
Amazon Grocery: Automating the Retrieval Process

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

David Tran

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Amazon Grocery: Automating the Retrieval Process

CS4991 Capstone Report, 2022
David Tran

Computer Science
University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

dqt5vt@virginia.edu

Abstract

Amazon is innovating within the
grocery space, through the acquisition of
companies such as Whole Foods, and rolling
out grocery delivery services such as
Amazon Fresh. Amazon’s Grocery
Automated Storage and Retrieval System
(GRASRS) is commonly called Grocery
ASRS. The Amazon Grocery Retrieval Team
is currently working on Amazon Fresh and is
developing a more efficient way to retrieve
groceries from orders by using robots to
automate the picking and stowing processes.
They have run into many issues with
debugging and system failures. Since there
was no efficient way to aggregate error logs
into a common repository, my project as a
GRASRS intern was to create an efficient
way for software engineers to access error
logs to address system failures. I used AWS
CloudWatch to retrieve error logs across all
GRASRS development accounts and display
them on a full-stack website for engineers to
see. This resulted in a 50% speedup in
debugging times, and greatly expedited
turnaround time for system failures. In the
future, the GRASRS team plans to add more
functionality to the full-stack website I
created, by introducing tools to visualize data
and monitor the state of the system.

1. Introduction
 As the largest e-commerce company
in the world, Amazon has a large number of
fulfillment centers across the country in order
to meet online demand for products. In order

to deliver products to its customers in a
timely manner, Amazon attempts to
streamline the end-to-end process of placing
an order to delivering the order to the
customer as much as possible, in order to
save on costs and time. Each of Amazon’s
fulfillment centers serves a different purpose.
Some store general goods, while others
primarily store technological goods such as
mobile phones, laptops, and electronics.
 Recently, Amazon has been trying to
break into the grocery industry and it
introduced a new service called Amazon
Fresh in 2007. Amazon Fresh is a grocery
retailer primarily dealing with grocery
delivery to Amazon Prime customers,
although Amazon Fresh has a small number
of physical stores throughout the United
States. Several fulfillment centers across the
country contain exclusively grocery products
and produce. Since Amazon Fresh is a
relatively new subsidiary of Amazon, much
of the end-to-end process of delivering an
order from the grocery fulfillment centers is
manual, with humans picking the grocery
products from the fulfillment centers, storing
them into bags, then stowing the bags into
trucks for delivery to the customer. This is a
relatively expensive and slow process that
could be automated and streamlined to save
money and time.
 The problem with grocery products,
and the reasons Amazon’s current
automation practices cannot be applied to the
grocery space are twofold. The first reason is
that grocery products are perishable and have

to be stored in different conditions. For
example, a frozen product is picked and
stored in a bag for too long it could expire
before being delivered to the customer. The
second reason is that not all products are the
same. The prime example of this is fresh
produce such as meat and vegetables, which
often vary in freshness and ripeness.
Customers typically expect their products to
be of the highest quality, and current
automation practices do not discriminate
between products.
 The GRASRS team was formed at
Amazon in order to help Amazon automate
the retrieval process in Amazon Fresh and
grocery fulfillment centers. Since GRASRS
is less than a year old, operators run into
many issues with their beta system. Currently,
there is no efficient way to debug these issues
since debugging logs are spread across a
plethora of accounts. As an intern, I was
tasked with creating a full-stack website that
enables team members to access all
debugging logs in a common resource in the
case of a system failure.

2. Related Works
 An automated storage and retrieval
system (ASRS) is a system used to store and
retrieve products in a distribution
environment, in this case, Amazon’s grocery
fulfillment centers. Roodbergen and Vis
(2009) surveyed ASRS’s, explaining their
advantages over non-automated systems.
ASRS’s have several advantages over non-
automated systems. ASRS’s save money on
human labor costs, since the storage and
retrieval process is done by robots. They are
also more accurate, since humans are
inherently imperfect, and are bound to make
mistakes. However, the biggest downside
with ASRS’s is the initial investment needed
to create an ASRS in a fulfillment center.
They can cost tens of millions of dollars, and
must be carefully planned out to reap the
benefits of an ASRS. In the case of groceries,

ASRS’s cannot be automatically applied,
since groceries are perishable and have
different freshness levels and storage
requirements. This was another challenge we
had to consider in the design of our solution.
 Li and Xu (2014) address the process
of relaying order information to the ASRS,
also known as the Internet of things (IoT).
The robots must be able to receive order
information from another server in order to
know what to retrieve and store. The robot
must also be able to send information back to
the servers in order to update inventory and
item statuses. This is a major part of what
GRASRS is doing. Converting item
information into a machine-digestible
message is an extremely challenging task,
one that Amazon is currently developing and
refining.

3. Project Design

The project that GRASRS decided
upon was an operational tool to help in
debugging issues in the ASRS, as well as to
other tools to streamline development.
Specifically, my project was aggregating
error logs for system failures to streamline
debugging for on-call engineers. The main
service used in the project, which contained
the error logs that GRASRS needed, was
AWS CloudWatch, a service in AWS that
collects real time metrics, data, and logs for a
particular service, then aggregates them into
a single repository for viewing. The
GRASRS team connected their systems to
CloudWatch, meaning if the system got any
errors, they would be recorded in
CloudWatch.

3.1. Backend Architecture
 The GRASRS team decided upon the
backend infrastructure of the project. For
convenience purposes, and because all of
Amazon Robotics was transitioning to the
cloud, the decision was made for the project
to be developed using AWS services. Shown

in Figure 1 below is the architecture of the
backend of my project.

Figure 1: Backend AWS Architecture for

GRASRS Operational Website

The user submits a request for certain
error logs, and that HTTP request is
forwarded to a REST API created through
AWS API Gateway. API Gateway is a
service that allows developers to create
customizable APIs with support for
monitoring and scaling. I used API Gateway
to create an API that would accept HTTP
GET requests.
 Once the REST API receives a
request, it will transform the request and
forward it to Lambda through query
parameters. Lambda is an event-driven
service that allows users to run code in
response to an event. Once the Lambda
receives a request from the REST API, it will
query the CloudWatch error logs and return
the CloudWatch logs the user requested. For
security purposes, CloudWatch will
authenticate the user, since these error logs
contain private information about the system.
After the error logs are retrieved, they are
sent back to the REST API to return to the
frontend for the user to see.

3.2. Frontend Architecture
 The frontend architecture consists of
a React application that takes in request
inputs, such as which GRASRS development
account to query, the timestamp, the name,
the log group, and the log streams. To preface,
all CloudWatch error logs are contained
within a log stream, which are a sequence of

logs strung together. All log streams are
contained within a particular log group,
which is a sequence of log streams, to allow
for easier querying. The application takes
these query parameters and sends a GET
request to the REST API. The REST API
returns the result in JSON to the frontend,
which is then parsed and displayed in table
format for the user to see.

4. Results
 The operational tool I created for
GRASRS resulted in significant speedup
times for accessing error logs. When
accessing error logs from a single account,
compared to the old system of accessing logs,
log access times were about 30% faster
compared to accessing CloudWatch logs
from the AWS console. When accessing logs
across multiple accounts, log access times
were about 50% faster, a significant speedup.
This is due to the fact that when switching
between accounts to access CloudWatch logs,
users must log out and log back into the new
account, a tedious process that slows down
access times.

5. Conclusion
 The intentions of my project with the
GRASRS team were twofold. The first
reason GRASRS proposed the project was to
help speed up debugging times by
streamlining the process of accessing
Cloudwatch logs across all of their
development accounts. Doing so allows
GRASRS to pinpoint system errors in the
correct account, saving critical time.

 The second reason was to help lay a
foundational base for a multi-purpose
operational tool for GRASRS to use as its
scope expanded. Streamlining the debugging
process through Cloudwatch would be the
first tool, with more to come. My project
allowed members of GRASRS to debug

issues much more quickly, saving critical
time.

6. Future Work
 The intention of the GRASRS
operational website was to be a website that
contains multiple tools, not just a Cloudwatch
log aggregator. With this in mind, the code
for the project was kept as modular as
possible, to allow for extensibility in the
future. The GRASRS team has multiple pain
points other than inefficient debugging.
There are a plethora of other issues, such as
system visualization, data aggregation, and
others that are plaguing the team. GRASRS
made it clear that future engineers and interns
would be expanding my project by adding
other features that would help the team’s
development process.

7. References
1. Roodbergen, J. 2009. A survey of

literature on automated storage and
retrieval systems. European Journal of
Operational Research, V.194,Issue2,
https://www.sciencedirect.com/science/a
rticle/pii/S0377221708001598

2. Li, S., Da Xu, L. 2014. The internet of
things: a survey. Information Systems
Frontiers. 17, p.243-259,
https://link.springer.com/article/10.1007/
s10796-014-9492-7

