual growth rate (CAGR) of 23%. This is due to multiple factors, two of which are

the rapid adoption and development of various types of wireless technologies, including those of

networks and devices. Moreover, the FCC also plans to provide a↵ordable broadband access to

every American, as well as to provide broadband services to anchor institutions such as schools,

hospitals, and government buildings to every American community [6].
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Currently, most of the spectrum allocation is done statically. Since spectrum utilization is time and

space dependent, this form of allocation resulted in a substantial amount of white space existing

in the spectrum.

To improve the allocation of radio spectrum to meet growing demands, various measures have been

taken by the FCC. Spectrum has been redistributed from low usage TV broadcasters to higher

usage users via an incentive auction, which is a double auction held by the FCC in May 2014.

Secondary markets have also been formed where license holders can lease their spectrum to higher

usage users for a particular period of time. These leases typically last for medium term, from any

period less than a year, to several years. The di↵erent leasors in secondary include Mobile Virtual

Network Operators, such as mobile cellular companies that operate on networks not of their own,

Machine-to-Machine users, referring to data communication between remote machines, an example

of which includes SCADA infrastructure, which are smart environments on large systems managed

by large corporations or public entities such as smart power grids, and smart fresh and wastewater

management systems [19], and explicit sale and lease [20].

Another important measure to meet growing spectrum demand is a class of spectrum access meth-

ods called Dynamic Spectrum Access (DSA). DSA makes use of cognitive radio technology to

dynamically match demand with unused spectrum, hence eliminating white spaces and maximiz-

ing utilization of the spectrum. DSA involves the following components [18]: spectrum sensing

where unused and hence available spectrum is being detected, spectrum management, where the

best available channel is being chosen for access, and spectrum mobility that manages seamless

transition between channels, and finally spectrum allocation.

There are multiple categories of DSA mechanisms. The chosen mechanism is dependent on the

network infrastructure, and, if the spectrum is licensed, the interference threshold of the primary

user. If there is a network infrastructure in place, the method of access will be a centralized one,
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where a centralized entity decides on the allocation of spectrum. In the case where it is not feasible

to invest in infrastructure, the access method will be distributed where each secondary user accesses

the spectrum based on the protocol or incentives in place. With regards to the second factor, if

there is to be no interference to the primary user, the overlay technique will be used, where the

appearance of a primary user will trigger a spectrum hando↵. If, on the other hand, interference

to the primary user is only to be limited by a threshold, the underlay technique will be utilized,

where secondary users are allowed to use the channel concurrently as long as interference is below

a certain threshold. [18].
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5 Spectrum Allocation Methods

Only centralized spectrum allocation mechanisms will be covered in this thesis. Centralized spec-

trum allocation methods use a central controller to allocate such as to optimize the objective

function for the overall network, as compared to decentralized/distributed methods where each

user gathers, exchanges, and processes the information about the wireless environment indepen-

dently before making the decision autonomously to access the spectrum. Centralized methods can

be classified mainly into optimization methods and auction methods, with overlaps between the

two methods [16].

5.1 Optimization Methods

With regards to optimization methods, graph coloring is commonly used, when the factor of fairness

is being considered. Here, fairness refers to the state where every user gets allocated a minimum

amount of spectrum (every vertex must be colored, and hence it is a graph coloring problem). This

problem is similar to the channel assignment problem for cellular networks.

In [9], the spectrum allocation problem is formulated into three di↵erent objective functions: the

first is to maximize total throughput, the second, to maximize minimum throughput, and the third

is to maximize fairness. It uses a progressive minimum neighbor first algorithm. The proposed

color-sensitive group coloring model is being formulated to maximize the channel utility according

to the di↵erent objectives, and hence di↵ers from the normal graph coloring problem. Each ob-

jective function is being met by assigning di↵erent labels to each vertex. For the first objective,

in order to maximize throughput, the label for each vertex is its maximum valuation of a channel

amongst all of its unallocated channels. To maximize minimum throughput (which will result in

equal number of channels for all), the label for each vertex is the negative of the sum of its valuation

for all channels it obtained. And to maximize fairness, the label for each vertex is the ratio of its

maximum valuation for an unallocated channel to the sum of the valuations of all the channels it

obtained.
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In [10], the problem was also formulated as a graph coloring, and a max-k-cut problem. Each

user i had two values in their demand function, specifying the minimum (dmin(i)) and maximum

demand (dmax(i)) they had. Two objective functions were optimized. The first was to maximize

overall demand met subjected to the interference constraint. The second is to minimize overall in-

terference while meeting minimum demand for all users. In the first optimization problem, it is first

checked that minimum demand for each user can be met, before demand met is being maximized.

In the second optimization problem, the authors defined a new problem of multi-color max-k-cut,

where each vertex is assigned to multiple di↵erent partitions (equal to the vertex's demand), such

that sum of weights of edges crossing the partitions is maximized. They used the heuristic of

randomly picking dmax(i) colors from the available K colors for each vertex i, and showed that

it yielded good results. They also used a Tabu search to improve the solution from the heuristic

algorithm.

In [8], a Markov chain is being used to model DSA in the overlay mode. Arrival rates of both

licensed and unlicensed users are assumed to be independent Poisson distributions. In order to

account for the rejection of an unlicensed user when a licensed user is using the spectrum, waiting

states are added in the Markov model. An admission probability for unlicensed users, P (a), is used

to prioritize spectrum access for licensed users. The objective function becomes the maximization

of overall utility of all users, constrained by the expected utility of unlicensed users to be greater

than zero. The optimization method in [11] uses the Coordinated Access Band (CAB) and Sta-

tistically Multiplexed Access concept, which aggregates users with ideally opposite time-varying

spectrum demand. In the case when they are not aggregated, 2N channels are required where N

is the average number of channels between the two, but with aggregation, fewer than 2N channels

are required. In [7], the spectrum allocation problem was formalized as an optimization problem

that maximizes the sum of the signal-to-interference (SIR) ratio of every user, subject to each user

receiving a signal greater than its SIR threshold, and subject to total transmission power being
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lower than the interference temperature limit. This becomes a convex optimization problem.

5.2 Auction Methods

Computationally e�cient spectrum auctions have been researched upon in recent years. However,

most of them have used allocation mechanisms that allocate to individual bids in a descending or-

der, which decreases social e�ciency substantially. This is because a high bid may have two or more

almost equally high bid in the adjacent vertices, and in such a case, allocating to the two lower bids

will maximize their overall summed utility. For example, given a linear network of three vertices,

i, j, k, with weights w
i

= 8, w
j

= 9, and w
k

= 8, such a greedy algorithm will allocate to vertex

j, attaining a network utility of 9, compared to the optimal network utility of 16, by allocating to

i and k. There are multiple factors that a spectrum auction takes into account. The first is the

properties of spectrum as a good. Spectrum is a reusable/divisible good, where a single unit can be

used by multiple users within a geographical location, subject to interference constraints. Spectrum

is also a multi-dimensional good, in terms of frequency, space, and time. The second factor is that

the nature of demand for spectrum users may have combinatorial valuation, for example, valuing

channels in adjacent geographical areas, to channels that are far apart. The third factor is general

auctions properties, the most pertinent being strategyproof (truthfulness). A spectrum auction

needs to ensure truthfulness of the bidders using a pricing mechanism to incentivize bidders to bid

as high as they can a↵ord, by ensuring they cannot pay less, nor, in the case of a non-monotonic

allocation, obtain a channel by bidding lower. The fourth is the objective of the final allocation.

Spectrum auctions can di↵er in their goals - some may aim to maximize social e�ciency, some may

aim at fairness, where each user gets allocated a minimum number of channels, and some may aim

at maximizing revenue. The fifth is the computational complexity, which is important if allocation

of channels is to be updated frequently.

The VERITAS mechanism was introduced in [12]. VERITAS assumes that bidders value each

channel equally, and since it allocates according to descending value of bids, the channels are al-
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located sequentially among users. Hence, within each neighborhood, all except for one bidder will

be allocated either all the channels they demanded for, or none at all. It uses secondary pricing

to achieve strategyproofness. However, it allocates in descending order of bids and hence does not

achieve optimal social e�ciency.

The mechanism in [13] is similar, except that instead of secondary pricing, it uses the VCG mech-

anism where each winning bidder pays the opportunity cost it imposes on the network. It also

utilizes a virtual valuation that normalizes bid values, which was first devised by Myerson [24].

A similar mechanism that utilized a decreasing marginal utility demand function for additional

channels received for bidders was found in [17] In [15], the allocation to maximize social e�ciency

is modeled as an integer programming problem. The pricing mechanism uses secondary pricing to

make it more computationally e�cient, as compared to VCG.

A non-greedy allocation mechanism was used in the spectrum auction in [14], where a single chan-

nel is being allocated in a network that is divided into small hexagonal regions, and a knapsack

approximation algorithm is utilized for the allocation, which results to be the set of non-interfering

vertices which has the highest valued bids in all of the seven sets.

In this thesis, an auction mechanism where users demand multiple channels and the goal seeks

to maximize overall network utility (maximize social e�ciency) is considered. The assumptions

made are that channels are homogeneous, interference ranges are constant, and users have decreas-

ing marginal utility for each additional channel received. The winner determination problem is an

NP-hard combinatorial problem of the maximum weight independent set [21] and this paper imple-

ments a new greedy algorithm that outperforms current greedy algorithms for the same problem,

and employs the VCG mechanism to ensure strategyproofness.
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6 The Maximum Weighted Independent Set Problem

6.1 Formulation

Given a graph G(V,E), where V is the set of vertices and E is the set of edges in the graph, a

subset x is called an independent set if no two vertices share an edge (x
i

, x
j

) 6= (1, 1), 8(i, j) 2 E. A

maximum weight independent set is the heaviest weighted independent set of the graph. The MWIS

problem can be formulated in terms of vertices, edges or sets. The most common formulation is

the integer programming problem as follows:

maximize
NX

i=1

w
i

x
i

subject to x
i

+ x
j

 1, 8i, j 2 E

x
i

2 {0, 1} , i = 1, 2, ..., N

A linear relaxation of the integer programming problem would relax the second condition into:

x
i

� 0, i = 1, 2, ..., N

The solution to the linear relaxation will yield x
i

= 0, .5, or 1 i = 1, 2, ..., N [59]. The MWIS

contains the vertex i for which x
i

= 1, 8i. A dual to the problem is as follows [59]:

minimize
X

(i,j)2E

�
ij

subject to
X

j2N (i)

�
ij

� w
i

, 8i 2 V

�
ij

� 0, 8i, j 2 E

Shor(1990) [60] gave a quadratically constrained formulation for the MWIS, with the same
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objective function as the integer program:

maximize
nX

i=1

w
i

x
i

subject to x
i

x
j

= 0 8i, j 2 E

x2
i

� x
i

= 0, i = 1, ..., N

6.2 Related NP Hard Problems

6.2.1 Maximum Independent Set Problem

The MWIS problem can be approached from various angles. One might first look at the closely

related problem of finding the maximum independent set (MIS) of a graph, which is a specific case

of the MWIS problem where the weights all equal. They have the same constraints of which no two

allocated vertices can be adjacent. In the integer programming formulation, they share the same

constraints and objective function. Almost all methods for the MIS can be extendable to MWIS.

The count of vertices, whether of a vertex's neighbors (the degree), or in an independent set, used

as a factor in an algorithm to find the MIS can simply be replaced by sum of weights of a vertex's

neighbors, or sum of weight of an independent set. Hence, these two problems also share equivalent

lower bounds for certain algorithms.

6.2.2 Other Equivalent NP Hard Problems

The MWIS problem is equivalent to several NP hard problems. Hence, the solutions for these

di↵erent problems are sometimes used interchangeably. The maximum weighted clique (MWC) of

a graph, G, is equivalent to the MWIS of its complement graph, Ḡ. The minimum vertex cover

(MVC) and the maximum independent set (MIS) of a graph are disjoint and their union make up

the entire graph. The same applies to the weighted version. Also, another name for the MWIS

problem is the weighted vertex packing problem.
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6.2.3 Other Related NP Hard Problems

There are other NP hard problems that are related to the MIS problem. They do not yield an

equivalent solution to the MIS, but provide good bounds. They are, the graph coloring problem,

clique cover problem, and the maximum matching problem. The minimum number of colors re-

quired to color a graph such that no two adjacent vertices have the same color, is the chromatic

number of the graph. In a perfect graph, where there are no odd holes, the chromatic number is

the same as the size of the maximum clique. In a non-perfect graph, the chromatic number is larger

than the size of the maximum clique (consider a cycle of 5 vertices, where the maximum clique is

of size 2 but the chromatic number is 3). The relationship between the chromatic number, �(G)

and the size of the MIS, ↵(G) of a graph G(V,E), is �(G) � |V |
↵(G) , since the number of vertices in

any color class defined by a proper coloring of G cannot exceed ↵(G) [36].

The minimum clique cover (MCC), or the clique cover number is the minimum number of cliques

required to cover the graph. The clique cover number of a graph, G is equals to the chromatic

number of its complement graph, Ḡ, which is also equals to the smallest number of independent

sets of Ḡ. Hence, the minimum clique cover of a graph is an upper bound of the size of a maximum

independent set. The size of the MIS cannot exceed the MCC because, for example, given a graph

of n vertices, which can be covered by 2 cliques, or by 3 cliques, both of which are maximal, in the

former case, only a maximum of 2 vertices can be allocated if we want them to be non-adjacent.

In the latter case, this property remains unchanged, even though now there are 3 maximal cliques

- there is no way of allocating to 3 vertices that are non-adjacent. In addition, the size of the MIS

is not equals to the MCC in certain cases, for example in the case of an odd cycle. The maximum

matching (MM) of a graph is the maximum number of edges to select without two edges sharing

the same vertex. In a bipartite graph, the MM is equals to the minimum vertex cover, and the

matching is perfect, where all vertices are adjacent to a selected edge. Hence, the MVC is an upper

bound for the MM in general graphs.
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6.3 Graph Types with Polynomial-time Exact Solutions

From a di↵erent angle of approaching the MWIS problem, there are specific graph types where it

takes polynomial time to find the MWIS of a graph. The polynomial-time algorithms range from

ellipsoid methods, to dynamic programming, to combinatorial algorithms on the dual of the linear

programming relaxation of the original problem that are based on basic arithmetic operations and

comparisons of rational numbers (t-perfect graphs [40]). Such graphs are: circle graphs (Gavril

’73) [44], circular-arc graphs (Gavril ‘74) [43], claw-free graphs (Minty ’80) [53], complements that

contain no odd cycles (Hsu, Ikura, Nemhauser ’81) [47], perfect graphs (Grotschel, Lovasz, Schrijver

’84) where ellipsoid methods are used, claw-free or co-claw-free graphs (Brandstandt, Mahfud ’02)

[33], distance claw-free graphs (W.R. Pulleybank, F.B. Shepherd) [57] where dynamic programming

is used, (p,q)-colorable graphs (Alekseev, Lozin ’03) [26], fork-free graphs(Lozin, Milanic ’08) [63],

P6, co-banner - free graphs (Mosca ’12) [54], hole and dart-free graphs (Basaravaju, Chandra

’12) [31], P5-free graphs (Lozin, Mosca ’08 , Karthick ’13) [52] [49], and P4-free graphs (D.G.

Corneil, Y. Perl, L.K. Stewart ’85) [39]. There is also a linear-time algorithm for (P5,diamond)-

free graphs (Brandstandt ’02), [34].

6.4 Methods for Exact Solutions

In order to find an exact solution to the MWIS problem, apart from the brute force method, which

enumerates all maximal independent sets of the graph and finds the highest weighted one, the most

common and slightly more e�cient method used is the branch and bound method. This is used to

find either the MWIS of the graph, G, or the maximum weight clique on the complement graph

Ḡ. Other methods that yield exact solutions for NP hard problems include dynamic programming,

preprocessing of data, and local search. For a comprehensive survey of exact methods for NP hard

problems, one can refer to Woeginger (2003) [61].

Branch and bound is a search method that, instead of going down and completing every path

of possible solutions, is able to prune a path midway by using a condition to determine that the
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rest of the path will not su�ce to make the current set the solution (i.e. the bound fails to meet

the condition). In our problem of the MWIS, the bounding function, is applied on the vertex that

is last added to the independent set.

Branch and bound uses a search tree which is dynamically generated, where each node of the

tree represents a subproblem. Hence, aside from the bounding function, which is the most crucial

component, one must also decide how the original problem is to be broken up into subproblems,

and the order of solving these subproblems [37]. These three decisions are interrelated and can

vary for the same problem.

Branch and bound is more commonly applied to the MWC problem. To find a solution to the

MWIS, we apply the method to find the maximum weighted clique to the complement graph, Ḡ.

In terms of the MWC problem, the root node is usually either the entire graph, or a single vertex.

The search is a depth-first one. It builds cliques beginning with a single vertex, and adds a vertex

in each iteration. The bounding function is usually the total sum of weights of the adjacent vertices

of the last-added vertex, or the maximum weighted clique the last-added vertex is a member of, if

it has previously been computed. The pruning condition is the weight of the maximum clique at

that point in time. Then, instead of generating the entire maximal clique, it stops when the sum of

the weight of the currently generated clique, and the weight of all the neighbors (or the maximum

weighted clique) of the last-added vertex, does not exceed the weight of the current maximum

weighted clique.

Even though the two problems of MWIS and MWC are equivalent, using the MWC to solve a

MWIS problem may may not be feasible since the average degree of Ḡ is equals to N �G. Hence,

if the average degree of G is < 10, Ḡ will have an average degree of more than N � 10. Finding a

maximum clique of a graph with such a high average degree is significantly computationally heavier,

even with branch and bound methods.
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Branch and Bound (Carraghan/Pardalos '90; Ostergard '02) [38] [55] The best bounds

for a maximum clique is obtained from graph coloring. However, there are also bounds obtained

from clique formation, and these 2 seminal papers are the most cited for this method.

Both algorithms preorder the vertices according to a certain rule. It could be the number of

degrees, or the order of coloring of the vertices according to a certain heuristic. In each iteration,

both algorithms first add or remove a vertex, then finds the maximum clique that contains that

particular vertex. In Carraghan/Pardalos's algorithm (CPA), the search begins with the entire

graph, and with each iteration, removes a vertex, whereas in Ostergard's algorithm (OA), the

search begins with a single vertex, of the largest index, N , and with each iteration, adds a vertex

one index smaller, with the last vertex added being 1. For OA, in each iteration, the maximum

clique is found with regards to the vertex that was added and the neighboring vertices that have

a higher index than it. For CPA, the procedure is exactly the same, except in the reverse order,

where it finds the maximum clique with regards to vertex 1 and its neighboring vertices that have

a higher index than it, in the first iteration. What di↵ers between the 2 algorithms is the bounding

function used. OA starts from vertex N, and uses the size of the clique formed by the newly added

vertex from each iteration, in the bounding function for subsequent iterations. In CPA, the bound

is simply a function of the degree of the newly removed vertex. Hence, OA uses a tighter bound.

In order to extend either algorithm to the weighted case, in the bounding function, the degree

of a vertex is replaced with the sum of weights of a vertex's neighbors in CPA, and the size of a

clique is replaced with the weight of a clique in OA.

Branch and Bound (Kumlander '05) [50] Kumlander's algorithm for finding the MWC is

similar to Carraghan and Pardalos's method. It also starts o↵ with the entire graph, and with

each iteration, removes a vertex. In each iteration, it also finds a maximum clique with regards to

the vertex with the highest index. However, for the bounding function, instead of using degree of
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the vertex, it uses the number of color classes of the subgraph, which is the neighborhood of the

vertex i. The exact bounding function is: prune if d� 1+D<C, where D is the degree, computed

by the sum of the maximum weight of every color class in that subgraph. The degree will not be

recomputed at each depth level, but will be adjusted according to this rule: if the next vertex to

be expanded on the current depth level is of the same color as the current vertex, the degree will

not be increased. Otherwise, the weight of the current vertex should be deducted from the degree.

Kumlander employs a second pruning strategy obtained from Ostergard's algorithm as illustrated

previously, using c(i).

Branch and Bound (Babel '90) [27] Babel extends a concept by Brelaz, and uses a measure

called the Generalized Clique Degree (GKD) of a vertex, or subset, which is the sum of cliques

that are formed by its non-neighbors. It measures the least number of cliques that must be added

to its non-neighbors to form a clique cover. The algorithm keeps track of a list of cliques, and

with each iteration, chooses an uncovered vertex with the highest GKD and adds it to a clique

that it belongs to. If no such clique exists, a new one is formed. Since the vertices are selected

in order of GKD, the members of some maximal independent set are the first vertices to be selected.

This algorithm uses weighted clique covers as upper bounds. The rest of the procedure is like

above. The algorithm starts by pre-ordering the vertices in ascending order of the summed weight

of a vertex's neighbors.

Branch and Bound (Balas and Yu '89) [28] Balas and Yu starts o↵ with finding a maximal

induced triangulated subgraph (MTIS) of graph G,G(T ), by checking to see if G admits a perfect

ordering. This is done by first locating a simplicial vertex. It then finds a maximum clique (C⇤) of

G(T ), and then a minimum coloring for G(T ) (which is the same cardinality, k, as the maximum

clique). It then extends G(T ) by adding vertices to it without increasing the number of color classes,
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to achieve the maximal k-chromatic induced subgraph, G(W ). Branch and bound is conducted for

the rest of the graph, V \W . Since any clique that is larger than C⇤ must contain at least a vertex

from V \W , the branch and bound is conducted on neighborhoods of vertices from V \W .

Branch and Bound (Balas and Xue '90) [29] The paper uses a method that is in a similar

vein to that used by Balas and Yu. It uses weighted clique covers as an upper bound for the weight

of the maximum weight independent set. It starts o↵ with a benchmark weight of a randomly

chosen independent set, F . Then, an induced subgraph,S, of G, of which the maximum weight

independent set is smaller than that of F , is chosen. Each vertex, v, in G� S is indexed, and for

N̄(v(i))\ {v(j) : j<i}, we find the maximum weight independent set, S(i). The MWIS of graph G

is then either F, or v(i) [ S(i).

The first step of finding an induced subgraph of which the maximum weight independent set

is smaller than that of F is done using clique covers. Each vertex in the independent set F is a

member of a distinct clique, and for each clique, we add a vertex to a clique if all vertices in the

clique are neighbors of the vertex. We add as many vertices as possible this way, and the resultant

induced subgraph containing all these vertices will fulfill the criterion in step 1.

6.5 Methods for Approximate Solutions

6.5.1 Greedy Heuristics

Two simple greedy heuristics have been used for the MWIS. The first is to allocate vertices in

descending order of the ratio of the vertex weight to the sum of weights of their adjacent vertices,

and to remove all adjacent vertices of the allocated vertex. The other is to remove vertices and

their edges in ascending order of that value, until no edges remain - the remaining vertices form

the independent set. In the Caro-Wei theorem, it has been proven that both the first and second

algorithms achieves a performance guarantee of an independent set with weight
P

v2V (G)

W (v)
d(v)+1 , where

d(v) is the count of adjacent vertices of a vertex. [58]. Our algorithm, by allocating to clusters in a
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greedy manner, is able to achieve a bound of at least
P

v2V (G)

W (v)
d(v)+ 1

c

by applying the same principle,

since there will be a least c � 1 shared adjacent vertices in a cluster of size c - hence with every

allocation of a cluster, C, of size c, (c⇥ (d
i

+1)�1, i 2 C) vertices will be removed from the graph.

6.5.2 Metaheuristics

Metaheuristics allow a local search algorithm to escape local optima, in search of a better solution

or the global optimum.

Genetic Algorithm (Hifi '97) [46] Hifi came up with a genetic algorithm to address the max-

imum weight independent set problem. The fitness function is the sum of the sum of weights and

a penalty for constraint violation of a given solution to the MWIS problem. A solution is an in-

dependent subset, represented by a binary vector, where each vertex, i is 1, if it belongs to the

solution, and 0 otherwise. In order to generate feasible solutions where the interference constraint

is not violated, each solutions is generated by picking a random vertex, and removing the adjacent

vertices from the set, and repeating the process. The probability of a solution being selected as a

parent is the di↵erence of its fitness function and the minimum fitness function, divided by the sum

of this di↵erence for all solutions. Two parents will then produce two children using the following

crossover operator:

Given a solution to a graph, G, of N vertices, of parent i = P
i

= [P
i,1, Pi,2, ...Pi,N

], and that of a

child, i = C
i

= [C
i,1, Ci,2, ...Ci,N

], then given 2 parents, 1, and 2, and 2 children, 1, and 2,

1. If P1,i = P2,i, then C1,i = C2,i = P1,i

2. If P1,i 6= P2,i, then randomly attribute to k and k0(k 6= k0) a value in {1, 2}, and

a. set C1,i = P
k,i

with probability p
k

=
f

f
k

f

f
k+f

f
k0

and C1,i = P
k

0
,i

with probability 1� p
k

b. set C2,i = P
k

0
,i

with probability p0
k

=
f

f
k0

f

f
k+f

f
k0

and C1,i = P
k,i

with probability 1� p
k

0 .

The mutation operator follows, by inverting M randomly chosen variables in the binary vector of

each child, where M is determined experimentally. This procedure removes violations in constraints

in solutions, and adds feasible vertices to a solution. It then computes the new fitness value. Fi-
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nally, less fit parents will be replaced by fitter children in the population, using the incremental

replacement method.

Simulated Annealing In Feo, Resende and Smith (1989)’s paper [42], a simulated annealing

approach to solving the maximum independent set is described. The graph is partitioned into two

subsets, K and K̄. The objective is to minimize the function f(K) = -|K| + lambda*|E
k

|, where

E
k

is the set of edges in the induced subgraph K. A neighbor solution, K 0(v) is generated by

choosing a random vertex and adding it to K if it is in K̄, and removing it from K if it is already

in K. The neighbor solution is kept if it does not worsen the objective function and if it does, it is

kept with a probability of e
�d
Tk .d = f(K 0(v))� f(K) and T is the temperature, which is decreased

in accordance with a cooling schedule.

6.5.3 Local Search Heuristics

Local search methods work by perturbing the initial solution to seek a better solution that satisfies

the constraints.

Greedy Randomized Adaptive Search Process (Feo, Resende and Smith '89) [42]

Here, the GRASP algorithm was used to find a maximum independent set. It is a three-step

procedure that first involves an adaptive ordering of the vertices that are eligible for selection in

the next step. The vertices are first ordered in ascending order of degrees, then, the first x number

of vertices will form pairs, and for each pair, the number of non-neighbors from the entire graph of

either of the vertices is computed, and the pairs are ordered in descending order of this number.

The orderings are updated after each selection. In the next step, there is a probabilistic selection

from the top x elements of the sorted list, followed by a local search to perturb the current solution

to see if there is a better one – the method attempts to remove k vertices from the current solution

and search for k+1 vertices as replacement. The algorithm can be run in parallel by splitting the

graph into subsets of vertices.
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TABU Search (Wu, Hao and Glover '12) [62] In this paper, a Tabu search for the maximum

weighted clique (MWC) is described, which outperforms all previous methods for MWC. The

algorithm starts with a randomly selected vertex, followed by the formation of a maximal clique the

vertex belongs in (by the selection of vertices that are adjacent to all previously selected vertices).

There are then three types of moves that can be made to perturb the maximal clique – a vertex

can be added to, dropped, or swapped from the clique, as long as the clique remains as a clique.

A move is selected based on the vertex weight value it adds to the clique. Another caveat is that

a vertex that has been dropped from the clique cannot be added in the next x iterations. Finally,

the algorithm uses a multistart strategy where the search is restarted in a new location when the

current search is deemed to be stuck in a local optima, which is judged based on its inability to be

improved after a pre-determined number (depth of search) of consecutive iterations.

6.5.4 Scale Reduction Methods for Approximate Solution

Scale reduction methods seek to identify a subset of the MWIS of a graph, or a subset that does

not belong to the MWIS, before applying search methods to find the rest of the graph.

Identifying vertices in MWIS: Critical Sets A critical weighted set, X, is one that has the

maximum value of w(X)–w(N(X)), where N(X) is the set of vertices that is adjacent to at least

one vertex in X. This set can be found in polynomial time, and the isolated vertices in this set

belong to the MWIS. It is shown in Zhang (1990)’s paper [64] that the minimum vertex set is an

independent set. In Butenko’s (2003) paper [35], he proved that a critical weighted independent

set is a subset of the MWIS.

In Zhang’s (1990) paper, he proved that the critical weighted independent set of a graph can

be found in polynomial time, by conducting a bijection mapping of the graph to form a bipartite

version of the graph, G, also known as the bi-double graph of G, (G0, E0). A bi-double graph is

simply made of V and a duplicate set of V , V ’, and there is an edge between V (u) and V 0(v) if
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(u, v) 2 E, and (V (u), V (v)) /2 E0, (V 0(u), V 0(v)) /2 E0, 8u, v 2 V . In Zhang’s paper, he solved it as

a linear programming problem in polynomial time. In Ageev (1994)’s paper [25], it was mentioned

that finding the critical weighted independent set can be solved as a maximum flow or minimum

cut problem (Balinski ’70) [30], which can be done in polynomial time. The edges from the source

to each V (v), and from V 0(v) to the sink, 8v 2 V ,is the weight of each vertex, v, and each edge in

E0, (V (u), V 0(v)) 2 E0 , has a weight of infinity. The maximum flow from the source to the sink is

the minimum cut of the graph. It is also the minimum weighted vertex cover, and its complement

is the maximum weighted independent set.

The limitation of this method is that sometimes the critical set may be an empty one. For example,

in a 3-cycle graph, K3, the minimum cut yields the full set if none of the vertices have a weight

that exceeds the sum of weights of the adjacent vertices.

Elimination: Removing Subgraphs (Feige '04) [41] Feige came up with an algorithm that

improved the approximation results of a maximum clique from Halldorsson’s approximation of

O(n/(log(n))2) to O(n(loglog(n))2/(log(n))3), which is as good as the approximation for chro-

matic number.

This algorithm is about eliminating parts of the graph that do not belong to the maximum clique.

Let G(V,E) be a graph with n vertices, which contains a clique of size n

k

. It breaks the graph up

into smaller disjoint subgraphs, S1, S2, ..., and in each subgraph, it seeks to identify poor subgraphs.

A subgraph, S, is defined to be poor if it does not contain a clique of size greater than |S|
2k . Each

round of the iteration searches for one of the following two outputs: either a clique of size tlog3k
|V |
6kt ,

or a poor subgraph. If it’s the first, the algorithm terminates, and if it’s the second, it will be

removed from the graph. The search is conducted by breaking the graph into smaller subsets of

size t. For each set, if it is a clique, and if the subset outside the clique which is connected to

every vertex in the clique is of size greater than 1
2k�t

of the subset, then the clique belongs to the
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maximum clique and the set of neighbors is used as the next input. The algorithm terminates when

all the subsets have been searched.
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7 Problem Definition

This thesis presents a centralized allocation mechanism involving a sealed-bid auction that is com-

putationally e�cient and allocates based on a heuristic algorithm that achieves an approximately

socially optimal outcome. It is priced using the Vickrey-Clarke-Groves (VCG) mechanism. It will

be shown that this mechanism achieves an ✏ degree of strategyproofness. This will be defined in

section 5.

The problem is defined as follows:

Let V = {1, . . . , N} be the index set of vertices of the network, where each vertex represents a user

(transmitter and receiver pair). We define the interference graph G(V, E), where E ⇢ V ⇥ V and arc

or edge (i, j) 2 E exists between vertices i, j 2 V if joint channel exploitation by users i and j leads

to unacceptable levels of interference. The neighborhood of vertex i, N(i), is the set of vertices

that interfere with i, i.e., N(i) = {j 2 V| (i, j) 2 E}. There is a set of channels M = {1, . . . ,M}

available for use. A channel allocation is a map x
i,m

: V ⇥M 7! {0, 1}, i.e. if x
i,m

= 1, vertex is

allowed use of channel m 2 M.

Let v
i,m

(x) be defined as follows

v
i,m

(x) =

8
>>>>><

>>>>>:

v
i,m

x
i,m

= 1 and
P

j2N(i)
x
j,m

= 0

0 otherwise

where v
i,m

> 0 represents the utility user i gets from using channel m without interference. The

aggregate utility user i obtains from m channels can be expressed as

U
i

(x) =
X

m2M
v
i,m

(x⇤
m

)

During bidding, each user, i, will report its bid for each additional channel it receives, b
i

=

[b
i,1, ..., bi,M ]. We say that a bidder, i, is truthful if its bids equal to its valuations, i.e., b

i

= v
i

.
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The optimal allocation for a single channel, m, is

x⇤
m

= argmax
x

X

i2V
b
i,m

(x) (1)

And the optimal allocation for all channels is represented by

x⇤ = [x1, x2, ..., xM] (2)

The incentive for bidders to be truthful is provided by the VCG payment rule, which will be

elaborated on in section 5.
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8 Methodology

8.1 The Allocation Mechanism

In the first part of our algorithm, we allocate to vertices which have weights that exceed the sum

of the weights of their neighbors. We prove here that these vertices belong to the MWIS:

Let w
i

be such that w
i

�
P

j2N (i)
w
j

. Given an arbitrary initial allocation, assume that i is not

allocated, and some of its neighbors are. By allocating to i and deallocating the neighbors which

have been initially allocated, we can be certain that overall network utility,
NP
i=1

w
i

, will not decrease,

since what was deallocated cannot exceed
P

j2N (i)
w
j

and w
i

�
P

j2N (i)
w
j

. The same principle applies

to a cluster of vertices, where there is a maximum of one vertex in between a member of the cluster

and at least one other member.

A greedy algorithm that allocates to multiple vertices/nodes per iteration, the Multi-Node Greedy

Allocation Alogirthm (MNGA) that attains a good approximation of the socially optimal solution is

presented in the following. The notion of dth-degree neighborhood and clusters is first introduced.

The dth-degree neighborhood of vertex i, N
d

(i), is the set of vertices whose shortest path from i in-

volves d edges. A cluster of vertices, i, of size c, Q
i

(c) = {q1, ..., qc : qi 2 V |q
i

2 N2(qi1), qj /2 N(q
i 6=j

)},

are vertices that are each even-degree neighbors of each and every vertex in the cluster, and the

cluster value, S(c) 2 R, is the sum of the maximum bid value of each of the c vertices, i.e.,
P

i2Q(c)
max(b

i

).

Channels that are available for bidding for each vertex i is represented by the set C
i

= {z
i,m

: i 2 V,m 2 M},

where z
i,m

= 1 if the channel m is available to i.

Now consider the following allocation algorithm for a single channel (read all b
i

or max(b
i

) as

b
i

). Form size-c clusters, starting with c = 2. Sort the clusters in descending order of the sum ratio

(ratio of the summed weights of a cluster to the summed weights of the neighbors of the cluster),

or count ratio (ratio of the number of vertices in the cluster to the total number of neighbors of
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the cluster) . Increase c by 1 until c = 5. Use cluster size with best performance. This procedure

is repeated for each of the m channels.

Algorithm 1- Size-2 cluster Value Computation

Input: G(V,E,b)

Output: Sum or count ratio of every pair of ”alternate” nodes, i, j, i 2 N2(j)

For i 2 V , for j 2 V ,

If (i, j) 2 E, then j 2 N (i) and i 2 N (j)

For i 2 V , for j 2 N (i), for k 2 N (j)

If k /2 N (i), then k 2 N2(i)

For i 2 V , for k 2 N2(i),

S
i,k

(2) = max(bk)+max(bi)P

j2N (i)[N (k)
max(bj)

End

Algorithm 2- Size-c cluster Value Computation (c > 2)

Input: G(V,E,b), Size-(c-1) Clusters

Output: Sum or count ratio of every size c cluster of nodes, C, where C = {i : i 2 N2(j), i /2 N (j)|j 2 C}

For each size-(c - 1) cluster, where the last added vertex was j, for each vertex k 2 N2(j),

If k /2 N(Q(c� 1)
i,j

), then S(c)
i,k

= max(b
k

) + S(c� 1)
i,j

End

Algorithm 3- Multiple Channel Allocation

Input: G(V,E,b), Size-(c-1) Clusters Ranked According to Sum of Weights of the (c-1) Nodes

Output: Greedy Allocation for m Channels via Size-c Clusters

For each channel m,

Compute S(c)

Q0(c) = Sort Q(c) in descending order of values of S(c)
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For all vertices i in Top(Q0(c)),

If z
i,m

= 1, then x
i,m

= 1 and z
i,m

= 0 and b
i

= b
i

\max(b
i

)

For all vertices j 2 N(i),

z
j,m

= 0

End

The computational complexity for generating the pairs is O(N2Dlog(N2D)), where D is the max-

imum degree of the graph, and the computational complexity for generating clusters of size C is

O(ECN2Dlog(N2D)), where E is the maximum number of second degree neighbors of a vertex.

In deciding the size of the cluster to be used for the allocation, since no single size consistently

outperformed the rest, all cluster sizes should be generated and the best performing cluster size be

used.
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8.2 The Pricing Mechanism

As for pricing, the Vickrey-Clarke-Grove auction mechanism is used to maximize the degree of

strategy-proofness. For each channel m, each allocated vertex i, will be charged

max
x

X

j 6=i2V
b
j,m

(x)�
X

j 6=i2V
b
j,m

(x⇤) (1)

And the total payment for vertex i will hence be

X

m2M
(max

x

X

j 6=i2V
b
j,m

(x)�
X

j 6=i2V
b
j,m

(x⇤)) (2)

It will first be shown that the VCG auction mechanism is strategy-proof for the optimal allocation

for one channel.

To be strategy-proof, it must deter underpayment caused by untruthful bidding in all 3 possi-

ble scenarios: If v
i

is such that vertex i will be unallocated if it were truthful, then if b
i

< v
i

, vertex

i must not be allocated the channel, and if b
i

> v
i

such that he now gets allocated at the expense

of another vertex, his new payment must not be  v
i

. Finally, if v
i

is such that vertex i will be

allocated if it were truthful, then by reporting any b
i

6= v
i

, the charge for his allocation must not

decrease.

The proof for the first two scenarios is as such:

Let there be a vertex k with bid b
k,m

= v
k,m

, that does not belong to the optimal allocation:

b
k,m

+max
x

X

j 6=k2V\N (k)

b
j,m

(x) <
X

i2V
b
j,m

(x⇤) (3)
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For all b0
k,m

< v
k,m

,

b0
k,m

+max
x

X

j 6=k2V\N (k)

b
j,m

(x) <
X

i2V
b
j,m

(x⇤) (4)

And hence vertex k will not be allocated if it bids lower. For the case where b0
k,m

> v
k,m

such that

vertex k now belongs to the optimal allocation, x’*:

b0
k,m

+max
x

X

j 6=k2V\N (k)

b
j,m

(x) =
X

i2V
b
j,m

(x0⇤)

X

i2V
b
j,m

(x0⇤) >
X

i2V
b
j,m

(x⇤)

Since

max
x

X

j 6=k2V
b
j,m

(x) =
X

i2V
b
j,m

(x⇤) (5)

The payment charged to vertex k will be

X

i2V
b
j,m

(x⇤)� (
X

i2V
b
j,m

(x0⇤)� b0
k,m

) (6)

Since in order to change an unallocated bid into an allocated one,

b0
k,m

� b
k,m

� 2 (7)

and
X

i2V
b
j,m

(x⇤)�
X

i2V
b
j,m

(x0⇤) < �(b0
k,m

� b
k,m

� 1), (8)
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k must pay at least b
k,m

+ 1 to be allocated channel m.

The proof for the third scenario is as follows: The payment for an allocated vertex i is

max
x

X

j 6=i2V
b
j,m

(x)�
X

j 6=i2V
b
j,m

(x⇤) (9)

Hence, it can be seen that the payment is independent of b
i,m

, and by lowering its bid, it will not

be able to pay less.

8.3 ✏-Strategyproofenss

Since this allocation is an approximate one, it is only approximately strategyproof. The concept of

✏-strategyproofness is from Kothari, Parkes, Suri [22]. A mechanism is ✏-strategyproof if a bidder

can gain at most ✏ through non-truthful bidding.

Since, as shown, the optimal allocation is strategyproof when the VCG pricing mechanism is ap-

plied, it can be shown that this mechanism attains an ✏-degree of strategyproofness, where 1
1+✏

is

the degree of approximation of the allocation. Let V̂ denote the allocation of our approximating

allocation mechanism, and V ⇤ denote the optimal allocation. Then assuming the approximation

fulfills: V̂ < V ⇤ , a vertex i can try to improve his payo↵ by bidding b
i

6= v
i

such as to change the

outcome from V

⇤

1+✏

to V ⇤. Hence, vertex i's gain in utility is ✏

1+✏

V ⇤.

8.4 Extension to Multiple Channels

The allocation and pricing processes described above can be repeated for each channel without

making any adjustments, since the channels are independent of one another in terms of interference.

The properties of social optimality and truthfulness are thereby maintained. The additional factor

of consideration for multiple channels is the demand of bidders for di↵erent channels. It is assumed

that each bidder values an additional channel at an equal or lower value than the previous channel.

Hence, the bids per bidder for di↵erent channels will be marginally decreasing in m. During the

auction, a bidder's highest bid will be removed from his bids each time he attains a channel. The

bids for each bidder will then be updated during each round of allocation for a new channel.
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9 Results of Allocation Mechanism

Simulations were conducted using retangular-grid topology, bipartite graphs, and weighted DI-

MACS graphs using weights used in Pullan’s paper. Because this algorithm makes use of the extra

information provided by the weight of each vertex in the graph to find the optimal MWIS, the usual

simulations run for MIS algorithms were not being used here. Simulations were first conducted on

a rectangular-grid topology, with odd number of columns and rows. The bid values are uniformly

distributed with a mean of 20 and variance of 1. In this way, the socially optimal allocation is likely

to be that of alternate vertices beginning with the corner vertex, since this maximizes the number

of vertices being allocated. It is shown that allocation by cluster sizes of at least 2 consistently

outperforms that of single vertices, and allocating greedily using clusters achieves an approximation

degree of 90 to 100 %, for network sizes of 49 to 361. The optimal cluster size (one that achieves

the socially optimal allocation) has a positive correlation with the network size, up till a cluster

size of 5.

Network

size (no. of

vertices)

Optimal

cluster

Degree of

approxima-

tion

Degree of

approx-

imation

of single

vertex

Degree of

approxi-

mation of

single ver-

tex/count

49 c/s(3)*;

c/s(4)

100% 70.9% 85.1%

81 c/s(4) 100% 74.4% 82.8%

121 c/s(5) 96% 74.9% 81.2%

169 c/s(5) 92% 76.0% 82.1%

361 s(6)** 90.7% 76.8% 80.4%

*c/s(i) stands for both count and sum ratios of cluster size i

*s(i) stands for sum ratio of cluster size i

34



Simulations were next conducted on planar networks by varying 4 variables:

• Network size, N

• Mean number of neighbors, Mn

• Variance of number of neighbors, V n

• Variance of bid values, V b

Other than testing for varying cluster sizes, we also included another benchmark method of allocat-

ing to alternate vertices to test the e↵ectiveness of our method, overall. We ran 20 simulations each

for N = 100 with varying Mn, V n and V b. We used Mn for 5%, 10% and 15% of N,V n for 30%,

40% and 55% of Mn, and V b of 15%, 40%, and 50% of the mean values of the bids. In general,

there is no determining factor for best cluster size, but allocation by clusters outperforms allocation

by single vertices 90% of the time. In addition, the ratio using count, instead of sum of neighbors,

worked better for higher bid variances, and when variance of number of neighbors increases, the

method of allocating to alternate vertices tend to outperform that of the greedy allocation method.

Mean number of neighbors does not have a detectable impact on the above mentioned factors.

In order to test for the performance of the clusters with respect to the optimal solution for the

MWIS problem, we ran simulations for 5 DIMACS graphs, and for the vertex weights, we used the

values that Pullan [56] used for the DIMACS-W set, which is i⇥mod(200) + 1 for vertex i.
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C125 Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

Sum Ratio 88% 92% 91% 94% 92% 94%

Count

Ratio

90% 97% 94% 92% 94% 97%

Di↵erence 84% 84% 89% 89% 78% 89%

brock200�4 Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

Sum Ratio 81% 81% 83% 72% 72% 83%

Count

Ratio

81% 80% 69% 87% 78% 87%

Di↵erence 61% 71% 85% 51% 69% 85%

Mann�27 Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

Sum Ratio 98% 99% 101% 99% 99% 100%

Count

Ratio

100% 98% 99% 99% 99% 100%

Di↵erence 99% 98% 99% 99% 88% 99%
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Gen200�4 Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

Sum Ratio 89% 86% 92% 80% 87% 92%

Count

Ratio

80% 84% 87% 85% 83% 87%

Di↵erence 80% 84% 87% 85% 83% 87%

Simulation was also done using graphs of random edge densities within specified ranges, and

Gaussian distributed vertex weights. The graphs were bipartite, which would not a↵ect the per-

formance of this particular algorithm, since the factors a↵ecting the performance of the algorithm

are network size, and possibly variance of vertex weights, and the variance in density of edges of

the graph, given the principles behind how the algorithm functions. These three factors can be

adjusted in a bipartite graph. On the other hand, if this were an algorithm that involves enumera-

tion, a bipartite graph would improve the implementation time of the algorithm since it decreases

the number of possible combinations of allocated nodes in an independent set of the graph.

The optimal solution of the MWIS of the bipartite graphs were obtained by using both the max-flow

and min-cut algorithms [25] from the matlab bgl package, which runs in polynomial time. However,

they yield di↵erent results most of the time. The average degree of the networks simulated is 3%

of the network size, and the variance to mean ratio of the degree of the vertices is approximately

1.3% of the network size. Below are the results of 180 simulations for each network size(table):

% Performance Compared With Optimal

Performance of Sum-Ratio:
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N Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

80 76% 82% 86% 88% 89% 93%

120 76% 84% 88% 83% 78% 91%

160 76% 80% 88% 88% 92% 96%

200 75% 80% 84% 84% 95% 96%

Performance of Count-Ratio:

N Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

80 80% 87% 88% 89% 91% 93%

120 70% 77% 82% 85% 97% 97%

160 78% 81% 85% 83% 88% 91%

200 73% 79% 86% 86% 88% 89%
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Average Performance For Sum-Ratio

Var-

mean

Ratio

Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

4% 75% 81% 84% 87% 85% 92%

8% 76% 82% 87% 89% 88% 94%

12% 76% 81% 85% 85% 96% 96%

Average Performance For Count-Ratio

Var-

mean

Ratio

Single

vertex

Size-2

Cluster

Size-3

Cluster

Size-4

Cluster

Size-5

Cluster

Best-

Of

MNGA

4% 75% 81% 87% 84% 91% 92%

8% 75% 81% 86% 87% 91% 93%

12% 76% 81% 84% 87% 90% 91%
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10 Conclusion

In this paper, a computationally e�cient algorithm and strategyproof pricing mechanism for al-

locating radio spectrum, with the objective of maximizing social utility, subject to interference

constraints, is presented. A two-part allocation algorithm for the Maximum Weighted Independent

Set was introduced, which outperforms the single-vertex greedy heuristic 91% of the time, and

achieves a performance of 89-97% of the optimal solution on average, as compared to single-vertex

allocation’s performance of 70-80% for network sizes of 80 to 200. It works well for networks

with high variance to mean ratios in weights. The computation complexity of this algorithm is

O(ECN2Dlog(N2D)), where E is the maximum number of second degree neighbors of a vertex.

This can be further reduced by applying bounds to the number of clusters being generated.

We believe that this heuristic, aside from being used to find a good approximate solution, can

be highly useful in finding a good initial solution for local search and metaheuristic algorithms for

MWIS, MIS, MWC, Maximum Clique, and graph coloring problems.
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