
RANDOM VIBRATION OF DEGRADING SYSTEMS 
WITH GENERAL HYSTERETIC BEHAVIOR 

A Dissertation Presented to 

the Faculty of the School of Engineering and Applied Science 

University of Virginia 

In Partial Fulfillment 

of the requirements for the Degree of 

Doctor of Philosophy in Civil Engineering 

Mohammad Noori 

August 1984 



• 



APPROVAL SHEET 

This Dissertation is submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy in Civil Engineering 

Mohammad Noori 

AUTHOR 

This Dissertation has been read and approved by the examining 

committee: 

Dissertation Advisor 

Accepted for the School of Engineering and Applied Science: 

Dean of Eng neering and Applted Science 

Date: August 1984 



Three mathematical models which are capable of representing 

general degradation behavior of hysteretic structural elements. 

including hysteresis pinching. as a function of hysteretic energy 

dissipation are presented. Two of the models are series models 

consisting of Bouc-Baber-Wen smooth hysteresis with two 

"slip-lock" elements. One of these slip-lock elements is 

designated as the BN and the other one as NB model. The third 

model has a single form and is designated as Single Element 

Pinching (SEP) model. 

Behavior of a SDOF system of each model under cyclic and 

general loading is studied and the obtained results illustrate 

the versatility of all three models in reproducing various types 

of general degradation including pinching hysteretic behavior. 

With the assumption of gradual degradation equivalent 

linearization solutions are obtained for these models for zero 

mean excitation case. Linearization for BN and SEP models are 

obtained in closed form and for NB model linearization is derived 

numerically. Nonstationary RJIS response statistics obtained for 

zero mean excitaion, compare well with response statistics 

computed using Monte Carlo simulation. Comparison for NB and SEP 

models are better than those for BN model. 

Response an a 1 y sis of a SDOF system of BN and SEP model. 

subjected to nonzero mean input excitation is studied and 

approximate solutions are obtained by subtracting mean responses 

from the governing stochastic differential equations and then 

i 



applying equivalent linearization. The response predictions of 

the linearized model compare well for the 

reasonably well for BN model. At all levels of 

linearized models predict 

system. 

qualitatively the 
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SEP model 

excitation, 

and 

the 

response of the 
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The destructive and many times disastrous effects of the 

forces of nature such as floods, earthquakes, gusty winds, and 

sea waves have always been a matter of significant concern to 

structural engineers. In these and numerous other cases, systems 

of engineering interest are subject to dynamic excitations which 

are basically random in nature. Examples range from systems 

acted upon by aerodynamic and fluid dynamic forces to machine 

induced noise environment. 

The importance of incorporating natural hazard loadings, 

such as earthquakes, into engineering design criteria is well 

recognized. Traditionally the random dynamic characteristics of 

these forces have been replaced by •equivalent• static an a 1 y sis 

and loadings, and the response of the structure under actual 

stochastic inputs has been obtained by theoretical studies based 

on deterministic methods. These methods have serious limitations 

due to the highly random nature of hazard loadings, and the 

accuracy of such an approach may prove inadequate in the presence 

of design constraints. The random nature of these loadings 

indicates that a probabilistic approach to analysis and design is 

necessary. 

example, 

The 

can be 

random nature 

realistically 

of earthquake phenomena, for 

represented only by stochastic 

mathematical models. Analyses that have used actual recorded 

data of particular earthquakes are equivalent to deterministic 

approach, and cannot be used to develop response statistics. 
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Although the deterministic aspects of these analyses become less 

restrictive when effects of a large number of past earthquakes 

are studied, the opportunity to investigate response for a 

spectrum of reconstructed earthquakes is limited by the 

relatively small number of existing records of strong motion 

earthquakes. 

One thus is led to choose stochastic model representations 

of these types of random inputs and responses as an appropriate 

alternative approach. Numerous researchers have considered this 

possibility (4, 27, 87, 94, 127, 59, 123, 150, 114), and research 

continues in this area. 

Analysis of structural systems to seismic excitations and 

other natural hazard loadings, is not an easy task. The response 

of structural systems to high intensity random loadings such as 

strong ground shaking, often exceeds the elastic range. The 

result is 

subsequent 

a highly nonlinear behavior due to 

energy dissipation through hysteresis. 

yielding and 

The inelastic 

response can be accompanied by strength and/or stiffness 

degradation. The exact nature of the system degradation is a 

function of structural materials and configuration which varies 

with the type of structure. Degradation can be quite important 

since it might lead to progressive weakening and total failure of 

structures. Therefore, the dynamic analysis of hysteretic, 

degrading structures under random excitation is a challenging 

task and employing proper analytical tools in dealing with the 

problem is essential. 
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The yielding behavior of hysteretically degrading structures 

has been described by linear models by most researchers. This 

simplified representation generally lacks the tractability 

necessary for even approximate analysis under random excitation. 

Other proposed hystereses, such as smooth hysteresis models, do 

not take into account hysteretic loop pinching behavior 

associated with many structural systems. To the knowledge of the 

author, no work has been done for developing a mathematical model 

for random vibration analysis of loop pinching hysteresis. 

Another problem of considerable engineering interest is the 

nonzero mean response of hysteretic systems under random 

excitation. Practically, no work has been done on the nonzero 

mean response of hysteretic structures. Recently analytical 

procedures to allow response analysis of smooth hysteresis models 

under nonzero mean excitation have been developed by Baber (12). 

This work was based on the approach introduced by Spanos (127). 

It is the objective of this thesis to study the problem of 

zero and nonzero mean response analysis of hysteretic structures, 

with general hysteretic behavior, subject to random vibration. 

The stochastic model considered for the base excitation here is a 

temporally modulated Gaussian white noise which has pertinent 

properties of seismic excitation. In Chapter 2, mathematical 

bases for developing general hysteretic models will be discussed 

and several nonlinear hysteretic models with the capability of 

reproducing 

introduced. 

loop-pinching 

In Chapter 3, 

and general 

techniques 

deterioration are 

for nonlinear random 
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vibration are discussed and a generalized equivalent 

linearization method as extended by Baber and Wen (15) is 

reviewed. A linearized form of the general hysteresis models of 

Chapter 2 is presented which has been derived without 

Krylov-Bogoliubov assumption. Zero mean numerical studies on the 

proposed models and no!lstationary stochastic response of the 

proposed nonlinear mode 1 s subject to temporally modulated 

Gaussian white noise is also presented. In Chapter 4 • the 

problem of the nonzero mean response of hysteretic systems under 

random excitation is discussed and the application to general 

hysteresis models is presented. Numerical studies which verify 

the capabilities. and range of apllicability of the proposed 

general hysteresis models, comparison of response statistics from 

linearized model and Monte Carlo simulation, for both zero 

and nonzero mean problems, have been included in 

corresponding chapters. In Chapter 5, conclusions, remarks 

mean 

the 

and 

suggestions are given. General theory and background for each 

individual topic 

chapter. 

has been included in the content of each 
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For years structural engineers have used differential 

equations to predict the behavior of structures subjected to 

dynamic loadings. In case of linear elastic behavior, the form 

of the differential equation has been accepted and the parameters 

in these equations, representing physical properties, have by 

various means been determined • The equations, along with the 

parameters they contain, constitute a mathematical model of the 

physical structure in question. The results of the studies on 

the dynamic response of linear systems have even gradually been 

incorporated into structural design procedures and codes. 

In case of high excitations, such as strong ground motion, 

the response of structual systems exceeds the elastic range. As 

a result of yielding, the structure dissipates energy through 

hysteresis. The inelastic response can be accompanied by 

strength and/or stiffness degradation. The exact nature of the 

system degradation is a function of the structural materials and 

configuration which varies with the type of structure. 

Degradation can be quite important since it might lead to 

progressive weakening and total failure of structures. To 

predict this kind of response, mathematical models are needed 

that can predict the energy absorption, hysteretic response, and 

the resulting system evolution through degradation. Constructing 

such models requires in general, the deployment of systematic 



6 

modeling 

Ideally, the analytic modeling of inelastic behavior of 

structural systems requires a force-deformation relationship that 

can produce the true behavior of the structure at all 

displacement levels and strain rates • This is a difficult 

requirement in view of the number and variety of parameters which 

contribute to the hysteresis of different types of st ructura 1 

systems. Moreover, complete derivation of material models which 

can adequately predict different types of stress states for any 

desired material and configuration, requires more information 

than is currently available on the dynamic behavior of materials 

(104, 124, 107. 23. 69). Hence, in practice, simplified 

hysteresis models are usually selected to estimate dynamic 

response in the inelastic range. This is particularly true when 

response to stochastic excitations is required. Otherwise Monte 

Carlo simulation with a large number of sample functions may be 

the only feasible solution algorithm. 

A number of approximate structural hysteresis models for 

inelastic dynamics, under deterministic 

have been developed. 

or 

The usual method of characterizing 

structural member under dynamic loading, 

random excitation, 

the behavior of a 

for example cyclic 

loading, is to specify its force-deformation relation on first 

loading, called the skeleton curve, supplemented by a rule to 
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obtain unloading and reloading curves. The bilinear model of 

classical plasticity which exhibits a sharp transition from 

elastic to plastic state and linear hardening, is perhaps the 

simplest and most widely used model for inelastic behavior of 

structural elements under cyclic loading or high intensity 

excitation. Kinematic and isotropic hardening are two examples 

of rules to obtain unloading and reloading. Bilinear model has 

been used by many researchers in the analysis of dynamic response 

to complex deterministic as well as random excitations. Caughy 

(28, 29, 30), Iwan and Lutes (72), Kobori et al (85, 86), Husid 

( 6 2) , Go to and Iemura {51), Lutes and Takemiya (95), Roberts 

(118), Lutes and Lilhanand ( 94) , Iwan and Gates ( 7 0) , 

Tansirikongkol and Pecknold (140), Lutes (92), Popoff, jr (112), 

Iyengar and Dash (77), Mitani et al (102), Lutes and Jan ( 9 3) , 

and Asano and Iwan ( 9) , have used this model for different 

classes of problems and for obtaining approximate solutions in 

random vibration analysis, utilizing various techniques such as 

Gaussian closure and equivalent linearization. Additional 

studies have been performed on the stochastic response of 

elasto-plastic yield model, which is a special case of bilinear 

yield model, to seismic excitation by Kaul and Penzien (83), 

Penzien and Lin (110), Karnopp and Brown ( 81 ) • Karnopp and 

Schar ton ( 8 2) , Lin ( 8 9) • Vanmarcke and Veneziano (147), 

Grossmayer (54), Vanmarcke (145), Chopra and Lopez ( 3 7) • and 

Yamada and Kawamura (153). The bilinear model fails to represent 

actual material behavior and is computationally inefficient 

because it requires one to keep track of all stiffness transition 
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points. 

Other types of hysteresis models have also been used in 

analysis of deteriorating and nondeteriorating systems. For 

nondeteriorating systems, in an effort to simulate a smooth 

transition into the plastic range, many researchers have proposed 

algebraic expressions to be used as skeleton curves. The most 

well known example of this class is probably the Ramberg-Osgood 

relationship used by several researchers to predict inelastic 

response of structural systems (99). The Ramberg-Osgood model 

coupled with Masing's rule for unloading and reloading, give a 

continuous transition from elastic to inelastic states. This 

model however, suffers from many limitations. For example, it is 

difficult to include stiffness degradation. From a computational 

viewpoint, it is a tedious model to use, because it specifies 

deformation as a function of force and therefore, determination 

of force given deformation requires iterative techniques. Also 

the model as presented originally is not suitable for random 

excitations (23). Jennings (80), Iemura (63) and Iwan (67) have 

proposed other smooth models which are basically variations of 

Ramberg-Osgood model. A number of researchers proposed smoothly 

varying hysteresis models. Iwan (65), proposed a smooth model 

based upon a series of parallel coulomb and spring elements. 

Bouc's (26) hysteresis was used for analysis of single degree of 

freedom systems subjected to wh it e no is e excitation by Wen 

(150, 152). 

Consideration of system degradation has also been 

investigated by numerous researchers. This introduces further 
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complications into the modeling of hysteresis, because it is 

choose an index of structural response which is necessary 

indicative 

to 

of the rate of degradation and the extent of 

nonlinearity of the response. This index is not a unique one, 

however, it should reflect the duration and severity of the 

nonlinear response. Gates (47), and Iwan and Gates (72) studied 

the seismic response of !wan's model to specific sample 

earthquakes. Takeda et al (139) proposed a trilinear model for 

hysteretic behavior of reinforced concrete structures. The 

degradation 

displacement. 

in this 

Penzien and 

model is 

Lin (110). 

governed 

and Li u 

by the 

(89) 

maximum 

obtained 

approximate response statistics for a single degree of freedom 

system trilinear model by Monte Carlo simulation. Iemura (63) 

proposed a degrading bilinear model based on low cycle fatigue 

damage ratios and obtained mean square response statistics under 

filtered white noise by a variation of equivalent linearization. 

Shih and Lin (122) used a functional relationship proposed 

seismic load effect 

by 

Hat a and Shibata to study vertical on 

hysteretic columns. Many other researchers in the response of 

hysteretic systems to random or complex deterministic excitations 

have developed other types of piecewise linear or smoothly 

varying hysteresis. Ozdemir (107) developed a mode 1 for 

describing hysteretic behavior of nonlinear elements. This model 

was used by Ozdemir (107) and Bhatti and Pister (23) for 

nonlinear transient dynamic analysis of frames with energy 

absorbingdevices. Baber and Wen (15, 14) developed an extension 

of Bone's (26) model to represent degrading systems. This model 
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is a smooth hysteretic model capable of representing stiffness, 

strength or combined degradation as a function of to tal energy 

dissipated by hysteretic action. The model was applied by Baber 

and Wen (15, 16) to analyze multidegree of freedom shear beam, 

and discrete hinge structures subjected to random excitations. 

Sues et al (136, 137) used Baber and Wen model for seismic 

performance evaluation of buildings but with maximum deformation 

incurred in each cycle, instead of energy dissipation, as the 

index for measuring degradations. Ang and Wen (6) used Baber and 

Wen model for prediction of st ructura 1 damage under random 

earthquake excitations. 

Most of th .e available hysteresis models are un ab 1 e to 

represent more complex forms of yielding behavior in which the 

hysteresis loop associated with successive cycles of loading show 

a progressive decrease in stiffness and energy dissipation as 

well as pinching behavior. Experimental investigations have 

demonstrated the existence of such deteriorating and pinching 

behavior. Such behavior may be associated with high shear loads 

and slippage of longitudinal reinforcement in reinforced concrete 

structures, with the behavior of cross braced steel frames, with 

cyclically loaded piles, or repeated loading of timber diaphragms 

to cite a few cases. Numerous examples of this type of behavior 

are reported in the literature (3, 7, 10, 21, 22, 51, 58, 64, 98, 

101, 102, 104. 105, 108, 115, 124, 137, 141-143. 147, 152. 153). 

Hysteresis loop pinching models which have been previously 

proposed, have been simple, but relatively inaccurate and 

constructed largely empirically (10, 17, 18, 45, 101, 121, 134, 
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153) • Such models do not appear promising for random vibration 

(13), since they typically require several rules for their 

description which are not easily stated in a form compatible with 

available solution methods. 

In this study three general degradation models are proposed. 

The first two models incorporate the previous smooth system 

deteriorating element by Bouc as modified by Baber and Wen (BBW) 

in series with slip-lock elements developed by Baber and Noori 

( B N) and No or i and Babe r ( NB) • The third model is a single 

element pinching model (SEP) developed by modifying BBW smooth 

hysteresis element. In all three cases, the form of the model 

has been chosen to be suitable for equivalent linearization for 

random vibration analysis. 

In this chapter, the mathematical basis for the development 

of these models is discussed. A thorough deterministic dynamic 

response study on the capabilities of the models, types of 

degradations obtainable under cyclic loadings, deterioration 

parameters, etc. is then presented. Behavior of the models 

under random vibration is discussed in Chapters 3 and 4. 

The nonlinear system under study is a single degree of 

freedom system. The governing differential equation of motion is 

.. . 
u + 2 w0 u + q(u,t) = a(t) [ 2 • 1 ] 
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where , u, is the displacement of the mass relative to the base, 

a(t) is the input base acceleration, and q(u,t) is the restoring 

force given by 

[2.2] 

a is the ratio of post-yield/pre-yield stiffness. 'z' is the 

hysteretic restoring force which will be presented in detail for 

each of three 

first component 

proposed 

of the 

models in the following 

restoring force, 

s e c t i on s • The 

is the linear 

post-yield restoring force, and the second component, qH, is the 

hysteretic restoring force. 

In this section the mathematical basis for the development 

of two slip-lock models, Baber-Noori model (BN), and Noori-Baber 

model (NB), will be discussed. A single degree of freedom system 

for these two models is shown in Figure 2.1. 

The Baber-Bouc-Wen (BBW) smooth hysteresis model is capable 

of reproducing a wide variety of inelastic, hysteretic, degrading 

behavior with a wide range of cyclic energy dissipation (14, 15, 

27, 136, 137). For the two slip-lock models under study, the 

hysteretic restoring force model of BBW is presented in the form 

z. 

where JL y, and , n, determine the hysteresis shape, and A 

controls the tangent stiffness. The parameters A, V and are 

varied as a function of the response history to introduce system 
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deterioration. In this work the dissipated hysteretic 

energy, e(t) is considered as a measure of response duration and 

severity, as in the work by Baber and Wen. The degradation 

parameters , and other deteriorations parameters will be 

defined as functions of dissipated energy. The deterioration is 

chosen as 

A 

= [ 2. 4] 

where A0 , and v 0 are the initial values of the degradation 

parameters, and &v are parameters which control the 

rate of degradation of initial tangent stiffness, stiffness, and 

strength respectively. Here these rates are chosen as constants. 

Also in Equation [2.4] 

e = 

2 1 tf = (1-a)w 0 ta (z.u)dt [ 2. 5] 

Detailed study of the BBW model is presented in References 

(14, 15, 150). 

Equation [ 2. 3] is one of example of a number of hysteretic 

models which take the general form 

• z z, t) [ 2. 6] 

models of this form have been found to be quite useful in random 

vibration analysis, because of their expression in a compact 
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mathematical form. Generally, the functions will be piecewise 

differentiable, at best. 

In order to add hysteresis loop pinching capability, a time 

dependent slip-lock element as 

and 2.2{b) is incorporated 

shown schematically in Figures 2.1 

in series with the BBW smooth 

hysteresis element as given by Equation [2.31. The mathematical 

form of the "slip-lock" element for each of the two models BN and 

NB will be as follows. 

The slip-lock element in BN mode 1 is given by the 

differential equation 

u 2 = f{z). z [ 2. 7] 

where I z I is the restoring force defined by Equation [2.3]. 

Equation [2.7] can be written in the form 

f(z) [2.8] 

Equation [2.8], which defines the behavior of the slope of the 

function in Figure 2.2(b) suggests the following properties for 

the function f(z) 

(a) f ( z) is an at least piecewise continuous function 

which is independent of the sign of z and u 2 • 

(b) f(z) is zero, or nearly zero everywhere, except 

within a small region near z=O, where it has a sharp 

peak as shown in Figure 2.3. In the limit, as the 
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stiffness during slipping goes to zero, f(z) 

approaches the Dirac delta function. In practical 

situations, a large but finite peak value is 

expected. 

For practical modeling purposes, it is convenient to choose f(z) 

of the form 

f(z) = 2a.g(z) [2.9] 

where g(z) is chosen to have an area of 1, in order to allow a 

total s 1 ip of '2a' , i . e • , it is a continuous function 

approximation of Dirac delta function. Thus, it is seen that 

g(z) has the form of a unimodal probability density function, 

symmetric about z=O. The magnitude of slip 'a' is computed, as 

are the other deterioration parameters, as 

response history. Herein, 'a' is given as 

a =& e a 

a function of the 

[2.10] 

where & is a a parameter which controls the amount of pinching as 

a function of the energy dissipated. Any function with 

properties discussed above can be considered as a suitable model 

for g(z). In the present work the Gaussian density function, 

[2.11} 

is used for mathematical tractability. A small value of CJ in 

Equation [2.11] creates the sharp peak needed by the pinching 

model. Equation [2.11] will give a slip of '2a' as , z , changes 

sign. For more general degradation, parameter a can be taken as 
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(J = [2.12] 

In the present study CJ is considered as a constant parameter with 

a small value relative to the ultimate value of , z , • Equations 

[2.1]. [2.3]-[2.5]. [2.7]. [2.10] and [2.11] complete the BN 

pinching hysteresis model. 

In the second proposed model, instead of a differential 

equation form, the slip-lock element is defined in a relatively 

simpler analytic form as follows 

[2.13] 

where 'z' is defined by Equation [2.3]. 

In this model, parameter A. controls the slipping magnitude 

and the severity of pinching, and is a small parameter which 

controls and is a measure of the rate of change of the pinching. 

The sharpness of pinching is controlled by this parameter. These 

two parameters are defined as two linear functions of dissipated 

energy as follows 

A. = l\e 

= + [2.14] 

where e is given by Equation [2.5]. Equations [2.1]. [2.3]. 

[2.5], [2.13] and [2.14] complete the definition of NB model. 

This element has a behavior very similar to the BN slip-lock 

element. However, because is given directly as an 

algebraic function of Z I it is more tractable mathematically. 
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This results in reduction of the number of operations involved 

for numerical studies in deterministic case. Moreover, in random 

vibration analysis. the mathematical form of the model is 

suitable for approximate analysis and its relatively simple form 

reduces the simulation costs. Comparison of the two models is 

presented in numerical studies in this chapter as well as in 

random vibration analysis of the proposed models 

and 4. 

in Chapters 3 

of 

In order to investigate the capabilities of the proposed 

slip-lock series models in representing hysteretic pinching as 

well as general degradation behavior, ranges of 

for 

the parameters 

for the control of pinching and also comparing the 

performance of each of the two slip-lock models, several studies 

were conducted. The numerical studies reported in this section 

were undertaken to verify the behavior of the models under cyclic 

and general loadings. Initially, it was necessary to develop 

tractable schemes for numerical simulation of the nonlinear 

systems by digital computer, both for verification of the model 

behavior under general loading. and for subsequent Monte Carlo 

simulation during random vibration analysis. 

Consider the governing equations for the two series models. 

It can be noted that for the BN slip-lock model. Equations [2.3] 

and [2.11] contain derivatives on the right hand side which are 

of the highest order of the particular variable involved. If it 
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is assumed that u, u 1 and u 2 all have the same algebraic sign 

due to the absence of any intermediate mass between the smooth 

system and slip-lock elements, then this problem is easily taken 

care of. In the case of NB model 

[2.15] 

due to explicit form of the integral the difficulties existing 

with the numerical integration of the BN model will not be 

encountered. Noting that for these two models 

u = u1 + u2 
or 

(a) 
[2.16] .. • u2 u - u1 (b) 

and setting up = sgn('li) in accordance with the 

assumption, will give the following relation for BN model upon 

substitution of [2.3] and [2.15] into [2.10] 

For NB model, 

+ 2a/({2;rcr).exp(- z 2 /2cr 2 ). 

{A - v [J3 sgn(tl) lz I (n-1) z + r jz I n] J J 
substitution of [ 2. 3] and [2.15] 

results similarly 

= + + z 2 ) 

{A - 11 [J3 sgn(u) I z I n-1z + r lz In]} J 

[2.17] 

into [2.16] 

[2.18] 

Once u 1 is obtained in this manner, it is straightforward to 

obtain u 2 and z, in the case of BN model, by substitution into 

[2.16] and [2.3], respectively. For the NB case, z can be 

obtained in the same way, but u 2 is easily obtained directly from 

[2.15]. Although Equations [2.17] and [2.18] contain a 
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derivative of u it is not the highest order derivative of u in 

the problem, so numerical values are available at each time step. 

Thus. Equations [2.1]-[2.5], [2.16] and [2.17] for the BN model 

and [2.1]-[2.5], [2.16] and [2.18] for the NB model form two sets 

of simultaneous ordinary differential equations which are 

equivalent to the original sets but more suitable 

purposes. 

for numerical 

It should be mentioned here that by substituting Equations 

[2.17] or [2.18] into Equation [2.3] a single element pinching 

model can be obtained but the resulting equations will have a 

very complicated form and are not mathematically tractable. 

The excitation a(t) in Equation [2.1] can be any specifiable 

function. For the purpose of model verification in this section, 

a(t) will be taken as a Gaussian white noise. Discussion on the 

input noise with regard to the random vibration analysis will be 

presented in the next chapter. 

In the studies reported in this chapter and in this work, 

degradation of BBW system parameters, A. v and 11 will not be 

considered, except for a number of examples to show the 

capability of models in reproducing combined strength and 

stiffness degradation as well as pinching behavior. As an 

example on the capabilities of BBW smooth model, two plots of the 

response of a SDOF system of this model have been presented in 

Figure 2.4. Figure 2.4 (a) illustrates combined stiffness and 

strength degradation under a cyclic displacement with amplitude 

of 2.5. Degradation rate is slow for this case and parameter 
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values of &A = = &y = 0.004 are considered. Figure 2.4(b) 

shows similar behavior with higher rate of degradation and with 

parameter values More examples on 

degradation of these parameters as well as capabilities of BBW 

system have been reported extensively elsewhere (15, 136). Here, 

the emphasis will be on the study of pinching behavior of the 

proposed models. 

In the studies for the BN model, only the parameter 'a' was 

degraded and 'G' was kept as constant. 

First to verify the type of degradation behavior obtainable 

by this model, behavior of a single degree of freedom system 

model under cyclic displacement u 1 was obtained by numerical 

integration with parameter values A0 = 1, = r = 0.5, and G = 

0.08. The deterioration parameter 6 a 0.1 was chosen, with all 

other parameters taken as constant. With a known 

sinusoidal function, all follow from Equations [2.31, 

[2.11] and [2.16]. following differentiation of 

Figure 2.5 shows the response of the smooth system, slip-lock and 

series models, which comprise the BN model. To verify the 

behavior of the nonlinear differential equation set 

[2.1]-[2.5],[2.10],[2.15] and [2.16], and also to illustrate more 

fully the effect of varying 6 and a G • several single sample plots 

of z versus u were obtained under white noise excitation. Plots 

of runs for several cycles of model for a low pinching 

rate, &a = 0.1 and G = 0.1, and high pinching rates 
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where &a = 0.5 and a = oa = 0.5 and = 0.2 are shown in 

Figures 2.6(a)-(c). In all cases shown, the viscous damping 

ratio 11 0 .1. The plots shown in Figure 2.6 are fairly rough, 

since they are based on a limited number of data points, but the 

anticipated behavior is observed. It can be seen that severity 

of pinching increases by increasing & , a 

pinching varies inversely with a. 

and the sharpness of 

Figure 2.7 illustrates the capability of this model in 

reproducing pinching behavior under a cyclic displacement, as 

given above, along with combined strength and stiffness 

degradation. The two cases shown in Figure 2.7(a) and 2.7(b) are 

for a moderate pinching rate with the pinching parameter values 

of a = 0 0.07, &a= 0.3, and &0' = 0.009. The stiffness and 

strength degradation rates for the two cases are similar to those 

used in Figure 2.4(a) and (b) respectively. To demonstrate a 

more general pinching behavior cr has been set to vary according 

to Equation [2.12]. 

A similar study for the verification of the capabilities of 

NB nonlinear pinching model was performed. Behavior of a single 

degree of freedom system was studied to investigate the 

deterioration obtainable by the NB model as well as to compare 

its capabilities with the preceeding BN model. Here, the 

deterministic studies and comparisons are reported. Comparison 

under random vibration analysis will be discussed in next 

chapters. 
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Similar to 

a 

previous case, 

known function, 

u 1 was set to vary cyclically. 

'z' can be evaluated from 

Equation [2.3] following differentiation of u 1 • In this case, 

is directly evaluated from Equation [2.13] and u 2 is 

obtained following integration of z. u then follows from 

summation of u 1 and u 2 • Because of the simple analytic form of 

in Equation [2.13], the number of variables to be integrated 

in this case, is less than the one for BN model. Therefore, 

fewer operations are involved for integration in each time step. 

This reduces the computation cost as compared with preceeding 

model. 

Parameter values of A0 = 1, = y = 0.5 were considered 

for BBW component in this case. Figure 2.8(a) and (b) show two 

plots of the response of slip-lock elemnt in this model with low 

and high degree of pinching sharpnesses respectively. This model 

in series with BBW smooth element comprise 

pinching 

were, 

and 

parameters 

0.05, f>A = 0.2, 

0.01, f>A = 0.2, 

considered 

and = 0.0 

and = 0.0 for 

the NB model. The 

for these plots 

for Figure 2.8(a), 

Figure 2.8(b). In 

Figure 2.9 the behavior of NB model under a cyclic displacement 

similar to the one used in preceeding case, is illustrated. 

Figure 2.9(a) with parameters = 0.35, &A = 0.2, and = 0.0 

shows a low pinching case, whereas Figure 2.9(b) with parameter 

values of = 0.125, &A = 0.5, and = 0.0 represents a high 

pinching rate behavior of this modeL For verification of 

behavior of nonlinear system defined by differential equations 

[2.1]-[2.5]. [2.13] I and [2.15] and to study the effect of 
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varying A and several single sample plots of I Z I versus , u, 

were obtained under white noise excitation. Plots of several 

cycles of these responses are illustrated in Figures 2.10(a)-(d). 

These plots are for the cases with low pinching sharpness, 

where = 0.3, with two different rates of low and high pinching 

severity of &A = 0. 2. Figure 2.10(a), and &A = 0. 5, 

Figure 2.10(b). And also for high pinching sharpness 

where = 0.15, with two different rates of low and high 

pinching severity of &A 0.2. Figure 2.10(c), and &A 0 o 5 1 for 

Figure 2.10(d). As these plots show, the severity of pinching in 

this model increases with A and the sharpness of pinching varies 

inversely with 

To show the general hysteretic behavior capability of NB 

model in representing pinching as well as stiffness and/or 

strength deterioration, behavior of a SDOF system of the model 

under cyclic displacement was considered where BBW parameters 

were allowed to deteriorate. Figure 2.11(a}-(d) show a combined 

strength and stiffness degradation accompanied with pinching 

behavior. Figure 2.11(a) and (b) are for low degradation rates 

of BBW element with & = & 11 T.l 
and for pinching 

parameter values of = 0.05, f>A = 0.2, Figure 2.11(a), and a 

sharper pinching with = 0.1, &A= 0.2, Figure 2.11(b). 

Whereas Figures 2.11(c) and (d) are for higher degradation rates 

of BBW and with pinching parameters 

for two cases of low and high pinching sharpness similar to those 

in Figure 2.11(a) and (b). 
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The third model, as shown schematically in Figure 2.12, is 

an extension of BBW hysteresis model which has been generalized 

such that it can reproduce loop-pinching hysteresis as well. In 

order to incorporate loop-pinching capability in the BBW model, 

the following modification is considered for the hysteretic 

restoring force equation 

= [2.19] 

The mathematical approach for the development of a suitable 

h(z) function is based on the study of the behavior of the slope 

of restoring force, i.e., dz/du versus 'z', for the two proposed 

slip-lock models introduced in preceeding sections. 

Consider first the behavior of dz/du vs 'z' for the original 

smooth element hysteresis of BBW. A plot of this type has been 

shown in Figure 2.13. In this discussion consider the case n 

1. Figure 2.13 represents a nondeteriorating case. In the BBW 

model, three parameters 11• 11, and A are defined to incorporate 

stiffness, strength or combined degradation respectively. The 

effect of variation of these three parameters on the dz/du versus 

, z , plot, as z/z changes, have been shown in Figure 2.14. max As 

can be observed, in each cycle degradation is introduced by 

reduction of initial value of slope, Figure 2.14 (a), ultimate 

value of z, Figure 2.14(b), or both, Figure 2.14(c). For all 

three cases in Figure 2.14 a cyclic displacement with amplitude 

of 2.5 was used. In order to incorporate pinching behavior as 
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well, it is necessary to establish an additional variability as 

shown in Figure 2.15. In the case when no other degradation 

occurs, the effect of pinching on the variation of dz/du vs 'z' 

is that, as 'z' changes sign, dz/du decreases to a certain 

desired level, and then starts increasing until it becomes 

asymptotic to the original slope in the non-pinching smooth 

hysteresis case. The extent of slope decrease value of 'z' at 

which the initial slope is effectively regained depends on the 

amount and rate of pinching in the model. 

To verify that the suggested variation of dz/du does, 

indeed, occur, consider the dz/du vs 'z' behavior plots for 

slip-lock models introduced earlier. Figure 2.16 shows this plot 

for a SDOF BN model subjected to a cyclic displacement with 

amplitude of 2.5. Figure 2.16(a) and 2.16(b) represent the two 

cases of low and high pinching respectively. The slope behavior 

shown in Figure 2.16(b) corresponds to the loop-pinching behavior 

illustrated in Figure 2.5(c). In these two cases, parameters 'a' 

and cr both vary according to Equations [2.10] and [2.12]. with 

the parameterr values of cr 0 = 0.07, 5
3 

= 0.1, and 5cr = 0.009, 

for Figure 2.16(a), and cr 0 = 0.07, 5
3

= 0.4, and 5cr = 0.03, for 

Figure 2.16(b). Figure 2.17(a) and (b) represent similar study 

for NB model under the same input 

Parameters A follow the Equation [2.14]. 

values for each case are 

0.0, 

= 0.02, and 

for Figure 2.17(a), 

0., for Figure 2.17(b). 

displacement. 

Pinching parmeter 

= 0.1, and 

= 0., 

These plots have 

been obtained by considering no deterioration for BBW component 
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of the models. Slope behaviors shown in Figures 2.17(a) and (b) 

relate to the cyclic behavior of NB model as illustrated in 

Figures 2.19{a) and (b). 

From these plots it is possible to infer the desired 

properties of the slope variation which will be 

developing a suitable function h(z). 

the basis for 

(a) In the initial (starting from rest) loading, no 

pinching occurs. 

(b) In the first pinching cycle the value of dz/du drops 

sharply near z = 0. In the following cycles the 

reduction slows down, but the range of 'z' for which 

a significant decrease in stiffness occurs spreads. 

(c) 

(d) 

Considering 

In each cycle slope is low near z = o. 
increases relatively rapidly as 

rapid increase slows as the 

'z' increases. 

original slope 

then 

This 

is 

approached. As , z , finally approaches ultimate 

value, the slope sharply decreases and reaches zero 

at the appropriate 

change with time. 

The slope reaches 

z max which may or may not 

the non-pinching slope and 'z' 

should reach the same ultimate value even at high 

pinching rate although large displacement may be 

required to reach z max· 

these observations and criteria, h(z) is taken as a 

function which has a small, but nonzero value near z = 0 •• but 
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approaches 1 as z increases. How rapidly h(z) approaches 1 

with increasing z depends upon the desired amount of pinching. 

A simple mathematical form with the desired properties is 

h ( z) = 1 - e xp (- z 2 I 2 
2 ) [2.20] 

In this equation and can be established so that a plot 

of dz/du 
I I 

vs z computed from Equation a form [2.19] will have 

similar to the slip-lock models plotted in Figure 2.16 and 2.17. 

In Equation [2.20] is a parameter that controls the magnitude 

of initial drop in slope. This parameter should vary such that 

the magnitude of initial drop increases relatively rapidly during 

the beginning cycles but approaches a maximum value 1 after 

several cycles. is introduced to control the rate of change 

of the slope. For the current work, is expressed as an 

exponential function of dissipation energy 

s1 exp[-pe]) [2.21] 

so that at the beginning cycles there is a noticeable drop in the 

magnitude of initial slope but as time progresses, the rate of 

drop w i 11 de crease • i s est a b 1 ish e d in such a way that it is a 

function of both energy dissipation and is given, for the 

present work by 

[2.22] 

where 

[2.23] 

Initially, when the energy dissipated and therefore is zero, 
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will have a nonzero starting value. In these equations, e is 

the dissipation energy as given by Equation [2.5], , p , is a 

constant parameter that contributes to the control of the rate of 

initial drop in slope, is a parameter that is a measure of the 

total slip, also contributes to the control of the amount of 

pinching and A is a small parameter that controls the rate of 

change of as { 1 changes. Figure 2.18 show the variation of a 

sample function of versus energy and c2 as a function of 

for the single element pinching model subjected to a cyclic 

displacement. Both plots have been obtained under a cyclic 

displacement with amplitude of 2.5. Pinching parameter values 

used here are 0. 8 •. p = 1 , 0 = 0. 2, & = 0 • 1 , and A = 0. 0 6 • 

In Figure 2.19 the effect of the variation of pinching is 

plotted where ' 2 is kept constant. As can be seen, controls 

the amount of initial drop in slope, and therefore the rate of 

pinching, in successive cycles. For this plot values of 

10 = o. 7, p = 0.06, and = 0.3 were used. Figure 2.20 

represents the variation of is kept constant. This 

figure shows controls the rate of change of slope 

variation in each cycle, as the slope approaches its original 

level. It also provides a smooth behavior for the change in 

slope and prevents a sudden drop in value of 'z' before 'z' gets 

to ultimate level. Parameter values of 

0.6, = 0.2, = 0.05, and A = 0.06 were used to plot 

this figure. Figure 2.21 illustrates the variation of dz/du vs 

'z' for the single element pinching model subjected to a cyclic 

displacement as described for preceeding plots. In this figure, 
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and both vary according to Equations [2.21]-[2.23] and for 

the two cases of low and high pinching rates. In Figure 2.21(a), 

low pinching case, parameter values o f ( 10 = 0 • 6 5 , 

p = 1, = 0.2, = 0.01, and A = 0.06 are used, and for 

Figure 2.21(b), high pinching case, values of 0.85, 

p = 1, = 0.2, = 0.03, A = 0.06 are considered. 

Loop-pinching behavior of this model under cyclic displacement, 

corresponding to these two slope behaviors, are shown in 

Figures 2.23(a) and (b) respectively. A comparison between 

Figure 2.21(a) and (b) and Figures 2.16 and 2.17 shows similarity 

in slope behavior for the single element pinching model and the 

two series models and therefore indicates the capability of this 

model in reproducing similar pinching behavior. Further detailed 

comparison between this model and the other two proposed models 

is presented in studies of the model in this chapter 

and in random vibration analyses using the proposed models. 

In order to verify the capabilities of the single element 

pinching model (SEP), numerical studies were performed. The 

study presented on the similarity in the behavior of dz/du vs 'z' 

for this model and the two slip-lock models indicated that this 

model would be capable of reproducing pinching behavior in the 

same manner as the other two series models. Following studies 

illustrate and verify this behavior as well as advantages of this 

model as compared with the other two proposed models. Further 

studies and comparisons under random vibration analysis will be 
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introduced in next chapters. 

To investigate degradation behavior of a single degree of 

freedom system of this model, a known sinusoidal function with an 

amplitude increasing with time, as shown in Figure 2.22, was used 

for u(t). The right hand side of equation for restoring force, 
G " [2.18], contain u, but u is available at time t as a result of 

the numerical integration. Alternately, under cyclic 

displacement, a program of u(t) values can be differentiated to 
.. 

provide values of u. Thus numerical values are directly 

available at each time step for the SEP model. The analytical 

complexity is hence reduced by the SEP formulation as compared 

with either of the two series models. This reduces the 

computation time involved and is one of the advantages of the SEP 

model. The significance of this feature is better understood and 

is more valueable in the random vibration and statistical 

analysis, as will be seen later. 

In the studies reported here, parameter values of 

A0 = 1, = y = 0.5 were considered. Figures 2.23(a) and (b) 

illustrate the loop pinching behavior of SEP model under the 

cyclic displacement shown in Figure 2.22. Figure 2.23(a) 

represents a low pinching rate case with pinching parameter 

values of 0.8, A = 0.05, = 0.2 and = 0.01. 

Figure 2.23(b) shows a high pinching rate behavior with 

parameters 0.95, A = 0.3, = 0.2, and 0.01. For both 

cases a viscous damping ratio of 1% was considered. 

To verify the behavior of nonlinear system defined by 
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Equations [2.5] and [2.19]-[2.23] and to study the effect of 

varying pinching parameters, several single sample plots of 'z' 

vs u were obtained under white noise excitation. Plots of 

several cycles of these responses are illustrated in 

Figures 2.24(a) and (b). Figure 2.24(a) shows a case for low 

pinching rate, with parameter values 

A = 0. 0 5, = 0.2, and = 0.01, whereas Figure 2.24(b) 

represents a high pinching case with parameter values of 

A = 0. 3, 0. 2, and = 0.01. As these plots 

indicate, severity of pinching increases with and the 

sharpness inceases with 

The general hysteretic behavior of the SEP model and its 

ability to reproduce pinching combined with stiffness and 

strength degradation, was verified by considering the behavior of 

a SDOF system of this model, as shown in Figure 2.12, under 

cyclic displacement as shown in Figure 2.22. Figure 2.25(a) and 

(b) illustrate this behavior. In Figure 2.25(a), a plot with low 

degradation rates for strength and stiffness with parameter 

values is shown. And Figure 2.25(b) 

represents a strength and stiffness deterioration with higher 

rate and with parameter values of &A= = = 0.004. For both 

cases a high pinching rate was considered with pinching parameter 

values of 0.9, = 0.2, A = 0.06, and = 0.01. 

Studies performed on deterministic behavior of the SEP model 

indicate that the model is very well capable of reproducing 

·various types of degradation behavior. Further studies on the 
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three proposed models as well as comparison of the statistical 

responses 

chapters. 

of the models will be presented in the following 
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Basically three elements are involved in the analysis of the 

response of nonlinear dynamical systems to stochastic 

excitations. The first of these is to obtain mathematical models 

that provide the best representatives for particular materials 

and configurations. Such models, however, generally lack the 

tractability necessary for even approximate analysis under random 

vibration, except by Monte Carlo simulation (MCS), Instead of 

such specialized material models, researchers in random vibration 

analysis or response to complex deterministic excitations have 

developed simplified models for hysteresis and degradation. A 

thorough review of the hysteresis models used in random vibration 

studies as well as complex deterministic studies was presented in 

the preceeding chapter. Several models capable of reproducing 

general hysteretic, degrading behavior were then proposed. 

Random vibration analysis using 

subject of this chapter. 

the proposed models is the 

Besides the material model, the dynamic response analysis of 

hysteretic degrading structures under stochastic excitation 

requires excitation models which possess the relevant properties 

of natural hazard excitations. Moreover, mathematical techniques 

are needed which would allow practical response estimates to be 

obtained. These two latter conditions can be fulfilled by proper 

seismic excitation models and approximate solution techniques. 
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Formulation of the stochastic model for seismic response of 

hysteretic, degrading structures is complete when a proper 

stochastic model for base excitation is described. This model 

should possess the pertinent properties of seismic excitation. 

Considerable work has been done in the area of describing seismic 

excitation by random process models and the existing models can 

be classified according to the characteristics of the ground 

acceleration that is generated. In one group of models and 

inputs used, the aceleration is stationary (27, 41, 42, 50, 53, 

55, 59, 96, 106, 109, 119, 149) Gaussian white noise is the 

simplest random process model of this group. Bycroft (27) was 

one of the first to suggest the use of Gaussian white noise with 

its flat power spectral density. Realistically earthquakes are 

not stationary and do not have a flat power spectrum. However, 

stationary white noise can be a satisfactory approximation for 

wide band excitation, when the excitation spectrum varies slowly 

in the vicinity of the natural frequency of the structural 

system. This will be used as an approximation for seismic 

excitation in the current study. Numerous researchers have 

investigated ways of introducing temporal variation and frequency 

dependence into stochastic excitation models. Several stationary 

models that produce variable spectral density of ground 

acceleration, consistent with the observation for real 

earthquakes, have been proposed (35, 91, 120). Yet other 

models approximate nonstationary acceleration processes by 

introducing time varying amplitude (4, 25, 49, 57, 79, 110, 112, 
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Nonwhite stationary Gaussian excitation 

passing 

filters. 

a Gaussian white noise 

These models, which are 

through one 

simple both 

is 

or 

in 
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obtained by 

more linear 

concept and 

execution, allow convenient digital computer processing. Housner 

and Jennings' model (60) developed simulated ground acceleration 

by filtering a white sequence of Gaussian random numbers that is 

equally spaced in time. The process is stationary until 

interrupted at an empirically predetermined time. Lutes and 

Lilhamand (94) proposed that seismic excitations be passed 

through a high pass as well as the customary low pass filter to 

eliminate the unbounded drift which could otherwise occur. 

Temporally modulated excitation can be introduced in two 

ways. One way is to multiply the white noise by a deterministic 

temporally varying function before passing it through the 

appropriate filters. The second approach is to multiply the 

filtered excitation by the temporal factor before being passed 

through the system. Several such deterministic envelopes have 

been proposed. The model of Amin and Ang (4) and the model of 

Shinozuka and Sato (123) for example, filter a white input, and a 

time multiplier function is included to induce nonstationarity. 

A significant innovation of the Shinozuka and Sato model was to 

select a filter to insure that the variance function for the 

associated ground velocity, in addition to ground acceleration, 

would eventually tend toward zero. Lin (90) 

nonstationary excitation models with time varying 

developed 

frequency 
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content. based on Priestley's concept of evolutionary spectral 

density (110). A number of other authors have used and developed 

nonwhite-nonstationary models (40. 47), simulation of probability 

density of ordinates to simulate random processes with various 

probability density functions ( 24) • or other empirical models 

( 61) • Recently, several researchers have proposed ARMA based 

models for seismic excitation (36). 

Thus. a series of models are available for stochastic 

representation of seismic excitation. For further detail on the 

available stochastic models one may refer to Levy et al ( 8 7) 1 

Spanos (128), To (141), and references (31, 35). In the present 

work, only process models will be considered. Filtering 

and temporal modulation of the input noise excitation can be 

easily incorporated into the model and are discussed elsewhere 

{ 15) • 

Formulation of mathematical models for random vibration of 

hysteretic systems is not a difficult task, however, due to the 

high order of nonlinearity involved it is difficult to solve 

these models in closed form. For this reason, the class of 

nonlinear random vibration problems which are currently amenable 

to exact solution is quite limited. The available exact 

solutions are restricted only to simple systems under Gaussian 

white noise excitations (83), and the construction of the exact 

steady-state probability density function for a limited class of 
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nonlinear systems (33 ,34). Therefore, various researchers have 

developed and employed approximate analytical techniques in the 

investigation of yielding systems. At present several basic 

approaches are used in the study of stochastically excited 

nonlinear systems. These include formulation of 

Fokker-Plank-Kolmogorov (FPK) equation of the nonlinear system 

and using various techniques to obtain approximate solution of 

this equation, the perturbation approach, normal mode approach, 

and equivalent linearization. Other techniques such as an 

statistical linearization ( 19) • and approaches for extended 

computing the distribution of a random variable via Gaussian 

quadrature rules (100) have also been proposed. Other methods 

for approximate random vibration analysis exist and have been 

discussed in references such as (7. 31, 69, 116. 117. 14 6) • 

There are two fundemental approaches: 

(a) Formulate 

backward) 

the exact FPK forward (or Kolmogorov 

diffusion equations and manipulate it to 

obtain solutions. 

(b) Work directly with the stochastic differential 

equation. 

Techniques such as the perturbation method have led to numerous 

asymptotic solutions in the deterministic case, but in 

stochastic case only the first order terms are saved. 

primary limitations of the perturbation method are that 

the 

The 

the 

nonlinearity must be small and numerical implementation for MDOF 

systems is difficult. By formulating the FPK equation, solution 

for certain restricted classes of problems can be obtained. This 
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approach can be used to obtain exact solution for certain cases 

(32) or to get approximate response statistics either by 

eigenfunction expansion (150, 130), finite element solution of 

the related Pontriagin equation (20), or any of the variety of 

closure methods such as Gaussian closure which replace an 

indefinite moment with a finite moment problem (39, 77, 78). 

Non-Gaussian closure techniques have also been proposed by some 

researchers (38, 103). In the equivalent linearization approach, 

the strategy is to replace the nonlinear system of stochastic 

differential equations with some members of a class of linear 

systems, the corresponding solutions of which are obtainable. 

This linear system should be similar, in some sense, to the 

original nonlinear system (56) • The solution to the linear 

system is then taken as an approximate solution to the original 

nonlinear system of equations. The technique of equivalent 

linearization has been widely studied. This method was initially 

developed independently by Caughey (30) and Booton. The method 

has been generalized by Foster (46) and by Iwan and Yang (76). 

Atalik and Utku (11), Iwan (66), Iwan and Fatula (74}, Spanos 

(125, ,126, 129), Spanos and Iwan (133), Mason (97}, Gates (48}, 

Beaman and Hedrick (19}, Baber and Wen (16), Ahamdi (1), Sues et 

al (136, 137), Pires et al (111), Asano (9), and Ang and Wen (6) 

have used this technique and have shown that, if properly 

formulated, the method can be extended in a relatively 

manner to MDOF and degrading systems. straightforward 

Application of this method to infinite dimensional responses of 

continuous structures have been reported as well (2). It should 
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be pointed out that the minimization of the equation difference 

with respect to the linear parameters does not necessarily 

guarantee that a minimization of the solution difference has been 

achieved, and this may be considered a drawback of averaging 

methods (97). Caughey (28-30) was the first to apply equivalent 

linearization to hysteretic systems, by replacing the bilinear 

hysteretic SDOF system with a linearized system. He used the 

Krylov-Bogoliubov (KB) approach which is most satisfactory for 

small nonlinearities and has been shown to underestimate the RMS 

response for nearly elasto-plastic systems (72). Application of 

this approach for finding statistical characteristics of the 

response of hysteretic structures with strong nonlinearity, for 

example near yielding, does not lead to accurate results. Kobori 

et al (85) improved this approach by considering the effect of 

the scatter of frequency and fluctuation of the center of 

hysteretic oscillation on the RMS displacements of bilinear 

systems with severe nonlinearity, and by introducing a drift 

parameter into the linearized response. Iwan and Spanos (75) 

developed a technique for finding the approximate envelope 

response statistics of a narrow-band SDOF nonlinear oscillator 

subject to unmodulated white noise as it approaches steady-state 

from zero initial conditions. This method first uses equivalent 

linearization and the narrow-bandness of the response to derive 

an approximate first order differential equation for the envelope 

response. The associated FPK equation is then solved by 

eigenfunction expansion for the transition probability density of 

the envelope response. Wen (152) realized that by using Bouc's 
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hysteresis, the linearization could be completed in closed form 

without the KB approximation and the resulting zero time lag 

covariance matrix response obtained by this approach are 

satisfactory for SDOF nearly elasto-plastic systems at all 

response levels. Baber and Wen (15) proved that the same 

linearization technique can be applied to both stiffness and 

strength deteriorating hysteretic systems. They obtained close 

agreement between the zero time lag covariance matrix response 

from linearized system and Monte Carlo simulation (MCS), for SDOF 

and MDOF shear beam models and extended the application to 

discrete hinge MDOF systems. Baber and Noori (13) applied this 

approach to a SDOF pinching, hysteretic system and were able to 

obtain accurate results, verified by MCS, without resorting to KB 

assumption. A thorough review and discussion of equivalent 

linearization can be found in references (15, 117, 129). 

Response statistics for the SDOF systems described in 

Chapter 2 cannot be obtained in closed form because of the 

nonlinear form of the models. On the basis of the equation error 

due to substitution of an equivalent linear system, coefficients 

for equivalent linear systems are derived. This will be done for 

the three proposed models in the following subsections. 

The special form of the nonlinear hysteretic models 

presented in Chapter 2 permits the linearization of the 
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equations, without resorting to the KB approximation. In the 

following subsections zero mean solutions by the method of 

equivalent linearization (15, 152) for the proposed models is 

presented. 

The original set of nonlinear equations [2.1]-[2.5], [2.10], 

and [2.11] is replaced by a linearized approximate set of 

equations. first let 

y1 = u 

y2 = u 

Ys = z [ 3 .1 J 

y4 u1 

Ys u2 

Then the governing nonlinear equations can be rewritten as 

• 
y1 = y2 (a) 

• 2 2 (b) y2 = - aw Y - y - (1-a)ro0 Y3 + a(t) 0 1 0 2 
9 

{Ay4 - ,. II l(n-1) + r IY31 
na 

(c) y3 = [13 y4 y3 y3 y4JJ/ll 

[3.2] 
• • (d) y4 = Y2- Y5 
• 2a/ ( {i;cu} 2 2a2 )l Y5 = exp[-y3 /( 

{Ay4 - [j)!y411Y3j (n- 1 ) + rY. 4IY31 nn Ill ( e} 

These general system equations may be written in the matrix form 

• g(y, y) = f 
rv 

[ 3. 3] 

Assuming zero mean response, the third and fifth of 
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Equations [3.2] can be replaced by the linearized forms 

[ 3 • 4] 

Where, according to Atalik and Utku (11), Iwan and Mason (73), 

Baber and Wen (15) 

c . e1 

K . e1 

= E[ogi(y)/a:Y4 J 
rv 

E[agi(y)/ay3 J 
rv 

If it is assumed that 

i=3,5 [ 3 • 5] 

y 3 and y 4 are jointly Gaussian, 

Equation [3.5] can be evaluated in closed form, given the 

response statistics a 3 , a 4 and p 3 , 4 • Derivation of 

K . in terms of the response statistics are given in Appendix A. e1 

It is advantageous, to rewrite Equation [3.4] together with 

[3.2(d}] in the form 

Ce3Ke5/{l+Ce5)]y3 (a) 

• [1/{l+Ce5)}]y2- [Ke5/{l+Ce5)]y3 {b) y4 

[ 3. 61 . 
[Ce5/(l+Ce5}]y2 + [Ke5/(l+ Ce5}]y3 ( c} Y5 

to eliminate derivatives from the right hand side. Equations 

[3.2{a}], [3.2(b}], and [3.6] form a set of simultaneous 

stochastic differential equations which may be written 

symbolically in matrix form as 

y + G y = f [ 3. 7] 

Postmultiplying Equation [3.7] by yT, taking expected values and 
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adding the resulting equation to its transpose, gives the 

following result 

• 
S + G·S + S·GT = B [ 3. 8 J 

where, 

s E[y.yT] ( a ) 
........_ ........_ ........_ 

and [ 3 • 9] 

B = E[f.yT] + E[y.fT] ........_ '""'-' rv ........_ ........_ (b) 

The desired response statistics are obtained by solving 

Equation [3.8] for the zero time lag covariance matrix S. If it 
"-' 

is assumed that f(t) is a zero mean Gaussian white noise with 

power spectral density K 0 , then it may be shown that B ........_ constant 

matrix has only one nonzero term (15). 

can be written as 

where o .. lJ is the Kronecker delta. 

The system of equations defined by 

Therefore elements of B 

[3.10] 

[ 3 • 8] is a system of 

nonlinear ordinary differential equations, because G depends on 
"" 

the response statistics S, which can be solved by numerical ,....._, 

integration in the time domain. 

statistics 

0'32 = E[y32] 

0'42 = E[y42] 

At each time step the response 

[3.11] 
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and 

are needed to update G. cr 3
2 is obtained as part while using 

Equation [3.6(b)] gives 

[3.12] 

A fixed-point iteration approach is used to compute the 

values of cr 4 and p 34 to assure convergence as the covariance 

matrix elements start to build up. Convergence occurs very 

rapidly at the first few iteration steps. If the model includes 

system degradation, then several parameters (A, v , 11 and a) may 

be functions of the response history. Closed form incorporation 

of these added complications into the model is difficult. 

However, it has been found to be a reasonable approximation to 

updat the degradation parameters at each time step, 

replacing e in Equation [2.4] and [2.10] by its expected 

value f.le (14, 15) • Taking expected values of Equation [2.5] 

gives 

2 2 f.l
8 

= (1-a)w 0 E[uz] = (1-a)w 0 s 23 [3.[3] 

where s 23 is an element the matrix s. 
,-...; 

covariance of 

Differential equation [3 .13] is integrated inparallel with 

Equation [3.8] to allow updating of the degradation parameters, 

and complete the evaluation of the G matrix. ,...,., 
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In this case, the nonlinear equations [2.1]-[2.5], [2.13], 

and [2.14] which represent the NB model are replaced by a 

linearized approximate set of equations. Using the same 

relationships established in [3.1], the governing nonlinear 

equations may be rewriten as 

y1 = Y2 (a} 

• 2 
y1- Y2-

2 
y2 -a(!)o (1-a>(!)o Y3 + a(t) (b) 
• 

{Ay4 1· II l<n- 1 > + YIY3InY-4lJ/11 y3 = - 11 [[3 Y4 Y3 Y3 (c) 

[3.14] • 
y4 Y2 - Ys (d) 

• y32)]{Ay4 1· II 1< n - 1 > Ys = [[3 Y4 Y3 Y3 

+ YY4IY31nJJ/11 (e) 

Equations [3.14] and [3.2] are similar except for the last 

equation, (e). This general system of equations can also be 

written in the form of Equation [3.3]. With assumption of zero 

mean response, Equations [3.14] (c) and (e) can be replaced by 

the equivalent linearized form 

, . 
Y3 = Ce3 Y4 + Ke3 Y3 . , , 
Ys = Ces Y4 + Ke5 Y3 [3.15] 

where the equivalent linearization coefficients are defined by 

Equation [3.5]. Assuming that y 3 
• and y 4 are jointly Gaussian 

random variables, coefficients ce 3 and Ke 3 are evaluated in 

closed form, given the response statistics a 3 , and 

Evaluation for these coefficients was presented in preceeding 



46 

section. Expected values for however, can not 

be obtained in closed form. These expected values can be reduced 

to a single Gauss-Laguerre quadrature (135) in this case and are 

evaluated numerically. Details of these evaluations are provided 

in Appendix B. Equation [3.15] along with [3.14(d)] are 

rewritten in a form similar to [ 3 • 6] to eliminate derivatives 

from the right hand side 

, 
Y3 [Ce3 1 ( 1 +Ce5 )] Yz + [Ke3 -

( a) 
, , , 

[ 1 /( 1 +Ce5 )]y2 - [Ke5 /(l+ Ce5 )]y3 (b) 
, , 

[Ces /( 1 +Ce5 )]y2 + [Kes /( 1 +Ce5 )]y3 (c) 
[3 .16] 

Equations [3.14] (a) and (b), and [3 .16] form a set of 

simultaneous stochastic differential equations with the matrix 

form given by [3.7] and [3.8]. Response statistics for this case 

can be obtained following the same procedure discussed for 

solving Equation [3.8] for BN model. In this case however, 

coefficients c e5 and Kes in Equation [3.12] should be 

replaced by c e5 and K e5 respectively, for evaluation 

of a•2 
4 and P34 in each time step. 

Incorporation of system degradation, and evaluation of G ......., 

matrix and response statistics in this regard, will also be 

similar to the procedure discussed for BN model. 

In the case of the single element pinching hysteresis model, 
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the number of operations involved in linearization procedure is 

reduced. Let 

[3.17] 

Then the governing Equations [2.1], [2.2], [2.19], and [2.20] are 

rewritten in the form 

Y1 Y2 (a) 

• 2 2 Y2 = -aw 0 y 1 - 2Cw 0 y 2 - (1-a)w 0 y 3 + a(t) (b) 

y3 = 

{Ay2 -1.1 [J3Iy2IIY31 (n- 1 )Y3 

Equations [3.18] can be written in the matrix form 

y + g(y) = f 

( c ) 
[3.18] 

[3.19] 

with zero mean response assumption, Equation [3.18(c)] may be 

replaced by the linearized form 

[3.20] 

where the equivalent coefficients and Ke 3 are defined by 

Equation [3.5]. 

Given the assumption of jointly Gaussian distribution for 

Y2 and y 3 , and given the response statistics a 2 , a 3 
Equation [3.5] can be evaluated in closed form. Derivation of 

in terms of response statistics are given in 
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Appendix C. In Equation [3.20] derivatives are only on the left 

hand side. Th e r e f o r e , E q u a t i on s [ 3 • 1 8 ] ( a ) a n d (b) and [3 .20] 

can be easily transformed into the form given by [3.8]. Again, 

the system of equations defined by [3.8] is a system of first 

order nonlinear differential equations which can be solved by 

numerical integration. To update G matrix, response statistics 

2 = E[y3 ] 

are needed at each time step. 

"' 

[3.21] 

are all 

obtained as part of s in this case. Hence, as can be seen, 

number of steps involved for the numerical integration in each 

time step, is noticeably less than the one for the two series 

models. This reduces the computation cost and is an advantage of 

this model over the other two proposed models. 

To incorporate system degradation, a procedure similar to 

that discussed for the two series models is utilized. Equation 

[3.14] will be solved concurrently with Equation [3.8] to allow 

updating the deterioration parameters, and to complete the 

evaluaion of the G matrix. 

In the preceeding chapter, the capabilities and behavior of 

proposed nonlinear pinching models cyclic and general 

loadings were verified. The numerical studies which follow here, 

have been conducted to investigate the relative validity of the 
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approximate random vibration analysis by equivalent 

linearization, assuming zero mean response. A number of studies 

on single degree of freedom systems will be considered in the 

following subsections. In these approximate response analysis of 

the proposed models to random input, a stationary white noise 

input is considered. Filtering and modulation of the input noise 

excitation can be easily incorporated into the model and are 

discussed elsewhere (15). 

Consider first the nonstationary response of the BN 

slip-lock pinching model. Starting with zero initial conditions, 

the zero time lag covariance matrix response of the single degree 

of freedom EN oscillator to stationary white noise input was 

computed. Response estimates were obtained using 100 samples of 

Monte Carlo simulation, and the linearized approximate model, for 

several values of input power spectral density and 

for f> a 0 .1, and &a= 0.5. System viscous damping ration of 

=0.02 was chosen, with all other parameters as discussed in 

section 2.4.2.1. RMS displacements a u• velocities <r,i, and 

hysteretic restoring force values, az compare well for 

pinching rate of & a = 0.1, as shown in Figures 3.1-3.3. 

low 

The 

constituent element displacements <ru 1 are reasonably 

well estimated for low to moderate excitation levels, but for 

higher excitation levels au1 is underestimated and au 2 is 

overestimated as shown in Figures 3.4 and 3.5. The system 

degradation, as measured by the total energy dissipation is 
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underestimated slightly, with the underestimation increasing as 

K0 increases, as shown in Figure 3.6. 

At higher pinching rate, with a value 0 a 

closely estimated by the linearized model, but 

0.5 

cr• u 

is 

is somewhat 

overestimated at high excitation levels as shown in Figures 3.7 

and 3.8, and CJ z is overestimated for much of the time, 

following an initial period of underestimation as can be seen in 

Figure 

energy, 

3.9. The overestimation of cr• indicates that the kinetic u 

and energy dissipated due to damping will be 

overestimated, with a consequent loss in hysteretic energy. This 

judgement is verified by the plots for crul• cruz• and energy 

dissipation f.l 
8 as shown in Figures 3.10-3.12. As these plots 

indicate crul and fle are underestimated for all excitation levels 

and cruZ is underestimated for high levels of excitation. 

The studies for the approximate response analysis of the NB 

system to random input were performed with two purposes in mind, 

first, to investigate the capabilities of this model, second, to 

look for any advantage or disadvantage of this model as compared 

with the BN model. 

The computation time needed to obtain approximate responses, 

which in this case required use of Gauss-Laguerre quadrature 

numerical integration scheme, was about the same as needed for 

the linearization analysis of BN model. However, the simulation 

time was noticeably less and consequently the computation cost 
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for checking the accuracy of the results was lower. 

In order to compute the zero time lag covariance matrix 

response, the nonstationary response analysis of a SDOF system of 

NB model, to a stationary white noise input beginning at t = o., 
was considered. Response estimates in this case were also 

obtained using 100 samples of Monte Carlo simulation, and the 

linearized approximate model. Several values of input power 

spectral density with maximum excitation level of 

K0 = 1.0, twice the highest level considered for BN model, were 

considered. Two cases of low pinching rate with parameter values 

of = 0.35 and oA = 0.2, and high pinching with 

coresponding parameter values of = 0.125, and oA = 0.5, 

were chosen. System viscous damping ratio of = 0.02 was used, 

with all other parameter values as discussed in section 2.4.2.2. 

RMS displacements au' velocities au_, and hysteretic restoring 

force values 

excitation 

a z compare 

levels, as 

well for 

shown 

low 

in 

pinching rate at 

Figures 3.13-3.15. 

all 

RMS 

displacements for constituent elements au 1 • is reasonably well 

estimated for low to moderate excitation levels as shown in 

Figure 3.16. 

to moderate 

au2 is well estimated for much of the time for low 

level and reasonably well estimated for very high 

level of excitation as can be seen from Figure 3.17. The system 

degradation, as indicated by the mean value of total dissipated 

energy J1 8 , is very well estimated upto very high leve 1 of 

excitation as shown in Figure 3.18. 

At higher rate of pinching, with parameters given 
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above, a , a• and az u u are still very well estimated even at very 

high levels of excitation as shown in Figures 3.19-3.21 except 

that peak starting values of a z is underestimated at very high 

excitation level. RMS displacement for au 1 is reasonably well 

estimated for low excitation level and is underestimated for much 

of the time for higher values of excitation, with underestimation 

increasing as gets larger, as shown in 

Figure 3.22. au 2 however, is well estimated even at very high 

levels of excitation, as shown in Figure 3.23. Estimation of the 

mean value of total energy dissipation is satisfactory upto high 

levels of excitation and is reasonable for very high excitation 

levels, as shown. in Figure 3.24. 

Studies presented here for NB mode 1 indicate that the 

performance of this model in estimating various response 

statistics is somewhat better than the BN series model. Accuracy 

of the results obtained by the NB model, especially at very high 

levels of excitations, are more accurate in general than those 

obtained from the BN model. 

Similar studies were performed to compute the zero time lag 

covariance matrix response of SDOF single element pinching model. 

In these studies nonstationary response statistics were obtained 

under stationary white noise input beginning at zero initial 

conditions. Same number of samples were used in Monte Carlo 

simulation of the model. 
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In order to be able to make a comparison between this model 

and the two series models and also to investigate the 

capabilities of this model several values of input power spectral 

density K0 , were considered. 

It was observed that the computation time needed for 

approximate response analysis and for simulation were 

significantly lower than the one for either the BN or NB model. 

This is due to the mathematical form of the model and consequent 

reduction in the number of variables involved for numerical 

integration process. This advantage makes this model 

particularly suitable for random vibration analysis. 

Two cases of low pinching with pinching parameter values of 

'r = o. 8 and "-o '!> 0 0.05, and high pinching with parameter values 

of = 0.9 and "-o = 0.15 were considered for RMS response 

analysis of this model. A system damping ratio of C = 0.02 was 

chosen, with all other parameter values as discussed in section 

2.4.2.3. Behavior of a single 

characters, under white noise 

Figure 2.24 in Chapter 2. 

sample, with similar pinching 

excitaion is illustrated 

RMS displacements a , u 

in 

and 

velocities u compare very well for low pinching rate and all 

levels of excitation as illustrated in Figures 3.25 and 3.26. 

RMS prediction of hysteretic restoring force compares well for 

low excitation level, but underestimates the peak value of z for 

intermediate excitation levels as shown in Figure 3.27. Mean 

value of the total energy dissipation which is a measure of 

system degradation is estimated very well at all excitation 

levels as shown in Figure 3.28. 
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For the high pinching case, with parameter values as given 

above. displacements a 
u and velocities are estimated 

reasonably well for all levels of excitation as illustrated in 

Figures 3.29 and 3.30. The hysteretic restoring force cr , is z 
estimated closely for low excitation level. but underestimates 

the peak values for intermediate and high level of excitation as 

can be observed from Figure 3.31. It should be noticed that in 

the case of predecting the restoring force with the SEP model 

somewhat differnt character of the response is obtained. As can 

be seen from Figures 3.27 and 3.31, the SEP model displays much 

more severe stiffness degradation than do the BN and NB models. 

Estimation of the mean value of total energy dissipation is quite 

good for all excitation levels as shown in Figure 3.32. 
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VIRRAI!QN OF WITH 

!..!-1= In 1.£Q.Q.!l.£1.i.QJ1 an Q. B a £k.&.!:.Q.!l!!.Q..:... 

In the preceeding chapters, sever! mode 1 s for the 

deterministic and stochastic response of degrading 

with general hysteretic behavior were presented. 

linearization formulations to predict the zero 

structures, 

Equivalent 

time 1 ag 

covariance matrix, for SDOF systems utilizing these models were 

derived. The approximate solution obtained compared reasonably 

well with Monte Carlo simulation. 

In random vibration analysis of hysteretic systems, 

attention has been focused on the zero mean response to 

stochastic excitation. Little work has been done on the nonzero 

mean response of hysteretic and degrading structures. Spanos 

(127, 131) and Spanos and Chen (132) considered the response of a 

nonhysteretic system with nonsymmetric force deformation 

characteristics. This problem is closely related to the nonzero 

mean response problem even under zero mean excitation. The 

theoretical tools for extension of equivalent linearization to 

nonzero mean problem is also available. Baber and Wen (15) 

extended the linearization theorem of Atalik and Utku (11) to the 

nonzero mean case. Spanos (127, 131) developed a relatively more 

straightforward approach to linearization of nonzero mean 

problems by subtracting the mean response from the governing 

stochastic differential equations. This computation was based on 
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the assumed Gaussian distribution for the response. A 

nonsymmetric zero mean problem is obtained by this approach, 

which can be solved by equivalent linearization techniques. 

Baber (12) applied Spanos' approach to linearize the BBW smooth 

system subjected to nonzero mean excitation, with energy based 

degradation. It is the objective of this chapter to employ the 

equivalent linearization technique to obtain approximate nonzero 

mean solutions of Baber-Noori series pinching model and the 

single element pinching model. A linearization solution for the 

Noori-Baber model in nonzero mean case must be obtained 

numerically. This requires development of proper algorithms and 

selection of a suitable numerical scheme. Therefore, although 

the zero mean results for the NB model indicates that this model 

is a promising series model, nonzero mean analysis of this system 

will be omitted herein. 

The nonzero mean response analysis OS structures is of 

considerable engineering interest, even under apparently zero 

mean excitations, such as earthquakes. Anderson and Bertero (5) 

considered the loss of symmetry in girder yielding under the 

action of gravity loads, and used this phenomenon as a 

justification for introducing curvature based ductility ratios in 

studying the seismic response of multistory steel frames. Baber 

(12) considered this point as motivation for nonzero mean random 

vibration analysis of BBW smooth hysteresis model. To illustrate 

this point, consider a single story, one bay frame shown in 

Figure 4.1, subjected to earthquake excitation. As Figure 4.1(a) 

shows, this frame will yield antisymmetrically at the beam column 
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joints in the absence of gravity effects. By contrast , inc 1 us ion 

of gravity effects results in loss of symmetry and may lead to 

the nonsymmetric yield mechanism of Figure 4.1(b). Even if the 

mechanism of Figure 4.1(b) is not developed, studies indicate 

that complete reversal of hysteretic action will not occur ( 5) • 

In the most severe instances, repeated cycles may lead to 

incremental deformation at the yield "hinges," each of which has 

a prefered yield action. Hence, the accumulated inelastic action 

may lead to stochastic "shakedown" • In a multistory frame, not 

all stories will form mid-member hinges (5, 12). Design moments 

near the base will be largely controlled by lateral, for example 

seismic, loads. In higher stories, gravity loads will have a 

greater effect upon the design. 

It is difficult to analyze multi-component frame structures 

under a combination of gravity load and seismic base acceleration 

at this time. Baber and Wen (14, 15) suggested one possible 

formulation, which can be extended to the nonzero mean case 

provided the necessary response statistics can be obtained for 

the constituent hysteretic elements, and given suitable model 

assembly and solution techniques. This chapter includes the 

research on the response analysis of single degree of freedom 

Baber-Noori and single element pinching models to nonzero mean 

random excitations. Extension of the work to multidegree of 

freedom models is not considered herein. 

The system to be considered here is a single degree of 
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freedom oscillator as described by the nonlinear differential 

equation set 

and 

u + 2 w0 U. + q(u,t) = a(t) 

q 

. 
z {Au -1 

2 (1-a)w 0 z 

r J3 I u 1 II z I < n -1 > z 

u 2 =[2a/( tfi;.cr)]exp(-z 2 /(2cr 2 ))z 

[ 2 .1] 

[ 2. 2] 

[2.3] 

[2.11] 

[2.16(a)] 

where a(t) is, by assumption, a nonzero mean stochastic process. 

The response is given as 

T v 
. 

{ U 1 U 1 [4.1] 
'"" 

where is the hysteretic energy dissipated at time t and 

defined by Equation [2.5]. The system degradation has the form 

defined by Equations [2.4] and [2.10]. 

Equations [2.3], [2.11], and [2.16(a)] lead to the set of 

stochastic differential equations 

where 

. . u -u 1 

h(u, z) = {A-v [J3sgn(u) lzl(n- 1 )z + rlzlnll/Tt 

[2.17] 

[2.16(b)] 

[2.3-1] 

[2.3-2] 

Equations [2.1], [2.2], [2.17], [2.16(b)], [2.3-1], and [2.3-2] 

provide a convenient form for numerical simulation of BN model 

response when the appropriate deterioration rule has been 
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selected. 

Before proceeding with the linearization, it is convenient 

to reduce the governing equations [2.1], [2.2], [2.3], [2.11], 

and [2.16{a)] to the first order differential equation set 

• 
v1 = v2 
' 2 

2 wo v 2 (1-a)w 0 v2 = -aw 0 v1 - -
' {Av 4 

I • II I< n- 1 > v3 = [j3 v4 v3 v3 + 

' • 
v4 = v2 - vs . - 2 2 
v5 = [ 2a:/ ( v'2rr<Y)] exp [ -v 3 I ( 20' ) ]. 

where 

i=1,5 

and y. s are given by Equation [4.1] 
l 

2 + a ( t) v3 

lv31nl1111 rv 4 [4.2] 

[ 4. 3] 

Since a{t) is, by assumption, a nonzero mean random process, 

it is necessary to compute expected values namely 

. 
= J.L2 

' 2 (1-a)w 0 
2 

+ = -aw - - !13 0 . 
{A!-l4 - v [j3E1 + rE 2 lll11 !13 [4.4] 

. -2 
= [ 2 a I ( vz;; <1) ] { AE 

3 
- v ( j3E + rE 5 >ll11 4 

where 



nonzero mean for input excitation 

n• 
E 2 = E [ I v 31 v 4 ] 

2 2 • E 3 = E[exp(-v 3 /(2cr ))v4 ] [ 4 . 5 ] 

E4 = E[exp(-v32/(2cr2)) lv3j(n-1)v31v4!J 

2/ 2 no E5 = E[exp(-v3 (2cr )) jv31 v4] 

Subtracting equations [4.4] from [4.2] and using 

Yi = vi - results in the nonsymmetric zero mean problem 

(a) 

• 2 2 ,A 
y2 -awo y1 - 2 WoYz - (1-a)wo y3 + a(t) (b) 

Y3 = {Ay4- '1/ (c) 

E1J + r - E2J lJ/11 . 
Y4 = Yz - Ys 
Y. 5 [2a/( {i;.a)] 

exp(-[y3+!13]2/(2cr2))-E3] 

- Vf3[j Y3+1131 (n-l) (y3+113) 

exp(-[y3+!13]2/(2cr2)) - E4] 

-v rrj y3+1131 n - Esll Ill 

( d ) 

( e ) 

[ 4. 6] 
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In [4 .6] it is convenient to rewrite E.; i=1,2,3,4,5, as 
1 

functions of Yi by appropriate substitution. 

If it is assumed that the Yi are jointly distriuted 

Gaussian random variables, at time t, then following Kazakov 

(84), Atalik and Utku (11), and Mason (97), the nonlinear 

equations [4.6] (c) and (e) can formally be replaced by the 

linearized equations 



where 

Cei = E[agi(y3, y4)/ay4] 

Kei = E[agi(y3, y4)/ay3J i=3,5 
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[ 4. 7] 

[ 4 • 8 J 

and gi(y 3 , y4 ) are the right hand sides of equations [4.6] (c) 

and (e) respectively. 

It is apparent that a difficulty exists in Equations [4.4] 

for the mean responses, and [4.6] or [4.17] for the zero mean 

response. The expected value appears on the right hand sides 

of equations [4.4] and [4.6]. Moreover, the second order 

response statistics • 2 
0'4 = E[y42] and P34 = E[y3y4]/(cr3o-4) are 

required, along with " f.l4 to evaluate the expected values in 

equations [4.5] • 
f.l4' and [4.8]. In short, 

implicit variables, which must be determined by iteration, before 

solution can be proceed at each step. The linearized equations 

can be rewritten as 

0 

y1 = y2 

" 2 2 + -a(t) y2 = -aw 0 y1 - (1-a)w 0 y3 
• 
y3 = C1y2 + K1y3 [4.9] 

• 
y4 = C2y2 + K2y3 
• 
Ys = C3y2 + K3Y3 

where 



1/(1+Ce 5 ) 

Ce5/( 1 +Ce5) 

Ke3 - Ce3Ke5/( 1 +Ce5) 

-Ke5/(1+Ce5) 

Equations [4.9] are summarized in matrix form as 

where 

• y + G y * a 

* i l l 1 I 

a = £o:a:o:o:o:oJ 
"--
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[4.10] 

[4.11] 

Postmultiplying [4.11] by T y • taking expected values and adding 

the result to its transpose gives the ususal result 

S + G S + S GT = B [4.12] 

E[y yT] * T *TJ If "a(t) where, s = and B = E[a y + y a • is taken as 
f"V f"V f"V rv rv 

a zero mean Gaussian white noise input with power spectral 

density Ko, then 

[4.13] 

where 5. . is lJ the Kronelcker delta. Equations [4.12] together 

with [ 4. 4] form as set of equations to be jointly solved by 

numerical integration, for the responses and S. It remains 
l"'o.J' 

to evaluate the expected values in [4.5] and [4.8]. these 

require the joint one time distributions of and 

Assuming that Y3 
.. 

and ·y4 are jointly Gaussian, it is necessary 

to have 1-13, 0'3, 0'4, and P34• in order to the 

expressions at each time step. 1-1 3 and a 3 are obtained from the 

previous numerical integration step. Squaring the fourth of 
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equations [4.9] and taking expected values gives 

[4.14] 

while postmultiplying that equation by y 3 and taking expected 

values gives 

[4.15] 

Thus cr4 and can be determined directly from the linearized 

equations. 

Direct determination of • 
!14 is also possible in principle. 

Using equations [2.17]. [2.16(b)]. and [2.3-1] gives 

• 
114 

.r:- 2 2 E[v 2 /{1+[2a/(vzrrcr)]exp(-v 3 /(2cr )). [4.16] 

h(v 2 , v 3 )}] 

If v 2 and v 3 are jointly Gaussian, the right-hand side of 

[4.16] can hypothetically be determined in terms of available 

response statistics. Unfortunately, the form of [4.16] is 

difficult to evaluate in closed form, or even to reduce to a 

numerical quadrature for one variable. Alternately, the last two 

of equations [4.2] can be solved to give 

[4.17] 

whence, taking expected values, gives 

• . r;::- 2 2 !14 = 11 2 - [2a/(v2rrcr)]E[exp(-v 3 /(2cr )). [4.18] 
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Equation [4.18] is of the form 

and can be solved using a 
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[4.19] 

fixed point problem approach if 

convergence can be demonstrated. Alternately, numerical solution 

using Newton-Raphson or secant method is possible at each step. 
0 

Since 11 4 evolves slowly in time, previous values provide 

excellent starting guesses, so rapid convergence is achieved. 

Moreover, the form of [4.18] is more suitable than Equation 

[4.16] for closed form evaluation. In the work presented here, 

Equation [4.18] and the secant method was used to update at 

each step. Having iteratively determined at each step, 

equations [4.5] and [4.8] can then be evaluated, setting up the 

next time step. The expected values in equations [4.5] and [4.8] 

are quite lengthy, and details of their evaluations are given in 

Appendix D. Closed form solution has been obtained for odd 

values of 'n' only. For even, or non-integer values of 'n', the 

equations can be reduced to doubly infinite numerical quadratures 

in one variable. The integra 1 s p o s s e ss a single cusp in this 

instance, so two-sided application of Gauss-Laguerre quadrature 

is suitable. 

In this work, system deterioration is obtained by adding 

Equation [2.5] to the set of stochastic differential equations 

for the response and using 
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[ 2. 4] 

and 

a = & e [2.10] a 

For simulation, equations [2.5], [2.4], and [2.10], together with 

equations [2.1], [2.2], [2.17], [2.16(b)], [2.3-1], and [2.3-2] 

complete the set to be solved. In the linearization solutions, 

substitution of [2.1] and [2.2], and [2.4] and [2.10] into [ 4 • 2] 

before linearization, considerably complicates the problem. 

However, if system deterioration is assumed to be evolving 

slowly, it is possible to approximately take expected values of 

[2.5], [2.4] and [2.10], resulting 

. • 2 • 
Jle (1-ah.tlo E[uz] [4.20] 

and 

• Ao SAlle J.lA -
• vo + 5 1J.1e flv 

[4.21] 
• + 5 11 fle !111 llo 

Jla • 5 alle 

Then A , v , 11 and ' a ' a r e rep 1 ace d in the e quat ions [ 4 • 4 1 , [ 4 • 6 ] , 

[4.7], [4.8], [4.17], and [4.18] by their approximate expected 

values at the present time as computed by equations [4.20] and 

[4.21]. This procedure was applied in zero mean analysis of this 

model and the other two proposed models with considerable 

success, and is also implemented herein. 
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The system to be studied in this case is a single degree of 

freedom oscillator as described by the nonlinear stochastic 

differential equation set given by equations [2.1], [2.2] and 

[2.19] 

where 

h ( z) [2.20] 

and expressions for 1 and 2 are given by equations [2.20] 

and [2.21] in Chapter 2. In this case, similar to nonzero mean 

study for BN model, a ( t) in Equation [2.1] is a nonzero mean 

stochastic process. The system response is given as 

vT = {u, it, z, s}T [4.22] 
""" 

where s epresents the hysteretic energy dissipated at time t 

and defined by Equation [2.5]. The system degradation has the 

form defined by equations [2.4]. [2.10] and [2.21]-[2.23]. The 

form of the model provides a very convenient form for numerical 

simulation of the response to random excitation. It also 

simplifies the linearization process relative to the BN series 

model. This will be shown in the following section. 

To proceed with the linearization of the SEP the governing 

equations [2.1]. [2.2], [2.19]. and [2.20] are reduced to the 

following first order nonlinear differential equation set 
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[4.23] 

where 

i 1,3 [4.24] 

and v. are given by Equation [4.22]. As above, it is necessary 
1 

to compute expected values namely 

, [4.25] 
113 {Af12 -II (j3E1 + yE2 ) }Ill -

I I I 

<t1/'Jl){A E3 -v(pE4 +yE5 )} 

where 

= nonzero mean for input excitation 

El I l<n- 1 > I I E[ v 3 v 3 v 2 ] 

E2 
n = E [ I v 31 v 2] 

E3 
2 2 E[exp(-v 3 I )v 2 ] [4.26] 

E4 = E[exp{-v3 lvin-1)v31v21] 

E5 = E [ e xp ( -v 3 2 2 2) I v 31nv 2] 

Subtraction of equations [4.25] from [4.23] and letting 

Yi = vi - lli• yields the nonsymmetric zero mean problem 

, 
yl . 
Y2 
• 
y3 

= 

= 

( a) 

2 2 A -cH>o y 1 - 2 w0 y 2 - (1-a)w 0 y 3 + a(t) 

(Ay2 - 11 [J3{ /y3+113l(n-l) (y3+113> I 
y{ y3+113n(y2+J12) - E2

1

} 1) 111 - ( 

(b) 
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(A[(y2+J.l2)exp(-[y3+J.l3]21 E3'] -11. 

[4.27] 

I II (n-1) ( fl[ ,Y2+112 y3+1131 ( c ) 
2 2 , 

exp(-[y3+J.l3] I ?;2 ) - E4 ] -ll· 

1 [ I Y 3 + 11 3ln ( Y 2 + 11 2 ) e x P ( - [ Y 3 + 11 3 ] 2 I 2 2 ) - E 5 , ] ) 

In Equation [4.27] i = 1,2,3,4,5 can be rewritten as 

functions of Yi by appropriate substitution. 

If the are assumed to be jointly distributed Gaussian 

random variables, at time t, then the nonlinear Equation 

[4.27(c)] can be replaced by the equivalent linearized form 

where 

Ce = E[og(y2,y3)loy2] 

Ke = E[og(y2,y3)loy3] 

[4.28] 

[4.29] 

and g(y 2 ,y 3 ) is the right hand side of Equation [4.27(c)]. Since 

the derivatives of do not appear on the right hand side of 

equations [4.25] or [4.27]. the difficulty that existed in 

linearization of BN model does not arise. Also, the second order 

response statistics needed for 

can be directly determined as 

elements of the covariance matrix at each time step. Therefore, 

no iterative approach is needed for evaluating these terms. This 

is a major advantage of the SEP model and reduces the computation 

cost invloved noticeably. 
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Equation [4.281, together with equations [4.271 (a) and (b), 

can be symbolically written in the matrix form given by Equation 

[4.111. Similarly, covariance equation defined by [4.121 can be 

obtained. Equation [4.12] together with [4.25] form a set of 

equations to be jointly solved by numerical integration, for the 

response statistics flv and s. Hence, it remains to evaluate 
f"V f"V 

expected values given in [4.26] and [4.29]. Assuming that 

Y2 and y3 are jointly distributed Gaussian random variables, 

are needed in order to evaluate these 

expected values at each time step. 11 2 and are obtained from 

the previous numerical integration step. 

are also evaluated as elements of covariance matrix at each time 

step. Therefore easily obtained as well. Other 

parameter values needed to evaluate and the remaining 

expected values which require knowledge of mean and zero time lag 

covariance matrix terms are obtained from Equation [4.25] and 

[4.12]. Detailed derivations of the expected values in equations 

[4.26] and [4.29] are given in Appendix E. Closed form solutions 

are possible for odd values of , n, only. For even, or 

non-integer values of 'n', the equations can be reduced to doubly 

infinite numerical quadratures in one variable. The integrals 

have a single cusp in this case as well, therefore two-sided 

appliction of Gauss-Laguerre quadrature is suitable. 

In this study, system degradation is obtained by adding 

equations [2.4]. [2.5]. and [2.21]-[2.23] to the set of 

stochastic differential equations for the response. For 

simulation, these equations along with equations [2.1], [2.2], 
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[2.19], and [2.20] complete the set to be solved. In the 

linearization solutions, substitutions of [2.1], [2.2] and [2.4], 

[2.5], [2.21]-[2.23] into [4.23] will complicate the problem. 

However, if variation of degradation parameters are slow, these 

parameters may be treated approximately as constants at any time 

step. Hence, approximating the expected values of [2.4] and 

[2.21]-[2.23] by first order approximation results 

[4.20] and the first three equations in [4.21] and 

in equations 

. + 

• [1 exp(-pl1
8

)] [4.30] 11 -. + ) 
{ 

Expected values computed by equations [4.20], the first three 

equations in [4.21] and equations [4.30] at the present time, 

will replace the degradation parameters A, I T} I I 1 and 2 

in the governing equations. A similar procedure was used in the 

analysis of BN model in this chapter and zero mean analysis of 

the proposed models. 

In order to demonstrate the applications of the 

linearization solutions for nonzero mean excitation of the two 

models discussed in this chapter, the response of a single degree 

of freedom system utilizing each model was considered. These 

analyses were limited to a pinching system without considering 

any other form of degradation, since inclusion of other 

degradations adds no additional complication. In these studies 
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system parameters Tlo = vo = n = 1. fJ = 'Y = 0.5, 

a = .04762, w0 = 1, %2 were used. The power 

spectral density for the input excitation was set at three levels 

of K0 = 0.1. low excitation, K0 = 0.2. moderate level 

excitation, and K0 = 0.4. for relatively high level of 

excitation. The excitation mean was allowed to vary, taking 

values of ranging from 0.2 to 0.8 with 0.2 increment. For 

the system modeled, these excitation means correspond to 20% to 

80% of where is the limiting magnitude of the 

hysteretic restoring force upon first loading. Both constant 

mean and noise excitations were applied to the system at the 

initial condition at t = o. In the following subsections 

response statistics obtained for each model are presented. 

Several studies were conducted using the BN series model. 

First, to verify the behavior of the model under nonzero mean 

random input excitation and also for subsequent Monte Carlo 

simulation, several single sample plots of , u, vs , z , were 

obtained under white noise excitation for a SDOF system system 

model. This single sample simulation also illustrated more fully 

the effect of varying pinching parameters 5a and a. For this 

response a power spectral density (PSD) of 0.1 was used. Plots 

of runs for 5 = 0.1, a a = 0.08 with excitation mean of 0.2, 

a = 0.08 with excitation mean of 0.4 and 5a = 0.1, 

a = 0.08 

4.2(a)-(c). 

with 

The 

mean excitation 

plots shown in 

of 0.8 are shown in Figures 

Figures 4.2 illustrate the 



72 

anticipated behavior. Having verified the capabilities of the 

nonlinear pinching model under nonzero mean excitation. the 

approximate response analysis of the system was considered. 

Figures 4.3(a)-(e) illustrate the mean response computation for 

displacement, corresponding to several different values of 

low, moderate. and high levels of excitations and subjected 

to different values of pinching rates. Figures 4.3(a) and (b) 

show the plots for low level of excitation, 0 o 1 1 with low and 

high pinching rates of &a = 0.1, and &a = 0.5 respectively. 

Figures 4.3(c) and (d) illustrate 

moderate excitation level of 0.2, 

of o = 0.1. a and medimum rate of 

the respective plots for 

with low pinching rate 

&a = 0.25. Figure 4.3(e) 

shows the case of high excitation level with one pinching rate 

of o = 0.1. a The solid curves the responses computed by are 

equivalent linearization, while the dotted line curves are 

results of 100 samples of Monte Carlo simulation. The four plots 

in each figure correspond to = 0.2, 0.4, 0.6. and 0.8. Mean 

responses for the displacement, obtained by linearization 

compare very well with Monte Carlo simulation at low pinching 

rate at all mean levels and also at high pinching rate for the 

mean values of = 0.2 and 0.4. For the high pinching case 

the response is underestimated by the linearization. 

Figures 4.4, 4 o 51 4.6, 4.7. and 4.8 show the mean response 

computations for u, z, 8 corresponding to the same 

values of excitation levels and pinching rates as discussed 

for flu• In Figures 4.4 and 4.5 solid line curves represent 

linearization results for the mean velocity response, fl , u 

the 

and 
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mean hysteretic restoring force prediction, !lz' and points 

indiced by the symbols 'o' and 'x' are results of simulion with 

100 samples, at and Jl.F = 0.8 respectively. As can be 

seen from Figures 4.4(a)-4.4(d), comparison between linearization 

and simulation results for mean response of velocity is fairly 

good for mean excitation levels of upto 0.2 and in both cases of 

low and high pinching. However, for higher mean excitation 

levels there is not a good agreement between these results, in 

One source of this the presence of a high level of pinching. 

problem may be the numerical integration. Selecting a smaller 

time step might improve the result somewhat. As 

Figures 4.5(a)-(e) 

and Monte Carlo 

indicate, the agreement between linearization 

simulation results for mean response of 

hysteretic restoring force are very good for low pinching rate at 

all mean excitation levels, Figures 4.5(a), (c) and (e). In the 

case of high pinching rate, agreement is good for low value of 

mean excitation, Jl.F = 0.2, whereas for !lF = 0.8 response is 

overestimated, as can be observed from Figures 4.5(b) and (d). 

Considering next the mean displacement response of the 

smooth element component. At the low pinching rate predicted 

responses compare reasonably well at all values of mean 

excitation and both levels of PSD, as Figures 4.6(a), (c) and (e) 

indicate. For the high pinching rate system, !lul responses are 

underestimated at all mean excitation values and for both low and 

moderate excitation PSD levels, as shown in Figures 4.6(b) and 

(d) • Mean displacement responses for· the slip-lock element 

component of model, 11u 2 is shown in Figure 4.7. As these plots 
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indicate, the agreement between the linearization and simulation 

results for u 2 is not, in general, good. However, the trends of 

the response are correct, except at high pinching. One reason 

for this problem can be found in the numerical technique used to 

evaluate the equivalent linearization coefficients. Moreover, 

the problem due to numerical integration, may have additional 

influence. It seems questionable at first glance, that 

satisfactory agreement between MCS and linearization estimates 

for would be obtained when agreement between the constituent 

parts is not obtained. However, is obtained from 

11 u1 integration of the differential equation of motion, while 

and 11u 2 are obtained from additional equations. It seems likely 

that small systematic errors in computation of and 

are contributing to the poor agreement in the latter case. 

Jlu2 

Also 

it should be noticed that the difference between the order of the 

magnitude of 11 ul and liu2 is so large (maximum value of about 

16 for 11 ul and about 0.6 for flu2) • that the magnitude of 112 

response will not have significant effect on the total response. 

Results for the mean energy dissipation response, as shown in 

Figure 4.8(a)-(e), indicate that there is a very good agreement 

between the linearization and simulation results for all 

excitation levels, for both low and high pinching rates, and for 

all values of mean excitation. Only for 

pinching and at high value of mean excitation 

the 

the 

solution slightly underestimates the response. 

4.10, 4 .11, 4.12, and 4.13 illustrate the 

case of high 

linearization 

Figures 4.9, 

RMS response 

computations for u, u, z, u 1 , and under the same conditions 
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discussed for the mean responses. 

reasonably 

Figures 4.9(a)-(e) indicate 

that there is a good comparison between the 

linearization and simulation trends for the RMS displacement 

responses, but numerical estimates are not particularly good. In 

all the cases shown, responses are underestimated for low values 

of mean excitation, = 0.2, and overestimated for high values. 

JlF = 0.8. A somewhat better numerical comparison is observed 

for the RMS velocity response results. Although the responses 

are slightly overestimated for all excitation levels and mean 

excitation values, the important response trends are accounted 

for. These comparisons are shown in Figures 4.10(a)-(e). 

Results for the RMS hysteretic force response are shown in 

Figure 4.11. As can be seen from Figures 4.11(a)-(e), value of 

Gz decreases as JlF increases. This behavior is in agreement 

Figure 4.5. with the predicted mean values for 'z' as shown in 

This phenomenon occurs since, if is close to 1 and 

if zult = 1 • the standard deviation of z will be smaller than 

is near zero. For and for the low as well as high 

pinching case, the responses are generally overestimated by the 

linearization for low excitation level and at both low and high 

values of mean excitation. However, as the excitation level 

increases 

relatively 

simulation 

4.11(e). 

the 

good 

overestimation becomes smaller and there is 

agreement between the linearization and 

results at high excitation level, as shown in Figure 

Results for the RMS displacement response of smooth 

element as shown in Figure 4.12 indicate generally poor agreement 

for all excitation levels, for low and high pinching rates and at 
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all values of mean excitation, for much of the time. The RMS 

response for slip-lock element component of the model, as shown 

in Figure 4.13, for low pinching rate, at any level of excitation 

and for all values of Jle• are significantly overestimated. 

In general, it may be stated that first order response 

statistics are more closely estimated than are second order 

statistics, and that primary quantities u, U, and z are more 

adequately characterized than the secondary quantities and 

It is important to mention here that the advantage of 

linearization over the Monte Carlo simulation is that response 

statistics can be predicted fairly closely at a reasonable cost 

by the equivalent linearization. But here, in the nonzero mean 

analysis of this model, the iteration approach used for the 

computation of equivalent linearization coefficients makes the 

This computer runs expensive and comparable to the simulation. 

is one of the disadvantages of the slip-lock model for nonzero 

mean analysis. This problem is not encountered in nonzero mean 

analysis of the SEP model as will be seen in the following 

section. 

Similar studies were performed for the response analysis of 

the single element pinching model with the same purposes in mind. 

To verify the behavior of the model under nonzero mean random 

excitation several single sample plots of I U I vs I z I were 

obtained under white noise excitation for a SDOF system model. 
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This single sample simulation shows the effect of varying 

pinching parameters and A. as well. In this study, power 

spectral density values of 0.1 and 0.2 were used. Plots of runs 

for power spectral density of 0.1 are shown in Figures 4.14(a) 

and (b) and the plots for power spectral density of 0.2 are given 

in Figures 4.15(a) and (b). In both cases shown in figures 4.14 

and 4.15 a very high level of pinching with and 

A. = 0.15 subjected to mean excitation value of f.lF = 0.2 and 

0.6 is considered. In Figures 4.14 a value of viscous damping 

ratio of 0.02 is used whereas in Figure 4.15 a corresponding 

value of 0.1 is considered. Both these figures illustrate the 

capability of the model in reproducing a pinching hysteresis 

behavior under a general loading. 

Results for the approximate response analysis via equivalent 

linearization for a SDOF system using the SEP model are 

illustrated in Figures 4.16-4.22. In these studies three levels 

of excitation with two different rates of low and high pinching 

for each case were considered. Also the statistics in this case 

have been obtained for a longer duration of t = 100 seconds. The 

values of pinching parameters and pinching rates are established 

such that 

comparable 

the 

to 

type of behavior obtained 

corresponding studies for 

in each case is 

the BN model as 

illustrated in figures 4.3-4.13. 

between the two models easier. 

This will make the comparison 

Figures 4.16{a)-(e) show mean 

response computation for displacement, The results for 

linearization are in a very good agreement with Monte Carlo 

simulation for all excitation levels, all pinching rates and all 



78 

values of mean excitation. The agreement between the two results 

is much better for this model than for BN series model for the 

high pinching high excitation level case. This can be observed 

by comparing these results with the corresponding results for the 

BN model as shown in Figure 4.3. A noticeable instability may be 

observed for the high excitation, high pinching case beyond 65-70 

seconds as shown in Figure 4.16(e), but the trends of the 

response are accounted for. Similar instabilities however, are 

also observed in some other response statistics results for the 

SEP model in high pinching, high excitation studies as wi 11 be 

seen. The instability starts quite suddenly when the responses 

have reached a stationary level. This abrupt behavior is almost 

certainly due to a numerical problem and is not part of the 

physical behavior that has been modelled. Plots shown in Figures 

4.17(a)-(e) ilustrate the mean response evaluations for 

velocity, . Agreement u between linearization and simulation 

results for this case is also acceptable and better than 

corresponding results for BN model shown in Figure 4.4. S im i1 a r 

discussion as mentioned for mean response of u is valid for the 

results shown in Figure 4.17(e). Figures 4.18{a)-{e) show mean 

response values for restoring force. In this case as well, there 

is a very good agreement between the approximate and simulation 

results for all excitation levels, all pinching rates and all 

values of mean excitation. Agreement between the approximate and 

simulation results in this case is _generally better than the 

corresponding comparison for the BN model. Figures 4.19(a)-(e) 

shows the results for the mean energy dissipation. The agreement 
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between the approximate values and the simulated responses is 

very good for low as well as high pinching and at all excitation 

levels. There is only a slight underestimation at highest level 

of mean excitation, as these results indicate • 

• RMS response statistics for u, u, and z are presented in 

Figures 4.20-4.22. Figures 4.20(a) and (b) indicate that for low 

excitation level there is a good agreement between the 

linearization and simulation results for RMS displacement 

response for all values of mean excitation and for both cases of 

low and high pinching. It is important to point out here that 

even at low level of excitation a fair amount of yielding 

(inelastic action) is taking place. Therefore the good agreement 

between the approximate results and the simulation results 

obtained by the SEP model in nonzero mean analysis should be 

considered with this fact in mind. For moderate excitation level 

and for all pinching levels and all values of mean excitation, 

responses are slightly underestimated by linearization. This is 

shown in Figures 4.20(c) and (d). For high level of excitation, 

at all pinching rates, and all values of mean excitation, results 

will be overestimated as shown in Figure 4.20(e). Comparing 

these results with the corresponding results for the BN model, as 

shown in Figure 4.9, indicate a somewhat better agreement for the 

response statistics obtained by the SEP model. Plots shown in 

Figure 4.21(a)-(e) show the RMS response for the velocity. As 

can be seen, the results are underestimated for all levels of 

excitations, all values of mean excitations and for both low and 

high pinching rates. Underestimation increases as the excitation 
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level increases as well as with the increase in pinching. As can 

be seen, the instability observed in similar results for the BN 

model, shown in Figure 4.10, does not occur in this case. This 

is an advantage of the SEP model in this regard. RMS responses 

for hysteretic restoring force are presented in Figures 

2.22(a)-(e). For the low excitation level, at both low as well 

as high pinching rates and for all values of mean excitation 

computations show indicate slight underestimation as obsereved 

from Figure 4.22(a) and (b). For moderate excitation level, for 

low pinching and at all values of mean excitation there is a good 

agreement between the approximate and simulation results as shown 

in Figure 4.22(c). For moderate excitation level, for high 

pinching case and for all mean excitation values there is a 

slight underestimation in the results. This is illustrated in 

Figure 4.22(d). For high level of excitation, for both cases of 

low and high pinching rates and for all values of mean 

excitation, responses are underestimated as indicated in Figure 

4.22(e). It is also interesting to see that the value of G z 

decreases as !lF increases. This behavior agrees well with the 

predicted mean values for z as shown in Figure 4.18. This is due 

to the same reason discussed in the study of G z for the BN 

model and the same argument can be applied here. Comparison of 

these results with those of BN model, shown in Figure 4.11, 

illustrate a better agreement in results for the SEP mode. Also 

similar to the results for instability observed in the 

results shown in Figure 4.11 for the BN model 

here. 

is not observed 
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Studies for the proposed single element pinching model 

suggest that such models may be more suitable for random 

vibration analysis than the slip-lock series models. An 

important feature of the SEP is its single rather than series 

form. This reduces the number of varables involved for 

computation in the mean and RMS response analysis and therefore 

reduces the computation costs significantly. As discussed in 

sections 3.5.3 and 4.3, the explicit form of the equation for the 

derivatives allows for considerable simplification in evaluating 

the equivalent linear system coefficients. Moreover, comparison 

of the computed statistical results show a somewhat better 

agreement, in general, between linearization and simulation 

solutions for the model than for the BN model; especially 

for nonzero mean excitations. 

The numerical studies presented here, apply to the situation 

where the mean and random loads are from the same source. In a 

more general case, the mean and random loads may have different 

origins. Such is the case for the gravity-seismic ground motion, 

or current-wave action combinations. In such situations, the 

equilibrium state under the mean excitation alone is taken as the 

initial condition for the random vibration analysis. This study 

is not considered here. However, study of this type for smooth 

hysteresis model can be found in reference (11). 
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The intent of the research presented herein was to develop 

mathematical models capable of representing general degradation 

behavior of a hysteretic structural element, including hysteretic 

pinching, as a function of energy dissipation. These models were 

required to meet the additional condition of mathematical 

tractability so that they can be used for approximate solution 

with the available methods of nonlinear random vibration 

analysis. 

Three mathematical models for hysteresis with pinching are 

presented in Chapter 2, two series slip-lock models and one 

single element hysteresis model. These are all relatively 

versatile models which are capable of a variety of degrading 

behaviors, and hysteresis shapes. Behavior of the proposed 

models under cyclic as well general loadings illustrates the 

capability of all these models in reproducing a wide range of 

degradation behavior including hysteretic pinching. A 

mathematical approach for developing hysteresis models with 

general degradation behavior is also presented in Chapter 2. The 

single element model which seems to be a more tractable model as 

compared with the two series models is developed based on this 

mathematical technique. This method provides a basis for 
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developing even wider choice of models. 

In Chapter 3, random vibration analysis of the proposed 

models is studied. Due to the highly nonlinear character of the 

models of Chapter 2, closed form solution of these models is not 

possible. It is shown in chapter 3 however, that the 

mathematical forms of the models are suitable for approximate 

solution by the method of equivalent linearization without 

recourse to the Krylov-Bogoliubov approximation. The linearized 

models are used to obtain zero 

response. In random vibration 

excitation and mean responses are 

response statistics are also 

time lag 

analysis 

assumed 

computed 

simulation. The response predictions of the 

covariance matrix 

chapter 3, mean of 

to be zero. The 

Carlo using Monte 

linearized models 

for RMS displacement, velocity and hysteretic restoring force are 

reasonably good for all degradation and excitation levels. The 

constituent element responses, the hysteretic energy 

dissipation is closely modeled at 

and 

low to moderate excitation 

levels for BN series model, and for low to high levels for NB 

series model. Also for the single element pinching model mean 

energy 

levels. 

dissipation is closely modeled at low to high excitation 

At all levels, the linearized models predict qualitatively 

the response of the system. In random vibration analysis, 

agreement between the results of Monte Carlo simulation and 

linearized models is somewhat better for single element 

and NB series model than for the BN slip-lock model. 

pinching 
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In Chapter 4, the random vibration analysis of the proposed 

models is extended to the more general case of nonzero mean 

excitations and responses. Equivalent linearization models for 

two of the proposed systems, BN series model and single element 

pinching, is preseted for the response of a single degree of 

freedom system with general hysteretic behavior to a nonzero mean 

excitation. The nonstationary response statistics are obtained 

by numerical integration of the linearized equations. Mean 

responses computed using these two models are in fairly good 

agreement, for BN model, and very good agreement, for the single 

element pinching model, with the results of Monte Carlo 

simulation. Covariance matrix responses predict the response in 

single element mode 1, or the BN series model, the case of 

prediction 

linearized 

is fairly good for some of the RMS responses but the 

results either underestimate or overestimate the 

response magnitudes in other cases. 

are predicted reasonably well. 

However, the response trends 

As illustrated and discussed in preceeding chapter, the main 

objective of the research presented in this thesis was to develop 

mathematical models which are 

degradation behavior of a 

capable of 

hysteretic 

representing 

structural 

including hysteresis pinching for both deterministic as 

general 

element, 

well as 

random vibration analysis. While the present work indicates that 

the proposed models are quite useful in this respect, a number of 

areas remain for further study. 
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1. Studies reported here were limited to the response 

analysis of a single degree of freedom oscillator. 

However, application of these models as part of a 

multidegree of freedom system is possible and 

theoretical ground work exists for this extension 

(14,15). Considering the nonzero mean analysis 

reported herein, application of these models to MDOF 

case will allow consideration of nonzero mean effects 

such as wind, current or gravity loads upon the 

response of inelastic systems. 

2. Models proposed here may be used to incorporate the 

physically observed phenomenon of hysteresis loop 

pinching into the random vibration analysis of 

hysteretic structures. Thus the modeling technique 

proposed herein has potential application to the 

random vibration of reinforced concrete structures, 

or braced steel frames. In order to properly model 

the restoring force behavior of a real structure, it 

is necessary to determine appropriate values for 

hysteresis loop shapes as well as pinching parameters 

of the proposed models. For this purpose, proper 

systems identification techniques are available (43, 

44) and have been investigated for system 

identification of BBW smooth model (130). Effort in 

this regard will be a major contribution. 

3 • Hysteretic degradation behavior as well as pinching, 
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have been assumed as a function of energy dissipation 

in this work. In order to properly model the 

hysteretic behavior of real structural elements, 

modifications to this assumption might be necessary. 

Consideration of the degradation as a function of 

maximum displacement in each cycle may be a suitable 

assumption. Results for this alternative approach 

are available for BBW model (137) and seem to be 

promising. 

Studies reported here were limited to approximate 

response prediction under zero and nonzero mean 

excitation. The mean square response is only one of 

several quantities of interest, however, and does not 

provide information concerning such items as maximum 

structural response, or total energy dissipation 

demands upon the structure caused by an excitation of 

particular intensity and duration. These quantities 

are of interest in seismic design. Analysis of this 

problem can be accomplished by consideration of first 

passage time problem. 

passage estimates are 

Therefore, evaluation of first 

quite important in case of 

hysteretically degrading as well as pinching system. 

One of the problems which will be encountered in this 

analysis will be selection of a suitable probability 

distribution for 

non-Gaussian in 

the 

this 

response, which is strongly 

case. Some ground work exist 

for attempting this effort (14,92). 
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The approach used for linearization in the nonzero 

mean analysis was based on the technique suggested by 

Spanos (122, 131) and used by Baber (11). This 

approach suggested the subtraction of mean responses 

from the governing stochastic differential equations. 

However, an alternative approach is subtracting the 

mean responses after performing the linearization. 

It would be interesting to see a 

results for these two approaches. 

comparison of the 

The studies performed for the nonzero mean analysis 

were limited to two of the three models, BN and SEP. 

However, as the results for zero mean studies 

indicate, prediction of RMS responses for NB model 

are somewhat better than those corresponding to BN 

model. Therefore, nonzero mean solution should 

obtained for this model as well in order to achieve a 

better judgement on the possible source of the 

problems with the results for BN model. 

7. Also requiring additional work are 

a- The computational problems included in the 

solution 

b- Considering the application of more general and 

c-

improved statistical linerization techniques 

such as the approach proposed by Beaman and 

Hedrick (18) 

Consideration of some prom is sing numerical 
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schemes for approximating the distribution of a 

random variable, such as the method suggested 

by Meyers (95). 

8 > In the work discussed herein, it has been assumed 

that hysteresis pinching is essentially a slipping 

phenomenon at force reversal which is ideally 

modelled by a slip-lock model or an equivalent SEP 

model. Additional pinching can be attributed to 

general stiffness degradation during unloading stages 

of a cycle. Such degradation may be described 

mathematically using the constructive techniques used 

to establish the SEP model, and should be 

investigated. 
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FIG. 2. 1 - SOOF SYSTEM MODEL FOR 8-N AND N-8 ELEMENT. 
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FIG. 2.2- SERIES HYSTERESIS. 
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FIG. 2.3- THE SLIP-LOCK FUNCTION IN B-N MODEL. 

(a) LOW DEGRADATION RATE. 
o A =on =-OV= 0. 004. 

2 z 

(b) HIGH DEGRADATION RATE. 
OA=On=OV=0.01. 

FIG. 2.4- SMOOTH HYSTERESIS UNDER COMBINED STRENGTH AND 
STIFFNESS DEGRADATION. PSD = 2.5. 
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(c) LOOP-PINCHING BEHAVIOR UNDER CYCLIC DISPLACEMENT. 

FIG. 2.5- BEHAVIOR OF 8-N MODEL AND ITS CONSTITUENT 
ELEMENTS UNDER CYCLIC INPUT DISPLACEMENT. 
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(a) a = 0. 1 AND 0 a = 0 . 1 · , (b) a = 0.1 AND Oa =- 0.5. 
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FIG. 2.6- PINCHING BEHAVIOR OF B-N MODEL UNDER WHITE 
NOISE INPUT EXCITATION, PSD = 0.2 AND { = 0. 1. 



z 

-10·0 • -6·0 

0 
f' 

6·0 

(a) LOW DEGRADATION RATE. 

108 

u 10·0 u 10·0 

(b) HIGH DEGRADATION RATE. 

FIG. 2.7- PINCHING BEHAVIOR OF B-N SERIES MODEL UNDER COMBINED 
STRENGTH AND STIFFNESS DEGRADATION. Oa = 0.3. = .07. 
AND 0 a = 0. 009. 
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FIG. 2. 8 - SLIP-LOCK ELEMENT FOR N-8 MODEL. 0 = 0. 121. 0 A= 0. 2. 
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(a) L0\1 PINCHING RATE. A0= 0. 0. 
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(b) HIGH PINCHING RATE.A0 = 0.0. 
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FIG. 2.9- LOOP-PINCHING BEHAVIOR OF N-8 MODEL UNDER CYCLIC 
0 I SPLACEMENT. 
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(d) '= . 15. AND OA = !21. 5. 

FIG. 2. 1!21 - PINCHING BEHAVIOR OF N-8 MODEL UNDER WHITE NOISE 
EXCITATION. PSD = !21. 2. = !21. 1. A0= !21. !21. AND 0 g = 0. 0. 



-10·0 

-10·0 

C? 
z 

111 

6·0 ulo-o 

( 0 ) LOW DEGRADATION RATE. 
{

0 
= 0. 05. AND O'A = 0. 2. 

u 10·0 

Cb) HIGH DEGRADATION RATE. 
( = 0. 10. AND OA_ = 121. 2. 

FIG. 2.11 - PINCHING BEHAVIOR OF N-8 MdDEL UNDER COMBINED STRENGTH 
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0 
= 0. 121. 
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FIG. 2. 12 - SDOF SYSTEM FOR SINGLE-ELEMENT-PINCHING MODEL. 
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FIG. 2. 13 - BEHAVIOR OF dZ/dU VS Z FOR SMOOTH HYSTERESIS <B-8-W). 
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Co) ONLY n IS DEGRADING. (b) ONLY V IS DEGRADING. 

dZ/dU 

(c) ONLY A IS DEGARDING. 

Z/Zmax 

FIG. 2. 14 - THE EFFECT OF VARIATION OF DEGRADATION PARAMETERS 
A. V • AND n ON THE BEHAVIOR OF dZ/ dU VS Z PLOT FOR 
SMOOTH HYSTERESIS OF 8-8-W. 
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aJve this line 
the slope builds up to 
original level. 

(a) Cycles of Loop-Pinching Hysteresis 
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original level in 2nd cycle 

) original smooth hysteresis 
( slope (no degradation). 

-----/ 
(b) Variation of dZ/dU vs Z 
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Figure 2. 15 - Hysteretic Loop-Pinching Behavior and the 
Corresponding Effect on the Variation of 
dZ/dU vs Z. 
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Co) Low Pinching Rote, 0" = 0.1217. 8d = 12!. 1. (b) High Pinching Rote, U 0. 07. Sa= 0. 4. 

ond 8a-= 12!. 009 ond 8u= /2l. 03 

Figure 2.16 - Variation of dZ/dU vs Z for BN Slip-Lock Modell 
Subjected to Cyclic Displacement. 
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Fiqure 2.17 -Variation of dZ/dU vs Z for NB Slio-Lock Model 
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Subjected to Cyclic Displacement. 
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FIG. 2. 19 - The Effect cf Vcriction of C1 on 
dz/du vs z When Kept Constant. 
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Figura 2.21- dZ/dU vs Z Behavior for SEP Modal Subjected to a 
Cyclic Displacement. 
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FIG·2·22 - INPUT CYCLIC DISPLACEMENT USED TO TEST SEP MODEL. 
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(a) Low Pinching R t r 8 a e. '='lo = "-l. • 

A= 0 · 05. (0 = 0. 2. and 8t= 0. 01. 

UIOO·O 

(b) High P 1 nch i ng Rate. Sto = 0. 95. 

A = 0. 3. to = 0. 2. and = 0. 01. 

Figure 2.23- Loop-Pinching Behavior of SEP Model under the 
Cyclic Displacement Shown in Figure 2. 22, = 1%. 
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(b) High Pinching Rate, = 121. 95. and A = 121. 3. 
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Figure 2.24- Loop-Pinching Behavior of SEP Model under White 
Noise Input. PSD = 121. 1. 0 = 121. 2. and = 0. 1211. 
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Figure 2.25- loop-Pinching Behavior of SEP Model under Cyclic 
Displacement and with Combined Stiffness and 
Strength Degradation. = !21. 9. t

0 
= !21. 2. A = !21. !216. 

and 8t = !21.!211. 0 
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DETAILS OF DERIVATION OF LINEARIZED COEFFICIENTS FOR BN 

MODEL (Zero Mean Case). 

The expected values specified in Equation [3.5] gives, upon 

substitution of the appropriate gi(y3 .y4 ) functions 

E {( o I oy 4 ) [Ay 4 

E { ( o I o y 3 ) [ Ay 4 

yjy31ny4)ll11} 

Y/Y31ny4}]111} 
2 . 2 

E{(o/ay4 ) (2a/ v'2;cr)exp[-y 3 1(2cr )]. 

[Ay4 -v (f3/Y3/(n-l)Y3/Y41+ Y/Y3/n y4)l/11J [A-1] 

2 2 Ke 5 = E{(o/ay3 )(2a/ vzncr) exp[-y3 1(2cr )] 

[Ay4 -v (J3/Y31 (n-1)Y3/ Y41+ Y/Y3/n y4)]/11} 

Using the approximation for the deterioration control parameters 

given by Equations [2.4], [2.10] and [3.13] together with the 

assumption that A. , 11 and a can be replaced by 

f.iA Ao - 5 A11 e 

flv vo + 5v 11 e 

J111 11o + 5 11 11 11 
[A-2] 

lla 5 a 11 11 

allows the equations for ce 3 and Ke 3 to be written as 

[A-3] 

The expected values in [A-3] have been previously evaluated (15). 

,'' 
I' 



Hence 

where 

+ 

+ 

a3nf[(n+2)12]2ni2(Is1 - Is2)1n 

F2 = a3nf[(n+1)12]2ni21{1T 

F = 4 

na3 (n-1)a4f[(n+2)12]2nl2 

{ 2 [( 1-p .2)ln](n+1)12 + 
34 

(n-1) np 3 4a3 a4f[(n+1)12] 

In [A-SJ.r(.) is the gamma function, 

and 

In a 

J0 Psinn9d9 

f'/11!sinn9d9 

similar manner, CeS and are given by 

.r-- 2 2 /(2a ))] -

rE[ y 3 nexp(-y3
21(2a2 ))] }l 

,r;:;- 2 2 2 )E[y4 y 3 exp(-y3 /(2a ))] 

E [ I Y 41 e xp ( -y 3 2 I ( 2a2) ) (a I a Y 3) ( Y 3J Y 31 ( n -1) ) ] 

exp(-y321(2a2))J-

E[ jY.4jexp(-y32/(2a2))(l jY3jn/ay3] }l 

+ 

+ 

] + 
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[A-4] 

[A-5] 

[A-6] 

[A-7] 

[A-8] 



or 

where 

In the 

where 

Ce5 211 a/(Ji;rap.TI) {p.AFS/az- p..,[f3F6(Is3- 1 s4) + yF7]} 

Ke5 = 2p.a/( tf2;ap.TI) {-(p.A/a2)F16 + [A-9] 
2 (n+2) )(F17 F 18 /(n+2) + F 12 ) 

I 2 2 FS a3a!Va + a3 

F6 [Fsn+1/(na3)2n/2f[(n+2)/2] 

F7 [Fsn+1/(vna3)2n/2f[(n+1)/2] 

F8 = [Fsn+2/(na3)a4f[(n+4)/2]2(n+2)/2 

n/( n/2 F 9 [nF 5 na3 )a4f[(n+2)/2]2 
• 2 (n+2)/2 

FlO P34 a4!< na3) 

F12 (p34/a3)(Iss- 1 s6>Fs 

(p34/a3)Fs< 1 s3-1 s4) 
n+3 (F 5 /a 3 )f[(n+3)/2] 

F13 

F14 

F15 

F16 

F17 

F18 

n+1 = (n F 5 /a3 )f[(n+1)/2] 

above 

I s3 
I s4 
I s5 
I s6 

3 2 
P34a4 Fs /a3 

2 J1 - P34 2 

F17/(2 + P342F52/a32) 

relations 

fo Q sinnGdG 

fgnsinnede 

fo n sinn+ 2 GdG 

fgnsinn+ 2 GdQ 

[A-10] 

[A-11] 

[A-12] 

[A-13] 

[A-14] 
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[A-15] 

If, in the above. it is decided to generalize the degradation 

still further, by allowing a to vary, then a must be replaced 

approximately by • cr 

190 
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DETAILS OF DERIVATION OF LINEARIZED COEFFICIENTS FOR NB 

MODEL (Zero Mean Case). 

The expected values in Equation [3.51 give the same 

relationships for 

r/Y 3 jnY.4 >1111} 

Ke5 = Y32)J [B-1] 

[Ay4- v r/Y3/nY4)]/11} 

Using the relations for the degradation control parameters A 1 

and 11 given by [A-2] together with assumption that A and can 

be replaced by 

allows that be written in the form 

y32)2] + 

rE[y3/Y3jnY.4/ Y32)2] J 
+ 

Y32>aly3jn/ay3J )l 

[B-2] 

[B-3] 

' I I 
,: I 

, I 



or 

where 

Ce5 = + yE3]} 

Ke5 = + 

+ yEg]} 

E1 = £Jrr!2 

E2 
n/ co n -(-1) 0 (y3 /a 1 )exp(a 2 ) [1-erf(-p)]dy3 } 

E = 3 

E 4 
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[B-4] 

[B-5] 

In these numerical quadrature equations, expressions for a 1 • 

a 2 and (J are 

2 + 2 
al y3 

2 2 
a2 = -y3 /( 2 0"3 ) 

1/J = -p34 Yg/[o-3 /2(1-p342) ] 

[B-6] 

and erf(.) is the error function. 



DETAILS OF DERIVATION OF LINEARIZED COEFFICIENT FOR SEP 

MODEL (Zero Mean Case). 

The expected values in Equation [3.5] give the following 

relationships for Ce 3 and Ke 3 

or 

2 2 = )] 

[ Ay 2 - 11 ( fl f Y 2!! Y 3 I ( n - 1 ) y 3 + 'Y I Y 3 I n y 2 ) ] ht} 
2 2 = E{oloy3 [1-{ 1 exp(-y3 )] 

[ Ay 2 - " ( 13 I Y 2!! Y 3 I ( n - 1 ) Y 3 + 'Y / Y 3j n Y 2 ) ] hd 

2 r 2 Ce 3 {A[1- s1 exp(-y3 )] -

[1- Y2 Y3 (n-1)Y3 + 

'Y Y 3 n]} I 1111 

(211111)( 
2 2 2 

2 ) e xp ( -y 3 I <:. 2 ) [C-1] 

(n-1) 
{Ay2 Y2 Y3 Y3 

2 r 2 [ 1- ex p (- y 3 I <:. 2 ) ] { [13 

+ 'YY2 y3 n]} - (11!111). 

Y2 oloy3( Y3 (n-1)y3) + 

'YY2 o/oy3 y3 n]} 

Using the relations for A. "V .and 11 given by [A-2] together with 

assumption that 1 and can be replaced by their mean 

values. allows that Ce 3 and Ke 3 be written in the form 
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[C-2] 

Hence 

C e 3 ( 11 A I llll) - ( 11 A I !Ill) t 5 , , 
( llv I II ll ) { f3 F 1 + r F 2 } + 

, • 
llv /!Ill) [f3F6 (I s3 1 s4 ) + rF 7 } 

[ 

Ke3 
. 2 

F16 (flv /flll) {f3F3 + rF 4 } = /(!J. !l' )] - + 
I ll 2 , , n , 

( llv /f1ll){f3F9 (F17 F18 /n + F13 ) + [C-3] 
, , 

(y/ 2 )F10 F15 } -

' n+2 2(f.1'r f.1.vl!lll){f3Fg [F17 F18 /(n+2) 
, 

+ F12 ] + 
, 

rFlO F14 } 

, , 
where the values for F1 - F 10 and F 12 - F 18 in the above 

equations can be obtained from the same relationships given for 

F 12- F 18 in [A-5], [A-8]. [A-10], and [A-15] 

respectively with the following modifications 

must replace F5 in all those expressions and will 
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DETAILS OF DERIVATION OF THE CALCULATION OF EXPECTED 

VALUES FOR BN MODEL (Nonzero Mean Case). 

Solution of the differential equations for mean response 

requires evaluation of the expected values [4.5]. These may be 

rewrittenin terms of the variables Yi = vi - as follows 

El E[ P 
E2 

[D-1] 

E4 = ly3+1131(n-1 ){y3+ 11 3) 
2 2 n • • 

ES /(2a I 
Substituting the appropriate nonlinear functions into Equations 

[4.8] leads to 

Ke3 

Ce5 {i;ra) llv [j3E11+ rE12]}/11'11 [D-2] 
2 . 2 

Ke5 = 211a/( {Z;ra) {-(JlA/a + E15) + 

y(-E16/a2+ E17)]}/Jl'l1 

where 

E6 E[ ly3+ l(n-l)(y + 
3 

E7 E[ jy3+ 113lnl 

E8 nE[ ly3+ l<n-l>r· y4+ ] 

E9 = nE [ ly3+ (n-2) ( • 
1131 y3+ 113)(y4+ 

E10 
2 2 E[exp(-[y3 + 11 3 1 /(2a )] 



2 2 I l(n-1) Ell E[exp(-[y3+ /(2a ) y3+ • 

(y3+ 

E[exp(-[y3+ 

E13 E[exp(-[y3+ 

E14 E[exp(-[y3+ 

E15 = nE[exp(-[y3+ 

E16 E[exp(-[y3+ 

2/( 2) 1 l(n-2) E17 nE[exp(-[y3 + 2a 

[D-3] 

These expected values are evaluated in distinct groups as 

follows 

CASE 1- !!. - .Q.dd_;_ 

In this case, all integrals can be evaluated in closed form. 

For computational purposes, it is appropriate to categorize the 

integrals to the number of summation required. 

E3 = (a/a3 )a4 A1A2 

ElO (a/a3 )A 1 

El3 
2 = (a/cr3 ) cr• 4 

ill 
n 

• n { '\ (n-k)[ • E2 = a 4 erg L 3 p34 + 
k=O 
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i£1 

.13• 4 

n 

.13 (n-k) 
3 

n-1 

• (n-1){ (n-k-1). 
ncr4cr3 P3 

k=O 

n 

n-1 

A (n-k) 
3 

E ( n I ) • { \ ( nk-
1

) A ( n- k -1) [ ( p c I ) 
17 = a cr 3 cr4•il 1 L il a cr 

k=O 3 34 3 • 

n 

• n { \ 
c/1-p .. 2 )k El = cr4cr3 L I s1(k) . 

k=O 34 
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n 

a3n{ l 
k=O 

n-k 

(n-k) • m L m p34 
m=O 

e (n-1){ na 4 a 3 

n-k-1 

n 

A m (n-k-m) 
5 A6 • 

Is1(k) • 

l (n-k-1) .m A (n-k-m-l)[I ( +1 A•) + m P34 P3 s2 m •P4 
m=O 

J> • 4 

n 

( a p n + 1 I a 3 ) A 4 A 7 { 2 ( = ) ( /1- p 3 4 2 ) k ( a p I a 3 ) ( n-k ) • 
k=O 

n-k 
\ n-k) L ( . m • m • (n-k-m)I ( • )]} m Ps4 a7 a6 s2 m,u8 

m=O 

n+1 

\ ( n+l) 2 L n ( 1-p • 
k=O 34 

n-k+l 
\ (n-k+_l) m 
L (n-k-m+1) m [pA 7 J A6 • 
m=O 
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In the above. 

n-1 
'\ n-1 
L ( k) <J1-p342 
k=O 

aa3 / /(1-p342)G32 ; a = p 

.134 

" 1/[1-p342(1-.13p 2)] ; f)p 

and the A's are given by 

A3 (a/a3).133 
. 2 2 2 /\ 2 2 2 

A4 = exp{f3p .133 [p34 .13p .13p -1]/[2(1-p • )]} 34 

As Jt-p34 
2 = P3'4 j)p 

A6 
/'\ 2 t>p 2 

133 = .133 - P34 j)p 

A7 = J1-p3:/ p 

A8 -A9/A7 

A9 134 . 13' 2 .13p 
2 

.133 - p34 p 

The standard integrals are 

Isl(k) (1/ 

I 2 (k,f3.) s 1 (1/ {2;)/mm t;ksgn( +f3i)exp(-

199 

+ 2 
G 

The integrals I 51 and 1 52 can be evaluated in closed form 
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giving 

(

0 

1 (k=O) 

{(k-1) !/[(k-2)/2] !} [2(k-2 ) 12 J 

(odd k) 

(even k) 

( V2/rr) (-1) (k-1) f3. (k-1) exp(-f3. 2/2) + 
1 1 

(k-1)I 2 (k-2,jL) (k > 2) 
I 2 (k,f3.) 

s 1 

s 1 ( J21 rr) ex p (- J3 i 2 /2) (k 1) 

1 - 29)(-j3.) (k 0) 
1 

Where rp ( • ) is the Gaussian cumulative distribution function. 

Several integrals are simplified but other integrals reduce 

to a sum of two Gauss-Laguerre quadratures. 

do not depend on 'n' and therefore, do 

not change. 

k 

\L (nk) .13 (n-k) [p • 
3 34 n=O 



n 

f3 (n-k)I (k)]} 
3 s1 

n-1 

.. (n-1) { fl (n-k-1). 
ncr4a3 k=O 3 

[p34 1 s1(k+1 ) + fl4 1 s1(k)]} 

n 

\L(nk) = (an+1/cr3)A1{ A (n-k)I (k)} 
k=O 3 s1 

[p34(a/cr3) Is1(k+1) + A2Is1(k)] 

n-1 

\L (n-k1) 
= (an/cr3)a4Al{ 

k=O 

(n-k-1) 
A3 • 

201 

The double summation integrals can no longer be evaluated in 

closed form, but can be reduced to the following quadratures 

E4 (cr4cr3n/ {i;r> {[mo ICI(n-1) 93exp(' )d + 

10 co 

E6 = (a3n/ 2n){[m0 91exp('Y3)exp( + 

10 m 9 1 exp('Y 2 )exp(-
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) d + 

E15 (a4,cr3n-1/ G3exp( C )dC + 

f 0 cc { ( n + 1 ) g 4 ex P ( - ) d } 

In these numerical quadratures 

£134 p34 ( c - 13 3 )] I J1 
2 

11 - - P34 

12 -0.5( t;- 133)2 + c 
1s -o.s(C - 13s>2 - ' 
14 = P34( t;- 133) + 134 
G., = [1 - 2jlS(-y1)] 

.Jl 

92 ( V2/ rr) /t-p34 
2 2 exp(-y 1 /2) + 1 4 9 1 

93 
2 2 2 = e2exp(y3)exp[-cr3 4: /(2cr )] 

94 
2 2 2 = e2exp(y2)exp[-cr3 /(2cr )] 

G5 e3e1/92 

g6 9491/92 

CASE 3- !!. 

If 'n' is not an integer, the no summation integrals still 

remain unchanged. The numerical quadratures of Case 2(c) will 

also remain unchanged, but the single summation quadratures are 
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no longer feasible. Then the following additional numerical 

quadratures are required. 

E2 (a4cr3n/Vzn)[£<r>O lsln y4exp(y3)y4exp ( { )d{ + 

f 0 <r> n y 4 exp(y 2 )exp(- 1 

where 

exp[-cr3
2 

2 2 2 exp[-cr 3 { /(2cr )]exp(y
2

)y
4 

e7/r4 

e 8 ty 4 

In the reduced forms, all of the numerical quadratures are 
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compatible with an N point Gauss-Laguerre formula. 



DETAILS OF DERIVATION OF THE CALCULATION OF EXPECTED 

VALUES FOR SEP MODEL (Nonzero Mean Case). 

The expected values needed for the solution of stochastic 

differential equations for the mean responses given in [4.26] can 

be rewritten as follows. Here, Yi = vi - as before 

E1 = I l(n-1)( E[ Y3+f.13 Y3+f.13) jy2+f.12ll 

E2 = E[ 1Yg+f.131n(y2+f.12)] 

E3 
2 2 

E [ex P (- { Y 3 + f.13} I ) ( Y 2 + fl2) ] [E-1] 

E4 2 2 I I < n-1 > I I E[exp(-{y3+f.13} I 2 ) y3+ 11 3 (y3+f.13). y2+ 11 2 J 

E5 = ly3+fl31n(y2+fl2)] 

Also substitution of the appropriate nonlinear functions 

into Equation [4.29] results 

where 

c e 

K e 

' ' {flA- + yE7 
-, , 

( fl C r I Jl ) { AE 1 0 - fl " [ E 11 + y E 12 ] } 

E[ (n- 1 ) (y3+f.13) sgn(y2+ 11 2)] 

E[ ly3+fl3lnl 

I (n-1)] 
nE [ y 2 + f.l2 II y 3 + fl3 I ) 

nE[ ly3+fl31 (n- 2 ) (y3+ 11 3) (y2+fl2)] 

2 2 E[exp(-{y3 +!1 3 } I )] 

[E-2] 
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Ell 

E12 = 

E13 = 

E14 = 

E15 

E16 

E17 

I l (n-1)( 2 1 E[ 

E[ ly3+ 11 3ln (/)] 
2 2 

exp(-{-y3+ 11 3} I )] 

E[ (n+l) 

nE[ (n-l) 

E [ I y 3 + 3 I n ( Y 3 + 3 ) ( y 2 + 2 ) e x P ( - { Y 3 + 3 } 
2 I 2

2 
) ] 

nE[ (n- 2 ) (y3+ 11 3) 

(22)] 

[E-3] 
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These expected values can be evaluated in the same three distinct 

categories established for BN model in Appendix D. The general 

• form of these E. s expected values are similar to respective 
1 , 

E. s 
1 

v a 1 u e s tabu 1 at e d in the Append i x D • - The r e fore • with the 

following modifications same relations can be used for the 

evaluation of expected values in [E-2] and [E-3]. The necessary 

modifications are 

P34 must be replaced with P23 

cr· 4 must be replaced with cr2 

must be replaced with 132 = 4 

a must be replaced with a = '2a31 Jcz2+2cr32 

a must p be replaced with ap = V2(1-p232> + 2 


