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Abstract

Novel Quantum Phases in Low Dimensions

by Zhao Zhang

Advisor: Israel Klich and Jeffrey C.Y. Teo

We introduce a continuous family of frustration-free Hamiltonians with exactly solv-

able ground states. We prove that the ground state of our model is non-degenerate

and exhibits a novel quantum phase transition from bounded entanglement entropy

to a massively entangled state with volume entropy scaling. The ground state may be

interpreted as a deformation away from the uniform superposition of colored Motzkin

paths, shown by Movassagh and Shor [80], that has a large (square-root) but sub-

extensive scaling of entanglement. We carry out the same procedure for both integer

and half integer versions of the spin chain, and established upper bounds on the

spectral gap for certain phases of the model.

Time reversal symmetric topological superconductors in three spatial dimensions

carry gapless surface Majorana fermions. They are robust against any time reversal

symmetric single-body perturbation weaker than the bulk energy gap. We mimic

the massless surface Majorana’s by coupled wire models in two spatial dimensions.

We introduce explicit many-body inter-wire interactions that preserve time reversal

symmetry and give energy gaps to all low energy degrees of freedom. We show the

gapped models generically carry non-trivial topological order and support anyonic

excitations.
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Chapter I

Introduction

1.1 Scaling of entanglement entropy

Entanglement is a quantum mechanical phenomenon that occurs when particles

are prepared or interact in such a way that the state of each particle cannot be

described independently of the others, even when they are separated far apart. This

‘spooky’ action at a distance, or non-locality, is the reason that quantum mechanics

suffered from severe theoretical skepticism since its early days. At the same time,

entanglement is also responsible for the major speed-up in quantum computation

algorithms compared to its classical counterpart, and certain quantum communication

protocols, such as teleportation, relies exclusively on entangled states[6].

Thermodynamic entropy in classical statistical mechanics quantifies the uncer-

tainty in identifying the exact microscopic configuration of a thermodynamic system

in a macroscopically specified state. In quantum mechanics, on the other hand, the

notion of randomness is inherent, and one of the main source is entanglement. Con-

sider a quantum many-body system with pure non-degenerate ground state |ψ〉. At

zero temperature, it has vanishing von Neumann entropy

S(ρ) = −Tr(ρ ln ρ), (1.1)
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where ρ = |ψ〉〈ψ| is its density matrix. Now, we divide the system into subregions

A and B, the reduced density matrix ρA = TrBρ will generally be a mixed state,

which has non-vanishing von Neumann entropy S(ρA). This entropy of a subsystem

is defined as entanglement entropy. The main motivations for studying the scaling of

entanglement entropy stemmed from its relation to black hole entropy and holographic

principle, distribution of quantum correlations, numerical simulation, and detecting

topological order of many-body systems[27, 66].

1.1.1 Area law and its violation

In the 1970s, Bekenstein and Hawking set out to study thermodynamic entropy

in black holes. Bekenstein showed that the thermodynamic entropy of a black hole

scales as its area. But it wasn’t until Bombelli in 1986 [13] that entanglement entropy

of the ground state of a free massless field is shown to be proportional to the area

of its boundary. Since then, scaling with the system’s size became of fundamental

importance in studying entanglement entropy in many-body systems. At first glance,

it might be tempting to assume that entanglement entropy should have the same

scaling behavior as that of the thermodynamic entropy, which is an extensive quantity,

which scales with volume. Yet, volume scaling turns out to be highly unusual, and the

entanglement entropy of a ground state typically obeys an area law, or at most one

with a logarithmic correction, despite the fact that it has been shown that the average

entanglement entropy of a random quantum state satisfies a volume law[91, 35, 110].

The reason why area law is common is that interactions between particles in real-

istic Hamiltonians tend to be local, e.g. between nearest and next nearest neighbors.

As a result, low energy states are heavily constrained by locality and only occupy

a small corner in a huge many-body Hilbert space, where a random state will most

likely exhibit a volume-scaling entanglement entropy. In other words, some states in

the Hilbert space are more relevant than others. So for gapped, local Hamiltonians, it
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is suspected that only states with area law scaling qualify as low energy state candi-

dates. Moreover, one can show that starting from these states, only a small manifold

of states in the full Hilbert space can be reached by evolving under a local Hamilto-

nian over a polynomial time of system size[92]. This makes the Hilbert space little

more than a convenient illusion, and we could target the corner of relevant states

directly with a convenient class of states such as tensor network states. Since the

renormalization group (RG) is designed to tell the relevant degrees of freedom from

the irrelevant, it is natural to use RG method on tensor network states[90].

Most known results about area law are in 1-dimensional (1D) systems, where it

means the entanglement entropy is bounded from above by a constant independent

of the system size. In particular, a rigorous theorem on 1D gapped, local spin models

was established by Hastings[48], where locality enters the proof by the existence of

Lieb-Robinson bounds, which is also essential in the proof of exponetial decay of

correlation functions in these models.

While the area law has been shown to apply to a wide variety of gapped systems, its

violations in the ground state of gapless systems have also been illustrated in several

systems. For example, in (1+1)-dimensional conformal field theories, entanglement

entropy has been shown to have logarithmic scaling with the system size[49, 17, 53].

In addition, Fermi liquids also exhibit a logarithmic violation of area law in any

dimension [142, 39]. Recently, more examples have been found that show more severe

violations of the area law in one-dimensional spin systems[51, 42, 125, 96]. However,

these exotic scaling behavior are achieved at the expense of either introducing a local

Hilbert space with very large dimension or sacrificing translational invariance.

1.1.2 (Colored) Motzkin and Fredkin spin chain

In 2012, Bravyi et al. proposed a toy model of spin chain with a frustration free

(FF) Hamiltonian that describes criticality[15]. A frustration free Hamiltonian is a
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Figure 1.1: A spin-1 configuration, and its representation as a set of parentheses
and a Motzkin path.

Hamiltonian H =
∑

u∈ΛQu, where Λ is the lattice, such that its ground state is

the common lowest-energy eigenstate of all operator Qu’s. The ground state of their

Hamiltonian, the ‘Motzkin state’, derived its name from the classical combinatorial

problem of counting the number of Motzkin paths of a given length.

Definition I.1. A Motzkin walk (or path) on 2n steps is any path from (0, 0) to (0,

2n) with steps (1, 0), (1, 1) and (1, –1) that never passes below the x-axis.

Pictorially, a Motzkin walk corresponds to a mountain range that is located be-

tween site 0 and 2n. A Motzkin walk naturally encodes a spin-1 state |σ1, ...σ2n〉

constructed by assigning for the local spin variables σk = +1,−1 or 0 if the walk

goes up, down, or stays flat at site k. As depicted in Fig. 1.1, Motzkin paths can be

thought of as grammatically allowed choices of arranging left and right parentheses

in a sentence where a right parenthesis is only permitted to be placed if there is an

unpaired left parenthesis to its left. Following the notation of [15], the local spin basis

|l〉, |r〉 and |0〉 now corresponding to the Sz = +1,−1, and 0 states respectively.

The ground state is a uniform superposition of all Motzkin paths is given by

|GS〉 =
1

N
∑

w∈{Motzkin walks}
|w〉, (1.2)

where |w〉 is a Motzkin walk of size n and N is the normalization factor. The Motzkin

state is the unique ground state of the frustration-free Hamiltonian imposing only
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local constraints,

H = |r〉〈r|1 + |l〉〈l|2n +
2n−1∑
j=1

πj,j+1, (1.3)

where projectors acting on spin j, j + 1

πj,j+1 = |φ〉〈φ|j,j+1 + |ψ〉〈ψ|j,j+1 + |θ〉〈θ|j,j+1,

with

|φ〉 =
1√
2

(|0l〉 − |l0〉), |ψ〉 =
1√
2

(|0r〉 − |r0〉), |θ〉 =
1√
2

(|00〉 − |lr〉).

The authors in ref. [15] showed that the entropy of half of a Motzkin chain with size

n

S =
1

2
log n+ cn,

where cn goes to a constant as n→∞, conjecturing that a power-law scaling of S can

be achieved by introducing two types of brackets. They also gave an upper bound

on the spectral gap of O(n−
1
2 ) using variational wave function and a lower bound of

O(n−O(1)) using more complicated mathematical machinery.

In this context, it is important to point out that, as shown in [79], there are

three distinct regimes for Hamiltonians of 1D spin chains, with a local Hilbert space

of dimension d, whose terms are generic local projectors of fixed rank r: (i) When

r > d2/4, the Hamiltonian is frustrated for sufficiently large spin chains and analytical

as well as numerical work showed that no zero-energy ground states exist, (ii) a regime

where d ≤ r ≤ d2/4 where many zero-energy ground states are allowed analytically

and where numerical investigation suggests that they all carry a large amount of

entanglement, and (iii), a frustration-free regime with r < d where the ground states

can be represented by a matrix product state. The Motzkin path-based models first
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Figure 1.2: Coloring a Motzkin path leads to a higher spin configuration. Repre-
sentations of a spin-2 state as a a set of parentheses and as Motzkin path, where
1,−1↔ (, )↔ red and 2,−2↔ [, ]↔ blue.

introduced in [15] and later with the addition of color in [80] represent a particular

case where the Hamiltonian turned out to be frustration-free for r = d = 3. For this

reason, the authors in [15] have pointed out that any arbitrarily small deformations

of the projectors in the Motzkin path Hamiltonian will make it generic and thus

throw its ground state into the frustrated regime. In the model presented in this

paper, however, we derive a simple equation that relates the weights of local moves at

different sites of the chain and thus deform the local projectors away from the uniform

case in such a way that frustration-freeness of the Hamiltonian is maintained.

Movassagh and Shor later extended the model by Bravyi et al. to a colored version

of the Motzkin spin chain[80]. They labeled different types of parentheses by adding

a color degree of freedom and restricting their order by adding local projectors in the

Hamiltonian to enforce matching of color between neighboring pairs. In an s-colored

model, where s is the number of colors, the local Hilbert space is (2s+1)-dimensional

and spanned by the basis states |0〉, |l1〉, ..|ls〉, |r1〉, ..|rs〉. Fig. 1.2 depicts a coloring

choice for the Motzkin path in Fig. 1.1 and the associated spin state.

The ground state of the colored Motzkin Hamiltonian is a uniform superposition

of colored Motzkin paths of length 2n. The entropy of a half chain was shown to scale

as log s
√
n in the thermodynamic limit. The reason behind the

√
n scaling stems from

the fact that the average displacement after n steps of a random walk, represented

in the colored Motzkin model by the number of unmatched colors, scales as
√
n.
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What Movassagh and Shor failed to realize, however, is that once the color degree

of freedom is added, the uniform superposition in the ground state does not achieve

maximal scaling of entanglement entropy any longer. The possibility that one can

achieve this by enhancing higher mountains in the superposition without sacrificing

frustration freeness at all is, of course, not obvious. In chapter II, I will show rigorously

that it is indeed possible and it turns out and any slight frustration-free deviation

from the Motzkin spin model will change the behavior of its entanglement entropy

and spectral gap dramatically[146].

As is well known for the Heisenberg model, integer and half-integer spin chains

can behave very differently. So it’s worth studying a spin-1
2

version of the Motzkin

models. In fact, corresponding combinatorics problem called Catalan number for

configurations of spin-1
2

chain, Dyck paths, already exists in math literature.

Definition I.2. A Dyck walk (or path) on 2n steps is any path from (0, 0) to (0, 2n)

with steps (1, 1) and (1,−1) that never passes below the x-axis.

A Dyck walk can be mapped to a spin configuration of a spin-1/2 chain

|σ1σ2 . . . σ2n〉 with σk = +1/2 or −1/2 for a (1, 1) or (1,−1) kth step respectively.

When each step is assigned a color ck from a palette of s colors, | ↑ck〉 (| ↓ck〉)

corresponds to a state σk = ck/2 (resp. σk = −ck/2). And a colored Dyck walk can,

therefore, represent the spin configuration of any half-integer spin chain. To design

an Hamiltonian whose ground state is a uniform superposition of Dyck paths, one

just need to replace projectors in the bulk in Hamiltonian 1.3 with those that swap

a pair of up-down spins with a single neighboring spin,

Hj = | ↑〉j〈↑ | ⊗ |S〉j+1,j+2〈S|+ |S〉j,j+1〈S| ⊗ | ↓〉j+2〈↓ |,

where |Si,j〉 is the singlet state 1√
2
(| ↑i〉| ↓j〉 − | ↓i〉| ↓j〉).[24, 104] Due to the relation

of this operator to Fredkin (controlled-swap) gate, the model is named Fredkin spin
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chain. In Ref.[104], the authors established similar results on Fredkin spin chain in

parallel with those for Motzkin and colored Motzkin chain. In chapter III, we will

improve these results and generalize the model discussed in chapter II[105, 147].

1.2 Classification of topological phases

Another crucial ingredient of quantum mechanics, besides entanglement, is the

phase factor of wave function. Until the discovery of Aharonov-Bohm effect and

Berry phase, phase factors in quantum mechanics are merely perceived as an auxiliary

degree of freedom to facilitate interference and gauge invariance, as the amplitude

of a wave function appeared to be the only physical observable. Berry phase, on

the other hand, is the gauge invariant phase difference acquired when a quantum

system undergoes an adiabatic evolution in a closed loop in the parameter space of

its Hamiltonian. Because it can be expressed as the integral of local geometrical

quantity in the parameter space, i.e. Berry curvature, it is also called geometrical

phase. Berry phase has a variety of implications in a wide range of areas in physics.

In the context of condensed matter physics, Bloch bands provided a natural platform

for its manifestation as it captures the topological structure of the space of Bloch

Hamiltonians[143].

A timeless theme of condensed matter physics is to understand how large numbers

of particles organize themselves under different conditions and form distinctive phases

of matter. Classical phase transitions result from thermal fluctuations, and the non-

analyticity of free energy. As temperature varies, energy competes with entropy to

decided whether ordered or disordered configuration wins. Quantum phase transi-

tions, however, happens at zero temperature, and are driven exclusively by quantum

fluctuations of the ground state, whose energy is a non-analytic function of some

coefficient of the Hamiltonian in thermodynamic limit. As the coefficient approaches

a critical value, the ground state changes dramatically. For a long time, our under-
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standing of phase transition has been limited to the Landau-Ginzburg paradigm of

spontaneous symmetry breaking, where phases of matter are classified by their under-

lying symmetry. In the past few decades, following the discovery of integer quantum

Hall effect and topological insulators (TIs)[47], it became clear that the classification

by symmetry alone is incomplete and one can have topologically distinct phases char-

acterized by topological invariants within the same symmetry class. These invariants

take integer values and are protected by symmetries against adiabatic deformations

as long as bulk gap remains open, i.e. without a quantum phase transition that in-

volves gap closing and reopening. This kind of topological phases are called symmetry

protected topological (SPT) phases.

1.2.1 Z classification of time-reversal symmetric topological superconduc-

tor

The simplest SPT phases are those of fully gapped free fermionic systems called

topological band insulators (TBIs) including TIs and topological superconductors

(TSCs). The Altland-Zirnbauer’s ten-fold way provide a complete classification of

these systems described by bilinear Bloch-BdG Hamiltonians[5]. In this scheme, topo-

logical invariants are protected by three non-spatial global symmetries, time-reversal

(TR), particle-hole (PH), and chiral. TR and PH symmetry can both square to +1

or −1, or be absent. In addition, their product, chiral symmetry can still be present

when neither of them is, and always square to +1. So the ten-fold way exhausts

all possible symmetry classes in the ensemble of random Hamiltonians. Within each

symmetry class, topologically distinct phases are classified by different bulk topo-

logical invariants in different spatial dimensions such as Chern number or winding

number, as well as number of gapless boundary modes[22].

We now focus on the Z classification of non-interacting three dimensional class

DIII topological superconductors (TSCs)[109, 62, 93]. Candidate materials for this



10

class include superfluid 3He-B[127, 7, 23, 83] and copper dopped Bismuth Selinide

CuxBi2Se3[37, 107]. Hamiltonians in this class has TR symmetry T with T 2 = −1,

PH symmetry C with C2 = 1, and chiral symmetry Π with Π2 = 1. In mo-

mentum space, it has Bogoliubov-de Gennes (BdG) Hamiltonian in Nambu basis

ξ(k) = (c↑(k), c↓(k), c†↓(−k)T ,−c†↑(−k)).

H =

∫
dkξ†(k)HBdG(k)ξ(k). (1.4)

By construction, the artificial Nambu doubling requires the matrix HBdG to satisfy

PH symmetry CHBdG(k)C−1 = −HBdG(−k), where the antiunitary PH operator

C = σyτyK, where σy acts on spin and τy acts on Nambu degrees of freedom. Physi-

cally, this means that excitations at k in the negative energy bands are actually holes

of particles at −k in positive ones. In much the same way as quantum spin Hall

effect can be thought of as two copies of TR breaking quantum Hall, the two copies

of spinless (or spin-polarized) fermions form TR partners so that HBdG is TR sym-

metric THBdG(k)T−1 = HBdG(−k), where the antiunitary TR operator T = iσyK.

The product of PH and TR gives a chiral symmetry that anticommutes with the

Hamiltonian ΠHBdG(k)Π = −HBdG(k), with unitary Π = −iCT = τy, which says

that the filled and empty bands are symmetric with respect to the zero energy band.

To capture the topological structure of the Bloch bands, we define a projection

operator onto the ground state of the system

P (k) =
∑

a∈filled bands

|ua(k)〉〈ua(k)|, (1.5)

and the ‘Q matrix’

Q(k) = 1− 2P (k), (1.6)
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with the properties Q† = Q, and Q2 = 1. The Q matrix is a convenient simplification

of the Hamiltonian as it has only two constant eigenvalues ±1 and can be obtained

from the Hamiltonian by continuously deformation without closing the gap. Hence

it’s also called the ‘flat band Hamiltonian’. As chiral operator sends a filled band

to empty band, we have ΠPΠ = 1 − P , and ΠQΠ = −Q. The presence of a chiral

symmetry now allows us to bring the Q matrix into block off-diagonal form in the

chiral basis

Q(k) =

 0 q(k)

q†(k) 0

 . (1.7)

Since Q is unitary, its off-diagonal block q(k) defines a map from the Brillouin zone

to a space of unitary matrices with additional constraints imposed by PH and TR

symmetries. In three dimension, the homotopy group of this map is isomorphic to the

group of integers Z. Topologically distinct phases in this symmetry class are classified

by the winding number

ν =
i

48π3

∫
BZ

Tr[(q(k)−1dq(k))∧3]. (1.8)

In field theory, this winding number arises from the quantum anomaly of chiral

symmetry, which originates from the Jacobian for the chiral transformation of the

path integral measure for fermions[141]. There, an Atiyah-Singer index theorem can

be proven[57]

nR − nL = ν, (1.9)

where nR,L respectively denotes the number of eigenstate of the Dirac operator with

vanishing eigenvalue with positive and negative chirality eigenvalues. Here, in the

presence of a boundary, the translational invariance in its normal direction is bro-

ken, so that component of the momentum should be replaced by a derivative in the
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Hamiltonian. One can then solve differential equations to find gapless excitations

localized at the boundary. These zero modes are required by Nambu doubling and

PH symmetry to be their own Hermitian conjugates, i.e. Majorana fermions. What’s

nontrivial about these surface Majorana modes is that the correspondence between

the net chirality of them and the bulk topological number protect them against sym-

metry respecting perturbations, including disorder. In other words, they are immune

to Anderson localization, which says quantum states tend to be localized in the pres-

ence of strong impurities. This means that the system cannot be discretized and

lattice version of the theory can only live on the boundary of a topological bulk.

Historically, Anderson delocalization was hypothesized to be the defining property of

TI/TSC, and one can identify topological phases in the ten-fold way by capturing the

low-energy physic with effective field theory, non-linear sigma models (NLσMs), and

adding topological terms such as Wess-Zumino-Witten (WZW) terms[109].

1.2.2 Collapse of Z classification under interaction

SPT phases can exist in the presence of interactions, where one can have both

fermionic and bosonic (spin) SPT phases. Interaction generally has two effects on

topological phases. First, it allows for new topological phases that requires inter-

actions, such as the Haldane phase of spin-1 Heisenberg antiferromagnetic chains.

Second, it can reduce the non-interacting classification for certain symmetry classes,

and change the boundary physics.

Recently it has been shown that under strong many-body interaction, as the

surface state of 16 copies of a TSC can be gapped without breaking time reversal

symmetry or introducing surface topological order[32, 74, 130, 111, 56, 95, 141]. This

suggests the many-body extension allows a continuous path that connects 16 copies

of a TSC to a trivial s-wave superconductor in three dimensions without breaking

symmetry or closing the bulk gap. This reduces the Z classification of TSC in the
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single-body BCS description is reduced to Z16. In fact, the surface Majorana modes

of any TSC can be gapped without breaking symmetries. However, there would

generically be a residue topological order, unless N is a multiple of 16, that allows

non-trivial anyonic excitations to live on the surface[32, 74]. As a result, these three

dimensional (3D) bulk systems are still topologically distinct from a trivial state.

Similar phenomena were also seen in topological insulators[38, 100, 78, 94] in three

dimensions and topological superconductors[61] in one dimension. Many-body inter-

actions allow the surface Dirac mode of a topological insulator to acquire an energy

gap without breaking time reversal or charge conservation symmetries. However a

non-trivial surface topological order would be left behind.[128, 75, 20, 14] This in-

dicates the bulk insulator still carries a non-trivial Z2 symmetry protected topology

(SPT) even in the many-body framework. On the other hand, the Z classification of

time reversal symmetric BDI superconductors in one dimension breaks down to Z8 in

the presence of strong interaction[33, 34, 121, 21].

1.2.3 Intrinsic topological order

Symmetry protection is not an absolute requirement for distinct topological

phases, systems with intrinsic topological order can be topologically distinct even

in the absence of symmetry. Examples of systems with intrinsic topological order

include fractional quantum Hall effect and Kitaev’s toric code. Intrinsic topological

orders are characterized by robust finite ground state degeneracy, non-local bulk ex-

citations with fractional quantum numbers and fractional statistics and topologically

protected gapless boundary excitations. These features have generated tremendous

amount of interest in applications to topological quantum memory[25], fault-tolerant

quantum computation[85], and perfect conduction devices.

The key difference between SPT phases and states with intrinsic topological order

lies in the entanglement. We define an equivalence relation between states that can be
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connected to each other with local unitary transformations. SPT phases are all equiv-

alent to a direct product state. We call them short-range entangled (SRE) states, and

all the other states long-range entangled (LRE) states. States with different intrin-

sic topological order are therefore characterized by different patterns of long-range

entanglement, which cannot be transformed into each other with local unitary trans-

formations. Long-range entanglement can be captured by topological entanglement

entropy, defined as the constant part γ of entanglement entropy S = αL+γ+O(L−1).

The universal properties of the low-energy physics of LRE systems are described

by an effective theory called topological quantum field theory (TQFT). A fundamental

characteristic of TQFT is the quantum dimension da of its quasiparticles excitations,

anyons, which is 1 for Abelian anyons and > 1 for non-Abelian anyons. It is related

to the topological entanglement entropy by

γ = logD, (1.10)

where

D =

√∑
a

d2
a (1.11)

is called the total quantum dimension of the theory[30]. Quasiparticles in a TQFT

are in one-to-one correspondence with the primary fields of a conformal field theory

(CFT) defined on its edge. The quantum dimensions can be found from fusion rules

among anyons, which correspond to operator product expansion (OPE) of primary

fields in CFT,

φa × φb =
∑
c

N c
abφc. (1.12)

The fusion coefficients N c
ab can be expressed in terms of the modular S matrix trough

Verlinde formula

N c
ab =

∑
j

SjaS
j
bS

c
j

Sj0
. (1.13)
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The modular S matrix can be derived from the invariance of the partition function

under modular transformation that exchanges space and time. The problem of finding

anyon structure of a topological order is then reduced to computing the partition

function, which is the sum of characters, in the representation theory of a central-

extended symmetry algebra.

The topological order of a gapped symmetric surface of a topological insulator

or superconductor was deduced mainly using vortex condensation or other topologi-

cal field theory techniques. They do not specify the microscopic many-body surface

gapping interactions that give rise to these exotic surface states. A pioneer work

that addressed this issue was done by Fidkowski and Kitaev in Ref.[33] where they

constructed explicit time reversal symmetric 4-fermion interactions that give an en-

ergy gap to eight boundary Majorana zero modes of a 1D TSC. Another insightful

work was published by Mross, Essin and Alicea in Ref.[81] where they mimicked the

surface Dirac mode of a topological insulator using a coupled wire model and wrote

down explicit symmetric gapping interactions that lead to different gapped or gapless

surface states.

Sliding Luttinger liquids[88, 28, 124, 114, 82] and coupled wire constructions[55]

are immensely powerful in building two dimensional topological phases. They model

2D systems by arrays of coupled 1D chains, where interaction effects are more con-

trolled and better understood. This theoretical technique has been frequently used

in the study of fractional quantum Hall states[55, 117, 64, 73, 103], anyon models[89,

115], spin liquids[71, 41], (fractional) topological insulators[86, 65, 101, 102, 72, 70,

106] and superconductors[77, 112].

In chapter IV, we imitate the surface Majorana modes of a 3D topological su-

perconductor using a coupled Majorana wire model, construct explicit 4-fermion in-

teractions that lead to a finite excitation energy gap, and study the residue surface

topological order.
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Chapter II

Deformed Motzkin Spin Chain

The deformation to increase/decrease entanglement entropy starts with the obser-

vation that Motzkin paths that reach a substantial height in the middle of the chain

can contribute significant color correlations between the chain halves. The idea is

illustrated in Fig. 2.1.

Remarkably, a suitable wave function, containing a superposition of colored

Motzkin paths which prefers steep paths can be obtained as a frustration free and

non-degenerate ground state of a Hamiltonian which is translational invariant in

the bulk. Unfortunately, none of the ingredients in this statement are immediate.

A generic change of the Hamiltonian presented in [80] may very easily either break

frustration freeness or the non-degeneracy condition nor will it increase entanglement.

Figure 2.1: Motzkin paths require color correlations between the color of an up step
and the color of the first step going down at the same height. The Motzkin path
reaching height m = 5 in the middle (left panel) contains more color correlations
between the halves of the chain than a path of height m = 0 (right panel). Favoring
higher paths leads to more entanglement.
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Thus, we also need to show that we can do so in a way that the weight of these high

paths is large enough as to overcome the contribution from more typical paths that

reach height
√
n at the middle of the chain

2.1 A Frustration-Free Deformation

Theorem II.1. The Hamiltonian

H = |r〉〈r|1 + |l〉〈l|2n +
2n−1∑
j=1

Πj,j+1, (2.1)

defined on (C3)⊗2n with

Πj,j+1 = |Φ〉〈Φ|j,j+1 + |Ψ〉〈Ψ|j,j+1 + |Θ〉〈Θ|j,j+1,

where

|Φ〉j,j+1 = cosφj+ 1
2
|0l〉j,j+1 − sinφj+ 1

2
|l0〉j,j+1,

|Ψ〉j,j+1 = cosψj+ 1
2
|0r〉j,j+1 − sinψj+ 1

2
|r0〉j,j+1,

|Θ〉j,j+1 = cos θj+ 1
2
|00〉j,j+1 − sin θj+ 1

2
|lr〉j,j+1

is frustration free and has a unique ground state with zero energy provided ψi, φi, θi ∈

(0, π/2) satisfy relations

tan θi cotφi = tan θi+1 tanψi+1, i =
3

2
,
5

2
,
7

2
, . . . , 2n− 1

2
. (2.2)

We first prove the uniqueness of the ground state (GS) first assuming the Hamil-

tonian is frustration free, and then show that the Hamiltonian is indeed frustration

free under condition (2.2).
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Remark: When some of the angles equal an integer multiple of π/2, the Hamilto-

nian is still frustration free, but may have a degenerate ground state.

Proof. (Uniqueness of GS) We look for a frustration-free ground state that will be

annihilated by each of the terms in the Hamiltonian (3.1). We define the following

R,L, F moves and their inverses:

|l0〉 R−−⇀↽−−
R−1

tanφ|0l〉, |0r〉 L−−⇀↽−−
L−1

cotψ|r0〉, |lr〉 F−−⇀↽−−
F−1

tan θ|00〉. (2.3)

We first note that if a ground state wave function contains a particular spin con-

figuration (a “walk”), then the ground state wave function must contain as well a

superposition of all states which can be obtained from it by the set of moves (2.3).

Indeed, at each neighboring two sites, the local spin state can be one of the nine

possible configurations in {|ll〉, |rr〉, |rl〉, |0l〉, |l0〉, |0r〉, |r0〉, |00〉, |lr〉}, the first 3 of

which are annihilated by the projectors Π individually. The rest must form pairs

sinφ|0l〉+ cosφ|l0〉, sinψ|0r〉+ cosψ|r0〉, and sin θ|00〉+ cos θ|lr〉 to be annihilated by

|Φ〉〈Φ|, |Ψ〉〈Ψ|, and |Θ〉〈Θ| respectively. Each of these superpositions corresponds to

mixing between states related by the moves R,L, and F .

The process of generating additional walks starting from a given one is ‘mixing’

in that it can keep going on and on until all Motzkin walks are included in the

superposition. To see this we construct the following procedures of relating Motzkin

walks to the ‘flat’ mountain, i.e. the string of spins 000 . . . 0: If the highest peak of

the current mountain is of the type l0 · · · r (i.e. a plateau), then keep applying L and

R moves until it becomes lr (i.e. a hill), otherwise use the F operation on the hill.

Note that there are multiple choices of combinations of L and R moves that can be

applied to make a mountain completely flat (See Fig. 2.2.) Given any Motzkin walk,

we can represent it by a sequence of consecutive moves applied to it to get to the flat
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Figure 2.2: Iterative procedure to flatten a mountain to the ground, where steps 2
and 3 can be interchanged.

mountain, e.g. |M1〉 = M1|000 . . . 0〉 = (Fin · · ·Ri3Li2Li1)−1|000 . . . 0〉. So any two

Motzkin walks are related by |M2〉 = M2M
−1
1 |M1〉.

Similarly, it is easy to see that any walk which crosses below zero, or that does

not return to zero at the end of the chain, can be transformed by the R,L, F moves

and their inverses into a walk that violates the boundary projectors. Therefore if a

zero energy ground state does exist, then it will be the unique superposition of all

Motzkin walks with weights determined by the tuned projectors.

It remains to be examined whether the aforementioned freedom in choosing the

sequences of moves may result in ambiguities in the relative weights between Motzkin

walks. It turns out that the tuning conditions (2.2) suffice to guarantee that a super-

position of Motzkin walks can be written without ambiguities in the relative ampli-

tudes. It can be seen from an observation of the local moves involving three adjacent

sites illustrated in Fig. 2.3. The two ways to get |000〉 from |l0r〉 will give the same

relative weight if and only if the mixing angles at two neighboring junctions satisfy

the relation (2.2). The global version of this statement holds as well:

Proof. (Frustration Freeness) A plateau of width d, (that is, the number of 0 spins),

is generated by one hill (or F−1 move) and d R−1 and L−1 moves. (See Fig. 2.4.)

Once the location of the hill is chosen, R−1 (L−1) only acts on its left (resp. right),

and whether acting an R−1 on the left first or an L−1 on the right first doesn’t affect

the weight. So the weights are completely determined by the location of the hills that

plateaus originate from at each level. The weights of the same plateau generated by
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Figure 2.3: Two different sequences of moves to relate local state |000〉 to |l0r〉, and
the relative weights of each state involved.

Figure 2.4: Different sequences of L,R, F moves to get a hill (solid) from a
starting plateau (dash dot) with intermediate plateaus after each move (dash).
(a) Two different sequences of moves Rh−1Lh+1Lh+2Lh+3Rh−2Lh+4Lh+5 and
Lh+1Lh+2Rh−1Lh+3Lh+4Lh+5Rh−2 with the same location of hill always give the
same relative weight. (b) A sequence of moves with hill location different from
those in (a) could generically give a different relative weight, except when rela-
tion (2.2) is satisfied.
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hills at location h and h′ are related by

m(h) =
h′−1∏
i=h

tan θi cotφi
tan θi+1 tanψi+1

m(h′) = m(h′). (2.4)

Therefore the weight of each mountain is an invariant of the sequence of moves chosen

to construct it from the flat mountain.

Furthermore, if two mountains are related directly to each other without passing

through the flat mountain, by a sequence of N moves, then each move in the sequence

can be viewed as either a ‘piling’ move away from the flat mountain or a ‘flattening’

move towards it. So the intermediate mountains generated in this sequence each have

definite weight m1,m2,m3, . . ., and the relative weight between these two mountains

mA

mB

=
mA

m1

m1

m2

m2

m3

· · · mN

mB

(2.5)

is an invariant. It follows that the relative weights between any two Motzkin walks are

well-defined and conditions (2.2) is sufficient for Hamiltonian (3.1) to be frustration

free.

2.2 The Colorful Model

Below we incorporate the colors in our model, and pick a particular, translationally

invariant choice for the angles in Eq. (2.2), cotφi = tanψi = t. For simplicity, we

further let cot θi = t. Now, all three moves R−1, L−1, and F−1 in (2.3) change the

weight of a Motzkin path by a factor of t and increase the area below the mountain

by exactly one unit. So the weight of each mountain is simply determined by the area

below it. Thus, the weight of each mountain compared to the flat Motzkin path is

given by tA(w). The result is a ground state where the Motzkin paths are exponentially

weighted according to the area under paths, rather than a uniform superposition.
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Theorem II.2. The following Hamiltonian, acting on a 2n sites of a spin-s chain,

H(s, t) = Πboundary(s) +
2n−1∑
j=1

Πj,j+1(s, t) +
2n−1∑
j=1

Πcross
j,j+1(s), (2.6)

where

Πboundary(s) =
s∑

k=1

(|rk〉〈rk|1 + |lk〉〈lk|2n),

Πj,j+1(s, t) =
s∑

k=1

(|Φ(t)k〉〈Φ(t)k|j,j+1 + |Ψ(t)k〉〈Ψ(t)k|j,j+1 + |Θ(t)k〉〈Θ(t)k|j,j+1),

Πcross
j,j+1(s) =

∑
k 6=k′
|lkrk′〉〈lkrk′ |,

with

|Φk(t)〉 =
1√

1 + t2
(|lk0〉 − t|0lk〉),

|Ψk(t)〉 =
1√

1 + t2
(|0rk〉 − t|rk0〉),

|Θk(t)〉 =
1√

1 + t2
(|lkrk〉 − t|00〉),

has a unique zero energy ground state

|GS〉 =
1

N
∑

w∈{s−colored
Motzkin walks}

tA(w)|w〉, (2.7)

where A(w) denotes the area below the Motzkin walk w, and N is a normalization

factor.

A caricature of the resulting ground state is shown in Fig. 2.5.
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Figure 2.5: A caricature of the ground state of our model.

2.3 Entanglement Entropy

In the Schmidt decomposition of the ground state (2.7), the coloring of the un-

paired spins in the second half of the system is completely determined by those the

first half (see Fig. 2.1). The Schmidt decomposition is written as:

|GS〉 =
n∑

m=0

√
pn,m

∑
x∈{l1,l2..ls}m

|Ĉ0,m,x〉1..n ⊗ |Ĉm,0,x̄〉n+1..2n, (2.8)

where |Ĉp,q,x〉 is a weighted superposition of states in {0, u1, . . . , us, d1, . . . , ds}n with

p excess down moves, q excess up moves and a particular coloring x of the unmatched

up moves, such that 〈GS|(|Ĉ0,m,x〉1..n ⊗ |Ĉm,0,x̄〉n+1..2n) 6= 0, and x̄ is the coloring in

the second half of the chain that matches x. The decomposition gives the Schmidt

number pn,m(s, t) =
M2
n,m(s,t)

Nn(s,t)
, with

Mn,m(s, t) ≡
n−m

2∑
i=0

si
∑

w∈Dn,m,i
t2A(w) ; Nn ≡

n∑
m=0

smM2
n,m. (2.9)

Here Dn,m,i =“1st half of Motzkin walks with i paired spins stopping at (n,m)”.

Notice that the extra factor of two in the exponent of t is there so that the |Ĉp,q,x〉

and |Ĉp,q,x̄〉 form an orthonormal basis. The entanglement entropy of the half chain

in the ground state is given by

Sn(s, t) = −
n∑

m=0

smpn,m(s, t) log pn,m(s, t). (2.10)
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Figure 2.6: Three representative paths of different heights at position k to gener-
ate a path that ends with height m at position k + 1. The increments in the area
below the paths are the areas sandwiched between two vertical lines, which are
m+ 1

2
,m,m− 1

2
respectively for red, green and blue paths.

To study the asymptotic scaling of Sn(s, t) with the system size when t 6= 1, we

note the following recursion relations of Mn,m as a function of m:

Mk+1,k+1 = t2k+1Mk,k, (2.11)

Mk+1,k = t2kMk,k + t2k−1Mk,k−1, (2.12)

Mk+1,m = st2m+1Mk,m+1 + t2mMk,m + t2m−1Mk,m−1 (2.13)

Mk+1,0 = stMk,1 +Mk,0. (2.14)

These can be easily seen from the possible ways to arrive at a particular destination

and the increment of the area below each path as illustrated in Fig. 2.6. The third

equation above is valid for 0 < m < k.

Starting from the seed value M0,0 = 1, by using the recurrence relations repet-

itively, one can calculate the values of Mn,m and Schmidt numbers for any m and

calculate the entanglement entropy Sn. To get a better handle on the type of distri-

bution the relations lead to, we find it convenient to view the recursion evolution as a

process of increasing/decreasing m while n is viewed as discrete ‘time’. We will show

below that for large enough n, the distribution associated with the Mn,m essentially

propagates ballistically (as a function of n), with very little spread. This property
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will establish that the typical height at the middle of a 2n chain scales linearly with

n.

Before exhibiting the proof, we need to develop a few preliminary steps. We

encode the distributions Mn,m as coefficients of wavefunctions defined on the set

|m〉,m = 0, 1, 2, . . . as

|Mn〉 =
∞∑
m=0

Mn,m|m〉, Mn,m = 0 if m > n. (2.15)

We define the following ‘shift’ and ‘height’ operators, which we will use in describing

the ‘evolution’ of the distribution Mn,m as function of ‘time’ n.

S|m〉 = |m− 1〉, | − 1〉 = 0; (2.16)

H|m〉 = m|m〉. (2.17)

Explicitly, t2H,S,S† act on |Mn〉 as follows.

t2H|Mn〉 =
∞∑
m=0

Mn,mt
2m|m〉, (2.18)

S|Mn〉 =
∞∑
m=1

Mn,m|m− 1〉 =
∞∑
m=0

Mn,m+1|m〉, (2.19)

S†|Mn〉 =
∞∑
m=0

Mn,m−1|m〉. (2.20)

As remarked above, we aim to show that for large enough n, |Mn+1〉 ∝ S†|Mn〉,

describing essentially ballistic propagation with no spread. For the recurrence relation

(2.14) to be satisfied, we require

Mn+1,m = 〈m|Mn+1〉 = st2m+1〈m+ 1|Mn〉+ t2m〈m|Mn〉+ t2m−1〈m− 1|Mn〉

= 〈m|st2H+1S + t2H + t2H−1S†|Mn〉.
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Therefore,

|Mn+1〉 = t2H(stS + 1 +
1

t
S†)|Mn〉. (2.21)

Using the relations,

t2HS = t−2St2H, (2.22)

t2HS† = t2S†t2H, (2.23)

we have

t2kH(stS + 1 +
1

t
S†) = (st−(2k−1)S + 1 + t2k−1S†)t2kH, (2.24)

and

|Mn〉 = [t2H(stS + 1 +
1

t
S†)]n|M0〉 (2.25)

= ~K
n∏
k=1

(st−(2k−1)S + 1 + t2k−1S†)|0〉, (2.26)

where ~K denotes ordering the multiplications in the product such that factors with

greater k value is on the right. It is now evident that the factors in the product above

are dominated by the S† term for large k, giving us “ballistic” evolution with n.

2.3.1 Extensive entropy for t > 1, s > 1

Lemma II.1. Let m∗ be such that supmMn,m = Mn,m∗, then ∃N0 < n, such that

when t > 1, m∗ ∈ [n− 2N0, n].

Proof. Let

|M′
n〉 = ~K

n∏
k=N0+1

(st−(2k−1)S + 1 + t2k−1S†)|0〉. (2.27)

Note that

t−(2k−1)‖1 + st−(2k−1)S‖1 ≤ t−(2k−1) + st−2(2k−1) ≡ ck, (2.28)
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so that:

‖st−(2k−1)S + 1 + t2k−1S†‖1 < t2k−1(1 + ck)

we thus have

‖t−
∑n
k=N0+1(2k−1)|M′

n〉 − |n−N0〉‖1 ≤
∏n

k=N0+1(ck + 1)− 1 < e
∑∞
k=N0+1 ck − 1

= e
t−4N0 st

2+t2N0+1+t2N0+3

t4−1 − 1 < e
t−2N0 3st3

t4−1 − 1 ≡ f(s, t)t
−2N0 − 1.

The first inequality on the left follows from noting that |n − N0〉 appears in

t−
∑n
k=N0+1(2k−1)|M′

n〉 with coefficient 1, and is exactly canceled. We have also used

that x+ 1 ≤ ex. Next,

‖t−
∑n
k=1(2k−1)|Mn〉 − ~K

N0∏
k=1

(st−2(2k−1)S + t−(2k−1) + S†)|n−N0〉‖1

≤‖~K
N0∏
k=1

(st−2(2k−1)S + t−(2k−1) + S†)‖1‖t−
∑n
k=N0+1(2k−1)|M′

n〉 − |n−N0〉‖1

<(f(s, t)t
−2N0 − 1)

N0∏
k=1

(1 + ck) < (f(s, t)t
−2N0 − 1)e

∑N0
k=1ck < (f(s, t)t

−2N0 − 1)f(s, t).

Let

M ′
n,m = 〈m|~K

N0∏
k=1

(st−2(2k−1)S + t−(2k−1) + S†)|n−N0〉, (2.29)

then clearly M ′
n,m = 0 for m < n− 2N0. If we choose

N0 =


0 f(s, t) < 1+

√
5

2
,

− log
log(f−1(s,t)+1)

log f(s,t)

2 log t
, otherwise,

(2.30)

then

‖t−n2|Mn〉 −
n∑

m=n−2N0

M ′
n,m|m〉‖1 < 1 = M ′

n,n ≤ sup
m
M ′

n,m. (2.31)
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Therefore ∃m∗ ∈ [n− 2N0, n], such that Mn,m∗ ≥Mn,m for all m.

Lemma II.1 shows that the peak of the Mn,m distribution is always within a finite

distance from n. Essentially, the bulk of the distribution travels with velocity 1.

Theorem II.3. In the state (2.7), when t > 1, the entanglement entropy of sites 1...n,

is bounded below as Sn > n log s+ const. for all n, where const. is an n independent

constant.

Proof. We separate a linear term from Sn as follows (below we supress the n index

in Mn,m):

Sn = −∑n
m=0 s

mpm log M2
m∑n

m′=0 s
m′M2

m′
>

= −∑n
m=0 s

mpm log M2
m

smM2
m

=
∑n

m=0 s
mpmm log s =

∑n
l=0 s

n−lpn−l(n− l) log s

= n log s− log s
∑n

l=0

sn−lM2
n−l∑n

m′=0 s
m′M2

m′
l (2.32)

Taking m∗ such that supmMn,m = Mn,m∗ and using lemma III.1, we see that

n∑
l=0

sn−lM2
m∗∑n

m′=0 s
m′M2

m′
l <

n∑
l=0

sn−lM2
m∗

sm∗M2
m∗
l = sn−m

∗
n∑
l=0

s−ll

< s2N0

n∑
l=0

s−ll < s2N0

∞∑
l=0

s−ll =
s2N0+1

(s− 1)2
.

Therefore, the remainder term on the right hand side of (3.28) is bounded.

2.3.2 Bounded entropy for t < 1

When t < 1 we expect the Motzkin paths with the lowest area to be exponentially

preferred. In particular, the flat Motzkin path that has zero area has a vanishing con-

tribution to entropy, and thus we expect the entanglement entropy to be substantially
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reduced. In fact, it turns out that the for any value t < 1 the entropy is bounded,

independently of the size of the system 2n:

Theorem II.4. When 0 < t < 1, s ≥ 1, there exists a constant C(s, t) independent

of the system size n, such that for any n, Sn < C(s, t).

Remark: Note that theorem holds both for the colored and uncolored case s = 1.

For the theorem to hold, the exponential growth in contribution to entropy from

the possible colorings of higher paths should be overwhelmed by the exponential price

in area. Technically, we need the quantities M2
m to decrease faster than the rate sm

grows in order to make pm decrease exponentially.

To highlight this feature we first define

M̃n,m = s
m
2 Mn,m , p̃n,m =

M̃2
n,m∑n

m=0 M̃
2
n,m

. (2.33)

Substitution into (??) gives the relation

M̃n+1,m =
√
st2m+1M̃n,m+1 + t2mM̃n,m +

√
st2m−1M̃n,m−1, (2.34)

for m ∈ [1, n− 1].

To prove the entropy is bounded, we need the following lemmas.

Lemma II.2.

M̃2
n+1,m > M̃2

n,m. (2.35)
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Proof. From (3.22), we have

|Mn+1〉 = ~K∏n+1
k=1(st−(2k−1)S + 1 + t2k−1S†)|0〉 (2.36)

= ~K∏n
k=1(st−(2k−1)S + 1 + t2k−1S†)(st−(2n+1)S + 1 + t2n+1S†)|0〉,

= |Mn〉+ ~K∏n
k=1(st−(2k−1)S + 1 + t2k−1S†)(st−(2n+1)S + t2n+1S†)|0〉.

The last term on the RHS of the equation contains non-zero contributions for all

states |m〉, with m = 0, ..n+ 1, and we have:

Mn+1,m > Mn,m,

M̃n+1,m > M̃n,m ∀m ≥ 0, n ≥ 1.

And the Lemma follows.

Next we establish the following bound on p̃n,m:

Lemma II.3.

p̃n,m < 9st4m−2. (2.37)

Proof. By definition of p̃n,m, and the recursion relation (3.30),

p̃n,m =
M̃2

n,m∑n
m=0 M̃

2
n,m

=

=
(
√
st2m+1M̃n−1,m+1 + t2mM̃n−1,m +

√
st2m−1M̃n−1,m−1)2∑n

m=0 M̃
2
n,m

=
t4m(
√
stM̃n−1,m+1 + M̃n−1,m +

√
st−1M̃n−1,m−1)2∑n

m=0 M̃
2
n,m

≤ t4m
(3
√
st−1max{t2M̃n−1,m+1,

t√
s
M̃n−1,m, M̃n−1,m−1})2∑n

m=0 M̃
2
n,m

≤ 9t4m
s

t2
max{M̃2

n,m+1, M̃
2
n,m, M̃

2
n,m−1}∑n

m=0 M̃
2
n,m

< 9t4m
s

t2
.
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Lemma III.2 was used in the last line.

We now have the ingredients to prove theorem II.4:

Proof. (Theorem II.4) Using Lemma III.3 we see that when

m > m0 ≡
[ log( 1

9e
t2

s
)

4 log t

]
+ 1, (2.38)

we have

p̃n,m < 9st4m−2 <
1

e
. (2.39)

It is easy to check that the function −x log(x) is monotonically increasing when

x ∈ (0, 1
e
), in other words, for m > m0,

p̃n,m < 9st4m−2 <
1

e
=⇒ −p̃n,m log p̃n,m < −9st4m−2

(
log(

9s

t2
) + 4m log t

)
. (2.40)

Therefore

Sn = −
n∑

m=0

p̃n,m log p̃n,m + log s
n∑

m=0

p̃n,mm

< −
m0∑
m=0

p̃n,m log p̃n,m −
∞∑

m=m0+1

9st4m−2
(

log(
9s

t2
) + 4m log t

)
+ log s

∞∑
m=0

9st4m−2m

<
m0 + 1

e
− 9st4m0+2

1− t4 log(
9s

t2
)− 18st4m0+2(m0(1− t4) + 1)

(t4 − 1)2
2 log t

+
9st2

(t4 − 1)2
log s ≡ C(s, t),

where we used supx∈(0,1)−xlog(x) = e−1 for entropy terms with m ≤ m0 in the last

inequality.
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Figure 2.7: Entanglement entropy of the first n sites in a chain of 2n sites for vari-
ous phases of the colored and uncolored area-weighted Motzkin state.

2.4 A novel quantum phase transition

The abrupt change in scaling of entanglement entropy proven above, combined

with previous results shown in ref. [15, 80] can be summarized in the phase diagram

in Fig. 2.7. Additional evidence can be drawn from sudden change in scalings of

spectral gap. In the next chapter, we will rigorously prove for the deformed Fredkin

chain upper bounds on the scaling of gap for t > 1, s > 1 phase and t > 1, s = 1 phase,

showing both of them vanishes in the thermodynamic limit. The same argument goes

for the deformed Motzkin chain. Besides, numerical studies in ref. [12] shows that

the t < 1 phase appears to be gapped, in agreement with our conjecture based on the

t→ 0 limit.

We call this phase transition a novel quantum phase transition out of the following

considerations. On one hand, it happens at zero temperature and is a result of

coefficient in the Hamiltonian changing near a critical value. On the other hand, the

ground state itself does not go through and abrupt change, and no level crossing is

involved, falling out of the definition of quantum phase transition given in chapter

I. In addition, while bounded entanglement entropy usually indicate a non-vanishing

spectral gap, our t > 1, s = 1 with bounded entanglement entropy will be shown to

be gapless in the next chapter.
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Chapter III

Deformed Fredkin Spin Chain

In this chapter, we apply the idea from the previous chapter to a half-integer

spin version of the Motzkin model, called Fredkin spin chain. In addition, we further

explore the degrees of freedom in frustration free deformation of the Hamiltonian.

Inspired by the more mathematically inclined proof given in ref. [68], and numerical

results in ref. [12], we give a rigorous and intuitive prove on scalings of the spectral

gap omitted in the previous chapter.

3.1 Multi-parameter Hamiltonian and ground state

Following the method in the previous chapter, we introduce a parameter t that

deforms the Fredkin Hamiltonian of [24, 104] while remaining frustration free. The

Hamiltonian is given by:

H(s, t) = HF (s, t) +HX(s) +H∂(s), (3.1)

where

HF (s, t) =
2n−1∑
j=2

s∑
c1,c2,c3=1

(
|φc1,c2,c3j,A 〉〈φc1,c2,c3j,A |+ |φc1,c2,c3j,B 〉〈φc1,c2,c3j,B |

)
(3.2)
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HX(s) =
∑2n−1

j=1 [
∑

c1 6=c1 | ↑
c1
j ↓c2j+1〉〈↑c1j ↓c2j+1 | (3.3)

+1
2

∑s
c1,c2=1(| ↑c1j ↓c1j+1〉 − | ↑c2j ↓c2j+1〉)(〈↑c1j ↓c1j+1 | − 〈↑c2j ↓c2j+1 |)], (3.4)

and

H∂(s) =
∑s

c=1(| ↓c1〉〈↓c1 |+ | ↑c2n〉〈↑c2n |). (3.5)

The projectors in HF are defined using:

|φc1,c2,c3j,A 〉 =
1√

1 + |tA,j|2
(
∣∣↑c1j ↑c2j+1↓c3j+2

〉
− tA,j

∣∣↑c2j ↓c3j+1↑c1j+2

〉
) (3.6)

|φc1,c2,c3j,B 〉 =
1√

1 + |tB,j|2
(
∣∣↑c1j ↓c2j+1↓c3j+2

〉
− tB,j

∣∣↓c3j ↑c1j+1↓c2j+2

〉
) (3.7)

with the condition that tBj = tAj−1.

The Fredkin gate projectors in HF allows a pair of ↑↓ neighboring spins (with

the same color enforced by the first term in HX) to move freely around its left or

right third neighbor and still appear in the ground state superposition, but now with

a different probability amplitude. The second term in HX ensures that otherwise

identical Dyck paths with different coloring have the same weight. And the boundary

term H∂ (together with the Fredkin projectors) penalizes paths that go below 0 at

any point along the chain. Notice that analogous to [146], the simplest choice is

a parameter t = tA = tB being the same in the two projectors of HF is the one

employed in [105, 122], but is only a subset of the parameter space that leaves the

Hamiltonian frustration free. More generally, we introduce parameters tA and tB,

for the two projectors in HF . Then any set of {tAj , tBj } that satisfies the condition

tAj = tBj+1 for all j’s would guarantee the Hamiltonian to be frustration free 1. The

1Note that there is no parallel condition tBj = tAj+1.
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j j + 1

t j−1
A( )

−1
= t j

B( )
−1

Figure 3.1: Different ways of “flattening” a hill must have the same amplitude.
Note that the colors have been interchanged during the procedure, this, however,
is not an obstruction as all colorings appear with the same amplitude.

point is illustrated in Fig. 3.1. In particular, we may specify a Hamiltonian with a

frustration-free ground state by picking any set of the tAj parameters.

We now want to characterize the ground state of the system. First, let us denote

h(l) to be the height of the Dyck path after step l, that is, for a spin configuration

|w〉 describing a Dyck path,

s∑
c=1

l∑
j=1

σzj,c|w〉 = h(l)|w〉, (3.8)

where σzj,c is the Pauli matrix giving ±1 if spin j is in state ↑cj or ↓cj, respectively.

The height function is illustrated for a generic Dyck path in Fig. 3.2. To find the

relative amplitude of this spin configuration as compared with the lowest possible

spin configuration, we use successively the Fredkin moves to | ↑↑↓〉 −→ tA| ↑↓↑〉 to

”flatten” the hill. The process is described in Fig. 3.3. In this way, the weight of each

Dyck paths is related to the weight of the lowest height, | ↑↓↑↓ ... ↑↓〉 path. Note that

we have suppressed the color index in this treatment since, as mentioned above, in

the ground state superposition all admissible colorings should appear with the same

amplitude.

The amplitude of a given Dyck path in the ground state of the model is thus given

by counting the number of ”diamonds” associated with each tAj , and can be written
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h(1) 

h(2) 

h(3) 

h(4) 

h(5) 

h(6) 

h(7) 

h(8) h(0) 

Figure 3.2: A spin configuration corresponding to a colored Dyck path and the cor-
responding height function h(l).

h(1) 

h(2) 

h(3) 

h(4) 

h(5) 

h(6) 

h(7) 

h(0) 
tA,1 

tA,1 

tA,4 tA,4 

tA,3 tA,1 

tA,4 

tA,3 tA,1 tA,5 

h(8) 

Figure 3.3: The “flattening” of a hill and it’s amplitude. Starting from the left, we
reduce the first by using the Fredkin move | ↑↑↓〉 −→ tA| ↑↓↑〉. This process is
repeated for each peak until the lowest height hill is achieved.
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in the form:

|GS〉 =
1

N
∑

w∈{s−colored
Dyck walks}

e
∑2n−2
l=2 [

h(l)
2

] log(tAl−1)|w〉, (3.9)

where [x] is the integer part of x and N is a normalization factor. In the case where

tAj ≡ t, the ground state can be simply related to the area under the path as:

|GS〉 =
1

N ′
∑

w∈{s−colored
Dyck walks}

t
1
2
A(w)|w〉. (3.10)

3.2 Entanglement entropy

In this section, we employ the simplest choice of parameters which is translational

invariant tA = tB = t everywhere. When t = 1, the entanglement entropy of the

ground state scales as log n for s = 1 and as
√
n for s > 1 [24, 104]. The reason our

deformation with the extra parameter can further increase the scaling of entropy is

because when a spin is moved around its neighboring ↑↓ pair, it is separated from

its own partner paired in the same color, which is the first unpaired down spin to its

right (or up spin to its left). This way, when a pair of spins required to be in the

same color are shifted to different subsystems of the chain, they become a source of

entanglement entropy between the two subsystems. Tuning the parameter t to favor

higher paths in the ground state superposition will now enhance the more substantial

contribution from those with more unpaired spins in one subsystem. To put this in a

mathematical way, we decompose the ground state into tensor products of states in

the left and right halves of the chain.

|GS〉 =
n∑

m=0

√
pn,m

∑
x∈{↑1,↑2,...,↑s}m

|Ĉ0,m,x〉1,...,n ⊗ |Ĉm,0,x̄〉n+1,...,2n, (3.11)
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where |Ĉp,q,x〉 is a weighted superposition of spin configurations with p excess

↓, q excess ↑ and a particular coloring x of the unmatched arrows, such that

〈GS|(|Ĉ0,m,x〉1,...,n ⊗ |Ĉm,0,x̄〉n+1,...,2n) 6= 0, and x̄ is the coloring in the second half of

the chain that matches x. The decomposition gives the Schmidt number

pn,m(s, t) =
M2

n,m(s, t)

Nn(s, t)
, (3.12)

where

Mn,m(s, t) ≡ s
n−m

2

∑
w∈{1st half of Dyck

walks stopping at (n,m)}

tA(w), (3.13)

Nn(s, t) ≡
n∑

m=0

smM2
n,m(s, t). (3.14)

And the entanglement entropy of the half chain in the ground state is given by

Sn(s, t) = −
n∑

m=0

smpn,m(s, t) log pn,m(s, t). (3.15)

To study the behavior of Mn,m as a function of m, we observe that they satisfy

the following recurrence relations,

Mk+1,k+1 = tk+ 1
2Mk,k,

Mk+1,m = stm+ 1
2Mk,m+1 + tm−

1
2Mk,m−1, for 0 < m < k,

Mk+1,0 = st
1
2Mk,1.

(3.16)

Notice that the Mn,m is only non-vanishing for m’s of same parity as n.

From these relations, we can see that for large enough t, Mn,m will be monotoni-

cally increasing as we increase m by increments of 2. Paths with height in the middle

scaling as O(n) will contribute more to the entanglement entropy from the sO(n) pos-

sible colorings of unmatched spins. In particular, the half chain entanglement entropy
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will also scale linearly with system size n. In the next subsection, we give a rigorous

proof that this is true in the thermodynamic, and that this critical phase of large

entanglement spans the entire half line t > 1.

3.2.1 t > 1, s > 1 phase: Volume scaling of entropy.

In this section we repeat the steps taken in the previous chapter to prove volume

scaling for weighted Motzkin walks, with a few modifications. For arbitrary t > 1,

the non-zero entries of Mn,m are not necessarily monotonic in terms of m, but we can

still show that for a given n, Mn,m reaches its maximum at some m = m∗, within a

finite distance away from m = n independent of the system size n itself. This is not

obvious in the step-by-step recurrence relations, but becomes clear as we take into

account the accumulated effect of the evolution of the coefficients Mn,m with respect

to n. To see this, we summarize (3.16) in the following operator formalism.

As in the previous chapter, we represent the distributions of Mk,m as components

of the state at ‘time’ k during the ‘evolution’ in a basis spanned by |m〉, m = 0, 1, 2, . . ..

|Mk〉 =
∞∑
m=0

Mk,m|m〉, Mk,m = 0 if m > k. (3.17)

We we define ‘shift’ and ‘height’ operators to describe the ‘evolution’ of the the states

|Mk〉 as

S|m〉 = |m− 1〉,S|0〉 = 0; (3.18)

H|m〉 = m|m〉. (3.19)
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One can check that the recurrence relations (3.16) translate to

〈m|Mk+1〉 = Mk+1,m = stm+ 1
2 〈m+ 1|Mk〉+ tm−

1
2 〈m− 1|Mk〉

=〈m|stH+ 1
2S + tH−

1
2S†|Mk〉,

which gives us:

|Mk+1〉 = tH(s
√
tS +

1√
t
S†)|Mk〉. (3.20)

Using the commutation relation

tkH(s
√
tS +

1√
t
S†) = (st−(k− 1

2
)S + tk−

1
2S†)tkH, (3.21)

we keep moving the tkH operators all the way to the right until it disappears when

acting on |0〉 we obtain:

|Mn〉 = [tH(s
√
tS +

1√
t
S†)]n|M0〉 = ~K

n∏
k=1

(st−(k− 1
2

)S + tk−
1
2S†)|0〉. (3.22)

Here ~K denotes ordering the multiplications in the product such that factors with

greater k value are on the right. For t > 1 the factors in the product above are

dominated by the S† term for large k. In other words, at some point during the

evolution, the distribution of Mm starts shifting at velocity 1 to the right along the m

axis without much spreading. For a larger t, this happens shortly after the evolution

starts, while for smaller values of t, it takes longer to reach this stable propagation.

In any case, as we show below, the maximum of Mn,m is a within finite distance away

from m = n.

Lemma III.1. Let m∗ be such that supmMn,m = Mn,m∗, then ∃N0 < n, such that

when t > 1, m∗ ∈ [n− 2N0, n].
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Proof. Let

|M′
n〉 = ~K

n∏
k=N0+1

(st−(k− 1
2

)S + tk−
1
2S†)|0〉. (3.23)

Note that

t−(k− 1
2

)‖st−(k− 1
2

)S‖1 ≤ st−2(k− 1
2

) ≡ ck, (3.24)

so that:

‖st−(k− 1
2

)S + tk−
1
2S†‖1 < tk−

1
2 (1 + ck)

we thus have

‖t−
∑n
k=N0+1(k− 1

2
)|M′

n〉 − |n−N0〉‖1 ≤
∏n

k=N0+1(ck + 1)− 1 < e
∑∞
k=N0+1 ck − 1

= e
st

t2−1
t−2N0 − 1 ≡ f(s, t)t

−2N0 − 1.

The first inequality on the left follows from noting that |n − N0〉 appears in

t−
∑n
k=N0+1(k− 1

2
)|M′

n〉 with coefficient 1, and is exactly canceled. We have also used

that x+ 1 ≤ ex. Next,

‖t−
∑n
k=1(k− 1

2
)|Mn〉 − ~K

N0∏
k=1

(st−2(k− 1
2

)S + S†)|n−N0〉‖1

≤‖~K
N0∏
k=1

(st−2(k− 1
2

)S + S†)‖1‖t−
∑n
k=N0+1(k− 1

2
)|M′

n〉 − |n−N0〉‖1

<(f(s, t)t
−N0 − 1)

N0∏
k=1

(1 + ck) < (f(s, t)t
−N0 − 1)e

∑N0
k=1ck < (f(s, t)t

−N0 − 1)f(s, t).

Let

M ′
n,m = 〈m|~K

N0∏
k=1

(st−2(k− 1
2

)S + S†)|n−N0〉, (3.25)
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then clearly M ′
n,m = 0 for m < n− 2N0. If we choose

N0 =


0 f(s, t) < 1+

√
5

2
,

− log
log(f−1(s,t)+1)

log f(s,t)

log t
, otherwise,

(3.26)

then

‖t−n
2

2 |Mn〉 −
n∑

m=n−2N0

M ′
n,m|m〉‖1 < 1 = M ′

n,n ≤ sup
m
M ′

n,m. (3.27)

Therefore ∃m∗ ∈ [n− 2N0, n], such that Mn,m∗ ≥Mn,m for all m.

This allows us to prove the linear scaling of the entanglement entropy.

Theorem III.1. In the state (3.10), when t > 1, the entanglement entropy of half

of the chain is bounded from below by Sn > n log s + C(s, t), where C(s, t) is an n

independent constant.

Proof. We separate a linear term from Sn as follows (below we supress the n index

in Mn,m):

Sn =
∑n

m=0 s
mpm log sm −∑n

m=0 s
mpm log(smpm) >

∑n
m=0 s

mpmm log s

=
∑n

l=0 s
n−lpn−l(n− l) log s = n log s− log s

∑n
l=0

sn−lM2
n−l∑n

m′=0 s
m′M2

m′
l (3.28)

Taking m∗ such that supmMn,m = Mn,m∗ and using lemma III.1, we see that

n∑
l=0

sn−lM2
m∗∑n

m′=0 s
m′M2

m′
l <

n∑
l=0

sn−lM2
m∗

sm∗M2
m∗
l = sn−m

∗
n∑
l=0

s−ll

< s2N0

n∑
l=0

s−ll < s2N0

∞∑
l=0

s−ll =
s2N0+1

(s− 1)2
.

Therefore, the remainder term on the right hand side of (3.28) is bounded.
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One can see from the proof that the factor of sm is already enough to make the

scaling of entropy linear, and all that is required for pm is that it doesn’t destroy this

exponential dependence on m.

3.2.2 t < 1 and any s: Bounded entanglement entropy.

Contrary to the case studied above, when t < 1, we expect Dyck paths with smaller

areas below to be exponentially preferred in the ground state superposition. But this

time, for the entropy to reflect the predominance of lower path, where less mutual

information between the two subsystems can be stored, the behavior of pm needs to

not only be decreasing exponentially with m, but also fast enough to overcome the

exponential increasing sm factor. Considering that, we define

M̃n,m = s
m
2 Mn,m , p̃n,m =

M̃2
n,m∑n

m=0 M̃
2
n,m

. (3.29)

Substitution into (3.16) gives the following relations,

M̃k+1,k+1 =
√
stk+ 1

2M̃k,k,

M̃k+1,m =
√
s(tm+ 1

2M̃k,m+1 + tm−
1
2M̃k,m−1), 0 < m < k,

M̃k+1,0 =
√
st

1
2M̃k,1

(3.30)

To prove the entropy is bounded, we need the following lemmas.

Lemma III.2.

M̃2
n+2,m > M̃2

n,m. (3.31)
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Proof. From (3.22), we have

|Mn+2〉 = ~K
n∏
k=1

(st−(k− 1
2

)S + tk−
1
2S†)(st−(n+ 1

2
)S + tn+ 1

2S†)(st−(n+ 3
2

)S + tn+ 3
2S†)|0〉,

= ~K
n∏
k=1

(st−(k− 1
2

)S + tk−
1
2S†)[s2t−2(n+1)S2 + s(t+

1

t
) + t2(n+1)S†2]|0〉

= s(t+
1

t
)|Mn〉+ ~K

n∏
k=1

(st−(k− 1
2

)S + tk−
1
2S†)[s2t−2(n+1)S2 + t2(n+1)S†2]|0〉.

The last term on the RHS of the equation contains non-zero contributions for all

states |m〉, with m = 0, 1, . . . , n+ 2, and we have:

Mn+2,m > Mn,m,

M̃n+2,m > M̃n,m ∀m ≥ 0, n ≥ 1.

Next we establish the following bound on p̃n,m:

Lemma III.3.

p̃n,m < 36
s2

t2
t4m. (3.32)

Proof. By definition of p̃n,m, and using the recursion relation (3.30) twice conse-

qutively,

p̃n,m =
s2t4m[t2M̃n−2,m+2 + (t+ 1

t
)M̃n−2,m + t−2M̃n−2,m−2]2∑n

m=0 M̃
2
n,m

≤ s2t4m[3 max{t2M̃n−2,m+2, (t+ 1
t
)M̃n−2,m, t

−2M̃n−2,m−2}]2∑n
m=0 M̃

2
n,m

≤ 36
s2

t2
t4m

max{M̃2
n,m+2, M̃

2
n,m, M̃

2
n,m−2}∑n

m=0 M̃
2
n,m

< 36
s2

t2
t4m.

Lemma III.2 was used in the last line.
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We now have the ingredients to prove the boundedness of entropy.

Theorem III.2. When 0 < t < 1, s ≥ 1, there exists a constant C0(s, t) independent

of the system size n, that for any n, Sn < C0(s, t).

Proof. Using Lemma III.3 we see that when

m > m0 ≡
[ log( 1

36e
t2

s2
)

4 log t

]
+ 1, (3.33)

we have

p̃n,m < 36
s2

t2
t4m <

1

e
. (3.34)

It is easy to check that the function −x log(x) is monotonically increasing when

x ∈ (0, 1
e
), in other words, for m > m0,

p̃n,m < 36
s2

t2
t4m <

1

e
=⇒ −p̃n,m log p̃n,m < −36

s2

t2
t4m
(

log(
36s2

t2
) + 4m log t

)
.(3.35)

Therefore

Sn =−
n∑

m=0

p̃n,m log p̃n,m + log s
n∑

m=0

p̃n,mm

<−
m0∑
m=0

p̃n,m log p̃n,m −
∞∑

m=m0+1

36s2

t2
t4m
(

log(
36s2

t2
) + 4m log t

)
+ log s

∞∑
m=0

36s2

t2
t4mm

<
m0 + 1

e
− 36s2t4m0+2

1− t4 log(
36s2

t2
)− 144s2t4m0+2(m0(1− t4) + 1)

(t4 − 1)2
log t

+
36s2t2

(t4 − 1)2
log s

≡C0(s, t),

where we used supx∈(0,1)−xlog(x) = e−1 for entropy terms with m ≤ m0 in the last

inequality.
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Notice our proof here does not rely on the fact that s > 1, and it applies to the

s = 1 case as well.

3.3 Scaling of the Spectral Gap

3.3.1 Super-exponential Upper bound in the t > 1, s = 1 Phase

Since entanglement entropy is a measure of correlation in the system, a high

entanglement entropy indicates that the system is highly correlated and also a gapless

spectrum (in the thermodynamic limit) [48, 8]. As our model at t > 1, s > 1 exhibits

linear scaling of entanglement entropy, we expect the spectral gap to be also decreasing

faster with system size than the t = 1. Here, we give variational proof that the spectral

gap for t > 1, s > 1 decreases exponentially with a square of the system size.

Just as the linear scaling of entanglement entropy results from the prominence of

the higher weighted paths in the ground state superposition, gaplessness can be shown

by truncating lower weighted paths at the price of softly violating the superposition

required to make the projectors in the Hamiltonian vanishing. To do so it is convenient

to define a ‘prime walk’ as follows:

Definition III.1. A prime Dyck walk is a Dyck walk that is always above the x-axis,

except at the endpoints.

By this definition, a Dyck walk is either prime or a concatenation of prime walks

(Fig. 3.4 exhibits a Dyck walk in solid line made of two prime walks and one in

dashed line made of three prime walks).

To construct a low energy variational excited state, we start with an auxiliary

state that projects out all the walks in the ground state superposition whose longest

prime walk has a length smaller than n+ 1. That is, define:

Pn,> = {s-colored walks containing a prime walk of length l > n } , (3.36)
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and Pn,< = the complement of Pn,> . Our auxiliary state is defined as:

1

N ∗
∑

w∈Pn,>
t

1
2
A(w)|w〉. (3.37)

For t > 1 higher walks are favored rendering the auxiliary state largely overlapping

with the ground state and therefore unqualified as a low energy excitation state.

However, the color degree of freedom allows us to make this state orthogonal to the

ground state by permuting the color of the last down move (or equivalently the first

up move) in the longest prime walk. This way, all walks in the new superposition have

one pair of spins with unmatched colors, and consequently orthogonal to all paths in

the ground state. The choice of the ‘n+1’ threshold on the cut-off of longest prime

walk length eliminates the potential ambiguity in the location of the color permutation

so that each path in the superposition has exactly one pair of unmatched colores.

Theorem III.3. The spectral gap of the t > 1, s > 1 phase has an upper bound of

2(4s)n

1+t2
t−n

2/2.

Proof. We define a new state |ξ〉 as:

|ξ〉 =
1

N ∗
∑

w∈Pn,>
t

1
2
A(w) P |w〉, (3.38)

where N ∗ is the new normalization factor and the operator P sends the color c of the

last down move of the longest prime walk to c + 1 mod s and leaves everything else

unchanged. Because of the color imbalance we immediately have:

〈ξ|GS〉 = 0, (3.39)

and |ξ〉 can be readily used as a variational wave function to bound the gap from

above .
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Figure 3.4: An representative walk in the superposition of |ξ〉 that crosses the
threshold of the cut-off when acted on by the operator (t| ↓rn−1↑bn↓bn+1〉 −
| ↑bn−1↓bn↓rn+1〉)(〈↓rn−1↑bn↓bn+1 |t− 〈↑bn−1↓bn↓rn+1 |).

Let us compute the variational energy associated with the |ξ〉 state. First we note

that:

H∂|ξ〉 = 0, HX |ξ〉 = 0, (3.40)

as each non-matching color pair is separated by at least n sites (while HX is only

sensitive to nearest neighbor violations). The same goes for most of the projectors in

HF just the way it works in the ground state.

However, in HF , we have also non-zero contributions coming from walks w that

are one ”Fredkin” move away from leaving the set Pn, >. In other words, this happens

when the first (second) projector in HF in Eq. (3.1) acts on the left (resp. right)

endpoint of the longest prime walk and changes its length from n + 1 to n − 1 (the

kind of which is absent in the superposition). For instance, applying the projectors

on φn−1,B (Eq. (3.7)) to the prime walk w corresponding to the one in Fig. 3.4 gives:
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1

1 + t2
〈w|(t| ↓rn−1↑bn↓bn+1〉−| ↑bn−1↓bn↓rn+1〉)(〈↓rn−1↑bn↓bn+1 |t−〈↑bn−1↓bn↓rn+1 |)|w〉 =

1

1 + t2
,

(3.41)

and

1

1 + t2
〈w′|(t| ↓rn−1↑bn↓bn+1〉 − | ↑bn−1↓bn↓rn+1〉)(〈↓rn−1↑bn↓bn+1 |t− 〈↑bn−1↓bn↓rn+1 |)|w〉 = 0,

(3.42)

with w′ is any other walk in the |ξ〉 (i.e. any other walk in Pn,>).

We can now estimate the variational energy due to such paths. The number of

these paths that will go from Pn,> to Pn,< when applying a Fredkin projector is very

roughly bounded from above by 22nsn (which is the total number of walks). On the

other hand, the probability amplitudes of a path that has a prime walk length of

exactly n+ 1 or n+ 2 in Pn,<, are penalized by their area differences from the highest

weighted one, i.e. the shaded area in Fig. 3.4, by a factor smaller than t−n
2/4. We

therefore have the following upper bound:

〈ξ|H|ξ〉 < 2(4s)n

1 + t2
t−n

2/2. (3.43)

Thus we have proved an upper bound of exponential of square of system size on the

spectral gap when t > 1, s > 1.

Remark: The overall factor 2 above comes from possibility of modifying the prime

path on the left or on the right.

3.3.2 Exponential Upper Bound in the t > 1, s = 1 Phase

As has been discussed in the previous subsection, a bounded from above entangle-

ment entropy is expected to be a strong indicator of the existence of a non-vanishing

spectral gap. Yet that intuition fails in the t > 1, s = 1 phase of the Motzkin spin
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Figure 3.5: Two representative walks in Q−2. The light blue one can be shifted
in the direction of the orange arrow to become the dark blue one with a relative
weight increase of tn−1 corresponding to the area of the shaded regions.

chain. The numerical results in [12] showed the t > 1, s = 1 Motzkin chain is gapless

despite the boundedness of its entanglement entropy. Here we prove the Fredkin chain

counterpart of this phenomenon, which can be readily adapted to the Motzkin chain.

We follow the same strategy we used to construct low energy excitation state

from the t > 1, s > 1 phase, only now we don’t have the luxury of taking advantage

of color degrees of freedom to ensure the orthogonality to the ground state. Fortu-

nately, there’s still a degree of freedom we haven’t fully exploited yet, namely the

z-component of the total spin, or the net up spin of the chain, which can be non-

vanishing when the boundary terms in the Hamiltonian is violated. To construct a

low energy excitation due to this, we define

Q−2 = {walks that starts from (0,0), ends at (2n, -2) and never pass below x=-2.}

Notice a Fredkin move acting on a walk in Q−2 always gives another walk in Q−2.

Theorem III.4. The spectral gap of the t > 1, s = 1 phase has an upper bound of

t−n+1.
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Proof. We define an excited state

|η〉 =
1

N?

∑
w∈Q−2

t
1
2
A(w)|w〉, (3.44)

where N? = (
∑

w∈Q−2
tA(w))

1
2 is the normalization factor. |η〉 is clearly orthogonal

to the ground state as they have different total spins. Since |η〉 only violates the

boundary term in the Hamiltonian, after being acted on by H, only paths starting

with a down move will survive. To get an estimate on the amplitude of the paths

left, we point out that by rearranging the first down step to the last, (or equivalently

shifting along the arrow in Fig. 3.5,) we get another walk in Q−2of area 2n−2 bigger.

Therefore,

〈η|H|η〉 =

∑
w∈Q−2

tA(w)

N?
< t−n+1, (3.45)

which gives an upper bound on the spectral gap.
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Chapter IV

Coupled Wire Model of Majorana Surfaces of

Topological Superconductors

In this chapter, we introduce the single-body coupled Majorana wire model at

the beginning of section 4.1. A review on the so(N)1 WZW CFT will be given

in section 4.1.1 and 4.1.2 as well as in appendix A, B and C. In section 4.2, we

will construct time reversal symmetry 4-fermion interactions that will open up an

excitation energy gap. The discussion will be decomposed into the even and odd N

cases in section 4.2.1 and 4.2.2 respectively. In the even case, the gapping Hamiltonian

will match the O(r) Gross-Neveu model[43, 145, 138, 113] and we will show an energy

gap in section 4.2.1.1 by (partially) bosonizing the problem. The gapping potential

for the odd case will rely on a conformal embedding and relate to the Zamolodchikov

and Fateev Z6 parafermion CFT[29, 144]. This will be discussed and reviewed in

section 4.2.2.1, 4.2.2.2 as well as in appendix D. The symmetric gapping interactions

will correspond to non-trivial surface topological orders. This will be discussed in

section 4.3 where we will present the class of 32-fold periodic topological GN states.

In section 4.4, we will describe alternative gapping interactions that would lead to

even more possibilities.
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4.1 Coupled wire construction of surface Majorana cones

so(N)R1

so(N)L1

so(N)R1

so(N)L1

J−
y · J+

y+1

GR,+
N

GR,−
N

GL,+
N

GL,−
N

GR,+
N

GR,−
N

GL,+
N

GL,−
N

c− = N/2 c− = N/4

iψyψy+1

y + 1

y − 1

y + 2

y

Figure 4.1: (Left) Coupled wire model (4.3) of N gapless surface Majorana cones.
(Right) Fractionalization (4.33) and coupled wires construction (4.37) of gapped
anomalous and topological surface state.

To construct explicit many-body interactions that can remove the gapless surface

degrees of freedom, we turn to an anisotropic description of surface Majorana fermions

using an array of coupled fermion wires (see figure 4.1). The horizontal wires are

labeled according to their vertical position y = . . . ,−2,−1, 0, 1, 2, . . . and each carries

N chiral (real) Majorana fermions ψy = (ψ1
y, . . . , ψ

N
y ) which propagate only to the

right (or left) if y is even (resp. odd). The number of flavors N here is going to be

identified with the net chirality of the surface Majorana cone. Time reversal symmetry

is non-local in this model as it relates fermions on adjacent wires that propagate in

opposite directions,

T
(

N∑
a=1

αaψ
a
y

)
T −1 = (−1)y

N∑
a=1

α∗aψ
a
y+1. (4.1)

Similar to the symmetry of an antiferrormagnet, here time reversal on the single-

fermion Hilbert space squares to a primitive translation up to a sign, T 2 = −t̂y for

t̂y the vertical lattice translation y → y+ 2 that relates nearest co-propagating wires.

In the many-body Hilbert space,

T 2 = (−1)F t̂y (4.2)
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where (−1)F is the fermion parity operator whose sign depends on the eveness or

oddness of fermion number.

We mimic N copies of surface Majorana cones by the coupled wire Hamiltonian

H0 =
∞∑

y=−∞
ivx(−1)yψT

y ∂xψy + ivyψ
T
yψy+1 (4.3)

where the N -component Majorana fermion ψ disperses linearly (for small ky) with

velocities vx, vy along the horizontal and vertical axes (see figure 4.2). By applying

(4.1), we see T H0T −1 = H0 and the coupled wire model is therefore time reversal

symmetric. Moreover, H0 has continuous translation symmetry along x and discrete

translation along y → y + 2. The alternating sign in the first term of (4.3) specifies

the propagating directions of the wires. Projecting to the kx = 0 zero modes along the

wires, the second term in (4.3) effectively becomes a 1D Kitaev Majorana chain[61]

which has a linear spectrum for small ky. More explicitly, by using the Nambu basis

ξk = (cak, c
a
−k
†)T for cak =

∑
xy e

i(kxx+kyy)cay(x) the Fourier transform of the Dirac

fermion cay(x) = (ψa2y−1(x) + iψa2y(x))/2, the coupled wire Hamiltonian (4.3) can be

expressed as H0 =
∑

k ξ
†
kH

0
BdG(k)ξk, where the BdG Hamiltonian is given by

H0
BdG(k) = 2vxkxτx + vy [− sin kyτy + (1− cos ky)τz] (4.4)

for −∞ < kx <∞ and −π ≤ ky ≤ π. It has a linear spectrum near zero energy and

momentum as shown in figure 4.2.

kx

E

ky

Figure 4.2: The energy spectrum of the coupled Majorana wire model (4.3)
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We notice in passing that if the time reversal operation in (4.1) was defined with-

out the alternating sign (−1)y, it would sqaure to a different sign T 2 = +t̂y in

the single-fermion Hilbert space and the vertical term in (4.3) would need to be

modified into
∑

y ivy(−1)yψT
yψy+1 in order to preserve the symmetry. This would

correspond to an alternating Majorana chain in the y-direction, where the gapless

Majorana cone would be positioned at ky = π instead of 0 and would still be pro-

tected by Kramers theorem as T 2
ky=π = eiky = −1. This scenario is actually equivalent

and related to the original by a gauge transformation (ψ4y, ψ4y+1, ψ4y+2, ψ4y+1+3) →

(ψ4y, ψ4y+1,−ψ4y+2,−ψ4y+1+3), and therefore the sign of T 2 is unimportant in this

problem. Nevertheless we will stick with previous convention defined in (4.1) in the

following discussions.

The chirality N of the coupled Majorana wire model (4.3) is set by the chiral

central charge c− = N/2 along each wire. This quantity is defined by the difference of

central charges[26] between right and left moving modes, and determines the energy

(thermal) current IT ≈ c−
π2k2

B

6h
T 2 flowing along the wire in low temperature[54, 18,

60, 69]. In general, a Majorana wire carrying NR right moving fermions and NL

left moving ones has the kinetic Hamiltonian H = ivxψ
T/∂xψ, where /∂x = [1NR ⊕

(−1NL)]∂x acts on the (NR + NL)-component real fermion ψ. In (4.3) we consider

the simplest case when (NR, NL) = (N, 0) for y even or (0, N) for y odd.

A chiral 1D system violates fermion doubling[87] and can only be realized as an

anomalous edge of a gapped 2D bulk[126, 97, 60]. The coupled Majorana wire model,

(4.3) or figure 4.1, must therefore also be holographic and living on the surface of a 3D

bulk superconductor. This can be modeled by a stack of alternating layers of spinless

px± ipy superconductors (see figure 4.3(a)). The interwire backscattering in (4.3) can

be generated by bulk interlayer electron tunneling and pairing that are not competing

with the intralayer p+ip pairing. Time reversal (4.1) extends to the three dimensional

bulk by relating fermions on adjacent layers. The coupled Majorana wire model can
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also live on the surface of a 3D class DIII topological superconductor where each

chiral Majorana mode is bound between adjacent domains with opposite time reveral

breaking phases φ = ±π/2 (see figure 4.3(b)).[116, 95] The discrete translation order

along the y-axis perpendicular to the wire direction can be melted by proliferating

dislocations (see figure 4.3(c)). With continuous translation symmetry restored, time

reversal symmetry becomes local with T 2 = −1 and the coupled Majorana wire model

(4.3) recovers the surface Majorana cone (??) in the continuum limit for small ky.

(a) (b)

px + ipy

px − ipy

px + ipy

px − ipy

TSC (DIII)

φ = π/2
s− SC

−π/2
−π/2π/2

(c)

Figure 4.3: Coupled Majorana wire model on the surface of (a) a stack of alternat-
ing px± ipy superconductors, and (b) a class DIII topological superconductor (TSC)
with alternating TR breaking surface domains. (c) A dislocation.

The non-local time reversal symmetry (4.1) actually provides a weaker topological

protection to gapless surface Majorana’s than a conventional local one. For instance

in section 4.2, we will show that the N = 2 coupled Majorana wire model can be

gapped by single-body backscattering terms without breaking time reversal, leaving

behind a surface with trivial topological order. This reduced robustness stems from

the half-translation component in the antiferrormagnetic time reversal. In the BdG

description (4.4), the time reversal operator takes the momentum dependent form

Tk =

(
1 + eiky

2
τy + i

1− eiky
2

τz

)
K (4.5)

for K the complex conjugation operator. It commutes with the BdG Hamiltonian

TkH
0
BdG(k) = H0

BdG(−k)Tk as well as the particle-hole (PH) CTk = T−kC, for

C = τxK the PH operator. In the continuum limit or for small ky, T ' τyK

agrees with the conventional local time reversal operator and protects a zero en-
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ergy Majorana Kramers’ doublet. The BdG Hamiltonian has a chiral symmetry

ΠkH
0
BdG(k) = −H0

BdG(k)Πk, for Πk = iCTk the chiral operator. It can be used to

assign the chirality of a Majorana cone by an integral winding number

n =
1

2πi

∮
Cε(k0)

Tr
[
h(k)−1∇kh(k)

]
· dl (4.6)

locally around a loop Cε(k0) ε away from the zero mode at k0. Here h(k) is the elliptic

operator

h(k) = P+
k H

0
BdG(k)P−k (4.7)

for P±k = (P±k )2 the two local projectors diagonalizing the chiral operator Πk =

e−iky/2(P+
k − P−k ). However, as time reversal squares to TkT−k = −eiky , which is

the eigenvalue of the primitive translation −t̂y at momentum k, so does the non-

symmorphic chiral operator Π2
k = e−iky . The two chiral branches Πk = ±e−iky/2

switch across the Brillouin zone when ky → ky + 2π. As a result, a global winding

number can only be defined modulo 2.

4.1.1 The so(N)1 current algebra

We notice the coupled Majorana wire model (4.3) has a SO(N) symmetry that

rotates the N -component Majorana fermion ψay → Oa
bψ

b
y. Consequently, there is

a chiral so(N) Wess-Zumino-Witten (WZW) theory[136, 139] or affine Kac-Moody

algebra at level 1 along each wire. Here we review some relevant features of the so(N)1

algebra, which are well-known and can be found in standard texts on conformal field

theory (CFT) such as Ref.[26].
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The so(N)1 currents have the free field representation

Jβ(z) =
i

2
ψ(z)T tβψ(z) =

i

2

∑
ab

ψa(z)tβabψ
b(z) (4.8)

where the tβ’s are antisymmetric N ×N matrices that generate the so(N) Lie alge-

bra (see appendix A), z = eτ+ix is the complex space-time parameter, and (4.8) is

normal ordered. The coupled Majorana wire model carries currents that propagate

in alternating directions (see figure 4.1) so that Jβy (z) are holomorphic for even y and

Jβy (z) are anti-holomorphic for odd y. Focusing on an even wire, from the operator

product expansion (OPE)

ψa(z)ψb(w) =
δab

z − w + . . . (4.9)

the so(N)1 currents obey the product expansion

Jβ(z)Jγ(w) =
δβγ

(z − w)2
+
∑
δ

ifβγδ
z − wJ

δ(w) + . . . (4.10)

where fβγδ are the structure constants of the so(N) Lie algebra with
[
tβ, tγ

]
=∑

δ fβγδt
δ (see appendix A). The Sugawara energy momentum tensor (along a single

wire) is equivalent to the free fermion one[40]

T (z) =
1

2(N − 1)
J(z) · J(z) = −1

2
ψ(z)T∂zψ(z) (4.11)

for J = (Jβ) the current vector and ψ = (ψ1, . . . , ψN) the N -component real fermion.

The energy momentum tensor defines a chiral Virasoro algebra and characterizes a

chiral CFT. It satisfies the OPE

T (z)T (w) =
c−/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w + . . . (4.12)
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where the chiral central charge c− = N/2, loosely speaking, counts the conformal

degrees of freedom on the Majorana wires and is proportional to the energy current[54,

18, 60, 69] and entanglement entropy[3, 50, 16] carried by the wire.

Excitations of the N -component Majorana wire transform acording to the SO(N)

symmetry. They decompose into primary fields and their corresponding descendants.

A primary field Vλ = (V 1, . . . , V d) is a simple excitation sector that irreducibly

represents the so(N)1 Kac-Moody algebra.

Jβ(z)V r(w) = −
d∑
s=1

(tβλ)rs
z − wV

s(w) + . . . (4.13)

where λ labels some d-dimensional irreducible representation of so(N) and tβλ is the

d×d matrix representing the generator tβ of so(N). For example it is straightforward

to check by using the definition (4.8) and the OPE (4.9) that the Majorana fermion

ψ = (ψ1, . . . , ψN) is primary with respect to the fundamental representation, i.e.

Jβ(z)ψa(w) = −
N∑
b=1

tβab
z − wψ

b(w) + . . . . (4.14)

From (4.11), space-time translation of a primary field Vλ is governed by

T (z)Vλ(w) =
hλ

(z − w)2
Vλ(w) +

∂wVλ(w)

z − w + . . . (4.15)

where the conformal (scaling) dimension is given by

hλ =
Qλ

2(N − 1)
(4.16)

for −∑β t
β
λt
β
λ = Qλ1d×d the quadratic Casimir operator. For instance Qψ, the

quadratic Casmir eigenvalue for the fundamental representation, is N − 1 (see ap-
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pendix A) and therefore the fermion ψ has conformal dimension hψ = 1/2. This

agrees with the OPE (4.9) by dimension analysis.

There are extra primary fields other than the trivial vacuum 1 and the fermion ψ.

The spinor representations (see appendix A) σ, for N odd, or s+ and s−, for N even,

also correspond to primary fields of so(N)1. Their conformal dimensions can be read

off from their quadratic Casmir values (A.7), and are

hσ =
N

16
, hs± =

N

16
. (4.17)

Unlike the infinite number of irreducible representations of a Lie algebra, the extended

affine so(N)1 algebra only has a truncated set of primary fields {1, σ, ψ}, for N odd,

or {1, s+, s−, ψ}, for N even.

These so(N)1 primary fields take more explicit operator forms after bosonization

and can be found in appendix B and C.

4.1.2 Bosonizing even Majorana cones

In the case when N = 2r is even, the N Majorana (real) fermions on each wire

can be paired into r Dirac (complex) fermions and bosonized[140, 36]

cjy =
ψ2j−1
y + iψ2j

y√
2

∼ 1√
l0

exp
(
iφ̃jy

)
(4.18)

where φ̃1
y, . . . , φ̃

r
y are real bosons on the yth wire, and the vertex operator in (4.18) is

normal ordered. The bosons obey the equal-time commutation relation

[
φ̃jy(x), φ̃j

′

y′(x
′)
]

=iπ(−1)max{y,y′}
[
δyy′δ

jj′sgn(x′ − x)

+ δyy′sgn(j − j′) + sgn(y − y′)
]

(4.19)
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where sgn(s) = s/|s| = ±1 for s 6= 0 and sgn(0) = 0. The first line of (4.19) is

equivalent to the commutation relation between conjugate fields

[
φ̃jy(x), ∂x′φ̃

j′

y′(x
′)
]

= 2πi(−1)yδyy′δ
jj′δ(x− x′) (4.20)

and is set by the “pq̇” term of the Lagrangian density

L0 =
1

2π

∞∑
y=−∞

r∑
j=1

(−1)y∂xφ̃
j
y∂tφ̃

j
y. (4.21)

The second line of (4.19) guarantees the correct anticommutation relations between

Dirac fermions along distinct channels. The alternating signs (−1)y in (4.20) and

(4.21) specify the propagating directions along each wire, R (or L) for y even

(resp. odd). Eq.(4.19) is symmetric under time reversal (4.1), which sends

T cjyT −1 = (−1)ycjy
†
, T φ̃iyT −1 = φ̃iy+1 + πy. (4.22)

We notice time reversal, in this convention, flips the fermion parity as it interchanges

between the creation and annihilation operators.

The entire coupled Majorana wire Hamiltonian (4.3), when N = 2r is even, can

be turned into a model of coupled boson wires. The total Lagrangian density is a

combination

L = L0 −H = L0 −
(
H‖ +H⊥

)
(4.23)

where the Hamiltonian density H = H‖ + H⊥ consists of the sliding Luttinger

liquid[88, 28, 124, 114, 82] (SLL) component along each wire

H‖ = Vx

∞∑
y=−∞

r∑
j=1

∂xφ̃
j
y∂xφ̃

j
y (4.24)
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and the backscattering component between wires

H⊥ = −Vy
∞∑

y=−∞

r∑
j=1

(−1)y cos
(

2ϑjy+1/2

)
(4.25)

2ϑjy+1/2 = φ̃jy − φ̃jy+1. (4.26)

The SLL Hamiltonian (4.24) contains the (normal ordered) kinetic term iψT
y ∂xψy =

i(c†y∂xcy+cy∂xc
†
y) in (4.3) as well as possible forward scattering terms like the density-

density coupling (c†ycy)(c
†
ycy). The interwire backscattering Hamiltonian (4.25) is iden-

tical to the second term iψT
yψy+1 = i(c†ycy+1 + cyc

†
y+1) in (4.3). This can be derived

directly by applying the bosonization (4.18) and the Baker–Campbell–Hausdorff for-

mula eiφ̃ye−iφ̃y+1 = ei(φ̃y−φ̃y+1)+[φ̃y ,φ̃y+1]/2. The alternating sign (−1)y in (4.25) is crucial

to preserve time reversal symmetry (4.22), which relates T 2ϑjy+1/2T −1 = 2ϑjy+3/2−π.

The r sine-Gordon terms in (4.25) between the same pair of adjacent wires mu-

tually commute

[
2ϑjy+1/2(x), 2ϑj

′

y+1/2(x′)
]

= 0 (4.27)

and share simultaneous eigenvalues. If there was a single pair of counter-propagating

wires, these potentials would have pinned 〈2ϑjy+1/2(x)〉 = (2n+ y)π between the two

wires. However, they compete with the sine-Gordon terms between the next pair of

wires due to the non-commuting relation

[
2ϑjy+1/2(x), 2ϑj

′

y+3/2(x′)
]

=2πi(−1)y
[
θ(j − j′) + δjj

′
θ(x′ − x)

]
(4.28)
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where the unit step function θ(s) = 0 when s ≤ 0, or 1 when s > 0. In other words,

the vertex operators ei2ϑ
j
y+1/2 produces fluctuations to adjacent pairs,

e−i2ϑ
j
y+1/2

(x)2ϑjy+3/2(x′)ei2ϑ
j
y+1/2

(x)

=2ϑjy+3/2(x′) + 2π(−1)yθ(x′ − x). (4.29)

The uniform backscattering strength Vy, as protected by time reversal (4.1), exactly

balances the competing potentials so that the Hamiltonian H = H‖ + H⊥ remains

gapless.

4.2 Gapping surface Majorana cones

The previous section describes the gapless surface Majorana fermions of a 3D

topological superconductor using a coupled wire model (4.3). It consists of an array

of chiral wires, each of which carries N flavors of Majorana fermions co-propagating

in alternating directions (see figure 4.1). Together with uniform backscattering in-

teractions between adjacent wires, the model captures N surface Majorana cones

with linear energy dispersion about zero energy and momentum (see figure 4.2). In

this section we construct explicit fermion interactions that introduce an excitation

energy gap to the surface Majorana cones while preserving time reversal symmetry.

Generically, this leaves behind a fermionic surface topological order, which will not

be discussed until the next section.

We begin with the simplest case when there are N = 2 chiral Majorana chan-

nels along each wire and correspond to two surface Majorana cones. As eluded in

section 4.1, due to the non-local nature of time reversal, the coupled wire model

can be gapped by single-body backscattering terms without violating the symmetry.

Although this cannot be applied to a conventional topological superconductor with

local time reversal, this model demonstrates the idea of fractionalization, which can
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be generalized to the many-body interacting case and subsequently lead to surface

topological order. The Hamiltonian H = H0 +Hbc consists of the original model (4.3)

with two fermion flavors ψy = (ψ1
y, ψ

2
y) and the inter-flavor backscattering

Hbc = iu
∞∑

y=−∞
ψ1
yψ

2
y+1 (4.30)

which is symmetric under the time reversal (4.1), T : ψay → (−1)yψay+1. The BdG

Hamiltonian HBdG(k) = H0
BdG(k) +Hbc

BdG(k) is the combination of (4.4) and

Hbc
BdG(k) =

u

2
[(1− cos ky)σxτz + (1 + cos ky)σyτy

− sin ky(σyτz + σxτy)] (4.31)

which is symmetric under Tk in (4.5). The energy spectrum depends on the relative

strength between the two interwire couplings ivy(ψ
1
yψ

1
y+1 +ψ1

yψ
1
y+1) and iuψ1

yψ
2
y+1 (see

figure 4.4). When u = 0, the two Majorana cone coincide at zero momentum. A finite

u separates the two until they have traveled across the Brillouin zone and annihilate

each other at ky = π when u > 2vy. Once an energy gap has opened up, the BdG

Hamitonian has a unit Chern invariant

Ch =
i

2π

∫ ∞
−∞

dkx

∫ π

−π
dkyTr (Fk) = 1 (4.32)

where Tr (Fk) = Tr
(
〈∂kyuak|∂kxubk〉 − 〈∂kxuak|∂kyubk〉

)
is the Berry curvature con-

structed from the two occupied eigenstates u1
k, u

2
k below zero energy of HBdG(k).

The coupled Majorana wire model thus behaves like a chiral p + ip topological

superconductor[127, 97]. However the single-body Hamiltonian does not possesses

a topological order in the sense that it does not support anyonic excitations. For

instance the ψ → −ψ Z2 symmetry is global and π-vortices are not quantum

excitations of the model but rather introduced as classical extrinsic defects.
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u < 2vy u = 2vy u > 2vy

E

ky = π
ky = −π

Figure 4.4: Energy spectrum of the N = 2 coupled Majorana wire model with inter-
flavor mixing.

This example relies on a simple decomposition of the degrees of freedom along

each wire, N = 2 = 1 + 1. The two Majorana fermions ψ1
y, ψ

2
y are backscattered

independently to adjacent wires in opposite directions. Unlike the intra-flavor cou-

plings ivy(ψ
1
yψ

1
y+1 + ψ1

yψ
1
y+1), inter-flavor terms iuψ1

yψ
2
y+1 freeze independent degrees

of freedom and they are not competing with each other. It is useful to notice that

the decomposition breaks the SO(2)1 symmetry described in section 4.1.1, and as a

result the so(2r)1 CFT along each wire splits into a pair of chiral Ising CFT’s.

We can now generalize this idea to all N , but with many-body interwire interac-

tions. From now on, unless specified otherwise, we turn off all single-body scattering

terms. For instance, the vertical velocity now vanishes, vy = 0, in the kinetic part H0

of the coupled wire model (4.3). First we seek a decomposition of the so(N)1 degrees

of freedom along each wire (see section 4.1.1) into a pair of identical but independent

sectors (also see figure 4.1)

so(N)1 ⊇ G+
N × G−N (4.33)

where G±N are the Kac-Moody subalgebras

G±N =

 so(N/2)1 for N even

so(3)3 × so
(
N−9

2

)
1

for N odd
(4.34)
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to be discussed below. This fractionalization has to be complete in the sense that the

Sugawara energy-momentum tensor exactly splits into

Tso(N)1 = TG+
N

+ TG−N . (4.35)

In particular the central charge divides

c− (so(N)1) = 2c− (GN) = c−
(
G+
N

)
+ c−

(
G−N
)

(4.36)

and there are no degrees of freedom left behind. Using the subalgebra current oper-

ators JG±N , which are quadratic in ψ’s, we construct the four-fermion backscattering

interaction

Hint = u
∞∑

y=−∞
JyG−N
· Jy+1

G+
N

(4.37)

= u
∞∑

y′=−∞
J2y′−1

GL,−N
· J2y′

GR,+N

+ J2y′

GR,−N

· J2y′+1

GL,+N

for u positive, and R,L labels the propagating directions of the currents. This is

pictorially presented in figure 4.1 and 4.5.

G+
N

G−
N

y − 1 y + 1y

Figure 4.5: Interwire gapping terms (4.37) (green rectangular boxes) between chiral
fractional GR,±N ,GL,±N sectors (resp. ⊗,�) in opposite direction.

In this section, we design the fractionalization (4.33) of so(N)1 for all N and

show that the backscattering interactions (4.37) open an excitation energy gap with-

out breaking time reversal. In CFT context, (4.33) is also known as a conformal
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embedding[26, 11, 108, 10]. When N = 2r is even, there is an obvious decomposition

so(2r)1 ⊇ so(r)+
1 × so(r)−1 (4.38)

where the “+” sector contains ψ1, . . . , ψr while the “−” one contains the rest

ψr+1, . . . , ψ2r. In section 4.2.1, we review how the Jso(r)R1 · Jso(r)L1 interactions

contribute an energy gap. This is a direct application of the well-studied O(N)

Gross-Neveu problem[43, 145, 138, 113] in 1D. In the discrete limit, this is related

to the Haldane O(3) antiferrormagnetic spin chain[44, 45], the Affleck - Kennedy -

Lieb - Tasaki (AKLT) spin chains[1, 2] and the SO(n) Heisenberg chain[120, 119, 4].

When N is odd, the splitting (4.33) is less trivial. We will make use of the level-rank

duality[26, 84, 76]

so(n2)1 ⊇ so(n)n × so(n)n (4.39)

which comes from the fact that the tensor product SO(n)⊗SO(n) is a Lie subgroup

in SO(n2). In particular, we will demonstrate the simplest case in section 4.2.2 when

n = 3. The division of so(9)1 can subsequently be generalized to so(N)1 for all odd

N effectively by writing N = 9 + 2r. This sets G±N = so(3)3× so(r)1 in (4.33) and the

corresponding interwire backscattering interactions (4.37).

4.2.1 Gapping even Majorana cones

We begin with the coupled Majorana wire model (4.3) (or figure 4.1) with N = 2r

chiral fermion channels per wire and corresponds to the same number of gapless

Majorana cones. Similar to the previously shown N = 2 case, the gapless modes can

be removed using simple single-body backscattering terms. We however are interested

in finding gapping interactions that would support surface topological order as well.

In section 4.1.1 and appendices B, C, we described the so(N)1 WZW theory, which
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along the yth wire is generated by chiral current operators (4.8)

J (a,b)
y = (−1)yiψayψ

b
y. (4.40)

We take the alternating sign convention (−1)y so that under time reversal,

T J (a,b)
y T −1 = J

(a,b)
y+1 . We consider two subsets of generators, so(r)+

1 containing

J (a,b) for 1 ≤ a < b ≤ r, and so(r)−1 containing J (a,b) for r + 1 ≤ a < b ≤ 2r. As they

act on independent fermion sectors, the two sets of operators commute or equiva-

lently their operator product expansions (OPE) are trivial up to non-singular terms.

Moreover the Sugawara energy-momentum tensor (4.11) for so(N)1 completely splits

into a sum between

Tso(r)+
1

= −1

2

r∑
a=1

ψa∂ψa, Tso(r)−1 = −1

2

2r∑
a=r+1

ψa∂ψa. (4.41)

This ensures all degrees of freedom in so(2r)1 are generated by tensor products be-

tween those in the so(r)±1 sectors. Precisely this means any so(2r)1 primary field is a

fusion channel of the OPE of certain primary field pair in so(r)+
1 and so(r)−1 . Thus as

long as the gapping terms independently freeze both sectors, they remove all gapless

degrees of freedom.

The backscattering interactions (4.37) couples the so(r)−1 sector on the yth wire

with the so(r)+
1 sector on the (y + 1)th one. They can explicitly written as

Hint = u
∞∑

y=−∞

∑
1≤a<b≤r

ψr+ay ψr+by ψay+1ψ
b
y+1. (4.42)

Firstly, the interactions are time reversal symmetric as (4.42) is unchanged by ψay →

(−1)yψay+1. Secondly, it breaks the O(2r) symmetry to O(r)+×O(r)−. The symmetry

breaking can be facilitated by forward scattering within wires that renormalizes the

velocities differently between the so(r)±1 sectors. Eq.(4.42) is also a combination
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allowed by the chiral O(r) symmetry

ψay →
(
O(−1)y

)a
b
ψby, ψr+ay →

(
O(−1)y+1

)a
b
ψr+by , (4.43)

where O is a r×r orthogonal transformation matrix. The chiral symmetry only allows

cross couplings Jy
so(r)±1

· Jy+1

so(r)∓1
between adjacent wires. Instead of (4.42), another

possibility would be its mirror image with summands ψayψ
b
yψ

r+a
y+1ψ

r+b
y+1. This competes

with the original, but as long as mirror symmetry is broken and their strength is

asymmetric, an energy gap will open. In the following we will ignore the mirror

image by assuming it is weaker.

Next we notice that the four-fermion interaction (4.42) is marginally relevant when

velocity vx is uniform. The dimensionless coupling strength u follows the renormal-

ization group (RG) flow equation

du

dλ
= +4π(r − 2)u2 (4.44)

when length scale renormalizes by l → eλl. This can be verified by applying the RG

formula among marginal operators[19]

dgl
dλ

= −2π
∑
mn

Cmn
l gmgn (4.45)

where Cmn
l is the fusion coefficient of the OPE OmOn = Cmn

l Ol + . . . between op-

erators in the perturbative action δS =
∫
dτdx

∑
m gmOm. In the current case, the

fusion coefficient OO = −2(r − 2)O + . . . can be evaluated simply by applying the

Wick’s theorem of fermions, for O = −∑y,a,b ψ
r+a
y ψr+by ψay+1ψ

b
y+1. The plus sign in

(4.44) shows the interacting strength grows at weak coupling. To show that the

backscattering (4.42) indeed opens up a gap, we first focus on a single coupled pair

of counter-propagating so(r)1 channels (see figure 4.5).
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4.2.1.1 The O(r) Gross-Neveu model

Here we concentrate on a particular set of backscattering terms in (4.42) at say

an even y. We relabel ψr+ay = ψaR and ψay+1 = ψaL, for a = 1, . . . , r. The interaction

between the yth and (y + 1)th wire is identical to that of the O(r) Gross-Neveu (GN)

model[43, 145, 138, 113]

HGN = −u
2

(ψR ·ψL)2 (4.46)

where the minus sign is from the fermion exchange statistics ψaRψ
b
Rψ

a
Lψ

b
L =

−ψaRψaLψbRψbL. This GN model is known to have an excitation energy gap for

r > 2.

For even r = 2n > 2, the Majorana fermions can be paired into Dirac ones and

subsequently bosonized (see section 4.1.2), cjR/L = (ψ2j−1
R/L + iψ2j

R/L)/
√

2 ∼ eiφ̃
j
R/L , for

j = 1, . . . , n. Using

ψR ·ψL =
n∑
j=1

cjR(cjL)† + (cjR)†cjL ∼
n∑
j=1

cos
(
2Θj

)
(4.47)

for 2Θj = φ̃jR − φ̃jL (also see (4.26)) are mutually commuting variables, the GN

interation (4.46) takes the bosonized form

HGN ∼ u
n∑
j=1

∂xφ̃
j
R∂xφ̃

j
L − u

∑
j1 6=j2

∑
±

cos
(
2Θj1 ± 2Θj2

)
= u

n∑
j=1

∂xφ̃
j
R∂xφ̃

j
L − u

∑
α∈∆

cos (α · 2Θ) (4.48)

where 2Θ = (2Θ1, . . . , 2Θn) and α are roots of so(2n) (see (A.8)). The first term

renormalizes the velocity Vx in (4.24) as well as the Luttinger parameter. We assume

Vx >> u so that the first term can be dropped. The remaining sine-Gordon terms

are responsible for gapping out all low energy degrees of freedom. Firstly the angle
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parameters mutually commute and share simultaneous eigenvalues. The ground state

minimizes the energy by uniformly pinning the ground state expectation value (GEV)

〈
2Θj(x)

〉
= πmj

ψ, mj
ψ ∈ Z. (4.49)

We notice in passing that the following subset of sine-Gordon terms

−u
n∑
I=1

cos (αI · 2Θ) = −u
n∑
I=1

cos

[
n∑
J=1

KIJ(φJR − φJL)

]

= −u
n∑
I=1

cos
(
nTI KΦ

)
(4.50)

using the simple roots αI in (A.9), is already enough to remove all low energy degrees

of freedom. Here KIJ is the Cartan matrix (A.12) of so(2n) that appears in the

Lagrangian density

L0 =
1

2π
∂xΦ

TK∂tΦ (4.51)

for K = K⊕(−K) and Φ = (φR,φL), and φ is related to φ̃ by the basis transformation

(B.13). For instance, the n vector coefficients nJ = (eJ , eJ) in (4.50) form a null basis

nTI KnJ = 0 (4.52)

and guarantee an energy gap according to Ref.[46]. The remaining GN terms in (4.48)

are compatible with (4.50) as they share the same minima.

There are constraints on the GEV mj
ψ in (4.49). In order to minimize − cos(α·2Θ)

in (4.48), 〈α · 2Θ〉 must be an integer multiple of 2π. This restricts uniform parity
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among mj
ψ so that the sign in the fermion backscattering amplitude

〈ψaR(x)ψaL(x)〉 =
〈
cjR(x)cjL(x)†

〉
∼
〈
ei2Θj(x)

〉
= (−1)mψ . (4.53)

does not depend on fermion flavor j. This is not the only non-zero GEV as ψ is not

the only primary field in so(2n)1. The backscattering of spinor fields Vs± = eiε·φ̃/2

(B.24) corresponds to the two GEV’s

〈
V R
s±(x)V L

s±(x)†
〉

=
〈
eiε·Θ(x)

〉
= eiπms±/2 (4.54)

where ε = (ε1, . . . , εn) for εj = ±1, and the overall sign
∏

j εj is positive for the even

spinor field s+, or negative for s−. Here the GEV (4.54) does not depend on the

choice of ε. This is because given ε and ε′ with the same overall parity
∏
εj =

∏
ε′j,

ε ·Θ and ε′ ·Θ differ by some combination of α · 2Θ, which takes expectation value

in 2πZ.

There are extra constraints between mψ and ms± from the fusion rules of the

primary fields of so(2n)1 (see (B.25) and (B.26)). Firstly, s± × ψ = s∓ requires

ms+ ≡ ms− + 2mψ mod 4Z. (4.55)

Take the highest weights ε0
+ = (1, . . . , 1) and ε0

− = (1, . . . ,−1) for instance. ε0
+ ·Θ =

ε0
− ·Θ + 2Θn imples ms+(ε0

+) = ms−(ε0
+) + 2mn

ψ. Lastly the fusion rules

s± × s±

 1, for n even

ψ, for n odd
(4.56)
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requires the GEV’s to obey

 (−1)ms± = 1 for n even

(−1)ms± = (−1)mψ for n odd
(4.57)

for similar reasons.

The GN model therefore has four ground states when r = 2n > 2. They are

specified by the quantum numbers (i) ms+ = 0, 1, 2, 3 modulo 4 when n is odd, or (ii)

ms+ = 0, 2 and ms− = 0, 2 modulo 4 when n is even. The rest are fixed by (4.55)

and (4.57). Quasiparticle excitations are trapped between domain walls or kinks

separating distinct ground states[138, 113, 31]. For example, the vertex operator

V R
s+

(x0) = eiε
0
+·φ̃R(x0)/2 of an even spinor field creates a jump in the GEV (4.53)

〈
V R
s+

(x0)†ei2Θj(x)V R
s+

(x0)
〉

= (−1)m
′
ψ+θ(x0−x) (4.58)

because of the Baker-Hausdorff-Campbell formula and the commutation relation from

(4.19)

[
2Θj(x), ε0

+ · φ̃R(x0)/2
]

= iπ (θ(x0 − x)− n+ j − 1) (4.59)

for θ the unit step function θ(s) = 0 when s ≤ 0, or 1 when s > 0, and m′ψ =

mψ +n− j+ 1. In general, the primary fields V R
s± = eiε·φ̃R and cjR = eiφ̃

j
R corresponds

to the domain walls of ms± :

〈
V R
s±(x0)†eiε

0
±·Θ(x)V R

s±(x0)
〉

= e
iπ
2 (m′s±+nθ(x0−x))〈

V R
s∓(x0)†eiε

0
±·Θ(x)V R

s∓(x0)
〉

= e
iπ
2 (m′s±+(n−2)θ(x0−x))〈

cjR(x0)†eiε
0
±·Θ(x)cjR(x0)

〉
= e

iπ
2 (m′s±+2θ(x0−x)). (4.60)



74

Now we move on to the odd r = 2n + 1 > 1 case. First we pair the first 2n

Majorana fermions into n Dirac ones and bosonize them similar to the previous even

r case. This leaves a single unpaired Majorana fermion ψrR/L. Dropping terms that

only renormalizes velocities, the GN model (4.46) takes the partially bosonized form

HGN ∼ −u
∑

α∈∆so(2n)

cos (α · 2Θ)

− u
[

n∑
j=1

cos
(
2Θj

)]
iψrRψ

r
L (4.61)

where the first line is identical to the even r case (4.61) and is responsible for gapping

out first 2n Majorana channels. Projecting onto the lowest energy states and taking

the GEV 〈cos(2Θj)〉 = (−1)mψ , the interacting Hamiltonian becomes

HGN ∼ −2n(n− 1)u− nu(−1)mψ iψrRψ
r
L (4.62)

which is identical to the continuum limit of the quantum Ising model with transverse

field after a Jordan-Wigner transformation. The remaining Majorana channel ψrR/L is

gapped by the single-body backscattering term. The sign of the mass gap nu(−1)mψ

determines the phase of the Ising model. We take the convention so that a negative (or

positive) mass with mψ ≡ 1 (resp. mψ ≡ 0) corresponds to the order (resp. disorder)

phase.

Like the previous case, the fermion backscattering amplitude (4.53) is not the

only ground state expectation value. From (C.5) appendix C, the Ising twist field of

so(2n + 1)1 can be written as the product Vσ = eiε·φ̃/2σr, where ε = (ε1, . . . , εn) for

εj = ±1, and σrR/L = σ2n+1
R/L is the twist field along the last Majorana channel. There
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are three possible GEV for the backscattering

〈
V R
σ (x)V L

σ (x)†
〉

=
〈
eiε·Θ(x)σrR(x)σrL(x)

〉
(4.63)

∼

 0 for the disorder phase

±1 for the order phase
.

Here we choose the convention so that σRσL takes the role of the spin operator σ

in the Ising model and its non-trivial GEV’s in the order phase specify two ground

states | ↑〉 and | ↓〉.

Again, quasiparticle excitations are trapped between domain walls separating dis-

tinct ground states[138, 113, 31]. For example a twist field V R
σ (or V L

σ ) sits between

the order to disorder phase boundary where the quantum number mψ flips from 1 to 0,

or equivalently the fermion mass gap in (4.62) changes sign. This is because the twist

field V R
σ (x0) introduces a flip in boundary condition ψR(x0+) = −ψR(x0−) and corre-

sponds to a change of sign in front of the fermion backscattering iψRψL. Alternatively,

this can also be understood by identifying Vσ as a Jackiw-Rebbi soliton[52] or a zero

energy Majorana bound state between a trivial and topological superconductor[61] in

1D.

Next a ↑ − ↓ domain wall of opposite signs of the GEV (4.63) in the order phase

traps an excitation in the fermion sector ψ. This can be seen by equating the order

Ising phase to a 1D topological superconductor[61], where the two Ising ground states

corresponds to the even and odd fermion parity states among the pair of boundary

Majorana zero modes. Adding (or subtracting) a fermion therefore flips the parity as

well as the GEV in (4.63). We notice this domain wall interpretation of excitations

is consistent with the non-Abelian fusion rule

σ × σ = 1 + ψ. (4.64)
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The trivial fusion channel corresponds to the annihilation of a domain wall pair such

as

| . . . ↑↑︸ ︷︷ ︸
order

←←︸︷︷︸
disorder

↑↑ . . .︸ ︷︷ ︸
order

〉 fusion−−−→ | . . . ↑↑ . . .〉 (4.65)

while the fermion fusion channel corresponds to joining the pair of “order - disorder”

domain walls into a kink

| . . . ↑↑︸ ︷︷ ︸
order

←←︸︷︷︸
disorder

↓↓ . . .︸ ︷︷ ︸
order

〉 fusion−−−→ | . . . ↑↑↓↓ . . .〉. (4.66)

4.2.1.2 The special case: so(4)1 = su(2)1 × su(2)1

The case when r = 2 requires special attention. The O(2) GN model (4.46) is a

gapless Luttinger liquid because its bosonized form (4.48) contains no sine-Gordon

terms and the rest only renormalizes velocities and the Luttinger parameter. As a

result the fractionalization (or conformal embedding) so(4)1 ⊇ so(2)1×so(2)1 of wires

with N = 4 Majorana channels does not lead to a gapped theory. Instead we turn to

an alternative fractionalization so(4)1 = su(2)+
1 ×su(2)−1 that only applies for N = 4.

The four Majorana ψay along each wire can be paired into Dirac channels c1
y =

(ψ1
y + iψ2

y)/
√

2 = eiφ̃
1
y and c2

y = (ψ3
y + iψ4

y)/
√

2 = eiφ̃
2
y . It will be more convenient if we

express the bosons in the new basis using the simple roots of so(4): φ̃1 = φ1−φ2 and

φ̃2 = φ1 + φ2. Unlike when r > 2, these bosons decouple in the Lagrangian density

(4.21)

L0 =
1

2π

∞∑
y=−∞

(−1)y
2∑

J=1

2∂xφ
J
y∂tφ

J
y . (4.67)
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This is equivalent to the fact that the Cartan matrix Kso(4) = diag(2, 2) is diagonal

so that the Lie algebra splits into the product su(2)+ × su(2)− of isoclinic rotations,

each with Cartan matrix Ksu(2) = 2.

The su(2)1 current generators are given by SIz (z) = i
√

2∂φI(z) and SI±(z) =

(SIx ± iSIy )/
√

2 = ei2φ
I(z), and they satisfy the OPE

SIi (z)SIj (w) =
δij

(z − w)2
+
i
√

2εijk
z − w SIk(w) + . . . (4.68)

for I = 1, 2 = +,−. The su(2)+
1 sector is completely decoupled from the su(2)−1 one

as the OPE S1
i (z)S2

j (w) is non-singular. They completely decomposes all low energy

degrees of freedom as the energy momentum tensor splits into

Tso(4)1 = −1

2

2∑
j=1

∂φ̃j(z)∂φ̃j(z) (4.69)

= −
2∑

J=1

∂φJ(z)∂φJ(z) = Tsu(2)+
1

+ Tsu(2)−1
.

The gapping Hamiltonian is

Hint = u
∞∑

y=−∞
S2
y · S1

y+1 (4.70)

= 2u
∞∑

y=−∞
∂xφ

2
y∂xφ

1
y+1 − 2 cos

(
4Θy+1/2

)
,

4Θy+1/2 = 2φ1
y+1 − 2φ2

y (4.71)

= φ̃1
y+1 + φ̃2

y+1 + φ̃1
y − φ̃2

y.

The first kinetic term of the interacting Hamiltonian only renormalizes velocities

and the Luttinger parameter. The second sine-Gordon term involves four-fermion

interactions and is responsible for the energy gap as it back-scatters the su(2)−1 sector

on the yth wire to the su(2)+
1 sector on the (y + 1)th one. It pins the ground state
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expectation value (GEV)

〈
ei2Θy+1/2(x)

〉
= (−1)ms (4.72)

which characterizes the two distinct ground states. Like the previous cases, quasipar-

ticle excitations are kinks in the GEV. The fundamental excitation can be created

by the vertex operator Vs = eiφ
1
y+1 , which is the semionic primary field in the su(2)+

1

sector along the (y + 1)th wire.

4.2.2 Gapping odd Majorana cones

We now move on to the case when there are N = 2r + 1 ≥ 3 chiral Majorana

channels on each wire in the coupled Majorana wire model (4.3) (of figure 4.1). It

corresponds to an odd N number of Majorana cones on the surface of a 3D topological

superconductor. The chiral degrees of freedom along each wire are described by a

so(N)1 WZW theory, which is going to be fractionalized into the pair G+
N × G−N

according to (4.34). The G−N sector along the yth wire will then be back-scattered

onto the G+
N sector along the (y + 1)th one by the current-current interaction (4.37),

which will introduce an energy gap.

Unlike the even N case where so(N)1 can simply be split into a pair of so(N/2)1’s,

here the decomposition is less trivial but leads to more exotic surface topological order.

We begin with the particular case where 9 Majorana channels can be fractionalized

into

so(9)1 ⊇ so(3)3 × so(3)3 (4.73)

essentially by noticing that the tensor product SO(3)⊗SO(3) sits inside SO(9). The

two so(3)3 WZW sectors carry decoupled current generators. They can then be back-
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scattered using the current-current interaction (4.37) onto adjacent wires in opposite

directions (also see figure 4.1 and 4.5).

For a general odd N ≥ 9, one can decompose the Majorana channels into N =

9+(N−9). The first 9 channels can be fractionalized by (4.73), which we will discuss

in detail below, and the remaining even number of channels can be split using the

previous method, namely so(N − 9)1 = so
(
N−9

2

)
1
× so

(
N−9

2

)
1
. In the case when

N is smaller than 9, one can add 9 − N number of non-chiral Majorana channels

to each wire. These additional degrees of freedom can be interpreted as surface

reconstruction as they do not violate fermion doubling[87] and are not required to

live on the boundary of a topological bulk. Now each wire consists of 9 right (or left)

propagating Majorana channels and 9 − N left (resp. right) propagating ones. We

still refer the remaining even channels by so(N − 9)1 except now the negative N − 9

signals the reverse propagating direction of these Majorana’s.

The so(9)1 and so(N − 9)1 sectors can then be bipartitioned independently. The

fractionalization of a general odd number of Majorana channels is summarized by the

sequence

so(N)1 ⊇ so(9)1 × so(N − 9)1 ⊇ G+
N × G−N (4.74)

for G±N = so(3)3 × so
(
N−9

2

)
1
. The “+” and “−” sectors can now be back-scattered

independently using (4.37) onto adjacent wires in opposite directions. This removes

all low energy degrees of freedom and opens up an energy gap.
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4.2.2.1 The conformal embedding so(9)1 ⊇ so(3)+
3 × so(3)−3

As a matrix Lie algebra, so(3) is generated by the three anti-symmetric matrices

Σ = (Σx,Σy,Σz)

Σx =
(

0 0 0
0 0 1
0 −1 0

)
, Σy =

(
0 0 1
0 0 0
−1 0 0

)
, Σz =

(
0 1 0
−1 0 0
0 0 0

)
.

They can be embedded into so(9) by tensoring with 13, the 3× 3 identity matrix, on

the left or right

Σ+ = Σ⊗ 13, Σ− = 13 ⊗Σ. (4.75)

We denote so(3)± = span{Σ±x ,Σ±y ,Σ±z } to be the two mutually commuting subalge-

bras in so(9).

Recall the free field representation (4.8) of the so(9)1 WZW current generators

Jβ = iψatβabψ
b/2 for tβ an antisymmetric 9× 9 matrix, the so(3)±3 current generators

are given by the substitution of tβ:

Jso(3)±3
(z) =

i

2
ψa(z)Σ±abψ

b(z) (4.76)

for z = eτ+ix and J = (Jx, Jy, Jz). Written explicitly,

J+
x = i(ψ23 + ψ56 + ψ89), J−x = i(ψ47 + ψ58 + ψ69)

J+
y = i(ψ13 + ψ46 + ψ79), J−y = i(ψ17 + ψ28 + ψ39)

J+
z = i(ψ12 + ψ45 + ψ78), J−z = i(ψ14 + ψ25 + ψ36)
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for ψab = ψaψb. Using Wick’s theorem and the OPE ψa(z)ψb(w) = δab/(z−w) + . . .,

it is straightforward to deduce the so(3)3 WZW current relations

J±i (z)J±j (w) =
3δij

(z − w)2
+

iεijk
z − wJ

±
k (w) + . . . (4.77)

and J±i (z)J∓j (w) is non-singular, for i, j = x, y, z and εijk the antisymmetric tensor.

The so(3)3 current relations (4.77) differs from the so(3)1 ones (4.10) by the co-

efficient 3 of the most singular term. This sets the level of the affine Lie algebra.

The so(3)3 WZW theory is identical to su(2)6 by noticing that the structure factor

of su(2) is fijk =
√

2εijk (see (4.68) and Ref.[26]). The su(2) current generators thus

need to be normalized by Ssu(2)±6
=
√

2Jso(3)±3
so that

S±i (z)S±j (w) =
6δij

(z − w)2
+
i
√

2εijk
z − w S±k (w) + . . . (4.78)

where the coefficient 6 of the most singular term sets the level of the su(2)6 affine Lie

algebra.

The Sugawara energy momentum tensors are the normal ordered product

Tso(3)±3
(z) =

1

8
Jso(3)±3

(z) · Jso(3)±3
(z). (4.79)

Written explicitly in the fermion representation (4.76) and using the normal ordered

product

ψa(z)ψb(z)ψa(z)ψb(z) = ψa(z)∂ψa(z) + ψb(z)∂ψb(z) (4.80)
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the energy momentum tensor takes the form

Tso(3)±3
(z) = −1

4

9∑
a=1

ψa(z)∂ψa(z)∓ 1

4
Oψ(z) (4.81)

Oψ(z) = ψ1245 + ψ1278 + ψ4578 + ψ1346 + ψ1379

+ ψ4679 + ψ2356 + ψ2389 + ψ5689 (4.82)

for ψabcd = ψa(z)ψb(z)ψc(z)ψd(z). The four-fermion terms in Oψ cancel when com-

bining the “±” sectors, and therefore the energy momentum tensor (4.11) completely

decomposes

Tso(9)1 = −1

2

9∑
a=1

ψa∂ψa = Tso(3)+
3

+ Tso(3)−3
. (4.83)

Moreover, as the OPE between Jso(3)+
3

and Jso(3)−3
is non-singular, so is the OPE

between Tso(3)+
3

and Tso(3)−3
. Each sector carries half the total central charge of 9

Majorana channels

cso(3)±3
= 9/4. (4.84)

The primary fields of so(3)3 = su(2)6 are characterized by half-integral “angu-

lar momenta” s = 0, 1/2, . . . , 3.[26] Each primary field Vs = (V −ss , V −s+1
s , . . . , V s

s )

irreducibly represents the WZW algebra

Si(z)V m
s (w) =

1

z − w
s∑

m′=−s
(Ssi )mm′ V

m′

s (w) + . . . (4.85)

for i = x, y, z and Ssi the su(2) generators in the spin-s matrix representation. We

label the seven primary fields by greek letters Vs = 1, α±, γ±, β, f , each has conformal

dimension hs = s(s + 1)/8 (see table 4.1). In particular 1 = V0 is the vacuum and

f = V3 is Abelian and fermionic with spin 3/2.
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Vs 1 α+ γ+ β γ− α− f
s 0 1/2 1 3/2 2 5/2 3
hs 0 3/32 1/4 15/32 3/4 35/32 3/2

ds 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

Table 4.1: The “angular momenta” s, conformal dimensions hs and quantum di-
mensions ds of primary fields Vs of so(3)3 = su(2)6.

The rest of the primary fields are non-Abelian. They obey multi-channel fusion

rules

Vs1 ×Vs2 =
∑
s

N s
s1s2

Vs (4.86)

where the fusion matrix element N s
s1s2

= 0, 1 is determined by the Verlinde

formula[123]

N s
s1s2

=
∑
s′

Ss1s′Ss2s′Sss′
S0s′

(4.87)

and the modular S-matrix[26]

Ss1s2 =
1

2
sin

[
π(2s1 + 1)(2s2 + 1)

8

]
(4.88)

which is symmetric and orthogonal. Explicitly, the fusion rules are given by

f × f = 1, f × γ± = γ∓, f × α± = α∓, f × β = β

γ± × γ± = 1 + γ+ + γ−, α± × α± = 1 + γ+

β × β = 1 + γ+ + γ− + f (4.89)

α± × γ± = α+ + β, β × γ± = α+ + α− + β

α± × β = γ+ + γ−
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The quantum dimension ds of the primary field Vs is defined to be the largest eigen-

value of the fusion matrix Ns =
(
N s2
ss1

)
. It coincides with the modular S matrix

element S0s/S00 and respects fusion rules so that

ds1ds2 =
∑
s

N s
s1s2

ds. (4.90)

They are listed in table 4.1.

4.2.2.2 Z6 parafermions

We first study the simplest odd case when there are 9 Majorana cones mimicked

by the coupled Majorana wire model (4.3) with 9 chiral Majorana channels per wire.

Now that we have bipartite the degrees of freedom according to the two so(3)±3 WZW

current algebras in (4.76), they can be backscattered independently to adjacent wires

in opposite directions (see eq.(4.37) and figure 4.1). As the so(3)+
3 sector completely

decomposes from the so(3)−3 one, the current backscattering Jy−1

so(3)−3
· Jy

so(3)+
3

between

the (y − 1)th and yth wire does not compete with the next pair Jy
so(3)−3

· Jy+1

so(3)+
3

.

The current-current interaction consists of four-fermion terms and is marginally

relevant. This can be seen from the RG equation (4.45) using the operator product

expansion (Jy · Jy+1)2 ∼ +Jy · Jy+1. (Recall the time reversal symmetric convention

(4.40) and that JyJy ∼ i(−1)yJy.) To see that the interaction indeed opens up an

excitation energy gap, it suffices to focus on a single pair of wires with the Hamiltonian

Hint = uJR
so(3)−3

· JL
so(3)+

3
(4.91)

where R/L labels the counter-propagating directions along wire y and y + 1.

First we further decompose the so(3)3 WZW theory by the coset construction[26]

so(3)3 = u(1)6 × “Z6”, “Z6” =
so(3)3

so(2)3

=
su(2)6

u(1)6

(4.92)
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where “Z6” refers to the Z6 parafermion CFT model by Zamolodchikov and Fateev[29,

144]. This is done by noticing that SO(3) (or equivalently SU(2)) contains the

Abelian subgroup SO(2) (resp. U(1)) of rotations about the z-axis, and on the CFT

level, the so(2)3 WZW sub-theory of so(3)3 (resp. u(1)6 ⊆ su(2)6) can be bosonized

and single-out. To do this we first group three pairs of Majorana fermions into three

Dirac fermions on each chiral sector

c1
R =

ψ1
R + iψ4

R√
2

, c2
R =

ψ2
R + iψ5

R√
2

, c3
R =

ψ3
R + iψ6

R√
2

c1
L =

ψ1
L + iψ2

L√
2

, c2
L =

ψ4
R + iψ5

L√
2

, c3
L =

ψ7
L + iψ8

L√
2

and bosonize

cjR/L ∼
1√
l0

exp
(
iφ̃jR/L

)
(4.93)

for j = 1, 2, 3. The so(2)3 subalgebra in the R and L sectors are generated by the J−z

and J+
z currents operators in (4.76)

JRz = −3i∂φρR, JLz = 3i∂φρL (4.94)

where the boson field of the “charge” sector is the average

φρR/L =
φ̃1
R/L + φ̃2

R/L + φ̃3
R/L

3
. (4.95)

The “neutral” sector is carried by the three boson fields

φσ,jR/L = φ̃jR/L − φ
ρ
R/L (4.96)

which are not independent as φσ,1 + φσ,2 + φσ,3 = 0.
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It is straightforward to check that the “charge” and the “neutral” sectors com-

pletely decouple from each other. For instance, the Lagrangian density decomposes

LR/L =
(−1)R/L

2π

3∑
j=1

∂xφ̃
j
R/L∂tφ̃

j
R/L (4.97)

=
(−1)R/L

2π

[
3∂xφ

ρ
R/L∂tφ

ρ
R/L +

3∑
j=1

∂xφ
σ,j
R/L∂tφ

σ,j
R/L

]

where the remaining fermions ψ7,8,9
R , ψ3,6,9

L are suppressed, and (−1)R = 1, (−1)L =

−1.

The Lagrangian density (4.97) involves more degrees of freedom in so(9)
R/L
1 than

just so(3)R,−3 or so(3)L,+3 . Therefore, a priori, it is not obvious that this ρ − σ de-

composition is a splitting of so(3)3, and in fact it is not. Only the charge sector

φρR/L is entirely belonging to so(3)R,−3 or so(3)L,+3 . To show this, we go back to the

energy-momentum tensor Tso(3)±3
in (4.81), say for R movers.

Tso(3)R,±3
(z) =

1

2
Tso(9)R1

(z)∓ 1

4
Oψ(z) (4.98)

where the total energy-momentum tensor in partially bosonized basis is

Tso(9)R1
= −1

2

[
3∂φρR∂φ

ρ
R +

3∑
j=1

∂φσ,jR ∂φσ,jR

+ ψ7
R∂ψ

7
R + ψ8

R∂ψ
8
R + ψ9

R∂ψ
9
R

]
(4.99)

and the operator Oψ defined in (4.82) is now

Oψ = −3∂φρR∂φ
ρ
R +

1

2

3∑
j=1

∂φσ,jR ∂φσ,jR (4.100)

− 2i
[
cos
(
φσ,1R − φσ,2R

)
ψ78
R + cos

(
φσ,1R − φσ,3R

)
ψ97
R

+ cos
(
φσ,2R − φσ,3R

)
ψ89
R

]
.
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Eq.(4.100) is deduced by substituting the fermions by the boson fields (4.93), whose

OPE can be found in (D.1,D.2,D.3) in appendix D. For instance, the factor of i

in (4.100) is a result of mutually non-commuting φσ,j. More importantly, φρ, φσ

and ψ7,8,9 are completely decoupled. As the “charge” sector φρR only appears in

Tso(3)R,−3
, it belongs entirely in so(3)R,−3 . Similarly φρL belongs entirely in so(3)L,+3 .

The “Z6” energy-momentum is defined by subtracting the decoupled “charge” sector

from so(3)3.

Tso(2)R3
=

1

6
JzJz = −1

2
3∂φρ∂φρ (4.101)

TRZ6
= Tso(3)R,−3

− Tso(2)R3
(4.102)

= −1

4

9∑
a=7

ψaR∂ψ
a
R −

1

8

3∑
j=1

∂φσ,jR ∂φσ,jR

− i

2

[
cos
(
φσ,1R − φσ,2R

)
ψ78
R + cos

(
φσ,1R − φσ,3R

)
ψ97
R

+ cos
(
φσ,2R − φσ,3R

)
ψ89
R

]
and similarly for the L movers.

The remaining current operators J± = (Jx ± iJy)/
√

2 of so(3)−3 in the R sector

and so(3)+
3 in the L sector (see eq.(4.76)) now split into “charge” and “neutrual”

parafermion components

J
R/L
± = ∓

√
3e∓iφ

ρ
R/LΨ∓R/L (4.103)

where the Z6 parafermions are given by the combinations

ΨR =
1√
3

(
eiφ

σ,1
R ψ7

R + eiφ
σ,2
R ψ8

R + eiφ
σ,3
R ψ9

R

)
(4.104)

ΨL =
1√
3

(
eiφ

σ,1
L ψ3

L + eiφ
σ,2
L ψ6

L + eiφ
σ,3
L ψ9

L

)
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for Ψ+
R/L = ΨR/L and Ψ−R/L = Ψ†R/L. Unlike the φσ’s, here the “neutral” Z6

parafermions ΨR/L belongs entirely in so(3)R,−3 or so(3)L,+3 . This is because JR/L and

φρR/L both completely sit inside the so(3)3’s as seen above. Otherwise one can verified

this by computing the OPE with the energy-momentum tensor (4.99) explicitly

Tso(3)R,−3
(z)ΨR(w) =

5/6

(z − w)2
ΨR(w) +

∂ΨR(w)

z − w + . . .

Tso(3)R,−3
(z)e±iφ

ρ
R(w) =

1/6

(z − w)2
e±iφ

ρ
R(w) +

∂e±iφ
ρ
R(w)

z − w + . . . (4.105)

and T
so(3)

R,+
3

(z)ΨR(w) and Tso(3)R,+3
(z)e±iφ

ρ
R(w) are both non-singular. Similar OPE

hold for the L sector. The primary fields (4.104) generate the rest of the Z6

parafermions (see (D.5) in appendix D) and they obey the known Z6 structure by

Zamolodchikov and Fateev[144].

4.2.2.3 Gapping potential

Now that we have further decomposed the so(3)±3 currents in each wire into

so(2)3 = U(1)6 and Z6 parafermion components (see eq.(4.103)), the current-current

backscattering interaction (4.91) between a pair of wires takes the form of

Hint = 9u∂xφ
ρ
R∂xφ

ρ
L + 3u

[
ei(φ

ρ
L−φ

ρ
R)Ψ†RΨL + h.c.

]
. (4.106)

The first term only renormalizes the velocity of the boson in the so(2)3 sector. The

second term is responsible for openning an excitation energy gap. It extracts a Z6

parafermion Ψ and a quasiparticle eiφ
ρ

from the so(3)+
3 sector on the yth wire and

backscatter them onto the so(3)−3 sector along the (y+ 1)th wire. This freezes all low

energy degrees of freedom and the ground state is characterized by the Z6 expectation
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value (GEV)

〈
Ψ†R(x)ΨL(x)

〉
∼ −ei〈φρR(x)−φρL(x)〉 = e2πim/6 (4.107)

for m an integer.

Like the O(N) Gross-Neveu model we discussed in section 4.2.1.1, quasiparticle

excitations here also manifest as kinks or domain walls between segments with differ-

ent GEV’s. The primary fields α±, γ±, β of the chiral so(3)3 WZW theory in table 4.1

decompose into components in the “Z6” and so(2)3 sectors.

α+ = [σ1]× [eiφ
ρ/2], α− = [σ5]× [e−iφ

ρ/2]

γ+ = [σ2]× [eiφ
ρ

], γ− = [σ4]× [e−iφ
ρ

]

β = [σ3]× [ei3φ
ρ/2] (4.108)

where σl are primary fields in the chiral Z6 parafermion theory so that σRl σ
L
l take

the roles of the order parameters of the Z6 model[29, 144]. They satisfy the exchange

relations

Ψ(x)σl(x
′) = σl(x

′)Ψ(x)e−2πi l
6
θ(x−x′) (4.109)

for R sector, and similar relations hold for the L sector with the Z6 phases conjugated.

Therefore adding the operators α±(x), γ±(x), β(x) to the ground state create kinks of

different hights in the GEV (4.107)

〈
α†±(x0)Ψ†R(x)ΨL(x)α±(x0)

〉
∼ e

πi
3

(m±θ(x−x0))〈
γ†±(x0)Ψ†R(x)ΨL(x)γ±(x0)

〉
∼ e

πi
3

(m±2θ(x−x0))〈
β†(x0)Ψ†R(x)ΨL(x)β(x0)

〉
∼ e

πi
3

(m+3θ(x−x0)) (4.110)
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where θ(s) = (s/|s|+ 1)/2 is the unit step function.

The fermionic supersector f in so(3)3 (see table 4.1) consists of operators that

admit free field representations. Again we focus on the so(3)R,−3 sector. The operators

V 0
f = Ψ3, V ±1

f = e∓iφ
ρ

Ψ∓2

V ±2
f = e∓2iφρΨ∓, V ±3

f = e∓3iφρ

span a s = 3 representation of the affine so(3)3 Lie algebra, where Ψ−m = Ψ6−m are

the Z6 parafermions satisfying the OPE Ψm(z)Ψm′(w) ∼ (z − w)−mm
′/3Ψm+m′ (see

appendix D for explicit definitions). From (4.109), they create a kink to the order

parameter 〈b〉 = 〈βR(x)βL(x)〉

〈
VR
f (x0)†βR(x)βL(x)VR

f (x0)
〉

= 〈b〉(−1)θ(x−x0) (4.111)

in the order phase.

The gapping potential can now be generalized to an arbitrary odd number of Majo-

rana channels per wire. Using the decomposition (4.74), the N Majorana channels are

first split into 9+(N−9). The first 9 channels are fractionalized into so(3)+
3 ×so(3)−3

while the remaining N − 9 can be split into so(N−9
2

)+
1 × so(N−9

2
)−1 because N − 9 is

even. The interwire current backscattering (4.37) takes the form

Hint = u

∞∑
y=−∞

Jy
so(3)−3

· Jy+1

so(3)+
3

+ Jy
so(N−9

2 )
−
1

· Jy+1

so(N−9
2 )

+

1

(4.112)

where different terms act on completely decoupled degrees of freedom. They also gap

out all low energy degrees freedom as the energy-momentum tensor of the CFT along
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each wire decomposes

Tso(N)1 = Tso(9)1 + Tso(N−9)1 (4.113)

= Tso(3)+
3

+ Tso(3)−3
+ T

so(N−9
2 )

+

1

+ T
so(N−9

2 )
−
1

using (4.83) and the fact that

Tso(m+n)1 = −1

2

m+n∑
a=1

ψa∂ψa = Tso(m)1 + Tso(n)1 . (4.114)

4.2.3 Gapping by fractional quantum Hall stripes

(a)

so(N)R1

so(N)L1

so(N)R1

so(N)L1

c− = N/2

iψyψy+1

GL
N

GR
N

GL
N

c− = N/4

JGN
· JGN

GN

(b)

GL
N

GR
N

GL
N

GR
N

iψyψy+1

so(N)L1

so(N)R1
so(N)R1

so(N)L1

GN

Jso(N)1 · Jso(N)1

Figure 4.6: Gapping N surface Majorana cones by inserting (2 + 1)D GN stripe
state and removing edge modes by current-current backscattering interaction.

Previously, we designed interwire interactions that gap all Majorana modes with-

out breaking time reversal symmetry. Here we provide an alternative where each

chiral Majorana wire is gapped by backscattering onto the edges of two topological

stripes sandwiching the wire (see figure 4.6). The topological stripes could be frac-

tional quantum Hall states for instance. Similar construction has been proposed to

describe surface states of topological insulators[81].

First we consider inserting between each pairs of Majorana wire a (2+1)D topolog-

ical state. It supports chiral boundary modes which move in a reverse direction to its

neighboring Majorana wire. As adjacent wires have opposite propagation directions,

the chiralities of the topological states also alternates. This alternating topological

stripe state can be regarded as a surface reconstruction of the 3D topological super-
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conductor. It preserves the antiferrormagnetic time reversal symmetry (4.1), which

relates adjacent topological stripes by reversing their chirality. Unlike the coupled

Majorana wire mode, the topological stripe state itself is a pure (2 + 1)D time re-

versal symmetric system and is not supported by a (3 + 1)D bulk. It has a gapless

energy spectrum that is identical to N surface Majorana cones and is carried by the

interface modes between stripes (see figure 4.6(b)). However the topological stripe

state also carry non-trivial anyonic excitations between wires. This distinguishes it

from the coupled Majorana wire model and allows it to exist non-holographically in

a pure (2 + 1)D setting.

The Majorana modes along the chiral wires then can be backscattered onto the

boundaries or interfaces of the topological stripes by current-current couplings. In

order for the boundary or interface modes to exactly cancel the Majorana modes

along each wire, the topological stripes must carry specific topological orders. We

take a GN topological state

GN =

 SO(r)1, for N = 2r

SO(3)3 �b SO(r)1, for N = 9 + 2r
(4.115)

so that its boundary carries a GN Kac-Moody current, for GN the affine Lie algebra of

GN defined in (4.34). GR
N and GL

N denote stripes with opposite chiralities. The (2 +

1)D GN topological state itself can be constructed using a coupled wire construction

similar to that in Ref.[117, 58] and will not be discussed here.

There are two ways the Majorana modes can be backscattered onto the topological

stripes. The first is shown in figure 4.6(a). The N Majorana modes along each chiral

wire is bipartite into a pair of WZW theories G+
N×G−N according to (4.33). Each WZW

theory is identical to the CFT along the boundary of an neighboring topological stripe

but propagates in an opposite direction. It can be then be gapped out by the current-



93

current backscattering

Hint = uJwire
GN · J

stripe
GN . (4.116)

Alternatively, one could first glue the topological stripes together (see fig-

ure 4.6(b)) so that the line interface sandwiched between adjacent GR
N and GL

N states

hosts a chiral so(N)1 CFT. The stripes can then be put on top of the Majorana wire

array so that each interface is sitting on top of a wire with opposite chirality. The

current-current backscattering

Hint = uJwire
so(N)1

· Jinterface
so(N)1

(4.117)

between each Majorana wire and stripe interface gaps out all low energy degrees of

freedom.

4.3 Surface topological order

In the previous section, we described how a coupled Majorana wire model, which

mimics the surface Majorana modes of a 3D bulk topological superconductor (TSC),

can be gapped by interwire current-current backscattering interaction without break-

ing time reversal (TR) symmetry. In this section, we pay more attention to the topo-

logical order and the anyon types[137, 36, 134] of gapped excitations. The ground

states are time reversal symmetric and there are no non-vanishing order parameters

that breaks time reversal spontaneously. There is a finite ground state degener-

acy that does not depend on system size. This signifies a non-trivial topological

order[131, 132, 135].

The surface topological order can be inferred from bulk-boundary correspondence[133,

98, 99, 60]. There is a one-to-one correspondence between the primary fields of the
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so(N)R1

so(N)L1
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}
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Figure 4.7: Chiral interface (highlighted line) between a time reversal breaking
gapped region and a TR symmetric topologically ordered gapped region.

TR breaking gapped surface

TR symmetric gapped surface

GN  WZW CFT }
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N

to
p

o
lo

g
ical state

Figure 4.8: The GN topological order of a quasi-2D slab with time reversal sym-
metric gapped top surface and time reversal breaking gapped bottom surface

CFT along the (1+1)D gapless boundary and the anyon types in the (2+1)D gapped

topological bulk. The conformal scaling dimension or spin h = hR − hL of a primary

field corresponds to the exchange statistical phase θ = e2πih of the corresponding

anyon. The fusion rules of primary fields are identical to that of the anyons. And

the modular S-matrix of the CFT at the boundary equals the braiding S-matrix[60]

Sab =
1

D
∑

c

dcN
c
ab

θc

θaθb

(4.118)

in the bulk, where the non-negative integers Nc
ab are the degeneracies of the fusion

rules

a× b =
∑

c

Nc
abc (4.119)
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between anyons, and the total quantum dimension D =
√∑

a d
2
a quantifies topo-

logical entanglement[63] and can be evaluated by knowing the quantum dimensions

da ≥ 1 of each anyon a by solving the fusion identities

dadb =
∑

c

Nc
abdc. (4.120)

On the surface of a topological superconductor, where there are no boundaries,

the (2 + 1)D topological order corresponds to a (1 + 1)D interface that separate the

time reversal symmetric topologically ordered domain and a time reversal breaking

domain. This interface hosts chiral gapless modes (see figure 4.7). This geometry can

be wrapped onto the surface of a slab where the TR symmetric and breaking domains

occupy the top and bottom surface of a 3D bulk (see figure 4.8). The quasi-2D system

has an energy gap except along its boundary which is previously the interface that

carries the GN WZW CFT. The bulk-boundary correspondence then determines a

bulk GN topological order on the quasi-2D slab.

Wires in the trivial TR-breaking domain are gapped by non-uniform current

backscattering

HTR−breaking =
∑
y

∆J2y−1
so(N)1

· J2y
so(N)1

+ δJ2y
so(N)1

· J2y+1
so(N)1

(4.121)

or single-body fermion backscattering perturbation

HTR−breaking =
∑
y

i∆ψT
2y−1ψ2y + iδψT

2yψ2y+1 (4.122)

to the coupled Majorana wire model (4.3), for ∆ > δ and ψy = (ψ1
y , . . . , ψ

N
y ). This

violates the antiferrormagnetic time reversal symmetry (4.1) and leads to a gapped
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surface with trivial topological order. This TR breaking half-plane is put side by side

against a TR symmetric gapped half-plane, where the N Majorana channels per wire

is fractionalized into so(N)1 ⊇ G+
N × G−N , for GN previously defined in (4.34). Each

GN sector is then paired with the adjacent one on the next wire and are gapped by

current-current backscattering JG−N · JG+
N

. The interface between the TR-symmetric

and TR-breaking regions leaves behind one single unpaired fractional GN channel.

This can be regarded as a 2D analogue of the fractional boundary modes in the

Haldane integral spin chain[44, 45] and the AKLT spin chain[1].

As eluded in the introduction, when the coupled wire model involves only current-

current backscattering interaction, it is a boson model where the bosonic current

operators, rather than Majorana fermions, are treated as fundamental local objects.

It is therefore more natural for us to use the current backscattering Hamiltonian

(4.121) instead of the fermionic single-body one (4.122) to introduce a time reversal

breaking gap. In this case, π-fluxes are deconfined anyonic excitations realized as

π-kinks along a stripe where there is no energy cost in separating a flux-antiflux pair.

If the fermionic TR-breaking Hamiltonian (4.122) were used instead, π-fluxes would

be confined on the bottom layer and Majorana fermions would become local. We

however will mostly be focusing on the former bosonic case, although the fermionic

scenario may be more realistic in a superconducting medium.

The bulk-interface correspondence depends on the orientation of the time reversal

breaking order. In eq.(4.121), if the backscattering tunneling strengths are reversed

so that δ > ∆, figure 4.7 will need to be shifted by y → y + 1 and all propagating

directions will need to be inverted. As a result, the interface CFT will also be reversed

to its time reversal partner GN → GN . This will flip the spins of all primary fields

ha → ha = −ha and conjugates all exchange phases θa → θa = θ∗a.

An interface with a particular orientation therefore corresponds to a time reversal

breaking topological order. This is also apparent in the slab geometry in figure 4.8
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where the TR breaking order on the bottom surface can have opposite orientations.

Unlike the conventional case on the surface of a topological superconductor where

time reversal is local, here time reversal involves a half translation y → y + 1 and

relates a stripe gapped by J−y ·J+
y+1 to its neighbor J−y+1 ·J+

y+2. As anyonic excitations

are realized as kinks or domain walls that separate distinct ground states along a

stripe, time reversal non-locally translates anyons on an even stripe (green) to an

odd one (red) or vice versa (see figure 4.7). However an interface with a particular

orientation can only correspond to anyons on stripes with a particular parity. For

example the bulk-interface correspondence in figure 4.7 singles out anyons on even

stripes gapped by J−2y ·J+
2y+1. There is therefore no reason to expect the anyon theory

would be closed under time reversal.

4.3.1 Summary of anyon contents

r even r odd
x 1 ψ s+ s− 1 ψ σ

dx 1 1 1 1 1 1
√

2
θx 1 −1 eπir/8 eπir/8 1 −1 eπir/8

Table 4.2: The exchange phase θx = e2πihx and quantum dimensions of anyons x in
a (2 + 1)D SO(r)1 topological phase.

The interface carries chiral gapless degrees of freedom, which are captured by the

GN WZW theory whose primary fields corresponds to the anyon content of the TR

symmetry gapped surface. For even N = 2r, the surface carries a

GN = SO(r)1 (4.123)
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topological order summarized in table 4.2. Its anyonic excitations obey the abelian

fusion rules

ψ × ψ = 1, s± × ψ = s∓ (4.124)

s± × s± =

 1, for r ≡ 0 mod 4

ψ, for r ≡ 2 mod 4

for r even, or the Ising fusion rules

ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ (4.125)

for r odd. Eq.(4.124) and (4.125) follows directly from the fusion properties of the

primary fields in the so(r)1 Kac-Moody algebra (see section 4.1.1 and appendix B

and C). The exchange phase (also known as topological spin) θx = e2πihx can be

read off from the conformal dimension hx of the primary field Vx in so(r)1 that

corresponds to the anyon type x. Again we extend r to negative integers by defining

SO(−r)1 = SO(r)1 to be the time reversal conjugate of the SO(r)1 topological state.

x 1 α+ γ+ β γ− α− f

dx 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

θx 1 eπi
3+2r

16 eiπ/2 eπi
15+2r

16 e−iπ/2 eπi
3+2r

16 −1
r even

x 1 α+ γ+ β γ− α− f

dx 1
√

2 +
√

2 1 +
√

2
√

4 + 2
√

2 1 +
√

2
√

2 +
√

2 1

θx 1 eπi
15+2r

16 eiπ/2 eπi
3+2r

16 e−iπ/2 eπi
15+2r

16 −1
r odd

Table 4.3: The exchange phase θx = e2πihx and quantum dimensions of anyons x in
a (2 + 1)D SO(3)3 �b SO(r)1 topological phase.

For odd N = 9 + 2r, the GN WZW CFT at the interface corresponds the TR

symmetric gapped surface that carries a topological order given by the relative tensor
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product

GN = SO(3)3 �b SO(r)1 (4.126)

where the fermion pair b = ψSO(3)3 × ψSO(r)1 is condensed. The concept of anyon

condensation[9] will be demonstrated more explicitly later in section 4.3.2. The topo-

logical state carries seven types of anyons and are summarized in table 4.3. For

instance, the anyon structure matches the primary field content of the so(3)3 WZW

theory (see table 4.1) when r = 0. The quasiparticle fusion rules of GN are similar to

the so(3)3 ones in (4.89)

f × f = 1, f × γ± = γ∓, f × α± = α∓, f × β = β

γ± × γ± = 1 + γ+ + γ−, α± × β = γ+ + γ− (4.127)

β × β = 1 + γ+ + γ− + f, β × γ± = α+ + α− + β

except the following modifications that dependent on r = (N − 9)/2.

α± × α± =



1 + γ+, for r ≡ 0 mod 4

f + γ+, for r ≡ 1 mod 4

f + γ−, for r ≡ 2 mod 4

1 + γ−, for r ≡ 3 mod 4

(4.128)

α± × γ± =

 α+ + β, for r even

α− + β, for r odd

This quasiparticle spin and fusion structure will be shown later in section 4.3.2. The

braiding S-matrices of the GN states are summarized in appendix E.
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The GN sequence extends the sixteenfold periodic anyon structure[60, 59, 118]

SO(r + 16)1
∼= SO(r)1 to a periodic class of thirty two topological states

GN+32
∼= GN . (4.129)

This seemingly contradicts the sixteenfold prediction of topologically ordered surface

states from Ref.[32, 74, 130, 111, 56, 95, 141]. This is due to the non-local nature of the

“antiferromagnetic” time reversal symmetry in the coupled Majorana wire model. On

the other hand, in general there are multiple possible gapping potentials that leads to

distinct topological order. For instance, we will show in a subsequent section that for

N = 16, there is an extended E8 symmetry or an alternative conformal embedding

that would allow a different set of gapping terms but would forbid all electronic

quasiparticle excitations.

The thirty two topological states here follow a Z32 tensor product algebraic struc-

ture

GN1 �b GN2
∼= GN1+N2 (4.130)

where certain maximal set of mutually local bosons from GN1 and GN2 are pair

condensed in the relative tensor product. We will discuss this in more detail below.

4.3.2 The 32-fold tensor product structure

We first explain the relative tensor product that defines the GN topological state

in eq.(4.126). We begin with the tensor product state SO(3)3 ⊗ SO(r)1 which

consists of decoupled SO(3)3 = SU(2)6 and SO(r)1 topological states. The pri-

mary fields of the su(2)6 WZW CFT are labeled by seven half-integral “spins”

s = 0,1/2,1,3/2,2,5/2,3 and are summarized in table 4.1 and eq.(4.89). These

correspond to the anyon structure of the (2 + 1)D SO(3)3 topological state. The
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topological order of SO(r)1 is well-known[60] and was summarized earlier in this sec-

tion. For instance, “spin” 3 corresponds to the BdG fermion quasiparticle f , and the

half-integral “spins” 1/2, 3/2 and 5/2 are π-fluxes that give a −1 monodromy phase

of an orbiting fermion.

In the coupled Majorana wire model where there areN = 9+2r Majorana channels

per wire, the gapping term explicitly seperates the first 9 and final 2r channels and the

current backscattering potential does not mix these two sectors. This model would

therefore give a decouple SO(3)3⊗SO(r)1 topological state. However, there could be

additional local time reversal symmetric terms, such as intrawire forward scattering

iψRa ψ
R
b and iψLaψ

L
b , that mixes the two sectors and condenses the fermion pair b =

fSO(3)3 ⊗ ψSO(r)1 . In fact, fermion pair condensation is natural in a superconducting

medium where the ground state consists of Cooper pairs. The condensation of the

bosonic anyon b results in the confinement of certain quasiparticles that have non-

trivially monodromy around it.[9] These includes all the π fluxes 1/2, 3/2 and 5/2

in the SO(3)3 sector, s± (or σ) in SO(r)1 for r even (resp. odd), as well as the

tensor product 1/2 ⊗ ψ, 3/2 ⊗ ψ, 5/2 ⊗ ψ, 1 ⊗ s±, 2 ⊗ s± and 3 ⊗ s± (or 1 ⊗ σ,

2 ⊗ σ and 3 ⊗ σ). The remaining anyons are local with respect to the boson b

and survive the condensation, but certain pairs are identified if they differ only by

the boson condensate, a × b ≡ a. This includes 3 ≡ ψ, 1 ⊗ ψ ≡ 2, 2 ⊗ ψ ≡ 1,

1/2⊗ s± ≡ 5/2⊗ s∓ and 3/2⊗ s+ ≡ 3/2⊗ s− for even r, or 1/2⊗ σ ≡ 5/2⊗ σ for

r odd. Special care has to be taken for the tensor product 3/2 ⊗ σ when r is odd.

After condensation, the fusion rule of a pair of 3/2⊗ σ becomes

(3/2⊗ σ)× (3/2⊗ σ) = (0 + 1 + 2 + 3)⊗ (1 + ψ)

≡ 0 + 0 + 1 + 1 + 2 + 2 + 3 + 3 (4.131)
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which has two vacuum fusion channels and indicates that 3/2⊗σ cannot be a simple

object. This leads to the decomposition

3/2⊗ σ ≡ α+ + α− (4.132)

where α± are simple anyons with identical exchange statistics but opposite fermion

parity α± × f = α∓ and obey the fusion rules (4.128).

1 α+ γ+ β γ− α− f
r even 0 1/2⊗ s+ 1 3/2⊗ s± 2 5/2⊗ s+ 3
r odd 0 (3/2⊗ σ)+ 1 1/2⊗ σ 2 (3/2⊗ σ)− 3

Table 4.4: Identification of the seven anyon types in table 4.3 as tensor products.

We summarize the identification of the seven anyon types in GN = SO(3)3 �b

SO(r)1 as tensor products in table 4.4. This explains the exchange statistics and

quantum dimensions of the quasiparticles in table 4.3

θa⊗b = θaθb, da⊗b = dadb (4.133)

with the exception of the non-simple object 3/2⊗σ in (4.132) where each component

α± carries half of its dimension. The fusion rules in (4.127) and (4.128) are explained

by the tensor product

(a1 ⊗ b1)× (a2 ⊗ b2) = (a1 × a2)⊗ (b1 × b2) (4.134)

except in the odd r cases where again the non-simple object 3/2 ⊗ σ = α+ + α−

requires special attention.

The fusion rules (4.128) of α± in the odd r cases are fixed by modular invari-

ance. The braiding S-matrix (4.118) is determined by fusion rules and quasiparticle

exchange statistics. On the other hand fusion rules can also be determined by the S-
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matrix using the Verlinde formula (4.87).[123] Moreover one can define the T -matrix

according to the quasiparticle exchange statistics

Tab = δabθa (4.135)

which corresponds to the modular T -transformation in the CFT along the boundary.

As a consequence they satisfies the SL(2;Z) algebraic relation[60]

(
ST †

)3
= e−2πic−/8S2 (4.136)

where c− = cR − cL is the chiral central charge of the corresponding CFT along the

boundary

c−(GN) = c−(so(3)3) + c−(so(r)1) =
9

4
+
r

2
=
N

4
. (4.137)

These put a very restrictive constraint on the allowed topological field theory and fix

the fusion rules (4.128) for α± when r is odd. The braiding S matrices can be found

in appendix E.

The relative tensor product structure of the sixteenfold SO(r)1 sequence itself can

also be understood using anyon condensation

SO(r1)1 �b SO(r2)1
∼= SO(r1 + r2)1 (4.138)

where the fermion pair ψ1 ⊗ ψ2 is condensed. This can be verified by a similar

condensation procedure as the one presented above. For instance, if r1 and r2 are

both odd, the tensor product σ1 ⊗ σ2 will become non-simple after condensation

and decompose into a pair of abelian π-fluxes, s+ + s−, with identical exchange
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statistics but opposite fermion parities s± × ψ = s∓ and are related by an anyonic

symmetry[59, 118].

Next we move on to explaining the general relative tensor product structure (4.130)

of the 32-fold GN states. Eq.(4.138) describes the cases when both N1 and N2 are

even, i.e. G2r1 �b G2r2
∼= G2r1+2r2 . A similar anyon condensation procedure that

defined the relative tensor product SO(3)3 �b SO(r)1 above would prove that

GN �b SO(r)1
∼= GN+2r (4.139)

for N odd, where the fermion pair b = fGN ⊗ ψSO(r)1 is condensed.

When both N1 = 9 + 2r1 and N2 = 9 + 2r2 are odd, each of the two GNi =

SO(3)3 �b SO(ri)1 theories contains seven anyon types 1, αi±, γ
i
±, β

i, f i. The tensor

product state GN1 ⊗GN2 contains three non-trivial bosons

b = {b0, b+, b−} =
{
f 1 ⊗ f 2, γ1

+ ⊗ γ2
−, γ

1
− ⊗ γ2

+

}
(4.140)

as γ± have conjugate exchange phases θγ± = ±i. Moreover, these bosons are mutually

local. Firstly, b0 have trivial monodromy around b± as γ± are local with respect to the

fermion f . Secondly, as there are bosonic fusion channels b±× b± = 1 + b+ + b−+ . . .

and b± × b∓ = b0 + b+ + b− + . . ., b± are local among themselves because their

mutual monodromy phases are trivial. We first condensed the Abelian fermion pair

b0 = f 1⊗ f 2. The resulting theory contains the following set of (non-confined) anyon

types

GN1 �b0 GN2 =

〈
1, f, γ1

±, γ
2
±, γ

1
+γ

2
+, γ

1
+γ

2
−,

α1
+α

2
+, α

1
+α

2
−, α

1
+β

2, β1α2
+, β

1β2

〉
(4.141)

where some anyon types are identified by the b0 condensate, such as f ≡ f 1 ≡ f 2

and γ1
−γ

2
− = γ1

+γ
2
+ × b0, and are therefore not listed. Next we condense the non-
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Abelian boson b+ = γ1
+γ

2
−, which is already equated with b− = b+ × b0. The general

condensation procedure of a non-Abelian boson was proposed by Bais and Slingerland

in Ref.[9]. In the present case, it begins with the fusion theory F of GN1 �b0 GN2

that only encodes the associative fusion content but neglects the braiding structure

of the anyons. As the boson b+ is condensed, it decomposes as b+ = γ1
+γ

2
− = 1 + . . .,

which now contains the vacuum channel 1. This reduces the fusion theory F into a

new fusion theory F ′, where the certain anyons in (4.141) become non-simple objects

and decompose into simpler components while others are identified by the boson

condensate. This new fusion category F ′ contains the non-confined anyons in the

resulting state as well as confined non-point-like objects.

We start with the first line of anyons in (4.141), which are all local with respect

to the fermion f . The semion γ1
+ is self-conjugate as γ1

+×γ1
+ = 1 +γ1

+ +γ1
−. However

γ2
− is now also an antiparticle of γ1

+ since γ1
+ × γ2

− = b+ = 1 + . . . also contains the

vacuum channel. The uniqueness of antipartner guarantees the identifications

γ+ ≡ γ1
+ ≡ γ2

−, γ− ≡ γ1
− ≡ γ2

+ (4.142)

which obey the usual fusion rules γ± × γ± = 1 + γ+ + γ− and f × γ± = γ∓. This in

turn determines the decomposition of the non-Abelian boson

b+ = γ1
+γ

2
− ≡ γ+ × γ+ = 1 + γ+ + γ− (4.143)

which is consistent with the boson quantum dimension db+ = d2
γ = 1 + 2dγ. Moreover

the non-Abelian fermion also decomposes

γ1
+γ

2
+ ≡ γ+ × γ− = f + γ+ + γ−. (4.144)
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Next we move on to the second line of anyons in (4.141), which are π fluxes with

respect to the fermion f . From the original fusion rules (4.127), (4.128) and the

identification (4.142), (4.143) and (4.144), the π fluxes satisfy the fusion rules

(α1
+α

2
+)× (α1

+α
2
+)

=


1 + f + 2γ+ + 2γ−, for r1 + r2 even

1 + 1 + γ+ + γ− + 2γ±, for r1 + r2 ≡ 3 mod 4

f + f + γ+ + 3γ−, for r1 + r2 ≡ 1 mod 4

(4.145)

(α1β2)× (α1β2) = 1 + 1 + f + f + 4γ+ + 4γ− (4.146)

(β1β2)× (β1β2) = 4(1 + f + 2γ+ + 2γ−) (4.147)

(α1
+α

2
+)× (α1

+β
2) = 1 + f + 3γ+ + 3γ− (4.148)

(α1
+α

2
+)× (β1β2) = 1 + 1 + f + f + 4γ+ + 4γ− (4.149)

for N1 = 9 + 2r1 and N2 = 9 + 2r2.

These show α1β2 and β1β2 must be non-simple because their corresponding fusion

rules contain multiple vacuum channels. The decomposition of β1β2 is simplest and

applies to all r1, r2

β1β2 = α1
+α

2
+ + α1

+α
2
− (4.150)

where α1
+α

2
− = α1

+α
2
+ × f . For instance, it is straightforward to check that this

decomposition is consistent with the fusion rules. α1
+β

2 and α1
−β

2 are clearly identified

as they differ only by the Abelian boson b0 = f 1f 2. We therefore will simply denote

them as α1β2. Moreover, one can show that α1β2 and β1α2 are also identified after

the condensation of the non-Abelian boson γ1
+γ

2
− = 1 + γ+ + γ− in (4.143). This can
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be verify by equating the fusion equations (α1β2)× (γ1
+γ

2
−) = (α1β2)× (1 + γ+ + γ−).

The decomposition of α1β2 ≡ β1α2 depends on the parity of r1 + r2.

When r1 + r2 is even, the pair fusion rule for α1
+α

2
+ allows it to be simple since

there is a unique vacuum channel. Moreover as the pair fusion rule is unaltered by

the addition of a fermion f , it is identical to (α1
+α

2
+) × (α1

+α
2
−). This shows α1

±α
2
−

conjugates and therefore identifies with α1
±α

2
+, which is self-conjugate.

α1α2 ≡ α1
±α

2
± ≡ α1

±α
2
∓. (4.151)

In this case, α1β2 is decomposed into

α1β2 = σ + α1α2 (4.152)

where we introduce the Ising anyon σ that obey

σ × σ = 1 + f, σ × f = σ (4.153)

σ × α1α2 = γ+ + γ−, σ × γ± = α1α2.

The decomposition (4.152) is consistent with the fusion rules (4.148) and (4.146). The

reduced fusion category after condensing the boson (4.143) is therefore generated by

the following simple objects

F ′even =
〈
1, f, σ, γ±, α

1α2
〉

(4.154)

when r1 + r2 is even. It has the fusion rules (4.153) together with γ± × α1α2 =

σ + 2α1α2.

When r1 +r2 is odd, we need to further separate into two cases. When r1 +r2 ≡ 3

mod 4, the fusion rule of a pair of α1
+α

2
+ in (4.145) forbids it to be simple. It
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decomposes into

α1
+α

2
+ = s+ + γ+ or s+ + γ− (4.155)

where s± are Abelian anyons that satisfy the fusion rules

s± × s± = 1, s± × f = s∓, s+ × γ± = γ± (4.156)

and the fermion parity γ± in (4.155) depends on (r1, r2) ≡ (0, 3) or (1, 2) mod 4 but

is unimportant for the current discussion. The decomposition (4.155) is consistent

with the fusion rule (4.145). In this case, the fusion rules (α1
+α

2
+)× (α1β2) in (4.148)

requires a different decomposition of α1β2 than (4.152).

α1β2 = γ+ + γ−. (4.157)

The reduced fusion category after condensing the boson (4.143) is therefore generated

by the following simple objects

F ′3 = 〈1, f, s±, γ±〉 (4.158)

when r1 + r2 ≡ 3 mod 4.

When r1 + r2 ≡ 1 mod 4, the fusion rule (4.145) again forbids α1
+α

2
+ to be simple.

Moreover as the vacuum channel is absent, it is no longer self-conjugate but instead

is conjugate with α1
+α

2
− since it has opposite fermion parity and (α1

+α
2
+)× (α1

+α
2
−) =

1 + 1 + 3γ+ + γ−. We decompose

α1
+α

2
+ = s+ + g+ (4.159)
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where s± are Abelian anyons and g± are non-Abelian objects that satisfy

s± × s± = f, s± × f = s∓, g± = γ+ × s±. (4.160)

The decomposition of α1β2 also needs to be modified

α1β2 = g+ + g−. (4.161)

One can check that these decompositions are consistent with the original fusion rules.

The reduced fusion category after condensing the boson (4.143) is therefore generated

by the following simple objects

F ′1 = 〈1, f, s±, γ±, g±〉 (4.162)

when r1 + r2 ≡ 1 mod 4.

Not all objects in the reduced fusion theories F ′even, F ′1 and F ′3 in (4.154), (4.162)

and (4.158) are non-confined anyons in the new topological states. Some may be

non-local with respect to the boson b+ (4.143) and are therefore not point-like objects

when b+ is condensed. They are equipped with a physical string or branch cut that

extends. The anyon theory, which encodes both fusion and braiding information, after

condensation excludes these confined extended objects. To determine which objects

in the reduced fusion categories F ′ are non-confined anyons, we look at the possible

monodromy around the condensed boson b+. Suppose a1⊗a2 and b1⊗b2 are anyons

in the tensor product state GN1 �b0 GN2 (4.141) that are related by the fusion rule
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b+ × (a1 ⊗ a2) = b1 ⊗ b2 + . . ., the monodromy under this fixed fusion channel is[9]

b+ a1 ⊗ a2

b1 ⊗ b2

=

b+ a1 ⊗ a2

b1 ⊗ b2

=
θb1⊗b2

θb+θa1⊗a2

=
θb1⊗b2

θa1⊗a2

(4.163)

as b+ is a boson with θb+ = 1. In other words trivial monodromy simply reqires the

invariance of exchange statistics upon an addition of the boson.

Given any simple object x in the reduced fusion category F ′ in (4.154), (4.162) or

(4.158), it may be lifted to multiple anyons in the tensor product state GN1 �b0GN2 in

(4.141) in the sense that it belongs in distinct decompositions a1 ⊗ a2 = x + . . . and

b1⊗b2 = x + . . .. For instance, γ± are components of the boson γ1
+γ

2
− = 1 + γ+ + γ−

as well as the fermion γ1
+γ

2
+ = f + γ+ + γ− (see (4.143) and (4.144)). If x is an

object not confined by the boson condensation, then its exchange statistics should be

independent from the choices of lift

θx = θa1⊗a2 = θb1⊗b2 (4.164)

since the monodromy (4.163) should be trivial. Otherwise, the object x has to be

non-point-like and extended as it does not have well defined statistics. For example

since γ± belongs to the decomposition of a non-Abelian boson and fermion, they have

to be confined objects after condensation.

The relative tensor product GN1 �bGN2 with the condensation of the set of bosons

b (4.140) contains non-confined anyons in the reduced fusion categories F ′even, F ′1 and

F ′3 in (4.154), (4.162) and (4.158). For example when r1 +r2 is even, the simple object

α1α2 in (4.154) is confined and is not an anyon because it can be lifted into α1β2 and

β1β2, which have distinct statistics, in (4.152) and (4.150). When r1 + r2 ≡ 1 mod 4,
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the simple objects g± are also confined because they belong in α1β2 and α1
+α

2
±, which

have different spins, in (4.161) and (4.159). This shows GN1 �b GN2 is generated by

the non-confined anyons

GN1 �b GN2 =

 〈1, f, σ〉 , for r1 + r2 even

〈1, f, s±〉 , for r1 + r2 odd
(4.165)

The exchange statistics of σ and s± are determined by that of their lifts. For instance,

θσ = θα1β2 = θαθβ = eπi
9+r1+r2

8 = eπi(N1+N2)/16 (4.166)

using table 4.3 when r1 + r2 is even. This shows

GN1 �b GN2 = SO

(
N1 +N2

2

)
1

(4.167)

when both N1 and N2 are odd and concludes the 32-fold tensor product algebraic

structure of the GN -series.

4.4 Other possibilities

In the previous sections, we proposed time reversal symmetric interactions that

gap the coupled Majorana wire model and lead to a GN topological order (see

eq.(4.123) and (4.126)). The interwire current-current backscattering interactions

depend on a particular fractionalization, so(N)1 ⊇ GN × GN , of the N Majorana

channels per wire. However, in special cases, we have already seen that alternative

decompositions exist and correspond to different gapping interactions and topologi-

cal orders. For example, at the beginning of section 4.2, we showed when there are

even Majorana channels per wire, the model could simply be gapped by a single-

body backscattering potential (see (4.30)) and have trivial topological order. This
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is consistent with the Z2 classification of gapless Majorana modes protected by the

“antiferromagnetic” time reversal symmetry (4.1). Another example was given in

section 4.2.1.2 for the special case when there are N = 4 Majorana channels per

wire where the decomposition needs to be changed into so(4)1 ⊇ su(2)1 × su(2)1.

The resulting gapped state carries the SU(2)1 semion topological order instead of

G4 = SO(2)1.

Moreover the sixteenfold classification of topological superconductors (TSC) with

the presence of interaction[32, 74, 130, 111, 56, 95, 141] suggests the 32-fold GN -series

could have redundancies. On the other hand, the Z16 classification of TSC is based on

the canonical local time reversal symmetry, which is fundamentally different from the

non-local “antiferromagnetic” time reversal considered in this manuscript. The Z32

structure of surface topological order could be an artifact of such unconventional time

reversal symmetry. Nonetheless, here in section 4.4.1 and 4.4.2, we discuss altenative

gapping interactions when N = 16 that removes all electronic quasiparticles.

4.4.1 Consequence of the emergent E8 when N = 16

We design alternative interwire backscattering terms in the coupled wire model

(4.3) with N = 16 Majorana channels per wire. They open a time reversal symmetric

energy gap among 16 surface Majorana cones with the same chirality. In general, these

terms can also apply when the number of chiral Majorana channel per wire is larger

than 16 by acting on a subset of channels. We begin with the bosonized description

presented previously in section 4.1.2, where each wire consists of an 8-component

chiral U(1) boson φ̃ = (φ̃1, . . . , φ̃8) that bosonizes the complex fermions cj = (ψ2j−1 +

iψ2j)/
√

2 = exp(iφ̃j). This theory is special because it carries non-trivial bosonic

primary fields, which can condense. For example the two spinor representations s±

correspond to bosonic primary fields of so(16)1 with conformal dimension hs± = 1

(see eq.(4.17)). In particular we will focus on the even sector s+. It consists of vertex
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operators

V εs+ = eiε·φ̃/2, ε = (ε1, . . . , ε8) (4.168)

(see eq.(B.24)) for εj = ±1 with ε1 . . . ε8 = +1. The 128 = 27 number of combinations

naturally matches with the dimension of the even spinor representation of so(16) (see

appendix A). These V εs+ are related to each other through the OPE with the raising

and lowering operators Eα = eiα·φ̃ = ei(±φ̃
i±φ̃j) of so(16)1 (see (B.8) in appendix B).

The 128 lattice vectors ε/2 extend the 112 roots α of so(16) to the root lattice of

the exceptional simple Lie algebra E8 with size 240.[26] The unit dimensional vertex

operators V εs+ themselves can be regarded as raising and lowering operators that

enlarge the so(16)1 current algebra to E8 at level 1. This extends the current algebra

of each wire

so(16)1 ⊆ (E8)1 (4.169)

and is intimately related to the fact that the surface state can be gapped out without

leaving electronic quasiparticles which are non-local with respect to the boson s+.

The gapping strategy is to condense primary fields in the bosonic sector s+ be-

tween adjacent wires. This is facilitated by interwire backscattering interactions that

bipartite the emergent E8 symmetry.

E8 ⊇ s̃o(8)+
1 × s̃o(8)−1 (4.170)

However, these s̃o(8)1 subalgebras are distinct from the ones in the decomposition

so(16)1 ⊇ so(8)1×so(8)1. In particular, we will see that they do not support electronic

primary fields cj = eiφ̃
j
. Out of 128 ε lattice vectors in (4.168), there is a (non-unique)
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maximal set of 8 orthonormal vectors ε(1), . . . , ε(8)

1

2
ε(m) ·

1

2
ε(n) = 2δmn. (4.171)

We choose the set containing the highest weight vector ε(1) = (1, 1, 1, 1, 1, 1, 1, 1):


| |

ε(1) . . . ε(8)

| |

 =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1

 . (4.172)

From (4.19), they give 8 mutually commuting bosons ε(n) · φy/2 per wire

[
1

2
ε(m) · φy(x, t),

1

2
ε(n) · φy′(x′, t)

]
= 2πiδmn(−1)yδyy′sgn(x′ − x) (4.173)

up to a constant integral multiple of 2πi.

We separate the 8 vectors into two groups S+ = {ε(1), ε(2), ε(3), ε(4)} and S− =

{ε(5), ε(6), ε(7), ε(8)}. They defines the two s̃o(8)±1 subalgebras in E8, whose roots lie

in the root lattice of E8 orthogonal to S∓ respectively. One could pick the simple

roots

α̃+
1 = ε(1)/2, α̃

+
2 = e1 + e2, α̃

+
2 = e3 + e4, α̃

+
4 = e5 + e6

α̃−1 = ε(5)/2, α̃
−
2 = e2 − e1, α̃

−
2 = e4 − e3, α̃

−
4 = e6 − e5

so that their inner product recover the Cartan matrix of so(8)

α̃±I · α̃±J = KIJ , K =

(
2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

)
(4.174)

while opposite sectors decouple α̃±I · α̃∓J = 0.
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The new gapping potential is constructed by backscattering the two decoupled

s̃o(8)±1 currents to adjacent wires in opposite directions.

Hint = u

∞∑
y=−∞

Jy
s̃o(8)−1

· Jy+1

s̃o(8)+
1

(4.175)

However not every terms can be written down as 4-fermion interactions. In particular

Hint contains interwire s+ quasiparticle backscattering

V εy V
−ε′
y+1 + h.c. ∼ cos

(
8∑
j=1

εj
2
φ̃jy −

ε′j
2
φ̃jy+1

)
(4.176)

for εj, ε
′
j = ±1, that condenses pairs of s+’s along adjacent wires and confines all elec-

tronic excitations. The s̃o(8)±1 WZW CFT carries three emergent fermionic primary

fields

c̃±p = exp

[
i

2

(
φ̃2p−1 ± φ̃2p − φ̃7 ∓ φ̃8

)]
(4.177)

for p = 1, 2, 3. All of which have neutral electric charge and even fermion parity

with respect to the original electronic operators cj = eiφ̃
j
. This is because the c̃±p ’s

are invariant under the U(1) gauge transformation φ̃j → φ̃j + ϕ. As a result, the

interaction (4.175) corresponds to a gapped S̃O(8)1 topological order but contains no

electron-like anyon excitations. Lastly we notice that this matches with the surface

topological order of a type-II topological paramagnet.[129, 111]

4.4.2 Alternative conformal embeddings

The fractionalization so(9)1 ⊇ so(3)3 ⊗ so(3)3 in 4.2.2.1 is the corner stone for

the construction of symmetric gapping interactions when there is an odd number of

Majorana species. However, this is not the unique decomposition. In general when
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the number of Majorana channels is a whole square, the wire can be bipartitioned

into so(n2)1 ⊇ so(n)n ⊗ so(n)n.[26, 11, 108, 10]

For instance, this provides yet another alternative when N = 16 where each wire

is fractionalized into a pair of so(4)4 = su(2)4× su(2)4. The so(4)±4 current operators

can be constructed in a similar fashion as those in the so(3)±3 case, J = i
2
Σ±abψ

aψb

for Σ+ = Σ ⊗ 14 and Σ− = 14 ⊗ Σ where Σ are antisymmetric 4 × 4 matrices

generating so(4). After introducing the current-current backscattering interactions

Jy
so(4)−4

· Jy+1

so(4)+
4

, the surface would carry a SO(4)4 = SU(2)4 × SU(2)4 topological

order. Each SU(2)4 theory contains five anyon types j = 0,1/2,1,3/2,2 with spins

hj = j(j + 1)/6. The SO(4)4 topological state does not carry fermionic excitations,

and therefore, like the previous example in 4.4.1, this gapping potential also removes

all electronic quasiparticle excitations.

The gapped symmetric states for N odd are not unique either. For example, the

decomposition so(25)1 ⊇ so(5)5 ⊗ so(5)5 leads to a surface SO(5)5 topological order

which is inequivalent to G25 = SO(3)3 �b SO(8)1.
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Chapter V

Conclusions and Outlooks

In chapter I, we reviewed two important features of quantum many-body physics,

entanglement and topology. We explained the motivation for studying the properties

of scaling and classification respectively for these two concepts, both for theoretical

consideration and potential applications. We then give an overview of the latest

developments in related research directions and showed how our ideas to further

improve those results are natural next steps.

In chapter II and III, we introduce a simple one dimensional spin model that

features a state-of-the-art violation of the area law of entanglement entropy, resulting

in a novel quantum phase transition in the meantime. Although we have acquired

analytical results on both entanglement entropy and spectral gap, we are still far

from understanding the order in the ground state or having a description for the low

energy excitations. In addition to these obvious future directions, we mention a few

others.

First, the commutation restriction observed in the proof of frustration freeness

is interesting in itself, and one can explore whether similar extensions/deformations

would work for other Hamiltonians written as sum of projectors, and if so, whether

the same type of phase transition would occur. Second, while we have shown how

to construct a multi-parameter deformation, we have only studied entropy and gap
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for a uniform parameter t. This choice keeps the chain translationally invariant,

however, no momentum space arguments were involved in the analysis. A more

general treatment will have to contend with the distribution of the tA parameters.

Third, the nature of the quantum phase transition is unclear. To study the transition,

as well as thermal effects, more detailed information about the density of states near

the ground state is crucial. In particular, it would be very interesting to explore

a possible field theoretic description in the continuous limit. Finally, it would be

worthwhile to establish a proof on the gap in 0 < t < 1 (for any s) phase observed in

the numerical results given in ref. [12].

In chapter IV, we constructed a coupled Majorana wire model in (2 + 1)D that

imitates the massless Majorana modes on the surface of a topological superconduc-

tor. This model had a non-local “antiferromagnetic” time reversal symmetry and

consequently was Z2 classified – rather than Z in the class DIII TSC case – under the

single-body framework. Despite the difference, this model adequately described the

surface behavior of a TSC when the number N of Majorana species was odd, and it

was worth studying and interesting in and of itself.

We introduced the 4-fermion gapping potentials in section 4.2. They relied on

the fractionalization or bipartition of the so(N)1 current along each wire into a pair

of GN channels (see eq.(4.33) and (4.34)). The two fractional channels then were

backscattered onto adjacent wires in opposite directions. This froze all low energy

degrees of freedom and opened an excitations energy gap without breaking time

reversal symmetry. When N = 2r was even, each wire could simply be split into

a pair of GN = so(r)1 channels. The fractionalization was not as obvious when N was

odd. We first made use of the conformal embedding that decomposed nine Majorana’s

into two subsectors, so(9)1 ⊇ so(3)3⊗so(3)3 (see section 4.2.2.1). This division could

be generalized by all odd cases by splitting a subset of 9 Majorana’s into a pair of

so(3)3 and the remaining even number of Majorana’s into a pair of so(r)1. This could
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even be applied when N is less then 9 because each wire could be reconstructed by

adding an arbitrary number of helical Majorana modes with the same number of right

and left movers.

The surface GN topological ordered was inferred from the bulk-boundary corre-

spondence (see eq.(4.115)). These topological states followed a 32-fold periodicity

GN
∼= GN+32 and a relative tensor product structure GN1 �b GN2

∼= GN1+N2 . We

presented the quasiparticle types as well as their fusion and braiding statistics prop-

erties. We explained the relative tensor product structure using the notion of anyon

condensation[9]. On a more fundamental level, one should be able to deduce the

topological order without the knowledge of the boundary by studying the modular

properties of the degenerate bulk ground states under a compact torus geometry[134],

or by directly looking at exchange and braiding behaviors of bulk excitations. In fact

the coupled wire construction provided a fitting model for this purpose. Being an

exactly solvable model, a ground state could be explicitly expressed as entangled

superposition of tensor product ground states between each pair of wires. In the

simplest case when the model is bosonizable, a ground state could be specified by the

pinned angle variables of a collection of sine-Gordon potentials. The bulk excitations

could be realized as kinks between a pair of wires and could be created by vertex

operators. The virtue of a bulk description is that the action of time reversal on

quasiparticle excitations could be examined explicitly, which we have not performed

or addressed here. These issues are beyond the scope of this article and we refer a

more detail discussion to subsequent works.

We noticed that there were alternative ways of fractionalization that led to dif-

ferent gapping interactions and consequently different topological orders. We saw in

section 4.2.1.2 that N = 4 was an exceptional case that requires the special bipartition

so(4)1 ⊇ su(2)1 × su(2)1 instead of two copies of so(2)1. We also saw in section 4.4

that when N = 16, the surface could be gapped by alternative interactions that corre-
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sponded to a S̃O(8)1 or SO(4)4 topological order, none of which contained electronic

quasiparticle excitations. Other conformal embeddings so(n2)1 ⊇ so(n)n ⊗ so(n)n

could give rise to multiple possibilities. Our 32-fold topological states, which only

utilized so(9)1 ⊇ so(3)3⊗so(3)3, therefore should belong into a wider universal frame-

work. These should be addressed in future works.

We conclude by pointing out that although not explored here, it will be interesting

to study the topological aspects of the phases in the (deformed) Motzkin and Fredkin

spin chains, an the entanglement properties in the topological order of TR symmetric

gapped Majorana surface.
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Appendix A

The so(N) Lie algebra and its representations

The so(N) Lie algebra are generated by real antisymmetric matrices t(rs) =(
t
(rs)
ab

)
N×N

with entries

t
(rs)
ab = δraδ

s
b − δrbδsa (A.1)

for r, s = 1, . . . , N . There are N(N − 1)/2 linearly independent generators since

t(rs) = −t(sr) and t(rr) = 0. In the main text, we write the basis labels as β = (rs),

for r < s, for conciseness. The generators obey the commutator relation

[
t(rs), t(pq)

]
=
∑
m<n

f(rs)(pq)(mn)t
(mn) (A.2)

where the structure constant is

f(rs)(pq)(mn) =δmrδnqδsp − δmrδnpδsq

+ δmsδrqδnp − δmsδnqδrp. (A.3)

The matrix representation (A.1) is referred as the fundamental representation of

so(N) and is labeled by ψ. In general the generators of so(N) can have different
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irreducible matrix representations t
(rs)
λ = tβλ labeled by λ. Since the quadratic Casmir

operator

Q̂λ = −
∑
β

tβλt
β
λ (A.4)

commutes with all the generators, it must have a fixed eigenvalue Qλ that (incom-

pletely) characterizes the irreducible representation λ. For instance, the fundamental

representation in (A.1), denoted by ψ, has quadratic Casmir value Qψ = N − 1.

The spinor representation σ of so(N) makes use of the Clifford algebra[67]

{γa, γb} = γaγb + γbγa = 2δab where γ1, . . . , γN are hermitian matrices of dimension

d = 2N/2 for N even or d = 2(N−1)/2 for N odd. The so(N) generators are represented

as the quadratic combination

t(rs)σ =
1

4

∑
ab

γat
(rs)
ab γb =

1

2
γrγs (A.5)

and satisfy (A.2). When N is even, the parity operator (−1)F = iN/2γ1 . . . γN com-

mutes with all t
(rs)
σ and the representation is decomposable into σ = s+ ⊕ s−, where

s± are 2N/2−1-dimensional sectors with (−1)F = ±1. The so(N) generators are then

irreducibly represented by

t(rs)s± = P±t
(rs)
σ P †± (A.6)

where P± are the projection operators onto the fixed parity subspaces. As t
(rs)
σ t

(rs)
σ =

−(1/4)1, the quadratic Casmir values (A.4) of spinor representations are

Qσ =
N(N − 1)

8
, Qs± =

N(N − 1)

8
. (A.7)
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The complexified so(N) Lie algebra has an alternative set of Cartan-Weyl genera-

tors. It consists of a maximal set of commuting hermitian generators H1, . . . , Hr, and

a finite set of raising of lowering operators Eα = (E−α)†, labeled by integral vectors

α = (α1, . . . , αr) ∈ ∆ called roots. The root lattice is given by the set

∆so(2r) = {±eI ± eJ : 1 ≤ I < J ≤ r}

∆so(2r+1) = ∆so(2r) ∪ {±eI : 1 ≤ I ≤ r} (A.8)

where eI are unit basis vectors of Rr. In particular, there are r simple roots α1, . . . ,αr

that forms a basis for the root lattice. For so(N) they can be chosen to be

αI =


eI − eI+1, for I = 1, . . . , r − 1

er, for I = r and N odd

er−1 + er, for I = r and N even

. (A.9)

The set of roots ∆ consists of integral combinations of the simple roots α =∑r
J=1 b

JαJ so that its length is |α| =
√

2, for even N , or |α| = 1 or
√

2, for odd N .

The integer r is the rank of the so(N) Lie algebra and is determined by N = 2r

for N even or N = 2r + 1 for N odd. These generators satisfy

[
H i, Eα

]
= αiEα,

[
Eα, E−α

]
=

2

|α|2
r∑
i=1

αiH i (A.10)

[
Eα, Eβ

]
∝

 Eα+β, if α+ β ∈ ∆

0, if otherwise
, for α 6= β.

The Cartan matrix K = (KIJ)r×r of the algebra is defined by the scalar product

KIJ =
2αTI αJ
|αJ |2

=
r∑
i=1

2αiIα
i
J

|αJ |2
. (A.11)
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so(2r) is simply-laced in the sense that all roots have identical length and the Cartan

matrix is therefore symmetric

Kso(2r) =



2 −1 0 . . . 0

−1 2
. . .

...

0
. . . 2 −1 −1

... −1 2 0

0 . . . −1 0 2


. (A.12)

Sometimes it would be convenient to use the Chevalley basis so that the commuting

generators are redefined

hI =
2

|αI |2
r∑
i=1

αiIH
i (A.13)

so that the commutator relations (A.10) becomes

[
hI , E±αJ

]
= ±KIJE

±αJ ,
[
EαJ , E−αJ

]
= δIJhJ . (A.14)
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Appendix B

Bosonizing the so(2r)1 current algebra

Here we review the bosonization[26, 140, 36] of a chiral wire with N = 2r Majo-

rana fermions, and express the so(2r)1 current operators in bosonized form. The 2r

Majorana (real) fermions can be paired into r Dirac (complex) fermions and bosonized

into the normal ordered vertex operators

cj(z) =
ψ2j−1(z) + iψ2j(z)√

2
∼ exp

(
iφ̃j(z)

)
. (B.1)

Here we focus on a single wire, say at an even y, so that all fields depend on the holo-

morphic parameter z = eτ+ix. The r-component boson φ̃ = (φ̃1, . . . , φ̃r) is governed

by the Lagrangian density

L0 =
1

2π

r∑
j=1

∂xφ̃
j∂tφ̃

j =
1

2π
∂xφ̃∂tφ̃ (B.2)

and follows the algebraic relations

[
φ̃j(x, t), φ̃j

′
(x′, t)

]
= iπ

[
δjj
′
sgn(x′ − x) + sgn(j − j′)

]
(B.3)
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or equivalently the time-ordered correlation function

〈φ̃j(z)φ̃j
′
(w)〉 = −δjj′ log(z − w) +

iπ

2
sgn(j − j′) (B.4)

for sgn(s) = s/|s| when s 6= 0 and sgn(0) = 0. Operator product expansions between

unordered vertex operators can be evaluated by eA(z)eB(w) = eA(z)+B(w)+〈A(z)B(w)〉, for

A,B linear combination of the bosons φ̃j. For instance, the vertex operators in (B.1)

reproduce the product expansion of a pair of identical Dirac fermions

cj(z)
(
cj(w)

)†
=

1

z − w + i∂φ̃j(w) + . . . (B.5)

and the singular piece is dropped when the product is normal ordered in the limit

z → w. The non-singular sign factor iπsgn(j − j′) ensures fermions with distinct

flavors anticommutes

cj(z)cj
′
(w) = −cj′(w)cj(z). (B.6)

The so(2r)1 currents in the Cartan-Weyl basis can now be bosonized

Hj(z) = cj(z)cj(z)† = i∂zφ̃
j(z) (B.7)

Eα(z) =
r∏
j=1

cj(z)α
j

= exp
(
iα · φ̃(z)

)

where α = (α1, . . . , αr) ∈ ∆ are roots of so(2r) (see (A.8)) and the fermion products

are normal ordered. For instance, α has two and only two non-zero entries and Eα

must be of the form

Eα(z) = ci(z)±cj(z)± = ei(±φ̃
i(z)±φ̃j(z)). (B.8)
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Combining raising or lowering operators give

Eα(z)Eβ(w) = i−α·βε(α,β)
ei(α·φ̃(z)+β·φ̃(w))

(z − w)−α·β
(B.9)

where the vertex operator here is again normal ordered and the 2-cocyle is given by

the star product

ε(α,β) = (−1)α∗β = (−1)
∑
i>j α

iβj . (B.10)

As
∑r

i=1 α
i is even for all roots, we have the following simplification when interchang-

ing α↔ β

ε(α,β)ε(β,α) = (−1)α·β. (B.11)

Using the boson OPE (B.4), the product of the two vertex operators above is

singular only when (i) α = −β, or (ii) α · β = −1 in other words α + β ∈ ∆. To

summarize, the Cartan-Weyl generators satisfy the product expansion

H i(z)Hj(w) =
δij

(z − w)2
− ∂φ̃i(w)∂φ̃j(w) + . . .

H i(z)Eα(w) =
αi

z − wE
α(w) + . . .

Eα(z)E−α(w) =
1

(z − w)2
+

r∑
i=1

αi

z − wH
i(w) (B.12)

− 1

2

(
α · ∂φ̃(w)

)2

+ . . .

Eα(z)Eβ(w) =
iε(α,β)

z − w Eα+β(w) + . . . , if α · β = −1.

For instance, the 2-cocyle coefficient ε(α,β) ensures the OPE between Eα(z) and

Eβ(w) commute as the sign in (B.11) when exchanging α ↔ β cancels that in

1/(z − w) when switching z ↔ w.
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In certain derivations, especially when involving quasiparticle excitations, it may

be more convenient to use the Chevalley basis. Here fields are expressed in terms

of non-local bosons φ = (φ1, . . . , φr), which are related to the original ones by the

(non-unimodular) basis transformation

φ̃i =
r∑
I=1

αiIφ
I (B.13)

using the simple roots αI = (α1
I , . . . , α

r
I) ∈ Zr (see (A.9) in appendix A). The La-

grangian density (B.2) now becomes

L0 =
1

2π

r∑
I,J=1

KIJ∂xφ
I∂tφ

J (B.14)

where K = (KIJ)r×r = αI ·αJ is the Cartan matrix of so(2r)1 (see eq.(A.12)).

The current generators are rewritten in the Chevalley basis by

hI(z) =
r∑
i=1

αiIH
i(z) = i

r∑
J=1

KIJ∂zφ
J(z)

Eb(z) = Eβ(z) = exp
(
ibTKφJ(z)

)
(B.15)

where β =
∑

J b
JαJ are roots expressed in integral combinations of the simple ones,

for b = (b1, . . . , br) ∈ Zr. The Chevalley generators satisfy the modified current

relations from (B.12)

hI(z)hJ(w) =
KIJ

(z − w)2
+ . . .

hI(z)Eb(w) =
KIJb

J

z − wE
b(w) + . . . (B.16)

Eb(z)E−b(w) =
1

(z − w)2
+

r∑
I=1

bI

z − whI(w) + . . .

Eb1(z)Eb2(w) =
iε(β1,β2)

z − w Eb1+b2(w) + . . .
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if bT1Kb2 = −1.

The (normal ordered) energy-momentum tensor can be turned from the Sugawara

form (4.11) to the usual bosonic one

T (z) =
1

2(N − 1)

[
r∑
i=1

H i(z)H i(z) +
∑
α∈∆

Eα(z)E−α(z)

]

= −1

2
∂φ̃(z) · ∂φ̃(z) = −1

2
∂φ(z) ·K∂φ(z). (B.17)

Excitations in the CFT can be easily represented by vertex operators

V a(z) = exp (ia · φ(z)) = exp
(
ia∨ · φ̃(z)

)
(B.18)

labeled by integral lattice vectors a = (a1, . . . , ar), or equivalently dual root lattice

vectors a∨ = (a1
∨, . . . , a

r
∨) with rational entries

aj∨ =
∑
IJ

aI(K
−1)IJαjJ . (B.19)

The conformal dimension of V a can be read off by the inner product

ha =
1

2
aTK−1a =

1

2
(K−1)IJaIaJ

=
1

2
aT∨a∨ =

1

2
δija

i
∨a

j
∨. (B.20)

This can be evaluated from definition (4.15) using the energy-momentum tensor

(B.17) and the OPE

∂zφI(z)φJ(w) = −(K−1)IJ log(z − w) + . . . (B.21)

which is equivalent to (B.4).
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Most vertex operators (B.18) however are not WZW primary and do not represent

the so(2r)1 Kac-Moody algebra. The OPE with the current generators

hI(z)V a(w) =
aI

z − wV
a(w) + . . .

Eb(z)V a(w) = cba(z − w)a·bV a+Kb(w) + . . . (B.22)

would match the requirement (4.13) for a primary field only when the exponent of

the singular term is bounded below, i.e. a · b ≥ −1 for all roots β =
∑

I b
IαI . Such

lattice vectors a are called weights or Dynkin labels of so(2r) at level 1. When the

exponenet a ·b in (B.22) is −1, the vertex operators V a and V a+Kb are related by the

SO(2r)1 symmetry and belong to the same primary field sector. For example the unit

vector a = e1 is the highest weight that generates the fermion sector ψ. Applying

lowering operators E−b to V e1 = c1 gives all 2r Dirac fermions

Vψ = span
{

(cj)± = e±iφ̃
j

: j = 1, . . . , r
}

(B.23)

which in turn irreducibly represent the so(2r)1 algebra (see (4.13)) according to the

fundamental vector representation.

The unit vectors a = er−1 and er generate the two spinor sectors s− and s+

respectively. Each of them consists of 2r−1 twist fields

Vs± = σ1 . . . σ2r (B.24)

= span

{
exp

(
i

r∑
j=1

(−1)sj

2
φ̃j

)
:

r∏
j=1

(−1)sj = ±1

}
.

They irreducibly represent the so(2r)1 algebra according to the even and odd spinor

representations. These are the only primary fields of so(2r)1 and their conformal

dimensions are given by hψ = 1/2 and hs± = r/8.
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The four primary fields 1, ψ, s± obey a set of fusion rules, which are OPE keeping

only primary fields.

s± × ψ = s∓ (B.25)

s± × s±

 1, for r even

ψ, for r odd
, s± × s∓

 ψ, for r even

1, for r odd
. (B.26)

For instance, the OPE

Vs+(z)cr(w)† = ei
φ̃1(z)+...+φ̃r(z)

2 e−iφ̃
r(w)

∝ (z − w)−
1
2 ei

φ̃1(w)+...+φ̃r(w)−φ̃r(w)
2 + . . .

= (z − w)−
1
2Vs−(w) + . . . (B.27)

shows s+ × ψ = s−, and

ei
∑
j φ̃

j(z)/2e−i
∑
j φ̃

j(w)/2 ∝ (z − w)−
r
4 + . . . (B.28)

shows s+ × s+ = 1 for r even, or s+ × s− = 1 for r odd.
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Appendix C

Bosonizing the so(2r + 1)1 current algebra

A chiral wire with N = 2r + 1 Majorana fermions can be partially bosonized by

grouping ψ1, . . . , ψ2r in pairs to form r Dirac fermions (see (B.1)). This leaves a single

Majorana ψ2r+1 behind. In order for the fermions to obey the correct anticommuta-

tion relations, the bosonized complex fermions (B.1) have to be modified by a Klein

factor

cj(z) = (−1)Πeiφ̃
j(z) = eiφ̃

j(z)+iπΠ (C.1)

where (−1)Π is the fermion parity operator that anticommutes with ψ2r+1, and both

Π and ψ2r+1 commute with the rest of the bosons φ̃j. In a non-chiral system, (−1)Π

can be chosen to be the combination iγLγR, for γL/R the zero mode of ψ2r+1
L/R . In the

chiral case, it can be defined by iγγ∞ using an additional Majorana zero mode γ∞

that completes the Clifford algebra {γ, γ∞} = 0.

The so(2r+1)1 current algebra extends the so(2r)1 algebra by the short roots with

length 1 (see (A.8)). It contains the so(2r)1 generators Hj = i∂φ̃j and Eα = eiα·φ̃

(see (B.7) in appendix B), for α ∈ ∆so(2r) the long roots with length |α| =
√

2. The

remaining raising and lowering operators with the short roots are represented by the
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normal ordered products

E±ej(z) = e±iφ̃
j(z)ψ2r+1(z). (C.2)

In addition to (B.12), the Cartan-Weyl generators satisfy the current relations

H i(z)E±ej(w) =
±δij
z − wE

±ej(w) + . . .

Eej(z)E−ej(w) =
1

(z − w)2
+

1

z − wH
j(w) (C.3)

− 1

2
∂φ̃j(w)∂φ̃j(w)

− ψ2r+1(w)∂ψ2r+1(w) + . . .

Es1ej1 (z)Es2ej2 (w) =
i−s1s2ε(ej1 , ej2)

z − w Es1ej1+s2ej2 (w)

+ . . .

for j1 6= j2 and s1, s2 = ±1. Moreover, when α · (±ej) = −1, i.e. α± ej ∈ ∆so(2r+1),

Eα(z)E±ej(w) =
iε(α, ej)(−1)

∑
j α

j/2

z − w Eα±ej(w) + . . .

where ε(m,n) = (−1)m∗n is defined in (B.10).

The (normal ordered) energy-momentum tensor can be turned from the Sugawara

form (4.11) to the usual bosonic and fermionic one

T (z) =
1

2(N − 1)

[
r∑
i=1

H i(z)H i(z) +
∑
α∈∆

Eα(z)E−α(z)

+
r∑
j=1

Eej(z)E−ej(z) + E−ej(z)Eej(z)

]

= −1

2
∂φ̃(z) · ∂φ̃(z)− 1

2
ψ2r+1(z)∂ψ2r+1(z). (C.4)
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There are only two non-trivial primary fields ψ and σ. The fermion sector ψ consists

of the 2r Dirac fermions cj, (cj)† in (B.23) as well as the remaining Majorana fermion

ψ2r+1. The σ sector consists of 2r twist fields

Vσ = σ1 . . . σ2r+1 (C.5)

= span

{
exp

(
i

r∑
j=1

(−1)sj

2
φ̃j

)
σ2r+1 : sj = 0, 1

}

which represents so(2r+ 1)1 according to the spinor representation. Their conformal

dimensions are given by hψ = 1/2 and hσ = (2r + 1)/16.
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Appendix D

Z6 parafermion model

Here we represent the Z6 parafermions using bosonized fields and Majorana

fermions in the so(9)1 CFT. We focus on a single Majorana wire containing 9 right

moving real fermions. The CFT is fractionalized using the conformal embedding into

so(9)1 ⊇ so(3)+
3 × so(3)−3 (see section 4.2.2.1). Each so(3)3 sector is then further

decomposed into so(2)3 × “Z6” using the coset construction “Z6” = so(3)3/so(2)3

(see section 4.2.2.2). We now provide a more detail description of the Z6 parafermion

sector. We will focus on the one in so(3)−3 .

First we pair six Majorana channels into three Dirac fermions and bosonize c1 =

(ψ1 + iψ4)/
√

2 = eiφ̃
1
, c2 = (ψ2 + iψ5)/

√
2 = eiφ̃

2
and c3 = (ψ3 + iψ6)/

√
2 = eiφ̃

3
.

The Lagrangian density of the boson fields are given in (4.97). Like the so(N)1 case,

extra care is required so that the Dirac fermions cj satisfies the appropriate mutual

anticommutation relations. Here we use a slightly different but more convenient
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convention

〈
φ̃i(z)φ̃j(w)

〉
= −δij log(z − w) +

iπ

2
Sij (D.1)

Sij =


0 if i = j

1 if i− j ≡ 1 mod 3

−1 if i− j ≡ −1 mod 3

so that the constant phases Sij have a threefold cyclic symmetry. The so(2)3 sub-

theory is generated by the “charged” boson φρ = (φ̃1 + φ̃2 + φ̃3)/3. It satisfies

〈φρ(z)φρ(w)〉 = −1

3
log(z − w). (D.2)

The remaining “neutral” bosons φjσ = φ̃j−φρ are linearly dependent φ1
σ+φ2

σ+φ3
σ = 0

and obey the OPE

〈
φiσ(z)φjσ(w)

〉
= −

(
δij − 1

3

)
log(z − w) +

iπ

2
Sij. (D.3)

The “charge” and “neutral” sector completely decoupled so that 〈φρ(z)φjσ(w)〉 = 0.

Lastly, there are three remaining Majoranan fermions ψ7,8,9 in the so(9)1 theory. They

completely decouple with φσ and φρ. Although the vertex eiφρ anticommutes with

ψ7,8,9, this has no effect on any of our derivations. More importantly the “neutral”

vertices eiφ
j
σ commute with the remaining fermions.

In section 4.2.2.2, we defined the Z6 parafermion (4.104)

Ψ =
1√
3

(
eiφ

1
σψ7 + eiφ

2
σψ8 + eiφ

3
σψ9
)

(D.4)
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which is part of the so(3)−3 current (see (4.103)). It generates the rest of the Z6

parafermions

Ψ2 =
1√
15

[
3∑
j=1

ei2φ
j
σ

+ 2i
(
e−iφ

1
σψ89 + e−iφ

2
σψ97 + e−iφ

3
σψ78

)]

Ψ3 =

√
2

5

[
iψ789 − cos

(
φ1
σ − φ2

σ

)
ψ9 (D.5)

− cos
(
φ2
σ − φ3

σ

)
ψ7 − cos

(
φ3
σ − φ1

σ

)
ψ8
]

Ψ4 =
(
Ψ2
)†
, Ψ5 = (Ψ1)† , Ψ0 = Ψ6 = 1

where ψab = ψaψb and ψabc = ψaψbψc. Their conformal dimensions

hΨm =
m(6−m)

6
(D.6)

as well as the fusion rules

Ψm(z)Ψm′(w) =
cmm

′

(z − w)mm′/3
Ψm+m′(w) + . . . (D.7)

Ψm(z)Ψ6−m(w) =
1

(z − w)2hΨm

×
[
1 +

2hΨm

cZ6

(z − w)2TZ6 + . . .

]

match with the known result by Zamolodchikov and Fateev[144], for TZ6 the energy-

momentum tensor (4.102) with central charge cZ6 = 5/4 and

cmm
′
=

√
(m+m′)!(6−m)!(6−m′)!
m!m′!(6−m−m′)!6!

. (D.8)
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Appendix E

The S-matrices of the GN state

The surface topological orders of the time reversal symmetric gapped coupled wire

model are described in section 4.3. There are thirty two distinct topological states

defined in eq.(4.123) and (4.126), which we repeat here.

GN =

 SO(r)1, for N = 2r

SO(3)3 �b SO(r)1, for N = 9 + 2r
. (E.1)

In this appendix we summarize the modular properties of these states. In particular

we present there braiding S-matrices (4.118)

Sab =
1

D
∑

c

dcN
c
ab

θc

θaθb

(E.2)

which are identical to the modular S-matrix[26] of the GN WZW CFT. The fusion

matrices Nc
ab that characterize fusion rules a×b =

∑
cN

c
abc can in turned be deter-

mined by S-matrix through the Verlinde formula[123] (4.87)

N s
s1s2

=
∑
s′

Ss1s′Ss2s′Sss′
S0s′

. (E.3)
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The GN state is Abelian and carries four anyon types 1, ψ, s+, s− when N is a

multiple of four. It is non-Abelian otherwise and carries three anyon types 1, ψ, σ

when N is 2 mod 4, or seven anyon types 1, α+γ+, β, γ−, α−, f when N is odd. The

quasiparticle exchange statistics θx and quantum dimensions dx are summarized in

table 4.2 and 4.3. The total quantum dimensions D =
√∑

x d
2
x are given by

DGN =

 2 for N even

2 csc(π/8) for N odd
(E.4)

where csc(π/8) =
√

4 + 2
√

2.

The S-matrices of GN for N = 2r even are well-known and are given by those of

the SO(r)1 states.[60, 59]

SGN =
1

DGN

(
1 1 1 1
1 1 −1 −1
1 −1 in −in
1 −1 −in in

)
, for N = 4n, (E.5)

SGN =
1

DGN

(
1 1

√
2

1 1 −
√

2√
2 −
√

2 0

)
, for N = 4n+ 2. (E.6)

The S-matrices for the odd N cases are modification of the G9 = SO(3)3 prototype

(4.88)

SSO(3)3
s1s2

=
1

2
sin

[
π(2s1 + 1)(2s2 + 1)

8

]
(E.7)

where sj = 0, 1/2, 1, 3/2, 2, 5/2, 3 label the seven anyon types 1, α+, γ+, β, γ−, α−, f

(see table 4.1). For N = 9 + 2r mod 32, the S-matrix of GN is given by

SGN = F rSe(dr/2e)F−r (E.8)
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where dr/2e ≥ r/2 is the smallest integral ceiling of r/2, Se(n) is the S-matrix when

r = 2n is even

Se(n)s1s2 = in(4s1s2)2SSO(3)3
s1s2

(E.9)

and F is the operator that flips the fermion parity of α+ ↔ α− and γ+ ↔ γ−

F =

 1
1

1
1

1
1

1

 . (E.10)
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