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BSTRACT

Tﬁree mathematical models which are capable of representing
general degradation ©behavior of hysteretic structural elements,
including hysteresis pinching, as a function of hysteretic energy
dissipation are presented. Two of the models are series models
consisting of Bouc-Baber-Wen smooth hysteresis with two
"slip—-lock” elements. One of these slip—-lock elements is
designated as the BN and the other one as NB model. The third
model has a single form and is designated as Single Element

Pinching (SEP) model.

Behavior of a SDOF system of each model under cyclic and
general loading is studied and the obtained results illustrate
the versatility of all three models in reproducing various types

of general degradation including pinching hysteretic behavior,

With the assumption of gradual degradation equivalent
linearization solutions are obtained for these models for =zero
mean excitation <case. Linearization for BN and SEP models are
obtained in closed form and for NB model linearization is derived
numerically, Nonstationary RMS response statistics obtained for
zero mean excitaion, compare well with response statistics
computed using Monte Carlo simulation. Comparison for NB and SEP

models are better than those for BN model.

Response analysis of a SDOF system of BN and SEP model,
subjected to mnonzero mean input excitation 1is studied and
approximate solutions are obtained by subtracting meanm responses

from the governing stochastic differential equations and then



applying wequivalent linearization. The response predictiomns of
the linearized model compare well for the SEP model and
reasonably well for BN model. At 2all levels of &excitation, the
linearized models predict qualitatively the zresponse of the

system,
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CHAPTER 1

INTRODUCTION

The destructive and many times disastrous effects of the
forces of mnature such as floods, earthquakes, gusty winds, and
sea waves have always been a matter of significant concern to
structural engineers. In these and numerouns other cases, systems
of engineering interest are subject to dynamic excitations which
are basically random in natﬁre. Examples range from systems
acted upon by aerodynamic and fluid dynamic forces to machine

induced noise environment.

The importénce of incorporating mnatural hazard loadings,
such as earthquakes, into engineering designm <criteria is well
recognized. Traditionally the random dynamic characteristics of
these forces have been replaced by "equivalent”™ static analysis
and loadings, and the response of the structure under actusal
stochastic inputs has been obtained by theoretical studies based
on deterministic methods. These methods have serious limitations
due to the highly random nature of hazard loadings, and the
accuracy of such an approach may prove inadequate in the presence
of design constraints. The random mnature of these loadings
indicates that a probabilistic approach to analysis and design is
necessary. The random nature of earthquake phenomena, for
example, can be realistically represented only by stochastic
mathematical models. Analyses that have 1used actual recorded
data of oparticular earthquakes are equivalent to deterministic

approach, and cannot be wused to develop response statistics.



Although the deterministic aspects of these analyses become less
restrictive when effects of a large number of past earthquakes
are studied, the opportunity to investigate response for a

spectrum of reconstructed earthquakes is limited by the

relatively small number of &existing records of strong motion

earthquakes.

One thus is led to choose stochastic model representations
of these types of random inputs and responses as an appropriate
alternative approach. Numerous researchers have considered this
possibility (4, 27, 87, %4, 127, 59, 123, 150, 114), and research

continunes in this area,

Analysis of structural systems to seismic &excitations and
other natural hazard loadings, is not an easy task. The response
of structural systems to high intensity random loadings such as
strong ground shaking, often exceeds the elastic range. The
result is a highly nonlinear ©behavior due to yielding and
subsequent &energy dissipation through hysteresis. The imnelastic
response can be accompanied by strength and/or stiffness
degradation. The exact nature of the system degradation is a
function of structural materials and configuration which wvaries
with the type of structure. Degradation can be quite important
since it might lead to progressive weakening and total failure of
structures. Therefore, the dynamic analysis of thysteretic,
degrading structures under random excitation is a challenging
task and employing proper analytical tools in dealing with the

problem is essential.



The yielding behavior of hysteretically degrading structures
has been described by linear models by most researchers. This
simplified representation generally lacks the tractability
necessary for even approximate analysis under random excitation.
Other proposed hystereses, such as smooth hysteresis models, do
not take into account hysteretic loop pinching behavior
associated with many structural systems., To the knowledge of the
author, no work has been done for developing a mathematical model

for random vibration analysis of loop pinching hysteresis.

Another problem of considerable engineering interest is the
nonzero mean response of Thysteretic systems wunder random
excitation. Praﬁtically, no work has been donme on the nonzero
mean response of hysteretic structures. Recently analytical
procedures to allow response analysis of smooth hysteresis models
under mnonzero mean excitation have been developed by Baber (12).

This work was based on the approach introduced by Spamnos (127).

It 1is the objective of this thesis to study the problem of
Zzero and nonzero mean response analysis of hysteretic structures,
with general Thysteretic behavior, subject to random vibration.
The stochastic model considered for the base excitation here is a
temporally modulated Gaussian white mnoise which has pertinent
properties of seismic excitation. In Chapter 2, mathematical
bases for developing general hysteretic models will be discussed
and several nonlinear hysteretic models with the capability of
reproducing loop-pinching and general deterioration are

introduced. In Chapter 3, techniques for nonlinear random



vibration are discussed and a generalized equivalent
i{inearization method as extended by Baber and VWen (15) is
reviewed. A linearized form of the general hysteresis models of
Chapter 2 is presented which has been derived without
Krylov-Bogoliubov assumption. Zero mean numerical studies on the
proposed models and nonstationary stochastic response of the
proposed nonlinear models subject to temporally modulated
Gaussian white noise is also presented. In Chapter 4, the
problem of the nonzero mean response of hysteretic systems under
random excitation is discussed and the application to general
hysteresis models is presented. Numerical studies which verify
the capabilities. and range of apllicability of the ©proposed
general hysteresis models, comparison of response statistics from
linearized model and Monte Carlo simulation, for both zero mean
and nonzero mean problems, have been included in the
corresponding chapters. In Chapter 5, conclusions, remarks and
suggestions are given. General theory and background for each
individual topic has been included in the <content of each

chapter.



MATHEMATICAL MODELS FOR STRUCTURAL HYSTERESIS

2.1- Introduction:

For years structural engineers have nused differential
equations to predict the ©behavior of structures subjected to
dynamic loadings. In case of linear elastic behavior, the form
of the differential equation has been accepted and the parameters
in these &equations, representing physical properties, have by
various means been determined . The equations, along with the
parameters they «contain, constitute a mathematical model of the
physical structure in question. The results of the studies on
the dynamic response of linear systems have even gradually been

incorporated into structural design procedures and codes.

In <case of high excitations, such as strong ground motion,
the response of structual systems exceeds the elastic range. As
a rTesult of yielding, the structure dissipates energy through
hysteresis. The inelastic response <c¢an be accompanied by
strength and/or stiffness degradation. The exact nature of the
system degradation is a function of the structural materials and
configuration which varies with the type of structure.
Degradation can be gquite important since it might lead to
progressive weakening and total failure of structures. To
predict this kind of response, mathematical models are needed
that can predict the energy absorption, hysteretic response, and
the resulting system evolution through degradation. Constructing

such models requires in general, the deployment of systematic



modeling procedures.

.2- Models for General Structural Hysteresis:

Ideally, the analytic modeling of 1inelastic behavior of
structural systems requires a force—-deformation relationship that
can produce the true behavior of the structure at all
displacement levels and strain rates. This is a difficult
requirement in view of the number and variety of parameters which
contribute to the hysteresis of different types of structural
systems. Moreover, complete derivation of material models which
can adequately predict different types of stress states for any
desired material and <configuration, redquires more information
than is currently available on the dynamic behavior of materials
(104, 124, 107, 23, 69). Hence, in practice, simplified
hysteresis models are musually selected to estimate dynamic
response in the inelastic range. This is particularly true when
response to stochastic excitations is required. Otherwise Monte
Carlo simulation with a large number of sample functions may be

the only feasible solution algorithm.

A number of approximate structural hysteresis models for
inelastic dynamics, under deterministic or random excitation,

have been developed.

The nusual method of <characterizing the ©behavior of a
structural member wunder dynamic loading, for example cyclic
loading, is to specify its force-deformation relation omn first

loading, <called the skeleton curve, supplemented by a rule to



obtain unloading and reloading curves., The bilinear model of
classical plasticity which exhibits a sharp transition from
elastic to plastic state and linear hardening, is perhaps the
simplest and most widely used model for inelastic behavior of
structural elements wunder cyclic loading or high intensity
excitation. Kinematic and isotropic hardening are two examples
of rules to obtain umwnloading and reloading. Bilinear model has
been used by many researchers in the analysis of dymnamic response
to complex deterministic as well as random excitations. Caughy
(28, 29, 30), Iwan and Lutes (72), Kobori et al (85, 86), Husid
(62), Goto and Temura (51), Lutes and Takemiya (95), Roberts
(118), Lutes and Lilhanand (94), Iwan and Gates (70),
Tansirikéngkol and Pecknold (140), Lutes (92), Popoff, jr (112),
Iyengar and Dash (77), Mitani et al (102), Lutes amnd Jan (93),
and Aszno and Iwan (9), have wused this model for different

classes of problems and for obtaining approximate solutions in
random vibration analysis, mtilizing various techniques such as
Gaussian closure and equivalent linearization, Additional
studies have been performed on -the stochastic response of
elasto-plastic yield model, which is a special case of ©bilinear
yield model, to seismic excitation by Kaul and Penzien (83),
Penzien and Liu (110), Karnopp and Brown (81), Karnopp and
Scharton (82), Liu (89), Vanmarcke and Veneziano (147,
Grossmayer (54), Vanmarcke (145), Chopra and Lopez (37), and
Yamada and Kawamura (153). The bilinear model fails to represent
actual material behavior and is computationally inefficient

because it requires omne to keep track of all stiffness transition



points.

Other types of hysteresis models thave also been used in
analysis of deteriorating and nondeteriorating systems. For
nondeteriorating systems, in an effort to simulate a smooth
transition into the plastic range, many researchers have proposed
algebraic expressions to be used as skeletom curves. The most
well known example of this class is probably the Ramberg-Osgood
relationship used by several researchers to predict inelastic
response of structural systems (99). The Ramberg-Osgood model
coupled with Masing's rule for unloading and relocading, give a
continuous transition from elastic to inelastic states., This
model however, sﬁffers from many limitations., For example, it is
difficult to include stiffness degradation. From a computational
viewpoint, it is a tedious model to wuse, because it specifies
deformation as a function of force and therefore, determination
of force given deformation requires iterative techniques. Also
the model as presented originally 1is not suitable for random
excitations (23)., Jennings (80), Iemura (63) and Iwan (67) have
proposed other smooth models which are basically variations of
Ramberg-Osgood model. A number of researchers proposed smoothly
varying hysteresis models. Iwan (65), proposed a smooth model
based upon a series of parallel <coulomb and spring elements.
Bouc's (26) hysteresis was used for analysis of single degree of
freedom systems subjected to white mnoise excitation by Ven
(150, 152).

Consideration of system degradation has also been

investigated by numerous researchers. This introduces further



complications into the modeling of hysteresis, because it is
necessary to choose an index of structural response which is
indicative of the rate of degradation and the extent of
nonlinearity of the response. This index is not a unique one,
however, it should reflect the duration and severity of the
nonlinear response., Gates (47), and Ywan and Gates (72) studied
the seismic respomse of Iwan's model to specific sample
earthquakes. Takeda et al (139) proposed a trilinear model for
hysteretic ©behavior of reinforced <concrete structures. The
degradation in this model is governed by the maximum
displacement. Penzien and Liw (110), and Liw (89) obtained
approximate response statistics for a single degree of freedom
system trilinear model by Monte Carlo simulation. Temura (63)
proposed a degrading bilinear model based on low cycle fatigue
damage ratios and obtained mean square response statistics under
filtered white noise by a variation of equivalent linearization.
Shih and Lin (122) used a2 functional <relationship proposed by
Hata and Shibata to study vertical seismic load effect on
hysteretic columns. Many other researchers in the response of
hysteretic systems to random or complex deterministic excitations
have developed other types of piecewise linear or smoothly
varying hysteresis. Ozdemir (107) developed a model for
describing hysteretic behavior of nonlinear elements. This model
was used by Ozdemir (107) and BPBhatti and Pister (23) for
nonlinear transient dynamic analysis of frames with energy
absorbingdevices. Baber and Wen (15, 14) developed an extension

of Bouc's (26) model to represent degrading systems. This model
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ijs a smooth hysteretic model capable of representing stiffness,
strength or combined degradation as a function of total energy
dissipated by hysteretic action. The model was applied by Baber
and Wen (15, 16) to analyze multidegree of freedom shear beam,
and discrete hinge structures subjected to random excitations.
Sues et al (136, 137) wused Baber and Wen model for seismic
performance evaluation of buildings but with maximum deformation
incurred in each cycle, instead of energy dissipation, as the
index for measuring degradations. Ang and Wen (6) used Baber and
Wen model for oprediction of structural damage wunder random
earthquake excitations.

Most of the available hysteresis models are wunable to
represent more complex forms of yielding behavior in which the
hysteresis loop associated with successive cycles of loading show
a progressive decrease in stiffness and energy dissipation as
well as pinching Tbehavior. Experimental investigations Thave
demonstrated the wexistence of such deteriorating and pinching
behavior. Such behavior may be associated with high shear loads
and slippage of longitudinal reinforcement in reinforced concrete
structures, with the behavior of cross braced steel frames, with
cyclically loaded piles, or repeated loading of timber diaphragms
to cite a few cases. Numerous examples of this type of behavior
are reported in the literature (3, 7, 10, 21, 22, 51, 58, 64, 98,

101, 102, 104, 105, 108, 115, 124, 137, 141-143, 147, 152, 153).

Hysteresis loop pinching models which have been previously
proposed, have been simple, but relatively inaccurate and

constructed largely empirically (10, 17, 18, 45, 101, 121, 134,
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153). Such models do not appear promising for random vibration
(13), since they typically require several —rules for their
description which are not easily stated ir a form compatible with

available solution methods.

2.3—- Proposed General Structural Hysteresis Models:

In this study three general degradation models are proposed.
The first two models dincorporate the previous smooth system
deteriorating element by Bouc as modified by Baber and Wen (BBWVW)
in series with slip-lock elements developed by Baber and Noori
(BN) and Noori aand Baber (NB). The third model is a single
element pinching 'model (SEP) developed by modifying BBW smooth
hysteresis element. In all three cases, the form of the model
has been <chosen to be suitable for equivalent linearization for

random vibration analysis.

In this chapter, the mathematical basis for the development
of these models is discussed. A thorough deterministic dynamic
response study on the <capabilities of the models, types of
degradations obtainable wunder c¢yclic loadings, deterioration
parameters, etc. is thern presented. Behavior of the models

under random vibration is discussed in Chapters 3 and 4.

2.4~ Mathematical Basis for Developing Pinching Models:

The nonlinear system under study is a single degree of

freedom system. The governing differential equation of motion is

U+ 2fegu + qlu,t) = a(t) [2.11]
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where 'u’

is the displacement of the mass relative to the base,
a(t) is the input base acceleration, and q(u,t) is the restoring

force given by

- 2 _ 2, _
q¢ = a0 "u + (1 a)woz 9; + ag [2.2]

@ is the ratio of post-yield/pre-yield stiffness. 'z' is the
hysteretic restoring force which will be presented in detail for
each of three proposed models in the following sections. The
first component of the restoring force, q is the 1linear
post—yield restoring force, and the second component, Qg is the

hysteretic restoring force.

2.,4.1- 8lip-Lock Pinching Models:

In this section the mathematical basis for the development
of two slip-lock models, Baber—-Noori model (BN), and Noori-Baber
model (NB), will be discussed. A single degree of freedom system

for these two models is shown in Figure 2.1.

The Baber-Bouc-¥Wen (BBW) smooth hysteresis model is capable
of reproducing a wide variety of inelastic, hysteretic, degrading
behavior with a wide range of cyclic energy dissipation (14, 15,
27, 136, 137). For the two slip-lock models wunder study, the

hysteretic restoring force model of BBW is presented in the form

2= WAy ip faglfs | V2 ¢ sy [z ] M10/m 7.3

'n' determine the hysteresis shape, and A

where B, y, and
controls the tangent stiffness. The ©parameters A, ¥ and n are

varied as a function of the response history to introduce system
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deterioration. In this work the dissipated hysteretic
energy, e(;) is considered as a measure of response duration =and
severity, as in the work by Baber and Wen., The degradation
parameters A,¥ , n and other deteriorations parameters will ©be
defined as functions of dissipated energy. The deterioratiom is

chosen as
[2.4]

where AO’ ng: and ¥ 4 are the initial values of the degradation
parameters, and-§,, 8ﬂ' and 8, are parameters which control the
rate of degradation of initial tangent stiffness, stiffness, and
strength respectively, Here these rates are chosen as constants.

Also in Equation [2.4]

1

T, u '
F e (1-a)e 2T sdu
f‘l quu = (1 (1)(1)0 fnc Zdu‘

@
it

Q

i

(1—a)m02ft:f (z.w)dt [2.5]

Detailed study of the BBW model is ©presented in Referemces

(14, 15, 150).

Equation [2.3] is one of example of a number of hysteretic

models which take the general form
z = glu, z, t) [2.6]

models of this form have been found to be quite useful in random

vibration analysis, ©because of their expression in a compact
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mathematical form, Generally, the functions will be piecewise

differentiable, at best.

In order to add hysteresis loop pinching capability, a time
dependent slip-lock element as shown schematically in Figures 2.1
and 2.2(b) is incorporated in series with the BBW smooth
hysteresis element as given by Equation [2.3]. The mathematical
form of the "slip-lock” element for each of the two models BN and

NB will be as follows.

2.4.,1,1- Slip-Lock Element in Baber—-Noori Model:

The slip—lock element in BN model is given by the

differential equation

v, = £(2). 2 [2.7]

where ! is the restoring force defined by Equationm [2.3].

Equation [2.7] can be written in the form

du,/dz = f(z) [2.8]

Equation [2.8], which defines the behavior of the slope of the
function in Figure 2.2(b) suggests the following properties for

the function f(z)

(a) £f(z) is an at least piecewise continuous function
which is independent of the sign of z and u,.
(b) f(z) is zero, or nearly zero everywhere, except

within a small region near z=0, where it has a sharp

peak as shown in Figure 2.3. In the 1limit, as the
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stiffness during slipping goes to zero, f(z)
approaches the Dirac delte function. In practical
situations, a large ©but finite peak value is
expected.

For practical modeling purposes, it is convenient to choose f(z)

of the form

f(z)

2a.g(z) [2.9]

where g(z) is chosen to have an area of 1, in order to allow a
total slip of '2a’, i.e., it is 8 continuous function
approximation of Dirac delta function. Thus, it is seen that
g(z) has the form of a unimodal probability density function,
symmetric about z=0. The magnitude of slip 'a' is computed, as
are the other deterioration parameters, as a function of the

response history. Herein, 'a’' is given as
a =% ¢ [2.10]

vwhere 53 is a parameter which controls the amount of pinching as
a function of the energy dissipated. Any function with
properties discussed above can be considered as a suitable model

for g(z). 1In the present work the Gaussian density function,

v, = 2a/(V2n o).expl- 22/ (269} 2 [2.11]
is used for mathematical tractability. A small valuve of ¢ in

Equation [2.11] <creates the sharp peak needed by the pinching
model. FEquation [2.11] will give a slip of '2a’ as 'z’ <changes

sign., For more general degradation, parameter o can be taken as
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G = 0, + 5 e [2.12]

In the present study o is considered as a constant parameter with

a small value relative to the ultimate value of z!', Equations

[2.11, ([2.31-[2.57, [2.71, [2.10] and [2.11] complete the BN

pinching hysteresis model.

2,4.1.2- Slip—-Lock Element inm Noori-Baber Model:

In the second proposed model, instead of a differential
equation form, the slip-lock element is defined in a relatively

simpler analytic form as follows

Uy = A.arctan(z/E) [2.13]

where 'z' is defined by Equationm [2.31.

In this model, parameter A controls the slipping magnitude
kand the severity of pinching, and & is a small parameter which
controls and is a measure of the rate of change of the pinching.
The sharpness of pinching is controlled by this parameter. These
two parameters are defined as two linear functions of dissipated
energy as follows

A= Sks
§ = 8y + 8ge [2.14]

where ¢ is given by Equation [2.5]. Equations [2.1]1, [2.3],

[2.5], [2.13] and [2.14] complete the definition of NB model.

This element has a behavior very similar to the BN slip-lock

element. However, Dbecause U, is given directly as an

algebraic function of z, it is more tractable mathematically.
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- This results in reduction of the number of operations involved
for numerical studies in deterministic case, Moreover, in random
vibration analysis, the mathematical form of the model is
snitable for approximate analysis and its relatively simple form
reduces the simulation costs. Comparison of the two models is
presented in numerical studies in this chapter as well as in

random vibration analysis of the proposed models in Chapters 3

and 4.

2.4.2- Numericsl Studies on the Behavior of Proposed Series

Models:

In order to investigate the <capabilities of the ©proposed
slip—lock series models in representing hysteretic pinching as
well as general degradation behavior, ranges of the 'parameters
for the control of pinching and also for <comparing the
performance of each of the two slip~lock models, several studies
were conducted. The numerical studies reported in this section
were undertaken to verify the behavior of the models under cyclic
and general 1loadings. Initially, it was necessary to develop
tractable schemes for mnumerical simulation of the mnonlinear
systems by digital computer, both for verification of the model
behavior under general loading, and for subsequent Monte Carlo

simulation during random vibration analysis,

Consider the governing equations for the two series models.
It can be noted that for the BN slip-lock model, Equations [2.3]
and [2.11] contain derivatives on the right hand side which are

of the highest order of the particular variable involved. If it
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is assumed that u, v, and wu, all have the same algebraic sign
due to the absence of any intermediate mass between the smooth
system and slip-lock elements, thenm this problem is easily taken

care of. In the case of NB model

I

u [(ae)/ a2+ 2H1 2 [2.15]

due to explicit form of the integral the difficulties existing
with the numerical integration of the BN model will =not ©be

encountered. Noting that for these two models

u = u, + u (a)
1 2
or . [2.16]
u2 = 1u - ul (b)
and setting up sgn(ﬁl) = sgn(u) in accordance with the

assumption, will give the following relation for BN model wupon

substitution of [2.3]1 and [2.15] into [2.10]

o= /71 v 20/ (Vame) cexp(- 22/207).
(A -vIp sgn(i) [z | (2705 4 oy 2] 21 [2.17]

For NB model, substitution of [2.3] and 1[2.15] into [2.16]

results similarly

8= G/m/fr s apral s
{A -vI[B sgn(u)lz ln—lz + 7lzln]}B [2.18]
Once u is obtained in this manner, it is straightforward to

1

obtain U, and 1z, in the case of BN model, by substitution into
[2.16] and [2.3]1, respectively. For the NB case, =z <can be
obtained in the same way, but u, is easily obtained directly from

[2.15]. Although Equatioms [2.17] and [2.18] contain a
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- derivative of wu it is not the highest order derivative of u in
the problem, so numerical values are available at each time step.
Thus, Equations [2.11-12.51, [2.16] and [2.17] for the BN model
and [2.11-12.5]1, [2.16] and [2.18] for the NB model form two sets
of simultaneous ordinary differential <equations which are
equivalent to the original sets but more suitable for numerical

purposes.

It should be mentioned here that by substituting Equations
[2.17] or [2.18] into Equation [2.3] a single element pinching
model can be obtained but the resulting equations will have a

very complicated form and are not mathematically tractable.

The excitation a(t) in Equation [2.1] can be any specifiable
function. For the purpose of model verification in this section,
a(t) will be taken as a Gaussian white noise, Discussion on the
input mnoise with regard to the random vibration analysis will be

presented in the next chapter.

In the studies reported in this chapter and in this work,

degradation of BBW system parameters, A, ¥ and 5 will not be

considered, except for a2 number of  examples to show the
capability of models in reproducing combined strength and
stiffness degradation as well as pinching behavior. As an

example on the capabilities of BBW smooth model, two plots of the
response of a SDOF system of this model have been presented in
Figure 2.4, Figure 2.4 (a) illustrates ¢ombined stiffness and
Strength degradation wunder a cyclic displacement with amplitude

of 2.5, Degradation rate is slow for this case and parameter
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values of SA = Sﬂ = 8, = 0.004 are considered. Figure 2.4(b)

shows similar behavior with higher rate of degradation and with

parameter values of SA = Sﬂ = 8§, = 0.01. More examples on
degradation of these parameters as well as capabilities of BBV
system have been reported extensively elsewhere (15, 136). Here,

the emphasis will be on the study of pinching behavior of the

proposed models.

Numerical Studies on the

In the studies for the BN model, only the parameter 'a’ was

degraded and 'o’ was kept as constant.

First to verify the type of degradation behavior obtainable
by this model, behavior of a single degree of freedom system

model wunder «cyclic displacement T, was obtained by numerical

integration with parameter values AO =1, B =y = 0.5, and o =
0.08. The deterioration parameter Sa = 0,1 was chosen, with all
other parameters taken as constant. With ul(t) a known

*

sinusoidal function, u,, ; and © all follow from Equationms [2.31,
[2.111 and [2.16]1, following differentiation of v (t).
Figure 2.5 shows the response of the smooth system, slip-lock and
series models, which comprise the BN model. To verify the
behavior of the nonlinear differential equation set
[2.11-[2.57,[2.10],12.15] and [2.16], and also to illustrate more
fully the effect of varying 53 and o, several single sample plots
of z versus u were obtained under white‘noise excitation. Plots

of runs for several <cycles of model for a 1low pinching

rate, 5a = 0.1 and ¢ = 0.1, and high pinching rates
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"where Sa = 0.5 and ¢ = 0.1, 8 = 0.5 and o = 0.2 are shown in
Figures 2.6{(a)-(¢c). 1In all cases shown, the viscous damping
ratio ¥ = 0.1. The plots shown in Figure 2.6 are fairly rough,
since they are based on a limited number of data points, but the
anticipated ©behavior is observed. It can be seen that severity

of pinching increases by increasing Sa, and the sharpness of

pinching varies inversely with o.

Figure 2.7 illustrates the «capability of this model in
reproducing pinching behavior wunder a cyclic displacement, as
given above, along with combined strength and stiffness
degradation. The two cases shown in Figure 2.7(a) and 2.7(b) are
for a moderate pinching rate with the pinching parameter values
of %y = 0.07, 8 = 0.3, and 86 = 0.009, The stiffness and
strength degradation rates for the two cases are similar to those
used in Figure 2.4(a) and (b) respectively. To demonstrate a

more general pinching behavior o has been set to vary according

to Equation [2.1217.

2.4.2.2- Numerical Studies on the Noori-Baber Model:

A similar study for the verification of the capabilities of
NB nonlinear pinching model was performed. Behavior of a single
degree of freedom system was studied to investigate the
deterioration obtainable by the NB model as well as to compare
its capabilities with the ©preceeding BN model. Here, the
deterministic studies and comparisons are reported, Comparison
under random vibration analysis will be discussed in next

chapters.
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Similar to previous <case, T, was set to vary cyclically.

rz! can be evaluated from

with ul(t) a known function, z
Equation [2.3] following differentiation of u,. In this case,
uz(t) is directly evaluated from Equation [2.13] and uw, is
obtained following integration of =z, u then follows from
summation of uy and u,. Because of the simple analytic form of
T, in Equation [2.13], the number of variables to be integrated
in this case, is less than the one for BN model. Therefore,
fewer operations are involved for integration inm each time step.

This reduces the computation cost as compared with preceeding

model,

Parameter values of A0 =1, B =y = 0.5 were considered
for BBW component in this case. Fignre 2.8(a) and (b) show two
plots of the response of slip-lock elemnt in this model with low_

and high degree of pinching sharpnesses respectively. This model

‘in series with BBW smooth element comprise the 'NB model, The
pinching parameters considered for these plots
were, §0 = 0.05, &5, = 0.2, and 85 = 0.0 for Figure 2.8(a),
and §O = 0.01, 35, = 0.2, and 8§ = 0.0 for Figure 2.8(b). In

Figure 2.9 the behavior of NB model under a <c¢yclic displacement
similar to the one wused in ©preceeding case, is illustrated.
Figure 2.9(a) with parameters € = 0.35, 8, = 0.2, and 8§ = 0.0
shows a low pinching case, whereas Figure 2.9(b) with parameter
values of §0 = 0.125, SL = 0.5, and 85 = 0.0 represents a high
Pinching rate behavior of this model. For verification of

behavior of nonlinear system defined by differential equations

(2.11-712.51, [2.13], and 1[2.151 and to study the effect of
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1 1

z versus 'a’

varying A and § several single sample plots of
were obtained wunder white noise excitation. Plots of several
cycles of these responses are illustrated in Figures 2.10(a)-(4d).
These ©plots are for the <cases with low pinching sharpness,
where §0 = 0,3, with two different rates of low and high pinching
severity of 8k = 0.2, Figure 2.10(a), and 8x = 0.5,

Figure 2.10(b). And also for high pinching sharpness

where EO = 0,15, with two different rates of low and high

pinching severity of & 0.2, Figure 2.10(c¢c), and 5k = 0.5, for

A
Figure 2.10(d). As these plots show, the severity of pinching in

this model increases with A and the sharpness of pinching varies

inversely with &.‘

To show the general hysteretic behavior <capability of NB
model in representing pinching as well as stiffness and/or
strength deterioration, behavior of a SDOF system of the model
under cyclic displacement was conside?ed where BBW parameters
were allowed to deteriorate. Figure 2,11(a)-(d) show a combined
strength and stiffness degradation accompanied with pinching
behavior. Figure 2.11(a) and (b) are for low degradation rates
of BBW element with 8ﬂ = 8§, = 8y = 0.004, and for pinching
parameter values of EO = 0.05; 8A = 0.2, Figure 2.11(a), and a
sharper pinching with §0 = 0.1, Sk = 0.2, Figure 2.11(Db).
Whereas Figures 2.11(c) and (d) are for higher degradation rates
of BBW with BA = Sn = 8, = 0.001, and with pinching parameters

for two cases of low and high pinching sharpness similar to those

in Figure 2.11(a) and (b).
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2.4.3- B8ingle Element Pinching Hysteresis Model:

The third model, as shown schematically in Figure 2.12, is
an extension of BBW hysteresis model which has been generalized
such that it can reproduce loop—pinching hysteresis as well, In
order to incorporate loop-pinching capability in the BBW model,
the following modification is considered for the hysteretic

restoring force egquation

4

P = h(2).(ad - o la llz] D2+ yi]z]m13/9 [2.19]

The mathematical approach for the development of a suitable
h(z) function is based on the study of the behavior of the slope
of restoring force, i.e., dz/du versus 'z’', for the two proposed

slip-lock models introduced in preceeding sections.

Consider first the behavior of dz/du vs 'z’ for the original
smooth element hysteresis of BBW. A plot of this type has been
shown in Figure 2.13. In this discussion consider the case n =
1. Figure 2.13 represents a nondeteriorating case. In the BBV
model, three parameters 1, ¥, and A are defined to incorporate
stiffness, strength or combined degradation respectively, The
effect of variation of these three parameters on the dz/du versus
'z!' oplot, as z/zmax changes, have been shown in Figure 2.14. As
can be observed, in each «c¢ycle degradation is introduced by
reduction of initial value of slope, Figure 2.14 (a), ultimate
value of z, Figure 2.14(b), or both, Figure 2.14(c). For all

three <cases in Figure 2.14 a cyclic displacement with amplitude

of 2.5 was used. 1In order to incorporate pinching ©behavior as
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‘well, it 1is necessary to establish an additional variability as
shown in Figure 2.15. In the <case when mno other degradation
occurs, the effect of pinching on the variation of dz/du vs 'z’
is that, as 'z' <changes sign, dz/du decreases to a <certain
desired level, and +then starts increasing nuntil it becomes
asymptotic to the original slope in the non-pinching smooth
hysteresis case. The extent of slope decrease value of 'z’ at

which the initial slope is effectively regained depends on the

amount and rate of pinching in the model.

To verify that the suggested wvariation of dz/du does,

! !

indeed, occur, consider the dz/du vs z' behavior plots for
slip-lock models introduced earlier. Figure 2.16 shows this plot
for a SDOF BN model subjected to a cyclic displacement with
amplitude of 2.5, Figure 2,16(a) and 2.16(b) represent the two
cases of low and high pinching respectively. The slope behavior
§hown in Figure 2.16(b) corresponds to the loop-pinching behavior
illustrated in Figure 2.5(c). In these two cases, parameters 'a'
and o both vary according té Equations [2.10] and [2.12]1, with
the parameterr values of o = 0.07, aa = 0.1, and 86 = 0.009,
for Figure 2.16(a), and 0 = 0.07, 8, = 0.4, and 8 = 0.03, for
Figure 2.16(b). Figure 2.17(a) and (b) represent similar study
for NB model underx the same input displacement,
Parameters A and ¢ follow the Equation [2.14], Pinching parmeter
values for each case are A, = 0., 8, = 0.1, §0 = 0.1, and
8§ = 0.0, for Figure 2.17(2), and Ay = 0., 5, = 0.4,
§0 = 0.02, and 8§ = 0., for Figure 2.17(b). These plots have

been obtained by considering no deterioration for BBW component
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of the models. Slope behaviors shown in Figures 2.17(a) and (b)
relate to the <c¢yclic behavior of NB model as illustrated in

Figures 2.19(a) and (b).

From these plots it is ©possible to infer the desired
properties of the slope variation which will be the basis for

developing a suitable fumction h(z).

(a) In the initial (starting from =zrest) 1loading, no

pinching occurs.

(b) In the first pinching cycle the value of dz/du drops
sharply mnear z = 0. In the following cycles the
reduction slows down, but the range of 'z' for which

a significant decrease in stiffness occurs spreads.

(c) In each c¢ycle slope is low mnear 1z = 0, then
increases relatively rapidly as 'z’ increases. This
rapid increase slows as the original slope is
approached. As *z? finally approaches ultimate

value, the slope sharply decreases and reaches zero

at the appropriate Z,ax * Which may or may not

change with time.

(d) The slope reaches the non-pinching slope and 'z’
should reach the same unltimate value even at thigh
pinching rate although large displacement may be
required to reach =z max -

Considering these observations and criteria, h(z) is taken as a

function which has a small, but nonzero value near z = 0., but
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approaches 1 as z increases., How rapidly h(z) approaches 1
with increasing =z depends upon the desired amount of pinching.

A simple mathematical form with the desired properties is
h(z) = 1 - L exp(-z2/ sz) [2.20]

In this equation {; and €5 can be established so that a plot
of dz/du vs 'z computed from Equation [2.19] will have a form
similar to the slip—-lock models plotted in Figure 2.16 and 2.17.
In Equation [2.20] C[is a parameter that controls the magnitude
of initial drop in slope. This parameter should vary such that
the magnitude of initial drop imcreases relativeiy rapidly during
the beginning cycles but approaches a maximum value C[( 1 after
several cycles. &y is introduced to control the rate of <change
of the slope. For the <current work, §;, is expressed as an

exponential function of dissipation energy
8 =51 - expl-pel) [2.21]

so that at the beginning cycles there is a noticeable drop in the
magnitude of initial slope but as time progresses, the rate of
drop will decrease. Cz is established in such & way that it is a
function of both energy dissipation and Q, and is given, for the

present work by

o= &L + ) [2.22]

where

£ = &y + 8, [2.23]

Initially, when the energy dissipated and therefore CD is zero,
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CZ will have a nonzero starting value. In these equations, g is

the dissipation energy as given by Equation [2.5], 'p’' is a
constant parameter that contributes to the control of the rate of
jnitial drop in slope, Cgois a parameter that is a measure of the
total slip, & also contributes to the control of the amount of
pinching and A is a small parameter that <controls the rate of
change of CZ as ggchanges. Figure 2.18 show the variation of a
sample functiom of Ci versus energy and §2 as a function of Cg
for the single element pinching model subjected to a cyclic
displacement. Both plots have ©been obtained under a cyclic
displacement with amplitude of 2.5. Pinching parameter values
used here are Ci = 0.8, p =1, 60 = 0,2, 8§ = 0.1, and A = 0.06.
In Figure 2,19 the effect of the variation of gl on pinching is
plotted where gz is kept constant. As can be seen, g‘ controls
the amount of initial drop in slope, and therefore the rate of
pinching, in successive <cycles. For this plot wvalues of
€,0= 0.7, p = 0.06, and gz = 0.3 were used. Figure 2.20
represents the variation of {, when {; is kept constant. This

figure shows that CZ controls the rate of <change of slope

variation in each cycle, as the slope approaches its original

level. It also provides a smooth behavior for the change in
slope and prevents a sudden drop in value of 'z’ before 'z' gets
to ultimate level. Parameter values of

¢ =o0.s, £y = 0.2, 8, = 0.05, and A = 0.06 were wused to plot
this figure. Figure 2.21 illustrates the variationm of dz/du vs
’

z' for the single element pinching model subjected to a <cyclic

displacement as described for preceeding plots. In this figure,



29

ct and Cz both vary according to Equations [2.211-[2.23] and for
the two cases of low and high pinching rates. In Figure 2.21(a),

low pinching case, parameter values of Cm = 0.65,

=1, &, = 0.2, 5§, = 0.01, and A = 0.06 are used, and for
P 0 ¢

Figure 2.21(b), high pinching case, values of Clo= 0.85,

p = 1, 60 = 0.2, 8§ = .03, A = 0.06 are considered.
Loop-pinching behavior of this model uwnder «c¢yclic displacement,
corresponding to these two slope behaviors, are shown in
Figures 2.23(a) and (b) respectively. A comparison between

Figure 2.21(a) and (b) and Figures 2.16 and 2.17 shows similarity
in slope behavior for the single element pinching model and the
two series models and therefore indicates the capability of this
model in'reproducing siﬁilar pinching behavior., Further detailed
comparison between this model and the other two proposed models
is presented in numerical studies of the model in this chapter

‘and in random vibration analyses using the proposed models.

2.4.4- Numerical Studies on the Single Element Pinching Model:

In order to verify the capabilities of the single element
pinching model (SEP), namerical studies were performed. The
study presented on the similarity in the behavior of dz/du vs 'z’
for this model and the two slip-lock models indicated that this
model would be <capable of reproducing pinching behavior in the
same manner as the other two series models, Following studies
illustrate and verify this behavior as we;l as advantages of this
model as compared with the other two proposed models, Further

studies and comparisons under random vibration analysis will be



30

jontroduced in next chapters,

To investigate degradation behavior of a single degree of
freedom system of this model, a known sinusoidal function with an
amplitude increasing with time, as shown in Figure 2.22, was used
for u(t). The right hand side of equation for restoring force,
[2.181, contain E, but u is available at time t as a result of
the numerical integration. Alternately, under cyclic
displacement, a program of uw(t) values can be differentiated to
provide values of o. Thus numerical values are directly
available at each time step for the SEP model. The analytical
complexity is hence reduced by the SEP formulation as compared
with either of the two series models,. This reduces the
computation time involved and is one of the advantages of the SEP
model. The significance of this feature is better understood and
is more valueable inm the random vibration and statistical

analysis, as will be seen later.

In the studies «reported here, parameter values of
AO =1, B =y =0.5 were considered. Figures 2.23(a) and (b)
illustrate the loop pinching behavior of SEP model wunder the
cyclic displacement shown in Figure 2.22. Figure 2.23(a)
represents a low pinching rate ca;e with pinching parameter
values of Cio = 0.8, » =0.05, £, = 0.2 and 5, = 0.01.
Figure 2.23(b) shows a high pinching rate behavior with
parameters §;,= 0.95, A = 0.3, &, = 0.2, and 8¢ = 0.01. For both

cases a viscous damping ratio of 1% was considered.

To verify the ©behavior of nonlinear system defined by
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Equations [2.5] and [2.19]1-[2.23] and to study the effect of

varying pinching ©parameters, several single sample plots of 'z’
vs u were obtained under white noise excitation. Plots of
several cycles of these responses are illustrated in

Figures 2.24(a) and (b). Figure 2.24(a) shows a case for 1low

pinching rate, with parameter values Clo = 0.8,
2 = 0,05, &O = 0,2, and 8§ = 0.01, whereas Figure 2.24(b)
represents a high pinching <case with parameter values of
§f0=0.95, A= 0.3, 50 = 0.2, and SE = 0,01. As these plots
indicate, severity of opinching increases with C( and the

sharpness inceases with {,.

The general hysteretic behavior of the SEP model and its
ability to reproduce pinching combined with stiffness and
strength degradation, was verified by considering the behavior of
a SDOF system of this model, as shown in Figure 2,12, under
éyclic displacement as shown in Figure 2,22, Figure 2.25(a) and
(b) illustrate this behavior. In Figure 2.25(a), a plot with low
degradation rates for strength and stiffness with parameter
valpges of SA = an = &, = 0.001 is shown. And Figure 2.25(b)
represents a strength and stiffmess deterioration with higher

rate and with parameter values of 6, = §_ = &, = 0.004. For both

A n

cases a high pinching rate was considered with pinching parameter

it

values of § = 0.9, &, = 0.2, A = 0.06, and 8¢ = 0.01.

Studies performed on deterministic behavior of the SEP model
indicate that the model is very well <capable of reproducing

‘various types of degradation behavior. Further studies on the



three proposed models as well as comparison of
responses of the models will be presented

chapters.
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the statistical

in the following
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RANDOM VIBRATION OF PROPOSED HYSTERESIS MODELS

3.1- Introduction:

Basically three elements are involved in the analysis of the
response of nonlinear dynamical systems to stochastic
excitations., The first of these is to obtain mathematical models
that provide the best representatives for particular materials
and configurations. Such models, however, generally lack the
tractability necessary for even approximate analysis under random
vibration, except by Monte Carlo simulation (MCS),. Instead of
such specialized material models, researchers in random vibration
analysisi or response to complex deterministic excitations have
developed simplified models for hysteresis and degradation, A
thorough review of the hysteresis models used in random vibration
studies as well as complex deterministic studies was presented in
the preceeding chapter, Several models capable of reproducing
general Thysteretic, degrading behavior were then proposed,
Random vibration analysis wusing the proposed models is the

subject of this chapter.

Besides the material model, the dynamic response analysis of
hysteretic degrading structures wunder stochastic excitation
requires excitation models which possess the relevant properties
of natural hazard excitations. Moreover, mathematical techniques
are mneeded which would allow practical response estimates to be
obtained. These two latter conditions can be fulfilled by proper

seismic excitation models and approximate solution techmniques,
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3.2— Stochastic Model of Seismic Excitations:

pralhes

Formulation of the stochastic model for seismic response of
hysteretic, degrading structures is complete when a proper
stochastic model for base excitation is described. This model
should possess the pertinent properties of seismic excitation.
Considerable work has been done in the area of describing seismic
excitation by random process models and the existing models can
be classified according to the characteristics of the ground
acceleration that is generated. In one group of models and
inputs wused, the aceleration is stationmary (27, 41, 42, 50, 53,
55, 59, 96, 106, 109, 119, 149) Gaussian white noise is the
simplest random process model of this group. Bycroft (27) was
one of the first to suggest the use of Gaussian white noise with
its flat ©power spectral density, Realistically earthquakes are
not stationary and do not have a flat power spectrum, However,
étationary white mnoise can be a satisfactory approximation for
wide band excitation, when the excitation spectrum varies slowly
in the vicinity of the =natural frequency of the structural
system, This will be used as an approximation for seismic
excitation in the <current study. Numerous researchers have
investigated ways of introducing temporal variation and frequency
dependence into stochastic excitation models, Several stationary
models that produce variable spectral density of ground
acceleration, consistent with the observation for real
earthquakes, have been proposed (35, 60, 91, 120). Yet other
models approximate nonstationary acceleration processes by

introducing time varying amplitude (4, 25, 49, 57, 79, 110, 112,
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113).

Nonwhite stationary Gaussian excitation is obtained by
passing a Gaussian white mnoise through one or more linear
filters. These models, which are simple both in <c¢oncept and
execution, allow convenient digital computer processing. Housner
and Jennings’ model (60) developed simulated ground acceleration
by filtering a white sequence of Gaussian random numbers that is
equally spaced in time. The process is statiomnary until
jnterrupted at an empirically predetermined time, Lutes and
Lilhamand (94) proposed that seismic excitations be passed
through a high pass as well as the customary low pass filter to

eliminate the unbounded drift which could otherwise occur.

Temporally modulated excitation <can be introduced in two
ways. One way is to multiply the white noise by a determimnistic
‘temporally varying function ©before opassing it through the
appropriate filters., The second approach is to multiply the
filtered wexcitation by +the temporal factor before being passed
through the system. Several such deterministic envelopes have
been proposed. The model of Amin and Ang (4) and the model of
Shinozuka and Sato (123) for example, filter a white input, and a
time multiplier funection is included to induce nonstationarity.
A significant innovation of the Shinozuka and Sato model was to
select a filter to insure that the variance function for the
associated ground velocity, im addition to ground acceleration,
would eventually tend toward zero, Liu (90) developed

nonstationary excitation models with time varying frequency
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content, based on Priestley’s concept of evolutionary spectral
density (110). A number of other authors have used and developed
nonwhite—nonstationary models (40, 47), simulation of probability
density of ordinates to simuiate random processes with various
probability density functions (24), or other empirical models
(61). Recently, several researchers have proposed ARMA based

models for seismic excitation (36).

Thus, a series of models are available for stochastic
representation of seismic excitation, For further detail on the
available stochastic models one may refer to Levy et al (87),
Spanos (128), To (141), and references (31, 35). 1In the present
work, only Gaussian process models will be considered. Filtering
and temporal modulation of the input noise excitation can be

easily incorporated into the model and are discussed elsewhere

(15).
3.3~ Approximate Techniques for Nonlinear Random VYibration
Analysis:

Formulation of mathematical models for random vibration of
hysteretic systems is not a difficult task, however, due to the
high order of nonlinearity involved it is difficult to solve
these models in c¢closed form. For this reason, the class of
nonlinear random vibration problems which are currently amenable
to exact solution is quite limited. The available exact
solutions are restricted only to simple systems under Gaussian
white noise wexcitations (83), and the construction of the exact

steady—-state probability density function for a limited class of
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nonlinear systems (33 ,34). Therefore, various researchers have
developed and employed approximate analytical technigues in the
investigation of yielding systems. At present several basic
approaches are wused in the study of stochastically excited
nonlinear systems., The se include formulation of
Fokker—-Plank-Kolmogorov (FPK) equation of the mnonlinear system
and wusing various techniques to obtain approximate solution of
this equation, the perturbation approach, normal mode approach,
and equivalent linearization. Qther techniques such as an
extended statistical 1linearizationm (19), and approaches for
computing the distribution of a random variable via Gaussian
quadrature rules (100) have also been proposed, Other methods
for aéproximate random vibration analysis exist and have been
discussed in references such as (7, 31, 69, 116, 117, 146).
There are two fundemental approaches:

(a) Formulate the &exact FPK forward (or Kolmogorov
backward) diffusion equations and manipulate it to
obtain solutions.

(b) VWork directly with the stochastic differential
equation.

Techniques such as the perturbation method have led to numerous
asymptotic solutions in the deterministic <case, but in the
stochastic case only the first order terms are saved. The
primary limitations of the perturbation method are that the
nonlinearity must be small and numerical implementation for MDOF
systems is difficult. By formulating the FPK equation, solution

for certain restricted classes of problems can be obtained. This
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approach can be used to obtain exact solution for <certain cases
(32) or to get approximate TrTesponse statistics either by
eigenfunction expansion (150, 130), finite element solution of
the related Pontriagin equation (20), or any of the variety of
closure methods such as Gaussian <closure which replace an
indefinite moment with a finite moment problem (39, 77, 78).
Non-Gaussian closure technigques have also been proposed by some
researchers (38, 103). 1In the equivalent linearization approach,
the strategy is to replace the =nonlinear system of stochastic
differential equations with some members of a class of linear
systems, the corresponding solutions of which are obtainable.
This linear system should be similar, in some sense, to the
originallnonlinear system (56). The solution to the linear
system is then taken as an approximate solution to the original
nonlinear system of equations. The technique of equivalent
linearization has been widely studied., This method was initially
developed independently by Caughey (30) and Booton. The method
has been generalized by Foster (46) and by Iwan and Yang (76).
Atalik and Utku (11), Iwan (66), Iwan and Patula (74), Spanos
(125, ,126, 129), Spanos and Iﬁan (133), Mason (97), Gates (48),
Beaman and Hedrick (19), Baber and Wen (16), Ahamdi (1), Sues et
al (136, 137), Pires et al (111), Asano (9), and Ang and Wen (6)
have used this technique and have shown that, if oproperly
formulated, the method can be wextended in a relatively
straightforward manner to MDOF anq degrading systems,
Application of this method to infinite dimensional responses of

continuous structures have been reported as well (2). It should
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be pointed out that the minimization of the equation difference
with respect to the linear parameters does not mnecessarily
guarantee that a minimization of the solution difference has been
achieved, and this may be considered a drawback of averaging
methods (97). Caughey (28-30) was the first to apply equivalent
linearization to hysteretic systems, by replacing the bilinear
hysteretic SDOF system with a linearized system, He used the
Krylov-Bogoliubov (KB) approach which is most satisfactory for
small mnonlinearities and has been shown to underestimate the RMS
response for nearly elasto-plastic systems (72). Application of
this approach for finding statistical <characteristics of the
response of hysteretic structures with strong nonlimnearity, for
examplé near yielding, does not lead to accurate results. FKobori
et al (85) improved this approach by considering the effect of
the scatter of frequency and fluctuation of the <center of
hysteretic oscillation on the RMS displacements of ©bilinear
systems with severe snonlinearity, and by introducing a drift
parameter into the linearized response. Iwan and Spanos (75)
developed a technique for finding the approximate envelope
response statistics of a narrow-band SDOF mnonlinear woscillator
subject to unmodulated white moise as it approaches steady-state
from zero initial conditions. This method first uses equivalent
linearization and the narrow—bandness of the response to derive
an approximate first order differential equation for the envelope
response. The associated FPK equation 1is then solved by
eigenfunction expansion for the transition probability density of

the envelope response. Wen (152) realized that by using Bouc's
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hysteresis, the linearization could be completed in <closed form
without the KXB approximation and the resulting zero time lag
covariance matrix response obtained by this approach are
satisfactory for SDOF nearly elasto—plastic systems at all
response levels., Baber and Wen (15) proved that the same
linearization technique <can be applied to both stiffness and
strength deteriorating hysteretic systems, They obtained <close
agreement between the zero time lag covariance matrix response
from linearized system and Monte Carlo simulation (MCS), for SDOF
and MDOF shear beam models and extended the application to
discrete hinge MDOF systems. Baber and Noori (13) applied this
approach to a SDQF pinching, hysteretic system and were able to
obtain accurate results, verified by MCS, without resorting to KB
assumption. A thorough review and discussion of equivalent

linearization can be found in references (15, 117, 129).

3.4- Stochastic Equivalent Linearization of the Proposed Models:

Response statistics for the SDOF systems described in
Chapter 2 <cannot be obtained in <c¢losed form because of the
nonlinear form of the models. On the basis of the equation error
due to substitution of an equivalent linear system, coefficients
for equivalent linear systems are derived. This will be done for

the three proposed models in the following subsections.

3.5- Equivalent Linearization of the Slip-Lock Models:

The special form of the nonlinear hysteretic models

rresented in Chapter 2 opermits the linearization of the
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equations, without resorting to the KB approximation. In the
following subsections zero mean solutions by the method of
equivalent linearization (15, 152) for the proposed models is

presented.

3,5.1- Linearization of Baber—Noori Slip-Lock Model:

The original set of nonlinear equations [2.11-{2.51, [2.10],
and [2.11] is replaced by a linearized approximate set of

equations. first let

Yl = u

Y, = u

¥y = z ) [3.11]
Y4 = uy

Y5 = U,

Then the governing nonlinear equations can be rewritten as

Yl = Yz (a)
§2 = - amgyl - Zgwoyz - (l—a)mgys + a(t) (b)
hd _ L4 _ @ (n—l) ne
v3 = (Ayy [B|y4”y3’ ¥y ¥+ ylysl Y413 /n (e)
. . [3.21]
Y4 = Y97 Vs (a)
§5 = Za/(VE;c) exp[—ysz/( 262)]
'3 A P ’ (n—l) » ° n
{Ay, - [BIY4”Y3‘ + 7y4fy3l 1} /n (e)

These general system equations may be written in the matrix form

gy, y) = £ [3.3]

N

Assuming zero mean rTesponse, the third and fifth of
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Equations [3.2] can be replaced by the linearized forms

Y3 = Ce3¥4 * Ke3v3
Y5 = Ceos¥y * K573 [3.4]

Where, according to Atalik and Utku (11), Iwan and Mason (73),

Baber and Wen (15)

Kei = E{agisz)laysl i=3,5 [3.5]
If it is assumed that ¥ and y4 &re jointly Gaussian,

Fquation [3.5] <c¢an be &evaluated in c¢losed form, given the

response statistics 03, 64 and py 4° Derivation of Cei and
Kei in terms of the respomnse statistics are given in Appendix A.

It is advantageous, to rewrite Equation [3.4] together with

[3.2(4)] in the form

y3 = {Ces/(1+ces)]Y2 + [Ke3 -

Ce3Ke5/(1+Ce5)]y3 (a)
V4 = [1/(1+C 501y, = [R5/ (1+Co5) 1y, (b)
. [3-6]
vs = [Cos/(1+C )1y, + [K 5/ (1+ C o)1y, ()

to eliminate derivatives from the right hand side. Equations
[3.2(a)1, [3.2(b)], and [3.6] form a set of simultaneous
stochastic differential equations which may be written

symbolically in matrix form as

§+Gy=£ [3.71

Postmultiplying Equation [3.7] by yT, taking expected values and
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adding the resulting equation to its transpose, gives the

following result

S + G-S+ S-6L =B [3.8]
~s I NS NS NS ~
where,
g = Ely yT] (a)
~ ~ o~
and [3.91]
B = E[f.y'] + E[y.£] (b)
~ NG I~ NS NS
The desired response statistics are obtained by solving

Equation [3.8] for the zero time lag covariance matrixfg. If it
is assumed that f(t) is a zero mean Gaussian white moise with
constant power spectral density KO’ then it may be shown that’E
matrix has only ome nonzero term (15). Therefore elements of B

can be written as

where Bij is the Kromnecker delta.

The system of equations defined by [3.81 is a system of
nonlinear ordinary differential equations, because’g depends on
the response statisticsfg, which can be solved by numerical
integration in the time domain. At each time step the response

statistics

[

2 2
o E[Y3 ]

Q
Y
]

2 E[§42] [3.111]
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and
sz = E[YSY4]/(636&)

are mneeded to update G. 63Zis obtained as part oftg, while using

Equation [3.6(b)] gives

2 _ 2 2_ 2_ 2
o4 [1/(1+Ces) ]{62 2Ke5p236263+ Kes O3}

[3.12]
1 [1/(1+Ce5)][923 - K8553/0'2]

b=l

w

&~
it

A fizxed—-point diteration approach is wused to compute the
values of 4 and p3y to assure convergence as the covariance
matrix elements start to build up. Convergence occurs Very
rapidly at the first few iteration steps. If the model includes
system degradation, then several parameters (A, ¥ , n and a) may
be functions of the response history. Closed form incorporation
of these added <complications into the model is difficult.
Bowever, it has been found to be a reasonable approximation to
updat the degradation parameters at each time step,
replacing ¢ in Equation [2.4] and [2.10] by its expected

value u_ (14, 15). Taking expected values of Equation [2.5]

gives
o= (1-a)en2El8z] = (1-a)w.2s [3.03]
e @790 0 ~23 .
where $,3 is an element of the covariance matrix S.

Differential equation [3.13] is integrated inparallel with
Equation [3.8] to allow updating of the degradation oparameters,

and complete the evaluation of the G matrix.
~t
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3.5.2—- Linearization of Noori-Baber Slip-—Lock Model:

In this <case, the nonlinear equations [2.11~[2.51, [2.13],
and [2.14] which represent the NB model are replaced by a
linearized approximate set of equations. Using the same
relationships established in [3.1], the governing mnonlinear

equations may be rewriten as

51 =y, (a)
y, = ~aw02 V4= 28 vy Y, (1~a)m02y3 + a(t) (b)
V3 = Ay, -V 8|74 )vs 2 vy + v |vdT41/m (o)
‘ ‘ [3.14]
Y4 = Y9 ~ Y5 (d)
F5 = /(87 7321 0AT, — g [yyvs P ) vy
t Ay, fys M1 m (e)

Equations [3.14] and [3.2] are similar wexcept for the last
equation, (e). This general system of <equations <c¢an also Dbe
written in the form of Equationm [3.3]. With assumption of zero
mean response, Equations [3.14] (c) and (e) can be replaced by
the equivalent linearized form

. e '

V3 = Ce3 Y4 * Ke3 73

e !

e
Vs = Ces ¥4 * K5 3 [3.151

where the equivalent linearization coefficients are defined by

*

Equation [3.5]. Assuming that y; and y, are jointly Gaussian
random variables, coefficients Ce3 and Ke3 are evaluated in

closed form, given the response statistics 63’ 63’ and 932.

Evalpnation for these coefficients was presented in preceeding
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t ’

section. Expected values for C and

K however, can not
es e5

be obtained in closed form. These expected values can be reduced
to a single Gauss-Laguerre quadrature (135) in this case and are
evaluated numerically, Details of these evaluations are provided
in Appendix B. Equation [3.15] alomg with [3.14(d)] are
rewritten in a form similar to [3.6] to <eliminate derivatives

from the right hand side

y3 = [Ce3/(1+ce5 )] Yo + [Ke3 -

Ce3Ke5 /(1+Ce5 )]Y3 (a)
¥4 = [1/(1+C 4 )]y2 - [K, 5 /(1+ Ce5 )]y3 (v) [3.161
V5 = [Cps /(1+C N1y, + [R5 /(1+C_< )1y, (o)

Equations [3.14] (a) and (b), and [3.16] form a set of
simultaneous stochastic differential equations with the matrix
form given by [3.7] and [3.8]. Response statistics for this case

can be obtained following the same procedure discussed for

solving Equation [3.8] for BN model. In this case however,
coefficients Ces and K5 in Equation [3.12]1 should ©be
replaced by CeS, and Kes' respectively, for &evaluation

2 . .
of o4 and P3a in each time step.

Incorporation of system degradation, and evaluation of G
o~

matrix and response statistics im this regard, will also ©be

similar to the procedure discussed for BN model.

In the case of the single element pinching hysteresis model,
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the number of operations involved in linearization procedure is

reduced. Let

Yl = g
Y, = u [3.171]
Y3 = z

Then the governing Equations [2.11, [2.2], [2.19], and [2.20] are

rewritten in the form

Vi = ¥4 (a)
F = —awn 2 - 2Lwg To- (1-a)eg2y, + alt) (b)
1P avgy g 0o Y2 alog Y3
) s o | [3.18]
Y3 = [I—Clexp(—y3 (CZ )1. (¢)
(n-1) n
Ay, -V [B|y,]vs)| V3 + v|vg| Y,13/n
Equations [3.18] can be written in the matrix form
y + gly) = £ [3.19]
~ ~J ~J

with zero mean response assumption, FEgquation [3.18(c¢)] may be

replaced by the linearized form
° ' '
Y3 = Co3 Yy + K3 g [3.20]

wvhere the equivalent coefficients Ce3 and Ke3 are defined by

Equation [3.57.

Given the assumption of jointly Gaussian distribution for

Yo and Y3 and given the response statistics Gps O3 and Pog>

Equation [3.5] can be evaluated in closed form., Derivation of

t 14
Ce3 and Ke3 in terms of response statistics are givem in
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Appendix C. In Equation [3.20] derivatives are only on the left
hand side. Therefore, Equations [3.18] (a) and (b) and [3.20]
can be easily transformed into the form given by [3.81. Again,
the system of equations defined by [3.8] is a system of first
order mnonlinear differential equations which can be solved by

numerical integration. To update G matrix, response statistics
~~

Q
it

E[y32]

Q
i

2 = Ely,”] [3.211]

2 2
n 1+ O3 and E[Y2y3] are all

are needed at each time step. o
obtained as part of S in this case. Hence, as can be seen,
number of steps involved for the numerical integration in each
time step, is noticeably less than the one for the two series

models. This reduces the computation cost and is an advantage of

this model over the other two proposed models,.

To incorporate system degradation, a procedure similar to
that discussed for the two series models is utilized. Equation
[3.14] will be solved concurrently with Equation [3.8] to allow
updating the deteriorationm parameters, and to complete the

evaluaion of the G matrix.

3.7- Numerical Studies

In the preceeding chapter, the capabilities and behavior of
proposed nonlinear ©pinching models wunder cyclic and general
loadings were verified. The numerical studies which follow here,

have been conducted to investigate the relative validity of the
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approximate randon vibration analysis by equivalent
linearization, assuming zero mean response. A number of studies
on single degree of freedom systems will be <considered in the
following subsections. In these approximate response analysis of
the proposed models to random input, a stationary white noise
input is considered. Filtering and modulation of the input noise
excitation can be easily incorporated into the model and are

discussed elsewhere (15).

3.7.1- Approximate Response Analysis of Baber—-Noori Model:

Consider first the nonstationary response of the BN
slip—~lock pinching model, Starting with zero initial conditions,
the ze£o time lag covariance matrix response of the single degree
of freedom BN oscillator to statiomary white mnoise input was
computed. Response estimates were obtained using 100 samples of
Monte Carlo simulation, and the linearized approximate model, for

several valves of input power spectral density KO’ and

for 8a = 0.1, and 8, = 0.5. System viscous damping ration of

=0.02 was chosen, with all other parameters as discussed in
section 2.4.2.1. RMS displacements Gu’ velocities 2, and
hysteretic restoring force values, o, compare well for low
pinching rate of 8, = 0.1, as shown in Figures 3.1-3.3. The
constituent element displacements S.1 and o , are reasomnably
well estimated for low to moderate excitationmn 1levels, ©but for
higher wexcitation levels S is wunderestimated and o,, is

overestimated as shown in Figures 3.4 and 3.5. The system

degradation, as measured by the total energy dissipation By is
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underestimated slightly, with the underestimation increasing as

KO increases, as shown in Figure 3.6.

At higher pinching rate, with a value Sa = 0.5 , o, is
closely estimated by the linearized model, but Gt is somewhat

overestimated at high excitation levels as shown in Figures 3.7

and 3.8, and 9., is overestimated for much of the time,

following an initial period of underestimation as can be seen in
Figure 3.9. The overestimation of oe¢ indicates that the kinmetic
energy, and energy dissipated due to damping will be
overestimated, with a consequent loss in hysteretic energy. This
judgement is verified by the plots for .17 Ou2s and energy
dissipation L 'as shown in Figures 3.10-3.12. As these plots
indicate o , and p, are underestimated for all excitation levels

and Oup is underestimated for high levels of excitation.

3.7.2- Approximate Response Analysis of Noori-Baber Model:

The studies for the approximate response analysis of the NB
system to random input were performed with two purposes in mind,
first, to investigate the capabilities of this model, second, to
look for any advantage or disadvantage of this model as compared

with the BN model,.

The computation time needed to obtain approximate responses,
which in this case required use of Gauss-Laguerre quadrature
numerical integration scheme, was about the same as needed for
the linearization analysis of BN model. However, the simulation

time was noticeably less and consequently the <computation <cost
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for checking the accuracy of the results was lower,

In order to compute the zero time lag covariance matrix
response, the nonstationary response analysis of a SDOF system of
NB model, to a statiomary white noise input beginning at t = 0.,
was considered. Response estimates in this «case were also
obtained using 100 samples of Monte Carlo simulation, and the
linearized approximate model. Several values of input power
spectral density KO' with maximum excitation level of
KO = 1,0, twice the highest level considered for BN model, were
considered. Two cases of low pinching rate with parameter values
of €y = 0.35 and 83 = 0.2, and high opinching with
coresponding parémeter values of §0 = 0.125, and 8y, = 0.5,
were chosen. System viscous damping ratio of = 0.02 was used,
with all other parameter values as discussed in section 2.4.2.2,.
RMS displacements o , velocities oz, and hysteretic restoring
force values 6, compare well for 1low pinching rate at all

excitation levels, as shown in Figures 3.13-3.15. RMS
displacements for constituent elements 6.1, is reasonably well
estimated for low to moderate excitation levels as shown in
Figure 3.16. .2 is well estimated for much of the time for low
to moderate level and reasonably well estimated for very high
level of excitation as can be seen from Figure 3.17. The system
degradation, as indicated by the mean value of total dissipated
energy Boo is very well &estimated wupto very high level of

excitation as shown in Figure 3.18,.

At higher rate of pinching, with parameters given
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above, C,> ©4 =@and o, are still very well estimated even at very
high levels of excitation as shown in TFigures 3.19-3.21 except
that peak starting values of o, is underestimated at very high
excitation level. BMS displacement for Gul is reasonably well
estimated for low excitation level and is underestimated for much
of the time for higher values of excitation, with underestimation
increasing as KO gets larger, as shown in
Figure 3.22. o _, however, is well estimated even at very high
levels of excitation, as shown in Figure 3.23. Estimation of the
mean value of total energy dissipation is satisfactory upto high
levels of &excitatiom and is reasonable for very high excitation

levels, as shown in Figure 3.24,

Studies ©presented here for NB model indicate that the
performance of this model in estimating various response
statistics is somewhat better than the BN series model. Accuracy
of the results obtained by the NB model, especially at very high
levels of &excitations, are more accurate in gemneral than those

obtained from the BN model.

3.7.3~ Approximate Response Analysis of SEP Model:

Similar studies were performed to compute the zero time lag
covariance matrix response of SDOF single element pinching model.
In these studies nonstationmary response statistics were obtained
under stationary white mnoise input beginning at zero initial
conditions. Same number of samples were wused in Monte Carlo

simulation of the model.,
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In order to be able to make a comparisonm between this model
and the two series models and also to investigate the
capabilities of this model several values of input power spectral
density K., were considered.

It was observed that the computation time needed for
approximate response analysis and for simulation were
significantly lower than the one for either the BN or NB model.
This is due to the mathematical form of the model and consequent
reduction in the =number of variables involved for numerical
integration process. This advantage makes this model

particularly suitable for random vibration analysis.

Two <cases of low pinching with pinching parameter values of

C% = 0.8 and XO = 0.05, and bigh pinching with parameter values
of QO = 0,9 and XO = 0.15 were <considered for RMS response
analysis of this model. A system damping ratio of { = 0.02 was

chosen, with all other parameter values as discussed in section

2.4.2.,3. Behavior of a single sample, with similar pinching

characters, unnder white mnoise excitaion is illustrated in
Figure 2.24 in Chapter 2. RMS displacements 6. and
velocities o2 compare very well for low pinching rate and all

levels of excitation as illustrated in Figures 3.25 and 3.26,.
RMS prediction of  Thysteretic restoring force compares well for
low excitation level, but underestimates the peak value of z for
intermediate wexcitation levels as shown in Figure 3.27. Mean
valoe of the total energy dissipation g o which is a measure of
system degradation is estimated very well at all excitation

levels as shown in Figure 3.28.
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For the thigh pinching case, with parameter values as given
above, displacements o and velocities o} are estimated
reasonably well for all levels of excitation as illustrated in
Figures 3.29 and 3.30. The hysteretic restoring force Gz’ is
estimated <c¢losely for low excitation level, but underestimates
the peak values for intermediate and high level of excitation as
can be observed from Figure 3.31., It should be noticed that in
the case of predecting the restoring force with the SEP model
somewhat differnt character of the response is obtained. As can
be seen from Figures 3.27 and 3,31, the SEP model displays much
more severe stiffness degradation than do the BN and NB models.

Estimation of the mean value of total energy dissipation is quite

good for all excitation levels as shown in Figure 3.32.
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PINCHEING HYSTERESIS.

4.1- Introduction and Background:

In the preceeding chapters, severl models for the
deterministic and stochastic response of degrading structures,
with general hysteretic behavior were presented. Equivalent
linearization formulations to predict the Zero time lag
covariance matrizx, for SDOF systems utilizing these models were
derived. The approximate solution obtained compared reasonably

well with Monte Carlo simulation.

In random vibration analysis of hysteretic systems,
attention has ©been focused on the zero mean response to
stochastic excitation. Little work has been done on the mnonzero
mean response of hysteretic and degrading structures. Spanos
(127, 131) and Spanos and Chen (132) considered the response of a
nonhysteretic system with nonsymmetric force deformation
characteristics. This problem is closely related to the mnonzero
mean response problem even wunder zero mean excitation. The
theoretical tools for extension of equivalent linearization to
nonzero mean problemnm is also available. Baber and Wen (15)
extended the linearization theorem of Atalik and Utku (11) to the
nonzero mean case, Spanos (127, 131) developed a relatively more
straightforward apprcach to linearization of nonzero mean
problems by subtracting the mean response from the governing

stochastic differential equations. This computation was based on
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the assumed Gaussian distribution for the response. A
ponsymmetric zero mean problem is obtained by this approach,
which «c¢an be solved by &equivalent linearization technigues.
Baber (12) applied Spanos’ approach to linearize the BBW smooth
system subjected to nonzero mean excitation, with energy based
degradation. It is the objective of this chapter to employ the
equivalent linearization technique to obtain approximate nonzero
mean solutions of Baber-Noori series pinching model and the

single element pinching model, A linearization solution for the

Noori—-Baber model in nonzero mean case must be obtained
numerically. This requires development of proper algorithms and
selection of a suitable numerical scheme, Therefore, although

the =zero mean rtesults for the NB model indicates that this model
is a promising series model, nonzero mean analysis of this system

will be omitted herein.

The nonzero mean Tresponse analysis os structures is of
considerable engineering interest, even under apparently zero
mean excitations, such as earthquakes. Anderson and Bertero (5)
considered the loss of symmetry in girder yielding under the
action of gravity 1loads, and wused this phenomenon as a
justification for introducing curvature based ductility ratios in
studying the seismic response of multistory steel frames. Baber
(12) considered this point as motivation for nonzero mean random
vibration analysis of BBV smooth hysteresis model. To illustrate
this point, consider a single story, one bay frame shown in
Figure 4.1, subjected to earthquake excitation. As Figure 4.1(a)

shows, this frame will yield antisymmetrically at the beam colunmn
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joints in the absence of gravity effects. By contrast, inclusion
of gravity effects results in loss of symmetry and may lead to
the nonsymmetric yield mechanism of Figure 4.1(b). Even if the
mechanism of Figure 4.1(b) is not developed, studies indicate
that complete reversal of hysteretic action will not occur (5).
In the most severe instances, repeated <c¢ycles may lead to
incremental deformation at the yield "hinges,"” each of which Thas
a prefered yield action. Hence, the accumulated inelastic action
may lead to stochastic "shakedown” . In a multistory frame, mnot
all stories will form mid-member hinges (5, 12). Design moments
near the base will be largely controlled by lateral, for example
seismic, loads. In higher stories, gravity loads will have a

greater effect upon the design.

It is difficult to analyze multi-component frame structures
under a combinmation of gravity load and seismic base acceleration
at this time. Baber and Wen (14, 15) suggested one possible
formulation, which can be extended to the mnonzero mean case
provided the mnecessary response statistics can be obtained for
the constituent hysteretic elements, and given suitable model
assembly and solution techniques. This chapter includes the
research on the response analysis of single degree of freedom
Baber—-Noori and single element pinching models to mnonzero mean
random excitations. Extension of the work to multidegree of

freedom models is not considered herein.

4.2- Nonzero Mean Analysis of Baber-Noori Model:

The system to be considered here 1is & single degree of
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freedom oscillator as described by +the nonlinear differential

equation set

o o+ szoa + g(u,t) = a(t) [2.11]

q = awozu + (1—a)@02z [2.2]

.o s . (n-1) . n

z = {Au1 - [B[uluz{ z + 7“1,2‘ 1} /7 [2.3]

u, =[2a/( Vano) lexp(~22/(262)) % [2.11]
and

v = u, + u, [2.16(a)]

where a(t) is, by assumption, a nonzero mean stochastic process,

The response is given as

T T T

vi = {uv, uw, z, u,, u,., e} [4.11]
~ 1 2

where € is the Thysteretic &energy dissipated at time t and
defined by Equation [2.5]. The system degradation has the form

‘defined by Equations [2.4] and [2.10].

Equations [2.3], [2.11], and [2.16(a)] lead to the set of

stochastic differential equations

8§, = /{1 + [2a/(VZne) lexp(-z>/(267))h(E, 2)) [2.17]

62 = u —ﬁl [2.16(b)]

z = h(un, z)&l [2.3-1]
where

h(u, z) = {A-V¥ [Bsgn(ﬁ)]z](nal)z + ylzln]}/n [2.3-2]

Equations [2.11, [2.21, [2.17], [2.16(b)], [2.3-1], and [2.3-2]
provide a convenient form for numerical simulation of BN model

Tesponse when the appropriate deterioration rule has been
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selected,

e T R

Before proceeding with the linearization, it is convenient
to reduce the governing equations [2.11, [2.21, [2.31, [2.11]1,

and [2.16(a)] to the first order differential equation set

v = Vv

i 2
%2 = —am02v1 - 2 Cwovz - (l—a)mozv3 + a(t)
s _ * [ (n—l) a n
vy = {Av4 - [B!V4HV3[ & + TV, {v3! 1}/ [4.2]
Gy v, -
v = [28/(/2me)expl-v, 2/ (267)].

(av, ~v 8], llvg | BT v ¢ a3 vy P10/

where

V., =y, + ou.; i=1,5 [4.3]
and y; s are given by Equation [4.1]

Since a(t) is, by assumption, a nonzero mean random process,

it is necessary to compute expected values By namely

B1 T By

L= —aw 2, - 2( - (1-a)e 2u, +

) o Hq ot o B3 7 Hp

By = {Au4 —-V[BEl + YEzl}ln [4.4]
By T By 7 Eg

g = t2a/<v§§c)]{AE3 - ¥ (BE, *+ vEg)}/n

where
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Hp = nonzero mean for input excitation

(n-1)

E; = EL|v, 3|va |

E2 = E[lvﬂn;4}

E; = E[exp(—v32/(262))94] [4.5]
_ 2 2 (n-1) j s
E4 = E[exp(—v3 /(2¢ ))!VSI V31V4i]
ES = E[exp(—v32/(202))iVﬂn;4]
Subtracting equations [4.4] from [4.2] and using
y; = vy — p;. results in the nonsymmetric zero mean problem
Vi = v, (2)
s 2 2 A
Y9 = —awy Y1 — 2 wgy¥y - (l-a)eg ¥3 + a(t) (b)
§3 = {A§4 - V[B[’Yg*#j(n_l)(y3+u3)l§4+ﬁ4l“ (¢)
E I + 7[ yatuqa| T (¥, +1,) - E I 1} /n
1 [vstus| " (Tg*ing 2 [4.6]
Y4 = Y2 - YS (a)
Vs = [2a/(V2ne) 1{AL(F4+R,) .
2 2
exp(-[y3+u3] /(2¢ ))—EB} (e)
_ (n-1) < L
ALEFATY (y3+u3) [T4%hg |-
2 2
exp(*[ys+u3] [(26°)) - E,l
— n h *
VY[fY3+u3| (y4+uy) - E5l} /m
In [4.6] it is —convenient to rewrite Ei; i=1,2,3,4,5, as
functions of y; by appropriate substitution.
If it is assumed that the Y, are jointly distriunted

1

Gaussian random variables, at time t, then following Kazakov
(84), Atalik and Utku (11), and Mason (97), the nonlinear
equations [4.61 (c) and (e) can formally ©be replaced by the

linearized equations
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Vs = Ce5§4 + Kes — [2a/( ZnUn)]E3 + (V/ﬂ)[ﬁE4+YE5]

where
C.. = El3g,(y,, ¥4)/05,]
ei i*’3 64 4 [4.8]
Kei = E[agi(yS: Y4)/3Y3] i=3,5

and gi(ys, 54) are the right hand sides of equations [4.6] (¢)

and (e) respectively.

It is apparent that a difficulty exists in Equations [4.4]
for the mean responses, and [4.6] or [4.17] for the zero mean
response. The expected value uy appears omn the right hand sides
of equafions [4.4]7 and [4.6]. Moreover, the second order
response statistics 622 = E[§42] and Psg = E[y3§4]/(0363) are
required, along with ﬁ4 to evaluate the expected valmes in
equations [4.5] and 1[4.81. In short, ﬁ4, 522 and pPgs are
implicit variables, which must be determined by iteration, before
solution <c¢an be proceed at each step. The linearized equations

can be rewritten as

Y1 = 72
; = -gu 2Y - 20w - (1-a)o 2Y + a(t)
2 0 71 0Y2 0 73
Yy = Cly2 + K1y3 [4.9]

Y, = Cpyy * Kyyy

Y5 = C375 * K3v,

where
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C; = Ce3/(14C5) Ky = K3 = C 3K 5/ (1+C 5)
C, = 1/(1+C 5) K, = -K_/(1+C_g) [4.10]
C3 = CeS/(1+Ces) K, = Ke5/(1+ce5)

Equations [4.9] are summarized in matrix form as

. %
y + Gy = a [4.11]
~ ~ ~ ~
where
* t i ' 1 i
a = {0!2/0!0:0!0}
~
Postmultiplying [4.11]1 by yT. taking expected values and adding
NG
the result to its transpose gives the unsusal result
S+6S+8SGF =8 [4.12]
~I NS I e NS

* *
where, S = Ely yT] and B = Ela YT + y a T]

. If 9(t) is taken as
NS NS a2 avl i

2 zero mean Gaussian white mnoise input with ©power spectral

density K then

0,

b ZnKO [4.13]

ij © 92:%;2

wvhere 5ij is the Kronelcker delta. Equations [4.12] together
with [4.4] form as set of equations to be jointly solved by

numerical integration, for the responses p and S. It remains

v
~ o~

to evaluate the expected valuves in [4.5]1 and [4.8]. these
require the joint one time distributionms of Y3 and 54.
Assuming that Vs and ~;4 are jointly Gaussian, it is mnecessary
to have By, o3, pa» 4, and pgu, in order to evaluate the

expressions at each time step. By and 63‘are obtained from the

previous numerical integration step. Squaring the fourth of
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equations [4.9] and taking expected values gives

2 2 2 2
6, * 2C,Kypy30,0,+ Ky"os [4.14]

while ©postmultiplying that equation by Y3 and taking expected

values gives
. 2 .
P3g = (C2923“2°3 + Kp0o3 )/ ¢ 364) L4.15]

Thus Gi and p3s can be determined directly from the linearized

equations.

Direct determination of ﬁ4 is also possible inm principle.

Using equations [2.17], [2.16(b)], and [2.3-1]1 gives

i, = Elv,/{1+12a/ (V2ne) Jexp(-vy >/ (267)). [4.16]

If vV, and vy are jointly Gaussian, the right-hand side of
[4.16] can hypothetically be determined in terms of available
response statistics. Unfortunately, the form of [4.16] is
difficult to evaluate in <closed form, or even to reduce to a
numerical quadrature for one variable. Alternately, the last two

of equations [4.2] can be solved to give

Ve = vy - [2a/(VZro)lexp(-vy /(26%)). [4.17]

(av, —-V[s!64”v3fn*1>v3 + vy vyl

whence, taking expected values, gives

L]

Ry = pgy ~ [Za/(VE;G)]E[exp(—vszl(Zcz)). [4.18]
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{(n-1)

{A;4 - [5}34"v£ vy o+ 764)v§n]}/ﬂ

Equation [4.18] is of the form

s

}14 = u2 - 8(113» !'14) 63: 63: 93:‘) [4.19]

and can be solved wusing a fixed point problem approach if
convergence can be demonstrated, Alternately, numerical solution
using Newton—-Raphson or secant method is possible at each step.
Since L4 evolves slowly in time, ©previons values provide
excellent starting guesses, so rapid convergence is achieved.
Moreover, the form of [4.18] is more suitable than Equation
[4.16] for c¢losed form evalunation. In the work presented here,
Equation [4.18] and the secant method was wused to update ﬁ4 at
each stép. Having iteratively determined ﬁ4 at each step,
equations [4.5] and [4.8] can then be evaluated, setting wup the
next time step. The expected values in equations [4.5] and [4.81
are quite lengthy, and details of their evaluations are given in
Appendix D. Closed form solution has been obtained for odd
valuwes of 'n’' only. For even, or non-integer values of '=n’, the
equations can be reduced to doubly infinite numerical quadratures
in one variable. The integrals possess a single <cusp in this
instance, so two-sided application of Gauwss-Laguerre quadrature

is suitable.

In this work, system deterioration is obtained by adding
Equation [2.5] to the set of stochastic differential <equations

for the response and using

A= AO - BAS
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4 =y0 + 518 [2.4]

and

a = 883 [2.10]

For simulation, equations [2.5], [2.4], and [2.10], together with
equations [2.1], [2.21, [2.171, [2.16(b)], [2.3-1]1, and [2.3-2]
complete the set to be solved. In the linearization solutions,
substitution of [2.1] and [2.2], and [2.4] and [2.10] into [4.2]
before linearization, considerably complicates the problem,
However, if system deterioration is assumed to be evolving
slowly, it is possible to approximately take expected values of

[2.5], [2.41 and [2.10]1, resulting

I3 .:. 2 *

R, = (1~a)m0 Efluz] [4.20]
and

Mp = Ag — Sn,

B, =¥, + &,

g 0 17e [4.21]

p.n = 1’]0 + 81’]”8

l‘la = 88“8

’

Then A, ¥ , n and 'a' are replaced in the equations [4.4], [4.6],
[4.7], 14.81, 1{4.17), and [4.18] by their approximate expected
values at the present time as computed by equations [4.20] and
[4.21]. This procedure was applied in zero mean analysis of this

model and the other two proposed models with <considerable

success, and is also implemented herein.
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4.3— Nonzero Mean Analysis of Single Element Pinching Model

The system to be studied in this case is a single degree of
freedom oscillator as described by the nonlinear stochastic

differential equation set given by equatioms [2.1]1, [2.2] and

2= niz). (AR - v I8 [a)g 2Dz + yd|gP11/n [2.19]
where

h(z) = 1= §, exp(-2z2/ &%) [2.20]

and expressions for Cl and & o are given by equations [2.20]
and [2.21] in Chapter 2. 1In this case, similar to mnonzero mean
study for BN model, a(t) in Equation [2.1] is a nonzero mean

stochastic process. The system response is given as

T . {u, 2, z, s}T [4.22]

v

~
where ¢ epresents the hysteretic energy dissipated at time t
and defined by Equation [2.5]. The system degradation has the
form defined by equations [2.41, [2.10] and [2.211-[2.23]. The
form of the model provides a very convenient form for numerical
simulation of the response to random excitation. It also
simplifies the 1linearization ©process relative to the BN series

model. This will be shown in the following section.

4,3.1- Equivalent Linearization Solution of SEP Model:

To proceed with the linearization of the SEP the governing
equations [2.1], [2.21, [2.19], and [2.20] are reduced to the

following first order nonlinear differential equation set
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;2 = —awozvl - 2C waVy (l—a)m02v3 + a(t) [4.23]

. 2 2

vy = [1- Clexp(-—v3 /(52 1.

' (n-1) n
{sz ~v [ﬁfv2“v3[ vy o+ ylvﬂ v2]}/n

where

Vi =¥y tomg i=1,3 [4.24]
and V., are given by Equation [4.22]. As above, it is mnecessary

1

to compute expected values P namely

1 = K2
i, = -auw 2# - 2% wap, - (1 -a)o zu + n
2 0 "1 ' 02 ’ 0 "3 F [4.25]
P3 = {Aliz "”CBEI + YEZ YY/n -
(gl[n){A Eq *V(ﬁE4 +7E5 )}
where
By = nonzero mean for input excitation
o (n-1)
By = Elfvy V3 [val!
ro_ n
By, = El|vgv,]
T o 2 2
E3 = Elexp( 2 /gz )vz] [4.26]
r . 2 2 (n-1)
E, = Elexp(-v, /C2 )’vsl vslvzil
ro_ o2 2 n
ES = Elexp( & /§2 )!Vd VZ]

Subtraction of equations [4.25] from [4.23] and 1letting

Vi = V3 T oy yields the nonsymmetric zero mean problem
Yy = ¥, (a)
v, = —aug’yy = 2L wgy, - (1—adoy’y, + &(t) ()
2 Yo Y1 072 073

{(n-

vy = !Ayz = v B |yg+uy 1)(Y3+”3’]Y2+”2i' E1'} *

v y3+p3n(y2+p2) - E, ] ]]/n - (Clln).
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’ ) , [4.27]
iA[(y2+u2)exp(—[y3+u3] / €2 ) - E3 ] -7
-1)
B [va%uy HY3+”3rn (y3+ug)- te)
?
exp(-ly +ug1%/ £,%) - B, 1 -v.
n 2 2 _ ] }
YU|ygtug (yo+uydexp(~Iyg+u 17/ &%) - E ]
L3
In Equation [4.27] E, i=1,2,3,4,5 can be rewritten as
functions of ¥ by appropriate substitution.

If the y; are assumed to be jointly distributed Gaumssian
random variables, at time t, then the mnonlinear Equation

[4.27(c)] can be replaced by the equivalent linearized form

. !

V3 = Co¥, + Koyg + (¥ [n)[BE; +¥E, 1 - [4.28]

(Cy/m)[-AE; +¥ (BE, + yEg )]

where

(@]
I

E[3g(¥,,72)/37,]
273 2 [4.29]

™
it

E[ag(yz,ys)/ay3]

and g(YZ'Y3) is the right hand side of Equmation [4.27(c)]. Since
the derivatives of By do not appear on the right hand side of
equations [4.25] or [4.27], the difficulty that existed in
linearization of BN model does not arise. Also, the second order

response statistics 622 = E[y22

1, o4 and E[y2y3] needed for
evalunating Pag = E[y2y3}/(6203) can be directly determined as
elements of the covariance matrix at each time step. Therefore,
no iterative approach is needed for evaluating these terms. This

is a major advantage of the SEP model and reduces the computation

cost invloved noticeably.
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Fquation [4.28], together with equatiomns [4.27] (a) and (b),

can be symbolically written in the matrix form given by Equation
[4.117. Similarly, covariance equation defimed by [4.12] can be
obtained. Equation [4.12] together with [4.25] form a set of
equations to be jointly solved by numerical integration, for the
response statistics By and S. Bence, it remains to evalupate
~ ~
expected values given in [4.26] and [4.2917. Assuming that
Y, and yg are jointly distributed Gaussian random variables,
Bgs O35 Mg Oy and Psg are needed in order to evaluate these
expected values at each time step. Ho and pg are obtained from
the ©previous numerical integration step. G,y s 632 and E[Y2y3]
are also evaluated as elements of covariance matrix at each time
step. Therefore Pag is easily obtained as well. Other
parameter values needed to evaluate Ce’ Ke and the remaining
expected values which require knowledge of mean and zero time lag
covariance matrix terms are obtained from Equation [4.25] and
[4.12]1. Detailed derivations of the expected values inm equations
[4.26] and [4.29] are given in Appendix E. Closed form solutions
are possible for odd values of n’ only. For even, or
non-integer values of 'n’, the equations can be reduced to doubly
infinite numerical quadratures in one variable. The integrals

have a single cusp in this <case as well, therefore two—sided

appliction of Gauss-Laguerre quadrature is suitable.

In this study, system degradation is obtained by adding
equations [2.4], [2.5], and [2.211-12.23] to the set of
stochastic differential =equations for the response., For

simulation, these equations along with equations [2.11, [2.21,
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[2.191, and [2.20] complete the set to be solved. In the
1{inearization solutions, substitntions of [2.13, [2.2] and [2.41,

[2.51, [2.211-12,.23] into [4.23)] will <complicate the problem.

However, if variation of degradation parameters are slow, these
parameters may be treated approximately as constants at any time
step. Hence, approximating the expected values of [2.4] and
[2.211-[2.23] by first order approximation results in equations

[4.20] and the first three equations in [4.21] and

e

E0 * 8&”8
S0

u;,(ux + ug[ )

[1 - exp(”pua)] [4.30]

=
vy
it

e

Expected values ‘computed by equations [4.20], the first three

equations in [4.21] and equations [4.30] at the ©present time,

will replace the degradation parameters A, > M., &, 1 and 9
in the governing equations, A similar procedure was used imn the
analysis of BN model in this chapter and zero mean analysis of

the proposed models.

4.4~ Numerical Studies for Nonzero Mean Analysis

In order to demonstrate the applications of the
linearization solutions for nonzero mean excitation of the two
models discussed in this chapter, the response of a single degree
of freedom system wutilizing each model was considered. These
analyses were limited to a pinching system without <considering
any other form of degradation, since inclusion of other

degradations adds no additional complication. In these studies
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system parameters of AO =My = ¥y =1 = 1, B =y = 0.5,

%2 were used. The power

il

e = .04762, =1, and [

“o
spectral density for the input excitation was set at three levels

of K, = 0.1, low excitation, KO = 0.2, moderate level

excitation, and K., = 0.4, for relatively high level of
excitation., The excitation mean was allowed to vary, taking
values of Rp ranging from 0.2 to 0.8 with 0.2 increment. For
the system modeled, these excitation means correspond to 20% to
is the limiting magnitude of the

80% of where z

a1t ult

hysteretic restoring force upon first loading. Both <constant
mean and noise excitations were applied to the system at the
initial condition at t = 0. In the following subsections

response statistics obtained for each model are presented.

4.4.1- Numerical Results for Baber-Noori Model

Several studies were conducted using the BN series model.
First, to verify the behavior of the model .under NONZero mean
random input excitationmn and also for subsequent Momnte Carlo
simulation, several single sample plots of 'u’' vs 'z' were
obteined nunder white noise excitation for a SDOF system system

model. This single sample simulation also illustrated more fully

the effect of varying pinching parameters Ga and o. For this

response a power spectral density (PSD) of 0.1 was wused. Plots
of runs for 8a = 0.1, c = 0.08 with excitation mean of 0.2,
Sa = 0,3, o = 0,08 with excitation mean of 0.4 and Ba = 0.1,
o = 0,08 with mean excitation of 0.8 are shown in Figures

4.2(a)-(c). The plots shown in VFigures 4,2 illustrate the
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anticipated behavior, Having verified the capabilities of the
ponlinear pinching model wunder mnonzero mean excitation, the
approximate response analysis of the system was considered.
Figures 4.3(a)-(e) illustrate the mean response computation for

displacement, p_, corresponding to several different values of

u
Py low, moderate, and high levels of excitations and subjected
to different values of pinching rates. Figures 4.3(a) and (b)
show the plots for low level of excitation, 0.1, with 1low and
high pinching rates of Sa = 0.1, and Sa = 0.5 respectively.
Figures 4.3(c) and (d) illustrate the respective plots for
moderate éxcitation ievel of 0.2, with 1low pinching rate
of Sa = 0.1, and medimum rate of 5, = 0.25. Figure 4.3 (e)
shows the «case of high excitation level with one pinching rate
of 8a = 0,1, The solid curves are the responses computed by
equivalent linearization, while the dotted 1line <curves are
:esults of 100 samples of Monte Carlo simulation. The four plots

in each figure correspond to = 0,2, 0.4, 0.6, and 0.8, Mean

Mg
responses for the displacement,bpu obtained by 1linearization
compare very well with Monte Carlo simulation at low pinching
rate at all mean levels and also at high pinching rate for the
mean values of Hp = 0.2 and 0.4. For the high pinching case
the response is underestimated by the linearization.
Figures 4.4, 4.5, 4.6, 4.7, and 4.8 show the mean response
computations for u, =z, Uy, U, and & corresponding to the same
values of hpo excitation levels and pinching rates as discussed
for ., In Figures 4.4 and 4.5 solid line curves represent the

u

linearization results for the mean velocity response, uu, and
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mean hysteretic restoring force prediction, 1] and points

z’

s’ are results of simulion with

jndiced by the symbols 'o' and
100 samples, at kg = 0.2 and bp = 0.8 respectively. As can be
seen from Figures 4.4(a)-4.4(4), é0mparison between linearization
and simulation results for mean response of velocity is fairly
good for mean excitation levels of upto 0.2 and in both cases of
iow and high pinching,. However, for higher mean excitation
levels there is mnot a good agreement between these results, in
the presence of a high level of pinching. One source of this
problem may be the numerical integration. Selecting a smaller
time step might improve the result somewhat. As
Figures 4.5(a)-(e) indicate, the agreement between linearization
and Monte Carlo simulation results for mean response of
hysteretic restoring force are very good for low pinching rate at
211 mean excitation levels, Figures 4.5(a), (c) and (e). In the
case of high pinching rate, agreement is good for low value of

mean excitation, = 0.2, whereas for kg = 0.8 response is

bp

overestimated, as c¢an be observed from Figures 4.5(b) and (d).

Considering next the mean displacement Tresponse u, of the
smooth element component. At the low pinching rate predicted
responses compare reasonably well at all values of mean

excitation and both levels of PSD, as Figures 4.6(a), (c) and (e)
indicate. ©For the high pinching rate system, R,1 Tesponses are
underestimated at all mean excitation values and for both low and
moderate excitation PSD levels, as shown in Figures 4.6(b) and
(a). Mean displacement responses for the slip-lock element

component of model, Ruo is shown in Figure 4.7. As these plots
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indicate, the agreement between the linearization and simulation
results for By is not, in general, good. However, the trends of
the response are correct, except at high pinching. One reason
for this problem can be found in the numerical technique used to
evalunate the &equivalent linearization coefficients. Moreover,
the problem due to numerical integration, may have additional
influence. It seems guestionable at first glance, that

satisfactory agreement between MCS and linearization estimates

for B, would be obtained when agreement between the constituent

parts is mnot obtained. However, ey is obtained fronm

integration of the differential equation of motion, while Raq

and Hho are obtained from additional equations. It seems likely

that small systematic errors in computation of Faq and  pyo
are contributing to the poor agreement in the latter case. Also

it should be noticed that the difference between the order of the

magnitude of By1 8nd p., is so large (maximum value of about

16 for By1 and about 0.6 for p, 49), that the magnitude of Ko

response will not have significant effect on the total response.
Results for the mean energy dissipation response, as shown in
Figure 4.8(a)—-(e), indicate that there is a very good agreement
between the linearization and simuplation results for all
excitation levels, for both low and high pinching rates, and for
all values of mean excitation, Only for the «case of high
pinching and at bhigh velue of mean excitation the linearization
solution slightly wunderestimates the response, Figures 4.9,

4.10, 4.11, 4,12, and 4.13 illustrate the RMS response

computations for u, u, z, 9y, and wu, under the same conditions
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discussed for the mean responses. Figures 4.9(a)-(e) indicate
that there is a reasonably good comparison between the
linearization and simulation trends for the RMS displacement
responses, but numerical estimates are not particularly good. In

all the cases shown, responses are underestimated for low values

of mean excitation, pp = 0.2, and overestimated for high values,

Hp = 0.8. A somewhat better numerical comparison is observed

for the RMS velocity response results. Although the responses
are slightly overestimated for all excitation 1levels and mean
excitation values, the important response tremds are accounted
for. These comparisons are shown in Figures 4.10(a)-(e).
Results for the RMS Thysteretic force response are shown in

Figure 4.11. As can be seen from Figures 4.11(a)-(e), value of

6, decreases as pg increases. This behavior is in agreement

with the predicted mean values for 'z’ as shown in VFigure 4.5,

This phenomenon occurs since, if ', is <c¢lose to 1 and
Za1t = 1, the standard deviation of z will be smaller than 1if
B is mnear zero. For G and for the low as well as high

¥4 z

pinching case, the responses are generally overestimated by the

linearization for low excitation level and at both low and high

values of mean excitation. However, as the excitation level
increases the overestimation becomes smaller and there is
relatively good agreement between the linearization and

simulation results at high excitation level, as shown in Figure
4.11(e). Results for the RMS displacement response of smooth
element as shown in Figure 4.12 indicate generally poor agreement

for all excitation levels, for low and high pinching rates and at
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all valumes of mean excitation, for much of the time. The RMS
response for slip-lock element component of the model, as shown
jn Figure 4.13, for low pinching rate, at any level of excitation

and for all values of p are significantly overestimated.

e’

In general, it may be stated that first order response
statistics are more <c¢losely estimated than are second order
statistics, and that primary quantities u, n, and z are more
adequately characterized than the secondary quantities Ty and

u,. It is important to mention here that the advantage of
linearization over the Monte Carlo simulation is that response
statistics <can be predicted fairly closely at a reasonable cost
by the equivalent linearization., But here, in the nonzero mean
analysis- of this model, the iteration approach used for the
computation of equivalent linearization <coefficients makes the
computer runs expensive and comparable to the simulation. This
is one of the disadvantages of the slip—-lock model for =nonzero
mean analysis. This problem is not encountered in nonzero mean

analysis of the SEP model as will be seen in the following

section.

4.4.2- Numerical Results for Single Element Pinching Model

Similar studies were performed for the response analysis of
the single element pinching model with the same purposes inm mind.
To verify the behavior of the model under nonzero mean random

’

excitation several single sample plots of 'u' vs z' were

obtained wunder white noise excitation for a SDOF system model.
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This single sample simulation shows the effect of varying
pinching parameters §1 and A as well, 1In this study, power
spectral density values of 0.1 and 0.2 were used. Plots of runs
for power spectral density of 0.1 are shown in Figures 4.14(a)
and (b) and the plots for power spectral density of 0.2 are given
in Figures 4.15(a) and (b). In both cases shown in figures 4,14
and 4.15 a very high level of pinching with §

10 = 0.95 and

A = 0.15 subjected to mean excitation value of = 0.2 and

By
0.6 is considered, In Figures 4.14 a valne of viscous damping
ratio of 0.02 is wused whereas in Figure 4.15 a corresponding
value of 0.1 is considered. Both these figures illestrate the

capability of the model in reproducing a pinching hysteresis

behavior under a general loading.

Results for the approximate response analysis via equivalent
linearization for a SDOF system wusing the SEP model are
illustrated in Figures 4.16-4.22., 1In these studies three levels
of excitation with two different rates of low and high pinching
for each case were considered. Also the statistics in this case
have been obtained for a longer duration of t = 100 seconds. The
values of pinching parameters and pinching rates are established
such that the type of ©behavior obtained in each <case is
comparable to corresponding studies for the BN model as
illustrated in figures 4.3-4.,13, This will make the <comparison
between the two models <easier, Figures 4.16{(a)-(e) show mean

response computation for displacement, n The results for

_
linearization are in a very good agreement with Monte Carlo

simulation for all excitation levels, all pinching rates and all
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values of mean excitation. The agreement between the two results
ijs much better for this model than for BN series model for the
high pinching high excitation level case. This can be observed
by comparing these results with the corresponding results for the
BN model as shown in Figure 4.3. A noticeable instability may be
observed for the high excitation, high pinching case beyond 65-70
seconds as shown in TFigure 4.16(e), but the trends of the
response are accounted for. Similar instabilities however, are
also observed in some other response statistics results for the
SEP model in high pinching, high excitation studies as will ©be
seen, The instability starts quite suddenly when the responses
have reached a stationary level, This abrupt behavior is almost
certai#ly due to a numerical problem and is not part of the
physical behavior that has been modelled. Plots shown in Figures
4.17(a)-(e) ilustrate the mean response evaluations fof
velocity, B,. Agreement Ybetween linearization and simulation
results for this «case is also acceptable and Dbetter than
corresponding results for BN model shown in Figure 4.4. Similar
discussion as mentioned for mean response of u is valid for the
results shown in Figure 4.,17(e). Figures 4.18(a)-(e) show mean
response values for restoring force. In this case as well, there
is a very good agreement between the approximate and simulation
results for all excitation 1levels, all pinching rates and all
values of mean excitation. Agreement between the approximate and
simulation results in this case is generally better than the
corresponding comparison for the BN model. Figures 4.19(a)~-(e)

shows the results for the mean energy dissipation. The agreement
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between the approximate values and the simulated responses is
very good for low as well as high pinching and at all excitation
levels. There is only a slight underestimation at highest 1level

of mean excitation, as these results indicate.

RMS response statistics for u, ﬁ, and 1z are presented in
Figures 4.20-4.22. VFigures 4.20(a) and (b) indicate that for low
excitation level there 1is a good agreement between the
linearization and simulation results for RMS displacement
response for all values of mean excitation and for both cases of
low and high pinching. It is important to point out here that
even at low level of =excitation a fair amount of yielding
(inelastic actioﬁ) is taking place. Therefore the good agreement
between the approximate results and the simulation results
obtained by the SEP model in nonzero mean analysis should be
considered with this fact in mind. For moderate excitation level
and for all pinching levels and all values of mean excitation,
responses are slightly underestimated by limearization. This is
shown in Figures 4.20(c) and (d). For high level of excitation,
at all pinching rates, and all values of mean excitation, results
will ©be overestimated as shown in Figure 4.20(e). Comparing
these results with the corresponding results for the BN model, as
shown in Figure 4.9, indicate a somewhat better agreement for the
response statistics obtained by the SEP model. Plots shown in
Figure 4.21{(a)~(e) show the RMS response for the velocity. As
can be seen, the results are underestimated for all 1levels of
excitations, all values of mean excitations and for both low and

high pinching rates. Underestimation increases as the excitation
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jevel increases as well as with the increase in pinching. As can
pe seen, the instability observed in similar results for the BN
model, shown in Figure 4,10, does not occur in this case. This
is an advantage of the SEP model im this regard. BRMS responses
for hysteretic restoring force are presented in Figures
2.22(a)-(e). For the low excitation level, at both low as well
as high pinching rates and for all values of mean excitation
computations show indicate slight wunderestimation as obsereved
from Figure 4.22(a) and (b). For moderate excitation level, for
low pinching and at all values of mean excitation there is a good
agreement between the approximate and simulation results as shown
in Figure 4.22(c). For moderate excitation 1level, for high
pinéhing case and for all mean excitation values there is a
slight underestimation in the results, This is illustrated in
Figure 4.22(d). For high level of excitation, for both cases of
~low and high pinching rates and for all valumes of mean
excitation, responses are underestimated as indicated in Figure
4.22(e). It is also interesting to see that the value of c.
decreases as bp increases., This behavior agrees well with the
predicted mean values for z as shown in Figure 4.18. This is due
to the same reason discussed in the study of o, for the BN
model and the same argument can be applied here. Comparison of
these results with those of BN model, shown in Figure 4.11,
illustrate a better agreement in results for the SEP mode. Also
similar to the results for L instability observed in the
results shown in Figure 4.11 for the BN model is not observed

here.
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Studies for the proposed single element pinching model
saggest that such models may be more suitable for random
vibration analysis than the slip—-lock series models. An
important feature of the SEP is its single rather than series
form. This reduces the number of varables involved for
computation in the mean and RMS response analysis and therefore
reduces the computation costs significantly. As discussed in
sections 3.5.3 and 4.3, the explicit form of the equation for the
derivatives allows for considerable simplification in evaluating
the equivalent linear system coefficients. Moreover, comparison
of the <computed statistical results show a somewhat better
agreement, in general, ©between linearization and simulation
solutions for the SEP model than for the BN model; especially

for nonzero mean excitations,

The numerical studies presented here, apply to the situation
where the méan and random loads are from the same source. In a
more general case, the mean and random loads may have different
origins, Such is the case for the gravity-seismic ground motion,
Or current—wave action combinations. In such situwations, the
equilibrium state under the mean excitation alone is taken as the
initial condition for the random vibration analysis. This study
is =not <considered here. However, study of this type for smooth

hysteresis model can be found in reference (11).
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CHAPTER 5

SUMMARY, CONCLUSIONS AND REMARKS

5.1- Summary and Conclunsions:

—

The intent of the research presented herein was to develop
mathematical models capable of representing general degradation
behavior of a hysteretic structural element, including hysteretic
pinching, as a function of energy dissipation. These models were
required to meet the additional <condition of mathematical
tractability so that they can be used for approximate solution
with the availgble methods of nonlinear random vibration

analysis,

Three mathematical models for hysteresis with pinching are
presented in Chapter 2, two series slip-lock models and one
single element hysteresis model, These are all relatively
versatile models which are capable of a variety of degrading
behaviors, and hysteresis shapes. Behavior of the proposed
models under cyclic as well general loadings illustrates the
capability of all these models in reproducing a wide range of
degradation behavior including hysteretic pinching. A
mathematical approach for developing hysteresis models with
general degradation behavior is also presented in Chapter 2. The
single element model which seems to be a more tractable model as

compared with the two series models is developed based on this

mathematical technique. This method provides a basis for
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developing even wider choice of models.

In Chapter 3, random vibration analysis of the proposed
models is studied. Due to the highly nonlinear character of the
models of Chapter 2, closed form solution of these models is not
possible. It is shown in chapter 3 however, that the
mathematical forms of +the models are suitable for approximate
solution by the method of equivalent linearization without
recourse to the Krylov-Bogoliubov approximation., The linearized

models are wused to obtain zero time lag <covariance matrix

response. In random vibrationm analysis of <chapter 3, mean
excitation and mean responses are assumed to be Zero. The
response statistics are also computed wusing Monte Carlo

simulation. The response predictions of the linearized models
for RMS displacement, velocity and hysteretic restoring force are
reasonably good for all degradation and excitation levels. The
constituent element responses, and the hysteretic energy
dissipation is closely modeled at 1low to moderate excitation
levels for BN series model, and for low to high levels for NB
series model. Also for the single element pinching model mean
energy dissipation is closely modeled at low to high excitation

levels.

At all levels, the linearized models predict gqualitatively
the response of the system. In random wvibration analysis,
agreement between the results of Monte Carlo simulation and
linearized models is somewhat better for single element pinching

and NB series model than for the BN slip-lock model.
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In Chapter 4, the random vibration analysis of the proposed
models is extended to the more general case of nonzero mean
excitations and responses. Equivalent linearization models for
two of the proposed systems, BN series model and single element
pinching, is preseted for the responmse of a single degree of
freedom system with general hysteretic behavior to a nonzero mean
excitation. The nonstationary response statistics are obtained
by mnumerical integration of the linearized equations. Mean
responses computed using these two models are in fairly good
agreement, for BN model, and very good agreement, for the single
element pinching model, with the <results of Monte Carlo
simulation. Covariance matrix responses predict the response in
the case of single element model, or the BN series model,
prediction 1is fairly good for some of the RMS responses but the
linearized results either wunderestimate or overestimate the
response magnitudes in other cases. However, the response trends

are predicted reasonably well,

5.2— Suggestions and Recommendations

As illustrated and discussed in preceeding chapter, the main
objective of the research presented im this thesis was to develop
mathematical models which are capable of —representing general
degradation behavior of a hysteretic structural element,
including hysteresis pinching for both deterministic as well as
random vibration analysis, While the present work indicates that
the proposed models are quite useful in this respect, a number of

areas remain for further study.
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Studies reported here were limited to the «response
analysis of a single degree of freedom oscillator.
However, application of these models as part of a
multidegree of freedom system is possible and
theoretical ground work exists for this extension
(14,15). Considering the mnonzero mean analysis
reported herein, application of these models to MDOF
case will allow consideration of nonzero mean effects
such as wind, current or gravity loads upomn the

response of inelastic systems.

Models proposed here may be used to incorporate the
physically observed phenomenon of hysteresis loop
pinching into the random vibration analysis of
hysteretic structures. Thus the modeling technigque
proposed herein has potential application to the
random vibration of reinforced concrete structures,
or braced steel frames. In order to properly model
the restoring force behavior of a real structure, it
is necessary to determine appropriate values for
hysteresis loop shapes as well as pinching parameters
of the proposed models, For this purpose, proper
systems identification techniques are available (43,
44) and have been investigated for system
identification of BBW smooth model (130)., Effort in

this regard will be a major contribution.

Hysteretic degradation behavior as well as pinching,
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have been assumed as a function of energy dissipation
in this work, In order to properly model the
hysteretic behavior of real structural elements,
modifications to this assumption might be necessary.
Consideration of the degradation as a function of
maximum displacement in each cycle may be a suitable
assumption. Results for this alternative approach
are available for BBW model (137) and seem to be

promising.

Studies reported here were limited to approximate
response prediction wunder zero and nonzero mean
excitation. The mean square response is only one of
several quantities of interest, however, and does not
provide information concerning such items as maximum
structural response, or total energy dissipation
demands upon the structure caused by an excitation of
particular intensity and duration. These quantities
are of interest in seismic design. Analysis of this
problem can be accomplished by consideration of first
passage time problem. Therefore, evaluation of first
passage estimates are quite important in case of
hysteretically degrading as well as pinching system,
One of the problems which will be encountered in this
analysis will be selection of a suitable probability
distribution for the respdnse, which is strongly
non—Gaussian in this <case. Some ground work exist

for attempting this effort (14,92).
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The approach wused for linearization in the nonzero
mean analysis was based on the technique suggested by
Spanos (122, 131) and used by Baber (11). This
approach suggested the subtraction of mean responses
from the governing stochastic differential equations.
However, an alternative approach is subtracting the
mean responses after performing the linearization.
It would be interesting to see a comparison of the

results for these two approaches.,

The studies performed for the nomnzero mean amnalysis
were limited to two of the three models, BN and SEP.
Howe?er, as the results for zero mean studies
indicate, prediction of RMS responses for NB model
are somewhat better than those corresponding to BN
model. Therefore, nonzero mean solution should
obtained for this model as well in order to achieve a
better judgement on the possible source of the

problems with the results for BN model.
Also requiring additional work are

a- The computational problems included in the
solution

b- Considering the application of more general and
improved statistical 1linerization techmnigues
such as the approach proposed by Beaman and
Hedrick (18)

c— Consideration of some promissing numerical
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schemes for approximating the distribution of a
random variable, such as the method suggested

by Meyers (95).

In the work discussed herein, it has ©been assumed
that hysteresis pinching is essentially a slipping
phenomenon at force reversal which is ideally
modelled by a slip-lock model or an egquivalent SEP
model. Additiomnal ©pinching <can be attributed to
general stiffness degradation during unloading stages
of a cycle. Such degradation may be described
mathematically using the constructive techniques used
to establish the SEP model, and should be

investigated.
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STATIONARY WHITE NOISE INPUT. g = .02, >\0 = 0.0, EO = 350,
5>\= 0.2, AND 55 = 0.0. (NB MODEL)
2. 0p L LOW PINCHING 3
o A= LINEARIZATION
R o= STMULATION PTS
e (100 SAMPLES)
PSD = 1.0
PSD = 0.5
PSD = .10
TP I I T T LA T L idd MR LI LT TOMId A LTV PPk 11T PSD = ,02
2 f‘)"‘r—-
%.00 5.00 15.60  13.00  29.80  25.08  30.40  33.00  ¢3.00  ¢3.00  30.00  53.00  20.00 5.0

F1G6.344 - NONSTATIONARY RMS VELOCITY RESPONSE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE INPUT. {
6. =0.2, aND O, = 0.0.

A ¢

= .02, Ao = 0.0, &5 = .350.

(NB MODEL)
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8 Uy L LOW PINCHING 2
. a= LINEARIZATION
3 o= SIMULATION PTS
sl . (100 SAMPLES)

PSD = 1.0
PSD = 0.5
PSD = .10
. » . 0 _..'-.,..,' '. ! ':"’L"_' PSD =2, 02

v
.
*
su0?

30.06  a3.00  30.00  35.60  €0.00  45.00  35.00  58.00 c?r.w 3,80

F16.315 - RMS PREDICTION OF THE RESTORING FORCE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE InPUT. { = .02, Ay = 0.0. &, = .350,
O.=0.2, AND O _= 0.0. (NB MODEL)

A ¢

8§ Oyy T LOW PINCHING 3

&= LINEARTZATION
~] o= SIMULATION PL8reeoren, .o,

. (100 SAMPLE) .o .

PSD = 1.0
PSD = 0.5
PSD = .10
2
it
P T e L se ST e ARhswryy TR PSD = .02
gl
V.00 3.00 10.06  15.00  20.00 28,00  38.00  35.00 .80 43,00  B0.00  335.80  €.00 $5.00
i

F1G.316 - NONSTATIONARY RMS DISPLACEMENT RESPONSE FOR THE SMOOTH ELEMENT

UNDER STATIONARY WHITE NOISE INPUT. { = .02, Ay = 0.0, & =
6, =0.2. AND &, = 0.0. (NB MODEL)

A 4

- 350,
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3 Oyz  © LOW PINCHING 3

s a= LINEARIZATION
A o= SIMULATION PTS

(100 SAMPLES)

3200

3
3
3 - PSD = 1.0
3
g<
8
21
g PSD = 0.5

anevey .
’ B
LTl *rseve

sraget
R

F1G.317- NONSTATIONARY RMS DISPLACEMENT RESPONSE FOR THE S-L ELEMENT

UNDER STATIONARY WHITE NOISE INPUT. { = .02. Ag = 0.0. &, = .350.
5}: 0.2, AND 5£= 0.0. (NB MODEL)

8

i e £ LOW PINCHING 1

g a= LINEARIZATION

4 o= SIMULATION PTS .

3 (100 SAMPLES) ~ . PSD = 1.0

2-

30.00

20.00

10.80

P00

F1G.3:18~- VARIATINON OF DISSIPATION ENERGY FOR SDOF SYSTEM(N-B MODEL)

UNDER STATIONARY WHITE NOISE INPUT. { = .02. Ao = 0.0. &, = .350.
5 = 0.2, AND 5E= 0.0. (NB MODEL)
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2 Oy [ HIGH PINCHING 3

3 a= LINEARIZATION

d o= SIMULATION PTS

8 (100 SAMPLES)

2 R ~" PsSD = 1.0
A :

g

g PSD = 0.5
8 ,;'nnl".’

<1 ’

8 et e PSD =10
8| A sionssssssasorssatssassssasnias ,..uuou,.-vnu-..,,,.nnn-.u.u--H"Nun-.u--"" PSD = .02
%00 5.00 19.00 15.00  0.00  28.00  30.00  35.00 T0.00  45.00  50.00  45.00  69.00  63.00

-

" FIG.349~ NONSTATIONARY RMS DISPLACEMENT RESPONSE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE TNPUT. { = .02, Ag = 0.0. & = .125.
5>\= 0.5, AND 5€= 0.0. {(NB MODEL)

8.00

ON [ HIGH PINCHING 3
a= LINEARIZATION R

3

o= SIMULATION PTS e
. {100 SAMPLES] Lo

3
T o e
)

i:?ﬂ

PSD = 1.0

»y v
a2,y o0 907 s s00,0ernnes i t2s0Re
[OPTTI N LLLLL I Potannt® tayeng® e —aZs PSD = ,02

Bloo s.00 12.00 15,00 20.80 25,60 30.08  35.00 45.00 45.00  20.00  35.00 $0.00 e5.00

F16.320- NONSTATIONARY RMS VELOCITY RESPONSE OF SDOF SYSTEM UNDER
STATIONARY WHITE NOISE INPUT. { = .02, Ap = 0.0, &g = .125

5X = 0.5, AND 5;,= 0.0. (NB MODEL)



132

2 Uz [ HIGH PINCHING 3
A a= LINEARIZATION
I L o= SIMJLATION PTS
0 TeT e (100 SAMPLES)

PSD
PSD

PSD

Hon

i}
. O -
o o

PSD = .02

%00 5.00 10.00 15.00 25.00 35.00 30.00 38.00 46,90 45,00 83,06 35.00 80.00 8%.80

FIG.3-21- RMS PREDICTION OF THE RESTORING FORCE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE InPUT. (= .02, Ao = 0.0. &g = .125.
5>\= 0.5, AND 6£= 0.0. (NB MODEL)

¢ Oy [ HIGH PINCHING 3

i a= LINEARIZATION

g o= SIMULATION PTS

. (100 SAMPLES) | wvter oomupyrsess™onees,
g

wi R

"
Y T T P,
sese, o ",
sones®?®®’ *re0?

.

.

i PSD = 1.0
)
" PSD = 0.5
2
o
PSD = .10
3
------ TSR, pSD = .02
3/
b.co 5.80 10.00 15,00 20.08 ©5.00 30,00 33.00 §0.00 435.00 30.00 5500  eo.00 ¢5.00
T

F1G.3.22- NONSTATIONARY RMS DISPLACEMENT RESPONSE FOR THE SMOOTH ELEMENT

UNDER STATIONARY WHITE NOISE INpUT. { = .02, Ao = 0.0, & = .125,
& = 0.5, AND 5f= 0.0. (NB MODEL)

A
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w
L

8

s Ouo [ HIGH PINCHING 1

3 A= LINEARTZATION

3 o= STMULATION PTS

3 (100 SAMPLES)

. ’ PSD = 1.0
8

b3

g

g

~ PSD = 0.5
g

]

8

8 PSD = .10
3 prsssesppuneennesss  PSD = .02
ey 5.00 18.00 15.80 20,00 2%.00 30.00 33.00 49,00 45.00 $5.00 35,50 $0.20

83,80

F1G.3-23- NONSTATIONARY RMS DISPLACEMENT RESPONSE FOR THE S-L ELEMENT

UNDER STATIONARY WHITE NOTSE INPUT. { =
0. = 0.5. AND 6§= 0.0. (NB MODEL)

A

§ Me  c_mion pinonInG 3

3 A= LINEARIZATION PSD = 1.0

N o= SIMULATION PTS ‘

3 (100 SAMPLES)
PSD = 0.5
PSD = .10
PSD = .02

$5.00 5.68

.02, Ao = 0.0, & = .125,

43,00

F1G.324- VARIATION OF DISSIPATION ENERGY FOR SDOF SYSTEM(N-B MODEL)

UNDER STATIONARY WHITE NOISE INPUT.
S. = 0.5, AND 5£= 0.0. (NB MODEL)

A

= .02, Ap = 0.0, £, = .125,
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3 0y « LOW PINCHING o

3 a= LINEARIZATION

1 o= SIMULATION PTS

3 {100 SAMPLES)

g -

8 PSD = 1.0
g. 1" """ .

8

g ‘.- seeeaee “‘...nn..no".,’“. PSD = 0.5
=1 o sesreess, " : teee?

’ razeettet B AR RAss TVPVPRIN -3 o B N ¢
g

.00 5.00 16,60 15.00  25.00 25.00 30,00  35.90 45,06 45.00  s0.00 s5.00 s‘_ar.oo €3.00

F16.3-25- NONSTATIONARY RMS DISPLACEMENT RESPONSE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE INPUT. §,° = .80, A = .0S. £, = o0.20,
AND 5f = .01.  {SEP MODEL)

g Oy o LOW PINCHING o

. A= LINEARIZATION

~1 o= SIMULATION PTS

s (100 SAMPLES)

P8D = 1.0

PSD = .10

35,00  80.00  ¢5.00

F16.3-26- NONSTATIONARY RMS VELOCITY RESPONSE OF SDOF SYSTEM UNDER

N

STATIONARY WHITE NOISE INPUT. Cio = 0.8, A = .05 £, = o0.20.
AND 55 = .0l.  (SEP MODEL)
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s Uy ¢ LOW PINCHING =

a= LINEARTZATION
o= SIMULATION PTS

" (100 SAMPLES)

.30
h

o.30
a
&

0,19

15.00 13,00  20.00  £5.00  30.60  35.00  40.00  43.80  £0.00  35.00  83.00  £3.00

00
8
2

F16.3-27- RMS PREDICTION OF THE RESTORING FORCE OF SDOF SYSTEM UNDER
STATIONARY WHITE NOISE INPUT. f,o = .80, A = .05. £, =o0.20.

AND 55 = .01. (SEP MODEL) {

g

g e e LOW PINCHING s

5 a= LINEARIZATION

g o= SIMULATION PTS

(100 SAMPLES)

8g.00

30.00 40,00 30.00 83.06 19.00

20.60

10.00

F1G.3-28- VARIATION OF DISSIPATION ENERGY FOR SDOF SYSTEM(SEP MODEL)
UNDER STATIONARY WHITE NOISE INPUT. §1° = 0.8, A\ = .05, £, = 0.20,
AND 55 = .01. ({SEP MODEL)



136

2 Oy « HIGH PINCHING @

3 A= LINEARIZATION

1 o= SIMULATION PTS s

8 {100 SAMPLES)

51 pPsh = 1.0
g

3

8

) - PSD = 0.5
8

8]

s vy PYLI LYY

] seameent 0, e PSD = .10
8

“o.00 3.00 10.00 15.00  20.00 25.90 30.00  35.00 40.60 500 30.00  55.00 a’%.oo §5.00

F16.3-29- NONSTATIONARY RMS DISPLACEMENT RESPONSE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE INPUT. QO - .90, A\ = .1s5. &, = o0.20,
AND 55 = .01. (SEP MODEL)
5 00 o HIGH PINCHING e
s a= LINEARIZATION
1 o= SIMULATION PTS
3 (100 SAMPLES) .
pPsSD = 1.0
PSD = 0.5
PSD = .10
8
.60 5.00 1050 15.co  20.08  23.80  30.00  3%5.00 .66 45.00  36.00  3%.00 s‘%.oa 85.00

F16.3-30- NONSTATIONARY RMS VELOCITY RESPONSE OF SDOF SYSTEM UNDER

STATIONARY WHITE NOISE INPUT. {:!o = 0.9, A = .15 &, =0.20.
AND 55 = .01. (SEP MODEL)
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g Oy e HIGH PINCHING o

. a= LINEARIZATION

s o= SIMULATION PTS
. (100 SAMPLES)

0.80
A

PSD = O]
PSD = 0-5
PSD =1-0
g
%.o0 5,60 10.00  15.00  20.60  25.00  30.00  35.00 $9.00  45.06  30.00  55.00  ¢0.00  65.00

FI16.3-31 -~ RMS PREDICTION OF THE RESTORING FORCE OF SDOF SYSTEM UNDER
STATIONARY WHITE NOISE INPUT. {,O = .90, A = .15, £, = o0.20,
AND 5£ = .01. (SEP MODEL)

f Me = mioH pincHiNG -
N a= LINEARIZATION
5 o= SIMULATION PTS |
3 (100 SAMPLES) ‘
] PSD = 1.0
g
¥ PSD = 0.5 |
3 i
94 !
g
8
PSD = .10
3
%.co 5.0 18,08 15.00  20.00 25,00 30.00  35.04 15.60 45.60  50.00  35.30 e’?r.w 83.00

FI1G.3-32- kVARIATION OF DISSIPATION ENERGY FOR SDOF SYSTEM(SEP MODEL)

UNDER STATIONARY WHITE NOISE INPUT. §,° = 0.9, A = .15 & =o0.20
AND 55 = .01. (SEP MODEL)
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/ / YIELDING
/ / HINGE
/ / (typ.)
/ /
/ /
// /
/
-CS- alt) g&

(a)- Response Without Gravity Load

/\\\\\\ //////?
] ~0 //
/ /
/ /
j /
/ /
/ /
gé alt) d
g

(b)- Response Including Gravity Load

FIG- 4-1- GRAVITY EFFECT ON RESPONSE TO LATERAL LOADS.
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280 32-0y

(c)- 4 =011, pp=0-8

FIG. 4.2- PINCHING BEHAVIOR OF BN MODEL UNDER NONZERO MEAN
STATIONARY WHITE NOISE INPUT. PSD = 0. . g=0-8,

{ =o0.1.
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LU

.00

a= LINEARIZATION

3

3 o= SIMULATION PTS

g (100 SAMPLES) B
: PSD=0:| e 008

dg =0l

g
by
s 06
2
3 0-4
g
@7
§, »» 0-2

T (SEC)

3 a= LINEARIZATION
- o= SIMULATION PTS
8 (100 SAMPLES)
24

EF
g ——
- PSD = Q-] 2000005, K
8 .t,.v""'. 3 .
b 3 g =05 o \_°8

o‘. .)/\0'6

§. ....on.-‘ ..n'n..“. .“.o' ’

0-4
g
o1
g
<1 0-2
3._ ."o.,“..o".
%.ce 506 0.0 18.686  §0.60  i5.00  0.09  35.00 0.0  43-68  $0.80  £8.00  40.00  65.60 ( b)

T (SEC)

FIG. 4.3 - MEAN DISPLACEMENT RESPONSE OF SDOF B-N SLIP-LOCK MODEL UNDER
NONZERO MEAN STATIONARY WHITE NOISE INPUT. =008, § =0,
o o
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A= LINEARIZATION
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FIG. 4.3 (Cont '

(d)

141
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FIG. 4.3 Cont'd)

A= LINEARTZATION
% xo= STMULATION PTS
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PSD = 0-1
Sq =0-1
[s]
. He
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e

FIG.

'-§:. .00 ’o% 5.00  £5.00

4. 4

€0.00  63.00

T(SEC)

- MEAN VELOCITY RESPONSE OF SDOF B-N SLIP-LOCK MODEL UNDER

NONZERO MEAN STATIONARY WHITE NOISE INPUT. 0 =0-08, 8030-
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a= LINEARIZATION
q = xo= SIMULATION PTS

. (100 SAMPLES)

% PSD=0-1

R

3 5 (b)
b ) S0, | 10.00  Ci§88  0.05 Mo gPi0.00  55.00  40-08  65.08 5.0  55.00  Go.00  cb.o0
% ° o 2
g ’ Pl .'.'::,’5
H i T (SEC)
s- o
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Hom x o= SIMULATION PTS
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3 3, =0-1
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FIG. 4.4 (Conmt ' d)
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. a= LINEARTZATION
Hom xo= SIMULATION PTS
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FIG. 4.4 (Cont’d)
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a= LINEARTZATION
x o= STMULATION PTS
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PSD> 01
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(a)

65.00  60.00
T(
gq IL’LZ
3 A= LINEARTZATION
& x o= SIMULATION PTS
Fe
. (100 SAMPLES) S
PSD =0}
3
8]
i
]
o7
ﬂ A
84 -
%loo s.00 10.00  13.00  20.00 25.00  38.00  35.00 40.00 45.00° 50.00  53.00
3
FIG. 4.5 - MEAN HYSTERETIC RESTORING FORCE RESPONSE FOR B-N MODEL UNDER

NONZERO MEAN STATIONARY WHITE NOISE INPUT. 0 =0:-08,

o0
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FIG. 4.5 (Comt’d)
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A= LINEARIZATION

3 xo= SIMULATION PTS
ol = (100 SAMPLES)
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8q = 0!
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FIG. 4.5 (Cont'd
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FIG. 4.6 - MEAN DISPL. RESPONSE FOR SMOOTH ELEMENT COMPONENT OF MODEL UNDER
NONZERO MEAN STATIONARY WHITE NOISE INPUT. ©=0-08; 80"0'
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FIG. 4.7 - MEAN DISPLACEMENT RESPONSE OF S-L COMPONENT OF MODEL UNDER
NONZERO MEAN STATIONARY WHITE NOISE INPUT. g = 0-08; 80—'=O.
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FIG. 4.8- MEAN ENERGY DISSIPATION OF A SDOF BN MODEL UNDER
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FIG. 4.22 - RMS HYSTERETIC FORCE RESPONSE OF A SDOF S MODEL\UNDER
NONZERO MEAN STATIONARY WHITE NOISE INPUT. Scf =0:01, £ =o0.2.
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APPENDIX

[

DETAILS OF DERIVATION OF LINEARIZED COEFFICIENTS FOR BN

MODEL (Zero Mean Case).

The expected values specified in Equation [3.5] gives, wupon

substitution of the appropriate gi(y3,y4) functions

Cos = ELQ2/25,) (A7, —v(B 35| P 5[5, ]+ v]v5] 9,0 1/m)

. (n-1) . n.
K., = BE{(3/3y,) [A7, -¥(B|y;] AR N IR VEY
, S,
C,5 = BU(3/37,) (2a/ Ano)expl-y;°/ (261,
(43, -v (Blys | v ] 5,0+ v[vg|™ T1/m) [A-1]

K, = E((2/3y,)(2a/ V2no) expl-y,°/(267)]

(n-1)

[Ay, -v (B|y,] Vol T4+ 7] vg|™ 9,01/0)

Using the approximation for the deterioration control parameters
given by Egqguatiomns [2.41, [2.10] and [3.13] together with the

assumption that A, , n and a can be replaced by

Ky = Ag — Bumg
“V = VO + Bu"s
= + 8 A”Z]
a T Mo n¥q [
B, = Saun

allows the equations for Ce3 and Ke3 to be written as

Ce3 = {uA - py[BE(Iysl(n—l)yssgn(§4)) + yE(Iysln)]}/pn
[A-31
(n-1) ;- ) (n-2)_ -
K .3 = (—uvlun){BE[nlysl n |Y4|+ yE[n,ysl o Y3541}

The expected values in [A-3] have been previounsly evaluated (15).
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Hence

Ce3 = [pA - uy(ﬁFl + sz)]/un

Koo = [-u, (BF, + 7F4)]/u11 [A-4]
where

F, = o, T[(n+2)/212%/2(1__ - 1_)/x

1 - °% T s1 s2
F, = o, "T[(a+1) /212" 2/ /&
F, = no, " Pe;Il(a+2) 721272 [A-5]
_ 2 (nt+1)/2 , _
{20(1 Pay )/n] + 934(151 ISZ)}/n
-1 /2

F, = mpy30, " 1 o;Tl(a+1) /21 27/
In [A-51,[(.) is the gamma function,

I, = fopsinnede [A-61

_ T_._n -

I82 = f¢ sin 646 [A 7].
and

¢ = arctan[- lﬁpsazlpsz] [A-8]

In a similar manner, CeS and Ke5 are given by

Ce5 = Zua/(VE;cpn){uAE[exp(—ysz/(Zcz))]‘“

(n-l)exp(—yézl(262))6’541/854] +

“v[BE[y3ly3'
1EL y, Pexp(-y,2/ (26711 |

Kos = 20,/ (Vamon ) (=(py/o ) ELy,ygexn -y, / (26°))] +
B, [/ EL[3, v, |* P exn(-y,%/ (26711 -
EL|§, [exn(-y52/(262)) (8/05,) (v,] 75| 7121 1 +
vr, [(1/6P)ELy, |y |5, exn(-y;°/ (26?1 ] -

E[]§4Iexp(—y32/(262))8,ysln/ayg] ]}




|

or

where

In the

where

e5

es

28,/ (V2ron ) (uyFg/o, ~ u, [BFc(T 4

Zpa/(vggcun){—(uAloz)Fl6 +

B, [(Fg/o™) (B F o ®" ) /(as2) + F_ )
. v

ogc(JLZ + 632
(Fs™ "1/ (no )22/ 2T 1 (a+2) /2]

(Fs™ 1/ (Vroy) 2/ 2P (a+1) /21

[F5n+2/(nc3)c;,fl‘[(n+4)/2]2(n+2)/2

[nF5n/(n63)c;r[(n+2)/2]2n/2

. 2(n+2)/2
934 .

o4/ ( mag)
(pgy/og) (I s — I _IF,
(p33/03)Fs(I =T ,)
(Fs™* %70, 1 (2+3) /2]

n+1

(2 F5™" /o) (a+1)/2]

L. 3, 2
P33°4 Fs /o4

3
2yt - p3i

2 22, 2)
F17/(2 V;F17 /4) + pay F, /63

relations

fogsinnOdG
fﬂnsinnede
fogsinn+29d9

fgﬂsinn+29d9

- IS4) + 7F7]}

[A-9]

2—
Fis/2) 1}

[A-101

[A-11]
[A-12]
[A-13]

[A-14]
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2
0 = arctan[‘c3 Vl—psa /(psa FS)] [A-15]

If, in the above, it is decided to generalize the degradation
still further, by allowing 6 to vary, themn o must be replaced

approximately by L
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APPENDIX B

DETAILS OF DERIVATION OF LINEARIZED COEFFICIENTS FOR NB

MODEL (Zero Mean Case).

The expected values in Equation [3.5] give the same 3
' ' .
relationships for C.;3 and K ;. For C_; and K_, .
C,. = B{a/ay,Irg/(e%+ y,2)1 .
es 4 3 7 |
. (n-1) o n- ‘
[A43, - v (8]ys] Valvgl* vlvs| ¥/
r 2 2y -
K, s E{a(ays[kt/(é t Y, }] [B-11
(n-1)

[AY, - ¥ (B|¥s Vo |54+ v |53 PF 01/
4 3 4

Using the relations for the degradation control parameters A, ,
and n givem by [A-2] together with assumptioamn that A and & <can

be replaced by

My = Bmg
Mg = &g + BSemg ” [B-2]
allows that C ' and K ’ be written in the form
es e5
€ = (pip./n)ln, EL1/(u, 2+ yo.201 -
e5 uluérpn. Ha IJE Y3
— 2 2 o L]
FU[BE[Y3[Y3l(n 1)/(11§ + y3 )aly4l/ay4] +
ynrlysln/(p§2+ v,21 1)
K .=« [ ) (=21, EL5,7a/ (0p2* 722021 +
es HFale/ By Hp SLlyga¥3/ithe 3

[B-31
20, IBE [y, 7 |y, | 75, [/ (s v, D20 4

YLy, |v5| ™5yl (ug2+ v,0%1 ) -

uy!BE[|§4|/(p§2+ 7, 200005,5(rg |75 |21

YELS, /(a2 + v, 200 |y oy, |



or

es

es

where

In these numerical quadrature equations,

e, and ¢

Q
[

and erf(.)

= —y32/(26

a ‘/ az

= (“kuélpn){”AEl - p,[BE, + yEgl}
(Hkug/un){ -2p,E, + 2p, [BES+YE ] -

ry[BE, + yEgl}

2

[yn/2 /(ugcs)][l-erf(pE/V563)] exp(p§2/263

)
1/ (2amo) (" (yg™ ey o ay) [1-exf(9) 1dy,
(-1 "(y; e ) expla,) [1-ext(-$)ldy,)
2/(Va;as)fom(y3n/a1)exp(az)dy3

= 2p,5003/ (VZrog )1/ " (y,% /e D expla,) dy,

1/ (Vzrog) 1,7 (v, ®" D e By 11-exs(p)r1ay, -
Jo7 (v,

(n+1)

/a
) 1
2pgy 63/(V2n632)f0m(y3(n+2)/a12)exp(a2)dy3

2)exp(az) [1—erf(—¢)]dy3}

192

[B-4]

[B-51

[n/ (Vano) 100" (1/ay) 5, ®71) expla,) [1-erf(p)ldy, -

IO”(l/aI)ys‘“‘l) expla,) [1-exf(-p)1dy,)

2m paj o3/ (V2r0,”) [ (v, a ) expla,) dy,

are

2 2

2

3)

is the error function.

expressions for ¢

1’

[B-61]
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APPENDIX C

DETAILS OF DERIVATION OF LINEARIZED COEFFICIENT FOR SEP

MODEL (Zero Mean Case).

The expected values in Egquation [3.5] give the following

4 4

relationships for Ce3 and Ke3
¢ ' = Bta/oy,[1-Cyexp(-y,2/L,2)]
e3 Y2 1P 773 2
-1
[y, = v By, frs [T vg + v]ys v 1/m
v 2,5 2
K.z = E{d/3yzl1-0iexpl-y;7/L,)]
(n—-1)

[y, = v Blya|vs| T3+ 1]ys] Ty 1/m

or

C,3 = (Al1- {iexp(-y37/ 8,1
[1- C exp(-y,2/0,2)11B(8/3y,) v, v5 Py, +
v vy "1 mg

Koy = (/)0 Ly35/ 0,7 exn(oy, %7 02 [C-11
{Ay, -n, I8 iz V3 (n_l)Ys + Y, Y3 1y - (llun).
[1-exn (-7, 2/8,2) 1 tn, [B v, /0y, ( y; Dy, »

, .
1Y, 3/8y; ¥4 1}

Using the relations for A, v ,and 1n given by [A-2] together with

assumption that g 1 and CZ can be replaced by their mean
[ 4 g
valnes, allows that Ce3 and Ke3 be written in the form
c . = p,/n. = (pa/p e, Elexp(-y 2/p 2)] -
e3 A" q A" "L, 3 >

(n-1)

(i, /u ) (BEL3/07, |7, ]l ¥31 + vEL[y4]"1} +

(n-1)

2
Cog wy /uy) {BETexp(-vy /HC:)G/BY2,y2”y3’ vzl +

YE[exp(-ygzluC;)IY3jn]}




_ 2 2, 2.4 _
K., = (ZHAHQ/““uCZ) E[y3y2exp( Vs /ugz)] [Cc-2]

(uyluﬂ) [BE[IY2l3/8y3(|y3|(n—1)

v3)1 o+
YEly, 9/0y5 |yg ™10+ Cup my/up).
(pEexn(-y,2/u, D) |v,]0/075CJrg| PV [z, 1 +

TE[exp(-YézluC;)Yzalayslysln]} -

2 2 24 (n+1)
Z(HQfVluiaun){BE[exp( ¥3 /ugz)ly2 lv4] 1+
vElexp (-7, ;2355 |v5] "1
Hence
Ce3 = (pA/un) - (“A/“n)”gfs -
(p”/”n){BFl + 7F2 } o+ |
(ugruu /"q)[BFG (I83 - Is4 )+ yF7 }
4 _ . 2 ? 7 7
Ke3 = 2["A”€5/("n"§2)] F16 (p, /un){ﬁF3 + 7F4 } o+
14 14 n ?
(;1QE Hy /un){BFg (F17 F18 /n + F13 ) + [Cc~31]
(Y/2)F10 F15 } -
7 14 n+2 14
Z(pgruv/un){BF8 [F17 F18 /(n+2) + F12 1 +
TFi0 F1q 3
where the valumes for F ' ' and ' F ' in the above

1~ Fip Fia ~ 18

equations can be obtained from the same relationships givenm for

F

1 12”7

respectively with the following modifications

_ 2 2
Fs = w o3/ /2“3 T

must replace F5 im all those &expressions and will

replace p33.
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DETAILS OF DERIVATION OF THE CALCULATION OF EXPECTED

VALUES FOR BN MODEL (Nomzero Mean Case).

Solution of the differential <equations for mean Tresponse
requires evaluation of the expected valumes [4.5]. These may be
rewrittenin terms of the variables yi = vy - opy as follows

E, = E[[y3+u3[(n_l?fy3+u3)[§4+ﬁ4[]

E, = El[ygtug|["(F 401

Ey = Elexn(-[yg+ugl”/(267)) (3,401 [D-1]
Ey = E[efo‘[Yé+“é]2/(2“2??|73+“3l(n_l)(ys+“s’l§4+ﬁ4|]

E, = E[exp(f[yé+pé]2/(262??,Y3+p3ln(§4+ﬁ4)]

Substituting the appropriate nomlinear functions into Equations

[4.8] 1leads to

where

e3

e3

e5

e5

= uy—n, [BEg* vE,1}/n

= -u, [BEg+ vEgl/p,

= 2,/ (f2ne) {uyEy o= 1y [BEy + vE, 1/ m, [D-2]
= 2u,/(f250) {~(u, /6 VE =, [B(-E  Jo+ E ) +

y(—E16[62+ E17)]}/uTl

- Cfya* usl
= El|yg+ ng]™]
= 5B Jygr ug] BTV 3, i)

(n—2) (Y
3

= nE[|yg* ng + ng) (7% ny)]

= Elexp(-[yg+ py12/(267)]




2 —
Ell = Elexp(-[yg+ us]z/(Zc )|Y3+ u3|(n 1)~
(Y3+ us)sgn(§4+ ﬁ4)]
' 2 2
El, = Elexp(=Iy g+ ugl /(26%) [y 4, |™1 [D-3]

L2 2 ° a
Ejz = Elexp(-[yg* pgl™/(267))(ya+pa) (y+n,)]
(n+1)

E , = Elexp(-[yg+ 1312/(26%)) |y 4| F4tigl]
E . = nElexp(-[yz+ ng12/(267) |y rug] 271 |7, 40,1
By = Blexn(~Iyg+ u31°/(20°)) [y +ug|™

(F3+ug) (F4+ iiy)]
E.. = aBlexp(~Iyz+ u3]2/(262>]y3+u3;‘n‘2)

(Y3+H3)(§4+ﬁ4)]

These expected values are evaluated in several distinct groups as

follows

odd

°

CASE

i-=n

H

In this case, all integrals can be evaluated in closed form.
For computational purposes, it is appropriate to categorize the

integrals to the number of summation reguired.

(2) No Summation Integrals

Es

[l

(a/°3)°3 A1A2

E

2 s E)

(b) Single Summation Integrals

(n-k) .
[p34 Isz(k+1,63) +
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6& Isz(k,Bs)]}

n+l

E5 = (a /63)62A1{ (n—k).

3

N B

.

[(pygalog)T ,(k+1,-A5) + A,T_,(k,-Ag)1}

n
n
E. = -o,"1 Ezgk) Bs(n‘k) I_,0 k,B,))
n—-1
-1
E = meeg. (n-1)y } (", ), (3-E-1)
o 194°3 r=0 3

[pgy T ,(k+1,B5) + B I ,(k,B3)1}

n

(n-k)
gk) A Isz(k,—A3)}

n+l
n+1
n+2 . (n+1-k) .

'E16 = (a (03?64A1{ Z=£ k )A3 [934(Q/G3).

Isz(k+1,~A3) + AT ,(k,-A3) 1}

n-—-1

(n-k-1) .
17 k )A3 [(p34 a/63).

O~

e
E = (a”/cs)c;Al{ }
. T k=

T (k+1,-A5) + A,T_,(k,-4,)1)

{(c) Double Summation Integrals

O
ol =)

1/ 2 .k
) ( 1_934 ) ISl(k) .

n
AN n~-k
'm (n—k_m) - o )
ﬁi Ca )934 Bs Toa(m+1.82) + BT ,(m, 83010




E

4

11

14
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n
N /n
n+l . ‘/ .2 Gk

(a.p /63)G4A4A7[ ﬁ:ﬁk) ( 1—p34 ) B
n—-k
N /n—k

(n-k) m (n—%k-m)
(ap/as) I_,(x) ﬁ=g m ) Agw Al .

[A Isz(m+1.A8) + AQIsZ(m’AS)]}

7
n
S n
n .2 Lk
65 1 L ,(k) ( 1-pg3° ) Iq(x) .
» k=0
n—-k
T -k ke
2 0n)ogy™ 5,071 (w0
m=0
n-1
T /n-1
. (n-1) ‘/_ .2,k
no;o, { é:ﬁ k )( 1 Pal ) sl(k)
n-k-1
n—-k—-1
2 (a )p33m 33(n'k"m"1)[lsz(m+1,ﬁ&) +
n=0

ﬁa Isz(m,Ba)]}

n
(k)(/l—psaz )k(ap/o's)(n-k)-
0

n—-k
)psim A7m A6(n k m)Isz(m’As)]}

n+1

N /n+l
n+2 . .2 L\ k
(a, [63) 638,81 é:i n )(V1_934 )
n—k+1
< n—-k+1
(x) <L ( m’ )[pA7]m A

m=0

(n—-k-m+1)

(n-%k+1)
(ap/cs) Is 6

1

[A,T ,(m+1,Ag) + AgT_,(m,Ag)])

7 s2
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n—-1
Y, n-1
.. (n-1) f .2,k
E 5 = (ap/63)64ap A4A7{ é:; k )( 1-ps3 ) .
n—-k-1
N/ n%k-1
(n-k-1) ‘ . m (n-k-m-1)
(ap/cg) Isl(k) ﬁl; m )[934A7] A6 .

[A,T ,(m+1,8g) + AgT ,(m,Ag) 1)

In the above,

2 2 2, 2, 2
e = 663/V° + o, H @, = co,/ /(1—p32 )63 + o
B3 = mglog s By = myl/og
—_ 2 . 2 = —_ - °2 - 2
B, = 1-(a,/o5) s B, = 1/01-pg37 (- )

and the A’s are given by

>
I

exp{B32F(a(63)2‘1]}

A3 = (a(cs)BS

Ay = exp(p, B, Ipg3” B2 8% —11/12(1-p,,0 1)
As = p3; B, J1‘9342 |

A6 = Bé - 932 %pz sz B3

A% = %p vl—p332

Mg = =Ag/h,

A = B3 ~ 033 8,7 8,7 8,

The standard integrals are

I (x) = (17 2z S " exp(-¢?/2 )ag
I, (k,B;) = (1/2m) /" Fsan( { +B D exp(~ {2/2)ag

The integrals Isl and I82 can be evaluated im closed form



giving

o (odd %)

I = 1 (k=0)
((x-1)1/0(k-2)7211312572)/217  (even k)
( Z/H)(—1)(k_l)Bi(k-l)exp(—Bi2/2)+

Top(X.8y) = ” 2
( 2/7r)exp(—l3i /2) (k = 1)
1 - 2908 (k = 0)

Vhere ¢(.) is the Gaussian cumulative distribution funection.

Several integrals are simplified but other integrals reduce

to a sum of two Gauss-Laguerre guadratures.

(2) No Summation Integrals

E3, ElO’ and E13 do not depend on 'n’ and therefore, do

not change.

(b) Sinpgle Summation Integrals

k
N\ /n _
E, = c&csn{ L (k) B3(n k)[psa I, (k+ 1) + 85 I ,(x)]1)}
n=0
k
S /n
n+1 . (n-%)
ES = (a /03)64A1{ ﬁ:ék) Ag .

[pyy(aloy) T (k+1) + A,T 1 (K)]1}
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n
n
E, = 63n { E (k) Bs(n’k)Isl(k)]}
k=0
n—-1
n—-1
B, - n%63(:1-1){ }( X )ﬁs(n—k—l).
k=0
[pyy I q(k+1) + B3 I_1(X)1)
' n
AR !
n+1 (n-k)
E;, = (e log)Aq1{ V4 (k) Ag I _(x)}
: k=0
n+1
T ;nt+l _
E16 = (an+2/63)62A1{ L ( k } As(n+1 k)-
: k=0
[pgala/og) T 1(k+1) + A T (k)]
n-1
\ yn-—-1 e
E . = (an/c3}a;A1{ ézg ) As(n k-1)

[(P3ia/63) I q(k+1) + AT _,(k)1}

{c) Numerical Quadratures
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The double summation integrals can no longer be evaluated im

¢closed form, but can be reduced to the following quadratures

E, = (cicsnlvgg){[molgl(n—l)g O,explyy) exp(f)dl +

[0“ t™ 6, expl(y,) exp(~{)d¢ }

lev]
[

0 -1
4 = <6263n/ m){[m lgl(n )Q 933XP(C )dg +

© 1

fo ¢

E. = (o,°/ 2000L.°% |¢]
6 3 ~-®

IO” "

O exp(-)d(}

{(n-1)

£ ©1explyg)exp({ )AL

Olexp(Yz)exp(—C Ydl 3

4
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-1 0 -1
E, = n(cacsn /V;;}{[w Iq(n ) G,exp(yglexp(l)dy +

fomg (n-1) Glexp(xz)exp(—g yag 1}

B = (GSHIVE;?{[wolgl(nhl) O5exp( £)al +
fo°° Cn Qﬁexp(*g Ydt 3}

Bi1g = (“2“3n+1(w5b{[wolCl(n+l) 6 exp({ )af +

fom g(n+1) 94exp(-C yal 3

- -1
ElS = (Gacsn 1(V;;){{m0,ClKn ) Qsexp(C yag o+

fom ¢ (n+1) 6 exp(- £)df }

In these numerical gquadratures

Yy = I8y - pag(C = BHI/|1 - py3”

T, = -0.5(C - B3)2 + ¢

Yg = -0.5(8 - Bg)” = ¢

v, = 03308 - Bg) + B

0, = [1 - 24(-y )]

0, = ({2/m) {1-pg3” exp(-v,2/2) + v,0,
6, = 6,exp(yz)expl-o,” ¢ 2/ (267)]

6, = 6 exp(v,y)expl-0,7¢ 2/ (26°)]

95 = 6391/92

06 = 6491/92

|7
=}

n = Non-Integer Valrne

If ‘n’ is not an integer, the no summation integrals still

remain unchanged. The numerical quadratures of Case 2(c¢) will

also

remain unchanged, but the single summation quadratures are




no longer feasible. Then the following additional numerical

guadratures are required.

where

In the reduced forms, all of the numerical guadratures are

12

is

17

203

‘csnlvgg}[[mo|§ln vgexp(vg)yyexp (L )df +

fﬂw Cn Y4exp(72}exp(—€ Yday¢ j

(630 /J_ax)[f |g; S exp(g )dg +

3
fo ¢" Ogexp(-¢ dag 1

1210 et explrgexp(f dar +

fo°° Cn exp(yz)exp(—Q ya ¢ 1

n(cacgn_l[dz;)[[mo Mf(nﬁz) Y4exp(7§?§xp(§ yae o+

[° g(n—l)

0 v4exp(yy)exp(- £ )d{ 1]

(cn(ygi)[[molcln Ogexp({ 1ag +
fom " O,0¢xp(-¢4df 1

(6504 1/\/__)[f O 14| ejexp(¢rag -+
o . Ogexzp(=()a( 1

(o;0 sn—I/V;;)[[QO ﬂl(n-z) O exp(()al ~+

re ¢ {(n- 1)

0 98exp(—C )dg 1

expl-o,° {2/(262)]exp(73)y4

exp[—a32£ 2/(262)]exp(72)74
97/74
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compatible with an N point Gauss-Laguerre formula.




APPENDIX E

DETAILS OF DERIVATION OF THE CALCULATION OF EXPECTED

VALUES FOR SEP MODEL (Nonzero Mean Case).

The expected values needed for the solution of stochastic

diffe

be re

into

where

rential equations for the mean responses given in [4.26] can
written as follows. Here, Y; = V3 — py as before

By = ELygrug| VTP Ggtng) [yt

E, = El|ygtug| (v +n,)]

E, = Elexp(—{yg+ng}°/ §,0) (y,+u,)] [E-1]
B, - Blexp(~(y3+ug)®/ 8,0 [varug | W70 Grgrug) [y, |1

E; = Elexp(~{y,+n3} 2/ 52) [y +uy | P (3,40, ]

Also substitution of the appropriate mnonlinear functions

Equation [4.29] results

C. = {p, _ uV[BE6'+ 7E7']}/u11 -
(kg Ju ) (AR o “hy (BB *+ 7By, 1D [E-2]

K, = (-uy /uIBEg * vE 1 + Cug /u)ln, [BE '+ ¥E ;"1 +
<2uA/p§2)E13' - (2p, /p;;[BE14'+ YE, o 1)

E6ﬂ = E[|y3+p3|(n_1)(y3+u3) sgn(y,+ir,)]

E7’ = EL|ygtug|”]

Esa = nE[lY2+ll2 ”y3+u3|(n—1)] /

Ey = nE[IY3+”3|(n—Z)‘st’“s)(yz“"z”

E, = Elexp(-{yg+ps}>/ C;”
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Epy = BLrgrug] BTV vy sentryrupexe(<tygrugd®/ D)
Elz' = EllS’é*!léP exp('{Ys“‘s]z/ £, [E-31
E13' = El(yg+pg) (yy+p,) exP(_{_Y3+”3]2/ §22)]

B, = E[|3’3+u3!(n+1) [727 1y ] exp(~tygrugd®/ ()1

Eys = aBl|yg+ug] () |7+ug] exn =y ghug) */ )]

Ejg = EL IY3+“3[n(Y3+”3)‘Y2+”2)ex1‘(‘{y3+”3}2/ €)1

E17' = aE[ !Y3+113I (n—z)(Y3+113,)(Y2+”2)“P('{Y3+”3}2/ 422)]

These expected values can be evaluated in the same three distinct
categories established for BN model in Appendix D. The general

1
form of these Ei s expected values are similar to respective

g

Ei s values tabulated in the Appendix D. ~Therefore, with the
following modifications same rtelations <can be used for the

evalunation of expected values in [E-2] and [E-31. The mnecessary

modifications are

Py must be replaced with Prg
GZ must be replaced with oy
ﬁ; must be replaced with B, = u2/62

a must be replaced with a = C263/VC22+2632

a must be replaced with a, = {p03/ va(l—pzs

) + s



