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Abstract

Quantum gas microscopy has played an important role in the understanding of many-

particle physics in strongly correlated systems. The single-atom-resolved imaging

enables the detection of microscopic properties on many-fermion systems on the sin-

gle site level in the quantum regime. Relying on the unique tunability of ultracold

atoms in atomic interactions via Feshbach resonances, density, and spin imbalance,

a wide parameter range in the phase diagram can be explored. Some of the theo-

retically most challenging systems with rich phase diagrams are frustrated systems.

Triangular lattices are the simplest example of geometric frustration in which three

spins with antiferromagnetic interactions cannot be antiparallel, leading to a large

degeneracy in the many-body ground state and could result in quantum spin liquids.

In this dissertation, I report on the development of a triangular-lattice quantum

gas microscope and the study of geometrically frustrated Mott insulators. The

microscope enables us to detect unprecedented details of Hubbard physics in the ge-

ometrically frustrated system through imaging of the occupation, the spin density,

and spin correlation functions on the single site level. I present the first realization

of a Mott insulator of 6Li on a symmetric triangular lattice with a lattice spacing of

1003 nm. For the first time, we image fermionic lithium in a triangular lattice via a

Raman sideband cooling technique with an imaging fidelity of 98%. In addition, we

measure spin-spin correlations and observe nearest-neighbor anticorrelations consis-

tent with short-range 120◦ order. We find a good agreement between the results and

simulations (Determinantal Quantum Monte Carlo [DQMC] and Numerical Linked-

Cluster Expansion [NLCE]). In addition, spin-resolved density is implemented in a

square lattice, allowing us to obtain all information on the density in the system

and direct measurement of spin-spin correlations.
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ABSTRACT iii

By utilizing spin-resolved imaging, we explore a three-component Fermi-Hubbard

model with imbalanced interactions between spin components. Our observations

reveal a signature of a Mott insulator state through the variance of density and

compressibility. We examine the interplay between the different spin components

through pairing correlations. This study opens possibilities for simulating physics

beyond condensed matter models by realizing three-component Fermi lattice gases.

Quantum gas microscope expands our understanding of exotic phenomena in ma-

terials, such as high-temperature superconductors from first principles in tunable

systems. Our microscope offers a platform for exploring nuclear physics, including

the formation of baryons and their superfluidity, through ultracold-atom systems.

Additionally, the capabilities of the microscope in studying quantum spin liquids

hold promise for the discovery of new quantum phases.
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Chapter 1

Introduction

More than a hundred years ago, we believed that every process that occurred in

the universe could be understood by classical physics. Several phenomena, such as

Stern-Gerlach experiment [1], photoelectric effect [2, 3], and neutrino oscillations

[4], were found to contradict established theories. At the beginning of the twentieth

century, the discovery and development of the theory of relativity and quantum

mechanics opened a new era. Many phenomena have been predicted and confirmed

experimentally with incredible precision. Groundbreaking discoveries in past years

demonstrate the advances in our understanding of fundamental physics in nature

like the Noble Prize awarded in 2022 for the violation of Bell inequalities, confirming

the principles of quantum entanglement [5–7]. Another example is the Noble Prize

awarded in 2023 for the development of new tools for exploring the world of electrons

inside atoms and molecules using extremely short pulses of light [8–10].

The developments of laser cooling, atom trapping, and evaporation techniques give

experimental access to novel fundamental phenomena in nature. For example, the

achievement of Bose-Einstein condensates (BECs) in 1995 [11–13] demonstrated the

capability of controlling the motional and internal state at the ultimate level. This

condensation is a quantum phase transition driven by indistinguishability and the

wave nature of particles. For fermions, the situation is completely different because

1



CHAPTER 1. INTRODUCTION 2

the quantum nature of this particle never allows them to share identical quantum

numbers and the lack of thermalization of identical fermions prevents colder tem-

peratures. We note that identical fermions do not thermalize at low temperatures

because s−wave collisions are not allowed, and p−wave collisions are suppressed at

those temperatures. However, evaporative cooling works in two-component Fermi

gases, thus a degenerate Fermi gas can be obtained [14]. In the following, I discuss

the concept of evaporative cooling using a simple model following ref. [15].

When atoms are confined in an optical dipole potential, discussed in later Chapter

3, they remain relatively hot, resulting in quantum fluctuations being negligible

compared to thermal effects. The quantum regime is typically reached at lower

temperatures, approaching the Fermi temperature scale, which represents the kinetic

energy of fermionic particles at the Fermi level in a system. More details can be

found in Appendix C.5. Achieving this temperature range typically requires the

application of evaporative cooling. This method capitalizes on the fact that the

system is hot primarily because most atoms possess higher kinetic energy compared

to the system’s average thermal energy. After removing the hot atoms, the system

rethermalizes and the temperature reduces as illustrated in Fig. 1.1.

(a) (b) (c)

Figure 1.1: Evaporative cooling. (a) Initial trapped atoms. (b) Non-thermal state

during evaporation. The hotter atoms are eliminated by lowering the potential in the

presence of a magnetic field gradient. (c) New thermalized state. Interactions between

atoms lead to rethermalization with a lower final temperature and atom number.

For a more quantitative perspective, let us assume an initial atom number and

temperature of N0 and T0. In thermal equilibrium, non-interacting particles are
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described by the Maxwell-Boltzmann distribution, which is valid for high tempera-

tures. The number of atoms within an infinitesimal element of energy dϵ centered

on an energy ϵ is given by

f(ϵ, T0) dϵ =
2N0√

2(kBT0)3

√
ϵe−ϵ/(kBT0) dϵ. (1.1)

By removing the hot atoms with the energy greater than the cut-off energy ϵc, the

system has remaining atoms

N ′
0 =

∫ ϵc

0

f(ϵ, T0) dϵ. (1.2)

Note that one can eliminate the hot atoms by lowering the trap potential in the

presence of a magnetic gradient. This results in the hot atoms flying out of the

trap. The remaining atoms are then in a non-equilibrium state and the system will

take time to reach a new equilibrium. To expedite the rethermalization process, one

can tune the interaction between atoms via Feshbach resonances. When the atoms

reach equilibrium at a temperature of T1, the total atom number remains unchanged

but follows a new distribution f(ϵ, T1) that satisfies

N1 =

∫ ∞

0

f(ϵ, T1) dϵ

= N0

[
erf

(√
Tc
T0

)
− 2√

π

√
Tc
T0
e−Tc/T0

]
.

(1.3)

Using the fact that atom numbers before and after rethermalization are equal, lead-

ing to [15]

T1 =
T0
3

3
√
π erf

(√
Tc/T0

)
−
[
6
√
Tc/T0 + 4 (Tc/T0)

3/2
]
e−Tc/T0

√
π erf

(√
Tc/T0

)
− 2
√
Tc/T0e−Tc/T0

 , (1.4)

where the cut-off temperature is defined as Tc ≡ ϵc/kB and erf(x) is the error func-

tion, defined by

erf(x) =
2√
π

∫ x

0

e−y2 dy. (1.5)

According to Eqs. 1.3 and 1.4, both expressions are consistent with the expectation

that lowering the cut-off energy (removing more hot atoms) leads to a colder system
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while only a few atoms remain in the system (Fig. 1.2). In practice, we perform

multiple evaporative cooling steps rather than a single step because heating can

occur during the transition between potentials. In addition, maximizing the atom

number at lower temperatures is challenging, and multiple steps help achieve this

goal. The details of multiple evaporation cooling steps can be found in Section 3.6.

While this model provides a fundamental understanding of evaporative cooling, it

has limitations, particularly in the transition from the classical regime to the quan-

tum regime. In the quantum regime, the assumptions of the Boltzmann distribution

no longer apply, and the statistics of Fermi-Dirac and Bose-Einstein must be consid-

ered. Despite these limitations, the model offers valuable insights into the principles

of evaporative cooling.
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.) Figure 1.2: Maxwell-Boltzmann distribution.

Trapped atoms have an average temperature of

200µK (blue solid line). By performing evap-

oration, hot atoms with temperatures greater

than Tc =200µK escape (blue shading). Rether-

malized atoms have an average temperature of

70 µK (violet solid line).

1.1 Phase transitions and strongly correlated

systems

In classical physics, phase transitions occur at macroscopic scales and are governed

by thermal fluctuations. These transitions occur at specific temperatures and are

characterized by abrupt changes in the system’s properties. The most common

classical phase transitions are solid-to-liquid (melting), liquid-to-gas (evaporation),

and liquid-to-solid (freezing) transitions. These classical phase transitions are well-

described by classical statistical mechanics and do not involve quantum effects.
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Unlike quantum phase transitions, which occur at zero temperature, these transi-

tions pose challenges to experiments and are driven by quantum statistics. They

arise from the competition between different quantum ground states and excited

states of a system as a physical parameter is varied. Examples of quantum phase

transitions include magnetic phases [16], superconducting-insulating phases [17], and

superfluid-Mott insulator transitions [18].

The development of optical lattices provides a way to study strongly correlated

systems. The first proposal realized in Hubbard systems in optical lattices [19] and

later the experimental realization of Bose-Hubbard systems showed new possibilities

of exploring many-body systems using ultracold atoms [18, 20]. Further reviews on

this topic can be found in [21–23].

Meanwhile, fermions in optical lattices have been proposed to address questions

regarding the Fermi-Hubbard model, which is expected to describe the origin of

high-temperature superconductivity in cuprates [24]. A few years later, researchers

achieved the first realization of Fermi-Hubbard systems in a square lattice using ul-

tracold atoms, detected by absorption imaging [25, 26]. This milestone followed

the discovery in 1986 of the first high-temperature superconductor in cuprates

(LaBaCuO) with a transition temperature exceeding 30 K [27]. Several studies in

condensed matter physics have focused on cuprates and observed antiferromagnetic

Mott insulators at filling of one electron per unit cell [28, 29]. It is even more inter-

esting in the regime of hole doping that exhibits d-wave superconductivity with short

coherence length [30]. While the Fermi-Hubbard model can be analytically solved in

one dimension (1d) [31], it remains challenging to handle higher-dimensional systems

[32–34].
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1.2 Complexity of many-body calculations and

quantum simulators

Classical calculations are impractical for quantum systems due to fundamental differ-

ences in concepts between classical and quantum systems. The exponential growth

of complexity, along with phenomena such as superposition and entanglement, poses

challenges for many-body quantum systems. Present computers can diagonalize ma-

trices of sizes up to 240×240, allowing them to solve quantum systems with up to 40

spins exactly. With two possible configurations per spin, a chain of 40 spins has 240

classical configurations, which leads to a basis size of 240. I note that while it might

seem more straightforward to describe each spin with two complex numbers, the

actual basis size required to describe the quantum system accurately through the

classical representation is determined by the number of independent states. Adding

just one more spin to the system necessitates a computer twice as powerful. Besides,

when the system contained 300 spins, it would never be accessible because the num-

ber of matrix elements is approximately equal to the total number of protons in the

universe (approximately 1080). To address the limitations of classical computers,

Richard P. Feynman proposed a solution in his seminal work [35, 36]. He famously

stated,

“Nature isn’t classical, dammit, and if you want to make a simulation

of nature, you’d better make it quantum mechanical, and by golly, it’s a

wonderful problem, because it doesn’t look so easy.”

This statement has inspired many researchers to gain insights into real quantum

systems, particularly quantum materials, which are often challenging to access di-

rectly. Instead, researchers study well-controlled quantum systems to gain a deeper

understanding of the complicated systems.

The quantum regime is reached when the de Broglie wavelength is either equivalent

to or greater than the interparticle spacing. This is achieved by lowering the tem-

perature of atoms in the trap. Ultracold gas in optical lattices offers a robust system
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compared to crystalline materials. By cooling the system to a few nanokelvins, we

maintain a similar ratio of the de Broglie wavelength to interparticle spacing. This

allows us to observe similar phenomena in both real and artificial systems. Inter-

acting systems of ultracold atoms extend models of condensed matter physics with

complete control over microscopic parameters such as tunneling and interaction en-

ergy. The coherent nature and narrow linewidth of lasers enable the formation of

optical lattices through the interference of laser beams. This results in optical poten-

tials that are exceptionally clean and free from impurities. The observable timescale

can be adjusted based on the natural properties of atoms while large interparticle

spacing makes optical imaging possible. In addition, the capability of controlling

interactions between atoms via Feshbach resonances offers new ways for studying

condensed matter theory using ultracold-atom systems [37, 38]. Here, our study

relies on 6Li atoms which are fermions and are well-suited for many-body physics.

The reasons are as follows: 6Li atoms have light mass compared to other atoms

typically studied (e.g., rubidium, potassium), resulting in rapid thermalization and

dynamics. The atomic interaction of 6Li can be tuned by a magnetic field owing to

the Feshbach resonances. 6Li atoms can form molecules, leading to the formation

of molecular Bose-Einstein condensates (mBECs). In addition, the use of 6Li atoms

allows for more precise control and tunability in experiments. For the past few years,

researchers have demonstrated the utility of both bosonic quantum gas microscopy

[39–43] and fermionic quantum gas microscopy [44–49] in studying Hubbard mod-

els on optical lattices. Prominent examples of quantum simulation with ultracold

atoms include the detection of antiferromagnetic correlations [49–56], the observa-

tion of many-body localization [57], and the detection of a triangular-lattice Mott

insulator [58]. In the following, the dissertation’s main focus on frustrated systems is

introduced. There are only very few clean realizations of frustrated systems in con-

densed matter, and ultracold atoms allow for a systematic study in well-controlled

systems.
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1.3 Frustrated systems

A frustrated system exhibits a ground state with degeneracy, resulting in strong

quantum fluctuations. This can lead to the emergence of exotic phases of matter,

such as a quantum spin liquid, where spins exhibit strong correlations and remain

highly fluctuating even at absolute zero temperature [59–62]. Recent studies have

proposed exotic phases, including chiral order and topological superconductors in

triangular lattices [63, 64].

The first realization of frustrated lattice geometries with absorption imaging was

studied in a bosonic system [65]. During my Ph.D., we have realized Fermi-Hubbard

model in a frustrated system and imaged the system using quantum gas microscopy.

The system was implemented and used to study Mott insulator [58]. The imple-

mentation of frustrated quantum gas microscopy expands our understanding of con-

densed matter systems, addressing questions such as the ground state of the Heisen-

berg model. In bipartite square lattices, the ground state is an antiferromagnetic

Neel state [66] as observed in many measurements of square-lattice quantum gas

microscopy, showing antiferromagnetic correlations. In contrast, frustrated trian-

gular lattices are expected to exhibit a 120◦ Neel state in the strongly interacting

limit [67–70]. Evidence of the 120◦ order is revealed by the two distinct peaks of the

hexagonal Brillouin zone in the spin structure factor. It is worth noting that the

competition between charge dopants and magnetism in the triangular-lattice Fermi-

Hubbard model results in particle-hole asymmetry [71] unlike square lattices where

particle-hole symmetry is realized at half-filling. Additionally, kinetic magnetism in

triangular lattices is predicted to exhibit effective antiferromagnetic correlations in

hole-doped systems and ferromagnetic correlations in electron-doped systems even at

high temperatures [72–76]. Recent measurements on kinetic magnetism in triangular

lattices have confirmed the validity of the Nagaoka mechanism for electron-doped

systems using three-point correlators [77, 78] and magnetic properties [79, 80].
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Outline

The outline of this dissertation is as follows: In Chapter 2, I present the single-atom

resolved images in optical lattices that have revolutionized the study of ultracold-

atom systems. I discuss the origin of Mott insulators and band insulators underlying

harmonic confinement. Next, I describe algorithms used for detecting single atoms,

lattice geometries, and reconstructing atoms to binary matrices.

In Chapter 3, I introduce the experimental setup, including laser locking to atomic

transitions by spectroscopy, the operation of a Zeeman slower for atom deceleration,

and atom trapping using a magneto-optical trap (MOT). I describe cooling pro-

cesses in an optical dipole trap to achieve a degenerate Fermi gas and multiple steps

before studying Hubbard physics. Next, I explain how we form optical lattices, the
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techniques used to calibrate the lattice depth, and the implementation of single-site

resolution via the Raman sideband cooling.

In Chapter 4, I provide a simple overview of the theoretical framework for the Fermi-

Hubbard model with ultracold atoms in optical lattices, including key observables

measured in experiments. I discuss the extreme cases of the model, such as the Mott

insulator and non-interacting gas. Next, I indicate common observable quantities

used for determining system properties.

In Chapter 5, I present the study of fermionic Mott insulators in a geometrically frus-

trated symmetric triangular lattice using a quantum gas microscope with single-site

resolution. I demonstrate the detection of antiferromagnetic spin-spin correlations

and discuss thermometry by comparison to numerical calculations. This discussion

is based on our publication [58].

In Chapter 6, I describe the setup for spin-resolved imaging using a double light sheet

approach, enhancing the capabilities of quantum gas microscopy. I demonstrate the

thermometry based on correlations and the density fluctuation-dissipation theorem.

In Chapter 7, I apply spin-resolved imaging to investigate a three-component Fermi-

Hubbard model in a square lattice. I discuss observable quantities such as doublon

density and pairing correlation, using a simple model based on high-temperature se-

ries expansion in the atomic limit. The unique behavior of three-component fermions

is highlighted, particularly in the regime where interactions exhibit both repulsive

and attractive features simultaneously, a characteristic attributed to the Feshbach

resonances.

In Chapter 8, I summarize the main points discussed in this dissertation and I

provide future directions that our quantum gas microscope can offer insights into

many-body systems beyond the Hubbard model.



Chapter 2

Single-Atom-Resolved Imaging

The development of detection techniques for individual atoms in optical lattices,

so-called single-atom-resolved imaging, has expanded the understanding of ultra-

cold atom systems. This imaging provides fruitful information at an unprecedented

level. By taking snapshots of atoms confined in optical lattices, we can access atom

occupation at individual lattice sites and observable quantities like correlation func-

tions which give access to the quantum nature of the many-body state and serve as

thermometers. The main purpose of this chapter is to introduce the Fermi-Hubbard

model and the algorithms used for detecting single atoms and reconstructing them

to obtain digitized occupation matrices.

2.1 From tight-binding to Fermi-Hubbard model

In condensed matter systems, the behavior of electrons in a crystalline solid can

be described by the tight-binding model. This model assumes that electrons are

tightly bound to individual atoms and can interact with neighboring atoms. The

electrons are allowed to move between atoms due to a finite overlap between their

wavefunctions, a phenomenon known as quantum tunneling. When considering a

system of many particles, the energy levels of individual electrons merge, leading to

the formation of energy bands (Fig. 2.1). In the following, the tight-binding model

11
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for a triangular lattice is discussed.

For a two-dimensional (2d) triangular lattice with nearest-neighbor tunnelings t1,

t2, and t3 as shown in Fig. 2.2(a). The Hamiltonian of the lowest band is given by

H = −
∑
R

t1 |R⟩ ⟨R+ a1|+ t2 |R⟩ ⟨R+ a2|+ t3 |R⟩ ⟨R+ a3|+ h.c., (2.1)

where |R⟩ represents a localized state at lattice siteR and ai are the nearest neighbor

lattice vectors i.e., a1 = (1, 0), a2 = (1/2,
√
3/2), and a3 = a1 − a2.

V(r)

r

Energy levels

(atomic spacing)-1

n=1

n=2

n=3

(a) (b)

N-fold
degenerate levels

Bands, each with
N values of k

Figure 2.1: The origin of energy bands in the tight-binding model. (a) Non-

degenerate electronic levels in atomic potential. (b) The energy level for N atoms in a

periodic lattice. When the atomic spacing is much larger, energy levels are treated as

non-degenerate electronic levels. With smaller atomic spacing, the overlap of electron

wavefunctions becomes more pronounced and the levels broaden into bands. When bands

begin to overlap, it becomes crucial to consider hybridization, which involves coherent

mixing [81]. However, for our application, we are primarily interested in the ground band.

As long as the ground band does not overlap with other bands, the tight-binding model

remains applicable. Figure was reproduced from [82].
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By applying a Fourier series expansion in plane waves with wavevectors, k, in the

direct lattice, expressed as

|R⟩ = 1√
N

∑
k

eik·R |k⟩ , (2.2)

the Hamiltonian in the reciprocal lattice space is given by

H(k) =
∑
k

ϵ(k) |k⟩ ⟨k| , (2.3)

where

ϵ(k) = −2 [t1 cos(k · a1) + t2 cos(k · a2) + t3 cos(k · (a1 − a2))] , (2.4)

and N is the number of unit cells [81]. The expression above simplifies to

ϵk = ϵ(kx, ky)

= −2
[
t1 cos(kx) + t2 cos

(
kx/2 +

√
3ky/2

)
+ t3 cos

(
kx/2−

√
3ky/2

)]
.

(2.5)

The band structure can be obtained through numerical calculations as discussed

in detail in Chapter 4. It is worth noting that the analytic expression in Eq. 2.5

allows us to extract tunneling parameters from the known band structure, providing

a precise determination of the tunneling strength in the experiment.

The tight-binding model serves as the starting point for understanding the electronic

structure of solids. This model provides a foundation for more complex models such

as the Fermi-Hubbard model, where the interaction term is introduced in addition

to hopping. The formalism of the model will be discussed in Section. 4.3. In the

Fermi-Hubbard model, the interplay between the two quantities provides insight

into strongly correlated systems. Example phenomena include magnetism and su-

perconductivity. The Fermi-Hubbard Hamiltonian in the lowest band is given by

H = −t
∑

⟨r,r′⟩,σ

(
c†r,σcr′,σ + h.c.

)
+ U

∑
r

nr,↑nr,↓, (2.6)

where c†r,σ, cr,σ are the creation and annihilation operators. nr,σ is the number op-

erators for spin σ. The first term describes the hopping of fermions from one site

to neighboring sites with a strength of t. This term represents the kinetic energy
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of the system where particles tend to delocalize over the system. The second term

is the on-site interaction U, which favors localization for U > 0 and pairing for

U < 0. This is because two fermions with the same spin are not allowed to stay

in the same quantum state, as depicted in Fig. 2.2(b), due to the Pauli exclusion

principle. However, if two atoms prefer to occupy the same lattice, an energy cost,

referred to as an interaction energy, is required, and the spin states are different.

(a)

x

y

t1

t2 t3

|R⟩ |R+a1⟩

|R+a2⟩|R+a3⟩

(b)

-t

U

Figure 2.2: Models in triangular lattices. (a) Tight-binding model. Nearest-neighbor

tunnelings are represented by blue, red, and green lines with strengths of t1, t2, and t3.

(b) Fermi-Hubbard model. Fermions can hop between neighboring lattices. When two

fermions occupy the same site, there is an associated cost due to their interactions. Blue

and red dots represent spin-up and spin-down atoms.

By considering atoms in the lowest band of the Fermi-Hubbard model, there are

three possibilities for the site occupation within the system: empty sites (holes),

singly-occupied sites (singles or singlons), and doubly-occupied sites (doubles or

doublons). In the presence of interaction, the lowest band can be viewed as two sub-

bands separated by interaction energy, and the optical lattice is curved by potential

confinement from the Gaussian envelope of a laser beam (Figs. 2.3(a,b)). When

the interaction is weak (U/t ≪ 1) the two sub-bands almost overlap, leading to

the delocalization of holes, singles, and doublons among the trap. Conversely, in
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the case of strong interaction (U/t≫ 1) and a chemical potential, µ, less than U/2,

atoms become localized and fill up the first sub-band as demonstrated in Fig. 2.3(a).

This regime is referred to as the Mott insulator. As more atoms are filled into the

system and with µ > U/2, the second sub-band becomes occupied at the trap

center first due to a lower energy offset compared to neighboring lattice sites. This

phenomenon results in the formation of doublons and we refer to this regime as the

band insulator (Fig. 2.3(b)). In Figs. 2.3(c-f), we show single atoms occupied in

square and triangular lattices in the Mott and band insulator states. The imaging

technique does not allow simple detection of doubly-occupied sites at the trap center

due to light-assisted collisions [83], thus resulting in the detection of a doublon as a

hole.

To verify the resolution of individual lattice sites, we measure the point spread

function (PSF) averaged over a few hundred single atoms. We perform azimuthal

averaging and fit the data to a Gaussian function and an Airy disk pattern, specifi-

cally (2J1(kr)/(kr))
2, where J1 is the Bessel function of the first kind of order one

and k is the wavenumber of the light, (Fig. 2.4(a)). From the first minimum of

an Airy fit, the resolution based on the Rayleigh criterion is extracted as 818(8) nm

whereas our triangular lattice spacing of 1003 nm is larger. Therefore, we can resolve

individual atoms in the triangular lattice without postprocessing.

2.2 Image analysis

After obtaining site-resolved images, we convert them into digitized occupation ma-

trices of the lattice using a reconstruction algorithm [40]. These matrices are then

used to construct observables in our measurements. There are two requirements for

the reconstruction: lattice angles and lattice constants. These geometric parameters

of the lattices can be extracted from individual isolated atoms in the images.
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Figure 2.3: Site-resolved imaging. (a,b) Energy spectrum of a lattice Fermi gas

underlying potential confinement. (a) Mott insulating limit where the interaction, U is

much greater than the tunneling, t. Both spins (blue and red) fill the first Hubbard band

up to the chemical potential, µ1, determined by the total atom number and µ1 < U/2.
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(b) In the band insulator, atoms are filled into the second Hubbard band and µ2 > U/2,

leading to doubly-occupied sites at the trap center. This figure was inspired by [25].

(c) Mott and (d) band insulators on a 752 nm-square lattice consist of 1454 and 1123

atoms within a radius of 21 sites. The field of view is 60 µm×60 µm. (e) Mott and (f)

band insulators on a 1003 nm-triangular lattice consist of 119 and 183 atoms within a

radius of 8 and 14 sites. The field of view is 36 µm×36 µm. Images were taken from

publication [58].

2.2.1 Detecting isolated atoms

Isolated atoms are essential for determining precise lattice angles and lattice con-

stants. The atoms are detected by the following procedures. First, the image back-

ground is removed from the atom picture by estimating the mean signal from all

pixels and applying a mean filter to the background-removed image. We set the

cutoff to a certain value and only the signal beyond this cutoff is relevant to proceed

to the next step. The filtered image is converted to a binary image using build-

in function imextendedmax in MATLAB. Then we search for local maxima using

regionprops which returns measurements for the set of properties (e.g., amplitude,

area, and centroid position) for each object in the binary image. Here, we have

candidates for isolated atoms. Next, we crop the region where the candidates are

located by w×w pixels in raw images and are fitted to the Gaussian function. The

candidates are accepted as isolated atoms when their amplitude, position, and waist

satisfy criteria within tolerances.

2.2.2 Lattice angles and constants

Lattice angles and lattice constants define the geometry of the lattice. To obtain

these parameters, we project isolated atom positions, (xi, yi), onto initial lattice

vectors b1 and b2 using the following transformation

Xij = xj cos θi − yj sin θi, (2.7)
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Figure 2.4: Image analysis. (a) Point spread function. Azimuthal average of the

point spread function (red), with Gaussian fit (blue), and Airy fit (green). The measured

FWHM of 720(18) nm of the PSF is consistent with the FWHM of 711 nm expected from

the numerical aperture of the objective. The inset shows the PSF obtained by averaging

isolated atoms. (b) Single atom count histogram. The left peak corresponds to empty

sites and the right peak indicates sites occupied by single atoms. The threshold value

between no atom and a single atom (vertical orange line) is determined as the inter-

section point of two Gaussian fits background and atom signal distribution, respectively.

The reconstruction error caused by the overlap is negligible compared to the observed

hopping and loss. (c) Determining lattice angles and lattice constants. Single-atom

positions (exemplified in blue) are orthogonally projected onto a line of varying angle,

here exemplified by A1 and A2. For each angle, a histogram of the projected positions

is depicted. At the lattice angle, the experimental histogram has perfect contrast (right

graph) corresponding to lattice vector b1. At other angles, for example, A2, there is

almost no structure in the histograms. Figure was taken from previous work [84].
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where (xj, yj) denotes the position of the isolated atom jth in image coordinates and

θi is the angle between lattice vector bi with respect to x-axis. The angle is defined

as positive in a clockwise direction.

In fact, lattice angles depend on the orientations of the lattice beams. We obtain the

lattice angles by rotating the initial lattice vectors counterclockwise with a step of

θ = 0.02 rad and atom positions are projected onto the rotated lattice vectors. For

each step, all isolated atoms are determined by their projection (Xij) on bi where

j represents the jth isolated atom. The difference of projections (e.g., Xij −Xik) is

related to a relative lattice site by a constant factor determined by lattice geometry.

When the rotation angle θi is perfectly matched to a certain value, saying (α1,

α2), the histogram of the relative projection along bi shows multiple peaks with a

minimum width demonstrated in Fig. 2.4 (c). The separations between peaks (ãx,

ãy) are used to extract lattice constants (Fig. 2.5). Lattice constants, (a1, a2, a3),

and lattice angles, (β, γ), are related by the law of sine

a1
sin(π − γ − β)

=
a2

sin β
=

a3
sin γ

. (2.8)

By applying information extracted from the histogram (Fig. 2.5(b)), lattice con-

stants are given by

a1 =
ã1

sin γ
, (2.9)

a2 =
sin β

sin γ
a3, (2.10)

a3 =
ã3

sin β
, (2.11)

where

β =α2 − α1, (2.12)

γ =α1 − α3 + π, (2.13)

and αi is the angle between the side ai and y-axis.

For the triangular lattice (Figs. 2.3(e,f)), the lattice spacing is known as alatt =

2λ/(3 cos 45◦) = 1.00(3)µm where the lattice laser wavelength λ is 1064 nm and the
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x

y

Figure 2.5: Lattice angles and lattice constants. (a) Determining lattice angles and

lattice constants. The black solid line is the lattice vector. (b) Examples of configurations

in which histograms of the projected positions have perfect contrast. Lattice constants

are given by the peak separation multiplied by a factor i.e. ãx = a3 sin(π − β − γ),

ãy = a2 sin γ. The remaining side can be obtained by trigonometry.

cosine function accounts for the projection of the lattice beams onto the horizon-

tal plane as shown in the inset of Fig. 2.3(e). The lattice spacing corresponds to

about 5.10 pixels after taking into account the magnification of approximately 30

of the imaging system. The lattice angles are determined with high precision and

have values of −45.85(3)◦ and 13.51(1)◦. Theses angles are relative to the camera

coordinates, which are registered to the xy-plane of the experiment sheared by 45◦

as defined in Fig. 3.11. The lattice constants in pixels are 5.09(9) and 5.10(4). Note

that one of the lattice angles is the optimized angle along lattice vector b1 and the

remaining is for the other lattice vector b2.

Now lattice angles and lattice constants are determined. Next, to perfectly overlap

the lattice pattern with the single-atom image, lattice phases are extracted for every

image. While the lattice angles only vary because of alignment changes, the phase

of the lattice usually drifts due to thermal effects. To estimate the phase ζ1,2 in a

picture, we generate the lattice structure and compare it to the position of isolated

atoms, (xj, yj), and measure the phase difference between every single atom and the



CHAPTER 2. SINGLE-ATOM-RESOLVED IMAGING 21

nearest lattice site i.e., xj
yj

 = (n+ ζ1)b1 + (m+ ζ2)b2, (2.14)

where ζ1,2 are defined within 0 and 1.

With information of the lattice angles, lattice constants, and lattice phases, the

exact positions of all lattice sites in image coordinates are revealed through the

reconstruction, discussed in the following.

2.2.3 Reconstruction

To obtain the occupation of each lattice site, we simultaneously fit 2d Gaussian func-

tions to all lattice sites with a significant signal of more than about 100 detected

photons per site. The resulting histogram of all Gaussian amplitudes in Fig. 2.4(b)

shows a well-separated peak of a single atom signal. Owing to light-induced colli-

sions, doubly-occupied sites are detected as empty sites. From the histogram, we

obtain an optimized threshold between the signal of no atom and single atoms to

decide whether a lattice site is occupied. As a result of the reconstruction, a matrix

with entries zero (empty) or one (occupied) is generated. To handle the triangular

lattice structure, we interpret it as a square lattice with diagonal tunneling, sheared

by 30◦. More details of the reconstruction algorithm can be found in [85].



Chapter 3

Triangular-Lattice Quantum

Microscope Setup

Quantum gas microscopy is a powerful tool for the study of ultracold-atomic sys-

tems, offering unprecedented insights into the microscopic structure of quantum

many-body systems. This technique relies on advanced laser and imaging technolo-

gies to achieve single-atom resolution. A quantum gas microscope is composed of

several key components that work together. A lattice potential traps the atoms in

an ordered array, while a tightly focused potential completes the three-dimensional

confinement of the atoms. Additionally, the Raman sideband cooling technique is

employed to cool the atoms to the ground state of the trap in the presence of spon-

taneous emission. This combination of components enables site-resolved imaging

of ultracold-atomic systems. Achieving this imaging requires a complex experimen-

tal system, which will be discussed in detail here as follows: I explain the process

of preparing cold 6Li gases, starting with the deceleration of a thermal 6Li atomic

beam and progressing to the loading of a magneto-optical trap (MOT). I present the

evaporation process in an optical dipole trap, obtaining a degenerate Fermi gas. In

addition, I discuss the loading procedure for optical lattices and the methods used

to calibrate the alignment. Finally, I exhibit detection schemes using absorption

and single-site fluorescence imaging techniques.

22



CHAPTER 3. TRIANGULAR-LATTICE QUANTUM MICROSCOPE . . . 23

3.1 6Li spectroscopy

For laser cooling of 6Li, near-resonant laser beams are required and we stabilize the

frequency using spectroscopy as a frequency reference, shown in Fig. 3.1(a). The

laser beams are generated by a tunable laser diode (Toptica DL Pro). Note that

the laser used for spectroscopy is derived from the Raman repump laser, which is

discussed later in Section 3.5 and serves as a master laser. The spectroscopy is

performed in a heat tube filled with 6Li atoms, heated to 400◦C for sublimation.

Two laser beams are used as the pump beam and the probe beam. The pump beam

has a high power of about 3 mW, while the counter-propagating probe beam has

a weaker power of approximately 0.5 mW. Atoms absorb the probe beam less than

the pump beam due to the pump beam saturating the atomic transition. This is a

simple picture of how Doppler-free spectroscopy works. To address the limitations

of basic Doppler-free spectroscopy, such as non-zero background and difficulty in

resolving closed atomic transitions, we employ modulation transfer spectroscopy.

This technique improves signal quality for laser frequency locking and benefits our

applications, particularly when hyperfine transitions are closely spaced [86]. The

schematic of modulation transfer spectroscopy is shown in Fig. 3.1(a).

Specifically, we apply phase modulation using an electro-optic modulator (EOM)

to the pump beam which counter-propagates and overlaps with an unmodulated

probe beam. The high intensity of the pump beam saturates the atomic transition,

causing a fraction of the atoms to be in the excited state. As a result, the absorp-

tion of the weaker probe beam is reduced. The non-linear interaction between the

pump and the probe beam occurs through the light-atom interaction by a 4-wave

mixing process [87], thus leading to the pump beam transferring phase modulation

to the probe beam (Fig. 3.1(b)). The probe beam is detected using a photodiode

(Thorlabs PDA36A2) and the error signal is obtained by combining the detected

signal with a local oscillator (RIGOL DG102), driven at 5.28 MHz, via a frequency

mixer (Mini-circuits ZLW-3+). Finally, the error signal is fed to the diode laser

for locking. In Fig. 3.1(c), the error signal for the D1 transition is shown. Mod-
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ulation transfer spectroscopy produces dispersive-like lineshapes that are flat and

have zero background. The error signal is dominated by closed transitions, leading

to zero crossings with a large peak-to-peak amplitude for each hyperfine transition.

To drive the EOM, we design an LC circuit that resonantly enhances the electric

field in the EOM crystal, leading to stronger phase modulation (Fig. 3.1(d)) and the

working principle can be found in Appendix A.2.
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To Lock D1 transition
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Figure 3.1: 6Li spectroscopy. (a) Schematic of the modulation transfer spectroscopy

setup. (b) Modulation transfer process between the probe beam and the pump beam

modified from [87]. (c) D1 line signal of 6Li atoms. We lock to the leftmost zero-

crossing of the signals. (d) EOM driver circuit. The circuit allows us to imprint a phase

modulation on the pump beam.
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3.2 Zeeman slower

As seen, laser spectroscopy enables precise locking of its frequency to an atomic

transition. This allows near-resonant laser beams to be used for decelerating atoms,

a technique known as Doppler cooling. In our experimental setup, 6Li atoms are

located inside the oven on the experimental table. The atoms move rapidly with

an average speed of approximately 600 m/s at an oven temperature of 320◦C. Con-

sequently, it is necessary to slow down the atoms to the MOT capture velocity of

about 30 m/s before trapping them. This is achieved using a Zeeman slower, which

exploits the Zeeman shift induced by a magnetic field [88]. In particular, atoms prop-

agate along the z-axis of the tapered solenoid and the atoms experience energy shifts

due to the spatial dependence of the magnetic field along the propagation direction,

B(z). When the cooling beam frequency is on-resonant with the atomic transition,

the atoms absorb photons and emit scattered photons in random directions. Over-

all, the atoms are slowed down, and their speed is reduced. The scattering force

depends on beam intensity and frequency detuning. The maximum scattering force

for a large intensity limit compared to saturated intensity (I/Isat ≫ 1) is given by

Fscatt = h̄kΓ/2, (3.1)

where k is the photon momentum and Γ is the decay rate of an excited state.

During the slow-down process, we simplify the model by assuming atoms have an

initial velocity, v0, and an instantaneous velocity, v, at a later time. Atoms ab-

sorb photons when the detuning frequency from the atomic transition satisfies the

condition given by

δ = ω + kv −
(
ω0 +

µBB(z)∆(gFMF )

h̄

)
= 0. (3.2)

This condition ensures that the atoms experience the maximum scattering force in

the presence of the Doppler effect and the Zeeman shift. Here, ∆(gFMF ) denotes

the difference in the product of the magnetic quantum number, MF , and the Lande

g-factor, gF , of the hyperfine structure between the final and initial state, ω is the

free-space laser frequency, and ω0 is the atomic transition frequency.
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While a scattering force acts on atoms, they are constantly decelerating, and their

instantaneous velocity at a distance z from the initial position is obtained by

v = v0

(
1− z

L0

)1/2
, (3.3)

where L0 = v20λm/(πh̄Γ) is the stopping distance under the assumption that the

deceleration being used is half of the maximum deceleration calculated by Eq. 3.1,

ensuring no atoms are left behind. Here, m is the atomic mass, and λ is the laser

wavelength.

With the use of Eqs. 3.2 and 3.3, we obtain a designed magnetic field, expressed as

B(z) =
2πh̄v0

λµB∆(gFMF )

(
1− z

L0

)1/2
+

h̄

µB∆(gFMF )
(ω − ω0), 0 ≤ z ≤ L0. (3.4)

The designed magnetic profile suggests a spatial dependence of the magnetic field

along the z-direction. With a spatially varying winding pattern, we can achieve

the desired magnetic profile (Fig. 3.2). For increased accuracy, we use the Radia

package [89] to design the field strength as a function of position, and the final

design is shown in Fig. 3.2(a). The software allows us to calculate the combined

magnetic field of Zeeman coils and MOT coils. In the experiment, Zeeman slowing

beams consist of a cooling beam with a power of 30mW and a repump beam with

a power of 1mW. Each beam is further red-detuned by 70 MHz with respect to

the MOT cooling and MOT repump transitions (Fig. 3.3(b)). To improve the MOT

loading rate, we implemented a Zeeman slower extension by installing permanent

magnets that extend the magnetic field of the tapered coils. As a result, we obtain

an increase by a factor of 1.8(4) in the MOT loading rate [90].

3.3 Magneto-optical trap

After atoms are decelerated by the Zeeman slower, they continue to move freely in

space within the main chamber. Despite their speed being on the order of a few tens

meters per second, the atoms remain energetically high and the density sparse. This

state is still not suitable for studying quantum physics. To address this, we apply
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3d Doppler cooling using three pairs of cooling and repump beams, similar to the

concept discussed in Section 3.2. Additionally, we confine the atoms to the center

of the science chamber using a quadrupole magnetic field formed by anti-Helmholtz

coils. This field provides forces between a pair of counter-propagating lasers when

the atoms are not in the center of the trap, resulting in a restoring force towards

the center and trapping the atoms. This technique is known as a magneto-optical

trap (MOT).

0 0.2 0.4 0.6
-0.1

-0.05

0

0.05

0.1

z(m)

B
z
(T

)

(a) (b)

Figure 3.2: Hybrid Zeeman slower and its magnetic field configuration. (a)

Contributions of the individual slower components to the total magnetic field along the

atomic beam along the z-axis. The fields of the coils are calculated from the experimen-

tally optimized currents using the Radia package. A 3d model showing the extension

(blue), the wire-wound section (red) or Zeeman slower main section, and the MOT coils

(orange) with their corresponding magnetic fields depicted in dashed lines. The black

solid line is the total field. (b) Photograph of Zeeman slower setup. The extension

permanent magnets are held by a 3d-printed plastic frame, which is inserted between

the oven and the Zeeman coils. Figure was adapted from previous work [90].

For more details, let us consider a simple 2-level system that undergoes a transition

between quantum states F = 0 and F = 1. At this point, we overlap the chamber

center with the center of the MOT coils, therefore, there is no Zeeman shift due to

a zero magnetic field i.e., the magnetic fields from the MOT coils cancel out at the
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center. However, as we move away from the center along the axial direction, the

z-axis, the magnetic field is non-zero and perturbs the atomic energy levels. For the

F = 1 level, there are three possible magnetic quantum numbers MF = 0,±1. At

a position close to the center, the energy shift can be approximated by the linear

dependence of the magnetic field. In other words, the energy shift linearly varies

with the position of the atoms (Fig. 3.3(a)) from the origin. When a red-detuned

laser (refer to the MOT cooling beam) is applied, only atoms are displaced along

z < 0 absorb σ+ photons (∆MF = +1), pushing back toward the trap center.

Similarly, displaced atoms along z > 0 absorb σ− photons and are kicked toward

the trap center.
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Figure 3.3: Magneto-optical trap. (a) Schematic of MOT operation in a simple

picture of a 2-level system. Atoms experience Zeeman shifts in energy as they move

away from the center. At this position, the atoms absorb counter-propagating photons,

resulting in a restoring force that pushes them back toward the center. (b) A laser

locking diagram is used in the experiment. The substructure of the 2P3/2 state is not

resolved. (c) Picture of our MOT in the experiment (red spot).
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To gain a more quantitative understanding of how the MOT operates, let us examine

it mathematically [91]. The total scattering force due to the absorption of σ+ and

σ− photons is given by

FMOT = F σ+

scatt(ω − kv − (ω0 + βz))− F σ−

scatt(ω + kv − (ω0 − βz)). (3.5)

We apply a series expansion to Fscatt about ω and ω0, assuming that kv, βz ≪ Γ.

The expansion results in

FMOT ≃ −2
∂F

∂ω
kv + 2

∂F

∂ω0

βz = −2
∂F

∂ω
(kv + βz), (3.6)

where β = (∆(gFMF )µB/h̄)dB/dz and B is the magnetic field along the axial

direction of anti-Helmholtz coils. As can be seen, FMOT consists of restoring force

and damping force, which push atoms towards the trap center and reduce velocity

through damping.

The schematic of the MOT laser setup is illustrated in Fig. 3.4. The MOT laser

(Toptica DL Pro) has an output power of approximately 20mW and is amplified by

the repump tapered amplifier (TA), Moglabs MOA003, to approximately 200mW.

The repump TA output is split into a MOT cooling seed and a MOT repump beam.

We derive about 1 mW of light from the MOT cooling seed for phase locking to

a master laser. The MOT repump beam goes through AOM1 (Intraaction ATM-

1141A1) and its frequency is shifted by +114 MHz. The MOT cooling seed goes

to the second tapered amplifier, Moglabs MOA003, followed by AOM2 (Intraaction

ATM-1141A1) which shifts its frequency by −114 MHz. After that, both MOT

cooling and repump beams are combined by a beamsplitter and distributed to four

beams, called MOT1, MOT2, MOT3, and Zeeman slower beams. The MOT1 and

MOT2 are used for horizontal cooling and trapping while the MOT3 is for vertical

cooling and trapping. Overall, the MOT cooling beams have a power of 10 mW

(I/Isat = 10) while the MOT repump beams have a power of 5 mW (I/Isat = 5)

each. Both beams have a diameter of 10mm. The schematic of laser locking is

summarized in Fig. 3.3(b).
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In the MOT technique, a σ+ − σ− configuration is required. Therefore, we place

quarter-wave plates at the output of the fibers (P3630-PM-FC-10) as depicted in

Fig. 3.5. The quarter-waveplates change the π polarization to σ+ polarization while

the half-waveplates on the retro sides convert retro-reflected beams to σ− polar-

ization. The Zeeman slower beams pass through AOM3 (Intraaction ATM-701A1)

shifting frequency further by −70 MHz from the two previous MOT cooling and

repump transitions. It is important to note that MOT repump beams are necessary

because the cooling beams operate between
∣∣2S1/2, F = 3/2

〉
and

∣∣2P3/2

〉
and there

is a non-zero chance to decay back to the dark state
∣∣2S1/2, F = 1/2

〉
. Atoms in

the dark state are essentially lost from the cooling transition. By completing all

requirements, we obtain our MOT, as shown in Fig. 3.3(c).

To lock the MOT laser to the D2 transition, a fraction of light from the MOT laser

and the Raman repump laser, which serves as a master laser, are derived and directed

to a GaAs Photodetector (ET-4000). We work at a beat signal of 10.06 GHz which is

created and detected by the photodiode. The beat signal is then mixed with a local

oscillator (BEACON Transmitter) that provides a 10.37 GHz frequency reference

which we use to mix down the signal to 10.37 − 10.06 = 310 MHz. We finally

connect the beat signal to the phase lock circuit with an external voltage-controlled

oscillator (Pasternack PE1V31000), producing an error signal from a digital phase

discriminator (AD9901KQ) for laser locking to the MOT transition as depicted in

the inset of Fig. 3.4.

3.4 Low field and high field imaging

Following the capture of atoms in a MOT, properties of atom ensembles within the

system, such as density profile, atom number, and energy shifts, can be observed

using imaging techniques. Here, we rely on two types of imaging typically used

in ultracold-atom experiments: fluorescence and absorption imaging. Fluorescence

imaging is utilized to detect the number of atoms based on atoms emitting light



CHAPTER 3. TRIANGULAR-LATTICE QUANTUM MICROSCOPE . . . 32

MOT 3

Bottom beam

Imaging beam

Zeeman slower
λ/2

λ/2

λ/2

λ/4

λ/2 λ/2

AC254-050-B
50mm

AC254-050-B
50mm

C240TMD
8mm

1000mm

LA4158-YAG
250mm

λ/2

C171TMD-B
6.2mm

##

#

MOT 1

MOT 2

λ/4

λ/4

P3630-PM-FC-10

##

#

Side view

Objective
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Figure 3.5: Schematic of MOT on the experimental table. (Left) Top view of

the MOT setup. MOT cooling and repump beams are coupled to fibers and form

σ+ − σ− configuration on the experimental table. These beams have a diameter of

10mm. Zeeman slower beam propagates along the axial direction of Zeeman slower

coils (not shown). (Right) Side view of the MOT setup. The vertical imaging beam and

MOT beam are overlapped by a long-pass dichroic mirror (DMLP638L) and a short-pass

dichroic mirror (DMSP805L) is added to coincide with the bottom beam, thus allowing

the 1070 nm and 670 nm beams to propagate in vertical direction.

when the laser is tuned close to the atomic transition. We use fluorescence imaging

in the early stages of the experiment, such as in the MOT (see Appendix C.2).

Later, fluorescence imaging will be discussed again in our applications, specifically in

manipulating atoms in optical lattices to emit fluorescence light based on the Raman

sideband cooling technique. In this section, I mainly discuss absorption imaging used

for optical alignment and measurements of atom number and temperature.

In the absence of a magnetic field, the imaging beam is on-resonant with the D2

transition, or slightly off from the transition due to a small magnetic offset field.
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We refer to this regime as low-field imaging. Whereas in the presence of a magnetic

field i.e., Feshbach field, the imaging beam frequency is shifted by 0.5 MHz to 1

GHz. Therefore, we have to compensate for the Zeeman energy shift, and we realize

it using a variable offset phase lock circuit. We refer to this regime as high-field

imaging.

Vertical imaging
Side imaging

G&H
3200-125

75mm

C171TMD-B
6.2mm

C171TMD-B
6.2mm

λ/2

λ/2

λ/2

λ/2

λ/4

λ/2
From High Field laser

Figure 3.6: Schematic of imaging laser. An incoming beam from the high-field

imaging laser is injected into the double-pass AOM. The outgoing beam is separated from

the incoming beam by a beamsplitter and goes to fibers for vertical and side imaging.

The power of both imaging beams is individually adjusted by the half-waveplates close

to the AOM. Beam shutters (not shown) are added to the beam path to prevent residual

light from entering the main experiment.

To produce the absorption imaging beam, we use a tunable laser diode (Toptica DL

Pro) and lock the laser to theD2 line using the MOT cooling transition as a reference

(Fig. 3.3b). A double-pass AOM is implemented using the cat’s-eye configuration

and the frequency is red-detuned by 195 MHz for a single pass (Fig. 3.6). We finally

distribute the imaging beam into two separate beams for side and vertical imaging.

Both imaging beams are then guided to the experimental table via optical fibers

(Thorlabs P3-630PM-FC-10). The beam waists for side and vertical imaging are
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7mm and 340(10) µm at the atom position. In the following section, we use imaging

beams discussed in here to perform absorption imaging, detecting atom number in

the ODT.

Spin mixture

During the MOT loading process, atoms are initially prepared in the ground state∣∣2S1/2 F = 1/2
〉
and the repump beam prevents residual population in a dark state

by transferring atoms that decay back to
∣∣2S1/2 F = 3/2

〉
. Due to various parame-

ters (e.g., cooling power, repump power), the mixture of two lowest hyperfine states,

|1⟩ =
∣∣2S1/2 F = 1/2 MF = 1/2

〉
and |2⟩ =

∣∣2S1/2 F = 1/2 MF = −1/2
〉
, could re-

sult in imbalanced population and can change over time. In Fig. 3.7(a), the mixture

of the two lowest hyperfine states versus repump power is illustrated. The ratio

of MOT cooling and repump power determines the population distribution in the

ground state of the system.
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Figure 3.7: Spin population. (a) Two spin components as a function of the MOT

repump power per beam. The MOT cooling power is fixed at 10mW per beam. (b)

Spin balance in the ODT (blue) and spin imbalance after evaporation in the ODT at

significantly high scattering lengths (red).

We find that imbalance in population increases even more at high interactions be-

yond a magnetic field of 810G during evaporation as shown in Fig. 3.7(b). Most
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likely, one spin component gets lost or forms molecules. To achieve a stable balanced

mixture, we apply a few consecutive radio-frequency sweep pulses between |1⟩ − |2⟩
in the optical dipole trap, as discussed in a later Section 3.6.

3.5 Raman sideband cooling

An essential key to preventing system heating during fluorescence imaging is Raman

sideband cooling, originally developed for cooling trapped ions to reach the zero

point of motion. However, this technique can be applied to imaging atoms in deep

optical lattices where atoms are strongly trapped in the Lamb-Dicke regime. By

applying a two-photon process, atoms are driven from a harmonic quantum vibration

number, ν, to a lower quantum number, ν − 1. A complete process provides a

scattering photon which is captured by an sCMOS camera (Andor Zyla 4.2 plus).

To implement Raman sideband cooling, the Raman repump laser is locked to the

D1 transition as mentioned in the 6Li spectroscopy (see Section. 3.1). The Raman

cooling beam laser is generated by a Toptica DL Pro and stabilized relative to the

Raman repump laser with a red-detuning of 5.6 GHz. In Fig. 3.8, a beat signal of

the Raman cooling laser and the Raman repump laser is detected using an ultrafast

photodiode (G4176-03). Here, a bias tee (ZFBT-6G-FT+) blocks DC while radio-

frequency signals are allowed to pass. A low-noise amplifier (LNA-6G) enhances the

signal. Then a local oscillator (ZX95-5200) and the beat signal are fed to a mixer

(ZMX-10G), resulting in the mixed-down beat signal at a frequency of 5.6 − 5.2

GHz = 400 MHz. Finally, the second beat signal is amplified by an amplifier (ZFL-

500HLN+) before being connected to a phase-frequency detector, providing an error

signal for Raman cooling locking.

In Fig. 3.9(a), the schematic of the Raman cooling process is illustrated and the

Raman cooling process is implemented as follows: Atoms are initially prepared in∣∣2S1/2, F = 3/2, ν
〉
. The first Raman beam (R1) stems from the setup in Fig. 3.8 and

further red-detuned by (228.2 + ωlattice/2π) MHz (Fig. 3.9(b)) using a double-pass
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AOM, called second Raman beam (R2). These Raman beams drive an oscillation

between
∣∣2S1/2, F = 3/2

〉
and

∣∣2S1/2, F = 1/2
〉
via intermediate state 2P1/2. The

population in the intermediate state is minimized by detuning and can be opti-

mized in the experiment. Therefore, atoms populate from
∣∣2S1/2, F = 3/2, ν

〉
to∣∣2S1/2, F = 1/2, ν − 1

〉
. It is important to note that the Raman cooling beams

have an angle between them, allowing for momentum transfer, while co-propagating

beams keep the vibrational quantum number unchanged.
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Figure 3.8: Schematic of Raman laser systems. The Raman imaging system consists

of two individual lasers. The Raman cooling laser provides a cooling beam and is red-

detuned by 5.6MHz from the D1 transition using phase locking. The single-pass AOM

controls the Raman cooling power to a fiber. The Raman repump laser provides a

repump beam for Raman sideband cooling technique as well as for spectroscopy. The

Raman repump laser is locked to the D1 transition by the spectroscopy cell and the

Raman repump beam can be further red-detuned by a few tens MHz to the transition

using double-pass AOM.
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The Raman repump beam is blue-detuned by 9.6(5) MHz from the D1 transition as

shown in Fig. 3.9(a) and the beam is circularly polarized. The beam drives atoms

from the ground state,
∣∣2S1/2, F = 1/2, ν − 1

〉
, to 2P1/2 and the atoms finally decay

back to
∣∣2S1/2, F = 3/2, ν − 1

〉
where atoms occupy the same manifold, however,

the quantum vibration level is lowered by one. The spontaneous photons emitted

during the decay process are captured for fluorescence imaging. The atoms excited

by the Raman repump beam are more likely to decay down into the
∣∣2S1/2, F = 3/2

〉
state rather than

∣∣2S1/2, F = 1/2
〉
with a branching ratio of 8 : 1. In Fig. 3.9(c), we

demonstrate the successful implementation of the Raman sideband cooling system by

performing Raman sideband spectroscopy, and we obtain the lattice trap frequency

at full power of the lattice beams.

As can be seen, Raman laser systems are necessary for performing fluorescence

imaging to capture spontaneous photons in a regime. Here, I discuss how we keep

the atoms close to the vibrational ground state on each lattice site. Let us consider

the transition probability between quantum states in a harmonic oscillator. Using

the fact that atoms emit spontaneous photons and get kicked by momentum k

that corresponds to momentum propagator e−ikx̂ which is equivalent to the well-

known transition operator in coherent states e−iη(â+â†). The probability of atoms

being driven from a quantum vibrational number ν to another quantum vibrational

number ν ′ is given by

Pν→ν′ = | ⟨ν|eikx0(â+â†)|ν ′⟩ |2. (3.7)

By performing Taylor’s series expansion about the Lamb-Dicke parameter which is

defined as η ≡ kx0 =
√
h̄k2/(2mωlatt), the transition probability is approximated

by

Pν→ν′ =

∣∣∣∣〈ν ∣∣∣∣(1 + iη
(
â+ â†

)
− η2

2

(
â+ â†

)2
+O

(
η3
))∣∣∣∣ ν ′〉∣∣∣∣2 . (3.8)

In the Lamb-Dicke regime, higher transitions i.e., ν ′ − ν > 2 are suppressed. There-
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Figure 3.9: Raman beams configuration and Raman cooling process. (a)

Schematic of the Raman cooling process. The Raman beams (red) are detuned by

∆ from the D1 line, driving vibrational-lowering transitions. The repump beam (blue) is

blue detuned by δ = 9.6(5) MHz from the
∣∣2S1/2, F = 1/2

〉
to the

∣∣2P1/2, F = 1/2
〉
; it

pumps atoms back to the initial state without lowering the vibrational quantum number

due to a small Lamb-Dicke parameter of 0.29. The spontaneous photons are used for

fluorescence imaging. (b) Schematic of Raman setup on the experimental table. The

inset shows lattices and Raman beams from the side view. The repump beam propa-

gates in the plane formed by the lattice. Raman beam (R1) is horizontal linear polarized

and propagates out of the plane with a shallow angle of α = 7.5(2)◦. Raman beam

(R2) is perpendicular to the R1 and has a mixture of both horizontal and vertical linear

polarization in a ratio of 4 : 1. A green arrow shows the projection of the magnetic field

on the xz-plane with an angle of −70◦. (c) Raman sideband spectroscopy of a triangular

lattice. The sidebands show lattice vibrational spacing of ωlatt = (2π)×870 kHz. Figure

was reproduced from previous work [84].



CHAPTER 3. TRIANGULAR-LATTICE QUANTUM MICROSCOPE . . . 39

fore, the probability of the transition is finally expressed as [92]

Pν→ν′ = η2ν ν → ν ′ = ν − 1, (3.9)

Pν→ν′ =

(
1− 2ν + 1

2
η2
)2

ν → ν ′ = ν, (3.10)

Pν→ν′ = η2(ν + 1) ν → ν ′ = ν + 1. (3.11)

To ensure the cooling is efficient, the Lamb-Dicke parameter should be small to

minimize changes in the quantum vibrational number during spontaneous emission.

In the experiment, we obtain the Lamb-Dicke parameter η of 0.29. This condition

is achieved by the cooling process occurring in a significantly deep lattice, implying

a large trap frequency (ωlatt). An optimized Raman sideband cooling system can

be accomplished by tuning the Raman parameters while minimizing atom hopping.

This hopping plays a crucial role not only in image fidelity but also in observable

quantities. The hopping of atoms occurs when the cooling process is unable to over-

come the heating effects. Atoms then hop to nearest neighbors, with a suppressed

probability of hopping to sites beyond the nearest neighbors. It is worth noting

that directly transferring between quantum vibrational states using RF is impossi-

ble. The momentum transfer from photons to atoms in the RF regime is negligible.

However, RF transfer can be used to drive atoms between hyperfine structures in the

presence of a magnetic field without changing the motional state as demonstrated

in Section 3.6.1.

By capturing spontaneous photons with a high-resolution objective (N.A.=0.5), in-

dividual atoms are detected at the camera as shown in Figs. 3.10(a,b). The imaging

fidelity is measured by taking a series of five images with 500 ms exposure time

each and 50 ms separation in between. Hopping and loss rates are estimated by

comparing two adjacent images (Fig. 3.10(d)). We define the hopping rate as the

fraction of sites detected as occupied in the second image only, while the loss rate is

given by the fraction of atoms lost from picture to picture. The imaging fidelity is

defined by the fraction of atoms remaining in the same lattice sites. As a result of

hopping and loss, the imaging fidelity is determined to be 97.6(3)% in 500 ms. In the
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subsequent section, the idea of evaporative cooling, mentioned earlier in Chapter 1,

is implemented in the experiment to achieve degenerate Fermi gases.
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Figure 3.10: Imaging fidelity. (a,b) Two consecutive images of individual 6Li atoms

(white dots) in a triangular lattice (black dots) imaged with 500 ms exposure and sepa-

ration of 50 ms. The single-site imaging has a field of view of 25 µm×25 µm. (c) Re-

constructed occupation of picture (a) convolved with the point spread function (PSF).

(d) Hopping and loss during imaging, stationary atoms (blue), hopped atoms (green)

and lost atoms (red). We obtain a hopping rate of 2.0(2)% and a loss rate of 0.4(2)%

at a detected occupation of up to 50% by averaging over twelve pairs of pictures, thus

demonstrating an imaging fidelity of 97.6(3)%. Figure was taken from our work [84].

3.6 Optical dipole trap

Atoms in the MOT are sparsely spaced, with interparticle spacing that is quite

large, and their wavefunctions do not overlap. Here, we discuss ways to enhance the

phase-space density as follows: After atoms are trapped in the MOT, we transfer
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them to the optical dipole trap (ODT) by compressing the MOT. In particular, the

MOT cooling and MOT repump frequencies are swept from −30 MHz to −5 MHz

compared with the atomic transitions, represented in Fig. 3.3, while simultaneously

decreasing in powers. This compression enhances the overlap between the MOT and

the ODT, as the MOT size of approximately 3mm is much larger than that of the

ODT.

The ODT is generated by a 1070 nm laser (IPG YLR-300-LP-AC-Y14) with a power

output of 125 W and a beam waist of 90 µm. We tested the laser at a power of 200

W without any issues. However, the laser is not running at that high power because

of saturation in atom number beyond 125 W. The two ODT beams intersect at a

small angle of 2θ, where θ ≈ 10◦. This configuration is referred to as the crossed

dipole trap (CDT), as illustrated in Fig. 3.11.

The potential of the CDT can be understood by considering the atom-light interac-

tion through a light shift, expressed as

Udip = −1

2
⟨p · E⟩ = − 1

2ϵ0c
Re(α)I, (3.12)

where α(ω) is the complex polarizability which depends on the driving frequency

ω and can be calculated by Lorentz’s model. This model treats the electrons as

being attached to the atomic nucleus by springs, representing the restoring force of

the electron cloud in the presence of a time-dependent external electric field. As a

result, the dipole potential can be written as [93, 94]

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (3.13)

and the scattering rate in this potential is given by

Γsc(r) =
1

h̄ϵ0c
Im(α)I(r)

=
3πc2

2h̄ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r),

(3.14)

where ω0 is the atomic transition and Γ is the natural linewidth related to the

lifetime of the excited states.. A simple picture of the light shift using a 2-level

system approximation can be found in Appendix C.9.
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Figure 3.11: Schematic of 1070 nm

laser. The ODT beam is generated by

the first order of the AOM and the ze-

roth order is used for the other two po-

tentials, the bottom beam and the light

sheet with a power ratio of 10:90. The

outgoing ODT beam from the chamber

is directed to a water-cooled beam dump.

The light sheet is an oblate beam suitable

for high-resolution imaging while the bot-

tom beam provides uniform radial con-

finement for 2d Fermi gases.

As can be seen, the optical dipole potential in Eq. 3.13 is proportional to the laser

intensity at the atom position. The total complex electric field is a superposition of

the fields from the two ODT beams i.e., E = E1 +E2, and the intensity is given by

I =
1

2
εc|E1 + E2|2 =

1

2
εc(E1 + E2)(E1 + E2)

∗,

where c is the speed of light in vacuum and ε is the permittivity of free space.

Here, we use an orthogonal configuration, i.e., E∗
1 · E2 = E1 · E∗

2 = 0. Because

of no interference terms, the total intensity is simply the summation of each beam
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intensity. It is important to adjust the crossed polarization configuration carefully

to avoid interference terms. In fact, atoms occupied in the ground state experience

attractive forces from the 1070 nm laser because the laser wavelength is longer than

the atomic transition, as demonstrated in Fig. 3.12(a). Therefore, the CDT allows

us to enlarge the trapping volume compared to a single ODT beam. The total

intensity of this trap can be written in the cylindrical coordinates of two individual

Gaussian beams propagating by ±θ with respect to the z-axis (Fig. 3.12(b))

I(r, z) =I1

(
r cos θ + z sin θ,−r sin θ + z cos θ

)
+I2

(
r cos θ − z sin θ,+r sin θ + z cos θ

)
,

(3.15)

where a single Gaussian beam propagating along z′-direction, as defined in Fig. 3.12(b),

has intensity given by

I1,2(r
′, z′) = I

(1,2)
0

[
w

(1,2)
0

w1,2(z′)

]2
exp

( −2r′2

w2
1,2(z

′)

)
.

The definitions of parameters can be found in Appendix C.1.
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Figure 3.12: Dipole force and crossed dipole trap. (a) Light shift causes a

gradient in energy, leading to repulsive and attractive forces. Red-detuned laser is used

to trap atoms. (b) Rotated Gaussian beam with intensity I(r′, z′). (c) Side imaging of

the crossed dipole trap. The field of view is 600 µm × 600µm.

By adjusting the CMOT parameters, 6Li atoms are equally populated in the ground

states |1⟩ ≡
∣∣2S1/2 F = 1/2 MF = 1/2

〉
and |2⟩ ≡

∣∣2S1/2 F = 1/2 MF = −1/2
〉
after
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loading into the CDT, with an initial density of approximately 1× 1012 cm−3 and a

temperature of approximately 220µK.
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Figure 3.13: ODT trap frequency and Fermi gas. (a) Measurement of the ODT

trap frequency as a function of power using amplitude modulation spectroscopy. The

solid line represents the fit to power1/2. (b) Fermi gas in ODT. The data (blue dots)

are fit to 3d Fermi gas (blue solid line) and a Gaussian function (black solid line). The

temperature is determined to be 0.20(5)TF.

To achieve temperatures below the limitations of the MOT, we apply 3 steps of

evaporative cooling to reach degenerate Fermi gases as follows [84]: First of all,

plain evaporation is performed in 1 s by increasing a Feshbach field to 810G, where

the scattering length between state |1⟩ and |2⟩ is as ≈ 17,000a0 [95, 96] with the

Bohr radius a0. The intensity of the dipole trap remains constant during plain

evaporation, where the atoms naturally evaporate in the presence of gravity and

significantly strong interactions. Next, we perform forced evaporation by reducing

the intensity of the dipole trap to 6% of the initial value following an exponential

decay curve with a time constant τ1 of 300ms with a duration of 0.7 s. Finally,

forced evaporation II is applied for 5 s. The intensity of the dipole trap continues

to reduce to 0.4% of the initial value with a time constant τ2 of 6 s. To prevent the

formation of deeply bound lithium molecules and obtain degenerate Fermi gases,

the Feshbach magnetic field is switched from 810G to 300G (as = −288a0) within

10ms and about 500ms before the end of the forced evaporation stage II, where



CHAPTER 3. TRIANGULAR-LATTICE QUANTUM MICROSCOPE . . . 45

the density is not sufficiently high to form lithium dimers via three-body collisions.

With this experimental cycle of 12 s duration, we obtain a degenerate Fermi gas

with about 3000 atoms and temperature below one-fifth of the Fermi temperature,

determined by fitting the gas to the profile of a 3d non-interacting Fermi gas, as

depicted in Fig. 3.13(b).
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Figure 3.14: Radio frequency transfer. (a) Schematic of the antenna driver and

antenna (inset). The resonance frequency is determined by capacitor C1 and inductor L

which depends on the shape of the antenna. (b) |2⟩−|3⟩ Rabi oscillation of (2π)×3.6(3)

kHz at a field of 795 G centered at 81.9297MHz. (c) |2⟩−|3⟩ frequency sweep spanned

by 500 kHz centered at 81.9297MHz. By fitting to Eq. 3.18, a Rabi frequency of

(2π)× 3.2(4) kHz is determined.

3.6.1 RF state preparation in ground state manifold

To expand the capability of tuning interactions, a spin mixture is not limited to

the two lowest hyperfine states. It can, for example, involve the lowest state and

the third lowest hyperfine state, |3⟩ =
∣∣22S1/2 F = 3/2 MF = −3/2

〉
, because the

s−wave scattering depends on occupied states with distinct magnetic moments. This
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results in varied coupling between closed and open channels (see Appendix C.6). To

access a desired spin mixture, radio frequency (RF) is applied, and the population

transfer is determined by a pulse duration in the presence of a magnetic field. In

Fig. 3.14(a), the implementation of a home-built RF antenna is depicted. The RF

is generated by a wave generator (Keysight 33600A) and connected to a 100 W

amplifier (ZHL-100W-52-S+) via a solid-state switch (ZASWA-2-50DRA+). We

use a timer circuit to prevent overheating of the antenna by limiting the RF pulse

duration to a few milliseconds. To switch between |1⟩ − |2⟩ and |2⟩ − |3⟩ antennas,
a high power RF relay switch (PE71S6053) is added after the amplifier.

By applying an RF pulse to atoms in the presence of a magnetic field, the population

in the two-level system can be described by the Rabi flopping formula [91]. At

resonance, the transition probability is given by

Pg→e = sin2

(
Ωt

2

)
, (3.16)

where Ω is the Rabi frequency. We observe Rabi oscillations between the |2⟩ and |3⟩
states, as shown in Fig. 3.14(b). This is achieved by applying an RF pulse centered

at 81.9297 MHz to a spin-balanced mixture of the |1⟩ and |2⟩ states in the ODT via

the |2⟩ − |3⟩ antenna, for varying durations. The oscillation is fitted to Eq. 3.16,

and the Rabi frequency is extracted. It is worth noting that the Rabi frequency is

power-dependent, and the antennas are optimized for a certain range of frequencies.

3.6.2 Radio frequency sweep

To completely transfer from one state to another state, Landau and Zener showed

that the population can be transferred using an adiabatic sweep across the resonance

[97]. The excitation probability from the ground state, |g⟩, to the excited state, |e⟩,
is given by [98]

Pg→e = 1− exp

{
−2Ω2

δ̇

[
tan−1

(
δ (tf )

γ/2

)
− tan−1

(
δ (ti)

γ/2

)]}
, (3.17)

where γ is the decay rate of the Rabi oscillations and δ̇ is a constant detuning sweep-

ing rate across a resonance. When the detuning δ starts from far below resonance at
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initial time ti, through the level crossing at δ = 0, and ending up far above resonance

at time t = tf , Eq. 3.17 is simplified to

Pg→e = 1− e−2πΩ2/δ̇. (3.18)

It is worthwhile noting that a slow ramp through resonance, δ̇/Ω2 ≪ 1, represents

an adiabatic process and results in complete transfer to the excited state.

According to the scattering properties of a |1⟩−|3⟩ mixture, it can provide a stronger

attractive interaction compared to other mixtures. We later work with this mixture

to enhance evaporation for 2d Fermi gases. To prepare a |1⟩ − |3⟩ mixture, we

start with a balanced |1⟩ − |2⟩ mixture in the ODT and we apply a sweeping pulse

spanning 500 kHz and centered at 81.9297 MHz to transfer atoms from |2⟩ to |3⟩ at
a magnetic field of 795 G. As a result, we obtain a |1⟩−|3⟩ mixture. The population

in |3⟩ is measured as a function of sweep time as illustrated in Fig. 3.14(c). As can

be seen, a long sweep time completely transfers to the other state with a fidelity

exceeding 95%.

3.7 Light sheet

Cold atoms trapped in an optical dipole trap naturally form a 3d cloud which does

not meet the requirements for microscopy applications. To address this, atoms

are prepared in a single plane, particularly for 2d systems, a strongly oblate cloud

shape is necessary, referred to as a light sheet. The light sheet beam is derived

from the zeroth order of the optical dipole trap AOM and the light sheet can reach

powers of up to 100W although the typical power used is 24W. The beam waist

is (w0x, w0y, w0z) = (50, 70, 4.2) µm with p−polarization. The setup of the light

sheet is shown in Fig. 3.11. The light sheet can be treated as the elliptical Gaussian

beam propagating along the y-axis in Cartesian coordinates, as demonstrated in

Fig 3.15(a). The beam intensity is given by

I(x, y, z) = I0

(
w01

w1(y)

)(
w02

w2(y)

)
exp

[
−2

((
x

w1(y)

)2

+

(
z

w2(y)

)2
)]

, (3.19)
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Figure 3.15: Light sheet schematic and amplitude modulation spectroscopy. (a)

The creation of an oblate beam using two cylindrical lenses (L1, L2) and the beam

is tightly focused to the atom position by an aspheric lens (L3). Arrows along the

propagation direction indicate the beam size in vertical and horizontal directions. The

inset presents the absorption imaging of the light sheet. More details on the setup can

be found in Fig 3.11. (b) Amplitude modulation spectroscopy. Three resonances are

observed using a power of 800mW, corresponding to a longitudinal frequency of 950(10)

Hz and two transverse frequencies of 1.6(1) kHz and 29(2) kHz. Note that the trap

frequency is half of the modulation frequency due to the parametric heating process [99].

Error bars are the standard error of the mean. Based on Eqs. 3.20 and 3.21, we expect

that trap frequencies are (1.2, 1.7, 28.9) kHz.
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where the maximum intensity is I0 = 2P0/(πw01w02), P0 is the beam power, beam

waist wi = w0i

√
1 + (y/yRi)2, Rayleigh range in free space is yRi = πw2

0i/λ, and w0i

is the beam waist at focus position.

To determine the trap frequency of the light sheet, We expand Eq. 3.19 as a series

about either x = 0 or z = 0 at the focus position (y = 0) up to the second order.

Equating the coefficient of the second order to that of a harmonic oscillator, allows

us to determine the radial trap frequency, expressed as

fx,z =
1

πw0x,0z

√
2P0ηdip

mπw0xw0z

. (3.20)

Similarly, the longitudinal frequency is the trap frequency along the propagation

direction and can be calculated by expanding about y = 0 while keeping x = z = 0,

leading to

fy =
λ

2π2

√
w4

0x + w4
0z

w2
0xw

2
0z

√
2P0ηdip

mπw0xw0z

, (3.21)

where ηdip is the conversion factor between intensity and dipole potential.

The creation of a light sheet using a system of cylindrical lenses is illustrated in

Fig. 3.15. The trap frequency of the light sheet is verified by performing amplitude

modulation spectroscopy and we compare it with the trap frequency calculated from

the elliptical Gaussian beam as discussed in Eqs. 3.20 and 3.21.

3.8 Bottom beam

In the context of the light sheet and the optical dipole trap, their trap frequencies in

the xy-plane are asymmetric due to their shapes. To achieve symmetry for 2d Fermi

gas systems, we require uniform radial confinement. This is achieved using a 1070 nm

laser propagating upward, referred to as the bottom beam. It provides uniform radial

confinement with a beam waist of approximately 110µm and a maximum power of

2W. We confirm its properties by performing amplitude modulation spectroscopy

in Fig. 3.16. In fact, the bottom beam facilitates atom loading to the accordion

lattice, a 1d lattice in the vertical direction as discussed in Section 3.9. The bottom
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beam provides an attractive force to hold the atoms and prevents them from being

lost from the trap due to the presence of repulsive forces caused by the blue-detuned

laser of the accordion lattice.

The setup of the bottom beam before and after the coupling to a high-power fiber

(P5-1064HE-2) is illustrated in Figs. 3.5 and 3.11. We align the beam to the fiber

at a lower power and optimize for higher power. Consequently, we achieve a fiber

coupling efficiency of approximately 50% at both low and high power. We avoid

the retroreflections from the viewports creating disturbances at the atom position

by tilting the bottom beam a few degrees. In the upcoming section, we present the

essential potential for studying 2d systems.
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) Figure 3.16: Bottom beam spectroscopy.

Amplitude modulation is applied to the bot-

tom beam with a power of 2W, result-

ing in a trap frequency of approximately

(2π)×315Hz. The first dip is attributed to

the excitation of subharmonics. Error bars

are standard errors of the mean.

3.9 Accordion lattice

To allow for high-resolution imaging, we focus on 2d systems as our area of interest.

We achieve a quasi 2d system by confining atoms to the ground state of the third

dimension, saying in the vertical direction, where this condition satisfies h̄ωz ≫
h̄ωy, h̄ωx. Here, h̄ω is the quantized energy of a quantum harmonic oscillator. To

address this, we implemented the accordion lattice, a 1d optical lattice, similar to

those described in [100–102]. The lattice is formed by a 532 nm laser and the

discussion of generating this laser is detailed in Section 3.9.1. It is important to

note that the light sheet cannot achieve 2d gases because its vertical confinement is

not sufficiently strong, and the potential is non-uniform. This can be confirmed by
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filling energy levels in the trap with fermions.

The concept of creating the accordion lattice involves crossing two laser beams

at a variable angle, allowing for tunable lattice spacing. Smaller lattice spacing

corresponds to a larger trap frequency at a fixed power. This can be viewed as the

1d potential being steeper, causing atoms to experience a stronger potential gradient

in the trap. For further detail, let us consider the two plane waves with identical

electric field amplitudes, E0, given by

E1 = E0e
−i(k1·r+ωt) ê1, (3.22)

E2 = E0e
−i(k2·r+ωt) ê2, (3.23)

where êi represents the direction of electric field, ki is the wavevector, and ω is

the angular frequency. The setup illustrating the definition of Eqs. 3.22 and 3.23 is

shown in Fig. 3.17(a).
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Figure 3.17: Crossing beams. (a) Two green beams with a wavelength of 532 nm

are generated by frequency doubling and both beams cross at the atom position. By

adjusting the proper polarization and crossing angle, we obtain the interference pattern

shown in the inset with the largest spacing of 8 µm. This 1d potential is referred to as

the accordion lattice. (b) Amplitude modulation spectroscopy of the accordion lattice.

The trap frequency is (2π)×22 kHz.
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A strong contrast of the interference pattern is obtained by adjusting the half-

waveplates such that the polarizations of the two beams are parallel to the optical

table, leading to ê1 · ê2 = 1. The total intensity is expressed as

I =
1

2
εc
(
2E2

0 + E2
0e

−i(k2−k1)·r + E2
0e

i(k2−k1)·r
)
. (3.24)

To simplify Eq. 3.24, we apply the fact that k1 and k2 have identical components,

except for the vertical component, which points in opposite directions. This results

in k2 − k1 = 2|k| sin θ ẑ where 2θ represents the crossing angle. Here, we obtain

I = I0 cos

(
2π

a
z

)
+ offset, (3.25)

where I0 is the maximum intensity and a ≡ λ/(2 sin θ) is the lattice spacing. As

can be seen, the crossing angle determines the lattice spacing. As θ approaches π/2,

it represents two identical waves with the same frequency propagating in opposite

directions, leading to the formation of a standing wave with a spacing of λ/2.

3.9.1 Frequency doubling

To form the accordion lattice from the 532 nm laser, we generate the laser light by

frequency doubling of the 1064 nm beam derived from the zeroth order of the square

lattice AOM (Fig. 3.18(a)). We focus the beam waist of 30µm onto the front face

of the crystal (PPMgSLT, OXIDE Corporation) to minimize thermal lensing. The

mount of the crystal attached to the thermoelectric cooler (TEC) is shown in the left

inset of Fig. 3.18(a). We measure the second harmonic power as a function of seed

power in Fig. 3.18(b). The maximum output power of 3W is obtained at an optimal

temperature of 44.0◦ (Fig. 3.18(c)) with a wavelength of 532 nm using a seed power

of 16W. Our fiber coupling has an efficiency of 60% in both low and high power, no

saturation is observed. The mixture of 532 nm and 1064 nm lights is separated by

a dichroic mirror (DMLP900). However, we observe that 1064 nm light is not fully

suppressed. To prevent the residual light from the 1064 nm laser, a low pass filter

(FESH0550) is added to the beam path. The 532 nm beam is coupled to a fiber

(P3-488PM-FC-1) for the purpose of polarization cleaning. We add a motor shutter
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in front of the fiber. The shutter is designed to automatically close within 6 s after

a trigger to protect the fiber tip from excessive heating. Overall, we can obtain a

maximum power of approximately 1.8W at the other end of the fiber (Fig. 3.19).

At this point, we have prepared the 532 nm laser for the accordion lattice. In the

subsequent section, the setup of the lattice is detailed.

3.9.2 Accordion lattice setup

On the other end of the fiber, we prepare the accordion lattice beam as follows:

We use a 400 mm cylindrical lens to focus the beam waist down to 80 µm at the

center of the acoustic optical deflector (AOD). The schematic of the setup is shown

in Fig. 3.19. Here, we tilt the beam upward by the mirror before the AOD and

the AOD vertically deflects the beam. We use the first order that has a deflection

angle depending on a driven frequency from 95MHz to 105MHz with a maximum

efficiency of 80%. After the AOD, a 4− f system is implemented, consisting of of a

750 mm lens and a 150 mm cut lens to demagnify the beam by a factor of five at the

atom position. The cut-lens is mounted on the rock-stone-obelisk shape attached to

a translation stage (XRN25P), as shown in the right inset of Fig. 3.19. The tower

indicated by the bottom inset of Fig. 3.19 contains a beamsplitter to split a single

beam into two identical beams. The separation of the two beams is determined by

the height of the input beam to the tower. The two mirrors after the tower adjust

the beam parallel to the optical table (the top inset of Fig. 3.19).

We initially perform a coarse alignment of the accordion lattice using the optical

dipole trap by changing the accordion lattice beams to cross-polarization, which

results in no interference. We observe a hole at the center of the ODT due to the

repulsive forces experienced by the atoms from the crossing of the accordion beams.

To optimize loading, we adjust the accordion lattice to maximize the number of

atoms loaded from the light sheet. For precise alignment, we modulate its intensity

and search for the position where it exhibits the highest trapping frequency. This

position serves as our best estimate for the center of the accordion lattice.
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(a)

Figure 3.18: Frequency doubling. (a) Schematic of the frequency doubling setup. The

seed laser is derived from the zeroth order of the square-lattice AOM. The center inset is

a rendered image of a quasi-phase-matching (QPM) crystal mount with a thermoelectric

cooler (TEC), taken from [103]. The bottom right inset is the image of the frequency

doubling setup. (b) Second harmonic generation as a function of seed power. The blue

dots represent the data and the solid line is the fit to the square of power, as expected

for the 2nd harmonics process. (c) Second harmonic generation as a function of the

crystal temperature. The data points are represented by dots, and the solid line is fit to

a Gaussian function. The seed power is set to 8 W.

In the experiment, our 3d gas is compressed into a 2d regime by loading atoms from

the light sheet into a single layer of the accordion lattice confined by the bottom
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beam. We confirm the single layer by increasing the spacing for a short time and

observing the time of flight measurement. The initial lattice spacing is 8 µm for

capturing as many atoms as possible. After loading to the layer, we completely turn

off the light sheet potential and shrink the spacing down to 3 µm where the trap

frequency is (2π)×22 kHz. This trap frequency is measured by amplitude modulation

spectroscopy using a single-site resolution shown in Fig. 3.17(b).

side view

side view

side view
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Figure 3.19: Accordion lattice setup. The schematic of the accordion lattice setup is

illustrated. The bottom inset indicates the tower used to split the accordion lattice beam.

In the right inset, the translation stage mounted by the cut-lens is shown with the cut-

lens hidden behind the mount. The top inset shows an image of optical components after

the tower, where two parallel beams are focused by the cut-lens to the atom position.

To verify the degenerate Fermi gases, we measure the atomic density in the light

sheet and the accordion lattice shown in Figs. 3.20(a,b). The properties of the 2d

Fermi gas confined in the accordion lattice are determined by fitting to Eq. C.27

while the atoms in the light sheet are fitted to a 3d Fermi gas because atoms occupy
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higher levels than the ground state of the third dimension of a harmonics oscilla-

tor. We find that fitting elongated light sheet clouds is not trivial for the elliptical

azimuthal average. To address this, we opt for a more effective approach by fitting

the center cross-section instead. The temperature, expressed in terms of the Fermi

temperature, is obtained from the fit and we determine the Fermi temperature us-

ing the known atom number and trap frequency. For reference, the atom number in

different stages of experiments is tabulated in Table. 3.1 including temperature and

phase space density. Now, we have almost all the necessary pieces to study Hubbard

physics. Hereafter, we will primarily discuss how optical lattices can be created in

the experiment.
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Figure 3.20: Fermi gas in light sheet and accordion lattice. (a) Fermi gas cross-

section in the light sheet. The fit is aligned along the minor axis of the light sheet

(indicated by arrows in the inset). The data points (blue dot) are fitted to the 3d

Fermi gas model (blue solid line), a Gaussian fit (black dashed line). From the fit, we

extract the temperature of 0.20TF where TF=3.5 µK and an atom number is 12,000

for a single spin component. The trap frequency of the light sheet at low power is

ω = 2π × (0.5, 0.8, 12) kHz. (b) An azimuthal average of 2d Fermi gas in both the

accordion lattice and the bottom beam potentials. We extract a temperature of 0.35TF

from the 2d Fermi gas fit where TF=2.5 µK with 10,000 of atoms. Error bars are smaller

than the size of the dots. Note that the Fermi gas fit to the cross-section of (b) provides

a temperature that agrees with the azimuthal fit.
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3.10 Triangular lattice

The last of the essential components for a quantum gas microscope is the optical

lattices, which trap the atoms in an array of potential wells. These lattices provide

a well-defined and controllable environment for the atoms. This setup allows for

studying the Hubbard model, as discussed in Chapter 1, where ultracold atoms

on optical lattices serve as a versatile platform for simulating and understanding

complex quantum many-body systems. Here, I explain how the triangular lattice is

formed using a recycled-beam approach, which facilitates a simple switch to square

lattices.

In the experiment, we utilize the Mephisto MOPA, emitting light at a wavelength

of 1064 nm, to create optical lattices. As shown in Fig. 3.21, the lattice beam

propagates to an isolator which prevents retroreflections to the laser source. The

first order of the AOM (Gooch&Housego IFS080-2S2G-3-LV1) is used to generate

the triangular lattice beam while the zeroth-order output is directed to the second

AOM. The triangular-lattice AOM operates at a frequency of 79.949MHz for optimal

efficiency. The first-order output of the second AOM is used for creating square

lattices whereas the zeroth-order output is directed to the frequency doubling. It

is worth noting that irregularities may occur in the lattice beam profile when the

Mephisto MOPA operates at low power. For alignment purposes, such as aligning

the triangular lattice, we apply full power to the triangular-lattice AOM and adjust

the first-order output to the desired power level.

The first triangular lattice beam is prepared as illustrated in the inset of Fig. 3.21.

The lattice beam is reflected down to the bottom layer of the optical table. To form

the triangular lattice, all three lattice beams propagate from the negative z-direction

(down) to the positive z-direction (up) at an angle of 45◦ out of the xy-plane through

the science chamber (Fig. 3.22). Their projections onto the xy-plane intersect each

other at an angle of 120.0(6)◦. The power for each beam is 42W, 40W, and 38W,

respectively, due to losses caused by optics during the recycling.
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Figure 3.21: Schematic of lattice

setup. The lattice laser is gen-

erated by the 1064 nm Mephisto

MOPA. The first-order output of

the AOM right after the laser is

used for the triangular lattice and

the second AOM is for the square

lattice. The zeroth-order output

of the square AOM is directed to

the crystal for generating a green

laser through the frequency dou-

bling process. To monitor the laser

intensity, we capture transmitted

light through a mirror and reflect a

reasonable amount of light from a

thin window (WG41010-C) for in-

tensity stabilization at low power

(< 1W). For higher-intensity sta-

bilization, we use the reflected light

from a side viewport.
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All three beams have a Gaussian beam waist of about 30µm at the focus. This

configuration leads us to a triangular lattice with a lattice spacing of alatt = 1003 nm.

Note that the configuration for the triangular lattice is compatible with a standard

octagon vacuum chamber, however, it requires meticulous consideration of objective

mount and magnetic field coils, which can obstruct optical access (Fig. 3.22).

RPR2

R1

Lattice Beam

T1

T2

T3
z

x
y +

T1
T2

T3

Figure 3.22: Triangular lattice and Raman imaging beams. (left) Sketch of tri-

angular lattice and Raman sideband imaging beams and their alignment relative to the

vacuum chamber. The stainless-steel octagon chamber is equipped with an outer copper

coil pair for the MOT field and an inner coil pair for the Feshbach field. The triangular

lattice is formed by recycling the lattice beam through the recessed top and bottom win-

dows, leaving sufficient space for the objective at the top window. The second and third

focus are created by 1:1 imaging system, which are not shown. Three orange arrows

(T1, T2, and T3) indicate the direction of the three beams which cross at the position

of the atoms where the triangular lattice is formed. The polarization configuration used

for imaging in the lattice is illustrated in the bottom middle inset. The Raman cooling

beams (R1 and R2) and the Raman repump beam (RP) are sent through the side win-

dows. Figure was taken from previous work [84].
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In addition, we have custom-designed anti-reflection coatings for the vacuum win-

dows to reduce reflections at a 45◦ angle of incidence. These coatings can be achieved

by carefully designing the coating thickness and refractive index regardless of the

polarization state of the incident light. Since the interference pattern between the

three crossing beams depends on both the wavevectors and polarizations, these pa-

rameters have to be carefully adjusted for each beam. The angles between the lattice

beams are restricted to about 1◦ by the optical access and we use half-wave plates to

control the polarizations of all lattice passes. For the experiments reported in [104],

we adjusted these parameters to obtain the strongest possible interference pattern

in the triangular lattice. We found that the lattice depth is maximal for incoming

linear polarization angles of about 40◦,−40◦, and 80◦ for lattice beams L1, L2, and

L3, respectively, relative to the vertical polarization closest aligned to the z-axis

(Fig. 3.22).

Later, we realized that the sigma configuration of lattice beams allows us to obtain a

symmetric triangular lattice which also exhibits the strongest interference contrast,

enhancing the fidelity of fluorescence imaging.

3.10.1 Depth calibration of 1d optical lattices

To check the overlapping of two lattice beams, the most straightforward technique

is using Kapitza-Dirac scattering. The working principle is based on the interaction

between atoms and a standing light wave acting as a stationary field. When atoms

pass through a periodic potential, the atoms experience the potential like a grating

and are scattered [105]. This can be viewed as a momentum transferred from the

standing wave to the atoms. The validity of Kapitza-Dirac scattering relies on the

Raman-Nath approximation that neglects particle motion over the duration of the

interaction. The interaction time τ is required to be extremely shorter than the

inverse of recoil frequency ωr, τ ≪ 1/ωr. This process is different from the Bragg

scattering which requires the difference in wavevectors between incident and reflected

light to be a reciprocal lattice vector of the periodic potential [106, 107].
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Let us consider the standing wave that has a potential given by V0 sin
2(kLz) with

a wavenumber kL = 2π/λ. The potential is switched on and off by a duration τ .

Here, we introduce dimensionless parameters,

α ≡ (E(2)
r /h̄)τ, (3.26)

β ≡ (V0/h̄)τ, (3.27)

where E
(n)
r = (nh̄kL)

2/(2m) represents the n-photon recoil energy. In the limit of

Raman-Nath approximation, βα ≪ 1, the population of the n-th diffracted order is

given by

Pn = J2
n(β/2), (3.28)

where Jn are Bessel functions of the first kind [108]. Derivations can be found in

Appendix C.7.

time

Figure 3.23: mBECs time of flight. The interaction of 6Li is tuned to high interaction

and a 6Li pair forms a molecule that behaves like a boson. Each shot has 2ms separation.

In the experiment, we prepare molecular Bose-Einstein condensates (mBECs) using

a spin-balanced mixture of the two lowest hyperfine states. We sweep the Feshbach

field at the vicinity of 810 G from high to low magnetic field and perform evaporation

to achieve mBECs. To verify the mBECs, we employ the time of flight (TOF) for the

cloud and illustrate the results in Fig. 3.23. The appearance of the cloud exhibits an

inversion of aspect ratio as a function of time, indicating the presence of a condensed

fraction. It is worth noting that the anisotropic shape at the initial time represents

the isotropy of the trap potential, here, we perform the measurement in the optical
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dipole trap. Next, we apply a pulse of the lattice beams and measure the population

in momentum space using the TOF technique.

Later we realized that the lattice pulse is not perfectly square, and it is better to

analyze by considering the pulse area A = V0τ . In fact, the lattice depth V0 is

proportional to the voltage Vi measured by a photodiode i.e., V0 = (2h̄c)Vi where c

is a constant. By fitting the zeroth order of the scattering to Eq. 3.28, we obtain the

maximum 1d lattice depth of 732(152)ETri
r at full power of approximately 40W for

the cross of two triangular-lattice beams (Fig. 3.24). Here, ETri
r denotes the recoil

energy of the triangular lattice, which is equal to h × 8.2 kHz, where h is Planck’s

constant.
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Figure 3.24: 1d Kapitza-Dirac scattering. (a) Absorption image of the scattering

generated by the interference of two triangular-lattice beams. The field of view is 260µm

× 260 µm. (b) The zeroth-order population is a function of the pulse area. The data

(blue dots) are fitted to Eq. 3.28 which we treat c as a free parameter. The lattice depth

is obtained using the relation V0 = (2h̄c)Vi.

3.10.2 Depth calibration of 2d optical lattices

When three triangular-lattice beams cross in a certain configuration, we can obtain

a 2d triangular lattice. We simulate the 2d pattern based on the beam configuration

that we have. To begin with, we apply the fact that the time evolution of Hamil-
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tonian in the Raman-Nath regime can be approximated by exp[−iτV (r)/h̄]. The

wavefunction at a later time τ can be written in terms of reciprocal lattices and is

given by

e−
i
h̄
τV (r) |Ψ0⟩ =

∞∑
n1=−∞

∞∑
n2=−∞

cn1,n2e
i(n1b1+n2b2)·r |Ψ0⟩ ,

where |Ψ0⟩ represents the initial wavefunction and cn1,n2 is the scattering amplitude

for diffraction order (n1, n2) such that

cn1,n2 =

∫ ∫
e−

i
h̄
τV (r)e−i(n1b1+n2b2)·rdr.

Here, the probability being the order (n1, n2) is Pn1,n2 = |cn1,n2|2. By solving for the

analytic solution to the triangular lattice, the wavefunction after atoms are scattered

by the lattice is given by

|Ψ⟩ = e−iV (r)τ/h̄ |Ψ0⟩

= eiV0τ/h̄ cos(b1·r)eiV0τ/h̄ cos(b2·r)eiV0τ/h̄ cos(b3·r) |Ψ0⟩ ,
(3.29)

where we use linear s−polarization to form the triangular lattice and here V0 =

V12,ss = V23,ss = V13,ss defined in Eq. 4.32 for a symmetric triangular lattice.

The population being in the (n1,n2) order is therefore

P(n1,n2) =

∣∣∣∣∣
∞∑

n3=−∞

in1+n2−n3Jn1−n3(
V0τ

h̄
)Jn2−n3(

V0τ

h̄
)Jn3(

V0τ

h̄
)

∣∣∣∣∣
2

. (3.30)

By picking up the zeroth order, (n1, n2) = (0, 0), the density is expressed as

P(0,0) = B

∣∣∣∣∣
∞∑

n3=−∞

i−n3J3
n3
(cA)

∣∣∣∣∣
2

, (3.31)

where A represents the pulse area. The lattice depth is expected to be 9V0/2 where

the factor of 1/2 takes into account the beam propagation direction 45◦ off-plane in

the upward direction. Through fitting of the decay curve in the Fig. 3.25 to Eq. 3.31,

we find a maximum lattice depth of approximately 5000ETri
r .

It is worthwhile noting that the asymmetry of the scattering from our triangular

lattice shown in Fig. 3.25(a) was studied in more detail in [109] by considering the

geometry phase. Recently, the diffraction pattern of honeycomb geometry has been

demonstrated in [110].
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Figure 3.25: 2d Kapitza-Dirac scattering. The scattering is generated by (a) a sym-

metric triangular lattice and (c) a square lattice. (d) An asymmetric square lattice is ob-

tained by misaligning the lattice beams on purpose. The field of view is 160 µm×160µm.

(b) Zeroth-order population of triangular lattice scattering as a function of pulse area.

Dots represent experimental data and the solid line is the fit to Eq. 3.31.

3.11 Square lattice

The triangular-lattice setup introduces additional complexity due to its non-trivial

geometry in contrast to the square lattice, which offers a simpler and more intuitive

geometry. Here, we implemented a versatile square lattice in the same experimental

setup which can be superimposed with the triangular lattice. The square lattice

setup can be used at 532 nm or 752 nm lattice spacing. Currently, we do not control

the relative phase between the square lattices and the triangular lattice, however,

this can be implemented by piezo mirror mounts and feedback from single-site re-
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solved images of atoms in the individual lattices. We create the square lattices using

the recycled lattice setup as described in [49, 111] (Fig. 3.26(a)). For vertical polar-

ization, four-beam interference leads to a 752 nm spacing lattice, while an in-plane

polarization creates a 532 nm spacing lattice. The power of the four passes is 41W,

39W, 37W and 36W, respectively, with a Gaussian beam waist of 70 µm. The trap

depths are 1900ESq,532
r and 7500ESq,752

r . Here, ESq,532
r and ESq,752

r denote the recoil

energy of square lattices with lattice spacing of 532 nm and 752 nm, which are equal

to h × 29.1 and h × 14.6 kHz, respectively. Trap frequencies are 1.36(2)MHz and

1.90(4)MHz for the 532 nm and 752 nm spacing lattices (Fig. 3.26(b)).

The square lattices have smaller lattice spacing than the triangular lattice, however,

our reconstruction algorithm is able to determine the lattice occupation with an

error only limited by the observed hopping and loss (Figs. 3.26(c,d)). We confirm

this by comparing different fitting subroutines which lead to differences much smaller

than the imaging infidelity. The 532 nm spacing lattice is imaged using the same

Raman cooling configuration as the triangular lattice, while for the 752 nm square

lattice the Raman beam R2 is the retroreflection of the incoming Raman beam R1,

instead of the orthogonal configuration described above. For the triangular and

532 nm spacing square lattices with smaller trap frequencies, we observe that the

orthogonal Raman beam configuration is necessary, however, for trap frequencies

beyond 1.5MHz, the retroreflected configuration works well. The square lattices

have imaging fidelities of 84(3)% and 97(1)%, with detected filling up to 50%, in

532 nm and 752 nm spacing lattices, respectively.

Our imaging fidelity in the 532 nm spacing lattice is slightly lower than observed

previously in a three-dimensional 532 nm spacing lattice, possibly caused by our

weaker z confinement [47]. However, the imaging fidelity in the 752 nm spacing

lattice is comparable with previous results [49]. Due to the large sideband frequency

in our 752 nm spacing lattice, it would be possible to double the system size while

maintaining sufficient lattice depth for high-fidelity imaging. Superimposing the

triangular lattice with the square lattice can form a two-dimensional quasi-crystalline
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lattice [112], which could be used to study many-body localization in a non-separable

two-dimensional quasi-periodic lattice.
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Figure 3.26: Comparison to square lattices. (a) Square lattice setup. Orange

and blue arrows denote polarizations of 532 nm and 752 nm spacing square lattices, re-

spectively. (b) Raman sideband spectra in 532 nm spacing (orange) and 752 nm spacing

(blue) square lattice. The dots denote experimental data and solid lines are Gaussian

fits. The sidebands are at 1.36(2)MHz and 1.90(4)MHz for 532 nm and 752 nm square

lattices, respectively. The asymmetry of the sidebands shows that the atoms are pre-

dominantly in the 2d vibrational ground state after loading into the lattice. We find

average number of vibrational quanta per dimension in 2d of 0.1(1) in the 532 nm lat-

tice and 0.2+0.8
−0.2 in the 752 nm lattice. (c-d) Single-site-resolved images of 6Li atoms

with lattice structure overlay in the 532 nm spacing and 752 nm spacing lattice, respec-

tively. The gray circles indicate occupied lattice sites. For the 532 nm lattice, the Raman

configuration is the same as for the triangular, however, for the 752 nm lattice we use

counter-propagating Raman beams. Figure was taken from previous work [84].
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Our setup is prepared to superimpose both lattices by splitting the laser power

between both simultaneously realized optical paths and will be capable of studying

such systems on the single-atom level. We note that phase locking the lattices in

our experiment is not required because the lattice beams are generated by the same

laser source.



Chapter 4

The Triangular-Lattice

Fermi-Hubbard Model

The Fermi-Hubbard model is a versatile platform for studying strongly correlated

systems. To simulate quantum materials using ultracold-atomic systems, we are re-

quired to establish a connection between condensed matter theory and cold atom the-

ory. This chapter presents the relevant background for studying the Fermi-Hubbard

model with ultracold atoms in optical lattices, along with the observable quantities

measured in experiments. The first section introduces a simple model of energy level

in a solid-like system due to the overlapping of atomic orbitals in optical lattices,

thus forming a band structure. Next, Wannier functions are discussed to construct

localized wavefunctions that represent the electronic states in a crystal. Later, I

present the Fermi-Hubbard model used to study the behavior of strongly correlated

systems, where the interplay between atom motion and interaction plays a significant

role. Limiting cases like the Mott insulator and non-interacting gas are discussed

for this model. Finally, I indicate observable quantities typically used to determine

the system’s properties.

69
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4.1 Band structure

The band structure plays a crucial role in comprehending the electronic properties

of materials. It offers insights into the distribution of electrons across energy levels,

or bands, within a solid material. The concept of band structure provides expla-

nations of phenomena such as insulators, conductors, and semiconductors, thereby

illuminating the diverse electrical behaviors exhibited by different materials.

For both condensed matter and optical lattice systems, the band structure exhibits

different characteristics depending on the lattice structure. In this context, we will

proceed by establishing a foundational understanding of band structure in 1d optical

lattices, subsequently delving into higher dimensions like the 2d optical lattice, a

focal point of this dissertation.

4.1.1 Band structure in 1d

A one-dimensional lattice is described by a periodic potential, Vlatt = V0 sin
2(kLx),

where V0 is the lattice depth, the lattice spacing is d = λL/2 = π/kL, lattice mo-

mentum h̄kL, and recoil energy associated with lattice spacing is ER = h̄2k2L/2ma,

given the laser wavelength λL and the mass of the atom ma. In the following, the

derivation and calculation are adapted from ref. [113]. Let T̂d be the translational

operator that translates the position by d, expressed as

T̂d = exp(ip̂d/h̄), (4.1)

where p̂ is the momentum operator. We note that the eigenstate of T̂d in real

space, saying u(x), is a periodic function with a period of d. The translational

operator commutes with the lattice potential because the lattice is invariant under

a translation by an amount of lattice spacing d,[
T̂d, V̂latt

]
= 0. (4.2)
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This implies the commutation of Hamiltonian, Ĥ = p̂2/2ma+V̂latt, and translational

operator T̂d, [
T̂d, Ĥ

]
= 0. (4.3)

Let |ϕ⟩ be an eigenstate of the Hamiltonian. The projection onto position space

⟨x|ϕ⟩ is ϕ(x) and the translation of ϕ by d in position space is given by

⟨x|T̂d|ϕ⟩ = ϕ(x+ d). (4.4)

According to Eq. 4.3, the eigenstate is invariant under the translational operator. In

other words, they share the same basis. Therefore, the eigenstate of the Hamiltonian

has to be written in the form of a plane wave multiplied by a periodic function,

ϕn,q(x) = eiqxun,q(x). (4.5)

This expression is known as Bloch’s theorem where ϕn,q is the Bloch wave, un,q is the

Bloch periodic function with period d, and q is the quantum number in momentum

space. The value of q is in the first Brillouin zone and defined in range [−kL, kL).
We note that adding a phase eiqx to u(x) does not change the fact that it remains

a solution to the Hamiltonian.

By expanding the periodic potential Vlatt(x) and the Bloch function un,q(x) in terms

of Fourier series, here we have

Vlatt(x) =
∑
m∈Z

Ṽ (m)eiQmx, (4.6)

un,q(x) =
∑
m∈Z

ũn,q(m)eiQmx, (4.7)

where Qm is defined as 2πm/d and m is an integer.

According to the time-independent Schrodinger equation,

− h̄2

2ma

d2

dx2
ϕn,q(x) + Vlattϕn,q(x) = Eϕn,q(x). (4.8)
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We plug Eqs. 4.6, 4.7 into Eq. 4.8 and rewrite in terms of summations

− h̄2

2ma

∑
m∈Z

(iq + iQm)
2ũn,q(m)ei(q+Qm)x+

∑
m∈Z

∑
m′∈Z

Ṽ (m′)ũn,q(m)ei(Qm+Qm′+q)x

=
∑
m∈Z

Enũn,q(m)ei(q+Qm)x.

(4.9)

By factorizing out ũn,q(m)ei(Qm+q)x, the expression becomes

∑
m∈Z

(
h̄2

2ma

(q +Qm)
2 +

∑
m′∈Z

Ṽ (m′)eiQm′x − En

)
ũn,q(m)ei(Qm+q)x = 0. (4.10)

To eliminate the complex exponential term, we multiply both sides by
∑
m′′∈Z

e−i(Qm′′+q)x

and integrate over a unit cell[∑
m∈Z

∑
m′′∈Z

h̄2

2ma

(q +Qm)
2δm,m′′ +

∑
m∈Z

∑
m′∈Z

∑
m′′∈Z

Ṽ (m′)δm+m′,m′′

]
ũn,q = En1ũn,q.

(4.11)

Here, it is convenient to represent this in matrix form, such as

. . .
...

...
... . .

.

. . . h̄2(q+Qm−1)
2

2ma
Ṽ (−1) Ṽ (−2) . . .

· · · Ṽ (1) h̄2(q+Qm)2

2ma
Ṽ (−1) · · ·

· · · Ṽ (2) Ṽ (1) h̄2(q+Qm+1)2

2ma
· · ·

. .
. ...

...
...

. . .





...

ũn,q(m− 1)

ũn,q(m)

ũn,q(m+ 1)

...



=
(
εn(q)− Ṽ (0)

)


...

ũn,q(m− 1)

ũn,q(m)

ũn,q(m+ 1)

...


.

(4.12)

This form resembles an eigenproblem, AX = aX, therefore, one can solve the char-

acteristic equation and find the eigenenergy εn(q) associated with q. An example is

demonstrated in Fig. 4.1.
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Figure 4.1: Band structures and Bloch functions of a 1d lattice. Band structure

for 4ER (a) and 10ER (c). The blue, red, and violet solid lines are the ground band,

first excited band, and second excited band. (b) Bloch functions for the ground and first

excited bands at q = 0, u0,0 (dashed line) and u1,0 (solid line) are shown for a lattice

depth of 4ER. (d) the same as (b) with a lattice depth of 10ER. Here, the potential

Vlatt(x) = V0 sin
2 (πx/d) is used to generate a periodic potential over 30 lattice sites

where V0 is the lattice depth, d is the lattice spacing and ER= h̄2/(2ma)(π/d)
2. The

Fourier coefficients of this potential are Ṽ (0) = V0/2 and Ṽ (±1) = −V0/4, and zero

otherwise.

4.1.2 Band structure in 2d

Higher-dimensional band structures exhibit more interesting phenomena. For in-

stance, in the honeycomb structure of graphite, there are six Dirac points between

the lowest and the first excited bands, representing the touching points between
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the valence and conduction bands, whereas complicated structures are not possible

in one-dimensional (1d) systems. Moving to two dimensions (2d), we expect more

complicated calculations to obtain the band structure and Bloch states. Note that

2d lattices can be simplified to the 1d calculation when the lattices are separable.

In the following, we calculate the two-dimensional band structure, as discussed in

ref. [114]. Here, the Bloch theorem remains valid for higher dimensions, therefore,

the Bloch state at the crystal momentum q of the nth band index is given by

ϕn,q = eiq·ruq,n(r), (4.13)

where uq,n(r) is the periodic function. It can be expanded by the Fourier series as

un,q(r) =
∑

m1,m2∈Z

ũn,q(m1,m2)e
i(m1b1+m2b2)·r. (4.14)

Similar to the periodic potential, it can be expressed as

V (r) =
∑

m1,m2∈Z

Ṽ (m1,m2)e
i(m1b1+m2b2)·r, (4.15)

where Fourier coefficients are

Ṽ (m1,m2) =

∫
a unit cell

V (r)e−i(m1b1+m2b2)·r d3r. (4.16)

By plugging V (r) and ϕn,q(r) into the Schrodinger equation[
− h̄2

2ma

∇2 + V (r)

]
ϕn,q = ϵn,qϕn,q. (4.17)

The first term, representing kinetic energy, becomes

− h̄2

2ma

∇2ϕn,q(r) =
∑

m1,m2∈Z

h̄2

2ma

(m1b1 +m2b2 + q)2 ũn,q(m1,m2)e
i(m1b1+m2b2+q)·r,

(4.18)

and the second term, which describes the influence of the potential, is

V (r)ϕn,q(r) =
∑

m′
1,m

′
2∈Z

∑
m1,m2∈Z

Ṽ (m′
1,m

′
2)ũn,q(m1,m2)e

i[(m1+m′
1)b1+(m2+m′

2)b2+q]·r.

(4.19)
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One can show that the matrix elements of the kinetic energy and potential energy

are

T{m1,m2,q},{n1,n2,s} =

∫
a unit cell

e−i(n1b1+n2b2+s)·r
[
− h̄2

2ma

∇2ei(m1b1+m2b2+q)·r
]
d3r

=
h̄2

2ma

(m1b1 +m2b2 + q)2 δm1,n1δm2,n2δq,s,

(4.20)

and

V{m1,m2,q},{n1,n2,s} =

∫
a unit cell

e−i(n1b1+n2b2+s)·r

×

 ∑
m′

1,m
′
2∈Z

Ṽ (m′
1,m

′
2)e

i(m′
1b1+m′

2b2)·r

 ei(m1b1+m2b2+q)·rd3r

=
∑

m′
1,m

′
2∈Z

Ṽ (m′
1,m

′
2)δm1+m′

1,n1
δm2+m′

2,n2
δq,s

= Ṽ (n1 −m1, n2 −m2)δq,s.

(4.21)

The kinetic and potential energy matrices have dimensions higher than two and

cannot be diagonalized in a normal way. Here, we map {m1,m2}, {n1, n2} to a

2d array and assume q = s for quasimomentum. Let us consider constructing N2

bands, where n1, n2,m1,m2 are integers, satisfying

−N − 1

2
≤ n1, n2,m1,m2 ≤

N − 1

2
. (4.22)

We introduce an index

u ≡ Nn1 + n2 +
N2 + 1

2
, (4.23)

which has values ranging from 1 to N2. The inverse map from u to (n1, n2) is given

by

n1(u) =
⌈ u
N

⌉
− N + 1

2
, (4.24)

n2 (u, n1) = u−Nn1 −
N2

2
− 1

2
, (4.25)

where ⌈. . . ⌉ denotes the ceiling function.
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Similarly, the index v is introduced in the same manner

v ≡ Nm1 +m2 +
N2 + 1

2
. (4.26)

Therefore, the difference between u and v yields

u− v = N(n1 −m1) + (n2 −m2). (4.27)

The above expression implies that any pairs {m1, n1}, {m2, n2} specify the location

of components u, v in the new matrix. For example, (n1 −m1) = 1, (n2 −m2) =

1 → u− v = N or v = u−N . The matrix element of new N2 ×N2 Hamiltonian is

written as

Hu,v = Hu,u−N =
h̄2

2ma

(m1b1 +m2b2 + q)2 δm1,n1δm2,n2 + Ṽ (1, 1)

=
h̄2

2ma

(m1b1 +m2b2 + q)2 δm1,m1+1δm2,m2+1 + Ṽ (1, 1)

=Ṽ (1, 1).

(4.28)

However, in the case of imposing n1 −m1 = n2 −m2 = 0, we have u− v = 0 and

Hu,v = Hu,v=u =
h̄2

2ma

(m1b1 +m2b2 + q)2 + Ṽ (0, 0). (4.29)

By constructing Hu,v for all possible n1, n2,m1,m2, the Hamiltonian reveals N2

bands of the 2d lattice. In particular, we diagonalize the Hamiltonian to obtain

eigenvectors and their associated eigenvalues. Let us denote an eigenvector corre-

sponding to its eigenvalue λn,q for the band nth as [c1(n,q), c2(n,q), . . . , cN2(n,q)]T .

Note that eigenvalues obtained from numerical calculations have to be sorted before

constructing the band structure. The band structure is finally generated by span-

ning q in the first Brillouin zone (e.g., q = β1b1 + β2b2 with 0 ≤ β1, β2 < 1). In

addition, the Bloch states of the band index nth at lattice momentum q is

ϕn,q(r) = e−iq·r
N2∑
u=1

cu(n,q)e
−iku·r, (4.30)

where ku = m1(u)b1 +m2(u,m1)b2.

In the experiment, we are interested in triangular lattices generated by the interfer-

ence of three laser beams tilted by 45◦ off-plane in an upward direction as depicted
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in the inset of Fig 3.22. The beams are crossing at an angle of 120◦ projected onto

the horizontal plane. Each beam is not required to have identical intensity. The

following shows the calculation of optical lattice potential. Let us assume an electric

field Ej with wavevector k, angular frequency ω and global phase ϕj, is given by

Ej(r) =

√
2Ij
cϵ0

exp [i(kj · r+ ϕj)] (cos θj êp,j + exp(iαj) sin θj ês,j) , j = 1, 2, 3,

(4.31)

where
√

2Ij/(cϵ0) represents the field amplitude and êp,j, ês,j are unit vectors of p−
and s−polarizations. θj determines the ratio between polarizations and αj is the

phase difference between polarizations.

By applying a superposition of electric fields, the optical lattice potential is given

by

V (r) =
1

2
cϵ0|E1 + E2 + E3|2 = V12 + V23 + V13 + offset, (4.32)

where

Vij =(1/2)cϵ0(Ei · E∗
j + E∗

i · Ej)

= 2
√
IiIj cos θi cos θj cos ((ki − kj) · r+ ϕi − ϕj) êp,i · êp,j

+2
√
IiIj sin θi sin θj cos ((ki − kj) · r+ ϕi − ϕj + αi − αj) ês,i · ês,j

+2
√
IiIj cos θi sin θj cos ((ki − kj) · r+ ϕi − ϕj − αj)êp,i · ês,j

+2
√
IiIj sin θi cos θj cos ((ki − kj) · r+ ϕi − ϕj + αi)ês,i · êp,j.

To simplify Vij further, we define

Vij,pp ≡ 2
√
IiIj cos θi cos θj êp,i · êp,j, (4.33)

Vij,ss ≡ 2
√
IiIj sin θi sin θj ês,i · ês,j, (4.34)

Vij,ps ≡ 2
√
IiIj cos θi sin θj êp,i · ês,j, (4.35)

Vij,sp ≡ 2
√
IiIj sin θi cos θj ês,i · êp,j. (4.36)
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Therefore, the potential due to a pair of lattice beams, Vij, is given by

Vij =Vij,pp cos ((ki − kj) · r+ ϕi − ϕj)

+Vij,ss cos ((ki − kj) · r+ ϕi − ϕj + αi − αj)

+Vij,ps cos ((ki − kj) · r+ ϕi − ϕj − αj)

+Vij,sp cos ((ki − kj) · r+ ϕi − ϕj + αi) .

(4.37)

Applying our lattice beam directions, the wavevectors for individual beams are

k1 =
1√
2


1

0

1

 kL, k2 =
1

2
√
2


−1

−
√
3

2

 kL, k3 =
1

2
√
2


−1

√
3

2

 kL.

The magnitude of the wavevectors is kL = 2π/λ. Each lattice beam has its polariza-

tion pointing in a direction spanned by s− and p−polarizations. The unit vectors

of polarizations are given by

ês,1 =
1√
2


−1

0

1

 , ês,2 =
1

2
√
2


1

√
3

2

 , ês,3 =
1

2
√
2


1

−
√
3

2

 ,

and

êp,1 =


0

1

0

 , êp,2 =
1

2


√
3

−1

0

 , êp,3 =
1

2


−
√
3

−1

0

 .

The reciprocal vectors of this lattice are

b1 = k1 − k2,

b2 = k2 − k3,

b3 = b1 + b2 = k1 − k3.

(4.38)
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For example, let us consider the potential V12 created by the first and second lattice

beams,

V12 =V12,pp cos (b1 · r+ ϕ1 − ϕ2)

+V12,ss cos (b1 · r+ ϕ1 − ϕ2 + α1 − α2)

+V12,ps cos (b1 · r+ ϕ1 − ϕ2 − α2)

+V12,sp cos (b1 · r+ ϕ1 − ϕ2 + α1) .

(4.39)

By applying Euler’s formula, the above equation becomes

V12 =
V12,pp
2

(
ei(b1·r+ϕ1−ϕ2) + e−i(b1·r+ϕ1−ϕ2)

)
+
V12,ss
2

(
ei(b1·r+ϕ1−ϕ2+α1−α2) + e−i(b1·r+ϕ1−ϕ2+α1−α2)

)
+
V12,ps
2

(
ei(b1·r+ϕ1−ϕ2−α2)) + e−i(b1·r+ϕ1−ϕ2−α2)

)
+
V12,sp
2

(
ei(b1·r+ϕ1−ϕ2+α1) + e−i(b1·r+ϕ1−ϕ2+α1)

)
.

(4.40)

We compare each term of Eq. 4.40 to Eq. 4.15 and Fourier coefficients are

Ṽ (±1, 0) =
1

2
e±i(ϕ1−ϕ2)

(
V12,pp + V12,sse

±i(α1−α2) + V12,pse
∓iα2 + V12,spe

±iα1
)
. (4.41)

Similar to the other potentials, V23 and V13, the Fourier coefficients are

Ṽ (0,±1) =
1

2
e±i(ϕ2−ϕ3)

(
V23,pp + V23,sse

±i(α2−α3) + V23,pse
∓iα3 + V23,spe

±iα2
)
,

(4.42)

Ṽ (±1,±1) =
1

2
e±i(ϕ1−ϕ3)

(
V13,pp + V13,sse

±i(α1−α3) + V13,pse
∓iα3 + V13,spe

±iα1
)
.

(4.43)

Here, the matrix element of the triangular-lattice potential is

V{m1,n1,q},{m2,n2,s} =

∫
e−i(m1b1+n1b2+q)V (r)ei(m2b1+n2b2+s) d3r

= δq,s×


Ṽ (±1, 0) m1 −m2 = ±1, n1 − n2 = 0

Ṽ (0,±1) m1 −m2 = 0, n1 − n2 = ±1

Ṽ (±1,±1) m1 −m2 = ±1, n1 − n2 = ±1,

(4.44)
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where the Fourier coefficients in Eq. 4.44 are analytically obtained from Eqs. 4.41-

4.43. The matrix element of the kinetic energy is

T{m1,m2,q},{n1,n2,s} =
h̄2

2m
(m1b1 +m2b2 + q)2 δm1,n1δm2,n2δq,s.

Next, we apply the fact that a quasimomentum q is within a reciprocal unit cell

that means q = β1b1 + β2b2 where 0 ≤ β1, β2 < 1 and |b1|2 = |b2|2 = 3k2L/2,

b1 · b2 = −3k2L/4. Therefore, the matrix element of the kinetic energy is expressed

as

T{m1,m2,q},{n1,n2,s} =
3

2
ER

[
(m1 + β1)

2 + (m2 + β2)
2 − (m1 + β1)(n2 + β2)

]
× δm1,n1δm2,n2δq,s.

(4.45)

We apply Eqs. 4.44 and 4.45 to construct the Hamiltonian, where the matrix element

is denoted by a pair of indices {u, v} using a mapping described in Eqs. 4.23 and 4.26.

We impose s = q, and thus, the N2 × N2 Hamiltonian matrix element for each

quasimomentum q is expressed as follows:

Hq
uv =



1.5ER [(m1 + β1)
2 + (m2 + β2)

2 − (m1 + β1)(n2 + β2)] u = v

Ṽ (±1, 0) u− v = ±N

Ṽ (0,±1) u− v = ±1

Ṽ (±1,±1) u− v = ±(N + 1).

(4.46)

To discretize quasimomentum, we introduce dimensionless quantities qx, qy. Quasi-

momentum is inside the first Brillouin zone, meaning that q = |b1|(qx, qy, 0) =
√
6/2kL(qx, qy, 0). With the use of q = β1b1 + β2b2, one can write β1, β2 in terms of

qx, qy,

β1 =
2qx√
3
, β2 = qy +

1√
3
qx.

Finally, we obtain the band structure of the triangular lattice, as shown in Fig. 4.2.
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Figure 4.2: Triangular-lattice band structure. The band structure is calculated using

a lattice depth of 9.7ETri
r and a spacing of a = 1003 nm. kx,y represent quasimomenta.

Here we use the sigma polarization by imposing αj = −π/2, θj = π/4, and ϕj = 0.

S−band (red), P−bands (orange), andD−bands (blue). Figure was taken from previous

work [58].

4.2 Wannier functions

Various sets of orthogonal functions can describe electronic states in specific poten-

tials, such as a plane-wave basis. However, an intriguing alternative is the Wannier

function basis. This function holds a unique property: It is localized at a certain lat-

tice site, unlike the plane-wave basis which is spread across space. When discussing

interactions and hopping of atoms between lattices the Wannier basis allows the

calculations of interactions and tunneling through determination of wavefunction

overlaps. To obtain the Wannier function in a periodic potential, I provide two ro-

bust ways to calculate it. The first method uses a complex Fourier series (plane-wave

basis) to form maximally localized states and the second method is the projection

method, where the Wannier function represents the projection of eigenstates onto

the position operator. For simplicity, let us begin with Wannier functions in one

dimension.
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4.2.1 Maximally localized states

Maximally localized states are often used to describe electronic states in crystals.

These states are highly localized around certain atomic sites or regions within the

crystal lattice. An example of such a state is the Wannier function, denoted as

wn(x − xi) for the band n centered at xi can be obtained through the Fourier

transform of the Bloch states,

wn(x− xi) =
1√
Ns

∑
q∈BZ1

e−iqxiϕn,q(x), (4.47)

where Ns is the total number of unit cells in the crystal and the sum runs over all

allowed quasimomenta in the Brillouin zone.

As can be seen in Eq. 4.47, ϕn,q(x) can have arbitrary phase, making the sum of

the ϕn,q(x) to various shapes and most configurations do not result in a localized

wavefunction due to the phase mismatch of each ϕn,q(x). To ensure that the Wannier

function is localized, we apply a trick such that a state with momentum q = qi

constructively interferes with the state with momentum q = −qi in real space,

thus leading to the existence of only real part and implying maximally localize

wavefunction [115]. Specifically, for even excited states i.e., ϕ(x) = ϕ(−x), we

require ϕeven,q(x) + ϕeven,−q(x) to be real and the summation is non-zero at x = 0.

As a result, we ensure that numerical calculations for ϕeven,±q(x) have the same

phase by choosing this state and dividing by its sign at x = 0. A new Bloch state

for even excited state is

ϕnew
even,q(x) =

ϕeven,q(x)

sign(ϕeven,q(0))
, (4.48)

where the sign(z) is defined as z/|z|.

For odd excited states i.e., ϕ(−x) = −ϕ(x), this summation ϕodd,q(x)+ϕodd,−q(x) is

required to be real. The odd function is zero at x = 0. However, to determine its

phase, we can pick its values at x = 0± δx instead where δx is a small number but

close to zero and assigns a new Bloch state for odd excited state

ϕnew
odd,q(x) =

ϕodd,q(x)

sign(ϕodd,q(δx)− ϕodd,q(−δx))
. (4.49)
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After the proper phase adjustment, the Wannier function is achieved by

wn(x− xi) =
1√
Ns

∑
q∈BZ1

e−iqxiϕnew
n,q (x). (4.50)

By applying the criteria discussed here, we obtain the Wannier function demon-

strated in Fig. 4.3. As can be seen, handling the phase adjustment in one dimension

is feasible, however, there is another approach to tackle the Wannier function, as

presented below.

4.2.2 Eigenstates of the projection operator

The projection method can be used to calculate the Wannier function. It involves

projecting the eigenstates onto localized functions centered at each lattice site. Here,

we use a delta function as a localized function. To obtain the eigenstates, we first

express the Hamiltonian in a matrix form such that

Ĥψ = (T̂ + V̂ )ψ = Eψ, (4.51)

where E is the eigenvalue of the Hamiltonian and ψ is the eigenvector.

To generate this matrix, we consider writing the second derivatives in terms of the

zeroth order,

d2

dx2
ψ(x) = lim

δx→0

ψ(x+ δx)− 2ψ(x) + ψ(x− δx)

δx2
. (4.52)

When the numerical calculations are performed, we specify the spatial coordinate,

x, by setting xmin = x1 and xmax = xn+1 with a step size of δx = (xn+1 − x1)/n.

Here, n is the number of discretization points. The second derivative at x = xi is

approximated by a second-order centered difference scheme

d2

dx2
ψ(xi) ≈

ψ(xi + δx)− 2ψ(xi) + ψ(xi − δx)

δx2
(4.53)

=
ψ(xi+1)− 2ψ(xi) + ψ(xi−1)

δx2
. (4.54)

With the use of the Kronecker delta function, the second derivative is expressed as

d2

dx2
ψ(xi) =

1

δx2

n∑
i′=1

ψ(xi′) (δi′,i+1 − 2δi′,i + δi′,i−1) . (4.55)
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To write the second derivatives in a matrix form, an additional summation on i is

added without losing any information,

d2

dx2
ψ(x) =

1

δx2

n∑
i=1

n∑
i′=1

ψ(xi′) (δi′,i+1 − 2δi′,i + δi′,i−1) . (4.56)

Here, we apply periodic boundary conditions, and the matrix form of the kinetic

energy is given by

T̂ψ = − h̄2

2ma

d2

dx2
ψ(x) = − h̄2

2ma



−2 1 0 · · · 0 1

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0

...
...

...
. . . 0 0

0 0 0 · · · −2 1

1 0 0 · · · 1 −2


n×n



ψ(x1)

ψ(x2)

...

ψ(xi)

...

ψ(xn)


.

(4.57)

For the potential energy, which is a function of spatial coordinates and has no

derivative dependence, the potential matrix consists only of diagonal entries,

V̂ ψ =



V (x1) 0 0 · · · 0 0

0 V (x2) 0 · · · 0 0

0 0 V (x3) · · · 0 0

...
...

...
. . . 0 0

0 0 0 · · · V (xn−1) 0

0 0 0 · · · 0 V (xn)





ψ(x1)

ψ(x2)

...

ψ(xi)

...

ψ(xn)


. (4.58)

By combining the kinetic and the potential energy matrix, the Hamiltonian is con-

structed. Next, the Hamiltonian matrix is diagonalized to obtain its eigenvalues

and eigenvectors. It is important to ensure that the eigenvalues and eigenvectors

are properly sorted from the smallest eigenvalue to the largest eigenvalue in order

to later identify them as the ground state, first excited state, and so on.
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As mentioned earlier the localized function used is the delta function. Here, we

apply the fact that the delta function is an eigenfunction of the position operator,

X̂, associated with the observable position x0,

X̂ |x⟩ ≡ x |x⟩ = x0 |x⟩ , (4.59)

where eigenfunction |x⟩ is the delta function centered at x0, δ(x− x0). The matrix

element of projection operator P̂X,ij is given by

P̂X,ij = ⟨ψi|X̂|ψj⟩ . (4.60)

The projection operator onto the lowest band can be obtained using the m lowest-

energy states, where m < n. It can be represented in matrix form as

P̂X =



⟨ψ1|

⟨ψ2|
...

⟨ψm|


m×n



x1 0 · · · 0

0 x2 · · · 0

...
...

. . .
...

0 0 · · · xn


n×n

(
|ψ1⟩ |ψ2⟩ · · · |ψm⟩

)
n×m

. (4.61)

Note that |ψi⟩ has n elements i.e.,

(
ψi(x1) ψi(x2) . . . ψi(xn)

)T

. After diagonal-

ization the P̂X matrix, the projection operator transforms into

ˆ̃PX =



x̃1 0 · · · 0

0 x̃2 · · · 0

...
...

. . .
...

0 0 · · · x̃m


, (4.62)

with eigenvector |x̃i⟩,

|x̃i⟩ =
(
ai1 ai2 . . . aim

)T

, (4.63)

associated with eigenvalue x̃i.



CHAPTER 4. THE TRIANGULAR-LATTICE FERMI-HUBBARD M . . . 86

Finally, we achieve the Wannier function wi centered at x = x̃i for the lowest band

using a superposition of the wavefunctions |ψm⟩ with coefficients aim determined by

Eq. 4.63,

wi = ai1 |ψ1⟩+ ai2 |ψ2⟩+ · · ·+ aim |ψm⟩

=
m∑
j=1

aij |ψj⟩

=
m∑
j=1

aijψj(x).

(4.64)

In Fig. 4.3, the Wannier functions for the lowest band using the maximally localized

states (Section. 4.2.1) and the projection method are demonstrated. The results

show good agreement between methods. Note that the latter method does not

require phase adjustment, making it more general to handle. In fact, the projection

method provides a general framework for obtaining Wannier functions in higher

dimensions, as demonstrated below.
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Figure 4.3: Wannier function for the lowest band of a 1d lattice. (a,b) Lattice

depths of 4ER and 10ER. Solid lines represent the calculation using the maximally

localized states and dashed lines are calculated by the projection method.

To determine the Wannier functions in a 2d lattice system, we initialize the Hamilto-

nian with kinetic energy T̂ and potential energy V̂ in the position basis similar to the

discussion in 1d case. We then diagonalize the Hamiltonian and rewrite projection
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operators P̂X , P̂Y in terms of the ground band of the Hamiltonian. We simulta-

neously diagonalize P̂X and P̂Y . This simultaneous diagonalization is approximate

when the lattice is not exactly separable. Next, we search for simultaneous eigen-

vectors of these projection operators [116]. We finally transform the component in

the lowest band to the position basis. This procedure is effectively the projection

of a spatial delta function to the ground band which corresponds to the Wannier

function on a site [117]. In Fig. 4.4, we demonstrate Wannier functions for triangular

and square lattices at depth of 9.6ETri,Sq
r . It is worth noting that the Wannier func-

tion obtained here will be used to extract the tunneling parameter in the Hubbard

system, as discussed in the following.
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Figure 4.4: Wannier functions of 2d optical lattices. (a) Triangular lattice with

a depth of 9.6ETri
r and a spacing of 1003 nm and (b) Square lattice with a depth of

9.6ESq
r and a spacing of 752 nm. Here, we use ESq

r to represent ESq,752
r = h×14.6 kHz,

as defined in Section 3.11.

4.2.3 Tunneling parameter

As shown in Figs. 4.3 and 4.4, the Wannier functions can extend beyond a specific

site, indicating that the wavefunctions have an amount of overlap with neighboring

atoms. This overlap of wavefunctions allows quantum tunneling to occur and atoms

can tunnel through potential barriers. To understand this tunneling phenomenon,

let us consider a band structure Eq,α with a band index α. The corresponding
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Hamiltonian is given by

H =
∑
q,α

Eq,α |ϕα,q⟩ ⟨ϕα,q| . (4.65)

We apply the fact that the Wannier function is a complete and orthogonal basis

set. The momentum basis |ϕα,k⟩ can be mapped to the Wannier basis |ℓ, α⟩. The

Hamiltonian is transformed into

H =
∑
ℓ,ℓ′,α

J
(α)
ℓ,ℓ′ |wα,ℓ⟩ ⟨wα,ℓ′ | , (4.66)

where α represents the band index and ℓ indicates the lattice site. J
(α)
ℓ,ℓ′ is the

tunneling strength between sites ℓ and ℓ′ at the specific band α.

By multiplying ⟨wℓ,α| on both sides, the tunneling parameter is simply an expecta-

tion value of the Hamiltonian by two different Wannier bases on the band α. Here

the tunneling strength is given by

J
(α)
ℓ,ℓ′ = ⟨wα,ℓ|H|wα,ℓ′⟩ = ⟨wα,ℓ|H

∑
q,α

|ϕα,q⟩ ⟨ϕα,q|wα,ℓ′⟩

=
∑
q,α

⟨wα,ℓ|H|ϕα,q⟩
1√
Ns

e−iq·Rℓ′

=
1

Ns

∑
q

Eq,αe
iq·(Rℓ−Rℓ′ ),

(4.67)

where Rℓ is the position of lattice site, ℓ. The tunneling parameter exponentially

decays when the two sites are far away from each other. This is due to the fact

that the Wannier function is localized at a given lattice site and rapidly decays

with distance. As a result, there is a smaller overlap integral, and the tunneling

parameter is weaker for more localized Wannier functions, which occur in deeper

lattices. Note that we calculate the tunneling parameters using ⟨wα,ℓ|H|wα,ℓ′⟩ in

Eq. 4.67 because the Wannier function is numerically obtained from the method

described in Section 4.2.2. Alternatively, the tunneling strength can be calculated

using a plane-wave basis in Eq. 4.67, which requires additional steps.
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4.3 Fermi-Hubbard model

The Fermi-Hubbard model is a prominent extension of the tight-binding model. The

model addresses phenomena in strongly correlated systems that are not captured by

the tight-binding model. As I briefly introduced the Fermi-Hubbard model in Chap-

ter 2, let us delve into its fundamental formalism here. To understand the model,

we begin with electrons in materials moving around their ionic cores. Electrons in-

teract with each other via Coulomb’s force. In general, the Hamiltonian describing

the system of N electrons is given by

H =
N∑
i=1

(
p2
i

2ma

+ VL (ri)

)
+
∑
ri ̸=rj

VC (ri − rj) , (4.68)

where the ith electron has momentum pi and the electrons are under the potential VL,

caused by their core ion while Coulomb’s interaction between electrons is represented

by VC .

This Hamiltonian can be formulated in terms of second quantization. As demon-

strated by [19] in the case of bosonic systems, interacting bosonic atoms within

an optical lattice can be transformed into the Bose-Hubbard model. Similarly, for

fermionic atoms, the Hamiltonian operator for fermionic atoms confined within a

trapping potential is given by

Ĥ =

∫
ψ̂†(r)

(
− h̄2

2ma

∇2 + Vlatt(r)

)
ψ̂(r) d3r +

4πash̄
2

ma

∫
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r).

(4.69)

Here, ψ̂(r) stands for a fermion field operator describing atoms in a particular inter-

nal atomic state at position r, while Vlatt(r) symbolizes the optical lattice potential.

The interaction between atoms is approximated by a short-range pseudopotential,

with as denoting the s−wave scattering length.

Assuming that the fermions occupy the lowest band of an optical lattice, the field

operator can be expanded using Wannier functions, expressed as

ψ̂σ(r) =
∑
i

wi(r)ĉi,σ. (4.70)
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Here, ĉi,σ represents the annihilation operator for a fermion at site i with spin σ =↑
or ↓.

By substituting Eq. 4.70 into Eq. 4.69, we can express the Fermi-Hubbard model in

the lowest band under certain assumptions. These assumptions include the tight-

binding approximation, allowing tunneling only between neighboring sites and lo-

calizing electrons to a single site. Additionally, we assume strong short-range inter-

actions between fermions without the overlap of Wannier functions beyond nearest

neighbor sites. This elegant formulation was presented in the seminal work by Hub-

bard [118] and the Hamiltonian is given by

H = −t
∑

⟨r,r′⟩,σ

(
c†r,σcr′,σ + h.c.

)
+ U

∑
r

nr,↑nr,↓, (4.71)

where c†r,σ, cr,σ are the creation and annihilation operators. nr,σ is the number op-

erators for spin σ.

The tunneling strength between two sites is determined by the overlap of two

Wannier functions with the Hamiltonian Ĥ [119], similar to the discussion in Sec-

tion 4.2.3. The tunneling strength is therefore given by

t =

∫
w†

0(r)

[
− h̄2

2ma

∇2 + Vlatt(r)

]
w0(r− a) d3r, (4.72)

where w0 is the Wannier function of the lowest band in the optical lattice.

On-site interaction U can be obtained by integrating over two Wannier functions

localized at the same lattice site whereas the Wannier function in the vertical direc-

tion is treated as a harmonic oscillator ground state wavefunction. Here, the on-site

Hubbard interaction is written as

U =
4πh̄2as
ma

∫
|w0(r)|4 dxdydz

=
4πh̄2as
ma

√
maωz

h

∫
|w0(x, y)|4 dxdy,

(4.73)

where ωz is the confinement in the vertical direction.

Combining all the knowledge from these discussions, we can extract the Hubbard

parameters in the optical lattice as a function of the lattice depth, as shown in
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Fig. 4.5. Here, we have calculations for Hubbard parameters, which will be used to

calibrate our optical lattices, as presented in the following.
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Figure 4.5: Triangular-lattice Hubbard parameters as a function of lattice depth.

(a) Tunneling using band structure calculation (blue dots) and Wannier functions (orange

squares). The tunneling t is 9 times the bandwidth of the S−band. The dashed line

marks the lattice depth of 9.7ETri
r . (b) Interaction calculated by Wannier functions by

assuming ωz = (2π)×20 kHz and scattering length as = 1000a0 where a0 is the Bohr

radius. Images were reproduced from previous work [58].

4.3.1 Hubbard tunneling calibrations

Important parameters in the Hubbard model are tunneling (t) and interaction (U).

Measuring tunneling is not simple because the tunneling energy is small, a few

hundred Hz, compared to other energy scales. Modulation of the tunneling energy

may not isolate the tunneling process from other effects, such as interaction-induced

changes in the band structure. In the experiment, we calibrate the tunneling energy

using band excitation spectroscopy, which depends on the lattice depth. We infer

the tunneling parameter by comparison to a band structure calculation.
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Lattice depth for 752 nm square lattice

To measure lattice depth, we perform amplitude modulation spectroscopy by com-

bining a tunable external wave oscillator, operating over 200 kHz, with a reference

lattice intensity using a bias tee (Fig. 4.6(a)). We feed the combined signal to the lat-

tice stabilization. Note that we cannot generate the combined signal directly from

the experiment control because the resolved transitions from the ground band to

the D−bands are greater than the maximum frequency we can generate (200 kHz).

Our measurement is shown in Fig. 4.6(b). The overall result is consistent with our

expectations. The second and third peaks are slightly shifted from the expected

frequency, this indicates that our square lattice is slightly imbalanced. The imbal-

ance can be fixed by attenuating the retroreflection of the square lattice beam (see

Section. 3.11).
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Figure 4.6: Lattice depth calibration. (a) Bias tee image. Lattice intensity is con-

nected to the DC channel and the external oscillator is connected to the RF channel.

The combined signal goes to the mixer in the lattice AOM driver. (b) Lattice modulation

spectroscopy. Dots are experimental data and the solid line is a fit to a triple Gaussian

function. Three resonances (206.9, 222.5, 237.1) kHz are observed for a lattice depth

of 25.4ESq
r .
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Lattice depth for triangular lattice

We calibrate our lattice depths in the range from 18ETri
r to 30ETri

r in the non-

interacting regime of a |1⟩ − |2⟩ mixture at a Feshbach field of 527 G. This configu-

ration simplifies the Fermi-Hubbard model to a single-particle Hamiltonian approx-

imated by a tight-binding model, and we can calculate all band energies via a band

structure calculation. We apply lattice modulation spectroscopy to characterize the

lattice depth. After modulating the lattice beam power with an amplitude of approx-

imately 1% for 20 ms, we increase the lattice depth to maximum and measure atom

number. We clearly observe two separated loss features whereas the third expected

feature overlaps with the second. The resonance is fit to our band structure calcu-

lations and we extract the lattice depth (Fig. 4.7). The error bar of lattice depth

is approximately 10% determined using a nonlinear fit to the band structure calcu-

lation with the lattice depth as a free parameter. As can be seen, we successfully

extracted the tunneling energy from the indirect measurement. In the following, the

other important Hubbard parameter, interaction, is calibrated. A higher interaction

energy compared with tunneling energy provides several opportunities to perform

direct measurements.

4.3.2 Hubbard interaction calibrations

The Hubbard interaction (U) occurs between two fermionic atoms with opposite

spins, representing the energy cost associated with the fermions occupying the same

lattice site. The interaction can be measured using various techniques, such as

doublon formation spectroscopy and radio-frequency (RF) spectroscopy, as discussed

in below.

Doublon formation spectroscopy

To measure our Hubbard interactions, we prepare atoms in a lattice of depth 9ETri
r

and perform amplitude modulation spectroscopy at varying Feshbach fields corre-

sponding to scattering lengths i.e., 500, 675, 900, and 1400a0. We modulate the
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Figure 4.7: Band excitation spectroscopy. (a) Transitions between band structures.

Orange dots show experimental data evaluated by Gaussian fit to atoms loss as a function

of transition frequency. Red, blue, and green solid lines are transition frequencies from

S−band to D−bands for different lattice depths calculated with band structure in the

tight-binding limit. Transitions to the P−band are suppressed by the symmetry of the

amplitude modulation. Error bars are smaller than the dots and evaluated by the standard

error of the mean. (b) Lattice amplitude modulation. Data (violet points) are fit to a

double Gaussian function (solid line). Image (a) was reproduced from previous work [58].

lattice with an amplitude of approximately 5% of the lattice depth for 20 ms then

measure atom number in fluorescence. When the modulation frequency is in res-

onance with the interaction energy, pairs of singlons form doublons [120] and we

observe a decrease of 20% in detected atoms in fluorescence imaging due to light-

assisted collisions [40, 121]. According to Eq. 4.73, the on-site Hubbard interaction

energy is linearly fit to scattering length (a0) shown in Fig. 4.8 and we find the

expected linear dependence within error bars.

RF spectroscopy

As can be seen in Fig. 4.8, the precision of measuring interaction from modula-

tion is limited by several factors including total atom number, amplitude, and time

duration. However, the Hubbard interaction can be precisely measured using radio-

frequency spectroscopy. Let us consider the energy levels of singles (one atom per
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site) and doublons (two atoms per site). The separation in energy between those rep-

resents Hubbard interaction energy. The |1⟩ − |3⟩ mixture is initially prepared with

interaction U13. Radio frequency is applied to transfer the initial state to |2⟩ − |3⟩
mixture at the same magnetic field and the interaction becomes U23. According to

Eq. 4.73, the interaction is proportional to scattering length i.e.,

a13 ∝ U13, (4.74)

a23 ∝ U23 = U13 − δU, (4.75)

where δU is the energy difference between singlons and doublons shown in Fig. 4.9(a).

By solving above equations, the interaction of a |1⟩ − |3⟩ mixture is given by

U13 = δU
a13

a13 − a23
. (4.76)

0 500 1 000 1 500
0

2

4

6

8

10

Scattering length (a0)

In
te
ra
ct
io
n
(k
H
z)

0 5 10
20

30

40

Modulation frequency (kHz)

A
to
m

n
u
m
b
er

(a) (b)

Figure 4.8: Doublon modulation spectroscopy. (a) Detected interaction frequency as

a function of scattering length (blue dots). The interaction is determined by a decrease of

singles in fluorescence images due to doublon formation during modulation. We calibrate

the magnetic field from the narrow Feshbach resonance at 543.3 G by comparing the

field to the scattering length from [96]. The blue solid line is a linear fit to the data as

expected in Eq. 4.73. (b) Amplitude modulation spectroscopy of the violet dot in (a).

The violet solid line is fitted to a Gaussian function. Error bars are the standard error of

the mean. Image (a) was reproduced from previous work [58].
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Typically, the calibration of interaction is performed in a deep lattice to prevent

many-body effects and in the tight-binding limit. For example, we calibrate interac-

tion at lattice depth of 15ESq
r and a field of 600 G as depicted in Fig. 4.9(b). Later,

assuming that we set the lattice depth to 8.3ESq
r with tunneling of 660Hz. We scale

the result to the desired depth using a numerical table that relates lattice depths to

the integral term in Eq. 4.73, thus yielding U/t = 7.4(3). Note that RF spectroscopy

offers faster calibration with higher precision. As a result, we can obtain a clean

RF spectrum of singles and doublons transfer. Finally, we effectively determine the

Hubbard parameters of our optical lattices, preparing us to investigate Hubbard

physics as discussed in the following.
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Figure 4.9: Singlon and doublon transfer. (a) Schematic of RF spectroscopy. The

relation between |2⟩ − |3⟩ interaction and |1⟩ − |3⟩ interaction is U23 = U13 + δ2 − δ1.

Here, δU ≡ δ1 − δ2. (b) RF sweep is applied to transfer |1⟩ − |3⟩ to |2⟩ − |3⟩ mixture

at a lattice depth of 15ESq
r and a field of 600 G. The left and right peaks are doublons

and singles transfer with RF frequencies of 75.8221(3), 75.8288(4) MHz. The spacing

between the peaks is δU = +7.8(3) kHz, thus yielding U=8.1(2) kHz. The peak from

singles transfer can be used to precisely measure the magnetic field.
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4.4 Mott insulator

A Mott insulator is a state in which each lattice site is occupied by one particle. The

term “insulator” in this context refers to a state in which electrons are localized, with

their movement inhibited by the strong Coulomb repulsion between them. The Mott

insulating state occurs when the interaction is larger than tunneling (U ≫ 8t for 2d

square lattice) and is typically observed in a deep lattice depth in which tunneling is

suppressed. To understand the Mott insulator, we use a simple approach via grand

canonical ensemble and employ the local density approximation, assuming that the

chemical potential gradient is negligible [40]. The atom occupation as a function of

radius r is given by

Pr(n) =
1

Z(r)
eβ(µlocn−En), (4.77)

where Z(r) =
∑

n e
β(µlocn−En), µloc is the local chemical potential and the interaction

energy En = Un(n−1)/2. Here, β = 1/(kBT ) for a given temperature T . Note that

the approach we use in Eq. 4.77 corresponds to the high-temperature series expansion

(HTSE) in the atomic limit. Here, our system is fermionic and therefore the atom

number per lattice site is limited to nmax = 2 (0 for empty, 1 for one fermion either

spin up or down, and 2 for two fermions). We also take into account the harmonic

trapping confinement generated by Gaussian laser beams. We apply a local density

approximation, µloc = µ − (1/2)maω
2r2 where µ is the global chemical potential

and ω is the confinement, which can be obtained from a separate measurement, as

discussed in Section 4.5.

In the experiment, we start searching Mott insulator in the 752 nm square lattice

because our system is not optimized i.e., bad alignment, heating up during loading,

low atom number, and it is harder to align in the triangular lattice. We load atoms

from the light sheet to the accordion lattice combined with the bottom beam that

is pointing upward from the bottom of the chamber. The accordion lattice provides

confinement in the vertical direction and cannot hold atoms by itself. To address

this, we turn on the bottom beam to provide radial confinement. Atoms are loaded

to the accordion lattice at the largest spacing (8 µm) to capture as many atoms as
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possible and we squeeze the accordion lattice to the smallest spacing (3 µm). After

that, we perform evaporation using the bottom beam before loading it into a square

lattice with the depth of 10.2ESq
r at 603 G, yielding interaction U/t = 14.3. We

observe a Mott insulator for various atom numbers shown in Fig. 4.10. The atom

numbers are adjusted during the last evaporation before loading into the lattice.

Doublons appear at the center of the cloud, showing that we exceed half-filling, and

doublons are observed as empty sites because of light-assisted collisions [83]. We

note that in Eq. 4.77 there are three free parameters for fitting: β, µ, and ω. The

fit converges more effectively when we reduce the number of free parameters. For

example, we can impose ω as a known parameter, which can be obtained from the

following.

4.5 Non-interacting Fermi gas

A non-interacting Fermi gas can be used to determine the radial confinement of Mott

insulators. According to Eq 4.77, we can eliminate one fit parameter i.e., interaction,

and treat the confinement as a free parameter. However, fitting this expression does

not work because we assume that the interaction is significantly stronger than the

tunneling. Alternately, for a non-interacting gas, we apply another approach by

filling up the Fermi-Dirac distribution with energy calculated from the tight-binding

model and considering local density variation due to confinement. For the square

lattice, energy dispersion is given by

εsq(k) = −2t[cos(kxa) + cos(kya)], (4.78)

where t is the tunneling parameter, ki is the lattice momentum defined in the first

Brillouin zone, k ∈ [−π/a, π/a).

The density profile of non-interacting gases in a square lattice can be calculated by

summing up all allowed momenta,

nsq
non-int(r) =

∑
k∈1st Brillouin

1

eβ(εsq(k)−µloc(r)) + 1
. (4.79)
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Figure 4.10: Mott insulators in square lattices. (Top) Fluorescence imaging. (Mid-

dle) Singles density. The fit is shown by solid line using Eq. 4.77 and yield kBT/t =

1.6(2), 1.9(2), 2.0(3) with chemical potentials of µ/t = 15.7(1), 11.0(2), 7.8(2) at

U/t = 14.3. There are 2544, 1945, and 1421 atoms inside radii of 40, 38, and 32 sites.

(Bottom) Variance of singles density calculated using σ2 = ns − (ns)2.

In other words, the double summation can be approximated by double integrations,

nsq
non-int(r) =

1

(2π)2

∫ π/a

−π/a

∫ π/a

−π/a

1

eβ(εsq(k)−µloc(r)) + 1
dkxdky. (4.80)

We obtain the non-interacting Fermi gas similar to the Mott insulator sequence using

a |1⟩ − |2⟩ mixture. In addition, we ramp up the Feshbach field to the zero-crossing

point (527 G) immediately after evaporation in the accordion lattice and the bottom

beam. Then the lattice depth is set to 7.4ESq
r and 25ESq

r . The azimuthal average
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of the cloud is shown in Fig. 4.11. Overall, this technique allows us to measure the

harmonic trapping in the lattice and we can scale to a desired lattice depth using

the relation i.e., ω ∝ √
s, where s is the lattice depth. Here, we have examined two

limiting cases of the Fermi-Hubbard model. The model’s intriguing features emerge

at U/t between 4 and 14. Before investigating that, I will introduce observables that

are remarkably useful for detecting quantum systems.
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Figure 4.11: Azimuthal average of fermionic non-interacting gases. (a) Lattice

depth of 7.4ESq
r at kBT/t ≃ 1 with the center chemical potential µ/t of 1.2 (blue), 0.2

(red), −0.7 (orange), leading to confinement of (2π)×147(24)Hz. (b) Lattice depth of

27ESq
r . Essential parameters are extracted from the fit, kBT/t = 5.1, µ/t = 17.6 and

confinement is determined to (2π)×302(10)Hz.

4.6 Observables in the quantum gas microscope

When we measure a quantum system, the many-body wavefunction collapses to a

measurement basis, revealing captivating insights while destroying its state. Here,

we explore diverse measurement techniques that shed light on the interesting features

of the Fermi-Hubbard model.
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4.6.1 Density

In the context of Raman imaging, we encounter several density components that

provide crucial insights into the Fermi-Hubbard model. One of the fundamental

quantities is the singles density, denoted as ns. This density accounts for the loss of

doubly-occupied sites due to light-assisted collisions. The singles density is defined

as

ns
i = ni,↑ + ni,↓ − 2ni,↑ni,↓, (4.81)

here, i represents the lattice site index. The first two terms, ni,↑ + ni,↓, collectively

reflect the full density, while the last term, ni,↑ni,↓, quantifies the doublon density.

To obtain single-species densities, ni,σ=↑,↓, we employ a spin removal technique. This

process effectively eliminates the non-targeted spin and converts doublons into a

single component. Further details on this technique will be discussed in Section 4.6.2.

Another valuable density parameter is the single-species singles density, denoted

as ns
i,σ=↑,↓. This density specifically measures the single-species density after the

removal of doublons. It can be obtained by applying a doublon hiding technique

before applying the spin removal process (see Section 4.6.3), and it is defined as

ns
i,σ = ni,σ − ni,↑ni,↓. (4.82)

Doublon density, di, can be directly obtained through spin-resolved imaging or by

employing an RF technique to transfer a component of the doublon to another state,

similar to the procedure demonstrated in Fig. 4.9. The doublon density is defined

as

di = ni,↑ni,↓. (4.83)

As can be seen, this systematic breakdown of density components allows for a more

comprehensive understanding of the Fermi-Hubbard model and its behavior under

various experimental conditions.

All the densities mentioned above can be obtained using the high-temperature series

expansion (HTSE) in the atomic limit (see Section. 4.4), applicable when kBT/t ≥ 1.
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However, when considering tunneling effects that delocalize atoms in the lattice,

higher-order HTSE can estimate the effect, however, it fails to capture quantum

fluctuations at very low temperatures (kBT/t≪ 1). This raises the question of how

to calculate observables at low temperatures. While a small system of few atoms

can be analytically solved by diagonalizing the Hamiltonian, it cannot accurately

represent a large system where collective behavior occurs and cannot be captured by

a small system. To address this challenge, numerical techniques like Determinantal

Quantum Monte Carlo (DQMC) and Numerical Linked-Cluster Expansion (NLCE)

can be used. For this DQMC calculation, we rely on a Fortran 90/95 package, the

QUantum Electron Simulation Toolbox (QUEST) [122]. DQMC is based on sam-

pling the possible configurations of a system and using statistical averages, providing

insights into the ground state. Unfortunately, the calculations suffer from a severe

sign problem for triangular Hubbard systems when approaching low temperatures

[123] and we rely on extensive averaging for low temperatures. In addition, we de-

veloped our NLCE as a tool for many-body calculations, however, it is not the main

subject of this dissertation. More details can be found in [124].

In Fig. 4.12, singles density and full density calculated by DQMC simulation for

triangular lattices are demonstrated. Singles density increases as higher chemical

potential and it reduces at µ ≃ 0 because doubly-occupied sites are formed, never-

theless, it gets lost during the imaging process (Fig. 4.12 (a)) while full density is

unity around µ = 0 (Fig. 4.12 (b)). Specifically, the unity filling is not exactly at

µ = 0 because of particle-hole asymmetry in the triangular lattice and we determine

the chemical potential at half-filling shown in Fig. 4.12 (c) for various interactions.

By measuring singles density, this observable quantity is not sensitive to tempera-

ture as depicted in Fig. 4.12 (d). Later, we use correlation functions to perform the

thermometry of the system.
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Figure 4.12: DQMC calculation for full density and singles density in the tri-

angular Hubbard model. (a) Singles density as a function of chemical potential for

U/t = 0 (blue), 4 (red), 8 (orange), 10 (green), and 14 (violet). The chemical poten-

tials shown here are offset by U/2. (b) Full density as a function of chemical potential.

(c) Chemical potential as a function of interaction at half-filling. The variation of µ/t

at half-filling is caused by particle-hole asymmetry in this system. DQMC simulation

is performed using imaginary time slices L = 40 (blue crosses) and L = 200 (orange

squares) to obtain full density used to estimate chemical potential at half-filling. The

Black dashed line indicates µ/t = 0. Error bars are estimated by the deviation between

L = 40 and L = 200 datasets. (d) Singles density at half-filling as a function of tem-

perature. All densities are calculated by DQMC simulations that rely on a homogeneous

8× 8 lattice with periodic boundary conditions. The inverse temperature β = Ldτ was

split into L = 40 imaginary time slices. the simulations were averaged over ten runs,

5,000 warmup sweeps, and 20,000 measurement sweeps each.
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4.6.2 Spin removal

The spin degree of freedom can be studied by selectively eliminating undesired spin

components using on-resonant light. This technique is known as spin removal. To

access spin-spin correlations, assuming we work with a |1⟩−|2⟩mixture, site-resolved

imaging of only a single spin component is necessary. We follow the spin removal

technique demonstrated in [52]. We push out the other spin component using the ver-

tical imaging light that is on resonance from
∣∣2S1/2 F = 1/2 MF = ±1/2

〉
to
∣∣2P3/2

〉
and image the remaining atoms in fluorescence with a fidelity of approximately 98%

[84]. We determine the imaging fidelity for this process by preparing a Mott insu-

lator at U/t = 17 and we freeze the atom motion by ramping up the lattice depth

to 100ETri
r within 8ms and reduce Feshbach field to the non-interacting point (527

G). It is important to note that an 8 ms ramp-up time is determined to be optimal

for the experiment, providing a balance between suppressing tunneling and ensuring

minimal band excitations [125]. Additionally, a similar ramp-up time can be found

in [126]. We use a vertically propagating resonant laser beam with I/Isat = 10.

The pulse duration is 50µs determined by a double decay graph shown in Fig. 4.13

similar to [52]. By comparing the remaining atoms from the MI with and without

pushing we can extract the spin removal fidelity to εs = 94(1)% for both spins.

4.6.3 Doublon hiding

Doublon hiding allows for the suppression of certain doubly-occupied sites, providing

information on spin states that originate from singly-occupied sites. In fact, we

observe that during the removal of one spin component, doublons of a spin mixture,

i.e., |1⟩− |2⟩, are not reliably lost via light-induced collisions. Therefore, we apply a

doublon removal technique [49], to eliminate doubly-occupied sites before applying

spin removal. After we ramp up our lattice to 100ETri
r we slowly sweep the Feshbach

field over the narrow Feshbach resonance centered at 543.3 G from high to low

magnetic field (Fig. 4.14 (a)). The fidelity of doublon hiding is determined by

preparing a band insulator, and taking three separate datasets: no doublon hiding
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Figure 4.13: Atom number as a function of resonant light pulse time. On-resonant

pulse is applied for a variable time. Experimental data (blue dots) are fitted to a double

decay function (violet solid line), resulting in 2.7(9) µs and 1250(190) µs for on-resonant

and off-resonant removal time. The image was reproduced from previous work [58].

and no spin removal (nBI
s ), only spin removal (nBI

s,p), and both doublon hiding and

spin removal (nBI
s,hp). Here, we obtain three singles densities from the measurements

of a spin-balanced gas and consider a band-insulating core (Fig. 4.14),

nBI
s = 1− nBI

d , (4.84)

nBI
s,p = nBI

d εd +
1

2
εsn

BI
s , (4.85)

nBI
s,hp = nBI

d εd(1− ηh) +
1

2
εsn

BI
s , (4.86)

where nd is doublon density, εd is spin-removal fidelity of doublons being singlons,

εs is spin-removal fidelity of singlons and ηh is doublon hiding fidelity. Note that we

assume the majority at the center of the band insulator are doublons and singlons.

Only doublons are lost during the doublon hiding because of the formation of weakly

bound molecules. We solve these equations, resulting in the doublon hiding fidelity

ηh = 98(6)%.
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Figure 4.14: Doublon hiding. (a) Narrow Feshbach resonance for a |1⟩ − |2⟩ mixture.

Atoms are held in the ODT and atom loss is measured as a function of scattering length

at a certain magnetic field. (b) Doublon hiding fidelity. To determine the doublon hiding

fidelity, we should to take into account imperfections in the band insulator. The core

region of the band insulator contains a mix of single and double occupations (nBI
s , orange)

due to finite temperature. To determine an accurate fidelity nevertheless, doublon hiding

and spin-removal techniques are applied to the band insulator (nBI
s,hp, violet) whereas only

spin-removal technique is performed to the band insulator resulting in the transformation

from doublons to singlons (nBI
s,p, blue). We apply Eqs. 4.84, 4.85, and 4.86 to the core

region within three lattice sites from the center, therefore yielding the fidelity of doublon

hiding technique ηh = 98(6)%. Image (b) was taken from previous work [58].

4.6.4 Correlations

Spin-spin correlations are a very sensitive tool to probe properties of a system i.e.,

temperature and lattice symmetry. To measure these correlations, we use a spin-

removal technique described in Section 4.6.2 to resolve spin components and take

images of only one spin-species spin (spin up or down). These images are analyzed

via correlation functions [52] i.e.,

Cz
d(r) = 4

( 〈
Sz
rS

z
r+d

〉
− ⟨Sz

r ⟩
〈
Sz
r+d

〉 )
, (4.87)

where the spin operator is defined as Sz
r = (n̂↑

r − n̂↓
r)/2 and ⟨. . .⟩ denotes the ex-

pectation value. n̂σ
r represents the number of particles of spin σ on the site at r,
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and d can be the nearest neighbor, next-nearest neighbor and so on. For exam-

ple, in a symmetric triangular lattice, the nearest neighbors are denoted as (1, 0),

(1/2,
√
3/2), and (1/2,−

√
3/2). The correlations are expected to be identical along

the lattice axes. Unfortunately, the spin-spin correlation defined in Eq. 4.87 is not

trivial to obtain because it requires information on both spin up and spin down at a

given site. It is impossible to know by taking a snapshot of a parity projected image.

Owing to spin-removal and doublon hiding techniques, the spin-spin correlation can

be written as [49, 54]

Cz
d(r) = 2

(
Cs

↑(r) + Cs
↓(r)

)
− Cs(r), (4.88)

where the single-species singles correlation for spin σ is given by

Cs
σ(r) =

〈
ns
σ,rn

s
σ,r+d

〉
−
〈
ns
σ,r

〉 〈
ns
σ,r+d

〉
, (4.89)

and the singles correlation is

Cs(r) =
〈
ns
rn

s
r+d

〉
− ⟨ns

r⟩
〈
ns
r+d

〉
. (4.90)

We obtain the single-species singles density (ns
σ) by removing doubly-occupied sites

using doublon hiding, discussed in Section 4.6.2, and remove either spin states using

spin removal technique (see Section 4.6.3). The singles density (ns) is naturally

measured during fluorescence imaging without any additional removal procedures.

Combining all the information from Cs(r) and Cs
σ(r), we can access spin-spin cor-

relations from the experiment.

In Fig. 4.15, we illustrate calculated spin-spin correlations as a function of tempera-

ture, density, and interaction. These demonstrate the sensitivity of the correlations

to the system parameters. It is important to note that in the Heisenberg model, the

Neel state is expected at zero temperature, implying a classical interpretation where

spin-up and spin-down atoms are alternately located next to each other. However, in

the Fermi-Hubbard system, as the temperature approaching zero, the nearest spin-

spin correlation exhibits a stronger correlation, reaching approximately −0.3 for a

square lattice, as reported in the coldest Fermi-Hubbard system [126]. In this case,
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the Heisenberg Neel state is no longer applicable due to quantum superposition,

where the correlations are projected onto the measurement basis. For the triangular

lattice, it behaves differently due to the nature of frustration. We will discuss this

in detail in the following chapter.
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Figure 4.15: Calculated spin-spin correlations in the triangular lattice. (a) Tem-

perature dependence of nearest spin-spin correlations for U/t = 0 (blue), 4 (red), 8

(orange), 10 (green), and 14 (violet). (b) Density dependence of nearest spin-spin cor-

relations. The strongest correlation occurs approximately at a unity density and the

correlations are asymmetric as opposed to square lattices. (c) Spin-spin correlations as a

function of interaction for various temperatures, kBT/t = 0.6 (blue), 0.8 (red), and 1.0

(orange). Squares are nearest neighbors and diamonds are next-nearest neighbors. All

correlations are calculated by DQMC simulations with the same datasets from Fig. 4.12.



Chapter 5

Quantum Gas Microscopy of

Fermionic Triangular-Lattice Mott

Insulators

This chapter presents the previous work published as

J. Mongkolkiattichai, L. Liu, D. Garwood, J. Yang, and P. Schauss,

Quantum gas microscopy of fermionic triangular-lattice Mott insulators,

Phys. Rev. A 108, L061301 (2023).

5.1 Introduction

Electronic systems typically establish long-range order at zero temperature. Surpris-

ingly, there are systems that do not have this fundamental property. For example,

quantum spin liquids [127, 128] form in the presence of conflicting energetic con-

straints that prevent long-range ordering. Interestingly, the absence of ordering

opens the door to a variety of exotic phenomena. Quantum spin liquids can show

fractional quasi-particle statistics analogous to those underlying the quantum Hall

effect [129].
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Time-reversal symmetry breaking has been predicted in numerical studies on frus-

trated systems and kinetic constraints caused by the frustration lead to complex

time-evolution [61, 130, 131]. While frustrated systems with small number of par-

ticles can be accurately simulated with tremendous computational resources, pre-

dictions for the low-temperature phases in the thermodynamic limit are scarce and

often debated [63, 132, 133]. Existing condensed matter realizations are compli-

cated materials [61], making well-controlled model systems a valuable alternative

for gaining insight into the physics of frustration.

Ultracold atoms provide a unique way to explore quantum many-body physics

through quantum simulation based on first principles. Prominent examples of quan-

tum simulation with ultracold atoms include the realization of Hubbard models [134]

and the observation of many-body localization [135]. While there is widespread ev-

idence for insulating phases without magnetic ordering in frustrated Hubbard mod-

els, their existence and properties are still controversial on many lattice geometries,

including the triangular lattice which has been proposed as paradigm model for ge-

ometric frustration [128]. Ultracold atoms in optical lattices implement Hubbard

models [21–23], where neighboring sites are coupled by hopping, and atoms on the

same lattice site interact. Atomic Fermi-Hubbard systems were first realized with

ultracold atoms in square lattices [25, 26].

With the realization of quantum gas microscopes for fermions, it became possible to

image fermionic atoms on the single-atom level [44–47, 101]. Later, two-dimensional

(2d) fermionic Mott insulators (MI) were detected with quantum gas microscopes

using 6Li ref. [136] and 40K ref. [120]. In particular, the characteristic antiferro-

magnetic correlations in the repulsive Hubbard model have been studied in detail

[49–54, 137]. Frustration has been studied with various ultracold-atomic systems,

starting with Bose-Einstein condensates in frustrated lattices [65, 138] and recently

by the realization of frustrated spin systems with Rydberg atoms in optical tweezers

[139, 140]. Here, we expand quantum simulation of frustrated systems to fermions

in a Hubbard model on a triangular lattice structure, and report on the site-resolved
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imaging of fermionic atomic Mott insulators in a triangular lattice. Although the

triangular geometry suppresses anti-ferromagnetic ordering, short-range correlations

persist over a wide range of parameters, and we measure these correlations and per-

form thermometry by comparison with numerical calculations, realizing for the first

time a detailed comparison between theory and experiment of the equilibrium prop-

erties of the triangular Hubbard model in an optical lattice. Our work establishes a

novel platform for the study of frustrated Hubbard physics.

Signal (arb. units)

z

xy

T1

T2T3

T1
T2

T3

G1

G2

(a) (b)

(c)

Figure 5.1: Triangular-lattice quantum gas microscope. (a) A triangular optical

lattice is realized by interfering three circularly polarized laser beams (T1, T2, and T3)

using 1064 nm light in the center of a vacuum chamber. The confinement of the atoms

into two dimensions is achieved by a 1d accordion lattice in vertical direction, formed by

the 532 nm laser beams G1 and G2. A combination of a beam splitter and mirrors allows

us to vary the distance between G1 and G2 via the height of the input beam, therefore

forming a lattice with a variable spacing between 3 µm and 8 µm. A high-resolution

objective enables single-site resolved imaging of the atoms in the triangular lattice. The

inset demonstrates 120◦ order which is the classical analog of the spin ordering expected

at large interactions. (b), (c) Triangular-lattice Mott insulators at U/t = 10(1) with 109

atoms (top right) and U/t = 26(3) with 203 atoms (bottom right). The field of view is

32 µm×32 µm.
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The Hamiltonian of the fermionic system in a two-dimensional lattice is

H = −t
∑
⟨rr′⟩,σ

(c†r,σcr′,σ + c†r′,σcr,σ) + U
∑
r

nr,↑nr,↓ − µ(r)
∑
r

(nr,↑ + nr,↓), (5.1)

where t is the tunneling strength between nearest-neighbor lattice sites, U is the

on-site interaction, cr,σ(c
†
r′,σ) is the annihilation (creation) operator for a fermion

with spin σ on site r, nr,σ = c†r,σcr,σ is the number operator, and µ(r) is the chemical

potential. This model describes the transition from a metal to a fermionic Mott

Insulator. The insulating behavior originates from the electron-electron correlations

and cannot be explained in a non-interacting electron picture. At temperatures

below U/kB, double occupation of sites is suppressed. Single occupation is ener-

getically preferred at µ ∼ U/2 and the density variance approaches zero, leading

to a MI. When the chemical potential is larger than the energy gap, doublons (two

atoms on a site) are formed. They first appear at the center of the trap, forming

a band insulating core, because of the lower harmonic potential. More than two

atoms per site in the lowest band are forbidden by the Pauli exclusion principle,

and higher band population is strongly suppressed energetically at such low tem-

peratures. Short-range antiferromagnetic ordering can be observed in MIs when the

temperature is comparable to the exchange energy J = 4t2/U ref. [141]. In this

study, we acquired experimental data in this temperature regime, demonstrated con-

sistency of numerical calculations and measurements characterizing the equation of

state of the triangular Hubbard model, and observed antiferromagnetic correlations

on the triangular lattice.

5.2 Experimental setup

We started the experiment by preparing a spin-balanced Fermi gas in a single layer

of a one-dimensional (1d) accordion lattice (Fig. 5.1(a)) with a variable spacing. The

gas is a mixture of the two lowest hyperfine ground states |↑⟩ = |F = 1/2,mF = 1/2⟩
and |↓⟩ = |F = 1/2,mF = −1/2⟩ of 6Li, where F andmF are the hyperfine quantum

numbers. Next, the atoms are adiabatically loaded into the triangular lattice of
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depth 9.7(6)ETri
r . Here, ETri

r = h̄2π2/(2ma2latt) = h × 8.2 kHz is the recoil energy

where h is Planck’s constant, m is the atomic mass, and alatt = 1003 nm. The

tunneling parameter is t = h × 436(40) Hz. The atom number and density in the

lattice is adjustable by varying evaporation parameters. Once the atoms are in

the lattice, we tune the scattering length to 525(4)a0, where a0 is the Bohr radius,

thereby adjusting the interaction to U/t = 10(1). To detect the singles density

(ns = n− n↑n↓), the atom motion is frozen by linearly increasing the lattice depth

up to 100ETri
r . For imaging, we turn off all magnetic fields and switch to maximum

lattice depth ∼ 104ETri
r . Images of MI for different interaction strengths are shown

in Figs. 5.1(b,c). By varying the atom number loaded into the lattice, we observe

MI and band insulators (BI) at U/t = 10(1) (Fig. 5.2). The MI region (Fig. 5.2(b))

has nearly unit filling and atom number fluctuations are suppressed. When the

chemical potential µ exceeds the value of U/2 (approximately half-filling), doubly-

occupied sites are formed, therefore a BI region in the center of the trap forms as

shown in Figs. 5.2(c,d). Doubly-occupied sites are detected as empty sites due to

light-assisted collisions at the imaging stage [136].

5.3 Triangular-lattice Mott insulators

To access the singles density profile, we perform a deconvolution to determine the

site occupation numbers and obtain singles density (ns) and variance (σ2
ns) via az-

imuthal averaging (bottom panel of Fig. 5.2). We fit the experimental density profile

using determinantal quantum Monte Carlo (DQMC) and Numerical Linked Cluster

Expansion (NLCE) calculations. The temperature and chemical potential of the

atoms in the trap are free parameters in the nonlinear least-squares fitting. We

find good agreement with a global fit relying on a local density approximation using

µ(r) = µ0− 1
2
mω2r2. The results of the fitting can be found in Fig. 5.2. We observe

a small deviation at the center of the trap, which we attribute to the lower statistics

and the uncertainty in the determination of the exact center of the system for az-

imuthal averaging. We observe an increased temperature for larger atom numbers as
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a result of reduced evaporative cooling. Lifetime measurements in the lattice show

no significant density-dependent heating.

5.4 Spin-spin correlations

Spin-spin correlations have proven to be essential observables for the understanding

of the Hubbard model on square lattices [49, 52–54]. The spin-spin correlator is

defined as Cz
a(r) = 4

( 〈
Sz
rS

z
r+a

〉
− ⟨Sz

r ⟩
〈
Sz
r+a

〉 )
, where the spin operator is Sz

r =

(nr,↑ − nr,↓)/2. Here, the parameter a denotes the shift in the lattice site number

between the two correlated positions, and r is the current lattice site. We access

the observable Cz
a(r) via a linear combination of different correlators that can be

measured directly in the experiment.

The fate of antiferromagnetic correlations on frustrated lattices is not obvious be-

cause the ordering is not compatible with the lattice structure. Despite the geomet-

ric frustration, we find significant antiferromagnetic correlations at nearest-neighbor

sites although our temperatures are above the exchange energy scale J = 4t2/U ≈
0.4t. The reduced antiferromagnetic correlation, compared to the maximal correla-

tion of −1 can be interpreted as incomplete anti-alignment of the spins. At large

interactions, the Hubbard model maps to the Heisenberg model, and 120◦ order

is expected (Fig. 5.1) Negative nearest-neighbor correlations of Cz
b1 = −0.078(22),

Cz
b2 = −0.053(23) and Cz

b1−b2 = −0.071(28) are observed for three directions (b1,

b2 and b1− b2) as depicted in Fig. 5.3(a). The correlations overlap within the

error bars, indicating a symmetric triangular lattice. We compare the experimental

data with a correlation map calculated by DQMC at U/t = 10 and kBT/t = 0.8

(Fig. 5.3(b)). The calculated nearest-neighbor spin-spin correlations agree with the

experimental data within error bars. The observed negative correlations among all

nearest neighbors is consistent with 120◦ order. Next-nearest-neighbor spin-spin

correlations in the experimental data are consistent with zero within the typical

uncertainty of 0.02, which we believe is limited by the currently realized tempera-
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Figure 5.2: Triangular-lattice Mott insulators. (a)-(d), top, Site-resolved fluo-

rescence images of fermionic Mott insulators with increasing atom number integrated

from fit, 77, 119, 175, and 183 at interaction U/t = 10(1). (a)-(d), bottom, Compar-

ison of azimuthally averaged singles density (dots) and variance (triangles) with theory

calculations, QMC (red) and NLCE (orange). The data points of the variance are hor-

izontally offset by 0.3 lattice sites for clarity. Both singles density ns and variance σ2
ns

are fit with QMC and NLCE theory using the local density approximation. The detected

variance is the square of the standard deviation of the sample within a radial bin. The

fits yield temperatures kBT/t = 0.9(2), 0.9(1), 1.5(1), and 2.4(1) with chemical po-

tentials µ0/U = 0.24(10), 0.5(4), 0.91(3), and 1.94(1), respectively, at the trap center

for increasing atom number in both QMC and NLCE calculations. Error bars on ns are

standard error of the mean and error bars on σ2
ns are determined by error propagation

from σ2
ns = ns − (ns)2.

tures in our experiment. Compared with the square lattice, where nearest-neighbor

spin-spin correlation alternate in sign, the spin-spin correlations in the triangular

lattice are smaller in magnitude and negative for all nearest neighbors in the same

parameter regimes, which we attribute to the geometrically frustrated triangular

structure.

5.5 Thermometry

To extract the temperature, we perform azimuthal averaging of nearest-neighbor

correlations as a function of the distance from the trap center along the equipo-

tential of the lattice and fit to DQMC and NLCE calculations using temperature

and chemical potential at the trap center as free parameters (Fig. 5.4(a)). We also

average the correlations along the three lattice axes because they are equal within

error bars. We show the result as a band in Fig. 5.4(b) and obtain a temperature

of kBT/t ∼ 0.8 by comparing correlations between experiment and theory calcula-
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tions at half-filling. The measured temperature is consistent with the radial singles

density fit in Fig. 5.2 with half-filling at the center of the system.
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Figure 5.3: Spin-spin correlations. (a) Experimental correlations for U/t = 10(1).

The Cz
b1, C

z
b2 and Cz

b1−b2 are observed as anti-correlated along (1, 0), (1/2,
√
3/2),

and (1/2,−
√
3/2). These values are the same within error bars suggesting tunneling

isotropy of our triangular lattice. The correlations are extracted with post-selection from

400 experimental pictures. Typical values of experimental error bars are ∼ 0.02 and

evaluated by bootstrap. (b) Spin-spin correlations between nearest and next-nearest

lattice sites calculated by DQMC at a temperature of kBT/t = 0.8 near half-filling and

Cz
0 is omitted for clarity. DQMC theory shows good agreement with experiment. The

measured next-nearest-neighbor spin-spin correlations are consistent with zero within

error bars.

This temperature is clearly below the interaction energy U/t = 10(1), and lower

than the tunneling energy scale and therefore quantum effects in the motion and

interaction of the atoms can be observed. From comparisons to square lattice Mott

insulators in our apparatus, we attribute the elevated temperature partially to the

more complex lattice beam geometry which relies on the interference of three laser

beams. Obtaining high contrast in three-beam interference is more sensitive to

polarization purity and air-movement-induced beam pointing than for two-beam
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interference. The resulting time-dependence of the lattice potential leads to heating.

Heating and thermalization in triangular lattices, as well as the loading dynamics

into the lattice, merit further theoretical and experimental study in the future.

In Fig. 5.4(c), we demonstrate our ability to tune interactions. The strongest

nearest-neighbor spin-spin correlations in the triangular lattice are found for U/t ∼
10, whereas the strongest correlations in the square lattice occur near U/t ∼ 8 ref.

[54]. We observe atom loss when increasing the scattering length beyond a value of

∼ 650a0. Therefore, we change the lattice depth to reach larger U/t. We find good

agreement with theory and note that the experimental temperature kBT/t ∼ 0.9 is

almost independent of U/t.

Next-nearest-neighbor spin-spin correlations are challenging to measure as can be

seen in Fig. 5.4(d). DQMC calculations show a suppression of spin-spin correlations

for next-nearest neighbors by a factor of 8, compared to that for nearest neighbors,

at a temperature kBT/t = 0.4 and half-filling. As interactions are increased, the

next-nearest-neighbor spin-spin correlations are expected to cross over from negative

in a possible spin-liquid regime to positive in the 120◦ ordered phase in contrast to

the situation in 2d square lattices at half-filling [52–54]. Experimental temperatures

around kBT/t = 0.4 or lower would therefore allow for the detection of next-nearest

neighbor correlations and may make it possible to distinguish predictions for 120◦

order (the inset of Fig. 5.1(a)) and spin liquid correlations.

5.6 Conclusion and outlook

In conclusion, we prepared fermionic Mott insulators on a triangular optical lattice

and performed single-site resolved imaging to detect spin-spin correlations which

allow to infer the temperature of our systems. The radial density profiles of the

observed Hubbard systems are in agreement with DQMC and NLCE calculations.
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Figure 5.4: Thermometry and interaction dependence of spin-spin correla-

tions. (a) Spatial variation of nearest-neighbor correlations. Blue, violet and green dots

are measured correlations along a = b1, b2 and b1− b2, respectively. We perform an

azimuthal average along the equipotential of the lattice confinement. The experimental

data is fit to DQMC (red dashed line) and NLCE (orange solid line) and we extract a

temperature kBT/t = 0.80(10). Error bars are the standard error of the mean. (b)

Nearest-neighbor spin-spin correlation as a function of temperature. The experimental

correlations at the center of the trap are visualized by the light blue shaded band with

average indicated by the blue line compared with calculations from DQMC (red dots)

and NLCE (orange squares) at half-filling. Orange solid and red dashed lines are a guide

to the eye. The width of the blue band indicates the error of nearest-neighbor spin-spin

correlation evaluated by the error propagation of nearest-neighbor spin-spin correlations

established in Fig. 5.3(b). We find kBT/t = 0.80(25) (blue dashed line). (c) Interaction

dependence of nearest-neighbor spin-spin correlations. Measured correlations (blue dots)
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are compared with DQMC (red dots) and NLCE (orange squares) theory for temper-

ature kBT/t ∼ 0.9 at half-filling. Blue diamonds are measured using lattice depth of

12.0(7)ETri
r to avoid losses at larges values of U . Error bars are the standard error of

the mean evaluated by bootstrap. (d) DQMC calculation of spin-spin correlations at

kBT/t = 0.4 at half-filling for shifts (1, 0), (1.5, 0.9) and (2, 0) (red dots, blue triangles

and violet pentagons, respectively). The next-nearest-neighbor spin-spin correlations

show a sign change versus U/t.

Reducing the temperatures in our system is an outstanding challenge. Possible ways

to significantly reduce the temperature are a redesign of the trapping configuration

during the final evaporation, the implementation of entropy redistribution tech-

niques [126] or the addition of 7Li to the system for sympathetic cooling [142]. Future

experiments will access spin-density correlations to study kinetic magnetism [53, 74,

143], enabling the study of polarons with special properties caused by the frustrated

nature of the triangular lattice [73, 144, 145]. Binding energies are expected to scale

with the tunneling t and may be detectable at higher temperatures compared to

square lattices [73]. Systems with increased binding energy are interesting because

they may provide a path towards realizing repulsive pairing at higher temperatures

and, therefore, higher-temperature superconductivity. Additional future directions

where our experimental platform can challenge state-of-the-art numerical calcula-

tions include the study of transport properties [146] and the experimental search for

chiral ordering predicted for triangular Hubbard systems [63, 129].



Chapter 6

Implementation of Spin-Resolved

Imaging

This chapter discusses the setup of spin-resolved imaging that can expand the ca-

pabilities of quantum gas microscopy to measure more observable quantities such

as spin-density correlations, which enables the detection of polarons. In general,

quantum gas microscopy provides information only on single-component density

and singles density, where holes and doubly-occupied sites are detected as empty

sites, referred to as parity-projected density. The fundamental limitation is due to

the light-assisted collisions. To prevent these collisions, a magnetic field gradient

can be used to separate spin states into double-well potential or double light sheets.

These approaches have been successfully demonstrated in previous studies [53, 104,

143, 147]. To overcome the limitations of our quantum gas microscope, spin-resolved

imaging is implemented using Stern-Gerlach separation of the two-spin components

into two light sheets, inspired by [104]. Both spin states are imaged in vertically

separated light sheets.

The setup of the double light sheet is depicted in Fig. 6.1. We distribute the power

of the main light sheet by a high-power 50:50 beamsplitter and then combine both

light sheets with another beamsplitter. Note that we stabilize the light sheet in-
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tensity before directing it to the first beamsplitter. This makes the relative powers

between both beams stable. We add a 1:1 telescope to the longer path, thus ensur-

ing the beams are identical and do not have relative focus shifts. During Fermi gas

sequences, the second light sheet is not necessary, and we use a motorized shutter to

block the beam. Assuming that atoms are frozen in deep lattices and are prepared

for Stern-Gerlach separation, the atoms are captured by the two light sheets in the

presence of a magnetic field gradient (the inset of Fig. 6.1). During the imaging

process, we collect scattered light from atoms in both light sheets simultaneously

through the high-resolution objectives and we split the fluorescence light of indi-

vidual light sheet layers by a beamsplitter. The scattered light from both layers is

focused onto a camera and we compensate for the focus shift of the reflected beam

from the beamsplitter by a glass block. This configuration allows us not to move

the camera to the other focus position, unlike previous studies [104, 143]. The light

sheets can be individually controlled in the vertical direction by mirrors attached to

galvanometers (GM1, GM2). Note that galvanometer GM2 controls the global posi-

tion of both light sheets while GM1 controls only one light sheet. This setup enables

the simultaneous control and adjustment of both light sheets. We demonstrate this

controllability by simultaneously moving both light sheets in opposite directions and

detecting the atoms using absorption imaging, as shown in Figs. 6.1(b,c).

An important key to performing the Stern-Gerlach separation is the magnetic field

gradient. We form the anti-Helmholtz configuration of coils by reversing the current

direction of one Feshbach coil using an H-bridge (see Fig. B.11 in the appendix).

This allows us to access the maximum gradient strength of approximately 280 G/cm

at a current of 200A. The spin states that we choose to perform the separation are

|2⟩ and |3⟩ because the state |3⟩ has strong magnetic moments at almost zero fields

and their magnetic moment signs are opposite. This means that they will move away

from each other in the presence of a magnetic field gradient, making the capture

process simpler and reducing the chance that the spins end up in the wrong layer.
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Figure 6.1: Bilayer imaging using two light sheets. (a) Schematic of light sheets.

We split the total light sheet power into two beams called “LS1” (short path) and

“LS2” (long path) using a polarizing beamsplitter (PBS). To prevent an expansion of

the elliptical Gaussian beam, we add a 1:1 telescope (not shown) to the longer path,

making the shape of LS2 identical to LS1. Both light sheets are combined by another

PBS. To individually control the movement of the light sheets in the vertical direction,

we attach mirrors to galvanometers (GM1, GM2). A glass block with a diameter of 1

inch and a length of 2.5 inches is used to compensate for the focus shift between the two

layers. The relative angle between the two paths is approximately 12◦ at the camera.

(b) Absorption images of light sheets. The two light sheets are initially overlapped

at the same position (left, 0 V) and are then split by simultaneously increasing the

voltages applied to the galvanometers. By varying galvanometers, both potentials can

be individually controlled and here we move them away from each other. The separation

between both light sheets can be greater than 50 µm. The field of view is 200µm ×
200 µm. (c) Light sheet positions as a function of simultaneously applied voltages to

galvanometers. Blue (violet) dots are light sheet potentials that capture spin states

|2⟩ (|3⟩). The black dot represents the parameters in which two light sheets are located

at the same position.
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Figure 6.2: Zero field measurement and oscillation of state |3⟩. (a) Optical density
as a function of low-field imaging frequency in the presence of various magnetic fields.

Background (red), anti-Helmholtz of Feshbach coils at 92A (blue), Z-offset field at

10A (orange). The two peaks correspond to the two hyperfine states, |2⟩ and |3⟩. The
peak separations imply an offset magnetic field of 5.8 G. (b) A quarter period of simple

harmonic motion. Here, we suddenly apply a magnetic field gradient of 35 G/cm to a

lattice depth of 16ESq
r and let the cloud evolve for a variable time. The oscillation occurs

when the total forces on the atoms are not balanced, as the lattice acts as a restoring

force to the center, and the force of the magnetic field gradient is proportional to the

field gradient. By fitting the oscillation to a sinusoidal function, the oscillation frequency

is extracted and yields approximately (2π)× 300 Hz. Note that this result is consistent

with the measurement of a non-interacting Fermi gas, discussed in Section 4.5.

We ensure that the residual offset field of the magnetic gradient from Feshbach

coils is either not completely zero or high by measuring the Zeeman splitting of the

lowest hyperfine state at various field configurations (Fig. 6.2(a)). A large separation

between spins can be achieved by maximizing the differential magnetic moment

between the two spin states. We confirm the direction of separation of individual

spins by holding a |2⟩ − |3⟩ mixture in an optical lattice and suddenly turning on

the magnetic field gradient for a variation of time. We then image a spin component

using absorption imaging in a low-field regime. Here, we observe an oscillation as a
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function of the hold time. This can be understood by considering simple harmonic

motion around the trap center, with an initial velocity applied at the initial time,

as depicted in Fig. 6.2(b).
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Figure 6.3: Count histogram and reconstruction of spin-resolved imaging. (a)

Single-site resolution of |1⟩ (top) and |3⟩ (bottom). (b) Count histogram of reconstruc-

tion. Orange marks a threshold of occupation, allowing us to choose real single atoms

from candidates. (c) Doubly-occupied sites of center overlap. By overlapping the center

of |1⟩ and |3⟩, a certain configuration provides the lowest doubly-occupied sites and this

is the correct overlapping of the two pictures.

With the capabilities of spin-resolved imaging, we study Fermi-Hubbard parameters

as described in [58] using a balanced |1⟩− |3⟩ mixture. To obtain a |2⟩− |3⟩ mixture

that is suitable for the Stern-Gerlach separation, we ramp the lattice to 50ESq
r and

apply a |1⟩ − |2⟩ RF sweep centered at 595 G spanned by 50 kHz. This transfer

has an efficiency greater than 99%. Next, we ramp up the lattice depth to 120ESq
r
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and turn on a magnetic field gradient of approximately 170 G/cm. Two light sheets

are simultaneously turned on and stay 8µm apart from each other, capturing atoms

occupying different states. We then move both light sheets further separated to

20 µm and perform fluorescence imaging. In Fig. 6.3(a), spin-resolved fluorescence

images of spins show an antiferromagnetic patch as expected for a square lattice in a

repulsive regime. We suppress the background noise from the other layer by increas-

ing the exposure time to 2 s and the count histogram shows well-separated peaks

between empty and occupied sites (Fig. 6.3(b)). The center position of both spins

is sensitive to the overlapping procedure. For example, the accuracy of overlapping

by the center of mass has an error of a few sites, typically less than 2 lattice sites.

To overlap more precisely, we minimize doubly-occupied sites formed by two types

of spin images, similar to [143], because we expect to see fewer doubly-occupied

sites at half-filling which corresponds to a density of one. As a result, an impressive

spin-resolved image is illustrated in Fig. 6.4, providing information on full density:

spin up, spin down, doublon, and hole.

Figure 6.4: Full density-resolved imaging. Both spins (red, blue), shown in

Fig. 6.3(a), are overlaid in the configuration where doubly-occupied sites are minimized,

corresponding to the leftmost part of the histogram in Fig. 6.3(c). The green shading

represents a doubly-occupied site and small dots are optical lattices. The lightly shaded

yellow area illustrates an antiferromagnetic patch.
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We check the fidelity of the Stern-Gerlach separation by preparing Mott insulators

with the density of singles filling of 93.6(3)% and compare it to a spin-resolved image

with a filling of 91.1(4)%. As a result, we obtain a separation fidelity of 97.8(4)%.

The reduction of singles density in spin-resolved images indicates losses during the

transport process illustrated in Fig. 6.5. We determine the imaging fidelity by taking

a series of images similar to previous work [84]. In fact, the imaging fidelity is lower

than the previous measurement because we increase the exposure time to suppress

the background noise from the defocused layer. It is important to note that the

splitting is very sensitive to the ratio of the single light sheet power to the lattice

power. We find that the splitting does not separate well when the light sheet power is

weaker than the lattice power. In addition, the imaging fidelity is also very sensitive

to Raman parameters, especially the Raman repump detuning. This is because

we use a stronger light sheet power, and the light shift plays an important role in

fluorescence imaging.
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Figure 6.5: Stern-Gerlach separation fidelity.

Singles densities without and with splitting are

93.6(3)% (blue), 91.1(4)% (red). The reverse

process of the splitting is employed, yielding a

lower singles density of 88.2(4)% (orange). This

information allows us to obtain the separation

fidelity of 97.8(4)%.

To verify our spin-resolved implementation, we measure the spin-spin correlation

of a balanced |1⟩ − |3⟩ mixture at a lattice depth of 7.4ESq
r and a magnetic field

of 603 G, resulting in U/t ≈ 7. In Fig. 6.6(a), spin-spin correlations for nearest

and next-nearest neighbors are measured and the correlations show a symmetry

at density n ≈ 1. The correlations beyond nearest neighbor sites are observed in

Fig. 6.6(b). We note that this is the first time we have observed correlations beyond

nearest neighbors in our quantum gas microscope. Unfortunately, this observation
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is in a square lattice, not a triangular lattice. Temperature can be determined

separately from correlations by the fluctuation-dissipation theorem, demonstrated

in [147]. Here, we apply a similar approach to determine the temperature of a

two-spin mixture. The density fluctuation-dissipation theorem is given by

κn2 =
1

T

∑
δ

(
⟨n̂in̂i+δ⟩ − ⟨n̂i⟩ ⟨n̂i+δ⟩

)
, (6.1)

where T is the temperature and δ is the correlated lattice site. κ is the compressibil-

ity which can be obtained as follows: By applying the local density approximation,

the chemical potential can be written in terms of radial dependence. The compress-

ibility, κ, is expressed as

κn2 =
∂n

∂µ

∣∣∣∣
T

= − 1

mω2r

∂n

∂r
, (6.2)

where n is the full density, m is the atomic mass, and ω is the confinement, which can

be obtained from the measurement in Section 4.5. Therefore, we apply a linear fit

to κn2 and
∑

δ(. . . ) and the system temperature is extracted from the slope. As can

be seen in Figs 6.6(a,c), the temperatures are consistent between the two methods

within error bars. Finally, we measure the spin-spin correlations dependence on

interaction by varying magnetic fields at a fixed lattice depth. The correlations show

the strongest value at U/t ≈ 7, agreeing with numerical calculations (Fig. 6.6(d)).

Here, the second generation of our quantum gas microscope is prepared to study

interesting phenomena described by the Fermi-Hubbard model beyond a two-spin

component in the following chapter.
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Figure 6.6: Spin-spin correlations. (a) Correlations at U/t ≈ 7. Blue and violet dots

are nearest and next-nearest neighbors. The correlations are symmetric about half-filling

(full density is unity) due to particle-hole symmetry. (b). Spin-spin correlations as a

function of correlated distance. Data are represented by blue dots, and the calculation

of DQMC at kBT/t = 0.6 and U/t = 7 is denoted by violet squares. The solid line

is an exponential function as a guide to the eye. (c) Total density fluctuations as a

function of compressibility. The slope of the linear regression yields the temperature of

kBT/t = 0.68(8) indicated by gray shading. This is consistent with the observation from

the spin-spin correlations. (d) Spin-spin correlations as a function of interaction at a

density of one (half-filling). Note that the correlation of the rightmost point at U/t = 14

is selected at n ≈ 0.9 due to the unavailability of density in the dataset. The blue dots

represent nearest neighbors, while the violet dots represent next-nearest neighbors. The

blue and light blue solid lines illustrate theoretical calculations at kBT/t = 0.88 and

kBT/t = 0.65 at half-filling, taken from [52].



Chapter 7

Quantum Gas Microscopy of

Three-Component Fermi-Hubbard

Systems

A two-component Fermi gas is of interest for the understanding quantum phases,

particularly the crossover from Bardeen–Cooper–Schrieffer (BCS) superfluidity, where

fermions form pairs, to Bose-Einstein Condensates (BECs), characterized by com-

posite bosons. The crossover is an exciting intersection for both high-temperature

superconductivity and cold-atom superfluidity. Extending the number of spin com-

ponents in systems leads to a wide variety of novel effects, for example, color super-

fluidity and aspects of quantum chromodynamics may become accessible to direct

experimental study. In this chapter, I present our recent measurement of a bal-

anced three-component Fermi gas in an optical lattice. First, I discuss how we

apply our spin-resolved imaging to detect densities and pairing correlations in the

three-component Fermi lattice systems. Finally, I present a simple picture for un-

derstanding the configurations of three-component fermions in an optical lattice for

different interaction regimes. We note that this work is currently under discussion,

and the interpretation of certain effects is awaiting a more detailed understanding
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through comparison with theoretical calculations. We are currently collaborating

with a theoretical group using Determinantal Quantum Monte Carlo (DQMC) and

Numerical Linked-Cluster Expansion (NLCE) calculations.

In two-component Fermi gases, three-body phenomena are suppressed due to the

Pauli exclusion principle. However, introducing an additional spin state makes three-

body effects relevant, therefore leading to new physics phenomena such as Efimov

physics. In Efimov physics, interactions are nearly resonant, and the competition

between pairwise components supports the formation of three-body bound states,

referred to as trimers, even at larger interparticle spacings. However, these trimers

are highly unstable due to three-body recombination, which is a three-body collision

in which two particles form a deeply bound dimer. The lifetimes of these trimers are

predicted to be less than the typical timescale of quantum gas experiments [148].

The stability of a three-component fermionic 6Li was studied in free space and the

stability was determined by the three-body loss rate coefficient at various mag-

netic fields in both balanced [149, 150] and imbalanced three-component mixtures

[151]. In addition, the direct measurement of binding energy by radio-frequency

spectroscopy confirmed the existence of Efimov trimers [152]. The formation of

a fermionic three-component bound state allows the subject of quark matter to

be studied through ultracold atoms. For example, a quark color superconductor

is predicted in one-dimensional (1d) attractive three-component systems [153]. A

quantum phase transition between color superfluidity and baryons, referred to as

trimers in this context, is predicted to occur in the SU(3) model with attractive

interactions [154].

On the other hand, in optical lattices, two-component Fermi lattice gases can be

effectively described by Hubbard models, which were introduced as model systems

to understand the physics of strongly correlated electronic systems [118]. The SU(2)

Hubbard model is believed to capture key aspects of high-temperature superconduc-

tivity [23]. Using pseudo-spin states via nuclear spins, SU(N) Hubbard systems were

realized in 173Yb. These systems are anticipated to manifest exotic physics beyond



CHAPTER 7. QUANTUM GAS MICROSCOPY OF THREE- . . . 132

classical models. For example, in SU(3), three-sublattice order is predicted in the

Heisenberg model at zero temperature, or a mechanism known as “order by disorder”

leads to two-sublattice order at temperatures comparable to the exchange energy

[155, 156]. Examples of experimental studies include the SU(6) Mott insulator in

a 3d cubic lattice [157, 158] and the equation of state of SU(3) and SU(6) systems

[159]. Measurements of antiferromagnetic correlations have been conducted in the

SU(6) Fermi-Hubbard model in 1d, 2d square, and 3d cubic lattice geometries [160].

However, in the presence of the coupling of nuclear and electronic angular momenta,

the SU(N) symmetry is broken, as exemplified by 6Li atoms. Three-component sys-

tems with unequal interaction strengths have been studied numerically, revealing a

variety of quantum phases. In particular, different classes of Mott insulating states

have been identified, depending on the interactions [161–163].
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Figure 7.1: Quantum gas microscopy of three-component Fermi gases. (a) The

definition of spin components and interactions between pairwise components (left) and

three-component Fermi lattice gases (right). (b) Tunability of the three interactions

for pairwise components, U13 (violet), U12 (orange), and U23 (cyan). (I)-(III) represent

interaction regimes at magnetic fields of 555.9(1), 603.3(1), and 625.9(3) G chosen for

measurements.

In this work, we study a balanced three-component Fermi gas in a square lattice

with imbalanced interactions and investigate the competition among the pairwise

components through pairing correlations. Here, we define the three lowest hyperfine

states of 6Li as |1⟩ = |F = 1/2,MF = 1/2⟩, |2⟩ = |F = 1/2,MF = −1/2⟩, and |3⟩ =
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|F = 3/2,MF = −3/2⟩ where F and mF are the hyperfine and magnetic quantum

numbers. We label the three spin components as |1⟩ (red), |2⟩ (green), and |3⟩
(blue). Their pairwise interactions are represented by U12 (orange), U23 (cyan),

and U13 (violet), as illustrated in Fig. 7.1(a). The nature of Feshbach resonances

enables us to tune the relative interaction strengths (Fig. 7.1(b)) from all repulsive

interactions (II, III) to one repulsive and two attractive interactions (I). In addition,

varying the lattice depth offers a variety of accessible absolute interactions.

7.1 Fermi-Hubbard model

Our system is well described by the three-component Fermi-Hubbard model in a

two-dimensional square lattice, with the Hamiltonian given by

Ĥ =− t
∑
⟨rr′⟩

3∑
α=1

(ĉ†rαĉr′α + ĉ†r′αĉrα)−
∑
r

3∑
α=1

µα(r)n̂rα

+
∑
r

∑
α ̸=β

Uαβn̂rαn̂rβ,

(7.1)

where α, β ∈ {1, 2, 3} represents the fermionic colors that correspond to the three

lowest hyperfine states, t is the tunneling strength between nearest-neighbor lattice

sites, Uαβ is the on-site interaction between a pairwise component αβ, ĉiα(ĉ
†
jα) is

the annihilation (creation) operator for a fermion with color α on lattice site r,

n̂r,α = ĉ†rαĉrα is the number operator, and µα(r) is the chemical potential of a fermion

color α. We apply the local density approximation (LDA) to map the variation in

atom density in the presence of a confinement potential to a homogeneous gas i.e.,

µα(r) = µ0,α − (1/2)mω2r2 where ω is the confinement frequency, m is the atomic

mass, and µ0,α is the chemical potential at the trap center for the fermionic color α.

As can be seen, the Fermi-Hubbard model provides the theoretical foundation for

our system. Subsequently, the Hubbard parameters are calibrated.
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Tunneling calibration

The tunneling parameter is calibrated using a similar approach as discussed in sec-

tion 4.3.1. Here, we prepare non-interacting Fermi gases of a |1⟩ − |3⟩ mixture in a

square lattice and perform amplitude modulation for 100 ms with an amplitude of

5% of the offset power over a certain range of modulation frequencies. Atom losses

are observed near the transition from the S−band to the D−bands (Fig. 7.2). This

observation allows us to extract the lattice depth for a certain lattice beam power,

similar to previous work [58]. We now turn our focus to calibrating the interaction

strengths in the system, a critical step in characterizing the Fermi-Hubbard model,

as discussed in the following section.
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Figure 7.2: Band excitation of a square lattice. (a) Band excitation as a function

of lattice depth. Dots represent the measurements and solid lines are the excitation

frequencies calculated using the band structure in the tight-binding limit. The third

resonance is not obvious for shallow lattice depths. (b) Lattice amplitude modulation of

the violet dots in (a). Data (dots) are fit to a triple Gaussian function (solid line). Using

the knowledge of excitation frequencies, we determine the experimental lattice depths.

Interaction calibration

To obtain the interaction between spin components, we prepare a |1⟩ − |3⟩ band

insulator at a target field and we use a lattice depth of 15.0(3)ESq
r . We transfer
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atoms from the state |1⟩ to the state |2⟩ using a pulse duration of 1 ms. By scanning

the RF frequency, the state |1⟩ of singles and doublons can be transferred to the state

|2⟩ (Fig. 7.3). The separation of the two peaks allows us to determine the interaction

strength. A detailed discussion of this technique can be found in Section 4.3.1.
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Figure 7.3: Hubbard interaction calibration. Magnetic offset fields of (a) 573.3(3)

G, (b) 603.3(1) G, and (c) 625.9(3) G are used with a lattice depth of 15.0(3)ESq
r . The

right peak corresponds to the transfer of the state |1⟩ from the singles component, while

the left peak is due to the transfer of the state |1⟩ from a |1⟩ − |3⟩ doubly-occupied

site. The magnetic field can be inferred using the peak of singles transfer, and the

peak separation is proportional to the interaction strength, similar to the approach in

ref. [164]. The peak separations in (a)-(c) are 2.10(7), 7.85(8), and 14.8(16) kHz. (d)

Energy separation of the singles transfer as a function of magnetic field. Dots represent

the measurements obtained from (a)-(c). The RF spectroscopy of the leftmost dot is

not shown. The solid line is calculated using the Breit-Rabi formula.
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7.2 High-temperature series expansion

The Fermi-Hubbard model is expected to describe our three-component systems.

However, due to the challenging nature of numerical calculations for three-component

many-body systems, we roughly approximate the systems using the high-temperature

series expansion (HTSE) in the atomic limit, where the tunneling strength is sup-

pressed compared to the interaction strength. This concept was introduced in Sec-

tion 4.4 for a two-component mixture. Here, we work with a three-component

mixture. The partition function that represents this system is given by

Z =
1∑

n1=0

1∑
n2=0

1∑
n3=0

z(n1, n2, n3), (7.2)

and

z(n1, n2, n3) = exp

(
β̃(

3∑
α=1

µαnα −
∑
α̸=γ

Uαγnαnγ)

)
, (7.3)

where β̃ = 1/(kBT ) and Z is the partition function. We note that in Eq 7.3,

the chemical potentials, µα, are introduced for three spin components due to the

symmetry breaking of SU(3) in our system. The pairwise interactions, Uαγ, are

imbalanced in the system. The summations in Eq. 7.2 are restricted between 0 and

1 for each spin component, representing the fermionic nature of the systems where

two identical spins are not allowed to occupy the same site.

According to the partition function, we can calculate observable quantities, discussed

as follows: The singles occupation is calculated as

ns =
1

Z

1∑
n1=0

1∑
n2=0

1∑
n3=0

mod (n1 + n2 + n3, 2) z(n1, n2, n3). (7.4)

Here, the mod (n1 + n2 + n3, 2) function projects the total density onto 0 or 1,

reflecting the loss of doubly-occupied sites during imaging caused by light-assisted

collisions.

The single-component densities of the three-component mixture are simultaneously

determined as

[n̄1, n̄2, n̄3] =
1

Z

1∑
n1=0

1∑
n2=0

1∑
n3=0

[n1, n2, n3] z(n1, n2, n3). (7.5)
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Next, the mean squared single-component densities are calculated as

[n̄2
1, n̄

2
2, n̄

2
3] =

1

Z

1∑
n1=0

1∑
n2=0

1∑
n3=0

[n2
1, n

2
2, n

2
3] z(n1, n2, n3). (7.6)

By combining Eq. 7.5 and 7.6, the variance of full density is expressed as

σ2 = n̄2 − n̄2

=
∑
α=1

n̄2
α − (

∑
α=1

n̄α)
2.

(7.7)

Finally, the doublon densities of each pairwise component are computed as

(n̄d13, n̄d12, n̄d23) =
1

Z

1∑
n1=0

1∑
n2=0

1∑
n3=0

[n1n3, n1n2, n2n3]

z(n1, n2, n3).

(7.8)

7.3 Experimental setup

To realize a balanced three-component Fermi lattice gas, we prepare a spin-balanced

Fermi gas using |1⟩− |3⟩ mixture of 6Li atoms in a single layer of a one-dimensional

accordion lattice, discussed in Section 3.9. We obtain a three-component mixture by

applying radio-frequency (RF) pulses to drive the |1⟩ − |2⟩ and |2⟩ − |3⟩ transitions
during final evaporation at a magnetic field of 594 G. The optimization of a balanced

three-component mixture is accomplished by fine-tuning the pulse duration around

the one-third period of Rabi oscillations shown in Fig 7.4. We note that collisions

between atoms within the timescale of the experiment result in an incoherent mixture

of spin states. We verify the spin population for each dataset by constructing a count

histogram as demonstrated in Fig. 7.5.
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Figure 7.4: Rabi oscillation of the three lowest hyperfine states. (a) |1⟩ − |2⟩
oscillation. We drive the |1⟩ − |2⟩ transition with a Rabi frequency of (2π) × 1.63(8)

kHz at a magnetic field of 594 G. (b) |2⟩ − |3⟩ oscillation. The |2⟩ − |3⟩ transition is

driven and exhibits a Rabi frequency of (2π) × 4.46(21) at the same magnetic field as

in (a). We note that the Rabi frequency depends on the power of the RF applied in the

experiment. Error bars represent the standard error of the mean over three datasets.

Next, we tune the magnetic field to 625.9(3) G corresponding to scattering lengths of

564(3)a0, 1509(16)a0, and 269(3)a0 for a12, a13 and a23, where a0 is the Bohr radius,

for three pairs of spin mixtures. Atoms are loaded into a square lattice of a desired

depth between 9.1(2)ESq
r and 16.0(3)ESq

r where ESq
r = h̄π2/(2ma2latt) = h× 14.6 kHz

is the recoil energy and h is Planck’s constant, m is the atomic mass, and alatt = 752

nm. This configuration gives us U13/t = 87(10), U12/t = 33(4), and U23/t = 16(2).

The atom number and density in the lattice are adjustable by varying evaporation

parameters. The motion of atoms is frozen by rapidly ramping up the lattice to

50ESq
r in 500 µs. Afterward, we prepare for the Stern-Gerlach experiment of two

components by removing one component and transferring the remaining atoms to

the |2⟩ − |3⟩ mixture. We apply a similar procedure as discussed in Chapter 6

for spin-resolved imaging by splitting the components vertically and imaging both

components simultaneously. As a result, we obtain the fluorescence imaging of

two spin states simultaneously. By repeating the same procedure for each pair of
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spin components, the full information of a three-component Fermi lattice system is

revealed.
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Figure 7.5: Atom number histogram. (a), (b), (c), and (d) correspond to Figs. 7.6,

7.7(a,c), 7.7(b,d), and 7.8, respectively. Red, green, and blue represent the states, |1⟩,
|2⟩, and |3⟩. The histogram bin width is 10 atoms. The fluctuations in the atom numbers

for each spin component are within 10%.

7.4 Three-component Mott insulators

In the first measurement, we use the information from spin-resolved imaging to study

the single-component density for each color, nα, as a function of radius from the trap

center. The summation of these single-component densities gives the total density,

n = n1 + n2 + n3, as depicted in Fig. 7.6(a). Hereafter, we will discuss observable

quantities as a function of the total density. This allows us to compare the system
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properties without considering their radial dependence. The doubly-occupied site

density of the αβ pairwise component, nd
αβ, can be constructed by overlapping spin

components, as discussed in Chapter 6. As can be seen in Fig. 7.6(b), nd
23 has a higher

fraction than nd
13 and n

d
12 due to the lower interaction U23. The pairwise component

with lower interaction is energetically favored and forms first at a lower energy

cost. In this measurement, we observe a weak plateau at unity filling (Fig. 7.6(a)),

indicating that the system behaves as a Mott insulator at high temperatures. We

confirm the Mott insulating state by studying the variance of the total density, which

is defined in Eq 7.7. In particular, we access the variance from the experiment by

expanding σ2 as follows:

σ2 =
〈
(n1 + n2 + n3)

2
〉
− ⟨(n1 + n2 + n3)⟩2 . (7.9)

We define σ2
⟨ninj⟩ as

σ2
⟨ninj⟩ = ⟨ninj⟩ − ⟨ni⟩ ⟨nj⟩ , (7.10)

and the variance can be written in terms of observable quantities

σ2 = σ2
⟨n1,n1⟩ + σ2

⟨n2,n2⟩ + σ2
⟨n3,n3⟩

+ 2(σ2
⟨n1,n2⟩ + σ2

⟨n1,n3⟩ + σ2
⟨n2,n3⟩).

(7.11)

Here, ⟨. . .⟩ denotes the averaging over ensembles. We note that our spin-resolved

imaging offers the detection of all terms in Eq. 7.11, whereas the first three terms can

be obtained without the spin-resolved resolution. As a result, we observe a suppres-

sion of the variance at unity density (Fig. 7.6(c)), similar to a two-component Mott

insulator. However, due to strong three-body losses at a magnetic field of approxi-

mately 626 G, accessing higher densities is challenging [149, 150]. Additionally, we

confirm the signature of the Mott insulator by studying the compressibility, κ, de-

fined in Eq. 6.2. We note that the full density, n, is extracted from single-component

densities of three spin states, nα, and ω is the confinement obtained from the mea-

surement of a non-interacting Fermi gas, discussed in Section 4.5. In Fig. 7.6(d), we

observe suppression of the compressibility in the region of unity filling, suggesting

insulating behavior in the regime of an ordinary Mott insulator.
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Figure 7.6: Three-component Mott insulators. (a) Density as a function of radius

from the trap center for |1⟩ (red), |2⟩ (green), and |3⟩ (blue) at U13/t = 87(10),

U12/t = 33(4), and U23/t = 16(2), referring to regime III of Fig. 7.1(b). The full density

(black) is obtained by summing up all individual spin component densities. The data is

fitted to the high-temperature series expansion in the atomic limit by imposing global

chemical potentials and temperature as free parameters. The fit results in µ0,1 = 15.4(7),

µ0,2 = 15.0(9), µ0,3 = 15.2(9) and kBT/t = 5.7(4). (b) Doubly-occupied density as a

function of full density for pairwise components, |1⟩ − |3⟩ (violet), |1⟩ − |2⟩ (orange),

and |2⟩ − |3⟩ (cyan). (c) On-site density variance. The suppression is observed at the

density of one atom per lattice site, similar to the compressibility measurement shown

in (d). Error bars are the standard error of the mean over 45 datasets. (b)-(d) use the

same datasets as (a).
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7.5 Competition between pairwise components

To study the interplay between two spin components, αβ, we define a pairing cor-

relation, given by

Cαβ
a = ⟨nα,rnβ,r+a⟩ − ⟨nα,r⟩ ⟨nβ,r+a⟩ (7.12)

where a denotes the shift in the lattice site number between the two correlated

positions, and r is the current lattice site.

In Fig. 7.7(a), we enhance the center filling by 10% through a 14% increase in the

lattice depth to 16.0(3)ESq
r , resulting in stronger confinement while atom numbers

are fixed. However, the half-filling regime is still out of reach. We expect that an

improvement in atom numbers and possibly stronger confinement could allow us

to reach this regime eventually. By considering the on-site pairing correlation for

|2⟩ − |3⟩, denoted as C23
0 , we observe a negative correlation for densities less than

unity. This indicates that atoms of spin |2⟩ and |3⟩ tend to avoid occupying the

same site. We observe a turning point of C23
0 at unity filling, with a crossover to

positive correlation at n ≈ 1.1. These correlations indicate that the |2⟩ − |3⟩ state
is more likely to form a pair at higher densities than a density of one, while the

remaining pairs still tend to avoid each other.

To further enhance the density to approximately half-filling, we explore the regime

where three-body loss is close to a minimum [149, 150]. We ramp the magnetic

field to the regime (II) as shown in Fig. 7.1(b), and the lattice is set to 9.1(2)ESq
r ,

therefore providing U13/t = 11.5(5), U12/t = 6.6(3), and U23/t = 1.6(1). We observe

a positive on-site pairing correlation for C23
0 and negative on-site pairing correlations

for C13
0 and C12

0 over a range of accessible densities. All on-site pairing correlations

seem to exhibit a turning point for the three pairs close to half-filling. For both

regimes represented in Figs. 7.7(a,c) and 7.7(b,d), the relative interactions are not

significantly different, however, the absolute interactions are distinct.
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Figure 7.7: Flavor-selective pairing. (a,c) Direct measurement of on-site pairing cor-

relations in a Fermi lattice gas with interactions, U13/t = 143(18), U12/t = 53(7), and

U23/t = 26(3), referring to regime III of Fig. 7.1(b). The corresponding chemical poten-

tials are µ0,1 = 32(1), µ0,2 = 31(3), µ0,3 = 30(2), and the temperature is T/kBt = 10(1)

obtained from the HTSE fit. On-site pairing correlation maps for pairwise components

are shown in (a). Each map has a field of view of 80 × 80 lattice sites. (c) Azimuthal

averaging of the on-site correlations (dots) as a function of full density for |1⟩ − |3⟩
(violet), |1⟩ − |2⟩ (orange), and |2⟩ − |3⟩ (cyan). (b,d) Measurement of the on-site and

nearest-neighbor pairing correlations for interactions U13/t = 11.5(5), U12/t = 6.6(3),

and U23/t = 1.6(1) (refer to regime II of Fig. 7.1(b)) with on-site pairing correlation

maps (b). The corresponding chemical potentials are µ0,1 = 3.4(9), µ0,2 = 3.0(4),

µ0,3 = 3.1(4), and the temperature is T/kBt = 1.3(4). (d) Azimuthal averaging of the

on-site (dots) and nearest-neighbor (triangles) pairing correlations. Error bars indicate

the standard error of the mean over 39 datasets and 97 datasets for (a,c) and (b,d).

The inset in (c) presents a cartoon of the simplest configuration with such correlations

in the lattice, constructed based on the pairing correlations.
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We study the competition between pairwise components further by exploring the

regime (III), demonstrated in Fig. 7.1(b) where we have two attractive and one

repulsive interaction. Doubly-occupied density is measured as a function of full

density depicted in Fig. 7.8(a), showing competition among |1⟩ − |3⟩ and |2⟩ − |3⟩
pairwise components with similar attractive interactions. Higher doubly-occupied

density is expected for attractive pairs because they do not require paying energy

costs to occupy the same lattice site, and we confirm our hypothesis from the on-site

pairing correlation that the attractive pairs are most likely to occupy the same site

while the repulsive pair prevents each other for a whole observable density range up

to unity filling (Fig. 7.8(c)). Beyond this filling, the on-site pairing correlation of

a |1⟩ − |2⟩ pairwise component is stronger and approaches a zero-crossing at a full

density of n ≈ 1.4. This can be viewed as the competition of repulsive interaction

to attractive interactions becomes relevant for the filling greater than a density of

one.

We check the validity of temperature measurement by applying the total density

fluctuation-dissipation theorem [147, 165] given by

κn2 =
1

T

∑
a

(
⟨nrnr+a⟩ − ⟨nr⟩ ⟨nr+a⟩

)
. (7.13)

Here, we expand the full density similar to the approach, discussed in Eq 7.9. The

theorem can be written in terms of observable quantities, expressed as

κn2 =
1

T

∑
a

[
C11

a + C22
a + C23

a + 2(C13
a + C12

a + C23
a )
]
, (7.14)

where T is the temperature and can be obtained by applying a linear fit to κn2

and
∑

a(. . . ). As a result, we confirm the consistency between methods within the

same order of magnitude for Fig. 7.8(b) and these methods agree within the error

bars with the other datasets presented in Figs. 7.6 and 7.7. It is important to note

that the fit of the high-temperature series expansion to this regime I of Fig. 7.1(b)

shows a huge discrepancy in the on-site pairing correlations. This is attributed to

the failure of the simple model where the tunneling strength is no longer negligible.
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In particular, the delocalization of spins and many-body effects are relevant and go

beyond the simple model.
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Figure 7.8: Attractive pairing (a) Doublon density of a Fermi lattice gas with inter-

actions, U13/t = −2.4(1), U12/t = 1.8(1), and U23/t = −2.6(1). These interactions

correspond to regime I of Fig. 7.1(b). (b) Total density fluctuation as a function of com-

pressibility. The slope of the solid line represents the temperature of the system. Here,

we obtain a temperature of kBT/t = 2.2(3). (c,d) Direct measurement of on-site pair-

ing correlations. The corresponding chemical potentials are µ0,1 ≈ −0.5, µ0,2 ≈ −0.9,

µ0,3 ≈ −1.4, and the temperature is kBT/t ≈ 2.8 using HTSE fit. (c) On-site pairing

correlation maps with a field of view of 80×80 lattice sites. (d) The azimuthal averaging

of on-site pairing correlations as a function of full density. Note that the HTSE fit has

a large error and the reported fit and the corresponding results should be regarded as

a guide to the eye. Error bars are the standard error of the mean over 40 datasets.

The inset represents a simple configuration of three-component fermions occupying the

lattice. (b)-(d) use the same datasets as (a).



CHAPTER 7. QUANTUM GAS MICROSCOPY OF THREE- . . . 146

In Fig. 7.9(a), we finally show the on-site pairing correlation at unity filling as a func-

tion of a magnetic field at a fixed lattice depth of 9.1(2)ESq
r . The correlation of the

pairwise interaction, U23, exhibits a crossover at a magnetic field of approximately

610 G, corresponding to (U13, U12, U23)/t ≃ (13, 7, 2). This crossover represents the

minimum interaction required to break down a correlated pair before reaching the

Mott transition at unity filling.
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Figure 7.9: Phase diagram of a three-component Fermi mixture. (a) Magnetic

field dependence of on-site pairing correlation at full density of n = 1.0(1). The |1⟩−|3⟩
and |2⟩− |3⟩ pairing correlations show a crossover between pairing and anti-pairing over

the accessible range. The shading areas illustrate calculations of on-site correlations

using HTSE at unity filling with temperatures between kBT/t = 2 and kBT/t = 5,

assuming the global chemical potentials for each spin are the same. (b) Projected 3d

density plot of U13/U12, experimental U12/t, and U23/U12. The ratio of interactions is

calculated from the magnetic field between 550 G and 650 G. The y-axis is accessible

interaction U12/t from the experiment. Red symbols are all available data and black

squares are data discussed in the text. The black dashed line represents the experimental

trajectory in (a). Circles, pentagons, and triangles represent Mott insulating behavior,

flavor-selective pairing, and attractive pairing, respectively. Criteria to characterize this

behavior are discussed in the text. Black crosses mark zero-crossing points in (a)
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In contrast, the pairing correlation of the |1⟩−|3⟩ pairwise component, C13
0 , shows a

crossover at a magnetic field of approximately 568 G. This zero-crossing point corre-

sponds to (U13, U12, U23)/t ≃ (0, 2.8,−1.7) and represents the maximum interaction

required to form a correlated pair of C13
0 before reaching to the attractive-pairing

regime at unity filling. All available data are summarized in Fig. 7.9(b). We sort

our data into three categories using on-site pairing correlations of the |1⟩ − |3⟩
and |2⟩ − |3⟩ pairwise components, C13

0 and C23
0 : Mott insulating (MI), flavor-

selective pairing (FSP), and attractive-pairing (AP) states. The pairing correlation

C23
0 tends towards stronger anti-pairing for densities up to unity filling in the MI

state (Figs. 7.7(a,c)), whereas the FSP state tends towards correlated pairing at

unity filling (Figs. 7.7(b,d)). The AP state represents the state in which the com-

petition from a |1⟩− |3⟩ pair becomes relevant compared to a |2⟩− |3⟩ pair, and the

pairing correlation C13
0 crosses over to correlated pairing (Fig. 7.8).

7.6 Conclusion and outlook

In conclusion, we demonstrate quantum gas microscopy of three-component Fermi

lattice gases in the Hubbard regime. We observe three-component Mott insulators,

flavor-selective localization, and selective pairing at temperatures down to the tun-

neling scale through the direct detections of spin densities and pairing correlations.

Our measurements are compared with simulations using high-temperature series

expansion at the atomic limit and agree well up to unity filling for stronger inter-

actions. The discrepancy at higher filling may be resolved with simulations taking

into account finite tunneling, such as DQMC and NLCE.

Limitations preventing us from achieving three-component Mott insulators at half-

filling with temperatures lower than the tunneling scale are attributed to three-

body losses at a measurement field of approximately 626 G. To avoid strong losses,

increasing the confinement of the vertical 1d lattice, referred to as the accordion

lattice in the text, is feasible while staying in the minimum three-body loss regime
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at around 600 G for Hubbard physics. Overcoming these limitations may enable a

further increase in phase-space density and the observation of a novel paired Mott

phase at half-filling.

Our system opens up the ability to study three-component fermionic systems in

various optical lattice geometries. In particular, the triangular and kagome lattices

may show exotic phases such as chiral states that break time-reversal symmetry

[166, 167]. In addition, a three-component system in ultracold atoms provides a

pathway for studying color superfluidity and aspects of quantum chromodynamics

[154].



Chapter 8

Conclusion and Outlook

In this dissertation, I have reported on the implementation of fermionic quantum

gas microscopy in square and triangular lattice geometries. This setup enables us

to explore strongly interacting fermionic systems. For the first time, we image

fermionic lithium in a triangular lattice via a Raman sideband cooling technique

with an imaging fidelity of 98%. The impressive setup of the triangular lattice is

phase-stable and uses a recycled-beam approach. By propagating the lattice beam

upward in three dimensions, we gain a larger lattice spacing which benefits our

site-resolved imaging. In addition, our system has the tunability to switch between

square and triangular lattices or superimpose between the lattices for future studies.

Our single-site imaging offers insights into unprecedented details of Hubbard physics

in geometrically frustrated triangular optical lattices such as singles density and

single-component density. With the measurement of singles occupation, we ob-

serve the suppression of singles density variance in the regime of strong interaction

which indicates a Mott insulator state. By employing spin-removal and doublon hid-

ing techniques, antiferromagnetic spin-spin correlations are realized up to nearest

neighbors. The measurements reveal 120◦ correlations which are expected for the

system. We demonstrate thermometry in the frustrated system through spin-spin

correlations. Additionally, we inspire other researchers to overcome our limitations
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in temperature by probing exotic states in frustrated systems.

The next generation of our quantum gas microscope allows us to perform spin-

resolved imaging in a square lattice using two light sheets that simultaneously cap-

ture spins in the presence of a magnetic gradient. The spin-resolved imaging detects

the full statistics of the Fermi-Hubbard model in the lowest band, in contrast to

the first quantum gas microscope which can measure only the parity projected of

the full density. We verify the accuracy of our spin-resolved imaging by measuring

spin-spin correlations and observe correlations beyond nearest neighbors.

Three-component fermions have been first realized in our square-lattice quantum gas

microscopy. The nature of Feshbach resonances breaks the interaction symmetry,

resulting in a competition between pairwise components as can be observed through

doubly-occupied site densities and pairing correlations. The correlations enable

us to draw a simple picture of the configuration of three-component fermions in

a square lattice at a temperature comparable with the tunneling energy, near half-

filling density. We also demonstrate the validity of the density fluctuation-dissipation

theorem in the three-component mixture, providing another way to extract the

temperature of a three-component system.

In conclusion, these measurements have shown the capabilities of quantum gas mi-

croscopy to simulate condensed matter systems through ultracold-atom systems cre-

ated in an optical lattice. Additionally, it has the potential to simulate nuclear

physics phenomena, such as the formation of baryons and their superfluidity. In the

future, we plan to apply our microscope to study challenging topics as discussed in

the following.

Outlook

As can be seen in Chapter 5, our main limitation preventing us from observing frus-

trated systems in more detail is the temperature achieved in the experiment that has

the same order of tunneling energy. We have strong evidence that the issue comes
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from the lattice laser beams and it is challenging to suppress the noise at low inten-

sity (less than 50 mW), however, this is the typical power used for shallow lattice

(approximately 10ESq
r ). We plan to leverage the advantages of EOM to overcome

the limitations of AOM at high frequencies by integrating them, thus achieving a

higher bandwidth for intensity stabilization. In addition, the entropy redistribution

technique can be applied, leading to a lower temperature in the Hubbard system

[126]. The efforts to reduce noise are currently in progress.

Spin-resolved imaging of our triangular lattice is challenging because of the small

optical lattice beam sizes. The separation of two light sheets requires approximately

20 µm and this distance is almost the half-width of the triangular beam, leading to

dramatically reduced lattice depth, and it is difficult to efficiently perform Raman

sideband cooling. Alternately, the triangular geometry can be generated by overlap-

ping a 1d lattice on the square lattice, as successfully achieved in several experiments

[71, 78, 168].

The Fermi-Hubbard model beyond short-range interactions can be accessible using

the Rydberg dressing approach [169–171]. The study of nonlocal interactions in

a 2d Fermi gas in an optical lattice poses a new possibility to introduce off-site

interactions that make the model more realistic [172]. We plan to apply a similar

approach to study nonlocal interactions in the triangular lattice.

The dynamical properties of the Hubbard model challenge numerical simulations

[173] and the study of the Hubbard model under a periodic drive shows interesting

features like correlations in fermionic many-body systems can be reduced, enhanced,

or change their sign [174]. By utilizing the capabilities of digital mirror devices

(DMD) and spatial light modulators (SLM), we anticipate delving into the realm

of out-of-equilibrium Hubbard physics, opening new avenues for groundbreaking

research.



Appendix A

Electronics

A.1 Acousto-optic modulator

An acoustic-optical modulator (AOM) is a device that uses an acoustic wave to tune

the frequency of a laser beam by a few MHz. To control the AOM there are three

main components to be considered, a piezo-electric transducer, a crystal, and an

AOM driver. The transducer is attached to the crystal and the AOM driver pro-

vides a radio-frequency (RF) signal to the transducer. The RF creates longitudinal

waves (sound waves) traveling through the crystal, which results in varying refractive

indices of the crystal, therefore leading to the laser beam diffracted (Bragg diffrac-

tion). The diffraction of the laser beam can be analyzed by the Fresnel equations

from a medium of refractive index, n, into a medium of refractive index, n + ∆n,

and derivation can be found in [175, 176].

When the laser beam propagates through the crystal, it interacts with phonons. The

conservation of momentum indicates that

h̄kf = h̄ki ± h̄K, (A.1)

where kf ,ki are the wavevector of diffracted and incident beams, and h̄K is the
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phonon momentum. Also, the conservation of energy dictates

h̄ωf = h̄ωi ± h̄ω0, (A.2)

where h̄ωi and h̄ωf are the incident and diffracted photon energies, and h̄ω0 is the

energy of the phonon.

The first-order intensity is given by

Idiffracted = Iincident sin
2

(
πl√
2λ

√
MIacoustic

)
, (A.3)

where l is the optical path in the acoustic beam, Iacoustic is the acoustic intensity

in the diffraction medium, and M is the diffraction figure of merit defined by Eq.

12.3-20 in [176]. The condition for maximum intensity is given by the Bragg angle

sin θB =
λ

2Λ
, (A.4)

where λ and Λ are the wavelengths of the laser beam and the sound wave in the

diffraction medium.

AOM Controller

We built our AOM controller boxes by assembling the following parts:

1. Power supply (±15 V using HAD15-0.4-

AG, 24 V using HN24-3.6-AG)

2. Voltage reference (LT1236)

3. Amplifier (Becker AMP590033H, Mini

circuit ZHL-03-5WFX)

4. Local Oscillator (ZOS-75+, ZOS-100+,

ZOS-150+, ZOS-300+)

5. Mixer (ZLW-1+, ZLW-3+)

6. RF Switch (ZASWA-2-50DRA+)

(2)

(3)

(5)
(6)

(1)

(4)

The power supply provides a DC voltage of 24 or ±15 V. The voltage is stepped

down to ± 5 V and 12 V using circuit the circuit in Fig. A.1. To switch between
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internal and external control, on-on switches are attached to the front panel. Two

potentiometers are also attached for internal control of the local oscillator and RF

amplitude. To provide a stable voltage for the potentiometers, we use a voltage

reference (LT1236) that provides a constant voltage of 10 V to the first potentiometer

while the second one provides a tunable voltage between 0 and 0.5 V. The first

potentiometer is connected to a local oscillator and the second one is connected to

a voltage follower before connecting to a mixer (ZLW-1+) at pin I. The RF signal

generated by the local oscillator is attenuated before being connected to the mixer

at pin L. The output signal from pin R is attenuated by a small DC from pin I. As

a result, the mixer is used as an attenuator. Then the signal is connected to an RF

switch (ZASWA-2-50DRA+). The switch can be controlled by an on-off mechanical

switch or TTL. When the switch is on, it allows the signal to be amplified by a 2 W

amplifier (AMP590033H) for low-power AOM or a 5 W amplifier (ZHL-03-5WFX)

for high-power AOM. The typical output signal has a value of 32 − 36 dBm. To

prevent overheating in the high-power amplifier when the water-cooling is off, we

apply a relay (IXYS CPC1718J) to control the DC power to the amplifier via an

interlock.

+12V +5V

Signal In

Signal Out

-5V

Vs

Amplifier

Power supply

Mixer

VCO

RF switch

Potentiometer 1

Potentiometer2

BNC

BNC
BNC

TTL BNC

Output

+10V

Voltage reference

200k

5V

10k
10k

R
F

 IN
+
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R
F

1
C

ontrol
-5V

R
F

2

-15V 0V +15V

GND +12
Mini-Circuits

OUT CON

AUX OUT

L I R

Figure A.1: Low-power AOM driver setup.
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A.2 Electro-optic modulator

An electro-optic modulator (EOM) is an optical device that can modulate the phase,

frequency, amplitude, and polarization of a beam relying on the Pockels effect [176].

The EOM consists of a non-linear crystal and an electrode attached to the crystal.

The crystal changes its refractive index when an electric field from the local oscil-

lator is applied. When a traveling beam, A exp(ikx− iωt), propagates through the

crystal, the beam travels at the boundary from an index of refraction n to an index

of refraction n + ∆n with different speeds, resulting in a phase change. Assuming

the sinusoidal signal is applied, the phase of the traveling wave can be written as

β sin(Ωt). Here, the traveling wave in the medium is described by

Ψ(x, t) = Aei(kx−ωt−β sin(Ωt)). (A.5)

In practice, the amplitude of modulated phase β is much smaller and it can be

expanded by Taylor’s series and given by

Ψ(x, t) ≃ Aei(kx−ωt)(1− iβ sin(Ωt)). (A.6)

We simplify the expression in terms of exponential components

Ψ(x, t) ≃ Ae−iωt

(
1− β

2

(
eiΩt − e−iΩt

))
eikx

= A

(
e−iωt − β

2
ei(−ω+Ω)t +

β

2
ei(−ω−Ω)t

)
eikx.

(A.7)

Here, the first term is the incoming beam and the remaining terms are the sidebands

with frequencies shifted by ±Ω. There is a series of sidebands when β is not small,

and the expression leads to Bessel functions known as the Jacobi–Anger expansion,

Ψ(x, t) = Aei(kx−ωt)

(
∞∑
k=0

Jk(β)e
ikΩt +

∞∑
k=1

(−1)kJk(β)e
−ikΩt

)
. (A.8)

The fraction of optical power transferred into each of the first-order sidebands is

determined by [J1(β)]
2, and the fraction of optical power of the carrier is given by

[J0(β)]
2. To achieve the maximum amplitude of the first-order sideband, the Bessel
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function argument β should be approximately 1.84 radians, resulting in a sideband

amplitude of [J1(1.84)]
2 = 34%.

ω-Ω

ω+Ω

ω

ω

L

C

Figure A.2: Schematic of EOM. A phase modulation is imprinted on the traveling

wave by an LC circuit. The EOM crystal is made of MgO: LiTaO3 (5%) and sandwiched

between Au and Cr electrodes coating on two z-planes. Both electrodes can be treated

as a capacitor. The resonance frequency is determined by measuring the reflected power

of a coupler (Mini-circuits ZFDC-10-2).

A.3 Intensity stabilization

In Fig. A.3, the laser intensity is controlled by a proportional–integral (PI) controller.

Specifically, the reference voltage U is compared with the photodiode voltage Y and

the controller uses the error signal, U − Y , to provide an output signal based on P

and I gains to control the RF amplitude to the AOM via a mixer.

controller plant

sensor

desired 
intensity

actual 
intensity

Σ
+

-

measured intensity

Mixer Amplifer

photodiode

PI servo

Y
U

AOM

Figure A.3: Feedback diagram of intensity stabilization.
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A.4 Two-step voltage controller oscillator

The frequency of the imaging laser is tuned by transmitting a reference signal from

a Keysight 33600A to a phase lock circuit. However, we find that it requires at

least 200ms for the General Purpose Interface Bus (GPIB) command, and this time

scale is crucial for experiments. It is important to note that the laser lock does not

tolerate large frequency jumps of the reference. To reduce the transmission time and

ensure a smooth frequency change, our voltage controller oscillator is implemented,

referred to as VCO (Fig. A.4), which provides a frequency from 20MHz to 80MHz,

thus allowing full control of the imaging frequency from low to high field. Note that

a typical commercial VCO with bandwidth more than about twice the minimum to

maximum frequency is essentially not available.

A.5 H-bridge driver

To enhance our ability to control the magnetic offset field, we integrate an H-bridge

driver with the 4N-Channel MOSFET (APTM50HM65FT3G-ND). This setup en-

ables us to globally reverse the direction of the offset field. Subsequently, we noticed

that the magnetic field gradient of our MOT setup is counter to gravity, leading

to inefficient evaporation. To address this, we implemented a home-built H-bridge

by employing four high-current N-channel MOSFETs (IXFN420N10T) and its con-

troller as shown in Figs. B.11 and A.5. This configuration, in conjunction with iso-

lated power supplies for each MOSFET, allows us to flip the direction of the MOT

field for higher-current operation. These isolated power supplies control the differ-

ential voltage between the gate and source channels in the case of an ungrounded

source. To ensure safety while reversing the field direction during running current

flow, we add a magnetic field sensor that converts the field strength that exceeds a

set point to a logic value. By utilizing a D-latch, we can reverse the field using a

TTL signal. It is important to note that the field direction cannot be reversed while

the current is actively flowing. The system design can operate at a current of 200A,
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and potentially more depending on the MOSFETs employed.

Analong input (0-10V)

Control VCO1

Control VCO2

Figure A.4: Two-step VCO. This circuit enables the operation of two VCOs for an

extended frequency range. The setup involves connecting two VCOs to an RF switch

(ZASWA-2-50DRA+, not shown). IC1A acts as a comparator which provides a HIGH

state of TTL to the RF switch when the analog input surpasses a specific threshold,

denoted as A and determined by resistor R2. Meanwhile, IC2A provides VCO1 with a

voltage range of 0 to A, effectively covering a designated frequency range. On the other

hand, IC3A imparts a voltage range spanning from B to C to the VCO2, encompassing

yet another defined frequency range. The values of B and C can be linearly adjusted

through resistors R9 and R6. Diode D1 prevents a negative voltage to the TTL channel.

The fine-tuning of trimmers facilitates a smooth transition between the two VCOs,

ensuring a continuous frequency. The inset represents the output frequency of the VCOs

as a function of an input voltage to the circuit. Here, we construct the device using

ZOS-50+ and ZOS-75+.
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Enable

D

Q

Enable     D     Q
     0         0      latch
     0         1      latch
     1         0      0
     1         1      1

Figure A.5: H-bridge driver. This circuit facilitates the reversal of current direction

through an H-bridge configuration when no current is actively flowing. The magnetic

field surrounding a wire is detected by a hall sensor (DRV5055A4QLPG) and a series of

op-amps are utilized to compare the field signal against set points that can be adjusted

through resistors R4 and R5. This comparison process converts the magnetic field into

a logical signal at IC10A. This signal is driven to a HIGH state when the magnetic field

strength remains below the set point. Subsequently, a TTL signal is triggered to govern
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the direction of the current. When a current is flowing, a D-latch prevents any attempt

to reverse the current direction. Outputs A-D control the gates of the MOSFETs on

the H-bridge. To ensure accurate referencing of TTL signals to the MOSFETs, every

channel is driven independently and fully differential.

A.6 Rotational waveplate

The imaging of single atoms on a triangular lattice is still not completely under-

stood. Asymmetric triangular lattices formed by linear polarizations show higher

imaging fidelity, however, they cannot be used to study Hubbard physics in symmet-

ric systems. To study physics on symmetric triangular lattices, we rely on imaging

in an asymmetric triangular lattice. We adiabatically connect these lattices using

a motorized rotatable waveplate (Thorlabs DDR25) shown in Fig. A.6. Later, we

realized that sigma polarization can be used to study Hubbard physics in a symmet-

ric triangular lattice and the site-resolved imaging can be obtained with the same

configuration. Here, we use the rotational waveplate to adjust the symmetry of our

triangular lattice instead.

Rotational waveplate
Thorlabs DDR25

Motor controller
Kinesis KBD101

SparkFun USB
Host Shield 2.0

9-12 V
Power supply

0-10 V
Control waveplate

Figure A.6: Rotational waveplate with Ar-

duino. We control the angle of a waveplate

using 0-10V which corresponds to a wave-

plate angle of 0-360◦. The controlled volt-

age is connected to an Arduino, which com-

municates with a motor controller (Kinesis

KBD101) via the USB Host Shield 2.0.
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Existing Apparatus

B.1 Vacuum chamber setup

The components of our vacuum chamber include the oven tower, Zeeman slower,

science chamber, and science tower, as illustrated in Fig. B.1. This design draws

inspiration from the work of the Waseem group at Princeton University [177] and

the Jochim group at the University of Heidelberg [178]. The oven is filled with 95%

isotope of 6Li provided by Sigma-Aldrich (340421-10G) demonstrated in Fig. B.2(a),

and a thermal band wrapped around it can heat the oven to 350◦C, resulting in the

generation of lithium vapor. The oven tower serves as a connection between the

lithium oven and the Zeeman slower. This tower is equipped with four Kodial glass

viewports (Kurt J. Lesker VPZL-450Q), and its lower section links to an ion pump

(VacIon Starcell Plus 75) controlled by an IPC Mini Pump Controller (75-55-40SC).

A turbo pump (HiPace 80) can be attached through an all-metal angle valve (VAT

54132-GE02-0001) positioned near the top. To mount the titanium sublimation car-

tridge (Agilent Technologies 716-0050), a reducing flange (Kurt Lesker RF600X275)

is employed, transitioning from CF100 to CF40. Additionally, a movable vacuum

feedthrough which can be controlled by a servo motor as an atomic beam shutter,

prevents the 6Li coating at the gate valve. A metal gate valve (VAT 48124-CE01-
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0001) is connected between the oven tower and the Zeeman slower tube to separate

the lithium oven from the science chamber, while another metal gate valve (VAT

48132-CE01-0002) separates space between the science chamber and the in-vacuum

mirror of the Zeeman slower. The science chamber is the spherical octagon from

Kimball Physics (MCF600-SphOct-F2C8) consisting of eight viewports for optical

access. These viewports are from Kurt J. Lesker VPZL-275Q. To facilitate optical

access along the Zeeman slower coils, a T-flange housing a mounted gold mirror is

implemented, similar to [179].

Vacuum parts cleaning

Cleaning vacuum parts for Ultra High Vacuum (UHV) applications is essential to

maintain the purity and integrity of the vacuum environment. Contaminants can

adversely affect experimental outcomes and equipment performance. To clean these

parts, we follow these steps: Vacuum parts are initially sonicated in an acetone

solution that is a strong solvent for removing a wide range of organic contamina-

tions including grease, oils, and some adhesive residues using Sonicator (Quantrex

650). We then sonicate them in isopropyl alcohol to remove polar contaminants and

inorganic residues. Custom-made vacuum parts require an additional step at the

beginning. They are sonicated in Alconox mixed with tap water to remove contam-

inants. Vacuum viewports and windows are not sonicated to prevent damage to

their coating. After cleaning, all parts are placed on UHV-grade aluminum foil to

air dry and are subsequently wrapped in foil until assembly.

Assembly and baking

We achieved reliable seals for all flange connections by employing copper gaskets in

combination with silver-plated hex bolts and nuts. To ensure a leak-tight seal, we

follow a precise tightening procedure. Using a torque wrench set to the recommended

torque pressure, we systematically tighten the bolts in a star pattern. This method

ensures that our seals are secure and free from leaks.
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(a) Rendered image

(b) Raw image

Figure B.1: Vacuum chamber. From left to right: ion pump, lithium oven, 6-way

tower, Zeeman slower, science chamber, 4-way chamber, and turbo pump.

To evacuate our vacuum system, we connect a turbo pump to an angle valve, and the

outlet port of the turbo pump is linked to a rough pump (Agilent Technologies IDP-

7). The angle valve remains closed at this point. We begin the process by running

only the rough pump until it reaches the ultimate pressure of 4× 10−2 mbar. After
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reaching this pressure, we switch on the turbo pump. The angle valve is opened

only when the turbo pump runs at its maximum speed of 9 × 104 rpm. To ensure

there are no leaks in the system, we employ a SmartTest Helium leak detector (HLT

550). Helium is sprayed around suspicious areas like flange connections, and leaks

are detected by observing spikes in helium pressure. In the case of a leak, we seal

it by applying a leak sealant (CELVA-2) to the specific location of the leak. The

evacuation process continues until the pressure reaches the ultimate pressure of 10−7

mbar. Once this pressure is achieved, we proceed to the next step.

(a) (b)

Figure B.2: Lithium. (a) 95% isotope of 6Li chunk. (b) Image after baking 6Li chunk

in the oven section. To eliminate the mineral oil layer on the surface, a Pentane rinse is

performed, followed by baking to remove any oxidized layers. Note that Acetone cannot

be used due to its potential to oxidize 6Li. To minimize oxidation when in contact with

air, we flush argon during the process.

To bake the vacuum system, we initiate the process by wrapping the components

with an initial layer of aluminum foil. Over this layer, we apply heating tape without

overlapping to ensure the tape’s integrity is maintained and to facilitate even heat

distribution during baking. For delicate components like windows and viewports,

we take extra precautions by covering them with metal caps to shield them from
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direct contact with the heating tape. To monitor the temperature accurately, we

attach thermocouples at various critical locations within the system (Table. B.1). An

additional layer of aluminum foil is then wrapped over the heating tape, providing

an effective heat barrier (Fig. B.3). In the case of the ion pump, we remove the

magnets before applying the foil and heating tape to prevent any potential magnet

degradation from the elevated temperatures. We gradually increase the temperature,

maintaining a controlled rate of approximately 1◦C per minute until we reach the

designated target temperature shown in Table. B.1. The baking process continues

over a week, allowing the pressure inside the system to stabilize and reach a steady

state at a fixed temperature. We note that the lithium chunks are baked in the oven

section separated from the main chamber shown in Fig. B.2(b).

(a) (b)

Figure B.3: Baking of the vacuum system. (a) Oven tower. (b) Main science

chamber and science tower.

Next, we proceed by removing the heating tape from the ion pump section and

restoring the magnets to their original configuration. The ion pump is activated

once the pressure reaches 10−7 mbar. We activate the titanium-sublimation fila-

ments multiple times with a short duration i.e., 2 minutes at 40A until the pressure

stabilizes. This process facilitates the sublimation of titanium, resulting in a thin

and clean titanium film coating the inner surface of the vacuum system. This freshly

deposited titanium is highly reactive. When residual gases within the chamber come

into contact with the chamber walls, a chemical reaction occurs. The reaction leads
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to the formation of stable compounds that adhere to the walls. This effectively

reduces the gas pressure within the chamber.

Vacuum part Max temperature (◦C) Target temperature (◦C)

Zeeman slower 250 100

Angle valves 200 180

Gate valves 300 180

Tower 450 350

TSP 250 200

Top and bottom windows 200 180

Side windows 200 180

Ion gauges 450 350

Ion pumps 400 350

Table B.1: Baking temperatures.

B.2 Control system

The experiment is precisely controlled by the ADwin-Pro II system, which has a

64-bit floating-point unit (FPU) for math co-processing. This ensures robust com-

puting capabilities as well as an Ethernet interface that facilitates efficient data

transmission. Key features of the ADwin-Pro II system include:

1. ADwin-Pro II AOut-8/16 (×4): These modules offer 8 channels each, boasting

16-bit resolution and a voltage range of ±10V (Table. B.2).

2. PRO-II-DIO-32-TICO (×2): With 32 TTL channels per module, these units

provide built-in edge detection or edge output at a frequency of up to 100MHz

(Table: B.3).
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3. PRO-CPU-T12-ENET (×1): This module integrates an Ethernet interface

that supports high-speed data transmission at 1Gbit/s. This enables seam-

less communication between the ADwin-Pro II system and the experiment

computer.

Analog outputs can be directly connected to electronic devices. However, certain

devices, such as intensity stabilization and power supply in the current control mode,

require more attention due to ground loops. To address this, we connect them to

an isolated amplifier before connecting to the devices. Labels of analog outputs

are listed in Table B.2. All digital outputs are connected to optocouplers, which

protect the computer from voltage spikes, possibly created at the experiment, before

connecting to target devices. Lists of TTL are shown in Table B.3.

Channel Used for

DAC00 Square lattice intensity

DAC01 -

DAC02 Triangular lattice waveplate

DAC03 MOT repump Intensity

DAC04 MOT cooling intensity

DAC05 Zeeman beam intensity

DAC06 CMOT detuning

DAC07 -

DAC08 Feshbach current

DAC09 ODT high intensity

DAC10 ODT low intensity

DAC11 -

DAC12 Light sheet intensity

DAC13 Triangular lattice intensity

DAC14 Light sheet AOM frequency

DAC15 Bottom beam intensity

Channel Used for

DAC16 Raman cooling intensity

DAC17 Raman repump intensity

DAC18 Raman repump AOM freq.

DAC19 Raman cooling AOM freq.

DAC20 Green AOM frequency

DAC21 Green intensity

DAC22 Light sheet galvanometer

DAC23 DMD intensity

DAC24 RF frequency sweep

DAC25 Green PZT

DAC26 2nd Light sheet galvanometer

DAC27 MOT current

DAC28 -

DAC29 -

DAC30 X-offset current

DAC31 Imaging frequency

Table B.2: Analog outputs channels of ADWIN system.
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Channel Used for

A0 MOT repump shutter

A1 MOT cooling shutter

A2 Imaging shutter

A3 Repump AOM

A4 Cooling AOM

A5 Zeeman AOM

A6 Andor Camera trigger

A7 High field TTL

B0 Square lattice override

B1 Final Zeeman field

B2 MOT field

B3 Feshbach field

B4 -

B5 Basler camera trigger

B6 IPG AOM

B7 Reverse X-offset field

C0 Reverse Y-offset field

C1 Reverse Z-offset field

C2 Offset field switch

C3 ODT servo override

C4 ODT integrator short

C5 Atomic beam shutter

C6 Oscillascope trigger

C7 RF switch

D0 RF generator trigger

D1 MOT top mirror shutter

D2 Light sheet AOM

D3 Light sheet integrator short

D4 Triangular AOM

D5 -

D6 Triangular integrator short

D7 Bottom beam integrator short

Channel Used for

E0 Bottom beam AOM

E1 Raman cooling AOM

E2 Raman repump AOM

E3 Raman repump shutter

E4 Raman cooling shutter

E5 Vertical imaging shutter

E6 Horizontal imaging shutter

E7 -

F0 Square lattice pinning

F1 -

F2 Square lattice AOM

F3 Green shutter

F4 Green AOM

F5 Green integrator short

F6 Triangular lattice pinning

F7 Light sheet pinning

G0 Bottom beam shutter

G1 Dipole trap shutter

G2 Light sheet shutter

G3 MOT current flip

G4 Sq. lattice shutter

G5 |1⟩ − |2⟩ antenna switch

G6 Square integrator short

G7 Triangular lattice AOM

H0 2nd Light sheet switch

H1 Current flip for Feshbach coils

H2 Current flip for X-offset coils

H3 DMD AOM

H4 DMD shutter

H5 Zeeman first coil field

H6 2nd Light sheet shutter

H7 -

Table B.3: Digital outputs channels of ADWIN system.
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We control the ADwin Pro II using software implemented in C, developed by Stefan

Kuhr and later further improved by Peter Schauss, as shown in Fig. B.4.

(a) Sequence control interface

(b) Setting interface

Figure B.4: Experiment software.



APPENDIX B. EXISTING APPARATUS 170

B.3 Sequences
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Figure B.5: MOT to ODT sequence. (a) Atoms are captured by the magneto-optical

trap (MOT) within 4 s. Subsequently, atoms are loaded into the optical dipole trap

(ODT) using a compression technique shaded in green. Here, we gradually increase the

power of the ODT beam while simultaneously reducing both the cooling and repump

powers of the MOT. Additionally, during this process, the laser frequency is red-detuned

from 30MHz to 5MHz with respect to the atomic transition. (b) MOT loading rate.

Without magnetic extension (red) and after optimized placement of the extension (blue).

Data are fit to N0(1−exp(−t/τ)), where N0 is the maximum atom number in the MOT

and τ is the time constant. The loading rate is the slope of the exponential function at

t = 0. The plot was taken from previous work [90].
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Degenerate Fermi gases
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0.3Vbb

500ms 500ms
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|1〉-|2〉
Sweep

|2〉-|3〉
Sweep

Figure B.6: Sequence to prepare Fermi gases. Atoms are evaporated in the ODT

using three steps described in the main text. In the middle of the process, we apply a

few consecutive RF sweep pulses with pulse duration of 10ms between |1⟩ and |2⟩ states
centered at 75.607MHz and spanning 500 kHz, leading to a balanced spin mixture as

shaded in orange. We prepare a |1⟩ − |3⟩ mixture by applying |2⟩ − |3⟩ pulse centered

at 81.930MHz and spanning 500 kHz for 50ms (blue shaded). Next, we adiabatically

load atoms into the light sheet and perform evaporation at attractive interactions before

loading them into the accordion lattice at the largest spacing. To reach degenerate 2d

Fermi gases, we perform the last evaporation in the accordion lattice in combination with

the bottom beam. Here, we use laser beam powers as follows: VH0 = 100W, VL0 =

10W, VLS = 2W, Vacc = 1W, and Vbb = 1W.
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Spin-resolved imaging
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Figure B.7: Spin-resolved imaging sequence. Assuming the atoms are prepared

in the final evaporation, we adiabatically ramp up the lattice to a target depth while

simultaneously reducing the power of the bottom beam. Next, we freeze the motion of

atoms by rapidly ramping up the lattice to 50ESq
r in 500 µs. We prepare a |2⟩ − |3⟩

mixture by employing a |1⟩ − |2⟩ transfer followed by turning off the magnetic field.

To perform spin-resolved imaging, we increase the lattice depth to 120ESq
r and increase

the magnetic field gradient to 170G/cm. After that, two light sheets simultaneously

capture both spin states and we perform fluorescence imaging.
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B.4 Water-cooling system

Magnetic fields are important for controlling atoms. These fields are generated

by running current through coils with a maximum current of 200A. However, it is

important to note that there is heating involved due to resistance. The issue becomes

more pronounced during long-term experiments. To prevent significant heating, we

use a water-cooling system consisting of an Optitemp M171 heat exchanger and an

EF Cooling WKW175HE for low and high-pressure operations, as shown in Fig. B.8.

Both heat exchangers are connected to the house water supply. An inline water filter

(NSF LAKOS) is directly connected to the house water supply to directly remove

sediment. For operational safety, motorized valves are integrated to shut off the

water flow in case of leakage detected by the interlock system. The presence of the

flow switches enables the monitoring of water flow through the system. To prevent

potential clogs within the coils, a reusable 60µm filter (Swagelok SS-8TF-60) is

installed between the chilled water supply and the coils supply in the high-pressure

path. The normal operation of temperature and pressure for the water-cooling

system is shown in Table. B.4. We monitor the ambient temperature at important

locations in the laboratory (Fig. B.9).

Location Pressure (PSI) Temperature (◦C)

House supply 72 15

House return 20 18

Chilled water 400 20

Coils supply 250 -

Coils return ∼ 0 20

Table B.4: Temperature and pressure for the water-cooling system. Flow rate is

3 gallons per minute (GPM) for the high-pressure cooling circuit.
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Figure B.8: Water-cooling system. Cooling loads for the low-pressure pump (Op-

titemp M171) consist of coil switches, IPG 1070 nm laser, beam dump, 100 W RF

amplifier, offset field switch, H-bridge for the MOT, spatial light modulator, and the

Verdi V10. The high-pressure pump (EF Cooling WKW175HE) is primarily used to dis-

sipate heat from the coils. Heat exchanger Neslab RTE-111 or RTE-7 is used to cool

the MOPA laser (not shown).

To mitigate potential risks stemming from water leaks, burns, and incorrect opera-

tions, an interlock system is implemented. In Fig. B.10, the main interlock controls

the power of AOM drivers and DC power supplies. During standard operation, the

relay state remains CLOSED (shorted). For enhanced safety, a water interlock is
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Figure B.9: Ambient temperature for experiments. (a) Measurements of all sen-

sors in the laboratory: air outlet (blue), air return (red), house water supply (green),

experimental table (gray), laser table (violet), and high-pressure water return (orange).

(b) Zoom in on the essential parts of (a). Gray (23.3± 0.1◦C) and violet (22.4± 0.1◦C)

shading represent temperature variation during stable operating times.

incorporated to monitor potential leaks through water sensors. In the event of a

water leak, the interlock state is changed to “OPEN” which subsequently triggers

the closure of motorized valves and signals the main interlock. To address situations

where the high-pressure pump malfunctions, a temperature interlock is in place to

monitor coil temperatures using a standard digital temperature switch (Dwyer In-

struments 40T-10) connected to thermocouples on each coil. The normal operation

of temperature on experimental parts is illustrated in Table. B.5.
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Water interlock
Input: water sensors 

Output: To 
                    Motorized valves,
                    Main interlock

Input: From
                    Temperature sensors

Temperature interlock

Output: To 
                    Main interlock

Output: To
                    Lightsheet AOM,
                    Bottom beam AOM,
                    IPG AOM,
                    MOT power supply,
                    Zeeman power supply,
                    Offset power supply,
                    Feshbach power supply

Main interlock

Input:  From 
                    Flow switches,
                    Water interlock,
                    Temperature interlock

Figure B.10: Interlock system. The primary interlock operates as a safety switch

for both AOM drivers and power supplies. This setup allows for the experiment to be

paused in case of malfunction, reducing the potential for catastrophic consequences.

The water interlock employs sensors to identify water leaks and subsequently manages

motorized valves. Coil temperatures are continually monitored using sensors connected

to the temperature interlock. To ensure safe operations in temperature, an acceptable

operational range is established, with adjustments facilitated by a standard digital tem-

perature switch.

Sensor Temp. (◦C)

Oven bottom side 311

Oven tube side 317

MOT top coil 23.9− 25.7

Zeeman slower 23.2

Feshbach top coil 21.3

Feshbach bottom coil 22.5

Sensor Temp. (◦C)

MOT bottom coil 21.9− 24.6

Y Offset 21.8

X Offset 20.1

MOT MOSFET 23.6

Feshbach MOSFET 23.4

Feshbach cooling plate 21.1

Table B.5: Typical operating temperatures of experimental components.
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B.5 Power supplies

Various power supplies are used in the experiment, as detailed in Table B.6. The

MOT power supply (ASTEX ECR) is consistently set at a fixed current of 150A.

The Zeeman slower operates with two distinct power supplies, with the final Zeeman

segment adjacent to the science chamber necessitating higher operational current.

For the offset field, current adjustments are made through GPIB. The offset along

the x-direction can be adjusted up to 50A, particularly when introducing a gradient

via an H-bridge. To maintain low-current noise during atom interaction control, we

employ a controllable voltage through an analog channel via the Delta Elektronika

SM18-220.

Power supply Current (A) Voltage (V)

MOT ASTEX ECR 150 14.3

Zeeman 1st part HP 6012B 40 9.7

Zeeman final part Lambda EMS 55 2.1

Offset X HP 6032A 0− 50

Offset Y and Z HP 6621A 0− 10

Feshbach Delta Elecktronika SM18-220 0− 220 12

Table B.6: Power supplies for coils.

In Fig. B.11, the MOT coils are arranged in an anti-Helmholtz configuration, and

the field direction can be reversed using an H-bridge. Unlike the Feshbach coils,

which typically operate in a Helmholtz configuration to maintain a uniform field

around the center. By reversing the polarity of the lower Feshbach coils, an anti-

Helmholtz configuration can be achieved, resulting in an increased gradient suitable

for the Stern-Gerlach separation.
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(b)
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D C

(c)

X-Offset Power Supply
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H-Bridge

Left coils Right coils

A' B'

D' C'

A B

D C

Supply +

Supply -

Figure B.11: Connections of coils. (a) MOT, (b) Feshbach, and (c) X-Offset coils.

Here, N-channel MOSFETs (IXFN420N10T) are used as switches, and through the

arrangement of four MOSFETs. This results in an H-bridge configuration, thus granting

us the ability to reverse the polarity. The inset shows a rendered image of the H-bridge

mounted on a cooling plate.

B.6 Magnetic coils

In this section, I describe the design of magnetic coils for various purposes and our

coils winding process. As depicted in Fig. B.12, we used the lath to wind the coils
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and we applied high-temperature epoxy over each coil layer and allowed it to dry

for a day before repeating the process. This was repeated until we completed the

final layer.

(a) (b)

(c) (d)

Figure B.12: Coils winding. (a) Zeeman slower coils were wounded using a lathe. A

white wire guide is designed to prevent twisting of the hollow core during the winding

process. (b) MOT coils winding. (c) Connections for electric wires and water-cooled

pipes. Copper lugs are silver-soldered to the surface of the square cross-section coil while

the brass Swagelok pieces connect the water pipe to the hollow core of the coils. Thin

copper pieces are utilized to establish connections between coils. (d) Image capturing

the impressive final assembly of all the coils.
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Zeeman slower coils

Zeeman slower plays a crucial role in experiments involving cold atoms as described

in Section 3.2 [180]. They provide a spatially varying magnetic field that benefits

Doppler cooling, enhancing the loading efficiency and maximizing the achievable

atom number within a MOT. The design of Zeeman slowers can be separated into

two categories: those using wound coils and those utilizing permanent magnets.

In our experiment, we initially adopted the approach of using wound coils to con-

struct the Zeeman slower. Subsequently, we optimized the loading rate by incorpo-

rating permanent magnets into the section adjacent to the 6Li oven [90]. Employing

wound coils requires considerable effort in terms of construction and the implemen-

tation of a water-cooling system. The field strength can be adjusted through current,

nevertheless, it is constrained by heat dissipation limitations. It is important to note

that the latter approach allows the magnetic field to be electronically switched, and

no background fields are generated at the position of the MOT. We confirmed by

simulating the magnetic field using the Radia package [89].
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Figure B.13: Zeeman slower coils. (a) Cross-section of the Zeeman slower. The scale

is measured in millimeters. The final Zeeman coils, highlighted in red, require higher

current through other power supplies (refer to Table. B.6). The design was inspired by

the Jochim group [178]. (b) Axial magnetic field as a function of position. Measurements

are represented by dots, and the solid line is the result of a simulation.
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MOT coils

The quadrupole field is essential for the magneto-optical trap (MOT) and is created

using three pairs of coils organized in an anti-Helmholtz configuration depicted in

Figs. B.14(a,b). The MOT coils generate magnetic field gradients of 20 G/cm along

the x- and y-axes and 40 G/cm along the z-axis at the origin when a current of 140

A is applied (Fig. B.14(c)).
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Figure B.14: MOT coils. (a) Schematic of the MOT coils. The inner and outer diam-

eters are 154.4mm and 196.3mm. Dashed arrows represent the current flow direction.

(b) Raw image of the assembled MOT coils. (c) The magnetic field along x- (left), y-

(center), and z- (right) directions as a function of position at a current of 140A. The

magnetic field gradient is determined by the slope of the field at the origin.
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Feshbach coils

Feshbach resonances enable the adjustment of atomic interactions through an ex-

ternal magnetic field. To create a uniform field at the atom position, a Helmholtz

configuration is employed, where the upper and lower coils are separated by 54mm.

The inner diameter is 54.2mm, while the outer diameter is 89.2mm, resulting in a

uniform field over a few millimeters (Fig. B.15). By positioning the Feshbach coils

in proximity to the reentrant vacuum viewports, we can achieve a magnetic field

strength of approximately 900G for a current of 200A.

(a)

54

x

z

14

54.2

89.2

3.5

(b)

(c)

−20 −10 0 10 20

-10

0

10

20

30

40

50

x (cm)

M
a
gn

et
ic

fi
el
d
(G

)

−20 −10 0 10 20

0

10

20

30

40

50

y (cm)
−20 −10 0 10 20

0

10

20

30

40

50

z (cm)

Figure B.15: Feshbach coils. (a) Schematic of the Feshbach coils. Dashed arrows

represent the current flow direction. The scale is measured in millimeters. (b) Raw

image of the Feshbach coils (small) and the MOT coils (large). (c) The magnetic field

along the z-axis is a function of position. Here, a current of 10A is applied for the

measurements (dots). The solid lines are calculated by a simulation.
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Offset coils

To extend the loading capacity from the MOT to the optical dipole trap, we apply

offset fields during the compressed MOT. The fields are generated by a set of three

pairs of Helmholtz coils (Fig. B.16). These magnetic fields provide an additional

background field to control and manipulate the MOT position within a specific

range (Fig. B.17), which is more limited than the scope designed for Feshbach coils.
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Figure B.16: Magnetic offset coils. Schematic of the (a) X-offset, (b) Y-offset, and

(c) Z-offset coils. Dashed arrows represent the current flow direction. The scale is

measured in millimeters. Note that the Z-offset coils were wound within the MOT coils

to save space.

B.7 Cameras

Cameras offer several benefits to the observation, measurement, and analysis of

ultracold-atomic systems. Table. B.7 summarizes a list of cameras used in the

experiment for different purposes. For example, we use Andor Zyla 4.2 plus along

with a magnification system of approximately 30× to collect fluorescence for site-

resolved imaging.
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Figure B.17: Magnetic field of offset coils. Magnetic field profiles in the (a) X-offset,

(b) Y-offset, and (c) Z-offset coils. The left, middle, and right panels show the magnetic

field along the x-, y-, and z-directions, when a current of 10 A is applied.

Camera Used for Magnification

Andor Zyla 4.2 plus Vertical absorption and fluorescence 30×

Basler a2A3840-45ucBAS Horizontal absorption 1× or 5×

Basler acA720-520um Absorption along accordion lattice 5×

Newport LBP2-HR-VIS2 - -

Table B.7: Cameras used in experiment.
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Cold Atoms

C.1 Dipole traps formed by Gaussian beams

AGaussian beam has an electric field amplitude satisfied with the paraxial Helmholtz

equation. Let us assume the polarization is along the x-direction and the propaga-

tion in the z-direction. The electric field is expressed as

E(r, z) = E0x̂
w0

w(z)
exp

( −r2
w(z)2

)
exp

[
−i
(
kz + k

r2

2R(z)
− ψ(z)

)]
. (C.1)

The power carried by the field per unit area is referred to as the intensity of the

beam, given by

I(r, z) =
1

2
|Re (E×H∗)|

= I0

(
w0

w(z)

)2

exp

(−2r2

w2(z)

)
,

(C.2)

where I0 is the maximum intensity related to the total power P0 by I0 = 2P0/πw
2
0.

According to the optical dipole trap potential formed by a Gaussian beam, the shape

of the potential is a Gaussian function with a full width at half maximum (FWHM)

equal to
√
2 ln 2 w0 at focus.

To evaluate the Gaussian beam trap frequency, assume that we are interested in

the beam focus, where w(z) = w0. However, for any propagation distance z, the

beam waist w(z) is position-dependent and is determined by w0

√
1 + (z/zR)2, where

185



APPENDIX C. COLD ATOMS 186

zR = πw2
0n/λ is known as the Rayleigh range. The Gaussian potential is expanded

in a series about r = 0 up to the second order at z = 0, and expressed as

I(r, 0) =
2P0

πw2
0

+
4P0

πw4
0

r2 +O(r3). (C.3)

By equating the second-order coefficient to the harmonic oscillator i.e., 4P0/πw
4
0 ≃

(1/2)m(2πf⊥)
2, the transverse trap frequency is given by

f⊥ =
1

πw2
0

√
−2P0ηdip
mπ

, (C.4)

where ηdip is the conversion coefficient or a constant that relates intensity to po-

tential, which depends on the atomic properties. It can be obtained by taking a

prefactor of Eq. 3.13.

C.2 Fluorescence imaging

Fluorescence imaging is the simplest technique used to extract information from an

atomic cloud. On-resonant light is sent to the atomic cloud and the atoms emit

scattered light, which is captured by a system of lenses and passes to the low-noise

scientific CMOS camera (Andor Zyla 4.2 plus). The camera opens its shutter and

we collect light for a certain exposure time. When using this technique, systematic

errors have to be taken into account, such as CMOS sensitivity, quantum efficiency,

and losses.

By estimating the number of emitted photons, we can determine the atom number

in the cloud. Here, we assume that atoms scatter light in all directions and the first

lens closest to the atoms has a diameter of D, and is placed at a distance L from

the atomic cloud. This lens captures a fraction of the scattered light by

Fraction =
π(D/2)2

4πL2
=

D2

16L2
. (C.5)

The camera has a conversion gain that converts electron signals to digital counts,

known as analog-digital units (ADU). Here, we obtain the ADU by summing the



APPENDIX C. COLD ATOMS 187

counts over all pixels. The total number of photons emitted by the atomic cloud

within time interval ∆t is given by

n =
ADU× CMOS sensitivity

QE× Loss× Fraction
, (C.6)

where the CMOS sensitivity provides the number of photoelectrons per ADU, and

QE is quantum efficiency that indicates how many incident photons create electron-

hole pairs for camera read-out. This QE is wavelength-dependent and the losses

take into account some light scattered from the surface of the lens.

The total number of atoms emitting photons is obtained by

N =
n

Γsc∆t
, (C.7)

where ∆t is the exposure time and Γsc is the scattering rate of the atom-photon

interaction given by [93]

Γsc =
(Γ
2

) I/Isat
1 + (I/Isat) + 4(∆/Γ)2

. (C.8)

Here ∆ is the detuning frequency from the transition, Γ is the natural linewidth, and

Isat is the saturated intensity for the transition. This technique is used to determine

the atom number in the MOT, as discussed in Section 3.3 of the main text.

C.3 Absorption imaging

The idea of absorption imaging is that atomic density is encoded in the on-resonant

probing beam because some parts of the beam are absorbed by the atoms, resulting

in a shadow image [181]. The intensity of the probe beam after passing through the

atomic cloud is governed by Beer’s law,

I = I0e
−OD, (C.9)

where I0 and I are the beam intensities before and after passing the atomic cloud,

and OD represents the optical density.
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In the experiment, we typically take three pictures for one dataset as follows: The

first picture shows the atom interaction with the light field, IA. The second picture

shows only the light field, IF , because atoms disappear due to the on-resonant light

in the first picture. The last picture is the background light where the light field is

completely off, IG. By combining all three pictures, the optical density is given by

OD(x, y) = − log10

[
IA(x, y)− IG(x, y)

IF (x, y)− IG(x, y)

]
. (C.10)

The optical density is related to atomic column density, n(x, y), by

OD(x, y) = n(x, y)σ, (C.11)

where σ denotes the absorption cross-section, expressed as

σ =
σ0

1 + (I/Isat) + 4(∆/Γ)2
. (C.12)

Here, σ0 = h̄ωΓ/(2Isat) represents the on-resonance cross-section and ω is the angu-

lar frequency of the probe beam.

To extract the atom number, the column density is integrated over space

N =

∫ ∫
n(x, y) dxdy =

1

σ

∫ ∫
OD(x, y) dxdy. (C.13)

C.4 Time of flight

To determine the temperature of the atoms, time of flight (TOF) is a useful tech-

nique. From a microscopic point of view, temperature is determined by the average

velocity of atoms. The observation of atomic cloud expansion implies its temper-

ature. Assuming a non-interacting cloud that obeys Boltzmann’s statistics, the

number of atoms occupying the energy state Ei is given by

ni(x, y) ∝ exp

(
− Ei

kBT

)
, (C.14)

by applying Ei = (1/2)mv2i and v = ∆x/∆t, the atomic density after an expansion

time ∆t is

ni(x, y) ∝ exp

(
− m(∆x)2

2kBT (∆t)2

)
. (C.15)
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As can be seen, the atomic density is approximated by a Gaussian distribution i.e.,

f(x) = (1/σ
√
2π) exp[−(∆x/σ)2/2]. When the cloud’s size σ and ∆t are known

variables, the temperature can be extracted by measuring the size of the cloud as a

function of time, expressed as

σ2 = σ2
0 +

kBT

m
(∆t)2, (C.16)

where σ0 is the size of the atomic cloud at the initial time. Note that ∆x has to be

converted to the real spatial coordinate by considering the pixel’s size l and we take

into account the magnification from a system of lenses M (e.g., ∆x = l∆xpixel/M).

For the fit, we set σ0 and T as free parameters. Our results are shown in Fig. C.1(a)

after the free evaporation in the ODT and in Fig. C.1(b) after the second evaporation

in the ODT. This technique only works for thermal clouds. For degenerate gases,

the quantum nature has to be taken into account, see the following section.
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Figure C.1: Time of flight measurement. (a) Time-dependent cloud size after free

evaporation in the ODT. Temperature extracted from the fit of Eq. C.16 is 35 µK. (b)

Cloud size as a function of time for the second evaporation in the ODT, achieving a

temperature of 300 nK. Here, 1 pixel = 1.5 µm.

C.5 Degenerate Fermi gases

The transition from the classical into the degenerate regime can be characterized

by the phase-space density defined as the number of particles inside a cubic volume
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formed by the thermal de Broglie wavelength (λdB), given by

ρ = nλ3dB, (C.17)

where n is the atomic density and the thermal de Broglie wavelength is defined as

λdB = h/
√
2πmkBT .

The atom number is determined by absorption imaging, as discussed in Section C.3,

and extracting the temperature of a degenerate Fermi gas is challenging through the

time of flight. To address this challenge, we consider the unique density profiles of

Fermi gases, which differ from those of thermal clouds.

When the temperature is colder, atoms enter the quantum regime, and the time

of flight is limited by fitting the density distribution under the assumption of a

Gaussian function. However, fermions at low temperatures cannot be described by

a Gaussian function. It can be shown that the density profile of fermions is the

polylogarithm function instead. One might extract the size of the atomic cloud

for different times, as described in Section C.4 using the polylogarithm function,

however, it requires a time-consuming process. Here, I present a faster and more

precise procedure by taking a single absorption image of the atomic cloud and fitting

it to the expected profile. The derivation below is adapted from [182, 183].

The non-interacting fermions are described as the Fermi-Dirac distribution, given

by

ffermion(E) =
1

z−1eβE + 1
=

1

eβ(E−µ) + 1
, (C.18)

where the fugacity is defined as z = eβµ, µ is the chemical potential, E is the energy,

and β = 1/(kBT ).

Our potential in the accordion lattice combined with the bottom beam is approx-

imated as a quasi 2d harmonic potential (ωx,y ≪ ωz). The region around the trap

center can be approximated by V (r) = (1/2)m(ω2
xx

2+ω2
yy

2) with the density of state

g(ϵ) = ϵ/(h̄2ωxωy). A fundamental quantity that governs the behavior of fermionic

systems and provides insights into their thermal, electrical, and quantum properties
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is known as Fermi energy, EF . It is defined as the highest energy occupied by a

system of fermions at absolute temperature T = 0. Assume that the system consists

of N particles and by the definition, the last occupied state has an energy of EF ,

the total atom number in the system is given by

N =

∫ EF

0

g(ϵ) dϵ =

∫ EF

0

1

h̄2ωxωy

ϵ dϵ. (C.19)

We rearrange Eq C.19 and solve for the Fermi energy, obtaining

EF = h̄
√
2Nωxωy, (C.20)

and the Fermi temperature, which is the temperature equivalent to the Fermi energy,

is

TF =
h̄

kB

√
2Nωxωy. (C.21)

For finite temperatures, saying T , the total number of particles is given by

N =

∫ ∞

0

g(ϵ)

z−1eβE + 1
dϵ = −

(
kBT

h̄
√
ωxωy

)2

Li2(−z), (C.22)

and by combining Eq. C.21 with Eq. C.22, the system temperature in units of the

Fermi temperature is written as

T

TF
= [−2Li2(−z)]−1/2 =

[
−2Li2(−eβµ)

]−1/2
. (C.23)

As can be seen, with the knowledge of the fugacity, the temperature compared to

the Fermi temperature is determined.

To map the Fermi-Dirac distribution to measurement quantities, the expression in

Eq. C.18 can be converted into phase-space variables by replacing the single-particle

energy with the Hamiltonian. Therefore, the mean occupation in terms of the phase-

space variables is

ffermi(r,p) =
1

eβ(p2/2m+V (r)−µ)) + 1
. (C.24)

To calculate the density of a 2d Fermi gas, we integrate over the momentum space.

The density is given by

ρ2d fermi(r) =

∫
d2p

(2πh̄)2
ffermi(r,p) = − 1

λ2dB
Li1
(
−eβ(µ−V (r)

)
. (C.25)
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In the experiment, we access the distribution through in-situ absorption imaging

along the z-direction, obtaining the column density of a 2d Fermi gas, expressed as

nobserve
2D (x, y) =

n2D,0Li1
(
− exp

[
βµ− βm

(
ω2
xx

2 + ω2
yy

2
)
/2
])

Li1 (−eβµ)
. (C.26)

For simplicity, we define the Gaussian width as σ2
i ≡ (βmω2

i )
−1 where i = x, y. The

above expression is simplified to

nobserve
2D (x, y) =

n2D,0Li1

(
− exp

[
βµ−

(
x2

2σ2
x
+ y2

2σ2
y

)])
Li1 (−eβµ)

. (C.27)

For arbitrary expansion time, the width is time-dependent and can be written as

σ2
i = σ2

i,0(1 + (ωi∆t)
2), (C.28)

where ∆t is the expansion time and σi,0 is the initial width along the i direction.

For the fit, we apply Eq. C.27 and set n2D,0, e
βµ and σi as free parameters. The

temperature of the system is determined using Eq. C.23 and TF is extracted through

the atom number provided in Eq. C.21, assuming ωx,y are known parameters. The

trap frequency can be measured by separate measurements, for example, amplitude

modulation spectroscopy as described in the main text.

C.6 Feshbach resonances

In 1993, Tiesinga et al. studied a resonance in the scattering length at specific values

of the magnetic field [184]. Based on this observation, the scattering length can be

tuned via a magnetic field from repulsive to attractive interactions. The Feshbach

resonances offer a wide range of applications in ultracold gases, such as controlling

the interaction between atoms in the regime of interest. For example, the creation

of mBECs formed by 6Li atoms by sweeping magnetic field from high to low field

centered in the vicinity of 810 G, as discussed in the main text.

Here, I discuss a simple model of the Feshbach resonances summarized from [38,

185] as follows: Two atoms are in scattering states, referred to as the open channel.
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When the atoms collide with each other at a resonant energy, they couple to a

molecular-bound state, referred to as the closed channel. The key point is that

the magnetic dipole moments in both channels are different, allowing for an energy

difference in both channels that can be controlled by a magnetic field.

From the mathematical perspective, Feshbach resonances can be described by a

couple of two subspaces. Let P and Q be projection operators onto the open and

closed channels. The two subspaces span the whole space and satisfy P+Q = 1. This

implies that any state can be written as a superposition of wavefunctions projected

onto the two subspaces i.e., |Ψ⟩ = |ΨP ⟩ + |ΨQ⟩. The Schrodinger equation for the

system is split into two coupled equations:

(E −HPP ) |ΨP ⟩ = HPQ |ΨQ⟩ , (C.29)

(E −HQQ) |ΨQ⟩ = HQP |ΨP ⟩ , (C.30)

where the projected Hamiltonians onto P and Q space are denoted as HPP = PHP
and HQQ = QHQ. We note here that HPQ = PHQ and HQP = QHP represents

the coupled Hamiltonians between the two subspaces.

To solve the coupled equations, Eq. C.30 is rearranged to

|ΨQ⟩ = (E −HQQ + i0)−1HQP |ΨP ⟩ ,

and plug to Eq. C.29. One can show that

(E −HPP −H ′
PP ) |ΨP ⟩ = 0, (C.31)

where we define H ′
PP = HPQ (E −HQQ + i0)−1HQP and +i0 represents a small

positive imaginary part.

As can be seen, the term H
′
PP describes the atom-atom interaction in the subspace

of the open channel P . In other words, a transition occurs from the P subspace to

the Q subspace, propagating in the Q space and then transitioning back to the P
subspace. The scattering length is related to the energy by a factor and first-order
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perturbation theory is applied as follows:

4πh̄2

m
a =

4πh̄2

m
anr +

∑
n

|⟨ψn |HQP |ψ0⟩|2
E − En

, (C.32)

where 4πh̄2a/m has a unit of energy, anr is the scattering length when there is no

coupling between open and closed channels, ψ0 represents the scattering state, and

ψn indicates the bound state with its corresponding energy En.

In the case of the energy E ≡ Eth close to a particular bound state energy, Eres,

other terms contribute less. As a result, the scattering length is approximated by

4πh̄2

m
a =

4πh̄2

m
anr +

|⟨ψres |HQP |ψ0⟩|2
Eth − Eres

. (C.33)

In Eq. C.33, the difference in energy is determined by the hyperfine structure in the

presence of a magnetic field,

Eth − Eres = (2µs − µb)(B −B0),

where µs and µb are the single-atom magnetic moment and the magnetic moment

of the bound state. The scattering is finally expressed in a simple form as

a(B) = anr

(
1− ∆

B −B0

)
, (C.34)

where ∆ is the width of the resonance and B0 represents the magnetic field that

causes the scattering length to diverge to ±∞.

C.7 Kapitza-Dirac scattering

To derive the probability after the atomic cloud interacts with a pulse of a 1d periodic

potential, we start with the Hamiltonian given by

Ĥ = − h̄2

2m

∂2

∂z2
+ V0 sin

2 kz.

In the Raman-Nath regime, the kinetic energy is neglected, βα ≪ 1, where β and

α are defined in the main text (Section 3.10.1). The evolution of the wavefunction

is given by

|Ψ⟩ = exp

(
− i

h̄

∫
dt′V (z, t′)

)
|ψ0⟩ = exp

(
− i

h̄
V0τ sin

2 kz

)
|Ψ0⟩ .
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Note that the product of V0 and τ represents the pulse area, which we treat as an

independent variable in the measurement instead of using either V0 or τ . By applying

the fact that the exponential of a complex sinusoidal function can be expanded in

terms of Bessel functions of the first kind as follows:

eiα cos(β) =
∞∑

n=−∞

inJn(α)e
inβ,

here, einβ can be viewed as a plane-wave basis. The wavefunction is finally expressed

as

|Ψ⟩ = |Ψ0⟩ e−
i
2h̄

V0τ

∞∑
n=−∞

inJn

(
V0τ

2h̄

)
ei2nkz = e−

i
2h̄

V0τ

∞∑
n=−∞

inJn

(
V0τ

2h̄

)
|g, 2nh̄k⟩,

where |g, 2nh̄k⟩ represents the ground state wavefunction with momentum 2nh̄k,

here, the index, n, ranges over integers (n = 0,±1 ± 2, . . . ). The result shows

that the initial cloud at rest (k = 0) is separated into 2n + 1 clouds with different

momenta.

C.8 Hyperfine Zeeman splitting

Atoms in the presence of a magnetic field can be described by the Hamiltonian given

by

H = H0 + AI · J+Hzeeman, (C.35)

where H0 is the bare Hamiltonian, A is the magnetic dipole constant that describes

the coupling between nuclear spin and total angular momentum, and Hzeeman rep-

resents the Zeeman effect on the atoms [186, 187]. The Zeeman Hamiltonian takes

the form

Hzeeman = −µ ·B, (C.36)

where µ is the total magnetic moment due to fine structure and nuclear spin, ex-

pressed as

µ = −µB

h̄

(
gJJ+ gII

)
, (C.37)
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here, gJ and gI are the Lende g-factor for fine structure and nuclear spin. The gJ

can be written in terms of the electron orbital g-factor gL and electron spin g-factor

gS as follows:

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
+ gS

J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)
.

(C.38)

To simplify the Hamiltonian in Eq C.35, we assume the magnetic field is directed

along the z-axis, i.e., B = Bẑ and we drop the offset energy from the bare Hamilto-

nian. The Hamiltonian becomes

H = AI · J+
µBB

h̄

(
gJJz + gIIz

)
. (C.39)

By applying F = J + I and squaring both sides, the product between angular

momenta can be written as

I · J =
1

2

(
F̂ 2 − Ĵ2 − Î2

)
. (C.40)

A good quantum number for the Zeeman Hamiltonian is J,mj, I,mI with an eigen-

basis representation |J,mJ ; I,mI⟩. The matrix elements of the Zeeman Hamiltonian

are given by

⟨J,m′
J ; I,m

′
I |
µBB

h̄

(
gJJz + gIIz)|J,mJ ; I,mI⟩ =

µBB

h̄

(
gJmz + gImI)δm′

I ,mI
δm′

J ,mJ
,

(C.41)

whereas the matrix elements of the hyperfine structure are

⟨J,m′
J ; I,m

′
I |
1

2

(
F̂ 2 − Ĵ2 − Î2

)
|J,mJ ; I,mI⟩ = ⟨J,m′

J ; I,m
′
I |
1

2
F̂ 2|J,mJ ; I,mI⟩

− h̄
2

2

(
J(J + 1) + I(I + 1)

)
δm′

I ,mI
δm′

J ,mJ
.

(C.42)

Next, we decouple this quantity, ⟨J,m′
J ; I,m

′
I |F̂ 2|J,mJ ; I,mI⟩, by applying the iden-

tity
∑

F,mF
|F,mF ⟩ ⟨F,mF | = 1. This leads to

⟨J,m′
J ; I,m

′
I |F̂ 2|J,mJ ; I,mI⟩ =

∑
F ′,mF ′

∑
F,mF

⟨J,m′
J ; I,m

′
I |F ′,mF ′⟩

⟨F ′,mF ′ |F̂ 2|F,mF ⟩ ⟨F,mF |J,mJ ; I,mI⟩ .
(C.43)
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The above expression indicates finding the Clebsch-Gordon coefficients, which can

be evaluated using Winger 3− j symbols

⟨J,mJ ; I,mI |F,mF ⟩ =
√
2F + 1(−1)−mF+I−J

 J I F

mJ mI −mF

 . (C.44)

Finally, the eigenvalues of the Hamiltonian in Eq C.39 reveal the energy shifts due

to the magnetic field.
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Figure C.2: Zeeman shifts of the two lowest hyperfine states. The
∣∣S1/2 F = 1/2

〉
state is represented by blue and the

∣∣S1/2 F = 3/2
〉
state is denoted as violet.

C.9 Light shift

The energy level of atoms can be shifted due to atom-light interaction. Here, I

demonstrate the light shift in a two-level system. The time-dependent Schrodinger

equation is given by

ih̄
∂

∂t
|Ψ⟩ = ĤΨ, (C.45)

and the Hamiltonian is Ĥ = Ĥ0+V̂ where Ĥ0 is the Hamiltonian of the unperturbed

atom and V̂ is the perturbed Hamiltonian from the electromagnetic field. The

wavefunction of the atoms governed by Ĥ can be written as

|Ψ⟩ = c1(t) |0⟩+ c2(t)e
−iω0t |1⟩ , (C.46)
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where c1,2 are the time-dependent coefficients and ω0 is the transition frequency. By

taking a first derivative with respect to time, we have

∂

∂t
|Ψ⟩ = c1(t)

∂

∂t
|0⟩+ c2(t)e

−iω0t
∂

∂t
|1⟩

+ ċ1 |0⟩+
(
ċ2e

−iω0t − iω0c2e
−iω0t

)
|1⟩ ,

(C.47)

Next, we plug Eqs. C.46 and C.47 to Eq. C.45

Ĥ |Ψ⟩ =
(
Ĥ0 + V̂

)
|Ψ⟩

= 0 + c2(t)h̄ω0e
−iω0t |1⟩+ c1(t)V̂ |0⟩+ c2(t)e

−iω0tV̂ |1⟩ .
(C.48)

The above expression can be decomposed into two coupled equations,

ih̄ċ1 = c2(t) ⟨0|V̂ |1⟩ e−iω0t, (C.49)

ih̄ċ2 = c1(t) ⟨1|V̂ |0⟩ eiω0t, (C.50)

and we consider the matrix elements of the dipole moment interacting with the

electric field E = E0ϵ̂ cos
(
ωt
)
,

⟨1|V̂ |0⟩ = E0 ⟨1|p · ϵ̂|0⟩ cos
(
ωt
)
. (C.51)

By applying the rotating wave approximation, which neglects the fast oscillation

term, an approximation form is expressed as

e±iω0t cos
(
ωt
)
≈ 1

2
e∓i∆t, (C.52)

where ∆ = ω − ω0 is the frequency detuning.

The two coupled equations are written as

ih̄ċ1 =
h̄Ω∗

2
c2(t)e

i∆t, (C.53)

ih̄ċ2 =
h̄Ω

2
c1(t)e

−i∆t, (C.54)

where the Rabi frequency Ω = (E0/h̄) ⟨1|p · ϵ̂|0⟩ describes the strength of the cou-

pling between the atom and the electric field.
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One can show that the coupled equations reduce to uncoupled second-order differ-

ential equations. However, we can remove the time dependence by introducing new

coefficients c̃1 = c1 and c̃2 = c2e
i∆t. Eqs. C.53 and C.54 are simplified to

ih̄ ˙̃c1 =
h̄Ω∗

2
c̃2, (C.55)

ih̄ ˙̃c2 =
h̄Ω

2
c̃1 − h̄∆c̃2, (C.56)

or it can be written in matrix form as

ih̄
∂

∂t

c̃1
c̃2

 =
h̄

2

0 Ω∗

Ω −2∆


c̃1
c̃2

 . (C.57)

We diagonalize the matrix above and obtain the eigenvalues as follows:

Eg =
h̄

2

(
−∆−

√
|Ω|2 +∆2

)
, (C.58)

Ee =
h̄

2

(
−∆+

√
|Ω|2 +∆2

)
. (C.59)

By applying a very far-detuned light, i.e., |∆| ≫ Ω, the eigenvalues are approximated

by

Eg = −h̄∆− Ω2

4∆
, (C.60)

Ee =
Ω2

4∆
. (C.61)

The light shift of the ground state and the excited state has opposite signs (±Ω2/(4∆)).

For example, when a laser beam is red-detuned from the atomic transition, the

ground state energy decreases while the excited state energy increases. This implies

that the ground-state atoms experience an attractive force while the excited atoms

experience a repulsive force from the red-detuned laser.
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Figure D.1: Scattering length of the three lowest hyperfine states of 6Li. Blue is

|1⟩ − |2⟩ mixture, red is |1⟩ − |2⟩ mixture, and violet is |2⟩ − |3⟩ mixture. The narrow

Feshbach resonance for a |1⟩ − |2⟩ mixture is observed in the measurement at a field of

543.3 G (Fig. 4.14(a)). Data for the figures is from ref. [96].
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Atomic properties

Property Symbol Value Unit

Atomic number Z 3

Nucleons Z+N 6

Natural abundance η 7.6%

Atomic mass m 9.9883414× 10−27 kg

Nuclear spin I 1

Electronic spin S 1/2

D1 transition λD1 670.992421 nm

D2 transition λD2 670.977338 nm

Natural Linewidth Γ 5.8724 MHz

D1 Saturation Intensity Isat 7.59 mW/cm2

D2 Saturation Intensity Isat 2.54 mW/cm2

22S1/2 Magnetic Dipole constant A 152.13684 MHz

22P1/2 Magnetic Dipole constant A 17.386 MHz

22P3/2 Magnetic Dipole constant A −1.155 MHz

22P3/2 Electric Quadrupole constant B −0.10 MHz

Electron spin g-factor gS 2.0023

Electron orbital g-factor gL 0.999996

Total Nuclear g-factor gI −0.000448

Total Electronic g-factor (22S1/2) gJ 2.0023

Total Electronic g-factor (22P1/2) gJ 0.6668

Total Electronic g-factor (22P3/2) gJ 1.335

Table D.1: Fundamental physical properties of 6Li. The table is from ref. [188].



Appendix E

Timeline of the Experiment

2018

Fall: Peter Schauss joined the University of Virginia (UVA) and planned a 6Li

quantum gas microscope. Jirayu Mongkolkiattichai (J.M.) began his first year of

Ph.D. at UVA.

2019

Spring and Summer: Liyu Liu (L.L.) and J.M. joined the team. Setting up lasers

for 6Li spectroscopy, imaging, Zeeman slower, MOT, and Raman cooling. Winding

coils for Zeeman slower, MOT, Offsets, and Feshbach field.

Fall: Jin Yang (Postdoc) joined the team. First MOT of 6Li

2020

Spring: Atoms were loaded into the optical dipole trap and observed first mBECs.

The light sheet and bottom beam were set up.

Summer: MOPA laser was set up and observed Kapitza-Dirac diffraction from 1d

and 2d optical lattices.

202
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Fall: Implemented Raman sideband cooling in the triangular and square lattices.

Imaged atoms in the lattices with single-site resolution.

2021

Spring: Submitted our manuscript on site-resolved imaging of ultracold fermions in

the triangular lattice.

Summer: Paper published on PRX [84].

Fall: Observed Mott insulators in the square lattice and triangular lattice.

2022

Spring: Measurements of spin-spin correlations. Paper on extended Zeeman slower

and NLCE submitted. The extended Zeeman slower paper published [90]. Davis

Garwood and Jin Yang left the team.

Summer: NLCE paper published on PRA [124]. RF antennas were set up and

observed the Rabi oscillations of |1⟩ − |2⟩ and |2⟩ − |3⟩ mixtures.

Fall: Submitted paper on fermionic triangular Mott insulators and spin-spin corre-

lations.

2023

Spring: Switched back to the square lattice and tried to improve temperature. Set

up spin-resolved imaging and DMD.

Fall: Obtained spin-resolved imaging and found that the temperature is high because

of the lattice laser. The lowest temperature of kBT/t ≃ 0.5 was obtained using the

square lattice. J.M. was working on a three-component Mott insulator in the square

lattice. L.L. was working on many-body localization in the square lattice disordered

by the triangular lattice. The paper on fermionic triangular Mott insulators was

finally published on PRA [58].
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2024

Spring: J.M. prepared a manuscript for the three-component Mott insulators and

also prepared for his Ph.D. defense. L.L. worked on two-component Mott insulators

after changing the square-lattice AOM. Drew Wilkers started working on prelab

tasks and prepared to take over J.M.’s position.
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Kagomé-lattice spin-half antiferromagnets. Phys. Rev. Lett. 68, 1766–1769

(1992).

[70] L. Capriotti, A. E. Trumper, and S. Sorella. Long-Range Néel Order in the
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triangular moiré materials. Nature 623, 509–513 (2023).

[81] S. M. Girvin and K. Yang. Modern condensed matter physics. Cambridge

University Press, 2019.

[82] N. Ashcroft and N. Mermin. Solid State Physics. Saunders College Publish-

ing, 1976.

[83] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys. Light-assisted

collisions between a few cold atoms in a microscopic dipole trap. Phys. Rev.

A 85, 062708 (2012).

[84] J. Yang, L. Liu, J. Mongkolkiattichai, and P. Schauss. Site-Resolved Imag-

ing of Ultracold Fermions in a Triangular-Lattice Quantum Gas Microscope.

PRX Quantum 2, 020344 (2021).

[85] P. Schauss. High-resolution imaging of ordering in Rydberg many-body sys-

tems. PhD thesis. Ludwig-Maximilians-Universität München, 2015.

[86] D. J. McCarron, S. A. King, and S. L. Cornish. Modulation transfer spec-

troscopy in atomic rubidium. Meas. Sci. Technol. 19, 105601 (2008).

http://doi.org/10.1103/PhysRevB.107.235105
http://doi.org/10.1103/PhysRevB.107.235105
http://doi.org/10.48550/arXiv.2308.12269
http://doi.org/10.48550/arXiv.2308.12269
http://doi.org/10.48550/arXiv.2308.12951
http://doi.org/10.1038/s41586-020-2085-3
http://doi.org/10.1038/s41586-020-2085-3
http://doi.org/10.1038/s41586-023-06633-0
http://doi.org/10.1038/s41586-023-06633-0
http://doi.org/10.1103/PhysRevA.85.062708
http://doi.org/10.1103/PhysRevA.85.062708
http://doi.org/10.1103/PRXQuantum.2.020344
http://doi.org/10.1103/PRXQuantum.2.020344
http://doi.org/10.5282/edoc.18152
http://doi.org/10.5282/edoc.18152
http://doi.org/10.1088/0957-0233/19/10/105601
http://doi.org/10.1088/0957-0233/19/10/105601


BIBLIOGRAPHY 213

[87] R. K. Raj, D. Bloch, J. J. Snyder, G. Camy, and M. Ducloy. High-Frequency

Optically Heterodyned Saturation Spectroscopy Via Resonant Degenerate

Four-Wave Mixing. Phys. Rev. Lett. 44, 1251–1254 (1980).

[88] W. D. Phillips and H. Metcalf. Laser Deceleration of an Atomic Beam. Phys.

Rev. Lett. 48, 596–599 (1982).

[89] P. Elleaume, O. Chubar, and J. Chavanne. Computing 3D magnetic fields

from insertion devices. Proceedings of the 1997 Particle Accelerator Confer-

ence 3, 3509–3511 (1997).

[90] D. Garwood, L. Liu, J. Mongkolkiattichai, J. Yang, and P. Schauss. A hybrid

Zeeman slower for lithium. Rev. Sci. Instrum. 93, 033202 (2022).

[91] C. J. Foot. Atomic physics. Oxford University Press, 2004.

[92] T. A. Hilker. Spin-resolved microscopy of strongly correlated fermionic many-

body states. PhD thesis. Ludwig Maximilians Universität München, 2017.

[93] H. J. Metcalf and P. Van der Straten. Laser cooling and trapping. Springer

Science & Business Media, 1999.

[94] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical Dipole Traps

for Neutral Atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

[95] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. H.

Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.

Julienne. Precise determination of 6Li cold collision parameters by radio-

frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94,

103201 (2005).

[96] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S. Julienne, and J. M. Hutson.

Precise Characterization of 6Li Feshbach Resonances Using Trap-Sideband-

Resolved RF Spectroscopy of Weakly Bound Molecules. Phys. Rev. Lett. 110,

135301 (2013).

[97] C. Zener and R. H. Fowler. Non-adiabatic crossing of energy levels. Proc. R.

soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 137, 696–702 (1932).

[98] A. C. Vutha. A simple approach to the Landau–Zener formula. Eur. J. Phys.

31, 389 (2010).

http://doi.org/10.1103/PhysRevLett.44.1251
http://doi.org/10.1103/PhysRevLett.44.1251
http://doi.org/10.1103/PhysRevLett.44.1251
http://doi.org/10.1103/PhysRevLett.48.596
http://doi.org/10.1109/PAC.1997.753258
http://doi.org/10.1109/PAC.1997.753258
http://doi.org/10.1063/5.0081080
http://doi.org/10.1063/5.0081080
http://doi.org/10.5282/edoc.21633
http://doi.org/10.5282/edoc.21633
http://doi.org/10.1016/S1049-250X(08)60186-X
http://doi.org/10.1016/S1049-250X(08)60186-X
http://doi.org/10.1103/PhysRevLett.94.103201
http://doi.org/10.1103/PhysRevLett.94.103201
http://doi.org/10.1103/PhysRevLett.110.135301
http://doi.org/10.1103/PhysRevLett.110.135301
http://doi.org/10.1098/rspa.1932.0165
http://doi.org/10.1088/0143-0807/31/2/016


BIBLIOGRAPHY 214

[99] S. Friebel, C. D’Andrea, J. Walz, M. Weitz, and T. W. Hänsch. CO2-laser
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A. Vishwanath, M. Greiner, V. Vuletić, and M. D. Lukin. Probing topological

spin liquids on a programmable quantum simulator. Science 374, 1242–1247

(2021).

[141] A. Auerbach. Interacting Electrons and Quantum Magnetism. Springer, New

York, 1990.

http://doi.org/10.1103/PhysRevB.96.205130
http://doi.org/10.1103/PhysRevB.96.205130
http://doi.org/10.1103/PhysRevB.96.205130
http://doi.org/10.1103/RevModPhys.80.885
http://doi.org/10.1103/RevModPhys.80.885
http://doi.org/10.1126/science.aal3837
http://doi.org/10.1126/science.aal3837
http://doi.org/10.1126/science.aad9041
http://doi.org/10.1103/PhysRevLett.118.170401
http://doi.org/10.1103/PhysRevLett.118.170401
http://doi.org/10.1038/nphys2750
http://doi.org/10.1038/nphys2750
http://doi.org/10.1038/s41586-021-03585-1
http://doi.org/10.1038/s41586-021-03585-1
http://doi.org/10.1126/science.abi8794
http://doi.org/10.1126/science.abi8794
http://doi.org/10.1007/978-1-4612-0869-3


BIBLIOGRAPHY 218

[142] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M. Pierce, B. S. Rem,

F. Chevy, and C. Salomon. A mixture of Bose and Fermi superfluids. Science

345, 1035–1038 (2014).

[143] J. Koepsell, S. Hirthe, D. Bourgund, P. Sompet, J. Vijayan, G. Salomon, C.

Gross, and I. Bloch. Robust Bilayer Charge Pumping for Spin- and Density-

Resolved Quantum Gas Microscopy. Phys. Rev. Lett. 125, 010403 (2020).

[144] M. Vojta. Spin polarons in triangular antiferromagnets. Phys. Rev. B 59,

6027–6030 (1999).

[145] J. van de Kraats, K. K. Nielsen, and G. M. Bruun. Holes and magnetic

polarons in a triangular lattice antiferromagnet. Phys. Rev. B 106, 235143

(2022).
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