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ABSTRACT 

The computational promises made by quantum computing threaten 

to destroy our notion of secure communication in the digital world. 

Neural networks (NNs) are one area of ongoing research that 

appears to be a promising method to enable cryptographically 

secure communication in a post-quantum world. Generative 

Adversarial Networks (GANs) is a specific type of neural network 

where multiple neural networks are pitted against each other. GANs 

pit a generative NN pitted against an adversarial NN. The 

generative NN attempts to encrypt data in a recoverable yet secure 

manner while the adversarial NN attempts to decrypt the output 

from the generative NN back into the original data. 

Due to their adversarial nature, GANs appear to be a promising 

method of enabling secure communication due to the nature of 

having a constant adversary necessitating innovation. There are 

multiple research projects already completed that attempt to use 

ANNs to successfully encrypt data from eavesdroppers attempting 

to recover information. 

GANs are only a piece of the puzzle, however. Researchers are 

combining NNs with existing and emerging technologies to provide 

resilient and promising encryption schemes.  

1 Introduction 

Quantum computing represents a fundamental shift in computing. 

While classical computer utilizes binary digits, meaning that values 

are stored as 0’s and 1’s and can be combined to form more 

complex letters and numbers, quantum computing utilizes so-called 

quantum bits, which reflect probabilities. No longer are values 

restricted to 0 or 1; now they can take on any value between 0 and 

1. [1] Quantum bits reflect the probability of being in any state 

across all the potential quantum states – a system is not in any one 

state until it is measured [1] – but represent the potential for 

quantum computing to disrupt many of the assumptions that enable 

modern computing. In fact, given 𝑛  quantim bits in a quantum 

computer system, 2𝑛 parallel computations can be performed [1]. 

The increased computational power promises to revolutionize 

many different fields, from finance to medicine, solving many 

problems traditionally labelled as too computationally complex [2]. 

1.2 Cryptography and Quantum Computing 

Cryptography is the field of making communications private, even 

in the presence of malicious agents attempting to steal information. 

As Kathleen Richards describes it [3]:  

 

[Cryptography] refers to secure information and 

communication techniques derived from mathematical 

concepts and a set of rule-based calculations called 

algorithms, to transform messages in ways that are hard to 

decipher. These deterministic algorithms are used for 

cryptographic key generation, digital signing, verification to 

protect data privacy, web browsing on the internet and 

confidential communications such as credit card transactions 

and email. 

 

As opposed to the fields of business and medicine, where more 

computational power is good, cryptography is predicated on 

assumptions on the difficulty of certain problems. Difficulty in 

computer science is measured as a problem belonging to the NP 

problem space as opposed to P [4]. Nondeterministic Polynomial 

problems (NP) have no known solution markedly faster than brute 

force – trying every combination of parameters to find a solution – 

as opposed to Polynomial problems (P), which have a solution that 

scales in a polynomial fashion with respect to the amount of time 

necessary to find a solution as the number of possible inputs 

increases [4].  There are many assumptions in Cryptography upon 

the NP-hardness of problems, such as the discrete logarithm and 

RSA (factorization) problems. [5]. The discrete logarithm problem, 

for example, relies on the difficulty of finding 𝑥, 𝑦 given 𝑔, 𝑓(𝑥, 𝑦) 

in the equation 𝑓(𝑥, 𝑦) = 𝑔𝑥𝑦 [5]. There are two distinct areas of 

cryptography – sharing a key to encrypt with, and sharing data 

encrypted with the key – and both are affected by quantum 

computing. 

 

mailto:email@email.com


 

 

Quantum computing has already been shown to break the NP-

hardness of the discrete logarithm problem [1]. Researchers are 

already developing alternative mathematical algorithms that are 

resistant to the enhanced computations of quantum computing, 

such as Lattice-based cryptography [6] and Multivariate public key 

cryptography [7]. Alternative solutions to cryptography in a post-

quantum world also exist. One recent novel attempt at encryption 

is the use of Generative Adversarial Networks from the field of 

Machine Learning and Artificial Intelligence.  

1.3 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) are a form of Artificial 

Neural Networks where multiple neural networks are pitted against 

each other [8]. There is a common training set of data between the 

models [8]. A Generative neural network (G) attempts to create 

data that is indistinguishable from the training data to a 

Discriminatory neural network (D) [8]. Both networks are trained 

simultaneously based on a training iteration’s results, like normal 

neural network training [8]. 

 

Neural Networks in general are trained using a loss function, which 

is supposed to quantify what it means to be right in the context of a 

specific network. More specifically, the loss function quantifies the 

distance between a prediction and the correct output for a set of 

inputs [9]. The model learns by adjusting prediction parameters to 

minimize the loss of the model [9].   

 

Researchers have recently used GANs in unique applications with 

the intended result of cryptographic encryption from an adversary. 

As detailed later in this report, these techniques combine existing 

or emerging technologies with GANs to enable secure 

communication between parties over insecure channels, like the 

internet.  

2 Related Works 

Before investigating the use of GANs for cryptographic 

encryption, it is important to recognize other methods for secure 

encryption in a post-quantum world. There are two main strategies 

that are currently being researched and developed: quantum key 

distribution-based solutions and mathematical-based solutions [1]. 

2.2 Quantum Key Distribution-based Solutions 

As the name suggests, quantum key distribution (QKD) uses 

properties of quantum mechanics to tackle the problem of 

distributing a key to be used with encryption. One fundamental 

concept of quantum mechanics is entanglement [10]. 

Entanglement describes the phenomenon where two or more 

particles are intertwined, and any changes to one particle instantly 

is reflected in the state of the other particle [10].  

 

The measuring of the state of a quantum system disturbs the 

system [10]. This disturbance means that any attempt to eavesdrop 

on the distribution of information through quantum entanglement 

will result in noticeable disruptions in the system. This alter of 

eavesdropping allows two parties to share information with peace 

of mind, with some caveats of requiring trust between two parties 

before the exchange happens [11]. 

2.3 Mathematical-based Solutions 

Mathematical-based solutions to quantum computing’s 

computational power are more in line with modern cryptography, 

which is based upon mathematically provable security. Lattice 

based cryptography is one such mathematical based solution. [1] 

Lattice based cryptography attempts to fix the ease of 

factorization of primes for quantum computers by using the 

multiplication of matrices [6].  

 

Multivariate public key cryptography is also a well-researched 

cryptography alternative that promises to be more resilient to 

quantum computing [1]. Multivariate public key cryptography can 

be used for digital signatures and asymmetric encryption and 

relies on the “difficulty of solving systems of multivariate 

polynomials over finite fields” [1]. Note that all mathematical 

based solutions to cryptography require the computational 

hardness of an operation, but given the qualities of quantum 

computing, some problems are hypothesized to remain difficult in 

a post-quantum world.  

3 Generative Adversarial Networks in 

Cryptography 

Generative Adversarial Networks are being used by researchers to 

generate encryption schemes that can hide information from 

adversaries.  

3.2  Symmetric Key Encryption with Generative 

Adversarial Networks 

“Learning to Protect Communications with Adversarial Neural 

Cryptography” [12] is the most straightforward application of 

GANs towards modern cryptography. It utilizes a symmetric key, 

where the sending and receiving party share an encryption key. 

System Design 

Abadi and Anderson designed the system to have three 

components, two Generative networks known as Alice and Bob, 

and a Discriminatory network known as Eve [12]. On any given 

iteration, Alice and Bob are given a shared key with the intention 

that the networks will use the key to hide data from Eve [12]. 

Alice is given a message to encrypt, and outputs a ciphertext [12]. 

The ciphertext is given to both Bob and Eve, who attempt to 

reconstruct the original message [12]. Alice and Bob, who are 

encrypting and decrypting a message, are not given any 

inclination about how to use the shared key to hide information, 

Figure 1: Alice, Bob and Eve. Depicts the layout of Alice, Bob and 

Eve Neural Networks in a symmetric key encryption scheme [12] 



 

 

and instead the networks learn how to do this adversarially [12]. 

The design of Alice, Bob and Eve is shown in Figure 1:  

 

The loss function for Eve was the L1 distance between two 

bitstrings, which is equivalent to the number of bits the strings 

differ upon. [12] This intuitively represents the number of bits 

Eve was able to recover. The loss function of Alice and Bob 

considers both the number of bits they were able to recover, as 

well as the number of bits Eve was able to get right. [12] This also 

intuitively makes sense, as Alice and Bob want to correctly send 

information, and hide it from Eve.  

Results 

Abadi and Anderson were successful in their endeavor to teach 

the Generative networks to hide and recover plaintext messages. 

As summarized in Figure 2, the researchers tried to send a 16 bit 

message in the system. [12] We can assume that the 0’s and 1’s in 

the message are uniformly distributed across a large sample of 

input messages, meaning that every bit has a 50/50 chance of 

being either 0 or 1. Intuitively, this explains why both Bob and 

Eve were able to recover 8 bits of information in the beginning, 

by guessing all 0 or all 1, they would expect to get 8 of the 16 bits 

correct.  

Over the course of 20,000 steps (each step included training 

across 4096 samples), Bob was able to learn to recover all 16 bits 

consistently, while Eve did not have any advantage over randomly 

guessing. [12] This means that the researchers achieved both the 

goal of successful decryption of the original message, as well as 

the hiding of the message from Eve.  

3.3 Asymmetric Key Encryption with Generative 

Adversarial Networks 

“Asymmetric cryptographic functions based on generative 

adversarial neural networks for Internet of Things” [13] performs 

a similar analysis as Abadi and Anderson’s research, but in the 

context of asymmetric key encryption. Instead of Alice and Bob 

sharing a key to encrypt with, they use an asymmetric keypair, 

also known as a public/private keypair [14]. In this form of 

cryptography, an actor, Bob in this case, generates a pair of keys 

[14]. One of these keys he gives to everyone in the network, 

known as the public key, that people can use to encrypt with [14]. 

With public key encryption, only the private key can decrypt 

information encrypted with the public key [14]. So, only Bob, in 

sole possession of the matching private key, should be able to 

decrypt messages encrypted with the public key.  

System Design 

Hao et al. designed a Generative Adversarial Network with two 

Generative networks, designated Alice and Bob, and one 

Discriminatory network, designated Eve [13]. Bob generates a 

public key/private key pair, and gives the public key to Alice [13]. 

Alice encrypts a plaintext message, P, with the public key, 

creating a ciphertext [13]. This ciphertext is passed to Bob and 

Eve, who attempt to decrypt the information, yielding PBob and 

PEve, the respective attempt at decrypting the ciphertext back into 

the original plaintext, P [13]. This construction is laid out in 

Figure 3, shown below:   

The loss function for this Eve was the L1 distance between PEve 

and P, meaning the number of bits different between the two 

strings [13]. The loss function for Alice and Bob was similarly the 

L1 distance between PBob and P, subtracting Eve’s loss function 

from this result to reflect the complete goal of Alice and Bob to 

hide information as well as recover encrypted information. [13] 

Results 

Hao et al. were successful in their endeavor to teach the GAN to 

securely encrypt information with asymmetric keys. In Figure 4 

below, we have a graph of the probability of Eve and Bob 

guessing an arbitrary bit in a message incorrectly. [13] Again 

assuming that the message and ciphertext are uniformly 

distributed between 0 and 1, we notice that in the long run, Eve 

has no advantage in recovering the plaintext message over random 

guessing. [13]  

Figure 2: Results of Symmetric GAN Encryption. Depicts the 

number of incorrectly guessed bits throughout training for both 

Bob and Eve. [12] 

Figure 3: Layout of Asymmetric GAN Encryption. 

Depicts the dissemination of keys and information in the 

network. [13] 



 

 

At the same time, Bob can recover the bit with almost complete 

certainty, reflecting that the learning objectives of the system were 

met, as Alice and Bob were able to encrypt and recover 

information, while Eve was not able to recover any information 

about the message.  

3.4 Steganography with Generative Adversarial 

Networks 

Steganography is the hiding of information within another object 

in such a way that the presence of hidden information cannot be 

detected [15]. Think of how words are hidden in a crossword, but 

if the words were not meant to be found and were hidden in more 

creative ways. GANs promise to improve our ability to hide 

information in ordinary digital objects. 

System Design 

Shi et al. designed a Generative Adversarial Network with a 

single Generative network G, and two Discriminatory networks, D 

and S [15]. The goal of this network is to create cover images that 

can be used in steganography to hide images [15]. By preparing 

images for steganography, we are decreasing the likelihood that 

information could be identified when hidden. The Generative 

network takes an input of random noise and applies the noise to 

images, creating a cover for steganography [15]. The 

Discriminatory network D’s responsibility is to evaluate the 

quality of the cover by trying to identify between the original 

image and the prepared cover [15]. The Discriminatory network 

S’s responsibility is to assess the capacity of the cover to be used 

for steganography [15]. A visual representation of the network is 

shown in Figure 5:  

Results 

Shi et al. successfully created a GAN network more secure than a 

reference network [15]. The Discriminatory S network was 

trained with real images, and against a reference steganography 

network, was able to detect 92% of real images and 90% of 

generated images [15]. When ran against the SSGAN network 

proposed in the paper, it was only able to achieve 87% accuracy 

against real images and 72% against generated images [15]. The 

network is successfully able to fool the discriminatory network S 

at a higher rate than the reference benchmark.  

4 Conclusion 

There are numerous examples of researchers successfully teaching 

Generative Adversarial Networks to adapt current cryptography 

practices without explicitly telling the networks how to encrypt 

information. As quantum computing inches closer to reality, it is 

increasingly important that we prepare and adapt against its 

threats to modern cryptography. If we are not prepared, security 

online will not exist in a recognizable form, and things like online 

shopping and banking will cease to exist.  

 

Thankfully, there are many quantum-resistant technologies being 

developed, from mathematical-based models to novel methods 

using GANs. As GANs and neural networks in general continue 

to evolve, more use cases will begin to emerge.   
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