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Abstract—  One of the principal challenges associated with 
decarbonization is the temporal variability of renewable 
energy generation, which is creating the need to better 
balance load on the grid by shaving peak demand. We 
analyzed how innovative load-shifting technologies can be 
used by large institutions like the University of Virginia to 
shift load and support statewide efforts to decarbonize. To do 
this, we focused on the University's plans for expansion of the 
Fontaine Research Park, which is a good model for 
understanding how these technologies could distribute energy 
load behind the meter. First, we worked to develop a predictive 
model to forecast when peak demands will occur and 
understand how interventions, including heat recovery 
chillers and thermal storage tanks, might be used to balance 
load. Then, we extended a statewide energy systems model 
using the Tools for Energy Modeling Optimization and 
Analysis (TEMOA) to simulate the ways in which these types 
of interventions might be scaled to the whole state. Using the 
energy demand model in conjunction with aggregated 
institutional energy use data, the team evaluated the effects 
that broader adoption of distributed energy technologies in 
Virginia could have on the grid's ability to handle the energy 
transition. Our study showed implementing distributed energy 
sources on a state-scale had insignificant effect on balancing 
load. However, on a microgrid scale, such technologies prove 
to be a useful resource to decrease peak demand which would 
allow for further clean energy projects and possible cost 
reductions.  

Keywords—Load Balancing, TEMOA, Distributed Energy 
Technology (DET), Thermal Energy Storage (TES), Heat Recovery 
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I. INTRODUCTION (HEADING 1) 

As of 2020, the University of Virginia (UVA) and the 
Commonwealth have made commitments to achieve carbon 
neutrality by 2030 and 2050, respectively. One of the most 

important unanswered energy challenges is how to reduce peak 
demand. This concern is of particular importance because 
energy utilities charge most large institutions based on their 
peak energy consumption rate from the previous year. This is 
set to change with utilities transitioning to time-of-use pricing, 
where energy usage at peak hours incurs greater costs than 
energy use during off-hours. For this reason, stakeholders at 
UVA are interested in exploring the potential of load-shifting 
technologies that would reduce peak energy consumption and 
save UVA money to finance future sustainable projects. 

UVA currently operates a thermal energy storage 
facility that provides chilled water to the hospital and medical 
school. A thermal energy storage system is being considered for 
the development at Fontaine Research Park, a satellite campus 
that is under development which includes amenities, office 
spaces, research, academic, and clinical buildings. The thermal 
storage system is in ‘charging’ mode as electricity is taken from 
the grid and used to run chillers that cool the tank’s water down 
to 42°F.  The water is stored at this temperature until the hours 
of peak energy usage when the system changes to ‘discharging’ 
mode. In this mode the chilled water is sent out to be used in 
the buildings for cooling, and is returned to the tank at a 
temperature of 55°F. The rate of discharge varies based on the 
season as cooling demand changes with outside temperature; 
the winter months exhibit a lower demand for cooling than the 
summer months. Implemented on a state scale, load-shifting 
technologies like thermal energy storage may accelerate the 
adoption of time-of-use pricing.  
 Currently, PJM, the energy grid that Virginia belongs 
to, sources roughly 13% of its energy from renewable resources 
[1]. Renewable energy is often less expensive, but its 
production rates are unpredictable and depend strongly on 
outside factors such as solar irradiance and cloud coverage. To 
compensate for renewable resources’ dependence on external 
factors, load-shifting technology will play a pivotal role in 
adjusting demand to be more conducive to dynamic grid 



behavior. The first step of this transition, and the focus of this 
paper, centers around implementing distributed energy 
technologies (DETs), more specifically heat recovery chillers 
(HRCs), in conjunction with thermal energy storage (TES). 

HRCs greatly increase energy efficiency by saving 
heat that would otherwise be wasted in the cooling process. 
HRCs require significant concurrent heating and cooling load. 
For this reason, and because of the large upfront cost of 
installation, HRCs work particularly well at large institutions. 
Universities, military bases, and campuses are uniquely 
positioned to see a measurable difference in performance due 
to the large volumes of energy they consume, their centralized 
infrastructure, and their concurrent heating and cooling loads.  

Tools for Energy Model Optimization and Analysis 
(TEMOA) is an open source modeling framework for 
conducting energy systems analysis [2]. TEMOA allows users 
to create and specify the economic and functional 
characteristics of energy generating plants and the fuels that 
they consume. TEMOA also allows users to specify energy 
demand by time of day, constrain the model with emission caps, 
and limit the rate of new power plant creation. The model is run 
for a set time span and can return data from set years over the 
run’s duration. TEMOA has been utilized in previous studies, 
like one modeling Puerto Rico’s energy grid and its change in 
response to the probability of hurricanes and the 
implementation of climate mitigation policies [3].   
Most other studies involving TEMOA focus on the model’s 
application as a point of comparison for other energy models 
to verify the tool’s accuracy [4] [5]. Such research provides 
legitimate grounds for modeling the Virginian energy grid in 
TEMOA to analyze the viability of deploying DETs on a 
statewide scale.    

II. METHODOLOGY 

A. Data Acquisition 

Data used for modeling Fontaine was collected by 
Facilities Management at the University of Virginia. It is a set 
of historic electricity (kW) and cooling (kbtu/hr) usage data for 
proxy buildings1 at UVA along with corresponding 
temperatures (F) and relative humidity taken at fifteen-minute 
time intervals. Corresponding weather data for solar radiation 
(W/m2), wind direction (degrees relative to North), and wind 
speed (m/s) was sourced from the KVACHARL80 weather 
station located at Scott Stadium. For each building type, 
average energy usage was determined by dividing each proxy 
building by its square footage and then averaging all buildings 
of that type to get the mean energy demand per square foot. In 
order to avoid data discrepancies, linear interpolation was 
performed for missing data values. Other predictor variables 
included whether it was a weekday or weekend, whether 
courses were in session, and season of the year. The data spans 
from February 1st, 2019 to June 30th, 2020. To avoid anomalies 
caused by the COVID-19 pandemic, the time span was reduced 
down to February 1st, 2019 to March 8th, 2020.  

For modeling the state of Virginia, energy use 
statistics were sourced from The Association for the 
Advancement of Sustainability in Higher Education’s 

(AASHE’s) Sustainability Tracking, Assessment & Rating 
System (STARS). The STARS database provided recent energy 
usage statistics from most large universities and colleges across 
the United States [6]. A summation of total energy use values 
for Virginian institutions predicted the potential impact that 
these institutions could have on the overall energy landscape of 
Virginia should they choose to implement DETs. 
 

B. Modeling 

Using the statistical software R, linear regression was 
performed to predict energy demand per square foot using the 
following predictors: hour of the day, relative humidity, 
temperature, whether it was a weekday or weekend, season, 
solar radiation, wind direction, and wind speed. Since the 
response variable is non-negative, we performed a natural log 
transformation on the response variable to output positive 
values, then reconverted the output back to its original form 
by transforming into exponential form. In order to correct for 
high correlation in the time series data, we also performed 
ARIMA modeling on the residuals of the linear model using 
R’s auto.arima() function. The ARIMA output gave a 
correction factor that was then added to the predictive linear 
model. Adding the two models together gave an output of 
average demand per square foot for each building type which 
was then multiplied by the estimated square footage for each 
building type.2 The output of the cooling model was converted 
from kBtu/hr to kW to be consistent with the units used for 
electricity demand. In estimating the electricity usage for the 
cooling demand, an efficiency loss assumption of 25% was 
applied to account for system losses associated with chillers 
[7]. The two kW outputs from the cooling and electricity 
demand were then summed to give an output of overall 
demand.  
 

 
Fig. 1. Linear regression model predicting total electricity and 
cooling demand for the first week of March 2020 superimposed 
on the true, observed demand. 
 

We modeled the thermal energy storage tank using 
many of the assumptions outlined from the hospital’s system. 
Figure 2 displays the assumed monthly schedule of discharge 
rate for the thermal storage tank. We converted discharge flow 
rates from gal/min to cooling capacity in kW given the 
parameters of the tank in order to combine kW consumption 
with electricity consumption. Since we are considering the 

1 The proxy buildings included two academic buildings (Minor Hall, Skipwith 
Hall), six research buildings (Jesser Hall, Rice Hall, Physical and Life 
Sciences, Chemical Research Engineering, MR-5, MR-6), and two clinical 
buildings (Primary Care Center, Battle Building)  

 

2 179,000 GSF for academic buildings, 606,000 GSF for clinical buildings, 
and 500,000 GSF for research buildings. 

 



effect of charging and discharging the thermal storage tank on 
total electricity consumption in kW, we applied the efficiency 
loss to the charge and discharge flow rate in kW by dividing by 
its efficiency factor of 75%, to get kW of electricity used to cool 
the water. Additionally, the charge rate also took into account 
efficiency loss from the thermal storage tank itself, assumed to 
be 5%. Thus, the charge rate was also divided by the TES 
efficiency factor of 95%. 
 

 
Fig. 2. Monthly schedule of thermal energy storage tank 
discharge rate in gal/min. 
 

We applied the same schedule the hospital uses which 
discharges between 11:00am to 7:30pm and charges between 
8:00pm to 10:30am. Additionally, the transition period between 
charging and discharging was assumed to be negligible. The 
outputs of this model were used to qualitatively analyze the 
technology’s behavior on a microgrid scale so it could be 
applied to institutions across the State using the TEMOA 
modeling tool.  

The TEMOA model used in this project builds off a 
previously constructed model that simulated energy use in the 
Commonwealth of Virginia [3] and adds HRCs to the grid.  The 
runs would show the effect of mass implementation of HRCs 
on hourly distribution of net energy activity (PJ), with a focus 
during the summer, when the technology’s impact would be 
most significant due to the simultaneous heating and cooling 
loads.  

Three sets of runs were performed to conduct a 
thorough sensitivity analysis of factors suspected to affect net 
energy activity. The first set of runs varied the total capacity of 
HRCs. The second set of runs varied the efficiency of  the 
HRCs at a constant 3,000 MW capacity. The third set did not 
restrict the building of additional capacity of HRCs and 
sampled three separate points in time over a thirty year period: 
2025, 2035, and 2045.  

Part of TEMOA’s output are database files for each 
scenario. These were transformed using an in-browser 
converter  into a folder of “.csv” files that each represented a 
table from the database. These files were then read into an R 

environment and the energy activity of the various power plants 
were analyzed. 

The model aims to explore the relationship between 
varying input parameters and the degree of load balancing on 
the grid. It was hypothesized that a larger capacity and greater 
efficiency would further balance load which is represented by a 
flatter energy activity curve. 

III. ANALYSIS AND RESULTS 

Figure 3 shows the intervention of TES to the 
predicted energy demand for the first week of March 2020. As 
predicted, the application of thermal energy storage 
significantly shifted load from the peak grid demand hours that 
occur in the middle of the day and redistributed demand during 
the hours of 8:00 pm to 10:30 am. TES in Figure 3 displaced a 
total of  2,572,500 gallons of chilled water for that week of 
March.  

Predicted energy demand was developed so other 
institutions could simulate similar load-balancing technologies 
and thus augment statewide use of TES. Though the predictive 
model closely resembles real demand trends, there are 
limitations to the predictive abilities of the tool driven in part 
that the demand data was collected from only the last year and 
a half. Due to the COVID-19 pandemic, much of the more 
recent data cannot be applied given its irregularities. With these 
data limitations, an analysis using predicted energy demand 
could not be simulated during the summertime when the 
benefits of HRCs are most pronounced. Rather, thermal storage 
intervention was applied to the observed data for the month of 
July 2019, as seen in Figure 4. TES in Figure 4 displaced a total 
of 1,181,250 gallons of chilled water from peak hours to off-
peak hours for just a single average day in July. Given that 
cooling demand accounts for 12% of total commercial energy 
consumption in the US [8], the shift in load dramatically 
displaced electricity usage as seen in Figure 3 and 4. 

 

 
Fig 3. Linear regression model predicting total electricity and 
cooling demand for the first week of March 2020 with thermal 
energy storage. 
 



 
Fig. 4. Total electricity and cooling demand for an average July 
day based on 2019 historical data with thermal energy storage. 
 

HRCs were then applied to a similar summer day in 
the TEMOA analysis. The aggregated net energy activity in PJ 
was graphed by hour over the summer season, both including 
and excluding HRCs. In addition to the graphical analysis, a 
multifactor ANOVA test was performed over each set of graphs 
using a binary HRC inclusion factor and varied each parameter 
over different runs (efficiency, year, capacity). The ANOVA 
table examined the difference between the daily and hourly 
average, a smaller difference indicating a flatter curve overall 
which implies a more even load distribution.  
 

 
 
Fig. 5. Projections of HRC implementation at four different 
capacities 1,000, 2,000, 3,000, and 4,000 MWs. 
 

As shown in Figure 5, varying the capacity between 
1,000 and 4,000 MW of HRCs does not have a significant effect 
on net energy activity. At any of the given capacities, the two 
output levels nearly overlap, indicating minimal load shifting 
from the HRCs. This assertion was further supported by the 
results of a multi-factor ANOVA test, where capacity as an 
isolated variable had a p-value of 0.965.  
 

 
Fig. 6. Changes in efficiency of HRCs between three levels, 
65%, 80%, 95%, at a constant 3,000 MW capacity. 
 

Visual inspection of Figure 6 brings about a 
conclusion that is akin to the previous analysis centered on the 
effect of capacity manipulation. In the same way, changing 
efficiency rates for the HRC fails to significantly alter net 
energy activity, indicating that as a whole, HRCs have a 
negligible effect on the effectiveness of load-balancing efforts, 
even with increased efficiency. This assertion is further 
corroborated by the results of a multi-factor ANOVA test, 
where efficiency as an isolated variable had a p-value of 0.71. 
 



 
Fig. 7. Unrestricted building of HRCs for 2025, 2035, and 2045 
on a statewide basis. 
 

As can be discerned in Figure 7, future grid forecasting 
indicates the passage of time has a statistically significant effect 
on the daily energy activity curve. This assertion is further 
corroborated by the results of a multi-factor ANOVA test, 
where time as an isolated variable had a p-value of less than 
0.01. Note that when the HRC capacity in the model was left 
unrestricted the capacity grew to 8,400 MW in 2025, 22,600 
MW in 2035, and 29,000 MW in 2045.  
 

IV. CONCLUSION 

Currently, we are seeing a national trend toward 
electrification as the nation transitions away from oil dependent 
activities. Given the demand implications on the local 
microgrid, the implementation of TES systems may encourage 
local utilities to adopt time-of-use pricing. This would further 
incentivize load shifting activities, in turn supporting future 
growth of renewables. Such an effect would free up local 
substation capacities, allowing for more local clean energy 
projects. However, when scaled to the state level, the findings 

concluded that mass HRC implementation had no real 
significant effect on load balancing.  

There are some significant considerations when 
reviewing the results of the model. The largest grid scale battery 
in the world is currently only 300 MW [9]. When considering 
that total HRC capacities would need to be in the thousands, 
this would require massive implementation at nearly all 
institutions in Virginia. In other words, the amount of capacity 
needed to become significant is improbable. That being said, 
HRCs benefit at the institutional level may provide significant 
cost savings, especially with time-of-use pricing. Further, the 
resilient nature of such technologies allow institutions to 
operate more independently from the grid. 

Even though the degree of load balancing increases in 
the future as more technologies are implemented, state 
resources would be better suited elsewhere. Further research 
may be conducted to explore other state level technologies to 
either increase load balancing on a macro scale or increase grid 
capacities. Potential demand response programs could be 
implemented to take advantage of the growing number of 
electric vehicles on the road. Perhaps discounting and paying 
electric vehicle owners to charge and discharge electricity from 
the grid may provide more significant results given the growing 
market. Further, electric bus storage implemented on a state 
scale may provide similar benefits. Continued research in 
renewable forms of energy which provide more controlled 
production would further increase the stability of the grid. 
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