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Abstract 

 

Scientists have created a significant and growing collection of software tools for data 

manipulation, analysis, and simulation. This software includes not only computational models, but 

also a large collection of data pre- and post-processing tools used to support computational 

modeling and data analysis. This large and diverse set of scientific modeling software presents 

challenges to the hydrologic science community including (1) the difficulty of making scientific 

workflows reproducible in support of an end-to-end hydrologic modeling use case, especially 

when large dataset transfers are required for data processing pipelines, (2) providing adequate and 

accessible component-level metadata for legacy hydrologic software, and (3) ensuring scientific 

reproducibility when using legacy hydrologic processing software, which often has complex 

software dependencies. This research uses the Variable Infiltration Capacity (VIC) and 

MODFLOW hydrologic models as use cases in examining these challenges. 

This research addresses these challenges by conducting three studies. The first study 

explores approaches for leveraging data grid technology in hydrologic modeling to support 

reproducible workflows using large datasets. Its primary contribution is a general methodology for 

analyzing large, distributed data collections. This is accomplished by moving processing resources 

to the large datasets in contrast to the typical approach of moving the datasets to the processing 

resources. Data grid technology is used to automate data transfers and staging, in combination with 

automated formal publication of generated data assets.  

The second study advances prior efforts for formalizing model metadata in hydrology by 

evaluating the OntoSoft Ontology as a means for formally structuring model metadata for lower 

level scientific software components. The metadata evaluated describes a data pre-processing 
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workflow for the VIC hydrologic model. This workflow consists of multiple software components 

written by different scientists over time. The analysis begins by exploring what metadata 

hydrologists have already captured in unstructured forms. It then shows how this metadata could 

be organized into structured, machine-readable metadata using the OntoSoft Ontology. 

Finally, the third study explores the creation of containers using Docker to more easily 

execute hydrologic modeling software in a computing environment. By containerizing a model 

with all of its dependencies, the model is self-contained and portable. This work contributes a 

methodology for using HydroShare and Geotrust, two new cyberinfrastructure tools under active 

development, to improve reproducibility in computational hydrology. HydroShare is a web-based 

system for sharing hydrologic data and model resources. GeoTrust allows scientists to document 

their computational workflows as containers called sciunits, a type of Docker container. sciunits 

include required software dependencies making execution of computational workflows more 

consistent across computing environments. HydroShare and GeoTrust can be used together to 

create open, reusable data analysis and model execution services. The services are created using 

GeoTrust and can be integrated with HydroShare as Web apps that operate on HydroShare 

resources. The MODLFOW groundwater model is used as an example to show the functionality 

provided by this cyberinfrastructure for creating open and reusable data analysis and model 

execution services.  
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Chapter 1: Introduction 

 

Hydrologists use many different computational models, with each model tailored to 

address specific aspects of the hydrologic cycle. Hydrologic modeling has a long history, and many 

computational models have decades of development effort and many model versions behind them 

(Singh et al., 2002).  Modelers often use additional software to prepare inputs for a specific model 

(pre-processing software) and to analyze outputs generated by the model (post-processing 

software). Taken together, there is a large and growing ecosystem of software used to simulate 

hydrologic systems.   

Modelers often spend weeks or months building, calibrating and validating their models. 

This process is complicated and requires a diversity of data from many different data providers. 

Steps in this process are rarely automated and methods for completing these steps often involve 

tacit knowledge that is difficult to automate. As a result, most scientific papers describing results 

from a modeling study lie under the "not reproducible" category along a spectrum of 

reproducibility standards (Peng, 2011) Figure 1.1. A "not reproducible" publication represents a 

publication written by a scientist that created an experiment or study and only published the results 

for this experiment or study rather than the linked code and data needed to replicate the study. 

The overarching objective of this research is to move hydrologic modeling toward the gold 

standard of "full replication" in the reproducibility spectrum. In hydrologic modeling, due to the 

variety and size of data and models used, the lack of metadata standards, and the extensive data 

pre- and post- processing steps associated with the modeling workflow, reaching full replication 

is nontrivial (Hutton et al., 2016). This research addresses these challenges by focusing on the 
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Variable Infiltration Capacity (VIC) and MODFLOW hydrologic models, popular and widely used 

hydrologic models with more than two decades of development effort, as a case studies. 

 

Figure 1.1 Spectrum of reproducibility standards (Peng, 2011). 

1.1 Background 

1.1.1 Modeling Data Life Cycle  

Figure 1.2 shows the modeling data life cycle. This cycle starts with collecting the data, 

then proceeds to executing the code used to process this raw data. The processed data is then used 

to produce the computational results through the analytic code. These computational results are 

then summarized in tables, numerical results, and even visualizations that are presented in a journal 

article.  Often the reader has access to only the final result, the published article. Without the 

materials and information used to produce the results published in the article, the reader is unable 

to verify the published results and conduct an alternate analysis of the same data (Peng and Eckel, 

2009). This end-to-end workflow from collected data to the article should be more automated to 

better enable reproducibility, transparency, and reuse of modeling studies. 
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Figure 1.2 Modeling data cycle pipeline for reproducible research (Peng & Eckel, 2009). 

1.1.2 An Example of the Hydrologic Modeling Workflow  

The Variable Infiltration Capacity (VIC) provides an example of the workflow typical in 

hydrologic modeling. VIC model was developed at the University of Washington and Princeton 

University beginning in early 1990s. VIC is a macro scale hydrologic model that applies water and 

energy balances to simulate terrestrial hydrology at a regional spatial scale (Liang et al., 1996a). 

Figure 1.3 shows a schematic of the VIC model.  The VIC model is typically run at a spatial 

resolution of 1/8th degree grid cells. The model represents the land surface as three layers of soil, 

and is able to simulate the land surface portion of the hydrologic cycle by solving the full water 

and surface energy balance equations (Liang et al., 1996a, 1996c).  

Like many hydrologic models, the VIC model requires significant effort to prepare its input 

data. Figure 1.3 shows the data processing workflow used to generate the meteorological and land 

surface input datasets for a VIC model simulation. This workflow consists of a sequence of 15 

data processing steps, each step requiring input datasets from different sources, and many of the 

datasets having unique and non-standardized data models and formats (Billah et al., 2016a). These 

scripts are written in different programming languages including Fortran 77, C, and C++. Shell 
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scripts are used throughout the workflow to execute these steps and perform other commands 

required to complete the data processing tasks. 

 

Figure 1.3 Schematic of the VIC model adopted (Gao et al., 2009). 

Scripts within the data pre-processing workflow are divided into four categories as shown 

in Figure 1.4. The scripts in the first category process the precipitation and the air temperature 

datasets. The scripts in the second category process the land surface datasets including topography, 

soil, and vegetation data. The scripts in third category process the wind speed dataset and the 

scripts in the last category create the final model input files for meteorological datasets. The 

datasets processed by the workflow are shown as ovals in the figure and include 1) meteorological 

forcing files (i.e., precipitation, wind, and minimum and maximum air temperature), 2) soil and 

vegetation parameter files, and 3) basin geospatial files. The primary inputs for the workflow are 

shown as parallelograms and include datasets from 1) the National Oceanic and Atmospheric 

Administration (NOAA) National Climatic Data Center (NCDC) (now the National Centers for 

Environmental Information (NCEI)), 2) the National  Center for Atmospheric Research (NCAR) 

National Centers for Environmental Prediction (NCEP), 3) the National Aeronautics and Space 
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Administration (NASA) Land Data Assimilation System (LDAS) 4) the United States Geological 

Survey (USGS) HYDRO1K dataset, and 5) the PRISM Climate Group PRISM dataset. Each of 

these data providers has their own way of distributing data to users, and many of the datasets are 

large requiring methods for server-side processing to extract subsets of data for modeling studies.  

1.1.3 Research Studies into Computational Reproducibility for Hydrologic Modeling 

In Chapter 2, I explore approaches for leveraging data grid technology in hydrologic 

modeling to support reproducible workflows using large datasets. The VIC model is used as a case 

study for this research. This is some of the first research applying data grid technology for 

hydrologic modeling. Its primary contribution is a general methodology for analyzing large, 

distributed data collections, by moving processing to data. This approach uses data grids to 

automate data transfers and staging, in combination with automated formal publication of 

generated data assets. This will be important as hydrologists seek to scale up watershed models to 

larger river basins where data sizes and computational processing make reproducibility more 

challenging. 

 In Chapter 3, I advanced the prior efforts for formalizing model metadata in hydrology by 

evaluating the OntoSoft Ontology as a means for structuring model metadata. The evaluation is 

performed using a data pre-processing workflow for the Variable Infiltration Capacity (VIC) 

hydrologic model that consists of multiple software components written by different scientists over 

time. The analysis begins by exploring what metadata hydrologists have already captured in 

unstructured forms. It then shows how this metadata could be organized into structured, machine-

readable metadata using the OntoSoft Ontology. Therefore, a primary contribution of this study is 

an evaluation of the OntoSoft Ontology for describing software relevant to hydrologic modeling. 
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This is done by first understanding what metadata for hydrologic modeling software are already 

embedded in online resources, and then testing how this metadata maps to the OntoSoft Ontology. 

 In Chapter 4, I demonstrated how to integrate Hydroshare and GeoTrust easily and 

efficiently to reproduce model workflows. The MODLFOW groundwater model is used as an 

example to show the functionality provided by this cyberinfrastructure for creating open and 

reusable data analysis and model execution services. The primary contribution of this research is 

an end-to-end solution for converting scientific workflows to Docker containers, sharing these 

containers through an online collaborative environment, and executing these containers using 

cloud resources. Finally, Chapter 5 presents key conclusions across all three studies showing how 

reproducibility of computational hydrologic modeling was advanced through this research.  

 

 

 



 

Figure 1.4 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et al., 2016). 
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Chapter 2:  Server-Side Workflow Execution using Data Grid 
Technology for Reproducible Analyses of Data-Intensive Hydrologic 
Systems1 

 

 2.1 Introduction  

 There is an exponential growth in data available to geoscientists. The quantity of satellite 

data is growing rapidly (Acharya et al., 1998) and data from sensor networks are being widely 

used, in observatories such as the Critical Zone Observatory (CZO) (Anderson et al., 2008), the 

National Ecological Observatory Network (NEON) (Cowles et al., 2010), and the Ocean 

Observing Initiative (OOI) (Keller et al., 2008). Various groups are making available large 

collections of model-derived data including climate projections and reanalysis products for use by 

scientists. Public data repositories are used in many scientific disciplines as a means for sharing 

data collected by the so called "long-tail" of the scientific community (Dunlap et al., 2008). The 

number of public repositories will likely increase as funding agencies enforce requirements that 

scientists submit data products resulting from their funded research to these public repositories.  

This exponential growth in data will impact modeling and data analysis approaches used 

in many geoscience disciplines. As datasets grow in complexity and resolution, there is a need for 

improved tools to derive information from raw data sources in support of a particular research 

objective. These challenges arise not only because processing large, semantically-unstructured 

datasets can be complex and time consuming, but also because capturing the computational 

workflows scientists complete for a particular study can be challenging. New strategies are needed 

1 This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following 
citation for the final published version of the manuscript. Essawy, Bakinam T., Jonathan L. Goodall, Hao Xu, Arcot 
Rajasekar, James D. Myers, Tracy A. Kugler, Mirza M. Billah, Mary C. Whitton, and Reagan W. Moore. "Server‐
side workflow execution using data grid technology for reproducible analyses of data‐intensive hydrologic 
systems." Earth and Space Science 3, no. 4 (2016): 163-175. 
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so that these scientist-authored computational workflows can make use of the latest available data 

and be reproduced and reused by other scientists.  

One strategy for dealing with the growing volume of available data has focused on creating 

standards for accessing remote data collections using Web Service Application Programming 

Interfaces (APIs). The Consortium of Universities for the Advancement of Hydrologic Science, 

Inc. (CUAHSI) Hydrologic Information System (HIS) has created standards for both an API called 

Water One Flow (WOF) and a data exchange language called Water Markup Language (WaterML) 

to facilitate transmission of hydrologic time-series data on large repositories using Web services 

(Maidment, 2008). The Open Data Access Protocol (OpenDAP) is another widely used protocol 

for accessing and sub setting scientific data using Web services (Cornillon et al., 2003). OpenDAP 

focuses in particular on gridded data and includes the concept of server-side data sub setting and 

format conversion that are essential for operating on large, remote files.  

While the Web service approach for data access has significant benefits, it also has 

limitations in that the network protocol for performing the data transfers using Web services 

operates over HTTP. For large files, this approach is not optimal and potentially not feasible. Data 

grid technology provides an alternative approach for managing distributed data and computational 

resources. Data grids typically include features such as authentication, replication, authorization, 

auditing, and metadata support that are needed to manage large, distributed data collections 

(Foster, 2011; Rajasekar et al., 2010). These tools are better suitable for handling large files 

compared to Web services because they allow for parallel data transfers and provide automated 

fault tolerance and restarts when connectivity is lost during a transfer. Data grid technology has 

been used in the atmospheric and climate sciences, notably in the Earth System Grid and Earth 

System Grid Federation projects (Williams et al., 2011, 2008), but it has not been widely adopted 
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in other geosciences disciplines to date. In particular, research is needed to determine best practices 

and approaches for leveraging the technology to address specific needs in the hydrologic modeling 

community, which is the focus of this research. 

The objective of this research is to explore approaches for leveraging data grid technology 

in hydrologic modeling to support reproducible workflows using large datasets. This is some of 

the first research applying data grid technology for hydrologic modeling. Its primary contribution 

is a general methodology for analyzing large, distributed data collections, by moving processing 

to data and using data grids to automate data transfers and staging, in combination with automated 

formal publication of generated data assets. This will be important as hydrologists seek to scale up 

watershed models to larger river basins where data sizes and computational processing make 

reproducibility more challenging.  

The work is focused on a use case where a scientist wishes to create a workflow automating 

the data processing steps required to create a publication-ready figure from a large collection of 

model output files, greater than 2GB for a single run, produced using a Variable Infiltration 

Capacity (VIC) (Liang and Lettenmaier, 1994) hydrologic model. The use case, which is more 

fully explained in Section 3, demonstrates server-side data processing on large data collections, 

using data grid technology for data transfers, and federation with public data repositories for 

reproducibility of the analysis workflow. It represents one of the first applications of the newly 

developed Workflow Structured Object (WSO) functionality in the iRODs, which has general 

applicability to other scientific domains with significant data management challenges. While 

systems like MyExperiment (De Roure et al., 2009) also focus on server-side execution of 

scientist-authored workflows and provide advanced features for workflow sharing and publication, 

they focus on using Web services for data transfer rather than grid technology.  
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This research also addresses the challenge of federation across different cyberinfrastructure 

systems. It is likely that data-intensive studies will need to access many cyberinfrastructure 

systems for data gathering, processing, modeling, and publication. This study demonstrates this 

concept for a use case that involves three cyberinfrastructure systems: the DataNet Federation 

Consortium (DFC) for data storage and compute resources, the Sustainable Environment-

Actionable Data (SEAD) for data publication, and Terra Populus (TerraPop) for data access. 

Federation across these systems requires agreed upon standards and protocols that allow for 

interoperability. Different types of federation are demonstrated in our solution in order to address 

the transfer and management of both large and small data collections.  

This study is part of a special issue on the Geoscience Paper of the Future (GPF). GPF is 

envisioned as a paper where all digital assets used in the study are published as open, online 

resource published with unique identifiers and key metadata including titles, abstracts, licenses, 

authors, and contacts (Gil et al., In Review). In this study, the key digital assets are published 

through SEAD with Digital Object Identifiers (DOIs) and key metadata attributes. The research 

itself is also aimed at the vision and goals of GPF focusing in particular on the use case where 

computation is needed on distributed data resources. It seeks to define methods for moving data 

from distributed servers within a data grid automatically using federation approaches and defining 

workflows that aid in capturing the provenance of how data were moved and processed to create 

publication-ready visualizations generated using multiple reference data collections. As data 

volumes continue to grow, such techniques will be critical to achieve the GPF goals. 

The remainder of the study is organized as follows. In Section 2 we provide background 

on data grid technology to orient the reader. In Section 3 we present the use case in further detail, 

followed by the design and implementation of a prototype system for solving the use case in 
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Section 4. Finally, we provide a discussion of key aspects of our approach in Section 5 before 

offering concluding remarks in Section 6.  

2.2 Data Grid Technology 

Data grids are systems that enable access and sharing of large data sets that are physically 

distributed across the Internet, but appear to the user as a single file management system. The 

Integrated Rule-Oriented Data System (iRODS) is a data management system that includes the 

capability to federate data grids (Rajasekar et al., 2010). Federation allows for the creation of 

virtual data collections by logically arranging data from distributed resources under a virtual 

collection hierarchy. Globus is another data grid technology and is used within scientific 

communities and includes GridFTP for fast data transfer of large files (Foster, 2011). While 

iRODS and Globus are commonly used within some specific scientific domains (Allcock et al., 

2002; Kyriazis et al., 2008), their use is not widespread within the hydrology community. 

Data grids are particularly useful for scientific communities such as hydrology that rely on 

multiple data and computational resource providers. The iRODS-powered Data Federation 

Consortium (DFC) grid, which is used for this research, was developed as part of a National 

Science Foundation (NSF) funded project and provides support for federation of both resources 

and services. The work reported here is part of the DFC project and uses a DFC data grid for 

storage and long-term access to datasets stored across heterogeneous resources. The core iRODS 

software is developed and maintained by the iRODS Consortium at the Renaissance Computing 

Institute (RENCI), which is a partnership between the University of North Carolina at Chapel Hill 

(UNC-CH) and the Data Intensive Cyber Environments (DICE) Center at UNC-CH. iRODS 

currently runs in Linux/Unix environments.   
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iRODS has a client-server architecture. The iRODS client software can be installed and 

run on any computer. Each iRODS grid installation has two types of servers: exactly one iRODS 

Metadata Catalogue (iCAT) server and one or more iRODS resource servers, most frequently 

storage resource servers, e.g., data disks. Our system was developed on iRODS release 4.0, which 

includes software for the iRODS client, the resource server, and the iCAT server. iRODS uses the 

term zone as an abstraction for the physical components of an iRODS grid installation, i.e., the 

iCAT server and one or more resource servers that are part of the grid.  

This work uses the recent development of iRODS Workflow Structured Objects (WSO), 

which enable workflows to be executed directly with iRODS commands. While iRODS is a 

mature, widely used software tool, this is some of the first work using the WSO functionality of 

iRODS. Therefore, this research was completed as a close collaboration between hydrologists 

defining the scientific workflows and the iRODS and WSO developers made possible through the 

DFC project. One goal of this work was to provide an example use case of applying WSO that 

could be beneficial for other iRODS users with interests in utilizing WSO in the future.  

Figure 2.1a provides an overview of the file structure for a WSO. A WSO requires two 

primary files: a workflow file (*.mss) and a parameter file (*.mpf). The workflow file defines the 

sequence of operations to be performed by the workflow and the parameter file lists the input 

arguments used when executing the WSO. The parameter file also specifies any files in iRODS 

that should be staged-in (transferred to the physical directory on the iRODS resource server where 

the WSO is executed) or staged-out (put into an iRODS collection) prior to and following the 

execution of the workflow (Rajasekar, 2014). Examples of workflow and parameter files are 

provided in iRODS documentation, specifically from   

 https://wiki.irods.org/index.php/Workflow_Objects_(WSO)#Files_in_WSO. 
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When the user creates and uploads a parameter file, iRODS automatically generates a run 

file (*.run), which is then used by the client to execute the workflow. One workflow file can be 

used to create many instances of a WSO with each instance having a unique parameter file (see 

the wso, wso0, and wso1 collections illustrated in Figure 1). The data files used by the workflow 

are stored in runDir collections. Within each WSO, there could be multiple runDir collections, one 

for each execution of the workflow. Workflows can include scripts and other scientist-authored 

code installed on the server in the iRODS/server/bin/cmd directory (Figure 2.1b). 

A WSO is executed by performing the following steps. (1) The user issues the iput 

command, which is part of the iRODS icommands client library, to transfer a workflow file (*.mss) 

from a client machine into an iRODS collection. (2) The user issues the imkdir command to make 

a new collection within the collection containing the workflow file (see the wso collection shown 

in Figure 1). (3) The user issues the imcoll command to mount this newly created collection. (4) 

The user issues the iput command to transfer a parameter file (*.mpf) into the mounted collection. 

This operation results in the system creating a run file (*.run) in the mounted collection. (5) The 

user issues the iget command on the run file to execute the workflow. The system then creates a 

new collection in the mounted directory (see the runDir collection shown in Figure 1) and the 

staged-in and workflow generated output files are stored in this new collection. The same 

workflow can be executed for different parameter files by repeating steps 4 and 5 for a new 

parameter file, with each new parameter file resulting in an additional WSO collection (see wso0, 

wso1, …. shown in Figure 2.1) ("Workflow Objects (WSO)," 2013).   
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Figure 2.1 (a) The structure of an iRODS Workflow Structured Object (WSO). (b) The WSO 
may utilize scripts installed in the iRODS/server bin/cmd directory for server-side data 

processing. 

 There are a number of workflow environments available to geoscientists, e.g., Kepler 

(Altintas et al., 2004), Taverna (Oinn et al., 2004), Triana (Harrison, Andrew, 2008), and Pegasus 

(Deelman et al., 2005). Like iRODS WSO, these workflow systems make trade-offs between 

power and flexibility. Many enable large-scale, parallel workflow execution on distributed 

resources, providing users real-time status information on the workflow execution (Vahi et al., 

2013). While workflow systems share many similarities, there are also key differences, which can 

often be subtle, that determine their suitability for addressing particular use cases. We used iRODS 

WSO in this analysis because our use case required a data processing pipeline consisting of a set 

of scientist authored scripts that operate on data collections already within iRODS. Future work 
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comparing and contrasting iRODS WSO with other workflow environments for completing this 

or other use cases relevant to hydrologic modeling would be a useful extension to this research.   

2.3 Use Case Description 

The prototype software described in this study is designed to address a use case where a 

scientist has created a simulation using the Variable Infiltration Capacity (VIC) model for the 

Carolinas region of the United States. The model has been calibrated and validated for this region 

as part of a prior study (Billah et al., 2015) and can be used to address other hydrologic research 

questions as well. The scientist that created the model has published the model's input and output 

files on the Web for use by other scientists. A second scientist learns about the model and wishes 

to use the model's output files to test her own research question about drought impacts on counties 

within a study region. The scientist is interested in how soil moisture deficit predicted by the model 

varied for different populated communities within the study region. While this application is 

analyzing historical events, it would be relatively straight-forward to set up the calibrated model 

to analyze current conditions and to identify populated regions vulnerable to drought conditions 

within the region. Such information would be valuable to resource managers in better 

understanding the severity of the drought and its impact on population centers within the region.  

The second scientist downloads the model output files published online by the first scientist 

and creates the visualization by writing her own Python scripts. The scientist downloads the 

population data for the study counties to a local working directory. The VIC soil moisture outputs 

are organized in a set of "flux files," one for each node in the modeling domain. The Python scripts 

sort through these data extracting relevant information and summarizing the soil moisture time 

series. Geospatial processing tools are used to relate the coordinates of the model nodes to counties 

in the study region. The result of this data processing is a comma separated values (CSV) file with 
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the soil moisture deficit and population for each of the five counties. Finally, the scientist programs 

the Python script to use this CSV file to produce a publication-ready figure for visualizing the 

drought impacts.  

In addition to publishing the scripts and data files from this analysis on a public data 

repository, which is now a relatively straight-forward exercise given the proliferation of online 

data repositories, the scientist also wishes to publish the workflow used to perform the analysis as 

a Web executable resource. The scientist wishes to take this approach for the following reasons.  

• Having the overall workflow be executable server-side means the scripts and model 

output data can be co-located, removing the need to download the large model output 

file to the scientist's machine prior to the workflow execution.  

• By keeping datasets server-side, it is easier to ensure the data has not been modified 

after making a local copy (its provenance can be proven). With the ability to publish 

the model and reference data once, and to keep them on the server, only the 

visualization results need to be retrieved and published for subsequent runs.  

• Having server-side execution of the workflow controls for potential variability across 

different hardware and software configurations on a client machine. Even with this 

relatively simple use case of creating a figure, there is potential for different operating 

systems and versions of analysis software to result in differences in the end product. 

These software dependencies could result in additional time for scientists to trouble 

shoot errors. More critically, these dependencies could result in an end product without 

errors or warnings, but with inconsistencies due to non-breaking differences between 

dependent software versions.  
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Simply put, having data and processing co-located on a server as a Web executable resource results 

in a more controlled environment, which is critical for reproducibility.   

The scientist uses iRODS WSO to create the Web executable resource. As part of the WSO, 

the scientist defines the steps to automatically stage-in the required VIC output and population 

data that are stored in iRODS collections. The population data comes from TerraPop, which 

provides global-scale data sets that focus on human population characteristics, land use, land 

cover, and climate change (Minnesota Population Center, 2013). The Terra Populus data access 

system was used to create customized data extracts, combining variables from multiple sources 

into a single package. Users can browse the TerraPop collection and select the required variables; 

the variable required in this study was the total population for each county in the United States. 

After submitting our data request, the system generated a data package that included a shapefile 

for all the counties in the United States, with unique GEOID identifiers, and a CSV file that 

includes the GEOID and name of each county (Figure 2.2). This data package was then 

automatically uploaded onto the TerraPop grid as an iRODS collection. By federating the DFC-

hydrology and TerraPop zones and configuring authorizations, we are able to have the population 

data remain on the TerraPop server and be automatically staged-in for use by the WSO.  
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Figure 2.2 Details on how the county-level population data is requested and extracted using the 
TerraPop web interface into an iRODS data collection. From this collection, iRODS stages-in the 

required files prior to the workflow execution. 

Finally, the data (including code) resulting from the analysis are published using products 

provided by the Sustainable Environment-Actionable Data (SEAD) project (Myers et al., 2015). 

The SEAD project supports publication, preservation, and sharing of data generated by scientists 

including data generated by running models. Using SEAD, teams of researchers can upload, share, 

annotate, and review input datasets and model outputs within an access-controlled Project Space, 

and then formally publish collections of data with associated metadata and provenance for long-

term preservation (generating a Digital Object Identifier (DOI) and standards-based archival 

package, and registering the data with the DataONE catalog for discovery). Our use of SEAD 

included manual entry of data and metadata via a web interface and bulk uploads of files and 

programmatic submission of the output figure with metadata to SEAD, which leveraged SEAD's 

RESTful Web API.  
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2.4 Prototype Software Design and Implementation 

We present the prototype software aimed at addressing the use case by first describing the 

steps taken to configure the server-side software and data, next describing the steps required to 

configure the WSO, then describing the steps required to execute the WSO from the client 

machine, and concluding with a summary of the results from executing the workflow.  

2.4.1 Server-Side Configuration 

To perform the server-side configuration, we first installed iRODS resource server version 

4.0 software on an Elastic Cloud Computing (EC2) instance in the Amazon Web Services (AWS) 

cloud. We chose AWS because it provides on-demand computing resources and services that can 

be easily scaled to meet demands. The EC2 service provided through AWS allows users to rent 

virtual machines (instances) with different capabilities and pay by the CPU hour. For prototyping 

purposes, we used a Linux-based medium sized machine (m3) with 3.75 GB of memory, 4 vCPU, 

15 GB of SSD-based local instance storage, and 64-bit platform for the iRODS resource server 

("Amazon EC2 Instances," 2015). Next this new iRODS resource server was configured to be part 

of the DFC-hydrology zone that has its iRODS Metadata Catalog (iCAT) server on a machine 

running at RENCI. We had to configure the AWS EC2 instance to be associated with an elastic IP 

address to avoid having to update the EC2 instance's IP addresses in the iCAT server following 

each restart of the EC2 instance.   

We then developed a WSO on the iRODS resource server to implement the data 

visualization workflow described in the use case. This required that the user have an account on 

the server itself with read/write access to the cmd directory (Figure 2.1b). It was also necessary to 

set read/execute rights on the files associated with the WSO so that they could be executed by the 

iRODS user account. We uploaded to the iRODS resource server the VIC model output files from 
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SEAD (where the original scientist had published them for use by the community), the Python 

scripts created by the scientist to generate the visualization, and the shell script, also created by the 

scientist, used to sequence the execution of the Python scripts on the iRODS resource server. The 

VIC source code is not included in SEAD because the source code is available from the developer's 

GitHub page instead (see https://github.com/UW-Hydro/VIC).    

2.4.2 Client-Side Configuration 

The client machine can be any computer with the iRODS client software installed. In this 

prototyping work, we used a second EC2 instance as the client machine simply to avoid moving 

data into and out of the AWS cloud. We installed the icommands iRODS client software library 

on the client machine. The icommands software includes a set of commands that perform 

operations such as make a new directory (imkdir) or put a file into an iRODS collection (iput) 

(Weise et al., 2008). The icommands client library includes an environment configuration file that 

is used to point to a particular iRODS zone and set default user credentials for accessing the iRODS 

zone. In our case, we configured the icommands environment to operate on the DFC-hydrology 

zone and entered user credentials representing the scientist accessing the system.   

The general file structure required for creating a WSO was described in Section 2 and in 

Figure 2.1a. For our particular application, we first created a workflow file (PopVsSm.mss) that 

specifies the steps required to execute the workflow. The workflow file simply specified that the 

workflow should execute the scientist-authored shell script installed on the iRODS server cmd 

directory. We put the PopVsSm.mss file into an iRODS collection and then made a new collection 

named "vic_soilmositure." We mounted this new collection, effectively making it a WSO.  
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2.4.3 Executing the Workflow 

Once the WSO is mounted, it is then possible to execute the workflow. This process is 

described in general in Section 2. Here we provide specifics of the WSO execution for the use 

case. The general flow of data and sequence of commands for executing the WSO execution for 

the use case is described in Figure 2.3.  

(1) The user initiates execution of the workflow by issuing an iget command on the 

PopVsSm.run file that is in the mounted WSO collection. The PopVsSm.mpf parameter file 

defines the data required by the workflow and stages these files from different iRODS collections 

into the directory on the iRODS resource server where the WSO is executed. In our case, we 

staged-in the VIC model output data stored in the DFC-hydrology grid and county-level population 

data from the TerraPop grid. While these two datasets are stored within different grids, it is possible 

to gain access to the data directly using iRODS authentication because the grids are federated.  

(2) Once all required data is staged into the iRODS resource server directory where the 

workflow is executed, the workflow file specifies that the scientist-authored shell script stored on 

the iRODS server should be executed. This shell script then calls a series of scientist-authored 

Python scripts that process the staged-in data to create the output figure.  

(3) A final step in the shell script is publishing the figure resulting from the workflow 

automatically to a SEAD project space for sharing with colleagues and subsequent publication. 

The SEAD API is used for this purpose and allows for the submission of the file along with 

associated metadata to a SEAD project space.  

(4) Upon completion of the workflow, key output data are staged-out into iRODS 

collections according to specifications in the parameter file. This allows the files to be accessible 

to authorized users in the grid.  
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Figure 2.3 The steps that occur on the server-side when a user executes the WSO. Data is 
staged-in from iRODS collections, scientist-authored scripts are run to create the figure, data is 

published through a SEAD project space using the SEAD API, and key output data is staged-out 
back into iRODS collections. 

Figure 2.4 shows the steps for executing a WSO from a user's perspective when working 

with the icommands client library. The user must know which iRODS collection contains the script 

files required for executing the WSO to be able to execute it. Once the user has logged into the 

client machine, the user changes the working directory to the iRODS logical path where the WSO 

has been mounted. In this case, the WSO was mounted as the "vic_soilmoisture" collection. The 

user next issues an iput command to put the parameter file (PopVsSm.mpf) into the mounted WSO. 

This step is not illustrated in Figure 2.3 for brevity, but results in the generation of a run file 

(popvssm.run) in the collection. Finally, the client executes the workflow by issuing an iget 

command on the popvssm.run file.  
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Figure 2.4 The steps required from a client machine in order to execute the WSO using the 

icommands client library. 
 

2.4.4 Results from the Workflow Execution 

When the workflow is executed, the output messages are written to the console, although 

all computation is performed on the server-side and no data (other than the output messages) are 

transferred to the client machine. Once the workflow execution has completed, the user can access 

the output collection called runDir resulting from the workflow execution. The runDir file contains 

by default the stdout from the execution of the workflow along with any staged-in and derived data 

from the workflow ("Workflow Objects (WSO)," 2013). 
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The workflow also results in publication of the workflow results to a SEAD project space. 

Figure 2.5 shows the data collections as they appear through the SEAD project space website. 

Most data were uploaded using the SEAD web interface. Figure 2.6 shows the figure resulting 

from the WSO execution that was automatically written to the SEAD project space using the 

SEAD API as a final step in the WSO execution. 

 
Figure 2.5 Contents of the Sustainable Environment Actionable Data (SEAD) project space used 

for storing and accessing data used in the workflow. 
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Figure 2.6 View of figure, produced by executing the WSO, within the SEAD project space. The 
workflow uses the SEAD API to upload this resource along with metadata to the SEAD project 

space. 
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 2.5 Discussion  

2.5.1 Reproducibility  

To support transparency and reproducibility of this work as envisioned by the Geoscience 

Paper of the Future (GPF) project, the data collections in the use case (e.g., the VIC output files, 

the TerraPop data, the WSO files, and the output figure) were published in SEAD. As part of this 

publication process, each collection was given metadata including a brief abstract, creators, the 

publisher, and then published to generate a Digital Object Identifier (DOI) Table 2.1. The output 

figure resulting from the WSO execution was first written to a SEAD project space along with 

basic metadata as a final step in the WSO execution using the SEAD API. From there, the scientist 

logged into the SEAD web interface and set additional metadata fields to publish the resource with 

an assigned DOI. Any combination of automated and manual entry is supported and researchers 

can choose which data to publish. In our case, we automatically captured outputs from multiple 

test runs before manually selecting, annotating, and publishing (including creating a DOI for) only 

the final run.   

Use of an open, metadata-aware repository makes it simple to capture additional derived 

data and provenance information as research continues. By publishing the reference data, scripts, 

and output data separately in SEAD, we also demonstrate the ability for larger reference data to be 

published once, and then referenced via provenance links from the derived output files that could 

be generated by many researchers over time. For example, the VIC output files used in this 

workflow may be used in other research studies. If each publication using these VIC output files 

references its DOI, it will be possible to track the impact of the model output files through citation 

counts similar to what is done now for tracking citation counts of research papers. 
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Other end-points could be used for publishing key digital assets from the WSO workflows. 

For example, the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. 

(CUAHSI) HydroShare system is in development and could serve as an alternative or secondary 

end-point for publishing results with more discipline-specific metadata (Horsburgh et al., 2015; 

Morsy et al., 2014; Tarboton et al., 2014), as could systems such as FigShare or Zenodo. We 

anticipate a growing number of such repositories and for federation between them (e.g., SEAD is 

already a member node in DataOne (Michener et al., 2012), advertising our WSO publications 

through DataONE's catalog). This research shows how iRODS WSO could play an important role 

in moving data resources within such data repositories to and from computational resources to 

support data computation use cases.  

Table 2.1 Key digital assets used in the study that are published through SEAD with basic 
metadata. 

Title DOI Author Contact Abstract License 

TerraPop
Data 
Extract 

10.5967/M08
P5XH5 

Essawy, 
Bakinam 

Goodall, 
Jonathan 

Population data extracted 
from TerraPop 
(https://data.terrapop.org) for 
the study region. 
 

Creative 
Commons 
(CC) 

VIC 
Output for 
Carolina, 
1998-2007 

10.5967/M0D
F6P6F 

Essawy, 
Bakinam 

Goodall, 
Jonathan 

Output from a VIC model for 
the Carolinas, USA calibrated 
for the period 1998-2007 to 
study drought impacts. 
 

Creative 
Commons 
(CC) 

WSO 10.5967/M0J6
7DXR 

Essawy, 
Bakinam 

Goodall, 
Jonathan 

The scripts and related files 
used to create the iRODS 
Workflow Structured Object 
(WSO). 
 

Creative 
Commons 
(CC) 

WSO_Out
putViz 

10.5967/M05
13W51 

Essawy, 
Bakinam 

Goodall, 
Jonathan 

Impact of 2007 drought on 
five counties in the study 
region. 

Creative 
Commons 
(CC) 
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Using a public cloud offers further opportunities for reproducibility. It is possible to 

quickly set up virtual machines (VMs) with a variety of operating systems to reproduce 

computational analyses. It is also possible to capture images of VM instances that can be stored 

for future reproducibility. Exploring the use of virtual containers (e.g., the Docker project) rather 

than VMs would be a useful extension to this work. Virtual containers can reduce set up time and 

storage costs compared to VMs for software, like what was used in this work, that run in a Linux 

operating system.  

2.5.2 Federation 

Federation across cyberinfrastructure systems is a key aspect of this work. Federation 

describes how distinct and formally disconnected systems interoperate. There is a growing set of 

cyberinfrastructure systems available to scientists, and many studies will benefit from the use of 

more than one of these systems. Effective ways for federating across these systems will result in 

powerful tools that save scientists' time and encourage reproducibility through automatic data 

transfers handled directly by systems. This concept was illustrated in our study by showing how 

distinct cyberinfrastructure systems can be federated and used collectively within a single 

workflow execution.   

Figure 2.7 provides a depiction of the workflow that emphasizes different data collections 

and approaches for federating between DFC, TerraPop, and SEAD. The use case in this study 

represents two levels of federation that we believe are relevant for most scientific studies. The 

federation between the AWS machine where the workflow was executed and the TerraPop 

reference data is what we term a strong federation, while the federation between the AWS machine 

and SEAD is what we term a weak federation. A strong federation is based on a strong trust model 

where one data grid administrator can add credentials of users of other data grid, and grant access 
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to resources based on authentication through other data grids. One primary benefit of this level of 

federation is that data grid technology can be used to transfer files between the two systems. For 

large files, this level of federation will be important because of the functionality provided by data 

grids like iRODS that are designed specifically to ensure rapid and successful transfer of large files 

over a network. Weak federation, based on federation through Web service APIs, allows for greater 

flexibility and less required trust between systems, because all operations are through services. 

Transferring large data through Web services, however, it not ideal for the reasons we outlined in 

Section 2. 

 
Figure 2.7 Main components and data flow in the workflow emphasizing data collections and 

federation approaches 

2.5.3 Adoption 

While there are many advantages to the approach described in this study, there are also 

important barriers to adoption, especially in terms of the current prototype system. Currently, users 

of the system need to be familiar with an iRODS client (e.g., the icommands client library used in 

this study). They must also be aware of steps for executing a WSO. Developers need an 



 32 

understanding of how to structure new WSOs and will need access to the server running the iRODS 

resource server software for installation and configuration of the WSO.  

There are opportunities for abstracting the complexity of directly interfacing with iRODS 

WSO for end users in order to encourage broader adoption of the technology. One way to do this 

would be to have someone familiar with iRODS WSO take input from the scientist including the 

scripts needed to execute the workflow and the location (iRODS logical path name) of the input 

data for the scripts. The administrator would then mount a WSO with an example parameter file 

and make it available through the system to end-users. The user could then execute the workflow 

either using the icommands client library, as described in the study, or through other tailored client 

applications able to operate on iRODS collections including executing WSOs stored within iRODS 

collections. We believe this would be a fairly straightforward process for moving scientist-

authored codes into a form that is Web-executable.  

2.5.4 Data Size and Heterogeneity Challenges 

This work only begins to illustrate the potential benefit of using data grid technology for 

executing workflows that require heterogeneous data from distributed data sources. We showed 

how WSOs allow for automatically staging-in of required data distributed across a data grid. We 

also showed how data produced from the workflow can be staged-out, meaning written to 

collections in the data grid where it can be accessible to other users. While it was not demonstrated 

in this use case, one can execute a distributed workflow across the network on multiple iRODS 

resource server using WSO. 

This approach allows the location of the input and output files for a computational tool to 

be independent of the location where the processing is done. However, unlike approaches that rely 

only on Web service APIs for data staging prior to workflow execution, iRODS provides a more 
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robust data staging approach that leverages grid technology. While the use case demonstrated the 

concept using fairly small file sizes, the solution we used can be applied to larger terabyte scale 

data as well. Given that modeling in many geoscience disciplines requires access to large, 

distributed data, data grid technology provides a powerful way for data staging associated with 

workflow execution. 

 2.6 Conclusions 

The focus of this study is on creating scientist-authored workflows as Web-executable 

resources in data grids. The iRODS WSO provides researchers with the ability to publish their 

research methods for computational studies as workflows that specify the tools, data, and sequence 

of steps taken to complete the study. All of these digital objects (data, software, model outputs, 

etc.) can be made accessible to other users of the data grid as well as to non-grid users through 

publication in SEAD. 

There are many challenges in reaching the ultimate goal of reproducibility, especially when 

dealing with data-intensive modeling analyses that require a large, diverse set of input data and 

generate a large, diverse set of output data. Through this work, we argue that reproducibility will 

require more server-side data processing, where reference data is managed along with the model 

itself, than what is common now. This is due to the large and increasing size of datasets used by 

geoscientists, and the growing complexity of software and software dependencies that require 

constrained environments to ensure reproducibility.  

We also argue for multiple federation approaches as means for providing interoperability 

across the variety of cyberinfrastructure systems needed for data access, analysis, modeling, and 

publication services. Federation approaches most often used in geoscience disciplines emphasize 

Web service APIs, however to support large datasets, the community should have broader adoption 
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of data grid federation approaches as well. The use of both approaches was demonstrated for a use 

case that leveraged four federated but heterogeneous cyberinfrastructure systems: DFC, TerraPop, 

and SEAD, and via an existing connection with SEAD, DataONE.  

Any approach for making scientific computations into Web-executable resources must 

have a low barrier to entry for users. We have proposed an approach that allows scientists to write 

scripts as is typically done now for data analysis using languages familiar to scientists, and then 

making these scripts available as Web-executable resources to scientists using iRODS WSO 

technology. Future work should explore embedding of iRODS WSOs into systems that include 

tailored interfaces for scientific communities. Then, rather than the steps described in the study for 

executing WSO that include the use of the icommand client library, the end user could have a more 

tailored interface for viewing and executing workflows that abstracts technical details from the 

end user. 

There are encouraging trends toward increased publication of data (including code) used in 

scientific studies. It is important that the momentum behind these trends result in scripts and 

workflows as Web-executable resources to capture their full potential in advancing reproducibility 

goals. The advantages of Web executable resources include the increased ability to share, 

reproduce, and collaborate on scientists-authored workflows. While the potential of scientific 

scripts and workflows as Web executable resources is clear, important issues remain related to 

managing large data and computation collections. We have demonstrated here an approach using 

data grids for addressing this challenge, and have argued for moving processing to reference data 

stored within data grids as a method for creating reproducible scientific workflows on large 

datasets.   
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Chapter 3: Evaluation of the OntoSoft Ontology for Describing 
Metadata for Legacy Hydrologic Modeling Software2 

 

 3.1 Introduction 

 Hydrologists use many different computational models, with each model tailored to 

address specific questions and problems. Hydrological modeling has a long history, and many 

computational models have decades of development effort and many model versions behind them 

(Singh et al., 2002). In many cases, there has been splintering of the model code base where the 

original model code has started to be developed along different paths (e.g., MODFLOW). This 

causes confusion as to which specific version of software was used for a given modeling 

application. Further complicating the issue, models often have supporting software beyond the 

physical process-representations within the model engine itself. This software is used to create 

input datasets for the model (i.e., data pre-processing) and to analyze or visualize the output from 

the model (i.e., data post-processing). Organizing and categorizing this broad collection of 

modeling software so that it is possible to uniquely identify the software used to perform a study 

is a significant challenge.  

 The need to better manage the growing volume of software used for hydrologic modeling 

is central to the larger challenge of computational reproducibility. The common approach for 

achieving reproducibility has been for researchers to provide sufficient detail within a journal 

paper's methods section to allow for reproducing the study's results. Growing complexity in 

computational analyses means this approach is no longer sufficient. Scientific disciplines are trying 

different approaches to address this problem including model repositories, documentation, on-line 
2 This Chapter is a draft manuscript of a paper that has since been published. Readers are referred to the following 
citation for the final published version of the manuscript. Essawy, Bakinam T., Jonathan L. Goodall, Hao Xu, and 
Yolanda Gil. "Evaluation of the OntoSoft Ontology for describing metadata for legacy hydrologic modeling 
software." Environmental Modelling & Software 92 (2017): 317-329. 
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model execution, and scientific workflows (De Roure et al., 2009; Essawy et al., 2016; JB et al., 

2007; Lud et al., 2006; Roure et al., 2010). One of the main purposes of these approaches is to 

make models easier to reuse so that scientists can advance the model while achieving 

reproducibility and strengthening the decisions based upon these models (Cassey and Blackburn, 

2006; Hutton et al., 2016; Scholten et al., 2000).  

To achieve "reproducible software" (Peng, 2011) for hydrologic modeling, not only does 

the software and data need to be shared, but also their associated metadata. Metadata is structured 

information for describing and explaining a digital resource that makes it easier to manage, 

retrieve, and use that resource (NISO, 2004). Metadata is now a common term for describing data 

sets, but metadata is less commonly used for describing software. Software for data collection, 

storage, retrieval, processing, and management has improved greatly, and has significantly 

contributed to the development of comprehensive distributed hydrological models (Singh et al., 

2002). Capturing metadata for hydrologic modeling software is one of the steps required to make 

the software reproducible (Higgins, 2007; Mcdougal et al., 2016). Little attention has been paid to 

metadata for describing these software advances. Computational reproducibility also requires 

other advanced uses of standard software practices beyond metadata tools including version 

control, strong commenting and documentation, and code modularity. 

The limited past efforts to define metadata for hydrologic models have largely focused on 

describing well maintained and widely used hydrologic models as a single information resource. 

Like data, however, there is a long-tail of software used to perform and support hydrologic 

modeling (Heidorn, 2008). Models are often the combination of smaller software modules or 

components contributed over time by a large number of individuals and groups. Taking a more 

granular view of models by diving into the details of the software provenance and attempting to 
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capture this provenance using metadata is necessary for many reasons. Some of these reasons 

include 1) providing attribution for software contributions, 2) maintaining and archiving existing 

models, 3) providing information that aids in installing and executing models, and 4) ultimately 

fostering reproducibility.   

 Metadata for hydrologic models is being collected and recorded, but it is unstructured, 

informal and distributed. The available metadata for these models are scattered across model 

documentation, source code repositories, model publication repositories, user forums, and other 

publically available resources. Metadata such as who created the model, when the model was 

created, and the type of input and output data for the model can be found from these sources for 

many scientific models, but are provided in human-readable form. Not having this information in 

a machine-readable form limits its utility and does not scale well to the growing volume of 

scientific software. Metadata needs to be in machine readable formats to be most useful (e.g. RDF, 

XML).  

 Efforts to establish more formalized, machine-readable formats for hydrologic model 

metadata include efforts through the Consortium of Universities for the Advancement of 

Hydrologic Science, Inc. (CUAHSI) HydroShare project and the Community Surface Dynamics 

Modeling System (CSDMS) project. HydroShare describes metadata for two key modeling 

concepts: a model program and a model instance. The model program is the software for executing 

the model and the model instance is the input files required for executing the model (Horsburgh et 

al., 2015; Morsy et al., 2014a; Tarboton et al., 2014b). A metadata framework has been proposed 

for both of these concepts that extend the Dublin Core Metadata Standard. The CSDMS project 

created a catalog of model programs across the surface dynamics community, which includes 
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hydrology, and captured metadata for these model programs (Peckham et al., 2013; Peckham and 

Goodall, 2013). 

  Recent related activities have focused on designing standard metadata for describing 

software with a particular focus on scientific software. OntoSoft is a project that is part of the 

National Science Foundation EarthCube Initiative and provides an ontology and portal for 

addressing the challenge of capturing metadata for scientific software in a formal way (Gil et al., 

2016b, 2015). The metadata captured by the OntoSoft Ontology focuses on the knowledge needed 

for software sharing and reuse (Ratnakar and Gil, 2015). It is recommended for documenting 

software in scientific papers that follow best practices for reproducible research, open science, and 

digital scholarship (Cédric H David et al., 2016; Gil et al., 2016a), and has been used to document 

scientific software in published articles, e.g., (Fulweiler et al., 2016; Pope, 2016; Yu et al., 2016). 

OntoSoft is used in the research reported in this study because it was designed and developed by 

experts in the semantic metadata community, in contrast to past efforts for hydrologic model 

metadata that was designed and developed by hydrologists. An underlying question that the 

research reported in this study begins to address is whether this more general scientific metadata 

ontology is appropriate and useful for describing hydrologic modeling software.  

 The objective of this study is to advance prior efforts for formalizing model metadata in 

hydrology by evaluating the OntoSoft Ontology as a means for structuring model metadata. The 

evaluation is performed using a data pre-processing workflow for the Variable Infiltration 

Capacity (VIC) hydrologic model that consists of multiple software components written by 

different individuals over time. The VIC model is used by large community; over 500 publications 

used this model since 1993. The analysis begins by exploring what metadata hydrologists here 

already captured in unstructured forms. It then shows how this metadata could be organized into 
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structured, machine-readable metadata using OntoSoft Ontology. Therefore, the primary 

contribution of this work is an evaluation of the OntoSoft Ontology for describing software 

relevant to hydrologic modeling. This is done by first understanding what metadata for hydrologic 

modeling software are already embedded in online resources, and then testing how this metadata 

maps to the OntoSoft Ontology. 

 3.2 Background 

3.2.1 Variable Infiltration Capacity (VIC) Model Pre-processing Workflow 

VIC is a macro scale hydrologic model that applies water and energy balances to simulate 

terrestrial hydrology at a regional spatial scale (Liang et al., 1996b). Like many hydrologic models, 

the VIC model requires significant effort to prepare its input data. Figure 3.1 shows the data 

processing workflow used to generate the meteorological and land surface input datasets for a VIC 

model simulation. This workflow consists of a sequence of 15 data processing steps, each step 

requiring input datasets from different sources, and many of the datasets having unique data 

models (Billah et al., 2016b). These scripts are written with different programming languages 

including Fortran 77, C, and C++. Shell scripts are used throughout the workflow to execute these 

steps and perform other commands required to complete the data processing tasks.  

The workflow is divided into four categories as shown in Figure 3.1. The first category of 

scripts process the precipitation and the air temperature datasets, the second category of scripts 

process the land surface datasets including topography, soil, and vegetation data, the third category 

of scripts process the wind speed dataset, and the last category of scripts create the final model 

input files for meteorological datasets. The datasets processed by the workflow are shown as ovals 

and include 1) meteorological forcing files (i.e., precipitation, wind, and minimum and maximum 

air temperature), 2) soil and vegetation parameter files, and 3) basin geospatial files. The primary 



 43 

inputs for the workflow are shown as parallelograms and include datasets from 1) the National 

Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) (now 

the National Centers for Environmental Information (NCEI)), 2) the National Center for 

Atmospheric Research (NCAR) National Centers for Environmental Prediction (NCEP), 3) the 

National Aeronautics and Space Administration (NASA) Land Data Assimilation System (LDAS), 

4) the United States Geological Survey (USGS) HYDRO1K dataset, and 5) the PRISM Climate 

Group PRISM dataset.  

This work addresses the challenges of creating metadata for the individual scripts within 

the VIC data processing workflow shown in Figure 3.1. A significant amount of work by other 

scientists has gone into creating the software within this workflow, and it is important for the 

authors of this software to receive credit for their work. It is also important for scientific studies 

that make use of these lower-level scripts to properly document the specific sequence of software 

used to perform their analysis. One of the benefits of scientific workflow software (Gil et al., 2007) 

is capturing the provenance of data processing tasks that support scientific modeling. While 

workflow software can help to better capture the provenance, it is still important to have sufficient 

metadata for each step within the workflow. Workflow software alone does not provide this 

metadata. Instead, the metadata must be populated by scientists and the OntoSoft Ontology can be 

used to structure this metadata. The methodology section illustrates this process by focusing on 

the metadata population process for one script within the workflow as an example.  
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Figure 3.1 Data pre-processing workflow for the VIC hydrologic model (adapted from Billah et al, 2016).
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3.2.2 OntoSoft 

 OntoSoft consists of an ontology to describe metadata for scientific software (Gil et al., 

2015) and the OntoSoft Portal that serves as a user interface to manage that metadata (Gil et al., 

2016b). The premise behind OntoSoft's development is that scientific software captures important 

knowledge and this knowledge should be transparent and shared widely. OntoSoft's ontology and 

portal support scientists in capturing the important knowledge encapsulated within scientific 

software. The OntoSoft Portal simplifies the metadata collection process by asking scientists a 

series of questions. These questions map to specific properties within the ontology. A property 

defines a relationship (e.g., authorship) between a subject (e.g., the software in question) and an 

object (e.g. an author). OntoSoft applies the word "software" broadly to include scripts as well as 

more complex software such as modeling software.  

 There are 46 properties in the OntoSoft Ontology, equally divided between required and 

optional properties. These properties are organized into six categories, shown in Figure 3.2. Each 

category has one or more classes for organizing metadata properties. The six OntoSoft categories 

are: 1) Identify, 2) Understand, 3) Update, 4) Do Research, 5) Execute and 6) Get Support. The 

Identify category provides a unique description for the software. The Understand category 

describes the metadata needed to increase the trust and domain knowledge about the software. The 

Update category has the metadata to track versioning for the software and how the software is 

being maintained and developed. The Do Research category has the metadata for the input and 

output data required by the software, relations to other software that can be used with this software, 

and the software citation. The Execute category has the metadata related to how to access, install, 

and run the software. The Get Support category has the contact information for the software 

developer.  
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Figure 3.2 High-level overview of the OntoSoft Ontology (adapted from Gil et al., 2015). 

3.3 Methodology 

 The first goal of this study is to extract metadata from various sources in order to create a 

metadata description for a VIC pre-processing workflow. We consider each step in the workflow 

to be a unique piece of software with its own metadata description. The second goal of this study 

is to populate the metadata for each step in the workflow using the OntoSoft Ontology. Five 
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sources were used for metadata extraction: 1) the source code prior experience running the 

software, 2) VIC's official website, 3) the software publication in Zenodo, 4) the VIC 

documentation, and 5) the VIC user discussion wiki. We did not include publications as a metadata 

source because, after a search of the literature, we only found one publication that discussed VIC 

pre-processing workflow in any detail, and this study did not include any new metadata beyond 

what we found in the other five sources. We used only online, publically available resources to 

populate the ontology and did not contact the software developers. The developers likely could 

have provided additional metadata for this software, however, a motivation of this research is to 

better understand what metadata was captured and recorded for this legacy software in online, 

publically available sources. Once the metadata is extracted, it is then used to populate the ontology 

through the OntoSoft Portal. The completed documentation includes who authored individual 

components of the workflow, what the goal of each component was, where each component is 

published, and other important attributes of the software within a formal, machine-readable form.  

3.3.1 Using the OntoSoft Portal for Metadata Management  

 The OntoSoft Portal was used to insert metadata extracted the from five sources listed 

above into the OntoSoft Ontology. The OntoSoft Portal presents questions about the software to 

the scientist, and these questions are mapped to metadata properties in the OntoSoft Ontology. For 

example, through the OntoSoft Portal, the user is asked "What is the software called?" and the 

answer to this question is placed as the value for the "has name" property. Table 3.1 shows all the 

OntoSoft questions as they appear to the scientist on the OntoSoft Portal, along with the property 

each answer is mapped to. The table also shows the six categories within the OntoSoft Ontology, 

the classes for each property, and whether the property is required or optional. 
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3.3.2 Example of Metadata Extracted from Source Code  

 As an example, the metadata extraction procedure is illustrated for one metadata source 

(source code and prior experience) and for one software component within the workflow 

(read_prec_dly). Figure 3.3 shows a screenshot of how the metadata is encapsulated within the 

software's source code. Metadata extracted from this source code is shown in Table 3.2 and 

includes the name, programming language, author, and description. The description is interesting 

because it includes additional metadata information about input and output for the software, as 

well as workflow composition metadata in terms of upstream and downstream software. From 

prior experience using the software, metadata including the input and output data file names, 

operating system software dependencies and other relevant metadata was determined and are listed 

in Table 3.3. 

Once the metadata is extracted, the next step is to map between the extracted metadata and 

the OntoSoft Ontology. From this one source it is possible to populate 12 of the 46 properties 

within the OntoSoft Ontology as shown in Figure 3.4. The OntoSoft Portal played an important 

role in populating the ontology for the software. Figure 3.5, provides an example of how the 

captured metadata from two different sources, the "source code" source discussed earlier and the 

"software publication website (Zenodo)" source, were mapped to questions presented through the 

OntoSoft Portal. The programer names, included as a comment within the source code, were set 

as the software's creators. The name for the software was assumed to be the file name in this case. 

The description from the source code was used as the short description of the software. Zenodo 

(https://zenodo.org/record/22307#.WWjbAYjythE), which hosts this software as a part of the 

larger VIC source code repository, provides a DOI for the source code. This DOI was used as the 

https://zenodo.org/record/22307#.WWjbAYjythE
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software's unique identifier. The VIC model official website URL is used as the project website 

for the software.  

Using additional sources allows for populating the other properties within the OntoSoft 

Ontology. This procedure was repeated for all metadata sources and all software components to 

determine the percentage of both the required and optional metadata properties that could be 

populated from just these publically available sources. As evident in this example, there is a level 

of interpretation required to perform this mapping. A discussion of the level of confidence in the 

mapping is reported in the Results and Discussion section along with the results of the metadata 

extraction process.
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Table 3.1 OntoSoft Portal question and the associated metadata properties within the OntoSoft 

OntoSoft Portal Question Metadata Properties Required and 
Optional Metadata Class OntoSoft Metadata 

Category 
What is the software called?  has name 

Required 
Locate 

Id
en

tif
y What is a short description for this software? has short description 

What are general categories (keywords, labels) for this software? has software category 
Is there a project website for the software? has project web site 
What is the DOI or any other unique identifier for this software (or software 
version)?  has unique ID Optional 

Who created this software? (e.g., Project, Organization, Person, Initiative, etc.) has creator 
Required 

Trust 

U
nd

er
st

an
d 

Are there any additional contributors of note for this software? has major contributor 
What useful features of this software are worth highlighting? has salient qualities 
Who is the publisher of this software if not the author? has publisher 

Optional 

How can a user get support for the software? (e.g., Report bugs, request features 
and extensions, etc.) commitment of support 

Has the software been adopted in a project, organization or by a person? has adopters 
Is there any information about uses of this software (e.g., papers, research labs, 
etc.)? has use information 

Are there any statistics of its use? has use statistics 
Are there any publications where the software is used? used in publication 

Is there any benchmark information about the software? has benchmark 
information 

What are the funding sources for this software? has funding sources 
What are the ratings for this software? has ratings 
What are domain specific keywords for this software? (e.g., hydrology, climate) has domain keywords Required 

Relate 
Is there any other similar software that you know of? similar software 

Optional What are the recommended uses and assumptions for the software? has uses and 
assumptions 

Are there any constraints on use, situations it is not designed for, 
simplifications? has use limitation 

How is the software being developed or maintained?  has active development 
Optional Contribute 

 

U
pd

at
e 

Are there any on-line resources for accessing the developer community for this 
software? (e.g., discussion board, wiki, etc.)  

has software 
community 

What versions does the software have?  has software version Required Track 
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Table 3.1 (continued). OntoSoft Portal question and the associated metadata properties within the OntoSoft 

OntoSoft Portal Question Metadata Properties Required and 
Optional Metadata Class OntoSoft Metadata 

Category 
What input files does the software require? has input 

Required 
Experiment 

D
o 

R
es

ea
rc

h 

What are the input parameters used for this software? has input parameter 
What output files does the software produce? has output 
Are there any relevant data catalogs that can be used with this software? has relevant data sources Optional 
What other software can interoperate with this one? has interoperable software Required 

Compose Is this software typically used with other software in a workflow? (e.g., for 
visualization, preprocessing, post processing, etc.) has composition description Optional 

Is there a preferred publication or citation for this software? has preferred citation Required Cite 
What is the URL for the code? has code location Required Access 

Ex
ec

ut
e 

What license is the code released under? has license 
Is there a URL for the executable? has executable location Optional 
Is there any on-line documentation about the software? has documentation 

Required 

Install 

What language(s) is the software written in? has implementation language 
What Operating Systems can the software run on? supports operating system 
How can one install the software? has installation instructions 
What other software does the software require to be installed? has dependency 
Are there estimates of how long it takes to run this software on average? has average run time 

Optional Are there any memory requirements for this software? requires average memory 
Are there any other important details about the implementation of this code 
(e.g., parallelization, special hardware, etc.)? 

has other implementation 
details 

Is there any test data available for the software? has test data Required 
Run Are there any specific instructions for testing the software? has test instructions Optional 

What is the e-mail contact for this software? has email contact Required 
Discuss G

et
 

Su
pp

or
t  

What is the support offered for this software? has software support Optional 
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Figure 3.3 The header information for the source code of one of the software in the VIC pre-
processing workflow. This is a comon approach to include unstructured metadata in scientific 

software. 

Table 3.2 Metadata extracted from the read_prec_dly.f software's source code 

has 
name 

has 
creator 

has major 
contributor 

has short 
description has input  

has 
composition 
description 

has 
implementatio
n language 

read_
prec_
dly.f 

Greg 
O'Donnell 

G.O.M.D 
 

This program reads 
the output from the 
script 
preproc_precip.scr 
and formats the 
daily precipitation 
so the regrid 
program can read 
them Only the 
output files from the 
preproc_precip.scr 
script (daily data 
and station info 
files) are needed. 

daily data 

reads output 
from preproc-
precip.scr 
Provide input 
for regrid 
program 

FORTRAN 77 
Bernto 
Matheussen 

Station info 
files 
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Table 3.3 Metadata captured from experience applying the software. 

has name used in publication has input 
supports 
operating 
system 

has output Has software 
dependency 

read_prec_dly.f 

Billah, M.M., 
Goodall, J.L., 
Narayan, U., 

Lakshmi, V., 2015. 
Using a Data Grid to 
Support Regional-
Scale Hydrologic 

Modeling. 

Prcp.daily 

Linux Basin_prcp.fmt F77 

Prcp.inf 
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Figure 3.4 The OntoSoft Ontology for the read_prec_dly software component with properties 
populated from only one of the five sources: "source code and prior experience." The prefix 
"osw" denotes to the OntoSoft Vocabulary namespce. 
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Figure 3.5 Origin and destination of the captured metadata through the OntoSoft Portal for the 
identify category. 

3.4 Results and Discussion 

3.4.1 Results of the Metadata Extraction 

 Figure 3.6 shows the resulting metadata for two of the five OntoSoft categories (Identify 

and Understand) presented through the OntoSoft Portal for the software component 

(read_prec_dly) discussed in the Methodology section. The resulting metadata for this software 

and for the other software components in the VIC data processing workflow are available within 
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the OntoSoft Portal system. Table 3.4 points to the URLs in the OntoSoft Portal for the 15 software 

components. The portal provides a user-friendly view of the metadata, but also machine-readable 

versions of the metadata. The metadata can be viewed using a Resource Description Framework 

(RDF) eXtensible Markup Language (XML) format or JavaScript Object Notation (JSON) format. 

These machine-readable formats are built by the system from the data provided by the scientist 

through the OntoSoft Portal user interface. 

Table 3.4 URL in the OntoSoft Portal for the 15 software within the workflow 

ID Software OntoSoft Portal URL 

1 preproc_precip http://ontosoft.org/portal/#browse/Software-11IHopcxMu7x 
2 read_prec_dly http://ontosoft.org/portal/#browse/Software-3SirBaFht0YN 
3 preproc_append http://ontosoft.org/portal/#browse/Software-FYMaj4P7bKDb 
4 append_prec http://ontosoft.org/portal/#browse/Software-hVNbrGnWJ4Zd 
5 run_append_prec http://ontosoft.org/portal/#browse/Software-GoEvXyadBBVw 
6 regrid http://www.ontosoft.org/portal/#browse/Software-ZtA35mwlwFmi 
7 mk_monthly http://ontosoft.org/portal/#browse/Software-DlszQOw6g336 
8 get_prism http://ontosoft.org/portal/#browse/Software-vw8DQn2SSnMQ 
9 rescale http://ontosoft.org/portal/#browse/Software-clQ0WKwjV3Js 

10 vicinput http://ontosoft.org/portal/#browse/Software-IPXGcujizwTr 
11 create_LDAS_soil http://ontosoft.org/portal/#browse/Software-AUqV48s3WrgH 
12 create_LDAS_veg_param http://ontosoft.org/portal/#browse/Software-MZosBxc1Hwl8 
13 getwind http://ontosoft.org/portal/#browse/Software-mpNqVzc633VL 
14 regrid_wind http://www.ontosoft.org/portal/#browse/Software-2QGjMmxS9Du6 
15 combine_wind http://ontosoft.org/portal/#browse/Software-ffgkh4iELbOn 

 

http://ontosoft.org/portal/#browse/Software-11IHopcxMu7x
http://ontosoft.org/portal/#browse/Software-3SirBaFht0YN
http://ontosoft.org/portal/#browse/Software-FYMaj4P7bKDb
http://ontosoft.org/portal/#browse/Software-hVNbrGnWJ4Zd
http://ontosoft.org/portal/#browse/Software-GoEvXyadBBVw
http://www.ontosoft.org/portal/#browse/Software-ZtA35mwlwFmi
http://ontosoft.org/portal/#browse/Software-DlszQOw6g336
http://ontosoft.org/portal/#browse/Software-vw8DQn2SSnMQ
http://ontosoft.org/portal/#browse/Software-clQ0WKwjV3Js
http://ontosoft.org/portal/#browse/Software-IPXGcujizwTr
http://ontosoft.org/portal/#browse/Software-AUqV48s3WrgH
http://ontosoft.org/portal/#browse/Software-MZosBxc1Hwl8
http://ontosoft.org/portal/#browse/Software-mpNqVzc633VL
http://www.ontosoft.org/portal/#browse/Software-2QGjMmxS9Du6
http://ontosoft.org/portal/#browse/Software-ffgkh4iELbOn
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Figure 3.6 A screenshot for OntoSoft interface showing the captured metadata for the 

read_prec_dly software within two categories: Identify and a portion of the Trust metadata 
within the Understand category. 
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3.4.2 Metadata Completeness 

 One of the ways the OntoSoft Ontology was evaluated was by recording which OntoSoft 

properties could be extracted from available online resources for the VIC pre-processing software 

components. To do this the percentage of metadata completeness for each software within the 

workflow was calculated and is presented in Figure 3.7 and Table 3.5. The results show that for 

13 of the 15 software in the workflow, 74% or more of the metadata mapped to terms in OntoSoft. 

It seemed that there were consistent practices for including metadata within the software with the 

exception of two of the software (ID 11 and 12). These two software entries are missing important 

metadata like author name, function of the software, etc. and only include the source code and few 

comments within the software itself. These poorly described software entries may have been 

perceived to play a minor role within the overall software system. This also could have been a 

result of a difference in practice regarding commenting in the source code for these two software, 

which were both related to soil and vegetation data preparation.  

 Table 3.5 also shows that the optional metadata for the Execute category is missing for all 

software. This category consists of three classes: "Access," "Install," and "Run." These classes 

depend on the execution of the software with test data like: "has executable location," "has average 

run time," "requires average memory," and "has test instructions." These properties assume a 

standalone executable software, but the software analyzed in this study were lower-level software 

components within a larger software system. It is likely because the software analyzed was at such 

a fine granular level within the overall model code that such properties are not well documented. 

We suspect that some of these metadata would likely be available if we took a higher-level view 

of the software rather than focusing on components of the software system.
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Table 3.5 Percent completeness of OntoSoft required and optional metadata for each OntoSoft category. 

ID Software 

OntoSoft Metadata Categories 
Average of 
% complete 

metadata 
Identify Understand Execute Do 

Research 
Get 

Support Update 

Req Opt Req Opt Req Opt Req Opt Req Opt Req Opt 
1 preproc_precip 100 100 100 36 87 0 80 50 100 100 100 100 79 
2 read_prec_dly 100 100 100 45 87 0 100 50 100 100 100 100 82 
3 preproc_append 100 100 100 45 87 0 100 0 100 100 100 100 78 
4 append_prec 100 100 100 45 87 0 80 50 100 100 100 100 80 
5 run_append_prec 100 100 50 45 87 0 100 0 100 100 100 100 74 
6 regrid 100 100 100 45 87 0 100 50 100 100 100 100 82 
7 mk_monthly 100 100 100 45 87 0 100 50 100 100 100 100 82 
8 get_prism 100 100 100 45 87 0 100 50 100 100 100 100 82 
9 rescale 100 100 50 45 87 0 100 50 100 100 100 100 78 

10 vicinput 100 100 100 45 87 0 100 50 100 100 100 100 78 
11 create_LDAS_soil 100 0 50 27 87 0 80 50 100 0 0 100 50 
12 create_LDAS_veg_param 100 0 50 27 87 0 60 50 100 0 0 100 48 
13 getwind 100 100 50 45 87 0 100 50 100 100 100 100 78 
14 regrid_wind 100 100 100 45 87 0 100 50 100 100 100 100 82 
15 combine_wind 100 100 100 45 87 0 100 50 100 100 100 100 82 

* Req. is required metadata through OntoSoft 
* Opt. is for Optional metadata through OntoSoft 
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 Focusing on only the required metadata, the results show that 13 out of 15 software 

components include 90% or more of the required metadata (Figure 3.7). The optional metadata 

completeness varied widely among the software between 30% and 66%. Most of the software were 

downloaded from the Zenodo website except for the software used for soil and vegetation data 

processing (ID's 11 and 12), which was downloaded from the VIC official website and was not 

available through Zenodo. Because this soil and vegetation data processing software was not 

available from Zenodo, it resulted in missing metadata terms associate with software publication 

(e.g., "has publisher," "has preferred citation"). Also, as discussed earlier, the authors of these 

software did not include as much metadata within the source code comments compared to other 

software components. This resulted in the software associated with soil and vegetation data 

processing lacking metadata compared to the other software components.  

 

Figure 3.7 Percent Completeness of OntoSoft required and optional metadata for each software 
in the VIC pre-processing workflow. 
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 There are common metadata that are missing from all of the software components. Table 

3.6 shows the 10 optional and 1 required properties that were missing for all the software. The one 

missing required property, "has test data," was not identified for any of the software through this 

research, as discussed earlier. It may be necessary to make this an optional rather than required 

property for more modular software components. Test data should always be included, even to 

support unit tests of modular components of a larger software system. However, given that this 

may not have been a common practice in the past, making this optional metadata to support legacy 

codes may be appropriate. Of the 10 missing optional properties, all are important but none could 

be captured for this software based on our analysis of available online resources. Some of the 

missing optional properties may be difficult to populate for other software as well, because they 

will be heavily dependent on applications of the software to specific use cases (e.g., "has average 

run time" and "requires average memory"). 

Table 3.6 Common missing metadata across software in the workflow. 

Metadata Properties 

Required 
 and 

Optional 
Metadata 

Class 
OntoSoft  
Metadata 
 Category 

has use statistics 

Optional Trust 

U
nd

er
st

an
d 

has benchmark 
information 
has funding sources 
has ratings 
similar software 

Optional Relate has uses and assumptions 
has use limitation 
has executable location Optional Access 

Ex
ec

ut
e has average run time Optional Install requires average memory 

has test data Required Run has test instructions Optional 
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3.4.3 Metadata Sources 

 Another interesting outcome of the results is a better understanding of the percentage of 

metadata that comes from each of the five sources used for metadata extraction Figure 3.8. The 

"source code and prior experience" source provided the most metadata. The VIC documentation 

provided nearly the same amount of metadata as the software publication in Zenodo provided. 

Collectively, these three sources supplied 80% of the metadata with the other 20% being supplied 

by the VIC website and user discussion wiki. The results show how the metadata is distributed 

across the sources and further argues for the need to centralize metadata for hydrologic modeling 

software. 

 

Figure 3.8 Percentage of extracted metadata coming from each of the five sources 

When the metadata source data is broken down by OntoSoft categories, it is clear that some 

sources play a more major role than others in populating each category's metadata Figure 3.9. For 
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example, the VIC website was only used to populate metadata in the Update category. The VIC 

documentation and documentation were used to populate metadata in five of the six categories; no 

source was used in all six categories. Interestingly, metadata for Identify, Execute, and Do 

Research categories came from the same three sources: the VIC publication in Zenodo, the VIC 

documentation, and the source code and prior experience. This result shows how valuable metadata 

is being captured now, but even when broken into thematic categories, metadata is still widely 

distributed across sources.  

 

Figure 3.9 Source for extracted metadata for each OntoSoft Category. 
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 3.4.4 Confidence in Metadata Mapping 

 Some the mappings for ontology properties are uncertain, meaning it is expected that not 

all will agree with how extracted metadata was mapped to ontology properties in this study. Table 

3.7 shows the level of confidence the authors had for the ontology property mapping completed in 

this study. Some properties have high confidence, where it is likely others performing this same 

metadata extraction exercise would arrive at the same result. Other properties were rated as low 

confidence, meaning it is likely, in the opinion of the authors, that others may populate these fields 

differently than what was done in this study. In some cases, the low confidence properties for this 

study may have higher confidence if this procedure was completed for another model software. In 

other cases, the low confidence properties were the result of ambiguity as to how metadata from 

available sources should be mapped to these properties. These properties may require further 

consideration and explanation for use with hydrologic modeling. 
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Table 3.7 Level of confidence in metadata properties populated on OntoSoft 

OntoSoft 
Category High Confidence Low Confidence 

Identify 
has name 
has project web site 
has unique ID 

has short description 
has software category 

Understand has creator 
has publisher 

has major contributor 
has short description 
commitment of support 
has domain keywords 
has use limitations 
has use information 
used in publication 
has salient qualities 

Update 
has software version 
has active development 
has software community 

has version release date 
supersedes 
superseded by 

Do 
Research 

has input  
has input parameter 
has output 
has preferred citation 

has relevant data sources 
has interoperable software 
has composition description 

Execute 

has code location 
has license 
has documentation 
has implementation language 
has dependency 
supports operating systems 

has installation instructions 
 

Get 
Support has email contact has software support 

  

3.5 Conclusion 

 This work evaluates the OntoSoft Ontology and portal for capturing and sharing metadata 

for legacy hydrologic modeling software. The OntoSoft Ontology is designed to focus on scientists 

rather than software developers (Gil et al., 2015), so it is important for scientists to evaluate the 

ontology. This work also supports the idea of sharing software and its associate metadata as an 

additional goal to complement the now commonly accepted idea of sharing data and its associate 

metadata. To achieve "reproducible software" (Peng, 2011), not only the software and data need 

to be shared, but also their associated metadata. Sharing software with metadata encourages future 

scientists to learn and build from prior work by reducing the time and effort to find and understand 

this prior work. This study uses a pre-processing workflow for the VIC hydrologic model as a case 
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study for evaluating the OntoSoft Ontology. Metadata was harvested from five sources: 1) Source 

code and prior experience, 2) Variable infiltration capacity (VIC) model official website, 3) 

Software published in website Zenodo, 4) VIC documentation for the software, and 5) VIC user 

discussion wiki. The large amount of effort and time devoted to capturing metadata from these 

various sources resulted in an improved description of the complex hydrologic VIC model 

workflow at a detailed level using the OntoSoft Ontology.  

 Results of the analysis showed that at least 90% of the required OntoSoft metadata 

properties could be captured from the online sources for 13 of the 15 software components within 

the workflow. The metadata was somewhat evenly distributed across four of the five sources. This 

result suggests that the vast majority of the metadata needed to populate at least the required 

properties in OntoSoft is recorded now by hydrologic modelers, but the information is distributed 

across sources and stored in unstructured forms. This study also showed that there are common 

missing properties across all the software used within the workflow. Out of 46 properties in the 

OntoSoft Ontology, there were 14 optional properties (< 30%) and one required properties (< 3%) 

missing for all 15 software. Some of the missing properties (e.g., memory size and run time) 

depend on a specific application of the software (i.e., to model a given domain for addressing a 

given research objective), and thus will differ from one application to another. Finally, the results 

of the study also suggested uncertainty in how to populate some of the metadata properties. Some 

of these terms, labeled as "low confidence" in Table 3.6, may have had less uncertainty if a 

different set of software were investigated (e.g., software at less of a fine-grain level than what 

was used in this study). Other terms may be ambiguous across hydrology models, requiring 

additional description and guidance.  
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Some limitations of this study are that (i) while it investigates 15 different software, these 

are all related to using a single hydrologic model and (ii) the metadata was extracted by one team 

of hydrologists. Broadening this work to additional geoscience models and having other scientists 

repeat the metadata extraction process would help to advance the evaluation of OntoSoft for 

capturing geoscience software metadata. In particular, having other groups of scientists repeat the 

process would benefit in testing the consistency of the metadata property mapping process. 

Expanding the effort to other geoscience models would help in improving the evaluation of 

OntoSoft for representing the metadata necessary for geoscience software more broadly. Despite 

these limitations, this study contributes both an important and necessary evaluation of OntoSoft as 

ontology for describing software relevant to hydrologic modeling. It also improves understanding 

of what metadata is being captured now in available online resources for hydrologic modeling 

software.  

Finally, there are many possible future research goals that could be undertaken to advance 

the research presented here. 1) OntoSoft could be expanded to better track where metadata 

recorded within the ontology was obtained. 2) The extraction process, which is now manual and 

very tedious, could be more automated through text mining approaches, although from this 

experience we believe manual intervention will continue to be necessary at some level. 3) For the 

low confidence metadata, a mechanism for crowdsourcing the metadata collection and review 

(potentially through a user-supplied rating system) would be a helpful feature for gaining 

confidence in potentially ambiguous metadata. 4) Experiments, where a group of scientists repeat 

the same procedure outlined in this study for gathering metadata on the VIC pre-processing 

workflow and entering it through the OntoSoft Portal, would be a potentially useful way to 

compare the completeness, confidence, and accuracy of metadata generation across scientists. 
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Lastly, an underlying premise of this study is that having metadata for software, including for 

software at a fine-grain level, is useful for increasing transparency and reproducibility in science. 

Future work could test this assumption by surveying VIC users to better evaluate how metadata 

presented through the OntoSoft Portal increases their understanding of the VIC software, and how 

it influences their use and communication of the software with other researchers going forward.  
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Chapter 4:  Integrating Scientific Cyberinfrastructure to Improve 
Reproducibility in Computational Hydrology: Example Using 
HydroShare and GeoTrust3  
 

4.1 Introduction  

The challenge of creating more open and reusable code, data, and formal workflows that 

allow others to verify published findings is gaining attention in the scientific community 

(Borgman, 2012; Cédric H. David et al., 2016; Gorgolewski and Poldrack, 2016; Peng, 2011; Qin 

et al., 2016). Recent papers have argued the need for and have proposed approaches to improve 

reproducibility both broadly within geosciences generally and the hydrologic sciences specifically 

(Cédric H. David et al., 2016; Essawy et al., 2016; Gil et al., 2016a; Hutton et al., 2016). Here we 

consider reproducibility to be the ability to document and share digital resources used to complete 

an analysis including (1) raw initial datasets, (2) data preprocessing scripts used to clean and 

organize the data, (3) model inputs, (4) model results, and (5) the specific model code along with 

all of its dependencies (Figure4.1). These data and software are often integrated into workflows 

that allow scientists to re-run an analysis from raw initial datasets and obtain the same model 

results.  

There are different requirements for reproducibility depending on the nature of the 

research. For example, empirical reproducibility requires capturing descriptive information about 

protocols and methods for laboratory-based scientific experiments. Computational reproducibility, 

the subject of this study, requires descriptive information about the software and workflow details 

of model-based research (Todden, 2013). Any computational reproducibility solution must be 

3This Chapter is in preparation for submission to a peer reviewed journal. The tentative title, authors, and journal 
for the submission follow.  Bakinam T. Essawy, Jonathan L. Goodall, Wesley Zell, Daniel Voce, Mohamed M. 
Morsy, Jeffrey Saddler, and Tanu Malik. Integrating Scientific Cyberinfrastructure to Improve Reproducibility in 
Computational Hydrology: Example Using HydroShare and GeoTrust. In preparation for submission to 
Environmental Modelling & Software.  
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general and able to address this heterogeneous landscape of tools and approaches used within the 

target scientific community. In hydrology, scientists use a large variety of computational models 

and many of these computational models have decades of development effort behind them (Singh 

et al., 2002). Computational modeling requires a significant amount of effort and time to prepare 

model input, and to calibrate and validate model parameters. These aspects of hydrology make 

computational reproducibility particularly challenging. 

 

Figure 4.1 The typical conceptual workflow that needs to be repeated for computational 
reproducibility. 

HydroShare and GeoTrust are two new cyberinfrastructures under active development that 

can be used to improve reproducibility in computational hydrology. HydroShare is a web-based 

system for sharing hydrologic data and model resources including detailed, hydrologic-specific 

resource metadata (Tarboton et al., 2014a, 2014b). GeoTrust provides tools for scientists to 

efficiently reproduce and share geoscience applications by building "sciunits," which are efficient, 

lightweight, self-contained digital packages of computational workflows that can be repeated or 

reproduced in different environments regardless of deployment issues (Hai et al., 2017). However, 

we believe that neither achieves computational reproducibility as we defined previously in 

isolation. This paper discusses how Hydroshare and GeoTrust can be harnessed to provide the 

theoretical notion of computational reproducibility as defined earlier in the domain of hydrology. 

Hydroshare allows scientists to share datasets (e.g., raw initials datasets, data preprocessing scripts 

used to clean and organize the data, model software, and model results) in an open and transparent 

way. It allows for actions on data through apps that view or analyze data stored in HydroShare. 
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GeoTrust allows scientists to document their computational workflows as sciunit containers. 

Sciunit-CLI (https://bitbucket.org/geotrust/sciunit-cli), a tool, software used to create a sciunit, 

tracks and outputs the provenance of the computational workflows. The tool also keeps track of 

software dependencies and creates a container for workflows using Docker. Docker containers 

allow scientist to wrap a piece of software in a complete filesystem that contains everything needed 

to run, including code, runtime, system tools, and system libraries (Owsiak et al., 2017). Typically 

documenting all code, data, and environment dependencies can be burdensome for a scientist, and 

Sciunit-CLI automates this process, taking execution time that is imperceptibly more than the 

execution time of the workflow. The sciunit also encapsulates retrospective provenance of the 

workflow execution, which can be used for re-running containers (Pham et al., 2014).  Finally, the 

container can be saved as a Docker or Vagrant container which improves reproducibility in 

different environments.  

The aim of this research is to present a solution for achieving a higher level of 

reproducibility research using GeoTrust's Sciunit-CLI and HydroShare. The solution described in 

this study can be used to assists scientists to more easily repeat, reproduce and verify a 

computational experiment (Malik, 2017). This higher level of reproducibility is not limited to 

being open and simply sharing but also being portable in different environments and repeating 

analyses with different datasets. It is not possible to share code, data, and environment. when using 

only HydroShare or GeoTrust is used in isolation. GeoTrust does not provide a community of users 

who can verify analyses and a variety of datasets that are required for verification that can be 

achieved by using HydroShare. Hydroshare simply assumes that reproducibility requirements are 

satisfied if code and data is shared, but reproducibility also involves sharing the environment, 

which scientists have a hard time documenting, and then repeating with different datasets. This 

https://bitbucket.org/geotrust/sciunit-cli
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paper presents a design, prototype implementation, and example application of the approach using 

MODFLOW-NWT model as a use case. MODFLOW is the U.S. Geological Survey's three-

dimensional (3D) finite-difference groundwater model and is commonly used by hydrogeologists 

to simulate groundwater flow; "NWT" signifies a version of MODFLOW that uses the Newton-

Raphson method to solve the system of equations that result from a numerical simulation of the 

general equation for groundwater flow. To achieve better reproducibility for MODFLOW-NWT, 

we first use the Sciunit-CLI to create a sciunit for the pre-processing workflow used to prepare the 

input data for a MODFLOW-NWT model for a study area in the James River in Virginia. Then 

HydroShare is used to share key resources associated with this modeling application to foster 

reproducibility. Finally, HydroShare is used to initiate the execution of the GeoTrust containers 

on a cloud-computing environment. 

The remainder of the study is organized as follows. First, additional background on the 

HydroShare, GeoTrust, and MODFLOW-NWT software projects is provided.  This background 

section is meant to orient readers on key aspects of these projects. Next the design and 

implementation of the HydroShare and GeoTrust integration approach is presented and 

demonstrated using the MODFLOW-NWT model as an example application. Finally, a discussion 

and conclusions section summarizes key aspects of the approach and outlines opportunities for 

future research to advance on known limitations of the approach.  

4.2 Background 

4.2.1 HydroShare 

HydroShare (https://www.hydroshare.org) is a web-based system designed to enable 

hydrologic scientists to easily share, collaborate around, and publish all types of scientific data and 

models (Tarboton et al., 2014a, 2014b). Digital content is stored in HydroShare as resources and 
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every resource has a resource type (Horsburgh et al., 2015). The "generic" resource type supports 

the Dublin Core metadata standard and more specific resource types expand on this metadata for 

well-defined resource types. For example, "Operating System" is one of the extended metadata 

terms for the 'Model Program' resource type, which is used for sharing a computational model 

program in HydroShare (Morsy et al., 2017). 

HydroShare provides a web representational state transfer (REST) application program 

interface (API) that allows third-party applications to interact with HydroShare resources. 

Developers can also create web-apps to integrate functionality into HydroShare. Web-app 

developers can catalogue their apps in HydroShare via the 'Web-app' resource type. When a 

developer creates a web-app resource in HydroShare, the developer specifies which resource types 

are relevant to the app and the URL that will be called when the app is executed from the landing 

page of the resource that the app is acting on. After a developer adds his or her web-app as a 

resource in HydroShare, HydroShare users can execute that app through HydroShare's web 

interface to act on relevant resources that they have access to. 

Although there are several different resource types supported by HydroShare, two of the 

main resource types relevant to this study deal with computational models. HydroShare divides 

computational models into two separate but linked resource types: a) the model program and b) 

the model instance (Morsy et al., 2017). The model program is the software for executing the 

model and the model instance is the input files required for executing the model and, optionally, 

the output files after a model instance has been executed by a model program (Horsburgh et al., 

2015; Morsy et al., 2014b). A model instance resource can be linked to a model program resource 

with the model instance extended metadata term "ExecutedBy." Using the "ExecutedBy" term, a 

user can specify which model program is meant to execute the input files contained within the 
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model instance resource (Morsy et al., 2017). Additional HydroShare resource types used in this 

study include the composite resource type, which allows uploading metadata files at both file and 

resource level, the collections resource type, which stores any number of resources as a single, 

aggregate resource, and the web-app resource type, which was described earlier. 

4.2.2 GeoTrust  

The GeoTrust project aims to create cyberinfrastructure that assists scientists in creating 

and maintaining collections of sciunits that pertain to a specific research project (Malik et al., 

2017). Sciunits are computational research objects, that monitor the reference execution of an ad 

hoc workflow to track and bundle all code, data, and environment dependencies into a light-weight, 

self-contained container that can be repeated in other environments (Malik, 2017). A sciunit 

advances the concept of a research object, which is an aggregation of digital artifacts such as code, 

data, scripts, and temporary experiment results that together with the paper provide an authoritative 

and far more complete record of a piece of research (Bechhofer et al., 2013). Further, users can 

attach additional annotations to describe containers. Each container also incorporates associated 

provenance, and users can use the included provenance to create smaller containers or repurposed 

containers (i.e. they can create arbitrarily new containers). These containers enable exact or partial 

repeatability of the sciunit. The objective of GeoTrust project is to provide easy to use tools to 

create, store, and manage sciunits.  

Sciunits are Docker containers used to improve the reproducibility of a computational 

analysis by providing a single container for handling the various model-related data items and 

software components used during a computational analysis.  Data and software elements may 

include input files, parameter files, pre- or post-processing scripts, the model executable, any 

associated libraries, and all output files produced by the model and scripts. The objective of 
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GeoTrust is to develop a way to define, share, and access the needed metadata collections for each 

file used in the computational analysis. This approach aims to enhance sharing, reusing, and 

reproducibility of models not just in hydrology but more broadly within the scientific community.  

The GeoTrust project provides a tool called Sciunit-CLI that automatically creates the 

sciunit Docker containers for scientific applications and runs in any Linux environment. Sciunit-

CLI is a Python/C command-line interface. Using Sciunit-CLI to create a sciunit is a way for 

scientists to document their workflow, share it with others, and publish it on publicly accessible 

repositories. When a sciunit is created, Sciunit-CLI ensures that the package contains all the 

dependencies required for the workflow, the sciunit can be rerun, and the outputs reproduced, 

using any other deployment configuration that also has Sciunit-CLI installed. Because it contains 

all the required dependencies.  When Sciunit-CLI creates a sciunit, it includes three types of 

metadata: annotation metadata (populated by the user) and provenance and version metadata 

(generated automatically by Sciunit-CLI). This process is further described with an example 

application later in the study. 

Figure 4.2 shows a sample user interaction with this client. The user instantiates a 

namespaced sciunit titled myro, and can associate files and annotations with the sciunit using CLI 

commands shown in (in italics) in Figure 2. To create a container within the sciunit, bundling an 

application's digital artifacts, the user runs the application with the package command. The user 

application can be written in any combination of programming languages e.g. C, C++, Fortran, 

Shell, Java, R, Python, Julia, etc. In our example, the application consists of the data pre- 

processing scripts written in R and Python. Packaging an application also incorporates provenance 

information. Many such containers can be created within the same sciunit. The client works in a 
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Git-like fashion in that the myro sciunit is stored only locally unless it is explicitly shared with a 

remote repository. This method of operation allows distributed collaborators to work offline on 

the same sciunit. When a user is ready to share, she can publish a container to a remote sciunit 

using the publish command, which instructs the client to upload the container to a Web-based 

repository. The repository reads the container's contents, stores the container's digital artifacts in 

the appropriate remote sciunit, and associates the container with an appropriate cloud execution 

server on which it can potentially re-execute.  

A container within the sciunit can be re-run directly from the client, either locally on the 

local machine with the repeat command, or remotely on a remote execution server with the repeat 

remote command, as shown in Figure 4.2. In the remote case, the target container is downloaded 

from a Web-based repository to a remote execution server, and, if the container is compatible with 

the execution server's architecture, the execution server runs it and sends the results back to the 

user. Both local and remote executions may optionally be repeated as partial executions. Finally, 

the user can modify a container by downloading it, modifying its code or data and running it 

locally, and then uploading the modified container, at which point a new version of the container 

will be stored in the Web-based repository. 
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Figure 4.2. User interaction with sciunit client. 

4.2.3 MODFLOW-NWT 

MODFLOW is the U.S. Geological Survey's (USGS) three-dimensional (3D) finite-

difference groundwater model.  The USGS has released multiple versions of MODFLOW. 

MODFLOW-2005 is the most widely used and most thoroughly tested version of MODFLOW. 

MODFLOW-NWT is an advanced MODFLOW version that includes specialized MODFLOW 

variants and uses a Newton-Raphson formulation to improve the solution of unconfined 

groundwater-flow problems. MODFLOW-NWT is a standalone program that is intended for 

solving problems involving drying and rewetting nonlinearities of the unconfined groundwater-

flow equation (Niswonger et al., 2011). MODFLOW-NWT packages have nearly the same format 

as the standard MODFLOW-2005, with a few exceptions (e.g., the list of possible Newton-

Raphson solver input variables is more extensive than most MODFLOW solvers).  

This study leverages FloPy, a Python library that allows users to perform pre-processing 

routines to create new MODFLOW models from raw datasets, to run MODFLOW models using a 

variety of different model versions, and to post-process model output files (Bakker et al., 2016). 

Using scripting for these steps as opposed to a Graphic User Interface (GUI), which is commonly 
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used for geoscience models, makes the data processing steps more transparent and reproducible. 

By combining FloPy with GeoTrust and HydroShare, the workflow used to create, execute, and 

analyze the output of a MODFLOW model (e.g., the steps shown in Figure 4.1) can be stored 

within a reproducible container with descriptive metadata in HydroShare, as described in the 

following sections. 

 4.3 System Design and Implementation 

Figure 4.3 shows the activity diagram with a high-level view of the system designed for 

integrating GeoTrust and HydroShare. First, a user logs into a machine with Sciunit-CLI installed 

and configured. The user then starts Sciunit-CLI at the terminal. While Sciunit-CLI is running, the 

user initiates a workflow, often a shell script that executes a series of Python scripts for automating 

data processing steps associated with a modeling use case. Sciunit-CLI creates a sciunit (Docker 

container) that includes all software and data dependencies for the executed workflow. The 

scientist can then use Sciunit-CLI to automatically share the sciunit through HydroShare with basic 

resource metadata.  



 82 

 

Figure 4.3 Activity diagram integration showing the creation of a sciunit using GeoTrust and 
publishing on HydroShare. 

 
In order to implement this design, Sciunit-CLI needed to be extended to support sharing of 

sciunits through HydroShare. This functionality was implemented using HydroShare's 

representational state transfer (REST) application program interface (API). To store a sciunit on 

HydroShare through Sciunit-CLI.  The user must provide valid HydroShare credentials and four 

basic metadata values to describe their sciunit: "abstract", "title", "keywords", and "make resource 

public or private."  In the current implementation, the resource is published on HydroShare as a 

generic resource type that includes just these four metadata terms. Once the resource for the sciunit 

is created within HydroShare, the user can log into HydroShare and edit the metadata fields to 

more fully describe the sciunit resource. 

 In addition to integrating with HydroShare for storing and publishing a sciunit, this 

research has also resulted in approaches for using cloud resources for execution of sciunits directly 

through the HydroShare user interface. We evaluated three cloud computing services to provide 
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this functionality: EarthCube Integration and Testing Environment (ECITE), CyVerse and 

Amazon Web Services (AWS). ECITE and CyVerse are both projects funded by the United States 

National Science Foundation (NSF) for hosting computing environments and both are currently 

under active development. One main advantage for using ECITE or CyVerse is that both are free 

of charge for scientific studies. AWS, though typically not free, does offer a competitive grant 

program for researchers that could also provide free resources for scientific research. While all 

three approaches were tested and are discussed further in Section 5, AWS was selected as the 

initial environment for further development for the reasons described in the Discussion and 

Conclusions section.  

Finally, a method for integrating the cloud-based sciunit execution from the HydroShare 

user interface was designed and implemented. A HydroShare web-app was used for this purpose. 

This web-app directs users to a AWS Elastic Cloud Compute (EC2) instance where sciunits can 

be executed. The web-app configured to run a particular sciunit can be accessed through the "Open 

with…" button on the landing page for the resource that stores the raw input data. When the 

scientist clicks on the web-app button from the "Open with…" menu, an HTTP request containing 

the raw input data's resource ID will be sent to the server. With the resource ID, the HydroShare 

REST API, can be used to download the raw input data and the sciunit to the server. The server 

can then, execute the sciunit using the raw data, and return back the output to the scientist in a new 

HydroShare resource. 

4.4 Example Application 

A use case centered around the MODFLOW-NWT model was created to demonstrate the 

capability of GeoTrust Sciunit-CLI tool for packaging and publishing a workflow in HydroShare. 

The capability of then executing the packaged workflow through HydroShare is also demonstrated 
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focusing on the use of an EC2 instances from AWS. We used a Linux-based micro-sized machine 

(t2) with 1 Gb of memory, a 3 vCPU, 32 Gb of Solid State Drive (SSD)-based local instance 

storage, and a 64-bit platform ("Amazon EC2 Instances," 2015) for prototyping and demonstration 

purposes. 

The first step in the process is to install the Sciunit-CLI on the EC2 instance. This was 

accomplished by completing the following steps. 1) The developer creates accounts on both 

Globus and HydroShare. A Globus account is needed because Sciunit-CLI supports Globus as a 

secure and efficient data transfer protocol and a HydroShare account is needed so users can post 

sciunits to the HydroShare system. 2) The developer downloads and installs the Sciunit-CLI tool 

following the steps detailed in the GeoTrust tutorial 

(http://www.geotrusthub.org/geotrust_html/GeoTrust.html). 3) At a terminal, the developer starts 

Sciunit-CLI and, if this is the first time using the application, provides the Globus credentials. This 

information will be stored for future uses of the application. The HydroShare credentials are 

requested only when the user is uploading resources to HydroShare and not when the Sciunit-CLI 

application is initiated.  

Next, a workflow was created to prepare the input data for the MODFLOW-NWT model 

and to run the MODFLOW-NWT engine using the prepared files.  In the use case, the model inputs 

are for simulation of the shallow groundwater flow system of the James River watershed upstream 

of Richmond, VA. The model simulates recharge to the water table, subsurface flow through the 

saturated zone, and base-flow discharge to surface water bodies including the James, Rivanna, and 

Hardware Rivers and several smaller-order streams. All MODFLOW input files were constructed 

by creating pre-processing scripts using the FloPy Python library (Bakker et al., 2016). The 

shallow groundwater system was simulated with a single layer of 300 m x 300 m grid cells 

http://www.geotrusthub.org/geotrust_html/GeoTrust.html
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(approximately 260,000 total model cells).  Depth-integrated effective transmissivity was assumed 

to be constant throughout the active model area and assigned as 100 m2/day.  Spatially-distributed 

recharge was derived from the national recharge dataset developed by Reitz et al. (2017). Base 

flow discharge was simulated using the MODFLOW Drain Package with all drain elevations (i.e., 

the water table elevation required to discharge base-flow to a receiving stream) extracted from the 

National Elevation Dataset. 

After the workflow to pre-process the input data and run the MODFLOW-NWT model was 

created, it was packaged into a sciunit using the Sciunit-CLI tool. Figure 4.4 outlines the first steps 

in this process. The developer starts the tool and then uses the package command to run the 

workflow. This package command traces all dependencies for the workflow and includes them in 

a single Docker file. Figure 4.5 shows how after the tool packages the workflow and provides a 

"package_hash" as the unique identifier for the package. Figure 4.6 shows how the scientist uses 

this "package_hash" to share the package through HydroShare as a resource. If this is the first time 

connecting to HydroShare, Sciunit-CLI will ask for HydroShare credentials, otherwise the 

credentials stored when first input will be used. The user is then asked for four basic metadata 

values to describe the resource: "abstract", "title", "keywords", and "make resource public or 

private."  Additional metadata can be provided by the user via HydroShare Graphical User 

Interface (GUI) and future implementations of the Sciunit-CLI may this functionality by 

automatically populating more detailed metadata for describing the resources.  
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Figure 4.4 The process taken to start and package the workflow on linux environment using 
GeoTrust Sciunit-CLI tool 

 
Figure 4.5 Sciunit-CLI creates a package hash for the packaged workflow. 

 

Figure 4.6 The package hash is used to publish a package to HydroShare. 
 

Figure 4.7 shows how the published resource appears in HydroShare. The resource is 

uploaded to HydroShare as a Composite resource type. This resource type allows the resource to 

include multiple files without file format limitations and with metadata associated at a file level 

within the resource. The composite resource contains two files. The first is the provenance 

metadata file created while packaging the workflow. The provenance metadata for this package 



 87 

contains information concerning the creation and version history of the managed data. The second 

file is the zipped package for the sciunit itself. 

 

Figure 4.7 The MODFLOW-NWT preprocessing and model engine packaged workflow 
published on HydroShare as composite resource. 

 

  Once the sciunit is a HydroShare resource, the scientist can use HydroShare's integration 

with third-party web apps to execute the sciunit with other raw data. We used the procedure 
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outlined in Figure 4.8 to create a new resource in HydroShare for storing the input data required 

by the sciunit container. We made this resource using the model instance resource type and named 

it "ModflowNwtRawData." Using the same procedure, we created another resource with the web-

app resource type and named it "GeoTrust." This web-app points to the AWS-EC2 instance where 

the Sciunit-CLI software is installed. The GeoTrust web-app resource is linked to the 

ModflowNwtRawData resource by the SupportedResourceType metadata property. This allows 

the web-app to appear in a drop-down list when a user clicks on the "Open with" button on the 

ModflowNwtRawData resource landing page (Figure 4.9). When a user selects this option, the 

sciunit container is executed on the AWS-EC2 instance and the results are written back to 

HydroShare as a new resource with a MODFLOW Model Instance resource type. This resource 

type is used because the resource can be executed by a MODFLOW model program and it allows 

for adding extended metadata specific to MODFLOW (Morsy et al., 2017). 

 

Figure 4.8 The activity diagram showing the steps used to the create new model resource on 
HydroShare (adopted from Morsy et al. 2017). 
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Figure 4.9 The raw data within the model instance resource, and the web apps linked to this 
resource type. 

Figure 4.10 presents the steps that occur when the "Open with" button is clicked on the 

ModflowNwtRawData resource landing page.  The "Open with" app will perform a HTTP GET 

request to the AWS-EC2 machine, which has already been configured with the Sciunit-CLI 

following the steps described earlier. The webserver running on the AWS-EC2 machine handles 

the HTTP request AND automatically executes a Python script that first uses the HydroShare user 
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authentication to download the raw data from the ModflowNwtRawData resource and downloads 

the ModflowNwtSciunit resource that includes the sciunit container. Once the 

ModflowNwtSciunit resource is downloaded, the resource is unzipped and moved to the working 

directory for the analysis. Sciunit-CLI executes the downloaded package that prepares the raw 

input data for the MODFLOW-NWT model and uses this processed data to execute the 

MODFLOW-NWT model program itself using the processed data as input. After the model is 

executed, a new resource is created in HydroShare with the MODFLOW Model Instance resource 

type named ModflowNwtSciunitOutput and the output from the Sciunit-CLI execution is uploaded 

into this new resource. A new collection resource is also created on HydroShare to group the 

ModflowNwtRawData  generic model instance resource (the resource type is a generic model 

instance since the data uploaded have no specific metadata or format that could be tied to a specific 

resource type), the web-app GeoTrust resource, the ModflowNwtSciunit MODFLOW model 

instance resource, the ModflowNwtSciunit composite resource, and the 

ModflowNwtSciunitOutput resource that includes the output resulting from executing the sciunit 

package.  
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Figure 4.10 Activity diagram showing the steps for the online execution of the sciunit through 
HydroShare. 

 

Figure 4.11 shows the resources in HydroShare after using the "Open with" action on the 

ModflowNwtRawData resource. Two new resources are created. The first resource in the 

workflow is the ModflowNwtSciunitOutput resource that includes the input files for the 

MODFLOW-NWT model program which were prepared through the preprocessing script; it is 

given the MODFLOW model instance resource type. Because this resource has the inputs that are 

required by MODFLOW-NWT model. This allows the resource to have extended metadata 

specific to MODFLOW models. The second resource created is the ModflowNwtCollection 

resource that includes all the resources that were used in the online execution for MODFLOW-



 92 

NWT. This provides a grouping of resources used for an analysis and allows the user to share or 

download this collection of resources more easily.   

 
Figure 4.11 HydroShare user My Resource page after using the GeoTrust web app for the online 

execution. 
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Figure 4.12 shows details for the ModflowNwtSciunitOutput resource as viewed on this 

resource's HydroShare landing page. The resource contains the output generated from running the 

sciunit that prepares the model input for the MODFLOW-NWT and the output from running the 

MODFLOW-NWT model program itself, it allows for extended metadata terms specific to 

MODFLOW including the concept of (packages) associated with the model. Because this resource 

has the MODFLOW Model Instance resource type. In this case, the MODFLOW model has eight 

packages. The output control (oc) package specifies how the model output is written. The 

discretization (dis) and basic (bas) packages define the spatial and temporal framework of the 

model (e.g., location of the active, inactive, and specified head cells). The upstream-weighting 

(upw) groundwater flow package used in the model describes the system properties (e.g., 

transmissivity/conductivity). The Newton-Raphson solver (nwt) package defines the model solver 

and its specifications.  The drain package (drn) specifies the method of simulating the discharge 

of groundwater as base-flow in streams in rivers. The MODFLOW-NWT uses these packages and 

generates one output listing file (list) that contains all the information about the current run (e.g., 

stress period, time step, and the number of active, and inactive cells, the recharge, drains, and any 

errors). Finally, the name file (nam) specifies the name of the input and output files for the model 

instance.  
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Figure 4.12 The ModflowNwtSciuintOutput resource landing page in HydroShare. 

 



 
 

95 

Additional metadata associated with the MODFLOW output resource that appears on the 

Hydroshare landing page is divided into four categories:  1) Authorship, 2) Related Resources, 3) 

Resource Specific, and 4) Web Apps. Figure 4.13 shows the "Related Resources" metadata. Here, 

all resources linked to the MODFLOW output resource through formal relationships are listed. In 

this case, the MODFLOW output resource is linked to the ModflowNwtRawData resource through 

the "derived from" relationship and to the MODFLOW-NWT resource through the "executed by" 

relationship. Figure 4.14 shows the "Resource Specific" metadata. These are non-null metadata 

terms that apply only to the MODFLOW output's resource type (MODFLOW Model Instance) 

such as grid attributes and solver and boundary condition package choices. Additional metadata 

terms not previously populated by the user can be populated later within the edit mode and will 

appear in this section once populated.   

 

Figure 4.13 The ModflowNwtSciuintOutput Related Resources metadata tracking the resource's 
provenance within HydroShare. 



 
 

96 

 

 

Figure 4.14 ModflowNwtSciuintOutput specific metadata capturing key, MODFLOW-specific 
model properties. 
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Figure 4.15 shows details for the resulting ModflowNwtCollection resource as viewed on 

this resource's landing page. The collection resource contains four sub-resources: 1) the 

ModflowNwtRawData resource with the raw input data needed to be prepared for the 

MODFLOW-NWT model engine, 2) the ModflowNwtSciunit resource with the sciunit pre-

processing workflow that also includes running the MODFLOW-NWT model program, and 3) the 

ModflowNwtSciunitOutput resource which stores the output generated from running the Sciunt 

workflow, and 4) the GeoTrust web app used to perform the online model execution using AWS-

EC2. By organizing all of these resources into a single collection, it is possible to have one landing 

page where users can, referring back to the introduction of this study, view, obtain, and execute 

(1) raw initial datasets, (2) data preprocessing scripts used to clean and organize the data, (3) model 

inputs, (4) model results, and (5) the specific model code along with of all its dependencies used 

for a computational analysis.  
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Figure 4.15 The collection resource that includes all resources used within the study. 
 
4.5 Discussion and Conclusions 

In this study, we demonstrated how Hydroshare and GeoTrust can be integrated to easily 

and efficiently reproduce model workflows. MODLFOW-NWT was used as an example 

application to demonstrate the functionality provided by these cyberinfrastructures for creating 

open, reusable data analysis and model execution services. The approach showed how containers 

built using GeoTrust tools can be shared as Hydroshare resources. A cloud-based service was 

created to automatically retrieve raw input data from HydroShare, execute a sciunit container that 

prepares the MODFLOW-NWT input data and runs the MODFLOW-NWT model program, and 

share the results on HydroShare using a MODFLOW Model Instance resource type. All of the 
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resources are aggregated in HydoShare into one collection resource with domain-specific 

metadata.  

This research demonstrates how the integration of scientific cyberinfrastructure in this case 

the HydroShare and GeoTrust projects, can improve reproducibility in computational hydrology. 

This particular integration can have practical uses such as saving time in running a MODFLOW 

model by not having to install local software dependencies. Hydrologists can even build a new 

MODFLOW model directly from raw input data (e.g., land surface DEMs or stream network 

shapfiles) by running a sciunit container that includes automated data preparation steps 

implemented using a MODFLOW Python package. The container is run online using AWS 

resources directly through the HydroShare user interface. A particular advantage of this approach 

is that the GeoTrust Sciunit-CLI tool allows scientists a method for efficiently creating containers 

for script-driven modeling workflows. Thus, the general approach demonstrated here for 

MODFLOW-NWT could be expanded for any workflow that can be automated and that is 

compatible with Docker requirements. For example, in prior work we have constructed pre- and 

post- processing workflows for the Variable Infiltration Capacity (VIC) hydrologic model (Liang 

et al., 1996b) that could directly benefit from this method for curating, packaging, and sharing 

resources (Billah et al., 2016c; Essawy et al., 2016)). These containers are efficient, lightweight, 

self-contained packages of computational experiments that can be nearly guaranteed to be repeated 

or reproduced regardless of deployment issues. Combining this functionality with HydroShare 

provides the ability to share this functionality more broadly within the hydrology community.  

From our experience, AWS made the process of obtaining compute resources the simplest 

compared to ECITE and CyVerse, the other two cloud-based platforms tested in this research. The 

AWS user simply logs in to the console, selects the type of the machine needed, and launches it. 
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CyVerse has their own console where the user logs in and requests an instance, giving a summary 

of the project. The user is working on. When using ECITE, we had to contact the developer and 

ask for an instance with the required specifications and a short paragraph summarizing the project 

we are working on to justify the allocation of compute resources. With ECITE, we also needed to 

contact the developer each time we wanted to open a port (e.g., port 22 to ssh for or port 80 for 

HTTP). The service does not currently support Elastic IPs like AWS, so each time we restarted an 

instance and wanted to use ssh to access to the machine, we needed to report the IP address used 

to access the machine to the developer to add this address to the security rules. CyVerse is a more 

mature service, but allows each user only a certain allocation of computational time. Once the user 

exceeds this allocation, the instance is suspended and the user needs to request more time from the 

administrators. This feature was problematic for our use case of a continually available cloud-

based resource for online model execution. For these reasons, we used AWS-EC2 for much of the 

testing work described in this study, but ECITE an CyVerse are in active development and will 

likely be good options for this use case in the future.  

While this approach shows great promise, it is not without limitations that should be the 

focus of future research. Two limitations to highlight are (1) the Sciunit-CLI tool must be installed 

locally in order to re-execute a sciunit container and (2) HydroShare lacks methods for uniquely 

identifying and managing Web-app resources that will be needed as the number of these resources 

continues to increase. Regarding the latter limitation, without a more organized structure, naming 

conflicts could cause confusion in the "Open with" button which app to be used. Also, this work 

does not fully explore computational challenges associated with the proposed methodology. Using 

cloud services like AWS provides the opportunity for scalability as more users are added. For 

example, this solution used a small EC2 instances for prototyping and proof of concept 



 
 

101 

implementations. Future work could explore AWS EC2 Container Service (ECS) as an alternative 

for a more scalable solution to support multiple concurrent users. Data movement between 

HydroShare and AWS is another potential issue as data volumes increase, which is not uncommon 

for hydrologic modeling. HydroShare is built on iRODS (Integrated Rule-Oriented Data System), 

which includes the ability to interface with AWS S3 storage resources. Future work could explore 

using this functionality to automate the movement of large files between HydroShare and AWS to 

support computation within AWS and still maintain access through the HydroShare user interface. 

iRODS is specifically designed to handle such data federation needs and should provide a robust 

solution for managing the large data flows common in hydrologic modeling. 
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Chapter 5: Conclusions 

 

There are many challenges in reaching the ultimate goal of reproducibility in computational 

hydrologic modeling, especially when dealing with data-intensive modeling analyses that require 

a large, diverse set of input data and generate a large, diverse set of output data. Many geoscience 

disciplines utilize complex computational models for advancing understanding and sustainable 

management of Earth systems. Executing such models and their associated data pre- and post-

processing routines can be challenging for a number of reasons including (1) accessing and pre-

processing the large volume and variety of data required by the model, (2) post-processing large 

data collections generated by the model, and (3) orchestrating data processing tools, each with 

unique software dependencies, into workflows that can be easily reproduced and reused.  

This research addressed three challenges related to improve reproducibility: 1) How can a 

hydrologist efficiently handle transfers of large datasets required for data processing pipelines in 

support of end-to-end hydrologic modeling; 2) Is it possible to provide component-level metadata 

for legacy hydrologic software; 3) Can we use container technology and scientific 

cyberinfrastructure to improve reproducibility of hydrologic modeling? Each challenge is 

addressed in a separate chapter.  

Chapter 2 focused on addressing these challenges by leveraging the Workflow Structured 

Object (WSO) functionality of the Integrated Rule-Oriented Data System (iRODS) and 

demonstrates how it can be used to access distributed data, encapsulate hydrologic data processing 

as workflows, and federate with other community-driven cyberinfrastructure systems. 

Reproducibility requires more server-side data processing, where reference data and models are 

managed together, than what is common now. This is due to the large and increasing size of data 
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sets used by geoscientists and the growing complexity of software and software dependencies that 

require constrained environments to ensure reproducibility.  

In this chapter, different federation approaches were used as means for providing 

interoperability across the variety of cyberinfrastructure systems needed for data access, analysis, 

modeling, and publication services. Federation approaches most often used in geoscience 

disciplines emphasize Web service APIs; however, to support large data sets, the community 

should have broader adoption of data grid federation approaches as well. The use of both 

approaches was demonstrated for a use case that leveraged four federated but heterogeneous 

cyberinfrastructure systems, DFC, TerraPop, SEAD, and via an existing connection with SEAD 

and DataONE. 

The advantages of Web executable resources include the increased ability to share, 

reproduce, and collaborate on scientist-authored workflows. While the potential of scientific 

scripts and workflows as Web executable resources is clear, important issues remain related to 

managing large data and computation collections. This research successfully demonstrated an 

approach using data grids for addressing this challenge and for moving processing to reference 

data stored within data grids as a method for creating reproducible scientific workflows on large 

data sets. 

Chapter 3 focused on another aspect of the reproducibility spectrum, referring back to the 

introduction of this dissertation. This aspect is having metadata for hydrologic modeling 

workflows.  Software and data need to be shared, but so does their associated metadata. Sharing 

software with metadata encourages scientists to learn and build from prior work by reducing the 

time and effort to find and understand this prior work. Sharing software and its associated metadata 

complements the now commonly accepted idea of sharing data and its associated metadata.  
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The metadata for hydrologic models is rarely organized in machine-readable forms. This 

lack of formal metadata is important because it limits the ability to catalog, identify, attribute, and 

understand unique model software; ultimately, it hinders the ability to reproduce past 

computational studies. Researchers have recently proposed an ontology for scientific software 

metadata called OntoSoft for addressing this problem. Chapter 3 focused on evaluating the 

OntoSoft Ontology for capturing and sharing metadata for legacy hydrologic modeling software.  

A data pre-processing software workflow used in association with the Variable Infiltration 

Capacity (VIC) hydrologic model was used to evaluate the OntoSoft Ontology. This was 

accomplished by exploring what metadata are available from online resources and how this 

metadata aligns with the OntoSoft Ontology. The results suggest that past efforts to document this 

software resulted in capturing key model metadata in unstructured files that could be formalized 

into a machine-readable form using the OntoSoft Ontology. 

An underlying premise of this chapter is that having metadata for software, including for 

software at a fine-grain level, is useful for increasing transparency and reproducibility in science. 

Future work could test this assumption by surveying VIC users to better evaluate how metadata 

presented through the OntoSoft Portal increases their understanding of the VIC software, and how 

it influences their use and communication of the software with other researchers going forward. 

Chapter 4 demonstrated how Hydroshare and GeoTrust can be integrated to more easily 

and efficiently reproduce model workflows. Reproducibility of computational hydrologic models 

is an important challenge that calls for more open and reusable code, data, and formal workflows 

that allow others to verify published findings. This requires an ability to document and share (1) 

raw initial datasets, (2) data preprocessing scripts used to clean and organize the data, (3) model 

inputs, (4) model results, and (5) the specific model code along with all its dependencies. The 
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MODLFOW-NWT groundwater model is used as an example to show the functionality provided 

by the GeoTrust and HydroShare cyberinfrastructure for creating open and reusable data analysis 

and model execution services.  

The approach showed how containers built using GeoTrust tools can be shared as Hydroshare 

resources. A cloud-based service was created to retrieve raw input data from HydroShare, execute 

a sciunit container to prepare the MODFLOW-NWT input data and run the MODFLOW-NWT 

model program, and share the results on HydroShare using a MODFLOW Model Instance resource 

type. All of the resources were aggregated in HydoShare into one collection resource with domain-

specific metadata.  

 Future work could explore using this functionality to automate the movement of large files 

between HydroShare and AWS to support computation within AWS and still maintain access 

through the HydroShare user interface. iRODS, which used to manage files in HydroShare, is 

specifically designed to handle such data federation needs and should provide a robust solution for 

managing the large data flows common in hydrologic modeling. 

In conclusion, this dissertation presents new technologies and approaches to assist in 

moving hydrologic modeling to the ultimate goal of computational reproducibility. This was done 

by addressing three core challenges and by focusing on the widely used Variable Infiltration 

Capacity (VIC) land surface hydrologic model and MODFLOW groundwater hydrologic model. 

This research has resulted in approaches that leverages modern computational methods to assist 

hydrologists with limited knowledge in computer science to more easily reproduce their models, 

thus making models in the future more open, transparent, and reusable.    
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