

Advancing Cyberinfrastructure for Reproducible
Hydrologic Modeling

A Dissertation

Presented to
the Faculty of the School of Engineering and Applied Sciences

University of Virginia

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
in

Civil and Environmental Engineering

By

Bakinam Tarik Essawy

August 2017

APPROVAL SHEET

The Dissertation
is submitted in Partial Fulfillment of the Requirements

for the Degree of
Doctor of Philosophy

Bakinam Tarik Essawy

Author

The dissertation has been read and approved by the examining committee:

 Jonathan Goodall, Ph.D., P.E.

Advisor

Teresa Culver, Ph.D.

John Porter, Ph.D.

Marty Humphrey, Ph.D.

 Tanu Malik, Ph.D.

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

August 2017

i

Abstract

Scientists have created a significant and growing collection of software tools for data

manipulation, analysis, and simulation. This software includes not only computational models, but

also a large collection of data pre- and post-processing tools used to support computational

modeling and data analysis. This large and diverse set of scientific modeling software presents

challenges to the hydrologic science community including (1) the difficulty of making scientific

workflows reproducible in support of an end-to-end hydrologic modeling use case, especially

when large dataset transfers are required for data processing pipelines, (2) providing adequate and

accessible component-level metadata for legacy hydrologic software, and (3) ensuring scientific

reproducibility when using legacy hydrologic processing software, which often has complex

software dependencies. This research uses the Variable Infiltration Capacity (VIC) and

MODFLOW hydrologic models as use cases in examining these challenges.

This research addresses these challenges by conducting three studies. The first study

explores approaches for leveraging data grid technology in hydrologic modeling to support

reproducible workflows using large datasets. Its primary contribution is a general methodology for

analyzing large, distributed data collections. This is accomplished by moving processing resources

to the large datasets in contrast to the typical approach of moving the datasets to the processing

resources. Data grid technology is used to automate data transfers and staging, in combination with

automated formal publication of generated data assets.

The second study advances prior efforts for formalizing model metadata in hydrology by

evaluating the OntoSoft Ontology as a means for formally structuring model metadata for lower

level scientific software components. The metadata evaluated describes a data pre-processing

ii

workflow for the VIC hydrologic model. This workflow consists of multiple software components

written by different scientists over time. The analysis begins by exploring what metadata

hydrologists have already captured in unstructured forms. It then shows how this metadata could

be organized into structured, machine-readable metadata using the OntoSoft Ontology.

Finally, the third study explores the creation of containers using Docker to more easily

execute hydrologic modeling software in a computing environment. By containerizing a model

with all of its dependencies, the model is self-contained and portable. This work contributes a

methodology for using HydroShare and Geotrust, two new cyberinfrastructure tools under active

development, to improve reproducibility in computational hydrology. HydroShare is a web-based

system for sharing hydrologic data and model resources. GeoTrust allows scientists to document

their computational workflows as containers called sciunits, a type of Docker container. sciunits

include required software dependencies making execution of computational workflows more

consistent across computing environments. HydroShare and GeoTrust can be used together to

create open, reusable data analysis and model execution services. The services are created using

GeoTrust and can be integrated with HydroShare as Web apps that operate on HydroShare

resources. The MODLFOW groundwater model is used as an example to show the functionality

provided by this cyberinfrastructure for creating open and reusable data analysis and model

execution services.

iii

Table of Contents

Abstract .. i

List of Figures .. v

List of Tables .. viii

Acknowledgements ... ix

Chapter 1: Introduction ... 1

1.1 Background ... 2

1.1.1 Modeling Data Life Cycle.. 2

1.1.2 An Example of the Hydrologic Modeling Workflow... 3

1.1.3 Research Studies into Computational Reproducibility for Hydrologic Modeling 5

1.2 References .. 8

Chapter 2: Server-Side Workflow Execution using Data Grid Technology for Reproducible
Analyses of Data-Intensive Hydrologic Systems1 ... 9

2.1 Introduction .. 9

2.2 Data Grid Technology .. 13

2.3 Use Case Description .. 17

2.4 Prototype Software Design and Implementation ... 21

2.4.1 Server-Side Configuration .. 21

2.4.2 Client-Side Configuration ... 22

2.4.3 Executing the Workflow ... 23

2.4.4 Results from the Workflow Execution ... 25

2.5 Discussion .. 28

2.5.1 Reproducibility ... 28

2.5.2 Federation .. 30

2.5.3 Adoption .. 31

2.5.4 Data Size and Heterogeneity Challenges ... 32

2.6 Conclusions ... 33

2.7 References .. 35

iv

Chapter 3: Evaluation of the OntoSoft Ontology for Describing Metadata for Legacy
Hydrologic Modeling Software2 .. 38

3.1 Introduction .. 38

3.2 Background ... 42

3.2.1 Variable Infiltration Capacity (VIC) Model Pre-processing Workflow .. 42

3.2.2 OntoSoft ... 45

3.3 Methodology ... 46

3.3.1 Using the OntoSoft Portal for Metadata Management ... 47

3.3.2 Example of Metadata Extracted from Source Code .. 48

3.4 Results and Discussion .. 55

3.4.1 Results of the Metadata Extraction ... 55

3.4.2 Metadata Completeness .. 58

3.4.3 Metadata Sources .. 62

3.4.4 Confidence in Metadata Mapping ... 64

3.5 Conclusion ... 65

3.6 References .. 69

Chapter 4: Integrating Scientific Cyberinfrastructure to Improve Reproducibility in
Computational Hydrology: Example Using HydroShare and GeoTrust3 72

4.1 Introduction .. 72

4.2 Background ... 75

4.2.1 HydroShare .. 75

4.2.2 GeoTrust ... 77

4.2.3 MODFLOW-NWT .. 80

4.3 System Design and Implementation ... 81

4.4 Example Application ... 83

4.5 Discussion and Conclusions .. 98

4.6 References .. 102

Chapter 5: Conclusions .. 107

v

List of Figures

Figure 1.1 Spectrum of reproducibility standards (Peng, 2011). ... 2

Figure 1.2 Modeling data cycle pipeline for reproducible research (Peng & Eckel, 2009). 3

Figure 1.3 Schematic of the VIC model adopted (Gao et al., 2009). ... 4

Figure 1.4 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et

al., 2016). .. 7

Figure 2.1 (a) The structure of an iRODS Workflow Structured Object (WSO). (b) The WSO may

utilize scripts installed in the iRODS/server bin/cmd directory for server-side data processing. 16

Figure 2.2 Details on how the county-level population data is requested and extracted using the

TerraPop web interface into an iRODS data collection. From this collection, iRODS stages-in the

required files prior to the workflow execution. .. 20

Figure 2.3 The steps that occur on the server-side when a user executes the WSO. Data is staged-

in from iRODS collections, scientist-authored scripts are run to create the figure, data is published

through a SEAD project space using the SEAD API, and key output data is staged-out back into

iRODS collections. ... 24

Figure 2.4 The steps required from a client machine in order to execute the WSO using the

icommands client library... 25

Figure 2.5 Contents of the Sustainable Environment Actionable Data (SEAD) project space used

for storing and accessing data used in the workflow. ... 26

Figure 2.6 View of figure, produced by executing the WSO, within the SEAD project space. The

workflow uses the SEAD API to upload this resource along with metadata to the SEAD project

space. ... 27

vi

Figure 2.7 Main components and data flow in the workflow emphasizing data collections and

federation approaches ... 31

Figure 3.1 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et

al, 2016). ... 44

Figure 3.2 High-level overview of the OntoSoft Ontology (adapted from Gil et al., 2015). 46

Figure 3.3 The header information for the source code of one of the software in the VIC pre-

processing workflow. This is a comon approach to include unstructured metadata in scientific

software. .. 52

Figure 3.4 The OntoSoft Ontology for the read_prec_dly software component with properties

populated from only one of the five sources: "source code and prior experience." The prefix "osw"

denotes to the OntoSoft Vocabulary namespce. ... 54

Figure 3.5 Origin and destination of the captured metadata through the OntoSoft Portal for the

identify category. .. 55

Figure 3.6 A screenshot for OntoSoft interface showing the captured metadata for the

read_prec_dly software within two categories: Identify and a portion of the Trust metadata within

the Understand category. .. 57

Figure 3.7 Percent Completeness of OntoSoft required and optional metadata for each software in

the VIC pre-processing workflow. .. 60

Figure 3.8 Percentage of extracted metadata coming from each of the five sources 62

Figure 3.9 Source for extracted metadata for each OntoSoft Category. 63

Figure 4.1 The typical conceptual workflow that needs to be repeated for computational

reproducibility. .. 73

Figure 4.2. User interaction with sciunit client. ... 80

vii

Figure 4.3 Activity diagram integration showing the creation of a sciunit using GeoTrust and

publishing on HydroShare. ... 82

Figure 4.4 The process taken to start and package the workflow on linux environment using

GeoTrust Sciunit-CLI tool .. 86

Figure 4.5 Sciunit-CLI creates a package hash for the packaged workflow. 86

Figure 4.6 The package hash is used to publish a package to HydroShare. 86

Figure 4.7 The MODFLOW-NWT preprocessing and model engine packaged workflow

published on HydroShare as composite resource. .. 87

Figure 4.8 The activity diagram showing the steps used to the create new model resource on

HydroShare (adopted from Morsy et al. 2017). .. 88

Figure 4.9 The raw data within the model instance resource, and the web apps linked to this

resource type. .. 89

Figure 4.10 Activity diagram showing the steps for the online execution of the sciunit through

HydroShare. .. 91

Figure 4.11 HydroShare user My Resource page after using the GeoTrust web app for the online

execution. .. 92

Figure 4.12 The ModflowNwtSciuintOutput resource landing page in HydroShare. 94

Figure 4.13 The ModflowNwtSciuintOutput Related Resources metadata tracking the resource's

provenance within HydroShare... 95

Figure 4.14 ModflowNwtSciuintOutput specific metadata capturing key, MODFLOW-specific

model properties.. 96

Figure 4.15 The collection resource that includes all resources used within the study. 98

viii

List of Tables

Table 2.1 Key digital assets used in the study that are published through SEAD with basic

metadata. ... 29

Table 3.1 OntoSoft Portal question and the associated metadata properties within the OntoSoft50

Table 3.2 Metadata extracted from the read_prec_dly.f software's source code 52

Table 3.3 Metadata captured from experience applying the software. .. 53

Table 3.4 URL in the OntoSoft Portal for the 15 software within the workflow......................... 56

Table 3.5 Percent completeness of OntoSoft required and optional metadata for each OntoSoft

category. .. 59

Table 3.6 Common missing metadata across software in the workflow. 61

Table 3.7 Level of confidence in metadata properties populated on OntoSoft 65

ix

Acknowledgements

 In the name of Allah, the Most Gracious and the Most Merciful. I am Grateful to the Mighty

Allah for giving me the strength to complete this thesis.

I want to express sincere gratitude to Dr. Jonathan Goodall for all the support and

encouragement throughout my graduate studies. No words can express my deep gratitude. Thank

you for giving me the pleasure to be one of your graduate students.

Thanks to the service of my dissertation committee, Drs. Teresa Culver, John Porter, Marty

Humphrey, and Tanu Malik. I would like to express my deep thanks to my friends Wes Zell,

Jeffery Saddler, Gina O' Neil, Ben Bowes, Yawen Shen and Alex Chen. You all meant a lot to

me and my family. Thank you for all your advice.

I would like to thank my husband Dr. Mohamed Morsy for his understanding, support

and love he always provided me and still does. May Allah bless you. This work would never be

done without Allah's well then you being next to me. Love you.

I would like to thank my father in law Prof. Dr. Morsy Anwar, and my mother in law

Reda El Nahta for their love, and encouragements.

This work is dedicated to my parent's my father, Prof. Dr. Tarik Essawy, and my mother,

Dr. Nemat Eid. Mommy and Pappy, I am always proud of you. I hope I was able to make you

proud of me. I really owe you a lot. Thank you for your continuous encouragement and the love

you are giving me throughout my life.

In the end, I hope that the lights of my life, Zeina and Kenzy, will be proud of their mom.

Thank you, girls, so much for being with me. I am so sorry if I was sometimes too busy for you.

All I want you to know is that I am all yours.

x

 " قاَلوُاْ سُبْحَانكََ لاَ عِلْمَ لَناَ إِلاَّ مَا عَلَّمْتنَاَ إِنَّكَ أنَتَ الْعلَِیمُ الْحَكِیمُ "
 (۳۲) سورة البقرة

"Qaloo subhanaka laa ailma lana illa ma aallamtana innaka anta al aaleemu alhakeem"

In the name of God, Most Gracious, Most Merciful

They said, "Exalted are You; we have no knowledge except what You have taught
us. Indeed, it is You who is the Knowing, the Wise."

Surah Al-Baqarah (32)

1

Chapter 1: Introduction

Hydrologists use many different computational models, with each model tailored to

address specific aspects of the hydrologic cycle. Hydrologic modeling has a long history, and many

computational models have decades of development effort and many model versions behind them

(Singh et al., 2002). Modelers often use additional software to prepare inputs for a specific model

(pre-processing software) and to analyze outputs generated by the model (post-processing

software). Taken together, there is a large and growing ecosystem of software used to simulate

hydrologic systems.

Modelers often spend weeks or months building, calibrating and validating their models.

This process is complicated and requires a diversity of data from many different data providers.

Steps in this process are rarely automated and methods for completing these steps often involve

tacit knowledge that is difficult to automate. As a result, most scientific papers describing results

from a modeling study lie under the "not reproducible" category along a spectrum of

reproducibility standards (Peng, 2011) Figure 1.1. A "not reproducible" publication represents a

publication written by a scientist that created an experiment or study and only published the results

for this experiment or study rather than the linked code and data needed to replicate the study.

The overarching objective of this research is to move hydrologic modeling toward the gold

standard of "full replication" in the reproducibility spectrum. In hydrologic modeling, due to the

variety and size of data and models used, the lack of metadata standards, and the extensive data

pre- and post- processing steps associated with the modeling workflow, reaching full replication

is nontrivial (Hutton et al., 2016). This research addresses these challenges by focusing on the

2

Variable Infiltration Capacity (VIC) and MODFLOW hydrologic models, popular and widely used

hydrologic models with more than two decades of development effort, as a case studies.

Figure 1.1 Spectrum of reproducibility standards (Peng, 2011).

1.1 Background

1.1.1 Modeling Data Life Cycle

Figure 1.2 shows the modeling data life cycle. This cycle starts with collecting the data,

then proceeds to executing the code used to process this raw data. The processed data is then used

to produce the computational results through the analytic code. These computational results are

then summarized in tables, numerical results, and even visualizations that are presented in a journal

article. Often the reader has access to only the final result, the published article. Without the

materials and information used to produce the results published in the article, the reader is unable

to verify the published results and conduct an alternate analysis of the same data (Peng and Eckel,

2009). This end-to-end workflow from collected data to the article should be more automated to

better enable reproducibility, transparency, and reuse of modeling studies.

3

Figure 1.2 Modeling data cycle pipeline for reproducible research (Peng & Eckel, 2009).

1.1.2 An Example of the Hydrologic Modeling Workflow

The Variable Infiltration Capacity (VIC) provides an example of the workflow typical in

hydrologic modeling. VIC model was developed at the University of Washington and Princeton

University beginning in early 1990s. VIC is a macro scale hydrologic model that applies water and

energy balances to simulate terrestrial hydrology at a regional spatial scale (Liang et al., 1996a).

Figure 1.3 shows a schematic of the VIC model. The VIC model is typically run at a spatial

resolution of 1/8th degree grid cells. The model represents the land surface as three layers of soil,

and is able to simulate the land surface portion of the hydrologic cycle by solving the full water

and surface energy balance equations (Liang et al., 1996a, 1996c).

Like many hydrologic models, the VIC model requires significant effort to prepare its input

data. Figure 1.3 shows the data processing workflow used to generate the meteorological and land

surface input datasets for a VIC model simulation. This workflow consists of a sequence of 15

data processing steps, each step requiring input datasets from different sources, and many of the

datasets having unique and non-standardized data models and formats (Billah et al., 2016a). These

scripts are written in different programming languages including Fortran 77, C, and C++. Shell

4

scripts are used throughout the workflow to execute these steps and perform other commands

required to complete the data processing tasks.

Figure 1.3 Schematic of the VIC model adopted (Gao et al., 2009).

Scripts within the data pre-processing workflow are divided into four categories as shown

in Figure 1.4. The scripts in the first category process the precipitation and the air temperature

datasets. The scripts in the second category process the land surface datasets including topography,

soil, and vegetation data. The scripts in third category process the wind speed dataset and the

scripts in the last category create the final model input files for meteorological datasets. The

datasets processed by the workflow are shown as ovals in the figure and include 1) meteorological

forcing files (i.e., precipitation, wind, and minimum and maximum air temperature), 2) soil and

vegetation parameter files, and 3) basin geospatial files. The primary inputs for the workflow are

shown as parallelograms and include datasets from 1) the National Oceanic and Atmospheric

Administration (NOAA) National Climatic Data Center (NCDC) (now the National Centers for

Environmental Information (NCEI)), 2) the National Center for Atmospheric Research (NCAR)

National Centers for Environmental Prediction (NCEP), 3) the National Aeronautics and Space

5

Administration (NASA) Land Data Assimilation System (LDAS) 4) the United States Geological

Survey (USGS) HYDRO1K dataset, and 5) the PRISM Climate Group PRISM dataset. Each of

these data providers has their own way of distributing data to users, and many of the datasets are

large requiring methods for server-side processing to extract subsets of data for modeling studies.

1.1.3 Research Studies into Computational Reproducibility for Hydrologic Modeling

In Chapter 2, I explore approaches for leveraging data grid technology in hydrologic

modeling to support reproducible workflows using large datasets. The VIC model is used as a case

study for this research. This is some of the first research applying data grid technology for

hydrologic modeling. Its primary contribution is a general methodology for analyzing large,

distributed data collections, by moving processing to data. This approach uses data grids to

automate data transfers and staging, in combination with automated formal publication of

generated data assets. This will be important as hydrologists seek to scale up watershed models to

larger river basins where data sizes and computational processing make reproducibility more

challenging.

 In Chapter 3, I advanced the prior efforts for formalizing model metadata in hydrology by

evaluating the OntoSoft Ontology as a means for structuring model metadata. The evaluation is

performed using a data pre-processing workflow for the Variable Infiltration Capacity (VIC)

hydrologic model that consists of multiple software components written by different scientists over

time. The analysis begins by exploring what metadata hydrologists have already captured in

unstructured forms. It then shows how this metadata could be organized into structured, machine-

readable metadata using the OntoSoft Ontology. Therefore, a primary contribution of this study is

an evaluation of the OntoSoft Ontology for describing software relevant to hydrologic modeling.

6

This is done by first understanding what metadata for hydrologic modeling software are already

embedded in online resources, and then testing how this metadata maps to the OntoSoft Ontology.

 In Chapter 4, I demonstrated how to integrate Hydroshare and GeoTrust easily and

efficiently to reproduce model workflows. The MODLFOW groundwater model is used as an

example to show the functionality provided by this cyberinfrastructure for creating open and

reusable data analysis and model execution services. The primary contribution of this research is

an end-to-end solution for converting scientific workflows to Docker containers, sharing these

containers through an online collaborative environment, and executing these containers using

cloud resources. Finally, Chapter 5 presents key conclusions across all three studies showing how

reproducibility of computational hydrologic modeling was advanced through this research.

Figure 1.4 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et al., 2016).

8

1.2 References

Billah, M. M., Goodall, J. L., Narayan, U., Essawy, B. T., Lakshmi, V., Rajasekar, A., & Moore,
R. W. (2016). Using a data grid to automate data preparation pipelines required for regional-
scale hydrologic modeling. Environmental Modelling {&} Software, 78, 31–39.

Gao, H., Tang, Q., Shi, X., Zhu, C., Bohn, T., & Su, F. (2009). Water Budget Record from Variable
Infiltration Capacity (VIC) Model Algorithm Theoretical Basis Document (* this is a tentative
author list) Department of Civil and Environmental Engineering University of Washington
Seattle , WA 98195 Department of Civ, (Vic), 57pp. Retrieved from
http://www.hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/References.sht
ml

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., & Arheimer, B. (2016). Most computational
hydrology is not reproducible, so is it really science? Water Resources Research, 50.
https://doi.org/10.1002/ 2016WR019285

Liang, X., Lettenmaier, D. P., & Wood, E. F. (1996). One-dimensional statistical dynamic
representation of subgrid spatial variability of precipitation in the two-layer variable
infiltration capacity model. Journal of Geophysical Research: Atmospheres, 101(D16)(1),
21403–21422.

Liang, X., Wood, E. F., & Lettenmaier, D. P. (1996). Surface soil moisture parameterization of the
VIC-2L model: Evaluation and modification. Global and Planetary Change, 13, 195–206.
https://doi.org/10.1016/0921-8181(95)00046-1

Peng, R. D. (2011). Reproducible research in computational science. Science., 334(6060), 1226–
1227.

Peng, R. D., & Eckel, S. P. (2009). Distributed reproducible research using cached computations.
Computing in Science and Engineering, 11(1), 28–34. https://doi.org/10.1109/MCSE.2009.6

Singh, V. P., Asce, F., Woolhiser, D. A., & Asce, M. (2002). Mathematical Modeling of Watershed
Hydrology. Journal of Hydrologic Engineering, 7(4), 270–292.

 9

Chapter 2: Server-Side Workflow Execution using Data Grid
Technology for Reproducible Analyses of Data-Intensive Hydrologic
Systems1

 2.1 Introduction

 There is an exponential growth in data available to geoscientists. The quantity of satellite

data is growing rapidly (Acharya et al., 1998) and data from sensor networks are being widely

used, in observatories such as the Critical Zone Observatory (CZO) (Anderson et al., 2008), the

National Ecological Observatory Network (NEON) (Cowles et al., 2010), and the Ocean

Observing Initiative (OOI) (Keller et al., 2008). Various groups are making available large

collections of model-derived data including climate projections and reanalysis products for use by

scientists. Public data repositories are used in many scientific disciplines as a means for sharing

data collected by the so called "long-tail" of the scientific community (Dunlap et al., 2008). The

number of public repositories will likely increase as funding agencies enforce requirements that

scientists submit data products resulting from their funded research to these public repositories.

This exponential growth in data will impact modeling and data analysis approaches used

in many geoscience disciplines. As datasets grow in complexity and resolution, there is a need for

improved tools to derive information from raw data sources in support of a particular research

objective. These challenges arise not only because processing large, semantically-unstructured

datasets can be complex and time consuming, but also because capturing the computational

workflows scientists complete for a particular study can be challenging. New strategies are needed

1 This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following
citation for the final published version of the manuscript. Essawy, Bakinam T., Jonathan L. Goodall, Hao Xu, Arcot
Rajasekar, James D. Myers, Tracy A. Kugler, Mirza M. Billah, Mary C. Whitton, and Reagan W. Moore. "Server‐
side workflow execution using data grid technology for reproducible analyses of data‐intensive hydrologic
systems." Earth and Space Science 3, no. 4 (2016): 163-175.

 10

so that these scientist-authored computational workflows can make use of the latest available data

and be reproduced and reused by other scientists.

One strategy for dealing with the growing volume of available data has focused on creating

standards for accessing remote data collections using Web Service Application Programming

Interfaces (APIs). The Consortium of Universities for the Advancement of Hydrologic Science,

Inc. (CUAHSI) Hydrologic Information System (HIS) has created standards for both an API called

Water One Flow (WOF) and a data exchange language called Water Markup Language (WaterML)

to facilitate transmission of hydrologic time-series data on large repositories using Web services

(Maidment, 2008). The Open Data Access Protocol (OpenDAP) is another widely used protocol

for accessing and sub setting scientific data using Web services (Cornillon et al., 2003). OpenDAP

focuses in particular on gridded data and includes the concept of server-side data sub setting and

format conversion that are essential for operating on large, remote files.

While the Web service approach for data access has significant benefits, it also has

limitations in that the network protocol for performing the data transfers using Web services

operates over HTTP. For large files, this approach is not optimal and potentially not feasible. Data

grid technology provides an alternative approach for managing distributed data and computational

resources. Data grids typically include features such as authentication, replication, authorization,

auditing, and metadata support that are needed to manage large, distributed data collections

(Foster, 2011; Rajasekar et al., 2010). These tools are better suitable for handling large files

compared to Web services because they allow for parallel data transfers and provide automated

fault tolerance and restarts when connectivity is lost during a transfer. Data grid technology has

been used in the atmospheric and climate sciences, notably in the Earth System Grid and Earth

System Grid Federation projects (Williams et al., 2011, 2008), but it has not been widely adopted

 11

in other geosciences disciplines to date. In particular, research is needed to determine best practices

and approaches for leveraging the technology to address specific needs in the hydrologic modeling

community, which is the focus of this research.

The objective of this research is to explore approaches for leveraging data grid technology

in hydrologic modeling to support reproducible workflows using large datasets. This is some of

the first research applying data grid technology for hydrologic modeling. Its primary contribution

is a general methodology for analyzing large, distributed data collections, by moving processing

to data and using data grids to automate data transfers and staging, in combination with automated

formal publication of generated data assets. This will be important as hydrologists seek to scale up

watershed models to larger river basins where data sizes and computational processing make

reproducibility more challenging.

The work is focused on a use case where a scientist wishes to create a workflow automating

the data processing steps required to create a publication-ready figure from a large collection of

model output files, greater than 2GB for a single run, produced using a Variable Infiltration

Capacity (VIC) (Liang and Lettenmaier, 1994) hydrologic model. The use case, which is more

fully explained in Section 3, demonstrates server-side data processing on large data collections,

using data grid technology for data transfers, and federation with public data repositories for

reproducibility of the analysis workflow. It represents one of the first applications of the newly

developed Workflow Structured Object (WSO) functionality in the iRODs, which has general

applicability to other scientific domains with significant data management challenges. While

systems like MyExperiment (De Roure et al., 2009) also focus on server-side execution of

scientist-authored workflows and provide advanced features for workflow sharing and publication,

they focus on using Web services for data transfer rather than grid technology.

 12

This research also addresses the challenge of federation across different cyberinfrastructure

systems. It is likely that data-intensive studies will need to access many cyberinfrastructure

systems for data gathering, processing, modeling, and publication. This study demonstrates this

concept for a use case that involves three cyberinfrastructure systems: the DataNet Federation

Consortium (DFC) for data storage and compute resources, the Sustainable Environment-

Actionable Data (SEAD) for data publication, and Terra Populus (TerraPop) for data access.

Federation across these systems requires agreed upon standards and protocols that allow for

interoperability. Different types of federation are demonstrated in our solution in order to address

the transfer and management of both large and small data collections.

This study is part of a special issue on the Geoscience Paper of the Future (GPF). GPF is

envisioned as a paper where all digital assets used in the study are published as open, online

resource published with unique identifiers and key metadata including titles, abstracts, licenses,

authors, and contacts (Gil et al., In Review). In this study, the key digital assets are published

through SEAD with Digital Object Identifiers (DOIs) and key metadata attributes. The research

itself is also aimed at the vision and goals of GPF focusing in particular on the use case where

computation is needed on distributed data resources. It seeks to define methods for moving data

from distributed servers within a data grid automatically using federation approaches and defining

workflows that aid in capturing the provenance of how data were moved and processed to create

publication-ready visualizations generated using multiple reference data collections. As data

volumes continue to grow, such techniques will be critical to achieve the GPF goals.

The remainder of the study is organized as follows. In Section 2 we provide background

on data grid technology to orient the reader. In Section 3 we present the use case in further detail,

followed by the design and implementation of a prototype system for solving the use case in

 13

Section 4. Finally, we provide a discussion of key aspects of our approach in Section 5 before

offering concluding remarks in Section 6.

2.2 Data Grid Technology

Data grids are systems that enable access and sharing of large data sets that are physically

distributed across the Internet, but appear to the user as a single file management system. The

Integrated Rule-Oriented Data System (iRODS) is a data management system that includes the

capability to federate data grids (Rajasekar et al., 2010). Federation allows for the creation of

virtual data collections by logically arranging data from distributed resources under a virtual

collection hierarchy. Globus is another data grid technology and is used within scientific

communities and includes GridFTP for fast data transfer of large files (Foster, 2011). While

iRODS and Globus are commonly used within some specific scientific domains (Allcock et al.,

2002; Kyriazis et al., 2008), their use is not widespread within the hydrology community.

Data grids are particularly useful for scientific communities such as hydrology that rely on

multiple data and computational resource providers. The iRODS-powered Data Federation

Consortium (DFC) grid, which is used for this research, was developed as part of a National

Science Foundation (NSF) funded project and provides support for federation of both resources

and services. The work reported here is part of the DFC project and uses a DFC data grid for

storage and long-term access to datasets stored across heterogeneous resources. The core iRODS

software is developed and maintained by the iRODS Consortium at the Renaissance Computing

Institute (RENCI), which is a partnership between the University of North Carolina at Chapel Hill

(UNC-CH) and the Data Intensive Cyber Environments (DICE) Center at UNC-CH. iRODS

currently runs in Linux/Unix environments.

 14

iRODS has a client-server architecture. The iRODS client software can be installed and

run on any computer. Each iRODS grid installation has two types of servers: exactly one iRODS

Metadata Catalogue (iCAT) server and one or more iRODS resource servers, most frequently

storage resource servers, e.g., data disks. Our system was developed on iRODS release 4.0, which

includes software for the iRODS client, the resource server, and the iCAT server. iRODS uses the

term zone as an abstraction for the physical components of an iRODS grid installation, i.e., the

iCAT server and one or more resource servers that are part of the grid.

This work uses the recent development of iRODS Workflow Structured Objects (WSO),

which enable workflows to be executed directly with iRODS commands. While iRODS is a

mature, widely used software tool, this is some of the first work using the WSO functionality of

iRODS. Therefore, this research was completed as a close collaboration between hydrologists

defining the scientific workflows and the iRODS and WSO developers made possible through the

DFC project. One goal of this work was to provide an example use case of applying WSO that

could be beneficial for other iRODS users with interests in utilizing WSO in the future.

Figure 2.1a provides an overview of the file structure for a WSO. A WSO requires two

primary files: a workflow file (*.mss) and a parameter file (*.mpf). The workflow file defines the

sequence of operations to be performed by the workflow and the parameter file lists the input

arguments used when executing the WSO. The parameter file also specifies any files in iRODS

that should be staged-in (transferred to the physical directory on the iRODS resource server where

the WSO is executed) or staged-out (put into an iRODS collection) prior to and following the

execution of the workflow (Rajasekar, 2014). Examples of workflow and parameter files are

provided in iRODS documentation, specifically from

 https://wiki.irods.org/index.php/Workflow_Objects_(WSO)#Files_in_WSO.

 15

When the user creates and uploads a parameter file, iRODS automatically generates a run

file (*.run), which is then used by the client to execute the workflow. One workflow file can be

used to create many instances of a WSO with each instance having a unique parameter file (see

the wso, wso0, and wso1 collections illustrated in Figure 1). The data files used by the workflow

are stored in runDir collections. Within each WSO, there could be multiple runDir collections, one

for each execution of the workflow. Workflows can include scripts and other scientist-authored

code installed on the server in the iRODS/server/bin/cmd directory (Figure 2.1b).

A WSO is executed by performing the following steps. (1) The user issues the iput

command, which is part of the iRODS icommands client library, to transfer a workflow file (*.mss)

from a client machine into an iRODS collection. (2) The user issues the imkdir command to make

a new collection within the collection containing the workflow file (see the wso collection shown

in Figure 1). (3) The user issues the imcoll command to mount this newly created collection. (4)

The user issues the iput command to transfer a parameter file (*.mpf) into the mounted collection.

This operation results in the system creating a run file (*.run) in the mounted collection. (5) The

user issues the iget command on the run file to execute the workflow. The system then creates a

new collection in the mounted directory (see the runDir collection shown in Figure 1) and the

staged-in and workflow generated output files are stored in this new collection. The same

workflow can be executed for different parameter files by repeating steps 4 and 5 for a new

parameter file, with each new parameter file resulting in an additional WSO collection (see wso0,

wso1, …. shown in Figure 2.1) ("Workflow Objects (WSO)," 2013).

 16

Figure 2.1 (a) The structure of an iRODS Workflow Structured Object (WSO). (b) The WSO
may utilize scripts installed in the iRODS/server bin/cmd directory for server-side data

processing.

 There are a number of workflow environments available to geoscientists, e.g., Kepler

(Altintas et al., 2004), Taverna (Oinn et al., 2004), Triana (Harrison, Andrew, 2008), and Pegasus

(Deelman et al., 2005). Like iRODS WSO, these workflow systems make trade-offs between

power and flexibility. Many enable large-scale, parallel workflow execution on distributed

resources, providing users real-time status information on the workflow execution (Vahi et al.,

2013). While workflow systems share many similarities, there are also key differences, which can

often be subtle, that determine their suitability for addressing particular use cases. We used iRODS

WSO in this analysis because our use case required a data processing pipeline consisting of a set

of scientist authored scripts that operate on data collections already within iRODS. Future work

 17

comparing and contrasting iRODS WSO with other workflow environments for completing this

or other use cases relevant to hydrologic modeling would be a useful extension to this research.

2.3 Use Case Description

The prototype software described in this study is designed to address a use case where a

scientist has created a simulation using the Variable Infiltration Capacity (VIC) model for the

Carolinas region of the United States. The model has been calibrated and validated for this region

as part of a prior study (Billah et al., 2015) and can be used to address other hydrologic research

questions as well. The scientist that created the model has published the model's input and output

files on the Web for use by other scientists. A second scientist learns about the model and wishes

to use the model's output files to test her own research question about drought impacts on counties

within a study region. The scientist is interested in how soil moisture deficit predicted by the model

varied for different populated communities within the study region. While this application is

analyzing historical events, it would be relatively straight-forward to set up the calibrated model

to analyze current conditions and to identify populated regions vulnerable to drought conditions

within the region. Such information would be valuable to resource managers in better

understanding the severity of the drought and its impact on population centers within the region.

The second scientist downloads the model output files published online by the first scientist

and creates the visualization by writing her own Python scripts. The scientist downloads the

population data for the study counties to a local working directory. The VIC soil moisture outputs

are organized in a set of "flux files," one for each node in the modeling domain. The Python scripts

sort through these data extracting relevant information and summarizing the soil moisture time

series. Geospatial processing tools are used to relate the coordinates of the model nodes to counties

in the study region. The result of this data processing is a comma separated values (CSV) file with

 18

the soil moisture deficit and population for each of the five counties. Finally, the scientist programs

the Python script to use this CSV file to produce a publication-ready figure for visualizing the

drought impacts.

In addition to publishing the scripts and data files from this analysis on a public data

repository, which is now a relatively straight-forward exercise given the proliferation of online

data repositories, the scientist also wishes to publish the workflow used to perform the analysis as

a Web executable resource. The scientist wishes to take this approach for the following reasons.

• Having the overall workflow be executable server-side means the scripts and model

output data can be co-located, removing the need to download the large model output

file to the scientist's machine prior to the workflow execution.

• By keeping datasets server-side, it is easier to ensure the data has not been modified

after making a local copy (its provenance can be proven). With the ability to publish

the model and reference data once, and to keep them on the server, only the

visualization results need to be retrieved and published for subsequent runs.

• Having server-side execution of the workflow controls for potential variability across

different hardware and software configurations on a client machine. Even with this

relatively simple use case of creating a figure, there is potential for different operating

systems and versions of analysis software to result in differences in the end product.

These software dependencies could result in additional time for scientists to trouble

shoot errors. More critically, these dependencies could result in an end product without

errors or warnings, but with inconsistencies due to non-breaking differences between

dependent software versions.

 19

Simply put, having data and processing co-located on a server as a Web executable resource results

in a more controlled environment, which is critical for reproducibility.

The scientist uses iRODS WSO to create the Web executable resource. As part of the WSO,

the scientist defines the steps to automatically stage-in the required VIC output and population

data that are stored in iRODS collections. The population data comes from TerraPop, which

provides global-scale data sets that focus on human population characteristics, land use, land

cover, and climate change (Minnesota Population Center, 2013). The Terra Populus data access

system was used to create customized data extracts, combining variables from multiple sources

into a single package. Users can browse the TerraPop collection and select the required variables;

the variable required in this study was the total population for each county in the United States.

After submitting our data request, the system generated a data package that included a shapefile

for all the counties in the United States, with unique GEOID identifiers, and a CSV file that

includes the GEOID and name of each county (Figure 2.2). This data package was then

automatically uploaded onto the TerraPop grid as an iRODS collection. By federating the DFC-

hydrology and TerraPop zones and configuring authorizations, we are able to have the population

data remain on the TerraPop server and be automatically staged-in for use by the WSO.

 20

Figure 2.2 Details on how the county-level population data is requested and extracted using the
TerraPop web interface into an iRODS data collection. From this collection, iRODS stages-in the

required files prior to the workflow execution.

Finally, the data (including code) resulting from the analysis are published using products

provided by the Sustainable Environment-Actionable Data (SEAD) project (Myers et al., 2015).

The SEAD project supports publication, preservation, and sharing of data generated by scientists

including data generated by running models. Using SEAD, teams of researchers can upload, share,

annotate, and review input datasets and model outputs within an access-controlled Project Space,

and then formally publish collections of data with associated metadata and provenance for long-

term preservation (generating a Digital Object Identifier (DOI) and standards-based archival

package, and registering the data with the DataONE catalog for discovery). Our use of SEAD

included manual entry of data and metadata via a web interface and bulk uploads of files and

programmatic submission of the output figure with metadata to SEAD, which leveraged SEAD's

RESTful Web API.

 21

2.4 Prototype Software Design and Implementation

We present the prototype software aimed at addressing the use case by first describing the

steps taken to configure the server-side software and data, next describing the steps required to

configure the WSO, then describing the steps required to execute the WSO from the client

machine, and concluding with a summary of the results from executing the workflow.

2.4.1 Server-Side Configuration

To perform the server-side configuration, we first installed iRODS resource server version

4.0 software on an Elastic Cloud Computing (EC2) instance in the Amazon Web Services (AWS)

cloud. We chose AWS because it provides on-demand computing resources and services that can

be easily scaled to meet demands. The EC2 service provided through AWS allows users to rent

virtual machines (instances) with different capabilities and pay by the CPU hour. For prototyping

purposes, we used a Linux-based medium sized machine (m3) with 3.75 GB of memory, 4 vCPU,

15 GB of SSD-based local instance storage, and 64-bit platform for the iRODS resource server

("Amazon EC2 Instances," 2015). Next this new iRODS resource server was configured to be part

of the DFC-hydrology zone that has its iRODS Metadata Catalog (iCAT) server on a machine

running at RENCI. We had to configure the AWS EC2 instance to be associated with an elastic IP

address to avoid having to update the EC2 instance's IP addresses in the iCAT server following

each restart of the EC2 instance.

We then developed a WSO on the iRODS resource server to implement the data

visualization workflow described in the use case. This required that the user have an account on

the server itself with read/write access to the cmd directory (Figure 2.1b). It was also necessary to

set read/execute rights on the files associated with the WSO so that they could be executed by the

iRODS user account. We uploaded to the iRODS resource server the VIC model output files from

 22

SEAD (where the original scientist had published them for use by the community), the Python

scripts created by the scientist to generate the visualization, and the shell script, also created by the

scientist, used to sequence the execution of the Python scripts on the iRODS resource server. The

VIC source code is not included in SEAD because the source code is available from the developer's

GitHub page instead (see https://github.com/UW-Hydro/VIC).

2.4.2 Client-Side Configuration

The client machine can be any computer with the iRODS client software installed. In this

prototyping work, we used a second EC2 instance as the client machine simply to avoid moving

data into and out of the AWS cloud. We installed the icommands iRODS client software library

on the client machine. The icommands software includes a set of commands that perform

operations such as make a new directory (imkdir) or put a file into an iRODS collection (iput)

(Weise et al., 2008). The icommands client library includes an environment configuration file that

is used to point to a particular iRODS zone and set default user credentials for accessing the iRODS

zone. In our case, we configured the icommands environment to operate on the DFC-hydrology

zone and entered user credentials representing the scientist accessing the system.

The general file structure required for creating a WSO was described in Section 2 and in

Figure 2.1a. For our particular application, we first created a workflow file (PopVsSm.mss) that

specifies the steps required to execute the workflow. The workflow file simply specified that the

workflow should execute the scientist-authored shell script installed on the iRODS server cmd

directory. We put the PopVsSm.mss file into an iRODS collection and then made a new collection

named "vic_soilmositure." We mounted this new collection, effectively making it a WSO.

 23

2.4.3 Executing the Workflow

Once the WSO is mounted, it is then possible to execute the workflow. This process is

described in general in Section 2. Here we provide specifics of the WSO execution for the use

case. The general flow of data and sequence of commands for executing the WSO execution for

the use case is described in Figure 2.3.

(1) The user initiates execution of the workflow by issuing an iget command on the

PopVsSm.run file that is in the mounted WSO collection. The PopVsSm.mpf parameter file

defines the data required by the workflow and stages these files from different iRODS collections

into the directory on the iRODS resource server where the WSO is executed. In our case, we

staged-in the VIC model output data stored in the DFC-hydrology grid and county-level population

data from the TerraPop grid. While these two datasets are stored within different grids, it is possible

to gain access to the data directly using iRODS authentication because the grids are federated.

(2) Once all required data is staged into the iRODS resource server directory where the

workflow is executed, the workflow file specifies that the scientist-authored shell script stored on

the iRODS server should be executed. This shell script then calls a series of scientist-authored

Python scripts that process the staged-in data to create the output figure.

(3) A final step in the shell script is publishing the figure resulting from the workflow

automatically to a SEAD project space for sharing with colleagues and subsequent publication.

The SEAD API is used for this purpose and allows for the submission of the file along with

associated metadata to a SEAD project space.

(4) Upon completion of the workflow, key output data are staged-out into iRODS

collections according to specifications in the parameter file. This allows the files to be accessible

to authorized users in the grid.

 24

Figure 2.3 The steps that occur on the server-side when a user executes the WSO. Data is
staged-in from iRODS collections, scientist-authored scripts are run to create the figure, data is

published through a SEAD project space using the SEAD API, and key output data is staged-out
back into iRODS collections.

Figure 2.4 shows the steps for executing a WSO from a user's perspective when working

with the icommands client library. The user must know which iRODS collection contains the script

files required for executing the WSO to be able to execute it. Once the user has logged into the

client machine, the user changes the working directory to the iRODS logical path where the WSO

has been mounted. In this case, the WSO was mounted as the "vic_soilmoisture" collection. The

user next issues an iput command to put the parameter file (PopVsSm.mpf) into the mounted WSO.

This step is not illustrated in Figure 2.3 for brevity, but results in the generation of a run file

(popvssm.run) in the collection. Finally, the client executes the workflow by issuing an iget

command on the popvssm.run file.

 25

Figure 2.4 The steps required from a client machine in order to execute the WSO using the

icommands client library.

2.4.4 Results from the Workflow Execution

When the workflow is executed, the output messages are written to the console, although

all computation is performed on the server-side and no data (other than the output messages) are

transferred to the client machine. Once the workflow execution has completed, the user can access

the output collection called runDir resulting from the workflow execution. The runDir file contains

by default the stdout from the execution of the workflow along with any staged-in and derived data

from the workflow ("Workflow Objects (WSO)," 2013).

 26

The workflow also results in publication of the workflow results to a SEAD project space.

Figure 2.5 shows the data collections as they appear through the SEAD project space website.

Most data were uploaded using the SEAD web interface. Figure 2.6 shows the figure resulting

from the WSO execution that was automatically written to the SEAD project space using the

SEAD API as a final step in the WSO execution.

Figure 2.5 Contents of the Sustainable Environment Actionable Data (SEAD) project space used

for storing and accessing data used in the workflow.

 27

Figure 2.6 View of figure, produced by executing the WSO, within the SEAD project space. The
workflow uses the SEAD API to upload this resource along with metadata to the SEAD project

space.

 28

 2.5 Discussion

2.5.1 Reproducibility

To support transparency and reproducibility of this work as envisioned by the Geoscience

Paper of the Future (GPF) project, the data collections in the use case (e.g., the VIC output files,

the TerraPop data, the WSO files, and the output figure) were published in SEAD. As part of this

publication process, each collection was given metadata including a brief abstract, creators, the

publisher, and then published to generate a Digital Object Identifier (DOI) Table 2.1. The output

figure resulting from the WSO execution was first written to a SEAD project space along with

basic metadata as a final step in the WSO execution using the SEAD API. From there, the scientist

logged into the SEAD web interface and set additional metadata fields to publish the resource with

an assigned DOI. Any combination of automated and manual entry is supported and researchers

can choose which data to publish. In our case, we automatically captured outputs from multiple

test runs before manually selecting, annotating, and publishing (including creating a DOI for) only

the final run.

Use of an open, metadata-aware repository makes it simple to capture additional derived

data and provenance information as research continues. By publishing the reference data, scripts,

and output data separately in SEAD, we also demonstrate the ability for larger reference data to be

published once, and then referenced via provenance links from the derived output files that could

be generated by many researchers over time. For example, the VIC output files used in this

workflow may be used in other research studies. If each publication using these VIC output files

references its DOI, it will be possible to track the impact of the model output files through citation

counts similar to what is done now for tracking citation counts of research papers.

 29

Other end-points could be used for publishing key digital assets from the WSO workflows.

For example, the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc.

(CUAHSI) HydroShare system is in development and could serve as an alternative or secondary

end-point for publishing results with more discipline-specific metadata (Horsburgh et al., 2015;

Morsy et al., 2014; Tarboton et al., 2014), as could systems such as FigShare or Zenodo. We

anticipate a growing number of such repositories and for federation between them (e.g., SEAD is

already a member node in DataOne (Michener et al., 2012), advertising our WSO publications

through DataONE's catalog). This research shows how iRODS WSO could play an important role

in moving data resources within such data repositories to and from computational resources to

support data computation use cases.

Table 2.1 Key digital assets used in the study that are published through SEAD with basic
metadata.

Title DOI Author Contact Abstract License

TerraPop
Data
Extract

10.5967/M08
P5XH5

Essawy,
Bakinam

Goodall,
Jonathan

Population data extracted
from TerraPop
(https://data.terrapop.org) for
the study region.

Creative
Commons
(CC)

VIC
Output for
Carolina,
1998-2007

10.5967/M0D
F6P6F

Essawy,
Bakinam

Goodall,
Jonathan

Output from a VIC model for
the Carolinas, USA calibrated
for the period 1998-2007 to
study drought impacts.

Creative
Commons
(CC)

WSO 10.5967/M0J6
7DXR

Essawy,
Bakinam

Goodall,
Jonathan

The scripts and related files
used to create the iRODS
Workflow Structured Object
(WSO).

Creative
Commons
(CC)

WSO_Out
putViz

10.5967/M05
13W51

Essawy,
Bakinam

Goodall,
Jonathan

Impact of 2007 drought on
five counties in the study
region.

Creative
Commons
(CC)

 30

Using a public cloud offers further opportunities for reproducibility. It is possible to

quickly set up virtual machines (VMs) with a variety of operating systems to reproduce

computational analyses. It is also possible to capture images of VM instances that can be stored

for future reproducibility. Exploring the use of virtual containers (e.g., the Docker project) rather

than VMs would be a useful extension to this work. Virtual containers can reduce set up time and

storage costs compared to VMs for software, like what was used in this work, that run in a Linux

operating system.

2.5.2 Federation

Federation across cyberinfrastructure systems is a key aspect of this work. Federation

describes how distinct and formally disconnected systems interoperate. There is a growing set of

cyberinfrastructure systems available to scientists, and many studies will benefit from the use of

more than one of these systems. Effective ways for federating across these systems will result in

powerful tools that save scientists' time and encourage reproducibility through automatic data

transfers handled directly by systems. This concept was illustrated in our study by showing how

distinct cyberinfrastructure systems can be federated and used collectively within a single

workflow execution.

Figure 2.7 provides a depiction of the workflow that emphasizes different data collections

and approaches for federating between DFC, TerraPop, and SEAD. The use case in this study

represents two levels of federation that we believe are relevant for most scientific studies. The

federation between the AWS machine where the workflow was executed and the TerraPop

reference data is what we term a strong federation, while the federation between the AWS machine

and SEAD is what we term a weak federation. A strong federation is based on a strong trust model

where one data grid administrator can add credentials of users of other data grid, and grant access

 31

to resources based on authentication through other data grids. One primary benefit of this level of

federation is that data grid technology can be used to transfer files between the two systems. For

large files, this level of federation will be important because of the functionality provided by data

grids like iRODS that are designed specifically to ensure rapid and successful transfer of large files

over a network. Weak federation, based on federation through Web service APIs, allows for greater

flexibility and less required trust between systems, because all operations are through services.

Transferring large data through Web services, however, it not ideal for the reasons we outlined in

Section 2.

Figure 2.7 Main components and data flow in the workflow emphasizing data collections and

federation approaches

2.5.3 Adoption

While there are many advantages to the approach described in this study, there are also

important barriers to adoption, especially in terms of the current prototype system. Currently, users

of the system need to be familiar with an iRODS client (e.g., the icommands client library used in

this study). They must also be aware of steps for executing a WSO. Developers need an

 32

understanding of how to structure new WSOs and will need access to the server running the iRODS

resource server software for installation and configuration of the WSO.

There are opportunities for abstracting the complexity of directly interfacing with iRODS

WSO for end users in order to encourage broader adoption of the technology. One way to do this

would be to have someone familiar with iRODS WSO take input from the scientist including the

scripts needed to execute the workflow and the location (iRODS logical path name) of the input

data for the scripts. The administrator would then mount a WSO with an example parameter file

and make it available through the system to end-users. The user could then execute the workflow

either using the icommands client library, as described in the study, or through other tailored client

applications able to operate on iRODS collections including executing WSOs stored within iRODS

collections. We believe this would be a fairly straightforward process for moving scientist-

authored codes into a form that is Web-executable.

2.5.4 Data Size and Heterogeneity Challenges

This work only begins to illustrate the potential benefit of using data grid technology for

executing workflows that require heterogeneous data from distributed data sources. We showed

how WSOs allow for automatically staging-in of required data distributed across a data grid. We

also showed how data produced from the workflow can be staged-out, meaning written to

collections in the data grid where it can be accessible to other users. While it was not demonstrated

in this use case, one can execute a distributed workflow across the network on multiple iRODS

resource server using WSO.

This approach allows the location of the input and output files for a computational tool to

be independent of the location where the processing is done. However, unlike approaches that rely

only on Web service APIs for data staging prior to workflow execution, iRODS provides a more

 33

robust data staging approach that leverages grid technology. While the use case demonstrated the

concept using fairly small file sizes, the solution we used can be applied to larger terabyte scale

data as well. Given that modeling in many geoscience disciplines requires access to large,

distributed data, data grid technology provides a powerful way for data staging associated with

workflow execution.

 2.6 Conclusions

The focus of this study is on creating scientist-authored workflows as Web-executable

resources in data grids. The iRODS WSO provides researchers with the ability to publish their

research methods for computational studies as workflows that specify the tools, data, and sequence

of steps taken to complete the study. All of these digital objects (data, software, model outputs,

etc.) can be made accessible to other users of the data grid as well as to non-grid users through

publication in SEAD.

There are many challenges in reaching the ultimate goal of reproducibility, especially when

dealing with data-intensive modeling analyses that require a large, diverse set of input data and

generate a large, diverse set of output data. Through this work, we argue that reproducibility will

require more server-side data processing, where reference data is managed along with the model

itself, than what is common now. This is due to the large and increasing size of datasets used by

geoscientists, and the growing complexity of software and software dependencies that require

constrained environments to ensure reproducibility.

We also argue for multiple federation approaches as means for providing interoperability

across the variety of cyberinfrastructure systems needed for data access, analysis, modeling, and

publication services. Federation approaches most often used in geoscience disciplines emphasize

Web service APIs, however to support large datasets, the community should have broader adoption

 34

of data grid federation approaches as well. The use of both approaches was demonstrated for a use

case that leveraged four federated but heterogeneous cyberinfrastructure systems: DFC, TerraPop,

and SEAD, and via an existing connection with SEAD, DataONE.

Any approach for making scientific computations into Web-executable resources must

have a low barrier to entry for users. We have proposed an approach that allows scientists to write

scripts as is typically done now for data analysis using languages familiar to scientists, and then

making these scripts available as Web-executable resources to scientists using iRODS WSO

technology. Future work should explore embedding of iRODS WSOs into systems that include

tailored interfaces for scientific communities. Then, rather than the steps described in the study for

executing WSO that include the use of the icommand client library, the end user could have a more

tailored interface for viewing and executing workflows that abstracts technical details from the

end user.

There are encouraging trends toward increased publication of data (including code) used in

scientific studies. It is important that the momentum behind these trends result in scripts and

workflows as Web-executable resources to capture their full potential in advancing reproducibility

goals. The advantages of Web executable resources include the increased ability to share,

reproduce, and collaborate on scientists-authored workflows. While the potential of scientific

scripts and workflows as Web executable resources is clear, important issues remain related to

managing large data and computation collections. We have demonstrated here an approach using

data grids for addressing this challenge, and have argued for moving processing to reference data

stored within data grids as a method for creating reproducible scientific workflows on large

datasets.

 35

 2.7 References

Acharya, A., Uysal, M., Saltz, J., 1998. Active disks: programming model, algorithms and
evaluation. SIGPLAN Not. 33, 81–91. doi:10.1145/291006.291026

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder, S.,
Nefedova, V., Quesnel, D., Tuecke, S., 2002. Data management and transfer in high-
performance computational grid environments. Parallel Comput. 28, 749–771.
doi:10.1016/S0167-8191(02)00094-7

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S., 2004. Kepler : An
Extensible System for Design and Execution of Scientific Workflows, in: 16th International
Conference On. IEEE, 2004. pp. pp. 423–424. doi:10.1109/SSDM.2004.1311241

Amazon EC2 Instances [WWW Document], 2015. URL http://aws.amazon.com/ec2/instance-
types/ (accessed 6.7.15).

Anderson, S.P., Bales, R.C., Duffy, C.J., 2008. Critical Zone Observatories: Building a network
to advance interdisciplinary study of Earth surface processes. Mineral. Mag. 72, 7–10.
doi:10.1180/minmag.2008.072.1.7

Billah, M.M., Goodall, J.L., Narayan, U., Reager, J.T., Lakshmi, V., Famiglietti, J.S., 2015. A
methodology for evaluating evapotranspiration estimates at the watershed-scale using
GRACE. J. Hydrol. 523, 574–586. doi:10.1016/j.jhydrol.2015.01.066

Cornillon, P., Gallagher, J., Sgouros, T., 2003. OPeNDAP: Accessing data in a distributed,
heterogeneous environment. Data Sci. J. 2, 164–174. doi:10.2481/dsj.2.164

Cowles, T., Delaney, J., Orcutt, J., Weller, R., 2010. The Ocean Observatories Initiative: Sustained
Ocean Observing Across a Range of Spatial Scales. Mar. Technol. Soc. 44(6), 54–64.
doi:http://dx.doi.org/10.4031/MTSJ.44.6.21

De Roure, D., Goble, C., Stevens, R., 2009. The design and realisation of the Virtual Research
Environment for social sharing of workflows. Futur. Gener. Comput. Syst. 25, 561–567.
doi:10.1016/j.future.2008.06.010

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., 2005. Pegasus : A framework
for mapping complex scientific workflows onto distributed systems. Sci. Program. 13, 219–
237.

Dunlap, R., Mark, L., Rugaber, S., Balaji, V., Chastang, J., Cinquini, L., DeLuca, C., Middleton,
D., Murphy, S., 2008. Earth system curator: metadata infrastructure for climate modeling.
Earth Sci. Informatics 1, 131–149. doi:10.1007/s12145-008-0016-1

Foster, I., 2011. Globus Online: Accelerating and Democratizing Science through Cloud-Based
Services. IEEE Comput. Soc. 15, 70–73. doi:doi:10.1109/MIC.2011.64

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,
H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X., In
Review. Towards the Geoscience Paper of the Future: Best Practices for Documenting and
Sharing Research from Data to Software to Provenance. Earth Sp. Sci.

Harrison, Andrew, et al, 2008. WS-RF workflow in Triana. Int. J. High Perform. Comput. Appl.

 36

22, 268–283. doi:10.1177/1094342007086226

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J.,
Tarboton, D.G., 2015. Hydroshare: Sharing Diverse Environmental Data Types and Models
as Social Objects with Application to the Hydrology Domain. JAWRA J. Am. Water Resour.
Assoc. n/a–n/a. doi:10.1111/1752-1688.12363

Introduction to Workflow as Objects [WWW Document], 2012. URL
https://wiki.irods.org/index.php/Introduction_to_Workflow_as_Objects (accessed 6.7.2015).

Keller, M., Schimel, D.S., Hargrove, W.W., Hoffman, F.M., 2008. A continental strategy for the
National Ecological Observatory Network. Front. Ecol. Environ. 6, 282–284.
doi:10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2

Kyriazis, D., Tserpes, K., Kousiouris, G., Menychtas, A., Varvarigou, T., 2008. Data Aggregation
and Analysis : A Grid-based approach for Medicine and Biology. Int. Symp. on. IEEE 841–
848.

Liang, X., Lettenmaier, D.P., 1994. A simple hydrologically based model of land surface water
and energy fluxes for general circulation models. J. Geophys. Res. 99, 14,415–14,428.
doi:10.1029/94JD00483

Maidment, D.R., 2008. Bringing Water Data Together. J. Water Resour. Plan. Manag. 134, 95–
96.

Michener, W.K., Allard, S., Budden, A., Cook, R.B., Douglass, K., Frame, M., Kelling, S.,
Koskela, R., Tenopir, C., Vieglais, D.A., 2012. Participatory design of DataONE—Enabling
cyberinfrastructure for the biological and environmental sciences. Ecol. Inform. 11, 5–15.
doi:10.1016/j.ecoinf.2011.08.007

Minnesota Population Center, 2013. Terra Populus: Beta Version [Machine-readable database].
Minneapolis: University of Minnesota.

Morsy, M.M., Goodall, J.L., Bandaragoda, C., Castronova, A.M., Greenberg, J., 2014. Metadata
for Describing Water Models, in: International Environmental Modelling and Software
Society (iEMSs) 7th International Congress on Environmental Modelling and Software.
doi:10.13140/2.1.1314.6561

Myers, J., Hedstrom, M., Akmon, D., Payette, S., Plale, B.A., Kouper, I., McCaulay, S.,
McDonald, R., Suriarachchi, I., Varadharaju, A., Kumar, P., Elag, M., Lee, J., Kooper, R.,
Marini, L., 2015. Towards Sustainable Curation and Preservation: The SEAD Project's Data
Services Approach. Proc. IEEE 11th Int. e-Science Conf. Munich, Ger.
doi:10.1109/eScience.2015.56

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K.,
Pocock, M.R., Wipat, A., Li, P., 2004. Taverna : a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 20, 3045–3054.
doi:10.1093/bioinformatics/bth361

Rajasekar, A., 2014. Workflows [WWW Document]. 6th Annu. iRODS User Gr. Meet. June 2014
Inst. Quant. Soc. Sci. MA. URL http://irods.org/wp-content/uploads/2014/06/Workflows-
iRUGM-2014.pdf (accessed 8.12.15).

 37

Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C. a., Marciano, R., de Torcy, A., Wan, M., Schroeder,
W., Chen, S.-Y., Gilbert, L., Tooby, P., Zhu, B., 2010. iRODS Primer: Integrated Rule-
Oriented Data System, Synthesis Lectures on Information Concepts, Retrieval, and Services.
doi:10.2200/S00233ED1V01Y200912ICR012

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodball, J.L., Merwade, V.,
Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D.R., 2014. HydroShare:
Advancing Collaboration through Hydrologic Data and Model Sharing, in: Ames, D.P.,
Quinn, N.W.T., Rizzoli, A.E. (Eds.), International Environmental Modelling and Software
Society (iEMSs) 7th International Congress on Environmental Modelling and Software.
doi:978-88-9035-744-2

Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, M., Silva,
F., Al-shakarchi, E., Mehta, G., Jones, A., Deelman, E., 2013. A General Approach to Real-
time Workflow Monitoring, in: A General Approach to Real-Time Workflow Monitoring. In
High Performance Computing, Networking, Storage and Analysis (SCC). pp. 108–118.
doi:10.1109/SC.Companion.2012.26

Weise, A., Wan, M., Schroeder, W., Hasan, A., 2008. Managing Groups of Files in a Rule Oriented
Data Management System (iRODS). Comput. Sci. 321–330. doi:10.1007/978-3-540-69389-
5_37

Williams, D.N., Ananthakrishnan, R., Bernholdt, D.E., Bharathi, S., Brown, D., Chen, M.,
Chervenak, A.L., Cinquini, L., Drach, R., Foster, I.T., Fox, P., Hankin, S., Henson, V.E.,
Jones, P., Middleton, D.E., Schwidder, J., Schweitzer, R., Schuler, R., Shoshani, A.,
Siebenlist, F., Sim, A., Strand, W.G., Wilhelmi, N., Su, M., 2008. Data management and
analysis for the Earth System Grid. J. Phys. Conf. Ser. 125, 012072. doi:10.1088/1742-
6596/125/1/012072

Williams, D.N., Lawrence, B. N. Lautenschlager, M. Middleton, D., Balaji, V., 2011. The Earth
System Grid Federation: Delivering globally accessible petascale data for CMIP5, in:
Proceedings of the 32nd Asia-Pacific Advanced Network Meeting. pp. 121–130.
doi:10.7125/APAN.32.15

Workflow Objects (WSO) [WWW Document], 2013. URL
https://wiki.irods.org/index.php/Workflow_Objects_(WSO) (accessed 6.7.15).

 38

Chapter 3: Evaluation of the OntoSoft Ontology for Describing
Metadata for Legacy Hydrologic Modeling Software2

 3.1 Introduction

 Hydrologists use many different computational models, with each model tailored to

address specific questions and problems. Hydrological modeling has a long history, and many

computational models have decades of development effort and many model versions behind them

(Singh et al., 2002). In many cases, there has been splintering of the model code base where the

original model code has started to be developed along different paths (e.g., MODFLOW). This

causes confusion as to which specific version of software was used for a given modeling

application. Further complicating the issue, models often have supporting software beyond the

physical process-representations within the model engine itself. This software is used to create

input datasets for the model (i.e., data pre-processing) and to analyze or visualize the output from

the model (i.e., data post-processing). Organizing and categorizing this broad collection of

modeling software so that it is possible to uniquely identify the software used to perform a study

is a significant challenge.

 The need to better manage the growing volume of software used for hydrologic modeling

is central to the larger challenge of computational reproducibility. The common approach for

achieving reproducibility has been for researchers to provide sufficient detail within a journal

paper's methods section to allow for reproducing the study's results. Growing complexity in

computational analyses means this approach is no longer sufficient. Scientific disciplines are trying

different approaches to address this problem including model repositories, documentation, on-line
2 This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following
citation for the final published version of the manuscript. Essawy, Bakinam T., Jonathan L. Goodall, Hao Xu, and
Yolanda Gil. "Evaluation of the OntoSoft Ontology for describing metadata for legacy hydrologic modeling
software." Environmental Modelling & Software 92 (2017): 317-329.

 39

model execution, and scientific workflows (De Roure et al., 2009; Essawy et al., 2016; JB et al.,

2007; Lud et al., 2006; Roure et al., 2010). One of the main purposes of these approaches is to

make models easier to reuse so that scientists can advance the model while achieving

reproducibility and strengthening the decisions based upon these models (Cassey and Blackburn,

2006; Hutton et al., 2016; Scholten et al., 2000).

To achieve "reproducible software" (Peng, 2011) for hydrologic modeling, not only does

the software and data need to be shared, but also their associated metadata. Metadata is structured

information for describing and explaining a digital resource that makes it easier to manage,

retrieve, and use that resource (NISO, 2004). Metadata is now a common term for describing data

sets, but metadata is less commonly used for describing software. Software for data collection,

storage, retrieval, processing, and management has improved greatly, and has significantly

contributed to the development of comprehensive distributed hydrological models (Singh et al.,

2002). Capturing metadata for hydrologic modeling software is one of the steps required to make

the software reproducible (Higgins, 2007; Mcdougal et al., 2016). Little attention has been paid to

metadata for describing these software advances. Computational reproducibility also requires

other advanced uses of standard software practices beyond metadata tools including version

control, strong commenting and documentation, and code modularity.

The limited past efforts to define metadata for hydrologic models have largely focused on

describing well maintained and widely used hydrologic models as a single information resource.

Like data, however, there is a long-tail of software used to perform and support hydrologic

modeling (Heidorn, 2008). Models are often the combination of smaller software modules or

components contributed over time by a large number of individuals and groups. Taking a more

granular view of models by diving into the details of the software provenance and attempting to

 40

capture this provenance using metadata is necessary for many reasons. Some of these reasons

include 1) providing attribution for software contributions, 2) maintaining and archiving existing

models, 3) providing information that aids in installing and executing models, and 4) ultimately

fostering reproducibility.

 Metadata for hydrologic models is being collected and recorded, but it is unstructured,

informal and distributed. The available metadata for these models are scattered across model

documentation, source code repositories, model publication repositories, user forums, and other

publically available resources. Metadata such as who created the model, when the model was

created, and the type of input and output data for the model can be found from these sources for

many scientific models, but are provided in human-readable form. Not having this information in

a machine-readable form limits its utility and does not scale well to the growing volume of

scientific software. Metadata needs to be in machine readable formats to be most useful (e.g. RDF,

XML).

 Efforts to establish more formalized, machine-readable formats for hydrologic model

metadata include efforts through the Consortium of Universities for the Advancement of

Hydrologic Science, Inc. (CUAHSI) HydroShare project and the Community Surface Dynamics

Modeling System (CSDMS) project. HydroShare describes metadata for two key modeling

concepts: a model program and a model instance. The model program is the software for executing

the model and the model instance is the input files required for executing the model (Horsburgh et

al., 2015; Morsy et al., 2014a; Tarboton et al., 2014b). A metadata framework has been proposed

for both of these concepts that extend the Dublin Core Metadata Standard. The CSDMS project

created a catalog of model programs across the surface dynamics community, which includes

 41

hydrology, and captured metadata for these model programs (Peckham et al., 2013; Peckham and

Goodall, 2013).

 Recent related activities have focused on designing standard metadata for describing

software with a particular focus on scientific software. OntoSoft is a project that is part of the

National Science Foundation EarthCube Initiative and provides an ontology and portal for

addressing the challenge of capturing metadata for scientific software in a formal way (Gil et al.,

2016b, 2015). The metadata captured by the OntoSoft Ontology focuses on the knowledge needed

for software sharing and reuse (Ratnakar and Gil, 2015). It is recommended for documenting

software in scientific papers that follow best practices for reproducible research, open science, and

digital scholarship (Cédric H David et al., 2016; Gil et al., 2016a), and has been used to document

scientific software in published articles, e.g., (Fulweiler et al., 2016; Pope, 2016; Yu et al., 2016).

OntoSoft is used in the research reported in this study because it was designed and developed by

experts in the semantic metadata community, in contrast to past efforts for hydrologic model

metadata that was designed and developed by hydrologists. An underlying question that the

research reported in this study begins to address is whether this more general scientific metadata

ontology is appropriate and useful for describing hydrologic modeling software.

 The objective of this study is to advance prior efforts for formalizing model metadata in

hydrology by evaluating the OntoSoft Ontology as a means for structuring model metadata. The

evaluation is performed using a data pre-processing workflow for the Variable Infiltration

Capacity (VIC) hydrologic model that consists of multiple software components written by

different individuals over time. The VIC model is used by large community; over 500 publications

used this model since 1993. The analysis begins by exploring what metadata hydrologists here

already captured in unstructured forms. It then shows how this metadata could be organized into

 42

structured, machine-readable metadata using OntoSoft Ontology. Therefore, the primary

contribution of this work is an evaluation of the OntoSoft Ontology for describing software

relevant to hydrologic modeling. This is done by first understanding what metadata for hydrologic

modeling software are already embedded in online resources, and then testing how this metadata

maps to the OntoSoft Ontology.

 3.2 Background

3.2.1 Variable Infiltration Capacity (VIC) Model Pre-processing Workflow

VIC is a macro scale hydrologic model that applies water and energy balances to simulate

terrestrial hydrology at a regional spatial scale (Liang et al., 1996b). Like many hydrologic models,

the VIC model requires significant effort to prepare its input data. Figure 3.1 shows the data

processing workflow used to generate the meteorological and land surface input datasets for a VIC

model simulation. This workflow consists of a sequence of 15 data processing steps, each step

requiring input datasets from different sources, and many of the datasets having unique data

models (Billah et al., 2016b). These scripts are written with different programming languages

including Fortran 77, C, and C++. Shell scripts are used throughout the workflow to execute these

steps and perform other commands required to complete the data processing tasks.

The workflow is divided into four categories as shown in Figure 3.1. The first category of

scripts process the precipitation and the air temperature datasets, the second category of scripts

process the land surface datasets including topography, soil, and vegetation data, the third category

of scripts process the wind speed dataset, and the last category of scripts create the final model

input files for meteorological datasets. The datasets processed by the workflow are shown as ovals

and include 1) meteorological forcing files (i.e., precipitation, wind, and minimum and maximum

air temperature), 2) soil and vegetation parameter files, and 3) basin geospatial files. The primary

 43

inputs for the workflow are shown as parallelograms and include datasets from 1) the National

Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) (now

the National Centers for Environmental Information (NCEI)), 2) the National Center for

Atmospheric Research (NCAR) National Centers for Environmental Prediction (NCEP), 3) the

National Aeronautics and Space Administration (NASA) Land Data Assimilation System (LDAS),

4) the United States Geological Survey (USGS) HYDRO1K dataset, and 5) the PRISM Climate

Group PRISM dataset.

This work addresses the challenges of creating metadata for the individual scripts within

the VIC data processing workflow shown in Figure 3.1. A significant amount of work by other

scientists has gone into creating the software within this workflow, and it is important for the

authors of this software to receive credit for their work. It is also important for scientific studies

that make use of these lower-level scripts to properly document the specific sequence of software

used to perform their analysis. One of the benefits of scientific workflow software (Gil et al., 2007)

is capturing the provenance of data processing tasks that support scientific modeling. While

workflow software can help to better capture the provenance, it is still important to have sufficient

metadata for each step within the workflow. Workflow software alone does not provide this

metadata. Instead, the metadata must be populated by scientists and the OntoSoft Ontology can be

used to structure this metadata. The methodology section illustrates this process by focusing on

the metadata population process for one script within the workflow as an example.

44

Figure 3.1 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et al, 2016).

45

3.2.2 OntoSoft

 OntoSoft consists of an ontology to describe metadata for scientific software (Gil et al.,

2015) and the OntoSoft Portal that serves as a user interface to manage that metadata (Gil et al.,

2016b). The premise behind OntoSoft's development is that scientific software captures important

knowledge and this knowledge should be transparent and shared widely. OntoSoft's ontology and

portal support scientists in capturing the important knowledge encapsulated within scientific

software. The OntoSoft Portal simplifies the metadata collection process by asking scientists a

series of questions. These questions map to specific properties within the ontology. A property

defines a relationship (e.g., authorship) between a subject (e.g., the software in question) and an

object (e.g. an author). OntoSoft applies the word "software" broadly to include scripts as well as

more complex software such as modeling software.

 There are 46 properties in the OntoSoft Ontology, equally divided between required and

optional properties. These properties are organized into six categories, shown in Figure 3.2. Each

category has one or more classes for organizing metadata properties. The six OntoSoft categories

are: 1) Identify, 2) Understand, 3) Update, 4) Do Research, 5) Execute and 6) Get Support. The

Identify category provides a unique description for the software. The Understand category

describes the metadata needed to increase the trust and domain knowledge about the software. The

Update category has the metadata to track versioning for the software and how the software is

being maintained and developed. The Do Research category has the metadata for the input and

output data required by the software, relations to other software that can be used with this software,

and the software citation. The Execute category has the metadata related to how to access, install,

and run the software. The Get Support category has the contact information for the software

developer.

 46

Figure 3.2 High-level overview of the OntoSoft Ontology (adapted from Gil et al., 2015).

3.3 Methodology

 The first goal of this study is to extract metadata from various sources in order to create a

metadata description for a VIC pre-processing workflow. We consider each step in the workflow

to be a unique piece of software with its own metadata description. The second goal of this study

is to populate the metadata for each step in the workflow using the OntoSoft Ontology. Five

 47

sources were used for metadata extraction: 1) the source code prior experience running the

software, 2) VIC's official website, 3) the software publication in Zenodo, 4) the VIC

documentation, and 5) the VIC user discussion wiki. We did not include publications as a metadata

source because, after a search of the literature, we only found one publication that discussed VIC

pre-processing workflow in any detail, and this study did not include any new metadata beyond

what we found in the other five sources. We used only online, publically available resources to

populate the ontology and did not contact the software developers. The developers likely could

have provided additional metadata for this software, however, a motivation of this research is to

better understand what metadata was captured and recorded for this legacy software in online,

publically available sources. Once the metadata is extracted, it is then used to populate the ontology

through the OntoSoft Portal. The completed documentation includes who authored individual

components of the workflow, what the goal of each component was, where each component is

published, and other important attributes of the software within a formal, machine-readable form.

3.3.1 Using the OntoSoft Portal for Metadata Management

 The OntoSoft Portal was used to insert metadata extracted the from five sources listed

above into the OntoSoft Ontology. The OntoSoft Portal presents questions about the software to

the scientist, and these questions are mapped to metadata properties in the OntoSoft Ontology. For

example, through the OntoSoft Portal, the user is asked "What is the software called?" and the

answer to this question is placed as the value for the "has name" property. Table 3.1 shows all the

OntoSoft questions as they appear to the scientist on the OntoSoft Portal, along with the property

each answer is mapped to. The table also shows the six categories within the OntoSoft Ontology,

the classes for each property, and whether the property is required or optional.

 48

3.3.2 Example of Metadata Extracted from Source Code

 As an example, the metadata extraction procedure is illustrated for one metadata source

(source code and prior experience) and for one software component within the workflow

(read_prec_dly). Figure 3.3 shows a screenshot of how the metadata is encapsulated within the

software's source code. Metadata extracted from this source code is shown in Table 3.2 and

includes the name, programming language, author, and description. The description is interesting

because it includes additional metadata information about input and output for the software, as

well as workflow composition metadata in terms of upstream and downstream software. From

prior experience using the software, metadata including the input and output data file names,

operating system software dependencies and other relevant metadata was determined and are listed

in Table 3.3.

Once the metadata is extracted, the next step is to map between the extracted metadata and

the OntoSoft Ontology. From this one source it is possible to populate 12 of the 46 properties

within the OntoSoft Ontology as shown in Figure 3.4. The OntoSoft Portal played an important

role in populating the ontology for the software. Figure 3.5, provides an example of how the

captured metadata from two different sources, the "source code" source discussed earlier and the

"software publication website (Zenodo)" source, were mapped to questions presented through the

OntoSoft Portal. The programer names, included as a comment within the source code, were set

as the software's creators. The name for the software was assumed to be the file name in this case.

The description from the source code was used as the short description of the software. Zenodo

(https://zenodo.org/record/22307#.WWjbAYjythE), which hosts this software as a part of the

larger VIC source code repository, provides a DOI for the source code. This DOI was used as the

https://zenodo.org/record/22307#.WWjbAYjythE

 49

software's unique identifier. The VIC model official website URL is used as the project website

for the software.

Using additional sources allows for populating the other properties within the OntoSoft

Ontology. This procedure was repeated for all metadata sources and all software components to

determine the percentage of both the required and optional metadata properties that could be

populated from just these publically available sources. As evident in this example, there is a level

of interpretation required to perform this mapping. A discussion of the level of confidence in the

mapping is reported in the Results and Discussion section along with the results of the metadata

extraction process.

50

Table 3.1 OntoSoft Portal question and the associated metadata properties within the OntoSoft

OntoSoft Portal Question Metadata Properties Required and
Optional Metadata Class OntoSoft Metadata

Category
What is the software called? has name

Required
Locate

Id
en

tif
y What is a short description for this software? has short description

What are general categories (keywords, labels) for this software? has software category
Is there a project website for the software? has project web site
What is the DOI or any other unique identifier for this software (or software
version)? has unique ID Optional

Who created this software? (e.g., Project, Organization, Person, Initiative, etc.) has creator
Required

Trust

U
nd

er
st

an
d

Are there any additional contributors of note for this software? has major contributor
What useful features of this software are worth highlighting? has salient qualities
Who is the publisher of this software if not the author? has publisher

Optional

How can a user get support for the software? (e.g., Report bugs, request features
and extensions, etc.) commitment of support

Has the software been adopted in a project, organization or by a person? has adopters
Is there any information about uses of this software (e.g., papers, research labs,
etc.)? has use information

Are there any statistics of its use? has use statistics
Are there any publications where the software is used? used in publication

Is there any benchmark information about the software? has benchmark
information

What are the funding sources for this software? has funding sources
What are the ratings for this software? has ratings
What are domain specific keywords for this software? (e.g., hydrology, climate) has domain keywords Required

Relate
Is there any other similar software that you know of? similar software

Optional What are the recommended uses and assumptions for the software? has uses and
assumptions

Are there any constraints on use, situations it is not designed for,
simplifications? has use limitation

How is the software being developed or maintained? has active development
Optional Contribute

U
pd

at
e

Are there any on-line resources for accessing the developer community for this
software? (e.g., discussion board, wiki, etc.)

has software
community

What versions does the software have? has software version Required Track

 51

Table 3.1 (continued). OntoSoft Portal question and the associated metadata properties within the OntoSoft

OntoSoft Portal Question Metadata Properties Required and
Optional Metadata Class OntoSoft Metadata

Category
What input files does the software require? has input

Required
Experiment

D
o

R
es

ea
rc

h

What are the input parameters used for this software? has input parameter
What output files does the software produce? has output
Are there any relevant data catalogs that can be used with this software? has relevant data sources Optional
What other software can interoperate with this one? has interoperable software Required

Compose Is this software typically used with other software in a workflow? (e.g., for
visualization, preprocessing, post processing, etc.) has composition description Optional

Is there a preferred publication or citation for this software? has preferred citation Required Cite
What is the URL for the code? has code location Required Access

Ex
ec

ut
e

What license is the code released under? has license
Is there a URL for the executable? has executable location Optional
Is there any on-line documentation about the software? has documentation

Required

Install

What language(s) is the software written in? has implementation language
What Operating Systems can the software run on? supports operating system
How can one install the software? has installation instructions
What other software does the software require to be installed? has dependency
Are there estimates of how long it takes to run this software on average? has average run time

Optional Are there any memory requirements for this software? requires average memory
Are there any other important details about the implementation of this code
(e.g., parallelization, special hardware, etc.)?

has other implementation
details

Is there any test data available for the software? has test data Required
Run Are there any specific instructions for testing the software? has test instructions Optional

What is the e-mail contact for this software? has email contact Required
Discuss G

et

Su
pp

or
t

What is the support offered for this software? has software support Optional

52

Figure 3.3 The header information for the source code of one of the software in the VIC pre-
processing workflow. This is a comon approach to include unstructured metadata in scientific

software.

Table 3.2 Metadata extracted from the read_prec_dly.f software's source code

has
name

has
creator

has major
contributor

has short
description has input

has
composition
description

has
implementatio
n language

read_
prec_
dly.f

Greg
O'Donnell

G.O.M.D

This program reads
the output from the
script
preproc_precip.scr
and formats the
daily precipitation
so the regrid
program can read
them Only the
output files from the
preproc_precip.scr
script (daily data
and station info
files) are needed.

daily data

reads output
from preproc-
precip.scr
Provide input
for regrid
program

FORTRAN 77
Bernto
Matheussen

Station info
files

 53

Table 3.3 Metadata captured from experience applying the software.

has name used in publication has input
supports
operating
system

has output Has software
dependency

read_prec_dly.f

Billah, M.M.,
Goodall, J.L.,
Narayan, U.,

Lakshmi, V., 2015.
Using a Data Grid to
Support Regional-
Scale Hydrologic

Modeling.

Prcp.daily

Linux Basin_prcp.fmt F77

Prcp.inf

 54

Figure 3.4 The OntoSoft Ontology for the read_prec_dly software component with properties
populated from only one of the five sources: "source code and prior experience." The prefix
"osw" denotes to the OntoSoft Vocabulary namespce.

 55

Figure 3.5 Origin and destination of the captured metadata through the OntoSoft Portal for the
identify category.

3.4 Results and Discussion

3.4.1 Results of the Metadata Extraction

 Figure 3.6 shows the resulting metadata for two of the five OntoSoft categories (Identify

and Understand) presented through the OntoSoft Portal for the software component

(read_prec_dly) discussed in the Methodology section. The resulting metadata for this software

and for the other software components in the VIC data processing workflow are available within

 56

the OntoSoft Portal system. Table 3.4 points to the URLs in the OntoSoft Portal for the 15 software

components. The portal provides a user-friendly view of the metadata, but also machine-readable

versions of the metadata. The metadata can be viewed using a Resource Description Framework

(RDF) eXtensible Markup Language (XML) format or JavaScript Object Notation (JSON) format.

These machine-readable formats are built by the system from the data provided by the scientist

through the OntoSoft Portal user interface.

Table 3.4 URL in the OntoSoft Portal for the 15 software within the workflow

ID Software OntoSoft Portal URL

1 preproc_precip http://ontosoft.org/portal/#browse/Software-11IHopcxMu7x
2 read_prec_dly http://ontosoft.org/portal/#browse/Software-3SirBaFht0YN
3 preproc_append http://ontosoft.org/portal/#browse/Software-FYMaj4P7bKDb
4 append_prec http://ontosoft.org/portal/#browse/Software-hVNbrGnWJ4Zd
5 run_append_prec http://ontosoft.org/portal/#browse/Software-GoEvXyadBBVw
6 regrid http://www.ontosoft.org/portal/#browse/Software-ZtA35mwlwFmi
7 mk_monthly http://ontosoft.org/portal/#browse/Software-DlszQOw6g336
8 get_prism http://ontosoft.org/portal/#browse/Software-vw8DQn2SSnMQ
9 rescale http://ontosoft.org/portal/#browse/Software-clQ0WKwjV3Js

10 vicinput http://ontosoft.org/portal/#browse/Software-IPXGcujizwTr
11 create_LDAS_soil http://ontosoft.org/portal/#browse/Software-AUqV48s3WrgH
12 create_LDAS_veg_param http://ontosoft.org/portal/#browse/Software-MZosBxc1Hwl8
13 getwind http://ontosoft.org/portal/#browse/Software-mpNqVzc633VL
14 regrid_wind http://www.ontosoft.org/portal/#browse/Software-2QGjMmxS9Du6
15 combine_wind http://ontosoft.org/portal/#browse/Software-ffgkh4iELbOn

http://ontosoft.org/portal/#browse/Software-11IHopcxMu7x
http://ontosoft.org/portal/#browse/Software-3SirBaFht0YN
http://ontosoft.org/portal/#browse/Software-FYMaj4P7bKDb
http://ontosoft.org/portal/#browse/Software-hVNbrGnWJ4Zd
http://ontosoft.org/portal/#browse/Software-GoEvXyadBBVw
http://www.ontosoft.org/portal/#browse/Software-ZtA35mwlwFmi
http://ontosoft.org/portal/#browse/Software-DlszQOw6g336
http://ontosoft.org/portal/#browse/Software-vw8DQn2SSnMQ
http://ontosoft.org/portal/#browse/Software-clQ0WKwjV3Js
http://ontosoft.org/portal/#browse/Software-IPXGcujizwTr
http://ontosoft.org/portal/#browse/Software-AUqV48s3WrgH
http://ontosoft.org/portal/#browse/Software-MZosBxc1Hwl8
http://ontosoft.org/portal/#browse/Software-mpNqVzc633VL
http://www.ontosoft.org/portal/#browse/Software-2QGjMmxS9Du6
http://ontosoft.org/portal/#browse/Software-ffgkh4iELbOn

 57

Figure 3.6 A screenshot for OntoSoft interface showing the captured metadata for the

read_prec_dly software within two categories: Identify and a portion of the Trust metadata
within the Understand category.

 58

3.4.2 Metadata Completeness

 One of the ways the OntoSoft Ontology was evaluated was by recording which OntoSoft

properties could be extracted from available online resources for the VIC pre-processing software

components. To do this the percentage of metadata completeness for each software within the

workflow was calculated and is presented in Figure 3.7 and Table 3.5. The results show that for

13 of the 15 software in the workflow, 74% or more of the metadata mapped to terms in OntoSoft.

It seemed that there were consistent practices for including metadata within the software with the

exception of two of the software (ID 11 and 12). These two software entries are missing important

metadata like author name, function of the software, etc. and only include the source code and few

comments within the software itself. These poorly described software entries may have been

perceived to play a minor role within the overall software system. This also could have been a

result of a difference in practice regarding commenting in the source code for these two software,

which were both related to soil and vegetation data preparation.

 Table 3.5 also shows that the optional metadata for the Execute category is missing for all

software. This category consists of three classes: "Access," "Install," and "Run." These classes

depend on the execution of the software with test data like: "has executable location," "has average

run time," "requires average memory," and "has test instructions." These properties assume a

standalone executable software, but the software analyzed in this study were lower-level software

components within a larger software system. It is likely because the software analyzed was at such

a fine granular level within the overall model code that such properties are not well documented.

We suspect that some of these metadata would likely be available if we took a higher-level view

of the software rather than focusing on components of the software system.

59

Table 3.5 Percent completeness of OntoSoft required and optional metadata for each OntoSoft category.

ID Software

OntoSoft Metadata Categories
Average of
% complete

metadata
Identify Understand Execute Do

Research
Get

Support Update

Req Opt Req Opt Req Opt Req Opt Req Opt Req Opt
1 preproc_precip 100 100 100 36 87 0 80 50 100 100 100 100 79
2 read_prec_dly 100 100 100 45 87 0 100 50 100 100 100 100 82
3 preproc_append 100 100 100 45 87 0 100 0 100 100 100 100 78
4 append_prec 100 100 100 45 87 0 80 50 100 100 100 100 80
5 run_append_prec 100 100 50 45 87 0 100 0 100 100 100 100 74
6 regrid 100 100 100 45 87 0 100 50 100 100 100 100 82
7 mk_monthly 100 100 100 45 87 0 100 50 100 100 100 100 82
8 get_prism 100 100 100 45 87 0 100 50 100 100 100 100 82
9 rescale 100 100 50 45 87 0 100 50 100 100 100 100 78

10 vicinput 100 100 100 45 87 0 100 50 100 100 100 100 78
11 create_LDAS_soil 100 0 50 27 87 0 80 50 100 0 0 100 50
12 create_LDAS_veg_param 100 0 50 27 87 0 60 50 100 0 0 100 48
13 getwind 100 100 50 45 87 0 100 50 100 100 100 100 78
14 regrid_wind 100 100 100 45 87 0 100 50 100 100 100 100 82
15 combine_wind 100 100 100 45 87 0 100 50 100 100 100 100 82

* Req. is required metadata through OntoSoft
* Opt. is for Optional metadata through OntoSoft

60

 Focusing on only the required metadata, the results show that 13 out of 15 software

components include 90% or more of the required metadata (Figure 3.7). The optional metadata

completeness varied widely among the software between 30% and 66%. Most of the software were

downloaded from the Zenodo website except for the software used for soil and vegetation data

processing (ID's 11 and 12), which was downloaded from the VIC official website and was not

available through Zenodo. Because this soil and vegetation data processing software was not

available from Zenodo, it resulted in missing metadata terms associate with software publication

(e.g., "has publisher," "has preferred citation"). Also, as discussed earlier, the authors of these

software did not include as much metadata within the source code comments compared to other

software components. This resulted in the software associated with soil and vegetation data

processing lacking metadata compared to the other software components.

Figure 3.7 Percent Completeness of OntoSoft required and optional metadata for each software
in the VIC pre-processing workflow.

 61

 There are common metadata that are missing from all of the software components. Table

3.6 shows the 10 optional and 1 required properties that were missing for all the software. The one

missing required property, "has test data," was not identified for any of the software through this

research, as discussed earlier. It may be necessary to make this an optional rather than required

property for more modular software components. Test data should always be included, even to

support unit tests of modular components of a larger software system. However, given that this

may not have been a common practice in the past, making this optional metadata to support legacy

codes may be appropriate. Of the 10 missing optional properties, all are important but none could

be captured for this software based on our analysis of available online resources. Some of the

missing optional properties may be difficult to populate for other software as well, because they

will be heavily dependent on applications of the software to specific use cases (e.g., "has average

run time" and "requires average memory").

Table 3.6 Common missing metadata across software in the workflow.

Metadata Properties

Required
 and

Optional
Metadata

Class
OntoSoft
Metadata
 Category

has use statistics

Optional Trust

U
nd

er
st

an
d

has benchmark
information
has funding sources
has ratings
similar software

Optional Relate has uses and assumptions
has use limitation
has executable location Optional Access

Ex
ec

ut
e has average run time Optional Install requires average memory

has test data Required Run has test instructions Optional

 62

3.4.3 Metadata Sources

 Another interesting outcome of the results is a better understanding of the percentage of

metadata that comes from each of the five sources used for metadata extraction Figure 3.8. The

"source code and prior experience" source provided the most metadata. The VIC documentation

provided nearly the same amount of metadata as the software publication in Zenodo provided.

Collectively, these three sources supplied 80% of the metadata with the other 20% being supplied

by the VIC website and user discussion wiki. The results show how the metadata is distributed

across the sources and further argues for the need to centralize metadata for hydrologic modeling

software.

Figure 3.8 Percentage of extracted metadata coming from each of the five sources

When the metadata source data is broken down by OntoSoft categories, it is clear that some

sources play a more major role than others in populating each category's metadata Figure 3.9. For

 63

example, the VIC website was only used to populate metadata in the Update category. The VIC

documentation and documentation were used to populate metadata in five of the six categories; no

source was used in all six categories. Interestingly, metadata for Identify, Execute, and Do

Research categories came from the same three sources: the VIC publication in Zenodo, the VIC

documentation, and the source code and prior experience. This result shows how valuable metadata

is being captured now, but even when broken into thematic categories, metadata is still widely

distributed across sources.

Figure 3.9 Source for extracted metadata for each OntoSoft Category.

 64

 3.4.4 Confidence in Metadata Mapping

 Some the mappings for ontology properties are uncertain, meaning it is expected that not

all will agree with how extracted metadata was mapped to ontology properties in this study. Table

3.7 shows the level of confidence the authors had for the ontology property mapping completed in

this study. Some properties have high confidence, where it is likely others performing this same

metadata extraction exercise would arrive at the same result. Other properties were rated as low

confidence, meaning it is likely, in the opinion of the authors, that others may populate these fields

differently than what was done in this study. In some cases, the low confidence properties for this

study may have higher confidence if this procedure was completed for another model software. In

other cases, the low confidence properties were the result of ambiguity as to how metadata from

available sources should be mapped to these properties. These properties may require further

consideration and explanation for use with hydrologic modeling.

 65

Table 3.7 Level of confidence in metadata properties populated on OntoSoft

OntoSoft
Category High Confidence Low Confidence

Identify
has name
has project web site
has unique ID

has short description
has software category

Understand has creator
has publisher

has major contributor
has short description
commitment of support
has domain keywords
has use limitations
has use information
used in publication
has salient qualities

Update
has software version
has active development
has software community

has version release date
supersedes
superseded by

Do
Research

has input
has input parameter
has output
has preferred citation

has relevant data sources
has interoperable software
has composition description

Execute

has code location
has license
has documentation
has implementation language
has dependency
supports operating systems

has installation instructions

Get
Support has email contact has software support

3.5 Conclusion

 This work evaluates the OntoSoft Ontology and portal for capturing and sharing metadata

for legacy hydrologic modeling software. The OntoSoft Ontology is designed to focus on scientists

rather than software developers (Gil et al., 2015), so it is important for scientists to evaluate the

ontology. This work also supports the idea of sharing software and its associate metadata as an

additional goal to complement the now commonly accepted idea of sharing data and its associate

metadata. To achieve "reproducible software" (Peng, 2011), not only the software and data need

to be shared, but also their associated metadata. Sharing software with metadata encourages future

scientists to learn and build from prior work by reducing the time and effort to find and understand

this prior work. This study uses a pre-processing workflow for the VIC hydrologic model as a case

 66

study for evaluating the OntoSoft Ontology. Metadata was harvested from five sources: 1) Source

code and prior experience, 2) Variable infiltration capacity (VIC) model official website, 3)

Software published in website Zenodo, 4) VIC documentation for the software, and 5) VIC user

discussion wiki. The large amount of effort and time devoted to capturing metadata from these

various sources resulted in an improved description of the complex hydrologic VIC model

workflow at a detailed level using the OntoSoft Ontology.

 Results of the analysis showed that at least 90% of the required OntoSoft metadata

properties could be captured from the online sources for 13 of the 15 software components within

the workflow. The metadata was somewhat evenly distributed across four of the five sources. This

result suggests that the vast majority of the metadata needed to populate at least the required

properties in OntoSoft is recorded now by hydrologic modelers, but the information is distributed

across sources and stored in unstructured forms. This study also showed that there are common

missing properties across all the software used within the workflow. Out of 46 properties in the

OntoSoft Ontology, there were 14 optional properties (< 30%) and one required properties (< 3%)

missing for all 15 software. Some of the missing properties (e.g., memory size and run time)

depend on a specific application of the software (i.e., to model a given domain for addressing a

given research objective), and thus will differ from one application to another. Finally, the results

of the study also suggested uncertainty in how to populate some of the metadata properties. Some

of these terms, labeled as "low confidence" in Table 3.6, may have had less uncertainty if a

different set of software were investigated (e.g., software at less of a fine-grain level than what

was used in this study). Other terms may be ambiguous across hydrology models, requiring

additional description and guidance.

 67

Some limitations of this study are that (i) while it investigates 15 different software, these

are all related to using a single hydrologic model and (ii) the metadata was extracted by one team

of hydrologists. Broadening this work to additional geoscience models and having other scientists

repeat the metadata extraction process would help to advance the evaluation of OntoSoft for

capturing geoscience software metadata. In particular, having other groups of scientists repeat the

process would benefit in testing the consistency of the metadata property mapping process.

Expanding the effort to other geoscience models would help in improving the evaluation of

OntoSoft for representing the metadata necessary for geoscience software more broadly. Despite

these limitations, this study contributes both an important and necessary evaluation of OntoSoft as

ontology for describing software relevant to hydrologic modeling. It also improves understanding

of what metadata is being captured now in available online resources for hydrologic modeling

software.

Finally, there are many possible future research goals that could be undertaken to advance

the research presented here. 1) OntoSoft could be expanded to better track where metadata

recorded within the ontology was obtained. 2) The extraction process, which is now manual and

very tedious, could be more automated through text mining approaches, although from this

experience we believe manual intervention will continue to be necessary at some level. 3) For the

low confidence metadata, a mechanism for crowdsourcing the metadata collection and review

(potentially through a user-supplied rating system) would be a helpful feature for gaining

confidence in potentially ambiguous metadata. 4) Experiments, where a group of scientists repeat

the same procedure outlined in this study for gathering metadata on the VIC pre-processing

workflow and entering it through the OntoSoft Portal, would be a potentially useful way to

compare the completeness, confidence, and accuracy of metadata generation across scientists.

 68

Lastly, an underlying premise of this study is that having metadata for software, including for

software at a fine-grain level, is useful for increasing transparency and reproducibility in science.

Future work could test this assumption by surveying VIC users to better evaluate how metadata

presented through the OntoSoft Portal increases their understanding of the VIC software, and how

it influences their use and communication of the software with other researchers going forward.

 69

3.6 References

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. Softw. 78, 31–39.

Cassey, P., Blackburn, T.M., 2006. Reproducibility and Repeatability in Ecology. Bioscience 56,

958–959.

David, C.H., Gil, Y., Duffy, C.J., Peckham, S.D., Venayagamoorthy, S.K., 2016. An introduction

to the special issue on geoscience papers of the future. Earth Sp. Sci.
doi:10.1002/2016EA000201.Received

De Roure, D., Goble, C., Stevens, R., 2009. The design and realisation of the Virtual Research

Environment for social sharing of workflows. Futur. Gener. Comput. Syst. 25, 561–567.
doi:10.1016/j.future.2008.06.010

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,

Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid
technology for reproducible analyses of data-intensive hydrologic systems. Earth Sp. Sci. 3,
163–175. doi:10.1002/2015EA000139

Fulweiler, R.W., Emery, H.E., Maguire., T.J., 2016. A workflow for reproducing mean benthic

gas fluxes. Earth Sp. Sci. 3, 318–325. doi:10.1002/2015EA000158

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,

H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X.,
2016a. Towards the Geoscience Paper of the Future : Best Practices for Documenting and
Sharing Research from Data to Software to Provenance. Earth Sp. Sci. 1–75.
doi:10.1002/2015EA000136

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,

Moreau, L., Myers, J., 2007. Examining the challenges of scientific workflows. Ieee Comput.
40, 26–34. doi:10.1109/MC.2007.421

Gil, Y., Garijo, D., Mishra, S., Ratnakar, V., 2016b. OntoSoft : A Distributed Semantic Registry

for Scientific Software. Proc. Twelfth IEEE Conf. eScience, Balt. MD.

Gil, Y., Ratnakar, V., Ca, R., Garijo, D., 2015. OntoSoft : Capturing Scientific Software Metadata,

in: Eighth ACM International Conference on Knowledge Capture, Palisades, NY, 2015.
Heidorn, P.B., 2008. Shedding Light on the Dark Data in the Long Tail of Science. Libr. Trends

57, 280–299. doi:10.1353/lib.0.0036

Higgins, S., 2007. Using Metadata Standards [WWW Document]. Digit. Curation Cent. URL

http://www.dcc.ac.uk/resources/briefing-papers/standards-watch-papers/using-metadata-
standards#2 (accessed 5.10.16).

 70

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J.,

Tarboton, D.G., 2015. Hydroshare: Sharing diverse environmental data types and models as
social objects with application to the hydrology domain. JAWRA J. Am. Water Resour.
Assoc. 52. doi:10.1111/1752-1688.12363

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational

hydrology is not reproducible, so is it really science? Water Resour. Res. 50. doi:10.1002/
2016WR019285

JB, G., PJ, G., SJ., W., 2007. OpenMI: Open modelling interface. J. Hydroinformatics 9, 175–191.

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996. One-dimensional statistical dynamic

representation of subgrid spatial variability of precipitation in the two-layer variable
infiltration capacity model. J. Geophys. Res. Atmos. 101(D16), 21403–21422.

Lud, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., 2006. Scientific

workflowmanagement and the Kepler system. Concurr. Comput. Pract. Exp. 18, 1039–1065.
doi:10.1002/cpe.994

Mcdougal, R.A., Bulanova, A.S., Lytton, W.W., 2016. Reproducibility in Computational

Neuroscience Models and Simulations. IEEE Trans. Biomed. Eng. 63, 2021–2035.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata

for Describing Water Models, in: In Proceedings of the 7th International Congress on
Environmental Modelling and Software, DP Ames, NWT QuinnMorsy, M.M., Goodall, J.L.,
Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata for Describing Water
Models, in: In Proceedings of the. pp. 978–988.

NISO, N., 2004. Understanding Metadata. Natl. Inf. Stand. Organ. 20.

doi:10.1017/S0003055403000534

Peckham, S.D., Goodall, J.L., 2013. Computers & Geosciences Driving plug-and-play models

with data from web services : A demonstration of interoperability between CSDMS and
CUAHSI-HIS. Comput. Geosci. 53, 154–161. doi:10.1016/j.cageo.2012.04.019

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to integrated

modeling in the geosciences : The design of CSDMS. Comput. Geosci. 53, 3–12.
doi:10.1016/j.cageo.2012.04.002

Peng, R.D., 2011. Reproducible research in computational science. Science. 334, 1226–1227.

Pope, A., 2016. Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8

and other multispectral sensors. Earth Sp. Sci. 3, 176–188. doi:10.1002/2015EA000125

 71

Ratnakar, V., Gil, Y., 2015. OntoSoft [WWW Document]. URL
http://ontosoft.org/ontology/software/ (accessed 1.11.16).

Roure, D. De, Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P.,
Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., 2010. Towards open science :
the myExperiment approach. Concurr. Comput. Pract. Exp. 22, 2335–2353. doi:10.1002/cpe

Scholten, Huub, Waveren, R.H. Van, Groot, S., Geer, F.C. Van, Wösten, J.H.M., Koeze, R.D.,

Noort., J.J., 2000. Good Modelling Practice in water management, in: In Paper Presented on
Hydroinformatics. pp. 23–27.

Singh, V.P., Asce, F., Woolhiser, D.A., Asce, M., 2002. Mathematical Modeling of Watershed

Hydrology. J. Hydrol. Eng. 7, 270–292.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L.,

Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D., 2014.
HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. Int.
Environ. Model. Softw. Soc. 7th Int. Congr. Environ. Model. Software, San Diego,
California, USA. www. iemss. org/society/index/php/iemss-2014-proceedings.
doi:10.13140/2.1.4431.6801

Yu, X., Duffy, C.J., Rousseau, A.N., Bhatt, G., Álvarez, Á.P., Charron, D., 2016. Open science in

practice: Learning integrated modeling of coupled surface-subsurface flow processes from
scratch. Earth Sp. Sci. 3, 190–206. doi:10.1002/2015EA000155

 72

Chapter 4: Integrating Scientific Cyberinfrastructure to Improve
Reproducibility in Computational Hydrology: Example Using
HydroShare and GeoTrust3

4.1 Introduction

The challenge of creating more open and reusable code, data, and formal workflows that

allow others to verify published findings is gaining attention in the scientific community

(Borgman, 2012; Cédric H. David et al., 2016; Gorgolewski and Poldrack, 2016; Peng, 2011; Qin

et al., 2016). Recent papers have argued the need for and have proposed approaches to improve

reproducibility both broadly within geosciences generally and the hydrologic sciences specifically

(Cédric H. David et al., 2016; Essawy et al., 2016; Gil et al., 2016a; Hutton et al., 2016). Here we

consider reproducibility to be the ability to document and share digital resources used to complete

an analysis including (1) raw initial datasets, (2) data preprocessing scripts used to clean and

organize the data, (3) model inputs, (4) model results, and (5) the specific model code along with

all of its dependencies (Figure4.1). These data and software are often integrated into workflows

that allow scientists to re-run an analysis from raw initial datasets and obtain the same model

results.

There are different requirements for reproducibility depending on the nature of the

research. For example, empirical reproducibility requires capturing descriptive information about

protocols and methods for laboratory-based scientific experiments. Computational reproducibility,

the subject of this study, requires descriptive information about the software and workflow details

of model-based research (Todden, 2013). Any computational reproducibility solution must be

3This Chapter is in preparation for submission to a peer reviewed journal. The tentative title, authors, and journal
for the submission follow. Bakinam T. Essawy, Jonathan L. Goodall, Wesley Zell, Daniel Voce, Mohamed M.
Morsy, Jeffrey Saddler, and Tanu Malik. Integrating Scientific Cyberinfrastructure to Improve Reproducibility in
Computational Hydrology: Example Using HydroShare and GeoTrust. In preparation for submission to
Environmental Modelling & Software.

 73

general and able to address this heterogeneous landscape of tools and approaches used within the

target scientific community. In hydrology, scientists use a large variety of computational models

and many of these computational models have decades of development effort behind them (Singh

et al., 2002). Computational modeling requires a significant amount of effort and time to prepare

model input, and to calibrate and validate model parameters. These aspects of hydrology make

computational reproducibility particularly challenging.

Figure 4.1 The typical conceptual workflow that needs to be repeated for computational
reproducibility.

HydroShare and GeoTrust are two new cyberinfrastructures under active development that

can be used to improve reproducibility in computational hydrology. HydroShare is a web-based

system for sharing hydrologic data and model resources including detailed, hydrologic-specific

resource metadata (Tarboton et al., 2014a, 2014b). GeoTrust provides tools for scientists to

efficiently reproduce and share geoscience applications by building "sciunits," which are efficient,

lightweight, self-contained digital packages of computational workflows that can be repeated or

reproduced in different environments regardless of deployment issues (Hai et al., 2017). However,

we believe that neither achieves computational reproducibility as we defined previously in

isolation. This paper discusses how Hydroshare and GeoTrust can be harnessed to provide the

theoretical notion of computational reproducibility as defined earlier in the domain of hydrology.

Hydroshare allows scientists to share datasets (e.g., raw initials datasets, data preprocessing scripts

used to clean and organize the data, model software, and model results) in an open and transparent

way. It allows for actions on data through apps that view or analyze data stored in HydroShare.

 74

GeoTrust allows scientists to document their computational workflows as sciunit containers.

Sciunit-CLI (https://bitbucket.org/geotrust/sciunit-cli), a tool, software used to create a sciunit,

tracks and outputs the provenance of the computational workflows. The tool also keeps track of

software dependencies and creates a container for workflows using Docker. Docker containers

allow scientist to wrap a piece of software in a complete filesystem that contains everything needed

to run, including code, runtime, system tools, and system libraries (Owsiak et al., 2017). Typically

documenting all code, data, and environment dependencies can be burdensome for a scientist, and

Sciunit-CLI automates this process, taking execution time that is imperceptibly more than the

execution time of the workflow. The sciunit also encapsulates retrospective provenance of the

workflow execution, which can be used for re-running containers (Pham et al., 2014). Finally, the

container can be saved as a Docker or Vagrant container which improves reproducibility in

different environments.

The aim of this research is to present a solution for achieving a higher level of

reproducibility research using GeoTrust's Sciunit-CLI and HydroShare. The solution described in

this study can be used to assists scientists to more easily repeat, reproduce and verify a

computational experiment (Malik, 2017). This higher level of reproducibility is not limited to

being open and simply sharing but also being portable in different environments and repeating

analyses with different datasets. It is not possible to share code, data, and environment. when using

only HydroShare or GeoTrust is used in isolation. GeoTrust does not provide a community of users

who can verify analyses and a variety of datasets that are required for verification that can be

achieved by using HydroShare. Hydroshare simply assumes that reproducibility requirements are

satisfied if code and data is shared, but reproducibility also involves sharing the environment,

which scientists have a hard time documenting, and then repeating with different datasets. This

https://bitbucket.org/geotrust/sciunit-cli

 75

paper presents a design, prototype implementation, and example application of the approach using

MODFLOW-NWT model as a use case. MODFLOW is the U.S. Geological Survey's three-

dimensional (3D) finite-difference groundwater model and is commonly used by hydrogeologists

to simulate groundwater flow; "NWT" signifies a version of MODFLOW that uses the Newton-

Raphson method to solve the system of equations that result from a numerical simulation of the

general equation for groundwater flow. To achieve better reproducibility for MODFLOW-NWT,

we first use the Sciunit-CLI to create a sciunit for the pre-processing workflow used to prepare the

input data for a MODFLOW-NWT model for a study area in the James River in Virginia. Then

HydroShare is used to share key resources associated with this modeling application to foster

reproducibility. Finally, HydroShare is used to initiate the execution of the GeoTrust containers

on a cloud-computing environment.

The remainder of the study is organized as follows. First, additional background on the

HydroShare, GeoTrust, and MODFLOW-NWT software projects is provided. This background

section is meant to orient readers on key aspects of these projects. Next the design and

implementation of the HydroShare and GeoTrust integration approach is presented and

demonstrated using the MODFLOW-NWT model as an example application. Finally, a discussion

and conclusions section summarizes key aspects of the approach and outlines opportunities for

future research to advance on known limitations of the approach.

4.2 Background

4.2.1 HydroShare

HydroShare (https://www.hydroshare.org) is a web-based system designed to enable

hydrologic scientists to easily share, collaborate around, and publish all types of scientific data and

models (Tarboton et al., 2014a, 2014b). Digital content is stored in HydroShare as resources and

 76

every resource has a resource type (Horsburgh et al., 2015). The "generic" resource type supports

the Dublin Core metadata standard and more specific resource types expand on this metadata for

well-defined resource types. For example, "Operating System" is one of the extended metadata

terms for the 'Model Program' resource type, which is used for sharing a computational model

program in HydroShare (Morsy et al., 2017).

HydroShare provides a web representational state transfer (REST) application program

interface (API) that allows third-party applications to interact with HydroShare resources.

Developers can also create web-apps to integrate functionality into HydroShare. Web-app

developers can catalogue their apps in HydroShare via the 'Web-app' resource type. When a

developer creates a web-app resource in HydroShare, the developer specifies which resource types

are relevant to the app and the URL that will be called when the app is executed from the landing

page of the resource that the app is acting on. After a developer adds his or her web-app as a

resource in HydroShare, HydroShare users can execute that app through HydroShare's web

interface to act on relevant resources that they have access to.

Although there are several different resource types supported by HydroShare, two of the

main resource types relevant to this study deal with computational models. HydroShare divides

computational models into two separate but linked resource types: a) the model program and b)

the model instance (Morsy et al., 2017). The model program is the software for executing the

model and the model instance is the input files required for executing the model and, optionally,

the output files after a model instance has been executed by a model program (Horsburgh et al.,

2015; Morsy et al., 2014b). A model instance resource can be linked to a model program resource

with the model instance extended metadata term "ExecutedBy." Using the "ExecutedBy" term, a

user can specify which model program is meant to execute the input files contained within the

 77

model instance resource (Morsy et al., 2017). Additional HydroShare resource types used in this

study include the composite resource type, which allows uploading metadata files at both file and

resource level, the collections resource type, which stores any number of resources as a single,

aggregate resource, and the web-app resource type, which was described earlier.

4.2.2 GeoTrust

The GeoTrust project aims to create cyberinfrastructure that assists scientists in creating

and maintaining collections of sciunits that pertain to a specific research project (Malik et al.,

2017). Sciunits are computational research objects, that monitor the reference execution of an ad

hoc workflow to track and bundle all code, data, and environment dependencies into a light-weight,

self-contained container that can be repeated in other environments (Malik, 2017). A sciunit

advances the concept of a research object, which is an aggregation of digital artifacts such as code,

data, scripts, and temporary experiment results that together with the paper provide an authoritative

and far more complete record of a piece of research (Bechhofer et al., 2013). Further, users can

attach additional annotations to describe containers. Each container also incorporates associated

provenance, and users can use the included provenance to create smaller containers or repurposed

containers (i.e. they can create arbitrarily new containers). These containers enable exact or partial

repeatability of the sciunit. The objective of GeoTrust project is to provide easy to use tools to

create, store, and manage sciunits.

Sciunits are Docker containers used to improve the reproducibility of a computational

analysis by providing a single container for handling the various model-related data items and

software components used during a computational analysis. Data and software elements may

include input files, parameter files, pre- or post-processing scripts, the model executable, any

associated libraries, and all output files produced by the model and scripts. The objective of

 78

GeoTrust is to develop a way to define, share, and access the needed metadata collections for each

file used in the computational analysis. This approach aims to enhance sharing, reusing, and

reproducibility of models not just in hydrology but more broadly within the scientific community.

The GeoTrust project provides a tool called Sciunit-CLI that automatically creates the

sciunit Docker containers for scientific applications and runs in any Linux environment. Sciunit-

CLI is a Python/C command-line interface. Using Sciunit-CLI to create a sciunit is a way for

scientists to document their workflow, share it with others, and publish it on publicly accessible

repositories. When a sciunit is created, Sciunit-CLI ensures that the package contains all the

dependencies required for the workflow, the sciunit can be rerun, and the outputs reproduced,

using any other deployment configuration that also has Sciunit-CLI installed. Because it contains

all the required dependencies. When Sciunit-CLI creates a sciunit, it includes three types of

metadata: annotation metadata (populated by the user) and provenance and version metadata

(generated automatically by Sciunit-CLI). This process is further described with an example

application later in the study.

Figure 4.2 shows a sample user interaction with this client. The user instantiates a

namespaced sciunit titled myro, and can associate files and annotations with the sciunit using CLI

commands shown in (in italics) in Figure 2. To create a container within the sciunit, bundling an

application's digital artifacts, the user runs the application with the package command. The user

application can be written in any combination of programming languages e.g. C, C++, Fortran,

Shell, Java, R, Python, Julia, etc. In our example, the application consists of the data pre-

processing scripts written in R and Python. Packaging an application also incorporates provenance

information. Many such containers can be created within the same sciunit. The client works in a

 79

Git-like fashion in that the myro sciunit is stored only locally unless it is explicitly shared with a

remote repository. This method of operation allows distributed collaborators to work offline on

the same sciunit. When a user is ready to share, she can publish a container to a remote sciunit

using the publish command, which instructs the client to upload the container to a Web-based

repository. The repository reads the container's contents, stores the container's digital artifacts in

the appropriate remote sciunit, and associates the container with an appropriate cloud execution

server on which it can potentially re-execute.

A container within the sciunit can be re-run directly from the client, either locally on the

local machine with the repeat command, or remotely on a remote execution server with the repeat

remote command, as shown in Figure 4.2. In the remote case, the target container is downloaded

from a Web-based repository to a remote execution server, and, if the container is compatible with

the execution server's architecture, the execution server runs it and sends the results back to the

user. Both local and remote executions may optionally be repeated as partial executions. Finally,

the user can modify a container by downloading it, modifying its code or data and running it

locally, and then uploading the modified container, at which point a new version of the container

will be stored in the Web-based repository.

 80

Figure 4.2. User interaction with sciunit client.

4.2.3 MODFLOW-NWT

MODFLOW is the U.S. Geological Survey's (USGS) three-dimensional (3D) finite-

difference groundwater model. The USGS has released multiple versions of MODFLOW.

MODFLOW-2005 is the most widely used and most thoroughly tested version of MODFLOW.

MODFLOW-NWT is an advanced MODFLOW version that includes specialized MODFLOW

variants and uses a Newton-Raphson formulation to improve the solution of unconfined

groundwater-flow problems. MODFLOW-NWT is a standalone program that is intended for

solving problems involving drying and rewetting nonlinearities of the unconfined groundwater-

flow equation (Niswonger et al., 2011). MODFLOW-NWT packages have nearly the same format

as the standard MODFLOW-2005, with a few exceptions (e.g., the list of possible Newton-

Raphson solver input variables is more extensive than most MODFLOW solvers).

This study leverages FloPy, a Python library that allows users to perform pre-processing

routines to create new MODFLOW models from raw datasets, to run MODFLOW models using a

variety of different model versions, and to post-process model output files (Bakker et al., 2016).

Using scripting for these steps as opposed to a Graphic User Interface (GUI), which is commonly

 81

used for geoscience models, makes the data processing steps more transparent and reproducible.

By combining FloPy with GeoTrust and HydroShare, the workflow used to create, execute, and

analyze the output of a MODFLOW model (e.g., the steps shown in Figure 4.1) can be stored

within a reproducible container with descriptive metadata in HydroShare, as described in the

following sections.

 4.3 System Design and Implementation

Figure 4.3 shows the activity diagram with a high-level view of the system designed for

integrating GeoTrust and HydroShare. First, a user logs into a machine with Sciunit-CLI installed

and configured. The user then starts Sciunit-CLI at the terminal. While Sciunit-CLI is running, the

user initiates a workflow, often a shell script that executes a series of Python scripts for automating

data processing steps associated with a modeling use case. Sciunit-CLI creates a sciunit (Docker

container) that includes all software and data dependencies for the executed workflow. The

scientist can then use Sciunit-CLI to automatically share the sciunit through HydroShare with basic

resource metadata.

 82

Figure 4.3 Activity diagram integration showing the creation of a sciunit using GeoTrust and
publishing on HydroShare.

In order to implement this design, Sciunit-CLI needed to be extended to support sharing of

sciunits through HydroShare. This functionality was implemented using HydroShare's

representational state transfer (REST) application program interface (API). To store a sciunit on

HydroShare through Sciunit-CLI. The user must provide valid HydroShare credentials and four

basic metadata values to describe their sciunit: "abstract", "title", "keywords", and "make resource

public or private." In the current implementation, the resource is published on HydroShare as a

generic resource type that includes just these four metadata terms. Once the resource for the sciunit

is created within HydroShare, the user can log into HydroShare and edit the metadata fields to

more fully describe the sciunit resource.

 In addition to integrating with HydroShare for storing and publishing a sciunit, this

research has also resulted in approaches for using cloud resources for execution of sciunits directly

through the HydroShare user interface. We evaluated three cloud computing services to provide

 83

this functionality: EarthCube Integration and Testing Environment (ECITE), CyVerse and

Amazon Web Services (AWS). ECITE and CyVerse are both projects funded by the United States

National Science Foundation (NSF) for hosting computing environments and both are currently

under active development. One main advantage for using ECITE or CyVerse is that both are free

of charge for scientific studies. AWS, though typically not free, does offer a competitive grant

program for researchers that could also provide free resources for scientific research. While all

three approaches were tested and are discussed further in Section 5, AWS was selected as the

initial environment for further development for the reasons described in the Discussion and

Conclusions section.

Finally, a method for integrating the cloud-based sciunit execution from the HydroShare

user interface was designed and implemented. A HydroShare web-app was used for this purpose.

This web-app directs users to a AWS Elastic Cloud Compute (EC2) instance where sciunits can

be executed. The web-app configured to run a particular sciunit can be accessed through the "Open

with…" button on the landing page for the resource that stores the raw input data. When the

scientist clicks on the web-app button from the "Open with…" menu, an HTTP request containing

the raw input data's resource ID will be sent to the server. With the resource ID, the HydroShare

REST API, can be used to download the raw input data and the sciunit to the server. The server

can then, execute the sciunit using the raw data, and return back the output to the scientist in a new

HydroShare resource.

4.4 Example Application

A use case centered around the MODFLOW-NWT model was created to demonstrate the

capability of GeoTrust Sciunit-CLI tool for packaging and publishing a workflow in HydroShare.

The capability of then executing the packaged workflow through HydroShare is also demonstrated

 84

focusing on the use of an EC2 instances from AWS. We used a Linux-based micro-sized machine

(t2) with 1 Gb of memory, a 3 vCPU, 32 Gb of Solid State Drive (SSD)-based local instance

storage, and a 64-bit platform ("Amazon EC2 Instances," 2015) for prototyping and demonstration

purposes.

The first step in the process is to install the Sciunit-CLI on the EC2 instance. This was

accomplished by completing the following steps. 1) The developer creates accounts on both

Globus and HydroShare. A Globus account is needed because Sciunit-CLI supports Globus as a

secure and efficient data transfer protocol and a HydroShare account is needed so users can post

sciunits to the HydroShare system. 2) The developer downloads and installs the Sciunit-CLI tool

following the steps detailed in the GeoTrust tutorial

(http://www.geotrusthub.org/geotrust_html/GeoTrust.html). 3) At a terminal, the developer starts

Sciunit-CLI and, if this is the first time using the application, provides the Globus credentials. This

information will be stored for future uses of the application. The HydroShare credentials are

requested only when the user is uploading resources to HydroShare and not when the Sciunit-CLI

application is initiated.

Next, a workflow was created to prepare the input data for the MODFLOW-NWT model

and to run the MODFLOW-NWT engine using the prepared files. In the use case, the model inputs

are for simulation of the shallow groundwater flow system of the James River watershed upstream

of Richmond, VA. The model simulates recharge to the water table, subsurface flow through the

saturated zone, and base-flow discharge to surface water bodies including the James, Rivanna, and

Hardware Rivers and several smaller-order streams. All MODFLOW input files were constructed

by creating pre-processing scripts using the FloPy Python library (Bakker et al., 2016). The

shallow groundwater system was simulated with a single layer of 300 m x 300 m grid cells

http://www.geotrusthub.org/geotrust_html/GeoTrust.html

 85

(approximately 260,000 total model cells). Depth-integrated effective transmissivity was assumed

to be constant throughout the active model area and assigned as 100 m2/day. Spatially-distributed

recharge was derived from the national recharge dataset developed by Reitz et al. (2017). Base

flow discharge was simulated using the MODFLOW Drain Package with all drain elevations (i.e.,

the water table elevation required to discharge base-flow to a receiving stream) extracted from the

National Elevation Dataset.

After the workflow to pre-process the input data and run the MODFLOW-NWT model was

created, it was packaged into a sciunit using the Sciunit-CLI tool. Figure 4.4 outlines the first steps

in this process. The developer starts the tool and then uses the package command to run the

workflow. This package command traces all dependencies for the workflow and includes them in

a single Docker file. Figure 4.5 shows how after the tool packages the workflow and provides a

"package_hash" as the unique identifier for the package. Figure 4.6 shows how the scientist uses

this "package_hash" to share the package through HydroShare as a resource. If this is the first time

connecting to HydroShare, Sciunit-CLI will ask for HydroShare credentials, otherwise the

credentials stored when first input will be used. The user is then asked for four basic metadata

values to describe the resource: "abstract", "title", "keywords", and "make resource public or

private." Additional metadata can be provided by the user via HydroShare Graphical User

Interface (GUI) and future implementations of the Sciunit-CLI may this functionality by

automatically populating more detailed metadata for describing the resources.

 86

Figure 4.4 The process taken to start and package the workflow on linux environment using
GeoTrust Sciunit-CLI tool

Figure 4.5 Sciunit-CLI creates a package hash for the packaged workflow.

Figure 4.6 The package hash is used to publish a package to HydroShare.

Figure 4.7 shows how the published resource appears in HydroShare. The resource is

uploaded to HydroShare as a Composite resource type. This resource type allows the resource to

include multiple files without file format limitations and with metadata associated at a file level

within the resource. The composite resource contains two files. The first is the provenance

metadata file created while packaging the workflow. The provenance metadata for this package

 87

contains information concerning the creation and version history of the managed data. The second

file is the zipped package for the sciunit itself.

Figure 4.7 The MODFLOW-NWT preprocessing and model engine packaged workflow
published on HydroShare as composite resource.

 Once the sciunit is a HydroShare resource, the scientist can use HydroShare's integration

with third-party web apps to execute the sciunit with other raw data. We used the procedure

 88

outlined in Figure 4.8 to create a new resource in HydroShare for storing the input data required

by the sciunit container. We made this resource using the model instance resource type and named

it "ModflowNwtRawData." Using the same procedure, we created another resource with the web-

app resource type and named it "GeoTrust." This web-app points to the AWS-EC2 instance where

the Sciunit-CLI software is installed. The GeoTrust web-app resource is linked to the

ModflowNwtRawData resource by the SupportedResourceType metadata property. This allows

the web-app to appear in a drop-down list when a user clicks on the "Open with" button on the

ModflowNwtRawData resource landing page (Figure 4.9). When a user selects this option, the

sciunit container is executed on the AWS-EC2 instance and the results are written back to

HydroShare as a new resource with a MODFLOW Model Instance resource type. This resource

type is used because the resource can be executed by a MODFLOW model program and it allows

for adding extended metadata specific to MODFLOW (Morsy et al., 2017).

Figure 4.8 The activity diagram showing the steps used to the create new model resource on
HydroShare (adopted from Morsy et al. 2017).

 89

Figure 4.9 The raw data within the model instance resource, and the web apps linked to this
resource type.

Figure 4.10 presents the steps that occur when the "Open with" button is clicked on the

ModflowNwtRawData resource landing page. The "Open with" app will perform a HTTP GET

request to the AWS-EC2 machine, which has already been configured with the Sciunit-CLI

following the steps described earlier. The webserver running on the AWS-EC2 machine handles

the HTTP request AND automatically executes a Python script that first uses the HydroShare user

 90

authentication to download the raw data from the ModflowNwtRawData resource and downloads

the ModflowNwtSciunit resource that includes the sciunit container. Once the

ModflowNwtSciunit resource is downloaded, the resource is unzipped and moved to the working

directory for the analysis. Sciunit-CLI executes the downloaded package that prepares the raw

input data for the MODFLOW-NWT model and uses this processed data to execute the

MODFLOW-NWT model program itself using the processed data as input. After the model is

executed, a new resource is created in HydroShare with the MODFLOW Model Instance resource

type named ModflowNwtSciunitOutput and the output from the Sciunit-CLI execution is uploaded

into this new resource. A new collection resource is also created on HydroShare to group the

ModflowNwtRawData generic model instance resource (the resource type is a generic model

instance since the data uploaded have no specific metadata or format that could be tied to a specific

resource type), the web-app GeoTrust resource, the ModflowNwtSciunit MODFLOW model

instance resource, the ModflowNwtSciunit composite resource, and the

ModflowNwtSciunitOutput resource that includes the output resulting from executing the sciunit

package.

 91

Figure 4.10 Activity diagram showing the steps for the online execution of the sciunit through
HydroShare.

Figure 4.11 shows the resources in HydroShare after using the "Open with" action on the

ModflowNwtRawData resource. Two new resources are created. The first resource in the

workflow is the ModflowNwtSciunitOutput resource that includes the input files for the

MODFLOW-NWT model program which were prepared through the preprocessing script; it is

given the MODFLOW model instance resource type. Because this resource has the inputs that are

required by MODFLOW-NWT model. This allows the resource to have extended metadata

specific to MODFLOW models. The second resource created is the ModflowNwtCollection

resource that includes all the resources that were used in the online execution for MODFLOW-

 92

NWT. This provides a grouping of resources used for an analysis and allows the user to share or

download this collection of resources more easily.

Figure 4.11 HydroShare user My Resource page after using the GeoTrust web app for the online

execution.

 93

Figure 4.12 shows details for the ModflowNwtSciunitOutput resource as viewed on this

resource's HydroShare landing page. The resource contains the output generated from running the

sciunit that prepares the model input for the MODFLOW-NWT and the output from running the

MODFLOW-NWT model program itself, it allows for extended metadata terms specific to

MODFLOW including the concept of (packages) associated with the model. Because this resource

has the MODFLOW Model Instance resource type. In this case, the MODFLOW model has eight

packages. The output control (oc) package specifies how the model output is written. The

discretization (dis) and basic (bas) packages define the spatial and temporal framework of the

model (e.g., location of the active, inactive, and specified head cells). The upstream-weighting

(upw) groundwater flow package used in the model describes the system properties (e.g.,

transmissivity/conductivity). The Newton-Raphson solver (nwt) package defines the model solver

and its specifications. The drain package (drn) specifies the method of simulating the discharge

of groundwater as base-flow in streams in rivers. The MODFLOW-NWT uses these packages and

generates one output listing file (list) that contains all the information about the current run (e.g.,

stress period, time step, and the number of active, and inactive cells, the recharge, drains, and any

errors). Finally, the name file (nam) specifies the name of the input and output files for the model

instance.

 94

Figure 4.12 The ModflowNwtSciuintOutput resource landing page in HydroShare.

95

Additional metadata associated with the MODFLOW output resource that appears on the

Hydroshare landing page is divided into four categories: 1) Authorship, 2) Related Resources, 3)

Resource Specific, and 4) Web Apps. Figure 4.13 shows the "Related Resources" metadata. Here,

all resources linked to the MODFLOW output resource through formal relationships are listed. In

this case, the MODFLOW output resource is linked to the ModflowNwtRawData resource through

the "derived from" relationship and to the MODFLOW-NWT resource through the "executed by"

relationship. Figure 4.14 shows the "Resource Specific" metadata. These are non-null metadata

terms that apply only to the MODFLOW output's resource type (MODFLOW Model Instance)

such as grid attributes and solver and boundary condition package choices. Additional metadata

terms not previously populated by the user can be populated later within the edit mode and will

appear in this section once populated.

Figure 4.13 The ModflowNwtSciuintOutput Related Resources metadata tracking the resource's
provenance within HydroShare.

96

Figure 4.14 ModflowNwtSciuintOutput specific metadata capturing key, MODFLOW-specific
model properties.

97

Figure 4.15 shows details for the resulting ModflowNwtCollection resource as viewed on

this resource's landing page. The collection resource contains four sub-resources: 1) the

ModflowNwtRawData resource with the raw input data needed to be prepared for the

MODFLOW-NWT model engine, 2) the ModflowNwtSciunit resource with the sciunit pre-

processing workflow that also includes running the MODFLOW-NWT model program, and 3) the

ModflowNwtSciunitOutput resource which stores the output generated from running the Sciunt

workflow, and 4) the GeoTrust web app used to perform the online model execution using AWS-

EC2. By organizing all of these resources into a single collection, it is possible to have one landing

page where users can, referring back to the introduction of this study, view, obtain, and execute

(1) raw initial datasets, (2) data preprocessing scripts used to clean and organize the data, (3) model

inputs, (4) model results, and (5) the specific model code along with of all its dependencies used

for a computational analysis.

98

Figure 4.15 The collection resource that includes all resources used within the study.

4.5 Discussion and Conclusions

In this study, we demonstrated how Hydroshare and GeoTrust can be integrated to easily

and efficiently reproduce model workflows. MODLFOW-NWT was used as an example

application to demonstrate the functionality provided by these cyberinfrastructures for creating

open, reusable data analysis and model execution services. The approach showed how containers

built using GeoTrust tools can be shared as Hydroshare resources. A cloud-based service was

created to automatically retrieve raw input data from HydroShare, execute a sciunit container that

prepares the MODFLOW-NWT input data and runs the MODFLOW-NWT model program, and

share the results on HydroShare using a MODFLOW Model Instance resource type. All of the

99

resources are aggregated in HydoShare into one collection resource with domain-specific

metadata.

This research demonstrates how the integration of scientific cyberinfrastructure in this case

the HydroShare and GeoTrust projects, can improve reproducibility in computational hydrology.

This particular integration can have practical uses such as saving time in running a MODFLOW

model by not having to install local software dependencies. Hydrologists can even build a new

MODFLOW model directly from raw input data (e.g., land surface DEMs or stream network

shapfiles) by running a sciunit container that includes automated data preparation steps

implemented using a MODFLOW Python package. The container is run online using AWS

resources directly through the HydroShare user interface. A particular advantage of this approach

is that the GeoTrust Sciunit-CLI tool allows scientists a method for efficiently creating containers

for script-driven modeling workflows. Thus, the general approach demonstrated here for

MODFLOW-NWT could be expanded for any workflow that can be automated and that is

compatible with Docker requirements. For example, in prior work we have constructed pre- and

post- processing workflows for the Variable Infiltration Capacity (VIC) hydrologic model (Liang

et al., 1996b) that could directly benefit from this method for curating, packaging, and sharing

resources (Billah et al., 2016c; Essawy et al., 2016)). These containers are efficient, lightweight,

self-contained packages of computational experiments that can be nearly guaranteed to be repeated

or reproduced regardless of deployment issues. Combining this functionality with HydroShare

provides the ability to share this functionality more broadly within the hydrology community.

From our experience, AWS made the process of obtaining compute resources the simplest

compared to ECITE and CyVerse, the other two cloud-based platforms tested in this research. The

AWS user simply logs in to the console, selects the type of the machine needed, and launches it.

100

CyVerse has their own console where the user logs in and requests an instance, giving a summary

of the project. The user is working on. When using ECITE, we had to contact the developer and

ask for an instance with the required specifications and a short paragraph summarizing the project

we are working on to justify the allocation of compute resources. With ECITE, we also needed to

contact the developer each time we wanted to open a port (e.g., port 22 to ssh for or port 80 for

HTTP). The service does not currently support Elastic IPs like AWS, so each time we restarted an

instance and wanted to use ssh to access to the machine, we needed to report the IP address used

to access the machine to the developer to add this address to the security rules. CyVerse is a more

mature service, but allows each user only a certain allocation of computational time. Once the user

exceeds this allocation, the instance is suspended and the user needs to request more time from the

administrators. This feature was problematic for our use case of a continually available cloud-

based resource for online model execution. For these reasons, we used AWS-EC2 for much of the

testing work described in this study, but ECITE an CyVerse are in active development and will

likely be good options for this use case in the future.

While this approach shows great promise, it is not without limitations that should be the

focus of future research. Two limitations to highlight are (1) the Sciunit-CLI tool must be installed

locally in order to re-execute a sciunit container and (2) HydroShare lacks methods for uniquely

identifying and managing Web-app resources that will be needed as the number of these resources

continues to increase. Regarding the latter limitation, without a more organized structure, naming

conflicts could cause confusion in the "Open with" button which app to be used. Also, this work

does not fully explore computational challenges associated with the proposed methodology. Using

cloud services like AWS provides the opportunity for scalability as more users are added. For

example, this solution used a small EC2 instances for prototyping and proof of concept

101

implementations. Future work could explore AWS EC2 Container Service (ECS) as an alternative

for a more scalable solution to support multiple concurrent users. Data movement between

HydroShare and AWS is another potential issue as data volumes increase, which is not uncommon

for hydrologic modeling. HydroShare is built on iRODS (Integrated Rule-Oriented Data System),

which includes the ability to interface with AWS S3 storage resources. Future work could explore

using this functionality to automate the movement of large files between HydroShare and AWS to

support computation within AWS and still maintain access through the HydroShare user interface.

iRODS is specifically designed to handle such data federation needs and should provide a robust

solution for managing the large data flows common in hydrologic modeling.

102

4.6 References

Amazon EC2 Instances [WWW Document], 2015. URL http://aws.amazon.com/ec2/instance-
types/ (accessed 6.7.15).

Bakker, M., Post, V., Langevin, C.D., Hughes, J.D., White, J.T., Starn, J.J., Fienen, M.N., 2016.
Scripting MODFLOW Model Development Using Python and FloPy. Groundwater 54,
733–739. doi:10.1111/gwat.12413

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016a. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. {&} Softw. 78, 31–39.

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016b. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. Softw. 78, 31–39.

Billah, M.M., Goodall, J.L., Narayan, U., Essawy, B.T., Lakshmi, V., Rajasekar, A., Moore, R.W.,
2016c. Using a data grid to automate data preparation pipelines required for regional-scale
hydrologic modeling. Environ. Model. Softw. 78, 31–39.
doi:10.1016/j.envsoft.2015.12.010

Borgman, C.L., 2012. The conundrum of sharing research data. J. Am. Soc. Inf. Sci. Technol. 63,
1059–1078.

Cassey, P., Blackburn, T.M., 2006. Reproducibility and Repeatability in Ecology. Bioscience 56,
958–959.

David, C.H., Famiglietti, J.S., Yang, Z.-L., Habets, F., Maidment, D.R., 2016. A decade of
RAPID—Reflections on the development of an open source geoscience code. Earth Sp. Sci.
226–244. doi:10.1002/2014EA000014.Received

David, C.H., Gil, Y., Duffy, C.J., Peckham, S.D., Venayagamoorthy, S.K., 2016. An introduction
to the special issue on geoscience papers of the future. Earth Sp. Sci.
doi:10.1002/2016EA000201.Received

De Roure, D., Goble, C., Stevens, R., 2009. The design and realisation of the Virtual Research
Environment for social sharing of workflows. Futur. Gener. Comput. Syst. 25, 561–567.
doi:10.1016/j.future.2008.06.010

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,
Whitton, M.C., Moore, R.W., 2016. Server-side workflow execution using data grid
technology for reproducible analyses of data-intensive hydrologic systems. Earth Sp. Sci.
3, 163–175. doi:10.1002/2015EA000139

103

Fulweiler, R.W., Emery, H.E., Maguire., T.J., 2016. A workflow for reproducing mean benthic
gas fluxes. Earth Sp. Sci. 3, 318–325. doi:10.1002/2015EA000158

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J.L., Karlstrom, L., Lee,
H., Mills, H.J., Oh, J.-H., Pierce, S.A., Pope, A., Tzeng, M.W., Villamizar, S.R., Yu, X.,
2016a. Towards the Geoscience Paper of the Future : Best Practices for Documenting and
Sharing Research from Data to Software to Provenance. Earth Sp. Sci. 1–75.
doi:10.1002/2015EA000136

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L., Myers, J., 2007. Examining the challenges of scientific workflows. Ieee
Comput. 40, 26–34. doi:10.1109/MC.2007.421

Gil, Y., Garijo, D., Mishra, S., Ratnakar, V., 2016b. OntoSoft : A Distributed Semantic Registry
for Scientific Software. Proc. Twelfth IEEE Conf. eScience, Balt. MD.

Gil, Y., Ratnakar, V., Ca, R., Garijo, D., 2015. OntoSoft : Capturing Scientific Software Metadata,
in: Eighth ACM International Conference on Knowledge Capture, Palisades, NY, 2015.

Gorgolewski, K.J., Poldrack, R.A., 2016. A Practical Guide for Improving Transparency and
Reproducibility in Neuroimaging Research. PLoS Biol. 14, 1–13.
doi:10.1371/journal.pbio.1002506

Heidorn, P.B., 2008. Shedding Light on the Dark Data in the Long Tail of Science. Libr. Trends
57, 280–299. doi:10.1353/lib.0.0036

Higgins, S., 2007. Using Metadata Standards [WWW Document]. Digit. Curation Cent. URL
http://www.dcc.ac.uk/resources/briefing-papers/standards-watch-papers/using-metadata-
standards#2 (accessed 5.10.16).

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J.L., Gan, T., Yi, H., Stealey, M.J.,
Tarboton, D.G., 2015. Hydroshare: Sharing diverse environmental data types and models
as social objects with application to the hydrology domain. JAWRA J. Am. Water Resour.
Assoc. 52. doi:10.1111/1752-1688.12363

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational
hydrology is not reproducible, so is it really science? Water Resour. Res. 50. doi:10.1002/
2016WR019285

JB, G., PJ, G., SJ., W., 2007. OpenMI: Open modelling interface. J. Hydroinformatics 9, 175–191.

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996a. One-dimensional statistical dynamic
representation of subgrid spatial variability of precipitation in the two-layer variable
infiltration capacity model. J. Geophys. Res. Atmos. 101(D16), 21403–21422.

104

Liang, X., Lettenmaier, D.P., Wood, E.F., 1996b. One-dimensional statistical dynamic
representation of subgrid spatial variability of precipitation in the two-layer variable
infiltration capacity model. J. Geophys. Res. Atmos. 101(D16), 21403–21422.

Liang, X., Wood, E.F., Lettenmaier, D.P., 1996c. Surface soil moisture parameterization of the
VIC-2L model: Evaluation and modification. Glob. Planet. Change 13, 195–206.
doi:10.1016/0921-8181(95)00046-1

Lud, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., 2006. Scientific
workflowmanagement and the Kepler system. Concurr. Comput. Pract. Exp. 18, 1039–
1065. doi:10.1002/cpe.994

Malik, T., 2017. GeoTrust: Improving Sharing and Reproducibility of Geoscience Applications
[WWW Document]. EOL Semin. Ser. URL https://www2.ucar.edu/for-
staff/daily/announcement-calendar-event/eol-seminar-series-dr-tanu-malik (accessed
6.6.17).

Mcdougal, R.A., Bulanova, A.S., Lytton, W.W., 2016. Reproducibility in Computational
Neuroscience Models and Simulations. IEEE Trans. Biomed. Eng. 63, 2021–2035.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014a. Metadata
for Describing Water Models, in: In Proceedings of the 7th International Congress on
Environmental Modelling and Software, DP Ames, NWT QuinnMorsy, M.M., Goodall,
J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata for Describing
Water Models, in: In Proceedings of the. pp. 978–988.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014b. Metadata
for Describing Water Models, in: In Proceedings of the 7th International Congress on
Environmental Modelling and Software, DP Ames, NWT QuinnMorsy, M.M., Goodall,
J.L., Castronova, A.M., Bandaragoda, C., Greenberg, J., 2014. Metadata for Describing
Water Models, in: In Proceedings of the. pp. 978–988.

Morsy, M.M., Goodall, J.L., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A.,
Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for environmental
models with an example hydrologic application in HydroShare. Environ. Model. Softw. 93,
13–28. doi:10.1016/j.envsoft.2017.02.028

NISO, N., 2004. Understanding Metadata. Natl. Inf. Stand. Organ. 20.
doi:10.1017/S0003055403000534

Niswonger, R.G., Panday, S., Motomu, I., 2011. MODFLOW-NWT , A Newton Formulation for
MODFLOW-2005. U.S. Geol. Surv. Tech. Methods 6, 44.

Owsiak, M., Plociennik, M., Palak, B., Zok, T., Reux, C., Gallo, L. Di, Kalupin, D., Thomas
Johnson, and M.S., 2017. Running simultaneous Kepler sessions for the parallelization of

105

parametric scans and optimization studies applied to complex workflows. J. Comput. Sci.
20, 103–111.

Peckham, S.D., Goodall, J.L., 2013. Computers & Geosciences Driving plug-and-play models
with data from web services : A demonstration of interoperability between CSDMS and
CUAHSI-HIS. Comput. Geosci. 53, 154–161. doi:10.1016/j.cageo.2012.04.019

Peckham, S.D., Hutton, E.W.H., Norris, B., 2013. A component-based approach to integrated
modeling in the geosciences : The design of CSDMS. Comput. Geosci. 53, 3–12.
doi:10.1016/j.cageo.2012.04.002

Peng, R.D., 2011. Reproducible research in computational science. Science. 334, 1226–1227.

Peng, R.D., Eckel, S.P., 2009. Distributed reproducible research using cached computations.
Comput. Sci. Eng. 11, 28–34. doi:10.1109/MCSE.2009.6

Pope, A., 2016. Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8
and other multispectral sensors. Earth Sp. Sci. 3, 176–188. doi:10.1002/2015EA000125

Qin, J., Dobreski, B., Brown, D., 2016. Metadata and Reproducibility : A Case Study of
Gravitational Wave Research Data. J. Digit. Curation 11, 218–231.
doi:10.2218/ijdc.v11i1.399

Ratnakar, V., Gil, Y., 2015. OntoSoft [WWW Document]. URL
http://ontosoft.org/ontology/software/ (accessed 1.11.16).

Reitz, M., Sanford, W.E., Senay, Gabriel B., and Cazenas, J., 2017. Annual estimates of recharge,
quick-flow runoff, and ET for the contiguous US using empirical regression equations,
2000-2013. U.S. Geol. Surv. data release. doi:https://doi.org/10.5066/F7PN93P0.

Reproducibility Guide - The rOpenSci Project [WWW Document], n.d. . 2017. URL
http://ropensci.github.io/reproducibility-guide/sections/introduction/ (accessed 6.16.17).

Roure, D. De, Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D., Fisher, P.,
Hull, D., Michaelides, D., Newman, D., Procter, R., Lin, Y., 2010. Towards open science :
the myExperiment approach. Concurr. Comput. Pract. Exp. 22, 2335–2353.
doi:10.1002/cpe

Scholten, Huub, Waveren, R.H. Van, Groot, S., Geer, F.C. Van, Wösten, J.H.M., Koeze, R.D.,
Noort., J.J., 2000. Good Modelling Practice in water management, in: In Paper Presented
on Hydroinformatics. pp. 23–27.

Singh, V.P., Asce, F., Woolhiser, D.A., Asce, M., 2002. Mathematical Modeling of Watershed
Hydrology. J. Hydrol. Eng. 7, 270–292.

106

Smith II, P., Malik, T., Berg-Cross, G., 2016. Rediscovering EarthCube: collaborate. Or
collaborate not. There is no I. Digit. Libr. Perspect. 32, 153–191.
doi:http://dx.doi.org/10.1108/DLP-09-2015-0017

Stodden, V., 2013. Resolving Irreproducibility in Empirical and Computational Research. IMS
Bull. Online.

Tarboton, D.G., Horsburgh, J.S., Idaszak, R., Heard, J., Valentine, D., Couch, A., Ames, D.,
Goodall, J.L., Band, L., Merwade, V., Arrigo, J., Hooper, R., Maidment, D., 2014a. a
Resource Centric Approach for Advancing Collaboration Through Hydrologic Data and
Model Sharing. 11th Int. Conf. Hydroinformatics, HIC 2014, New York City, USA.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Band, L.,
Merwade, V., Couch, A., Arrigo, J., Hooper, R., Valentine, D., Maidment, D., 2014b.
HydroShare: Advancing Collaboration through Hydrologic Data and Model Sharing. Int.
Environ. Model. Softw. Soc. 7th Int. Congr. Environ. Model. Software, San Diego,
California, USA. www. iemss. org/society/index/php/iemss-2014-proceedings.
doi:10.13140/2.1.4431.6801

Yu, X., Duffy, C.J., Rousseau, A.N., Bhatt, G., Álvarez, Á.P., Charron, D., 2016. Open science in
practice: Learning integrated modeling of coupled surface-subsurface flow processes from
scratch. Earth Sp. Sci. 3, 190–206. doi:10.1002/2015EA000155

107

Chapter 5: Conclusions

There are many challenges in reaching the ultimate goal of reproducibility in computational

hydrologic modeling, especially when dealing with data-intensive modeling analyses that require

a large, diverse set of input data and generate a large, diverse set of output data. Many geoscience

disciplines utilize complex computational models for advancing understanding and sustainable

management of Earth systems. Executing such models and their associated data pre- and post-

processing routines can be challenging for a number of reasons including (1) accessing and pre-

processing the large volume and variety of data required by the model, (2) post-processing large

data collections generated by the model, and (3) orchestrating data processing tools, each with

unique software dependencies, into workflows that can be easily reproduced and reused.

This research addressed three challenges related to improve reproducibility: 1) How can a

hydrologist efficiently handle transfers of large datasets required for data processing pipelines in

support of end-to-end hydrologic modeling; 2) Is it possible to provide component-level metadata

for legacy hydrologic software; 3) Can we use container technology and scientific

cyberinfrastructure to improve reproducibility of hydrologic modeling? Each challenge is

addressed in a separate chapter.

Chapter 2 focused on addressing these challenges by leveraging the Workflow Structured

Object (WSO) functionality of the Integrated Rule-Oriented Data System (iRODS) and

demonstrates how it can be used to access distributed data, encapsulate hydrologic data processing

as workflows, and federate with other community-driven cyberinfrastructure systems.

Reproducibility requires more server-side data processing, where reference data and models are

managed together, than what is common now. This is due to the large and increasing size of data

108

sets used by geoscientists and the growing complexity of software and software dependencies that

require constrained environments to ensure reproducibility.

In this chapter, different federation approaches were used as means for providing

interoperability across the variety of cyberinfrastructure systems needed for data access, analysis,

modeling, and publication services. Federation approaches most often used in geoscience

disciplines emphasize Web service APIs; however, to support large data sets, the community

should have broader adoption of data grid federation approaches as well. The use of both

approaches was demonstrated for a use case that leveraged four federated but heterogeneous

cyberinfrastructure systems, DFC, TerraPop, SEAD, and via an existing connection with SEAD

and DataONE.

The advantages of Web executable resources include the increased ability to share,

reproduce, and collaborate on scientist-authored workflows. While the potential of scientific

scripts and workflows as Web executable resources is clear, important issues remain related to

managing large data and computation collections. This research successfully demonstrated an

approach using data grids for addressing this challenge and for moving processing to reference

data stored within data grids as a method for creating reproducible scientific workflows on large

data sets.

Chapter 3 focused on another aspect of the reproducibility spectrum, referring back to the

introduction of this dissertation. This aspect is having metadata for hydrologic modeling

workflows. Software and data need to be shared, but so does their associated metadata. Sharing

software with metadata encourages scientists to learn and build from prior work by reducing the

time and effort to find and understand this prior work. Sharing software and its associated metadata

complements the now commonly accepted idea of sharing data and its associated metadata.

109

The metadata for hydrologic models is rarely organized in machine-readable forms. This

lack of formal metadata is important because it limits the ability to catalog, identify, attribute, and

understand unique model software; ultimately, it hinders the ability to reproduce past

computational studies. Researchers have recently proposed an ontology for scientific software

metadata called OntoSoft for addressing this problem. Chapter 3 focused on evaluating the

OntoSoft Ontology for capturing and sharing metadata for legacy hydrologic modeling software.

A data pre-processing software workflow used in association with the Variable Infiltration

Capacity (VIC) hydrologic model was used to evaluate the OntoSoft Ontology. This was

accomplished by exploring what metadata are available from online resources and how this

metadata aligns with the OntoSoft Ontology. The results suggest that past efforts to document this

software resulted in capturing key model metadata in unstructured files that could be formalized

into a machine-readable form using the OntoSoft Ontology.

An underlying premise of this chapter is that having metadata for software, including for

software at a fine-grain level, is useful for increasing transparency and reproducibility in science.

Future work could test this assumption by surveying VIC users to better evaluate how metadata

presented through the OntoSoft Portal increases their understanding of the VIC software, and how

it influences their use and communication of the software with other researchers going forward.

Chapter 4 demonstrated how Hydroshare and GeoTrust can be integrated to more easily

and efficiently reproduce model workflows. Reproducibility of computational hydrologic models

is an important challenge that calls for more open and reusable code, data, and formal workflows

that allow others to verify published findings. This requires an ability to document and share (1)

raw initial datasets, (2) data preprocessing scripts used to clean and organize the data, (3) model

inputs, (4) model results, and (5) the specific model code along with all its dependencies. The

110

MODLFOW-NWT groundwater model is used as an example to show the functionality provided

by the GeoTrust and HydroShare cyberinfrastructure for creating open and reusable data analysis

and model execution services.

The approach showed how containers built using GeoTrust tools can be shared as Hydroshare

resources. A cloud-based service was created to retrieve raw input data from HydroShare, execute

a sciunit container to prepare the MODFLOW-NWT input data and run the MODFLOW-NWT

model program, and share the results on HydroShare using a MODFLOW Model Instance resource

type. All of the resources were aggregated in HydoShare into one collection resource with domain-

specific metadata.

 Future work could explore using this functionality to automate the movement of large files

between HydroShare and AWS to support computation within AWS and still maintain access

through the HydroShare user interface. iRODS, which used to manage files in HydroShare, is

specifically designed to handle such data federation needs and should provide a robust solution for

managing the large data flows common in hydrologic modeling.

In conclusion, this dissertation presents new technologies and approaches to assist in

moving hydrologic modeling to the ultimate goal of computational reproducibility. This was done

by addressing three core challenges and by focusing on the widely used Variable Infiltration

Capacity (VIC) land surface hydrologic model and MODFLOW groundwater hydrologic model.

This research has resulted in approaches that leverages modern computational methods to assist

hydrologists with limited knowledge in computer science to more easily reproduce their models,

thus making models in the future more open, transparent, and reusable.

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Chapter 1: Introduction
	1.1 Background
	1.1.1 Modeling Data Life Cycle
	1.1.2 An Example of the Hydrologic Modeling Workflow
	1.1.3 Research Studies into Computational Reproducibility for Hydrologic Modeling

	1.2 References

	Chapter 2: Server-Side Workflow Execution using Data Grid Technology for Reproducible Analyses of Data-Intensive Hydrologic Systems1
	2.1 Introduction
	2.2 Data Grid Technology
	2.3 Use Case Description
	2.4 Prototype Software Design and Implementation
	2.4.1 Server-Side Configuration
	2.4.2 Client-Side Configuration
	2.4.3 Executing the Workflow
	2.4.4 Results from the Workflow Execution

	2.5 Discussion
	2.5.1 Reproducibility
	2.5.2 Federation
	2.5.3 Adoption
	2.5.4 Data Size and Heterogeneity Challenges

	2.6 Conclusions
	2.7 References

	Chapter 3: Evaluation of the OntoSoft Ontology for Describing Metadata for Legacy Hydrologic Modeling Software2
	3.1 Introduction
	3.2 Background
	3.2.1 Variable Infiltration Capacity (VIC) Model Pre-processing Workflow
	3.2.2 OntoSoft

	3.3 Methodology
	3.3.1 Using the OntoSoft Portal for Metadata Management
	3.3.2 Example of Metadata Extracted from Source Code

	3.4 Results and Discussion
	3.4.1 Results of the Metadata Extraction
	3.4.2 Metadata Completeness
	3.4.3 Metadata Sources
	3.4.4 Confidence in Metadata Mapping

	3.5 Conclusion
	3.6 References

	Chapter 4: Integrating Scientific Cyberinfrastructure to Improve Reproducibility in Computational Hydrology: Example Using HydroShare and GeoTrust3
	4.1 Introduction
	4.2 Background
	4.2.1 HydroShare
	4.2.2 GeoTrust
	4.2.3 MODFLOW-NWT

	4.3 System Design and Implementation
	4.4 Example Application
	4.5 Discussion and Conclusions
	4.6 References

	Chapter 5: Conclusions

