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Abstract

In the last decade, advances in DNA sequencing technology have enabled the routine

generation of whole-genome datasets that profile chromatin composition and conforma-

tion. Quantitative analyses of these data have required the development of innovative

computational data analysis methodologies. These analysis techniques have been used

to generate novel biological hypotheses about the regulatory activities of chromatin,

which can be experimentally validated. This dissertation presents several case studies

of such analyses. In the first study, machine learning models, which predict transcrip-

tion as a function of multivariate histone modification levels, are used to predict the

association of symmetrically dimethylated arginine 3 on histone H4 (H4R3me2s) with

transcriptional repression. Methodological approaches to constructing similar models

are also explored in depth. In the next study, analyses of changes in a panel of his-

tone modifications during the epithelial-mesenchymal transition (EMT) reveal a high

degree of regulatory coordination among genes within distinct functional classes and

pathways. Changes at enhancers associated with these genes also show coordination

with respect to transcription factor binding. These observations lead to the hypothesis

that histone modifications enable and sustain transcriptional feedback loops distinctly

associated with each phenotypic endpoint in EMT. In the final study, a novel approach

for analyzing unbiased chromatin interaction data (Hi-C data) is presented. This

approach utilizes network analysis techniques to infer conformational features of the

genome. Using these techniques, assessments are made of the degree of hierarchical
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organization in the budding yeast genome. Furthermore, a novel correlation between

replication timing and degree of inter-chromosomal interactions is observed. The

studies presented in this dissertation demonstrate the utility of computational data

analysis in generating novel systems-level hypotheses about the regulatory behavior of

chromatin. Since many of the analysis techniques presented in this work have not been

otherwise applied to chromatin data, many domain-specific technical considerations are

also discussed. This dissertation provides a variety of novel insights into the regulatory

activities of chromatin; and perhaps more importantly, it provides several analytical

frameworks for distilling systems-level insights from whole-genome chromatin data.
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Chapter 1

Introduction

Large-scale datasets are a relatively new standard in the field of molecular biology.

The ability to generate gigabytes of genomic data in a single experiment has vastly

increased the necessity and potential of new data analysis techniques to make new

discoveries. The subfield of chromatin biology in particular has seen tremendous

development as a result of this data revolution. A wide array of DNA sequencing-

based assays have enabled unbiased quantitative characterization of the composition

and conformation of chromatin. These advances have driven an expansion in scope

from locus-specific to genome-wide studies. The results of these studies have given

broad insight into how eukaryotic genomes are regulated. Importantly, these insights

have required the development and novel application of diverse and sophisticated data

analysis methodologies.

This dissertation will examine several case studies in the application of data analysis

techniques to whole-genome chromatin datasets; specifically, multi-dimensional histone

modification, and Hi-C datasets. These studies will examine basic questions about

the regulatory activities of chromatin in a general context, and in the context of

human disease. The remainder of the Introduction will provide the requisite scientific,

historical, and technical background for the subsequent chapters.
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1.1 Genomic regulation at the level of chromatin

1.1.1 Overview

Eukaryotic organisms store DNA molecules that are on the order of meters in total

length into nuclei that are on the order of micrometers in diameter [Alberts et al., 2002].

This remarkable compaction occurs while DNA is in complex with many different

proteins, in a state known as chromatin. Principle among these proteins are the highly

conserved histone family of proteins. An octamer composed of two subunits each of

the histone proteins H2A, H2B, H3, and H4, in complex with approximately 146 bp of

DNA form a canonical nucleosome—the fundamental constituent of chromatin [Luger

et al., 1997]. The chemical and physical regulation of chromatin at the scale of

nucleosomes is critical for the proper regulation of chromosomal DNA in the dense

nuclear environment.

The astounding complexity and robustness of the cell requires that the information

encoded in the genome be accessed in a controlled and coordinated manner. The

functional regulation of chromatin is a critical mechanism for tuning the accessibility

of the information in the underlying DNA sequence. There are a variety of processes

that govern this regulation, including covalent modifications to histones and DNA,

deposition of histone variants, nucleosome positioning, and the physical enforcement

of specific spatial conformations by proteins bound to chromatin [Berger et al.,

2009,Guillou et al., 2010]. The composite of these features at a given genomic locus

defines the “state” of chromatin at that locus. Covalent modifications to chromatin

influence its local electrochemical and steric properties, which has consequences for

its compaction (and thereby its stiffness), nucleosome occupancy, and preference for

binding various proteins [Bannister and Kouzarides, 2011]. These modifications are

regulated dynamically by proteins in the milieu. Thus, the crosstalk between chromatin
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states and the milieu in which the genome exists determines how the information

stored in DNA is accessed and expressed [Johnson and Dent, 2013]. In this way,

modifications to chromatin are in principle critical for the emergent organization of

genomic information.

At a basic level, chromosomal DNA has two roles: a template for self-duplication

during replication, and a template for the production of RNA during transcription.

As a transcriptional template, DNA serves as a dictionary of possible RNA outputs.

Chromatin states alter the accessibility of transcribed regions at a given locus, and

thus set bounds on the transcriptional state space of the cell. Thus, the regulatory

states of chromatin help enforce “grammars” for the spatio-temporal expression of

RNA information that are suitable for the maintenance of life. Chromatin regulation

also imposes spatio-temporal control over DNA replication; however, the global

functional consequences of this regulation are somewhat less clear than in the case

of transcription. However, it has been suggested that chromatin regulation enforces

spatial conformations of the genome that enable efficient replication [Guillou et al.,

2010].

Increasing evidence suggest that the three-dimensional conformation of the genome

has important functional consequences, including a major role in cell type specification.

Some of the first evidence for cell-type-specific conformations was the observation that

long-range enhancer elements across human cell types show extremely high variability

in histone posttranslational modifications (PTMs), relative to genic loci. Moreover,

these variations correspond to cell-type-specific gene expression profiles [Heintzman

et al., 2009]. There is considerable evidence that these enhancers are involved in the

long-range regulation of gene expression by physically interacting with gene promoters

via chromatin loops [Chepelev et al., 2012,Li et al., 2012a]. Furthermore, enhancer

activity corresponds to the modification states of their histones [Creyghton et al.,

2010]. Recent studies have also demonstrated that the genomic regions that are near
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in space tend to have similar patterns of histone modifications [Khrameeva et al., 2012].

Together these findings suggest a model where cell-type-specific gene expression is

regulated by physical interactions with enhancers; and permissible spatial interactions

are influenced by the modification states of histones at enhancer loci. This model is

further supported by studies that show the stability of genomic interactions within

cell types relative to comparisons across cell types [Noordermeer et al., 2011,Wang

et al., 2013].

Chromatin regulation is often discussed in the context of epigenetics. Classically

defined—in the tradition set by Conrad Waddington—“An epigenetic trait is a stably

heritable phenotype resulting from changes in a chromosome without alterations in

the DNA sequence” [Berger et al., 2009]. Furthermore, these traits can be heritable

through meiosis or mitosis. Thus, epigenetic mechanisms are responsible for passing

certain traits across generations, and for the maintenance of cellular phenotypes across

divisions (e.g., maintaining tissue identity over time). Mechanisms of chromatin

regulation are often referred to as “epigenetic,” although this may not be true in the

strict sense of the classical definition. For example, specific histone PTMs and variants

can be transiently involved in DNA damage repair, and thus, are not likely to convey

heritable traits [van Attikum and Gasser, 2009]. Conversely, there are examples of

genomic regulation by histone PTMs (and accompanying enzymes), such as gene

silencing across generations, that are in agreement with the classical definition per

se [Hall et al., 2002,Francis et al., 2009].

Within the chromatin field, there are varying opinions on the usage of the term

“epigenetic,” ranging from the aforementioned definition, to general mechanisms of

chromatin regulation that influence phenotype and genome function [Ptashne, 2013].

Due to the ubiquity of the latter usage in the current literature, this dissertation will

adhere to this less strict (and more modern) definition.
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1.1.2 Histone modifications

Posttranslational modifications to histones, in the form of acetylation and methylation,

were first discovered in the 1960s, and were at that time postulated to influence

transcription of RNA [Allfrey et al., 1964]. Today we know that the types of histone

PTMs that exist extend well beyond acetylation and methylation, and include phos-

phorylation, deimination, O-GlcNAcylation, ADP ribosylation, ubiquitylation, and

sumoylation [Bannister and Kouzarides, 2011]. Enzymes, known generally as “readers,”

“writers,” and “erasers,” are respectively responsible for binding to, depositing, and

removing these PTMs. Each PTM has an influence on chromatin structure and/or

the recruitment of enzymes that influence chromatin-based processes. Furthermore,

these PTMs can occur at many different sites on the histone octamer in the nucleo-

some, principally on the unstructured histone N-terminal tails. The large number of

modification types and possible modification sites leads to an enormous number of

combinatorial possibilities for histone PTMs, each with potentially unique functional

consequences. This observation lead to the so-called “histone code hypothesis,” which

posits that histone PTMs act in a combinatorial and/or sequential manner to regulate

a variety of processes on chromatin [Strahl and Allis, 2000,Jenuwein and Allis, 2001].

Much of what is presented in this work will leverage this hypothesis; however, despite

the diversity of modification types, this work will focus on histone acetylation and

methylation, as they are the best characterized histone PTMs.

Acetylation and methylation

Histone acetylation occurs most often on the lysine residues of the N-terminal tails of

histones, although it can also occur on lysine residues in the globular portion of histone

proteins [Tjeertes et al., 2009]. Acetylation of these residues is a dynamic process

mediated by histone acetyltransferases (HATs), and histone deacetylases (HDACs).
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HATs fall into two major categories: type-A (of which there are subcategories), and

type-B. The major functional difference between the two types is that type-A HATs

acetylate histones when they are integrated into chromatin, whereas type-B HATs

acetylate free histones in the cytoplasm. Acetylation by type-B HATs is important

for integrating newly synthesized histones into chromatin [Parthun, 2007]. The

enzymatic activity of type-A HATs plays a major role in the regulation of chromatin,

by dynamically altering the physical interactions between histone proteins and DNA.

This dynamic regulation also requires HDAC activity, which opposes the activity of

HATs.

Acetylation neutralizes the positive charge of lysine, and thereby destabilizes the

interaction between histone proteins and negatively charged DNA. It is thought that

this destabilization permits a more open and active chromatin structure, providing

transcriptional machinery and other DNA-binding proteins greater access to DNA.

Indeed, the eviction of hyperacetylated histones from DNA, in vivo and in vitro, is

well established [Li et al., 2007,Chandy et al., 2006,Zhao et al., 2005]. Various genome

wide studies also support the “activating” role of histone acetylation in a correlative

fashion. For example, strong genome-wide correlations between gene expression and

promoter enrichment of various histone acetylations and are well documented [Roh

et al., 2006,Wang et al., 2008]. Acetylation of lysine 16 on histone H4 (H4K16ac) has

also been shown to prevent the compaction of chromatin, which further supports the

role of histone acetylation in maintaining open and active chromatin [Shogren-Knaak

et al., 2006].

Methylation of histones occurs on lysine and arginine residues, and like acety-

lation, tends to occur on the N-terminal tails. Methylation is mediated by histone

methyltransferases (HMTs) and histone demethylases (HDMs). Histone methylation

was once thought to be irreversible, however, in the early 2000s this dogma began to

be called into question [Bannister et al., 2002]. And in 2004, the first lysine-specific
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HDM (LSD1 ) was discovered [Shi et al., 2004]. Since this initial discovery, several

other lysine-specific HDMs have been identified [Tsukada et al., 2006,Whetstine et al.,

2006]. By contrast, mechanisms of arginine demethylation have been more elusive.

Although JMJD6 has been reported to be an arginine HDM [Chang et al., 2007],

these results have not been repeated, and no other arginine-specific HDMs have been

found [Bannister and Kouzarides, 2011]. Arginine methylation can be antagonized by

citrullination of arginine, however this is not strictly a reversal of methylation [Cuthbert

et al., 2004,Wang et al., 2004]. Nevertheless, histone methylation is now recognized

to be a dynamic process, but is comparably more stable than acetylation. Unlike

acetylation, methylation does not affect the charge of the modified amino acid side

chain. Methylation is also fundamentally more complicated than acetylation in that

lysine residues can be mono-, di-, or trimethylated, and arginine residues can be

mono- or dimethylated. Additionally, dimethylation of arginines can be symmetric or

asymmetric [Bannister and Kouzarides, 2011].

Consistent with the higher degree of biochemical complexity, histone methylation

also has a more complex relationship with chromatin activity than histone acetylation.

For example, the well-studied modification H3K4me3 is enriched at the promoters of

activated genes in a punctate fashion; whereas, H3K27me3 shows broad enrichment

over transcriptionally silent heterochromatic regions [Barski et al., 2007]. A recent

study has also demonstrated that in some cases of punctate enrichment at gene

promoters, H3K27me3 has a positive correlation with gene expression [Young et al.,

2011]. Furthermore, both H3K4me3 and H3K27me3 are mutually exclusive with their

acetylated counterparts, and there is evidence for regulatory tension between the two

states [Tie et al., 2009,Guillemette et al., 2011].

These examples highlight the complex nature of histone methylation with respect

to chromatin regulation. The methylation of two different residues of the same histone

tail can have antipodal correlations with gene expression. Moreover, the correlation of
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a given modification with gene expression can also be dependent on the distribution

of the modification in genomic space. These complexities are compounded by the

combinatorial context in which the modifications occur.

Combinations and dependence

One of the first concrete examples of histone modifications in a functional combinatorial

context was the discovery of so-called “bivalent domains” [Bernstein et al., 2006].

These domains are characterized by broad enrichments of H3K27me3 that overlap

more punctate H3K4me3 enrichment at developmentally important genes that are

expressed at low levels in human embryonic stem cells (hESCs). Loss of H3K27me3

is observed upon differentiation, which coincides with the upregulation of the genes

with which the bivalent domains are associated. The prevailing interpretation of this

phenomenon is that the bivalent domains keep genes silent, but poised, enabling rapid

induction during differentiation. This induction is believed to be triggered by loss of

the repressive mark.

Similar poised and activated states have been observed at promoter-distal enhancer

loci. Early whole-genome studies have shown that enhancer elements can be identified

by an abundance H3K4me1 [Heintzman et al., 2007]. Later studies demonstrated

that active enhancers can be distinguished from poised enhancers by the presence

of H3K27ac [Creyghton et al., 2010]. In hESCs, poised and active enhancers were

identified by the presence or absence of the mutually exclusive H3K27me3 and H3K27ac

marks; where poised, but inactive enhancers are marked by H3K4me1 and H3K27me3,

and active enhancers are marked by H3K4me1 and H3K27ac [Rada-Iglesias et al.,

2011]. In this study, active enhancers were linked to genes expressed in hESC, whereas

poised enhancers were linked to genes involved in early embryogenesis. The presence of

H3K36me3 and H3K9me3 has also been used to classify active and poised enhancers,

respectively [Zentner et al., 2011].
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The sequential gain and loss of histone PTMs at multivalent domains alludes to

the dependence relationships in histone PTM deposition. Indeed, there are several

examples of crosstalk and dependencies between histone modifications [Latham and

Dent, 2007, Kouzarides, 2007, Bannister and Kouzarides, 2011]. In light of these

relationships, the regulation of chromatin by histone modifications can in part be

considered a directed network, where connections between histone modifications

represent dependence relationships. An example of a small dependence network, which

is conserved from yeast to humans, is the requirement of H2BK123 ubiquitylation

by the Rad6-Bre1 complex, for the methylation of H3K4 by the COMPASS complex,

and the methylation H3K79 by Dot1 [Lee et al., 2007,Kim et al., 2009]. Dependence

structures like this greatly limit the possible number of chromatin states at a given

genomic locus, thus imposing some constraints on what is otherwise an astronomically

large state space.

Even with these constraints, conventional low-throughput biochemical techniques

alone have little hope of fully deconvolving the complexity of synergistic and dependent

relationships among histone modifications (i.e., validating or deciphering the histone

code). High-throughput assays coupled with computational data analysis methods

will be required to identify probable relationships between histone modifications in an

unbiased manner. Conventional biochemical techniques can then be used to validate

and refine the computational analyses. This process can be iterated to converge on

true relationships in the histone code.

Human disease

In humans, many enzymes that modify histones have been linked to cancer and a

variety of developmental disorders. Though this work will only focus on chromatin

modifications as they relate to cancer, it is worth noting that mutations in genes

that encode several well-known histone modifying enzymes have been linked to de-
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velopmental disorders that are accompanied by mental retardation. These genes

include EHMT1, CREBBP, EP300, MLL2, NSD1, NSD2, GLP, and JARID1C, among

others [van Bokhoven and Kramer, 2010, Butler et al., 2012]. Interestingly, many

of the genetic mutations in these histone modifying enzymes cause developmental

disorders when acquired in the germline, but lead to cancer when acquired in somatic

cells [Butler et al., 2012]. There is great interest in understanding the etiological role

of these enzymes in cancer, due to the great potential for designing drugs that target

them. Indeed, several HDAC inhibitors are FDA approved for the treatment of several

hematological and solid cancers, and trials for many more are ongoing [Khan and La

Thangue, 2012]. There is a significant effort to expand epigenetic anticancer drugs to

target different types of chromatin modifying enzymes [Arrowsmith et al., 2012].

Dysregulated histone modification mechanisms are believed to contribute to carcino-

genesis by enabling carcinogenic gene expression profiles, and/or influencing genomic

structural integrity [Bannister and Kouzarides, 2011]. For example, both the over- and

underexpression of EZH2 has been shown to contribute to carcinogenesis. A member

of the developmentally important polycomb group proteins, EZH2 is responsible for

catalyzing the trimethylation of histone H3, lysine 27 (H3K27me3), which leads to

transcriptional silencing. The elevated catalytic activity of EZH2 has been shown

to promote oncogenesis in a variety of solid tumors [Varambally et al., 2002, Kleer

et al., 2003,Wang et al., 2012]. However, there are also examples of loss-of-function

mutations in EZH2 which promote myeloid malignancies [Ernst et al., 2010]. In each

of the cases, the activity of EZH2 is associated with the derepression or repression

of a cohort of genes. The seemingly contradictory roles of EZH2 as a oncogene and

tumor suppressor, highlight the importance of stable EZH2 activity in maintaining

non-oncogenic gene expression programs.

Cancer progression is often associated with the dysregulation of mechanisms that

are important in development, which is the case with EZH2 activity [Hanahan and
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Weinberg, 2011, Izrailit and Reedijk, 2012]. Therefore, the link between histone mod-

ifications and carcinogenesis is not altogether surprising, given that developmental

process have been shown to be accompanied by dramatic changes in histone modifica-

tion profiles. Indeed, different cell types in general have been shown to have unique

histone modification profiles [Heintzman et al., 2009]. These findings give rise to the

hypothesis that the ability to reprogram chromatin at the level of histone modifications

may be necessary to enable stable changes in cellular phenotype. Cancer cells undergo

selection in acquiring drug resistance, which constitutes a phenotypic shift, implying

the acquisition of changes in histone PTM patterns [Podlaha et al., 2012]. Though

several specific mechanisms have been investigated [Khan and La Thangue, 2012], this

provides a broad rationale for why HDAC inhibitors are effective in the treatment of

cancer. Presumably, with a reduced ability to reprogram their epigenomes, cancer

cells lose some of the phenotypic plasticity that they require to maintain their fitness.

One of the hallmark phenotypic shifts that occurs during cancer progression is

the epithelial-mesenchymal transition (EMT). This process occurs normally during

development and wound healing, but also pathologically in cancer progression. Cancer

cells that undergo EMT are more stem-like, resistant to apoptosis, and are able to

escape the epithelium and invade into different tissues [Thiery et al., 2009,Polyak and

Weinberg, 2009]. Not surprisingly, this de-differentiation and change in phenotype

has been associated with many different types of epigenetic reprogramming, including

changes in histone PTMs, DNA methylation, and microRNA abundance [Wu et al.,

2012,Stadler and Allis, 2012,Wang et al., 2013].

There are several examples of histone PMTs directly involved in EMT. Canonically,

the so-called ”master switch” transcription factors, including Twist, Snail, Slug, and

ZEB2, are responsible for regulating genes that are critical for the transition. Snail and

Slug have been shown to recruit the Sin3a/HDAC1/HDAC2 complex to the promoter

of CDH1, which leads to transcriptional silencing of the gene through deacetylation
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of the promoter [Bolós et al., 2003,Peinado et al., 2007]. Loss of E-cadherin, which

is the protein that is encoded by CDH1, is a hallmark of EMT. This demonstrates

that histone acetylation regulates critical parts of the transcriptional program that

distinguishes the epithelial and mesenchymal phenotypes.

In another study it was shown that in TGFβ-induced EMT, there are bulk changes

in several histone modifications, including global losses of H3K9me2, and gains in

H3K4me3 and H3K36me3 abundance [McDonald et al., 2011]. These changes were

found to be largely localized to large organized heterochromatin H3K9 methylated re-

gions (LOCKs). Furthermore, it was found that many of the epigenetic and phenotypic

changes that occur after the induction of EMT are dependent on the lysine-specific

histone demethylase LSD1. The epigenetic reprogramming of cancer cells during EMT

will be further explored in Chapter four.

The mechanistic investigation of histone modifying enzymes and effector proteins

in disease processes is a highly active field of research. As previously stated, the

interest in this field is driven largely by the druggability of these protein targets.

In addition to this pragmatic motivation, the recent development of whole-genome

methods to interrogate a wide variety of chromatin features has led to deep insights

into the relationship between chromatin regulation and cellular phenotype. Although

they contain rich information about chromatin states, histone modifications represent

only one aspect of a panoply of features that determine genomic regulation. In order

to gain a more holistic view of the relationship between chromatin regulation and

phenotype, diverse whole-genome datasets must be considered simultaneously.

1.1.3 Higher-order chromatin organization

Although many fantastic insights have come from studying chromatin in the context

of the linear genome, it has become clear that a great deal of regulatory information

is encoded the higher-order structure of chromatin. The term “higher-order” refers



13

to non-random spatial arrangements of chromatin. The non-random organization of

interphase chromosomes was first observed by Carl Rabl in the late 19th century [Rabl,

1885,Cremer and Cremer, 2010]. Since this initial observation, details of chromosomal

organization at many different resolution scales have been described. Importantly,

functional roles have been ascribed to each of these levels of organization.

At a coarse-grained level, the genome organizes into chromatin territories (CTs),

where interphase chromosomes occupy semi-distinct spaces within the nucleus [Cremer

et al., 1982, Cremer and Cremer, 2010]. In finer detail, metazoan chromosomes

organize into fractal globule conformations, which can be described as a polymer

that shows regions of local collapse. Fractal globule polymers have a power law

decay in contact probability as a function of distance on the polymer chain. This

decay has been empirically validated in the genomes of several organisms [Lieberman-

Aiden et al., 2009,Sexton et al., 2012]. At still finer resolution, there are structures

known as “topologically associating domains” (TADs) [Nora et al., 2012,Dixon et al.,

2012, Dekker et al., 2013]. At the individual locus level, chromatin can organize

into the so-called “30 nm fiber” structure, which is speculated to be the typical

conformation of heterochromatin [Grigoryev and Woodcock, 2012]. There are also

long-range functional interactions, such as enhancer-promoter interactions, which can

be on the scale of megabases in distance [Li et al., 2012a].

Understanding the molecular mechanisms that mediate higher-order structures is

an active area of research. Notably CTCF, and the cohesin and condensin families

of proteins have been implicated as major structural components of higher-order

chromatin conformations (see [Wood et al., 2010] for a review). However, both

molecular-level and systems-level details of how these proteins mediate global chromatin

conformation are lacking. Despite the mechanistic uncertainties in the formation of

higher-order structures, chromatin organization at every level described above has been

linked to functional processes, such as transcription and DNA replication [Schneider
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and Grosschedl, 2007,Lieberman-Aiden et al., 2009,Ryba et al., 2010,Dixon et al.,

2012,Li et al., 2012a].

Chromosome territories

The organization of chromatin at the level of CTs was one of the earliest higher-

order arrangements identified [Cremer et al., 1982]. Among eukaryotes, there is

notable variability in how CTs manifest. For example, the interphase budding yeast

genome has a rosette structure, where the centromeres of all chromosomes pack

densely in one area near the nuclear periphery, from which the chromosome arms

emanate [Jin et al., 2000,Bystricky et al., 2004,Duan et al., 2010]. At the same level

of organization, mammalian genomes in interphase have a more amorphous structure,

but develop rosette conformations at prometaphase [Bolzer et al., 2005]. Furthermore,

heterochromatin and genes transcribed at low levels tend to be associated with the

nuclear lamina, whereas genes that are situated toward the interior of the nucleus are

more highly transcribed [Schneider and Grosschedl, 2007]. These examples represent

the most coarse-grained functional arrangements of chromatin.

Enhancers

Enhancers are a type of cis-regulatory element that positively regulates gene expres-

sion. Typically, they are hundreds of base pairs in size and are dense with transcription

factor binding sites. They can be located in intronic or intergenic regions; within,

adjacent to, or hundreds of kilobases away from their target genes. The activity of

long-range (i.e., not adjacent to its target promoter) enhancers requires the looping

of chromatin so that the enhancer can be in close spatial proximity to its target pro-

moter. Presumably, enhancers recruit and localize transcription factors and essential

transcriptional machinery to the promoters of their target genes, thereby facilitating

active transcription. One of the first studies showing direct evidence of these long-
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range interactions reported the association of an enhancer element with the β-globin

(HBB) locus located 50 kb away [Carter et al., 2002]. High-throughput methods

have since shown that similar long-range interactions are ubiquitous throughout the

genome [Chepelev et al., 2012,Li et al., 2012a].

A particularly striking example of a functional long-range enhancer is the enhancer

of SHH, which is located approximately 1 Mb away in an intron of the LMBR1

gene. Mutations in the enhancer were shown to cause misexpression of SHH, which

results in the development of preaxial polydactyly [Lettice et al., 2002]. It was later

demonstrated that there is in fact a chromatin loop that allows the enhancer in

LMBR1 to spatially co-localize with the promoter of SHH [Li et al., 2012a]. This

study also demonstrated the interaction of a intergenic non-coding region with the

promoter of IRS1. In an earlier genome-wide association study (GWAS), a single

nucleotide polymorphism (SNP) in the non-coding region was shown to be associated

with an increased risk of diabetes and coronary artery disease [Kilpeläinen et al., 2011].

Though IRS1 is known to be involved in type-2 diabetes, the GWAS was unable to

associate the SNP with IRS1 due to the distance between the gene and the SNP.

Numerous GWAS efforts have demonstrated similar disease associations with SNPs

in unannotated intergenic space, with little evidence of what role these SNPs may

play in the etiology of the associated disease. It is likely that many of these isolated

disease-associated SNPs are in long-range enhancer elements [Visel et al., 2009].

As previously described, histone modifications are involved in modulating enhancer

activity, although they have not been shown to mediate the spatial interactions per

se. There are, however, studies that have shown that on average, genomic loci that

interact through space show similar patterns in histone modifications [Khrameeva

et al., 2012]. Furthermore, the tissue specificity of long-range interactions, and their

importance in maintaining tissue specific gene expression programs, is becoming

increasingly appreciated [Ong and Corces, 2011]. These interactions are also being
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implicated in the regulation cancer-specific gene regulation [Wang et al., 2013]. These

findings, coupled with the dramatic phenotypic effects of abnormal enhancer function,

highlight the practical importance of understanding the relationships between histone

modifications and long-range enhancer function.

The fractal globule and intermediate structures

The identification of finer-scale long-range interaction structures has benefited greatly

from the chromosome conformation capture family of assays, which includes 3C, 4C, 5C,

and Hi-C, as well as the related ChIA-PET assay (Hi-C and ChIA-PET will be discussed

further in the next section) [Dekker et al., 2002,Simonis et al., 2006,Dostie and Dekker,

2007, Lieberman-Aiden et al., 2009, Fullwood et al., 2009a, Fullwood et al., 2009b].

These methods have facilitated the analysis of chromatin interactions at varying degrees

of throughput—from a single pair of loci (3C), to all interaction pairs throughout

the genome (Hi-C). The fractal globule conformation of the genome was identified

using genome-wide interaction data generated by the Hi-C method [Lieberman-Aiden

et al., 2009]. In that study, the genome was shown to broadly compartmentalize

into high-interaction and low-interaction regions, corresponding to open and closed

chromatin, respectively. Quantification of the interaction states of chromatin were

later shown to correlate very strongly with genome-wide replication timing maps [Ryba

et al., 2010]. The fractal globule conformation of the genome was inferred from the

specific patterning of open and closed chromatin states. It is important to note that

the fractal globule only provides a high-level model for the arrangement of chromatin.

Some details of this model have been brought into question [Sexton et al., 2012].

Beneath the fractal globule in the hierarchy of higher-order chromatin structure,

chromosomes are divided into discrete regions of topologically associating domains

(TADs) [Nora et al., 2012,Dixon et al., 2012]. These regions show a high frequency of

within-TAD interactions, but are relatively insulated from neighboring regions. TADs
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can be hundreds of kilobases in length, and are a fundamental structural building block

of chromosomes [Dixon et al., 2012,Sexton et al., 2012]. Constraints on long-range

interactions seem to be imposed by TADs. These interaction constraints suggest that

they may be involved in regulating enhancer-promoter interactions. Indeed, there is

some evidence that this may be the case [Shen et al., 2012]. This implicates TADs as a

critical factor in the formation of substructures involved in transcriptional regulation.

In support of this model, CTCF is enriched at the boundaries between TADs [Dixon

et al., 2012]. CTCF is a protein whose function has long been associated with the

formation of insulating boundaries between long range interactions. Many genome-

wide studies have suggested that the function of CTCF goes well beyond the insulation

of enhancer-promoter interactions, which may only be an indirect consequence of

CTCF activity. Nevertheless, its enrichment at boundaries between TADs supports

the view that TADs are functional units of higher-order chromatin structure.

There are examples in many different organisms of spatial clustering of functional

genomic elements in the nucleus. As previously mentioned, centromeres in budding

yeast cluster in space. There are also two clusters of tRNAs in budding yeast: one

near the cluster of centromeres, and another near the nucleolus [Duan et al., 2010]. In

higher eukaryotes, co-expressed genes sometimes co-localize into structures known as

transcription factories [Rieder et al., 2012]. The first evidence of transcription factories

came from microscopy studies that observed that the majority of transcription in the

cell occurs at several hundred punctate foci in the nucleus [Jackson et al., 1993]. At

the time it was thought that transcription would be distributed somewhat uniformly

throughout the nucleus. In a study of human umbilical vein endothelial cells, the

promoters of spatially separated genes that are induced by TNF were found to co-

localize upon TNF treatment [Papantonis et al., 2010]. This raised the intriguing

possibility that perhaps transcription factories are localized to a fixed point in space

to which genes are recruited. It also supported the idea that co-regulated genes tend
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to occupy the same transcription factories. Indeed, it was later shown that in mouse

erythroid cells, genes that are regulated by KLF1 group into active KLF1-enriched

transcription factories [Schoenfelder et al., 2010]. Though there is considerable evidence

supporting the existence of transcription factories in higher eukaryotes, many details

of how they form and function remain unknown [Rieder et al., 2012].

A broad and outstanding goal in the chromatin field is to understand how higher-

order structures form, and more specifically, how modifications to chromatin influence

this organization. This goal is feasible, principally due to the development of high-

throughput methods to analyze chromatin composition and conformation. Some of

these methods will be discussed in the following section.

1.2 High-throughput methods in chromatin

biology

1.2.1 Overview

In the last 20 years, high-throughput genomic technologies have rapidly transformed

the field of molecular biology into a data-intensive discipline. Chief among these

transformative technological capabilities is the ability to sequence large amounts of

DNA rapidly and cost-effectively. Several chromatin-based assays, such as chromatin

immunoprecipitation (ChIP), have been coupled with DNA sequencing (i.e., ChIP-seq)

to provide quantitative genome-wide maps of chromatin states. In addition to ChIP-seq,

which provides genome-wide maps of proteins in complex with DNA, there are a variety

of other sequencing-based methods that quantify other properties of chromatin. RNA

transcription can be quantified using RNA-seq, CAGE, and RNA-PET. Transcription

factor binding sites can be identified using ChIP-seq and DNase-seq. DNA methylation

can be quantified using MeDIP-seq. Long-range interactions can be identified using
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Hi-C and ChIA-PET. Chromatin structure, including nucleosome occupancy and DNA

accessibility, can be assayed with DNase-seq, FAIRE-seq, ChIP-seq and MNase-seq.

This list is not a comprehensive catalog of sequencing-base chromatin assays, but it

represents some of the principle techniques used in the Encyclopedia of DNA Elements

(ENCODE) project [Dunham et al., 2012], which is the zeitgeist of chromatin biology

with respect to high-throughput methods. The ENCODE project was designed to

provide an enormous collection of datasets that profile chromatin in a variety of ways

in many different cell types. The hope of ENCODE is that these data will be used

as a resource to broadly facilitate the understanding of genomic regulation at the

level of chromatin. With contentious claims, and costs approaching $200M, this effort

is not without its controversies [Graur et al., 2013,Eddy, 2013]; however, ENCODE

symbolizes the revolution in chromatin biology sparked by high-throughput genomic

technologies.

This revolution began with the development of oligonucleotide microarrays in

the mid-1990s [Schena et al., 1995,Lashkari et al., 1997]. Array (chip) technologies

facilitate the high-throughput quantification of DNA molecules by hybridizing them to

a glass slide coated with a lawn of known, genome-matched oligonucleotide sequences.

Variations on array technology can be used for quantifying transcriptional output, or

can be coupled with ChIP to quantify levels of protein-DNA complexes (ChIP-chip).

Shortly after the development of array-based technologies, so-called massively parallel

DNA sequencing was developed, which allowed researchers to sequence DNA molecules

and quantify their abundance in a high-throughput manner [Brenner et al., 2000].

Currently, the falling cost and superior data quality of sequencing-based technologies

are causing the displacement of array-based technologies.
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1.2.2 ChIP-seq and Hi-C

All sequencing based chromatin assays follow a general procedure: (1) Isolate genomic

fragments of interest, (2) sequence the fragments, and (3) map the sequences back

to a reference genome. The chromatin assays mentioned in section 1.2.1 only vary

significantly with respect to the first step. This section will discuss two of these

variations in detail: ChIP-seq and Hi-C. The sequencing step is fairly straightforward,

and is preformed by one of the many high-throughput sequencing platforms available

(reviewed in [Pareek et al., 2011]). The output of a single sequencing “run” is a series

sequence fragments typically ranging from 100 to 1,000 bp, with a total sequence

output ranging from megabases to gigabases [Loman et al., 2012]. These fragments

correspond to genomic loci that are enriched according to the protocol of the particular

assay (e.g., ChIP-seq, Hi-C). Computationally mapping these sequences back to a

reference genome provides quantitative, locus specific enrichments of the fragments

that were sequenced.

The ChIP assay was developed to identify DNA-protein complexes within the nu-

cleus [O’Neill and Turner, 1995,O’Neill and Turner, 1996]. Briefly, DNA is crosslinked

and fragmented, after which an antibody is used to enrich for DNA fragments that

are bound to a specific protein. Coupled with high-throughput sequencing, ChIP

(i.e., ChIP-seq) generates genome-wide maps of proteins bound to DNA. Critically,

ChIP-seq can and has been used to generate maps of a variety histone modifica-

tions [Barski et al., 2007,Wang et al., 2008]. In principle, any histone modification

(or any DNA-bound protein), for which there is a specific antibody, can be mapped

using ChIP-seq. Mapped ChIP-seq data amounts to integer values for each base across

the genome, corresponding to the number of reads that mapped to the bases. Thus,

ChIP-seq is an invaluable tool for the quantitative analysis of histone modifications in

genome-wide chromatin regulation. Further details on quantitative methods will be
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provided in section 1.3.

As mentioned in section 1.1.3, the chromosome conformation capture (3C) assay

was developed to identify long-range interactions in the genome. The Hi-C assay is

an extension of 3C that is able to interrogate all interactions throughout the genome

in an unbiased manner [Lieberman-Aiden et al., 2009,Duan et al., 2010]. The basic

method involves crosslinking DNA, digesting with a restriction enzyme, and enriching

for fragments of DNA that were close enough in space to be crosslinked. This produces

a library of fragment pairs that were spatially very near in the nucleus. After several

rounds of ligation and digestion, linear fragments of DNA are produced from each pair.

Each end of these fragments originates from a different member of the pair. Paired-end

sequencing is then performed on these linear fragments, and the resulting sequences

are mapped back to the reference genome. Pairs that map to distant positions in

the genome (relative to the length of the sequenced fragment) represent genomic loci

that are near in three-dimensional space, but not near in the linear sequence of the

genome. The resulting pairs of interacting genomic regions can be used to construct

three-dimensional models of the conformation of the genome [Lieberman-Aiden et al.,

2009,Duan et al., 2010].

Clearly, having a reference genome sequence is critical for these methods. The

initial sequencing of the human genome, which provided the first human reference

genome, was published in 2001 [Lander et al., 2001]. Though the genomes of viruses

and bacteria had been sequenced earlier, the sequencing of the human genome was a

watershed event that pushed a large portion of the molecular biology field into the

realm of data-intensive science. Indeed, analyzing datasets generated by ChIP-seq and

Hi-C (and any other sequencing-based assay) is computationally challenging. However,

analysis of these data have given deep insights into chromatin regulation. Some of

the computational and mathematical techniques that are used for analyzing these

data—especially those that are relevant to this dissertation—are described in the
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following section.

1.3 Computational analysis of whole-genome

chromatin data

1.3.1 Overview

The analysis of sequencing-based chromatin assays has several different stages and

degrees of sophistication. The first and most formulaic steps are the initial quality

control and mapping of the raw sequence data to the reference genome. The steps

that follow usually involve gathering summary statistics and visualization of the data

to gain some intuition about the data. Once basic characterizations of the data have

been made, subsequent analysis approaches are highly dependent on the research

goal. This section will discuss some of the important analysis methods that have been

successfully applied to whole-genome chromatin data. While this field is vast, this

section will have two main foci: (1) methods that have been applied to ChIP-seq data

with the goal understanding the regulation of chromatin through histone modifications,

and (2) methods that have been applied to Hi-C data with the goal of understanding

higher-order chromatin organization.

Often, simple summary statistics of a ChIP-seq dataset are sufficient to address a

specific hypotheses about the relationship between, for example, a particular histone

modification and a specific genomic feature. These simple cases often arise when a

single ChIP-seq experiment is considered, or where multiple experiments are considered,

but are treated independently. However, this section, and indeed the majority of this

dissertation, is concerned with analyzing histone modification ChIP-seq data in a

high-dimensional context—where many different histone modifications are considered

simultaneously. This approach allows direct investigation of the histone code hypothesis
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from histone modification ChIP-seq data. Furthermore, it allows the study of various

biological processes in the context of the histone code hypothesis. For example, Chapter

four describes epigenetic reprogramming in the epithelial-mesenchymal transition with

respect to combinatorial changes across a large panel of histone modifications. This

section will briefly introduce some of the machine learning approaches that are used for

this type of analysis, and present examples of their application to histone modification

ChIP-seq data.

Hi-C and other large chromatin conformation datasets present different challenges.

The problem of inferring genomic structure from contact frequencies between genomic

regions is not straightforward. Accordingly, many diverse computational approaches

have been applied to this problem, ranging from physical models and molecular

dynamic simulations, to network analysis approaches. Basic approaches for identifying

meaningful long-range interactions from Hi-C data will be discussed; however, physical

models are beyond the scope of this work, and will not be included in this overview.

Network-based methods will be the primary topic of Chapter five, and so a deeper

discussion of network concepts will presented in this section.

1.3.2 Machine learning applied to histone modification data

Machine learning is the branch of computational statistics that includes techniques

that are designed to learn general relationships in a dataset that can be applied to new

datasets. These techniques require a large number of observations in order to learn these

relationships, and are thus well suited to analyze whole-genome datasets. Some of the

machine learning techniques that have been successfully applied to histone modification

ChIP-seq data include regression, classification, clustering, hidden Markov models,

and bayesian networks. This section will briefly describe each of these techniques and

their application to high-dimensional histone modification ChIP-seq datasets.
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Regression and classification

Regression and classification are closely related supervised learning methods. Super-

vised methods generate models that map input data onto some“labeled” (i.e., defined)

output data. In general, given a set of predictor variables x, and response variables y,

supervised methods attempt to find a function f : X→ Y. The simplest example is

univariate linear regression, where the goal is fitting a line to data in an x-y plane.

The independent variable, x (called the predictor variable), is labeled with a value,

y (called the response variable). Classification is an analogous procedure, with the

major difference being that labels are categorical rather than quantitative. Models

are constructed on “training data,” but can be applied to new, unobserved data. For

example, in the case of univariate linear regression, the resulting linear equation can

then be used to predict y for any x.

Regression methods are well suited to model the relationship between histone

modifications and other genomic variables such as gene expression. Indeed, several

studies have used regression to study this exact relationship, one of which will be

the topic of Chapter two [Karlić et al., 2010, Xu et al., 2010]. These studies used

quantified levels of histone modifications from ChIP-seq as predictor variables, and

gene expression levels as response variables. They have convincingly demonstrated

that histone modifications are highly predictive of gene expression. Furthermore, it has

been shown that models built with data from one cell type are applicable to other cell

types, demonstrating that the relationships between histone modifications and gene

expression are general with respect to cell types [Karlić et al., 2010]. An interesting

finding that will be discussed further in Chapter two is that some modifications that

are not predictive of gene expression in a univariate context, are highly predictive

in the context of many other modifications [Xu et al., 2010]. This finding suggests

important combinatorial relationships between modifications—an idea that evokes

concepts put forth in the histone code hypothesis [Strahl and Allis, 2000,Jenuwein
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and Allis, 2001].

Classification methods have also been used extensively in the analysis of whole-

genome chromatin data. Support vector machines (SVMs) are some of the most

commonly used methods for this application. Briefly, SVMs attempt to discover

an n-dimensional hyperplane that best classifies categorically labeled data points

that have n + 1 dimensions; thus, generating a linear classifier. A general method

using SVMs has been successfully applied to a panel of histone modification ChIP-seq

profiles to identify enhancer elements [Fernández and Miranda-Saavedra, 2012]. This

procedure effectively discovers histone modification profiles that predict the presence of

enhancer elements. DNase hypersensitive sites have also been predicted using histone

modifications in a similar way [Arvey et al., 2012]. SVMs and other classification

methods are a powerful approach in determining the combinatorial patters of histone

modifications that are associated with underlying genomic features.

Cluster analysis

In contrast to regression and classification, cluster analysis (clustering) is an unsuper-

vised learning technique; i.e., the data points are unlabeled. Many types of cluster

analysis exist, including K-means, and hierarchical clustering. While the details of

these methods will not be discussed here, the goal for all clustering techniques is to

generate sensible groupings (clusters) of data points, where each cluster contains data

points that are relatively homogenous with respect to their features. In biology, cluster

analysis is commonly used to summarize and visualize genomic data sets. For example,

cluster analysis is commonly used to group genes that show similar expression profiles

across a series of experimental conditions.

Though clustering is a powerful approach for summarizing and visualizing epigenetic

data, clustering can also give deep insights into the functional associations of the data

when combined with other datasets (e.g., expression, annotations, Gene Ontology,
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pathways). Clustering genomic regions in an unbiased way with respect to their histone

modification profiles, groups them using only knowledge of their chromatin state.

Discovering statistical associations between the resulting clusters and independent

datasets is a convincing way implicate combinatorial histone modification profiles in

functional processes. This strategy forms the basis for the study presented in Chapter

four. Several studies have used similar strategies. For example, clustering genomic

loci by histone modifications at various developmental stages in Xenopus revealed a

stepwise progression in epigenetic reprogramming during development [Schneider et al.,

2011]. Another study demonstrated dramatic reprogramming of enhancer-associated

histones during the differentiation of human embryonic stem cells [Hawkins et al., 2011].

Clustering breast cancer samples by global levels of histone modifications revealed

that levels of histones correlate with tumor phenotype, several prognostic markers,

and patient outcome [Elsheikh et al., 2009]. Strikingly, this study only observed global

histone modifications, highlighting the potential power of this strategy for identifying

functional associations from high-resolution whole-genome data.

Hidden Markov models and dynamic Bayesian networks

Hidden Markov models (HMMs) and dynamic Bayesian networks are in a class of

modeling techniques known as probabilistic graphical models. Generally speaking,

these models attempt to discover the conditional dependence structure between

random variables. Hidden Markov models attempt to discover an underlying sequence

of “hidden” (unobserved) states of a system by sequentially analyzing output variables,

i.e., the observed data. Since the states are unknown when training the model, HMMs

are an example of unsupervised learning. The Markovian aspect of an HMM is that

the state of the system at a given position in the sequence is only dependent on

the observed data at the given position, and the state of the system at the previous

position in the sequence. Dynamic Bayesian networks (DBNs) are a generalization
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of HMMs that allow the hidden state of the system to be modeled as a series of

interrelated random variables, rather than a single hidden state variable. Ultimately,

the output of HMMs or DBNs is a sequence of states that are learned from the

sequential observation of data.

In the context of unbiased whole-genome histone modification data, these methods

segment the genome into states that are defined by the site-specific enrichment for each

modification in the dataset used to train the model. Thus, an HMM or DBN discovers

the chromatin states that exist across the genome. In a 2010 study by Ernst and

Kellis, an HMM was used to segment the human genome based on 38 different histone

modifications including acetylations, methylations, and histone variant H2A.Z [Ernst

and Kellis, 2010, Barski et al., 2007, Wang et al., 2008]. The results were striking,

in that a wide variety of functional genomic features were associated with distinct

chromatin states discovered by the HMM. Some of these features include promoters,

transcriptionally active regions, repressed regions, putative enhancers, and repeat

sequences. This demonstrated that many annotated features of the genome could

be recapitulated using only histone modification information—a remarkable finding.

Furthermore, states associated with some features were also associated with specific

ontologies. For example, multiple states were found that corresponded to promoters.

Each of these states corresponded to different sets of genes enriched for distinct Gene

Ontology (GO) terms. This suggests that histone modifications encode functional

information along with feature type information. Similar findings were obtained in a

study utilizing a more general DBN model [Hoffman et al., 2012]. Each of these studies

resulted in software tools for HMM (ChromHMM [Ernst and Kellis, 2012]) and DBN

(Segway [Hoffman et al., 2012]) segmentation of chromatin data. These tools were

used in several published analyses of ChIP-seq datasets generated by the ENCODE

consortium [Ernst et al., 2011,Dunham et al., 2012,Hoffman et al., 2013,Ernst and

Kellis, 2013].
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Bayesian networks

Bayesian networks (BNs), like HMMs and DBNs, are a type of probabilistic graphical

model. The goal of a BN is to discover the conditional dependencies between random

variables in a set. BNs are represented as directed acyclic graphs (DAGs), where each

node represents a probability function for a random variable, and each edge represents

dependence between two variables. The probability function of a given node is a

conditional probability, conditioned on the values of its parent nodes. Though in

principle training a BN allows one to learn the dependence structure between of random

variables, the relationships may not be causal, but merely correlative [Chickering,

1995].

Several groups have attempted to use BNs to learn the dependence structure

between histone modifications (see section 1.1.2 for a discussion of dependence among

histone modifications) [Yu et al., 2008, Lv et al., 2010]. Although the results have

produced sensible dependence relationships between some histone modifications that

are well characterized, the resulting BNs are difficult to interpret. The inherent

conflation of causal and correlative relationships in BNs, complicates the biological

interpretation of the results. This issue is exacerbated by the high degree of correlation

between many histone modifications. Furthermore, the methods used to estimate

histone mark levels have produced artifacts in some of these studies (see Chapter

three for further details). Though the first application of BNs to histone modifications

was in 2008 [Yu et al., 2008], few insights into histone modification dependence have

been gained using this method. The difficulties of interpreting BNs warrant rigorous

experimental validation, which efforts to date have lacked. Thus, future application of

BNs to questions in histone modification dependence relationships will greatly benefit

from collaboration between wet lab and computational scientists.
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1.3.3 Methods for whole-genome chromatin conformation

data

Every chromosome conformation capture technique—including 3C, 4C, 5C, Hi-C, and

ChIA-PET—gives information about the contact frequency between pairs of regions

in the genome. The problem of reconstructing features of chromosomal organization

from this data is computationally challenging. There are two strategies that are

often used to analyze these data: (1) Identification of interaction domains, and other

types of interaction structures through statistical analysis, and (2) construction of

three-dimensional models based on interaction restraints or polymer physics [Dekker

et al., 2013]. The latter approach is beyond the scope of this work, and will not be

discussed further. Moreover, this discussion will be in the context of Hi-C, which is

the only completely unbiased chromosome conformation capture method. However,

much of what will be discussed also applies the high-throughput methods that are not

biased by a single locus, which includes 5C and ChIA-PET.

The results of chromatin conformation capture experiments represent an average

over a population of cells. Thus, the intensity of a signal is proportional to the

interaction frequency across the population of cells, for a given pair of genomic loci.

Using this reasoning, researchers have demonstrated that there is a high degree

of variability in genomic conformations across a population of cells [Kalhor et al.,

2012, Tjong et al., 2012]. Indeed, in many whole-genome experiments, non-zero

signals are observed at virtually all pairs of loci, which reflects the conformational

heterogeneity in a population of cells. Therefore, a common objective is to identify

locus pairs that display significant interaction over the background. A simple method

that has been used to identify regions that display strong though-space interactions is

to formulate a probability model for background interactions and calculate the p-value

for every interaction based on this null model [Duan et al., 2010,Sanyal et al., 2012].
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For example, it is reasonable to assume that the probability of inter-chromosomal

interactions is uniform across the genome, where the probability of any particular

interaction is p = 1/N , where N is the total number of possible pairs. Under this

assumption, the probability of observing k inter-chromosomal interactions between

any two genomic regions is given by the binomial distribution:

Pr(K = k) =

(
n

k

)
pk(1− p)n−k (1.1)

where n is the total number of observed inter-chromosomal interactions. The p-value

for a given pair of genomic regions is thus calculated by

p-value =
n∑
i=k

Pr(K = i) (1.2)

Calculating the significance of intra-chromosomal interactions is more complicated

than inter-chromosomal interactions. This is because the contact probability of intra-

chromosomal pairs is inversely correlated with genomic distance, owing to the polymer

nature of chromatin. A reasonable approach is to stratify interactions into ranges

of intra-chromosomal distances. Significance can then be calculated for each range

independently using the method described above.

Various approaches have also been implemented to identify interaction compart-

ments, or clusters of interacting loci. One of the first methods to identify these

compartments in Hi-C data was through the principle components of interaction

matrices, where element (i, j) of an interaction matrix Mij represents strength of the

interaction between genomic regions i and j. The sign of the first principle compo-

nent eigenvector of these matrices was found to broadly distinguish euchromatic and

heterochromatic regions [Lieberman-Aiden et al., 2009]. It was later discovered that

this eigenvector correlated very strongly with replication timing [Ryba et al., 2010].

Another group used an HMM approach to discover TADs from Hi-C data [Dixon et al.,
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2012]. Briefly, they calculated a “directionality index” for each genomic region, which

reflects the degree of upstream or downstream interaction bias of a locus. Using an

HMM they were able to segment the genome into states of “upstream bias,” “down-

stream bias,” or “no bias.” The sequence of these states were then used to identify

interaction boundaries between adjacent regions of the genome. For example, a bound-

ary would be predicted after the sequence downstream bias → no bias → upstream

bias if it was directly followed by the same sequence. Furthermore, a downstream

bias → no bias → upstream bias sequence would also represent a TAD, since it shows

a preference for interaction within itself, but not for adjacent up- and downstream

regions.

Methods utilizing network analysis are also beginning to be applied to interaction

data to identify interaction domains. However, only biased interaction data has been

analyzed in this way. One study utilizing ChIA-PET analyzed the structure of the

interaction network generated by Pol II centric interactions in human cancer cell

lines [Sandhu et al., 2012]. Another study constructed a gene-gene interaction network

from Hi-C data, also in human cancer cell lines [Wang et al., 2013]. The following

section will provide an overview of relevant network analysis topics, and their meanings

in the context of Hi-C analysis. Chapter five will describe the first application of

network analysis to unbiased Hi-C data.

1.3.4 Network analysis of Hi-C data

In biology, network analysis is most closely associated with gene regulation networks

or protein-protein interaction networks. However, networks are also a natural way to

represent interactions between genomic regions, since networks abstractly represent

pairwise relationships between objects. In the case of Hi-C data, genomic loci are

represented as nodes in a network, and interactions are represented as edges. Repre-

senting chromatin interaction data as networks is also particularly attractive because
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of the rich collection of network analysis methods that can be used to infer properties

of chromatin conformation. Large-scale structural analysis of networks can be used to

identify interaction domains, or chromosome territories. Small-scale analysis—on the

level of individual nodes and edges—may be used to identify regions of the genome

that are important in seeding higher-order structure. Some large and small-scale

analysis techniques and their potential application in analyzing Hi-C data will be

discussed.

For this discussion it is useful to describe the some of the mathematical concepts

and vocabulary used in network analysis. First, in mathematics, “networks” are more

often referred to as “graphs,” and “nodes” as “vertices.” A graph G is an object

defined by two sets, (V,E), where V is a set of vertices, and E is a set of edges where

each element of the set is a set vertices, {vi, vj}. Furthermore, an edge can have an

associated weight that gives the strength of the connection between two vertices. An

adjacency matrix is a way of representing connections between the vertices of a graph.

The adjacency matrix A of a graph G(V,E) is an n× n matrix where n = |V |. Each

entry aij of A is equal to the weight of the edge between vi and vj , or 1 in the case of

an unweighted graph. That is, for an unweighted graph

Aij =

 1 if vi → vj

0 otherwise
(1.3)

The adjacency matrix is a useful mathematical representation of a graph, which is

widely used in network analysis. For example, spectral analysis of adjacency matrices

is useful in partitioning graphs [Pothen et al., 1990]. These concepts will be useful for

the following discussion.
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Small-scale analysis

In network analysis it is often useful to calculate the “influence” of nodes in a network

through measures of centrality. Influential nodes have outstanding centrality values,

and are often referred to as “hubs.” These nodes form the structural lynchpins of

a network as a whole. There are several centrality measures that can be used to

quantify the influence of nodes in a network. Each provides different perspectives on

the factors that contribute to the influence of a node. Three common and relatively

intuitive centrality measures are degree centrality, closeness centrality, and betweenness

centrality. These centrality measures will be discussed here in the context of unweighted

networks; however, weighted network generalizations also exist [Barrat et al., 2004].

Importantly, each measure can be interpreted in the context of a genomic interaction

network to formulate biological hypotheses from interaction data.

Degree centrality is the simplest and most intuitive measure of centrality. The

degree centrality of a node v is simply defined as the number of edges incident to v

(i.e., the degree of node v);

Cdegree(v) = deg(v) (1.4)

Degree centrality in a Hi-C-derived interaction network can be used to identify key

structural regions of the genome. A genomic region with high degree centrality brings

together many other genomic regions, and thus may be involved in nucleating structures

such as transcription factories. Since Hi-C data is generated from a population of

cells, a genomic region with high degree centrality may also represent regions that

interact promiscuously, such as certain types of enhancer elements [Li et al., 2012a].

The closeness centrality of a node is a measure of how near the node is to all other

nodes in the network. For a node v it is defined as the inverse sum of the shortest
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paths from v to all other nodes in a graph G [Sabidussi, 1966];

Ccloseness(v) =
1∑

t∈V
dG(v, t)

(1.5)

where dG(v, t) is the length of the shortest path from node v to node t in graph G.

Intuitively, closeness centrality and degree centrality are correlated; i.e., the more

nodes a given node is connected to, the more likely it is to have a short path to any

other node. Similarly, to have a low closeness centrality a node must be relatively

distant from highly connected nodes. In the context of a genomic interaction network,

closeness centrality may be a useful measure in distinguishing highly isolated regions

of the genome from highly exposed regions of the genome. An intuitive case would

be distinction between nuclear lamina-associated regions of the genome, which are

relatively quiescent, and regions of the genome that are closer to the interior of the

nucleus, which are relatively active.

Betweenness centrality is a measure of how important a node is in connecting

other nodes in the network. The betweenness centrality for a node v is defined as the

sum of the ratios of the number of shortest paths that pass through v and the number

shortest paths between all pairs of nodes [Anthonisse, 1971,Freeman, 1977];

Cbetweenness(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(1.6)

where σst is the number of shortest paths from node s to node t, and σst(v) is the

number of shortest paths from node s to node t that pass through node v. This

measure could be useful in identifying genomic regions that link multiple higher-

order structures, since there will be a large number of shortest paths between the

structures that pass through these nodes. In principle these regions could represent

the interface between two interaction domains or chromosome territories. There is
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also an analogous measure of edge betweenness, that could be used to find similarly

important interactions.

Section 1.3.3 described how significant interactions can be identified from interaction

frequencies in Hi-C data; however this only takes into account the loci that constitute

the interacting pair. A higher-order analysis, that takes into account shared neighbors,

can be done using network approaches. Equivalence measures quantify the similarity

of node pairs with respect to the common neighbors that they share. These measures

could be useful for identifying pairs of nodes that are members of an interaction

domain. One measure of node equivalence is the Jaccard coefficient, defined by

Juv =
|Nu ∩Nv|
|Nu ∪Nv|

(1.7)

where Nu is the set of nodes that neighbor node u, and Nv is the set of nodes that

neighbor node v. Another equivalence measure is the cosine similarity, defined by

φuv =
|Nu ∩Nv|√
|Nu| |Nv|

(1.8)

which has the useful property 0 ≤ φ ≤ 1 for all pairs of nodes with degree > 0.

Equivalence measures for all pairs can be analyzed together—via hierarchical clustering,

for example—to determine large-scale characteristics of a network.

Large-scale analysis

The goal of large-scale analysis is to characterize the global structure of networks.

One of the most important large-scale aspects of a network is its community structure.

A community is a group of nodes that has dense connections within the community

relative to their connections with nodes outside of the community. Figure 1.1 shows a

network divided into communities, which are represented by node color, and where

node size reflects betweenness centrality magnitude. In an interaction network built



36

Figure 1.1: Large and small-scale properties of a network. Node size represents
betweenness centrality magnitude. Node color represents community identity. Edge
color is a mixture of the nodes connected by the edge.

from Hi-C data, communities can represent the higher-order structures of the genome,

such as chromosome territories. Like centrality, many definitions for communities

exist, making the problem of community detection not well posed [Newman, 2011].

However, there are a number of useful approaches for partitioning networks into

communities that have successfully recapitulated known community structure in

benchmark networks, and have given useful information about the structure of de

novo networks [Lancichinetti et al., 2008,Lancichinetti and Fortunato, 2009].

A simple method for detecting communities is hierarchical clustering, using equiva-

lence measures—such as the Jaccard coefficient, or the cosine similarity—as a distance

metric. In this procedure, the metric represents the strength of the connection between

pairs of nodes. Nodes are then grouped, first into pairs, and then hierarchically into

larger groups, based on some linkage criterion. Many linkage criteria exist, however

the basic principles of the clustering procedure are the same, regardless of the link-
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age criterion. The variety of distance metrics and linkage criteria require that the

community detection procedure be tuned in order to find the “best” solution. Since

clustering is an ill-defined problem, evaluating the community partitions identified

through hierarchical clustering (i.e., finding the “best” solution) is an ad hoc procedure.

Methods that better define partition quality are thus more desirable.

A variety of methods exist for community detection based on modeling equilibrium

dynamic processes that occur on the network, such as random walks [Zhou and

Lipowsky, 2004]. These methods detect communities by attempting to optimize a

quantity that indicates the quality of a partition with respect to community structure.

One of the most widely used measures for this purpose is known as modularity [Newman,

2004], which is defined as

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (1.9)

where Aij is the adjacency matrix of the network, ki is the degree of node i, m

is the total number of edges in the network, ci is the community to which node i

belongs, and δ is the Kronecker delta. Thus, modularity is a measure of the difference

between the fraction of edges within communities, and the expected fraction if the

edge distribution in the graph was random. Optimization of modularity has been

proven to be NP-complete [Brandes et al., 2008]; however, several algorithms for

finding approximate solutions exist [Clauset et al., 2004,Medus et al., 2005,Blondel

et al., 2008,Li et al., 2010]. Chapter five will further discuss community detection by

modularity optimization, and the application of the technique to Hi-C data to uncover

the network architecture of the budding yeast genome.
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1.4 Dissertation rationale

This dissertation provides a broad perspective on the application of computational

analyses to many questions in chromatin biology that were highlighted in this intro-

duction. Together, the studies discussed in Chapters two through five are composed

of a diverse panel of computational techniques and biological questions. Chapter

two discusses the application of machine learning methods to histone modification

ChIP-seq data, and demonstrates that the activity of certain modifications are only

apparent in a combinatorial context. Chapter three discusses issues in quantifying

histone modification ChIP-seq data, and presents a method for improving the results

of analyses based on these data. Chapter four presents a high-dimensional analysis

of changes in histone modification levels during EMT. This chapter includes novel

analysis methodologies, as well as novel insights into epigenetic reprogramming in

EMT. Finally, Chapter five presents a novel application of network analysis techniques

to Hi-C data. It also discusses novel insights into the functional organization of the

Saccharomyces cerevisiae genome gained from these analyses.

The unifying thread of this dissertation is the innovative use of sophisticated

computational techniques to gain new insights into chromatin biology. Approaches

similar to those outlined in this dissertation will only become more critical as more

whole-genome chromatin data is generated. Indeed, as databases grow evermore com-

prehensive, many difficult questions in chromatin biology will be made approachable,

and many new hypotheses will be engendered through the tools of computational data

analysis.
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Chapter 2

Regression analysis reveals

transcriptional association

H4R3me2

2.1 Introduction

Histones are subjected to numerous modifications, including methylation, acetylation

and phosphorylation. Over one hundred modification/residue combinations have

been discovered [Rando, 2012]. They regulate a number of important processes

on DNA, including transcription [Li et al., 2007, Berger, 2007]. Extensive studies

comparing histone modification and transcription levels have established that histone

methylation is associated with either transcriptional repression or activation. A number

of marks have been classified as “activating” with respect to transcription, such as

trimethylated H3 lysine 4 (H3K4me3) and trimethylated H3 lysine 36 (H3K36me3),

as well as “repressing,” such as trimethylated H3 lysine 27 (H3K27me3). These

modifications can be recognized by effector proteins (readers), which can render
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chromatin in either “open,” transcriptionally permissive conformations or “closed,”

DNA-inaccessible conformations, respectively [Li et al., 2007,Berger, 2007].

A simple question that emerges is: Why does the cell require more than one hundred

modifications to maintain two (i.e., open and closed) or a handful of chromatin states?

The histone code hypothesis was developed to address this question. The histone

code hypothesis suggested that distinct functional consequences result from histone

modifications, and that a given outcome is encoded in the precise nature and pattern of

marks [Strahl and Allis, 2000,Jenuwein and Allis, 2001]. A challenge to the hypothesis

has been the identification of multiple readers for a single modification, thereby

confounding “a simple one-mark-to-one-module type of decoding” [Ruthenburg et al.,

2007]. A framework that keeps the histone code hypothesis intact and addresses

this criticism is the phenomenon of multivalency—the cooperative engagement of

several linked substrates by a species with more than one discrete interacting surface

[Berger, 2007,Ruthenburg et al., 2007]. In other words, chromatin regulatory proteins

and their associated complexes write, read and erase multiple histone modifications

simultaneously. It has been suggested that multivalency may be widespread in

chromatin regulation. Indeed, a number of recent studies are uncovering patterns of

coexisting histone marks, extensive crosstalk among different modifications as well as

multiple effector proteins on the same complex [Ruthenburg et al., 2007,Latham and

Dent, 2007,Suganuma and Workman, 2008].

Using ChIP-chip and ChIP-seq, bivalent domains of H3K4me3 and H3K27me3

were observed at genes encoding developmentally important transcription factors in

embryonic stem cells [Bernstein et al., 2006,Mikkelsen et al., 2007,Ku et al., 2008].

It is suggested that these genes are transcriptionally silent but poised for activation

during development. Indeed, in differentiated cells the vast majority of bivalent

domains (93/97) resolved into either K4me3 (active genes) or K27me3 (repressed

genes). Consistent with the idea of widespread multivalency, it is notable that two
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“opposing” marks were assayed on a genomic scale and were found to occur in bivalent

domains. It raises the following question: If many more marks were mapped, would

we find widespread multivalencies?

To help address these questions we applied two machine learning methods, stepwise

multilinear regression and Multivariate Adaptive Regression Splines (MARS) [Fried-

man, 1991a,Friedman, 1991b], to genome-wide ChIP-seq maps of 20 histone lysine

and arginine methylations and histone variant H2A.Z in CD4+ T cells [Barski et al.,

2007]. We hypothesized that inclusion of two (bivalent) and three (trivalent) interact-

ing cross-terms in the model can reveal (1) putative cross-regulation or multivalent

relationships between histone modifications and (2) a global view of the epigenetic

regulatory network. Specifically, we first estimate the enrichment level of each mod-

ification using a novel model-based approach, which accounts for the characteristic

spatial distribution of each modification across genes. With the enrichment levels as

inputs, and normalized log2 gene expression levels as output, we built the multilinear

(ML) model from a set of 21 single or monovalent inputs, 210 bivalent inputs and 1330

trivalent inputs. For the MARS model, the 21 monovalent amplitudes were supplied

as input and the bi- and trivalent interacting terms were added as part of the model

optimization procedure. Using 10-fold cross validation and requiring terms to appear

in 5 of 10 training models, our best ML model contained 7 monovalent, 8 bivalent,

and 8 trivalent terms. Using the Generalized Cross Validation (GCV) score to protect

against overfitting, we trained a MARS model that had 7 monovalent, 10 bivalent, and

trivalent terms. We were able to identify a number of highly significant multivalent

terms, suggesting that multivalency and cross talk among histone modifications may

be widespread. We were surprised that both models predicted H4R3me2 to be among

the most repressive histone methylations, given that its ChIP-seq enrichment levels

showed no response to increasing gene expression in a univariate context [Barski

et al., 2007]. H4R3me2 has, however, been shown to be repressive in a number of
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other site-specific biochemical studies [Wang et al., 2008,Hou et al., 2008,Litt et al.,

2009,Zhao et al., 2009]. Along with our findings, this suggest that the global activity

of H4R3me2 is multivalent.

2.2 Model construction rationale

2.2.1 Basic workflow

A diagram of our analysis workflow is shown in Figure 2.1. The inputs to our analysis

are the read enrichment profiles across the human genome generated by Barski et

al. [Barski et al., 2007]. In Figure 2 of their paper, they also calculated composite

plots where they stratified gene expression by quartiles, aligned the transcription

start sites (TSS) of all the genes, and calculated the normalized read counts as a

function of position relative to the TSS. These plots show that (1) each mark has a

relatively unique profile and (2) the shape of each mark’s profile displays a relatively

weak dependence on gene expression level. Based on these observations, we modeled

each modification’s profile at every gene as a product of a gene-dependent enrichment

multiplied by a position-dependent average profile or “template.” From gene-centric

read enrichment profiles we calculated the average spatial distribution of each mark

across the promoter region, the scaled gene body, and downstream 3’ region as detailed

in section 2.5. We then calculated all 210 possible bivalent products and all 1330

possible trivalent products from the 21 single mark amplitudes. Thus, we have 21

single modification states that are inputs to the MARS, model and a total of 1561

possible modification states that are inputs to our multilinear model.

These amplitudes were calculated for 11,796 Ensembl genes [Hubbard et al., 2009].

Because the gene expression data was 3’ biased, we could not distinguish the expression

levels of different isoforms, which included multiple TSS. We selected the TSS that

had the largest number of significant modifications as detailed in section 2.5. Human
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Figure 2.1: Flowchart of multilinear and MARS model construction. Chart
describes the analysis steps in model construction. Starting with histone mark/variant
ChIP-Seq data, template profile and amplitude calculation, and finally construction
of regression models using mark amplitudes as inputs and log2 gene expression as
outputs.
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CD4+ T cell gene expression data which was used to generate the output of our models

was collected from the Genomics Institute of the Novartis Research Foundation’s

SymAtlas [Su et al., 2004]—a compendium of gene expression data in human and

mouse tissues. Only genes that had Ensembl, UCSC, and RefSeq IDs were included

in this study. Of the 18,647 genes that met these criteria, 11,796 had expression

data associated with them [Su et al., 2004] . Because multiple Affymetrix probes can

interrogate a single gene, the total number of expression data points for the 11,796

genes was 17,635, which constituted the output of the multilinear and MARS models.

2.2.2 Estimating input amplitudes for regression models

Two groups have estimated ChIP-seq histone modification/variant enrichment levels

across genes in order to applying machine learning techniques, specifically, linear

regression [Karlić et al., 2010] and Bayesian networks [Yu et al., 2008]. They count

tags only in a region surrounding the transcription start site (i.e., ±1 kbp [Yu et al.,

2008] or ±2 kbp [Karlić et al., 2010] of the TSS). A major problem with this method

is that many marks do not have promoter/5’-biased enrichment patterns. A striking

example is H3K36me3, which has increasing enrichment along gene bodies, which

peaks near the 3’ ends [Barski et al., 2007]. Yu et al. calculated correlation coefficients

between their 5’-biased mark enrichment estimates and gene expression levels, and

found little to no correlation between H3K36me3 and gene expression [Yu et al., 2008].

This is an unexpected result as H3K36me3 has been characterized as an activating

mark in a number of biochemical studies [Latham and Dent, 2007, Suganuma and

Workman, 2008], and its levels have been shown to have a strong positive correlation

with gene expression [Barski et al., 2007]. This discrepancy is likely due to the 5’ bias

of their amplitude estimation method. To address this problem, we estimated the

enrichment levels of each mark by calculating a weighted average across the whole

gene and its flanking region as described in section 2.5. We use the average enrichment
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pattern across the flanking regions and the body of scaled genes as a weighting function.

However, given the large variation in gene lengths, exon/intron number, and mark

deposition patterns, we also assessed the robustness and relative error of our amplitude

estimation procedure. See section 2.5 for details on amplitude estimation and the

robustness evaluation.

2.3 Results and discussion

2.3.1 Multilinear model

We fit the gene expression data to the multilinear (ML) model shown in equation

2.6. As described in section 2.5, we used stepwise linear regression to build the ML

model. There were 21, 210 and 1330 possible terms in the first, second and third

sum of equation 2.6, respectively. The final model contained 24 terms. The average

training and testing MSE was 3.1213 and 3.1525 respectively for this model. The

average adjusted R2 for the training and testing data is 0.4689 and 0.4574, respectively.

The fact that the train and test values are close suggests that the model was not

over trained. Using all of the data, we calculated an adjusted R2 of 0.4687 and MSE

value of 3.1228. Crudely, this suggests that our model explains almost 50% of the

gene expression variation after adjusting for the number of degrees of freedom. In

Figure 2.2A, we show a scatter plot of the actual versus the model log2 gene expression

levels whose associated Pearson correlation coefficient was 0.687 (p-value < 2.2e–16).

This value is consistent with that of Karlic et al. who modeled gene expression as a

function of 38 histone methylation and acetylation modifications and H2A.Z using a

linear model with no interaction (multivalent) terms [Karlić et al., 2010]. Given the

absence of many other mRNA regulatory factors including other histone modifications,

transcription factors, and miRNAs, a relatively significant percentage of the variation

is explained by these models.
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Figure 2.2: Comparison of pre-
dicted and observed gene expres-
sion. Scatter plots of (A) the multi-
linear model (MLM) predicted gene
expression versus observed gene ex-
pression; (B) the MARS predicted
gene expression versus observed gene
expression; and (C) the MARS pre-
dicted gene expression versus multilin-
ear model predicted gene expression.
The corresponding Pearson correlation
coefficient is shown within each plot.
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In the final model, 7 of the 21 (33%) single terms were found to be significant. In

addition, there were 8 (4%) significant paired terms and 8 (0.6%) significant triplet

terms. The terms appearing in the full model are displayed in Table 2.1 where we

show each surviving term’s β coefficient, the β coefficient’s Z-score (i.e., the number

of standard deviations away from β = 0), the term’s p-value, and a robust impact

factor. The robust impact factor is defined as the product of the fitting coefficient (β)

and the inter-quartile range (75th percentile – 25th percentile) of the mark amplitudes.

It is a robust measure of a term’s impact on gene expression while the Z-score and

p-value are measures of its significance. A positive (negative) β coefficient, Z-score,

and impact factor indicate an activating (repressing) term in the model. The table is

sorted by impact factor with activating or repressive marks labeled with “a” or “r”

superscripts, respectively. We labeled the marks according to (1) the sign of their

monovalent term in the ML model, or (2) the response of the mark’s levels with

increasing gene expression when it did not contribute a monovalent term (these marks

are starred).

2.3.2 Multilinear model terms

Of the 7 monovalent terms (Table 2.1), H3K4me3, H3K36me3, H3K79me1, H3K79me3

and H4K20me1 were activating. Of these, only H3K4me3, H3K36me3 and H4K20me1

display a clear overall activating trend from composite plots [Barski et al., 2007].

Based on their composite plot analysis, Barski et al. conclude that H3K79me1 levels

alone shows no overall trend with gene expression, while it has the strongest activating

contribution in our ML model. This is consistent with a recent finding that H3K4me3

and H3K79me1 are the most predictive of gene expression levels in low CpG content

promoters [Karlić et al., 2010]. Two arginine methylations, H4R3me2 and H3R2me1,

were the only repressive monovalent marks in the model. In contrast, Barski et al.

found no overall activating or repressing trend for these two methylations from their
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Table 2.1: Multilinear model terms and statistics

Term β (trim mean) Z (trim mean) p (median) Impact (trim mean)
H3K79me1a 6.741 18.234 0 1.331
H3K36me3a 4.087 17.802 0 0.922
H3K79me3a 3.078 23.916 0 0.598
H4K20me1a 0.977 21.446 0 0.450

H3K4me2a*-H3R2me1r 18.270 7.850 1.66e-15 0.437
H3K27me2r*-H3R2me1r 70.468 15.280 0 0.381

H3K9me2r*-H3K27me1r*-H4K20me1a 37.041 5.643 9.47e-09 0.156
H3K4me3a 0.133 5.729 5.20e-09 0.151

H2BK5me1a*-H3K36me3a 1.286 3.800 7.95e-05 0.115
H2BK5me1a*-H4K20me1a-H3R2me1r 1.531 6.034 1.14e-09 0.030

Intercept 4.026 64.131 0 0
H3K9me3r*-H3K36me3a -2.747 -12.439 0 -0.010

H3K4me2a*-H3K36me3a-H3K79me3a -1.274 -3.743 1.02e-04 -0.018
H3K36me3a-H3K79me2-H3R2me2 -5.855 -3.497 1.73e-04 -0.022

H3K27me3r*-H3K79me2-H3K79me3a -26.341 -6.380 5.78e-11 -0.026
H3K4me1a*-H3K9me2r*-H4K20me1a -4.563 -3.578 2.65e-04 -0.041
H3K9me1a*-H3K27me1r*-H4K20me1a -2.350 -5.078 1.92e-07 -0.077

H2BK5me1a*-H4K20me1a -0.600 -9.627 0 -0.095
H3K36me1-H3K79me1a-H3K79me3a -27.840 -8.478 0 -0.115

H3K4me2a*-H3K9me1a* -1.578 -3.340 3.57e-04 -0.123
H4R3me2r -11.121 -13.233 0 -0.301

H3K27me2r*-H3K36me3a -31.772 -8.911 0 -0.311
H3K27me2r*-H3K79me1a -56.535 -9.535 0 -0.449

H3R2me1r -11.937 -16.504 0 -0.596

Terms appearing in the final multilinear model, and associated statistics. Trim mean of
the β coefficients, Z-scores and impact factors (β multiplied by amplitude interquartile
range). Trim mean is defined as the mean of the population excluding the lowest and
highest 5% of the data. The superscript labels each mark as activating (a) or repressive
(r). Unstarred marks correspond to monovalent terms in the model, starred marks do
not have a monovalent contribution in the model, but correlated/anti-correlated with
gene expression based on univariate analysis, and uncolored marks do not have clear
correlation with gene expression. Rows are sorted by the impact term value.

composite plot analysis. Marks that showed an activating trend from composite plots

but did not appear as monovalent terms in our ML model included H3K4me1/2,

H3K9me1 and H2BK5me1. Marks that showed a repressive trend from composite

plots but were absent at the monovalent level in our ML model were H3K27me2/3, and

H3K9me2/3. H3K27me1 and the variant H2A.Z did not appear as monovalent terms

in the ML model, and displayed complex non-monotonic enrichments as a function of

increasing expression from their composite plots. Finally, marks that neither appeared

at the monovalent level in the ML model nor showed any trend with respect to gene

expression level were H3K79me2, H3R2me2 and H4K20me3.
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While the majority of monovalent terms are activating, the majority of multi-

valent terms (11 of 16) are repressive. Half of the 16 multivalent terms involve a

mix of activating and repressing modifications according to either the sign of their

monovalent term in the ML model or composite plot trends. This is interesting given

the discovery of bivalent domains of H3K4me3 and H3K27me3. Indeed, two of the

three highest impact and most significant repressive terms are bivalent. They both

include H3K27me2 together with H3K79me1 and H3K36me3 respectively. The highest

impact activating multivalent term is also bivalent and composed of an activating

mark, H3K4me2, and a repressive mark, H3R2me1. Thus, at the bivalent level, the

linear model terms suggest that there is significant overlap between opposing marks

(i.e., activating and repressive) and that one of them tends to “override” the other,

similar to the observation that H3K27me3 overrides H3K4me3 in ES cells [Bernstein

et al., 2006,Mikkelsen et al., 2007].

To further investigate the extent to which bivalent terms in the linear model

point to the ability of one mark to override or oppose another overlapping mark, we

generated false-color plots, shown in Figure 2.3, of gene expression levels as a function

of bivalent amplitudes (on the y-axis) and one of the monovalent amplitudes (on the

x-axis). We discretize the amplitudes into a 10,000 square grid (i.e., 100 x-axis and

y-axis bins) and calculate the average gene expression level within every box. The

colors red, yellow, green, cyan, blue and magenta represent equidistant increasing

gene expression values from the minimum to the maximum levels. As illustrated in

Figure 2.3A, points along lines emanating from the origin moving outward represent

increasing H3K27me2 (x-axis amplitude) and constant H3K36me3, with higher slopes

corresponding to a higher level of fixed H3K36me3 amplitude. Conversely, points

moving upward along vertical lines correspond to fixed H3K27me2 and increasing

H3K36me3, with increasing position of the vertical line on the x-axis corresponding

to higher level of fixed H3K27me2 amplitudes. This allows us to visualize a given
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Figure 2.3: Gene expression false color plots. Gene expression (color scale) as
a function of bivalent (y-axis) and monovalent (x-axis) enrichment amplitudes for
(A) H3K27me2-H3K36me3 versus H3K27me3 and (B) H3K36me3-H4R3me2 versus
H4R3me2. The y-axis represents the product of the amplitudes of both marks and the
x-axis represents one component of the pair. Gene expression values were binned into
a 10,000 square grid with level represented by color. Vertical lines represent a constant
value of the x-axis mark amplitude (i.e., H3K27me2 in (A) and H4R3me2 in (B)), while
a line emanating from the origin represents a constant value of H3K36me3 in (A) and
(B) with the slope corresponding to H3K36me3 level. Plot (A) shows mark avoidance,
as there are few genes with high levels of both marks while (B) shows a trend toward
mark concurrence. These plots also demonstrate how H3K36me3 strongly overrides
H4R3me2 (increasing radial slope corresponds to increasing gene expression in (B))
but has more difficulty overriding the repressive activity of H3K27me2.

modification’s impact on transcription and how its regulation of transcription is

continuously altered by the increasing co-occurrence of a second modification.

We found that increasing H3K27me2 corresponds to decreasing expression, as

expected. We also found that increasing expression with fixed H3K27me2 and in-

creasing H3K36me3. However, for relative H3K27me2 amplitudes exceeding 0.9, gene

expression remains at low levels independent of H3K36me3 levels. This suggests that

high levels of H3K27me2 are capable of overriding the gene activating potential of

H3K36me3.

ML models have been applied in physical and statistical studies where a common

outcome is that the single terms dominate the model in both their relative impact
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and statistical significance—this is theoretically expected in many cases. In these

systems, the double, triple, etc. product terms tend to make small and diminishing

(in the order of the number of products) corrections to the single terms. As shown in

Table 2.1, we found the expected trend, where the highest impact and most significant

activating terms all monovalent. The two most significant repressive terms, H3R2me1

(highest impact) and H4R3me2, are also monovalent. However, we note that the

impact of the highest impact bivalent terms is relatively large.

2.3.3 MARS model

Normalized log2 gene expression was modeled as a function of histone modification

enrichment using the nonlinear Multivariate Adaptive Regression Splines (MARS)

method [Friedman, 1991a, Friedman, 1991b]. The model was built with the earth

package in R as described in section 2.5.

The MARS model contained 24 terms: 23 basis functions, and a constant. The

MSE and R2 for this model are 2.8387 and 0.5183, respectively. Figure 2.2B shows

a scatter plot of the actual versus the MARS-predicted log2 gene expression levels,

whose associated Pearson correlation coefficient is 0.7199. There were a total of 7

monovalent terms, with 5 unique single marks; 10 bivalent terms, with 7 unique pairs;

and 6 trivalent terms, with 4 unique triplets. Table 2.2 displays each term’s hinge

functions, the term’s fitting coefficient, and the number of probe sets impacted by each

term. The basis functions can often have a value of zero for a wide range of amplitudes;

for probe-sets in this range, the associated basis function has no impact. Thus, the

number of impacted probe-sets is a measure of the global impact of each term. We

also directly assessed the impact of each term on gene expression as discussed below.
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Table 2.2: MARS model terms

Coefficient Hinge function Non-zero genes
5.531222 1 17635
-10.31971 h(H3K27me2-0.0611382) 6892
1.325129 h(H3K79me3-0.0948497) 7218
-10.70662 h(0.0948497-H3K79me3) 10417
-58.18392 h(0.0611382-H3K27me2) 10743
-3.112329 h(0.559645-H4K20me1) 13551
-3.327909 h(0.545052-H3K36me3) 16872
15.2676 h(0.125391-H4R3me2) 17316
118.4095 h(H3K27me2-0.0611382)×h(H3K9me1-0.674218) 67
39.42698 h(H2BK5me1-1.49934)×h(0.0611382-H3K27me2) 106
-1.089521 h(0.545052-H3K36me3)×h(H4K20me1-0.673666) 3136
0.7436266 h(1.24429-H3K79me2)×h(H4K20me1-0.559645) 4055
47.71129 h(H3K79me1-0.055087)×h(0.0948497-H3K79me3) 4268
-258.7383 h(0.055087-H3K79me1)×h(0.0948497-H3K79me3) 6149
16.1397 h(H3K27me2-0.0611382)×h(0.674218-H3K9me1) 6825
1390.367 h(0.0611382-H3K27me2)×h(0.0913244-H3K27me3) 9906
3.235207 h(0.545052-H3K36me3)×h(0.673666-H4K20me1) 13736
-37.13981 h(0.438075-H3K36me3)×h(0.125391-H4R3me2) 15588
5.809395 h(1.49934-H2BK5me1)×h(0.0611382-H3K27me2)×h(H4K20me3-0.477337) 100
-100.9374 h(0.0611382-H3K27me2)×h(0.0913244-H3K27me3)×h(H4K20me1-3.93081) 203
-0.2791515 h(1.59266-H3K4me3)×h(1.24429-H3K79me2)×h(H4K20me1-0.559645) 2971
74.37772 h(0.545052-H3K36me3)×h(0.0625376-H3K79me1)×h(0.673666-H4K20me1) 6329
-237.028 h(0.0611382-H3K27me2)×h(0.0913244-H3K27me3)×h(3.93081-H4K20me1) 9703
90.39805 h(1.49934-H2BK5me1)×h(0.0611382-H3K27me2)×h(0.477337-H4K20me3) 10537

Coefficients and hinge functions within a row are multiplied and added to the products
of other rows to form the MARS model. The rightmost column indicates the number
of genes for which the hinge function takes a non-zero value. Terms appear in the
order in which they were built into the model by the greedy algorithm.

2.3.4 MARS model terms

Of the 5 unique monovalent marks in the MARS model, 3 are activating, including

H3K36me3, H3K79me3 and H4K20me1. These results are in agreement with the ML

model and the data from [Barski et al., 2007]; although H3K79me3 is a complicated

mark, which is enriched in the promoters of active genes and the bodies of repressed

genes. H3K27me2 has a repressive trend in the model, which agrees with the univariate

analysis [Barski et al., 2007]. Interestingly H4R3me2 appears to have no discernible

behavior in the univariate analysis by Barski et al.; however, both the MARS and ML

models select it as a repressive monovalent mark.

The MARS model also shows nonlinear trends in log2 gene expression as a function

of mark amplitude. Figure 2.4 shows plots of predicted log2 gene expression as a
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function of one or two mark amplitudes with all others fixed to their median value.

These plots reveal whether a mark is activating or repressive. Not surprisingly, the

dominant non-linear trend is saturation of predicted gene expression with increasing

mark amplitude. This trend is clearly evident in both monovalent and bivalent plots

shown in Figure 2.4.

To determine the global (full model) impact of individual marks appearing in

the model, predictions were made with high enrichments (95th percentile) and low

enrichments (5th percentile) of a given mark while fixing all other mark amplitudes at

their median value. The difference between these predictions (Table 2.3—only non-zero

values shown) provides an estimate of each individual mark’s impact, where positive

(negative) values correspond to activating (repressive) activity. This analysis shows

general agreement with the univariate analyses from [Barski et al., 2007]. However,

H2BK5me1, which does not appear as a monovalent term in the model, is activating

in the analysis from [Barski et al., 2007], and repressive in the MARS model. Several

marks that showed no activating or repressive trend in [Barski et al., 2007] made

significant contributions to the MARS model including, H3K79me1 (activating in the

model), H4R3me2 (repressive), and H4K20me3 (repressive). H4K20me3 is generally

associated with heterochromatin [Latham and Dent, 2007], possibly explaining why

it has a slightly repressive trend in the MARS model. Interestingly, H4R3me2 has

the second highest repressive impact (-0.45) and affects all of the probe sets—more

than any other term in the MARS model. Moreover, it has been shown that in some

cases DNA methylation, which is associated with gene silencing, is dependent on

H4R3me2 [Zhao et al., 2009].

Based on the response plots (Figure 2.4), most marks appearing in a bivalent term

seem to modulate each other modestly, with the exception of H4K20me1-H3K36me3,

which shows nonlinear synergistic behavior. Synergies were assessed by making

model predictions while varying each of the unique interaction terms in the model.



54

Figure 2.4: MARS response plots. Predicted gene expression versus amplitude for
either one (2 D plots) or two marks (3 D plots) for (A) H3K27me2 (B) H3K36me3 (C)
H3K79me3 (D) H4K20me1 (E) H4R3me2 (F) H4K20me1-H3K36me3 (G) H3K36me3-
H4R3me2 and (H) H3K79me1-H3K79me3. Each axis represents the full range of
expression and amplitude values. The trend of plots represents activating (positive
slope) or repressive (negative slope) behavior. Many individual marks (A)-(E) and
pairs (F)-(H) show some saturation effects and nonlinear behavior that could not be
captured with a linear model; H3K36me3 (B), H4K20me1 (D) and H4R3me2 (E) show
particularly distinct saturation effects. The combination H4K20me1-H3K36me3 (F)
shows a dramatic nonlinear, synergistic activating effect. In contrast, the two marks in
the combination H3K36me3-H4R3me2 (G) show opposing effects in that H3K36me3
activates and H4R3me2 represses gene expression.
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Table 2.3: Impact of marks in MARS model

Mark Predicted impact (95th-5th percentile)
H3K27me2 -1.118
H4R3me2 -0.446
H3K27me3 -0.348
H2BK5me1 -0.281
H4K20me3 -0.055
H3K79me1 0.324
H4K20me1 1.473
H3K79me3 1.520
H3K36me3 1.650

The difference in mean predicted gene expression between the high (95th percentile)
and low (5th percentile) amplitude values for a given mark while fixing all other mark
amplitudes to their median values. Rows are sorted by predicted impact.

A model prediction was made with every combination of high enrichment (95th

percentile) and low enrichment (5th percentile) for each element of a multivalent pair

or triplet, while all other marks were held at their median values (Tables 2.4 and

2.5). The H4K20me1-H3K36me3 combination is an example of a strong synergistic,

activating bivalent pair. High levels of both together correspond to highly active

genes. The trivalent combination, H3K36me3-H3K79me1-H4K20me1, also shows

strong synergistic activation, further suggesting that co-occupancy of H4K20me1 and

H3K36me3 positively contributes to gene expression. Furthermore, this pair affects a

large number of probe-sets, approximately 80% of those included in the model.

We also found one bivalent and trivalent combination composed of activating and

repressive marks, H3K36me3-H4R3me2 and H3K27me2-H3K27me3-H4K20me1. As

shown in Tables 2.4 and 2.5, we found that increasing each mark’s level independently

results in the expected activating or repressive response. High levels of the activating

and repressive marks result in a moderating effect on predicted gene expression with

values falling between those of high activating-low repressive and low activating-high

repressive mark amplitude combinations. This reinforces the results of the ML model

where we found the tendency of one mark to oppose another overlapping mark.
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Table 2.4: Impact of two marks in MARS model

Bivalent MARS term low-low low-high high-low high-high
H3K27me2-H3K9me1 4.796 4.796 3.866 3.377
H3K27me2-H3K27me3 5.212 3.723 3.677 3.677
H2BK5me1-H3K27me2 5.009 3.677 3.807 3.677
H3K36me3-H4R3me2 3.530 3.468 5.618 4.556
H3K79me2-H4K20me1 3.709 5.211 3.709 4.879
H3K79me1-H3K79me3 3.009 5.938 4.721 5.228
H3K36me3-H4K20me1 3.217 4.163 4.599 7.218

The mean predicted gene expression using high (95th percentile) and low (5th percentile)
amplitude values of each mark described in the leftmost column. The permutations
of high and low values in each column correspond to the mark order in the leftmost
column. The rows are sorted by the values in the last column.

2.3.5 Model comparison

Like the ML model, the MARS model explains about half of the variation in gene

expression. Moreover, the ML and MARS model predicted gene expression profiles are

highly correlated (Figure 2.2C). However, the Pearson correlation coefficient between

predicted and actual log2 gene expression is slighter better for the MARS model. This

is impressive given that both models contain the same number of terms, 24, and the

MARS model was built using one round of a greedy algorithm while the ML model

was built by selecting the best model from multiple rounds of a stepwise algorithm.

We note that the stepwise algorithm is a more powerful and computationally expensive

optimization procedure. These observations suggest that methods like MARS that

are capable of modeling the nonlinear relationship between histone modification

and gene expression levels should outperform models that assume this relationship

is linear. Moreover, many of the bi- and trivalent terms in the ML model may

not have a biological origin, but may be compensating for the nonlinearities in the

data. Specifically, as shown in Table 2.1, the ML model contains two bivalent terms

(H3K4me2-H3K9me1 and H2BK5me1-H4K20me1) containing activating marks with a
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Table 2.5: Impact of three marks in MARS model

Trivalent
MARS
term

low-low-
low

low-low-
high

low-high-
low

low-high-
high

high-low-
low

high-low-
high

high-
high-low

high-high-
high

H2BK5me1
H3K27me2
H4K20me3

4.827 4.827 3.677 3.677 3.845 3.719 3.677 3.677

H3K27me2
H3K27me3
H4K20me1

4.739 7.352 3.373 4.616 3.327 4.570 3.327 4.570

H3K4me3
H3K79me2
H4K20me1

3.709 4.944 3.709 4.722 3.709 5.712 3.709 5.172

H3K36me3
H3K79me1
H4K20me1

4.000 3.561 3.649 4.595 4.058 6.616 5.031 7.651

The mean predicted gene expression using high (95th percentile) and low (5th percentile)
amplitude values of each mark described in the leftmost column. The permutations
of high and low values in each column correspond to the mark order in the leftmost
column. The rows are sorted by the values in the last column.

negative (repressive) fitting coefficient; one bivalent term composed on two repressive

marks (H3K27me2-H3R2me1) with a positive (activating) fitting coefficient; and a

trivalent term composed of activating marks (H3K4me2-H3K36me3-H3K79me3) with

a negative (repressive) fitting coefficient. These terms have no clear biological origin

and are more likely artifacts of imposing a linear model on data that is inherently

nonlinear.

Both regression methods produced a model with 24 terms. However, there are only

4 common terms between the models, all of which are monovalent terms: H4R3me2,

H3K79me3, H4K20me1 and H3K36me3. Both models agree that of these marks

H4R3me2 is the only repressive mark, while the others are activating. Considering the

linear model contains 7 monovalent terms out of a possible 21, and that the MARS

model contains 5, the degree of overlap in the monovalent terms is quite high.

No overlapping multivalent terms existed between the two models. The differences

between the multivalent components of each model could be the result of the way the

models were built. The space of possible terms increases rapidly with valency, and

the search space over which the stepwise regression procedure converges on a final
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model is much larger than that of the MARS procedure. Since the MARS model is

built using a greedy algorithm, it is constrained in the number of multivalent terms it

can potentially include. Thus, the potential for overlap becomes less likely as valency

increases.

2.3.6 In silico knockout analysis

In order to generate experimentally testable predictions, a knockout analysis of the

ML and MARS models was performed. This procedure assessed the effect of removing

a specific modification on gene expression. Predictions of gene expression were made

by setting the amplitude of a single mark to zero in each model and holding all others

at their experimental values. This process was repeated for all marks to determine the

global effect of each histone modification. All pairwise knockouts were also performed.

Tables 2.6 and 2.7 show the single and pairwise knockouts that have the highest

impact on global gene expression in the ML and MARS models, respectively. Knockouts

are represented as log2 fold changes of wild type over knockout predictions; positive

values indicate activating marks, and negative values indicate repressive marks. Both

sets of knockouts identifiy H3K36me3 and H4K20me1 to be the among strongest

globally activating marks, and H4R3me2 and H3K27me2 to be the among strongest

globally repressive marks. They also indicate that pairwise combinations of H3K79

methylations, H3K36me3 and H4K20me1 are among the strongest globally activating

pairs. Combinations of H3K27 methylations and H4R3me2 are indicated to be among

the strongest globally repressive pairs. Figure 2.5 shows box plots of the log2 fold

changes for each single knockout of the ML and MARS models. The general trend

of knockouts in both models is similar; however, the MARS model includes fewer

marks, and thus many of the knockouts (trivially) have no effect. Most of the marks

absent from the MARS model have a very modest knockout effect in the ML model

(median log2 expression ratio magnitude < 0.1), with the exceptions of H3R2me1 and
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H3K4me2. We also note that the results of the knockout analysis are also robust with

respect to bin size (see section 2.5).

Table 2.6: ML model knockout analysis

Knockouts log2 fold change (predicted WT/predicted KO)
H4R3me2 -0.782
H3R2me1 -0.394
H3K27me2 -0.235
H3K9me1 -0.183
H3K4me3 0.108
H3K4me2 0.285
H3K79me3 0.344
H4K20me1 0.359
H3K79me1 0.428
H3K36me3 0.546

H3K27me2-H3R2me1 -1.192
H3R2me1-H4R3me2 -1.175
H3K27me2-H4R3me2 -1.017
H3K9me1-H4R3me2 -0.964
H3K36me1-H4R3me2 -0.912
H3K79me2-H4R3me2 -0.859
H3K27me3-H4R3me2 -0.837
H3K4me2-H3K36me3 0.857
H3K79me1-H3K79me3 0.903
H3K36me3-H4K20me1 0.907
H3K36me3-H3K79me3 0.916
H3K36me3-H3K79me1 0.976

The log2 fold change (predicted WT/predicted KO) in average gene expression for
single and double knockouts in the multilinear model. In silico knockouts were
performed by setting mark amplitudes to zero while fixing all other marks at their
experimental values and making model predictions for each gene. The top 5 most
repressive and activating fold changes for single and double knockouts are shown. Rows
are sorted according to log2 fold change for single and double knockouts separately.
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Table 2.7: MARS model knockout analysis

Knockouts log2 fold change (predicted WT/predicted KO)
H3K27me2 -0.742
H4R3me2 -0.506
H3K27me3 -0.244
H2BK5me1 -0.158
H3K79me2 -0.046
H3K4me3 0.054
H3K79me3 0.421
H4K20me1 0.715
H3K36me3 0.941

H3K27me2-H3K27me3 -2.333
H2BK5me1-H3K27me2 -1.329
H3K27me2-H4R3me2 -1.248
H3K27me2-H4K20me3 -0.973
H3K27me2-H3K79me2 -0.789
H3K36me3-H3K4me3 0.996
H3K36me3-H4R3me2 1.011
H3K79me3-H4K20me1 1.136
H3K36me3-H4K20me1 1.327
H3K36me3-H3K79me3 1.362
H3K79me1-H3K79me3 1.553

The log2 fold changes (predicted WT/predicted KO) in average gene expression for
single and double knockouts in the MARS model. In silico knockouts were performed
by setting mark amplitudes to zero while fixing all other marks at their experimental
values and making model predictions for each gene. The top 5 most repressive and 4
activating fold changes for single as well as the top 5 most repressive and activating
double knockouts are shown. Rows are sorted according to log2 fold change for single
and double knockouts separately.

2.3.7 H4R3me2 is globally repressive in ML and MARS

models

Strikingly, H4R3me2 was the most globally repressive mark in the ML model according

to the knockout analysis, with an average predicted fold change (WT/knockout) in

gene expression of 0.55. It was also the second most repressive mark in the MARS

model knockout analysis, with an average fold change of 0.70. This was a highly

unexpected result for H4R3me2 given the unresponsiveness of its ChIP-seq enrichment
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Figure 2.5: Box plots of MLM and MARS knockouts. Box plots representing
the predicted log2 fold change (WT/KO) in gene expression after knocking out (setting
mark amplitude to zero) a single mark while holding all other amplitudes at their
experimental values in both the multilinear (A) and MARS (B) models. Negative
shifts indicate repressive marks and positive shifts indicate activating marks. Both
models show general agreement in knockout effects. Interestingly, both models choose
H4R3me2 to be among the most globally repressive marks, whereas previous studies
comparing H4R3me2 levels to gene expression have shown little to no correlation,
suggesting the repressive character of H4R3me2 becomes apparent in a multivariate
analysis of multiple modifications.

levels to increasing gene expression [Barski et al., 2007]. Indeed, we used the data

generated by Barski et al., but came to diametrically opposed conclusions regarding

H4R3me2’s influence on gene expression. Moreover, this conclusion is not altered by

the selection of bin size, as H4R3me2 is the most highly repressive mark in the 6 k
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bin-based MARS model, and second most repressive in the 8 k and 10 k bin-based

MARS models (see section 2.5 for robustness analysis).

In order to make sense of the apparently contradictory behavior of H4R3me2,

we first note that our analyses differed from Barski et al. in two major ways: (1)

We estimated mark amplitudes using a model based weighted average, and (2) we

modeled gene expression response as in the context of all of the marks simulatneously.

A trivial explanation would be that our amplitude estimation procedure alone yielded

a response of H4R3me2 levels to gene expression, which was then reflected in the ML

and MARS fitting coefficients. We directly tested this by generating box plots of our

amplitudes stratified by quartiles of gene expression shown in Figure 2.6. Consistent

with the composite plots from [Barski et al., 2007], we observe little to no response of

H4R3me2 amplitudes with increasing gene expression. For comparison, we generated

the same box plots for H3K27me2 and observed a dramatic decrease in its amplitude

with increasing gene expression level, as expected for this mark. Thus, we ruled out

the mark amplitude estimation procedure as an explanation. Thus we are left with

the more interesting case: H4R3me2’s repression of gene expression is revealed by

accounting for the simultaneous impact of the other histone methylations.

In order to better understand H4R3me2’s effect on gene expression, we performed a

comparative analysis with H3K27me2, which is highly repressive in the ML and MARS

model knockout analysis, as well as in univariate analyses. Specifically, we divided the

ML model wild type over knockout log2 fold changes by quintiles. We then calculated

box plots of predicted gene expression in the WT and KO cases as shown in Figures

2.7A and 2.7B, respectively. The first 20% of the data (QU1) represents the genes

most up-regulated by knocking out the mark (i.e., the largest de-repression of gene

expression). The last 20% of the data (QU5) represents the genes least up-regulated

by knocking out H4R3me2 and genes down-regulated by knocking out H3K27me2.

The trends in WT and KO gene expression across the stratified data are opposite for
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Figure 2.6: Box plots of amplitudes across expression. Box plots of H4R3me2
(A) and H3K27me2 (B) amplitudes across the genes, stratified by quartiles of gene
expression, where Q1 and Q4 represent the lowest and highest gene expression groups,
respectively.

H4R3me2 and H3K27me2. For H4R3me2, the median log2 gene expression in the WT

is relatively low (4) in QU1 and increases slightly (to 4.7) in QU5, with the knockout

showing a similar trend (Figure 2.7A). In contrast, the H3K27me2 WT median starts

out considerably higher in QU1 (5.9) and plummets 8-fold (to 2.9) in QU5 with the

knockout again showing a similar trend (Figure 2.7B). Thus, H4R3me2 tends to be

consistently acting on relatively low expressed genes. Its removal is predicted to

increase their expression 1.7-fold, on average. H3K27me2, on the other hand, has the

highest impact on middle to high expressed genes, and little impact on relatively silent

genes.

We also calculated the proportion of significantly enriched marks found in quintile-

stratified knockouts (Figure 2.8). Interestingly, the profiles of site proportions across the

stratified data clustered into activating marks (Figure 2.8A, D), arginine methylations

(Figure 2.8B, E), and repressive marks (Figure 2.8C, F). As expected, we found that the

proportion of H4R3me2 sites is highest in the highest QU1 of the H4R3me2 knockout,

and monotonically decreases across subsequent groups (Figure 2.8B). In the H4R3me2
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Figure 2.7: Box plots of predicted gene expression before and after knockout.
Box plots of predicted gene expression before and after knockout of (A) H4R3me2 and
(B) H3K27me2. Plots are stratified along the x-axes by quintiles of log2 fold change

knockout, the activating marks site profiles (Figure 2.8A) tend to be relatively low

and flat or mildly increasing with decreasing log2 fold change. The repressive mark

site profiles in the mid-range (Figure 2.8C). Thus, arginine methylation itself appears

to drive the impact of H4R3me2 knockout on gene expression. In stark contrast, in

the H3K27me2 knockout, the proportion of H3K27me2 and other repressive mark sites

increase monotonically with decreasing knockout impact (Figure 2.8F). Activating

marks showing the exact opposite trend (Figure 2.8D). The arginine methylation

sites cluster together in the H3K27me2 knockout as well, and show a preference

for QU5 (Figure 2.8E). Interestingly, we found that the largest impact of knocking

out H3K27me2 tends to be in genes where H3K27me2 levels are relatively low and

activating mark levels are relatively high. For these genes, H3K27me2 appears to be

modulating or reducing gene expression from high to moderate levels (Figure 2.7B).

Taken together these analyses suggest that H4R3me2 and the other arginine

methylations tend to be somewhat uncorrelated with established activating marks

and repressive marks. Consequently, its absence at genes does not imply the presence

of activating marks and high levels of expression (Figure 2.3B). Conversely, high levels

of H4R3me2 can coincide with modest to relatively high levels of activating marks
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Figure 2.8: Enriched sites across MLM knockout quintiles. Plots show the
proportion of significantly enriched sites identified by MACS (y-axis) for marks shown
in the legend across the data divided by quintiles of log2 fold change (WT/KO)
in gene expression predicted by the MLM for H4R3me2, (A)-(C), and H3K27me2,
(D)-(F), knockouts. Proportions of sites were clustered using k-means clustering. For
both knockouts activating marks clustered together, (A) and (D), as did arginine
methylations, (B) and (E), and repressive marks, (C) and (F). H4R3me2 knockout
effect only shows a strong correlation with other arginine methylations (B), while the
H3K27me3 knockout effect shows strong anti-correlation with the activating marks
(A) and strong positive correlation with other repressive marks (F).
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like H3K36me3, which tend to override H4R3me2 (see Table 2.4, Table 2.7 and Figure

2.3B). Thus, its levels show no strong trend with overall gene expression, consistent

with [Barski et al., 2007]. Instead, dimethylation of H4R3 consistently tends to further

repress low to modestly expressed genes—nearly 2-fold on average. For this reason,

the ML and MARS models predicted H4R3me2 to have strong repressive activity.

2.3.8 Experimental studies demonstrate H4R3me2

represses gene expression

The antibody used for the ChIP-seq experiment recognizes symmetric dimethylated

H4R3 (H4R3me2s), which is deposited by the arginine methyltransferase PRMT5. A

number of experimental studies have shown that PRMT5 and H4R3me2s repress gene

expression [Wang et al., 2008,Hou et al., 2008,Litt et al., 2009,Zhao et al., 2009]. In

an experiment that is a direct analogue of our knockout analysis, silencing of PRMT5

in mouse cell lines resulted in globally more de-repressed than repressed genes [Pal

et al., 2004], supporting our result that H4R3me2s is globally repressive. PRMT5 is a

member of the multi-subunit mSin3A and NuRD histone deacetylase complexes [Pal

et al., 2003], suggesting H4R3me2 is associated with deacetylation and hence gene

inactivation [Pal et al., 2003,Pal et al., 2004,Wysocka et al., 2006]. Interestingly, both

the mSin3A-PRMT5 containing complex and recombinant PRMT5 methylate H4R3,

and show an in vitro preference for methylating hypo- versus hyperacetylated histone

H4R3 [Pal et al., 2003]. PRMT5 was also shown to interact with the MBD2/NuRD

complex and that PRMT5 and MBD2 are recruited to CpG islands in a methylation-

dependent manner, with H4R3 methylated at these loci [Le Guezennec et al., 2006].

These results are consistent with our finding that H4R3me2 tends to further repress

modest to low expressed genes, which are likely hypoacetylated, or contain methylated

CpG islands in their promoter regions, or both.
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In a recent study, H4R3me2s was shown to be required for subsequent DNA

methylation [Zhao et al., 2009]. Indeed, H4R3me2s was shown to be a direct binding

target of the DNA methyltransferase DNMT3A. Loss of H4R3me2s through shRNA

knockdown of PRMT5 resulted in reduced DNMT3A binding, loss of DNA methylation

and six-fold induction of the fetal γ-globin gene [Zhao et al., 2009].

2.4 Conclusions

Current genomic strategies for assessing whether a particular histone modification is

activating or repressive involve (1) mapping it to the genome using ChIP-chip or ChIP-

seq and either (2) comparing the expression distribution of genes with and without the

mark [Bernstein et al., 2005], or (3) generating composite plots of average mark levels

of genes stratified by gene expression level. Using the latter approach, Barski et al.

concluded that H4R3me2 is neither activating nor repressive because its levels showed

no response with increasing gene expression level [Barski et al., 2007]. Using ChIP-seq

data of 20 histone lysine and arginine methylations and histone variant H2A.Z in CD4+

T cells, we built models of gene expression as a function of histone modification/variant

levels using Multilinear (ML) Regression and Multivariate Adaptive Regression Splines

(MARS). The response of monovalent (non-interacting) terms in the ML and MARS

model indicate whether a given modification is activating or repressive. For most of

the 20 histone methylations, our assignments agree with previous analyses [Barski

et al., 2007]. However, according to our in-silico knockout analysis, among the 20

methylations, H4R3me2 is predicted to be among the most globally repressive. A

number of experimental studies show that PRMT5-catalyzed symmetric dimethylation

of H4R3 is associated with repression of gene expression [Wang et al., 2008, Hou

et al., 2008,Litt et al., 2009,Zhao et al., 2009]. This includes a recent study, which

demonstrated that H4R3me2 is required for DNMT3A-mediated DNA methylation
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[Zhao et al., 2009]—a known global repressor of gene expression. Consequently, this

study serves as the first demonstration that H4R3me2 represses gene expression using

genomic data, and shows that the regulatory role of some modifications like H4R3me2

can only be revealed by approaches that simultaneously analyze multiple activating

and repressive modifications. Our findings point to a disconnect between traditional

biochemical (e.g., silencing) and genomic approaches in assessing the activating or

repressive potential of an individual modification. Indeed, assuming the biochemical

studies are correct and H4R3me2 is repressive, one would conclude from the analysis

in [Barski et al., 2007] that the antibody they used for H4R3me2 did not work. Our

results suggest that it worked extremely well. Taken together, our findings have broad

implications for ChIP-seq experimental design, analysis, and interpretation.

2.5 Methods

2.5.1 Calculation of amplitudes

Enrichment levels, or amplitudes, for each of the 21 histone modifications were

estimated for each gene using a spatially weighted average of the mapped ChIP-seq

tag counts (see Table 2.8 for the range of amplitude values). The gene list used

in this study was compiled from the NCBI36 Homo sapiens database (Ensembl 54,

downloaded June 24, 2009). For each mark j, an average enrichment template, tij

across the 5’ flanking region (i.e., -2 kbp before the transcription start site), the body

of a scaled gene (a gene divided into a fixed number of bins), and the 3’ flanking

region (i.e., transcription stop site to +2 kbp), was first calculated as a function of

relative genomic position i. For both the 5’ flanking region and 3’ flanking region, the

coordinate i represents each nucleotide position relative to the transcription start and

stop sites, respectively. Within gene bodies (i.e., transcription start site to stop site),

the coordinate i represents the position in the gene body, which is divided into 8138
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segments, or bins, which corresponds to the median gene length. For genes whose

lengths are greater than 8138 bp, tag counts were averaged across bases within each of

the 8138 bins. For genes whose lengths are less than 8138 bp, tag counts were repeated

in order to generate 8138 bins. For genes not divisible by 8138 or a divisor thereof,

fractions of base pairs within a bin were rounded to the nearest integer value; therefore

bins containing the majority of the fraction received the full tag count value of the

corresponding base pair, while the bin containing the minority received no part of the

bisected base pair’s value. The median value was used for the bin number to minimize

biases introduced in scaling. Large bins would tend to over-smooth large genes, while

small bins would tend to overrepresent copied values from small genes. The tij or

template for mark j, was finally computed by (1) aligning the transcription start and

stop sites of every scaled gene and then (2) calculating the average bin-averaged tag

count across genes for every coordinate i. All templates were then normalized so that

their average across bins was 1, such that:

1

N

∑
i

tij = 1 (2.1)

where N is the number of bins. In other words, the template is the averaged and

normalized enrichment profile across all scaled genes. Because the template appears

to have a characteristic shape for a given mark j across the length of scaled genes,

we developed a model of relative enrichment which assumes the actual profile of any

given mark is given by a product of a gene-dependent amplitude, Xk
j , for a gene, k,

and the mark’s template tij. In other words, gene k’s tag count profile for mark j

across genomic coordinate i, ckij, is well approximated by Xk
j tij. Using least squares,

we minimized the difference between the model and the actual tag count profiles:

Qk
j =

∑
i

(ckij −Xk
ijti)

2 (2.2)
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to arrive at the following equation for mark j’s amplitude at gene k:

Xk
j =

∑
i c
k
ijtij∑
i t

2
ij

(2.3)

We note that in the special case where the template is constant as a function of

genomic position i, Xk
j reduces to a simple average of tag counts across bins

Xk
j =

1

N

∑
i

ckij (2.4)

which is the appropriate estimate of tag “depth” for a mark whose tag distribution is

uniform across a gene.

Table 2.8: Distribution of mark amplitudes

Mark Min 5% 25% 50% 75% 95% Max
H2AZ 0 0.0092 0.0405 0.126 0.2807 0.4591 1.8056

H3K4me3 0 0.0219 0.1108 0.5678 1.247 2.002 11.931
H3K9me3 0 0.005 0.0106 0.0166 0.0289 0.0508 50.3513
H3K36me1 0 0.0452 0.0713 0.0878 0.1057 0.1237 2.6032
H3K4me1 0 0.0259 0.1031 0.2287 0.4179 0.6962 3.244

H2BK5me1 0 0.0244 0.0634 0.1594 0.3162 0.5618 3.7164
H3K4me2 0 0.0137 0.0595 0.1554 0.2461 0.3377 1.7125
H3K9me1 0 0.0297 0.1055 0.2298 0.3477 0.4621 1.6088
H3K9me2 0 0.0202 0.0364 0.0507 0.0711 0.0985 0.3064
H3K27me1 0 0.0275 0.0691 0.1455 0.2091 0.256 2.6492
H3K27me2 0 0.0222 0.0371 0.0521 0.0763 0.1024 2.1456
H3K27me3 0 0.0152 0.0255 0.0365 0.0891 0.1558 4.8271
H3K36me3 0 0.051 0.0965 0.1998 0.3217 0.4409 3.4295
H3K79me1 0 0.0053 0.022 0.1237 0.2194 0.3066 0.998
H3K79me2 0 0.0026 0.0096 0.0479 0.17 0.3635 1.8122
H3K79me3 0 0.0077 0.0177 0.0576 0.2113 0.5024 3.8415
H4K20me1 0 0.0155 0.0534 0.1909 0.5139 1.2093 13.9068
H3R2me1 0 0.066 0.0933 0.1146 0.1431 0.1741 2.2685
H3R2me2 0 0.0399 0.0576 0.0684 0.0819 0.0998 0.57
H4K20me3 0 0.0115 0.0196 0.0264 0.0356 0.049 9.9591
H4R3me2 0 0.0382 0.0559 0.0686 0.083 0.0975 0.4536

Mark amplitudes at various quantiles, as well as minimum and maximum values.
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2.5.2 Selection of transcription start and stop sites

Many Ensembl genes contain multiple start and stop sites. Given that we only have 3’

biased gene expression data, there are cases where we cannot unambiguously assign

an Affymetrix probe set to one transcription start or stop site which we need for

our estimate of mark enrichment. Consequently, we chose the transcription start

sites that were associated with the highest number of significantly enriched histone

modifications as representing the most likely expressed transcript. If a selected start

site had multiple stop sites, we chose a stop site using the same scheme. In cases

where multiple transcription start sites had the same number of significant marks, the

most upstream transcription start site was chosen. When multiple stop sites for a

given start site had the same number of significant marks a stop site was arbitrarily

selected.

To determine the number of significantly enriched marks for a particular transcrip-

tion start and stop site, we first calculated the distribution of mark amplitudes for all

Ensembl genes. The left tail relative to the mode of the distribution of amplitudes

for a particular mark was used to build a Gaussian null model as a background noise

model for that mark. The mode of the amplitude distribution was used as the mean

of the null model, and the standard deviation of the null model was derived using the

following equation:

σj =

√
1

n− 1

∑
k?

(
Xk?
j − µj

)2
(2.5)

where µj is the mode of the amplitude distribution and the sum is over genes k?

whose amplitude is less than or equal to the mode, Xk?

j , and n is the number of genes

that satisfy this inequality. This null model was used to determine the p-value by

calculating the integral of the Gaussian from the mark amplitude to infinity for each

mark at every Ensembl gene [Buck et al., 2005,Gibbons et al., 2005].

A Benjamini-Hochberg false discovery rate (FDR) [Benjamini and Hochberg, 1995]
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correction was applied to the p-values using the p.adjust function in R, and an

FDR-corrected p-value cutoff of 0.05 was used to determine significantly enriched

amplitudes.

2.5.3 Building the multilinear model using stepwise linear

regression

We built the multilinear model using a stepwise linear regression procedure (stepwisefit

in MATLAB), which models gene expression as a function of histone mark enrichment

according to the following equation:

Y k = β0 +
∑
j

βjX
k
j +

∑
j<l

βjlX
k
jX

k
l +

∑
j<l<m

βjlmX
k
jX

k
l X

k
m + εk (2.6)

where Y k is the normalized log2 gene expression (using GCRMA [Wu et al., 2004]);

βj, βjl ,βjlm are mono-, bi- and trivalent histone modification fitting coefficients; are

mark j amplitudes for gene k and the εk are random errors. Briefly, an initial model

is fit with randomly selected terms-defined as β coefficients multiplied by one, two or

three mark amplitudes. Terms from the set that are not in the initial model and make

a statistically significant contribution to the model (i.e., p-value ≤ 0.05 according

to an F-test) are added during a forward step. The forward step continues until no

terms from the available pool of unused terms contribute significantly to the model. A

backward step is then applied whereby terms are ranked in descending order according

to their p-values and removed if they are not significant (i.e., p-value > 0.05). The

backward step ends when no terms in the model are insignificant. The forward and

backward steps are repeated until no significant terms can be added or removed,

respectively.

Because stepwise linear regression is not guaranteed to converge to a globally

optimal solution (i.e., minimum adjusted R2) for any given initial seed model, we
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performed multiple rounds of multiple stepwise regressions using different randomly

seeded models. In the first round, we ran stepwisefit on the full dataset 100 times

using randomly seeded models. This resulted in 100 models with a mean of 227

terms. To assess the statistical significance of a given term’s survival rate across the

models, we randomly sampled 227 of the 1561 possible terms to generate a null model.

While a survival rate of 0.2 was significant (p-value < 0.05), to increase stringency we

arbitrarily selected a cutoff of 0.35 to arrive at 167 starting terms for the next round

of stepwise linear regression.

To avoid the problem of overfitting and its inflation of model complexity, we applied

stepwisefit to 10-fold cross validation data. Specifically, for each of the 10 folds we

performed 10 runs of stepwisefit where the initial model contained the 167 terms found

in the first round plus an additional 60 randomly selected terms (i.e., we generated

100 models). Using the test data, we applied only the backward step of the stepwise

procedure to assess the significance of every term that survived the training step and

removed those with p-values > 0.05. Among the 10 runs for each fold, the model with

the lowest test mean square error (MSE) was selected. This resulted in 10 models for

each fold. We then required a term to appear in 5 or more of the 10 models generated

within each fold to be selected for the final model. This resulted in 24 terms.

We arrived at a robust estimate of the final set of 24 coefficients by fitting the

training data to a model that contained only the 24 terms. This yielded 10 sets of

24 coefficients (i.e., one for each fold of the 10-fold training data). We arrived at the

final value of each fitting coefficient by calculating the trimmed mean of the 10 found

in each fold. The final model’s performance was assessed by calculating the mean

MSE and adjusted R2 across the 10 test and training data folds (see Results and

Discussion).
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2.5.4 Building the MARS model

The relationship between gene expression level and each mark’s average enrichment

tends to be nonlinear including saturation of gene expression response as a function

of mark level. The earth package in R was used to build the MARS model, which

naturally accounts for non-linear responses between the input and output variables.

Briefly, a MARS model is the sum of basis functions multiplied by a coefficient to be

determined from a regression analysis of the function

Y k = c0 +
n∑
i=1

cibi

(
~Xk
i

)
(2.7)

where Y k is log2 gene expression of gene k (i.e., output variable), c0 is a constant, ~Xk
i

is the subset of mark amplitudes that appear in term i, and bi(·) is a basis function

that is made up of either one or a product of two or more hinge functions. Hinge

functions are splines that take the form h
(
Xk
j

)
= max

(
0, Xk

j −Xk?

j

)
or h

(
Xk
j

)
=

max
(
0, Xk?

j −Xk
j

)
where Xk

j is a special constant known as a knot. We note that

the two hinge functions shown above are a symmetrical pair about the vertical line

Xk
j = Xk?

j .

The MARS model was built in one forward and one reverse pass. The forward pass

builds the model using a greedy algorithm. It begins with an intercept term that is

equivalent to the mean of the observed response variable, which is log2 gene expression

level in our case. The algorithm then searches for the monovalent contributions

fitted as a pair of symmetrical basis functions, which maximally reduce the residual

sum-of-squares (RSS) at each step. It then adds bivalent terms, which are constrained

to contain one of the monovalent terms and maximally reduce the RSS at a given

step until a minimum RSS reduction is reached. It adds trivalent terms, which are

constrained to contain one of the bivalent terms and maximally reduce the RSS at a

given step until a minimum RSS reduction is reached. The reverse pass then prevents
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overfitting by removing terms to optimize a Generalized Cross Validation (GCV) score.

The GCV penalizes model complexity by dividing the RSS by the effective number of

degrees of freedom in the model;

GCV =
RSS

Ng

(
1− T+P (B)

Ng

)2 (2.8)

where RSS is the residual sum of squares, Ng is the number of observations or genes

with expression data in our case, T is the total number of terms in the model, P is a

user-defined penalty (earth’s default is 3 for multivalent models), and B is the total

number of non-constant basis functions in the model.

2.5.5 Amplitude robustness and relative error of mark

amplitude estimates

Our amplitude estimation procedure is motivated by the observation that a number

of histone methylations (e.g., H3K36me3, H4K20me1, H2BK5me1, etc.) are pervasive

across the body of genes, and their enrichment patterns appear to scale with gene length.

However, modifications occur in the context of nucleosomes which are associated with

approximately 146 bp of DNA. Thus, our gene scaling procedures average different

numbers of nucleosomes depending on the gene length and the selected bin size.

Consequently, we assessed the robustness of our amplitude estimation procedure by

recalculating our template and amplitude using 6000 (6 k) and 10,000 (10 k) bins and

compared them to those calculated using our final choice of 8138 (8 k) bins (see 2.5

for details).

We first calculated the Spearman correlation coefficients of the 6 k versus 8 k and

10 k versus 8 k amplitude estimates for all 21 histone modifications/variants. We

found the values to be highly correlated, with coefficients ranging from 0.994–0.9995

and 0.9975–0.9998 across marks for the comparisons of 8 k bins to 6 k and 10 k,
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respectively. We also calculated the fractional difference (i.e., difference divided by

mean) between 6 k and 8 k and 10 k and 8 k amplitude estimates. The absolute

value of typical (50th percentile) fractional differences range from 0.0023–0.065 and

0.0016–0.042 for the comparisons of 8 k to 6 k and 10 k, respectively. Indeed, the

worst values were 0.22 and 0.16 for 8 k versus 6 k and 10 k, respectively. Thus, our

estimates of mark enrichment amplitudes are relatively robust with respect to bin size.

Given these results, it’s not surprising that our model results and main conclusions do

not depend on bin size.

An advantage of a model-based approach to estimating enrichment levels is that

we can directly assess model performance by calculating residuals. To assess the fit of

our template model to the data we calculate the coefficient of variation of the root

mean square deviation CV(RMSD) for every gene, which is defined by

CV (RMSD) =

√√√√∑n
i

(
ckij −Xk

j tij
)2

nXk
j

(2.9)

where n is the number of bins in the template, and all other variables follow previous

definitions. In addition to the gene amplitude calculation with the 8138-bin (8 k)

template, amplitudes were also calculated with 6000 (6 k) and 10,000 (10 k) bin (plus

flanking regions) templates. To assess the robustness of our amplitude estimates, we

calculated the Spearman correlation coefficient between the 8 k and 6 k bin amplitudes

and the 8 k and 10 k bin amplitudes. We also calculated the fractional difference

between the 8 k and 6 k bin amplitudes, , and the 8 k and 10 k bin amplitudes, which

is similarly defined. Finally, the CV(RMSD) was calculated for all marks for the 3

sets of amplitude calculations to assess effect of bin size selection on the template

model fit.

In a plot of CV(RMSD) versus amplitude for every mark we found a near universal

curve (Figure 2.9). This results in part because our normalization of each mark’s
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template (i.e., their average across bins equals 1) allows us to interpret the mark

amplitude as a model-based estimate of each mark’s effective read coverage. As might

be expected, below amplitude values of 1 (i.e., 1× coverage) the error grows rapidly.

For relatively large amplitudes (i.e., values greater than 1), the CV asymptotically

reach values slightly below 2. In contrast, marks whose largest amplitudes fall well

below 1 have CV values that range from 2.3–5 at the largest amplitudes encountered

(i.e., 95th amplitude percentile). For most marks, the 95th amplitude percentile is below

1, indicating from our crude gene-centric measure of coverage/read density that the

effective sequencing coverage might be low. We also observed a steady trend upward

in the CV across marks at the 95th amplitude percentile with decreasing amplitude

levels. Taken together, these results indicate that RMSD between the model and the

data are on the same order as the amplitude. We also note that we found essentially

the same CV(RMSD) values for 6 k and 10 k bins. Nevertheless, we found that our

weighted average estimate is relatively robust and should capture enrichment level

trends in histone modification/variant ChIP-seq data reasonably well.
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Figure 2.9: Relative error of mark enrichment models. CV(RMSD) versus
amplitude. Colors represent different marks as shown in the legend. Low amplitudes
correspond to low levels/coverage, and thus high CV(RMSD) values. As amplitude
increases, values reach an asymptotic value.

2.6 Chapter acknowledgements

This chapter was adapted from [Xu et al., 2010]. Xiaojiang Xu deserves explicit credit
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Chapter 3

Quantification of histone

modification ChIP-seq enrichment

3.1 Introduction

Recent advances in high-throughput DNA sequencing technology have facilitated the

generation of vast amounts of epigenomic ChIP-seq data. The availability of these

datasets has provided the opportunity to utilize the power of statistical computing

to model epigenetic regulatory systems. Unlike conventional biochemical approaches,

the application of machine learning and data mining techniques to ChIP-seq data is

capable of providing a broad, systems-level view of the epigenetic regulation. These

strategies can provide insights into mechanisms of genomic control, such as the so-

called “histone code” [Strahl and Allis, 2000,Jenuwein and Allis, 2001], by facilitating

an integrated analysis of the many histone posttranslational modifications (PTMs)

that have been described, as well as other epigenetic chromatin modifications. The

histone code is a particularly attractive problem for computational applications, since

it has become apparent that histone PTMs are regulated in a network fashion and are



80

deposited combinatorially [Latham and Dent, 2007,Wang et al., 2008,Xu et al., 2010].

However, a thorough study of the gene-biased quantification of ChIP-seq enrichment

for the application of machine learning techniques has not yet been done.

Several groups have applied various machine learning techniques to epigenomic

ChIP-seq data in a gene-biased fashion, including Bayesian networks [Yu et al.,

2008,Cheng et al., 2011], support vector machines and regression [Cheng et al., 2011],

and linear [Karlić et al., 2010, Xu et al., 2010, Cheng et al., 2011] and nonlinear

regression [Xu et al., 2010]. These studies have focused on histone modifications due in

part to their known role in transcriptional regulation [Kouzarides, 2002,Barski et al.,

2007,Campos and Reinberg, 2009] and the availability of rich datasets exhibiting a wide

variety of types of histone modifications [Barski et al., 2007]. In the case of supervised

learning, the models created in these studies were built using individual genes as

observations, ChIP-seq enrichments as the predictor variables, and gene expression as

the response variable. In these models the predictors are histone modification/variant

ChIP-seq enrichment levels for individual genes, so model quality is highly dependent

on the accuracy of enrichment estimation. Since ChIP-seq enrichment levels are

strongly dependent on genomic coordinate, providing a gene-wise estimate of ChIP-seq

enrichment that accurately captures the relevant enrichment information across all

genes—which vary in length over four orders of magnitude—is a challenging task.

The most straightforward way to estimate per-gene ChIP-seq enrichment is to

simply count the number of sequence reads associated with a given gene. Indeed,

counting the number of reads in the promoter region of each gene was an approach taken

in some previous studies [Yu et al., 2008,Karlić et al., 2010]; however, this method has

several limitations. First, tag-counting methods equally weight every position within

the counting window, and thus ignore the spatial component of the enrichment data.

Second, not every histone modification is 5’ biased. Several modifications have greater

enrichment into the body of genes, such as H3K36me3 [Barski et al., 2007,Campos
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and Reinberg, 2009, Hon et al., 2009b]. This modification highlights the pitfalls

associated with 5’ biased enrichment estimation. It is mainly enriched in the bodies

of genes, it is 3’ biased, and it has a proclivity for enrichment in exons [Hon et al.,

2009b,Kolasinska-Zwierz et al., 2009]. H3K36me3 also has a strong correlation with

transcriptional elongation as determined by various biochemical studies [Barski et al.,

2007,Kolasinska-Zwierz et al., 2009,Bannister et al., 2005,Krogan et al., 2003]. It is

worth noting that a machine learning study by Yu et al. used a 5’ tag counting method

and found little correlation between H3K36me3 enrichment and gene expression [Yu

et al., 2008]. The consequence for models that use 5’ proximal enrichment estimation

methods is that the effects of histone modifications with gene body or 3’-biased

enrichment are underestimated or greatly obscured.

Histone methylations tend to have unique average spatial deposition patterns

[Barski et al., 2007]. For example, in contrast to H3K36me3, H3K4me3 has high

enrichment around the transcription start site, with depletion in the nucleosome-free

region. Some modifications seem to be deposited in a specific genic region with

respect to the absolute positions of nucleosomes relative to gene boundaries, while the

patterns of others seem to scale with gene length. These effects can be attributed,

at least in part, to the recruitment of histone methyltransferases that are dependent

on the phosphorylation state of the C-terminal domain of Pol II before and during

the elongation process [Hon et al., 2009b, Krogan et al., 2003, Komarnitsky et al.,

2000,Ng et al., 2003]. Estimating ChIP-seq enrichment is complicated by the different

modes of histone PTM deposition coupled with the wide variability in gene lengths.

However, part of the information content associated with a given histone modification

is encoded within the spatial distribution of the enrichment data, and so it should

also be considered when estimating enrichment levels.

The selection of a genomic window used for the calculation of enrichment levels

is important in capturing relevant enrichment data, since enrichment information
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may be 5’ or 3’ proximal, intergenic, or intragenic [Cheng et al., 2011]. Choosing a

window size that extends too far outside of gene boundaries may incorporate data

from neighboring regions, and selecting a window size that is too small may exclude

useful data. The goal in window selection is to maximize useful information content

and minimize the incorporation of noise, while being generalizable across a variety of

marks.

Since the quality of a statistical model is largely dependent on the quality of the

observation data used to build it, refining enrichment estimation methods is important

for future statistical analyses of ChIP-seq data. To resolve some of the issues involved

with enrichment estimation, we compared the performance of models built using a

ChIP-seq dataset of histone methylations/variants in CD4+ T cells generated by Barski

et al. [Barski et al., 2007]. This dataset has been used in several other machine learning

studies [Yu et al., 2008,Karlić et al., 2010,Xu et al., 2010]. We applied the Multivariate

Adaptive Regression Splines (MARS) algorithm [Friedman, 1991a,Friedman, 1991b]

to build regression models using enrichment levels of 20 histone lysine and arginine

methylations plus histone variant H2A.Z. Given that gene expression levels have been

shown to be highly dependent on histone modification levels, we used the Generalized

Cross-Validation (GCV) [Friedman, 1991a] and R2 metrics to assess the quality of

MARS model fits and rank enrichment estimation methods.

Several different strategies were employed for estimating gene-wise enrichment levels,

including tag counting and model-based approaches, which use average enrichment

patterns to spatially weight enrichment of individual genes in a set of genomic windows.

We also investigated the selection of window sizes for our gene-wise enrichment

estimation methods. By comparing models using GCV and R2 values, we demonstrate

that the performance of regression models using histone modification enrichment levels

as predictors can be greatly affected by the chosen enrichment estimation method.

We conclude that methods that incorporate the spatial distribution of ChIP-seq
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enrichment offer an improvement in a regression fit over tag counting methods. We

also observe that whole-gene estimation windows produce superior results relative

to estimations restricted to specific genic regions. Indeed, incorporating data across

the entire body of the gene was the most important factor in improving the fit of

our models. These improvements of gene-wise ChIP-seq enrichment estimation can

improve the sensitivity and specificity of the predictions derived from machine learning

models.

3.2 Methods

3.2.1 Gene selection

A list of gene transcript annotations was downloaded from the NCBI36 Homo sapiens

database, Ensembl 54 (June 24, 2009), which was then filtered to only include

transcripts that had Ensembl, UCSC, and RefSeq IDs. Genes that did not have

corresponding expression data associated with them were removed from the list. Many

of the transcripts within this list contain multiple annotated start and stop sites. Using

the same procedure described in [Xu et al., 2010], we select a single Transcription

Start Site (TSS) and Transcription End Site (TES) for each gene.

Some of the enrichment estimation methods described in this study calculate

enrichment within a window around the TSSs and TESs, the largest of which we

employed was ±3000 bp around each site. To avoid overlap between windows where

the enrichment estimate was a combination of estimates from both ends of the genes,

the gene list was further filtered to only include transcripts of length 6002 bp or

greater. Although not all enrichment estimation strategies have this limitation, the

filtered list was used for each enrichment estimation method to allow a fair comparison

of the final models. After implementing each of the aforementioned filters, the final

gene list totaled 9882 genes.
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3.2.2 Tag repeat filter

PCR sequence artifacts or phenomena inherent to the sequencing technology may

cause repeat sequences to be produced. These artifacts manifest as large numbers

of tags that map to precisely the same genomic coordinates. With the exception of

H3K79 methylations, maximum repeats ranged from 231 for H3K4me2 to 4231 for

H3K9me3. H3K79me1/2/3 had far fewer repeats with maximums of 23, 26, and 42,

respectively. We identified these tag “pile-ups” by searching for multiple tags that

mapped to the genome with precisely the same start and stop coordinates (or for

differing tag lengths, within the margin of the difference in length). A cutoff of 75

repeats was chosen empirically for the modification H3K4me3 (max repeats = 1166)

to filter repeat artifacts from H3K4me3 data. We assumed that the typical number

of tags in these piles for a given mark crudely scaled with the total number of tags.

Thus, the cutoff was scaled for other modifications by the total tag count relative to

H3K4me3, and ranged from 21 (H3K79me2) to 75 (H3K4me3). H3K4me3 was chosen

to determine the cutoff because it had the largest total tag count, and its tendency to

form large localized peaks relative to the other modifications. This helped ensure that

our cutoff was not overly stringent and was only sensitive to extreme outliers.

Using this filtering scheme H3K79me1/2/3 had data removal percentages of 0%,

0.001%, and 0.004%, respectively. H4K20me3, which had relatively large numbers

of reads that mapped to repeat sequences, had 5% of all data removed. All other

marks ranged from 0.01% (H3K4me1) to 0.5% (H3K9me3) of data removed. Thus, we

removed extreme outliers while minimally affecting the overall dataset.

3.2.3 Tag counting

Tag counting is the summation of ChIP-seq reads within a genomic window. Any

part of a read falling within a window was included in our tag counts. Following
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previous studies using tag counting methods, tag count enrichments were calculated

in ±500 bp, ±1000 bp, ±2000 bp, and ±3000 bp windows relative to both the

annotated Transcription Start Sites (TSS) and the Transcription End Sites (TES).

While evaluating which genic sub-regions to include in tag counting methods, we

assessed how the inclusion of tag counts within exons as a genic sub-region category

improved model performance and found their contribution was negligible. We therefore

did not consider tag counts solely within exons further. To be clear, exons were not

excluded from other counting methods. Another set (one for each window size) of

gene-wise count-based enrichment estimates were produced by summing the TSS

counts with the TES counts multiplied by a scaling factor for each of the 21 histone

marks:

Ejk = CTSS
jk + αkC

TSS
jk (3.1)

Where j is the gene, k is the modification type, E is enrichment estimate, C is the

tag count in the window, and α is a scaling factor. The purpose of the scaling factor,

α, is to effectively weight the contribution of the 5’ and 3’ ends with respect to gene

expression. The scaling factor was calculated for each modification by optimizing the

absolute value of the correlation between the sum of the two tag count values and

gene expression:

∣∣Cor(Y,CTSS
jk + αkC

TSS
jk )

∣∣ =

∣∣∣∣∣∣ Cov(Y,CTSS
jk + αkC

TSS
jk )√

V ar(Y )V ar(CTSS
jk + αkCTSS

jk )

∣∣∣∣∣∣ (3.2)

where Y is gene expression level. The correlation was optimized numerically with

respect to α, for each modification type, k.

A set of whole-gene tag count enrichments was calculated within a window defined

by the gene boundaries plus flanking intergenic regions immediately adjacent to the

annotated gene boundaries. Counts were normalized by dividing by the length of the

counting window. Sets of normalized counts were calculated for the gene bodies plus
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0 bp, 500 bp, 1000 bp, 2000 bp, and 3000 bp overhangs up- and downstream of the

gene boundaries.

3.2.4 Iterative model-based enrichment estimation

Using a strategy similar to the one described by [Xu et al., 2010], we created a

“template” tik for each mark k. The template is the normalized average enrichment

profile for a given mark, within a window relative to gene coordinates, i:

tik =
1

N

N∑
j=1

cijk (3.3)

where cijk is the enrichment of a mark k for a gene j at genomic coordinate i and N

is the total number of genes. Templates were normalized by a constant such that

1

N

∑
i

tnik = 1 (3.4)

where tnik is the normalized template, and N is the number of bins. We assume that the

enrichment profile of a given gene can be approximated by a template tik multiplied

by an enrichment level estimate Xjk of a mark k for a given gene j. The least squares

difference Qjk between the estimated enrichment profile Xjktik and the actual data is

given by

Qjk =
∑
i

(cijk −Xjktik)
2 (3.5)

By minimizing Qjk with respect to the enrichment estimate Xjk and applying the

normalization constraint given by equation 3.4 we arrive at the following enrichment

estimate equation:

Xjk =

∑
i t
n
ikcijk∑
i t
n2

ik

(3.6)

In addition to using a non-weighted average template as shown in equation 3.3, we

minimized Qjk with respect to the template tik to arrive at the following enrichment
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estimate weighted tag count template equation:

tik =

∑
j Xjkcijk∑
j X

2
jk

(3.7)

Equations 3.6 and 3.7 can be solved iteratively, subject to the template normalization

constraint given by equation 3.4. An iterative solution of these equations minimizes the

least squares difference between the modeled enrichment data and the actual data cijk.

In the case of the iterative solution, the template is the enrichment estimate weighted

average tag count across genomic coordinate, i. The value of Xjk is ultimately a

weighted average of enrichment across a genomic window, providing a single-value

estimate of enrichment that incorporates information from the spatial distribution of

the enrichment data. For our calculations the iterative process continued until the

average difference between the nth and the (n + 1)th set of enrichment estimations

converged to less than 5% of the nth set values.

Using this iterative model-based strategy, enrichment levels were estimated around

both the TSS and TES in ±500 bp, ±1000 bp, ±2000 bp, and ±3000 bp windows,

with single base pair resolution (i.e., i corresponds to a single base pair in the window).

Enrichment estimates were also made with templates consisting of the TSS and TES

windows combined (calculated as a single template) using the same four window sizes.

In summary, a set of 5’, 3’, and 5’+3’ enrichment estimations were made for each of

the window sizes.

In another set of enrichment estimates, genes were scaled to correspond to a fixed

number of bins. The scaling procedure described in [Xu et al., 2010] was used, with

bin number equal to 33,346—the median gene length in the filtered gene list. The

template procedure was applied to the scaled genes plus an intergenic overhang of 0

bp, 500 bp, 1000 bp, 2000 bp, and 3000 bp beyond the TSS and TES. The resolution

of the genes is equal to gene length divided by bin number, while the overhang regions
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have base-pair resolution.

3.2.5 Non-iterative model-based enrichment estimate

The process of iteratively solving equations 3.4, 3.6, and 3.7 is computationally

expensive. A non-iterative enrichment estimation can be made with equation 3.6 using

the non-weighted average template shown in equations 3.3 and 3.4. To examine the

trade off between computational efficiency and template optimization, we produced

one set of enrichment estimates calculated non-iteratively for every set calculated

using the iterative method.

3.2.6 Evaluation of template models

Following [Xu et al., 2010], we used the coefficient of variation of the root mean square

deviation, CV(RMSD), to evaluate the fit of our templates:

CVijk(RMSD) = X−1
jk

√∑n
i (cijk −Xjktik)2

n
(3.8)

where n is the number of indices in the template. This metric was used to compare

the fit of iterative and non-iterative template models.

3.2.7 MARS model construction and evaluation

MARS models were built with each set of enrichment estimations (51 in total) using

the earth package in R. Following [Xu et al., 2010], each model was allowed terms

with up to 3 degrees of interaction. The quality of each model was evaluated using R2

values and generalized cross validation (GCV) scores. The GCV score evaluates the

fit of the model while penalizing model complexity, whereas the R2 only considers the

fit of the model to the data. A description of the MARS algorithm and GCV scores

can be found in the ‘Methods’ section of [Xu et al., 2010].



89

3.3 Results and discussion

3.3.1 Overview of model construction

A total of 51 enrichment level estimates were made for 21 marks for 9882 Ensembl

genes, corresponding to 51 different MARS models. Figure 3.1 shows a summary of

each enrichment estimation method. The responses of the models are gene expression

data in CD4+ T cells gathered from the SymAtlas database [Su et al., 2004]. In

cases where multiple Affymetrix probe sets interrogated a single gene, additional

observations were included in the model corresponding to each independent expression

measurement with redundant enrichment data, resulting in 15,148 observations and

21 predictors per model.

3.3.2 Template model error analysis

To assess the fit of our template-based enrichment models to the enrichment data we

used the CV(RMSD), as described in section 3.2. The CV(RMSD) was calculated and

averaged for all genes above the 95th percentile in enrichment estimations. Table 3.1

shows the CV(RMSD) for whole gene templates plus a 2000 bp intergenic overhang, for

both non-iterative and iterative methods. In 13 of the 21 marks the iterative procedure

improved the CV(RMSD); however, the iterative enrichment model performs more

poorly than the corresponding non-iterative model for 8 marks.

The iterative and non-iterative H4K20me3 template models had the worst CV(RMSD)s

(8.11 and 5.87, respectively). Moreover, the iterative template performed much more

poorly than the non-iterative. In this case, H4K20me3 is highly enriched in members

of the zinc-finger (ZNF) gene family, and at low levels with a different enrichment

profile across the genes in the rest of the genome [Barski et al., 2007,Ernst et al., 2010].

Thus, for H4K20me3, there are at least two classes of enrichment profiles across genes.
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Figure 3.1: Illustration of enrichment estimation methods. Summary of the
methods used to make single-value estimates of gene-wise ChIP-seq enrichment. The
first column lists the enrichment estimation methods. The second column lists the
window sizes for which each method is applied. The last column shows a graphical
representation of the estimation region for each method/window size combination
relative to the transcription start sites (TSS) and transcription end sites (TES) of
genes.

The iterative template is weighted by enrichment, and hence biased toward the ZNF

genes. Thus it yields a poor CV(RMSD) for the majority of genes in the genome that

have a different profile and have relatively low levels of H4K20me3 across their bodies.

One way of resolving this problem is to apply clustering analysis to the H4K20me3

enrichment profiles across genes and identify the two or three dominant deposition

profiles and apply the appropriate template to each subset of genes. Nevertheless, the

iterative template method required significantly more computational resources than

the non-iterative method, for only marginal improvements in the CV(RMSD) of 13 of

the 21 marks, and in MARS model performance (as discussed in section 3.3.3). This

suggests that the non-iterative template approach may be preferable to the iterative

enrichment estimation method for many applications.
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Table 3.1: CV(RMSD) for whole gene templates plus a 2000 bp intergenic overhang

CV(RMSD)
Mark Non-iterative iterative
H2A.Z 3.382 4.442

H2BK5me1 1.940 1.957
H3K27me1 1.973 1.970
H3K27me2 2.960 2.957
H3K27me3 2.599 2.601
H3K36me1 2.919 2.913
H3K36me3 1.793 1.838
H3K4me1 2.007 1.943
H3K4me2 2.366 2.310
H3K4me3 2.955 3.189
H3K79me1 1.812 1.806
H3K79me2 1.820 1.802
H3K79me3 1.798 1.795
H3K9me1 1.861 1.810
H3K9me2 3.046 3.055
H3K9me3 4.114 4.550
H3R2me1 2.524 2.521
H3R2me2 3.581 3.575
H4K20me1 1.497 1.489
H4K20me3 5.871 8.112
H4R3me2 3.175 3.174

The CV(RMSD) shows the fit of template models to the enrichment data. The
first column shows the mark. The second column shows the CV(RMSD) for the
non-iterative template. The third column shows the CV(RMSD) for the iterative
template. The CV(RMSD) is improved (lowered) by the iterative template over the
non-iterative template in 13 of the 21 marks.

3.3.3 Enrichment estimation and model performance

We found a clear trend in model performance with respect to the enrichment estimation

procedure used to calculate the model predictors. GCV scores range from 2.656 to

3.564 and R2 values range from 0.517 to 0.339 across the 51 models. Figure 3.2

contains a summary of all models and their statistics. As expected, 3’ estimates

using small estimation windows yielded models with the poorest performance. Except

for the whole gene estimates with no intergenic overhang, for equal window sizes,
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models based on tag counting estimates were always outperformed by either iterative

or non-iterative template-based estimates, as measured by GCV score. With the

exception of 2 (whole gene tag counts with 0 and 500 bp intergenic overhangs) out of

the 17 tag count-based models, both the iterative and non-iterative template-based

models outperformed the tag count-based models for the same window size. Models

based on whole-gene estimates outperformed all other models.

The iterative enrichment estimation method was intended to improve the fit of the

template to the data; however, this does not mean that the estimated enrichment level

produces a final MARS model with a better fit. Indeed, we found this to be true in

our models. Of the 17 pairs of iterative and non-iterative template-based enrichment

estimations, 10 produced models in which the iterative method was superior, and 7 in

which the non-iterative method was superior. However, both methods produced models

with similar statistics (Figure 3.1). A possible explanation for this result is that the

iterative method yields a template that is an estimation-weighted average of enrichment

across genomic coordinates. Thus, genes with large outlier enrichment values for a

given mark could be driving the shape of the iterative template. For H4K20me3,

which produced the poorest CV(RMSD)s and a largest increase in CV(RMSD) in

the iterative estimate relative to the non-iterative estimate, outliers did drive poor

performance. As previously discussed ZNF repeats are highly enriched for this mark

while most non-ZNF genes have an extremely modest enrichment. The genes that

had the largest absolute deviation between iterative and non-iterative enrichment

estimates were indeed ZNF genes. This suggests that datasets with extreme outliers

may be poorly represented by the iterative enrichment estimate. Incorporating robust

estimation procedures (e.g., trim mean) into template and enrichment estimation

calculations may improve the results of the iterative enrichment estimation method.

Selection of window size was also a factor in model performance. For the window

sizes considered, larger window sizes always yielded improved model fits for any 5’
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Figure 3.2: Comparison of enrichment estimation methods by MARS model
statistics. Plots of (A) GCV and (B) R2 values for MARS models built with each
enrichment estimation method. GCV scores are sorted in descending order; small
GCV scores are indicative of superior model fit. R2 values are sorted in ascending
order; large R2 values are indicative of superior model fit. Models based on whole-gene
enrichment estimates group together as the best models by both metrics.
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and/or 3’-focused method. Not surprisingly, an increase in the amount of data used to

calculate the predictors generally improved the performance of the models. However,

this does not hold true for the whole-gene tag counting and scaled-gene methods. For

these methods, the size of the overhang region is a relatively small fraction of the total

genomic coverage used in the per-gene enrichment estimation.

The estimate method with the best performance based on GCV score was the

whole-gene, non-iterative, template-based method with a 2000 bp intergenic overhang,

which achieved a GCV score of 2.656. The whole-gene method that received the

poorest GCV score was the tag count with 3000 bp intergenic overhangs, which

had a GCV score of 2.696. The difference in model GCV score between the best

and worst whole-gene enrichment estimation methods was only 0.04, corresponding

to 1.5% difference in GCV score; the associated p-value < 0.001. Significance was

assessed by randomly permuting mark amplitudes with respect to genes. MARS was

then applied to the randomly permuted data and GVC scores were calculated for

the best and worst whole-gene enrichment estimation method as well as the percent

difference in GCV score. A null distribution and corresponding p-value were calculated

by repeating this procedure 1000 times. The worst whole-gene estimation method

had a GCV score, which was 0.129 (4.6%) below that of the best method based on

specific genic regions (5’+3’ iterative template with 3000 bp intergenic overhang).

The associated p-value < 0.001 based on the same random permutation procedure

described above. This suggests that the most important factor when estimating

gene-wise ChIP-seq enrichment is the inclusion of data across the entire length of gene

bodies. Additionally, unlike the methods based on localized regions, the whole-gene

methods do not show a strong correlation between model performance and window

size; further suggesting that the enrichment data in the body of the gene contains the

majority of the information content for a given gene.

The Spearman correlation between the iterative and non-iterative template-based
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(2000 bp intergenic overhang) enrichment estimates was 0.994 or better across all

marks. As expected, the largest deviations between the methods were in estimates

of H4K20me3 in the ZNF genes. Correlations of enrichment estimations between

whole-gene tag counting and template-based methods (2000 bp intergenic overhang)

had a median value of 0.983, and exceeded 0.925 for all marks except for H2A.Z

and H3K4me3. The correlations between the tag counting method and the iterative

and non-iterative methods for H2A.Z were 0.659 and 0.675 respectively, and 0.775

and 0.771 for H3K4me3. These relatively low correlations can be attributed to the

fact that on average these two marks have extremely high enrichment within a few

hundred base pairs of the TSS, which rapidly falls to nearly zero beyond 2000 bp into

the gene body. No other marks show such a dramatic difference between the gene

body and TSS region. For extremely large genes, this means an underestimation of

the enrichment using the length-normalized tag count. Indeed, many of the largest

deviations between the estimation methods for these marks were for genes that were

on the mega-base scale in length (Figure 3.3). Large deviations also occurred when

few tags were observed within the estimation window. In these cases, differences

between enrichment estimation methods can be attributed to coordinate-dependent

differences in weighting. In some cases of 5’ proximal marks, genes that were not

enriched for the mark were flanked by genes that were (Figure 3.4). The 5’ enrichment

of the neighbor would sometimes bleed into the 3’ region of the non-enriched gene,

causing a large enrichment estimate using the tag counting method relative to the

template-based methods. Since the template-based methods are a weighting scheme

based on the average enrichment pattern, the intruding enrichment is down-weighted.

The template-based methods are subsequently able to deconvolve enrichment signals of

genes that are close neighbors, and therefore represent an advantage of these methods

over tag counting.
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Figure 3.3: Example of a highly enriched 5’ region on a large gene. Enrichment
of H3K4me3 and H2A.Z on ULK4 is highly 5’ localized. Since ULK4 is over 700 kb in
length, length-normalized enrichment estimates for these marks on this gene would be
underestimated relative to most genes.

Figure 3.4: Example of 5’ enrichment overlapping the 3’ end of a neighboring
gene. Five prime enrichment of H3K4me3 and H2A.Z on C12orf62 bleeds into the
estimation window of GPD1, which is not enriched at its 5’ end for either mark. A
tag counting procedure would yield a large enrichment estimate of GPD1 relative
to a template-based enrichment estimate since 3’ enrichment is down-weighted for
these marks using the template based procedure. Thus, for this and similar cases,
the template-based enrichment estimates are better able to deconvolve neighboring
ChIP-seq signals.

The accuracy and precision of amplitude estimation for all of the methods consid-

ered could be improved by subtracting background read levels and applying appropriate

noise filtering. High throughput sequence analysis of input DNA samples revealed that

chromatin structure affects shearing and other aspects of ChIP sample preparation,

and hence introduces biases in ChIP-seq data [Teytelman et al., 2009]. This together

with sequence dependent biases coming from PCR amplification of ChIP samples
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argues for methods that assume an inhomogeneous background. One approach would

be to use input DNA or other control samples to estimate inhomogeneous background

levels; however, an accurate method, which performs this analysis remains to be

developed. Indeed a recent comparison of ChIP-chip and ChIP-seq data showed

that using Input-seq data as background from an unmatched sample can remove

GC-content biases better than use of a matched Input-seq sample [Ho et al., 2011].

Thus, accurate background estimation and subtraction is still an area of active research.

One ChIP-seq peak finding method, SICER [Zang et al., 2009], which is designed to

identify significantly enriched domains in histone modification data can also be applied

as a background noise filter. SICER performs the filtering based on significance. The

genome is segmented into windows and those that are not members of significantly en-

riched islands are filtered out (i.e., set to zero). However, a significance-based filtering

approach is not ideal for amplitude estimation and statistical learning applications

because accurate estimates of even low, albeit insignificant, enrichments are important.

High frequency noise could be removed by applying low pass filters using wavelets.

Indeed, wavelet analysis has been applied to genomic tiling array ChIP-chip data for

denoising, and could be generalized for ChIP-seq noise filtering [Karpikov et al., 2011].

3.3.4 Enrichment profiles and gene length

The superlative performance of the scaled-gene enrichment estimation methods was

unexpected considering many of the histone modifications in this study appear to have

TSS-focused enrichment [Barski et al., 2007]. It was initially unclear as to whether

scaling genes to calculate the enrichment template was appropriate, considering that

these modifications are physically deposited on the tails of histones which make

up nucleosomes that occupy approximately 146 bp of DNA. Three of the 21 marks

displayed an enrichment pattern that distinctly scaled with gene length: H3K36me3

and H3K79me2/3 (Figure 3.5). Based on the presence of marks that scale with
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gene length and those that do not, we hypothesized that a template-based procedure

based on absolute position of nucleosomes with the largest window size (i.e., 5’+3’

template, 3000 bp window) would yield the best model. Such a model would accurately

incorporate data that is based on absolute position of nucleosomes, and also capture

the largest genomic region to incorporate the maximum amount of data from marks

that scale with gene length. Despite this, and the fact that most of the marks do not

appear to scale significantly with gene length, the estimates based on scaled genes

produced models with superior performance.

To determine if H3K36me3 and H3K79me2/3—all strongly associated with gene

activation—were driving the superior performance of the scaled-gene models, we rebuilt

all 51 MARS models without these predictors (data not shown). Surprisingly, the

scaled gene method with no intergenic overhang yielded the best model, though the 2nd

and 3rd best models were based on whole-gene tag counts. This suggests that although

for many marks the scaled template is less representative of the deposition pattern of

very large and very small genes, the scaled template strategy offers good performance

even on marks whose enrichment profiles do not appear to scale significantly with

gene length.

3.3.5 Regulatory information embedded in spatial

deposition patterns

Interestingly, the slopes of the enrichment profiles of the three marks that scale appear

to be approximately similar across gene lengths from the TSS to approximately 1

kb into the gene body. Beyond approximately 1 kb into the gene body the slopes

of the enrichment profiles begin to differ dramatically. For example, for the shortest

20%-ile of genes, average H3K79me3 enrichment rapidly decreases beyond 1 kb into

the gene body. For the longest 20%-ile of genes the enrichment profile has a steady,

positive slope for the same genomic window, which is about 1 kb to 6 kb into the
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Figure 3.5: Average histone modifica-
tion enrichments stratified by gene
length. Plots of average enrichment pro-
files from the transcription start site to
6000 bp into the gene body for H3K36me3
(A), H3K79me2 (B), and H3K79me3 (C),
stratified by quintiles of gene length. The
variability in slope for each of these marks
suggests that the enrichment pattern for
each of these marks scale with gene length.
For example, for the smallest 20%-ile of
genes, H3K36me3 enrichment rapidly rises
from the TSS to 6000 bp into the gene
body; however, for each successive 20%-ile
of increasing gene length, the rate of in-
crease in enrichment is diminished for the
same region.
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gene body. However, from the TSS to approximately 1 kb into the gene body the

enrichment profiles of these extreme length groups are nearly identical. This suggest

that for these scaling marks, there is a region near the TSS, which is approximately 1

kb in size where these modifications are deposited in a length-independent manner,

but beyond which the modifications are deposited in a length-dependent fashion.

Of the non-scaling marks, all but four of the modifications in this study show

differences in absolute enrichment levels across gene lengths. Those that do not are

H3K27me2, H3R2me2, H4R3me2, and H4K20me3. The greatest differences appear in

the longest 20%-ile, which has relatively low enrichment for marks that are explicitly

known to be associated with gene activation, and relatively high enrichment for genes

associated with gene repression, suggesting a global reduction of transcription in large

genes relative to small genes. Indeed, we find that the genes in the largest 20%-ile of

gene length show significantly lower gene expression than other genes (Figure 3.6).

For methods that did not use the whole gene to arrive at enrichment estimates, we

rebuilt models with gene length included as a predictor to determine if the superior

performance of the whole-gene estimation methods were driven by the gene length

bias. The best performing model of this set was the 5’+3’ non-iterative template

with a 3000 bp window, which had a GCV score of 2.831. The best model based on

estimates in a specific genic region and without gene length as a predictor had a GCV

score of 2.824. The lack of improvement after including gene length as a predictor

suggests that the performance of the whole-gene enrichment estimation methods was

not driven by the gene length bias.

In addition to revealing information about transcriptional regulation, templates

and enrichment estimates may also provide information on co-regulation of PTMs. For

example, H4K20me1 and H3K9me1 are known to be preferentially deposited on the

same nucleosomes in vivo [Sims et al., 2006]. The correlation (Spearman) between the

templates of these two marks was 0.716, and the correlation between their enrichment
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Figure 3.6: Gene expression stratified by gene length. Box plots of gene
expression stratified by quintiles of gene length. There is a significant decrease in
expression in the longest 20%-ile of genes. Along with the observation that longer
genes have relatively high enrichment of repressive marks, and low enrichment of
activating marks, this suggests that lower gene expression in longer genes is mediated
by epigenetic mechanisms.

estimates across genes was 0.876. These strongly positive correlations of templates

and enrichment estimates of marks known to co-occur suggest that co-regulatory

information can be gleaned from spatial distribution and magnitude of the enrichment

data. For example, our data show enrichment correlations of 0.889, 0.762, and 0.761

between H2BK5me1 and H3K79me1/2/3, respectively. Template correlations between

H2BK5me1 and H3K79me1/2/3 were 0.956, 0.910, and 0.924, respectively. The high

correlation between H2BK5me1 and H3K79 methylation deposition patterns and

levels across the genome suggest that there may be a mechanistic link between these

histone PTMs that has not yet been reported in biochemical studies (e.g., the enzymes

that deposit these marks could be on the same complex). This is one of many cases

where both the correlation between two marks’ spatial profiles and enrichment levels
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across genes is high. Using both enrichment level and spatial deposition patterns

across genomes could prove to be powerful at identifying biologically relevant synergies

between histone modifications, which make up the histone code.

3.4 Conclusions

Generalizing a method for estimating ChIP-seq enrichment for multiple histone mod-

ifications is complicated by the variability in the way different modifications are

deposited. This variability ultimately creates different gene-wise ChIP-seq enrichment

patterns, some of which scale with gene length and some which do not. Tag counting

methods can yield high quality predictors for regression modeling, but ultimately

some of the information content coded in the spatial distribution of the data is lost.

Although many modifications are highly enriched at the 5’ end of genes, much of

the useful data associated with a given gene is encoded in the body of the gene.

Many previous studies have attempted to estimate enrichment by only focusing on

the promoter region, and in doing so, have forgone much of the relevant data.

Using the MARS regression algorithm to build regression models with enrichment

levels as predictors and gene expression as responses, we compared various strategies

for estimating gene-wise ChIP-seq enrichment for 20 histone methylations and histone

variant H2A.Z in human CD4+ T cells [Barski et al., 2007]. Enrichment estimation

methods were assessed and ranked by the quality of the models produced, which

was measured by GCV scores. We have demonstrated that, with respect to the

cis-regulatory role that the histone modifications/variant surveyed in this study play

in controlling gene expression, the majority of the significant enrichment data lies

within gene boundaries. Also, the incorporation of data across whole genes, as well

as spatially weighting enrichment for single-value estimations of gene-wise ChIP-seq

enrichment can provide significant improvement over strategies that focus on specific
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genic regions. Improving methods for the quantification of ChIP-seq data for statistical

modeling serves to sharpen the resolution of the models and ultimately improves the

conclusions that can be drawn from them.

ChIP-seq technology facilitates the computational interrogation of genomic control

networks, and the conclusions drawn by this study can serve to increase depth at

which we can probe these networks using this technology. The methods outlined in

this work can be applied to almost any machine learning or data mining application

that uses gene-wise ChIP-seq enrichment as predictors or responses.

3.5 Chapter acknowledgements

This chapter was adapted from [Hoang et al., 2011].
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Chapter 4

Epigenetic reprogramming in the

epithelial-mesenchymal transition

4.1 Introduction

Differentiation and lineage commitment occurs through a highly regulated sequence

of cellular changes in response to the environment [Arnold and Robertson, 2009].

A conserved de-differentiation process known as the epithelial-mesenchymal transi-

tion (EMT), occurs during physiological processes such as development and wound

healing [Kalluri and Weinberg, 2009]. EMT progression involves coordinated cellular

remodeling, which results in a less differentiated phenotype in order to reorganize

tissue structures. Induction of EMT in epithelial cells results in loss of apical-basal

polarity and the adoption of a migratory and invasive mesenchymal phenotype [Thiery,

2003]. Recent evidence suggests that inappropriate induction of EMT in tumor cells

is associated with the progression of human carcinomas—reviewed in [Yang and Wein-

berg, 2008,Thiery et al., 2009]. During cancer progression, tumor grade, metastasis,

drug resistance, tumor heterogeneity, and cancer stem cell maintenance all correlate
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with deregulated EMT [Mani et al., 2008,Thomson et al., 2005,Singh and Settleman,

2010].

An increasing body of evidence indicates that the mesenchymal phenotype is

established through genome-wide and locus-specific epigenetic reprogramming [Mc-

Donald et al., 2011,Dumont et al., 2008,Lombaerts et al., 2006]. This suggests that

epithelial and mesenchymal phenotypes are coordinated through changes to chromatin

states, and a possible role for the so-called “histone code” in EMT [Strahl and Allis,

2000, Jenuwein and Allis, 2001, Fischle et al., 2003]. According to one hypothesis,

phenotypic switches depend on the chromatin-mediated stabilization of transcription

factor (TF) activity [Bird, 2002,Thomson et al., 2011]. Although studies have begun

to discover mechanistic roles for changes in specific histone modifications during EMT,

the combinatorial nature of the reprogramming remains unclear [McDonald et al.,

2011].

A number of studies have attempted to discover functional chromatin domains

through a computational process referred to as “chromatin profiling” [Ernst et al.,

2010, Ernst et al., 2011]. It has been established that combinatorial patterns of

posttranslational histone modifications and covalent changes to genomic DNA delineate

functional elements within the genome. These histone codes correlate with gene

expression and function, enable the de-novo discovery of genomic features such as

transcription start sites and cis-regulatory regions [Ernst et al., 2011,Ong and Corces,

2011], and also aid in specifying cell lineages [Kharchenko et al., 2011]. As a result,

association between chromatin profiles and molecular function has been reported on

the basis of GO-term enrichments [Ernst et al., 2010, Boyle et al., 2008, Hammoud

et al., 2009,Zentner et al., 2011]. Therefore, we sought to discover patterns of histone

modifications that contribute to epigenomic reprogramming during EMT, and how

changes in these modifications relate to the signaling events that are known to establish

the mesenchymal phenotype.
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We clustered chromatin profiles, and discovered that genes and pathways involved

in EMT show essentially the same changes in all sixteen histone modifications, and

two variants that we profiled. We also see coordinated changes at their local enhancers.

Strikingly, these genes represent a small minority of the total set of differentially

expressed genes. Our results suggest that specific changes in histone modifications

coordinate the regulation of genes and pathways involved in EMT. In concordance with

previous research that demonstrates the epigenetic regulation of enhancer activity,

we reveal distinct changes in chromatin at enhancers during EMT [Mercer et al.,

2011, Hawkins et al., 2011,Creyghton et al., 2010]. Furthermore, we show that the

directionality of these changes can be distinguished by enrichments for the known

binding sites of two different groups of transcriptional regulators. Results from our

analyses are all consistent with a model of transcriptional feedback loops mediated by

shifts in chromatin states. Our data-driven and integrative computational approach

reveals broad epigenetic coordination of transcription factors and signaling cascades

with established roles in EMT. We put forward the hypothesis of positive feedback

loops involving the NF-κB and AP-1 TF families, and analogous repression of feedback

involving MYC.

4.2 General strategy

Given the current research that implicates epigenetic mechanisms in the regulation of

EMT, we hypothesized that epigenetic reprogramming broadly coordinates cellular

processes that contribute to the phenotypic switch. Furthermore, we hypothesized that

this coordination occurs in cancer cells that undergo EMT, despite their mutational

landscape and genomic instability. Our goal was to discover a shared epigenetic

signature between known EMT drivers and further evidence of epigenetic coordination.

To test our hypothesis, we mapped sixteen histone modifications, two histone



107

variants, and collected gene expression data in 3D cultures of untreated (epithelial) and

cytokine-treated (mesenchymal) A549 cells (Figure 4.1A). Briefly, our model system

consists of creating three-dimensional NSCLC A549 cultures by hanging droplet, and

subsequently treating the spheroids with tumor necrosis factor (TNF) and transforming

growth factor beta (TGFβ) to induce EMT (Figure 4.1A). Similar protocols have been

utilized to induce EMT in other cell types [Borthwick et al., 2012]. This model has

been shown to recapitulate critical characteristics of EMT. Reprogrammed cells have a

migratory phenotype, metastatic potential, stem-cell characteristics, and mesenchymal

markers. In this system it has been shown that there is increase in the expression of

master switch EMT transcription factors, TWIST1, SNAI1, SNAI2 and ZEB2, and

robust upregulation of stem-cell markers, including KLF4, SOX2, POU5F1, MYCN,

and KIT. Furthermore, upon induction of EMT there is loss of CDH1, gain of VIM,

greatly increased invasiveness, and increased ability to form lung metastases in nude

mice. Importantly, in this particular system it has been demonstrated that functional

characteristics of EMT are dependent on the activity of RELA (p65) [Kumar et al.,

2013].

The set of histone marks that were mapped includes those that preferentially

associate with transcription start sites, gene bodies, enhancers, or heterochromatin,

as well as poorly characterized marks (Figure 4.1B) [Barski et al., 2007,Creyghton

et al., 2010, Heintzman et al., 2009]. We and others have shown that many of the

mapped marks correlate with transcriptional activity [Xu et al., 2010]. Here we

find a subset of marks correlated at enhancer loci (Figures 4.1B and 4.2). This

data was used to quantify the differences in enrichment of each histone modification

at gene and enhancer loci. To classify genes (and separately, enhancers) based on

their differential epigenetic profiles (DEPs), we employed an unsupervised clustering

technique [Newman and Cooper, 2010]. This effectively groups genes (or enhancers)

that share highly similar DEPs across the eighteen chromatin marks analyzed. We then
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Figure 4.1: Experimental design and data. (A) Flow-chart of the experimental
setup and analysis methodology. The epithelial-mesenchymal transition (EMT) was
induced using TNF and TGFβ in spheroid cultures. Cells before and after treatment
(4 days) were collected and whole-genome gene expression and chromatin profiles of 18
histone modifications and variants were obtained. From the paired datasets we mea-
sured differential gene expression and calculated differential epigenetic profiles (DEP).
The DEPs were calculated individually for gene and enhancer loci and subsequently
clustered. Analyses of the resulting epigenetic gene and enhancer clusters included
functional enrichment profiling, and transcription factor (TF) binding. The results
were shown to be consistent with a chromatin-mediated feedback model that involves
specific TFs binding activated enhancers that upregulate expression in EMT-related
gene clusters. (B) Table of histone modifications assayed. Histone modifications shown
to be correlated and enriched at enhancer loci are indicated.

used these gene and enhancer clusters as the foundation of our functional downstream

analyses that integrate multiple sources of functional annotations and molecular data

(Figure 4.1A). Specifically, unsupervised clustering enabled us to identify patterns of

chromatin remodeling which we link to signaling pathways and transcription factor

activity associated with EMT through comprehensive systems-level analyses.
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Figure 4.2: Correlation of histone modifications at enhancers. (A) Correlation
of histone modifications with H3K4me1 at putative enhancer loci. (B) Correlation of
histone modifications with H3K27ac at putative enhancer loci.

4.3 Results and discussion

4.3.1 Chromatin profiling reveals EMT-related gene

clusters

Genome-wide application of our clustering methodology with the combined ChIP-seq

data yielded twenty-nine non-overlapping gene clusters (GCs). Briefly, our method

clusters genes based on the epigenetic profile of gains (positive difference of normalized

levels of ChIP-seq enrichment between the mesenchymal and epithelial states) and

losses (negative difference) of histone modifications at gene loci during EMT. Each

gene locus was partitioned into four segments: promoter, transcription start site (TSS),

early gene, and gene body (Figure 4.3). It should be noted that genes within a given

cluster display highly similar profiles of positive and negative differences across the

sixteen histone modifications and two variants (Figure 4.4A). This profile similarity

likely occurs because the genes within a cluster undergo similar epigenetic regulation
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Figure 4.3: Gene segmentation and differential signal quantification. Gene
segmentation and differential signal quantification. Gene loci were segmented into four
regions: promoter, TSS, gene start, and gene body. Within each segment two values
were computed for each mark: the sum of the differential gain in the mark, and the
sum of the differential loss in the mark (absolute value, mesenchymal minus epithelial).
These values together form the differential epigenetic profile (DEP) for each gene.
Enhancers were treated similarly; however, enhancer loci were not segmented.

and recognizably distinct regulation of genes from different clusters.

To identify clusters that are associated with known EMT biology, we looked for

enrichments in a subset of GO-derived molecular functions that are enriched among

genes known to be involved in EMT. Two clusters, GC16 (378 genes) and GC19 (305

genes) (Figure 4.4A), are enriched for many of the same GO-terms as a literature-based

reference list of EMT-associated genes, and a similar list of genes annotated with

GO-terms explicitly referencing EMT. We quantify this degree of overlap and refer to

it as functional similarity (Figure 4.5A). Genes within these clusters have increased

expression (Figure 4.4B), and possess similar patterns of chromatin remodeling (Figure

4.4A). We have listed the most significant EMT GO terms for GC16 in Table 4.1 (e.g.

“cell adhesion,” False Discovery Rate (FDR) corrected p-value < 1e–5). A third cluster,

GC15 (385 genes), had a more modest functional similarity to the reference list of
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Figure 4.4: EMT-related gene clusters (EMT-GCs) are differentially ex-
pressed and show antipodal patterns of chromatin remodeling. (A) Differen-
tial epigenetic profiles (DEPs) of the EMT-GCs. Heat map shows the DEPs of genes
(rows) from the EMT-GCs (other clusters are omitted). Groups of DEP columns that
distinguish clusters 16 and 19 from 15 are indicated through colored boxes. Summary
of the antipodal patterns of change in histone modification levels are provided in the
table. The red box shows changes specific to clusters 16 and 19. The blue box shows
changes specific to cluster 15. (B) EMT-GCs in the differential expression-epigenetic
plane. Each dot represents a gene, colored dots are genes from the EMT-GCs: 16
and 19 (red), and 15 (blue). Differential gene expression (log2 fold-change) is on the
Y-axis. The total magnitude of epigenetic difference (sum of DEP elements) at a gene
locus is on the X-axis.

EMT-associated genes, but had high functional similarity to GC16 and GC19 (Figure

4.5B). However in contrast, GC15 shows a global decrease in expression (Figure 4.4B).

The similarity of GC15, GC16, and GC19 in terms of significant GO-terms suggests

that genes from these three clusters are engaged in a focused and coordinated process

that drives EMT. We refer to these three gene clusters as EMT-related gene clusters

(EMT-GCs) and focus our attention on their characteristics and functional similarities

(Figures 4.4 and 4.5). In subsequent analyses, we provide evidence that EMT is driven

by genes in these clusters. Remarkably, the EMT-GCs represent only 5.2% of all

20,707 analyzed genes, compared to 18.5% that are differentially expressed at 5%

FDR. Compared to differentially expressed genes, EMT-GCs show more significant
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Table 4.1: GO-terms most significantly enriched in GC16

GO-term description FDR
go:0032502 developmental process 0
go:0008219 cell death 0
go:0006950 response to stress 0
go:0008283 cell proliferation 1e-15
go:0050896 response to stimulus 2e-15
go:0009987 cellular process 3e-15
go:0007155 cell adhesion 1.9e-14
go:0030154 cell differentiation 4.7e-14
go:0005515 protein binding 3.29e-13
go:0048856 anatomical structure dev. 3.768e-12
go:0007165 signal transduction 4.093e-12
go:0048646 anat. structure form. involved in morph. 8.42e-12
go:0006928 cellular component movement 7.1532e-11
go:0007154 cell communication 2.02326e-10
go:0048870 cell motility 2.09765e-10
go:0005615 extracellular space 6.43198e-10
go:0002376 immune system process 3.81583e-09
go:0040011 locomotion 3.0465e-08
go:0043066 negative regulation of apopt. 2.30123e-07
go:0007568 aging 8.28426e-07
go:0001525 angiogenesis 1.21924e-06
go:0001816 cytokine production 3.45701e-06
go:0008285 negative regulation of cell prolif. 5.14751e-06
go:0005576 extracellular region 5.61403e-06
go:0008150 biological process 7.64415e-06
go:0042060 wound healing 1.05706e-05

A list of the most significantly enriched GO-terms in EMT-cluster 16—which has
the highest functional similarity score to curated lists of EMT-associated genes. The
enrichment p-values were calculated using Fishers exact test and FDR corrected.

and specific functional enrichments (compare Tables 4.1 and 4.2). Thus, analysis of

chromatin profiles enabled us to narrow down the search for genes coordinated during

reprogramming and enrich for EMT-regulators over differentially expressed passenger

genes.

We find, in general terms, that the EMT-GCs are distinguished by relatively large

gains (GC16, GC19) and losses (GC15) of activating histone modifications (Figure
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Table 4.2: GO-terms significantly enriched in > 4-fold upregulated genes

GO-term ID Description FDR
GO:0010466 negative regulation of peptidase activity 0.000237071
GO:0030414 peptidase inhibitor activity 0.000681243
GO:0032355 response to estradiol stimulus 0.002522024
GO:0045669 positive regulation of osteoblast differentiation 0.005647154
GO:0042060 wound healing 0.0139314
GO:0001525 angiogenesis 0.013598033
GO:0014070 response to organic cyclic compound 0.013809122
GO:0001666 response to hypoxia 0.020969663
GO:0007568 aging 0.036470674

A list of significantly enriched GO-terms in the set of genes that show greater than
4-fold upregulation. Enrichments are not as specific or as strong as those associated
with the EMT-GCs.

4.4A). We inspected the patterns of epigenetic remodeling to discover which of the

assayed marks most uniquely identify the EMT clusters. We find that in GC15,

the histone modifications H4K20me1, H3K79me3, H3K27ac, H3K4me3, and H3K9ac

are lost throughout gene bodies. Overall the epigenetic changes in GC19 are very

similar to GC16 with some exceptions. GC16 and GC19 show relatively strong gains

of H3K4me2/3, H3K36me3, H4K20me1, H3K9ac, and H3K27ac across gene bodies.

Relative to GC16, gains in GC19 are large for H3K79me3, and moderate for H3K27ac,

H3K9ac, and H3K4me2/3 in gene bodies. Consistent with their chromatin changes,

GC15 and GC16 display the most antipodal changes in gene expression (Figure

4.4B). By comparison, clusters other than the EMT-GCs exhibit small magnitudes of

chromatin and expression changes. These observations are in agreement with many

findings concerning the broad role of epigenetics in transcriptional regulation and the

transcriptional effects associated with specific marks [Hoang et al., 2011,Wang et al.,

2009b,Wang et al., 2009a].
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Figure 4.5: Epigenetic clustering groups functionally similar genes and iden-
tifies EMT-related clusters. (A) Assessment of EMT functions in gene clusters.
Degree of functional similarity between the epigenetic gene clusters and two lists of
genes associated with EMT corresponding to genes obtained by manual literature
mining and those annotated with GO-terms that included EMT. Functional Similarity
Scores (FSS) of each cluster to the two reference EMT gene lists are plotted. (B)
Functional similarity of gene clusters. Heat map shows the hierarchical clustering of
the Functional Correlation Matrix of epigenetic gene clusters. A trimmed dendrogram
of the clustering is shown. Each row represents a source gene cluster while each column
represents either the enrichment (E) or depletion (D) score with a target cluster. The
sum of the E and D scores is the FSS for a given cluster pair. Columns are arranged
numerically by cluster ID.

4.3.2 EMT clusters are enriched for many EMT-associated

functions and phenotypes

In order to associate the EMT-GCs with a more comprehensive set of molecular

functions and biological processes we profiled them for enrichments for all GO-terms.

We removed a large fraction of spurious associations using a 1% FDR cutoff, which

revealed that clusters GC16 and GC19 show strong GO enrichment profiles (50 and

23 significant terms, respectively). We found hallmark EMT-regulatory GO-terms,

such as cell adhesion and migration, in GC16 and GC19 (Table 4.3). The terms “cell

motility,” “basement membrane,” “stress fiber,” and “focal adhesion” are robustly
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enriched in GC16 and/or GC19. GO-terms related to the physiological role of EMT

such as, “wound healing” and “developmental process” also appeared in these clusters,

while GC19 overlaps with the term “cell morphogenesis.” In contrast, GC15 has only

five significant terms, four of which are associated with development and growth

(Table 4.3). Together, these GO-based analyses reveal a broad similarity of GC15,

GC16, and GC19 and association with multiple aspects of EMT, despite differences in

the enrichment for specific GO-terms.

Since pathological EMT is linked to metastasis and aggressive tumors, we hypothe-

sized that the genes in the EMT-GCs are associated with advanced cancer phenotypes.

To test this hypothesis, we assessed the overlap between these clusters and the sets of

genes that distinguish advanced, aggressive cancers from less advanced cancers. These

genes sets were obtained from the Molecular Signatures Database 3.0 (MSigDB) [Liber-

zon et al., 2011]. We observe that genes overexpressed in mesenchymal versus luminal

types of breast cancer [Charafe-Jauffret et al., 2006] are over-represented in GC16 and

GC19 (fold enrichment over background: 9.4, FDR corrected p-value = 2.3e–30) and

(9.6-fold, p = 1.3e–25), respectively. Consistently, the downregulated genes from the

same study are enriched in GC15 (3.7-fold, p = 0.0002). Further analysis revealed that

GC16 shows significant enrichment for genes upregulated in the peripheral versus the

central part of pancreatic tumors (5.4-fold, p < 1e–5) [Nakamura et al., 2007]. This

cluster also contains genes that distinguish metastatic tumors from primary colorectal

carcinomas (7.89-fold , p < 1e–5) [Provenzani et al., 2006]. In summary, significant

overlaps of EMT-GCs with expression signatures of several advanced cancers suggests

that tumors of epithelial origin have a common EMT-associated epigenetic mechanism

that contributes to progression and metastasis.
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Table 4.3: Referenced GO-terms enriched in the EMT-GCs

GC GO-term Enrichment p-value
16 wound healing 13.568 0.00001057
16 plasma membrane 1.982 0.0001816
16 receptor binding 4.84 0.00024
16 seq-spec DNA binding TF activity 2.58 0.006
16 signal transduction 2.523 < 1e-8
16 cellular process 2.651 < 1e-8
16 cell communication 2.358 < 1e-8
16 cell motility 4.231 < 1e-8
16 basement membrane 8.739 0.0095945
16 cell differentiation 3.078 < 1e-8
16 aging 6.851 0.00000083
16 growth 3.286 0.00008581
16 cell death 3.859 < 1e-8
16 cell proliferation 3.901 < 1e-8
16 negative regulation of apoptosis 6.253 0.00000023
16 immune system process 2.988 < 1e-8
16 cytokine production 4.981 0.00000346
16 developmental process 3.105 < 1e-8
16 MAP kinase tyr/ser/thr phosphat activity 34.02 0.026
16 inactivation of MAPK activity 20.46 0.024
16 pos reg of NF-kappaB TF activity 9.34 0.0015
19 plasma membrane 2.022 0.00142517
19 signal transduction 2.79 < 1e-8
19 cellular process 2.108 0.00001248
19 cell communication 2.671 < 1e-8
19 cell motility 3.425 0.0002315
19 focal adhesion 8.441 0.0034188
19 cell differentiation 2.532 0.00000486
19 cell death 2.519 0.00059504
19 cell proliferation 2.765 0.00016907
19 immune system process 2.302 0.02549018
15 cellular process 2.01 0.0000025
15 sequence-specific DNA binding 2.99 0.027
15 developmental process 1.93 0.00042
15 cell differentiation 1.91 0.052
15 cell death 2.22 0.0038
15 anatomical structure development 1.98 0.00098
15 cell proliferation 1.98 0.0069

GO-terms significantly enriched in GC15, GC16, and GC19. Only GO-terms directly
referenced in the manuscript are shown. GO-term annotations are obtained from GOA
and NCBI. Enrichment is the fold relative to the background frequency of a GO-term
annotation. P-values are calculated by Fishers Exact Test and are FDR corrected.
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4.3.3 Regulation of EMT signaling pathways is

chromatin-mediated

Among the GO-terms enriched for GC16 and GC19 are several that correspond to a

generic level of many different pathways e.g. “receptor binding,” “signal transduction,”

“protein kinase activity,” and transcription factor activity (Tables 4.3 and 4.1). We

hypothesized that chromatin remodeling coordinates the activity of a signaling cascade

across all levels of a specific pathway. Since, GO-terms only identify functional layers

shared by multiple pathways, rather than whole independent pathways, we assessed

whether EMT-GCs are enriched for genes from a collection of known pathways. This

analysis provides evidence for broad coordination of genes involved in EMT and

cancer-related pathways through chromatin remodeling (pathways referenced in this

section are listed in Table 4.4). In addition to several novel insights, we recapitulated

many of the pathways and processes that represent the canonical EMT phenotype. For

example, both upregulated clusters are enriched for “focal adhesion,” “ECM-receptor

interaction,” “adherens junctions,” “tight junctions,” and E-Cadherin (CDH1) related

pathways. GC19 shows enrichment for additional pathways involved in cell motility

such as “regulation of actin cytoskeleton,” and “leukocyte transendothelial migration.”

Since we assessed the histone modification and expression levels from cells that

had been exposed to TNF and TGFβ over an extended time course, we expected

to find delayed early and late response genes within the EMT-GCs. Some well

known delayed early and late genes confirmed our hypothesis, including EGFR (GC16,

log2 fold-change: 2.45), SNAI2 (GC16, log2fc 4.06), INHBA (GC16, log2fc 8.01),

INHBB (GC15, log2fc -3.24), COL1A1 (GC16, log2fc 4.25), SKIL (GC19, log2fc 3.22),

TGFBR1 (GC19, log2fc 3.53). Surprisingly, we also observed persistent epigenetic and

transcriptional activation of genes associated with the immediate early response to

TNF and TGFβ exposure. Gene expression profiling indicates that many immediate
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Table 4.4: Referenced pathways enriched in the EMT-GCs

GC Pathway name Enrichment p-value

16 Pathways in cancer 4.618 0.00000627
16 Direct p53 effectors 8.279 0.00000023
16 p53 signaling pathway 7.1 0.096
16 Focal adhesion 5.298 0.00013609
16 ECM-receptor interaction 6.963 0.01242671
16 Cytokines and Inflammatory Response 18.189 0.0087528
16 Interleukin-1 processing 54.274 0.01740033
16 T Cell Receptor Signaling Pathway 8.32 0.00000663
16 TNF-alpha/NF-kB Signaling Pathway 4.28 0.03567735
16 CD40/CD40L signaling 13.097 0.04278382
16 MAPK signaling pathway 3.493 0.09603616
19 Pathways in cancer 5.303 0.00000226
19 Focal adhesion 6.245 0.00003282
19 E-cad sig in the nasc adherens junction 24.776 0.00000267
19 Regulation of Actin Cytoskeleton 6.012 0.00571942
19 Adherens junction 13.011 0.00000273
19 junction 14.07 0.00496435
19 Canonical NF-kappaB pathway 20.435 0.00422071
19 MAPK signaling pathway 4.918 0.083575
19 Leukocyte transendothelial migration 8.442 0.00006173
19 T Cell Receptor Signaling Pathway 8.321 0.00000663
19 TGF-beta receptor signaling 15.678 0.00001359

Pathways significantly enriched in GC16 and GC19. Only pathways directly referenced
in the manuscript are shown. Pathways have been sourced from the NCBI Biosystems.
Enrichment is the fold relative to the background frequency of a pathway annotation.
P-values are calculated by Fishers Exact Test and are FDR corrected.

early genes (IEGs) remained upregulated rather than returning to basal levels. For

example JUN, MAF, MYCN, and KLF7 show strong overexpression and have an active

chromatin profile (GC16 and GC19). Other IEGs including JUNB, GADD45B, ZFP36,

ZFP36L1, HES1, EPHA2, IER3, SOX9, and MAFG show moderate overexpression,

but appear in the epigenetically repressed GC15. In many cases, IEGs are induced

by MAP kinase (MAPK) signaling after growth hormone stimulation [Avraham and

Yarden, 2011]. These IEGs then induce the transcription of delayed early genes

(DEGs). A negative feedback mechanism exists through the repressive activity of

DEGs on IEG expression and MAPK signaling.
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We observed that the EMT-induced cells upregulated protein phosphatases that

attenuate MAPK signaling, including dual-specificity phosphatases (DUSPs). The

EMT-GCs contained a significant number of these phosphatases. Specifically, GC16

and GC19 contain DUSP1 /5 /6 /8 /10 /16, while DUSP4 is a member of GC15. We

gained additional support for the activation of MAPK attenuation through GO analysis.

We found that GO-terms for “MAP kinase phosphatase activity” and “inactivation

of MAPK activity” were enriched in GC16 (Table 4.3). In summary, we observed

sustained IEG expression despite an enrichment of DUSP family members in the EMT

clusters. The apparent continued transcription of both IEGs and DUSPs, well beyond

the early response, suggests loss of negative feedback regulation of MAPK signaling

in our system.

We used TNF as a proinflammatory cytokine to enhance TGFβ-induced EMT

in our model system, and we find that genes that propagate TNF signaling are

upregulated and strongly enriched in GC16 and GC19. Specifically, the TNF/NF-κB

signaling pathway is enriched in both upregulated EMT-GCs, while GC16 is enriched

for signaling from the TNF receptor, CD40. An enrichment of genes related to the

“positive regulation of NF-κB” in GC16 further supports sustained NF-κB activity.

Interestingly, cluster GC15 also contains several NF-κB-related proteins. For example,

we observed downregulation of the β-arrestin 1 and 2 genes (ARRB1/2, log2fc -1.62

and -2.61, respectively). Arrestins show increased expression in differentiated cells

and inhibit cellular responses to growth stimuli. Although, their role in EMT remains

unclear, overexpression of either ARRB1 or ARRB2 in HeLa cells inhibits NF-κB-

mediated transcription. This inhibition occurs primarily through interactions and

stabilization of IκBα (NFBIA), as well as interactions with the IκB kinases [Witherow

et al., 2004,Kovacs et al., 2009]. Clinical data shows that serum levels of arrestins

are lower in patients with NSCLC, and that these decreased levels correlate with

poor survival [Wu et al., 2011]. In our system it has bee shown that constitutive
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activity of NF-κB is required for induction of EMT and potentiates a mesenchymal

phenotype [Kumar et al., 2013]. Taken together these data indicate that constitutive

NF-κB activation during EMT occurs through the epigenetic reprogramming of genes

that regulate TNF signaling.

The EMT-GCs also contain many genes that participate in the EGFR signaling

pathway, including the receptors themselves. The EGFR gene is upregulated and

contained in GC16, while ERBB2 and ERBB3 (GC15) are significantly downregulated

(log2fc -2.30 and -2.04, respectively). Upregulation of the active ErbB2/3 heterodimer

occurs in more differentiated cancers, and therefore downregulation of ERBB2 /3 and

upregulation of EGFR may constitute a receptor switch associated with the core basal

phenotype [Foulkes et al., 2010]. Such events may affect ligand specificity and enable

cellular reprogramming. Importantly, EMT is associated with resistance to EGFR

inhibition [Byers et al., 2013]. This analysis indicates that epigenetic reprogramming

contributes to altered EGF signaling in our model system.

Further examination of GC16 and GC19 revealed enrichment for additional path-

ways broadly associated with cancer and EMT, most of which overlap or crosstalk

with TNF, MAPK, or EGFR signaling. For example, GC16 and GC19 are enriched

for genes from large cancer-related pathways including: “KEGG: pathways in cancer,”

“direct p53 effectors” and the “p53 signaling pathway.” Furthermore, the intersection

of these pathways includes many highly upregulated genes from the EMT-GCs such

as SNAI2 (log2fc 4.06), PRDM1 (log2fc 3.60), JUN (log2fc 3.62), and EGFR (log2fc

2.45). We also observed an overrepresentation of several immune response pathways

in the EMT-GCs. GC16 is enriched for the “cytokines and inflammatory response”

and “interleukin-1 processing” pathways, while GC19 is enriched for “T cell receptor

signaling.” These findings agree with recent studies that establish a strong association

of paracrine cytokine signaling and inflammatory pathways with EMT and metastatic

cancer-progression [Kasai et al., 2005,Wu and Zhou, 2010,Bhola et al., 2013].
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4.3.4 Epigenetic switches at enhancers correlate with gene

expression

We extended our epigenetic analysis to putative enhancer loci, due to the known

association between the chromatin state at enhancers and expression of proximal

genes [Heintzman et al., 2009,Visel et al., 2009,May et al., 2012,McLean et al., 2010].

This analysis provided insight into the role of specific TFs in the induction of EMT.

Moreover, integration of the gene and enhancer clustering showed coordinated changes

in chromatin states at genes and enhancers during EMT.

We hypothesized that differential gene expression correlates with epigenetic modu-

lation of proximal enhancers. To test this hypothesis, we identified 75,937 putative

enhancers in epithelial and mesenchymal cells based on promoter-distal H3K4me1

and H3K27ac peaks, which mark enhancers in promoter-distal regions [Creyghton

et al., 2010]. Next we identified additional “enhancer-associated” marks, which corre-

late with either H3K4me1 or H3K27ac at these putative enhancer sites (Figure 4.2).

The enhancer-associated marks include H3K4me1/2, H3K27ac, H3K9ac, H4K8ac,

and H3R17me2asym. Of the 75,937 putative enhancers, 30,681 were found to be

differentially marked by the enhancer-associated marks between the epithelial and

mesenchymal states. We then grouped these differential enhancers into thirty-eight

clusters based on their differential levels of the enhancer-associated marks. Within

a given cluster all enhancer marks had the same trend of either gain or loss. Corre-

spondingly, few clusters show simultaneous gain and loss of different marks. Thus,

we divided enhancer clusters into two groups: “gain” or “loss.” Within these groups,

clusters show distinct magnitudes of change for specific marks (Figure 4.6).

The enhancer-associated marks are generally associated with open chromatin and

active enhancers, which suggests that gain and loss clusters correspond to activation

and repression, respectively. To test the association of enhancer remodeling to gene
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Figure 4.6: Heat map of differential enhancer clusters. Heat map showing
differential enhancer clusters that are either activated or repressed. These clusters
generally show gain (G) or loss (L) across all marks, corresponding to activation or
repression, respectively. While H3R17me2asym shows correlation with differential
H3K27ac levels at enhancers, it has relatively little coherence across the globally
activated and repressed clusters. Additionally, of the marks that correlate with
differential H3K27ac or H3K4me1 levels at enhancers, H3R17me2asym shows the
weakest correlation (Figure 4.2).

expression, we assigned a “gain-loss” score to each enhancer cluster. We define this

score as the mean of the difference between gains and losses across the enhancer-

associated marks. These gain-loss scores of enhancer clusters are strongly correlated

with the mean differential expression of genes associated with the clusters (PCC=0.89,

Figures 4.8A and 4.7). Therefore, our analysis establishes a link between gain clusters
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Figure 4.7: Activation and repression of enhancers correlates with changes
in gene expression. The plot shows the correlation between differential gene
expression (log2 fold-change, color), and the activation (Y-axis) and repression (X-
axis) of proximal enhancers. Each dot represents a gene. Its position in the X-Y plane
indicates whether its proximal enhancers activated (dot close to Y) or repressed (dot
close to X).

and activated genes, as well as a link between loss clusters and repressed genes.

The EMT clusters also showed strong association with differential enhancers rel-

ative to other gene clusters (Figure 4.8B). Examination of these clusters revealed

that GC16 and GC19 show striking enrichment for genes associated with activated

enhancer clusters. Consistently, GC15 shows strong association with erased enhancer

clusters. Interestingly, GC17 also shows overlap with activated enhancer clusters

despite lacking noteworthy EMT functional similarity. However, this cluster contains

some highly upregulated genes associated with EMT, such as MMP1, MMP9, and

MMP10, which are upregulated 453-fold, 278-fold, and 1910-fold, respectively. To-

gether, these observations indicate a widespread co-regulation of enhancers and genes

involved in EMT through chromatin remodeling.
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Figure 4.8: Activated and repressed enhancers associated with EMT-GCs
and different sets of transcription factors. (A) Box plots of percentile ranks
of differential expression for genes associated with each enhancer cluster. Boxes are
colored by average magnitude of gain (blue) or loss (red) of enhancer-associated marks.
(B) Overlap between gene clusters and genes linked to enhancer clusters. Bubbles are
colored with respect to enhancers in the same manner as the boxes in panel A. Size of
the bubbles represents the -log10 p-value of the overlap. (C) Association of activated
and repressed enhancer clusters with transcription factor binding sites. Significance
of overlap between ENCODE transcription factor binding sites (columns) and the
10 enhancer clusters the strongest activated signatures as well as the 10 equivalent
repressed enhancer clusters (rows). Each spot on the heatmap is the -log10 p-value of
the overlap, which is Z-score normalized by row. (D) Association of p65 binding sites
with gene clusters via enhancers. Enrichment of p65 binding sites (ENCODE) in the
enhancers assigned to each gene cluster.

4.3.5 Transcriptional control of EMT-GCs through

epigenetic reprogramming of enhancers

Because modification of histone tails in enhancer regions influences DNA accessibility,

we wanted to determine if the binary regulation (activation or repression) of enhancers

corresponds to the binding of specific TFs during EMT. We compared the activated

and repressed enhancer clusters for differences in preferential binding of specific TFs.
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Transcription factors mapped were clustered by the enrichment of their binding sites

in enhancer clusters with the lowest and highest gain-loss scores. As expected, the TFs

sharply partition into two non-overlapping sets that correspond to enhancer activation

and repression (Figure 4.8C). The presence of this sharp distinction between activated

and repressed enhancers indicates that the epigenetic regulation of enhancers is tightly

coupled to TF binding.

Several TFs downstream of the pathways enriched in the EMT-GCs (i.e., TGFβ,

TNF, and EGFR) are enriched in activated and repressed enhancer clusters. For

example, p65 (RELA), c-Fos (FOS ), and c-Jun (JUN ) binding sites show significant

enrichment in the activated enhancer clusters. Interestingly, in addition to c-Fos and

c-Jun, many AP-1 family members are enriched in the activated enhancer clusters

as well, namely fra-1 (FOSL1 ), jun-B (JUNB), jun-D (JUND), and B-ATF (BATF ).

Together with our pathway analyses, these results demonstrate a chromatin-mediated

activation of enhancers that bind NF-κB and AP-1 family members.

We used ENCODE transcription factor binding site data to determine whether

NF-κB and AP-1 binding sites associated with the EMT-GCs via binding sites at

enhancers. We found a strong association of the p65 binding sites with enhancers

linked to GC16 (p < 0.0001) and GC19 (p < 0.0001), but a weak association with

GC15-linked enhancers (p = 0.32) (Figure 4.8D). Moreover, we observed a similar

pattern for AP-1 family member binding sites (Figure 4.9). These results strongly

suggest that genes in GC16 and GC19 are regulated through the differential epigenetic

activation of enhancers that contain p65 and AP-1 family member binding sites.

In addition to the connection between EMT-GCs and activated enhancers that

bind AP-1 or NF-κB TFs, we observed other evidence that regulation of these

transcription factors contribute to EMT (statistical associations shown in Figure 4.10A

as black arrows). First, AP-1 and NF-κB family members show high transcriptional

upregulation, and are found in GC16 and GC19. Additionally, genes with predicted
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Figure 4.9: AP-1 and c-Myc binding site enrichment in gene clusters via
enhancers. (Association of (A) AP-1 and (B) c-Myc binding sites with gene clusters
via enhancers. Enrichment of each factor’s binding sites in the enhancers assigned to
each gene cluster.

AP-1 or NF-κB binding sites in their promoters are enriched in GC16 (5.6-fold, p

= 0.00004) and (8.9-fold, p < 1e–5), respectively. GC19 is also enriched for genes with

predicted AP-1 binding sites in their promoters (2.7-fold, p = 0.009). Examination of

GC16 revealed a strong enrichment of genes induced by NF-κB signaling in primary

human keratinocytes (19.5-fold, p < 1e–5) and fibroblasts (13.4-fold, p < 1e–5) [Hinata

et al., 2003], as well as the core NF-κB signaling proteins themselves (54.4-fold, p

= 0.003) [Gilmore, 2006]. Taken together, these results provide evidence that AP-1

and NF-κB are major regulators of the genes in the upregulated EMT clusters (Figure

4.10A).

Examination of the erased enhancer clusters identified c-Myc as the only enriched
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Figure 4.10: Evidence for broad feedback regulation by AP-1 and NF-?B
family members, and c-Myc. (A) Statistical enrichments of AP-1 and NF-?B
binding sites link these transcription factors to activated enhancers and the upregulated
EMT-GCs. EMT clusters themselves are enriched for in pathways and functions
associated with positive regulation of AP-1 and NF-?B. Some genes in GC16 and
GC19 that are known to regulate either AP-1 or NF-?B are listed. (B) c-Myc binding
sites are enriched in repressed enhancers and the repressed EMT gene cluster, GC15.
Moreover, GC16 is enriched for genes that are repressed by c-Myc.
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TF that is downstream of the pathways enriched in the EMT-GCs. Association of

c-Myc binding sites to EMT-GCs via enhancers revealed a significant association with

GC15, and a lack of association with GC16 and GC19. It should be noted that this

analysis also demonstrates an association between enhancers with c-Myc binding sites

and other gene clusters with more modest differential expression (Figure 4.9). This

may be explained by the expansive role of c-Myc in gene regulation [Nie et al., 2012].

Comparison to experimental data revealed that GC15 possesses significant enrichment

for validated c-Myc targets from two sources: (4.5-fold, p = 0.002) [Ben-Porath et al.,

2008] and (2.2-fold, p = 0.04) [Zeller et al., 2003]. Furthermore, GC16 significantly

overlaps the subset of negatively regulated c-Myc targets (5.7-fold, p = 7.8e–7) [Zeller

et al., 2003], suggesting that c-Myc has opposing transcriptional effects on GC15

and CG16. Finally, from microarray we observed a nearly 2-fold decrease in MYC

expression after induction of EMT in our system. We validated that MYC was in fact

downregulated by QT-PCR and observed a significant and almost 4-fold reduction in

transcript. These results suggest that decreased c-Myc activity contributes to EMT

progression in our model system, through both the de-activation and de-repression of

genes in the EMT-GCs (Figure 4.10B).

4.3.6 Links between enhancer clusters and gene clusters

suggest a chromatin-mediated transcriptional

feedback

Strikingly, AP-1 and NF-κB transcription factors, and c-Myc themselves reside in the

EMT-GCs. Thus, these TFs potentially regulate their own expression and undergo

chromatin regulation that is similar to their targets. For example, a large fraction

of the AP-1 family of genes reside in the EMT-GCs, including FOSL1 (log2fc 3.12),

FOSL2 (log2fc 0.88), JUN (log2fc 3.62), MAF (log2fc 7.27), and MAFF (log2fc 1.21),
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which are in GC16; while FOS (no significant change), MAFG (log2fc 1.05), JUND (no

significant change), and JUNB (log2fc 1.80) belong to GC15. Genes that encode TFs

that are not AP-1 family members, but which can heterodimerize with AP-1 members

also reside in the EMT-GCs, including CEBPD (GC15, log2fc -3.49), CEBPB (GC15,

log2fc 0.89), and CEBPG (GC16, log2fc 0.61). Additionally, GC16 contains three

NF-κB family members: NFKB2 (log2fc 1.76), RELA (log2fc 1.23), RELB (log2fc

2.27); while NFKB1 (log2fc 1.89) appears in GC19. As expected, the downregulated

MYC gene resides in GC15. Based on these coordinated changes in chromatin state

for a small set of TFs and their respective pathways, enhancer binding sites, and

downstream targets, we put forward a hypothetical model that EMT is maintained by

chromatin-mediated transcriptional feedback mechanisms involving the TF families

that we have highlighted. This model provides a plausible explanation for sustained

activity and critical role of NF-κB in the experimental system.

4.4 Conclusions

A rapidly growing body of research demonstrates that EMT is an epigenetically

regulated process (for recent reviews see [Stadler and Allis, 2012, Wu et al., 2012]).

The known mechanisms of regulation involve miRNAs, chromatin structure, DNA

methylation, and changes to histone modification levels. EMT in non-transformed

cells has been likewise linked to remodeling of specific chromatin domains (i.e., the

so-called “LOCKs”) [McDonald et al., 2011]. We therefore hypothesized that genes

involved in EMT are broadly coordinated through epigenetic mechanisms. We have

made four key observations in support of this: (1) Genes known to be associated

with the EMT phenotype are shown to have strong, specific, and highly similar

differential chromatin profiles. (2) Epigenetic regulation at gene and enhancer loci

linked to EMT is consistent in terms of chromatin activation, repression and differential
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gene expression. (3) Two distinct classes of enhancers associated with activated or

repressed chromatin, are significantly enriched for binding sites of two different sets

of TFs. (4) The upstream pathways and downstream targets of the TFs linked to

activated enhancers (AP-1 and NF-κB family members) are enriched for genes with

EMT-specific epigenetic profiles. Therefore, epigenetic regulation of genes that drive

EMT is coordinated and specific in our model system. These findings link chromatin

remodeling to shifts in cellular signaling networks. They are also consistent with a

model of positive feedback that maintains the phenotypic switch (Figure 4.10A). The

constitutive activation of NF-κB in our system, and the extensive reprogramming at

NF-κB target loci, provides further support for this data-driven hypothesis.

Although we have been able to associate combinatorial epigenetic profiles with

clear functional roles, our results do not address the specific cooperative mechanism

of chromatin remodeling. However, we identified a number of candidate chromatin

modifying enzymes that are differentially expressed. Upregulated chromatin modifiers

include the histone deacetylase HDAC9 (log2fc 3.53), methyltransferase EZH2 (log2fc

1.13), and demethylases JHDM1D (log2fc 3.38) and KDM1B (log2fc 1.38). Downregu-

lated enzymes include the deacetylase HDAC1 (log2fc -1.15), methyltransferases ELP3

(log2fc -0.92), NCOA2 (log2fc -1.43), and EHMT2 (log2fc -1.10). In addition, genes

and enhancers with EMT-specific chromatin remodeling patterns are enriched for

targets of specific chromatin remodeling complexes. For example, ENCODE-mapped

Sin3a and HDAC2 binding sites are enriched in repressed enhancers. These factors

have been implicated in EMT by a study that has shown that the master switch factors

SNAI1 and SNAI2 recruit the Sin3a/HDAC1/HDAC2 complex to silence CDH1 in

EMT [von Burstin et al., 2009]. The enrichment of HDAC2 binding sites at silenced

enhancers suggests a broader silencing role for HDAC2 in EMT. These associations

point toward select chromatin modifying complexes and enzymes as likely epigenetic

drivers of EMT.
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We also found that chromatin modulates, and effectively maintains the activation

of pathways involved in the response to TNF/TGFβ after prolonged stimulation

with these cytokines. Surprisingly many canonical immediate early response genes,

such as JUN, remained active transcriptionally and epigenetically. Many of the

pathways downstream of TNF/TGFβ show further evidence of chromatin-mediated

transcriptional switching. Within the TGFβ signaling pathway we observe a striking

bidirectional regulation of TGFβ superfamily cytokines, their receptors, and their

downstream signaling components. We also see differential regulation of MAPK

phosphatases, and a pronounced switch in EGF receptors. Within these examples,

genes that are upregulated often have the GC16 or GC19 activated epigenetic signature,

while downregulated genes have the opposite GC15 repressed differential profile. These

results are consistent with previous findings that EMT involves switches among receptor

tyrosine kinases that activate the MAP-ERK pathway [Thomson et al., 2008]. Thus,

we conclude that modulation of critical pathways during EMT involves coordinated

epigenetic activation and repression.

One of our most unexpected finding is that epigenetically active and repressed

enhancer regions are enriched for the binding sites of two non-overlapping sets of specific

TFs. This lends support to the model that chromatin and TF profiles jointly govern

the locus specific regulation of gene expression. The magnitude of the differential

epigenetic regulation that we observe at enhancers is in agreement with several studies

that highlight the epigenetic plasticity of enhancers relative to promoters [Hawkins

et al., 2011,Heintzman et al., 2009]. Ours results suggest that global availability of

TF binding sites at enhancers distinguish epithelial and mesenchymal phenotypes.

Consistently, several studies have demonstrated the cell-type specificity of enhancers

and TF binding patterns [John et al., 2011,Jin et al., 2011]. There is also evidence

that the observed regulation of enhancers is specific to epithelial and mesenchymal

phenotypes. For example, we linked FOXA1 and FOXA2 with enhancers that are
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repressed in EMT. These so-called “pioneer” factors are believed to facilitate opening

of chromatin at enhancers to enable lineage specific transcriptional regulation [Lupien

et al., 2008,Sekiya et al., 2009,Li et al., 2012b]. Interestingly, these TFs have been

shown to promote the epithelial phenotype and block EMT in various systems [Song

et al., 2010,Wan et al., 2005,Burtscher and Lickert, 2009,Mehta et al., 2012].

In summary, we have shown extensive epigenetic reprogramming at both gene and

enhancer loci between the end states of the EMT. Changes to chromatin states enable

the constitutive activation of transcription factors (some of which are associated with

an immediate early response), their upstream signaling pathways, and target enhancers.

Based on these results we put forward a hypothesis in which EMT is driven in large

part by chromatin-mediated activation of transcriptional positive feedback loops. The

linchpins of this feedback are two TF families: AP-1 and NF-κB. Interestingly, of all

gene clusters, GC15 and GC16 show the highest fractional composition of transcription

factors, which includes a large number of AP-1 and NF-κB family members. This

suggests that epigenetic reprogramming during EMT alters the transcriptional profile

of the cell by broadly altering chromatin accessibility, and by regulating genes which

directly mediate transcription—a potential feedback mechanism in itself. Together,

our results suggest a high-level mechanism for how complex signaling networks can be

coordinated during EMT, and cellular state transitions, generally.

4.5 Methods

4.5.1 Cell culture

NSCLC lines A549 were purchased from ATCC and grown in DMEM (CellGro), 10%

FBS (Invitrogen) and penicillin/streptomycin (Invitrogen). Spheroid (3D) cultures

were resuspended in DMEM/10%FBS as 25000 cell aggregates using the hanging

droplet technique. Newly formed spheroids were transferred onto polyhema plates
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containing DMEM/2% FBS to prevent aggregates from attaching to the dish. For

EMT-induction, monolayer or spheroid cultures were incubated in DMEM/2% FBS

and treated with vehicle or with TNF (10 ng/mL) and TGFβ (2 ng/mL) for 48

hours. The 2D and 3D cultures were then treated with vehicle or TNF and TGFβ a

second time for an additional 48 hours. The samples were subsequently collected and

subjected to RNA isolation or ChIP-seq. TGFβ (PHG 9204) and TNF (PHG 3015)

were purchased from invitrogen or life technologies.

4.5.2 ChIP-seq

Chromatin immunoprecipitation (IP) followed by sequencing (ChIP-seq) assays were

performed in spheroid cultures only. TGFβ/TNF treated and control cells were cross-

linked in 1% formaldehyde. The cross-linking reaction was quenched using 125 mM

glycine, and the samples were collected for ChIP-seq analysis according to the Myers

lab protocol as described in [Johnson et al., 2007]. Approximately 1.2e7 cells were used

per IP, and the DNA was sheared to approximately 400 bp fragments by sonication

with a bioruptor. After DNA recovery, we used standard Illumina protocols and

reagents to prepare the ChIP-seq library (Illumina 11257047 rev A). The antibodies

used for IP are listed: H2A.Z (abcam, ab4174), H3K4Me1 (Active Motif, 39635),

H3K4Me2 (Active Motif, 39141), H3K4Me3 (Active Motif, 39159), H3K27Ac (Abcam,

4729), H3K27Me2 (Active Motif, 39245), H3K27Me3 (Active Motif, 39155), H3K14Ac

(Active Motif, 39599), H3K36Me3 (Abcam, ab9050), H3K79Me3 (Abcam, ab2621),

H3K9Ac (Active Motif, 39137), H3K9Me1 (Active Motif, 39249), H3K9Me3 (ab8898),

HeR17Me2asym (Abcam, ab8284), H4K8Ac (Millipore, 17-10099), H4R3Me2asym

(Abcam, ab5823), H4K20Me1 (Active Motif, 39175), pan-H3 (Active Motif, 39163).
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4.5.3 Microarray and Gene Expression Analysis

Microarray analysis of was performed on technical duplicates of TGFβ/TNF treated

and untreated cells in both two-dimensional and spheroid cultures. Total isolated

mRNA was hybridized to Affymetrix U133 plus 2.0 microarrays. The raw data was

analyzed using Bioconductor [Gentleman et al., 2004]. Background subtraction was

performed using GCRMA. The limma package [Smyth, 2004] was used to perform

differential expression analysis, in which a 5% FDR-adjusted p-value cutoff was chosen.

Normalized expression values for all probes were propagated onto genes considered

in this analysis. We used a comprehensive, but non-redundant, set of high-confidence

protein-coding transcripts. We eliminated the majority of redundant transcripts

coding for isoforms of a single gene, together with pseudo- and RNA-coding genes, a

final list of 20,707 canonical transcripts represented by UCSC IDs and gene symbols

(HGNC) [Kuhn et al., 2013]. Further, each gene was annotated with expression values

from all probes that map to any of the genes’ transcripts and isoforms as defined

by all the transcripts known to UCSC (July 2011). In analyses of differential gene

expression the probeset with the largest log2 fold-change (log2fc) magnitude between

treated and untreated samples has been chosen to represent a set of transcripts.

4.5.4 ChIP-seq data processing

Images generated by the Illumina sequencer were initially processed using the Illumina

pipeline. Sequences were mapped to the human reference genome, hg19 (GRCh37),

using the BWA software with all default options [Li and Durbin, 2010]. In cases

where a tag aligned to multiple sites the match with the smallest edit distance was

chosen. In the event of an exact tie a single mapping site was randomly chosen.

Sequences that fully or partially overlapped problematic regions were discarded. We

defined problematic regions as those with known mappability issues, e.g. repetitive
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sequences (from the UCSC genome browser microsatellite track, downloaded July

8, 2011) and genomic coordinates with high false positive rates of enrichments, as

identified by [Pickrell et al., 2011]. All remaining mapped tags were extended to 200

bp in the 3’ direction to account of the expected length of nucleosome-bound DNA.

4.5.5 Scaled Differential Enrichments

To generate chromatin enrichments the genome was segmented into 200 bp bins.

The extended tags were assigned to each genomic bin they overlapped. The raw

enrichment (RE) is simply the per-window overlap count. REs have been calculated

for each of the mapped histone marks from both epithelial (3D untreated) and

mesenchymal (3D treated) samples. To allow for comparisons of enrichment profiles

between the epithelial (E) and mesenchymal (M) samples we normalized pairs of REs

for each histone modification or variant. We used an in-house implementation of

the normalization procedure used in the DESeq algorithm to calculate scale factors

for each pair [Anders and Huber, 2010]. Scaled enrichments (SE) were obtained by

multiplying REs window-wise by the appropriate scale factors. Finally, we calculated

scaled differential enrichments (SDE) by subtracting (for all histone modifications

separately) the epithelial SE (ESE) from the mesenchymal MSE at each genomic

window; i.e., SDE = ESE - MSE.

4.5.6 Definition of Putative Enhancer Loci

We have adapted the methodology of [Creyghton et al., 2010] to locate putative

enhancer sites using histone modifications. A set of initial putative loci was derived

from the raw enrichments of two “core enhancer” marks H3K27ac and H3K4me1 that

have been previously shown to be sufficient to distinguish enhancers from other genomic

elements. The SICER software [Zang et al., 2009] was used to call peaks of both marks

in the epithelial and mesenchymal states, using corresponding panH3 samples as a
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control. Peak calls with gaps less than or equal to 600 bp were merged. The final calls

were based on a FDR-corrected p-value < 0.01. These peaks were subsequently used

to delineate enhancer regions. Potential enhancer sites were anchored on the window

within a given peak call that had the maximum nominal enrichment of one of the two

marks, corresponding to the mark for which the peak was called. Since enhancers

discovered by profiling p300 occupancy have been shown to be depleted of H3K4me3,

these anchor sites were filtered to exclude those that overlapped H3K4me3 SICER

peaks (called in the same manner as H3K4me1 and H3K27ac). Finally, anchor sites

based on H3K4me1 peaks that were within 1 kb of sites based on H3K27ac peaks were

collapsed to the H3K27ac-based site. The resulting set of 200 bp putative enhancer

sites were expanded to include the flanking 1 kb, to produce a set of 75,937 putative

enhancer sites, each 2200 bp in length.

4.5.7 Enhancer-associated histone modifications

Within our panel of epigenetic modifications we identified a subset of marks that

are associated with enhancer activity. Marks that showed clear position-dependent

correlation with either H3K4me1 or H3K27ac differential enrichment at putative

enhancer loci include: H3K4me2, H3K9ac, H3R17me2asym, H4K8ac (Figure 4.2).

Together with the initial two, these marks comprised our set of six enhancer-associated

marks.

4.5.8 Gene assignment and filtering of enhancer loci

The initial set of 75,937 putative enhancers was further filtered to enrich for regions with

significant epigenetic changes during EMT. We retained enhancers with a significant

change for at least one “enhancer-associated” histone modifications. The significance

calls were based on a extreme-value null-model derived from the set of all enhancers.

For each enhancer a single extreme-value is retained that corresponds to the largest
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magnitude of change in either the positive (“gain”) or negative (“loss”) direction.

The distribution of maximal magnitudes was represented through a kernel density

estimate (Gaussian kernel, bandwidth 0.025). The left tail of this distribution was

used to calculate a Gaussian null model of the noise regime of the differential signals.

This Gaussian null model has parameters µ = µ̂ and σ = σ̂, where µ̂ is equal to the

mode of the kernel density estimate, and σ̂ is calculated using the following equation:

σ̂ =

√√√√ 1

n− 1

xi≤µ̂∑
i

(xi − µ̂)2 (4.1)

Potential enhancers that had a p-value > 0.05 were filtered, yielding a final set of

30,681 putative differential enhancers. These enhancers were assigned to genes they

likely regulate using a heuristic method described by [McLean et al., 2010]. Briefly,

each gene was assigned a cis-region defined as the region from the given gene’s TSS to

the neighboring TSSs in either direction, or 1 Mb if the nearest TSS is further than 1

Mb. Enhancers that fall within a gene’s cis-region are assigned to that gene.

4.5.9 Gene segmentation

The calculation of the raw epigenetic profile is based on four segments delineated for

each gene. The sizes of all but one segment are fixed. The remaining one accommodates

the variable length of genes. The fixed size segments are: promoter (PR), transcription

start site (TSS) and gene start (GS). The whole gene (WG) segment is variable in

size but is at least 1.2 kb long. We define the sizes and boundaries of segments based

on windows, which have a fixed size of 200 bp and their boundaries are independent

of genomic landmarks such as TSSs. The location of the TSS defines the reference

window, which together with its two adjacent windows defines the TSS segment. The

two remaining fixed-size segments, PR and GS, have a size of 25 windows (5 kb).

The PR and GS segments are located immediately upstream and downstream of
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the TSS segment respectively, while the WG segment begins at the TSS reference

window and extends 5 windows (1 kb) beyond the window containing the transcription

termination site. Enhancers were treated as single-segment, contiguous 11-window

(2200 bp) regions (see section 4.5.6).

4.5.10 Differential epigenetic profiles

We calculated differential epigenetic profiles (DEP) at both gene and enhancer loci.

We base the DEPs on scaled differential enrichments (SDEs, see secion 4.5.5) for

all mapped histone modifications at gene loci, and enhancer associated marks at

putative enhancer loci. The calculation is a multistep procedure that results in a

profile (fixed-sized feature vector) that summarizes the multivariate differences in

histone modification levels between the paired samples at each locus. In the first

step, gene loci are split into segments (see section 4.5.9), while enhancers are kept

whole. Next, within all segments, SDEs for each considered histone modification are

quantified (see section 4.5.11).

4.5.11 Signal quantification and scaling

The genome-wide SDEs quantify epithelial to mesenchymal differences for each mark

at 200 bp resolution across the genome (Scaled Differential Enrichments). Each gene

segment is comprised of a set of bookended windows (Figure 4.3). For each histone

modification, and within each segment, we reduce the SDE to two numeric values,

which intuitively capture the level of gain and loss of the mark in the epithelial to

mesenchymal direction. Strictly speaking, we independently calculate the absolute

value of the sum of the positive (gain) and negative (loss) values of the SDE within a

segment. Hence, we obtain a gain and loss value for all histone modifications within

each segment of a gene (or an enhancer region). The differential epigenetic profile

(DEP) of each gene (or enhancer) is a vector of gains and losses of multiple histone
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modifications at all segments (single segment for enhancers). In the case of gene loci

we quantify all histone marks, and in the case of enhancer loci only the enhancer-

associated modifications (see section 4.5.7). DEPs are arranged into a DEP matrix

individually for genes and enhancers (Figure 4.4A). Each row represents a DEP for a

gene (or enhancer) and each column represents a segment-mark-direction combination

(features). Columns (features) were non-linearly scaled using the following sigmoid

equation:

z =
2

1 + e
−2x
u

(4.2)

Where z is the scaled value, x is the raw value, and u is the value of some upper

percentile of all values of a feature. We have chosen the 95th percentile. Intuitively,

this corrects for differences in the dynamic range of changes to histone modification

levels and for differences in segment size. Scaled values (DEP elements) are within

the 0-1 range. The scaling is approximately linear for about 95% of the data points.

4.5.12 Annotation with GO-terms

Each gene was comprehensively annotated with Gene Ontology terms combined from

two primary annotation sources: EBI GOA (retrieved 20110905) and NCBI gene2go

(retrieved September 4, 2011). These annotations were merged at the transcript cluster

level (see section 4.5.3), which means that GO-terms associated with isoforms were

propagated onto the canonical transcript. Every protein-coding gene was re-annotated

with terms from two GO-slims provided by the Gene Ontology consortium. The

re-annotation procedure takes specific terms and translates them to generic ones. We

used the map2slim tool and the two sets of generic terms: “PIR” (Protein Informatics

Resource) and “generic terms.” In addition to GO, we have included two other major

annotation sources: NCBI BioSystems, and the Molecular Signature Database 3.0

(MSigDB).
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4.5.13 Mining for genes associated with EMT

We attempted to construct a representative list of genes relevant to EMT. This list

was obtained through a manual survey of relevant and recent literature. We extracted

gene mentions from recent reviews on the epithelial-mesenchymal transition. A total

of 142 genes were retrieved and resolved to UCSC transcripts. A second set of genes

associated with EMT was based on GO annotations.

4.5.14 Functional similarity scores

We developed a score to quantify functional similarity for any two sets of genes.

Strictly speaking, the functional similarity score (FSS) measures the degree of overlap

between the two lists of GO-terms enriched for the two sets. First, we obtain two lists

of significantly enriched GO-terms for the two sets of genes. The enrichment p-values

were calculated using Fisher’s Exact Test and FDR-adjusted for multiple hypothesis

testing. For each enriched term we also calculate the fold change; i.e., whether it is

enriched or depleted relative to the background frequency. The similarity between

any two sets is given by

FSS(A,B) =
C∑
c

log
(
pAc × pBc

)
+

D∑
d

log
(
pAd × pBd

)
(4.3)

Where A and B are two lists of significantly enriched GO-terms (here FDR-corrected

p < 0.01). C and D are sets of GO-terms that are either enriched or depleted in both

lists, but not enriched in A and depleted in B and vice-versa. Intuitively, this score

increases for every significant term that is shared between two sets of genes, with the

restriction that the term cannot be enriched in one, but depleted in the other cluster.

If one of the sets of genes is a reference list of EMT-associated genes this functional

similarity score is, in general terms, a measure of relatedness to the functional aspects
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of EMT.

4.5.15 Selection of optimal clustering

We have followed a heuristic benchmarking approach to select a suitable unsupervised

clustering method to group genes based on differential epigenetic profiles, while

maximizing the biological interpretability of DEPs. Because there is no correct

solution to unsupervised machine learning tasks, we evaluated clustering solutions

based on their interpretability in the domain of the epithelial-mesenchymal transition.

Intuitively, a “good” clustering method groups genes with similar functions together.

Therefore, we expected a small number of the clusters to be enriched for genes related

to the EMT process (see section 4.5.13). However, such straightforward approach

would have the drawback of being strongly biased towards what is known, whereas

the goal of unsupervised machine learning is to uncover what is not. To alleviate this

problem rather than calculating enrichments for genes known to be involved in EMT we

calculated the FSS that measures the degree of functional similarity between a cluster

and a reference set of genes associated with EMT. Our goal was to find a combination

of gene segmentation, data scaling and machine learning algorithm that performs well

in grouping functionally related genes together. We evaluated three markedly different

unsupervised learning methods: hierarchical clustering, AutoSOME [Newman and

Cooper, 2010], and WGCNA [Langfelder and Horvath, 2008], a number of ways to

partition gene loci into segments, and scaling methods. Based on the distribution

of EMT FSSs and a number of semi-quantitative indicators such as cluster size,

differential gene expression we chose a final methodology (see sections 4.5.16, 4.5.9,

and 4.5.11).
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4.5.16 Clustering of gene and enhancer loci

DEP matrices (see section 4.5.11) associated with each of the 20,707 canonical tran-

scripts (genes) and each of the 30,681 final enhancers were clustered using AutoSOME

with the following settings: -P -g10 -p0.05 -e200. The output of AutoSOME is a

crisp assignment of genes (or enhancers) into clusters and each cluster contains genes

(enhancers) with similar DEPs. For visualization, columns (features) were clustered

using hierarchical Ward clustering and manually rearranged if necessary.

4.5.17 TF-binding sites within promoters and enhancers.

Transcription factor binding sites were obtained from the ENCODE transcription factor

ChIP track of the UCSC genome browser (downloaded December 15, 2011) [Kuhn

et al., 2013]. This dataset contains a total of 2,750,490 binding sites for 148 different

factors pooled from variety of cell types from the ENCODE project. The enrichment

of each transcription factor in each enhancer and gene cluster was calculated as the

cardinality of the set of enhancers or promoters (5400 bp, centered on the window

containing the transcription start site) that have a nonzero overlap with a given set

transcription factor binding sites. The significance of the enrichment was calculated

using a one-tailed Fisher’s Exact Test (cluster membership vs. TF enrichment).

4.6 Chapter acknowledgements

This chapter was adapted from a manuscript currently in review. The authors of
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Stephen Hoang were the lead authors of this work, and share equal credit for all of



143

the bioinformatics work and the preparation of the manuscript. Marty Mayo and

Stefan Bekiranov share equal credit as primary investigators for this work. The other

authors are responsible for all of the wet lab work involved in this study. In particular,

Natalya Baranova is responsible for generating the vast majority of the ChIP-seq data.



144

Chapter 5

The network architecture of the

Saccharomyces cerevisiae genome

5.1 Introduction

The non-random spatial organization of chromosomes in the eukaryotic nucleus is

strongly associated with various types of genomic regulation. Spatial compartmen-

talization has been shown, in many organisms, to correspond to transcriptional

regulation, DNA replication, and chromatin states [Lieberman-Aiden et al., 2009,Nora

et al., 2012,Ryba et al., 2010,Tolhuis et al., 2002]. Thus, techniques to understand

the structure-function relationships in the genome will be critical to advance our

understanding of genomic regulation.

Chromosome conformation capture (3C) technology has enabled the identification

of long-range interactions between genomic loci [Dekker et al., 2002]. High-throughput

methods, such as Hi-C and ChIA-PET, have built on the 3C framework, and are

capable of comprehensively mapping spatial interactions throughout the genome

[Lieberman-Aiden et al., 2009,Fullwood et al., 2009b]. These techniques have enabled
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investigation of the spatial organization of whole genomes. Data generated by these

technologies can be challenging to analyze due to their high complexity, and low signal-

to-noise ratios [Simonis et al., 2007]. However, several groups have used these data

to characterize genomic folding principles, interactions between regulatory elements,

and functional territories composed of distant genomic regions [Lieberman-Aiden

et al., 2009, Dixon et al., 2012, Fullwood et al., 2009a, Li et al., 2012a]. A variety

of strategies have been employed to analyze these data, including polymer-based

physical models, molecular dynamic simulations, hidden Markov models, and three-

dimensional reconstructions [Dixon et al., 2012,Dorier and Stasiak, 2010,Di Stefano

et al., 2013,Duan et al., 2010]. Each approach has limitations, and new approaches

will be required to explore the full richness of these datasets (see [Dekker et al., 2013]

for a Review).

Genomic interaction data is essentially composed of pairwise relationships between

genomic regions. Since networks abstractly represent pairwise relationships between

objects, this type of data has an inherent network structure. Thus, networks can be

used to generate highly intuitive representations of this type of data. Networks are

also a convenient and highly flexible framework for storing, analyzing, and integrating

interaction data. Furthermore, information of biological interest that is contained in

interaction data, such as compartmental characteristics, can be extracted by analyzing

the architectural properties of an interaction network. As is necessary to analyze

genome-scale datasets, efficient algorithms have been developed to identify some of

these network properties in very large networks [Blondel et al., 2008,Tomita et al.,

2006].

Here we demonstrate how intuitive, biologically meaningful analyses of large

genomic interaction datasets can be achieved purely through network abstractions.

Although some groups have begun to employ networks for analyzing gene-gene and

other types of interactions from Hi-C data [Wang et al., 2013], and transcription
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factor-biased ChIA-PET data [Sandhu et al., 2012], to our knowledge no network-based

methods have been applied to unbiased genomic interaction data.

In this study, we generate and analyze network models constructed from an

unbiased genome-wide interaction dataset generated in Saccharomyces cerevisiae

by [Duan et al., 2010]. We investigate two structural properties of these networks,

namely, communities and cliques. Briefly, communities are sets of densely connected

nodes within a network, and cliques are sets fully connected (all to all) nodes in

a network. We focus on these structural network properties, because they directly

correspond to spatial grouping in a genomic interaction network. We investigate how

these network features correspond to regulatory properties of the genome, such as

replication timing, and protein binding data. We also explore the use of community

detection techniques in analyzing the hierarchical interaction structure of the genome.

The analyses presented here represent a general framework and proof-of-principle for

using networks to infer genomic organization from unbiased genomic interaction data.

5.2 Results and discussion

5.2.1 Inter-chromosomal cliques replicate early, and are

enriched for cohesin

We created network models of genomic interactions, where nodes represent genomic

loci, and edges represent statistically significant interactions between loci (< 1% FDR,

unless otherwise stated). Several groups have noted the highly stochastic nature

of these interactions in vivo [Simonis et al., 2006, Osborne et al., 2004]. Only a

relatively small fraction of a population of cells exhibit a given interaction in an

experiment [Dekker et al., 2013,van Steensel and Dekker, 2010,Gibcus and Dekker,

2013]. For this reason, we employ methods of network analysis that are robust to



147

the addition of “noisy” edges. One such procedure for detecting regions of strong

interaction is clique detection. Cliques are sets of nodes that show complete interaction

(all connected to all). Because of their specific topology, large cliques are unlikely to

form at random in relatively sparse networks. Therefore, genomic regions that are

members of large cliques likely represent sets of regions that exhibit relatively robust

and stable interactions.

The known functions of cohesin make it an excellent candidate for a mediator of

stable inter-chromosomal interactions. In budding yeast, cohesin has a well established

role in mediating inter-chromosomal cohesion between newly replicated sister chro-

matids [Sherwood et al., 2010,Uhlmann, 2009]. There is also evidence that mutations

in cohesin pathway proteins can lead to disruption in chromatin condensation and

organization [Gard et al., 2009]. In mammalian cells, cohesin has been shown to be

necessary to establish and maintain functional through-space chromatin interactions

that influence transcriptional regulation [Hadjur et al., 2009,Mishiro et al., 2009,Na-

tivio et al., 2009]. Although sister chromatid cohesion is well known, other types of

cohesin-mediated inter-chromosomal interactions are not well studied in budding yeast.

Therefore, we chose to investigate cohesin enrichment at inter-chromosomal cliques to

(1) look for evidence that cohesin is involved in establishing stable inter-chromosomal

interactions, and (2) to evaluate the biological relevance of cliques.

In the inter-chromosomal network, we calculated the maximum clique size for each

genomic fragment, which is the size of the largest clique of which a given fragment is

a member. At each of these fragments we also assessed the enrichment levels of the

cohesin subunits Scc1 and Smc3, as well as the cohesin loader subunits Scc2 and Scc4.

Since cohesin proteins mediate inter-chromosomal interactions, we expected to see high

levels of these factors in large cliques. Indeed, there is a clear trend of increasing levels

of both cohesin and its loader with increasing inter-chromosomal clique size (Figures

5.1 and 5.2). By definition, every fragment in an inter-chromosomal clique represents
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Figure 5.1: Cohesin enrichment vs. inter-chromosomal maximal clique size.
Enrichment of cohesin subunits (A) Smc3 and (B) Scc1 with respect to maximal
fragment clique size. The maximal clique size for a fragment is the size of the largest
clique to which a genomic fragment belongs. Each member of an inter-chromosomal
clique represents a fragment from a different chromosome. Thus, cohesin enrichment
increases with number of interacting chromosomes.

a different chromosome. This suggests that in addition to its role in sister chromatid

cohesion, cohesin may be directly involved in maintaining through-space interactions

where many chromosomes come together in a single region in space. Interestingly,

there is no trend between any of these factors and intra-chromosomal clique size

(Figures 5.3 and 5.4). This result suggests that cohesin has a less prominent role in

directly mediating intra-chromosomal interactions.
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Figure 5.2: Cohesin loader enrichment vs. inter-chromosomal maximal
clique size. Enrichment of cohesin loader subunits (A) Scc2 and (B) Scc4 with
respect to maximal fragment clique size. Like cohesin itself, cohesin loader enrichment
increases with number of interacting chromosomes.

Cohesin has also been shown to be recruited to sites of active replication in budding

yeast [Tittel-Elmer et al., 2012]. Moreover, in mammalian systems it has been shown

that the level of chromosomal interaction correlates strongly with replication timing

[Ryba et al., 2010]. It has also been postulated that cohesin mediates chromosomal

conformations that are favorable for efficient replication [Guillou et al., 2010]. Since we

see both high cohesin enrichment and a high degree of inter-chromosomal interactions

in large cliques, we expected to see a strong relationship between inter-chromosomal
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Figure 5.3: Cohesin enrichment vs. intra-chromosomal maximal clique size.
Enrichment of cohesin subunits (A) Smc3 and (B) Scc1 with respect to maximal
fragment clique size in the intra-chromosomal network. This plot includes intra-
chromosomal cliques across all chromosomes Unlike the inter-chromosomal cliques,
cohesin enrichment and intra-chromosomal clique size are independent.

clique size and replication timing. Indeed, that is what we observed (Figure 5.5,

n.b., higher % replication indicates earlier replication, see [McCune et al., 2008]

for details). However, like cohesin enrichment, we observed independence between

intra-chromosomal clique size and replication timing (Figure 5.6). We also observed

independence between clique sizes and gene expression (Figure 5.7). These findings

suggest that regions of the genome that form stable interactions involving many

different chromosomes tend to replicate early. This type of interaction can be expected
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Figure 5.4: Cohesin loader enrichment vs. intra-chromosomal maximal
clique size. Enrichment of cohesin loader subunits (A) Scc2 and (B) Scc4 with
respect to maximal fragment clique size in the intra-chromosomal network. Like
cohesin itself, cohesin loader enrichment and intra-chromosomal clique size are inde-
pendent.

to occur in centromeric regions in budding yeast, due to the known rosette organization

of the genome, where chromosome arms extend from a centromeric cluster near one

spindle pole [Duan et al., 2010, Jin et al., 2000, Bystricky et al., 2004]. Moreover,

centromeric regions are well established as regions of early replication in budding

yeast [McCarroll and Fangman, 1988,Feng et al., 2009]. Though these relationships

have been established, to our knowledge, a direct relationship between number of

inter-chromosomal interactions and replication timing has not been shown.
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Figure 5.5: Replication timing vs. inter-chromosomal maximal clique size.
Higher % replication indicates earlier replication. Larger inter-chromosomal clique size
clearly trends with earlier replication. Sites where many chromosomes make stable
contacts tend to replicate early.

Figure 5.6: Replication timing vs. intra-chromosomal maximal clique size.
Unlike inter-chromosomal cliques, intra-chromosomal clique size and replication timing
are independent.
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Figure 5.7: Expression vs. inter-chromosomal maximal clique size. Gene
expression level is independent of the inter-chromosomal clique size of its genomic
locus.

The clear trends between inter-chromosomal clique size, cohesin enrichment, and

replication timing demonstrate that biologically relevant information can be gleaned

from the structural properties of genomic interaction networks. Relatively complex

information about the interaction behavior of a genomic region can be obtained

through simple characterizations of an interaction network. Since clique size is a

relatively simple aspect of the inter-chromosomal network architecture, these findings

demonstrate the potential for more sophisticated network analyses.
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5.2.2 Community detection

Communities are groups of densely connected nodes in a network. In a genomic

interaction network, communities represent dense clusters of interacting genomic loci,

e.g., chromosome territories. Therefore, the community structure of the genomic

interaction network is of great interest, since it reflects how the genome is spatially

compartmentalized. The budding yeast genome has been shown to have some degree

of compartmentalization, including the clustering of the rDNA locus on chromosome

XII [Léger-Silvestre et al., 1999], and the clustering of tRNAs [Thompson et al.,

2003, Haeusler et al., 2008]. By comparison, metazoan genomes show a very high

degree of spatial compartmentalization, including the formation of topologically

associating domains (the so-called TADs), and transcription factories [Nora et al.,

2012,Dixon et al., 2012,Dorier and Stasiak, 2010]. The degree to which transcription

factory structures form in yeast genomes is unclear [Taddei et al., 2010, Tanizawa

et al., 2010]. In principle, community detection methods can be used to identify these

types of structures.

Detecting communities involves partitioning the network so that nodes within

communities are densely connected, and nodes between communities are sparsely

connected. A commonly used metric for the quality of a partition is its modularity

given by [Newman, 2004]

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(ci, cj) (5.1)

where Aij is the adjacency matrix of the network, m is the sum of the edge weights in

the network ki is the sum of the edge weights attached to node i, ci is the community

to which node i belongs, and δ is the Kronecker delta. Many community detection

procedures take the approach of attempting to maximize modularity. However,

optimizing modularity has been shown to be an NP-complete problem, and is thus
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computationally intractable [Brandes et al., 2008]. Therefore, all of the modularity-

based algorithms to detect communities are heuristic methods that approximate

modularity maximization. Furthermore, there is a resolution limit associated with

modularity, where communities below a certain size cannot be detected. This minimum

community size is a function of the total number of edges in the network, and the

ratio of outgoing edges to internal edges in the community being detected [Fortunato

and Barthélemy, 2007]. However, methods have been developed that mitigate this

limitation [Blondel et al., 2008,Khadivi et al., 2011].

To detect communities in our genomic interaction network, we implemented the

so-called Louvain algorithm [Blondel et al., 2008]. This method hierarchically merges

communities to maximize modularity. We selected this method of community detection

for several reasons. First, the method has been shown to produce partitions with

better global modularity than many other competing algorithms. Second, in terms of

speed, the algorithm performs well on very large networks, having been successfully

applied to networks with billions of nodes and hundreds of millions of edges. Third, the

resolution limit does not strictly apply to this method. Finally, due to the hierarchical

nature of the solution, intermediate steps toward the global solution could potentially

give insight into the hierarchical community structure of a network.

5.2.3 Community detection is robust to interaction noise

Since the modularity resolution limit is a function of the total number of edges in the

network, “noise” edges in the network increase the minimum detectable community

size [Fortunato and Barthélemy, 2007]. However, the coarse-grained community

structure of the network should be robust to noise. To confirm this, we generated

pairs of networks, one with an edge FDR threshold of 1% and the other with an

FDR threshold of 0.01%. It is worth noting that the latter is a subnetwork of the

former. We then calculated the community membership recapitulation as the fraction
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of genomic regions within a given community in the smaller network that are found

within a single community in the larger network. We followed this procedure for one

pair of networks made with inter-chromosomal interactions only, and another pair

made with the union of inter-chromosomal and intra-chromosomal interactions (i.e., a

complete interaction network).

The inter-chromosomal-only networks had 31,832 and 13,537 edges at the 1%

and 0.01% FDR thresholds, respectively. The mean community recapitulation rate

for these networks was 84% across the communities in the smaller network. The

complete interaction networks had 59,132 and 31,426 edges at the 1% and 0.01%

FDR thresholds, respectively. This pair yielded a mean community recapitulation of

93%. These calculations suggest that, at a coarse-grained scale, community detection

is highly robust to the selection of significance thresholds for network edges. The

subsequent analyses are done on networks with a 1% FDR edge threshold. We selected

this less stringent threshold in order to incorporate larger portions of the genome.

5.2.4 Inter-chromosomal network has three major

compartments

The inter-chromosomal network contains 2955 nodes and 31,832 edges. The partition

solution to this network has three hierarchical levels (see [Blondel et al., 2008] for a

detailed explanation of hierarchical structure of the solution): level 0, level 1 and level

2. Level 2 is the highest level of the partition hierarchy, and corresponds to the global

maximum modularity found by the algorithm. At this level, the inter-chromosomal

network partitions into three communities that pass our size filter (see Methods).

These communities represent 98.7% of the nodes in the network. Community 0 contains

61.9% of the nodes in the network, community 6 contains 23.1%, and community 1

contains 13.7%. These three major communities roughly correspond distance from

centromeric regions (Figure 5.8A). Community 1 corresponds to centromere-proximal
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regions; community 6 tends to flank community 1 regions; and community 0 tends to

comprise large portions of the chromosome arms, relatively far from the centromeres.

We looked at enrichment of several chromosomal features and transcriptional

regulators in each of the three high-level communities. Community 1 contains all

of the centromeres, so not surprisingly it has a highly significant enrichment for

centromeres (p = 9.36e–14). It also has a significant enrichment for tRNAs (p =

0.008), which is consistent with the observation of a centromere-proximal spatial

cluster of tRNAs [Duan et al., 2010]. Community 1 is also the only community of

the three that that has a significant enrichment for any of the 200 transcriptional

regulators that we tested. Moreover, out of the 200 proteins, Irr1, a cohesin subunit,

is the only one that is significantly enriched (FDR = 4.21e–10). This highly significant

localization of cohesin in the centromeric community, and the enrichment of cohesin at

large inter-chromosomal cliques, suggest that cohesin may play a role in maintaining

the rosette configuration of the genome by creating inter-chromosomal links between

different chromosomes in the centromeric community.

The centromere-distal communities had less dramatic enrichments. Community 0

does not contain enrichments for the chromosomal features, or any of the transcriptional

regulators we assessed. This is not surprising, considering this community accounts

for over half of the genome, and is the most sparsely connected of the three. Although,

community 0 tends to be more centromere-distal than community 6, community 6

contains a significant enrichment for telomeres (p = 0.0088). This suggests possible

looping associations between telomeres and telomere-distal regions of chromosomes.

The size of communities 0 and 6 contribute to their non-specificity; that is, they

are low-resolution communities. Therefore, we sought to explore the hierarchical

community structure of the genome.

Communities at each successive hierarchical level of the detection algorithm repre-

sent aggregations of communities in the preceding level. Therefore, the intermediate
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Figure 5.8: Community partition of the inter-chromosomal network. Parti-
tion showing the final solution of the community detection algorithm on the inter-
chromosomal network. (A) Scaled chromosomes which are centered on centromeres
show somewhat symmetrical community assignment about the centromere. (B) A
force-directed network representation of the community partition shows the layered
interaction structure of the genome. Together, these figures show the rosette configu-
ration of the genome, where centromeres cluster, and chromosome arms extend in one
direction away from the centromeres. Interaction domains are roughly stratified by
the distance from the centromeres.
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partitions of the inter-chromosomal network, should give information about the hier-

archical structure of the network. However, the partition levels of this network give

little indication of hierarchical structure. At level 1, there are three communities

nearly identical to the three communities in level 2 (Figure 5.9A). In order of size

they represent 61.9%, 22.7%, and 13.7% of the total number of nodes in the network.

Therefore, most of the communities that were merged from level 1 to level 2 were

below the size filter (see Methods). At level 0, we observe the unfolding of one small

community, 16, which contains 1.3% of the total nodes in the network (Figure 5.9B).

Interestingly, this community is strongly enriched for fragments that overlap telomeric

regions (p = 6.3e–9). This is consistent with other studies that have shown the

strong inter-chromosomal association of telomeres [Duan et al., 2010,Hediger et al.,

2002,Schober et al., 2008]. Overall, the lack of separation of the major communities at

lower levels in the hierarchy suggests that there is little hierarchical structure in this

network. Indeed, a qualitative inspection of a force-directed layout of this network

supports this conclusion (Figure 5.8B).

5.2.5 Subcommunities of the inter-chromosomal network

are modular

One possibility for the lack of evidence for hierarchical structure in the inter-chromosomal

network is that the intermediate solutions to the detection algorithm do not have

the ability to resolve subcommunities. Moreover, force-directed layouts of the large

network may not impose a geometry that allows visual discernment of community

structure, especially for subtle communities. To further investigate the possibility of

hierarchical structure in the inter-chromosomal network we performed community

detection on the three subnetworks that represent each of the three major communities

in the inter-chromosomal network. We treated each of these subnetworks as indepen-

dent networks. In this section, we will only refer to the communities generated by the
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Figure 5.9: Intermediate solutions to community detection in the inter-
chromosomal network. (A) The level 1 partition of the inter-chromosomal network
is similar to the level 2 partition (Figure 5.8A), which is the final partition. (B) At the
level 0 partition, community 16 emerges, which contains several telomeric fragments.
Most of the community merges from level 0 to 2 involve small communities. Together,
the intermediate solutions give relatively little insight into hierarchical community
structure.
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final partition of these subnetworks. Also, these communities-within-communities will

henceforth be referred to as “subcommunities.” To assess the presence of hierarchical

community structure in this data, we looked for evidence of modular structure in the

subnetworks, and biological meaning in the subcommunities.

Since partitions of random networks can have highly variable modularity, a mod-

ularity value on its own does not have a meaning [Reichardt and Bornholdt, 2006].

Therefore, to assess the degree of modularity of each of the three communities we

compared their modularity to random networks of equal size (edge number) and order

(node number). We partitioned, and calculated the modularity of 10,000 random

networks for each of the three subnetworks. We compared the modularity of the

non-random community partitions to the empirical random modularity distributions

using a standard score (Figure 5.10). All three subnetworks had modularity greater

than their 10,000 matched random networks. Thus, these three communities have

some degree of non-random subcommunity structure with p < 0.0001.

The subnetwork induced by community 1 (the centromeric community) of the

inter-chromosomal network had the greatest degree of modularity over random (Figure

5.10, Z = 16.46). Thus, of the three subnetworks the centromeric network shows

the strongest evidence for hierarchical organization. The community assignments

for this subnetwork represent large, linearly contiguous segments of chromosomes

(Figure 5.11A). This is remarkable because information about the linear orientation of

fragments in the inter-chromosomal network is encoded through inter-chromosomal

interactions. Thus, linearly contiguous subcommunity assignments are made purely

through similarities in inter-chromosomal interactions. Linearly continuous community

assignments are an indicator of a high degree of community structure within community

1. Unlike community 1 as a whole, none of the subcommunities within this subnetwork

showed significant enrichment for binding sites of the 200 transcriptional regulators.

However, the subcommunities distinguish themselves with respect to replication timing
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Figure 5.10: Modularity of the inter-chromosomal communities. The mod-
ularity over random of the subnetworks induced by each of the three major inter-
chromosomal communities. The red point represents the modularity of the partition
of the subnetwork. The black points represent the modularity of the partitions of
10,000 random subnetworks of equal size and order. The standard score of each red
point relative to the black points are given. All three communities show non-random
modularity.

and cohesin enrichment levels. Strikingly, ordering the subcommunities by median

replication timing or by median cohesin enrichment produces the same result (Figures

5.11B and 5.11C).

Community 6 of the inter-chromosomal network showed the second largest modular-

ity over random (Z = 7.63). Like the partition of community 1, we see large contiguous

chromosomal segments assigned to a single subcommunity (Figure 5.12A). However,

there are also many subcommunities that are highly fragmented and interleaved,

potentially indicating a low degree of hierarchical structure. This qualitative assess-

ment is consistent with this community’s modularity over random, relative to that of

community 1. Community 6 tends to flank centromere-proximal regions (community

1), but is also enriched for telomeric regions. Consistently, we find that subcommunity

2 is significantly enriched for telomeres (p = 5.6e–5). Along with the highly significant
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Figure 5.11: Partition of the inter-chromosomal centromeric community. The
subnetwork induced by community 1 of the final inter-chromosomal partition was
repartitioned. (A) The community assignments show long linear stretches that belong
to a single community, which demonstrates that linear orientation information is
encoded in inter-chromosomal contact information. This subnetwork partitions into
communities that can be distinguished by (B) replication timing, and (C) cohesin
enrichment.

grouping of telomeres in the level 0 partition of the whole inter-chromosomal network,

this demonstrates that inter-chromosomal interactions between telomeres form highly

distinct clusters in this dataset.

Inter-chromosomal community 0 shows the weakest modularity over random (Z =

5.9). Accordingly, it has very few large contiguous subcommunities (Figure 5.12B). The

only chromosomal feature enrichment that we observed was a significant enrichment for

tRNAs in subcommunity 25 (p = 0.0033). Consistent with others [Duan et al., 2010],
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Figure 5.12: Partitions of inter-chromosomal community 6 and 0.(A) The
partition of the subnetwork induced by community 6 shows several large continuous
community assignments, indicating some modular community structure. (B) The
partition of the community 0 subnetwork is highly fragmented, indicating very little
modular community structure.

we find two regions of significant tRNA clustering, one at centromeric community

in the full inter-chromosomal network, and here in subcommunity 25. Based on the

findings in [Duan et al., 2010], this grouping of tRNAs is presumably proximal to the
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nucleolus. Intriguingly, of all of the communities in this subnetwork, this is the only

subcommunity that shows enrichment at a 1% FDR threshold for any transcriptional

regulator of the 200 tested. Even more striking, this community is enriched for 24 of

the 200 factors (Table 5.1). Together, these finding suggest biological meaning to the

partition of subcommunity 25. However, overall inter-chromosomal community 0 has

subtle community structure.

Table 5.1: Transcriptional regulators significantly enriched in subcommunity 25

TF
Total frags in
subommunity
25

Total Frags in
community 0

Community 0
Frags with TF

Subcommunity
25 and TF frag
overlap

Expected
overlap

FDR

Gcr1 234 1830 389 79 49.74098361 0.000196441
Isw2 234 1830 815 139 104.2131148 0.000196441
Rtt103 234 1830 763 127 97.56393443 0.001717116
Tfa2 234 1830 829 135 106.0032787 0.001717116
Hpa3 234 1830 470 86 60.09836066 0.001717116
Ssl2 234 1830 1148 175 146.7934426 0.001717116
Pcf11 234 1830 477 87 60.99344262 0.001717116
Rgr1 234 1830 1015 158 129.7868852 0.001831788
Otu1 234 1830 427 79 54.6 0.002047512
Ino4 234 1830 696 116 88.99672131 0.002428898
Rpb2 234 1830 938 147 119.9409836 0.002428898
Set2 234 1830 760 124 97.18032787 0.002428898
Not5 234 1830 147 35 18.79672131 0.002428898
Tfc8 234 1830 334 63 42.70819672 0.005488213
Htb2 234 1830 670 110 85.67213115 0.005522941
Irc20 234 1830 661 109 84.52131148 0.005522941
Rsc9 234 1830 993 152 126.9737705 0.005522941
Ccr4 234 1830 110 27 14.06557377 0.005901224
Sif2 234 1830 318 60 40.66229508 0.006163883
Ioc2 234 1830 976 149 124.8 0.007186381
Rpb7 234 1830 1142 169 146.0262295 0.007453414
Rpd3 234 1830 1035 156 132.3442623 0.007453414
Zms1 234 1830 315 59 40.27868852 0.007453414
Sfp1 234 1830 833 130 106.5147541 0.009669288

Subcommunity 25 is significantly enriched for 24 different TFs, and is the only
subcommunity in the community 0 subnetwork to be enriched for any TFs at 1% FDR
threshold.

5.2.6 The complete network highlights high-level

organization

Next, we partitioned the network containing both intra- and inter-chromosomal

edges (which will be referred to as the “complete network”) into communities. The
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interpretation of this network has a major caveat associated with it. The FDRs

of intra-chromosomal and inter-chromosomal links were calculated using different

assumptions and probability models (see [Duan et al., 2010] for details). Therefore,

the “actual” significance of an edge is likely different for an intra-chromosomal and

inter-chromosomal edge at the same FDR value. A network incorporating both types

of edges will thus be distorted, having an imbalance of one type of edge over the other.

Nevertheless, this network can give some insights into the organizational principles of

the genome

The solution to the complete network partition has two hierarchical levels: level

0 (Figure 5.13), and level 1 (Figure 5.14). Like the inter-chromosomal network, the

differences between the levels are largely restricted to relatively small communities. At

level 1, the partition shows the tendency for centromeric regions across all chromosomes

to colocalize into a single community. Outside of this centromeric community, many

chromosomes or chromosome arms tend to form isolated communities. Notably,

chromosome VIII and chromosome XII have different community associations for each

chromosomal arm. The segregated interactions of the arms of chromosome XII has

been previously observed, where the rDNA locus acts as an interaction boundary

for the up- and downstream regions of the chromosome [Duan et al., 2010]. In a

force-directed representation of this network, community 0 which represents the region

downstream of the rDNA locus on chromosome XII appears to be one of the most

isolated regions in the genome (Figure 5.14B).

The tendency for whole chromosomes to group into single communities would

suggest that the influence of the intra-chromosomal edges overwhelms that of the

inter-chromosomal edges. As a corollary, communities that span different chromosomes

in this partition may represent robust inter-chromosomal interactions. Other than

community 5, which contains the centromeric regions, community 9 shows the highest

degree of cross-chromosomal membership. Large portions of chromosomes III, V, and
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VIII belong to community 9, as well as small portions of many other chromosomes,

suggesting a relatively high degree of inter-chromosomal interaction in these regions.

Figure 5.13: Level 0 partition of the complete network. The level 0 partition
of the network containing both inter- and intra-chromosomal interactions shows very
similar community structure to the level 1 (and final) partition. This indicates that
there is little hierarchical community structure information in the intermediate solution
to the final partition.
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Figure 5.14: Partition of the complete network. Final solution to the community
partition of the network containing inter- and intra-chromosomal interactions. (A)
Scaled chromosomes centered on the centromeres, shows unification of all chromosomes
at the centromeres into a single community. Outside of the centromeric community,
most chromosomes are broadly belong to a single community. Chromosome XII shows
split assignment relative to the rDNA locus (unassigned). (B) A force-directed layout
of the complete network shows that each side of chromosome XII is isolated from the
other, and they are pushed to the edges of the network.
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5.2.7 Conclusion

Here we present a novel approach for detecting spatial groupings from unbiased genomic

interaction data. Using this approach we are able to show biologically meaningful

spatial associations between genomic elements. Surprisingly, very simple measures

of network architecture, such as clique size, are able provide novel insights into the

functional organization of the genome. Much of what is presented here is a proof-

of-principle, where we have simplified the procedure for constructing the networks.

There are many different approaches to network construction. For example, one

could apply a method for weighting the edges in the network to improve community

detection sensitivity. Furthermore, there are numerous methods to characterize network

structure that could be applied to this data, some of which are described in section

1.3.3. Chapter six will describe in greater detail some of the techniques that could be

used to build upon this study.

5.3 Methods

5.3.1 Data sources and processing

The chromosome interaction data was generated by Duan et al. [Duan et al., 2010].

The data used to build the networks presented here are from the HindIII fragment

interactions that were also confirmed by EcoRI interactions. FDR calculations for

these interactions were also taken from Duan et al. Only interactions that achieved

the stated FDR thresholds were included in the networks. In addition, only HindIII

fragments that met the mappability criteria set out by Duan et al. were included in

the networks.

Replication timing data was obtained from McCune et al., Supplemental data

1 [McCune et al., 2008]. In these data, replication timing is represented as a percentage
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of a pooled sample of S phase cells for which a locus has replicated. Thus, higher

percentages represent earlier replication. The replication percentages for each HindIII

fragment were calculated as the mean of the replication percentage that overlapped

the given fragment.

ChIP-seq data for cohesin (Smc1, Scc1) and cohesin loader (Scc2, Scc4) subunits

were obtained from Hu et al. [Hu et al., 2011]. Raw sequence reads for both ChIP

and whole cell extract fractions were mapped to the UCSC sacCer3 genome assembly

using Bowtie 2 with default settings [Langmead and Salzberg, 2012]. The number of

mapped reads overlapping each HindIII fragment was calculated and assigned to the

fragment. The enrichment levels presented in this work were calculated as the log2

ratio of ChIP vs. control for each HindIII fragment.

Processed gene expression for ORFs were obtained from Nagalakshmi et al. [Na-

galakshmi et al., 2008]. Binding sites for 200 different transcriptional regulators in

yeast came from Venters et al. [Venters et al., 2011]. From this data, probe sets that

passed 5% FDR significance cutoff were considered binding sites. Only the binding site

data at 25C was used in this study. HindIII fragments that intersected (any fraction)

one or more binding sites of a given factor were labeled as containing the factor.

Gene annotations were obtained from the “SGD Genes” track of the UCSC Genome

Browser database (downloaded February 19, 2013). Centromere, telomere, and tRNA

annotations were obtained from the “SGD Other” track of the UCSC Genome Browser

database (downloaded February 19, 2013) [Meyer et al., 2013]. Genes were assigned to

fragments that contained the given gene’s transcription start site. Like the binding sites

of transcriptional regulators, fragments were labeled as containing or not containing

centromeres, telomeres or tRNAs, based on a non-zero overlap criteria. All feature

intersections were calculated using BEDtools [Quinlan and Hall, 2010].

All coordinate-based datasets that did not correspond to the sacCer3 assembly

of the Saccharomyces cerevisiae genome were lifted over to sacCer3 using the UCSC
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Genome Browser liftOver tool [Meyer et al., 2013].

5.3.2 Network construction and clique/community

detection

The networks were built using the NetworkX Python module [Hagberg et al., 2008],

where mappable HindIII fragments were represented as nodes, and interactions meeting

the FDR threshold were included as edges with weight = 1. The networks presented

here represent the largest connected component of the networks induced by the

interaction data. All network visualizations were created with the Gephi software

[Bastian et al., 2009].

Clique detection was performed using the find cliques function in NetworkX. Each

node was assigned a maximum clique size, which is the size of the largest clique to

which the node belongs. An in-house implementation of the Louvain algorithm was

used to perform community detection [Blondel et al., 2008]. The communities detected

at each level of the solution are numbered sequentially from zero, though the numbering

is arbitrary. We found that the algorithm often tends to create a small number of

very small communities (relative to the size of the communities that make up the vast

majority of the networks) at the edges of the networks. These are often chains of

nodes connected by single edges, which are not robust communities. Therefore, we

chose to filter communities that contained < 10 nodes. The subcommunities were

detected by applying a second round of community detection to the subnetwork that

represents each community detected in the total network.

5.3.3 Enrichment analyses

Enrichments for protein binding sites and genomic features (centromeres, telomeres,

tRNAs) were calculated using the two-tailed Fisher’s exact test. The categories for
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the contingency table used to calculate the result of the test were, fragments that

contain a given feature, and fragments that belong to a given community. Thus,

the test calculates the probability that fragment feature assignment and fragment

community assignment are independent. In the case of the transcriptional regulators,

the FDR was calculated by applying the Benjamini-Hochberg procedure [Benjamini

and Hochberg, 1995] to the set of 200 factors for each community.
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Chapter 6

Conclusion

Computational analyses of large genomic datasets are highly effective in generating

testable hypotheses, and constructing theoretical frameworks for biological reasoning.

The insights gained from computational studies can be used to guide experimental

studies through direct attempts to validate computationally-derived hypotheses, or

by focusing the context of experimental designs. In ideal cases, there is an iterative

workflow between computational analyses and experimental data generation. In each

round of iteration, computational results and experimental results refine and focus

each other to ultimately converge on scientific truth. As demonstrated by the studies

presented in this dissertation, the power of high-throughput genomic technologies

have placed the field of chromatin biology squarely within the bounds of this mode of

scientific discovery.

As publicly available data becomes more comprehensive, increasingly specific and

complex biological insights will be made accessible through purely computational

means. For scale, the Sequence Read Archive (SRA) [Leinonen et al., 2011] contains

over 1.6 petabases of sequence data, over 740 terabases of which are publicly available.

The Gene Expression Omnibus (GEO) [Barrett et al., 2013] contains over 32,000

genomic studies. Databases such as these provide the raw material for computationally-
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driven theoretical biology. Many of the studies presented by the ENCODE consortium

serve as examples of this hypothesis-generation model in chromatin biology [Dunham

et al., 2012]. However, computational studies must be complimented by experimental

work in order to draw definitive biological conclusions. Even so, the separation of

theory—derived from analysis of data—from experimentation—guided by theory—

represents an increasingly prominent paradigm in molecular biology, and one that will

become evermore prominent as more data is generated. Many of the results presented

in this work are manifestations of the theoretical component of this paradigm.

With these notions under consideration, the remainder of this chapter will discuss

possible future directions of the studies presented in this dissertation. These extensions

include the utilization of publicly available data, experimental design proposals for

the generation of new data, and possibilities for new data analysis methodologies.

6.1 Learning from large histone modification

datasets

Chapters two and three explore the use of machine learning techniques to understand

the biological activity of histone modifications and variants. Studies of this kind are

particularly well suited to publicly available data. Specifically, the large number of

experimental observations and high dimensionality that is required for these types of

studies are often difficult to generate outside of large, well-funded efforts. Furthermore,

when studying general properties of histone modifications, publicly available datasets

provide a large pool of test data to assess learned models.

One of the most extensive and well-studied histone modification/variant ChIP-seq

datasets was generated by Keji Zhao’s lab at the NIH [Barski et al., 2007, Wang

et al., 2008]. This dataset consists of genome wide maps of 38 different histone

modifications, and variant H2A.Z in human CD4+ T cells. Indeed, a portion of
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this dataset [Barski et al., 2007] is the basis of chapters two and three. Many other

machine learning studies have been performed on this dataset, including a regression

study somewhat similar to the one presented in Chapter two [Karlić et al., 2010].

At least two studies have used these data to segment the genome into chromatin

states based on combinatorial patterns of histone modifications [Ernst et al., 2010,Hon

et al., 2009a]. These data have also been used in attempts to learn the dependence

relationships between modifications [Yu et al., 2008]. Many other studies have used

more simple data mining techniques to discover correlations between the modifications

and various genomic features, such as enhancers [Visel et al., 2009], introns, and

exons [Schwartz et al., 2009, Huff et al., 2010]. These examples list only a subset

of the data analysis-based studies engendered by the Zhao lab data. The diversity

and depth of the insights gained from these data is a testament to the power of

mining large publicly available chromatin datasets. Although the majority of publicly

available datasets do not approach this biological breadth and level of experimental

consistency, comparable datasets will become more available over time, especially

through efforts like ENCODE [Dunham et al., 2012] and the Roadmap Epigenomics

Project [Chadwick, 2012].

The vast majority of histone ChIP-seq datasets, including the Zhao dataset, are

generated in a static population of asynchronous cells. As chapters two and three

in part illustrate, studies on these datasets have proven useful in elucidating the

composition of chromatin domains, functional correlations between modifications and

chromatin activity, and the relationship between various genomic features and histone

modifications. However, since histone modifications are dynamic, and vary during

phenotypic transitions, it would be valuable to study modifications over time courses,

captured during dynamic processes. Studying the sequence of chromatin modification

events and corresponding functional changes during a phenotype transition would be

extremely powerful in gaining insight into the causal roles of histone modifications.
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Understanding the mechanistic roles of histone modifications in this way is a top priority

in the chromatin field [Henikoff and Shilatifard, 2011]. Furthermore, computational

methods have great promise for gaining insight into these questions.

Many studies, including the one presented in Chapter four, evaluate differences in

histone modifications between two biological states. However, these studies provide

little explanation for how, and in what sequence, the changes that created the differ-

ences occurred. Several studies have tracked histone modifications in many sequential

biological states, such as stages of hematopoiesis [Abraham et al., 2013], and C. ele-

gans development [Gerstein et al., 2010], but studies that track intermediate changes

between states are lacking. One recent study tracked several histone modifications

(and several transcription factors) during circadian cycles of mouse liver cells at four

hour resolution using ChIP-seq [Koike et al., 2012]. Datasets like this can be utilized

to learn dependent relationships between histone modifications by utilizing machine

learning techniques, like hidden Markov models and dynamic Bayesian networks (see

section 1.3.2). Using these methods, one can learn the conditional probability of tran-

sitioning from one modification state to another, thus learning dependence between

modifications. Furthermore, since this dataset contains transcription factor maps, the

relationship between chromatin states and transcription factor binding could also be

investigated in a similar way. It should be noted that the relationships learned using

these methods may not be general, but specific to a process; e.g., circadian regulation

in the case of [Koike et al., 2012]. This illustrates how computational techniques

can be a powerful approach for guiding experimental investigations by generating

specific and testable hypotheses. Moreover, computational techniques can reasonably

guide experimental studies of combinatorial histone modification effects that would be

otherwise implausible due to the large combinatorial space of histone modification

states.
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6.2 Refining perspectives on chromatin

regulation during EMT

Many hypotheses about chromatin regulation during EMT were generated through

the analyses presented in Chapter four. Principle among these is that the maintenance

of the gene expression program that defines the mesenchymal phenotype is effectuated

by chromatin-mediated transcriptional feedback involving AP-1, NF-κB, and c-Myc.

Several experimental strategies could be employed to validate and refine this model,

including perturbation experiments, mapping of additional factors, and generation of

time-resolved data.

In this system it has already been demonstrated that the inhibition of NF-κB

prevents EMT from occurring [Kumar et al., 2013]. A useful step toward validating

the computational predictions made in Chapter four would be to see if changes in gene

expression under NF-κB-inhibited conditions are most dramatically impacted in the

EMT gene clusters found in Chapter four. It would also be useful to see if perturbing

AP-1 family members or c-Myc also prevents EMT, and/or has analogous impacts

on gene expression. Many AP-1 family members exist, and many are upregulated

during EMT, so finding critical targets may be challenging. However, some AP-1

family members are massively upregulated (e.g., MAF up 155-fold), which can serve to

prioritize targets. Since the ChIP-seq data was gathered at the end points of EMT (full

epithelial or mesenchymal states), it would be useful to see if perturbing these factors

induces an mesenchymal-to-epithelial transition (MET), after EMT has been induced.

Based on the computationally-derived hypothesis, inhibiting NF-κB or AP-1 family

members, or inducing c-Myc activity should result in a less mesenchymal phenotype

in EMT-induced cells. Furthermore, since the putative feedback loops involve proteins

upstream of the transcription factors, targeting “topologically vulnerable” proteins

(from a signaling network perspective), such as cell surface receptors, would also be
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an effective strategy for perturbing the feedback.

The hypothesis put forward by the computational results also states that the

transcriptional feedback is chromatin-mediated, meaning that coordinated changes

in chromatin permit the transcription factors to execute a transcriptional program

that is specific to EMT. Thus, targeting the activity of chromatin modifying enzymes

is a second mode of experimental perturbation that could be used to validate the

computational predictions. In particular, H3K9, H3K27, and H4K8 acetylation

are strongly correlated with transcription factor-specific enhancer activation. Thus,

attractive targets for perturbation experiments include HATs, such as PCAF, CREBBP,

EP300, TIP60, and MYST2. HDACs could be targeted in a similar way. Indeed,

evidence was presented in Chapter four that suggests HDAC2 may be involved in

altering the chromatin-mediated transcriptional program by silencing specific enhancers.

Validation of this prediction would expand the known role of HDAC2 in EMT, from

silencing of the CDH1 gene, to silencing a wide array of epithelial-specific genes

through deactivation of their enhancers.

In order to frame perturbation experiments in the context of the data-driven

hypotheses, new ChIP-seq experiments should be done under perturbed conditions.

Fortunately, the entire panel of histone modifications does not need to be recapitulated

for each experiment. Based on the observed changes and global correlations, a subset

of approximately five factors should be sufficient to assess changes in epigenetic

programming. Based on the observed reprogramming and the requirement of normal

NF-κB signaling, one interesting question is: Are epigenetic changes in p65 binding

sites dependent on normal p65 activity? One possibility is that p65 binds to chromatin

and initiates reprogramming of its binding sites. Another possibility is that p65 binding

sites are reprogrammed, which then allows p65 to bind. A third possibility is that a

subset of final (mesenchymal state) binding sites are initially reprogrammed which

leads to self-propagating systemic changes that eventually lead to the genome-wide
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reprogramming that we observe. The latter case is most consistent with positive

feedback maintenance of NF-κB activity. These cases could be resolved in a locus-

specific manner utilizing ChIP-seq of p65 and histone modifications under normal and

perturbation conditions. Analogous experiments could be devised for AP-1 family

members and c-Myc.

In addition to the aforementioned transcription factors and histone modifying

enzymes, data on certain so-called “pioneer factors” would be potentially informative.

Pioneer factors can bind condensed heterochromatin to initiate the establishment of

active chromatin [Magnani et al., 2011]. Interestingly, we observed epigenetic silencing

of sites associated with the FOXA family of pioneer factors. Consistently, it has been

shown that loss of FOXA1/2 is required for EMT in pancreatic cancer [Song et al.,

2010]. These results suggest that pioneer factors, generally, may be important in

guiding EMT-specific epigenetic reprogramming.

Time course ChIP-seq experiments of any and all of the factors listed above would

provide extremely useful data toward understanding the epigenetic reprogramming

that occurs during EMT. As previously mentioned, the dataset used in Chapter four

only includes endpoints; i.e., the epithelial or mesenchymal states, and nothing in

between. Thus, hypotheses about changes that occur during EMT are inferences based

on observing the differential of the endpoints. Using time course data, the sequence of

events that occur on chromatin could be observed directly. These observations would

facilitate prediction of causal relationships, and would greatly improve the potential

for mechanistic predictions.

These examples of possible experiments demonstrate how the analysis of one large

and general dataset can be used to guide new, and more focused experiments. Ideally,

this strategy of simultaneously focusing analysis and experimentation would narrow

in on deeper and deeper insights into epigenetic reprogramming in EMT.
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6.3 Future approaches for network analysis of

genomic interaction data

One of the most obvious extensions of the work presented in Chapter five is to improve

the sensitivity and resolution of the methodology. Even with improved methods it is

difficult to determine the performance of a method, due to the dearth of studies of this

kind. Thus, much work needs to be done to understand how network properties of

Hi-C data correspond to properties of genomic conformation. This would be a largely

exploratory exercise, applying network analysis to a variety of datasets to understand

the advantages and limitations of network analysis, and to build benchmarks for its

application. Such studies could potentially be highly rewarding, as there are abundant

existing and forthcoming network analysis methods, which may be able give deep

insight into genomic organization. For example, measures of node and edge centrality

could easily be applied to this data (see Section 1.3.3); however, the biological meanings

of such measures are somewhat less intuitive than the identification of interaction

clusters presented in Chapter five. Learning how these measures can be interpreted

in a biological context would be valuable in advancing this analysis methodology.

Like most studies in computational biology, the computational method will improve

iteratively with experimental data generated.

One of the principle limitations of the scheme that was applied in Chapter five was

the use of uniformly weighted edges. Edge weights give information about strength

of interaction between nodes. In genomic interaction data, this could reflect be the

significance of the measured interaction between genomic regions, or the contact

frequency between regions. Using the contact frequency alone would eliminate the

need for setting significance thresholds for interactions. This is desirable because, in

principle, all interaction data could be used to build the network, and no assumptions

would have to be made to construct a probability model of the interaction frequencies.
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Furthermore, this approach could also improve the resolution of the community

detection procedure.

A general observation of the results in Chapter five is that the communities detected

in the interaction networks are relatively large—size on the order of a chromosome arm

for the complete network (see Section 5.2.6). The conclusion of the chapter alluded to

methods of network construction that could improve community detection resolution.

One such scheme, proposed by Khadivi et al., involves applying edge weights that

accentuate community structure on the basis of network topology alone [Khadivi

et al., 2011]. The basic principle is to upweight edges that are within communities and

downweight edges that are between communities. This is achieved using two network

measures known as edge betweenness centrality (EBC) and the common neighbor

ratio (CNR). Edge betweenness centrality is analogous to node betweenness centrality

defined by equation 1.6, and is defined as

B(eij) =
∑

u6=v∈V

σuv(eij)

σuv
(6.1)

where σuv(eij) is the number of shortest paths that connect nodes u and v that include

edge eij, and σuv is the total number of shortest paths that connect nodes u and

v. Intuitively this value will be large for edges that connect different communities,

since shortest paths that connect nodes from the distinct communities will often pass

through these edges. Similar to the way EBC highlights between community edges,

the CNR highlights within community edges. Given the adjacency matrix A of a

network, the CNR of two nodes i and j is defined by

Cij =
2 (Aij +

∑
k AikAjk)∑

k Aik +
∑

k Ajk
(6.2)

This is the ratio of neighbors shared by nodes i and j to the total number of neighbors

belonging to i and j. By definition, nodes within a single community will have a high
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CNR compared to nodes from different communities. The EBC and CNR can be

combined to produce the following edge weighting scheme that emphasizes community

structure:

W (eij) =
b−αij × C

β
ij∑

uv
u6=v

b−αuv × C
β
uv

for eij ∈ E and α, β > 0 (6.3)

where W (eij) is the weight of edge eij, bij is equivalent to B(eij)/max
uv
{B(euv)}. The

constants α and β can be selected heuristically [Khadivi et al., 2011]. This weighting

scheme expands the bounds on the well-known community detection resolution limit for

methods based on modularity optimization [Fortunato and Barthélemy, 2007,Khadivi

et al., 2011]. This technique could be applied to studies similar to the one presented

in Chapter five in order to resolve finer communities. In principle, one could also

devise a weighting scheme that is a composite of network topology and, for example,

interaction frequency. Even with these improvements to network construction, there

is an inherent resolution limit for community detection, imposed by the sensitivity of

the assay and biological variability.

It is possible to design experiments that evaluate the sensitivity of community

detection applied to Hi-C data—at least at a coarse-grained level. In budding yeast,

it has been shown that certain mutations in cohesin cause defects in the formation of

certain higher-order chromatin structures, such as the nucleolus and tRNA clusters

[Gard et al., 2009]. This study used light microscopy to assess these defects. In

principle, if coupled with Hi-C, the results of microscopy-based analyses could be

compared with community detection analyses. The consistency between observations

through microscopy and community detection results would provide a relatively

low-resolution benchmark for validating and evaluating various community detection

techniques. Resolution could potentially be improved by coupling microscopy with site-

specific chromosome conformation capture techniques like 3C and 4C. The resolution of

the benchmark technique also provides a point of reference for assessing the resolution
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of community detection methods. For example, if communities are detected below

the resolution limit of the benchmark technique, different approaches could be used

to validate the existence of a corresponding structure. This is yet another scenario

where computational methods and experimental methods inform each other, resulting

in mutual improvement.

In addition to benchmarking, and exploring variations on network construction,

an obvious next step is to apply these methods to the genomes of multicellular

organisms, which have a higher degree of organizational complexity. Unlike the yeast

genome, many of these genomes have fractal globule conformations [Lieberman-Aiden

et al., 2009,Sexton et al., 2012], and have specific domains of association [Nora et al.,

2012,Dixon et al., 2012]. These structures naturally form interaction communities,

making community detection algorithms a potentially powerful tool for studying

the spatial organization of these genomes. Somewhat counterintuitively, the higher

complexity of these genomes may make the interpretation of community detection

results more straightforward. Furthermore, there is a relatively large number studies

that have performed three-dimensional analyses on these genomes, which provides a

rich set of results to which network-based results can be compared.

Network analysis of genomic interaction data holds tremendous promise since the

structural analysis of networks, and the three-dimensional analysis of genomes are both

highly active fields of research (See [Newman, 2011] for a review of network structure

analysis, and [Dekker et al., 2013] for a review of genomic conformation analysis).

Much of the interest and development in the network field is driven by the accessibility

of large datasets that can be coerced into network structures. Genomic interaction

datasets are an excellent example of such data, though network analysis has not been

broadly applied to them. The continuing improvements in genome-wide interaction

assays, coupled with the active network analysis field, presents an opportunity for

synergy between data acquisition technology and analysis methodology.
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Barillot, E., Blüthgen, N., Dekker, J., and Heard, E. (2012). Spatial partitioning of
the regulatory landscape of the X-inactivation centre. Nature, 485(7398):381–5.

[O’Neill and Turner, 1995] O’Neill, L. P. and Turner, B. M. (1995). Histone H4
acetylation distinguishes coding regions of the human genome from heterochro-
matin in a differentiation-dependent but transcription-independent manner. The
EMBO journal, 14(16):3946–57.

[O’Neill and Turner, 1996] O’Neill, L. P. and Turner, B. M. (1996). Immunoprecipi-
tation of chromatin. Methods in enzymology, 274:189–97.

[Ong and Corces, 2011] Ong, C.-T. and Corces, V. G. (2011). Enhancer function:
new insights into the regulation of tissue-specific gene expression. Nature reviews.
Genetics, 12(4):283–93.

[Osborne et al., 2004] Osborne, C. S., Chakalova, L., Brown, K. E., Carter, D.,
Horton, A., Debrand, E., Goyenechea, B., Mitchell, J. A., Lopes, S., Reik, W.,
and Fraser, P. (2004). Active genes dynamically colocalize to shared sites of
ongoing transcription. Nature genetics, 36(10):1065–71.



206

[Pal et al., 2004] Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P.,
and Sif, S. (2004). Human SWI/SNF-associated PRMT5 methylates histone H3
arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppres-
sor genes. Molecular and cellular biology, 24(21):9630–45.

[Pal et al., 2003] Pal, S., Yun, R., Datta, A., Lacomis, L., Erdjument-Bromage, H.,
Kumar, J., Tempst, P., and Sif, S. (2003). mSin3A/histone deacetylase 2- and
PRMT5-containing Brg1 complex is involved in transcriptional repression of the
Myc target gene cad. Molecular and cellular biology, 23(21):7475–87.

[Papantonis et al., 2010] Papantonis, A., Larkin, J. D., Wada, Y., Ohta, Y., Ihara,
S., Kodama, T., and Cook, P. R. (2010). Active RNA polymerases: mobile or
immobile molecular machines? PLoS biology, 8(7):e1000419.

[Pareek et al., 2011] Pareek, C. S., Smoczynski, R., and Tretyn, A. (2011). Sequenc-
ing technologies and genome sequencing. Journal of applied genetics, 52(4):413–35.

[Parthun, 2007] Parthun, M. R. (2007). Hat1: the emerging cellular roles of a type
B histone acetyltransferase. Oncogene, 26(37):5319–28.

[Peinado et al., 2007] Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb
and bHLH factors in tumour progression: an alliance against the epithelial pheno-
type? Nature reviews. Cancer, 7(6):415–28.

[Pickrell et al., 2011] Pickrell, J. K., Gaffney, D. J., Gilad, Y., and Pritchard, J. K.
(2011). False positive peaks in ChIP-seq and other sequencing-based functional
assays caused by unannotated high copy number regions. Bioinformatics (Oxford,
England), 27(15):2144–6.

[Podlaha et al., 2012] Podlaha, O., Riester, M., De, S., and Michor, F. (2012). Evo-
lution of the cancer genome. Trends in genetics : TIG, 28(4):155–63.

[Polyak and Weinberg, 2009] Polyak, K. and Weinberg, R. A. (2009). Transitions
between epithelial and mesenchymal states: acquisition of malignant and stem
cell traits. Nature reviews. Cancer, 9(4):265–73.

[Pothen et al., 1990] Pothen, A., Simon, H. D., and Liou, K.-P. (1990). Partitioning
Sparse Matrices with Eigenvectors of Graphs. SIAM Journal on Matrix Analysis
and Applications, 11:430–452.

[Provenzani et al., 2006] Provenzani, A., Fronza, R., Loreni, F., Pascale, A., Ama-
dio, M., and Quattrone, A. (2006). Global alterations in mRNA polysomal recruit-
ment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis,
27(7):1323–33.

[Ptashne, 2013] Ptashne, M. (2013). Epigenetics: Core misconcept. Proceedings of
the National Academy of Sciences of the United States of America, 110(18):7101–
3.



207

[Quinlan and Hall, 2010] Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flex-
ible suite of utilities for comparing genomic features. Bioinformatics (Oxford,
England), 26(6):841–2.
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