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Abstract 

We regularly touch soft, compliant fruits and tissues. To help us discriminate them, we rely 

upon cues embedded in spatial and temporal deformation of finger pad skin. However, we do not 

yet understand, in touching objects of various compliance, how such patterns evolve over time, 

and thereby drive perception. Prior efforts have focused upon the analysis of finger displacement, 

reaction force, and 2-D estimates of terminal contact area. However, characterizing the 

deformation of the skin surface, induced upon contact with compliant surfaces, requires 3-D 

empirical measurements over a short time-scale, due to its complex nonlinear elasticity and 

geometry. Herein we couple the empirical measurement of skin deformation – across compliance, 

indentation depth, indentation rate, and time duration – with human perceptual experiments.  In 

particular, we develop a 3-D stereo imaging technique and metrics for quantifying skin 

deformation to move 2-D estimates of terminal contact area to 3-D spatiotemporal changes in 

penetration depth, surface curvature, and force. We observe a complementary interplay between 

and evolvement of these cues over about a 0.3 – 0.6 msec duration at which the stimuli become 

discriminable, with distinctions between compliances less or more stiff than the skin. We examined 

the compliance discriminability across slow and fast indentation rates and concluded that the 

detection rate is higher at slower indentation velocity. Additionally, the minimum time required 

for differentiating compliance can also be determined psychophysically and biomechanically. 

These observations of the skin’s deformation may guide the design and control of haptic actuation. 

Moreover, using our metrics, people can potentially model the skin mechanics of the fingertip and 

link them to the afferent responses transduced by tactile stimuli.  
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Introduction 

Our skin is a deformable, stretchable and sensitive organ with thousands of neural afferents 

embedded that encode mechanical interactions upon surface contact. People rely on this 

information to decipher the physical properties of an object, such as compliance, roughness, and 

shape. Compliance, one attribute within the broad category of softness, stands out because of its 

importance in a plethora of daily activities, such as inspecting the ripeness of fruit and shaking 

hands, among others. An object’s compliance may also be pleasant and cause us to invite us to 

touch it.  Such compliance may prove crucial in engineering the next generation of cyber physical 

devices, in particular in coming up with design requirements to empower those engaged in building 

touch interaction devices and 3-D rendering algorithms [1].  

 The understanding of compliance is underexplored in terms of physical properties of the 

skin, neural and psychological responses when a surface is brought into the skin. Due to the 

complex nonlinear viscoelasticity of the skin’s deformation on human’s finger pad caused by 

surface compliance, it remains intricate to model the mechanics of the finger pad. To analyze the 

geometric change of the skin, previous work proposed a method to measure contact areas by 

scanning the ink prints after each indentation [2], but this method only provides the terminal 

contact area without intermediate area changes. More recently, a 3-D image technique was used 

to generate a point cloud of the finger pad which has potentials to measure the contact area spatially 

[3] and this paper applies this method.  

To interpret the way people interpret compliance psychophysically, Srinivasan and 

LaMotte (1995) attempted to differentiate the softness of an object with both rigid and deformable 

surfaces and, the results indicate that perception of softness was most likely caused by the 

spatiotemporal variation in pressure across the skin surface. They also concluded that solely 
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cutaneous information is sufficient for passive or tactile touch while people rely on both kinesthetic 

and tactile cues for active touch [4].  

In contrast to our understanding of other aspects of physical properties such as texture and 

roughness, the neural mechanism underlying the perception of compliance is far less understood. 

There has been an extensive body of research that focused on the perception of texture by 

monitoring the afferent responses with various surface microgeometry [5] [6]. When the finger 

makes contact with a surface, vibrations are elicited and sensed by all tactile afferents and those 

vibrations were also well studied[7][8]. Yet studies about compliance based on neural responses 

are very few. Condo and Birznieks (2014) have explored the differential sensitivity to surface 

compliance by monitoring the afferent’s activity such as the spike population and mean firing rate 

and, the results indicated that the population responses of the slow adapting type I (SAI) showed 

the greatest sensitivity to compliance. The perceptual ability of compliance, however, and the 

mechanism of the skin surface still remained unanswered.  

Interestingly, most findings from neural models of physical properties such as roughness 

and compliance indicate complementary roles played by tactile afferents’ responses. For example, 

Johansson and Birznieks found that spiking timing and firing rate of tactile afferent are 

independent cues to encode the contact surface curvature and force direction. We hypothesis that 

the empirical measurements of the skin deformation would share similar complementary patterns.  

To understand the sensation and perception of compliance, therefore, empirical 

measurements at the skin-contact surfaces are demanded due to the complexity of mechanism 

modeling as well as the underexplored afferents’ properties. Consequently, the empirical 

measurements should also reflect the psychophysical responses and neuron activities. In our study, 

we developed cutaneous cues and tracked the force change to encode the connection between skin 
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deformation and perception of compliance in passive touch. The developed cues such as 

penetration depth and curvature are used to quantify the nonlinear deformation of the fingertip and 

the psychophysical experiments are conducted to track the human perception of compliance. Our 

work also compared the compliance discriminability at different indentation rates as Srinivasan 

and LaMotte concluded in their study that indentation velocity has impact on perception of 

compliance. From the psychophysical experiment conducted via pair-wise stimulus comparison, 

the minimum time required for compliance differentiation can also be determined. The developed 

cues also show complementary patterns evolving over different time scales, which agree with the 

independent nature of tactile afferents’ responses discovered by other researchers.   
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Results 
 

The aim of our study is to provide empirical measurements of skin deformation when the 

finger pad making contacts with compliant stimuli, and to compare these measurements with 

psychophysical responses. A 3-D point cloud that represents the geometry of the finger pad was 

generated every 100 msec using a disparity-mapping algorithm, and four spatiotemporal cues such 

as penetration depth and curvature were used to quantify the geometric change of the skin surface. 

We also conducted psychophysical experiments using pair-wise stimulus comparison to 

investigate the discriminability of compliance at different indentation rates. In our study, we 

indented stimuli with different compliance into the participant’s index finger at slow and fast 

indentation velocities. Images of the finger pad from cameras were processed by noise reduction 

and image processing technique to produce a clean 3-D point cloud, which would be later used for 

generating metrics using the ellipse method. Since we used displacement control during the 

experiments, indenting the stimuli up to 1 and 2 mm, the time durations of the loading phase were 

ranged from 0.3 s to 2 s based on the indentation rates. During the psychophysical experiments, 

the participants were asked to wear blindfolders to eliminate visual cues and compare the 

compliance between two stimuli of one pair. The discriminability of compliance was observed by 

statistical analysis of the developed cues and the psychophysical results, particularly at the same 

time duration. 

 

 
A. Psychophysical experiments. A total of seven substrates were indented into the 

participants’ index fingers at four indenting rates up to 1 mm displacement, and six rates for 2 mm 

displacement. Four pairs of stimulus comparison were selected to cover a large range of 

compliance discriminability as explained in Methods. Since all stimulus comparison pairs were 
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not discriminable at 3.5 mm/s, we did not test any indenting rate beyond that point. The time 

duration from loading and unloading phases was determined by the indenting rate and 

displacement. Three levels of time duration (0.3 s, 0.4 s, 0.56 s) were highlighted in Figure 1. As 

shown, the discriminability of all stimulus pairs decreases as the indenting rates increase. This 

inverse relationship may result from the reduced time duration during the process. Among the four 

pairs, 45/10 kPa shows the best discriminability across all the indenting rates, with the highest 

detection rate of 83% for 1 mm displacement and 100% for 2 mm displacement. On the contrary, 

45/75 kPa cannot be differentiated under any circumstances. For the pairs that are both harder and 

softer than the skin (184/121 kPa and 33/5 kPa), the differentiate sensitivity are almost the same 

across all indenting rates and displacements. With the threshold of 75% correction rate, the 

detection time for each pair of stimuli can be determined. The minimum time required to 

differentiate 45/10 kPa is 0.4 s, 0.56 s for 184/121 kPa and 33/5 kPa and 45/75 kPa can never be 

differentiated. The change of displacement does not affect the detection time. With the same time 

duration, the discriminability stays almost the same. Under 0.56 s time duration resulting from 1-

mm displacement at 1.75 mm/s and 2-mm displacement at 3.5 mm/s, 45/10, 184/121 and 33/5 kPa 

have the detection rates of 83%, 76% and 75%, respectively under 1 mm displacement, which are 

close to the detection rates under 2-mm displacement which are 79%, 78% and 77%. The similar 

trends shared by 0.4 s and 0.3 s time durations as well.  
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B. Biomechanical experiments. We developed four cutaneous cues to quantify the 

deformation of the skin surface, which are contact area, penetration depth, force and curvature. 

For each cue, we plot the magnitude changes over time for seven stimuli, at six indenting rates 

(see Appendix). For contact area cue, stiffer stimuli result in larger contact areas while the change 

rate of contact area is more dramatic for the softer stimuli. The duration of the area growth is longer 

for the softer stimuli compared to the stiffer ones as shown in Figure 2A, that the contact area 

increased from 20 to 110 mm^2 after 2 s for 5 kPa stimulus while for 184 kPa stimulus, the contact 

Figure 1. Psychophysical evaluation of pairs of compliant stimuli over a range of 
indentation displacements and velocities. 

kPa
5 10 3

3
45 75 121 184

Skin modulus range

Hard/HardSoft/Soft

Medium/Soft

Medium/Soft

Indentation Duration (s)

Indentation Duration (s)

1 0.56 0.4 0.3

2 1.14 0.8 0.56 0.4 0.3

A

B

C
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areas are almost the same after 1 s. Interestingly, the terminal contact area at 1 mm/s for 184 kPa 

(~70 mm^2) is smaller than the area at other indenting rates (~80 mm^2) while other stimuli have 

almost the same area. One possible explanation for this phenomenon can be the skin relaxation 

under the slow indentation rate. As indentation rates increase, the differentiability among stimuli 

decreases along with the time duration. As confirmed by previous studies, softer stimuli have 

higher penetration depths which still holds for different indenting rates. All stimuli reach to the 

same level of penetration depth regardless of indentation rates except 1 mm/s which has higher 

time duration. This means that it takes less time for the skin to get to a certain penetration depth 

with higher indenting rates. Moreover, soft and hard stimuli are more statistically separated in 

penetration depth cue than contact area. Force cue shows non-linearity across all indenting rates 

and substrates, which caused by the non-linear viscoelasticity of the skin surface. All stimuli reach 

to the similar force level even with the change of indenting rates. The stiffer substrates cause higher 

magnitude of force which makes it more discriminable compared to softer stimuli. Like the contact 

area cue, the ultimate curvatures are not influenced by the indenting rates except 184 kPa stimuli 

at 1 mm/s, which can also potentially be explained by skin relaxation as both the curvature and  
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contact area cue depict the spatial change of the skin. Generally, curvature cue shows the most 

sensitivity among stimuli and the softer stimuli have higher curvature.  

 

C. Compare compliance sensitivity between sensing and perception. The tactile 

sensing from geometric changes of the skin surface is quantified by the developed cues. The 

Figure 2. Comparison of the four skin deformation cues, evolving over time, between the 
seven compliant stimuli at slow, medium, and fast rates of indentation.   

184 kPa

121 kPa

75 kPa

45 kPa

33 kPa

10 kPa

5 kPa

A

E

I

B

F

J

C

G

K

D

H

L
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stimulus pairs with significant difference in between under each cue are presented in the table 

shown in Figure 3. Apparently, 45/10 kPa is the most distinguishable among other pairs based on 

the statistics which confirmed the highest detection rate from the psychophysical results. Hard 

stimulus pair (184/121 kPa) are differentiated earlier than the soft pair (33/5 kPa) using contact 

area and penetration depth cues shown in Figure 3B, C. Conversely, curvature cue differentiates 

the soft pair before the hard pair (Figure 3E). Force cue is used exclusively for the hard stimulus 

pair and at higher indenting rates (Figure 3D). As we also combined the psychophysical results of 

three levels of time duration highlighted as shaded blocks, we are able to compare the compliance 

discriminability of each stimulus pair, from the perspectives of skin mechanics and human 

perception. The comparison shows that the statistical difference does not ensure the perceptual 

differentiation. For example, 184/121 and 45/10 kPa pairs are statistically differentiable at 6.5 

mm/s for all developed cues, whereas neither of them is psychophysically discriminable. 

Interestingly, for those pairs that can be differentiated by the participants, there are more than one 

cutaneous cue evolved. People can perceive the difference between 45 and 10 kPa at 3.5 mm/s for 

example, but they cannot rely on contact area cue in this case. This phenomenon indicates the 

complementary roles played by the developed cues to help encode differential sensitivity to the 

surface compliance.  
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Figure 3. Summary of statistical discriminability for each skin deformation cue, 
for each compliance pair, for each indentation depth and velocity. 

B

A

C

D

E

184/121 kPa 35/5 kPa
45/10 kPa 45/75 kPa

Psychophysically Distinguishable

Psychophysically Indistinguishable
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D. Recruitments of the developed cues under fast and slow indenting rates. In this 

section, we illustrate the time of each developed cue is recruited. We divide the timeline into three 

segments as shown in Figure 4 based on the boundary conditions, 0.3 s for 3.5 mm/s and 0.6 s for 

6.5 mm/s under 2 mm displacement. Under slow indenting rates, Soft/Soft (S/S) and Medium/Soft 

(M/S) pairs start to recruit the cues between 0.3 to 0.6 s while Hard/Hard (H/H) pair can be  

 

differentiated using the penetration cue before 0.3 s. Interestingly, H/H recruits all four cues  

between 0.3 to 0.6 s but the penetration use is excluded after 0.6 s, while both S/S and M/S have 

all four cues (Figure 4A). Since faster indenting rates result in shorter time duration, all stimulus 

pairs except Medium/Hard (M/H) recruit most of the cues before 0.3 s and all four cues are 

included before 0.6 s (Figure 4B). M/H does not have any recruited cue under fast indenting rates 

and need more than 0.6 s to include four cues at slow rates. The number of recruited cues is 

Figure 4. Timeline of the evolution of various cues in the skin’s 
deformation from about 0.3 to 0.6 seconds. 

A: Contact Area
C: Curvature
P: Penetration Depth
F: Force

Time
<= 0.3s 0.3 ~ 0.6s > 0.6s

Hard/Hard
Soft/Soft
Soft/Medium
Medium/Hard

P A, C, P, F A, C, F

C, P A, C, P, F

A, C, P A, C, P, F
A, C, P, F

Slow Indentation Velocity  (1, 1.75, 2.5 mm/s)A

Time
<= 0.3s 0.3 ~ 0.6s > 0.6s

Hard/Hard
Soft/Soft
Soft/Medium
Medium/Hard

Fast Indentation Velocity  (3.5, 4.5, 6.5 mm/s)

C, P, F A, C, P, F
C, P A, C, P, F
A, C, P A, C, P, F

B
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proportional to the psychophysically discriminability such that longer time duration has more 

recruited cues which leads to higher detection rates.  

 
E. Method validation using cross-sectional contours. We obtain the cross-sectional 

contours directly from the point clouds before the image processing procedure and impose the 

image planes from Ellipse method along with the developed cues to the contour lines, shown in 

Figure 5. This representation validates the applied methods visually and statistically as the  

 

 

 

Figure 5. A cross-sectional contour representing an example participant’s deformed skin surface 
is overlaid with points of intersection obtained separately via the ellipse method fitted to the 3-
D point cloud. 

1 mm Displacement 2 mm Displacement

33/5

P: 1, C: 1.8 
Curvature (C): mm^-1

Penetration (P): mmP: 0.75, C: 1.5 

Contact Surface

1st Image Plane of 5 kPa stimulus

2nd Image Plane of 5 kPa stimulus

C diff: 0.3
P diff: 0.25 

P: 1.5, C: 3.9 

P: 1.25, C: 2.7 

C diff: 1.2 
P diff:  0.25

184/121
C diff: 0 
P diff: 0

P: 0.25, C: 0 

P: 0.25, C: 0 

P: 0.5, C: 0.97 

P: 0.5, C: 0.67 

C diff: 0.3 
P diff: 0

45/75
C diff: 0.09 
P diff: 0

P: 0.5, C: 0.94 

P: 0.5, C: 0.85 

P: 1, C: 2.05 

P: 0.75, C: 1.4 
C diff: 0.65
P diff: 0.25

45/10

P: 0.75, C: 1.4 
C diff: 0.46
P diff: 0.25P: 0.5, C: 0.94 

P: 1.25, C: 3.1 

P: 1, C: 1.85 
C diff: 1.25 
P diff: 0.25

184 kPa

121 kPa

75 kPa

45 kPa

33 kPa

10 kPa

5 kPa
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intersection of each image plane matches with the shape of contour lines and the difference 

between curvature and penetration depth cues reflects the discriminability for each stimulus pair.  

F. Summary. Our results show that the discriminability of compliance is inversely 

proportional to the indentation rates for all stimulus comparisons, which may result from the 

insufficient time duration. For the developed cues, the recruitment of each cue depends on the 

surface compliance, time durations and indentation rates, however, all cues evolve 

complementarily in time courses to encode the perception of compliance. For example, people rely 

on penetration depth cue at first with an addition of contact area cue for the hard stimulus pair, 

whereas contact area cue appears to be the first for the soft pair then penetration depth cue. Fast 

indentation rates result in early statistical significance of each cue, but people cannot perceive the 

difference between stimuli during the experiments. The minimum time required to differentiate 

stimuli that are both harder and softer than skin is about 0.6 s. It takes less time for people to 

discriminate stimuli that is softer than skin (0.4 s) than harder than skin (> 2s).  
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Methods and Materials 

A. Participants. A total of 10 subjects (mean = 23, SD = 1.2, 6 male and 4 female) 

participated in psychophysical and biomechanical experiments. Experiments were conducted 

under an approved IRB protocol, with the informed consent for each participant. All devices were 

sanitized after each use, and participants wore facemasks, according to SARS-COVID-2 protocols. 

Participants are seated in a comfortable and adjustable chair with elbow resting on the desk 

throughout the duration of the experiment. The participant’s forearm was placed on a customized 

stainless-steel support, at the angle of 30 degree with respect to the horizontal line. A plastic finger 

support is glued on the steel surface, which fixes the finger position and prevents unwanted 

movements during the experiment. An electrical-controlled indenter (ILS-100 MVTP, Newport, 

Irvine, CA) was used to vertically deliver a silicone stimulus into the center of the participant’s 

index finger, with a preset indenting rate as shown in Figure 6A. An aluminum disk (radius = 50 

mm, height = 20 mm) with silicone substrate was secured by a 3-D printed plastic cast that was 

mounted on an arm of the rotating wheel which was controlled by a servo motor. The rotating 

wheel has five arms in total and it is used to deliver the desired silicone stimulus vertically into the 

finger pad once at a time. The shifting time interval between two stimuli is less than 3 seconds 

which is short enough amount time for participants making judgements during the psychophysical 

experiments. Displacement in the Z-axis was controlled and measured by the cantilever attached 

to the indenter, and force was measured at the base of the silicone substrate holder by a load cell 

(LCFD-5, Omegadyne, Sunbury, OH) at 150 Hz. Two webcams (Papa look PA150, Shenzhen  
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Aoni Electronic Industry Co., Guangdong, China) are placed directly above the silicone stimulus 

and capture images at 30 frames per second. For more details about the apparatus setup, look at 

our previous work.  

 

B. Stimuli. Seven silicone substrates with compliance scoped from 5 kPa to 184 kPa were 

used. The mean modulus of human skin on the fingertip is from 42 to 54 kPa [9]. We made one 

skin-like substrate with a modulus of 45 kPa, three substrates that are softer than the skin (5, 10, 

33 kPa) and three harder-than-skin substrates (75, 121, 184 kPa). Later, we will compare the effects 

of changing substrate combinations on perceptual sensitivity to surface compliance. An aluminum 

container is made by sealing a clean, dry glass disc (2 x 0.125 inch) into a metal collar (2.125 inch) 

using a #18-gauge syringe tip filled with 0% diluted Solaris, heated in oven at 100 Celsius until it 

is fully sealed. The three softer-than-skin silicone substrates were made from two-component 

Solaris PDMS mixed with the desired dilution percentage with Silicone oil. Stir Solaris parts A 

and B individually and mix them together in a 1:1 ratio, then apply the appropriate amount of 

Silicone oil diluent (400% for 5 kPa, 300% for 10 kPa and 200% for 33 kPa) before pouring the 

mixture into the aluminum container. The stimulus assembly was rested under room temperature 

until all air bubbles have released, then cure it in oven at 100 Celsius for 25 minutes to let it fully 

solidify and cool it down under room temperature. To eliminate stickiness caused by high 

percentage of dilution, a layer of 100% diluted Solaris PDMS was applied to cover the entire 

surface of the substrate. Finally, the substrate with a layer of Solaris PDMS was cured under 100 

Celsius for 15 minutes and cooled down to room temperature. The substrates that are harder than 
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skin (75, 121,184 kPa) are the same as those used in the previous study (Bingxu, 2020). These 

substrates were made from two-component silicone rubber varying amounts of Silicone oil to 

achieve specimens of differing compliances.  

 

C. Biomechanical experiments. The participant’s index finger was secured by the 

customized plastic support and a thin layer of blue ink was applied on the skin surface using a 

paint brush. Seven stimuli ranging from 5 to 184 kPa were delivered to the center of the finger pad 

individually, under a displacement control up to 2 mm. Each stimulus was brought into the finger 

pad with a light contact force (< 0.1N) before the indentation. Stimuli then were delivered at six 

rates of 1, 1.75, 2.5, 3.5, 4.5 and 6.5 mm/s and at displacements of 1, 2 mm without holding. The 

time duration of the loading phase ranges from 0.3 s (6.5 mm/s at 1 mm) to 2 s (1 mm/s at 2 mm) 

and the interval between each load was less than 3 seconds. In turn, each stimulus was indented 

into the finger pad at six rates and two displacements, repeated three times for each participant. 

There are 360 trails in total for the biomechanical experiments, including 6 indenting rates, 2 

displacements, 3 repetitions and 10 participants. The average time to complete the experiment was 

about 70 minutes including 10-minute break after each trial.   

 

D. Psychophysical experiments. Psychophysical experiments were conducted before the 

biomechanical experiments due to the higher demand of attention from participants. We prepared 

four pairs of stimulus comparison: 45/10 kPa, 184/121 kPa, 33/5 kPa and 45/75 kPa. We are able 

to examine the discriminability of compliance for the stimuli that are both harder and softer than 

the skin using 184/121 and 33/5 kPa pairs; Moreover, we can also detect the differential sensitivity 

of compliance by comparing the skin with softer and harder stimuli (45/10, 45/75 kPa). The 
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participant was seated on a comfortable chair and rested the index finger on the plastic support. 

All participants were blind folded to eliminate the visual cues. Each pair of stimulus comparison 

was delivered to the participant’s finger pad sequentially, at the same rates and displacements as 

the biomechanical experiments. Each trail contains five randomized combinations of stimuli and 

the participants were asked to report which one of the two stimuli was softer. There are 400 trails 

in total including 2 stimuli in one pair, 4 pairs of comparison, 5 combinations and 10 participants.  

The average time for each participant was about 80 minutes including breaks.  

 

E. Data analysis. Force, displacement and time duration were measured and plotted 

instantaneously using Python 3.6. The displacement was constant during the loading and unloading 

phases, but because the ramping rates were differed from 1 to 6.5 mm/s, the time duration increased 

from 0.3 s to 2 s. Images of the finger pad were captured by the left and right cameras every 0.1 s, 

then stored for later image processing procedure.   

1) 3-D Surface Reconstruction and Image Processing. The disparity-mapping approach, previously 

defined [3] was used to generate a 3-D point cloud data that represents the deformation of the 

finger pad. The point cloud was obtained by co-locating the ink points on the skin surface and the 

identified pixel brightness values between left and right images are the coordinates of the points 

in 3-D domain. For the noise reduction, we firstly filtered out the high-frequency noise which 

could be caused by the lighting around the device, then manually extract the area that the skin and 

the stimulus making contact by masking the remaining areas, shown in Figure 6B - D. On average, 

each 3-D point cloud contains about 80,000 discrete points after noise reduction. We applied these 

two steps (filtering and masking) for each image frame to make sure the data was within the region 

of interest.  
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2) Ellipse Method and Image Planes To characterize the geometric change of the skin surface over 

the course of an indentation, we developed a method to fit the 3-D point cloud into vertically 

stacked ellipses that have the same orientation. We defined each ellipse as an image plane and 

each ellipse contains at least 98% of points per image plane with 95% confidence. With the 

procedure, first ellipse was fitted at the bottom which representing the contacting surface between 

the finger pad and the substrate, and the next ellipse was fitted upwards sequentially at an 

increment of 0.25 mm until the algorithm failed. The first image plane was defined to be the ellipse 

with deepest penetration while the last image plane represents the contact surface as illustrated in 

Figure 6F, G. We selected 0.25 mm as the increment value as it is as twice as the resolution of the 

stereo images in the vertical dimensions. The benefits of this ellipse representation are the 

dimensionality reduction and data denoising, composing 80,000 discrete points into a number of 

ellipses.  

 

3) Dependent Metrics. We used the same metrics as defined in our previous work [10] to 

characterize the deformation of the skin’s surface. Penetration depth (P) is defined as the distance 

between the first and last image plane, in units mm, is calculated as follows, where N is number of 

image planes. The reference is the surface contact plane.   

Curvature is the average slope change between two adjacent image planes. It is estimated by the 

slope between two adjacent ellipses using their radius and the distance between them, with the 

resultant discrete slope values averaged across all ellipses for that point cloud, as follows, where r 

is the radius and i is the image plane. The radius represents the major axis of the ellipse, and all 
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ellipses are oriented in the same direction. The average slope approximates the 3-D curvature 

change of the point cloud as calculated in Equation (2).  

	
𝑃 = (𝑁 − 1) ∗ 0.25  ------------------------------------------------------------------------------------------------(1)	
 

𝑆𝑙𝑜𝑝𝑒!"# =
∑ !(#$%)'!(#)

!(#)
#()
#(%

%(')
   -----------------------------------------------------------------------------------------(2) 

 

Contact Area is the last image plane formed on the contact surface and Force is measurement from 

the load cell. Figure 6E shows the development of the dependent metrics over time when the finger 

pad was indented by hard and soft substrates.  

 

F. Statistical analysis. All image processing procedures were performed using MATLAB 

Computer Vision Toolbox and all data analysis were processed using Python 3.6. One-way 

ANOVA was used to establish the differences between stimuli for each cue and p-value of 0.05 is 

the threshold for statistical significance. The ANOVA test was applied to four pairs of stimulus 

comparison using four developed cues at each 0.1 second time interval across six indentation 

velocities. Table 1 shows an example of ANOVA test of four stimulus comparisons at 0.4 second 

under 6.5 mm/s indentation rate using force cue (Figure 2K). 184/121 kPa and 45/10 kPa stimulus 

comparisons were statistically significant (F = 3792.4, p = 0.01 and F = 1954.7, p = 0.04) while 

33/5 kPa and 45/75 kPa were not differentiable (F = 13.9, p = 0.79 and F = 15.65, p = 0.6).  
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Comparison 
Pairs (kPa) df Sum_sq Mean_sq F_value PR(>F) 

184/121 1.0 10426.7 10426.7 3792.4 0.01 
33/5 1.0 1762 1762 13.91 0.79 

45/10 1.0 9624.2 9624.2 1954.7 0.04 
45/75 1.0 2564.3 2564.3 15.65 0.6 

Residuals 104.0 1124.75 10.81 NaN NaN 

Table 1: ANOVA table of stimulus comparisons at 6.5 mm/s indentation velocity at 0.4 s using 
force cue.  
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A 

B D

C 

E 

Displacement: 0.2 mm 

Displacement: 0.5 mm 

Displacement: 0.8 mm 

F G

Figure 6. Procedure to obtain 3-D point clouds representing the skin deformation at the 
fingertip while being indented with soft and hard stimuli. 
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Discussion 

The aim of this study is to quantify the geometric deformation caused by surface compliance in 

human finger pad and connect the skin mechanics with human perception of compliance. The 

developed cues such as penetration depth and curvature were validated visually and statistically to 

describe the shape of fingertip under different compliant stimuli at any given time, shown in Figure 

6. We have shown that the change of indenting rates influences both skin deformation and human 

perception, suggesting that higher indenting rates result in more dramatic geometric change on the 

skin surface while is not positively correlated to the differentiating sensitivity by human. As 

studied by Srinivasan and LaMotte, our experimental results agreed that the indenting rates have 

the ability to alter both skin deformation and human perception, which potentially can be used for 

creating compliance illusions.  

 

A. Usability of the developed cues. We tested four developed cues under seven compliant 

stimuli at six indenting rates. The results show that curvature cue has the most sensitivity to 

differentiate compliance between stimuli. Force cue is only sensitive to higher indenting rates and 

stiffer stimuli. Contact area cue requires longer time duration to discriminate compliance whereas 

penetration cue takes less time but is not differentiable through the whole period. Based on its 

sensitivity, curvature cue can be potentially used to stimulate haptic feedback in engineering 

designs in addition to force and vibration controls [11][12][13].  Owing to its differentiating acuity 

using least time, penetration cue can also be a good candidate to the time-sensitive systems, such 

as surgical equipment and detecting sensors [14][15].  
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B. Human discriminability to surface compliance. In this study, we examine the 

differential sensitivity to compliant objects by varying the modulus and the indenting rate of the 

stimuli. The large tested range of compliance (three softer than the skin, one the same as the skin 

and three harder than the skin) and indenting rates (three fast and slow velocities) give us a good 

understanding of human perception of object compliance. The results indicate that it is easier for 

people to differentiate compliance that is softer than the skin compared to the stimuli that is stiffer 

than the skin, and the discriminability is almost the same for the stimuli that are both harder and 

softer than the skin. Interestingly, even though the higher indenting rates cause a more dramatic 

skin change, the discriminability decreases with the reduced time duration. Thus, we compared the 

discriminability with three levels of time duration and the results agreed that for the same time 

duration, the discriminability was almost the same. From the psychophysical results, the minimum 

amount of time required to differentiate between stimuli were determined: 0.56 s to differentiate 

184/121 and 33/5 kPa pairs, and 0.3 s for 45/10 kPa pair. As it takes more time for people to 

differentiate objects in passive touch, it would be interesting to compare the detection time with 

active touch. The discrepancy of tactile sensitivity between psychophysical and biomechanical 

results shown in Figure 3 supports the theory that the subjects’ detection threshold is higher than 

the threshold of their sense organs claimed by psychophysicists [16].  

 

C. Connections between cues and tactile afferents. During the indenting process, the 

developed cues evolve in a complementary way in terms of the differentiating timing and 

differentiating duration. For example, penetration cue has the earliest differentiating timing but 

with the least differentiating duration. Each developed cue provides independent information about 

the geometric deformation of the skin. In neurology, Hannes and Sethu (2009) also found a similar 
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complementary role played by two firing properties, spiking timing and spike counts, of the SAI 

afferent, contributed independently to encode object curvatures and force directions. Based on this 

similarity, we hypothesize putative connections between the cutaneous cues and the tactile afferent 

activities, to map the skin mechanics to neuron responses. There are four neuron codes that could 

underlie perception: the spike counts, mean firing rate, spatial variation and first spike latency. 

Based on the existed neuroscience study, the force cue is correlated with the total number of active 

fibers [17] across the afferent unit. From the definition of contact are and curvature cues, we 

presume those two cues are corresponding to the spatial variation across the contact surfaces. Since 

penetration cue depicts how much the skin penetrates into the stimuli, it somehow explains the 

intensive recruitment of the afferents. And the indenting rates of stimuli directly affect the time 

duration which may have impact on the timing of afferent discharges. To validate those putative 

connections, more work should be done to track afferent responses and their firing properties under 

specific circumstances.    
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Appendix 1: Biomechanical results for all indentation velocities  
184 kPa
121 kPa
75 kPa
45 kPa
33 kPa
10 kPa
5 kPa
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Appendix 2: Ellipse Method and Generated cues   
 
import numpy 

import pandas as pd 

import matplotlib 

matplotlib.use("TkAgg") 

from matplotlib import pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from matplotlib.patches import Ellipse 

 

def fitEllipse(cont, ell_coord): 

    x = cont['X'] 

    y = cont['Y'] 

 

    x = x[:, None] 

    y = y[:, None] 

 

    D = numpy.hstack([x * x, x * y, y * y, x, y, numpy.ones(x.shape)]) 

    S = numpy.dot(D.T, D) 

    C = numpy.zeros([6, 6]) 

    C[0, 2] = C[2, 0] = 2 

    C[1, 1] = -1 

    E, V = numpy.linalg.eig(numpy.dot(numpy.linalg.inv(S), C)) 
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    # if method==1: 

    n = numpy.argmax(numpy.abs(E)) 

    # else: 

    # n=numpy.argmax(E) 

    a = V[:, n] 

 

    # -------------------Fit ellipse------------------- 

    b, c, d, f, g, a = a[1] / 2., a[2], a[3] / 2., a[4] / 2., a[5], a[0] 

    num = b * b - a * c 

    cx = (c * d - b * f) / num 

    cy = (a * f - b * d) / num 

 

    angle = 0.5 * numpy.arctan(2 * b / (a - c))  # *180/numpy.pi 

    up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g) 

    down1 = (b * b - a * c) * ((c - a) * numpy.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a)) 

    down2 = (b * b - a * c) * ((a - c) * numpy.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a)) 

    a = numpy.sqrt(abs(up / down1)) 

    b = numpy.sqrt(abs(up / down2)) 

    area = numpy.pi * a * b 

    # print(area) 

    # print("majoraxis=",a) 

    # print("center=",cx,cy) 
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    # ---------------------Get path--------------------- 

    ell = Ellipse((cx, cy), a * 3, b * 3, angle) 

    ell_coord = ell.get_verts() 

 

    params = [cx, cy, a, b, angle] 

 

    return params, ell_coord, area, a, b 

 

def xy_from_ellipse(xcent, ycent, a, b, phi): #needed to plot the ellipse in matplotlib 

    R = numpy.linspace(0,2*numpy.pi,100) 

    xx = cx + a*numpy.cos(R)*numpy.cos(phi) - b*numpy.sin(R)*numpy.sin(phi) 

    yy = cy + a*numpy.cos(R)*numpy.sin(phi) + b*numpy.sin(R)*numpy.cos(phi) 

    return xx,yy 

 

def plotConts(contour_list,idx, color,alpha): 

    x = [] 

    y = [] 

    # fig = plt.figure() 

    # ax = fig.add_subplot(111, projection='3d') 

    for ii,cii in enumerate(contour_list): 

        x.append(cii[1]) 

        y.append(cii[0]) 

    ax.plot(y,x,idx, color,alpha) 
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    #ax.set_zlim([-91,-89]) 

    ax.grid(False) 

 

df = pd.read_csv('/Users/bingbing/Desktop/Ellipse code/0.1s2mm/BX-35-A-0.5mms-

0.6S.csv') 

df.dropna(inplace=True) 

df.columns = ['X','Y','Z'] 

x= df['X'] 

y= df['Y'] 

z = df['Z'] 

 

 

### Make plots 

fig = plt.figure() 

ax = fig.add_subplot(122, projection='3d') 

ax.plot(x,y,z,'.',alpha = 0.5,markersize = 0.2,color="gray") 

 

# Only pointcloud 

ax2 = fig.add_subplot(121,projection='3d') 

ax2.plot(x,y,z,'.',alpha = 0.5,markersize = 0.2,color="gray") 

ax2.grid(False) 

#ax2.set_zlim([-92,-87]) 

def on_move(event): 
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    if event.inaxes == ax: 

        ax2.view_init(elev=ax.elev, azim=ax.azim) 

    elif event.inaxes == ax2: 

        ax.view_init(elev=ax2.elev, azim=ax2.azim) 

    else: 

        return 

    fig.canvas.draw_idle() 

 

c1 = fig.canvas.mpl_connect('motion_notify_event', on_move) 

 

lowb = -91 

increment = 0.25 

arealist=[] 

count = 0 

for i in range(0,10): 

    lowb = lowb + increment 

    filt = df['Z'] > lowb 

    data = df.loc[filt,['X','Y']] 

    #print(data.shape) 

    _,ell2,area,a,b = fitEllipse(data,2) 

    arealist.append(area) 

    penetration=(len(arealist)-1)*increment 
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    if arealist[i] < arealist[i-1] and 2*arealist[i] > arealist[i-1]:     #2*arealist[i] > arealist[i-1] 

        # Plot ellipses 

        plotConts(ell2, lowb, color='#006d2c',alpha=0.3) 

        #print(arealist) 

 

    else: 

        #print("jj") 

        count+=1 

 

    if count == 2: 

        break 

 

 

#print(arealist) 

#print(penetration) 

 

plt.show() 

 

# save contact area and penetration in dataframe 

data = pd.DataFrame({'kpa': [],'Time':[], 'Area': [], 'Penetration': []}) 

for i in range(0,len(arealist)-1): 

    kpa = 121 

    Area = arealist[i] 
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    Penetration = 0.25*(i) 

    Time = 0.1 

    data=data.append({'kpa':kpa, 

            'Time':Time, 

            'Area':Area, 

            'Penetration':Penetration},ignore_index=True 

    ) 

print(data) 

#data.to_csv('data_121kpa_0.5mm.csv', index=False) 

#data.to_csv('data_121kpa_0.5mm.csv', header=False,mode='a',index=False) 
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Appendix 3: Plotting for the developed cues 
 
import numpy 

import pandas as pd 

import matplotlib 

matplotlib.use("TkAgg") 

from matplotlib import pyplot as plt 

import seaborn as sns 

 

 

### Colors 

# 45kpa: #c7e9b4 

# 75kpa: #41b6c4 

# 121kpa: #2c7fb8 

# 184kpa: #253494 

 

fig, axes = plt.subplots(1, 4, figsize=(12, 4)) 

plt.subplots_adjust(left=0.06, bottom=0.18, right=0.96, top=0.86, wspace=0.3, hspace=0.2) 

color = ['#fbb4b9','#fec44f','#d95f0e','#c7e9b4','#41b6c4','#2c7fb8','#253494'] 

#color = ['#253494','#2c7fb8','#41b6c4','#c7e9b4','#fec44f','#d95f0e','#fbb4b9'] 

 

df_45 = pd.read_csv('4.5mms.csv') 
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Time = df_45['Time'] 

Area_45 = df_45['Area'] 

Pene_45 = df_45['Penetration'] 

force_45 = df_45['Force'] 

Cur_45 = df_45['Curvature'] 

 

 

 

ax1 = sns.pointplot(x="Time", y="Area", hue="kpa", data=df_45, palette=color,markers='o', 

               scale = .4,ci=95,capsize=.4,dodge=True,errwidth=1, 

                   ax=axes[0]) 

ax1.set_title('Contact Area (mm^2)',fontsize=14) 

ax1.set_xlabel('Time (s)',fontsize=16) 

ax1.set_ylabel('4.5 mm/s',fontsize=18) 

ax1.set_ylim(20,120) 

ax1.tick_params(axis = 'both', which = 'major', labelsize = 14) 

for ind, label in enumerate(ax1.get_xticklabels()): 

    if ind % 1 == 0:  # every 10th label is kept 

        label.set_visible(True) 

    else: 

        label.set_visible(False) 

 

ax1.get_legend().remove() 
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ax1.spines['top'].set_visible(False) 

ax1.spines['right'].set_visible(False) 

#ax1.legend(numpoints=1, loc=2, scatterpoints=1,frameon=False) 

 

# 

# 

 

ax2 = sns.pointplot(x="Time", y="Penetration", hue="kpa", data=df_45, 

palette=color,markers='o', 

               scale = .4,ci=95,capsize=.4,dodge=True,errwidth=1, 

                   ax=axes[1]) 

ax2.set_title('Penetration (mm)',fontsize=14) 

ax2.set_ylabel('') 

ax2.set_xlabel('Time (s)',fontsize=16) 

ax2.set_ylim(0,1.8) 

ax2.tick_params(axis = 'both', which = 'major', labelsize = 14) 

for ind, label in enumerate(ax2.get_xticklabels()): 

    if ind % 1 == 0:  # every 10th label is kept 

        label.set_visible(True) 

    else: 

        label.set_visible(False) 

ax2.get_legend().remove() 

ax2.spines['top'].set_visible(False) 
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ax2.spines['right'].set_visible(False) 

#ax2.legend(numpoints=1, loc=2, scatterpoints=1,frameon=False) 

 

ax3 = sns.pointplot(x="Time", y="Force", hue="kpa", data=df_45, palette=color,markers='o', 

               scale = .4,ci=95,capsize=.4,dodge=True,errwidth=1, 

                   ax=axes[2]) 

ax3.set_title('Force (N)',fontsize=14) 

ax3.set_ylabel('') 

ax3.set_xlabel('Time (s)',fontsize=16) 

ax3.set_ylim(0,2.5) 

ax3.tick_params(axis = 'both', which = 'major', labelsize = 14) 

for ind, label in enumerate(ax3.get_xticklabels()): 

    if ind % 1 == 0:  # every 10th label is kept 

        label.set_visible(True) 

    else: 

        label.set_visible(False) 

ax3.get_legend().remove() 

ax3.spines['top'].set_visible(False) 

ax3.spines['right'].set_visible(False) 

# # 

# # 

# # 

ax4 = sns.pointplot(x="Time", y="Curvature", hue="kpa", data=df_45, 
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palette=color,markers='o', 

               scale = .4,ci=95,capsize=.4,dodge=True,errwidth=1, 

                   ax=axes[3]) 

ax4.set_title('Curvature (mm^-1)',fontsize=14) 

ax4.set_ylabel('') 

ax4.set_xlabel('Time (s)',fontsize=16) 

ax4.tick_params(axis = 'both', which = 'major', labelsize = 14) 

ax4.set_ylim(0,8) 

for ind, label in enumerate(ax4.get_xticklabels()): 

    if ind % 1 == 0:  # every 10th label is kept 

        label.set_visible(True) 

    else: 

        label.set_visible(False) 

ax4.get_legend().remove() 

#plt.legend() 

ax4.spines['top'].set_visible(False) 

ax4.spines['right'].set_visible(False) 

 

plt.rcParams["axes.labelsize"] = 20 

plt.rcParams["font.family"] = "Arial" 

plt.rcParams["axes.formatter.useoffset"] = False 

 

#fig.autofmt_xdate() 
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plt.show() 

#fig.savefig('4.5 mms.png', bbox_inches='tight',dpi=1200) 
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Appendix 4: The image processing algorithm  
 
%with the disparity map, and the stereo parameters, we can reconstruct 

%the 3D points. 

load('calibration_2019-05-22_14-40-08.mat'); 

 

drange = [348, 444]; 

factor = .95; 

 

left = imread('left0003.png'); 

right = imread('right0003.png'); 

outputsize = ceil(factor*size(left(:,:,1))); 

 

left_resize = imresize(left,factor,'outputsize',[outputsize]); 

left_resize = padarray(left_resize,(size(left(:,:,1))-outputsize)/2); 

right_resize = imresize(right,factor,'outputsize',[outputsize]); 

right_resize = padarray(right_resize,(size(right(:,:,1))-outputsize)/2); 

 

 

[lrect,rrect]=rectifyStereoImages(left_resize,right_resize,stereoParams); 

 

I = lrect; 

lrect=double(lrect); 

rrect=double(rrect); 
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I1_L = (lrect(:,:, 1)+lrect(:,:, 2)+lrect(:,:, 3))./ 3. / 255; 

I1_R = (rrect(:,:, 1)+rrect(:,:, 2)+rrect(:,:, 3))./ 3. / 255; 

dMap_raw = 

disparity(I1_L,I1_R,'DisparityRange',drange,'BlockSize',11,'uniquenessthreshold',20); 

 

 

pts3D = reconstructScene(dMap_raw,stereoParams);   % the 3-D points are generated 

pc = pointCloud(pts3D,'color',lrect./255);         % puts it in a matlab cloud object 

pRGB = pc.Color; 

pL = pc.Location; 

 

XYZ = pL; 

pX = XYZ(:,:,1); pY = XYZ(:,:,2); pZ = XYZ(:,:,3); 

 

% comment this back on to select a new region. 

%figure; imagesc(I); roipoly; 

poly = [817.685483870968 238.357142857143;855.157834101383 

195.639941690962;912.807603686636 164.572886297376;993.517281105991 

156.80612244898;1033.87211981567 187.873177842565;1051.16705069124 

236.415451895044;1033.87211981567 296.607871720117;979.104838709678 

343.208454810496;892.630184331797 358.741982507289;829.215437788019 

327.674927113703;803.273041474655 286.899416909621] 

 



 
 

45 

 

 

msk = poly2mask(poly(:,1), poly(:,2), size(I,1),size(I,2)); 

% get just the X,Y,Z in the mask area that you want 

 

msk_indices = find(msk); 

XYZ_msk = [pX(msk_indices),pY(msk_indices),-pZ(msk_indices)];   

 

figure;subplot(4,1,1); imshow(I); 

subplot(4,1,2); 

plot3(reshape(XYZ(:,:,1),[],1), reshape(XYZ(:,:,2),[],1), -

reshape(XYZ(:,:,3),[],1),'.b','markersize',.2); 

zlim([-90,-80]); daspect([1 1 1]); 

 

subplot(4,1,3); imshow(msk); 

subplot(4,1,4); plot3(XYZ_msk(:,1), XYZ_msk(:,2), XYZ_msk(:,3),'.g','markersize',.2); 

zlim([-90,-80]); daspect([1 1 1]); 

 

 

%figure;imshow(I); 

%plot3(reshape(XYZ(:,:,1),[],1), reshape(XYZ(:,:,2),[],1), -

reshape(XYZ(:,:,3),[],1),'.','markersize',.2,'Color',[0.7,0.7,0.7]);zlim([-90,-80]); daspect([1 1 

1]);set(gca,'xtick',[],'ytick',[],'ztick',[]); 
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%figure(2);imshow(msk); 

%figure(3);plot3(XYZ_msk(:,1), XYZ_msk(:,2), 

XYZ_msk(:,3),'.','markersize',.2,'Color',[0.7,0.7,0.7]); 

%ax = gca; 

%ax.XAxis.FontSize = 17; 

%ax.YAxis.FontSize = 17; 

%ax.ZAxis.FontSize = 17; 

%zlim([-90,-80]); 

%daspect([1 1 1],xlabel('Millimeters','fontsize',20)); 

%xlabel('Millimeters','fontsize',20); 

 


