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ABSTRACT 

 There is a pressing need to develop bioactive matrices that promote cellular interactions 

and elicit desirable regenerative behavior in vivo. This is particularly important in the context of 

ischemic stroke where a focal lesion forms forestalling the regrowth of brain tissue. We can 

develop and synthesize these matrices utilizing peptide-based molecules as building blocks to 

create supramolecular structures that emulate the properties of the native healthy extracellular 

matrix (ECM) within the central nervous system (CNS). In order to facilitate the regeneration of 

lost and/or damaged tissue, we propose using peptidic biomaterials that have the ability to emulate 

the properties of the native healthy extracellular matrix (ECM) within the CNS. The work 

completed in this thesis focuses on employing a combinatorial strategy involving computational 

modeling and experimental approaches to design and synthesize stimuli-responsive, self-

assembling biomaterial systems that mimic many of the biochemical and mechanical properties, 

such as the viscoelastic properties, bioactive motifs, etc. found in the ECM. Additionally, we 

leveraged the power of atomistic molecular dynamics simulations to examine the dynamical 

effects of systematically perturbing the pentapeptide sequence motif. This enables us to screen for 

a myriad of design candidates in silico, and promising leads that exhibit higher order self-

assembling behavior will later be experimentally produced.  
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1 Introduction and Background 
 Neural stem cell therapies and ECM biomimicry for 3D culture in a 

stroke injury environment 
 
The complex interconnectivity of cells, including neurons, astrocytes, and oligodendrocytes, 

within the central nervous system (CNS) provides a formidable challenge for tissue engineers 

aiming to recapitulate the extracellular environment. These native microenvironments often serve 

as a guidance cue for initiating neural tissue regeneration following injury. For instance, the design 

of suitable microenvironments to improve the regenerative capacity of injured neurons is often 

complicated by the composition of the native CNS extracellular milieu, followed by the 

replacement of cells lost to apoptosis after a stroke. A stroke lesion is characterized by a region of 

necrotic cell death, in particular neuronal cells, which have a limited ability to regenerate once 

mature. Drug therapeutics targeting regenerative pathways have the ability to attenuate inhibitory 

molecules or accelerate the production of endogenous neurotrophins but are usually non-specific, 

thereby restricting the utility of such applications. A promising approach in stroke therapy is a 

combinatorial approach of controlled drug delivery and cell transplantation in a matrix that 

maintains appropriate cell-matrix interactions mimicking the native neural tissue environment. In 

a stroke environment, this often necessitates tissue replacement via encapsulation of neural stem 

cells in a hydrogel biomaterial that is directly injected to the infarct.   

 

The native neural microenvironment includes extracellular matrix (ECM) molecules, myelin-

associated glycoproteins, trophic factors and signaling pathways that modulate a neuron’s intrinsic 

axonal growth capacity (readers are referred to excellent recent reviews on this topic by Lutz et al. 
1 and Lau et al.2). On a cellular level, engineers must also account for various cellular components 

such as astrocytes and/or oligodendrocytes in the CNS that play a major role in nervous system 

repair and regeneration3-4. We now know that astrocytes can regulate neurotransmitter and ionic 

homeostasis, metabolic support of neurons, and guidance of neuronal migration and immune 

function5. These cellular constituents, as well as others, require appropriate morphogenic cues and 

mechanotransduction pathways from the ECM to trigger a cascade of cellular and biochemical 

events that can stimulate endogenous neurogenesis within the brain2, 6. However, in order to 

properly investigate these cell-cell signaling and cell-matrix interactions, it is important to 
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decouple the synergistic effects of both the hierarchical microstructures and signaling cues that 

initiate and/or propagate neural regeneration processes. This thesis presents several strategies that 

aim to overcome these limitations through engineered biomaterial scaffolds. Additionally, I 

discuss conventional approaches to the design of suitable microenvironments to stimulate neural 

tissue regeneration and repair in stroke injury environments. 

 

Stroke is the second leading cause of disease mortality worldwide, resulting in close to 6,200,000 

deaths annually7, and the third most common cause of disability8. It is estimated that more than 

130 million incidences of stroke (that do not result in death) occur in people younger than 75 years 

per year, with most of the burden found in low-income and middle-income countries9-10. The 

pathogenesis of ischemic brain injury from cerebral vessel occlusion involves two sequential 

processes: 1) the reduction or impairment of blood flow as a result of vascular occlusions and 2) 

alteration of normal cellular function resulting in necrosis of neurons, glia, and other supporting 

cells, and subsequent disruption of the blood-brain barrier (BBB)11-12. A rapidly evolving area in 

stroke research involves targeting specific inhibitory molecular and cellular pathways in tissue 

regeneration, and inflammation associated with cerebral ischemia. Promising therapeutic 

treatments prevent further damage and restore some cellular function by reestablishing perfusion 

to the ischemic brain, such as the administration of tissue plasminogen activator (tPA) that is used 

to break down clots13-14. However, these types of treatments are only effective when administered 

in a narrow therapeutic time window and the side effects of such treatments can potentially be 

more destructive than their beneficial thrombolytic activity15.  

 

Recently, there has been growing interest in transplanting different types of stem cells to restore 

neurological functions and improve behavioral recovery following an ischemic insult. Several 

well-documented studies show that transplanted stem cells can ameliorate ischemic stroke by 

reducing cortical infarct size and increasing blood vessel density16-17. However, cell transplantation 

strategies often suffer from poor cell survival due to the toxicity of the surrounding environment 

at the injury site18-19. This can potentially be addressed by encapsulating cells in suitable 

microenvironments (e.g. hydrogels) that protect cells during and after delivery and support cell 

survival and growth. Cleverly designed materials can influence the subsequent fate of either 

transplanted or endogenous stem cells by directing their differentiation.  
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For this thesis, we will present recent studies that use central nervous system (CNS) relevant 

biomaterials to promote cell survival and discuss their potential applications to stem cell therapy 

in the treatment of stroke. In many cases, administering these materials alone may have beneficial 

therapeutic effects in a transplant-free treatment strategy. For example, salmon fibrin has also been 

used in the treatment of spinal cord injuries. Salmon-derived fibrin gels were implanted into the 

lesion site after a dorsal hemisection in rat models, with no alteration in the degree of glial scar 

formation versus untreated controls, which were elevated in human fibrin-treated animals. Rats 

treated with salmon fibrin saw increased serotonergic fibers caudal to the injury site20. Similarly, 

the Shoichet group injected epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-

2) impregnated collagen gel solutions to spinal cord injury sites of Sprague-Dawley rats and 

observed significantly greater ependymal cell proliferation in injured animals compared to 

controls21. Neural progenitor cells (NPCs) derived from bone marrow stromal cells (MSCs) 

transplanted with collagen sponges and basic fibroblast growth factor (bFGF) releasing gelatin 

microspheres into rat stroke models saw increased cell survival and neovascularization around the 

transplanted region22. The synergistic effect of bFGF releasing microspheres and NS-MSCs 

suggests that, when properly utilized, these biomaterials can provide appropriate scaffolding to 

ameliorate functional recovery in stroke or neurodegenerative diseases.  

 

As discussed above, biomaterials have been engineered to mimic the physical and mechanical 

characteristics of the native extracellular matrix (ECM). Recent studies have focused on improving 

structural and functional recovery after stroke by enhancing endogenous neuronal regeneration 

through the incorporation of scaffolds that promote neuroblast migration into lesion sites23-24. Cell-

based therapies have also received noticeable attention, and these notable preclinical and clinical 

trials include intravenous autologous mesenchymal stem cell (MSC) transplantation in the 

subacute phase, or 6 months after onset of stroke25-26. While the transplantation was deemed safe 

for stroke patients, there have been conflicting reports regarding the efficacy of the treatment27, 

underscoring the need to improve cell survival in a long-term transplantation and promote host 

tissue integration. 
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 Pathophysiology of ischemic stroke 
Brain damage from ischemic insult involves a cascade of neurochemical events leading to 

cerebrovascular dysfunction and cell death. The interruption of local blood circulation reduces the 

supply of oxygen (hypoxia) and glucose, which prevents the brain from generating sufficient ATP 

to maintain cellular homeostasis28. Cell death occurs rapidly in areas with the most dramatic 

reduction in blood flow (ischemic core)29-30. For less severe areas of ischemia (ischemic 

penumbra), a cascade of cellular and molecular events trigger the disruption of cellular 

homeostasis, leading to slow cell death and accumulation of necrotic tissue11. Within the 

penumbra, depolarization of neurons and glia results in the activation of voltage-gated calcium 

channels and an increase in intracellular Ca2+ concentration, activating proteases, mitochondrial 

dysfunction, and oxidative and nitrosative stress (i.e. the result of excess production of reactive 

oxygen species (ROS), ultimately leading to cell death31-32. Production of such reactive oxygen 

species (ROS) can trigger the coagulation cascade, leading to further deleterious effects resulting 

from activated inflammatory mediators surrounding the injury site33-34. Post-ischemic oxidative 

and nitrosative stress have been closely linked to the pathophysiology of ischemic stroke as 

reviewed in depth elsewhere35-36. Recent studies have also implicated ROS in the activation of a 

host of matrix metalloproteinases (MMPs) that can significantly degrade the extracellular matrix 

(ECM) and BBB37. Thus, designing biomaterials that are able to sequester these ROS would be an 

ideal therapeutic strategy to improve patient outcomes.  

 

It has been well established that post-ischemic inflammation triggers a molecular cascade 

involving a multimodal and multicellular series of downstream mechanisms. Various 

proinflammatory cytokines produced by complement, platelet, and endothelial cells play an 

important role in cell-ECM remodeling38. The intravascular compartment is immediately exposed 

to ischemic insult, leading to the accumulation of fibrin-trapping platelets and leukocyte 

infiltration into the brain parenchyma39. Neutrophils, followed by monocytes and lymphocytes are 

also recruited into the brain and accumulate in the microvessels of the penumbra. Endothelial cells 

in post-ischemic brain tissue express cell adhesion molecules (ICAM-1/VCAM-1) and upregulate 

E- and P-selectin, which provides a platform for leukocyte binding through their β2 integrins 

CD11a/CD18 and CD11b/CD18 (LFA-1 and MAC-1, respectively)38, 40. This then leads to 

leukocyte accumulation along the vascular wall, and accelerates cell death through the production 
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of free radicals and cytokines. These infiltrating inflammatory mediators take part in both cell and 

ECM remodeling and influence neural plasticity and relay circuit function41-42.  

 

Astrocytes play an important role in cerebral inflammation, as they are able to produce anti-

inflammatory cytokines that downregulate inflammation, such as TGF-β1 and IL-1038, 43. 

Microglia and macrophages upregulate TGF-β1 in ischemic stroke44-45, which has a 

neuroprotective role by promoting regulatory T lymphocyte development, and has also been 

implicated in dampening the immune response by suppressing T cell effector activity46-48. 

Additionally, astrocytes can express proteoglycans that are released into the ECM compartment. 

Following an injury, TGF-β1 can also regulate astrogliosis, facilitating glial scar formation by 

increasing cellular GFAP expression and upregulating inhibitory ECM molecules (e.g. chondroitin 

sulfate proteoglycans)49. Consequently, the modulation of NPC differentiation should be 

considered, especially in the design of biomaterial scaffolds that reduce astroglial activation or 

differentiation and promote differentiation into neuronal and oligodendroglial lineages.  

 

Despite advancement in the understanding of the pathophysiology of stroke, many clinical trials 

have failed regardless of their success at the preclinical stage. A number of external factors such 

as, the animal model used and monitoring of physiological conditions may play a role in failure 

rates of proposed therapeutic strategies. Remaining challenges faced by tissue engineers in 

targeting stroke therapies is the ability to design biomaterials that 1) are also low cost and simple 

to synthesize and 2) are able to regulate and support cell function as a substitute for their normal 

physiological microenvironment. Thus, there is a critical need to establish a biomimicry strategy 

to enable stimuli-responsive and multifunctional biomaterials that can deliver and allow precise 

control of stem cell behavior for neural tissue regeneration applications.  

 

 Limitations of therapeutic potential in current preclinical and 

experimental studies 
The acute management of ischemic stroke includes the administration of intravenous recombinant 

tPA50, which is the first, and only, U.S. Food and Drug Administration (FDA) approved drug for 

the treatment of ischemic stroke. However, it was reported that tPA was more effective in patients 

with small to moderate-sized strokes, but was not as beneficial to patients with large-vessel 
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occlusions51. Later studies show that tPA regulates several molecular signaling pathways that 

activate matrix metalloproteinase-9, leading to the degradation of the extracellular matrix (ECM) 

and disruption of the BBB37, 52. This can have severe pathological consequences that can 

exacerbate brain injury and contribute to cognitive impairment. Additionally, the increased 

paracellular permeability results in hemorrhagic transformation and ultimately increased mortality.  

 

With current advances in understanding the effects of introducing stem cells and their therapeutic 

potential, stem cell transplantation has caught on to be a promising alternative therapy in the 

treatment of stroke16, 53-54. However, there are several critical limitations of cell transplant therapies 

that plague the efficacy and success of preclinical and clinical trials. Namely, there is 1) a limited 

source of engraftable stem cells, 2) the narrow therapeutic window for stem cell therapies, and 3) 

possible transplanted cell mediated adverse effects, such as unregulated stem cell proliferation (i.e. 

tumor formation), or even stroke as a result of clotting from cells trapped with circulatory vessels. 

Moreover, stem cells themselves may have inherited limitations in terms of growth, trophic 

support, and differentiation potentials55. Additionally, the functional activity of stem/progenitor 

cells might be decreased due to disturbances of the cell secretome, and altered interactions with its 

microenvironment56. 

  

More recently, antioxidants and free radical scavengers have been explored for treatment of central 

nervous system (CNS) injury57-59. Free radicals are continuously generated by the use of oxygen 

in mitochondria to supply the energy needs of the brain, and studies have demonstrated that 

overproduction of these free radicals and related ROS modulate a host of cellular and molecular 

processes that promote neuronal degeneration60-62. Several compounds such as ebselen63, 

edaravone64, tirilazad65, and NXY-05966 have been developed to remove or degrade free radicals, 

or inhibiting their production. Administration of these drugs has proven to be effective in 

experimental stroke injury models, however, with the exception of NXY-059, no clear evidence 

for the efficacy of these drugs in the treatment of human stroke patients was obtained67. More 

recently, polymeric nanoparticles have been used to encapsulate or incorporate small drugs to more 

efficiently deliver its payload. Jin et al. used a methoxypoly (ethylene glycol)-b-poly (D,L-lactic 

acid) (PEG-PLA) polymeric micelle to encapsulate edaravone (EDV-AM), seeking to eradicate 

ROS produced by infiltrated inflammatory cells. It was shown that the EDV-AM nanoparticle had 
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a higher uptake in brain ischemia versus free EDV, resulting in rapid infarct volume reduction, 

and reduced behavioral deficits in ischemic stroke models68. The use of such a delivery vehicle 

could subsequently improve BBB permeability and be used to treat the majority of ischemic stroke 

patients who miss the time-window of tPA treatment.  

 

Many therapeutics, while effective in animal injury models, completely fail in clinical trials. One 

reason for the high failure rate is because the therapeutic time window for effective reperfusion 

appears to be extremely short (< 4.5 h), and that the long ‘door-to-needle’ time (i.e. the time from 

emergency arrival to administration of tPA) limits the efficacy of the drug. Existing strategies also 

target a specific pathway of acute ischemic stroke. As mentioned above, the pathophysiology of 

stroke is extremely complex involving an assortment of chemical and biological processes and 

signaling pathways. A combinatorial approach in the treatment of stroke, i.e. combining 

neuroregenerative agents that target multiple pathways of the ischemic cascade, may be necessary 

to improve patient outcomes following an ischemic insult. Alternatively, rebuilding the tissue lost 

to ischemic degradation may supplement efforts to limit injury severity.  

 

Recently, biomaterials-based approaches have garnered considerable interest in the field of neural 

tissue regeneration as a promising alternative for stroke repair24, 69-71. These biomaterial scaffolds 

can A) provide integration of a highly biocompatible three-dimensional microenvironment with 

the host tissue that promotes neural tissue regeneration and B) act as a drug delivery vehicle 

releasing neuroprotective agents in a spatiotemporally controlled manner. Implantations of these 

scaffolds at an injury site may not only reduce stroke mortality, but restore lost neurological 

functions through the regeneration of neural tissue. For example, a recent publication demonstrated 

that sericin-based hydrogels were neuroprotective, and could promote axonal extension and 

branching of primary cortical neurons. When transplanted in vivo, these hydrogels promoted cell 

survival and proliferation, suggesting that their neuroprotective and neurotrophic properties are 

suitable for ischemic stroke repair and de novo tissue formation72.  Additionally, an effective 

hydrogel biomaterial for stroke treatment should meet several requirements: First, clinical 

application to the infarct cavity must be achieved via simple injection, a minimally invasive patient 

delivery. Second, the hydrogel must not swell during or after gelation to prevent further damage 

to the brain. Finally, these hydrogels must allow for the precise control of stem cell behavior to 
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promote neural tissue regeneration. Thus, in the next chapter, we will focus on recent findings 

describing micro- to nano-scale hierarchical constructs that have been designed to mimic native 

ECM. We will describe key biological and mechanical properties that a biomaterial should possess 

that can modulate both cell proliferation and differentiation. The high biocompatibility, ease of 

functionalization, and precise control over the sequence and structural elements make 

proteinaceous biomaterials excellent candidates for neural regeneration applications. 

 

2 Design and fabrication techniques of amino acid 

containing biomaterials 
Protein and peptidic biomaterials have typically been modeled after structural elements found 

within the ECM. This includes fibrous scaffolds and hydrogel matrices that are designed to mimic 

in vivo 3D microenvironments associated with native tissue. These biomaterials are often designed 

with several criteria in mind: 1) their components and gelation process must be cytocompatible in 

order to be considered useful in applications for tissue engineering, 2) and they should recapitulate 

the cell-matrix interactions found in vivo. Selecting or designing these peptide or protein-based 

materials typically requires parsing of known cell-binding or assembly epitopes or intuiting novel 

domains/designs that could be useful. Furthermore, the format and structure of the subsequent 

hydrogel biomaterial greatly impacts cellular interactions, and thus the fabrication strategies can 

dramatically impact a material’s ability to replicate qualities of native, healthy, CNS tissue. 

 

Advancements in genetic engineering and molecular biology now allow for the design and 

engineering of biosynthetic proteins with precise control over their sequences, length, secondary 

structure, and intermolecular interactions (e.g. hydrogen bonding, electrostatic interactions, π- π  

stacking)73. Protein engineering has been a staple in the biological sciences for decades and has 

gained traction in biomaterials research for multidisciplinary applications in engineering, 

medicine, and material sciences. Researchers are able to create a vast array of designer protein 

systems with desired properties that either function as biomimetics of native proteins, or contain 

novel structural and biofunctional moieties74-75. These proteins have been used in a variety of 

applications related to CNS regeneration, where they often serve as 3D scaffolds and/or depots for 
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release of neurotrophins or growth factors76-77. Protein-based materials may also play a role in 

mediating the host immune response78. Molecular biology has opened up new avenues to allow 

for the development of recombinant elastomeric proteins, such as keratin, silk, and collagen, as 

well as designer peptides and proteins which may be suitable biocompatible scaffolds for tissue 

engineering applications.  

 

In the early 1960s, Merrifield developed a novel approach to the chemical synthesis of 

polypeptides involving the stepwise addition of protected amino acids to a growing peptide 

chain79. Since its conception there have been significant improvements and refinements to the 

solid-phase methodology, most notably the introduction of the 9-fluorenylmethoxycarbonyl 

(Fmoc) group for Nα protection80, resulting in greater peptide yields and reduction in side reactions 

during cleavage. Solid-phase peptide synthesis (SPPS) has enabled the successful preparation of 

tailor-made peptide sequences without the use of complex and often impracticable purification 

steps of naturally occuring proteins, while simultaneously maintaining similar biological activity 

as its native analog. The most advantageous property of peptides is that they are chemically 

defined;  SPPS provides exceptional control over the peptide’s chemical identity, giving 

researchers the freedom to synthesize almost any protein sequence they desire without concerns 

regarding troublesome contaminants that often accompany proteins expressed in bacterial or 

mammalian cultures. Through the use of SPPS, tissue engineers are now able to easily synthesize 

a whole host of de novo peptides with unique structural and biofunctional properties, including but 

not limited to proteolytic susceptibility81-83, cell surface and/or matrix binding84-86, growth factor 

binding87-89, and self-assembly90-95. The use of designer peptides capable of self-assembling into 

matrices that act as ECM mimics have seen momentous growth in regenerative medicine96-98. The 

self-assembling propensities of these oligopeptides have been shown to fold into higher ordered 

tertiary and quaternary structures. The use of external stimuli to induce spontaneous gel formation 

is also unique in this class of biomaterials, in that monomeric peptides (rather than a composite, or 

two component system in polypeptide systems) are able to self-assemble in aqueous solutions 

without the addition of chemical crosslinks or other proteinaceous materials. 
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 Molecular-based design of biomolecular assemblies 
The macroscopic (and/or bulk) properties of proteinaceous biomaterials can be controlled by fine 

tuning the underlying conformational space and associative interactions between amino acid 

building blocks. The supramolecular structure (i.e. specific, directional, tunable, reversible, non-

covalent molecular recognition motifs that exploit hydrogen bonding, hydrophobic interactions, π-

π interactions, and/or van der Waals interactions99-102) can be designed in such a way that it adheres 

to the hierarchical architecture that is present in native tissue. As such, the exploitation and 

fundamental understanding of nano- to microscale interactions within biological structures allows 

researchers to design novel biomaterials capable of maximizing biological function and 

biocompatibility. Several recent techniques provide a rational approach to the design and synthesis 

of biomaterials with applications in CNS regeneration.  

 

Multiscale modeling of complex biological systems are now possible, including a comprehensive 

analysis of the microarchitecture found within biomaterials. However, few groups have taken 

advantage of the powerful computational methods available to accelerate and improve the 

materials design process. In theory, the hierarchical architecture of biological materials can be 

simplified to fundamental (bio)physical properties of self-assembling systems. By modeling the 

basic building blocks (i.e. atoms in an amino acid residue) and their intra- and intermolecular 

interactions, it is possible to observe and predict trajectory-derived conformations of these systems 

that can describe the material’s properties103. A combinatorial strategy utilizing both 

computational and experimental approaches will allow researchers to rationally design new 

molecules with desired structural and functional properties. This design strategy could transform 

current approaches to biomaterials development and address the particular challenges of 

characterizing the dynamical processes that occur in biological matrices.  

 

2.1.1 Molecular Dynamics  

All-atom molecular dynamics (MD) simulations are utilized to predict the spatiotemporal 

dynamics in the folding pathway of proteins, formation of secondary structures, and protein 

association via specific binding sites104-112. More recently, MD simulations have been applied to 

the design of biomaterials in order to predict the occurrence of complex molecular interactions at 
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a microscopic scale. Several examples use simulations of elastin-like polypeptides (ELPs) 104, 112-

116 as well as laminin-mimetic fusion proteins117 to predict the conformational changes and kinetics 

associated with the known phase transition behavior of ELPs. Other notable studies involve the 

analysis of secondary structures within spider silk118-119, self-assembly of peptides120-123, and 

dynamics of micelle and fibril formation124-128. The motivation behind using MD simulations is 

manifold; understanding the atomic contacts (via non-covalent interactions) that mediate the 

folding pathway of nano- to microscopic structures gives researchers the ability to finely tune 

protein sequences that could lead to desirable bulk material properties, later verified 

experimentally. The exponentially large combinatorial space of biomolecule design, in general, 

are intrinsically complex and resource-intensive to disseminate. Therefore, MD-based simulations 

allow access to such dynamics on a characteristic timescale (~femtosecond to microsecond) 

essentially inaccessible via experimental approaches.  

 

In classical MD simulations, the movement of atoms of a biomolecule can be described according 

to the Newtonian equations of motion. For an all-atom MD simulation, one assumes that every 

atom experiences a force that accounts for the interaction of that atom with the rest of the system, 

such that 

 

 𝐹 𝑥 = 𝑀⊙ 𝑓 𝑥  (2.1-1) 

 

where 𝑀 is the vector of masses of each degree of freedom in the system ([𝑚), 𝑚), 𝑚*, 𝑚+,…], 

since the degrees of freedom are the x, y, and z coordinates for each atom), 𝑓 𝑥  is some function 

of the position of all the particles in the system, and ⊙ indicates element-wise multiplication of 

the two vectors. Given the positions 𝑥 𝑡 , velocities 𝑣 𝑡 , and accelerations 𝑎 𝑡  of every atom in 

the system (for each degree of freedom, with a x, y, and z coordinate at time t), one can write the 

equations for the Verlet integrator108 

 

 𝑣 𝑡 +
1
2
∆𝑡 = 𝑣 𝑡 +

1
2
𝑎 𝑡 ∆𝑡 (2.1-2) 

 𝑥 𝑡 + ∆𝑡 = 𝑥 𝑡 + 𝑣(𝑡 +
1
2
∆𝑡) (2.1-3) 
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 𝑎 𝑡 + ∆𝑡 = 𝑓 𝑥(𝑡 + ∆𝑡)  (2.1-4) 

 𝑣 𝑡 + ∆𝑡 = 𝑣 𝑡 +
1
2
∆𝑡 +

1
2
𝑎 𝑡 + ∆𝑡 ∆𝑡 (2.1-5) 

 

Summarily, the force 𝐹 𝑥  is in turn calculated from the system’s potential energy 𝑈 𝑥  

 

 𝐹 𝑥 = −∇𝑈 𝑥  (2.1-6) 

 

defined through the MD “force field” which represents the interactions between atoms. These 

interactions are specified by a model force field that describes the stretching, bending, and torsional 

bonded interactions as well as nonbonded interactions which correspond to the van der Waal’s 

forces (approximated by a Lennard-Jones 6-12 potential) and electrostatic interactions, 

 

 𝑈 𝑥 = 𝑈89:; + 𝑈<:=>? + 𝑈;@A?;B<> + 𝑈C;D + 𝑈E9F>9G8 (2.1-7) 

 

Subsequently, the potential energy function has the following contributions: 

 

 𝑈89:; = 𝑘@89:;

89:;I,@

(𝑟@ − 𝑟L,@)* (2.1-8) 

 𝑈<:=>? = 𝑘@
<:=>?

<:=>?I,@

(𝜃@ − 𝜃L,@)* (2.1-9) 

 𝑈;@A?;B<> = 𝑘@;@A?

;@A?;B<>,@

1 + cos 𝑛@𝜙@ − 𝛾@  (2.1-10) 

 𝑈C;D = 4𝜀@V
𝜎@V
𝑟@V

)*

−
𝜎@V
𝑟@V

X

VY@@

 (2.1-11) 

 𝑈E9F>9G8 =
𝑞@𝑞V

4𝜋𝜀L𝑟@VVY@@

 (2.1-12) 
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The bond stretching term is usually represented with a harmonic potential where for (2.1-8) bonds 

is the total number of bonds in the system, kbond,i is a Hooke’s law spring constant, ri is the current 

length of that bond (the distance between the relevant atomic nuclei in  𝑥), i.e. the value of the 

bond length when all other terms in the potential energy function are zero, and r0,i is the equilibrium 

length for bond i. For (2.1-9) the terms are analogous to (2.1-8) such that kangle,i is the strength of 

the angle, modeled as a Hookean spring, and θi is the angle between the atoms in angle i. In (2.1-

10), the dihedral describes atom pairs separated by exactly three covalent bonds with the central 

bond subject to the torsion angle ϕi (depicted below). The dihedral term attempts to capture some 

of the steric and electrostatic nonbonded interactions between two atoms A and D connected 

through an intermediate bond B-C (Figure 2-2). The 𝛾@ term is the offset for the dihedral potential, 

and 𝑛@ is the periodicity of the potential, e.g. for a molecule like ethylene, rotation about the C=C 

bond must be periodic by 180°, so only even terms n = 2, 4, … can occur, whereas n would be 3, 

6, … for an ethane molecule rotating along its H-C-C-H dihedral. The van der Waals energy arises 

from the interactions between electron clouds around two nonbonded atoms. The attraction is due 

to electron correlation which results in “dispersion” or “London” forces (instantaneous multipole 

/ induced multipole). At intermediate to long ranges, the attraction is proportional to 1 / R6, and 

can be estimated by the Lennard-Jones potential (2.1-11). The term iterates over all pairs of atoms 

(i, j), 𝜀@V  is the strength of the interaction between atoms i and j. 𝜎@V  is the distrance at which 

dispersion and steric clash exactly cancel out, and 𝑟@V is the distance between atoms i and j. Finally, 

the electrostatic terms describe the Coulomb interaction between atoms i and j with partial charges 

𝑞@ and 𝑞V, respectively. 𝜀L is an effective dialectric constant (or vacuum permittivity) and 𝑟@V is the 

distance between atoms i and j. The actual values of the fixed parameters, such as kbond,i, 𝜀@V, etc. 

are called the force field.  

 

A

B

C

D

ϕ 

Figure 2-1. Torsional angle definition 
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The version of NAMD108 being used in this work was compiled by Dr. Charles McAnany (Mura 

lab, Chemistry) specifically for the high-performance computing cluster, Rivanna. In particular, 

the simulations are carried out in periodic boundary conditions, such that a biomolecule can freely 

diffuse in an infinite periodic bath. These modeling conditions are effective in eliminating surface 

interactions of the water molecules and creates a more faithful representation of the in vivo 

environment, but also significantly complicates the evaluation of electrostatic interactions129. 

Additionally, the simulations are performed in the isothermal-isobaric (NPT) ensemble. The 

energy, pressure, and enthalpy of the system fluctuate via the introduction of stochastic collisions 

that affect the momentum of one particle at a time. The effect of each stochastic collision is used 

to replace the momentum of the affected particle by the new value chosen from the correlated 

Boltzmann distribution130. 

 

2.1.2 Reaching biological timescales with MD simulations 

Molecular dynamics (MD) simulations103 offer a powerful approach to examine the 

conformational and structural dynamics of peptides and proteins. MD uses a simple physics-based 

model for interatomic interactions, and integrates the classical equations of motion to yield a 

trajectory that consists of the positions of each atom in a system, with picosecond resolution. 

Virtually any imaginable property can be computed from a trajectory, giving predictions that can 

help understand assembly as a function of the peptide sequence. From MD simulations, one can 

study a system’s phase behavior (by comparing results at different pH values), aggregation 

propensity (by simulating multiple peptides together), and other thermodynamic and structural 

information. Notable studies involve the analysis of peptide self-assembly120-123, and dynamics of 

micelle and fibril formation124-128. Yet few examples exist of using computational approaches to 

design functional peptide scaffolds for tissue regeneration applications. In addition to aiding in the 

design and engineering of novel peptides (such as those proposed here), MD simulations can reveal 

experimentally-inaccessible information about the dynamic behavior of aggregation. Simulations 

can illuminate the assembly process, not just the final assembled state. When modeling the 

behavior of peptides that exhibit higher-order secondary structures, MD should be viewed as a 

hypothesis-generating tool and, as for any method, its results should not be blindly trusted. Note 

that our proposed use of MD is in close linkage with suitable experimental studies: we used MD 

to examine peptide sequences that have desired properties, and then experimentally characterize 
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additional sequences that calculations suggest to be promising. In studying the assembly process 

more generally, a model derived from MD data can provide experimentally-testable hypotheses 

regarding inter-residue distances, shifts in secondary structure content, thermodynamics of 

structural rearrangements, etc.  

 

Yet, it should be noted that there are certain limitations that restrict the usage of MD simulations 

to small biomolecules and/or short timescales that do not necessarily correlate with experimental 

measurements. The time it takes to perform one step in a simulation on a system containing N 

particles is proportional to 𝑁 ∗ log(𝑁)103. Typically, the timestep using the Verlet integrator 

cannot be much larger than 2 femtoseconds, and so, simulating a system for a single nanosecond 

requires 500,000 integration steps (a typical simulation today is on the order of 500 

nanoseconds131), while many important biological processes occur on the microsecond timescale 

and beyond. However, many local perturbations in the protein backbone and sidechain moieties 

occur on the picosecond to nanosecond timescale, and that the formation of β-sheets typically 

occur on timescales extending from tens of nanoseconds to a few milliseconds132. We are able to 

observe these localized biological phenomena in our simulations in the subsequent chapters. It is 

also important to point out that we do not claim that the resulting equations of motion generate 

phase-space trajectories that are ergodic. Given the system size and timescales of the simulations 

performed in this thesis, it is difficult (if not impossible) to verify that a true, equilibrium structural 

ensemble were being thoroughly sampled in all of our simulations.  Moreover, strictly speaking, 

biomolecules are many-body systems with nonlinear, chaotic dynamics, and all MD trajectories 

will, as a matter of principle, suffer from Lyapunov instability—meaning they will never capture, 

with perfect accuracy, the true underlying dynamics of the system (see, e.g., Frenkel, Eur. Phys. J. 

(2013) 128: 10. doi:10.1140/epjp/i2013-13010-8).  In more practical terms, at the timescales that 

are currently feasible (computationally) via all-atom MD simulations, for systems of large sizes 

(e.g., >160,000 particles for the solvated fusion system in our current work), it is unfortunately 

impossible to comprehensively explore such a vast conformational space.  This inherent 

convergence problem is exacerbated when simulating protein sequences that are likely to exhibit 

intrinsically less order. It should also be noted that the above 'issues' are almost entirely generic—

i.e., they are not problems that are specific to our system or study, and are equally applicable to 

any simulation study.   
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2.1.3 Coarse-grained MD simulations 

Coarse-graining (CG) allows researchers to model biomaterials on a mesoscale that overcomes the 

expensive computational demands that often plague MD simulations. In CG, the number of atomic 

particles and the corresponding degrees of freedom are reduced compared to atomistic MD 

simulations, while retaining similar molecular interactions between the CG particles. The broad 

range of spatiotemporal scales available in CG due to simplified atomistic models allows 

researchers to conduct simulations of large and highly complex biologically relevant systems. 

Several groups have used CG to design novel stimuli-responsive biomaterials133-135 as well as self-

assembly of polymeric materials120, 134, 136. For instance, researchers have been recently been 

interested in designing self-assembling nanostructures that can gelate (sol-gel transition) at higher 

concentrations. However, the design space and detail of such systems limits the robustness and 

scalability of such an approach, especially in the wet lab. As such, researchers used CG to 

investigate the molecular self-assembly of 8,000 tripeptide sequences to determine a predictive 

model of self-assembly propensity, which would not have been economically feasible through 

experimental approaches136. 

   

 Fabrication techniques for building structure in biomaterials 
The synthesis of complex 3D heterogenous microstructures is often limited by the dimensionality 

and structural resolution of existing manufacturing techniques. As noted above, biomimetic tissue 

constructs should not only be able to recapitulate biological functions in native cell-cell and cell-

matrix interactions, they must also reproduce the complex microarchitectures of ECM components 

that propels dynamic signaling cues to initiate cellular attachment, migration, growth, and 

differentiation. This can be accomplished by replicating individual cellular and extracellular 

components of a tissue or organ, such as the nano- to microscale branching patterns of the capillary 

in complex organs like the brain, heart, kidney, liver, and lungs.  

 

Electrospinning allows engineers to fabricate biomaterial scaffolds with micro to nanoscale fiber 

topography that can mimic key features of the ECM. Electrospinning is a process where a polymer 

solution is extruded through a charged needle 137-138. The inherently high surface to volume ratio 
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of these electrospun fibers plays an integral role in enchanced cell attachment, proliferation, and 

migration. A variety of protein polymers have been succesfully electrospun into fibers, including 

BSA139-140, collagen141-143, fibrinogen144-145, gelatin146-147, elastin148-150, silk151-153, and self-

assembling peptides154. Electrospun scaffolds have been used in tissue engineering applications155-

156, drug delivery157-158, wound healing138, 159, as well as biosensors160-161. The nanotopographical 

cues that can be generated using electrospinning methods have important implications in neuronal 

cell growth and differentiation162-164. These biophysical cues serve as stimuli (i.e. 

nanotopographical stimulation of mechanotransduction165) to guide neurite extension, can mediate 

NSC differentation, and can improve the therapeutic efficacy of stem cells in treating CNS diseases 

and injuries.  

 

In recent years, 3D bioprinting has become a powerful fabrication technique that gives researchers 

the ability to generate intricate 3D microstructures that can mimic native microenvironments using 

a bottom-up approach. In 3D bioprinting, a computer-aided design software is used to control the 

placement of materials in a syringe, or print head, onto a substrate, enabling layer-by-layer 

deposition of material.  Bioprinters have been used to print a variety of biocompatible materials, 

from 3D microconstructs encapsulating individual mammalian cells166 to 3D organs167-168. 

Pioneering work by Atala et al. used inkjet printing technology to generate 3D heterogeneous 

tissue constructs using alginate-collagen composites containing multiple cell types that were able 

to form vascular networks upon implantation in vivo169. Additionally, the Burdick group have 

produced multimaterial structures comprised of shear-thinning hydrogel “bioinks” printed directly 

into self-healing hydrogels based on supramolecular assembly through guest-host interactions170. 

3D bioprinting has also seen extensive use in replicating 3D microenvironments in native neural 

ECM. Examples include printing of hNSCs in alginate/chitosan constructs171, construction of 

brain-like structures using RGD (fibronectin-derived cell adhesion site)-modified gellan gum172, 

and guiding NSC differentiation through the use of stereolithography based 3D printing of gelatin 

methacrylamide hydrogels173. 

 

In the last decade or so, photolithography has gained immense popularity in the biomedical 

sciences, owing to lower production costs and increased access to fabrication tools. 

Photolithography is a powerful technique that enables formation of precise and complex 3D 
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structures at the micro and nanoscale using light to transfer intricate patterns on to a substrate. 

Novel work by DeForest et al. uses multiphoton laser-scanning lithography to immobilize peptides 

and full-length proteins in discrete patterns within polymeric hydrogels174-175. Another approach 

involves mask-based photolithography, and as the name suggests, uses a patterned mask where 

only regions exposed to UV light polymerize and cure to form a network of 3D structures176-177. 

This fabrication technique allows for the precise control of the cell-material interface and 

patterning of ligands and biomacromolecules on a variety of substrates. Recent work by Timashev 

et al. described a two-photon polymerization technique to fabricate polymeric ceramic composite 

scaffolds that support primary hippocampal neurons. These scaffolds induced the formation of 

neuronal networks from dissociated hippocampal cultures and demonstrated their functional 

calcium activity178. All of these patterning techniques have applications in CNS tissue 

reconstruction and may be utilized in the context of various different proteinaceous materials 

discussed in more detail below. 

 

While native protein-based biomaterials can exhibit many unique biochemical and mechanical 

properties, they also display some shortcomings. These protein constituents are more prone to 

degradability and often have unwanted contaminants that are co-purified, which can lead to 

undesirable immunological responses in the human body. As an example, the insolubility of elastic 

microfibrils has made isolation, purification, and characterization of native elastin difficult, and 

has not been as widely used as a biomaterial. However, its synthetic component known as elastin-

like polypeptides (ELPs), which are artificial repetitive polypeptides derived from mammalian 

elastin, have been useful for a wide variety of biomedical applications. ELPs consist of a 

pentapeptide repeat, (-Val-Pro-Gly-Xaa-Gly-), where Xaa is any guest amino acid residue, except 

proline. ELPs are unique in that they exhibit lower critical solution temperature (LCST) transition 

behavior; above a certain transition temperature, the disruption of ordered water molecules 

surrounding the polymeric backbone leads to the collapse of the polymer, giving rise to self-

assembly and temperature-dependent gelation behavior117, 179-180. The transition temperature is 

completely tunable by the molecular weight and length of the sequence, as well as the guest 

residue, which can impart different folding pathways following the phase transition, and can be 

made susceptible to pH and ionization changes181-182.  
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Incorporation of ionizable guest residues (e.g. lysine) allows ELPs to be chemically crosslinked 

resulting in the formation of hydrogels. Straley et al. used ELPs as substrates adsorbed onto glass 

coverslips and demonstrated that PC12 cells cultured on adsorbed protein surfaces had a high level 

of cell-surface biocompatibility and similar cellular morphology to those seen on collagen 

positive-control surfaces183. Shortly after, experiments using ELPs crosslinked by disuccinimidyl 

suberate showed that the resulting protein hydrogel could be used to modulate differentiation and 

neurite outgrowth of PC12 cells by tuning the RGD and degradable ELP densities184. Chung et al. 

used tetrakis (hydroxylmethyl) phosphonium chloride (THPC) as an amine reactive crosslinker185 

in lysine-containing ELPs. Later studies done by Lampe et al. used these crosslinked protein 

hydrogels to encapsulate chick DRGs186. DRG growth was dependent on mechanical and RGD 

ligand density, and maximized neurite outgrowth was seen in hydrogels where matrix stiffness 

was similar to that of the native neural ECM. The enhanced neurite outgrowth within tunable 3-D 

microenvironments suggests that these ELP hydrogels may be useful in developing therapeutic 

nerve guidance channels to enhance stroke recovery, as they provide independent control of 

tailored integrin-binding density as well as tunable biomechanical stiffness and stability. A more 

recent publication by the Heilshorn group functionalized the same RGD-ELP sequence to crosslink 

via bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions187. mNPCs 

encapsulated in SPAAC-ELP hydrogels showed high viability, and maintained their ability to 

differentiate into both neurons and astrocytes following treatment with differentiation medium for 

a week.  

 

Additionally, neurotrophin-ELP-based fusion proteins have been used as stimuli-responsive 

nanoparticles that can deliver NGF and BDNF. PC12 cells with recombinant fusions saw 

substantial increases in neurite extension versus soluble neurotrophins, indicating that ELPs are 

able to interact with the cell without being quickly diffused throughout the system188. Likewise, 

silk-elastin-like proteins have been used as thin films to culture primary cortical neurons, where 

more surface adhesion and growth were observed in silk-elastin composites versus elastin and silk 

controls189. The appearance of a tightly connected neuronal network was seen, as cells formed 

clusters indicative of strong cell-matrix interactions within the protein alloy. Additionally, hNSCs 

encapsulated in IKVAV-modified silk fibroin hydrogels had increased β III-tubulin and MAP-2-
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positive cells compared to unmodified silk fibroin hydrogels after 1 week in differentiation 

culture190.  

 

Biosynthetic polypeptide sequences also have the capacity to self-assemble into various nano- to 

microscale structures, ranging from α-helical fibrils to β-sheet rich hydrogels. Banwell et al. have 

developed a two-component peptide system based on the coiled-coil heptad sequence repeat, 

abcdefg, where a and d are usually occupied by hydrophobic amino acids, and charged residues 

are found in positions e and g191. The α-helical peptide hydrogel was shown to support PC12 cell 

growth and differentiation. Another example of such a self-assembling material is a triblock 

protein composed a polyelectrolyte domain flanked by two amphiphilic leucine zipper sequences. 

NSCs proliferated on adhesive substrates (incorporation of RGDs into the polyelectrolyte region) 

or aggregated as neurospheres on non-adhesive substrates. It was demonstrated that proliferation 

of NSCs can be modulated through control of RGD surface density192. Similarly, the Heilshorn 

group designed two-component protein engineered hydrogels composed of two protein association 

domains – a WW domain and a proline-rich domain193. Upon mixing of the two components, 

formation of a hydrogel occurs due to physical crosslinking that takes place between the two 

associative domains. NSCs, as well as PC12 and HUVEC cells were encapsulated in the hydrogels, 

where the former were able to differentiate, and the hydrogel supported growth and proliferation 

of all cell types. The resulting hydrogels demonstrate complete self-healing after shear-thinning, 

making them suitable as injectable materials for clinical use.  

 

Early work by Holmes et al. looked at designing self-assembling peptide scaffolds that could 

support neuronal cell attachment and differentiation194. Now known as RADA16 peptides, the (-

Arg-Ala-Asp-Ala-)16 sequence is capable of spontaneous assembly into β-sheet-rich hydrogels, 

and has been used extensively as a substitute for Matrigel. Recently, Koutsopoulos et al. used 

RADA16 hydrogels to study NSC differentiation. Cell survival was highest in peptide nanofiber 

hydrogels containing the SKPPGTSS functional motif (neuronal apoptosis inhibitor) after 3 

months compared to tissue cultures in Matrigel and collagen type I195. In functionalized hydrogels, 

a majority of encapsulated NSCs enter neuronal lineage, and one week post-encapsulation showed 

~62% of the neuron Tuj1+ cells were monopolar, ~23% bipolar, and 15% multipolar, suggesting 

that these RADA16 were suitable 3D environments for neural tissue cultures. Additionally, 
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treatment with RADA16 hydrogels improved the survival of implanted donor NSCs in vivo. Nissl 

stains confirmed that damaged lesions saw significant regeneration following RADA16-

IKVAV/NSCs implantation after 6 weeks compared to controls196. Furthermore, RADA16 

hydrogels have also been shown to promote angiogenesis in a chick embryo197. RADA16 

hydrogels (RAD/KLT) functionalized with a VEGF-mimicking peptide (KLTWQELYQLKYKGI) 

supported the highest endothelial cell sprout formation and average sprout length versus RADA16. 

The angiogenic properties of these hydrogel systems could potentially support endogenous 

recovery mechanisms in the recovering penumbra following stroke. 
 

Peptide amphiphiles (PAs) have the ability to self-assemble in aqueous solution, driven by the 

sequence’s hydrophobic aliphatic tail and a hydrophilic peptide domain. Seminal work done by 

the Stupp group demonstrated that PAs functionalized with the laminin epitope IKVAV was shown 

to induce rapid differentiation of encapsulated NPCs into neurons, and subsequently reducing 

astrocyte formation198. In other experiments, PA-IKVAVs were injected 24 h after SCI, and was 

shown to suppress astroglial differentiation. At 5 weeks and 11 weeks after SCI, there was a 

significant reduction in astrogliosis in PA-IKVAV treated groups, and 80% of all labeled 

corticospinal axons in the PA-IKVAV group were able to traverse through the area of injury199. 

Later studies by the same group reported increased serotonergic fibers in the caudal SC, with 

improved functional recovery at 10 weeks post injury200. Other peptides include amphiphilic 

diblock copolypeptides (DCHs), which can readily self-assemble into hydrogels under 

physiological conditions201. Histological characterizations indicated that DCH formulations did 

not induce any inflammatory or immune response upon injection. It was later shown that DCH 

deposits were densely vascularized, and contained microglia, astrocytes, and NG2 cells by 8 weeks 

in vivo. Researchers have also used amyloid-based self-assembling hydrogels to facilitate the 

attachment and neuronal differentiation of mesenchymal stem cells (MSCs)202. The high 

expression levels of ENO and TUBB3 and low levels of GFAP indicated that the amyloid hydrogel 

promoted hMSC differentiation toward the neuronal lineage. Additionally, K2(QL)6K2  self-

assembling hydrogels demonstrated that the cystic cavity in damaged spinal cords can be reduced 

by K2(QL)6K2  or a combined K2(QL)6K2  and NPC injection203. Furthermore, animals treated with 

K2(QL)6K2  and NPCs showed a marked improvement in both grip strength, while vehicle-treated 

and NPC-treated groups reached a recovery plateau at 12 weeks.   



 46 

 

 Objectives of this work 
A core problem in biomaterials—with both fundamental significance and technological 

relevance—concerns the rational design of bioactive microenvironments. As the unique 

microenvironment plays a role in determining encapsulated cell fate, we aimed to design a new 

family of peptides that can self-assemble, under cytocompatible conditions, into an ECM with 

structure and bioactivity that drive NSC differentiation.  To pursue this goal, we utilized an 

integrated computational and experimental approach to the design of protein-based ECM mimetics 

for tissue regeneration applications. Computational approaches allow us to develop an atomic-

resolution, quantitative understanding of the 3D structure and conformational dynamics of our 

peptide design; in this way, we were able to assess the suitability of our construct as a general-

purpose scaffold for our longer-term goals (hydrogels to mimic ECMs of neural tissues).  We 

examined the dynamical effects of systematically perturbing the pentapeptide sequence motif, Lys-

Tyr-Phe-Ile-Leu-NH2 (KYFIL) that has been experimentally shown to self-assemble into a 

hydrogel.  

In our earlier work, we proposed the use of a novel self-assembling peptide hydrogels to 

encapsulate neural cell types to drive tissue regeneration. Hydrogels are a promising class of 

biomaterials composed of water-swollen polymeric networks that mimic several biological and 

mechanical properties of the naturally compliant human brain tissue. In particular, peptide-based 

hydrogel materials are generally cytocompatible97, and are inherently more physiologically 

relevant as they allow for cellular remodeling and can promote cell viability96. However, hydrogels 

must meet several criteria in order to be effective delivery vehicles for stem cell transplantation 

into the brain following an ischemic stroke. First, clinical application to the infarct cavity must be 

achieved via simple injection, a minimally invasive patient delivery. Second, the hydrogel must 

not swell during or after gelation to prevent further damage to the brain. Finally, these hydrogels 

must allow for the precise control of stem cell behavior to promote neural tissue regeneration. 

More broadly, the goal of this thesis was to design and create biomaterials that have properties 

(e.g. stiffness, self-healing, biological cues, etc.) compatible with neural tissue to elicit a desirable 

regenerative effect. The specific objectives are outlined below: 

1. Model pentapeptide assembly via atomistic molecular dynamics 

simulations 
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2. Synthesize pentapeptide hydrogels and characterize biophysical 

properties 

3. Assess the cytocompatibility of pentapeptide hydrogels 

4. Identify and synthesize cell-responsive hydrogels via incorporation of 

cell-matrix interactive domains.  
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 Abstract 
 

An active area of research in the field of regenerative medicine involves the development of 

bioactive matrices that can promote cellular interactions and elicit desirable regenerative behavior 

in vivo. This is particularly important in the context of ischemic stroke where a focal lesion forms 

forestalling the regrowth of brain tissue. Protein-based molecules have been used as building 

blocks to create supramolecular structures that emulate the properties of the native healthy 

extracellular matrix (ECM) within the central nervous system (CNS). In this review, we briefly 

describe the relevant biological aspect of stroke and the techniques found in molecular biology 

and biochemical synthesis methodologies used in the design and synthesis of novel biomaterials. 

Within these biomaterials, researchers are able to incorporate a number of different domains that 

trigger assembly or promote cell growth and survival and direct transplanted or endogenous stem 

cell behavior within the 3D scaffolds. Such domains may also yield stimuli-responsive biomaterial 

scaffolds where the structure of the hydrogel undergoes a change in response to the local 

environment. These highly modular proteinaceous materials allow incorporation of diverse 

biofunctional motifs and structural elements comparable to those found in native ECM. We 

explore CNS relevant biomaterials that promote cell survival and host tissue integration and 

discuss their applications to stem cell therapy in the treatment of stroke.  

 

 Introduction 
 

Stroke is the second leading cause of disease mortality worldwide, resulting in close to 6,200,000 

deaths annually1, and the third most common cause of disability2. It is estimated that more than 

130 million incidences of stroke occur in people younger than 75 years per year, with most of the 
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burden found in low-income and middle-income countries3-4. The pathogenesis of ischemic brain 

injury from cerebral vessel occlusion involves two sequential processes: 1) severely depressed 

tissue perfusion as a result of vascular occlusions and subsequent reduction or impairment of blood 

flow, and 2) ischemic-induced alteration of normal cellular function resulting in necrosis of 

neurons, glia, and other supporting cells, and disruption of the blood-brain barrier (BBB)5-6. A 

rapidly evolving area in stroke research involves targeting specific inhibitory molecular and 

cellular pathways in tissue regeneration, and inflammation associated with cerebral ischemia. 

Promising therapeutic treatments prevent further damage and restore some cellular function by 

reestablishing perfusion to the ischemic brain, such as the administration of tissue plasminogen 

activator (tPA) that is used to break down clots and delivery of antiselectin antibodies to decrease 

infarct volume7-8. However, these types of treatments are only effective when administered in a 

narrow therapeutic time window and the side effects of such treatments can potentially be more 

destructive than their beneficial thrombolytic activity9.  

 

Recently, there has been growing interest in transplanting different types of stem cells to restore 

neurological functions and improve behavioral recovery following an ischemic insult. Several 

well-documented studies show that transplanted stem cells can ameliorate ischemic stroke by 

reducing cortical infarct size and increasing blood vessel density10-11. However, cell transplantation 

strategies often suffer from poor cell survival due to the toxicity of the surrounding environment 

at the injury site12-13. This can potentially be addressed by encapsulating cells in suitable 

microenvironments (e.g. hydrogels) that protect cells during and after delivery and support cell 

survival and growth. Cleverly designed materials can influence the subsequent fate of either 

transplanted or endogenous stem cells by directing their differentiation.  

 

In this review, we will present recent studies that use central nervous system (CNS) relevant 

biomaterials to promote cell survival and host tissue integration and discuss their applications to 

stem cell therapy in the treatment of stroke. In many cases, administering these materials alone 

may have beneficial therapeutic effects in a transplant-free treatment strategy. Currently, 

biomaterials have been engineered to mimic the physical and mechanical characteristics of the 

native extracellular matrix (ECM). Recent studies have focused on improving structural and 

functional recovery after stroke by enhancing endogenous neuronal regeneration through the 
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incorporation of scaffolds that promote neuroblast migration into lesion sites14-15. Cell-based 

therapies have also received noticeable attention, and these notable preclinical and clinical trials 

include intravenous autologous mesenchymal stem cell (MSC) transplantation in the subacute 

phase of stroke16-17. While the transplantation was deemed safe for stroke patients, there have been 

conflicting reports regarding the efficacy of the treatment18, underscoring the need to improve cell 

survival in a long-term transplantation and promote host tissue integration. 

 

 Pathophysiology of ischemic stroke 
 

Brain damage from ischemic insult involves a cascade of neurochemical events leading to 

cerebrovascular dysfunction and cell death. The interruption of local blood circulation reduces the 

supply of oxygen (hypoxia) and glucose, which prevents the brain from generating sufficient ATP 

to maintain cellular homeostasis19. Cell death occurs rapidly in areas with the most dramatic 

reduction in blood flow (ischemic core)20-21. For less severe areas of ischemia (ischemic 

penumbra), a cascade of cellular and molecular events trigger the disruption of cellular 

homeostasis, leading to slow cell death and accumulation of necrotic tissue5. Within the penumbra, 

depolarization of neurons and glia results in the activation of voltage-gated calcium channels and 

an increase in intracellular Ca2+ concentration, activating proteases, mitochondrial dysfunction, 

and oxidative and nitrosative stress, ultimately leading to cell death22-23. Production of such 

reactive oxygen species (ROS) can trigger the coagulation cascade, leading to further deleterious 

effects resulting from activated inflammatory mediators surrounding the injury site24-25. Post-

ischemic oxidative and nitrosative stress have been closely linked to the pathophysiology of 

ischemic stroke; both have been reviewed in depth elsewhere26-27. Recent studies have also 

implicated ROS in the activation of a host of matrix metalloproteinases (MMPs) that can 

significantly degrade the extracellular matrix (ECM) and BBB28.  

 

It has been well established that post-ischemic inflammation triggers a molecular cascade 

involving a multimodal and multicellular series of downstream mechanisms. Various 

proinflammatory cytokines produced by complement, platelet, and endothelial cells play an 

important role in cell-ECM remodeling29. The intravascular compartment is immediately exposed 

to ischemic insult, leading to the accumulation of fibrin-trapping platelets and leukocyte 
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infiltration into the brain parenchyma30. Neutrophils, followed by monocytes and lymphocytes are 

also recruited into the brain and accumulate in the cerebral microvessels of the penumbra. 

Endothelial cells in post-ischemic brain tissue express cell adhesion molecules (ICAM-1/VCAM-

1) and upregulate E- and P-selectin, which provides a platform for leukocyte binding through their 

β2 integrins CD11a/CD18 and CD11b/CD18 (LFA-1 and MAC-1, respectively)29, 31. This then 

leads to leukocyte accumulation along the vascular wall, and accelerates cell death through the 

production of free radicals and cytokines. These infiltrating inflammatory mediators take part in 

both cell and ECM remodeling and influence neural plasticity and relay circuit function32-33.  

 

Astrocytes play an important role in cerebral inflammation, as they are able to produce anti-

inflammatory cytokines that downregulate inflammation, such as TGF-β1 and IL-1029, 34. 

Microglia and macrophages upregulate TGF-β1 in ischemic stroke35-36, which has a 

neuroprotective role by promoting regulatory T lymphocyte development, and has also been 

implicated in dampening the immune response by suppressing T cell effector activity37-39. 

Additionally, astrocytes can express proteoglycans that are released into the ECM compartment. 

Following an injury, TGF-β1 can also regulate astrogliosis, facilitating glial scar formation by 

increasing cellular GFAP expression and upregulating inhibitory ECM molecules (e.g. chondroitin 

sulfate proteoglycans)40. Consequently, the modulation of NPC differentiation should be 

considered, especially in the design of biomaterial scaffolds that reduce astroglial activation or 

differentation and promote differentiation into neuronal and oligodendroglial lineages.  

 

 Limitations of therapeutic potential in current preclinical and 

experimental studies 
 

The acute management of ischemic stroke includes the administration of intravenous recombinant 

tPA41, which is the first, and only, U.S. Food and Drug Administration (FDA) approved drug for 

the treatment of ischemic stroke. However, it was reported that tPA was more effective in patients 

with small to moderate-sized strokes, but was not as beneficial to patients with large-vessel 

occlusions42. Later studies show that tPA regulates several molecular signaling pathways that 

activate matrix metalloproteinase-9, leading to the degradation of the extracellular matrix (ECM) 

and disruption of the BBB28, 43.  
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More recently, antioxidants and free radical scavengers have been explored for treatment of central 

nervous system (CNS) injury44-46. Free radicals are continuously generated by the use of oxygen 

in mitochondria to supply the energy needs of the brain, and studies have demonstrated that 

overproduction of these free radicals and related ROS modulate a host of cellular and molecular 

processes that promote neuronal degeneration47-49. Several compounds such as ebselen50, 

edaravone51, tirilazad52, and NXY-05953 have been developed to remove or degrade free radicals, 

or inhibiting their production. Administration of these drugs has proven to be slightly effective in 

experimental stroke injury models, however, with the exception of NXY-059, no clear evidence 

for the efficacy of these drugs in the treatment of human stroke patients was obtained54. More 

recently, polymeric nanoparticles have been used to encapsulate or incorporate small drugs to more 

efficiently deliver its payload. Jin et al. used a methoxypoly (ethylene glycol)-b-poly (D,L-lactic 

acid) (PEG-PLA) polymeric micelle to encapsulate edaravone (EDV-AM), seeking to eradicate 

ROS produced by infiltrated inflammatory cells. It was shown that the EDV-AM nanoparticle had 

a higher uptake in brain ischemia versus free EDV, resulting in rapid infarct volume reduction, 

and reduced behavioral deficits in ischemic stroke models55. The use of such a delivery vehicle 

could subsequently improve BBB permeability and be used to treat the majority of ischemic stroke 

patients who miss the time-window of tPA treatment.  

 

Many therapeutics, while effective in animal injury models, completely fail in clinical trials. One 

reason for the high failure rate is because the therapeutic time window for effective reperfusion 

appears to be extremely short (< 4.5 h), and that the long ‘door-to-needle’ time (i.e. the time from 

emergency arrival to administration of tPA) limits the efficacy of the drug. Existing strategies also 

target a specific pathway of acute ischemic stroke. As mentioned above, the pathophysiology of 

stroke is extremely complex involving an assortment of chemical and biological processes and 

signaling pathways. A combinatorial approach in the treatment of stroke, i.e. combining 

neuroprotective agents that target multiple pathways of the ischemic cascade, may be necessary to 

improve patient outcomes following an ischemic insult. For example, implantation of a hyaluronic 

acid-based hydrogel scaffold combined with controlled growth factor delivery of vascular 

endothelial growth factor (VEGF) and angiopoietin-1 (Ang1) inhibited tissue inflammation and 
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promoted angiogenesis following implantation in an ischemic model of mice56. Alternatively, 

rebuilding the tissue lost to ischemic degradation may supplement efforts to limit injury severity.  

 

Recently, biomaterials-based approaches have garnered considerable interest in the field of neural 

tissue regeneration as a promising alternative for stroke repair. These biomaterial scaffolds can A) 

provide integration of a highly biocompatible three-dimensional microenvironment with the host 

tissue that promotes neural tissue regeneration and B) act as a drug delivery vehicle releasing 

neuroprotective agents in a spatiotemporally controlled manner. Implantations of these scaffolds 

at an injury site may not only reduce stroke mortality, but restore lost neurological functions 

through the regeneration of neural tissue. For example, a recent publication demonstrated that 

sericin-based hydrogels were neuroprotective, and could promote axonal extension and branching 

of primary cortical neurons. When transplanted in vivo, these hydrogels promoted cell survival and 

proliferation, suggesting that their neuroprotective and neurotrophic properties are suitable for 

ischemic stroke repair and de novo tissue formation57.   Thus, this review will focus on recent 

findings describing micro- to nano-scale hierarchical constructs that have been designed to mimic 

native ECM. The next section will describe key biological and mechanical properties that a 

biomaterial should possess that can modulate both cell proliferation and differentiation. The high 

biocompatibility, ease of functionalization, and precise control over the sequence and structural 

elements make proteinaceous biomaterials excellent candidates for neural regeneration 

applications. 

 

 Design and fabrication techniques of novel proteinaceous biomaterials 
 

Protein biomaterials have typically been modeled after structural elements found within the ECM. 

This includes fibrous scaffolds and hydrogel matrices that are designed to mimic in vivo 3D 

microenvironments associated with native tissue. These biomaterials are often designed with 

several criteria in mind: 1) their components and gelation process must be cytocompatible in order 

to be considered useful in applications for tissue engineering, 2) and they should recapitulate the 

cell-matrix interactions found in vivo. Selecting or designing these peptide or protein-based 

materials typically requires parsing of known cell-binding or assembly epitopes or intuiting novel 

domains/designs that could be useful. This is made all the more complicated by the limited inquiry 



 61 

into CNS-specific functionalities. Furthermore, the format and structure of the subsequent 

hydrogel biomaterial greatly impacts cellular interactions, and thus the fabrication strategies can 

dramatically impact a material’s ability to replicate qualities of native, healthy, CNS tissue. 

 

Advancements in genetic engineering and molecular biology now allow for the design and 

engineering of biosynthetic proteins with precise control over their sequences, length, secondary 

structure, and intermolecular interactions (e.g. hydrogen bonding, electrostatic interactions, π- π  

stacking)58. Protein engineering has been a staple in the biological sciences for decades and has 

gained traction in biomaterials research for multidisciplinary applications in engineering, 

medicine, and material sciences. Researchers are able to create a vast array of designer protein 

systems with desired properties that either function as biomimetics of native proteins, or contain 

novel structural and biofunctional moieties. These proteins have been used in a variety of 

applications related to CNS regeneration, where they often serve as 3D scaffolds and/or depots for 

release of neurotrophins or growth factors. Protein-based materials may also play a role in 

mediating the host immune response. Molecular biology has opened up new avenues to allow for 

the development of recombinant elastomeric proteins, such as keratin, silk, and collagen, as well 

as designer peptides and proteins which may be suitable biocompatible scaffolds for tissue 

engineering applications.  

 

 Molecular-based design of biomaterials 
 

The macroscopic (and/or bulk) properties of proteinaceous biomaterials can be controlled by fine 

tuning the underlying conformational space and associative interactions between amino acid 

building blocks. The supramolecular structure can be designed in such a way that it adheres to the 

hierarchical architecture that is present in native tissue. As such, the exploitation and fundamental 

understanding of nano- to microscale interactions within biological structures allows researchers 

to design novel biomaterials capable of maximizing biological function and biocompatibility. 

Several recent techniques provide a rational approach to the design and synthesis of biomaterials 

with applications in CNS regeneration.  
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Figure 3-1. A proposed integrated strategy to protein design for suitable 3D 
microenvironments. This three-stage approach will be the foundation for a powerful design-
analyze-test refinement loop: (i) in silico design/analysis, via molecular simulations, for 
candidate selection with desirable properties, (ii) synthesis of viable candidates utilizing 
recombinant host expression tools of molecular biology followed by fermentation or other 
biochemical methods, and (iii) in situ biophysical characterization of promising designs via 
dynamic light scattering and circular dichroism spectroscopy, as well as in vitro and in vivo 
analysis of cytocompatability. Lead candidates can be produced experimentally and 
characterized for their biochemical, biophysical, and cytological properties and this 
information fed back into new design rules. In this iterative way, knowledge gleaned about 
the designs, from stages (ii) and (iii), could be used to refine protein designs in subsequent 
rounds of in silico simulations (stage (i)). 

 

Multiscale modeling of complex biological systems are now possible, including a comprehensive 

analysis of the microarchitecture found within biomaterials. However, few groups have taken 

advantage of the powerful computational methods available to accelerate and improve the 

materials design process. In theory, the hierarchical architecture of biological materials can be 

simplified to fundamental (bio)physical properties of self-assembling systems. By modeling the 

basic building blocks (i.e. atoms in an amino acid residue) and their intra- and intermolecular 

interactions, it is possible to observe and predict trajectory-derived conformations of these systems 

that can describe the material’s properties59. A combinatorial strategy utilizing both computational 

and experimental approaches will allow researchers to rationally design new molecules with 

desired structural and functional properties (Figure 1). This design strategy could transform current 
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approaches to biomaterials development and address the particular challenges of characterizing 

the dynamical processes that occur in biological matrices.  

 

All-atom molecular dynamics (MD) simulations are utilized to predict the spatiotemporal 

dynamics in the folding pathway of proteins, formation of secondary structures, and protein 

association via specific binding sites60-68. More recently, MD simulations have been applied to the 

design of biomaterials in order to predict the occurrence of complex molecular interactions at a 

microscopic scale. Several examples use simulations of elastin-like polypeptides (ELPs) 60, 68-72 as 

well as laminin-mimetic fusion proteins73 to predict the conformational changes and kinetics 

associated with the known phase transition behavior of ELPs. Other notable studies involve the 

analysis of secondary structures within spider silk74-75, self-assembly of peptides76-79, and 

dynamics of micelle and fibril formation80-84. The motivation behind using MD simulations is 

manifold; understanding the atomic contacts (via non-covalent interactions) that mediate the 

folding pathway of nano- to microscopic structures gives researchers the ability to finely tune 

protein sequences that could lead to desirable bulk material properties, later verified 

experimentally. The exponentially large combinatorial space of biomolecule design, in general, 

are intrinsically complex and resource-intensive to disseminate. Therefore, MD-based simulations 

allow access to such dynamics on a characteristic timescale (~femtosecond to microsecond) 

essentially inaccessible via experimental approaches.  

 

Coarse-graining (CG) allows researchers to model biomaterials on a mesoscale that overcomes the 

expensive computational demands that often plague MD simulations. In CG, the number of atomic 

particles and the corresponding degrees of freedom are reduced compared to atomistic MD 

simulations, while retaining similar molecular interactions between the CG particles. The broad 

range of spatiotemporal scales available in CG due to simplified atomistic models allows 

researchers to conduct simulations of large and highly complex biologically relevant systems. 

Several groups have used CG to design novel stimuli-responsive biomaterials85-87 as well as self-

assembly of polymeric materials76, 86, 88. For instance, researchers have been recently been 

interested in designing self-assembling nanostructures that can gelate (sol-gel transition) at higher 

concentrations. However, the design space and detail of such systems limits the robustness and 

scalability of such an approach, especially in the wet lab. As such, researchers used CG to 
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investigate the molecular self-assembly of 8,000 tripeptide sequences to determine a predictive 

model of self-assembly propensity, which would not have been economically feasible through 

experimental approaches88. 

 

 Fabrication techniques for building structure into biomaterials 
 

The synthesis of complex 3D heterogenous microstructures is often limited by the dimensionality 

and structural resolution of existing manufacturing techniques. As noted above, biomimetic tissue 

constructs should not only be able to recapitulate biological functions in native cell-cell and cell-

matrix interactions, they must also reproduce the complex microarchitectures of ECM components 

that propels dynamic signaling cues to initiate cellular attachment, migration, growth, and 

differentiation. This can be accomplished by replicating individual cellular and extracellular 

components of a tissue or organ, such as the nano- to microscale branching patterns of the capillary 

in complex organs like the brain, heart, kidney, liver, and lungs. Several techniques have been 

developed to more closely mimic native tissue architecture, and will be discussed in this section 

of the review.  

 

Electrospinning allows engineers to fabricate biomaterial scaffolds with micro to nanoscale fiber 

topography that can mimic key features of the ECM. The inherently high surface to volume ratio 

of these electrospun fibers plays an integral role in enchanced cell attachment, proliferation, and 

migration. A variety of protein polymers have been succesfully electrospun into fibers, including 

BSA89-90, collagen91-93, fibrinogen94-95, gelatin96-97, elastin98-100, silk101-103, and self-assembling 

peptides104. Electrospun scaffolds have been used in tissue engineering applications105-106, drug 

delivery107-108, wound healing109-110, as well as biosensors111-112. The nanotopographical cues that 

can be generated using electrospinning methods have important implications in neuronal cell 

growth and differentiation113-115. These biophysical cues serve as stimuli (i.e. nanotopographical 

stimulation of mechanotransduction116) to guide neurite extension, can mediate NSC 

differentation, and can improve the therapeutic efficacy of stem cells in treating CNS diseases and 

injuries.  
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In recent years, 3D printing has become a powerful fabrication technique that gives researchers 

the ability to generate intricate 3D microstructures that can mimic native microenvironments using 

a bottom-up approach. Bioprinters have been used to print a variety of biocompatible materials, 

from 3D microconstructs encapsulating individual mammalian cells117 to 3D organs118-119. 

Pioneering work by Atala et al. used inkjet printing technology to generate 3D heterogeneous 

tissue constructs using alginate-collagen composites containing multiple cell types that were able 

to form vascular networks upon implantation in vivo120. Additionally, the Burdick group have 

produced multimaterial structures comprised of shear-thinning hydrogel “bioinks” printed directly 

into self-healing hydrogels based on supramolecular assembly through guest-host interactions121. 

3D bioprinting has also seen extensive use in replicating 3D microenvironments in native neural 

ECM. Examples include printing of hNSCs in alginate/chitosan constructs122, construction of 

brain-like structures using RGD (fibronectin-derived cell adhesion site)-modified gellan gum123, 

and guiding NSC differentiation through the use of stereolithography based 3D printing of gelatin 

methacrylamide hydrogels124. 

 

In the last decade or so, photolithography has gained immense popularity in the biomedical 

sciences, owing to lower production costs and increased access to fabrication tools. 

Photolithography is a powerful technique that enables formation of precise and complex 3D 

structures at the micro and nanoscale using light to transfer intricate patterns on to a substrate. 

Novel work by DeForest et al. uses multiphoton laser-scanning lithography to immobilize peptides 

and full-length proteins in discrete patterns within polymeric hydrogels125-126. Another approach 

involves mask-based photolithography, and as the name suggests, uses a patterned mask where 

only regions exposed to UV light polymerize and cure to form a network of 3D structures127-128. 

This fabrication technique allows for the precise control of the cell-material interface and 

patterning of ligands and biomacromolecules on a variety of substrates. Recent work by Timashev 

et al. described a two-photon polymerization technique to fabricate polymeric ceramic composite 

scaffolds that support primary hippocampal neurons. These scaffolds induced the formation of 

neuronal networks from dissociated hippocampal cultures and demonstrated their functional 

calcium activity129. All of these patterning techniques have applications in CNS tissue 

reconstruction and may be utilized in the context of various different proteinaceous materials 

discussed in more detail below. 
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 ECM biomimicry for the design of suitable microenvironments to 

stimulate neural tissue regeneration and repair 
 

The complex interconnectivity of cells, including neurons, astrocytes, and oligodendrocytes, 

within the CNS provides a formidable challenge for tissue engineers aiming to recapitulate the 

extracellular environment. These native microenvironments often serve as a guidance cue for 

initiating neural tissue regeneration following injury. The design of suitable microenvironments to 

improve the regenerative capacity of injured neurons and replacing cells lost to apoptosis after a 

stroke is often complicated by the composition of the native CNS extracellular milieu. A stroke 

lesion is characterized by a region of necrotic cell death, in particular neuronal cells, which have 

a limited ability to regenerate once mature. Drug therapeutics targeting regenerative pathways have 

the ability to attenuate inhibitory molecules or accelerate the production of endogenous 

neurotrophins but are usually non-specific, thereby restricting the utility of such applications. A 

promising approach in stroke therapy is a combinatorial approach of controlled drug delivery and 

cell transplantation in a matrix that maintains appropriate cell-matrix interactions mimicking the 

native neural tissue environment.  

 

The native neural microenvironment includes ECM molecules, myelin-associated glycoproteins, 

trophic factors and signaling pathways that modulate a neuron’s intrinsic axonal growth capacity 

(readers are referred to excellent recent reviews on this topic by Lutz et al. 130 and Lau et al.131). 

On a cellular level, engineers must also account for various cellular components such as astrocytes 

and/or oligodendrocytes in the CNS that play a major role in nervous system repair and 

regeneration132-133. We now know that astrocytes can regulate neurotransmitter and ionic 

homeostasis, metabolic support of neurons, and guidance of neuronal migration and immune 

function134. These cellular constituents, as well as others, require appropriate morphogenic cues 

and mechanotransduction pathways from the ECM to trigger a cascade of cellular and biochemical 

events that can stimulate endogenous neurogenesis within the brain131, 135. However, in order to 

properly investigate these cell-cell signaling and cell-matrix interactions, it is important to 

decouple the synergistic effects of both the hierarchical microstructures and signaling cues that 
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initiate and/or propagate neural regeneration processes. We will cover several strategies that aim 

to overcome these limitations through proteinaceous biomaterial scaffolds.  

 

 Decellularized tissue scaffolds and cell-derived ECMs for use as suitable 

biomaterials 
 

The complexity of the native ECM that drives cellular behavior such as attachment, differentiation, 

and proliferation is rarely represented by single component materials (e.g. synthetic polymer136 or 

proteins)137-138. In order to mimic the unique composition of tissues as closely as possible, 

researchers have developed several techniques that closely capture the in vivo microenvironment 

by using decellularized tissues or cell-derived ECM proteins. The usage of decellularized tissues 

and organs have become increasingly frequent in both pre-clinical animal studies and in human 

clinical applications139-141. Decellularization protocols to efficiently remove all cellular and nuclear 

material include a combination of physical, chemical, and enzymatic approaches, and have been 

expertly reviewed elsewhere142. Often decellularization protocols aim to preserve the native 

ultrastructure and composition of the ECM (Figure 2). Researchers are able to isolate organs and 

tissues such as the pancreas143, the brain144, peripheral nerve145-146, heart140, 147, liver148, kidney149-

150, and lung151-152. Decellularized brain ECM from animal models is reportedly compatible with 

neural cells, as human induced pluripotent stem cell (hiPSC) derived neurons grow and mature on 

such scaffolds144. In recent work, cortically-derived neuronal networks were more plentiful when 

seeded within decellularized brain ECM constructs compared to collagen type I and Matrigel 

controls153, demonstrating that the inclusion of brain ECM supports more physiologically relevant 

axon and synapse development. Similarly, biological scaffolds consisting of decellularized brain 

tissue can supported long-term growth of NSCs154-156. The success of these strategies may 

ultimately depend on our ability to address sample-to-sample variation and develop consistent 

isolation protocols. In the context of stem cell growth, it is also possible that the age of tissue from 

which the ECM was harvested will affect encapsulated cell fate as younger animals have more 

regenerative tissues157-158. 
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Figure 3-2. SEM analysis of the micromorphologies of (a) decellularized porcine brain 

matrix gels, (b) native porcine brain tissue, (c) Matrigel gels, and (d) silk fibroin hydrogels. 

The brain matrix material was able to undergo a sol-gel transition when brought to a 

physiological pH and injected subcutaneously into C57 mice. Silk solutions prepared from 

Bombyx mori cocoons were able to self-assemble into nanofiber-based hydrogels, composed 

of β-sheet structures. These images highlight the series of nanofibrous structures inherently 

present in both engineered and native brain ECM, and demonstrate that materials can be 

designed to mimic both the nanostructure and surface topography of the ECM of nerve 

tissues. SEM images (a - c) are adapted with permission from DeQuach J.A., et al. 

Decellularized Porcine Brain Matrix for Cell Culture and Tissue Engineering Scaffolds. 

Tissue Eng Pt A 2011, 17(21-22):2583-2592. Silk fiber images (d) adapted with permission 

from Bai S.M., et al. Silk nanofiber hydrogels with tunable modulus to regulate nerve stem 

cell fate. J Mater Chem B 2014, 2(38):6590-6600. 

Mammalian cell-derived ECM provides a customizable alternative to decellularized scaffolds, 

where proteins can be produced by simply modulating the culture system (2D vs 3D structures) 

and types of cells used to generate specific ECM proteins159. A popular method in extracting 

naturally derived proteins for use as biomaterials is through organic solvent extraction. Keratins, 

for example, are a group of proteins that can be extracted from both animal and human sources. 

Their high cysteine content and hydrophobic amino acids in keratin molecules makes them highly 

insoluble, and so the extraction process primarily involves the breakage of disulfide bonds160-162. 
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Keratin-based biomaterials have also been used extensively in peripheral nerve regeneration163-164, 

wound dressing165-166, as well as drug delivery vehicles167-168. The application of these ECM 

proteins as biomaterials in the CNS are further explored later in this review.  

 

 Naturally-derived protein biomaterials 
 

Native fibrous proteins such as elastin, collagen, and silk have been proven to have low 

immunogenicity, minimal toxicity, and are proteolytically degradable. Proteins are synthesized 

with a high degree of specificity compared to synthetic polymers. The precisely defined primary 

structures of peptides and proteins instructs the protein folding pathway leading to unique 

secondary, tertiary, and even quaternary structures that are often not achievable by chemical 

synthesis methods. Advancements in biomolecular techniques now allow researchers to synthesize 

protein polymers with uniform chain lengths and precisely defined monomer sequences, and post-

translational modification of these proteins to impart unique biological functions is also possible.  

 

Collagen is found in all connective tissues, including bone, skin, and cartilage and can be isolated 

from animal tissue, or produced in vitro from cultured cells/tissues. Collagen can be isolated 

through enzymatic or chemical hydrolysis following acid or alkaline pretreatment at a controlled 

temperature169-171. It is a biocompatible material with unique mechanical and biological functions 

that has been used in wound healing, 3D scaffolds for tissue engineering, and implicated in cellular 

processes such as cell proliferation, adhesion and migration172-176.There are four major types of 

collagen (collagen type I, II, III and IV), however collagen type IV is the most prevalent form in 

the CNS177. Collagen is able to form large fiber bundle networks with high tensile strength and 

flexibility, which are further stabilized by crosslinks to support stress in tissues. In addition to their 

structural role, collagens are integral in providing cellular and biochemical functionalities, 

including the binding and release of cellular mediators such as cytokines and growth factors178.  

 

Collagens are fabricated in a variety of scaffolds such as tablets, pellets, sponges, films, and 

hydrogels. Collagen gels implanted in a 6mm gap within the mouse sciatic nerve promoted a 

noticeable increase in innervation179. The Shoichet group injected epidermal growth factor (EGF) 

and fibroblast growth factor 2 (FGF-2) impregnated collagen gel solutions to spinal cord injury 
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sites of Sprague-Dawley rats and observed significantly greater ependymal cell proliferation in 

injured animals compared to controls180. Neural progenitor cells (NPCs) derived from bone 

marrow stromal cells (MSCs) transplanted with collagen sponges and basic fibroblast growth 

factor (bFGF) releasing gelatin microspheres into rat stroke models saw increased cell survival 

and neovascularization around the transplanted region181. The synergistic effect of bFGF releasing 

microspheres and NS-MSCs suggests that, when properly utilized, these biomaterials can provide 

appropriate scaffolding to ameliorate functional recovery in stroke or neurodegenerative diseases. 

Similarly, transplanted neural stem cells (NSCs) from E14 rats seeded onto a collagen type I 

scaffold saw increased differentiation and new synapse formation in rats subjected to cerebral 

ischemia182. The Cullen lab have pioneered the use of tissue engineered nerve grafts (TENGs) and 

micro-tissue engineered neural networks (micro-TENNs) for use as scaffolds for 

neurodegeneration and neuromodulation (Figure 3). These scaffolds are purposely designed to 

contain ‘stretch-grown’ axonal tracts that can facilitate nerve regeneration after CNS 

degeneration183. These scaffolds can subsequently be applied to stroke injury models where highly 

aligned neurons are desirable, such as for the regeneration of corticospinal tracts, especially for 

lesions in the primary cortex were the infarct cavity significantly affects white matter.  

 

 
Figure 3-3. Micro-tissue engineered neural network (micro-TENN) hierarchical 

microstructure comprised of an agarose tubular shell with an inner collagen core. (a) 
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Diffusion tensor imaging representation of the human brain highlighting the 

interconnectivity between functionally distinct regions of the brain. Unidirectional (red, 

green) micro-TENNs and bi-directional (blue) micro-TENNs can bridge various regions of 

the brain (blue: corticothalamic pathway, red: nigostriatal pathway, green: entorhinal 

cortex to hippocampus pathway) and synapse with host axons (purple; top right). (b) 

Schematic representation of host-tissue integration, where TENN neurons are able to form 

local synapses with host neurons to reconstruct damaged or lost axonal pathways.  (c) 

Representative confocal reconstruction of a bi-directional micro-TENN consisting of two 

populations of cortical neurons spanned by long axonal tracts (β III-tubulin, green), and 

cell nuclei (Hoechst, blue). (d) Confocal reconstruction of a unidirectional micro-TENN 

stained via immunocytochemistry to denote neuronal somata/dendrites (MAP2, purple), 

neuronal somata/axons (Tau, green), and cell nuclei (Hoechst, blue) (e) GFP+ cerebral 

cortical neurons and longitudinal projections [arrow heads in (f)] were observed in 

transplanted micro-TENNs. GFP+ aligned processes were predominantly axonal (NF200, 

red) with (g) numerous synapses (synapsin, purple) in both the micro-column hydrogel and 

bordering host cortical tissue [denoted by * in (e)]; and a overlay of all channels (h). Scale 

bars are 300 µm in C, and 100 µm in D. (a - d) adapted with permission from Struzyna L.A., 

et al. Restoring nervous system structure and function using tissue engineered living 

scaffolds. Neural Regen Res 2015, 10(5):679-685. (e - h) adapted with permission from 

Struzyna L.A., et al. Rebuilding Brain Circuitry with Living Micro-Tissue Engineered 

Neural Networks. Tissue Eng Pt A 2015, 21(21-22):2744-2756. 

Elastin is a major structural protein found in the ECM that provides mechanical integrity and 

elasticity to tissues. The compliancy of native elastin has been exploited in the form of scaffolds 

for usage as vascular grafts184-186. The durability of elastin proved to be more effective in 

maintaining construct strength and improved viscoelastic properties versus collagen scaffolds. 

Angiogenesis was seen following implantation of pure elastin tubular scaffolds containing bFGF 

in subdermal patches in adult rats187. The neovascularization and cellular infiltration following an 

ischemic insult warrants further investigation into the potential benefit of utilizing elastin-based 

biomaterials in the treatment of stroke. While engineered forms of elastin, termed elastin-like 

polypeptides (ELPs) will be discussed later, conserved sequences of native elastin can be produced 

recombinantly. Recombinant tropoelastin (TE), the soluble form of elastin, features an alternating 

hydrophobic and hydrophilic domain structure. Like elastin, TE exhibits the same mechanical 

properties, but it also includes key cell signaling and adhesion properties188-190. The Weiss group 

has shown that TE can be enzymatically191 or chemically crosslinked192 to form hydrogels.  
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Silk is produced by a variety of insects, most notably silkworms (e.g. Bombyx mori) and orb-

weaving spiders. Silks are fibrous proteins known for their mechanical properties, 

biocompatibility, and controlled proteolytic susceptibility193. Silk fibroin, produced by B. mori 

consists of a light chain (~26 kDa) and heavy chain (~390 kDA), which are present in a 1:1 ratio 

and linked by a disulfide bond. Silk fibroin consists primarily of a highly repetitive hexapaptide 

sequence of (-Gly-Ala-Gly-Ala-Gly-Xaa) where Xaa is serine, tyrosine, or alanine. Spider silk has 

been used in the development of artificial nerve conduits as guiding channels for regenerating 

axons194.. Partially degummed silk conduits were shown to promote axon regeneration and 

myelination in both Schwann cells and DRG neurons compared to autologous graft controls195-196. 

These guidance channels have shown to provide a permissive and nonimmunogenic biomaterial 

to enhance nerve regeneration. Additionally, while these artificial nerve conduits can be composed 

of various materials, this new technique provides an interesting segue into optimizing neurite 

extension and bridging long-distance defects of CNS nerves for larger animals, such as humans. 

Wittmer et al. demonstrated that electrospun silk fibroins functionalized with brain derived 

neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) promoted the survival of 

retinal ganglion cells (RGC) and growth cones were shown to progress along silk fibers197. 

Recently, work done by Bai et al. used self-assembling silk nanofibers to effectively control 

differentiation of neural stem cells (NSCs) to neurons and inhibited glial differentiation without 

the addition of growth factors198. Similarly, Tang-Schomer et al. used silk-protein based scaffolds 

to fabricate 3D tissue constructs that promoted neuronal connectivity between white matter-like 

and gray-matter like regions within the scaffold199-200. These results demonstrate that these silk 

biomaterials are suitable as brain models, and therefore in vitro stroke injury models, as these 

scaffolds can fully support the coculturing of astrocytes and endothelial cells that capture BBB 

permeability changes in various degrees following the induction of ischemic stroke.   
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Figure 3-4. Salmon fibrin hydrogels used for treatment of dorsal hemisection SCI. 5 µl of a 

fribrinogen (3.0 mg/ml) and thrombin (0.15 U/ml) solution in phenol-free EMEM was 

injected into the lesion site immediately after surgery. (a) A greater density of serotonergic 

axons caudal to the lesion have more serotonergic fibers present in salmon fibrin treated 

adult female Sprague-Dawley rats compared with human fibrin and untreated controls (5-

hydroxytryptamine, 5-HT immunostaining for serotonin). (b)  Salmon-fibrin treated animals 

had a higher percentage of caudal 5-HT-positive tissue, where they retained ~30% caudal 

5-HT innervation compared to human fibrin (~ 14%) and untreated controls (~ 18%). Top 

right graph indicates that there is a positive correlation between the percentage of caudal 

serotonergic fibers and locomotor function. (c) Analysis of spinal cord sections at the lesion 

sites show colocalization of neurofilament (NFH, red)-positive neuronal axons with salmon 

fibrin (anti-salmon fibrin antibody, green) 2 days after treatment (marked by arrows). 

Lower right image is a different location of the lesion site. Reprinted with permission from 

Sharp K.G., et al. Salmon fibrin treatment of spinal cord injury promotes functional 

recovery and density of serotonergic innervation. Exp Neurol 2012, 235(1):345-356. 

Fibrin, a biopolymer of the monomer fibrinogen, has been clinically proven to be an effective 

hemostatic agent in cardiac and liver surgery. Fibrin is formed after thrombin-mediated cleavage 

of fibrinopeptide A from the Aα chains and fibrinopeptide B from the Bβ chains201. Fibrin 

hydrogels can serve as potential scaffolds for enhancing neurite extension202 and promoting 
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angiogenesis203, as well as tissue engineering of liver204, cartilage205, and bone tissues206. The 

Sakiyama-Elbert group have developed novel fibrin-based scaffolds to treat both CNS and PNS 

diseases and injuries in the form of 3D hydrogel structures and nerve conduits207-209. The 

incorporation of exogenous heparin-binding peptides into fibrin gels were shown to enhance the 

degree of neurite extension of embryonic chicken DRGs210. It was later shown that fibrin gels 

containing heparin-binding domains could successfully provide controlled release of 

neurotrophin-3 (NT-3) and platelet-derived growth factor (PDGF) 211, bFGF212, and BDNF213, 

leading to enhanced nerve regeneration in animal injury models. Subsequently, the tailoring of 

exogenous heparin-binding growth factors by the incorporation of heparin chains within a 3D 

scaffold allows the material to spatiotemporally modulate key components of cellular 

morphogenesis through different signaling pathways and other biomolecular cues.  Similarly, 

growth-factor treatment may be necessary to enhance nerve regeneration during the early stages 

of injury, as well as providing a basis for more specific cellular responses (e.g., TGF-β versus 

bFGF mediated collagen type I production). Additionally, salmon fibrin has also been used in the 

treatment of spinal cord injuries. Salmon-derived fibrin gels were implanted into the lesion site 

after a dorsal hemisection in rat models, with no alteration in the degree of glial scar formation 

versus untreated controls, which were elevated in human fibrin-treated animals. Rats treated with 

salmon fibrin saw increased serotonergic fibers caudal to the injury site214 (Figure 4). Salmon fibrin 

also demonstrated enhanced neurite outgrowth in both rat cortical neurons and mouse spinal cord 

neurons215 versus fibrin derived from cows or humans. Investigators postulate that the RGD motifs 

are more accessible for binding to cellular integrins, and may be involved in differential integrin 

activation. This suggests that salmon fibrin is a potentially useful biomaterial for promoting neurite 

outgrowth, which may prove beneficial in stroke recovery. While fibrin has largely been used in 

the spinal cord, continuing work clearly demonstrates it’s potential to mimic the biomechanical 

properties of the CNS, and therefore its potential for engineering brain tissue as well where 

heparin-binding capabilities are equally important.  

 

 Molecularly designed, engineered, polypeptide-based biomaterials 
 

While native protein-based biomaterials can exhibit many unique biochemical and mechanical 

properties, they also display some shortcomings. These protein constituents are more prone to 
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degradability and often have unwanted contaminants that are co-purified, which can lead to 

undesirable immunological responses in the human body. As an example, the insolubility of elastic 

microfibrils has made isolation, purification, and characterization of native elastin difficult, and 

has not been as widely used as a biomaterial. However, its synthetic component known as elastin-

like polypeptides (ELPs), which are artificial repetitive polypeptides derived from mammalian 

elastin, have been useful for a wide variety of biomedical applications. ELPs consist of a 

pentapeptide repeat, (-Val-Pro-Gly-Xaa-Gly-), where Xaa is any guest amino acid residue, except 

proline. ELPs are unique in that they exhibit lower critical solution temperature (LCST) transition 

behavior; above a certain transition temperature, the disruption of ordered water molecules 

surrounding the polymeric backbone leads to the collapse of the polymer, giving rise to self-

assembly and temperature-dependent gelation behavior73, 216-217. The transition temperature is 

completely tunable by the molecular weight and length of the sequence, as well as the guest 

residue, which can impart different folding pathways following the phase transition, and can be 

made susceptible to pH and ionization changes218-219.  

 

Figure 3-5. Dorsal root ganglia encapsulated in elastin-like protein hydrogels were used to 
study the effects of RGD (fibronectin derived cell adhesion motif) ligand density on neurite 
outgrowth. Over the course of 7 days, RGD promoted a statistically significant increase in 
both neurite outgrowth length and total neurite density in ELP hydrogels with similar 
mechanical properties. Adapted with permission from Lampe K.J., et al. Design of three-
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dimensional engineered protein hydrogels for tailored control of neurite growth. Acta 
Biomaterialia 2013, 9(3):5590-5599. 

Incorporation of ionizable guest residues (e.g. lysine) allows ELPs to be chemically crosslinked 

resulting in the formation of hydrogels. Straley et al. used ELPs as substrates adsorbed onto glass 

coverslips and demonstrated that PC12 cells cultured on adsorbed protein surfaces had a high level 

of cell-surface biocompatibility and similar cellular morphology to those seen on collagen 

positive-control surfaces220. Shortly after, experiments using ELPs crosslinked by disuccinimidyl 

suberate showed that the resulting protein hydrogel could be used to modulate differentiation and 

neurite outgrowth of PC12 cells by tuning the RGD and degradable ELP densities221. Chung et al. 

used tetrakis (hydroxylmethyl) phosphonium chloride (THPC) as an amine reactive crosslinker222 

in lysine-containing ELPs. Later studies done by Lampe et al. used these crosslinked protein 

hydrogels to encapsulate chick DRGs223 (Figure 5). DRG growth was dependent on mechanical 

and RGD ligand density, and maximized neurite outgrowth was seen in hydrogels where matrix 

stiffness was similar to that of the native neural ECM. The enhanced neurite outgrowth within 

tunable 3-D microenvironments suggests that these ELP hydrogels may be useful in developing 

therapeutic nerve guidance channels to enhance stroke recovery, as they provide independent 

control of tailored integrin-binding density as well as tunable biomechanical stiffness and stability. 

A more recent publication by the Heilshorn group functionalized the same RGD-ELP sequence to 

crosslink via bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reactions224. 

mNPCs encapsulated in SPAAC-ELP hydrogels showed high viability, and maintained their 

ability to differentiate into both neurons and astrocytes following treatment with differentiation 

medium for a week.  

 

Additionally, neurotrophin-ELP-based fusion proteins have been used as stimuli-responsive 

nanoparticles that can deliver NGF and BDNF. PC12 cells with recombinant fusions saw 

substantial increases in neurite extension versus soluble neurotrophins, indicating that ELPs are 

able to interact with the cell without being quickly diffused throughout the system225. Likewise, 

silk-elastin-like proteins have been used as thin films to culture primary cortical neurons, where 

more surface adhesion and growth were observed in silk-elastin composites versus elastin and silk 

controls226. The appearance of a tightly connected neuronal network was seen, as cells formed 

clusters indicative of strong cell-matrix interactions within the protein alloy. Additionally, hNSCs 

encapsulated in IKVAV-modified silk fibroin hydrogels had increased β III-tubulin and MAP-2-
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positive cells compared to unmodified silk fibroin hydrogels after 1 week in differentiation 

culture227.  

 

Biosynthetic polypeptide sequences also have the capacity to self-assemble into various nano- to 

microscale structures, ranging from α-helical fibrils to β-sheet rich hydrogels. Banwell et al. have 

developed a two-component peptide system based on the coiled-coil heptad sequence repeat, 

abcdefg, where a and d are usually occupied by hydrophobic amino acids, and charged residues 

are found in positions e and g228. The α-helical peptide hydrogel was shown to support PC12 cell 

growth and differentiation. Another example of such a self-assembling material is a triblock 

protein composed a polyelectrolyte domain flanked by two amphiphilic leucine zipper sequences. 

NSCs proliferated on adhesive substrates (incorporation of RGDs into the polyelectrolyte region) 

or aggregated as neurospheres on non-adhesive substrates. It was demonstrated that proliferation 

of NSCs can be modulated through control of RGD surface density229. Similarly, the Heilshorn 

group designed two-component protein engineered hydrogels composed of two protein association 

domains – a WW domain and a proline-rich domain230. Upon mixing of the two components, 

formation of a hydrogel occurs due to physical crosslinking that takes place between the two 

associative domains. NSCs, as well as PC12 and HUVEC cells were encapsulated in the hydrogels, 

where the former were able to differentiate, and the hydrogel supported growth and proliferation 

of all cell types. The resulting hydrogels demonstrate complete self-healing after shear-thinning, 

making them suitable as injectable materials for clinical use.  

 

In the early 1960s, Merrifield developed a novel approach to the chemical synthesis of 

polypeptides involving the stepwise addition of protected amino acids to a growing peptide 

chain231. Since its conception there have been significant improvements and refinements to the 

solid-phase methodology, most notably the introduction of the 9-fluorenylmethoxycarbonyl 

(Fmoc) group for Nα protection232, resulting in greater peptide yields and reduction in side 

reactions during cleavage. Solid-phase peptide synthesis (SPPS) has enabled the successful 

preparation of tailor-made peptide sequences without the use of complex and often impracticable 

purification steps of naturally occuring proteins, while simultaneously maintaining similar 

biological activity as its native analog. The most advantageous property of peptides is that they are 

chemically defined;  SPPS provides exceptional control over the peptide’s chemical identity, 
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giving researchers the freedom to synthesize almost any protein sequence they desire without 

concerns regarding troublesome contaminants that often accompany proteins expressed in 

bacterial or mammalian cultures. Through the use of SPPS, tissue engineers are now able to easily 

synthesize a whole host of de novo peptides with unique structural and biofunctional properties, 
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including but not limited to proteolytic susceptibility233-235, cell surface and/or matrix binding236-

238, growth factor binding239-241, and self-assembly242-247. 
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Figure 3-6. Analysis of histological H/E and Nissl/DAPI double staining of brain neural 

tissue in coronary sections with RADA16-IKVAV/Neural stem cell (NSC) and RADA16-

IKVAV treated and non-treated traumatic brain tissue injury models. 12 week old Sprague-

Dawley rats were injected with 1% (w/v) of RADA16-IKVAV with or without encapsulated 

NSCs immediately after surgery. H/E staining shows severe tissue loss and contour 

distortion of cerebral cortex in the saline control group (c, f, i), and confirmed via 

Nissl/DAPI double staining (i’). Animals treated with RADA16-IKVAV in combination with 

NSCs saw significantly enhanced regeneration in neural tissue, demonstrated by the 

decreasing wound size. At 6 weeks post surgery, the implanted hydrogel scaffolds were 

mostly degraded and replaced by newly regenerated tissue (g). Surprisingly, the RADA16-

IKVAV treated groups saw some endogenous regeneration after 6 weeks (h), suggesting that 

the scaffold itself could still properly integrate within the damaged cavity and enhance 

neurogenesis. Reprinted with permission from Cheng T.Y., et al. Neural stem cells 

encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue 

engineering. Biomaterials 2013, 34(8):2005-2016. 

The use of designer peptides capable of self-assembling into matrices that act as ECM mimics 

have seen momentous growth in regenerative medicine248-250. The self-assembling propensities of 

these oligopeptides have been shown to fold into higher ordered tertiary and quaternary structures. 

The use of external stimuli to induce spontaneous gel formation is also unique in this class of 

biomaterials, in that monomeric peptides (rather than a composite, or two component system in 

polypeptide systems) are able to self-assemble in aqueous solutions without the addition of 

chemical crosslinks or other proteinaceous materials. Early work by Holmes et al. looked at 

designing self-assembling peptide scaffolds that could support neuronal cell attachment and 

differentiation251. Now known as RADA16 peptides, the (-Arg-Ala-Asp-Ala-)16 sequence is 

capable of spontaneous assembly into β-sheet-rich hydrogels, and has been used extensively as a 

substitute for Matrigel. Recently, Koutsopoulos et al. used RADA16 hydrogels to study NSC 

differentiation. Cell survival was highest in peptide nanofiber hydrogels containing the 

SKPPGTSS functional motif (neuronal apoptosis inhibitor) after 3 months compared to tissue 

cultures in Matrigel and collagen type I252. In functionalized hydrogels, a majority of encapsulated 

NSCs enter neuronal lineage, and one week post-encapsulation showed ~62% of the neuron Tuj1+ 

cells were monopolar, ~23% bipolar, and 15% multipolar, suggesting that these RADA16 were 

suitable 3D environments for neural tissue cultures. Additionally, treatment with RADA16 
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hydrogels improved the survival of implanted donor NSCs in vivo. Nissl stains confirmed that 

damaged lesions saw significant regeneration following RADA16-IKVAV/NSCs implantation 

after 6 weeks compared to controls253 (Figure 6). Furthermore, RADA16 hydrogels have also been 

shown to promote angiogenesis in a chick embryo254. RADA16 hydrogels (RAD/KLT) 

functionalized with a VEGF-mimicking peptide (KLTWQELYQLKYKGI) supported the highest 

endothelial cell sprout formation and average sprout length versus RADA16. The angiogenic 

properties of these hydrogel systems could potentially support endogenous recovery mechanisms 

in the recovering penumbra following stroke. 
 

Peptide amphiphiles (PAs) have the ability to self-assemble in aqueous solution, driven by the 

sequence’s hydrophobic aliphatic tail and a hydrophilic peptide domain. Seminal work done by 

the Stupp group demonstrated that PAs functionalized with the laminin epitope IKVAV was shown 

to induce rapid differentiation of encapsulated NPCs into neurons, and subsequently reducing 

astrocyte formation255. In other experiments, PA-IKVAVs were injected 24 h after SCI, and was 

shown to suppress astroglial differentiation. At 5 weeks and 11 weeks after SCI, there was a 

significant reduction in astrogliosis in PA-IKVAV treated groups, and 80% of all labeled 

corticospinal axons in the PA-IKVAV group were able to traverse through the area of injury256. 

Later studies by the same group reported increased serotonergic fibers in the caudal SC, with 

improved functional recovery at 10 weeks post injury257. Other peptides include amphiphilic 

diblock copolypeptides (DCHs), which can readily self-assemble into hydrogels under 

physiological conditions258. Histological characterizations indicated that DCH formulations did 

not induce any inflammatory or immune response upon injection. It was later shown that DCH 

deposits were densely vascularized, and contained microglia, astrocytes, and NG2 cells by 8 weeks 

in vivo. Researchers have also used amyloid-based self-assembling hydrogels to facilitate the 

attachment and neuronal differentiation of mesenchymal stem cells (MSCs)259. The high 

expression levels of ENO and TUBB3 and low levels of GFAP indicated that the amyloid hydrogel 

promoted hMSC differentiation toward the neuronal lineage. Additionally, K2(QL)6K2  self-

assembling hydrogels demonstrated that the cystic cavity in damaged spinal cords can be reduced 

by K2(QL)6K2  or a combined K2(QL)6K2  and NPC injection260. Furthermore, animals treated with 

K2(QL)6K2  and NPCs showed a marked improvement in both grip strength, while vehicle-treated 

and NPC-treated groups reached a recovery plateau at 12 weeks.   
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 Composite and hybrid biomaterials 
 

Combinatorial strategies that incorporate bioactive molecules (e.g. growth factors, proteins, and 

small molecules), biomaterial scaffolds, and relevant cell types have increasingly been used in 

recent years to both improve cell survival and support host-tissue integration following cell 

transplantation for stroke treatment. For example, hybrid biomaterials such as poly(ethylene 

glycol) (PEG) conjugated to proteins and peptides (i.e. PEGylation), are used in order to improve 

the solubility of proteins, as a main structural polymeric backbone of a material, and reducing the 

degradation by proteolytic enzymes261. PEG’s ability to retain a high volume of water and 

biocompatibility makes it an ideal substrate for use as a conjugate. For instance, the Seliktar group 

has conjugated fibrinogen, gelatin, and albumin to PEG. These protein components are used 

primarily to mediate cell-matrix interactions that would otherwise be absent in PEG-only 

polymers. In a recent study, they investigated using laser-ablation techniques for generating nerve 

guidance microchannels in these PEG-conjugated ECM protein hydrogels262-263. They observed 

DRG and glial cell outgrowth was highly dependent on channel dimensions263, and that channels 

with a diameter greater than 50 µm supported extensive DRG cell invasion262. In the latter study, 

it was determined that the protein constituents could substantially accelerate DRG invasion; PEG-

fibrinogen gels saw rapid propagation of DRG cells inside the channels during the first three days, 

and tightly packed axon bands were observed in PEG-gelatin gels262. Additionally, star-PEG 

hydrogels functionalized with RGD peptides and heparin were able to improve the survivability 

of primary fetal midbrain cultures. Incorporation of FGF-2, however, showed a tremendous 

increase in survival rate. FGF-2 releasing gels were able to induce NSC expansion by maintaining 

their undifferentiated state264. 
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Figure 3-7. Encapsulation of human induced pluripotent neural precursor cells (iPS-NPC) 

in a HA gel modified with BMP4 and BDNF growth factors transplanted in 

immunosupressed C57BL/6 mice 7 d post injury.  (a) 1x105 cells were transplanted into the 

stroke cavity and stained for GFP, GFAP, and S100b 6 wk post injury. HA Max gels saw 

significantly increased astrocytic differentiation compared to other groups. (b) 

Quantification of GFAP/S100b positive cells. GFP/GFAP as well as GFP/GFAP/S100b 

positive cells were normalized to the total GFP cells to obtain a percentage cells expressing 

one or both astrocytic markers. Scale bars, 50 µm. Reprinted from Moshayedi P., et al. 

Systematic optimization of an engineered hydrogel allows for selective control of human 

neural stem cell survival and differentiation after transplantation in the stroke brain. 

Biomaterials 2016, 105:145-155 (https://doi.org/10.1016/j.biomaterials.2016.07.028) 

under the terms of the Creative Commons Attribute License (CC BY - 

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode) 

Another promising material is hyaluronic acid (HA), a polysaccharide that plays an important role 

in regulating cell adhesion and motility, and ECM organization265. For example, 
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hyaluronan/methyl cellulose (HAMC) has been used extensively as an injectable hydrogel in 

stroke treatment. In combination with erythropoietin (EPO), implantation of the HAMC hydrogel 

reduced stroke cavity size compared to untreated and HAMC controls and significantly increased 

the number of NeuN+ mature neurons in the injured cortex266. Interestingly, EPO delivery in 

HAMC gels 11 d post-stroke also led to fewer apoptotic cells, demonstrating the effectiveness of 

neuroprotective properties utilizing this delivery platform in addition to EPO267. Similarly, Zhong 

et al. demonstrated that a hyaluronan-heparin-collagen composite hydrogel was able to improve 

the survival of NPCs near the injured cortex after stroke268. Additionally, there was a significant 

decrease in activated microglial/macrophages that infiltrated the graft site compared to controls 

without gels.  Work done by Moshayedi et al. demonstrated that a modified HA hydrogel with 

MMP degradable motifs and heparin bound growth factors (HA Max) provided maximum cell 

survival both in vitro and in vivo269. There was significantly increased proliferation of iPS-NPCs 

at two weeks compared to unmodified HA gels. Cells that were not encapsulated (no HA) were 

found to retain higher levels of SOX2 expression compared to cells transplanted within HA gels. 

Additionally, iPS-NPCs saw significantly increased expression of GFAP and S100b markers, 

suggesting that HA Max gels promote astrocytic differentiation of iPS-NPCs within the stroke 

cavity (Figure 7).  

 

Poly(lactic-co-glycolic acid) (PLGA) has also seen extensive use as a biodegradable synthetic 

polymeric scaffold for tissue engineering applications. Bible et al. entrapped VEGF within 

surface-modified PLGA microparticles which were subsequently administrated into the lesion 

cavity 2 w post-stroke. It was shown that the particles promoted the recruitment of a substantial 

number of ECs into the neuroscaffold within the lesion cavity. Additionally, hNSCs initially bound 

to the surface of PLGA-VEGF particles led to the formation of neurovascular units in stroke 

regions compared to the surrounding intact host tissue270, suggesting that the formation of host-

derived de novo tissue in the lesion cavity is achievable using VEGF-releasing PLGA 

microspheres seeded with hNSCs. Additionally, PLGA-b-PEG nanoparticles have been used to 

deliver triiodothyronine as a neuroprotective agent271. MCAO mouse stroke models treated with 

PLGA-b-PEG nanoparticles led to a significant decrease in tissue infarction and >50% decrease in 

brain edema. This has potentially immense clinical relevance in that rising intracranial pressure 

due to edema is one of the primary reasons for morality in stroke patients.  
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Additionally, alginate hydrogels have been used as an ECM mimetic due to its biochemical 

stability and high biocompatibility272. Alginate hydrogels were used to encapsulate VEGF to be 

delivered to MCAO models. Animals treated with the VEGF gel saw significant improvement in 

motor asymmetry relative to animals receiving blank alginate gels (42%) and stroke alone 

(45%)273. Histograms demonstrated that animals receiving VEGF gels saw reduction in lesion sizes 

compared to animals with stroke only and injections of alginate gel. Later studies done by 

Anderson et al. used alginate hydrogels to encapsulate VEGF and insulin-like growth factor-1 

(IGF)274. These gels were injected into ischemic hind limbs in middle-aged and old-mice, and only 

treatment from a combination of VEGF and IGF delivery from gels significantly rescued perfusion 

in both groups. This suggests that VEGF systems could potentially provide a potent 

neuroprotective benefit across a broad range of CNS diseases following neuronal degeneration.  

 

Alternatively, the functionalization of collagen-based scaffolds have also been of particular 

interest in the neural tissue engineering field. Collagen conduits modified with neurotrophin-3 

(NT-3) were used to assess functional recovery in rats with completely transected spinal cord. It 

was shown that aligned collagen fibers of the conduit channels significantly enhanced axonal 

growth within the channels of the conduits275. This suggested that the walls of the conduit provided 

additional topographical guidance to regenerating axons, and that the additional functionalization 

with NT-3 allowed for the constant release of plasmid, resulting in improved axonal regeneration 

and functional recovery. Work done by Fan et al. demonstrated that a collagen scaffold modified 

with collagen-binding EGFR antibody successfully inhibits myelin-associated inhibitors in acute 

spinal cord injury models (SCI). Surprisingly, no lesion cavities were observed in the injury sites, 

and only a slight glial scar was observed in the modified collagen scaffolds versus controls, 

suggesting that the EGFR antibody plays an important role in improving neurogenesis in a dose-

dependent manner276. Similarly, Masand et al. conjugated peptide mimetics of human natural killer 

cells (HNK-1) to collagen type I scaffolds to study the effects that glycans have on motor axons277. 

They showed that the HNK-grafted collagen hydrogels supported motor neuron outgrowth, 

suggesting that glycomimetics can encourage preferential motor reinnervation within the PNS. 

Winter et al. have shown that neurons co-seeded with astrocytes in cylindrical constructs 

composed of agarose and collagen type I demonstrated that neurons associated closely with 
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longitudinally aligned astrocytes. This suggests that these astrocytic bundles could provide a 

favorable substrate for neurons to grow alongside with, and provides a proof of concept for cell-

cell interactions and intrinsic chemotactic interactions between seeded astrocytes278.    

 

Keratin-based biomaterials have recently attracted attention due to keratin’s ability to control 

cellular attachment and migration279. Sierpinski et al. developed a keratin-based hydrogel that was 

used to fill collagen conduit channels, and saw improved histological characteristics such as 

greater axon density and axon diameter compared to autograft controls in mice with a 4 mm gap 

in the tibial nerve280. The keratin-treated groups also tested significantly better for conduction 

delay and amplitude of the nerve-motor unit compared to controls. Hill et al. injected a keratin 

hydrogel into the lumen of NeuraGen collagen nerve guides, and saw that nerves that regenerated 

in empty conduits were ~30% smaller in size than keratin-treated nerves, and even smaller in size 

than both empty conduit and seral nerve autograft controls.. Electrophysiology testing showed that 

the conduction delay was significantly improved in the keratin group compared to both empty 

(>300%) and autograft controls (>700%) in rabbits with a 2-3 cm sciatic nerve break163. In a similar 

study in rats with a 1 cm sciatic nerve defect, keratin hydrogel groups saw significantly increased 

migration of endogenous Schwann cells, higher myelin debris clearance, and decreased 

macrophage infiltration compared to autograft controls281. 

 

 Future perspectives 
 

The loss of neuronal cell bodies, axons, and associated glial support is a hallmark of several 

neurological insults, including ischemic stroke and neurodegenerative disease. Recent attempts at 

restoring damaged neural tissue involve engineering a 3D microenvironment suitable for 

regulating neural stem cell behavior. These microenvironments are designed to mimic essential 

properties of the ECM, including elasticity, proteolytic remodeling, and cell-adhesive sites. 

However, remaining challenges faced by tissue engineers is the ability to design biomaterials that 

1) are also low cost and simple to synthesize, 2) have the ability to gel autonomously to applied 

stimulus such as pH or temperature changes, and 3) are able to regulate and support cell function 

as a substitute for their normal physiological microenvironment. Thus, there is a critical need to 

establish a biomimicry strategy to enable stimuli-responsive and multifunctional biomaterials that 
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can deliver and allow precise control of stem cell behavior for neural tissue regeneration 

applications.  

 

Protein-based biomaterials are extremely versatile biopolymers that can be engineered with unique 

structural and biological properties. The recent developments of making injectable and self-healing 

hydrogels227, 230, 282-283 predestine applying this biomaterial clinically to lesion areas near the 

disease site via simple injection followed by gelation. This enables minimally invasive patient 

delivery. While it has been demonstrated that cell transplantation strategies using biomaterial 

scaffolds can potentially improve the neurologic outcome and reduce infarct size, many questions 

still remain, and the precise cellular and biochemical mechanisms of cell-induced repair remain to 

be elucidated. For example, are necrotic cells being replaced, or do transplanted cells produce 

neurotrophic factors that stimulate endogenous repair? What cell type(s) should be used that would 

promote neurogenesis and/or vasculogenesis? What are the specific cues that initiate cell 

propagation or differentiation within biomaterials? What intracellular signaling pathways should 

be considered (i.e. conjugation of growth factors and ECM proteins to biomaterials) that would 

have the most impact on cell-matrix interactions? What is the optimum therapeutic time window 

for such biomaterials-based therapy? What key mechanical properties (e.g. topography, matrix 

stiffness, porosity) of hydrogel biomaterials are most important in improving regeneration? And, 

most importantly, what types of biomaterials, or combinations thereof, will yield the most 

therapeutic benefit?  

 

Furthermore, biomaterials development should consider cell-matrix interactions that influence 

trophic support and differentiation potentials. This includes incorporating degradable sites in the 

biomaterial to allow for cell secreted protease-induced remodeling of the matrix. Additional 

molecules from the secretome (i.e. cytokines, chemokines produced through paracrine signaling, 

and trophic factors) derived from stem cells also play a large role in improving post-stroke 

angiogenesis and functional recovery284-286. Additionally, the interplay between the cell and its 

microenvironment in the context of modulating the mechanotransduction pathway should be 

considered. Bulk matrix stiffness and topography are known biomechanical cues in stem cell 

differentiation287-288. However, there is a shortage of methodologies for incorporating anisotropic 

topographical cues in 3D biomaterial scaffolds to induce cell alignment and migration. Most 
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cellular alignment studies are conducted using 2D electrospun fibers or patterned grooves and 

channels, but these cues are confined to the surface of such matrices. The development of 

magnetic-field induced aligned is a promising method in incorporating anisotropy within a 

hydrogel289, and more recent alternatives of using electrical and mechanical stretching have been 

introduced as a versatile strategy in creating aligned hydrogel microfibers in 3D290. These new 

approaches would allow researchers to more effectively incorporate a wider range of patterning 

within biomaterial scaffolds to study the effects of anisotropy on cell-matrix interactions.  

 

Therapeutic strategies that include brain protection following stroke involve the delivery of 

neuroprotective compounds that suppress the deleterious effects of inflammation and prevent 

cellular degeneration. However, most of these drugs are inactive following systemic administration 

due to the low permeability of the BBB291. From a holistic standpoint, nano-scale delivery systems 

that can mediate cell-cell and cell surface receptors-ligand levels that are able to permeate through 

the BBB have yet to be developed. Recently, work done by Nance et al. investigated the surface 

properties of nanoparticles and the influence of PEG coating on brain tissue penetration292.  It was 

found that particle sizes in the range of 40 to 100 nm were highly distributed in mouse brains, but 

only if they were heavily coated with PEG. Additionally, a refined understanding of the crosstalk 

between endothelial cells and associated astrocytes, as well as the selectivity of the tight junctions 

from between the two, would be needed to develop effective carriers. Even after the delivery 

vehicle is able to penetrate into the brain tissue, the surface of the vehicle must be tailored with 

site-specific ligands to localize the bioavailability to only the affected areas of the brain (i.e. infarct 

cavity).  

Incorporation of vasculature within biomaterial scaffolds, especially in the context of neural 

regeneration in stroke injury models, still remains a significant challenge in the field. Mimicking 

the endogenous expansion of blood vessels into vast networks during neurogenesis and 

concomitantly remodeling of the neovasculature is a highly unexplored area. NSCs and 

oligodendrocyte progenitor cells are frequently found, and migrate along, small blood vessels. 

Ultimately, most in the field have opted for developing models that can establish tight junctions 

between endothelial cells and contacts with pericytes and astrocyte endfeet using induced 

pluripotent stem cell (iPSC)-derived sources293-294, however, these models insufficiently describe 

the vascular tree and cerebral arterial hierarchy inherently present in the CNS. Understanding the 
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cross-talk between neural and vascular cells and signaling pathways will reveal how a 

dysfunctional neurovascular unit is remodeled upon injury. The challenge of decoupling the 

synergistic effects of vascular development and brain development, however, remain to be 

addressed, although there have been significant efforts in the engineering of vascular constructs295-

296. Hyaluronic acid-based hydrogels that incorporated salmon fibrin and laminin have been used 

to study the effects on hNSPC proliferation and differentiation, and subsequently, vasculogenesis 

of human endothelial colony-forming cell-derived endothelial cells (hECFC-ECs)297. hNSPCs 

secreted angiogenic factors (i.e. VEGF-A and VEGF-B) that promoted sprouting of hECFC-ECs. 

The co-culturing of hNSPCs and hECFC-ECs demonstrated that hNSPC had a positive effect on 

vessel formation, where there was an increase in both vessel length and branch points. More 

recently, the Segura group designed a hydrogel scaffold that is able to promote endothelial cell 

sprouting and branching through the incorporation of integrin-binding peptides, α3/α5β1. 

Additionally, VEGF was incorporated into the system and promoted EC sprouting and anastomosis 

in vivo298. Similarly, a more recent study used a combination of HA, salmon fibrin, and laminin. 

Co-culturing of hNSPCs and ECs in the scaffolds showed significantly greater vessel formation 

versus ECs alone in fibrin scaffolds (Figure 8) 297. The use of such combination scaffolds warrants 

further investigation into the effects on vasculogenesis while simultaneously supporting neural cell 

growth. Such a fibrin/HA/laminin scaffold could potentially increase NSPC survival when 

transplanted into the infarct core within the stroke environment.  
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Figure 3-8. Scaffolds of fibrin, HA, and laminin promotes neurovascular unit formation. (a) 
Human endothelial colony-forming cell-derived endothelial cells (hECFC-ECs) expressing 
mCherry cultured with human neural stem/progenitor cells (hNSPCs) in the 
Fibrin/HA/Laminin composite scaffold saw significantly increased vessel formation.  (b) 
Quantitative analysis demonstrating that composite scaffolds contained significantly higher 
vessel area percentage compared to scaffolds containing fibrin with hECFC-ECs, fibrin 
with co-cultured hNSPCs and hECFC-ECs, or combination scaffolds with hECFC-ECs 
only. (c) Total vessel length is also significantly greater in composite scaffolds and is also 
highest in scaffolds containing both hNSPCs and hECFC-ECs. (d) There is a two fold 
increase in number of vessel branch points in co-cultures within composite scaffolds 
compared to the hECFC-ECs cultured alone in fibrin, highlighting the synergistic effect of 
both HA and laminin with hNSPCs on vascular network complexity. Adapted from Arulmoli 
J. et al., Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human 
neural stem cell and vascular tissue engineering. Acta Biomaterialia 2016, 43:122-138 
(https://doi.org/10.1016/j.actbio.2016.07.043) under the terms of the CC BY NC ND 
(https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode) 

Such results provide guidance on how to support regrowth of vasculature after stroke lesions have 

formed. However, further research into the mechanisms that mediate spatiotemporal aspects of 

vascularization is needed, with biomaterials leading the forefront of inducing endogenous 

vascularization as well as supporting a functional vascular network.  

 

An underlying topic that has not been addressed in this review is the modulation of the immune 

system in response to ischemia-induced inflammation. Ideally, a reduced inflammatory response 
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from biomaterials engraftment is a favorable outcome. However, it has become exceedingly clear 

that activated microglial and perivascular macrophages play an integral role in reestablishing tissue 

homeostasis in the brain and remodeling of the neurovascular unit. In early stages of recovery, 

chronically activated microglial produce pro-inflammatory cytokines, toxic amounts of ROS, and 

MMPs that degrade the BBB. At later stages, phagocytosis of cellular debris along with the 

production of anti-inflammatory cytokines by the same microglia occurs, consequently attenuating 

the deleterious effects of inflammation and inhibition of tissue regeneration. Because of the Janus-

faced nature of these reactive glia that could play both a destructive and protective role at different 

time points, therapeutics targeting inflammation in cerebral ischemia should be mindful of 

temporal considerations that can block deleterious effects within the penumbra and foster post-

ischemic anti-inflammation mediators that can contribute to tissue repair. Ultimately transplanted 

biomaterials will likely serve as a provisional matrix, influencing the injury environment and 

directing any transplanted cell behavior, until the integrating transplant or host cells can establish 

de novo tissue. Modulating both the injury, and the immune reaction to it, are underexplored areas 

ripe for new strategies in CNS regeneration. 
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 Abstract 
Short peptides are uniquely versatile building blocks for self-assembly. Supramolecular peptide 

assemblies can be used to construct functional hydrogel biomaterials—an attractive approach for 

neural tissue engineering. Here, we report a new class of short, five-residue peptides that form 

hydrogels with nanofiber structures. Using rheology and spectroscopy, we describe how sequence 

variations, pH, and peptide concentration alter the mechanical properties of our pentapeptide 

hydrogels. We find that this class of seven unmodified peptides forms robust hydrogels from 0.2–

20 kPa at low weight percent (less than 3 wt. %) in cell culture media, and undergoes shear-

thinning and rapid self-healing. The peptides self-assemble into long fibrils with sequence-

dependent fibrillar morphologies. These fibrils exhibit a unique twisted ribbon shape, as visualized 

by TEM and Cryo-EM imaging, with diameters in the low tens of nanometers and periodicities 

similar to amyloid fibrils. Experimental gelation behavior corroborates our molecular dynamics 

simulations, which demonstrate peptide assembly behavior, an increase in b-sheet content, and 

patterns of variation in solvent accessibility. Our Rapidly Assembling Pentapeptides for Injectable 

Delivery (RAPID) hydrogels are syringe-injectable and support cytocompatible encapsulation of 

oligodendrocyte progenitor cells (OPCs), as well as their proliferation and three-dimensional 

process extension. Furthermore, RAPID gels protect OPCs from mechanical membrane disruption 

and acute loss of viability when ejected from a syringe needle, highlighting the protective 

capability of the hydrogel as potential cell carriers for transplantation therapies. The tunable 

mechanical and structural properties of these supramolecular assemblies are shown to be 

permissive to cell expansion and remodeling, making this hydrogel system suitable as an injectable 

material for cell delivery and tissue engineering applications.  
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 Introduction 
An attractive approach to tissue regeneration relies on water-swollen polymeric networks known 

as hydrogels, which can mimic features of the native extracellular matrix (ECM) such as 

proteolytic remodeling, cell-adhesion and mechanical properties, while guiding stem/progenitor 

cell fate decisions. Tissue engineering using biologically relevant hydrogel culture systems may 

improve regeneration, as hydrogels have a broad range of structural flexibility, biological activity, 

and similar mechanical properties as native tissue; this, in turn, can yield more physiologically-

relevant cellular behavior1-4. However, there continues to be a need to develop suitable 

microenvironments that retain relevant biological and structural functions. Further progress 

requires materials that 1) are simple and inexpensive to synthesize, 2) gel in response to 

cytocompatible stimuli, such as small shifts in pH or temperature, and 3) support and regulate cell 

function, as a substitute for their normal physiological microenvironment4.  

Transplanting stem cells may improve behavioral recovery following an injury or insult5, or during 

chronic or degenerative diseases6. However, transplant cell viability is often poor6-8, at least partly 

due to negative effects (cellular damage) that occur during injection, wherein cells undergo stresses 

such as non-physiological elongational flow and super-physiological shear forces6. Utilizing 

injectable and self-healing hydrogels as cell carriers could increase the surviving percentage of 

transplanted cells post-injection into damaged tissue for therapeutic repair9. 

Oligopeptides are versatile building blocks that can be engineered to create self-assembled 

supramolecular structures which build upon non-covalent, reversible bonds10-14. For example, 

peptide amphiphiles spontaneously self-assemble into hydrogels in aqueous solution, driven by a 

sequence’s hydrophobic alkyl tail and a hydrophilic peptide domain15. Similarly, short amphiphilic 

peptides, such as LIVAGD16, form robust hydrogels via b-sheet assembly. Several other b-sheet 

forming peptides feature aromatic interactions (p-p stacking) that drive fibril formation and 

gelation, e.g., NFGAIL16-18 (a fragment of human islet amyloid polypeptide22-27), DFNKF19-20 

(human calcitonin-derived peptide hCT15-19), and KLVFFAE21 (parts of amyloid b16-22). Recently, 

the 8-residue FDFSFDFS22 sequence and two pentapeptide analogs of an IDIDI23 sequence were 

shown to self-assemble into hydrogels. Likewise, a K2(QL)6K2 sequence also demonstrates self-

assembly capabilities, where hydrogel formation is driven primarily by ionic screening of 

charges13, 24. Such self-assembling peptide materials can be designed to gel after injection, enabling 



 104 

uniform encapsulation of cells in 3D, ex vivo, and minimally invasive injection into target tissue 

such as brain and spinal cord25-26.  

Several challenges limit the broader utility of these peptide systems in tissue engineering and 

regenerative medicine.  First, protecting groups such as acetyl27, t-butyloxycarbonyl28, other large 

aromatic groups29-30, or the incorporation of D-stereoisomers31 are often required to induce 

gelation, thereby complicating synthetic processes and limiting scalability.  Second, there are 

relatively few examples of short oligopeptides that exist beyond the derivation or analogs of the 

well-established diphenylalanine peptide sequence32-33. While these dipeptides form robust 

hydrogel systems, the hydrophobicity of the sequence limits their solubility and their range of 

potential applicability. Third, rather than having complete design freedom, many oligopeptides 

have been derived by sequence mapping onto relevant biological systems known to self-assemble 

into a variety of nanostructures. For example, designer peptide scaffolds have been based on an 

(EAK)16 sequence derived from the DNA-binding protein zuotin34.  

We seek an approach to peptide-based hydrogel design that leverages the power of computation 

to guide peptide engineering efforts. Candidate peptides can be modeled in silico, using molecular 

dynamics (MD) simulations to interrogate, in atomic detail, the physicochemical properties of a 

given sequence35-39.  Few examples exist of using computational approaches to design functional 

KYFIL AYFIL KYFAL KYFIV KYFIA KAFIL KYAIL 

Amino Acid Position 
3 1 2 4 5 

A B 

C 

Figure 4-1. Sequences investigated in this study. A) Each sequence examined is listed, along 
with its theoretical isoelectric point (pI). All peptides are C-terminally amidated. B) A 
sequence logo highlights the order and predominance of amino acids within pentapeptide 
analogs that gel under any pH condition. The sequence profiling suggests that Phe (F) and 
Leu (L) must be conserved for gelation. C) When peptides are dissolved in PBS at pH 7.4 
and 1.5 wt. %, the KYFIL, AYFIL and KYFAL pentapeptides form hydrogels, whereas other 
sequences do not gel under these conditions; note that KAFIL can gel at pH > 10. 
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peptide scaffolds for tissue regeneration applications.  The complex interactions between 

polypeptides and their environments, which mediate their self-assembly into useful biomaterials, 

demand new tools for characterizing the structure and function of peptide ECMs.  An integrated 

approach that leverages computational modeling to understand experimental peptide behavior can 

more rapidly (and affordably) examine assembly.  Moreover, such an approach could even survey 

the suitability of an array of potential sequence constructs (i.e., a library) toward creation of a 

general-purpose hydrogel scaffold for tissue engineering applications. 

 

Here, we use an integrated computational and experimental approach in the design, synthesis, and 

characterization of a pH-triggered, self-assembling pentapeptide suitable as a three-dimensional 

scaffold for cell culturing.  We term these materials Rapidly Assembling Pentapeptides for 

Injectable Delivery (RAPID) hydrogels. To decipher the self-assembly mechanism, we analyzed 

the peptide sequence KYFIL, with the goal of identifying specific residues that play a key role in 

intermolecular association and self-assembly. We screened seven different sequences for their 

ability to form hydrogels, and analyzed their supramolecular assembly behavior using a host of 

methods: attenuated total reflectance–Fourier-transform infrared (ATR-FTIR) spectroscopy, 

cryogenic electron microscopy (cryo-EM) and transmission electron microscopy (TEM), 

rheometry, and molecular dynamics (MD) simulations. RAPID hydrogels were also evaluated as 

three-dimensional scaffolds for cell encapsulation, via cell culture–based biological assays, thus 

allowing us to determine their cytocompatibility under physiological conditions.  

 

While demonstrating a wide range of stiffnesses suitable to emulate a variety of human tissues, we 

focused here on tailoring RAPID hydrogels to mimic the biomechanical properties of brain tissue 

(Young’s moduli ranging 0.1–3.5 kPa1, 40). Encapsulation of oligodendrocyte progenitor cells 

(OPCs) enabled us to demonstrate the 3D cell culture matrix potential of RAPID hydrogels. We 

find that RAPID hydrogels can also mitigate the damaging effects of extensional flow experienced 

by cells during syringe injections.  

 

 Results and Discussion 
 We have designed pentapeptides, based on a KYFIL-NH2 sequence (Figure 1) hereafter referred 

to simply as ‘KYFIL,’ that can self-assemble into b-sheet–forming nanofibers.  The sequence 



 106 

KYFIL was chosen based on previously published results on aromatic-rich tripeptides that could 

gel under certain experimental conditions27, 30, 35, 41-42 (such as a change in pH or ionic strength). 

In particular, we chose Lys as the head-group to improve solubility in aqueous solution24, while 

the overall sequence design was guided by the goal of increasing the hydrophobicity of amino acid 

residues so as to increase the amphiphilicity of the peptides . In initial screens, we assayed several 

peptide designs by performing an alanine scan. Displaying the results as a sequence logo43-44 

revealed that the central phenylalanine (F), as well as preservation of the amphiphilicity of the 

sequence, are two key elements that facilitate hydrogel formation (Figures 1 and 2). Interestingly, 

the carboxyl-terminated variant KYFIL-CO2H (i.e., with ‘natural’ peptide end-chemistry) did not 

readily form hydrogels at pH 7.4.  Because the carboxylic acid moiety is deprotonated at neutral 

pH, this finding suggests that an uncharged C-terminus is required for gelation of the peptide. By 

examining the peptide’s secondary structural conformation via ATR-FTIR spectroscopy and MD 

simulations, we detected that structural transitions occur when a pentapeptide self-assembles under 

gelling conditions.  

 

4.3.1 Secondary Structure Analysis via FTIR Spectroscopy 

The secondary structural content of pentapeptide specimens was probed by ATR-FTIR 

spectroscopy. Samples of the pentapeptides of interest were generated via solid-phase peptide 

Figure 4-2. Peptides exhibit characteristic secondary structures via ATR-FTIR. Peptides 
dissolved at 3 wt.% in PBS and pH 7.4 were examined. All gelling peptides (solid lines) 
exhibit an Amide I absorbance at 1629 cm-1, indicative of β-sheet hydrogen bonding. A peak 
near 1679 cm-1 to 1683 cm-1 suggests anti-parallel β-sheet conformation. Non-gelling 
peptides (dashed lines) exhibit much weaker, less intense peaks at the same wavenumbers. 
All spectra are baseline corrected, normalized, and vertically offset for clarity. 
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synthesis methods. An alanine (Ala) scan45 of KYFIL was used to assess each AA’s contribution 

to gelation, wherein individual amino acids (AAs) were sequentially exchanged with Ala or Val.  

Ala and Val were the substituted residues of choice, as they either eliminate a side-chain beyond 

the Cβ atom (Ala) or otherwise would be expected to minimally alter the main-chain conformation 

(Val). As uncharged and relatively compact residues, Ala and Val would not be expected to 

introduce (confounding) electrostatic or steric effects46. All pentapeptides were dissolved in 

phosphate-buffered saline (PBS) at a concentration of 3% (weight/volume) and adjusted to a pH 

of 7.4.  Gelling peptides (solid lines, Figure 2) display a strong Amide I absorbance at ≈1629 cm-

1, arising from vibrational modes of the amide group; these vibrations, in the region of 1700→1600 

cm-1, correspond to stretching of the C=O and C–N bonds, as well as bending of the N–H47-48.  

This region of the IR spectrum is particularly sensitive to variations in secondary structural 

conformation and, in the case of our pentapeptide samples, is indicative of β-sheet hydrogen 

bonding49-50 (Figure 2, Figure S2 and S3).  A secondary peak near 1679 cm-1 to 1683 cm-1, in some 

of the specimens, indicates that the β-sheet is anti-parallel51. We can infer this because the Amide 

I region of parallel β-sheets harbors a single predominant signature (near 1630 cm-1), while 

antiparallel sheets generally feature a second (minor) peak near ≈ 1680-1690 cm-1. Peptide variants 

which do not form gels at the same concentration and pH (dashed lines, Figure 2) exhibit less 

intense peaks, suggesting a lack of significantly structured hydrogen bonding networks in those 

solutions. By correlating our IR observations with variations in AA sequence, it appears that 

amphiphilicity and a capacity for π-system interactions (e.g., π···π stacking and π···cation 

interactions with the benzyl side-chain of the central Phe) play a key role in self-assembly and 

hydrogel formation (Figure 2). 

4.3.2 Probing the Conformational Space and Interaction Events via MD 

Simulations 

MD simulations were used to examine the atomically-detailed molecular interactions underlying 

peptide self-assembly processes. MD simulations offer a powerful approach to examine the 
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structural properties and conformational dynamics of engineered peptides and can yield 

experimentally-inaccessible insight about the dynamical basis of self-assembly52-53. Simulations 

can help guide adjustments to the peptide sequence in order to optimize the system’s properties 

toward a target goal. Using MD simulations, one can study a peptide system’s aggregation 

propensity by simulating multiple peptides together in a single system. While other work has 

focused on the diffusional association of protein molecules within a solvated system39, 54 or detailed 

the biomolecular recognition events (i.e. conformational rearrangement and binding/unbinding 

events55), few examples exist of using computational approaches to design functional peptide 

scaffolds for tissue regeneration applications56. In this study, we used MD simulations to study the 

emergence of structural features in a peptide system and provide an atomistic view of the self-

assembly process of nanostructures.  

 

 

 

 

Figure 4-3. KYFIL peptide molecules simulated in explicit solvent assemble into multimeric 
structures. A) Representative structures of the simulated pentapeptide sequence, KYFIL. 
Spatiotemporal evolution of peptide assembly is demonstrated from the simulation 
trajectory of the peptides at 50 ns intervals as the molecules assemble into large clusters on 
the timescale of 200 ns. B) Density functions representing the clustering propensity of 
different pentapeptide systems over time. At the end of the 200 ns simulation, KYFIL has the 
least number of distinct clusters and largest number of peptides per cluster, versus other 
peptide sequences. Insets are representative snapshots of the peptides near 200 ns.  

(KYFIL)
18

 

0 ns 50 ns 100 ns 150 ns 200 ns 
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[subscript indicates 18 KYFIL peptide molecules in simulation system] 
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To elucidate the molecular-scale events associated with self-assembly, after having experimentally 
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Figure 4-4. Secondary structural content of the simulated KYFIL, KAFIL, AYFIL, KYFAL, 
and KYFIV systems. Numbers within a plot represent the population of the secondary 
structure observed in the simulation over all possible secondary structure conformations. 
Secondary structure cartoon representations in the thumbnails displayed in the first row 
match the colors in the histogram. A) Histograms that depict the predominant 
conformations exhibited by the polypeptide are β-turns and ‘other’ structures. For all 
sequences, there is an absence of α-helical structures, consistent with our experimental 
results. In addition, β-turn structures are prevalent with β-strand and bridge structures. A 
significant shift from strand to bridge occurs in the character of the β structure in the non-
gelling sequence, KYFIV. B) Representative snapshots taken at 180 ns and 177 ns for KYFIL 
and KYFIV, respectively, illustrating sequence-dependent conformational states of the 
pentapeptides. The peptides can be seen to be a mixture of helices and coils; the secondary 
structures are labelled in this view with α-helices colored purple, 3

10
 helices blue, β-strands 

yellow, the β-turn motif cyan and irregular coil regions white. These trajectory frames 
illustrate the formation of β-sheet regions within the two peptide systems, with more 
pronounced populations of β-sheet conformations present in KYFIL versus KYFIV. 
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established pentapeptide sequences that can assemble in aqueous media, we conducted MD 

simulations of select peptide candidates (Figure 3). These extended (200-ns), all-atom simulations 

were performed in explicit solvent using the CHARMM36 force-field. Such force-fields represent 

the physicochemical properties of each amino acid—including partial charges, atomic interaction 

(Lennard-Jones) potentials, and other parameters—via a classical, molecular mechanics–based 

approach, as described in various primers52. In practice, CHARMM3657 is a state-of-the-art force-

field that can be applied to many types of biomolecular systems, as illustrated for instance by the 

analysis of disordered regions of the protein desmoplakin58. Our simulations show that the 

assembly propensity of RAPID peptides correlates with the diffusional association of individual 

peptides. The peptides primarily adopt irregular conformations, with some transiently-stable β-

turns ‘flickering’ into existence (Movie S1–S5). Within ≈50 nsec, individual KYFIL peptides 

assemble into six discrete groups of peptides, as can be seen by visual inspection of trajectories, 

GRAVY 

Figure 4-5. Sequence-dependent changes in relative solvent accessible surface areas 
(RelSASA) for individual residues in each pentapeptide simulation. The RelSASA quantifies 
the accessible surface area of each residue in the folded pentapeptide. A white color 
indicates that a residue is more solvent-exposed than average, while the intensity of a red 
scales with residue burial. Computed grand average hydropathicity (GRAVY) values, which 
are essentially Kyte-Doolittle (KD) hydrophobicity indices averaged over the amino acid 
sequence for each peptide, are given on the right; on the KD scale, the hydrophobic amino 
acids have positive values (the most hydrophobic is Ile, with a value of +4.5), while 
hydrophilic residues have negative values (the least hydrophobic is Arg, at -4.5, followed 
by Lys at -3.9). At least qualitatively, the MD-based results and general hydropathicity 
patterns are consistent: the most hydrophobic peptide, AYFIL (most positive GRAVY score), 
features the least solvent exposure over the course of its MD trajectory, while the most 
hydrophilic peptide, KYFAL (least positive GRAVY score), exhibits the largest RelSASA 
values. 
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with some β-sheet secondary structure (Figure S1 and Figure 3A). Extending the simulation further 

yields peptides that have assembled into two large clusters by ≈200 nsec (Figure 3A).   

 

We used a discrete number-density function (a measure of the local concentration) to quantify the 

aggregation propensity of the four different peptides along their respective trajectories. Those 

sequences which were found to gel in experiments—KYFIL, AYFIL, KYFAL, and KAFIL at pH 

10—exhibited a higher propensity to aggregate; those peptides which formed gels also tended to 

exhibit greater variation in the number of peptides per cluster at 200 ns, consistent with a higher 

propensity to assemble, even non-specifically into heterogeneous aggregates (Figure 3B). In 

addition, the time-evolution of the radius of gyration (Rg) of the peptide systems (Rg computed 

system wide across all peptides, not per-peptide) reveals a gross structural rearrangement—from 

mostly diffuse peptides to closely associated molecular interactions, as indicated by the net 

decrease in Rg for pentapeptide sequences (Figure S4) relative to the initial trajectory, except for 

KAFIL, KYFAL, and KYFIV. These data are consistent with the FTIR spectra (Figure 2), as 

KAFIL, KYFAL and KYFIV have lower b-sheet peak intensities, suggesting lower assembly 

propensity. For KYFIL, a detectable, and presumably hydrophobically-driven, ‘collapse’ of the 

system appears to be more kinetically allowed, versus other sequences; i.e. transitions between 

secondary structures occur frequently, implying relatively low activation barriers59. Visual 

inspection of trajectories shows a sharp structural reorganization early on (< 100 ns) in most of the 

simulations. 

 

We also examined the structural transitions from the initial peptide system (post-equilibration) to 

the final conformational ensemble. For all simulated peptide sequences, there was a notable dearth 

of α-helicity (Figure 4A), consistent with the experimental FTIR data (Figure 2, Figure S3). All 

pentapeptides preferentially sampled β-type structures (Figure 4a), and the gelling peptide 

sequences (KYFIL, AYFIL, KYFAL, KAFIL) exhibited a nominally greater fraction of β-strand 

character over the course of the 200-ns trajectory, versus a non-gelling sequence, KYFIV (Figure 

4B).  The domain-swapping mode of β-rich association can be induced by intermolecular β···β-

strand/bridge contacts, via directional hydrogen bonding between the backbones of aromatic 

residues and b-branched amino acids (e.g. isoleucine)60-61. Consequently, the structural 

rearrangement of peptides can reduce conformational strain, as the formation of such β-strand 
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structures are enthalpically favorable, driving the folding of β-sheets62-63. The torsion angles for 

each type of amino acid, barring the N- and C- termini (Figure S5), indicate significant structural 

heterogeneity for each peptide system. Our results suggest that, in general, the middle Phe in each 

pentapeptide often adopts a type-II β-turn conformation (f = -60°, j = 120°) or an antiparallel β-

sheet structure (f = -140°, j = 135°); this is consistent with our aforementioned FTIR results. For 

the KYFAL and KAFIL sequences, the Ala preferentially samples a polyproline type-II helix (f = 

-75°, j = 145°), with a decreased β-sheet propensity. This result is unsurprising, as the peptide 

backbone near an Ala (versus Tyr) residue encounters less steric hindrance, given the absence of 

the phenol side-chain64. The most densely populated regions of conformational space for Ile, in all 

pentapeptide sequences (Figure S5), highlights this amino acid’s propensity to adopt β-sheet 

conformations. In this context, Phe···Ile intermolecular interactions (steric occlusion, as well as 

London dispersion forces and other van der Waals forces) are particularly relevant, as they would 

facilitate the hydrophobic aggregation of these peptide regions and indirectly enable the formation 

of hydrogen-bond networks between the local backbones65; this model is also consistent with both 

MD simulations and FTIR spectroscopic data (Figure 2).    

 

In addition to internal (intra-peptide) and external (inter-peptide) interactions, the conformational 

dynamics of a peptide system are governed by peptide···solvent interactions.  By quantifying 

peptide×××water contacts, we can discern hydrophobic side-chain contributions to the energetics of 

peptide assembly, and also study a peptide’s solvation dynamics. Thus, we evaluated the solvent-

accessible surface area (SASA) of individual residues in each pentapeptide, averaged over entire 

200-ns trajectories. In computing the relative SASA of a peptide system (via Rost & Sander’s 

method66), we consider the ordinary accessibility of a residue in a structure normalized by the 

maximal value possible for that residue type (i.e., that amino acid side-chain). Unsurprisingly, for 

each pentapeptide sequence the N-terminal Lys was the most solvent-exposed (Figure 5) and the 

central tripeptide (···Tyr/Ala–Phe–Ile/Ala···) was the most consistently buried throughout the 

simulation. The significant changes in relative accessibility of the C-terminal residue (position 5) 

indicate the system’s structural rearrangement in the context of side-chain functional groups67.  

Our findings are consistent with patterns in Kyte-Doolittle hydropathicities68 (GRAVY values in 

Figure 5) as well as prior experimental results regarding the hydration structure of ABA triblock 

copolymeric systems13, 24, 69-70, wherein the termini were found to be exposed to aqueous solvent 
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molecules and dehydration of nonpolar side-chains biases the middle block of the amphiphilic 

pentapeptide to preferentially adopt compact 3D structures (β-strands, turns, etc.) that occlude 

solvent. 

 

4.3.3 Hierarchical Self-Assembly: Evaluating Hydrogel Rheological 

Properties  

The mechanical properties of 1.5 and 3 wt. % hydrogels were found to depend on the 

concentration, pH, and peptide sequence. Hydrogels formed in situ, in an epitube, within several 

seconds (Movie S6) and were then pipetted onto the rheometer platform for rheological 

measurements. RAPID hydrogel stiffnesses span two orders of magnitude, from approximately 50 

– 17,000 Pa in shear storage moduli (Gʹ) (Figure 6a). (For comparison, this would be similar to 

520 – 44,200 Young’s modulus, although this requires a potentially fraught assumption of a 

Poisson’s ratio of 0.5.) KYFIL at 1.5 and 3 wt. % forms hydrogels of 8,000 and 17,000 Pa, 

respectively (Figure 6 and S6).  

 

Peptide hydrogels can provide structural flexibility and mechanical properties that emulate native 

biological tissues4, 71-72. Bulk matrix stiffness and topography are well known biomechanical cues 

that can direct stem cell proliferation as well as differentiation73-74.  In most tissues, such as the 

heart, muscle and bone, the extracellular matrix contributes to the biophysical microenvironment, 

e.g. a Young’s modulus of 6.8 kPa for heart tissue and up to 103 kPa for bone75-76. However, 

tissues within the central nervous system (CNS), such as the brain and spinal cord, are some of the 

most compliant tissues in the body77, with moduli of ~0.7 kPa to 3.5 kPa78-80. Such an extensive 

range of stiffness requires hydrogel biomaterials to have highly tunable biomechanical properties 

that can be catered to a wide range of applications, for numerous different tissue types throughout 

the body. 

 

Our class of peptide sequences is unique in that the peptide lengths are quite short (5 amino-acid 

residues), and have a broad range of mechanical properties (~50 – 17,000 Pa) that can be fine-

tuned via small changes in concentration or pH (Figure 6). The broad range and large magnitude 

of storage moduli we can attain is in contrast to other short, self-assembling oligopeptides. For 

example, K2(QL)6K2, RADA16-I, (FKFE)2
81, MAX1/882, and KLVFF83 sequences yield gels with 
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much lower storage moduli and narrower ranges of mechanical properties (storage moduli of 50 - 

1000 Pa).13, 84-85  

 

The lower storage modulus of KYFAL can be reconciled with its weaker signature peak intensities 

for b-sheets in the FTIR spectra (Figure 2), implying less content of well-ordered b-sheet for 

KYFAL (Figure 4). Additionally, Lys did not seem to affect gelation, so long as the amphiphilicity 

of the sequence was maintained. Rather, the substitution of Lys ® Ala affected the solubility of 

the peptide (Figure S8). Similarly, at 3 wt. %, KAFIL had a Gʹ of 200 Pa compared to KYFAL at 

133 Pa. The additional bulky methyl group in the Ile–Leu C-terminus of KAFIL, relative to Ala–

Leu (in KYFAL) or Ile–Ala and Ile–Val (in KYFIA and KYFIV, respectively) confers greater 

hydrophobicity, resulting in a self-assembly process driven mainly by increased hydrophobic 

interactions.  

 

The apparent pKa shift following the substitution of Tyr to Ala increases the electrostatic repulsion 

between peptides30, reducing the aggregation propensity. Increasing the pH, which alters the 

average degree of ionization, better neutralizes KAFIL and favors self-assembly of the peptide, by 
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reducing the mean net charge of the Lys head group86. Our rheological characterization of Figure 4-6. Rheological properties of self-assembling pentapeptides at different 
concentrations and pH conditions. a) Storage and loss moduli as determined from the linear 
viscoelastic region (LVE) taken from strain sweeps at a constant frequency of 1 hz of 1.5 wt. 
% and 3 wt. % hydrogels at pH 7.4. Hydrogels were formed in situ in an epitube and then 
pipetted onto the rheometer platform. Hydrogel stiffness can be tuned by concentration and 
peptide sequence variation. The inset is a magnification of the G’ and G” for KAFIL and 
KYFAL hydrogels. b) Storage moduli taken from the LVE from strain sweeps at a constant 
frequency of 1 hz of 1.5 wt. % hydrogels at different pH conditions of 4.6, 7.4, and 10.6. The 
mechanical properties of the hydrogel are dependent on pH, where all peptide sequences 
are very weak gels (G’ < 80 Pa) in acidic conditions, and form robust hydrogels at pH 7.4 
and 10.6. c) Hydrogel forming sequences were evaluated under shear flow to determine 
their shear-thinning properties. The apparent viscosity of each sample decreased with 
increasing shear rate demonstrating that these hydrogels are capable of shear-thinning. d) 
1.5 wt. % KYFIL hydrogels (n = 3) were subjected to five step strain sweeps of 100 % strain 
(50 s), followed by a 100 s recovery period (0.1 % strain). The hydrogel recovers 70-80% 
of its initial G’ within several seconds. Even after multiple high strain cycles, the hydrogel 
is able to repeatedly retain its mechanical strength.  

A 

C D 

B 
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hydrogel-forming peptides indicates that Ile facilitates self-assembly87: we detect a higher 

population of β-sheet conformations for Phe–Ile–Leu versus Phe–Ala–Leu sequences.  

 

In investigating the pH responsiveness of hydrogel-forming sequences, we found that all peptides 

exhibited lower storage moduli upon a decrease in pH. The three pHs were chosen (4.6, 7.4 and 

10.6) to include the physiological pH of 7.4—particularly relevant for viable cell encapsulation—

as well as acidic and basic pHs that bracket the pI of each sequence (Figure 1A). The Gʹ increases 

by several orders of magnitude as the pH of the solution increases toward neutrality (Figure 6B). 

Non-gelling sequences (KYFIV, KYFIA, KYAIL) also exhibit pH-responsive behavior: at low 

pH, the peptides were soluble, but precipitated as an off-white powder as the pH was raised (but 

never gelled). The storage (Gʹ) and loss (Gʺ) moduli of 1.5 and 3 wt. % hydrogels increased with 

increasing concentrations of the hydrogel and increasing pH conditions (Figure 6A, B, S7 and S8).  

 

The apparent viscosity of all gelling sequences decreased linearly with increasing shear rate, 

demonstrating the shear-thinning capacity of these hydrogels (Figure 6C, Figure S10). Multiple 

high-strain (100%) sweep cycles, with 30 s recovery periods, demonstrated KYFIL’s ability to 

self-heal following mechanical deformation, without any evidence of hysteresis (Figure 6d, Figure 

S11). Following a 100% strain, hydrogels repeatedly recovered gel behavior within 14 seconds 

(G’ > G”). Within 1 minute, the gel recovered 82% of its initial G’, and required 3.4 minutes to 

recover 90% and 7 minutes to recover 96% (Figure S11). Even after multiple high-strain cycles, 

the hydrogel rapidly and repeatedly recovers its mechanical strength—rendering these materials 

particularly ideal for biomedical applications that require injection. This enables uniform 

encapsulation of cells in 3D, ex vivo, and then injection via a minimally invasive technique. 

Similarly, we found that the hydrogels could re-gel, macroscopically, following a syringe ejection 

(Movie S7), suggesting that materials based upon these peptides could be well-suited to additive 

manufacturing applications like extrusion-based 3D printing. 

 

The propensity of our RAPID peptides to adopt β-rich structures, alongside their capacity to form 

hydrogels (and the presence of fibrillar networks in such gels [see below]), bears a striking 

resemblance to the phenomenon of liquid phase condensation88 as a means to form P-bodies, stress 

granules, and other types of intracellular protein gels or "membrane-less organelles". In such 
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liquid-liquid phase separated systems89, a multivalent web of relatively weak (individually) 

molecular interactions leads to the mesoscopic assembly of a distinct, de-mixed liquid phase (e.g., 

the nucleolus) within the cell. Notably, these molecular interactions generally occur between low-

complexity, conformationally pliable peptides, as in the recently characterized, hydrogel-forming 

"low-complexity aromatic-rich kinked segments (LARKS)"90.  A possible direction for future 

work involves elucidating any similarities between the ‘aromatic ladders’ and other structural 

features of LARKS assemblies and, for instance, the conserved Phe in our RAPID peptide systems. 

 

4.3.4 Electron Microscopy of Nanofiber Morphology: TEM and CryoEM 

Fibrils, tubes, dendrimers and other ultrastructures often form via a hierarchical supramolecular 

arrangement of specific, noncovalent contacts91-92. TEM analysis revealed that our RAPID 

hydrogels are composed of nanofibers as well as dense regions of fibrous bundles. At low pH (i.e. 

non-gelling conditions), fibers do not form within the peptide solution; rather, amorphous 

aggregates are present (Figure 7A). At physiological pH, individual fibers bundle into hierarchical 

nanostructures with clearly twisted, ribbon-like morphologies (Figure 7B). The multi-stranded, 

twisted ribbons reported here are unique among nanofiber-forming, self-assembling peptide 

hydrogels41, 93. In at least some characterized systems, the helicity (and other geometric properties) 

of fibers are thought to depend on such atomic-level effects as the properties of steric packing 

between aromatic side-chains, such as for Tyr and Phe94; whether the general morphological 

properties that we find for RAPID peptides can be traced to such underlying factors is an appealing 

question for future structural modeling studies.  In earlier work87, 94, cooperative intermolecular 

hydrogen-bonding between the backbone N- and C-termini were found (by modeling) to enable 

stronger interactions (i.e. closer intermolecular packing), leading to the classical geometric 

features of twisted ribbons. Our peptides are C-terminally amidated, and it is more likely that 

RAPID fibrils assemble via anti-parallel stacking of pentapeptides, with details of the molecular 

packing predominantly stemming from apolar dispersion forces and other enthalpically favorable 

interactions among the Phe moiety and amphiphilic nature of the sequence95-96. 
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Individual fibers can apparently entangle, yielding multi-stranded twisted ribbons (Figure 7C).  

Similar hierarchical ‘bundling’ of fibrils, interwound ‘superhelices’, and other higher-order 

assemblies have been seen in systems such as amyloid-related peptides97-99.  In other previously 

characterized self-assembling peptide systems, ionic interactions, modulation by the solvent 

environment, and hydrogen bonds are thought to govern the formation of interconnected networks 

Figure 4-7.	 Representative EM images of 1.5 wt.% KYFIL hydrogels. A) Images of 
amorphous peptide aggregates in non-gelling conditions (pH 4.6). There is no distinct fiber 
formation within peptide solutions.  B) Images of individual twisted ribbon molecular 
assemblies present within the hydrogel at pH 7.4. These twisted ribbons have ca. 40 nm 
width and ca. 132 nm pitch. C) TEM images of bulk fibres within the hydrogel. Both 
‘classical’ fibrous bundles that are commonly observed in other reported self-assembling 
peptides and the twisted ribbon morphology are present within this hydrogel system. D) 
Cryo-EM images of 1.5 wt. % KYFIL hydrogel. Twisted ribbon morphologies are present 
within the hydrogel. E) Lower magnification of the KYFIL peptide, demonstrating that 
twisted ribbon morphologies are present in mass throughout the hydrogel volume. F) 
Quantification of the pitch and diameter of the twisted ribbons is consistent and 
reproducible. A and B refer to different synthetic batches.  
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of nano-fibrils13, 15, 24, 27, 93, 100-101. In addition—unlike other nanofiber-forming peptides—the 

pentapeptide sequences presented here are significantly shorter than many hitherto characterized 

systems (decapeptides and beyond). Furthermore, other self-assembling peptide hydrogels13, 24, 85, 

92 often lack distinct morphology within their nanofiber-forming sequences (instead being irregular 

and heterogeneous), whereas RAPID peptides form highly regular, twisted fibril nanostructures. 

 

Cryo-TEM of our pentapeptide samples in vitreous ice reveals fibers that maintain twisted fiber 

morphologies, with finite fiber lengths up to ~100 µm (Figure 7D). At relatively low 

magnification, twisted ribbons appear to pervade the hydrogel network, suggesting that these 

particular morphologies are not isolated, localized or otherwise spurious instances of self-assembly 

(Figure 7E). As part of an unbiased experimental design, two different batches of the KYFIL 

pentapeptide were independently synthesized and evaluated under TEM in order to assess the 

robustness and reproducibility of fibril formation.  The geometric features of the fibers (helical 

pitch, diameter) were consistent across the two separate batches (Figure 7F), demonstrating that 

these results are replicable and that there is low batch-to-batch variability as regards the peptide 

synthesis process, purification, and self-assembly.  The periodicity of the fibrillar twist is ≈ 120 

nm, as determined via visual analysis (Figure 7) and by calculation of the autocorrelation function 

of pixel intensity along individual fibrils (Figure S12). 

 

Notably, both of these morphological features of our RAPID peptides—the presence of a fibrillar 

twist, and the ≈ 120 nm value of its pitch—are recapitulated in the structural features of many 

peptide-related systems, amyloidogenic and otherwise. One example is b-sheet fibrils and 

"periodically-twisted nanoribbons" formed by an Ac-NNFGAILSS peptide from the 

"amyloidogenic core" of islet amyloid polypeptide (IAPP21-29)97. These peptides featured axial 

repeats of ≈ 85-100 nm. In a closely related system, an overlapping IAPP-derived peptide (IAPP20-

29) had AFM-characterized fibril periodicities of ≈ 203 nm99. Fibrils from disparate proteins (e.g., 

SH3-containing proteins, and lysozyme) can also be polymorphic. Based on AFM studies, two 

subpopulations of SH3 fibrils form helical repeats of ≈ 105 nm and ≈ 156 nm, while human 

lysozyme fibrils have an "axial crossover repeat" of ≈ 200 nm102. Perhaps most pertinent to our 

current study, systematic studies of a family of short peptides based on I3K (including all 

stereoisomeric combinations of L- and D-amino acids), showed that these amphipathic peptides 
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form twisted fibrils with a helical pitch of ≈ 120 nm103. This is in remarkable agreement with our 

RAPID fibrils, which exhibit nearly the same pitch (Figure 7F).  Though not identical to these 

previously characterized systems, the morphological properties of our RAPID peptide-based 

fibrils nevertheless are quite similar, suggesting that perhaps some unifying structural and 

energetic principles underlie the formation of these various supramolecular structures, amyloid-

related and beyond. Most broadly, such commonalities could have overarching implications for 

peptide engineering and nanomaterials. 

 

As expected, peptide sequence has a significant effect on the nanofiber morphology. More 

specifically, the self-assembly of hierarchical twisted ‘macromolecular’ structures can be altered 

by substituting any residue within the ···Phe–Ile–Leu··· moiety that detracts from the 

amphiphilicity of the sequence and p-system interactions. Similarly, any modification to the 

sequence also results in drastically different mechanical properties, as indicated in our rheology 

studies. We observe some twisting in nanofibers occurs within 1.5 wt. % AYFIL hydrogels at pH 

7.4, but the typical diameters of these fibers (≈ 10 nm) are significantly smaller than those of 

KYFIL hydrogels (≈ 40 nm). Though impossible to assess without more detailed analyses, a 

possible molecular basis for this difference relates to the sterically smaller alanine enabling a 

tighter packing of individual peptides within fibers or protofibers (versus the more extended Lys 

side-chain). For the KAFIL system under the same conditions, there is no distinct fiber 

formation—only spherical aggregates are seen (Figure 8), though it should be noted that KAFIL 

peptides can form hydrogels at higher pH conditions. Interestingly, for KYFAL hydrogels, twisted 

ribbon morphologies still occur, though the persistence length of these fibers appears to be 

Figure 4-8. Representative TEM images of 1.5 wt. % pentapeptides in PBS at pH 7.4. KYFIL 
hydrogels exhibit twisted ribbon morphologies, while AYFIL hydrogels are comprised of 
twisted fibrils. KAFIL peptide solutions at pH 7.4 form spherical aggregates (non-gelling 
conditions), while KYFAL hydrogels also form twisted ribbon morphologies, with longer 
and more infrequent pitch than KYFIL peptides.  

50 nm 50 nm 50 nm 50 nm 

AYFIL KYFIL KAFIL KYFAL 
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significantly shorter (based on qualitative/visual analysis), and the twist periodicity (i.e., helical 

pitch) is more irregular. The change in fibrillar morphology, upon an Ile → Ala substitution, may 

ultimately stem from an alteration in the steric properties of side chain–mediated geometric 

packing of peptides.  While there is a great difference in length-scale between an individual peptide 

on the nm-scale and a supramolecular assembly (such as a fibril), we do see correlations between 

hydrophobicity properties of the different pentapeptides and the patterns of relative solvent 

accessibility across the different peptides, as captured by MD simulations (Figure 5). An intriguing 

problem for future work is elucidation of the sequence correlates and stereochemical basis for fiber 

morphology (e.g., thicker ribbon diameters [≈40 nm] for KYFIL versus [≈10 nm] for KYFAL). 

Successfully addressing this goal will likely require an integrative, multidisciplinary and 

multiscale approach, such as was used to decipher the atomic structures of cross-β amyloid fibrils 

of a transthyretin-derived peptide98.  

 

4.3.5 Cell-Protection by RAPID Hydrogels during Syringe Ejection 

 During syringe needle flow, cells can experience various types of mechanical forces that 

ultimately disrupt the cellular membrane: 1) extensional flow, where cells encounter stretching 

forces, 2) pressure drop across the cell, and 3) shear stresses, due to linear shear flow as the cell 

travels across the syringe6. In our present study, we experimentally tested the effects of syringe 

needle flow on the viability of oligodendrocyte precursor cells (OPCs) suspended in PBS or 

RAPID hydrogels as a cell carrier at a flow rate of 1000 µL/min. OPCs are therapeutically relevant, 

as OPC transplantation may help circumvent the inherent regenerative limitations within the 
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Figure 4-9. Viability of OPCs immediately after syringe needle flow in PBS and AYFIL 
hydrogels. A) Live/Dead images of viable (green, GFP+) and membrane damaged (red, 
ethidium homodimer-1) cells postejection in PBS or 1.5 wt. % AYFIL hydrogels. Each 
sample of cells encapsulated in RAPID and PBS, respectively contained at least 140 total 
cells. B) Percent cell viability with injection in PBS or hydrogels. Error bars represent 
standard error of the mean (SEM) from three separate syringe ejections (n = 3), *p < 0.05. 
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central nervous system (CNS).104-105 Indeed, this OPC transplantation strategy is currently being 

pursued as a therapeutic intervention in human traumatic spinal cord injury patients22. When cells 

were ejected in PBS, OPC viability was significantly decreased compared to cells encapsulated in 

RAPID hydrogels and ejected (p < 0.05, Figure 9). This finding suggests that RAPID hydrogels 

could protect transplanted cells from the mechanical forces encountered during syringe needle 

flow and serve as valuable cell carriers in transplantation protocols.  

 

4.3.6 Cytocompatibility and 3D Cell Culture Potential of RAPID Hydrogels 

Mounting evidence now highlights the mechanosensitive nature of OPCs within the CNS. These 

lineage-restricted glial cells give rise to myelinating oligodendrocytes, and OPC proliferation and 

differentiation both correlate with the physical stiffness of underlying 2D106 or surrounding 3D 

matrices107. 

The biophysical properties of hydrogels sharply influence the proliferation and differentiation of 

stem cells within a 3D environment108-109. For instance, neural stem cells (NSCs) proliferate 

significantly more in softer substrates1, 110, and preferentially differentiate into neurons in 

hydrogels with low moduli111-113.  Recent evidence indicates that OPCs are also sensitive to the 

biophysical stiffness of their surrounding microenvironment114. We encapsulated OPCs115 in order 

to examine the effect of the RAPID hydrogels on viability and proliferation. OPCs survived and 

grew in 1.5 wt. % AYFIL hydrogels (1900 Pa), as determined by the increase in both ATP and 

DNA concentrations over time (Figure 10a and 10b, respectively). A 1.5 wt. % AYFIL hydrogel 

was used to investigate cytocompatibility and cell growth, as its mechanical properties (~1900 Pa) 

approximate CNS tissue stiffness1, 116. Cell encapsulations with 1.5 wt. % KYFIL hydrogels 

resulted in poor cell viability, likely due to the stiffness (~8000 Pa) being much greater than native 

CNS tissue.  

 

Live/dead imaging indicated a high percentage of viable cells (Figure 10C). Others have 

previously shown that OPCs can extend processes within 3D poly(ethylene glycol) hydrogels after 

7 days of culture, but only in the presence of laminin107. Here, we demonstrate that cells within an 

AYFIL hydrogel can extend processes within 2 days of culture without any bioactive cellular 

adhesion peptide sequences or incorporating native ECM proteins (Figure 10D, Movie S8-S10). 

This could be due to physical hydrogel peptide matrix being permissive of remodeling by the cells. 
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This finding highlights that the simplicity of our cell culture system is sufficient for growth of cells 

derived from the CNS, without the need for laminin-derived peptide sequences as has been 

demonstrated in other peptide hydrogel systems15. 

 

4.3.7 Conclusions 

We have devised a new family of short, five amino acid, peptide sequences capable of self-

assembling into robust hydrogels. We synthesized seven closely-related, stimuli-responsive 

pentapeptide sequences. Four of our RAPID sequences form robust hydrogels at concentrations 

down to at least 1.5 % (w/v).  Physicochemical features of the sequence—in particular, 

amphiphilicity and inclusion of a central phenylalanine—influence the self-assembly and β-strand 

formation propensities of this class of peptides.  MD simulations, aimed at examining the structural 

properties of these β-strand–forming peptides, reveal that hydration plays an integral role in the 

conformational dynamics of these peptides. Experiments reveal that our hydrogels exhibit shear-
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Figure 4-10. MADM OPC line encapsulated in 1.5 wt. % AYFIL hydrogels and cultured 
over 4 days. A) OPCs remained viable after encapsulation for at least 4 days, as determined 
by the increase of ATP over time (B). The increase in DNA concentration suggests that cells 
proliferate over the course of 4 days. Error bars represent standard error of the mean (SEM, 
n = 3).  C) Live/Dead (green/red staining) images taken at Day 1 of the experiment 
demonstrate that the majority of cells remained viable following encapsulation. Image is a 
maximum projection of a 132 µm thick z-stack. D) Maximum projection (23 µm thick z-
stack) of OPCs encapsulated in AYFIL hydrogels after 2 days of culture. Process extension 
of OPCs are observed, suggesting that these hydrogel systems are suitable for neural cell 
culture. GFP (green), Actin (red), DAPI (blue). 
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thinning and self-healing properties—features that may stem, at least partly, from the facile 

formation of β-sheet structures (in accord with our MD simulations). These rheological properties 

suggest the suitability of our RAPID peptides for biomedical applications requiring injection. 

Additionally, we observe that at physiological pH, hierarchical nanostructures (i.e. individual 

fibers) bundle into clearly twisted, ribbon-like morphologies. The multi-stranded, twisted ribbons 

reported here are unique among nanofiber-forming, self-assembling peptide hydrogels. We 

demonstrate that these self-assembling hydrogels offer effective strategies for encapsulating OPCs 

within 3D matrices of tunable viscoelasticity. These scaffolds allow for cell growth and 

morphological process extension in OPCs. We also demonstrate that RAPID hydrogels can 

mitigate the damaging effects of extensional flow during syringe injections. The supramolecular 

assemblies formed by RAPID peptides represent injectable hydrogel systems that may offer new 

and translational approaches for cell delivery and tissue engineering applications. 
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 Abstract 

Low cell survival after syringe injection hampers the success of preclinical and clinical cell 

transplantation trials. During syringe injection, cells experience mechanical forces that lead to cell-

membrane disruption and decreased viability. To improve cell survival, we designed Rapidly 

Assembling Pentapeptides for Injectable Delivery (RAPID) hydrogels that shear-thin, protect cells 

from extensional flow, form fibers, and provide mechanical properties similar to native tissue. We 

found that 1.5 wt % RAPID hydrogels mitigate the damaging effects of extensional flow resulting 

in significantly greater cell viability (of common laboratory cell lines, primary cells, and human 

cells) than cells injected in PBS. 
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Recently, interest has grown in transplanting stem cells to restore tissue and organ function 

following an acute injury or debilitating disease, including stroke1-3, tissue fibrosis4-5, cardiac 

diseases6-8, and Alzheimer’s disease9-11. However, cell transplantation strategies suffer from poor 

cell survival (often with viabilities as low as 1% - 32% post-transplantation12-13) due, in part, to 

the harsh microenvironment and acute immune response at the injury site14-15. Stem cell 

therapeutics often require the use of syringe-based devices to deliver cells in a minimally invasive 

manner. Where accessibility is limited, delivery may be restricted to the usage of small-gauge 

needles, and the actual injection process itself may negatively affect the viability of cells during 

their passage through the needle16. 

 

Suspending cells in microenvironments conducive to cell survival through manipulation of their 

biomechanical properties can protect transplanted cells during and after delivery and support cell 

survival and growth17-19. Hydrogels are suitable for cell encapsulation because they can provide 

biophysical support for cells. Hydrogels that undergo reversible shear-induced thinning and self-

healing could protect cells both during and after injection. Hydrogels can be easily modified with 

biological moieties20-22, such as the attachment of cell-adhesive ligands23-24, and growth factors25 

Figure 5-1. RAPID hydrogels here are formed from the AYFIL pentapeptide sequence. A) 
A ball-and-stick model of the peptide sequence with C’-terminal amidation displays the 
peptide backbone and side chains of residues (carbon in gray, hydrogen in silver, oxygen 
in red, and nitrogen in blue). B) 1.5 wt. % RAPID peptides undergo physical crosslinking 
and rapid gel formation upon mixing with PBS (pH 7.4). C) Representative EM images of 
1.5 wt.% RAPID hydrogels show bulk fibers within the hydrogel. D) Individual fiber 
molecular assemblies within the pH 7.4 hydrogel exhibit twisted fibrillar morphology. 

50 nm 
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26, that support cellular proliferation and/or differentiation. However, in order to initiate a sol-gel 

phase transition, these hydrogels require either 1) covalent crosslinks either formed in vivo, which 

could potentially be cytotoxic27-28, or formed ex vivo, creating preformed gels or 2) physical 

crosslinks formed via non-covalent and reversible bonds. Many physically crosslinked hydrogels 

are preferred for biomedical applications due to their cytocompatible properties, with some 

exhibiting shear-thinning and injectable capabilities29-31. However, these systems often require a 

substantial change to their environment, such as changes in pH32-33, temperature34-35, or ionic 

strength36-37 in order to induce a gel phase transition. Consequently, cells encapsulated within these 

materials are often subject to non-physiological conditions that could lead to undesirable decreases 

in cell viability38. To address these challenges, we developed a new class of self-assembling 

pentapeptides capable of forming robust hydrogels upon mixing under physiological conditions39.  

These supramolecular assembly-based cell delivery vehicles are cost effective and simple to 

synthesize. Here, we demonstrate that this rapidly assembling pentapeptides for injectable delivery 

(RAPID) hydrogel can mitigate the damaging effects of extensional flow during syringe injections. 

 

In this study, we report the design, synthesis, and characterization of a self-assembling 

pentapeptide hydrogel that can serve as a cell carrier for cell transplantation (Figure 1A). Our 

designer AYFIL-NH2 sequence (hereafter referred to simply as ‘AYFIL’) self-assembles into b-

sheet–forming nanofiber hydrogels. These hydrogels were examined via transmission electron 

microscopy (TEM) and were found to be uniformly composed of twisted nanofibers (Figure 1C, 

D). AYFIL morphologies included long fibers with a mean diameter of 10.18 ± 1.81 nm with 

twisted fibrillar morphology as determined via visual analysis. In comparison to previously 

reported pentapeptide sequences in the RAPID family39, AYFIL fibers do not exhibit distinct 

ribbon-like morphology and the typical diameters of AYFIL fibers (≈ 10 nm) are significantly 

smaller than those of related KYFIL peptide sequence hydrogel fibers (≈ 40 nm)39. The smaller 

size of the AYFIL fibers is likely related to the fact that AYFIL hydrogels have a lower shear 

moduli than KYFIL hydrogels, perhaps indicating less robust or organized fiber assembly. AYFIL 

hydrogels also have a lower loss moduli (viscous component of shear modulus) and demonstrate 

a slightly lower viscosity as a function of shear (Figure 2D)39, which could potentially make them 

easier to inject. 
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 RAPID samples had higher storage moduli (G') than loss moduli (G''), verifying that a hydrogel 

was indeed formed (Figure 2A, B). Multiple high strain (100%) sweep cycles with 30 s recovery 

periods demonstrated the AYFIL hydrogel’s ability to self-heal following mechanical deformation 

(Figure 2C). 1.5 wt. % AYFIL hydrogels recovered 90% of their initial G' after the first cycle 

within 10 s, and up to 98% in the following cycles, with no further decrease in G' observed in 

subsequent large-amplitude oscillatory shear cycles. After multiple high strain cycles, the 

hydrogel’s ability to rapidly and repeatedly recover its mechanical strength indicates that these 

materials can withstand mechanical deformation from exogenous strains. Additionally, the 

apparent viscosity decreases linearly as a function of increasing shear rate, emulating the behavior 

of similar KYFIL pentapeptides39, demonstrating the hydrogel’s shear-thinning capability (Figure 

2D).  

A B 

C D 

Figure 5-2. Rheological properties of 1.5 wt. % RAPID hydrogels at pH 7.4 (n = 1 for all 
samples). A) Angular frequency sweep of AYFIL pentapeptide sequence at constant strain 
of 0.1%. G' is an order of magnitude greaten than G” indicating hydrogelation has 
occurred. B) Strain sweep of gelling pentapeptide sequences at constant angular frequency 
of 10 rad/s. Above the critical strain at 5%, the material becomes progressively more fluid-
like, where G' starts to increase and G'' begins to decrease. C) Five step strain sweeps of 
0.1 % (100 s) and 100 % strain (50 s), followed by a 100 s recovery period, were performed 
on RAPID hydrogels. The hydrogel recovered 90% of its initial G' within several seconds. 
The hydrogel repeatedly recovered its mechanical strength following multiple high strain 
cycles. D) The apparent viscosity decreased linearly with increasing shear rate 
demonstrating that these hydrogels are capable of shear-thinning. 
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We hypothesized that the shear-thinning and rapid self-healing nature of hydrogels would make 

them useful as injectable cell carriers. Studies have previously shown that cell damage occurs 

during the ejection process due to the mechanical disruption of cell membranes16. During syringe 

needle flow, cells can experience various types of mechanical forces that ultimately disrupt the 

cellular membrane: 1) extensional flow, where cells encounter stretching forces, 2) pressure drop 

across the cell, and 3) shear stresses, due to linear shear flow as the cell travels down the syringe16.  

Cross-linked alginate hydrogels with the lowest storage modulus (29.6 Pa) significantly improve 

the viability of ejected cells to 88.9 ± 4.9% versus uncross-linked alginate (58.7 ± 8.1%)16. While 

A 

B 

Figure 5-3. Rheological properties of 1.5 wt. % RAPID hydrogels with and without 
encapsulated cells. (n = 1 for all samples).  A) Angular frequency sweep of gelling 
pentapeptide sequences at constant 0.1% strain with and without encapsulated cells (105 
cells/ml in blue squares, 106 cells/ml in cyan circles, 107 cells/ml in purple triangles; no 
cells in black diamonds). G' is an order of magnitude greaten than G” indicating 
hydrogelation has occurred for all samples. B) Strain sweep of gelling pentapeptide 
sequences at constant frequency of 1 hz (105 cells/ml in blue squares, 106 cells/ml in cyan 
circles, 107 cells/ml in magenta triangles; no cells in black diamonds). Above the critical 
strain at 5%, the material becomes progressively more fluid-like, where G' starts to increase 
and G'' begins to decrease. The storage modulus (G') is indicated by filled-in shapes, and 
the loss modulus (G'') is indicated by empty shapes. 
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this is a markedly improved result compared to Newtonian fluids, a high concentration of calcium 

ions involved in the crosslinking process could have a detrimental effect on cell survival and 

proliferation immediately following the injection process38, 40.  

We sought to address these challenges using RAPID hydrogels that rapidly form in PBS solution. 

Before the syringe injection process, we examined the effect of cell density on hydrogel 

mechanical properties as the addition of cells into the hydrogel matrix could significantly alter 

their mechanical properties41-42. One of the many advantages of physically crosslinked hydrogels 

(such as RAPID) versus covalently crosslinked hydrogels is that cell mobility (i.e. through 

contractile and adhesive forces exerted by the cell) is often not hindered since fibers within 

physically crosslinked hydrogels are compliant enough to allow for cellular-based remodeling 

induced by cellular contractile forces43-44. We then investigated three different cell concentrations 

(1 × 105, 1 × 106, and 1 × 107 cells/mL) to determine whether increasing cell concentrations would 

drastically alter the hydrogel’s mechanical properties, and subsequently the injectability of these 

constructs. 
  

First, we examined the mechanical properties of cell-free hydrogels. G' was determined to be 3.1 

± 0.13 kPa as indicated by the linear viscoelastic regime. We next determined the effects of adding 

oligodendrocyte precursor cells (OPCs) to the hydrogel precursor solution. Once cells were 

encapsulated within the hydrogel and incubated for 10 minutes, the combined solution was 

pipetted unto the rheometer platform for further mechanical characterization (please refer to the 

supplementary material where more experimental detail is provided). G' increased with cell density 

and decreased with increasing shear strain (Figure 3). The increase in cell density results in an 

increase of G' upwards of 30% compared to hydrogels with no cells. For comparison, cells 

typically exert strains of up to 3 – 4% in 2D culture45 and up to 20 – 30% in 3D culture46-47. The 

increase in G' is subsequently reflected in increasing cell density and increased mechanical 

strength48 of the hydrogel, most likely as a result of the contributing strain forces exerted by 

encapsulated cells. Similarly, culture time can also affect the stiffness and viscoelastic 

characteristics of hydrogels owing to differences in matrix accumulation49. Our results are in 

agreement with other physical hydrogels such as alginate hydrogels40, and they illustrate the 

positive relationship between increasing cell density and mechanical strength of our RAPID 

hydrogels. Others observe a decrease in the compressive modulus in covalently crosslinked 



 135 

hydrogels with higher encapsulated cell concentration50. The decrease in modulus in such a system 

could be attributed to cell-mediated quenching of photoinitiated radicals, thus inhibiting 

polymerization51. Alternatively, cells may perturb covalent hydrogel networks by introducing 

defects that prevent higher-order crosslinking within the precursor solutions52. 

 

Finally, we experimentally tested the effects of syringe needle flow (1000 µL/min53) on cell 

viability for several cell types: oligodendrocyte precursor cells (OPC), mouse myoblasts (C2C12), 

primary human mesenchymal stem cells (hMSC), and primary mouse lung fibroblasts (MLF) (n = 

3 to 5 replicates). We chose these mammalian cells, including common laboratory cell lines, 

primary cells, and human cells, to robustly show that the gel could protect a variety of cell types 

from damage occurring during syringe injection. All cell samples experienced a significant 

decrease in cell viability during syringe needle flow when delivered in PBS alone (*p < 0.05, 

Figure 4A, B). For primary MLFs, the cells incurred significantly more damage to their membranes, 

as indicated by the colocalization of the calcein AM and ethidium homodimer-1 stains.  For OPCs 

specifically, the viability was 86.8% for cells injected with RAPID hydrogels, and 48.8% in PBS. 

This agrees well with the previously reported viability of ejected OPCs, 85.2% and 46.2% for cells 

in hydrogels and PBS, respectively54, suggesting the reproducibility of our experiments. RAPID 

hydrogels with G' = 3.1 kPa were able to mitigate the damaging effects of extensional flow for all 

tested cell types, resulting in significantly greater cell viability than cells injected in PBS.   

 

In summary, we synthesized an AYFIL peptide sequence capable of self-assembling into a 

hydrogel in physiological conditions. The rheological properties indicate the suitability of RAPID 

hydrogels for biomedical applications requiring injection. At physiological pH, hierarchical 

nanostructures (i.e. individual fibrils) bundle into twisted nanofiber morphologies to form the gel. 
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We show that these RAPID hydrogels exhibit shear-thinning and self-healing properties.  

Increasing cell density leads to a trend toward increasing hydrogel modulus. Importantly, we 

observe higher overall cell viability after syringe flow in hydrogels compared to cells ejected in 
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Figure 5-4. Short-term viability of oligodendrocyte precursor cells (OPC), mouse myoblast 
(C2C12), human mesenchymal stem cells (hMSC), and primary mouse lung fibroblasts 
(MLF) after syringe needle flow in 1.5 wt. % RAPID hydrogels and PBS. A) Live/Dead 
images of viable (green) and membrane damaged (red) cells one hour post-ejection show 
that cell membranes are significantly comprised when PBS is used as an ejection vehicle. 
Viability is rescued when RAPID hydrogels were used as an ejection vehicle. B) When cells 
were ejected in PBS, cell viability was significantly decreased compared to cells 
encapsulated in RAPID hydrogels and ejected. Error bars represent standard error of the 
mean (SEM) from three separate ejections (n = 3), *p < 0.05. Total cell numbers reported 
for OPCs, C2C12s, hMSCs, and MLFs in hydrogels are 222, 38, 40, and 40 respectively, 
and 167, 476, 61, and 32 in PBS, respectively. 
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PBS. These self-assembling hydrogels offer effective strategies for encapsulating various cell 

types within 3D matrices, including sensitive primary and human cells, and for protecting them 

from syringe-needle flow during the injection process. We used several different cell types in the 

experiment to test the universal protective capabilities of RAPID hydrogels, and demonstrate that 

cell protection applies across different cell types. All cell types that were encapsulated within 

RAPID hydrogels displayed significantly higher viability compared to cells ejected with PBS. 

Encapsulating these cells within RAPID hydrogels may shield them from deformation by 

extensional flow and shear by linear flow and could potentially improve the therapeutic outcomes 

of stem-cell based therapies. Furthermore, this material could be used for a variety of cell culture 

and 3D printing applications, or to inject therapeutic cells and localize them to a potential injury 

site, given the injectability and self-recovery capabilities of the RAPID hydrogel.  
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6 Conclusions 
This thesis focused on developing supramolecular biomaterials for applications in neural 

tissue regeneration. We employed a multifaceted approach that employs computational modeling 

of peptides and proteins to design and synthesize multi-domain assemblies similar to those found 

within the CNS. We have thus employed MD simulations in the design of a new class of self-

assembling pentapeptide hydrogels (RAPID) in combination with experimental approaches. By 

simulating our systems at physiological temperature and for significant durations (>100 nsec per 

system), we developed an atomic-resolution, quantitative understanding of the 3D structure and 

conformational dynamics of our design. In this way, we were able to assess the suitability of our 

construct as a general-purpose scaffold for our longer-term goals (hydrogels to mimic ECMs of 

neural tissues). In the work presented, we report a self-assembling pentapeptide sequence that does 

not require any protection groups such as acetyl1-4, t-butyloxycarbonyl5, or other large aromatic 

groups6-7, which simplifies the synthesis process and greatly reduces the cost of materials. We 

created and modeled several peptides that gel under physiological conditions and recapitulates the 

biomechanical properties of the native brain extracellular matrix (ECM). This combinatorial 

strategy provides 1) an important molecular model and mechanistic understanding of peptide 

assembly, 2) rheological behavior conducive to injectable delivery, and 3) hydrogel properties 

favorable to neural cell growth and development.  

 In the last three decades, most short self-assembling peptides have been discovered by 

mapping onto sequence design principles derived from biological systems, or synthesized based 

on the conformational heterogeneity of amyloid fibers8-10. However, descriptions of the 

thermodynamics in the folding pathway are often plagued by ill-informed design principles that 

fail to predict the structural diversity of highly ordered structures. While the principles are 

generally able to make clear the biomolecular function to which these structures are associated 

with, they are not readily interpretable at an atomic or molecular level. Currently, we are limited 

by our understanding of how specific sequences of amino acids spontaneously fold into higher-

order structural units. How can we capture this highly dynamical process that involves the 

formation and dissociation of molecular interactions that vary greatly in the type (e.g. long-range 

electrostatic interactions, hydrophobic effect, hydrogen bonding etc.), number, and duration?11 For 

this work, we found that MD simulations serve as a versatile toolbox that allows us to dissect the 
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conformational dynamics of our peptide system, namely, we were able to show that the assembly 

propensity of the peptides is correlated with the diffusional association of individual peptides in 

the presence of long-range forces. Additionally, these MD simulations, aimed at examining the 

structural properties of these β-strand–forming peptides, reveal that hydration plays an integral 

role in the conformational dynamics of these peptides. We also find that self-assembly is primarily 

driven by p-p stacking interactions and the amphiphilicity of the peptide sequence, resulting in 

stacked b-sheet conformations, as confirmed by FTIR studies.  

 For our experimental studies, we synthesized seven closely-related, stimuli-responsive 

pentapeptide sequences. Four of these pentapeptide sequences form robust hydrogels at 

concentrations down to at least 1.5 % (w/v).  Physicochemical features of the sequence—in 

particular, amphiphilicity and inclusion of a central phenylalanine—influence the self-assembly 

and β-strand formation propensities of this class of peptides. Experiments reveal that our hydrogels 

exhibit shear-thinning and self-healing properties—features that may stem, at least partly, from the 

facile formation of β-sheet structures (in accord with our MD simulations). We observe that at 

physiological pH, hierarchical nanostructures (i.e. individual fibers) bundle into clearly twisted, 

ribbon-like morphologies. The multi-stranded, twisted ribbons reported here are unique among 

nanofiber-forming, self-assembling peptide hydrogels. The supramolecular assemblies formed by 

RAPID peptides represent injectable hydrogel systems that may offer new and translational 

approaches for cell delivery and tissue engineering applications. 

  Additionally, we also demonstrate that the rheological properties of RAPID hydrogels 

render them suitable for biomedical applications requiring injection. This is important because low 

cell survival after syringe injection hampers the success of preclinical and clinical cell 

transplantation trials. During syringe injection, cells experience mechanical forces that lead to cell-

membrane disruption and decreased viability. To improve cell survival, these RAPID hydrogels 

were designed to shear-thin, protect cells from extensional flow, form fibers, and provide 

mechanical properties similar to native tissue. In our syringe experiments, we found that 1.5 wt % 

RAPID hydrogels mitigate the damaging effects of extensional flow resulting in significantly 

greater cell viability (of common laboratory cell lines, primary cells, and human cells) than cells 

injected in PBS. Increasing cell density of encapsulated cells leads to a trend toward increasing 

hydrogel modulus. Importantly, we observe higher overall cell viability after syringe flow in 

hydrogels compared to cells ejected in PBS. These self-assembling hydrogels offer effective 
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strategies for encapsulating various cell types within 3D matrices, including sensitive primary and 

human cells, and for protecting them from syringe-needle flow during the injection process. We 

used several different cell types in the experiment to test the universal protective capabilities of 

RAPID hydrogels, and demonstrate that cell protection applies across different cell types. 

Encapsulating these cells within RAPID hydrogels may shield them from deformation by 

extensional flow and shear by linear flow and could potentially improve the therapeutic outcomes 

of stem-cell based therapies. Furthermore, this material could be used for a variety of cell culture 

and 3D printing applications, or to inject therapeutic cells and localize them to a potential injury 

site, given the injectability and self-recovery capabilities of the RAPID hydrogel. 

 Finally, we demonstrated that the presence of cell-adhesive epitopes influences the growth 

and process extension of OPCs. Nonfunctionalized RAPID hydrogels alone saw limited changes 

in OPC morphology compared to gels that incorporated cell-adhesive ligands. IKVAV, RGD, and 

YIGSR functionalized hydrogels had similar material mechanics, and increased levels of cell 

metabolic activity compared to non-functionalized hydrogel controls. The hydrogel system 

presented here allows for independent adjusting of the concentration of multiple cell-adhesive 

ligands without any changes to the mechanical properties of the hydrogel. The facile preparation 

of functionalized RAPID hydrogels should be widely applicable to other studies at understanding 

the effects of matrix-bound ligands involving 3D hydrogel encapsulation studies.  

 

7 Future Perspectives 
 

While it has been demonstrated that cell transplantation strategies using biomaterial scaffolds can 

potentially improve the neurologic outcome and reduce infarct size, many questions still remain, 

and the precise cellular and biochemical mechanisms of cell-induced repair remain to be 

elucidated. For example, are necrotic cells being replaced, or do transplanted cells produce 

neurotrophic factors that stimulate endogenous repair? What cell type(s) should be used that would 

promote neurogenesis and/or vasculogenesis? What are the specific cues that initiate cell 

propagation or differentiation within biomaterials? What intracellular signaling pathways should 

be considered (i.e. conjugation of growth factors and ECM proteins to biomaterials) that would 

have the most impact on cell-matrix interactions? What is the optimum therapeutic time window 
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for such biomaterials-based therapy? What key mechanical properties (e.g. topography, matrix 

stiffness, porosity) of hydrogel biomaterials are most important in improving regeneration? And, 

most importantly, what types of biomaterials, or combinations thereof, will yield the most 

therapeutic benefit?  

 

Additionally, biomaterials development should consider cell-matrix interactions that influence 

trophic support and differentiation potentials. This includes incorporating degradable sites in the 

biomaterial to allow for cell secreted protease-induced remodeling of the matrix. Additional 

molecules from the secretome (i.e. cytokines, chemokines produced through paracrine signaling, 

and trophic factors) derived from stem cells also play a large role in improving post-stroke 

angiogenesis and functional recovery12-14. Furthermore, stroke therapies should also consider the 

delivery of neuroprotective compounds that suppress the deleterious effects of inflammation and 

prevent cellular degeneration. Unfortunately, most of these drugs are inactive following systemic 

administration due to the low permeability of the blood-brain barrier (BBB)15. From a biological 

standpoint, nano-scale delivery systems that can mediate cell-cell and cell surface receptors-ligand 

levels that can reliably permeate through the BBB have yet to be developed. Subsequently, in order 

to effectively develop drugs that can cross the BBB, a refined understanding of the crosstalk 

between endothelial cells and associated astrocytes, as well as the selectivity of the tight junctions 

from between the two is required. Even after the delivery vehicle is able to penetrate into the brain 

tissue, the surface of the vehicle must be tailored with site-specific ligands to localize the 

bioavailability to only the affected areas of the brain (i.e. infarct cavity).  

 

Incorporation of vasculature within biomaterial scaffolds, especially in the context of neural 

regeneration in stroke injury models, still remains a significant challenge in the field. Mimicking 

the endogenous expansion of blood vessels into vast networks during neurogenesis and 

concomitantly remodeling of the neovasculature is a highly unexplored area. NSCs and 

oligodendrocyte progenitor cells are frequently found, and migrate along, small blood vessels. 

Ultimately, most in the field have opted for developing models that can establish tight junctions 

between endothelial cells and contacts with pericytes and astrocyte endfeet using induced 

pluripotent stem cell (iPSC)-derived sources16-17, however, these models insufficiently describe 

the vascular tree and cerebral arterial hierarchy inherently present in the CNS. Understanding the 
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cross-talk between neural and vascular cells and signaling pathways will reveal how a 

dysfunctional neurovascular unit is remodeled upon injury. The challenge of decoupling the 

synergistic effects of vascular development and brain development, however, remain to be 

addressed18-19.  

 

Finally, it is important to consider modulating the immune system in response to ischemia-induced 

inflammation. Ideally, a reduced inflammatory response from biomaterials engraftment is a 

favorable outcome. However, it has become exceedingly clear that activated microglial and 

perivascular macrophages play an integral role in reestablishing tissue homeostasis in the brain 

and remodeling of the neurovascular unit. In early stages of recovery, chronically activated 

microglial produce pro-inflammatory cytokines, toxic amounts of ROS, and MMPs that degrade 

the BBB. At later stages, phagocytosis of cellular debris along with the production of anti-

inflammatory cytokines by the same microglia occurs, consequently attenuating the deleterious 

effects of inflammation and inhibition of tissue regeneration. Because of the Janus-faced nature of 

these reactive glia that could play both a destructive and protective role at different time points, 

therapeutics targeting inflammation in cerebral ischemia should be mindful of temporal 

considerations that can block deleterious effects within the penumbra and foster post-ischemic 

anti-inflammation mediators that can contribute to tissue repair. Ultimately transplanted 

biomaterials will likely serve as a provisional matrix, influencing the injury environment and 

directing any transplanted cell behavior, until the integrating transplant or host cells can establish 

de novo tissue. Modulating both the injury, and the immune reaction to it, are underexplored areas 

ripe for new strategies in CNS regeneration. 
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9 Appendices 
 Appendix 1: Materials and Methods for Tang et al. J. Am. Chem. Soc., 

141: 4886-4899 (2019) 
 

9.1.1     Peptide Synthesis.  

All peptides were synthesized by solid-phase chemistry in 0.1 mmol batches on a Tribute peptide 

synthesizer (Gyros Protein Technologies, AZ). A TentaGel R Rink Amide Resin was used which 

results in a C-terminal amide. Solvents and Fmoc (fluorenylmethoxycarbonyl)–protected AAs 

were purchased from Gyros Protein Technologies. Reagents were made with 5 equiv. moles of 

amino acid and 5 equiv. moles of HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate), and subsequently dissolved in DMF (dimethylformamide). Amino acid 

coupling cycles were 60 min in length. Protecting groups were removed with treatments of 20/80 

v/v piperidine/DMF for 10 minutes. After the coupling reaction was complete, the resin was 

washed three times with DCM (dichloromethane) before running the cleavage step. Cleavage of 

the peptides were accomplished by shaking the resin with 10 mL of TFA (trifluoroacetic 

acid)/triisopropylsilane/H2O (95:2.5:2.5 volume ratios) for 2 h at room temperature. The peptide 

solution was collected, and the peptide precipitated by the addition of cold diethyl ether followed 

by two washes with cold ether after centrifugation. The peptides were dried overnight, redissolved 

in deionized water and dialyzed with 10 water exchanges over 5 days using molecular weight 

cutoff of 100-500 Da (Spectra/Por, Spectrum Laboratories Inc., Rancho Dominguez, CA). 

Lyophilized peptides were stored at -20 °C and protected from light. MALDI-TOF (matrix assisted 

laser desorption ionization time-of-flight) analysis was used to characterize the mass of the final 

products. See Supporting Information for spectra (Figure S7-S13).  

9.1.2 Attenuated Total Reflection–Fourier Transform Infrared 

Spectroscopy (ATR-FTIR). 

 IR measurements were obtained for 3 wt. % peptides in PBS on a PerkinElmer 400 FT-IR 

spectrometer equipped with an ATR accessory. Aliquots of the peptide were deposited on a 

“Golden Gate” diamond ATR (PerkinElmer, USA). PBS was used as a background spectrum. 

Collected spectra were normalized by dividing all the absorbance values in the spectrum within 
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the Amide I band by the largest absorbance value1, baseline corrected, and vertically offset for 

ease of comparison. 

9.1.3 Molecular Dynamics Simulations of Pentapeptides.  

KYFIL, KYFAL, KAFIL and KYFIV peptides were constructed using the peptide builder tool in 

the program Avogadro2. A custom Tcl script was used to amidate the C-termini in VMD3 using 

the CHARMM36 forcefield4. Eighteen individual pentapeptides were solvated in a cube of explicit 

TIP3P water molecules, using VMD’s solvation box extension; a 4-Å padding between the solute 

and nearest box face was used along with periodic boundary conditions.  The pentapeptides were 

staggered 8 Å apart (as measured by their geometric centers) and rotated randomly so as to prevent 

orientational bias in the starting structures. The final simulation cell contains approximately 15,000 

atoms (and varies with peptide sequences) with a rectangular parallelepiped box of water 

measuring 67 Å x 71 Å x 49 Å. Physiological concentrations (150 mM) of Na+ ions, including 

sufficient Cl– ions to neutralize the solute’s charge, were added to the solvated system using 

VMD’s ionize plugin. The internal energy was minimized for 10,000 steps, and the system was 

then equilibrated for 10 ns (with a 2-fs integration step) in the isothermal–isobaric ensemble (NPT) 

ensemble. Temperature (300 K) and pressure (1 atm) were regulated via Langevin dynamics for 

all non-hydrogen atoms and a hybrid Nosé–Hoover Langevin piston. Simulations were performed 

in NAMD 2.105, with final production trajectories extended to 200 ns.  Trajectories were processed 

and further analyzed using in-house scripts written in the Python6 and D7 programming languages, 

as well as VMD. Secondary structures were assigned using STRIDE8-9. Peptide structures were 

characterized via the SURF calculation (surface areas), with the solvent probe radius set to 1.4-Å 

and applied to all peptides; in this way, clusters were then defined as any peptides that have 

overlapping molecular surfaces, within 1.4-Å of each other. Density function plots were 

determined using a univariate kernel density estimate from the Python Seaborn package. Table S1 

summarizes our peptide MD simulation systems. Grand average hydropathicity (GRAVY) values 

are computed from Kyte-Doolittle (KD) hydrophobicity10 indices averaged over the amino acid 

sequence for each peptide.  

9.1.4 Hydrogel Formation and Rheological Properties.  

Lyophilized peptides were dissolved in PBS to a final concentration of 1.5 or 3 wt. %. The pH of 

the peptide solutions was adjusted by drop-wise addition of minute amounts of HCl or NaOH. 
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Rheological tests were performed on 50 µL hydrogels 30 minutes after induction of gelation 

(Anton Par, P25S 25 mm parallel steel plates) with a measuring gap of 250 µm. Storage (Gʹ) and 

loss (Gʺ) moduli were measured as a function of strain (%) ranging from 0.01 to 100% with a 

constant frequency of 10 rad/s. Frequency sweeps were performed at angular frequencies ranging 

from 1 to 100 rad/s at 0.1% strain. For recovery experiments, a step-time procedure was utilized 

with a series of applied strains at a fixed oscillation frequency of 10 rad/s. Initially, samples were 

applied with 0.01% strain for 100 s followed immediately by a 100% strain for 50 s, and cycled 5 

times. 

9.1.5 Transmission Electron Microscopy.  

3.5 µL of peptide hydrogel was placed on a holey carbon grid (Protochips, Inc.). Three washes of 

deionized water, and three washes of 2% uranyl acetate staining solutions with 2 s blotting between 

each step was performed. Samples were analyzed on a Tecnai F20 equipped with a 4k x 4k 

UltraScan CCD camera. Pitch and length were determined using Fiji11, and the FiberApp software 

package12 was used to compute autocorrelation functions of intensity profiles. 

9.1.6 Cell Culture.  

GFP+ MADM OPC lines13 were expanded in vitro on T75 tissue culture plates treated with poly-

ornithine. OPCs were cultured in DMEM with high glucose, 4 mM L-glutamine, 1 mM sodium 

pyruvate (Life Technologies) with N2 and B27 supplement (Life Technologies), 1% penicillin-

streptomycin (Life Technologies), 10 ng/mL mouse PDGFA-AA (eBioscience), and 50 ng/mL 

human NT3 (Peprotech). Cell media was changed every 2 days, and cells were grown to 90% 

confluency and passaged using 0.25% trypsin in Dulbecco’s phosphate buffered saline (PBS).  

Cells were cultured in 5% CO2 atmosphere, and 21% O2 at 37 °C. 

9.1.7 Hydrogel Cell Encapsulation and Analysis. 

 Hydrogels for cell encapsulation were made using 1.5 wt% AYFIL peptide in PBS. 25 uL 

hydrogels with 5 ´ 106 cells/mL were made by mixing cells and peptides and then transferred to a 

cell incubator for 10 minutes at 37 °C at 100% humidity. OPC proliferation media was then added 

to the hydrogels, and changed every 2 days. Hydrogels were stored at −80 °C in lysis buffer before 

running ATP or DNA quantification assays. For quantification, gels were homogenized in lysis 

buffer using a hand grinder and were measured using the CellTiter-Glo luminescent Cell Viability 
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Assay (Promega, United States) and the Quant-iT PicoGreen dsDNA assay (ThermoFisher) 

according to manufacturer protocols.  

9.1.8 Syringe Needle Flow Viability Assay.  

OPCs were resuspended at a cell density of 1 ´ 105 cells/mL in either PBS or 1.5 wt.% AYFIL 

hydrogels, and loaded into a 1-mL syringe with an 18-gauge needle, mounted onto the syringe 

pump, and ejected onto a 24 well plate at a constant volumetric flow rate of 1000 µL/min. Cell 

viability was assessed with a dead stain  assay (Invitrogen). Briefly, hydrogels were rinsed for 10 

minutes in PBS plus glucose (PBSG), and stained with 4 µM ethidium homodimer-1 for 40 

minutes in PBSG, and rinsed in PBSG prior to imaging. GFP+/dead images were collected using a 

Zeiss LSM 510 confocal microscope. 150 µm z-stack images were collected with a frame distance 

of 1 µm. For image analysis, channels for live cells in the green channel and dead cells in the red 

channel were split and analyzed separately, and converted to 8-bit to allow for thresholding based 

on the intensity. The Find Maxima plugin was used for each channel to count the number of dead 

or live cells. Using the point selection tool, the Noise Tolerance values were adjusted by 

increments of 5 until background staining was excluded (the Noise Tolerance value was 50 for all 

images). The number of points for each channel were recorded, and were used to calculate the 

percentage of live and dead cells. Total cell count was between 146 and 287 for each image (n = 

3 samples per condition). Statistical significance was determined using the Student’s t-test with p 

< 0.05.  

9.1.9 Immunostaining.  

After 2 days of culture, gels were fixed in 4% paraformaldehyde for 20 minutes at 4 °C and rinsed 

with PBS before permeabilizing overnight with 0.3% triton-X in PBS. Hydrogels were rinsed in 

PBS, and then incubated with 10 µg/mL stock solution of Alexa Fluor 568 Phalloidin 

(ThermoFisher) in 1% BSA in PBS overnight. 4ʹ,6-diamidino-2-phenylindole (DAPI) was added 

to stain cell nuclei during the last 20 minutes of incubation. Gels were then washed 4 × 20 min in 

PBS and imaged with a Zeiss LSM 780 confocal microscope. 100 µm z-stack images were 

collected with a z-spacing distance of 1 µm.   
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Figure 9-1. Representative snapshots of KYFIL, KYFAL, KAFIL, and KYFIV peptide 
systems at increasing time points following minimization and equilibration. Snapshots were 
taken after minimization for 10,000 steps, and equilibration for 10 ns. MD simulations were 
conducted for 200 ns, and peptide systems were simulated with an explicit water solvent 
(TIP3 solvent model). For experimentally-determined gelling peptides (KYFIL, AYFIL, 
KYFAL, KAFIL) the number of peptide clusters decreases as the simulation progresses, 
highlighting their aggregation propensity. 
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Figure 9-2. ATR-FTIR spectrum of peptides in PBS (thick lines) and freeze-dried peptides 
(thin, transparent lines). All peptides that are able to gel at pH 7.4 (solid lines) exhibit an 
Amide I absorbance at 1629-1645 cm-1, indicative of β-sheet hydrogen bonding. Non-
gelling peptides in the same conditions (dashed lines) exhibit much weaker, less intense 
peaks at the same wavenumbers. All spectra are baseline corrected, normalized, and offset 
for clarity. 
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Figure 9-3. A) A magnified view of the ATR-FTIR spectrum of peptides dissolved at 3 
wt.% in PBS and pH 7.4. All gelling peptides (solid lines) exhibit an Amide I absorbance 
at 1629 cm-1, indicative of β-sheet hydrogen bonding. A peak at 1679 cm-1 to 1683 cm-1 
indicates that the β-sheet is in anti-parallel conformation. B) Non-gelling peptides (dashed 
lines) exhibit much weaker, less intense peaks at the same wavenumbers. All spectra are 
baseline corrected, normalized, and offset for clarity. 

 

 
Figure 9-4.	Sequence dependence of the radius of gyration (Rg). The Rg was measured for 
an ensemble of 18 peptides of different sequences (KYFIL, KYFAL, KYFIV, KAFIL, and 
AYFIL) after equilibration of 10 ns. All peptides incur hydrophobically-driven collapse 
(relative to initial starting structure). Dashed line indicates initial Rg before equilibration. 
Towards the end of the simulation, the Rg for KYFIL and AYFIL decreases relative to the 
beginning of the trajectory, highlighting their aggregation propensity.  

 

  



 190 

  

Figure 9-5. Ramachandran plot (φ, ψ distributions) for each residue in a pentapeptide sequence. The 
torsion angles for each type of amino acid, barring the N- and C- termini indicate significant 
structural heterogeneity within the peptide systems. The Phe for all pentapeptide analogs, adopts 
higher populations of β-turn type-II (f = -60 °, j = 120 °) and antiparallel β-sheet structures 
(f = -140 °, j = 135 °). For both the KYFAL and KAFIL sequence, the Ala preferentially adopts 
a polyproline type-II helix (f = -75 °, j = 145 °) and decreased propensity for β-sheet 
structures. Note that the residue at the N- and C-terminus does not have a Phi or Psi angle since the 
dihedral angle requires a plane comprised of C’-N-Cα-C’ and N-Cα-C’-N for Phi and Psi 
angles, respectively. 
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Figure 9-6.	Strain sweep of gelling KYFIL sequences at constant frequency of 1 hz. 
Measurements are carried out at 3 wt.% and 1.5 wt %. For all sequences, G’ decreases 
significantly in acidic conditions. Higher concentrations of peptides exhibit increased G’. 
Legend indicates 3 sample replicates.  
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Figure 9-7. Strain sweep of gelling pentapeptide sequences at constant frequency of 1 hz. 
Measurements are carried out at 3 wt.% and 1.5 wt.%, and different pH conditions (4.6, 
7.4, 10.6). For all sequences, G’ decreases significantly in acidic conditions. Higher 
concentrations of peptides exhibit increased G’. For KAFIL hydrogels, the G’ increases 
significantly in basic conditions. 
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Figure 9-8. Frequency sweep of gelling pentapeptide sequences at constant strain at 
0.1%. Measurements are carried out at 3 wt.% and 1.5 wt.%, and different pH conditions 
(4.6, 7.4, 10.6). For all sequences, G’ decreases significantly in acidic conditions. Higher 
concentrations of peptides exhibit increased G’. For KAFIL hydrogels, the G’ increases 
significantly in basic conditions. 

  



 194 

 
Figure 9-9. Frequency sweep of gelling pentapeptide sequence KYFIL at constant strain 
at 0.1%. Measurements are carried out at 3 wt.% from 0.01 to 10 rad/s to investigate the 
inherent dynamics of the hydrogel network. 
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Figure 9-10. Apparent viscosity versus shear rate measurements of gelling peptide 
sequences at different wt.% and pH conditions. All hydrogels displayed shear-thinning 
behavior, in which the viscosity of each sample decreases with increasing shear rate. 
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Figure 9-11.	A thixotropy test was performed for 1.5 wt. % KYFIL hydrogels. A strain 
sweep of 0.1 % (100 s) followed by a 200 % strain (200 s), followed by a 400 s recovery 
period. The hydrogel is able to recover 90% of its initial G’  in 3.5 minutes, and 7 minutes 
to recover 96%.  
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Figure 9-12. Periodicity of the fibrillar twist, as quantified by the intensity autocorrelation 
function (ACF).  The ACF was computed for the height intensity of fibrils found in 
micrograph images of three independent TEM specimens (red, green and blue traces); the 
fundamental frequency can be seen to correspond to a distance (lag) of ≈120 nm. 
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Figure 9-13.	MALDI-TOF MS of KYFIL peptide. Expected mass [M+H+]+ = 682.87, observed mass = 
682.312. 
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Figure 9-14.	MALDI-TOF MS of KAFIL peptide. Expected mass [M+H+]+ = 589.77, 
observed mass = 590.357 
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Figure 9-15.	MALDI-TOF MS of KYFIV peptide. Expected mass [M+H+]+ = 667.84, 
observed mass = 668.282 

 

  



 201 

 
Figure 9-16.	MALDI-TOF MS of KYAIL peptide. Expected mass [M+H+]+ = 605.77, 
observed mass = 606.098 
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Figure 9-17.	MALDI-TOF MS of KYFAL peptide. Expected mass [M+H+]+ = 639.79, 
observed mass = 640.102 
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Figure 9-18. MALDI-TOF MS of KYFIA peptide. Expected mass [M+H+]+ = 639.79, observed mass = 
640.183 
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Figure 9-19. MALDI-TOF MS of AYFIL peptide. Expected mass [M+H+]+ = 624.77, observed mass = 
625.354. 
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 ABSTRACT:  
Native extracellular matrices (ECMs) exhibit networks of molecular interactions between specific 

matrix proteins and other tissue components.  Guided by these naturally self-assembling 

supramolecular systems, we have designed a matrix-derived protein chimera that contains a 

laminin globular–like (LG) domain fused to an elastin–like polypeptide (ELP).  This bipartite 

design offers a flexible protein engineering platform: (i) laminin is a key multifunctional 

component of the ECM in human brains and other neural tissues, making it an ideal bioactive 

component of our fusion, and (ii) ELPs, known to be well-tolerated in vivo, provide a self-assembly 

scaffold with tunable physicochemical (viscoelastic, thermoresponsive) properties.  Experimental 

characterization of novel proteins is resource-intensive, and examining many conceivable designs 

would be a formidable challenge in the laboratory.  Computational approaches offer a way 

forward: molecular dynamics (MD) simulations can be used to analyze the structural/physical 

behavior of candidate LG-ELP fusion proteins, particularly in terms of conformational properties 

salient to our design goals, such as assembly propensity in a temperature range spanning the 

inverse temperature transition.  As a first step in examining the physical characteristics of a model 

LG-ELP fusion protein, including its temperature-dependent structural behavior, we simulated the 

protein over a range of physiologically-relevant temperatures (290-320 K).  We find that the ELP 

region, built upon the archetypal (VPGXG)5 scaffold, is quite flexible, and has a propensity for β-

rich secondary structures near physiological (310-315 K) temperatures. Our trajectories indicate 

that the temperature-dependent burial of hydrophobic patches in the ELP region, coupled to the 
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local water structure dynamics and mediated by intramolecular contacts between aliphatic side-

chains, correlates with the temperature-dependent structural transitions in known ELP polymers.  

Because of the link between compaction of ELP segments into β-rich structures and differential 

solvation properties of this region, we posit that future variation of ELP sequence and composition 

can be used to systematically alter the phase transition profiles, and thus the general functionality, 

of our LG-ELP fusion protein system. 

 

 Introduction 
A major challenge in neural tissue engineering and regenerative medicine is one of tissue 

construction: what biomaterial, in terms of chemical composition and physical properties, might 

best mimic the native extracellular matrix (ECM) that houses neural stem cells (NSCs), neurons, 

glia, and other cells?  Engineered proteins afford an opportunity to systematically control both 

biological functionality and the structural/mechanical properties of the resulting ECM mimetic, 

thus enabling one to guide the behavior of encapsulated cells.1, 2  For instance, neural cells 

encapsulated in engineered protein or peptide materials extend neurites hundreds of microns into 

the surrounding 3D matrix.3  These materials permit cellular remodeling and bioresorption via cell-

controlled proteolytic degradation, and inherently behave in a more physiologically native manner 

than do other biomimetics (e.g. commonly-used synthetic hydrogels).  Tissue engineering can 

benefit immensely from artificial ECMs designed from naturally-occurring protein sequences: 

such polymers promote native cellular interactions and elicit desired regenerative behaviors in 

vivo4, 5 while enabling control over bioactive and structural properties (porosity, proteolytic 

remodeling, cellular adhesion, stiffness, etc.).  In short, biologically-based ECM mimetics provide 

a suitable matrix for the controlled organization of viable cells into physiologically-relevant 

tissues.6, 7 

The ECM in neural tissue is a hierarchically structured composite material, consisting of 

proteoglycans and the large (typically >400 kDa) structural proteins collagen, fibronectin, and 

laminin.  In the central nervous system (CNS), laminin is a particularly vital component of the 

ECM.8, 9  Following a neural tissue injury, temporal regulation of laminin expression is critical in 

the production of potential neurotrophic and neurite-promoting factors by reactive astrocytes.10 

Laminin also plays an important role in axonal growth in the developing mammalian CNS and in 

concurrent mechanotransduction events, such as in astrocyte cell adhesion and spreading.8, 11 
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Laminins are glycoproteins that provide a key linkage between cells and the broader ECM 

scaffold.  Human laminin is an immense (900 kDa), disulfide-linked heterotrimer that consists of 

many globular domains and α–, β–, ϒ–rod-like chains; together, these entities assemble into a four-

armed cruciform shape.12 Several adhesion peptides have been identified within the laminin amino 

acid sequence; in particular, the 1124RGD, 925YIGSR and 2101IKVAV segments are known 

recognition sites for as many as 20 integrins,13 the 67 kDa laminin-1 receptor14 and the 110-kDa 

laminin-binding protein,15 respectively. These recognition sequences have been used to 

functionalize non-adhesive polymeric scaffolds, such as in hydrogels based on polyethylene glycol 

or hyaluronic acid.16-18  However, these short ECM-derived peptide fragments are often imperfect 

in mediating cell-signaling events in neural tissue (cell attachment, axonal growth, etc.), likely 

because of (i) insufficient binding with cell-surface receptors and (ii) failure to initiate anchoring 

for assembly of basement membrane scaffolds.19-23  

The fifth globular domain from the C-terminal region of the laminin α2 chain, denoted ‘LG5’, 

plays a key role as a binding site for integrins, heparin, and α-dystroglycan (α-DG).24-27 Heparin is 

a highly anionic, polysulfated glycosaminoglycan (GAG) that binds exogenous growth factors and 

thereby helps regulate and maintain neural stem cell (NSC) differentiation.28, 29 In neural cells, the 

α-DG glycoprotein complex plays a fundamental role in facilitating new laminin polymerization 

at the cell surface and in supporting cellular adhesion.30, 31 LG5 also contains a region that binds 

integrin β1,25, 27 which is part of an integrin adhesive complex that links the cytoskeleton and the 

ECM.  Past work has focused on engineering hydrogels that contain only the short integrin-binding 

peptides from LG modules.  A more effective biomimicry strategy might incorporate longer 

laminin sequences, enabling multifunctional biomaterials with native-like cell-binding capacities 

and targeted selectivity for growth factors (which, in turn, initiate stem cell self-renewal and 

differentiation programs).  There is a precedent for engineering proteins functionalized with the 

LG5 domain to mediate cellular behavior.32, 33 A yet further design criterion for ECM-mimetic 

fusion proteins is that they contain regions that enable assembly into higher-order structures, via 

either noncovalent (self-assembly) or covalent (chemical crosslinking) mechanisms. Elastin-like 

polypeptides (ELP) have generated much interest in the tissue engineering field, as the hierarchical 

self-assembly of these relatively ordered (via local interactions) peptides provides structural 

support in ECM materials, as well as the ability to control viscoelastic properties.  The ability to 

tune the physical properties of ELP-containing regions offers a versatile way to modulate protein-
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mediated interactions between cells and the ECM—interactions that are critical in cellular 

adhesion, spreading, and migration. 

ELPs undergo thermally-triggered first-order phase transitions,34 characterized by a system-

specific transition temperature known as the ‘lower critical solution temperature’ (LCST).  This 

behavior is also termed an ‘inverse temperature transition’ as the polymer becomes more structured 

upon reaching the LCST, and separates into polymer-rich and water-rich phases. The solution 

behavior at/near the LCST depends on both (i) intrinsic factors, such as the amino acid 

composition35, 36 and the number of (VPGXG)n pentapeptide repeats (‘X’ denotes a ‘guest’ residue, 

which can vary from one repeat to another), as well as (ii) extrinsic parameters, such as the 

concentration, pH, ionic strength, and other bulk solution properties.37-42 Both sets of factors are 

useful in the context of protein design and engineering, as they are entirely manipulable: various 

ELP regions can be fused to a target protein and combined with systematic perturbation of 

experimental conditions to modulate protein/solution properties at and near the LCST.  The 

assembly behavior at the LCST has been introduced into otherwise soluble polypeptides by fusing 

them to ELP regions.43, 44 The thermoresponsive behavior of recombinant ELP fusions then allows 

simple purification via inverse transition cycling,37 thus obviating expensive chromatographic 

resins and enabling large-scale production.  Also, biocompatibility of ELP fusion proteins with 

biomechano-responsive properties has recently been demonstrated in animals.45 

Fundamental progress in biomaterials discovery has been limited by a lack of high-resolution 

data about the structural dynamics of the underlying polymeric network.  The properties of any 

material ultimately stem from the three-dimensional (3D) structures and dynamics of its molecular 

constituents—from the level of individual proteins to their higher–order assembly into matrices.  

These structural and dynamical properties, in turn, are deeply linked to the patterns of intra- and 

inter-molecular interactions that are thermodynamically accessible (and substantially populated) 

under a given set of experimental conditions.  The structural and thermodynamic properties of a 

fusion protein design can be quantitatively characterized via experimental means (e.g., X-ray 

scattering), but systematically doing so on the scale of many dozens or even hundreds of designs 

would be prohibitively laborious and resource-intensive.  Moreover, such approaches do not, in 

general, provide the atomic-resolution information on structure and dynamics that we need in order 

to iteratively refine and systematically improve our designs. 
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The thermodynamic properties and structural dynamics of various ELPs, above and below their 

LCSTs, have been studied by experimental and computational means.46-50  However, a universally 

accepted, atomically-detailed description of the physicochemical and structural basis of this phase 

transition remains elusive;48, 51, 52 also, past studies have generally examined short ELP regions in 

isolation, not fused to other protein domains.  Deeper knowledge of the phase behavior and 

interfacial properties of ELPs would expand their general utility in biomaterial applications, and 

would mitigate the costs of producing and characterizing what end up being poorly structured (or 

otherwise undesirable) ECM candidates.  Here, we have designed and simulated a multifunctional 

fusion construct, with the ultimate goal of driving neural differentiation via an engineered ECM 

that assembles under cyto-compatible conditions.  We use the LG5 domain to supply crucial cell-

protein-matrix interactions, while the ELP component of our modular design provides control over 

desired micro- and nanostructures.  Being able to control the properties of our fusion goes in 

tandem with the architecture and physical properties of these matrices being stimuli-responsive, 

so environmental parameters such as temperature must be able to modulate the individual protein 

structures that compose such a matrix. 

Using classical, all-atom MD simulations53 we have examined the behavior of our LG-ELP 

design near its putative phase transition, as well as the temperature-dependent conformational and 

structural dynamics leading up to the LCST.  These simulations supply picosecond-resolved, 

atomically-detailed information on discrete structural and functional states for our protein, on the 

overall timescale of ca. 100 ns.  Thus, we can both analyze the molecular events near the presumed 

LCST transition of our fusion protein and also obtain an a priori view of the structural properties 

of our design, before dedicating experimental resources to the synthesis and characterization of a 

novel biopolymer with unknown (and otherwise unpredictable) LCST behavior. 

 Methods of Procedure 
LG-ELP fusion protein design methodology. We designed an LG5–ELP fusion protein with 

the intention that it be able to undergo a temperature-induced structural transition, leading to 

formation of a functional ECM suitable for CNS tissue regeneration.  Four design criteria were 

applied: (i) The fusion protein should be thermodynamically stable (i.e. retain native structure) 

under physiological conditions (temperature, pH, ionic strength).  (ii) The fusion protein should 

feature bioactive sites along the LG portion of the peptide chain, and the ELP must not interact 

with the LG portion in a manner that occludes these bioactive sites (proteolytic sites, cell-binding 
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domains, binding sites for other ECM molecules or growth factors, etc.).  (iii) The fusion protein 

should be capable of self-assembly via noncovalent interactions.  (iv) The self-assembly properties 

should be readily controllable by altering the assembly-driving sequence element (ELP, in our 

case). 

ELPs consist of a pentapeptide repeat, (VPGXG)n, where X is any guest residue other than 

proline.  ELPs are described using the notation “ELP[WiYjZk]n”, where W, Y, and Z are the single-

letter codes for the amino acids at X, the subscripts i, j and k indicate the number of pentamers 

featuring that guest residue, and n is the total number of repeats.  From our estimates using the Tt-

based hydrophobicity scale of amino acids, 50, 54, 55 and the LCST behavior of various other 

engineered ELP fusions,44, 56 we designed an ELP with the sequence ELP[K2L2I2K2]1.  We predict 

that this motif will satisfy the aforementioned design criteria.  The repeated Gly-Leu and Gly-Ile 

dipeptides serve as cleavage sites for type IV collagenase (gelatinase),57 rendering the hydrogel 

susceptible to enzymatic cleavage and thereby allowing cell spreading and migration.  In addition, 

the primary amine functionality of the lysine side-chain (ε-𝑁𝐻+a) enables site-specific coupling or 

crosslinking reactions.58 

MD simulations of LG-ELP. Our LG-ELP design fuses the LG5 domain, known to adopt an 

antiparallel β-sandwich fold, to a Cʹ-terminal ELP tail (Figure 1).  Our starting 3D model for the 

LG5 domain was drawn from the crystal structure of the mouse homolog of the laminin α2 chain 

(PDB 1DYK),19 which contains residues 2934–3117 of that particular laminin chain. An initial 3D 

structure for the 42-residue ELP-[K2L2I2K2]1 sequence, 

(GVG)(VPGKG)2(VPGLG)2(VPGIG)2(VPGKG-VPGK), was built using the peptide builder tool 

in the program Avogadro;46 the Nʹ-terminal GVG in the above sequence is a linker from the Cʹ-

terminus of the LG5 domain.  The ELP starting structure was modeled as a canonical α-helix, with 

backbone torsion angles of φ = –60°, ψ= –40° (Figure S1).  ELPs are likely only loosely structured 

in solution,59 so the helical starting structure was not anticipated to bias the equilibrium structural 

ensemble (at least not if given sufficient sampling).  Atomistic MD simulations were performed in 

NAMD, under the CHARMM36 force-field for proteins.60, 61 
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Figure 10-1. The proposed LG–ELP fusion protein. This schematic of our protein 
engineering design shows a laminin globular-like (LG) domain fused to a Cʹ-terminal 
elastin-like polypeptide (ELP). (A) The biologically active segments25, 27 in the LG domain 
function as recognition/binding sites for α-DG (red), heparin (purple), and integrin-β1 
(blue). Our ELP repeat region (cyan), consisting of 42 residues of the ELP pentapeptide 
repeat motif and a three-residue linker (orange), comprises the Cʹ-terminal tail of our fusion 
construct; this ELP region is intended to act as a self-assembly module.  (B) A 3D structural 
rendition of the fusion protein (ribbon representation) shows the LG domain as an overlay 
of multiple snapshots from the 100-ns simulation.  The LG domain folds as a β-sandwich, 
with two sheets (one with six strands and the other with seven strands) stacked atop one 
another; the colored regions correspond to the recognition sequences in (A).  The ELP tail 
is indicated (cyan), with the specific structure shown here drawn from the 315 K trajectory 
at t = 1 ns (i.e., after energy minimization and initial trajectory equilibration). 

To prepare for simulations under periodic boundary conditions, the initial 3D model of LG-ELP 

was solvated in a cube of explicit TIP3P water molecules, using the ‘solvation box’ extension in 

VMD62; a 15-Å padding of solvent, between the solute and nearest box face, was used to mitigate 

interactions between the protein and its periodic images.  Physiological concentrations (150 mM) 

of Na+ ions, including sufficient Cl– ions to neutralize the solute’s charge, were then added to the 

solvated system using VMD’s ‘ionize’ plugin. The final simulation cell contained 166,137 atoms, 

with a cubic box of water measuring 120 Å/edge.  The internal energy was minimized for 10,000 

steps, and the system was then equilibrated for 10 ns (with a 2-fs integration step) in the NPT 

ensemble (Figure 2, initial pose).  Simulations were conducted over a range of seven temperatures: 

290, 295, 300, 305, 310, 315, and 320 K. In each case, temperature and pressure (1 atm) were 

maintained using a Langevin thermostat and piston. NAMD 2.9 was used for all simulations,63 

with each trajectory extended to a final production time of at least 100 ns.  To assess whether 

trajectory-derived quantities were consistent across our various final (production) runs—and not 
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merely consequences of insufficient/limited sampling—we performed extended simulations. 

Using the final structure (trajectory frame) from the 310 K simulation (effectively providing a 

negative control) we computed the corresponding structural quantities of 100-140 ns trajectories 

at 290, 300, and 320 K.  Moreover, we extended the 310 K simulation to 200 ns, as interesting 

transitions occur near this temperature. 

Trajectories were processed and further analyzed using in-house scripts written in the Python64 

and D65 programming languages, as well as VMD.  Root-mean-square deviations (RMSD) for Cα 

atoms were computed with VMD’s RMSD extension toolbox.  Secondary structures in the ELP 

region were assigned using STRIDE.66, 67  Table S1 summarizes all of our LG-ELP–related 

simulations.  All simulation configuration files and analysis scripts are available upon request. 

 



 213 

 
Figure 10-2. Representative structures, illustrating temperature-dependent conformational 
states of the LG-ELP fusion protein. In the initial pose, the LG-ELP protein is shown 
immediately after minimization and equilibration of the simulation system, with the LG 
domain (ribbon diagrams) enclosed by a semi-transparent blue surface. This initial pose 
was the starting model for simulations at each temperature. The ELP region (ribbons) in 
this starting state can be seen to be a mixture of helices and coils; the Cʹ-terminus is labelled 
in this view with α-helices colored purple, 310 helices blue, β-strands yellow, the β-turn 
motif cyan and irregular coil regions white. LG-ELP structures are shown from each of the 
290–320 K trajectories, with each temperature indicated and each structural snapshot taken 
at 100.0 ns.  Insets are representative snapshots at 310 K and 315 K, taken from the 68.4 ns 
and 91 ns timepoints, respectively; the side-chains that contact one another to mediate β-
sheet formation are depicted as ball-and-stick representations (gray carbons, blue 
nitrogens, red oxygens, and silver hydrogens). These trajectory frames illustrate the 
formation of β-sheet regions within the ELP tail. 

 

Analysis of relative solvent-accessible surface area. Solvent-accessible surface areas (SASA) 

were calculated with the SASA tool in VMD, using a standard water probe radius of 1.4 Å.  Rost 
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& Sander’s method68 was used to determine the relative solvent accessibility, 𝑅𝑒𝑙𝐴𝑐𝑐@, of each 

residue 𝑖 in the ELP region; this relative accessibility is simply the ordinary accessibility of a 

residue in a 3D structure (𝐴𝑐𝑐@) normalized by the maximal value possible for that residue type 

(𝑅𝑒𝑙𝐴𝑐𝑐@ =
hiij

G<khiij
).  In our analyses, 𝑅𝑒𝑙𝐴𝑐𝑐@  values were computed over the entirety of the 

production trajectories for each simulation temperature. 

Hydrogen-bonding analysis. Hydrogen bonds were computed using VMD’s geometric criteria: 

namely, a distance cutoff of 3.5 Å and a D-H-A angle cutoff of 30°. Hydrogen bonds between two 

water molecules were excluded from our calculations. The number of water molecules surrounding 

the ELP backbone was determined by counting the number of waters within 3.15 Å of the peptide, 

as previously described.52 This distance corresponds to the first minimum in the radial distribution 

function between the oxygen atoms of water molecules and atoms in the peptide backbone (Figure 

S2). 

Statistical data analysis. Output data from our Tcl/Tk scripts (used with VMD’s Tcl API) were 

analyzed using tools from the NumPy and SciPy Python packages. Note that all simulations, and 

subsequent trajectory and data analyses, were of the full-length (225–amino acid) LG-ELP protein.  

In many cases, we show only the ELP region in certain sections of our analyses; this is purely for 

the sake of clarity and simplicity. Spearman rank-order correlation coefficients, and associated p-

values, for trajectory-derived data (taken from the beginning to the end of the trajectory)—such as 

intramolecular hydrogen bonding statistics, the number of neighboring water molecules, etc.—

were calculated using SciPy’s statistical modules.  

 

 Results and Discussion 
Temperature-dependent structural transitions of the LG-ELP fusion construct. To explore 

the structural properties and conformational dynamics of our model LG-ELP fusion protein 

(Figure 1) at various temperatures, and illuminate its phase transition behavior, we performed all-

atom MD simulations of the protein immersed in a bath of explicit solvent.  This system was 

simulated at temperatures ranging from 290 K to 320 K, with each trajectory extended to at least 

100-ns duration.  Representative structures from the trajectories show that the ELP region in the 

initial pose is a mixture of helices and coils, and this region forms more structured β-strands near 

310–315 K (Figure 2).  This finding agrees with other studies of the assembly propensity of similar 

ELP segments (albeit in isolation, not as a fusion partner).69, 70 We find that the ELP does not 
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associate with the LG domain, and thus the LG domain remains accessible in solution, for binding 

of bioactive agents such as integrins, heparin, and α-DG.  The structural stability and general 

rigidity of the Nʹ-terminal LG domain is largely maintained throughout each simulation, with the 

RMSD never exceeding 5 Å (data not shown), as opposed to the far more flexible ELP region 

(Figure 3).  

 

 
Figure 10-3. Representative structures of the LG-ELP fusion protein simulated at different 
temperatures. Spatiotemporal evolution of the LG-ELP fusion protein is demonstrated by 
superimposing frames, taken at 10-ns intervals, from the simulation of the entire fusion 
protein. The ELP region is colored so as to convey the simulation time, graded from early 
(red) to middle (gray) to late (blue) timesteps along the MD trajectory.  Note the structural 
rigidity of the LG domain and the conformational flexibility of the ELP region. 

As shown by the overlaid structural snapshots in Figure 3, the LG domain’s initial structure is 

largely preserved throughout each simulation.  The ‘frayed’ appearance of the ELP region 

highlights the structural disorder/flexibility inherent to native elastin-based sequences. At 

temperatures below 305 K, we see a collapse of the ELP from its initial conformation. A 

hydrophobic cluster within ELP, towards the end of the 100 ns trajectory,	 is present for all 

temperatures except 310 K, where the ELP region becomes extended; this point can also be seen 

in each contact map (Figure 4). Contact maps are matrices that show, for each residue in a 3D 

structure, the pairwise distance to all other residues. These symmetric matrices compactly 

represent the pattern of intramolecular contacts, and in our case reveal a lack of interatomic 

contacts between the LG and ELP regions (Figure 4).  At 310 K, a transient—but noticeable—

extension of the ELP occurred, starting at ~75 ns and highlighted by the loss of intra-strand 

hydrogen bonds (data not shown).  This thermally-induced rearrangement of the ELP region may 

well correspond to the sampling of conformations that would favor higher-order (intermolecular) 

assembly, and we do not see this structural extension at 315 K (though, as for any simulation, 

absence of an observation could reflect limited sampling). 
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Figure 10-4. Contact maps of the 
dynamical interactions in our LG-
ELP design reveal a lack of 
persistent LG···ELP interactions, 
independent of temperature.  
Contact maps are shown for the 
full length LG-ELP fusion at the 
indicated simulation 
temperatures, with colors graded 
by the pairwise distance (scale 
bar) between the two side-chains 
under consideration. The two 
discrete structural units in our 
fusion, i.e. the LG domain and 
ELP region, are demarcated by 
blue and red lines, respectively 
(for clarity, this is drawn only in 
the 295 K map). The classic 
crisscross patterns, highlighted by 
stripes of contacts perpendicular 
to the main diagonal, are 
indicative of the β-sheet core of 
the LG domain. Because an 
ordinary (symmetric) contact map 
contains two-fold redundant 
information, here we show (i) the 
minimum inter-residue distance in 
the lower triangular matrix, and 
(ii) the mean inter-residue 
distance, averaged over an entire 
trajectory, in the upper triangle.  
At all simulation temperatures, no 
stably persistent intra-molecular 
contacts (short distances) are 
found between the LG and ELP 
regions, as illustrated by (i) the 
high-intensity (short-distance) 
square submatrices at the lower-
right of each map, indicating that 
most ELP residues interact with 
other ELP residues (not LG 
residues), and (ii) the vertical 
white stripes toward the right of 
each matrix, indicating a dearth of 
LG···ELP contacts.  Thus, the ELP 
polypeptide does not engage in 
spurious/unwanted interactions 
with the LG region in solution, at 
least not on the 100-ns timescale 
of these simulations. (Contact 
maps for all simulated 
temperatures can be found in 
Figure S8.) 
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Secondary structure composition and its dependence on temperature. We examined the 

structural transitions from the initial starting peptide structure to the final conformational 

ensemble, focusing on the ELP region of the LG-ELP fusion.  At all temperatures, the ELP region 

exhibits a significant amount of unstructured character (β-turn and 'other' in STRIDE), with these 

two classes accounting for most of the secondary structures in the ELP (Figures 5, S3, and S4). 

These findings are consistent with solid-state NMR data59, 71 and CD spectroscopy72, 73 of similar 

ELP sequences, where residues within the pentapeptide repeat preferentially adopt β-turn 

structures. We found that the ELP region accrues β-strand character over the course of a 100-ns 

trajectory at physiologically-relevant temperatures, and we posit that this β-strand enrichment can 

serve as a useful structural property for achieving temperature-triggered LG-ELP assembly; such 

assembly can occur via intermolecular β···β-strand contacts, e.g. by the domain swapping mode of 

β-rich protein association.74, 75 

In simulations at 305 K, there is a sharp reduction of α-helicity, followed by a complete loss of 

helical structure after 74 ns (Figure S3 and S5). The secondary structure distribution at 305 K also 

shows a bimodal distribution in β-turn and 'other' motifs (Figure 5), indicating the preferential 

sampling of these two discrete conformational states. At 310 and 315 K, there is an increase in β-

sheet character. The occurrence of β-sheet–like structures at temperatures above the phase 

transition has been experimentally detected in similar, single-molecule ELP systems.46, 52, 73, 76, 77 

The drastic change in secondary structural content found in our trajectories suggests that heating 

the system potentially destabilizes polyproline-induced α-helix conformations, perhaps by 

selectively decreasing the stability of water solvation effects78, 79. Such a disruption in helical 

propensity is consistent with the findings of Li et al.46 and Ohgo et al.,59 where, at higher 

temperatures, the proline in (VPGXG) adopts torsion angles similar to type-I and type-II β-turns. 

This shift in secondary structure in our LG-ELP system is especially prominent at 320 K, where 

there is a complete loss of β-sheet character, and the reduction of β-bridges with respect to 310 K 

and 315 K is associated with the increase in β-turns within the system. At lower temperatures, the 

composition favors more α-helical and 'other' secondary structures (310 helices, π-helices, random 

coils, etc.). The pattern of sampling that we find in secondary structure formation, as a function of 

temperature, suggests that 310 K is near the target temperature at which macromolecular ordering 

of the LG-ELP fusion may occur. 
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This phenomenon associated with the structural changes accompanied by the phase transition is 

further demonstrated by the distribution of secondary structural content in the 200-ns trajectory. 

The time evolution of the secondary structure profile in the extended simulation at 310 K showed 

four distinct regions of persistent 𝛽-sheet like conformations, Leu4-Gly5200-201 - Leu4-Gly5205-206 

and Ile4-Gly5210-211 - Ile4-Gly5214-215 (Fig. S6) with reduced conformational flexibility.  Using the 

final trajectory frame of 310 K as a starting structure, we extended the simulation from 100 ns to 

140 ns at 290 K, to assess the potential artefacts of limited sampling of structural classes.  

Reassuringly, we found that the 𝛽-sheet state does not persist, and in fact it disappears within 5 ns 

(Fig. S4, S7).  Similarly, a transition from the 310 K trajectory to 320 K corresponds to a decrease 

of 𝛽-sheet content.  At 300 K, however, the temperature shift resulted in a seemingly stable, 

extended 𝛽 conformation of the peptide backbone in the Gly5201-Leu4205 region from 100-140 ns 

(Fig. S4 and S6). This result indicates that the intramolecular contacts between these nonpolar 

side-chains might be attributable to a population of pre-existing conformations from the previous 

structural ensemble at 310 K, as these are precisely the same 𝛽-sheet forming residues from the 

initial 100-ns trajectory.  
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Figure 10-5. Secondary structural content of the ELP region as a function of temperature 
across the 290–320 K series. For simplicity, these trajectory analysis results are shown only 
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for the ELP region, instead of the full-length LG-ELP fusion; there are no noticeable 
changes in the structural content of the LG domain in all of our simulations. These 
secondary structure analyses show that the average conformational behavior of a single 
ELP monomer strongly depends on simulation temperature. Numbers written as insets 
within each panel give the total number of times that the secondary structure was detected 
in the simulation.  Cartoon representations, shown as secondary structure thumbnail 
schematics in the first row, match the colors in the histogram. The predominant 
conformations exhibited by the ELP are β-turns and ‘other’ structures. At low temperatures, 
α-helical and β-turn structures are prevalent, with minimal β-strand and bridge structures.  
However, states with greater β-sheet structural content occur as the temperature goes from 
305 K to 310 K, indicating a possible order/disorder phase transition. Additionally, a 
significant shift in the character of the β structure, from strand to bridge, occurs at 315 K. 
The complete lack of β-strand structure at 320 K and subsequent rise in β-turns corresponds 
to an increased flexibility of the ELP backbone at higher temperatures. 

Relative solvent accessible surface area and visualization of association interactions. 

Conformational transitions can be analyzed via dynamical correlation functions, which provide 

information on how a molecule can interact with the surrounding solvent. We evaluated the solvent 

accessible surface area (SASA) of the ELP region in order to characterize the local ordering and 

solvation dynamics of the system.  The SASA can help quantify protein surface–water contacts, 

and it is a parameter that has long been associated with the thermodynamics of protein structure, 

as related to the hydrophobic effect and folding.80  

We find no strong trend in solvent exposure properties for residues in the ELP region (Figure 

6).  For all residues, a linear regression of SASA against temperature yields fits with R2 values less 

than 0.5 (data not shown).  This result suggests that the structural transitions of ELP regions do 

not strongly correlate with the SASA of any specific residue, representing a notable departure from 

previous models of ELP phase transitions.69, 81 There is also a striking lack of correlation between 

RelAcci and temperature. Linear regression gives R2 values less than 0.35 for each residue, again 

suggesting that any ELP phase transition in this temperature regime is not accompanied by gross 

structural rearrangements.  While the hydrophobic regions of ELP have been thought to become 

more exposed at elevated temperatures (at least for isolated ELP segments, unfused to other 

proteins),82 our simulations do not reveal any such correlation. Though the RelAcc of our ELP 

residues is uncorrelated with temperature, the values do fluctuate (Figure 6), and no single residue 

is consistently buried or consistently exposed. The ELP phase transition, therefore, seems to be 

marked most strongly by the formation of β-sheet secondary structures, without any concomitant 

gross structural rearrangements (at least in terms of SASA). 
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Figure 10-6. Temperature-dependent changes in relative SASAs of individual residues in 
the ELP region. The relative solvent accessibility, RelAcci, represents the accessible surface 
area of a residue in the context of a (potentially folded) polypeptide. Blue colors indicate 
that a residue is more solvent-exposed than average, while red indicates that a residue is 
more buried than it otherwise would be (outside the context of the peptide). 

A close examination of the intramolecular contacts, i.e. within the fusion protein, reveals that 

the formation of β-sheets by ELP residues is not occluded or otherwise hindered by interatomic 

contacts between the ELP region and the LG domain (Figures 4, 5, and S8).  From a protein design 

perspective, this is most reassuring: our simulations suggest that the ELP region will be accessible 

in solution, free of significant interactions with the nearby LG domain. Similarly, the LG domain’s 

function should not be abrogated by the presence of ELP, and we expect putative ELP···ELP 

interactions to mirror those found in previous studies of ELP aggregation.69, 73 

 

The role of hydration in compact conformations. We investigated the time-dependent 

hydration properties of our fusion’s ELP region by examining the intramolecular hydrogen 
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bonding (within ELP) and the number of water molecules hydrogen-bonded with the ELP. The 

number of surrounding water molecules decreases and the number of intra-peptide hydrogen bonds 

increases, with increasing temperature from 305 to 315 K, and then a dip occurs at 320 K (Figure 

7).  There is a slow decrease, with time, in the number of solvating water molecules at all simulated 

temperatures (Figure S9A).  The 310 K trajectory features an intriguingly abrupt dip in the number 

of water molecules at 64 ns and at 82 ns.  The displacement of water molecules with higher 

temperatures is consistent with a model wherein desolvation (e.g., of nonpolar side-chains) biases 

specific (e.g., polar) segments of the amphipathic ELP chain into more compact conformations, 

such as β-turns and strand-like conformations. Helical structures are often unfavorable at elevated 

temperatures for entropic reasons, such as a greater loss, upon folding, of orientational and other 

conformational degrees of freedom83, 84. Thus, higher temperatures may indirectly, via effects on 

solvation structure, enhance the stability of β-sheet formation in relatively disordered 

conformational ensembles, such as that of ELP. Changes in hydration density exhibit a correlation 

with β-sheet propensity along all trajectories (Figures S5 and S9B). A Spearman’s rank-order 

correlation coefficient of –0.83 (p = 0.04, for 100 ns) indicates a moderately strong negative 

correlation between intramolecular hydrogen bonding and surrounding water molecules with 

increasing temperature. This quantity captures the fact that, at elevated temperatures, the ELP 

region preferentially contacts itself rather than water—indicative of a phase transition59. The 

increased number of hydrogen bonds above 305 K suggests a coil-to-globule transition.76 A 

possible model is that, at high temperatures, insufficient conformational order exists to allow for 

formation of a single, well-defined structural state. As such, at lower temperatures the increased 

rigidity of the system would not facilitate the formation of intramolecular peptide···peptide 

hydrogen bonds, which would, instead, be replaced by inter-molecular hydrogen bonds with the 

surrounding water structure. 
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 Figure 10-7. Changes in degree of hydration, hydrogen-bonding, and overall structure of 
the ELP region. (A) The number of water molecules is counted within 3.15 Å of the ELP, 
with varying temperature.  An abrupt decrease in the number of surrounding water 
molecules suggests that this change is associated with the formation of β-sheets at 310 K in 
the ELP region. (B) The number of intramolecular peptide···peptide hydrogen bonds 
(Hpeptide-peptide). The formation of intramolecular hydrogen bonding has been observed for 
many peptide aggregates that exhibit LCST behavior; however, the large number of 
disordered conformational states of our ELP hinders us from discerning any trend as 
regards a temperature that might be indicative of a phase transition. (C) Temperature 
dependence of the radius of gyration (Rg). Proteins in all simulated temperatures exhibit 
temperature-induced collapse (relative to the initial starting structure). Only 310 K and 320 
K show a slight expansion of the polypeptide chain, while all other proteins exhibit 
compaction—reminiscent of the ‘hydrophobic collapse’ in typical (water-soluble) globular 
proteins.  In all panels, black error bars represent standard deviations and gray error bars 
show min/max values.  Only the last 40 ns of the trajectories at each temperature are 
included in the analysis shown here.   
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Coupled protein···solvent interactions are a key element of a system’s structural properties and 

dynamical behavior in any order/disorder transition (e.g., protein folding), but time-resolved 

experimental data on such interactions are not easily obtained, at least at high spatial resolution. 

Atomistic simulations can provide information about literally each inter-atomic contact, including 

the dynamical networks of (i) apolar interactions within a protein, (ii) protein···solvent contacts, 

and (iii) solvent···solvent contacts, all of which are important factors in macromolecular folding 

and binding. The compactness of a biomolecular 3D structure—and, by inference, the degree of 

formation of a hydrophobic ‘core’—can be measured as the radius of gyration, Rg. The time-

evolution of Rg for the ELP region alone (Figures 7C, S10, and S11) does not clearly reveal a sharp 

phase transition, unlike many biopolymers that exhibit LCST behavior.43, 77, 85 Though Rg data are, 

in principle, experimentally accessible via solution-state measurements, e.g. Guinier analysis of 

small-angle X-ray scattering data,86 such approaches to extracting Rg values are confounded by 

phase changes in going from a soluble to insoluble state, as is common with many polymers that 

demonstrate LCST behavior.  Our simulations reveal that the ELP portion of our fusion protein 

adopts β-strand secondary structures at high temperatures, implying that this region can undergo 

structural changes, akin to order/disorder phase transitions, and form ordered complexes.  

Intriguingly, the drastic solute re-structuring that is often associated with LCST behavior82 does 

not appear to be a feature in our system’s transition.  At higher temperatures, the unfolding or 

‘elongation’ of the polypeptide (Figure S10 and S11) is primarily entropically driven, but at a 

critical temperature (near 315 K in our system), the chain collapses because the loss of 

configurational entropy of the side-chains and backbone is counterbalanced by entropic changes 

in the network of solvent···{solvent, protein} interactions.87, 88 To assess whether our findings were 

consistent with our results from the first 100-ns trajectories, we performed additional simulations 

at 290 K, 300 K, 310 K, and 320 K using the final (100 ns) frame from the 310 K simulation as 

the starting structure for each different temperature. These extended trajectory data support the 

argument of a structural transition near 310 K, where it is represented by a gross structural 

rearrangement of the polypeptide backbone. This transient state is characterized by a ‘two-state’ 

equilibrium between the collapsed and extended conformation (Fig. S11) within the ELP region. 

At low temperatures, i.e. 290 K and 300 K, we continue to observe a collapsed state, which is 

stabilized by the relatively strong peptide···peptide and peptide···water interactions, compared to 

the extended conformation at 310 K.  
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As a final step of analysis, we considered the ‘end–to–end’ distance, taken as the simple 

Euclidean distance between the Nʹ- and Cʹ-termini of a given polypeptide segment, as another 

geometric measure of peptide compactness. Monitoring the dynamics of the end–to–end distance 

for the ELP region (Figure S12) revealed that this part of our fusion design can explore a 

substantial region of conformational space without altering its global shape (as indicated by a 

relatively constant Rg value).  Note that this behavior differs from that of larger, ‘ordinary’ globular 

proteins, where the detailed 3D structural changes that correspond to transitions between nearby 

local minima on the energy landscape effectively act as barriers to the rapid sampling of 

conformational space, thereby decreasing kinetic rates of transitions.89-91 

 

 Conclusions 
Classical, all-atom MD simulations were used to examine the structural properties and 

conformational dynamics of an engineered, laminin–mimetic elastin–like fusion protein, referred 

to here as LG-ELP.  Analyses of the temperature-dependent conformational changes in full-length 

LG-ELP—in terms of secondary structural content, solvent accessible surface area, hydrogen 

bonding, and hydration properties—illuminate the phase transition behavior of this fusion protein.  

The increased structuring of the protein, and the opportunity that that presents for engineering 

noncovalent interactions, provide a platform for the rational design of macroscopic material 

properties92. The secondary structural elements in a peptide are known to correlate with the 

compliance, stiffness, density, and other mechanical properties of hydrogels built upon the given 

peptide.93, 94 In this work, we computed atomically-detailed MD trajectories of an engineered LG-

ELP protein design at several temperatures thereby providing us with an a priori view of the phase 

behavior of our design as a function of temperature in the physiological range; reassuringly, we 

found that the ELP region of our fusion protein did not engage in spurious interactions with the 

LG domain.  This type of information is invaluable in guiding the design of new fusion protein 

sequences and motifs with desired biological functionalities. Ultimately, our strategy can be used 

to simulate multiple fusion protein designs, rank-order them, and synthesize those candidates that 

exhibit the desired phase transition behavior.  Because our strategy of using simulations is physics-

based, our approach also illuminates the secondary and tertiary structural properties of our LG-

ELP fusion, as well as physicochemical properties such as the coupled dynamics of the solvation 

environment and its influence on the phase transition behavior of our design. 



 226 

Simulations are enjoying increased use in the analysis of protein structure and function, but to 

our knowledge an MD-based simulation methodology has not been used in the manner reported 

here: namely, to help guide the design and iterative refinement of novel fusion proteins that can 

act as stimuli-responsive cellular matrix materials.  There exist relatively few examples of long-

time, all-atom simulations of polypeptide-based materials. The simulations reported here elucidate 

the relationships between solvation, hydrophobicity, structural dynamics and other atomically-

detailed properties, for a novel biomolecular system, and our strategy offers a robust and extensible 

platform to guide future design and syntheses of protein biomaterials. In particular, our general 

computational approach can be readily applied in the rational design of engineered extracellular 

matrix proteins for constructing stimuli-responsive and biocompatible materials for applications 

in drug delivery, tissue engineering, and regenerative medicine. 
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 Supplemental Information 
 
 

 
Figure 10-8. Initial starting structure of the LG-ELP protein. The  LG5 domain was drawn 
from the crystal structure of the mouse homolog of the laminin α2 chain (1DYK), while the 
ELP domain was built using Avogadro’s peptide builder, and was modelled as a canonical 
α-helix starting structure, with backbone torsion angles φ = –60°, ψ= –40. 
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Table 1. Summary of MD simulation systems of the engineered LG-ELP fusion protein. 
Atomistic MD simulations were performed using the NAMD 2.9 code and the CHARMM36 
force-field for the protein system. The protein was solvated in explicit water with periodic 
boundary conditions and simulated as described in the Methods section. 

  

System name Trajectory 
Duration (ns) 

LG5-ELP[K2L2I2K2]  Solvation, 
Minimization 

LG5-ELP[K2L2I2K2]  Equilibration 
10ns 

LG5-ELP[K2L2I2K2] 290K 100 

LG5-ELP[K2L2I2K2] 295K 100 

LG5-ELP[K2L2I2K2] 300K 100 

LG5-ELP[K2L2I2K2] 310K 100 

LG5-ELP[K2L2I2K2] 315K 100 

LG5-ELP[K2L2I2K2] 305K 100 

LG5-ELP[K2L2I2K2] 320K 100 

LG5-ELP[K2L2I2K2] 310K final trajectory to 290 K 40 

LG5-ELP[K2L2I2K2] 310K final trajectory to 300 K 40 

LG5-ELP[K2L2I2K2] 310K final trajectory to 320 K 40 

LG5-ELP[K2L2I2K2] 310K trajectory extension to 200 ns 100 
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Figure 10-9. Radial distribution function (RDF) of oxygen atoms around the elastin-like 
polypeptide (ELP) backbone. The RDF is plotted as a function of temperature, and the 
first hydration shell was chosen to be the minimum for subsequent analysis in determining 
the number of surrounding water molecules (Figure 6a). 
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  Figure 10-10. Secondary structural content across a range of 

temperatures as a function of time. Simulated systems were 
sampled at different temperatures (five degree increments from 
290 K to 315 K). 
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  A) 

B) 

Figure 10-11. The time evolution of the secondary structure profile in 
the extended simulation at 310 K showed four distinct regions of 
persistent 𝛽-sheet like conformations, (a) Leu4-Gly5200-201 - Leu4-
Gly5205-206 (highlighted by the blue ribbons) and (b) Ile4-Gly5210-211 - 
Ile4-Gly5214-215 (red ribbons) with reduced conformational flexibility. 
The trajectory was captured by overlaying multiple frames at 10 ns 
intervals. 
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Figure 10-12. Protein contact maps of the dynamical interactions in the designed fusion 
suggest a lack of persistent LG···ELP interactions (for 290 K – 320 K). 
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Figure 10-13. (A) Number of water molecules surrounding the ELP domain as a function of 
time. The abrupt drop in water molecules at 64 ns and 82 ns for 310 K corresponds to the 
formation of β-sheets. (B) Number of intramolecular hydrogen bonds as a function of time. 
All data was smoothed using a Savzky-Golay filter with a window size of 51 and 3rd order 
polynomial. 
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Figure 10-14. Time evolution of the radius of gyration simulated at different temperatures. 
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Figure 10-15. Correlation between the radius of gyration and end-to-end distance of the ELP 
domain. We computed a least-squares regression using SciPy’s stats function. R2 is the coefficient 
of determination. Colors correspond to the time steps in the simulation (red indicates first time 
step, blue is the last time step of the MD simulation).  The following schematic represents the 
differences between the end-to-end distance (Euclidean distance between N’- and C’- termini) 
and radius of gyration (Rg) of a random coil. 
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11 Appendix 3: Temperature-dependent complex 
coacervation of engineered elastin-like polypeptide 
and hyaluronic acid polyelectrolytes 

 
Published as: JD Tang, SR Caliari, KJ Lampe, "Temperature-dependent complex coacervation of 

engineered elastin-like polypeptide and hyaluronic acid polyelectrolytes," Biomacromolecules, 

19: 3925-3935 (2018) 

 

 ABSTRACT 
Coacervates have enormous potential due to their diverse functional properties supporting a wide 

number of applications in personal care products, pharmaceuticals, and food processing. Normally, 

separation of coacervate phases is induced by changes in pH, ionic strength, and/or polyelectrolyte 

concentration. This study investigates the microphase separation and coacervate complex 

formation of two natural polyelectrolytes, elastin-like polypeptides (ELPs) and hyaluronic acid 

(HA), as simple models for biological coacervates. These complex coacervates are formed over a 

wide range of stoichiometric molar charge ratios without the presence of salt or changes in pH, 

and are primarily induced by changes in temperature. Unlike pure ELP solutions, the ELP/HA 

coascervates result in well-formed spherical particles after the temperature-induced phase 

transition. We also note that the formation of these complex coacervates is reversible, with low 

hysteresis. We have demonstrated via fluorescent imaging and dynamic light scattering that high 

positive/negative charge ratios at elevated temperatures produced 400-600 nm particles with 

relatively low polydispersity indices (PDIs) of ~0.1. Furthermore, dynamic light scattering, 

fluorescence microscopy, and optical microscopy revealed that the ratio of the two polyions 

strongly influenced the size and structure of these ELP/HA complex coacervates. Finally, we 

showed that the ELP/HA coacervates were able to sequester the hydrophobic fluorescent molecule 

pyrene, highlighting their potential for use as delivery vehicles for hydrophobic payloads.  

 Introduction 
Polyelectrolyte complex (PEC) coacervates are a unique class of hybrid materials that can self-

assemble into a variety of structures such as micellar-like particles,1-2 vesicles,3 and hydrogels4 via 
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changes in solution pH or ionic strength. The formation of these coacervates is primarily driven 

by electrostatic interactions between oppositely charged polymers, and can lead to phase 

separation of aqueous solutions and complex coacervate particles5. Similarly, biopolymers often 

have additional driving forces that direct the association of PECs, such as hydrogen bonding and 

hydrophobic forces. The stoichiometric mixture of charge densities6-7 as controlled by solution 

concentrations8 and chain lengths,9 determines the extent of attractive forces between the two 

polymers10. The importance of PECs is evident in numerous applications such as drug3, 11-12 and 

gene delivery,13-14 thin film coatings,15-17 or processed food.18-22 Coacervate usage is wide ranging, 

and warrants a broader understanding of the properties of these PEC coacervates, and individual 

parameters that drive phase separation and coacervate complexation. In this study, we employed 

the use of naturally-derived elastin-like polypeptides and hyaluronic acid, as their biodegradability 

and biocompatibility make them suitable for biomedical applications23-25. 

Elastin-like polypeptides (ELPs) exhibit a thermally-triggered first-order phase transition 

behavior in which they separate into polymer-rich and water-rich phases26, where this behavior is 

characterized by a phase separation process at what is known as the lower critical solution 

temperature (LCST). The phase transition behavior at the LCST depends on both (i) intrinsic 

factors, such as the amino acid composition and the number of (VPGXG)n pentapeptide repeats 

(‘X’ denotes a ‘guest’ residue, which can vary from one repeat to another), as well as (ii) extrinsic 

parameters, such as the pH, ionic strength, and other bulk solution properties.27-29 Likewise, the 

inherent, heterogeneous secondary conformations present in ELPs are highly system-specific, i.e. 

the temperature transitions can be modulated by variations in the polypeptide sequence, as well as 

the addition of biological complexes, such as peptide amphiphiles30 or positively/negatively 

charged biomolecules31.  

ELPs above the LCST form aggregates and a highly collapsed protein conformation in aqueous 

environments. Variations in the amino acid composition allow for the control of the particular 

LCST where this phase transition occurs32-33. Polyelectrolyte coacervate formation using ELPs is 

advantageous due to their remarkably temperature-sensitive phase separation properties.27, 32, 34 In 

our engineered ELP, with the guest ‘X’ residues being isoleucine (I) or lysine (K), the distinct 

hydrophobic (I) and positively-charged hydrophilic blocks (K) can be tuned to adjust the phase 

separation temperature of the polypeptide.35 Additionally, the biocompatibility of ELPs and the 
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ability to tune their mechanical properties to influence cell behavior35-36 are especially useful in 

tissue engineering37-38 and drug delivery applications.39-40  

Hyaluronic acid (HA) is a negatively charged, linear polysaccharide containing repeating units 

of N-acetylglucosamine and glucuronic acid. In vivo, HA is a hydrophilic polyanionic 

macromolecule that is an essential component of the extracellular matrix.41-42 HA and its modified 

forms have a wide range of applications as medical products due to their biocompatibility, 

mechanical properties, and lack of immunogenicity43-45. Additionally, a class of HA-based hybrid 

polyelectrolyte biomaterials examined in early pioneering studies combine HA with chitosan,46-47 

poly(vinyl alcohol),48 poly(L-lysine),49-51 and more recently peptide amphiphiles,4, 52-55 

highlighting the versatility of HA to complex with a diverse set of cationic polymers.  

While the ionic strength dependency of PEC assembly has been studied extensively in the field, 

the effect of temperature on polyelectrolyte complexation has attracted relatively little attention. 

Generally, coacervate complexation occurs via electrostatic charge-screening within the 

polyelectrolyte solution. Here we examine the ionic complexation of positively-charged ELP and 

negatively-charged HA with a mechanism of complexation that relies on temperature perturbation 

of the polyelectrolyte solutions. We document the formation of self-assembled coacervate particles 

as a result of the electrostatic associative interactions between ELPs and HA. Combining ELP and 

HA solutions led to a distinct microphase separation process, and the formation of spherical 

particles, as solution temperature increased. We examined the structural properties of the particles 

using scattering and microscopy techniques, and find evidence that coacervate formation was 

dependent on molar charge ratios of ELP and HA composites at elevated temperatures. Fluorescent 

analysis of TRITC-labeled ELP polymers and HA coacervates demonstrated that a critical 

coacervation concentration between 0.2 wt. % and 0.3 wt. % of total polymer concentration is 

required for the formation of coacervates at elevated temperatures. The polymer concentration 

required to achieve coacervation also increased with increasing charge ratio.  

 

 Materials & Methods 
2.1 Elastin-like polypeptide synthesis and purification 

Recombinant ELPs were synthesized and purified as previously reported.35-36 Briefly, BL21 

(DE3) Escherichia coli transformed with a pET15b plasmid incorporating our ELP sequence, 

LQ[LDAS − TVYAVTGRGDSPASSAA − SA((VPGIG)*VPGKG(VPGIG)*)+VP]{LE, were cultured to 
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an OD600 of 0.8. Protein expression was induced with 1 mM isopropyl β-D-1-

thiogalactopyranoside (IPTG) for 6-8 h. Cell pellets were collected and resuspended in TEN buffer 

(0.1 M NaCl, 0.01 M Tris Hydrochloride, 0.001 M ethylenediaminetetraacetic acid (EDTA), pH 

8), and underwent three freeze-thaw cycles, with 1 mM phenylmethanesulfonyl fluoride (PMSF) 

in isopropanol (IPA) and a few micrograms of deoxyribonuclease added after the first freeze/thaw 

cycle. After the last thaw cycle, the ELP was then subjected to three iterative temperature cycling 

and centrifugation steps at 4 °C in H2O (pH 9) where the protein was in solution, and 37 °C where 

ELP precipitated in the presence of 1 M NaCl. Purified ELP was dialyzed against diH2O using a 

cellulose ester membrane with a 500-1000 Dalton cut off (Spectrum Laboratories, Inc.) and 

lyophilized. Purity was confirmed by SDS-PAGE, with a molecular weight of 35.1 kDa. The 

theoretical pI of this ELP is calculated to be 9.8956, indicating that all lysine residues within the 

engineered ELP sequence are protonated and positively charged. In some cases, ELP was labeled 

with tetramethylrhodamine-5-(and 6)-isothiocyanate (TRITC) (Life Technologies) following 

manufacturer’s protocol and utilized for experiments noted below (ELPTRITC). Briefly, synthesized 

ELP was dissolved in a 100 mM conjugate buffer (8.4 mg/ml NaHCO3, 28.62 mg/ml CH20Na2O13, 

mixed in a 9:1 volumetric ratio, respectively, adjust to pH 9) at 5 wt. %. TRITC was then added to 

the ELP solution at a 1:250 isothiocyanate to primary amine ratio, and shaken overnight at 4 °C. 

Unreacted fluorophore was removed using a ZebaTM desalting column (7,000 MWCO) (Thermo 

Fisher Scientific), and the final solution was lyophilized. 

 

2.2 Preparation of Hyaluronic Acid/ELP coacervates 

 350 kDa HA (estimated 800 negatively charged carboxylic groups on a per molecule basis) 

was obtained (Lifecore Biomedical). The pKa of HA carboxyl groups is 3-4; at pH = 7, suggesting 

that these groups are ionized.57 Lyophilized ELP (with 17 available positively charged groups on 

a per molecule basis) and HA were solubilized in diH2O and mixed at different charge ratios, f+/:  

𝑓a/} =
𝑁𝐻+a

𝑁𝐻+a + 𝐶𝑂𝑂}
 

( 1 ) 

where a f+/- = 0 or f+/- = 1 indicates solutions of ELP or HA alone, respectively.  The pH was 

adjusted to 7 and the ELP/HA solution was heated to 37°C for 10 minutes. TRITC-modified ELP 

(ELPTRITC) was used at a 1:20 molar ratio of ELPTRITC to non-labeled ELP for all fluorescent 
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experiments, unless otherwise noted. Solutions of ELPTRITC/HA were prepared at total polymer 

concentrations of 0.1 mg/ml to 10 mg/ml for each charge ratio to calculate the critical coacervation 

concentration. The formation of ELPTRITC/HA coacervate particles was probed using a Zeiss LSM 

510 confocal laser scanning microscope (Thornwood, New York) equipped with a stage-top 

incubator for temperature control. Temperature was increased using a ramp of 1°C/min alternating 

with an equilibration time of 10 minutes at each degree to allow for sufficient time for observing 

particle formation and imaging. Fiji58 was used for particle analysis of fluorescent images taken 

with the confocal microscope. Auto-thresholding was used to sample pixel intensities, and the 

‘analyze particles’ plug-in was used with the following parameters: size (µm2) of 0-999 with a 

circularity of 0.00-1.00. “Large” particle formation refers to objects with a cross-sectional area 

greater than or equal to 1 µm2. 

 

2.3 Lower critical solution temperature analysis 

 Solutions of ELP/HA at a total polymer concentration of 5 mg/ml in water were heated 

with ramp-stamp function using a temperature ramp of 1°C/min and holding at that temperature 

for 2 min at each step for equilibration. This particular concentration was chosen as to not bias 

protein aggregation, which occurs at high protein concentrations,59 and to minimize structural 

heterogeneity incurred from ELP unimer (non-interacting) collapsed structures that would 

otherwise influence the complexation with HA60-63. Solution turbidity at 350 nm was monitored 

as a function of temperature using a CLARIOstar® plate reader (BMG Labtech). The sample plate 

was agitated for 30 s before each reading. The transition temperature (Tt) was defined as the 

temperature at which the OD reaches the inflection point of the transition-induced change. 

 

2.4 Determination of the critical coacervate concentration (CCC) of ELP/HA coacervate 

complexation 

 The fluorescence emission spectrum of ELPTRITC/HA was obtained at an excitation 

wavelength of 475 and emission was recorded between 500 and 700 nm, using a CLARIOstar® 

plate reader. Fluorescence emission of TRITC was examined in ELP/HA solutions from 0.1 mg/ml 

to 10 mg/ml. Both excitation and emission slits were set to a bandwidth of 10 nm. All fluorescent 

experiments were carried out at 37°C. The corresponding fluorescent peaks at 575 nm for all 
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concentrations can be adequately described by a decreasing sigmoid curve. Briefly, the Sigmoidal-

Boltzmann equation (2)64-65 was employed to determine the CCC. 	

𝑦� =
(𝑎@ − 𝑎�)

1 + exp	[(𝑥EEE − 𝑥L)/∆𝑥]
+ 𝑎� 

( 2 ) 

where yF is the fluorescence intensity, ai and af are the initial and final asymptotes of the sigmoid, 

respectively, x0 is the center of the sigmoid, and Δx is the independent variable range. The CCC 

was analytically determined from the intersection of the tangent to the sigmoid passing through its 

center and the first asymptote. 

 

2.5 Dynamic light scattering  

 Dynamic light scattering (DLS) experiments were performed on a DynaPro Nanostar 

instrument from Wyatt Technology (Santa Barbara, CVA, USA). A laser wavelength of 660 nm 

was used. The number of acquisitions was 10, with an acquisition time of 5 sec and an auto-

attenuation time limit of 60 sec. The correlation function low and high cut-off was 1.5 µs and 

107000 µs, respectively, and resulting hydrodynamic radii were determined based on the Stokes-

Einstein relationship. Solutions of ELP/HA at a total polymer concentration of 5 mg/ml and 10 

mg/ml in water were heated from 26 °C to 50 °C using a ramp-step function with at a ramp rate of 

1°C/min and an equilibration time of 5 min at each step. 

 

2.6 Pyrene loading and determination of excimer formation 

 Pyrene was prepared according to previously published methods.66-68 Briefly, a stock 

solution of 5 x 10-7 M pyrene was prepared by adding ethanol into a known mass of the compound. 

100 µl of the stock solution was allowed to evaporate overnight under ambient conditions and form 

a pyrene film. An equal volume of ELP and HA was then added to the pyrene film and incubated 

at 37°C for 30 min before measuring fluorescence via a CLARIOstar® plate reader. Excitation 

was performed at 328 nm (bandwidth of 8 nm) and emissions were recorded from 350 to 550 nm 

at 1 nm intervals (bandwidth of 10 nm).  
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 Results and Discussion 
In this work, temperature was used to modulate coacervate formation of ELP and HA PECs. 

Unlike other PEC systems, where the formation of these coacervates are induced by changes in 

pH or ionic strength of the solution, the microphase separation regime of the ELP/HA complex 

can simply be tuned by temperature. We demonstrated through optical density studies show that 

the solution becomes turbid upon warming. We also show that the charge ratio of the ELP/HA 

complex influences the size of the coacervate being formed.  Additionally, temperature is used as 

a trigger to reversibly assemble monodisperse complex coacervates that are amenable to loading 

of hydrophobic payloads. The measurements carried out in this study refer to the nonequilibrated 

state, or ‘discontinuous’ phase, as indicated by the elevated temperatures of the solution. We report 

here results from dynamic light scattering and fluorescent microscopy techniques that support the 

notion that the structural dynamics of coacervation complexes are dominated by the charge density 

of the PECs, as well as changes in solution temperature.  

 

Figure 11-1. Turbidity profile versus temperature of ELP/HA mixtures. The rapid change 
in turbidity as the solution temperature increased indicates formation of complex 
coacervates. The inflection point of the sigmoidal curve is noted as the transition 
temperature (Tt), which is dependent on the charge ratios (f+/-), the stoichiometric ratios 
between the charged groups within cationic ELP monomers and all charged groups. Pure 
solutions (0.5 wt. %) of the two components (f+/- = 1 for ELP alone, f+/- = 0 for HA alone) 
do not exhibit a change in the optical density as a function of temperature at this 
concentration, highlighting the importance of electrostatic interactions within the 
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combination solution in order to propagate ionic complexation and coacervation. Charge 
ratios f+/- = 1 are represented by a blue line, 0.67 (green), 0.5 (red), 0.33 (cyan), and 0 
(purple). Optical density of solutions was measured at 350 nm. All experiments were 
conducted at 0.5 wt. % of total polymer. Error bars represent standard deviation (3 
replicates). 

Turbidity profile of ELP/HA coacervate formation. We monitored the optical density of 

ELP/HA solutions upon heating from 26 to 45 °C. Changes in the measured light transmission 

depend on the size and composition of the coacervate being formed, thus turbidity reflects the 

extent of PEC coacervate formation8. Coacervation (liquid-liquid phase separation) of ELP with 

HA occurred and the phase transition temperature, Tt, was strongly dependent on charge ratio 

(Figure 1). As these experiments were conducted in the absence of salt, the particular driving force 

behind coacervate formation was that of temperature. The observed coalescence near the putative 

transition temperature is primarily driven by temperature-indcued ELP conformational transitions 

leading to the hydrophobic association of PECs. Increasing the charge ratio from 0.33 to 0.67 

increased the turbidity of the 0.5 wt. % ELP/HA solution above the Tt
 (Figure 1). The 0.5 wt.% 

polymer concentration was chosen as to not bias inherent ELP polymer collapse, which would 

otherwise influence charge-charge interactions between the negatively charged repeating units of 

HA69. Additionally, we observed the same trends at 1 wt. % coacervates (Figure S1).  

A plot of the binary solution phase behavior as a function of temperature of f+/- = 0.33, 0.5, and 

0.67 indicated that the Tt occurs at 42, 38, and 32°C, respectively. The rapid change in turbidity as 

the solution temperature increased indicates formation of complex coacervates.8, 70-71 Interestingly, 

pure ELP solutions at 0.5 wt. % (f+/- = 1) do not display a classical sigmoid curve under the same 

temperature conditions, as measured via OD. In dilute solutions, it is possible that the collapse and 

aggregation of individual ELP polymer chains kinetically arrests the formation of larger globules 

that result from the accumulation of individual chains. As such, we have shown that an LCST-like 

behavior can only occur through complexation of ELP with HA, whereas individual components 

at the measured temperature ranges do not exhibit such phase separation behavior. This coil-

globule transition phenomenon has also been shown to occur in other polymers that exhibit LCST 

behavior.72-74 The lack of intermolecular globule-formation behavior may also be attributed to the 

low diffusional association (i.e. diffusion-mediated encounters/collisions or association rates) of 

individual polymer chains (e.g. protein-protein interactions). As such, we expect that there are 

significantly less collisions occurring in order for attractive forces to have an effect.75  
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As the charge ratio increases, the sigmoidal phase transition curve shifts towards lower 

temperatures. This suggests that the water network around HA (as the HA concentration is 

increased) provides more resilience to the enthalpic dehydration of the hydrophobic backbone of 

the ELP. However, as water molecules are dehydrated from ELP, they also gain considerable 

translational entropy. Thus, both enthalpic and entropic interactions likely contribute to LCST 

behavior. Normally, the ELP phase transition in this temperature range is accompanied by gross 

structural rearrangements, highlighted by the solvent-exposed, hydrophobic regions of the ELP 

backbone at elevated temperatures.76  However, the addition of HA seems to perturb the intra-

protein interactions that would otherwise lead to desolvation of nonpolar side-chains within the 

ELP chain. Consequently, as the solution temperature reaches the Tt, this leads to fewer 

occurrences of a Flory coil-collapse globule transition of the ELP chain.77-78 For this particular 

study, however, only combination solutions of HA and ELP together exhibited microphase 

separation at its nonequilibrated state, highlighting the importance of the additional polyanion to 

propagate ionic complexation and coacervation.2, 79  
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Figure 11-2. Visualization of reversible ELP/HA coacervation and particle formation as a 
function of temperature. As the temperature of the solution is increased, representative 
fluorescent confocal microscopy images of indicated microphase separation of 0.5 wt. % 
ELP/HA coacervates (at f+/- = 0.67) and an increase in particle size (a). Quantification of 
these images shows that the fraction of larger coascervate complexes/particles (above 1 
µm2) increases as the temperature is increased (b). As the temperature decreases, the 
population of larger coacervate complexes decreases, highlighting the reversibility of the 
ELP/HA system (c), and the number of larger coacervate complexes (> 1 µm2) virtually 
disappear as the solution reaches room temperature (d). 

Visualization of coacervate and solution phases. After showing that ELP/HA polyelectrolyte 

mixtures could form coacervate complexes through changes in turbidity, we used imaging of the 
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microphase separation induced by a temperature increase to probe the dynamics of the coacervate 

phase. At equilibrium (room temperature), the f+/- = 0.67 charge composition is seen as a well-

mixed dispersed solution (Figure 2a). An f+/- = 0.67 was used because it had the lowest transition 

temperature at 34 ˚C (all other charge ratios were > 40 ˚C) and was therefore more physiologically 

relevant for our applications. A slight perturbation of the equilibration state by increasing the 

temperature results in a phase separation regime (i.e. phases that retain large amounts of water, 

and a phase with very high local polymer concentrations) where water molecules are dispersed 

(Figure 2a). This leads to increasing occurrences of electrostatic interactions between the 

positively charged –NH2 groups in ELP and negatively charged –COOH groups of HA. Therefore, 

the intermolecular interactions between the two side chains primarily dictates the aggregation of 

the oppositely charged chains, as opposed to the intermolecular hydrogen bonding between the 

two chains that are held in place by the surrounding water network80. As the temperature increases, 

the droplets coalesce and a coacervate-solution boundary is slowly revealed at a new temperature 

equilibrium resulting in a number of spherical mesoscopic globules. DLS experiments indicate 

that these particles have monodisperse size distributions (Table 1). Pure HA (f+/- = 0) demonstrates 

multimodal behavior in DLS studies. It should be noted that at least two different peaks are present 

within HA solutions (Figure S4). The hydrodynamic radii for monomeric HA units are measured 

at 5 –  6 nm for both temperatures, and larger aggregates ranging from 1200 – 2000 nm, which is 

typical for HA in aqueous solutions81. The large HA peaks have different mean radii, 2060 and 

1260 nm at 20 °C and 37 °C, respectively. However, these values are not statistically different, and 

therefore the temperature change is unlikely to strongly impact HA size/conformation.  

Table 2. Summary of macromolecular characteristics of 0.5 wt. % ELP/HA coacervates as function of charge ratio 
(f+/-) (f+/- = 0 for HA alone, f+/- = 1 for ELP alone). Tt is the transition temperature, as determined by the inflection 
point of the sigmoidal curve in the turbidity profile. CCC is the critical coacervate concentration derived from 
fluorescence experiments at 37°C and application of the Sigmoidal-Boltzmann equation. The hydrodynamic radius 
(RH) and polydispersity index (PDI) were measured by dynamic light scattering. 

f
+/-

 
Tt 

(°C) 

CCC 

(mg/ml) 

Hydrodynamic Radius (nm) 

20°C PDI 37°C PDI 

0 N/A - 
Monomer 5.09 

Multimodal 
Monomer 6.16 

Multimodal 
Aggregate 2060  Aggregate 1260  

0.33 42 2.02 17.9 ± 5.9  Multimodal 1490 ± 230 0.11 
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0.50 38 2.07 12.5 ± 0.4  Multimodal 1050 ± 180  0.13 

0.67 32  2.85 29.9 ± 1.4  0.28 456 ± 24  0.04 

1 > 45 4.14 3.6 ± 0.1  0.18 470 ± 18 0.16 

 

As the temperature was raised, the number of particles < 1 µm2 rapidly decreased, while a steady 

increase in larger particles was seen (Figure 2b). Additionally, we see that the coacervate 

complexation is reversible, with low hysteresis, as the temperature decreases back to room 

temperature (Figure 2c). The larger particles begin to disappear, and the previously established 

phase separation is no longer observed. It is interesting to note that a greater fraction of larger 

particles persists to lower temperatures during the reverse temperature cycle (Figure 2d), although 

this does not appear to be a kinetic effect, since the phase separation upon heating was highly 

reproducible (Movie S1). Additionally, as the temperature increases, the number of smaller 

particles (< 1 µm2) rapidly decreases, while the number of larger particles steadily increases 

(Figure S2). It is plausible that the perturbation of the ELP backbone induced by a temperature 

change results in a stable structural conformation.82-83 This suggests that a population of 

preexisting conformations are maintained at lower temperatures, which has previously been 

demonstrated through molecular dynamics simulations.74 
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Figure 11-3. Dynamic light scattering size distribution profiles of different charge ratios for 
ELP/HA coacervation complexes at 20 °C and 37 °C (f+/- = 1 for ELP alone, f+/- = 0 for HA 
alone). All formulations of ELP/HA complexes exhibit polydisperse populations at 20 °C, 
but increase in size upon heating, and display a unimodal distribution at 37°C. The multiple 
intensity peaks of pure HA (f+/- = 0) at both temperature conditions demonstrate the 
exceedingly polydisperse properties of the HA polymer. However, peak distribution 
completely transitions to a monodisperse population once ELP is introduced, regardless of 
the charge density of the total polymer solution. Error bars represent standard error of the 
mean (3 replicates). 

Particle size distribution of ELP/HA coacervates. To determine the influence of the charge 

density on the size and polydispersity of the PECs, we measured the particle size and distribution 

as a function of temperature using dynamic light scattering. Decreasing the charge ratio resulted 

in an increase of the hydrodynamic radius (RH) of ELP/HA particles (Figure 3). Additionally, 

particle size also increased as the temperature of the solution increased, highlighting the 

aggregation propensity of the ELP/HA composition (Figure S3). The ELP/HA particle radius 

increased by approximately 500 nm for each stoichiometric addition of positively-charged HA 

(Table 1). Despite the potentially variable size distributions that are often incurred with 

aggregation-prone ELP chains84-86 and heterogeneous size distributions of HA,81, 87-88 it should not 

be surprising then that the polydispersity index (PDI) of the PECs displayed multimodal size 

distributions at 20°C.  

A charge ratio of 0.67 showed a low intensity of scattered light at a RH of 29.9 nm at 20°C 

highlighted by its broad peak, and a sharp and strong intensity of scattered light at 455 nm at 37°C 

(Figure 3). Small ~4 nm nano complexes were formed in the absence of HA with low PDI at 

nonequilibrium conditions; while at equilibrium, the relatively moderate PDI indicates that the 

samples are polydisperse. Previous studies have indicated that salt ions within the coacervate 

complex associates specifically with charges on weak polyelectrolytes8-9, 89. This equilibrium state 

demonstrates that the morphologies of the complexes are held together by polyelectrolyte/ion 

pairing90. However, our system is unique in that the instantaneous formation of coacervates is 

primarily driven by temperature perturbations of the PEC system. Compared to other studies 

involving the mixing of HA and other positively charged polymers69, 91, the ELP/HA coacervate-

solution boundary phase occurs in the absence of salt, highlighting the simplicity of our coacervate 

model.  

The significant differences found in size distributions at the two temperatures suggests that ELP 

unimers are prone to intramolecular chain collapse92 (i.e. self-association), as indicated by the high 

intensity peaks of 3.6 nm at 20 °C before an elevation of temperature induces a intermolecular 
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chain aggregation typical of LCST behavior at the Tt.74, 84  The polydispersity index of ~0.1 

indicates a homogenous size of coacervate complex particles (Table 1). Complexes of ELP with 

HA were greater than 400 nm in size for all charge ratios, with low PDI at nonequilibrated 

conditions, indicating monodisperse particle size distributions, irrespective of the molar ratio of 

positive and negative charges. While the total polymer concentration of the ELP/HA solution was 

held constant, the ratio of positive and negative charges was changed to achieve a desired charge 

density. Therefore the increase in particle size was due to the molar charge ratio of  the ELP to HA 

polymers.  

Interestingly, all ELP/HA complex mixtures increased in size upon heating, and display a 

unimodal distribution at 37°C. The multiple intensity peaks of HA at both temperature conditions 

demonstrate the exceedingly polydisperse properties of the HA polymer, but this peak distribution 

completely transitions to a monodisperse population once ELP is introduced, regardless of the 

charge ratio of the total polymer solution. This highlights the importance of the intermolecular 

interactions of the PECs, such that the complexation requires both polymers, and that the 

temperature-induced self-assembly plays an essential role in coacervation formation. Likewise, 

the accessibility of the positively charged lysine groups within ELP molecules have likely been 

more solvent exposed at the temperature transition. This also suggests that temperature is able to 

modulate the structural homogeneity and subsequently, coacervate formation in aqueous 

polypeptide-polysaccharide complexes. 
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Figure 11-4. Fluorescence emission spectra (excitation at 475 nm) of HA and TRITC-
labeled ELP coacervates at different charge ratios as a function of total polymer 
concentration. At low polymer concentrations of ELP/HA (below 1 mg/ml), blue colors), 
negligible changes in the fluorescence intensity were observed. As the concentration of 
ELP/HA increased, by concentrations around 2 mg/ml (green) the fluorescence intensity in 
the emission spectra increases. The differences in fluorescence intensity for the highest 
polymer concentrations (above 4 mg/ml) is more pronounced between f+/- = 0.67 and 0.33, 
where these polymer concentrations contribute disproportionally more to the fluorescence 
yield than would be expected from their stoichiometric charge ratios. 

Determining the critical coacervation concentration. The relative monodispersity of these 

spherical globules prompted study of the concentration at which these coacervate complexes are 

formed in varying charge ratios. In this system, fluorescent particles can be readily detected, even 

at very low concentrations (µM range). This low concentration detection allows us to estimate the 

concentration at which these coacervate complexes form, similar to methods of determining the 

critical micelle concentration1, 93. As such, we were able to determine the critical “coacervation 

concentration” (CCC) of the composition at different charge ratios (Figure 4). 

Unlike other PEC systems, where coacervate formation is dependent on factors such as pH, ionic 

strength, and concentration of the polymer, we can use temperature to modulate particle sizes and 

microphase separation. The fluorescence intensity of the ELPTRITC molecule is dependent on the 

concentration of HA within the bulk mixture at 37°C. A likely explanation is that the addition of 

HA sequesters the positively charged lysine groups within ELP, resulting in conformational 

changes within the ELP backbone that leads to hydrophobic collapse of the polymer chain, and 

thus reduced accessibility of the fluorophore94-95. Incremental addition of HA solution to the 

ELP/HA composite resulted in stepwise changes in its fluorescence profile. The fluorescence 

profiles of the different charge ratios are sigmoidal in nature, and the Sigmoidal-Boltzmann 

equation (2)64 was employed in determining the CCC (Figure 5).  
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Figure 11-5. Fluorescence intensities at 575 nm as a function of ELPTRITC concentration 
(mg/ml) for ELPTRITC/HA coacervates, (f+/- = 0 for HA alone, f+/- = 1 for ELP alone). 
Symbols (○) denote experimental data points and lines represent the fitting of the Sigmoidal-
Boltzmann function according to equation 2 (best fit parameters are listed in Table 2). As 
the concentration of ELP increases, the fluorescence intensity in the emission spectra 
increases dramatically in a sigmoidal manner. At low charge ratios (f+/- = 0.33), the 
critical coacervate concentration (xCCC) is lower than that of higher charge ratios (f+/- = 
0.67), suggesting that the increase in positive charges, and therefore, increasing ELP···HA 
electrostatic interactions play a key role in coacervation formation. 
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The total fluorescence intensity as a function of the logarithm of ELPTRITC concentration was 

measured to determine the critical coacervation concentration of our ELP/HA systems (Figure 5). 

The high fluorescent intensity of ELPTRITC highlights its capabilities as a probe for the detection 

of structural changes96-97. At low polymer concentrations of ELP/HA (below 1 mg/ml), negligible 

changes in the fluorescence intensity were observed. As the concentration of ELP/HA increased, 

at certain concentrations (> 2 mg/ml) the fluorescence intensity in the emission spectra increased 

dramatically in a sigmoidal manner. The CCC and fit parameters are listed in Table 2.  

The critical concentration appears to increase concurrently with the charge ratio of the 

composition, which is consistent with previously published results.6, 98  Not surprisingly, the CCC 

of pure ELP (f+/- = 1) was much greater than all other charge ratios. This is most likely due to the 

lack of contribution of electrostatic interactions via HA. The solvent environment and structural 

changes would be significantly different in pure ELP versus the conformational changes that would 

otherwise enable more pronounced hydrophobic collapse of the ELP backbone following 

complexation with HA. Thus ELP on its own would require a much higher concentration to 

undergo similar coacervation formation. 

Table 3. Fitting parameters describing the critical coacervation concentrations as determined by the Sigmoidal-
Boltzmann equation. 

f
+/-

 ai af log [xCCC] (mg ml
-1

) x0 Δx 

0.33 532 39220 0.306 0.830 0.262 

0.50 228 43710 0.316 0.961 0.322 

0.67 68.6 60260 0.454 1.180 0.362 

1 477 124518 0.617 1.310 0.346 

 

 Structural characterization of pyrene-doped ELP/HA coacervates. Finally, 

fluorescence spectroscopy was used to probe the structural formation of the coacervate complexes 

using pyrene, a fluorescent molecule that has served as a hydrophobic model drug for several 

decades93, 99-100. The aromatic complexes of pyrene molecules are extremely sensitive to their 

microenvironment, and have been used extensively to study the molecular conformations and 

intermolecular interactions of other systems.65, 68, 101 The fluorescent spectrum of the pyrene-doped 
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ELP/HA coacervates exhibited a strong and broad excimer emission peak at 466 nm (with a red-

shift in fluorescence as the charge ratio increases), whereas free pyrene solution prepared in the  

Figure 11-6. Fluorescence spectra (excitation at 328 nm) of pyrene in solutions of different 
ELP/HA charge ratios at 37 °C, (f+/- = 1 for ELP alone, f+/- = 0 for HA alone). Upon the 
addition of HA (or decreasing charge ratio, f+/-), the fluorescent peaks at 378 and 384 nm 
decreased in intensity, while the broad fluorescence peak at 460 nm (which indicates the 
formation of an excimer) showed a pronounced increase, highlighting the hydrophobically-
driven tight packing of the polymer chains. 

absence of the ELP/HA mixture did not exhibit an excimer peak in water (Figure 6). Upon the 

addition of HA, the fluorescent peaks at 378 and 384 nm decreased in intensity, while the broad 

fluorescence peak at 460 nm showed a pronounced increase, highlighting the aggregation 

propensity of the polymer chains. These observations indicate the close packing of pyrene 

molecules within a hydrophobic environment (when pyrene rings are ~10 Å apart from each other) 

as the formation of an excimer peak usually arises from an excited state dimer102. Interestingly, 

solutions of ELP (f+/- = 1) exhibited relatively higher excimer emission intensity, but this may be 

attributed ELP’s well-studied collapsed conformational state and hydrophobic interior, where 

water molecules are usually excluded.33, 103-104 The excimer emission of pyrene within the ELP/HA 

coacervate demonstrates a proof-of-concept that the ELP/HA PEC complexation can potentially 

serve as a drug delivery vehicle for hydrophobic molecules.  

Finally, we observed that as HA is added to the PEC solution, the fluorescence intensity is 

reduced. A simplistic scheme of the fluorescence quenching is depicted below:  
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𝑃𝑦� + 𝑃𝑦�
AC��� 𝑃𝑦�

∎
𝑃𝑦�∎ 

( 3 ) 

where excitation of a ground state pyrene molecules (Pyg) reorient in solution to from the excimer 

(PyE) and quenched via collisions from HA polymer chains (∎). This quenching can be described 

using a modified Stern-Volmer equation, which considers both static and collisional quenching105-

106:  
𝐹L
𝐹
= (1 + 𝐾�� 𝑄 )(1 + 𝐾< 𝑄 ) 

( 4 ) 
𝐹L
𝐹
= (1 + 𝐾�� 𝑄 ) 

( 5 ) 

where F0 and F are the fluorescence intensities that are observed in the absence and presence, 

respectively, of the quencher [Q]. For this study, the quencher [Q] is HA, KSV is the Stern-Volmer 

quenching constant, and Ka is the association constant. Given the above quadratic equation, two 

solutions are expected, however, only one was found to be physically meaningful and therefore 

the value used in the discussions below (Equation 5).  

Figure 11-7. Fluorescence profile upon the addition of HA. This quenching can be described 
using a modified Stern-Volmer equation, highlighting the quenching of pyrene excimer 
formation during coacervate complexation as the concentration of HA is increased. The 
high linear correlation (r2 = 0.99) between the quencher concentration (HA) and the ratio 
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of F0 (measured fluorescence intensity without quencher present) and F (measured 
fluorescence intensity with quencher present) is in accordance with the Stern-Volmer 
equation. 

The resulting plot in Figure 7 is linear with an upward curvature, showing a typical Stern-Volmer 

plot where collisional quenching occurs.106-107  This fluorescence quenching is typical of other 

polyelectrolyte solutions.108-109 The decrease of fluorescence intensity at the excimer peak upon 

the addition of HA is indicative of the quenching of excimer formation due to a reduced propensity 

for aggregation during coacervate complexation-105. We can hypothesize that the screening for 

electrostatic attractions between the HA backbone with the surrounding water network further 

reduces the potential number of binding sites for pyrene particles (i.e. the desolvated ELP chain).45 

The weaker intermolecular hydrogen bonding between the oppositely charged polymers results in 

a subsequent reduction in the number of pyrene dimer interactions.100, 110  

 

 Conclusions 
 We studied the effects of temperature and charge composition on the formation of 

polyelectrolyte coacervates consisting of ELP complexed with HA. Using DLS, sample turbidity, 

fluorescence microscopy and spectrometry to study the formation of these PECs, we found that 

the coacervation complexes can be formed over a range of charge ratios even without the presence 

of salt. We have also demonstrated that the Tt of PEC coacervates formation shifts to lower 

temperatures at higher charge ratios. Additionally, we have shown using DLS that the effect of 

temperature on particle size results in larger particles when the composite has a higher molar 

concentration of HA. More importantly, at temperatures above the Tt, we achieved monodisperse 

population of ELP/HA coacervate particles. Under these conditions the contribution of entangled 

or aggregated HA chains to light scattering is reduced due to the complexation of HA. However, 

at room temperature during the complexation process, not all of the HA has complexed with the 

ELP and free HA thus can still contribute to the scattering. When ELP alone undergoes a 

temperature-induced phase transition, only aggregation results, with no control of complex size or 

polydispersity.  

 For all charge densities, only a small concentration of negatively charged polymers were 

necessary for these composites to coacervate. These initial studies on the effect of charge ratios on 

temperature-responsive polypeptides and polysaccharide mixtures inform the future design of 

similar families of stimuli-responsive polypeptides (e.g. changes in pH and ionic strength). The 
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ability of these PECs to sequester hydrophobic molecules allows for their potential suitability in 

drug delivery applications. Also, incorporation of additional biological active molecules/moieties, 

through the modification of side chains in both HA and ELP polymers, could enable these 

coacervates to be applied to a wide-ranging suite of tissue engineering applications. Although 

coacervate formation has been shown from observations of self-assembly driven by microphase 

separation, the coacervation mechanism and the resultant macrostructure remains to be further 

explored.  
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12 Appendix 4: The effects of cell-adhesive peptide 
hydrogels on oligodendrocyte precursor cell 
morphology 

 Abstract 
The extracellular matrix (ECM) is a complex, hierarchical, multicomponent material that contains 

multiple biomolecules assembled together. This complexity makes decoupling the effects of both 

biomechanical properties and cell-matrix interactions difficult, especially in studies of 3D 

encapsulations that involve the initiation and/or propagation of specific cellular processes. In this 

study, we developed a self-assembling pentapeptide hydrogel (RAPID) functionalized with 

multiple different matrix-derived cell adhesive ligands. RAPID can self-assemble with the addition 

of cell adhesive ligands into hydrogels with mechanical properties consistent with non-

functionalized RAPID controls.  This allows for the precise tuning of peptide ligand concentration, 

since the rheological properties of the RAPID hydrogels are not affected by the addition of cell-

adhesive ligands. This permits us to study cell-matrix interactions of encapsulated oligodendrocyte 

precursor cells (OPCs) in the presence of laminin-derived peptide sequences, IKVAV, RGD, and 

YIGSR. Previous studies have utilized biomaterials to promote neuronal regeneration using neural 

stem cells, but little is known about how the encapsulation environments impact OPC growth or 

their differentiation into myelinating oligodendrocytes. We demonstrate that interactions with the 

sequences IKVAV, RGD, and YIGSR contribute to improved viability and process extension of 

OPCs versus non-functionalized RAPID controls. The results give evidence that cell adhesive 

peptide epitopes may promote OPC survival and morphological changes into more mature 

phenotypes.   

 

 Introduction 
Remyelination is a limiting feature in any central nervous system (CNS) regeneration. 

Oligodendrocytes, which produce the insulating myelin sheaths around neuronal axons, have not 

been successfully cultured in a 3D in vitro system that permits growth and morphological changes 

indicative of oligodendrocyte maturation. Previous oligodendrocyte encapsulation studies have 

used bio-inert materials which provide very little cell-matrix support to encapsulated cells1-2. To 

address this issue, mimics of the CNS extracellular matrix (ECM) can be utilized that allow 
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physiologically relevant development of cell morphologies and interactions3-7. While cell-matrix 

interactions have been shown to influence the differentiation efficiency of oligodendrocyte 

precursor cells (OPCs)8, a subtype of lineage-restricted glial cells that give rise to myelinating 

oligodendrocytes, there has been growing evidence of mechanosensitivity of where both 

proliferation and differentiation correlates with the mechanical stiffness of underlying substrata1, 

9. Thus, in order to properly investigate cell-matrix interactions of OPCs and its surrounding 

microenvironment without the influence of biomechanically-related events (i.e. via 

mechanotransduction pathways), it is important to decouple these synergistic effects of both the 

hierarchical microstructures, biomechanical properties, and signaling cues that initiate and/or 

propagate specific cellular processes within the ECM. 

 

Covalent immobilization of adhesive peptide sequences as well as cell-secreted matrix molecules 

in synthetic 3D hydrogels can modulate cell-matrix interactions10-13. Interactions between cells and 

these peptides and proteins are primarily mediated by integrins expressed on the cell surface. The 

most extensively studied adhesive recognition is the tripeptide, Arg-Gly-Asp (RGD), derived from 

fibronectin, but also found in collagen type I, fibrinogen, laminin, and other matrix proteins14. 

RGD binding on hydrogels increase dorsal root ganglia neurite outgrowth15. Proliferation of NSCs 

can be modulated through control of RGD surface density16, where it was demonstrated that higher 

RGD concentrations were correlated with increased NSC cell attachment and dendrite extension. 

In addition to RGD, laminin-derived adhesion sequences such as IKVAV in combination with 

NSCs saw significantly enhanced regeneration of neural tissue in a rat brain surgery model17. 

IKVAV is a peptide derived from the α-chain of laminin, and previously shown to induce 

endothelial cell adhesion and subsequent tubule formation18. In the presence of immobilized 

IKVAV on collagen type I hydrogels, there was increased cell migration, adhesion, and capillary 

network formation in vascular endothelial cells and stimulated neurite outgrowth in conditions of 

serum deprivatios19.  Additionally, IKVAV has been shown to mediate revascularization of 

ischemic tissue.20 The integrin receptor ligand YIGSR is found in the laminin β chain, which has 

been extensively investigated as a promotor of neuronal cell adhesion.11, 21 Similarly, YIGSR-

functionalized matrices have been found to promote neurite sprouting and regeneration.22 
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The goal of this study was to investigate the effects of cell-matrix interactions via self-assembling 

pentapeptide hydrogels (RAPID) functionalized with adhesive peptide sequences. While in native 

ECM (e.g. biologically sourced ECMs such as Matrigel), it is difficult to decouple the synergistic 

effects between the complex interconnectivity of cell-derived matrices and heterogonous mixture 

of growth factors and other ligands. However, RAPID hydrogels are an ideal system of choice 

because 1) their short pentapeptide sequence is easily synthesized and chemically defined, 2) their 

rheological properties are easily tunable via subtle changes in pH and peptide concentration, and 

3) they have previously been demonstrated to be suitable for cytocompatible encapsulation of 

OPCs23-24. RAPID can co-assemble into hydrogels that present short peptide ligands with 

consistent mechanical properties, which allows for the precise tuning of peptide ligand 

concentration. The modularity of this peptidic system permits us to study cell-matrix interactions 

of encapsulated oligodendrocyte precursor cells (OPCs) in the presence of laminin-derived 

recognition sequences, IKVAV, RGD, and YIGSR. For our RAPID system, we can control both 

the biomechanical properties, as well as ligand presentation allowing for the independent 

adjustment of specific molecules. For this study, we present a hydrogel system that can be facilely 

prepared for the encapsulation of OPCs. We find that incorporation of cell-adhesive ligands 

promoted process extension and cell growth within RAPID hydrogels. These results indicate the 

potential of RAPID hydrogels in providing a suitable microenvironment for OPCs and directing 

cell fate in CNS regeneration applications. 

 

 Methods and Materials 
 

12.3.1 Peptide Synthesis.  

All peptides were synthesized by solid-phase chemistry on a Liberty Blue peptide  

synthesizer (CEM, NC). A TentaGel R Rink Amide Resin was used to generate a terminal 

amide. Solvents and Fmoc (fluorenylmethoxycarbonyl) protected amino acids were purchased 

from Gyros Protein Technologies. Reagents were made with 5 equiv. moles of amino acid and 5 

equiv. moles of HBTU (2-(1H-benzotriazol-1-yl)-1,1,3,3 tetramethyluronium 

hexafluorophosphate), and subsequently dissolved in DMF (dimethylformamide). Amino acid 

coupling cycles were 60 min in length. Protecting groups were removed with treatments of 20/80 
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v/v piperidine/DMF for 10 minutes. After the coupling reaction was complete, the resin was 

washed three times with DCM (dichloromethane) before cleavage. Cleavage of the peptides was 

accomplished by shaking the resin with 10 mL of TFA 

(trifluoroacetic  cid)/triisopropylsilane/H2O (95:2.5:2.5 volume ratios) for 2 h at room 

temperature. The peptide solution was collected, and the peptide precipitated by the addition of 

cold diethyl ether followed by two washes with cold ether after centrifugation. Peptides were 

dried overnight, redissolved in deionized water, and dialyzed in semipermeable cellulose ester 

membranes with a molecular weight cutoff of 100-500 Da (Spectra/Por, Spectrum Laboratories 

Inc., Rancho Dominguez, CA). The dialysis buffer (deionized water) was changed every 12 h for 

2 days and the peptides were lyophilized.   

 

 Hydrogel Formation and Rheological Properties.  
Lyophilized peptides were dissolved in PBS to a final concentration of 1.5 wt.%. To evaluate the 

viscoelastic properties of the hydrogel forming peptides, 25 µL aliquots of the hydrogel were 

pipetted into 5 mm molds on glass slips. Gels were removed from the molds and rheometry tests 

were performed 10 minutes after induction of gelation (Anton Par, P25S 25 mm parallel steel 

plates) with a measuring gap of 250 µm. Storage (G’) and Loss (G”) moduli were measured as a 

function of strain (%) ranging from 0.01 to 100% with a constant frequency of 10 rad/s. 

Frequency sweeps were performed at angular frequencies ranging from 1 to 100 rad/s at 0.1% 

strain. For recovery experiments, a step-time procedure was utilized with a series of applied 

strains. Initially, samples were applied with 0.01% strain for 100 s followed immediately by a 

500% strain for 50 s, and cycled 5 times. All steps were performed at a fixed oscillation 

frequency of 10 rad/s.   

 

12.4.1 Cell Culture.  

GFP+ MADM OPC lines4 were expanded in vitro on T75 tissue culture plates treated with poly-

ornithine. OPCs were cultured in DMEM with high glucose, 4 mM L-glutamine, 1 mM sodium 

pyruvate (Life Technologies) with N2 and B27 supplement (Life Technologies)1,1% penicillin-

streptomycin (Life Technologies), 10 ng/mL mouse PDGFA-AA (eBioscience), and 50 ng/mL 

human NT3 (Peprotech). Cell media was changed every 2 days, and cells were grown to 90% 

confluency and passaged using 0.25% trypsin in Dulbecco’s phosphate buffered saline 
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(PBS).  Cell media was changed every 2 days, and cells were grown to 90% confluency and 

passaged using 0.5% trypsin-EDTA. All cells were cultured in 5% CO2 atmosphere, and 19.95% 

O2 at 37 °C.  

 

12.4.2 Hydrogel Cell Encapsulation and Analysis. 

Hydrogels for cell encapsulation were made using 3 wt% KYFIL, 1:15 IKVAVKYFIL, 1:15 

YIGSRKYFIL, and 1:15 RGDKYFIL peptide in PBS. 5mm molds (what are they made of) were 

placed on 1cm glass slides in a 24 well plate. 25 uL  1.5 wt% hydrogels with 1E6 cells/mL were 

made by mixing cells and peptides in the molds and then transferred to a cell incubator for 10 

minutes at 37 °C. OPC proliferation media was then added to the hydrogels, and changed every 2 

days. Hydrogels were stored at −80 °C before running ATP or DNA quantification assays. For 

quantification, gels were homogenized in lysis buffer using a pipette and were measured using the 

CellTiter-Glo luminescent Cell Viability Assay (Promega, United States) and the QuantiT 

PicoGreen dsDNA assay (ThermoFisher) according to manufacturer protocols. For image analysis, 

channels for live cells were merged and converted to a mask, and then converted to 8-bit to allow 

for thresholding based on the intensity. The skeletonize plugin was used, and the skeleton analysis 

tool was then employed, with a prune cycle method using the shortest branch. The number of 

branches per cell for each image were recorded (n = 3 samples per condition).  

 

12.4.3 Immunostaining. 

 After 2 days of culture, gels were fixed in 4% paraformaldehyde for 20 minutes at 4 °C and rinsed with PBS before 

permeabilizing overnight with 0.3% triton-X in PBS. Hydrogels were rinsed in PBS, and then incubated with 10 µg/mL 

stock solution of Alexa Fluor 568 Phalloidin (ThermoFisher) in 1% BSA in PBS overnight. 4′,6-diamidino-2-phenylindole 

(DAPI) was added to stain cell nuclei during the last 20 minutes of incubation. Gels were then washed 4 × 20 min in PBS 

and imaged with a Zeiss LSM 780 confocal microscope. 100 µm z-stack images were collected with a z-spacing distance of 

1 µm.   

 

 Results and Discussion 
12.5.1 Hydrogel rheological characterization 
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We evaluated the mechanical properties of 1.5 wt. % hydrogels, and found that the incorporation 

Figure 12-1. Rheological properties of 1.5 wt. % KYFIL hydrogels at pH 7.4 (n = 3 for all 
samples). A - D) Angular frequency sweep of control KYFIL, IKVAV-KYFIL, YIGSR-KYFIL, 
and RGD-KYFIL peptide sequences, respectively, at constant strain of 0.1%. G' is an order 
of magnitude greaten than G” indicating hydrogelation has occurred. E - H) Strain sweep 
of gelling control KYFIL, IKVAV-KYFIL, YIGSR-KYFIL, and RGD-KYFIL peptide 
sequences, respectively, at constant angular frequency of 10 rad/s. Above the critical strain 
at 5%, the material becomes progressively more fluid-like, where G' starts to increase and 
G'' begins to decrease. I - L) Five step strain sweeps of 0.1 % (100 s) and 500 % strain (50 
s), followed by a 100 s recovery period, were performed on control KYFIL, IKVAV-KYFIL, 
YIGSR-KYFIL, and RGD-KYFIL hydrogel peptide sequences, respectively. The hydrogel 
recovered 80% of its initial G' within several seconds. The hydrogel repeatedly recovered 
its mechanical strength following multiple high strain cycles.  



 269 

of RGD, IKVAV, and YIGSR-modified peptides did not alter the storage modulus of RAPID 

hydrogels. Hydrogels were formed by mixing 22 mM of AYFIL or KYFIL peptides with 2 mM of 

the cell-adhesive ligands. This ligand concentration was based off multifactorial experiments to 

optimize endothelial cell growth as a function of individual cell-adhesive ligand incorporation, and 

demonstrated that there was significant cell growth for cells seeded on hydrogels with cell-

adhesive ligand concentrations from 1.5 mM to 6 mM.25 For all KYFIL and KYFIL-functionalized 

samples, the storage modulus (G¢) was found to be 8.5 kPa (Figure 1) versus 3 kPa for AYFIL 

hydrogels (Figure 2). These stiffnesses are consistent with previously published results of RAPID 

hydrogel systems,23-24 where it was reported that 1.5 wt % KYFIL hydrogels had a storage modulus 

ranging from 8 kPa, and 1.5 wt % AYFIL hydrogels had a stiffness of 3.2 kPa. This suggests we 

can reliably tune the mechanical properties of the hydrogel while maintaining a constant ligand 

concentration. Multiple high-strain (100%) sweep cycles, with 30 s recovery periods, were 
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performed to evaluate RAPID hydrogels’ ability to self-heal following mechanical deformation. 

Figure 12-2. Rheological properties of 1.5 wt. % AYFIL hydrogels at pH 7.4 (n = 3 for all 
samples). A - D) Angular frequency sweep of control AYFIL, IKVAV-AYFIL, YIGSR-AYFIL, 
and RGD-AYFIL peptide sequences, respectively, at constant strain of 0.1%. G' is an order 
of magnitude greaten than G” indicating hydrogelation has occurred. E - H) Strain sweep 
of gelling control AYFIL, IKVAV-AYFIL, YIGSR-AYFIL, and RGD-AYFIL peptide 
sequences, respectively, at constant angular frequency of 10 rad/s. Above the critical strain 
at 5%, the material becomes progressively more fluid-like, where G' starts to increase and 
G'' begins to decrease. I - L) Five step strain sweeps of 0.1 % (100 s) and 500 % strain (50 
s), followed by a 100 s recovery period, were performed on control AYFIL, IKVAV-AYFIL, 
YIGSR-AYFIL, and RGD-AYFIL hydrogel peptide sequences, respectively. The hydrogel 
recovered 80% of its initial G' within several seconds. The hydrogel repeatedly recovered 
its mechanical strength following multiple high strain cycles. 
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All cell-adhesive motif functionalized RAPID hydrogels had similar recovery profiles compared 

to non-functionalized hydrogel controls (Figure 1I-L, Figure 2I-L). Following a 500% strain, 

KYFIL hydrogels repeatedly recovered gel behavior within 14 seconds. Within 1 minute, the gel 

recovered ~70% of its initial G¢. For AYFIL hydrogels, following a 500% strain, hydrogels 

recovered 82% of its initial G¢ within a minute. Even after multiple high-strain cycles, the hydrogel 

rapidly and repeatedly recovers its mechanical strength—rendering these materials suitable for 

biomedical applications that require injection. This enables uniform encapsulation of cells in 3D, 

ex vivo, and then injection via a minimally invasive technique. 

 

 

12.5.2 Effects of cell-matrix interactions on OPC growth and morphology 

Previous studies have suggested that OPC proliferation and differentiation both correlate with the 

physical stiffness of underlying 2D9 or surrounding 3D matrices in bio-inert materials1. While 

these studies of OPCs have primarily focused on 2D culture in poly-l-lysine or poly-l-ornithine 

coated tissue culture plates, few studies have examined the growth and metabolic activity of 

encapsulating these lineage-restricted cells in 3D matrices incorporated with cell-adhesive ligands. 

It has been shown that the biophysical properties of hydrogels sharply influence the proliferation 

and differentiation of stem cells within a 3D environment10, 26. Recent evidence indicates that 

OPCs are also sensitive to the biophysical stiffness of their surrounding microenvironment23, 27. 

We sought to encapsulate OPCs28 in RAPID hydrogels, which are supportive of OPC cell growth 

Figure 12-3. MADM OPC line encapsulated in 1.5 wt. % KYFIL hydrogels functionalized 
with cell-adhesive ligands IKVAV, RGD, or YIGSR and cultured over 4 days. A) OPCs 
remained viable after encapsulation for at least 4 days, as determined by the increase of 
ATP over time for all samples (B). The increase in DNA concentration suggests that cells 
proliferate over the course of 4 days. Error bars represent standard error of the mean (SEM, 
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and survival23-24. Earlier published work primarily focused on the viability of cells encapsulated 

within RAPID hydrogels, while the present study investigates the effects on OPC proliferation and 

morphology when cell-adhesive ligands such as IKVAV, YIGSR, and RGD are introduced into 

the matrix formulation. The formulation of our hydrogels allows us to decouple the synergistic 

effects of cell-adhesive epitopes and biomechanical properties of the surrounding 3D 

microenvironment presented to these cells. This allows us to solely focus on the effect of individual 

ligands on cell growth and proliferation using ATP and DNA quantification assays. OPCs were 

encapsulated within these RAPID hydrogels, and their growth was measured at 0, 2, and 4 days 

using both an ATP and DNA quantification assay.  

 

An approximate 5-fold increase for both ATP and DNA concentration was observed on Day 4 

compared to Day 0 for all samples, suggesting that OPCs remained viable and proliferated over 

the course of the culture period for cells encapsulated within cell-adhesive functionalized KYFIL 

hydrogels. The presented data does not suggest there is a significant difference between individual 

motifs, so ongoing studies are currently in progress to replicate the experiment, as well as using 

AYFIL and functionalized AYFIL hydrogels.  

 

12.5.3 Influence of cell-adhesive peptides on cell spreading and process 

extension 

IKVAV, RGD, and YIGSR functionalized KYFIL hydrogels were capable of promoting cell 

growth and process extension of OPCs. Following hydrogel encapsulation, process extension was 

observed for all samples, however, non-functionalized hydrogel controls saw shorter processes.  
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Figure 12-4. A) Maximum projection (78-136 µm thick z-stack) of OPCs encapsulated in 
KYFIL hydrogels functionalized with IKVAV, YIGSR, or RGD after 2 days of culture. 
Process extension of OPCs are observed for all samples. GFP (green), Actin (red), DAPI 
(blue). B) Inset of OPCs encapsulated in IKVAV functionalized hydrogels (63 µm thick z-
stack). Magnification at 40x. C) Quantification of number of branches per cell. OPCs 
encapsulated in IKVAV-functionalized KYFIL hydrogels have the most branching. There 
was no significant increase in branching for YIGSR and RGD compared to control 
hydrogels. Error bars are SEM (n = 3 experiments).  

For control (no cell-adhesive motifs), there were limited branching in encapsulated OPCs. 

Interestingly, YIGSR and RGD showed no influence on OPC process extension (Figure 1-4 A), 

despite the fact that YIGSR and RGD has previously been shown to facilitate cellular attachment 

and spreading.11, 21 It is possible that the conformation of the YIGSR/RGD - KYFIL sequence and 

fibrillar conformation disrupted its cell-binding activity.29 In this context, it would not be 

surprising if the YIGSR sequence was subject to intramolecular interactions via p-p stacking with 

the bound KYFIL sequence. IKVAV functionalized hydrogels saw the most branching of OPCs 

(Figure 1-4 B). In notable contrast to control hydrogels, the maximum length of processes were 

also observed in IKVAV hydrogels. This is consistent with other studies involving IKVAV 

Control IKVAV YIGSR RGD A 

B C 
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functionalized biomaterials for neuronal cells, where the most branching and longest process 

extension occurs.17, 30-31  

 

 Conclusions 
We demonstrated that the presence of cell-adhesive epitopes influences the growth and process 

extension of OPCs. Nonfunctionalized RAPID hydrogels alone saw limited changes in OPC 

morphology compared to gels that incorporated cell-adhesive ligands. IKVAV, RGD, and YIGSR 

functionalized hydrogels had similar material mechanics, and increased levels of cell metabolic 

activity compared to non-functionalized hydrogel controls. The hydrogel system presented here 

allows for independent adjusting of the concentration of multiple cell-adhesive ligands without 

any changes to the mechanical properties of the hydrogel. The facile preparation of functionalized 

RAPID hydrogels should be widely applicable to other studies at understanding the effects of 

matrix-bound ligands involving 3D hydrogel encapsulation studies.  
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