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ABSTRACT

In this thesis, we study the integration of constrained optimization algorithms with the training
of deep neural networks. In particular, we we primarily interested in end-to-end trainable prediction
and decision models composed of differentiable components. The use of such techniques spans
several broad application areas, which we divide into two categories. When Learning to Optimize,
the goal is to train neural networks to solve or aid in the solution of constrained optimization
problems. In the Predict-Then-Optimize setting, the goal is to optimize decisions under uncertainty
by estimating unknown coefficients in optimization problems from correlated data. Both frameworks
stem from efforts to enhance optimization modeling technology for operations research and decision
making tasks. This thesis contributes to both areas, and seeks to combine techniques from each to
enhance the expressive and computational ability of models that learn to make decisions.

5



6



Acknowledgments

I’m most grateful to my advisor Nando, for his years of investment, support and collaboration. His
belief in me over the years has contributed to my own self-belief. I’m also thankful for my lab
mates: Cuong, My, Vincenzo, Saswat and Jacob, for their friendship, company, and commisseration.
They’ve contributed greatly to this thesis, while adding many laughs along the way.
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Chapter 1

Introduction

Machine learning (ML) is a rapidly developing field, with recent developments having transformative
impacts on information processing in domains such as natural language processing, computer vision,
and web search. A growing subfield is that of Scientific ML, an extention of ML methodology which
aims to enhance and augment existing computational methods, to aid in scientific and engineering
research. On the other hand, constrained optimization (CO) is a subfield of mathematics which
models decision-making problems by the minimization of functions over constrained sets, and
poses efficient algorithmic solutions to those problems. This thesis focuses on the methodological
integration of modern machine learning methods, with classical tools in constrained optimization,
to enhance the efficacy of CO decision models by leveraging pattern recognition in data. The use
of such techniques spans several application areas, which we broadly divide into two categories.
When Learning to Optimize, the goal is to train neural networks to solve or aid in the solution of
constrained optimization problems. In Prediction-Then-Optimize (PtO), the goal is to learn the
uncertain coefficients of CO problems from observable data.

A substantial literature has been dedicated in recent years to the use of machine learning to
accelerate the solution of optimization problems [89]. This research direction, often termed Learning
to Optimize (LtO), aims to develop real-time constrained optimization capabilities, for applications
requiring complex decisions to be made under stringent time constraints. These capabilities are
increasingly demanded in settings such as job scheduling in manufacturing [90], power grid
operation [54], and optimal control [132]. Many approaches within the LtO scope aim at assisting
external optimization solvers with information such as learned heuristics [78] and active constraint
prediction [108]. This thesis focuses in particular on end-to-end LtO, in which fully differentiable
models are trained by gradient descent to minimize task-specific optimization objectives.

The Predict-Then-Optimize (PtO) framework models decision-making processes as optimization
problems whose parameters are only partially known while the remaining, unknown, parameters
must be estimated by a machine learning model. The predicted parameters complete the specification
of an optimization problem, which is then solved to produce a final decision. Its main application is
in optimization under uncertainty, where optimal decisions must be made with imperfect knowledge
of the objective function. While conventional predictive modeling can be used to estimate unknown
optimization parameters based on correlated data, modern PtO research is dominated by end-to-end
learning approaches. By backpropagating gradients through the solution of an optimization problem,
predictive ML models can be trained to optimize loss functions defined directly on the downstream
decisions which result from their predictions. This thesis proposes novel methods which show how
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PtO methodology can be used to enhance predictive modeling in well-known ML settings such as
learning to rank and ensemble learning.

Modern approaches both of these problem settings, especially those based on end-to-end
learning, often rely on Differentiable Programming. Optimization solvers which supply routines
for backpropagation of gradients in addition to forward propagation of solutions are naturally
useful in the design of integrated prediction and optimization models. Although we do not consider
Differentiable Programming as a problem setting, the design and analysis of such tools is important
enough that it is treated as a third main topic in this thesis. Next, each of our main topics of interest
is described in further detail, followed by an overview of research challenges and contributions
made in this thesis.

1.1 Problem Settings
This section gives an overview of the Learning-to-Optimize and Predict-Then-Optimize settings,
and prefaces the topic of differentiable programming, before the main technical contributions of the
thesis are discussed.

Learning to Optimize Consider a generic optimization problem with continuous variables, subject
to equality and inequality constraints, all parameterized by a vector of coefficients c ∈ Rc. From
this we may define a mapping from any instance of coefficients c to the resulting optimal solution
x⋆(c) ∈ Rn:

x⋆(c) ∈ argmin
x

fc(x) (1.1a)

s.t. hc(x) = 0 (1.1b)
gc(x) ≤ 0 (1.1c)

in which any choice of c specifies an optimization problem by determining functions the fc : Rn →

R, gc : Rn → Rm, and hc : Rn → Rp. In turn, this determines a corresponding optimal solution
x⋆(c).

The goal is to train an optimization proxy solver Xθ : Rc → Rn, over a distribution of problem
parameters c ∼ C, which approximates the mapping x⋆(c) as defined by equation (1.1). The proxy
model Xθ may consist of a deep neural network Nθ with trainable weights θ, possibly combined
with a non-trainable correction routine S to improve solution quality, so that Xθ = S ◦ Nθ. One
may define the following as an ideal training goal for the optimization proxy model Xθ:

min
θ

E
c∼C

[
fc (Xθ(c) )

]
(1.2a)

s.t. hc (Xθ(c) ) = 0 ∀c ∼ C (1.2b)
gc (Xθ(c) ) ≤ 0 ∀c ∼ C. (1.2c)

The training goal (1.2) emphasizes that each solution Xθ(c) produced by the proxy solver must
be feasible to the constraints of problem (1.1). Subject to these constraints on each output, their
mean objective value should thus be minimized. This training goal is evidently an unsupervised
learning problem. However, as discussed in this thesis, supervision via labeled information such as
precomputed optimal solutions x⋆(c) may also be leveraged.
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Predict-Then-Optimize In this setting, decision problems are modeled as optimization problems
whose parameters are only partially known while the remaining, unknown, parameters must be esti-
mated by a machine learning (ML) model Cθ . The predicted parameters complete the specification
of an optimization problem which is then solved to produce a final decision. The problem is posed
as estimating the solution x⋆(c) ∈ X ⊆ Rn of a parametric optimization problem:

x⋆(c) = argmin
x

f (x, c) (1.3a)

such that: x ∈ S, (1.3b)

given that parameters c ∈ C ⊆ Rp are unknown, but that a correlated set of observable values z ∈ Z
are available. Here f is an objective function, and g and h define the set of the problem’s inequality
and equality constraints. The combined prediction and optimization model is evaluated on the basis
of the optimality of its downstream decisions, with respect to f under its ground-truth problem
parameters [52]:

min
θ
E(z,c)∼Ω

[
f
(
x⋆(Cθ(z)), c

)]
. (1.4)

This setting is ubiquitous to many real-world applications confronting the task of decision-
making under uncertainty, such as planning the shortest route in a city, determining optimal power
generation schedules, or managing investment portfolios. For example, a vehicle routing system
may aim to minimize a rider’s total commute time by solving a shortest-path optimization model
(1.3) given knowledge of the transit times c over each individual city block. In absence of that
knowledge, it may be estimated by prediction models based on exogenous data z, such as weather
and traffic conditions. In this context, more accurately predicted transit times ĉ tend to produce
routing plans x⋆(ĉ) with shorter commutes, with respect to the true city-block transit times c.

However, direct training of predictions from observable features to problem parameters can
generalize poorly with respect to the ground-truth optimality achieved by a subsequent decision
model [104, 89]. To address this challenge, End-to-end Predict-Then-Optimize (EPO) [52] has
emerged as a transformative paradigm in data-driven decision making, where predictive models are
trained to directly minimize loss functions defined on the downstream optimal solutions x⋆(ĉ).

Differentiable Programming To integrate optimization solvers with end-to-end trainable predic-
tion models, is often necessary to view them as differentiable functions. In terms of the mapping
(1.1), we are interested in optimization solvers which can not only evaluate the function x⋆(ĉ),
but also its derivatives. Such solvers form a key toolset in the design of algorithms for both of the
above-described problem settings. Because of their central role in the topics of this thesis, we have
dedicated sections to their design and analysis.

1.2 Motivations and Contributions
Within each of its main topics of interest, we preface the motivations behind the research contri-
butions of this thesis. The following research questions establish the point of view of this thesis,
framing its aims and goals relative to the current state of the literature.
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Research Questions in Learning to Optimize In learning to solve optimization problems (1.2),
we consider two key aspects of the machine learning design: (1) What information should be learned
about an optimal solution, and (2) what information should be used to supervise that learning? More
precisely, we investigate the following research questions:

1. When a Learning to Optimize method is trained to solve NP-hard problems under the super-
vision of pre-computed solutions, how can we understand the effects of nonuniqueness and
suboptimality in those solutions?

2. What kinds of information can be predicted to assist in accelerating the convergence of an
optimization routine?

These questions motivate the research contributions of Chapter 3. In Section 3.1, we propose an
analysis on the relationship between generation of target solutions and the resulting accuracy of a
learned optimization model. In Section 3.2, we propose the idea of learning non-Euclidean metrics
to accelerate the convergence of operator splitting schemes based on proximal operators, and show
that the enhanced convergence can be related to a latent prediction of active constraints.

Research Questions in Differentiable Programming As shown in prior work, differentiable
optimization solvers can be implemented in a variety of ways. A standard approach known as
unrolling is to execute an entire optimization algorithm in an automatically differentiable environ-
ment, then backpropagate each of its successive operations to compute a derivative. More efficient
approaches based on implicit differentiation have since been developed. In Chapter 4, we seek to
better understand the mathematics of backpropagation through optimization as well as its potential
applications in machine learning. The following research questions are pursued:

• How can we understand the backpropagation of optimization algorithms implemented in
automatically differentiable environments?

• How can differentiable programming be used to enhance performance on traditional machine
learning tasks?

In Section 4.1, we address the first question by proposing a convergence analysis of unrolling,
which reveals its limiting convergence rate and its conceptual connections to implicit differentiation.
Then in Section 4.2, we show how discrete masking mechanisms based on differentiable optimization
can be used to learn model selection, enhancing performance in ensemble learning.

Research Questions in Predict-Then-Optimize In the Predict-Then-Optimize scope, we are
interested in using PtO methodologies to solve conventional machine learning tasks while leveraging
the ability to impart hard constraints on their behavior via the constrained optimization component.
In particular, we are interested in PtO as a way of imparting algorithmic fairness guarantees on
the outputs of ML models. In part, this requires us to extend the PtO methodology to optimization
problems with multiple objectives. We pose the following research questions to motivate the
contributions of Chapter 5:
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1. How can the PtO framework be used extended to handle multiple uncertain objective criteria?
In particular, how can it be used to learn decisions that promote fairness over outcomes across
multiple parties?

2. How can the PtO framework be leveraged to ensure fair outcomes in widely deployed
applications of ML?

The first question is addressed in Section 5.1, which recognizes that fair aggregation functions
over multiple objectives are often nondifferentiable, requiring novel aproximation methods for their
incorporation in end-to-end learning. Then, Section 5.2 establishes a new line of applications for the
PtO framework, in the important area of fairness-constrained learning to rank. By combining deep
learning with constrained optimization, it proposes integrated models for web ranking optimization
with guarantees on fairness in exposure of various content in search results.

Before detailing the original contributions of this thesis work, the next chapter gives a broad
overview of preliminary concepts and related research works in the existing literature.
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Chapter 2

Background

This chapter provides a broad overview of related work and preliminary concepts. It covers basic
concepts of deep learning and constrained optimization, before describing and categorizing modern
research papers at the intersection of machine learning and optimization. Consistent with the main
interests of this thesis, we focus on those works aimed at designing end-to-end trainable models,
particularly in the learning-to-optimize and predict-then-optimize settings. Much of the material in
this section is based on the author’s published survey paper [89]. A later, more extensive survey of
the topic can be found in [104].

2.1 Preliminaries: Constrained Optimization
A constrained optimization (CO) problem poses the task of minimizing an objective function
f : Rn → R+ of one or more variables z ∈ Rn, subject to the condition that a set of constraints C
are satisfied between the variables:

O = argmin
z

f (z) subject to z ∈ C. (2.1)

An assignment of values z which satisfies C is called a feasible solution; if, additionally f (z) ≤ f (w)
for all feasible w, it is called an optimal solution.

A well-understood class of optimization problems are convex problems, those in which the
constrained set C is a convex set, and the objective f is a convex function. Convex problems have the
favorable properties of being efficiently solvable with strong theoretical guarantees on the existence
and uniqueness of solutions [24].

A particularly common constraint set arising in practical problems takes the form C = {z :
Az ≤ b}, where A ∈ Rm×n and b ∈ Rm. In this case, C is a convex set. If the objective f is an affine
function, the problem is referred to as linear program (LP). When a linearly constrained problem
includes a quadratic objective rather than a linear one, the result is called a quadratic program
(QP). If, in addition, some subset of a problem’s variables are required to take integer values, it is
called mixed integer program (MIP). While LP and QP with convex objectives belong to the class of
convex problems, the introduction of integral constraints (x ∈ Nn) results in a much more difficult
problem. The feasible set in MIP consists of distinct points in x ∈ Rn, not only nonconvex but also
disjoint, and the resulting problem is, in general, NP-Hard. Finally, nonlinear programs (NLPs) are
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optimization problems where some of the constraints or the objective function are nonlinear. Many
NLPs are nonconvex and can not be efficiently solved [115].

Of particular interest are the mixed integer linear programs (MILPs), linear programs in which
a subset of variables required to take integral values. This survey is primarily concerned with opti-
mization problems involving linear constraints, linear or quadratic objective, and either continuous
or integral variables, or a combination thereof.

Optimization Solving Methods A well-developed theory exists for solving convex problems.
Methods for solving LP problems include simplex methods [36], interior point methods [24] and
Augmented Lagrangian methods [69, 124]. Each of these methods has a variant that applies when
the objective function is convex. Convex problems [24] are in the class of P , and can be assumed
to be reliably and efficiently solvable in most contexts. For a review on convex optimization and
Lagrangian duality, the interested reader is referred to [24].

MILPs require a fundamentally different approach, as their integrality constraints put them in
the class of NP-Hard problems. Branch and bound is a framework combining optimization and
search, representable by a search tree in which a LP relaxation of the MILP is formed at each
node by dropping integrality constraints, and efficiently solved using solution methods for linear
programming. Subsequently, a variable zi with (fractional) value ai in the relaxation is selected for
branching to two further nodes. In the right node, the constraint zi ≥ ai is imposed and in the left,
zi < ai; bisecting the search space and discarding fractional values in between the bounds. The
solution of each LP relaxtion provides a lower bound on the MILP’s optimal objective value. When
an LP relaxation happens to admit an integral solution, an upper bound is obtained. The minimal
upper bound found thus far is used, at each node, for pruning.

Finally, Constraint Programming [128] is an additional effective paradigm adopted to solve
industrial-sized MI(L)P and discrete combinatorial programs.

2.2 Preliminaries: Deep Learning
Supervised deep learning can be viewed as the task of approximating a complex non-linear mapping
from targeted data. Deep Neural Networks (DNNs) are deep learning architectures composed of
a sequence of layers, each typically taking as inputs the results of the previous layer [97]. Feed-
forward neural networks are basic DNNs where the layers are fully connected and the function
connecting the layer is given by o = π(Wx + b), where x∈Rn and is the input vector, o∈Rm the
output vector, W ∈Rm×n a matrix of weights, and b∈Rm a bias vector. The function π(·) is often
non-linear (e.g., a rectified linear unit (ReLU)).

Supervised learning tasks consider datasets χ = {xi,yi}
N
i=1 consisting of N data points with

xi ∈ X being a feature vector and yi ∈ Y the associated targets. The goal is to learn a model
Mθ : X → Y, where θ is a vector of real-valued parameters, and whose quality is measured in
terms of a nonnegative, and assumed differentiable, loss function L : Y ×Y → R+. The learning
task minimizes the empirical risk function (ERM):

min
θ

J(Mθ,χ) =
1
n

n∑
i=1

L(Mθ(xi),yi). (2.2)
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Most of the techniques surveyed in this work use (variants of) DNNs whose training conforms
to the objective above. Other notable classes of deep learning methods used to solve CO problems
are Graph Neural Networks (GNNs), which exploit architectures designed to perform inference on
data described by graphs, and Reinforcement Learning (RL), which differs from supervised learning
in not requiring labeled input/output pairs and concerns with learning a policy that maximizes some
expected reward function. We refer the reader to [159] and [137] for an extensive overview of GNNs
and RL, respectively.

2.3 Overview of ML and CO
Current research areas in the synthesis of constrained optimization and machine learning can be
categorized into two main directions: ML-augmented CO, which focuses on using ML to aid the
performance of CO problem solvers, and End-to-End CO learning, which focuses on integrating
combinatorial solvers or optimization methods into deep learning architectures.

The area related with End-to-End CO learning is the focus of this survey and is concerned with
the data-driven prediction of solutions to CO problems. We divide this area into: (1) approaches that
develop ML architectures to predict fast, approximate solutions to predefined CO problems, further
categorized into learning with constraints and learning on graphs, and (2) approaches that exploit
CO solvers as neural network layers for the purpose of structured logical inference, referred to here
as the Predict-Then-Optimize paradigm.

2.4 ML-augmented CO
ML-augmented CO involves the augmentation of already highly-optimized CO solvers with ML
inference models. Techniques in this area draw on both supervised and RL frameworks to develop
more efficient approaches to various aspects of CO solving for both continuous and discrete
combinatorial problems.

In the context of combinatorial optimization, these are broadly categorized into methods that
learn to guide the search decisions in branch and bound solvers, and methods that guide the
application of primal heuristics within branch and bound. The former include low-cost emulation
of expensive branching rules in mixed integer programming [79, 62, 67], prediction of optimal
combinations of low-cost variable scoring rules to derive more powerful ones [12], and learning
to cut [140] in cutting plane methods within MILP solvers. The latter include prediction of the
most effective nodes at which to apply primal heuristics [82], and specification of primal heuristics
such as the optimal choice of variable partitions in large neighborhood search [136]. The reader is
referred to the excellent surveys [100, 17] for a thorough account of techniques developed within
ML-augmented combinatorial optimization.

Techniques in this area have also used ML to improve decisions in continuous CO problems and
include learning restart strategies [61], learn rules to ignore some optimization variables leveraging
the expected sparsity of the solutions and consequently leading to faster solvers, [113], and learning
active constraints [114, 125] to reduce the size of the problem to be fed into a CO solver .
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2.5 Learning CO Solutions
A diverse body of work within the end-to-end CO learning literature has focused on developing ML
architectures to predict fast, approximate solutions to predefined CO problems end-to-end without
the use of CO solvers at the time of inference, by observing a set of solved instances or execution
traces. These approaches contrasts with those that use ML to augment search-based CO solvers and
configure their subroutines to direct the solver to find solutions efficiently. This survey categorizes
the literature on learning CO solutions into (1) methods that incorporate constraints into end-to-end
learning, for the prediction of feasible or near-feasible solutions to both continuous and discrete
constrained optimization problems, and (2) methods that learn combinatorial solutions on graphs,
with the goal of producing outputs as combinatorial structures from variable-sized inputs. These
two categories, referred to as learning with constraints and learning CO solutions, respectively, are
reviewed next.

2.5.1 Learning with Constraints

The methods below consider datasets χ = {xi,yi}
N
i=1 whose inputs xi describe some problem

instance specification, such as matrix A and vector b describing linear constraints in MILPs, and
the labels yi describe complete solutions to problem O with input xi. Notably, each sample may
specify a different problem instance (with different objective function coefficients and constraints).

An early approach to the use of ML for learning CO problem solutions was presented by
Hopfield and Tank [70], which used Hopfield Networks (Hopfield [71]) with modified energy
functions to emulate the objective of a traveling salesman problem (TSP), and applied Lagrange
multipliers to enforce feasibility to the problem’s constraints. It was shown in Wilson and Pawley
[156] however, that this approach suffers from several weakness, notably sensitivity to parameter
initialization and hyperparameters. As noted in Bello et al. [16] , similar approaches have largely
fallen out of favor with the introduction of practically superior methods.

Frameworks that exploit Lagrangian duality to guide the prediction of approximate solutions to
satisfy the problem’s constraints have found success in the context of continuous NLPs including
energy optimization [56, 146] as well as constrained prediction on tasks such as transprecision
computing and fair classification [54, 142].

Other end-to-end learning approaches have demonstrated success on the prediction of solutions
to constrained problems by injecting information about constraints from targeted feasible solutions.
Recently, Detassis et al. [38] presented an iterative process of using an external solver for discrete
or continuous optimization to adjust targeted solutions to more closely match model predictions
while maintaining feasibility, reducing the degree of constraint violation in the model predictions in
subsequent iterations.

2.5.2 Learning Solutions on Graphs
By contrast to approaches learning solutions to unstructured CO problems, a variety of methods
learn to solve CO cast on graphs. The development of deep learning architectures such as sequence
models and attention mechanisms, as well as GNNs, has provided a natural toolset for these tasks
and led to substantial improvements in the state of the art.
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Figure 2.1: Predict-then-optimize framework; gradients of a solver output (solution) must be
computed with respect to its input (problem parameters) in order to maximize empirical model
performance.

Vinyals et al. [148] introduced the pointer network, in which a sequence-to-sequence model
uses an encoder-decoder architecture paired with an attention mechanism to produce permutations
over inputs of variable size. The resulting model was used to learn solutions to the TSP and the
Delaunay triangulation problems from previously solved instances in a supervised manner, and
demonstrated some ability to generalize over variable-sized problem instances. This pointer network
architecture was also adopted by Bello et al. [16] but developed an improved model for learning the
TSP by training it with RL, using tour length as the reward signal. The move from supervised to RL
was motivated partly by the difficulties associated with obtaining target solutions that are optimal,
and the existence of nonunique optimal solutions. Kool et al. [86] applied an attention-based RL
model to the TSP as well as variants of the vehicle routing problem, but with a graph attention
network [145] inspired by the Transformer architecture [144]. This neural network design introduces
invariance to permutations of the input nodes, improving learning efficiency.

Khalil et al. [81] adopted a different RL approach based on a greedy heuristic framework
which determines approximate solutions by the sequential selection of graph nodes. The selection
policy is learned by reinforcement learning, using a graph neural network (GNN) to predict actions
given a graph embedding representation of the current solution’s state. Despite the trend toward
RL-oriented frameworks, Nowak et al. [116] discusses a purely supervised learning method for the
general quadratic assignment problem based on the use of GNN’s trained on representations of
individual problem instances and their targeted solutions. Inferences from the model take the form
of permutations, which are converted into feasible solutions by a beam search.

These and more approaches are covered in detail in [28], which provides a thorough survey on
CO and reasoning with GNNs.
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2.6 Predict-Then-Optimize
A burgeoning topic in the intersection of ML and CO is the fusion of prediction (ML) and decision
(CO) models, in which decision models are represented by partially defined optimization problems,
whose specification is completed by parameters that are predicted from data. The resulting composite
models employ constrained optimization as a neural network layer and are trained end-to-end, based
on the optimality of their decisions. This setting is altogether different in motivation to those
previously discussed, in which the goal was to solve predefined CO instances with increased
efficiency. The goal here is the synthesis of predictive and prescriptive techniques to create ML
systems that learn to make decisions based on empirical data.

The following constrained optimization problem is posed, in which the objective function fy
and feasible region Cy depend on a parameter vector y:

O(y) = argmin
z

fy(z) subject to z ∈ Cy. (2.3)

The goal here is to use supervised learning to predict ŷ the unspecified parameters from empirical
data. The learning task is performed so that the optimal solution O(ŷ) best matches a targeted
optimal solution O(y), relative to some appropriately chosen loss function. The empirical data
in this setting is defined abstractly as belonging to a dataset χ, and can represent any empirical
observations correlating with targeted solutions to (2.3) for some y. See Figure 2.1 for an illustration.

This framework aims to improve on simpler two-stage approaches, in which a conventional
loss function (e.g. MSE) is used to target labeled parameter vectors y that are provided in advance,
before solving the associated CO problem to obtain a decision. Such approaches are suboptimal in
the sense that predictions of y do not take into account the accuracy of the resulting solution O(y)
during training.

We note that there are two ways to view the predictions that result from these integrated models.
If ŷ is viewed as the prediction, then the calculation of O(ŷ) is absorbed into the loss function
L(ŷ,y), which targets the provided parameter vectors. Otherwise, the loss function L(O(ŷ),O(y))
is considered separately from the decision model and aims to match computed optimal solutions to
targeted ones. One advantage sought in either case is the opportunity to minimize during training
the ultimate error in the computed optimal objective values fŷ(O(ŷ)), relative to those of the target
data. This notion of training loss is known as regret:

regret(ŷ,y) = fŷ(O(ŷ)) − fy(O(y)).

Otherwise the optimal solution O(y) is targeted and one can use regret(O(ŷ),O(y)), regardless of
whether the corresponding y is available. Depending on the techniques used, it may be possible
to minimize the regret without access to ground-truth solutions, as in Wilder et al. [153], since the
targeted solutions O(y) contribute only a constant term to the overall loss. It is worth mentioning
that because the optimization problem in (2.3) is viewed as a function, the existence of nonunique
optimal solutions is typically not considered. The implication then is thatO(y) is directly determined
by y.

Training these end-to-end models involves the introduction of external CO solvers into the
training loop of a ML model, often a DNN. Note that combinatorial problems with discrete state
spaces do not offer useful gradients; viewed as a function, the argmin of a discrete problem is
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piecewise constant. The challenge of forming useful approximations to ∂L
∂y is central in this context

and must be addressed in order to perform backpropagation. It may be approximated directly,
but a more prevalent strategy is to model ∂O(y)

∂y and ∂L
∂O

separately, in which case the challenge is
to compute the former term by differentiation through argmin. Figure 2.1 shows the role of this
gradient calculation in context.

2.6.1 Quadratic Programming
One catalyst for the development of this topic was the introduction of differentiable optimization
layers, beginning with Amos and Kolter [6] which introduced a GPU-ready QP solver that offers
exact gradients for backpropagation by differentiating the KKT optimality conditions of a quadratic
program at the time of solving, and utilizing information from the forward pass to solve a linear sys-
tem for incoming gradients, once the outgoing gradients are known. Subsequently, Donti et al. [47]
proposed a predict-then-optimize model in which QPs with stochastic constraints were integrated
in-the-loop to provide accurate solutions to inventory and power generator scheduling problems
specified by empirical data.

2.6.2 Linear Programming
Concurrent with Donti et al. [47], an alternative methodology for end-to-end learning with decision
models, called smart predict-then-optimize (SPO), was introduced by Elmachtoub and Grigas [52],
which focused on prediction with optimization of constrained problems with linear objectives, in
which the cost vector is predicted from data and the feasible region C is invariant to the parameter
y:

O(y) = argmin
z

yTz subject to z ∈ C. (2.4)

The target data in this work are the true cost vectors y, and an inexact subgradient calculation is
used for the backpropagation of regret loss L(ŷ,y) = ŷT (O(ŷ) − O(y)) on the decision task, by first
defining a convex surrogate upper bound on regret called the SPO+loss, for which it is shown that
O(y)−O(2ŷ −y) is a useful subgradient. Since this work is limited to the development of surrogate
loss functions on regret from the optimization task, it does not apply to learning tasks in which
the full solution to an optimization problem is targeted. The paper includes a discussion justifying
the method’s use on problems with discrete constraints in C, as in combinatorial optimization, but
experimental results are not provided on that topic. It is, however, demonstrated that the approach
succeeds in a case where C is convex but nonlinear.

Wilder et al. [153] introduced an alternative framework to predict-then-optimize linear pro-
gramming problems, based on exact differentiation of a smoothed surrogate model. While LPs are
special cases of QPs, the gradient calculation of Amos and Kolter [6] does not directly apply due to
singularity of the KKT conditions when the objective function is purely linear. This is addressed
by introducing a small quadratic regularization term to the LP objective fy(z) = yTz so that the
problem in (2.3) becomes

O(y) = argmin
z

yTz + ϵ∥z∥2 subject to Az ≤ b. (2.5)

The resulting problems approximate the desired LP, but have unique solutions that vary smoothly as
a function of their parameters, allowing for accurate backpropagation of the result. The integrated
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model is trained to minimize the expected optimal objective value across all training samples,
which is equivalent to minimizing the regret loss but without the need for a target dataset. This
work demonstrated success on problems such as the knapsack (using LP relaxation) and bipartite
matching problems where a cost vector is predicted from empirical data (e.g., historical cost data
for knapsack items), and is shown to outperform two-stage models which lack integration of the
LP problem. We note that although the differentiable QP solving framework of Amos and Kolter
[6] is capable of handling differentiation with respect to any objective or constraint coefficient, this
work only report results on tasks in which the cost vector is parameterized within the learning
architecture, and constraints are held constant across each sample. This limitation is common to all
of the works described below, as well.

Next, Mandi and Guns [102] introduced an altogether different approach to obtaining approxi-
mate gradients for the argmin of a linear program. An interior point method is used to compute the
solution of a homogeneous self-dual embedding with early stopping, and the method’s log-barrier
term is recovered and used to solve for gradients in the backward pass. Equivalently, this can be
viewed as the introduction of a log-barrier regularization term, by analogy to the QP-based approach
of Wilder et al. [153]:

O(y) = argmin
z

yTz + λ

∑
i

ln(zi)

 subject to Az ≤ b.

Further, the method’s performance on end-to-end learning tasks is evaluated against the QP approach
of Wilder et al. [153] on LP-based predict-then-optimize tasks, citing stronger accuracy results on
energy scheduling and knapsack problems with costs predicted from data.

Berthet et al. [20] detailed an approach based on stochastic perturbation to differentiate the
output of linear programs with respect to their cost vectors. The output space of the LP problem is
smoothed by adding low-amplitude random noise to the cost vector and computing the expectation
of the resulting solution in each forward pass. This can be done in Monte Carlo fashion and in
parallel across the noise samples. The gradient calculation views the solver as a black box in this
approach, and does not require the explicit solving of LP for operations that can be mathematically
formulated as LP, but are simple to perform (e.g., sorting and ranking). Results include a replication
of the shortest path experiments presented in [123], in which a model integrated with convolutional
neural networks is used to approximate the shortest path through stages in a computer game, solely
from images.

2.6.3 Combinatorial Optimization
Ferber et al. [53] extended the approach of Wilder et al. [153] to integrate MILP within the end-
to-end training loop, with the aim of utilizing more expressive NP-Hard combinatorial problems
with parameters predicted from data. This is done by reducing the MILP with integer constraints
to a LP by a method of cutting planes. In the ideal case, the LP that results from the addition
of cutting planes has the same optimal solution as its mixed-integer parent. Exact gradients can
then be computed for its regularized QP approximation as in Wilder et al. [153]. Although the
LP approximation to MILP improves with solving time, practical concerns arise when the MILP
problem cannot be solved to completion. Each instance of the NP-Hard problem must be solved
in each forward pass of the training loop, which poses clear obstructions in terms of runtime. A
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disadvantage of the approach is that cutting-plane methods are generally considered to be inferior
in efficiency to staple methods like branch and bound. Improved results were obtained on portfolio
optimization and diverse bipartite matching problems, when compared to LP-relaxation models
following the approach of Wilder et al. [153].

Mandi et al. [103] investigates the application of the same SPO approach to NP-Hard combina-
torial problems. Primary among the challenges faced in this context is, as in [53], the computational
cost of solving hard problems within every iteration of the training. The authors found that continu-
ous relaxations of common MILP problems (e.g. knapsack) often offer subgradients of comaparable
quality to the full mixed-integer problem with respect to the SPO loss, so that training end-to-end
systems with hard CO problems can be simplified in such cases by replacing the full problem
with an efficiently solvable relaxation, an approach termed SPO-relax. The authors put continuous
relaxations into the broader category of “weaker oracles” for the CO solver, which also includes
approximation algorithms (e.g. greedy approximation for knapsack). The main results showed that
SPO-relax achieves accuracy competitive with the full SPO approach but with shorter training
times on a handful of discrete problems. The SPO-relax approach was compared also against the
formulation of Wilder et al. [153] on equivalent relaxations, but no clear winner was determined.

Pogančić et al. [123] introduced a new idea for approximating gradients over discrete optimiza-
tion problems for end-to-end training, which relies on viewing a discrete optimization problem as a
function of its defining parameters (in this context coming from previous layers), whose range is
piecewise constant. The only requirement is that the objective be linear. The gradient calculation
combines the outputs of two calls to an optimization solver; one in the forward pass on initial
parameters y, and one in the backward pass on perturbed parameters ȳ. The results are used to
construct a piecewise linear function which approximates the original solver’s output space, but has
readily available gradients. Because the gradient calculation is agnostic to the implementation of
the solver, it is termed "black-box differentiation". As such, input parameters to the solver do not
correspond explicitly to coefficients in the underlying optimization problem. Results on end-to-end
learning for the shortest path problem, TSP and min-cost perfect matching are shown. In each
case, the discrete problem’s specification is implicitly defined in terms of images, which are used
to predict parameters of the appropriate discrete problem through deep networks. The optimal
solutions coming from blackbox solvers are expressed as binary indicator matrices in each case and
matched to targeted optimal solutions using a Hamming distance loss function.

Finally, Wang et al. [152] presented a differentiable solver for the MAXSAT problem, another
problem form capable of representing NP-Hard combinatorial problems. Approximate gradients are
formed by first approximating the MAXSAT problem as a related semidefinite program (SPD), then
differentiating its solution analytically during a specialized coordinate descent method [151] which
solves the SDP. The successful integration of MAXSAT into deep learning is demonstrated with a
model trained to solve sudoku puzzles represented only by handwritten images.
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Chapter 3

Learning to Accelerate the Solution of
Optimization Problems

This chapter is dedicated to the original contributions of this thesis in the scope of Learning to
Optimize, and is divided in two sections. The first main section addresses the topic of data generation
for supervision labels of learned optimizers. It is based on the author’s published work [88]. The
second section is dedicated to developing a novel framework in which non-Euclidean metrics are
learned as a means of accelerating the convergence of operator splitting methods. It is also based on
published work, found in [83].

3.1 Data Generation for Learning to Optimize
Two classes of hard optimization problems of particular interest in many fields are (1) combinato-
rial optimization problems and (2) nonlinear constrained problems. Combinatorial optimization
problems are characterized by discrete search spaces and have solutions that are combinatorial
in nature, involving for instance, the selection of subsets or permutations, and the sequencing
or scheduling of tasks. Nonlinear constrained problems may have continuous search spaces but
are often characterized by highly nonlinear constraints, such as those arising in electrical power
systems whose applications must capture physical laws such as Ohm’s law and Kirchhoff’s law in
addition to engineering operational constraints. Such CO problems are often NP-Hard and may be
computationally challenging in practice, especially for large-scale instances.

While the AI and Operational Research communities have contributed fundamental advances
in optimization in the last decades, the complexity of some problems often prevents them from
being adopted in contexts where many instances must be solved over a long-term horizon (e.g.,
multi-year planning studies) or when solutions must be produced under time constraints. Fortunately,
in many practical cases, including the scheduling and energy problems motivating this work, one is
interested in solving many problem instances sharing similar patterns. Therefore, the application of
deep learning methods to aid the solving of computationally challenging constrained optimization
problems appears to be a natural approach and has gained traction in the nascent area at the
intersection between CO and ML [17, 89, 147]. In particular, supervised learning frameworks can
train a model using pre-solved CO instances and their solutions. However, learning the underlying
combinatorial structure of the problem or learning approximations of optimization problems with
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hard physical and engineering constraints may be an extremely difficult task. While much of the
recent research at the intersection of CO and ML has focused on learning good CO approximations
in jointly training prediction and optimization models [12, 78, 111, 116, 148] and incorporating
optimization algorithms into differentiable systems [6, 123, 153, 103], learning the combinatorial
structure of CO problems remains an elusive task.

Beside the difficulty of handling hard constraints, which will almost always exhibit some
violations, two interesting challenges have emerged: the presence of multiple, often symmetric,
solutions, and the learning of approximate solution methods. The first challenge recognizes that an
optimization problem may not have a unique solution. This challenge is illustrated in Figure 3.1,
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Figure 3.1: Co-optimal datasets
due to symmetries.

where the various y(i) represent optimal solutions to CO instances
x(i) and C the feasible space. As a result, a combinatorial num-
ber of possible datasets may be generated. While equally valid
as optimal solutions, some sets follow patterns which are more
meaningful and recognizable. Symmetry breaking is of course a
major area of combinatorial optimization and may alleviate some
of these issues. But different instances may not break symmetries
in the same fashion, thus creating datasets that are harder to learn.

The second challenge comes from realities in the application
domain. Because of time constraints, the solution technique may
return a sub-optimal solution. Moreover, modern combinatorial
optimization techniques often use randomization and large neigh-
borhood search to produce high-quality solutions quickly. Although these are widely successful,
different runs for the same, or similar, instances may produce radically different solutions. As a
result, learning the solutions returned by these approximations may be inherently more difficult.
These effects may be viewed as a source of noise that obscures the relationships between training
data and their target outputs. Although this does not raise issues for optimization systems, it creates
challenging learning tasks.

This section demonstrates these relations, connects the variation in the training data to the ability
of a model to approximate it, and proposes a method for producing (exact or approximate) solutions
to optimization problems that are more amenable to supervised learning tasks. More concretely, we
make the following contributions:
1. It shows that the existence of co-optimal or approximated solutions obtained by solving hard CO

problems to construct training datasets challenges the learnability of the task.
2. To overcome this limitation, it introduces the problem of optimal dataset design, which is cast as a

bilevel optimization problem. The optimal dataset design problem is motivated using theoretical
insights on the approximation of functions by neural networks, relating the properties of a
function describing a training dataset to the model capacity required to represent it.

3. It introduces a tractable algorithm for the generation of datasets that are amenable to learning,
and empirical demonstration of marked improvements to the accuracy of trained models, as well
as the ability to satisfy constraints at inference time.

4. Finally, it provides state-of-the-art accuracy results at vastly enhanced computational runtime on
learning two challenging optimization problems: Job Shop Scheduling problems and Optimal
Power Flow problems for energy networks.
To the best of the authors’ knowledge, this work is the first to highlight the issue of learnability
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in the face of co-optimal or approximate solutions obtained to generate training data for learning to
approximate hard CO problems.

3.1.1 Preliminaries
A constrained optimization (CO) problem poses the task of minimizing an objective function
f : Y × X → R+ of one or more variables y ∈ Y ⊆ Rn, subject to the condition that a set of
constraints Cx are satisfied between the variables and where x ∈ X ⊆ Rm denotes a vector of input
data that specifies the problem instance:

O(x) = argmin
y

f (y,x) subject to: y ∈ Cx. (3.1)

An assignment of values y which satisfies Cx is called a feasible solution; if, additionally f (y,x) ≤
f (w,x) for all feasible w, it is called an optimal solution.

A particularly common constraint set arising in practical problems takes the form C = {y :
Ay ≤ b}, where A ∈ Rm×n and b ∈ Rm. In this case, C is a convex set. If the objective f is an
affine function, the problem is referred to as linear program (LP). If, in addition, some subset
of a problem’s variables are required to take integer values, it is called mixed integer program
(MIP). While LPs with convex objectives belong to the class of convex problems, and can be solved
efficiently with strong theoretical guarantees on the existence and uniqueness of solutions [24],
the introduction of integral constraints (y ∈ Nn) results in a much more difficult problem. The
feasible set in MIP consists of distinct points in y ∈ Rn, not only nonconvex but also disjoint, and
the resulting problem is, in general, NP-Hard. Finally, nonlinear programs (NLPs) are optimization
problems where some of the constraints or the objective function are nonlinear. Many NLPs are
nonconvex and can not be efficiently solved [115].

The methodology introduced in this section is illustrated on hard MIP and nonlinear program
instances.

3.1.2 Problem setting and goals
This section focuses on learning approximate solutions to problem (3.1) via supervised learning. The
task considers datasets χ = {(x(i),y(i))}Ni=1 consisting of N data points with x(i) ∈ X being a vector
of input data, as defined in equation (3.1), and y(i) ∈ O(x(i)) being a solution of the optimization
task. A desirable, but not always achievable, property is for the solutions y(i) to be optimal.

The goal is to learn a model fθ : X → Y, where θ is a vector of real-valued parameters, and
whose quality is measured in terms of a nonnegative, and assumed differentiable, loss function
ℓ : Y ×Y → R+. The learning task minimizes the empirical risk function (ERM):

min
θ

J( fθ;χ) =
1
N

N∑
i=1

ℓ( fθ(x(i)),y(i)), (3.2)

with the desired goal that the predictions also satisfy the problem constraints: fθ(x(i)) ∈ Cx.
While the above task is difficult to achieve due to the presence of constraints, the section

adopts a Lagrangian approach [54], which has been shown successful in learning constrained
representations, along with projection operators, commonly applied in constrained optimization to
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Figure 3.2: Dataset solution y(i) comparison: L1 Distance from a reference solution (left); Test loss
(center); and Constraint violations (right).

ensure constraint satisfaction of an assignment. For a given point ŷ, e.g., representing the model
prediction, a projection operator πC(ŷ) finds the closest feasible point y ∈ C to ŷ under a p-norm:

πC(ŷ) def
= argmin

y
∥y − ŷ∥p subject to: y ∈ C.

3.1.3 Challenges in learning hard combinatorial problems
One of the challenges arising in this area comes from the recognition that a problem instance may
admit a variety of disparate optimal solutions for each input x. To illustrate this challenge, the
section uses a set of scheduling instances that differ only in the time required to process tasks on
some machine. A standard approach to the generation of dataset in this context would consist in
solving each instance independently using some SoTA optimization solver. However, this may
create some significant issues that are illustrated in Figure 3.2 (more details on the problem are
provided in Section 3.1.6). The blue curve in Figure 3.2 (left) illustrates the behavior of this natural
approach. In the figure, the processing times in the instances increase from left to right and the
blue curve represents the L1-distance between the obtained solution to each instance (i.e., the start
times of the tasks) and a reference optimal solution for some instance. The volatile curve shows
that meaningful patterns can be lost, including the important relationship between an increase in
processing times and the resulting solutions. Figure 3.2 (center) shows that, while the solution
patterns induced by the target labels appear volatile, the ERM problem appears well behaved, in the
face of minimizing the test loss. However, when training loss converges, accuracy (measured as the
distance between the projection of the prediction πC(ŷ) and the real label y) remains poor in models
trained on such data (blue star). Figure 3.2 (right) shows the average magnitude of the constraints
violation during training, corresponding to the two target solution sets of Figure 3.2 (left), along
with a comparison of the objective of the projection operator applied to the prediction: ∥πC(ŷ) − ŷ∥.
It is worth emphasizing that these issues are further exacerbated when time constraints prevent the
solver from obtaining optimal solutions. Moreover, similar patterns can also be observed for the
data generated while solving optimal power flow instances that exhibit symmetries.
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Figure 3.3: Approximating
highly volatile function results
in low-variance models.

Additionally, observations collected on motivating applications
of this work show that, even when the model complexity (i.e., the
dimensionality of the model parameters θ) is increased arbitrarily, the
resulting learned models tend to have low-variance. This is illustrated
in Figure 3.3, where the orange and blue curves depict, respectively,
a function interpolating the training labels and the associated learned
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solutions.
The goal of this work is to construct datasets that are well-suited

for learning the optimal (or near-optimal) solutions to optimization problems. The benefit of such
an approach is illustrated by the orange curves and stars in Figure 3.2, which were obtained using
the data generation methodology proposed in this work. They considered the same instances and
obtained (different) optimal solutions, but exhibit much enhanced behavior on all metrics.

3.1.4 Theoretical justification of the data generation
Although the data generation strategy is necessarily heuristic, it relies on key theoretical insights on
the nature of optimization problems and the representation capabilities on neural networks. This
section reviews these insights.

First, observe that, as illustrated in the motivating Figure 3.3, the solution trajectory associated
with the problem instances on various input parameters can often be naturally approximated by
piecewise linear functions. This approximation is in fact exact for linear programs when the inputs
capture incremental changes to the objective coefficients or the right-hand side of the constraints.
Additionally, ReLU neural networks, used in this study to approximate the optimization solutions,
have the ability to capture piecewise linear functions [72]. While these models are thus compatible
with the task of predicting the solutions of an optimization problem, the model capacity required to
represent a target piecewise linear function exactly depends directly on the number of constituent
pieces.

Theorem 1 (Model Capacity [9]). Let f : Rd → R be a piecewise linear function with p pieces.
If f is represented by a ReLU network with depth k + 1, then it must have size at least 1

2kp
1
k − 1.

Conversely, any piecewise linear function f that is represented by a ReLU network of depth k + 1
and size at most s, can have at most

(
2s
k

)k
pieces.

The solution trajectories may be significantly different depending on how the data is generated.
Hence, the more volatile the trajectory, the harder it will be to learn. Moreover, for a network of
fixed size, the more volatile the trajectory, the larger the approximation error will be in general.
The data generation proposed in this section will aim at generating solution trajectories that are
approximated by piecewise linear functions with fewer distinct pieces. The following theorem
bounds the approximation error when using continuous piecewise linear functions: it connects the
approximation errors of a piecewise linear function with the total variation in its slopes.

Theorem 2. Suppose a piecewise linear function fp′ , with p′ pieces each of width hk for k∈ [p′], is
used to approximate a piecewise linear fp with p pieces, where p′≤ p. Then the approximation error

∥ fp − fp′∥1 ≤
1
2

h2
max

∑
1≤k≤p

|Lk+1 − Lk|,

holds where Lk is the slope of fp on piece k and hmax is the maximum width of all pieces.

Proof. Firstly, the proof proceeds with considering the special case in which fp conincides in slope
and value with fp′ at some point, and that each piece of fp′ overlaps with at most 2 distinct pieces of
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fp. This is always possible when p′ ≥ p
2 . Call Ik the interval on which fp′ is defined by its kth piece.

If Ik overlaps with only one piece of fp, then for x ∈ Ik,

| fp(x) − fp′(x)| = 0 (3.3)

If Ik overlaps with pieces k and k + 1 of fp, then for x ∈ Ik,

| fp(x) − fp′(x)| ≤ hk|Lk+1 − Lk| (3.4)

Each of the above follows from the assumption that fp and fp′ are equal in their slope and value at
some point within Ik. From this it follows that on Ik,

∥ fp − fp′∥1 =

∫
Ik

| fp − fp′ | ≤
1
2

∑
1≤i≤p

h2
k |Lk+1 − Lk| ≤

1
2

h2
max

∑
1≤k≤p

|Lk+1 − Lk|, (3.5)

so that on the entire domain of fp and fp′ ,

∥ fp − fp′∥1 ≤
1
2

h2
max

∑
1≤k≤p

|Lk+1 − Lk|. (3.6)

Since removing the initial simplifying assumptions tightens this upper bound, the result holds. □

The final observation that justifies the proposed approach is the fact that optimization problems
often satisfy a local Lipschitz condition, i.e., if the inputs of two instances are close, then they admit
solutions that are close as well, i.e., there exist

⋆
y (i) ∈ O(x(i)) and

⋆
y ( j) ∈ O(x( j)), where

∥
⋆
y (i)−

⋆
y ( j)∥ ≤ C∥x(i) − x( j)∥, (3.7)

for some C ≥ 0 and ∥x(i) − x( j)∥ ≤ ϵ, where ϵ is a small value. This is obviously true in linear
programming when the inputs vary in the objective coefficients or the right-hand side of the
constraints, but it also holds locally for many other types of optimization problems. That observation
suggests that, when this local Lipschitz condition holds, it may be possible to generate solution
trajectories that are well-behaved and can be approximated effectively. Note that Lipschitz functions
can be nicely approximated by neural networks as the following result indicates.

Theorem 3 (Approximation [31]). If f : [0, 1]n → R is L-Lipschitz continuous, then for every ϵ > 0,
there exists some single-layer neural network ρ of size N such that ∥ f − ρ∥∞ < ϵ, where N =

(
n+ 3L

ϵ
n

)
.

The result above illustrates that the model capacity required to approximate a given function
depends to a non-negligible extent on the Lipschitz constant value of the underlying function.

Note that the results in this section are bounds on the ability of neural networks to represent
generic functions. In practice, these bounds themselves rarely guarantee the training of good
approximators, as the ability to minimize the empirical risk problem in practice is often another
significant source of error. In light of these results however, it is to be expected that datasets which
exhibit less variance and have small Lipschitz constants will be better suited to learning good
function approximations. The following section presents a method for dataset generation motivated
by these considerations.
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3.1.5 Optimal CO training data design

Given a set of input data {xi}Ni=1, the goal is to construct the associated pairs yi for each i ∈ [N], that
solve the following problem

min
θ,y(i)

1
N

N∑
i=1

ℓ( fθ(xi),yi) (3.8a)

subject to : yi ∈ argmin
y∈Cxi

f (y,xi). (3.8b)

One often equips the data point set {xi}Ni=1 with an ordering relation ⪯ such that x ⪯ x′ ⇒ ∥x∥p ≤

∥x′∥p for some p-norm. For example, in the scheduling domain, the data points x represent task start
times and the training data are often generated by “slowing down” some machine, which simulates
some unexpected ill-functioning component in the scheduling pipeline. In the energy domain, x
represent the load demands and the training data are generated by increasing or decreasing these
demands, simulating the different power load requests during daily operations in a power network.
For simplicity, we assume the existence of such a useful ordering over the entire set of instances in
a learning task.

From the space of co-optimal solutions yi to each problem instance xi, the goal is to generate
solutions which coincide, to the extent possible, with a target function of low total variation
and Lipschitz factor, as well as a low number of constituent linear pieces in the case of discrete
optimization. While it may not be possible to produce a target set that simultaneously optimizes
each of these metrics, they are confluent and can be improved simultaneously. Natural heuristics are
available which reduce these metrics substantially when compared with naive approaches.

One heuristic aimed at satisfying the aforementioned properties reduces to the problem of
determining a solution set {yi}Ni=1 for the inputs {xi}Ni=1 of problem (3.1) that minimizes their total
variation:

minimize TV
(
{y(i)}Ni=1

)
=

1
2

N−1∑
i=1

∥y(i+1) − y(i)∥p (3.9a)

subject to : y(i) = argmin
y∈Cx(i)

f (y,x(i)). (3.9b)

Algorithm 1:Opt. Data Generation
input :{x(i)}Ni=1: Input data

1 y(N) ←
⋆
y (N) ∈ Õ(x(N))

2 for i = N − 1 down to 1 do
3 y(i) ←

⋆
y (i) ∈ Õ(x(i))

4 y(i) ∈


argminy ∥y − y(i+1)∥p

subject to: y ∈ Cx(i)

f (y) ≤ f (
⋆
y (i))

5 return χ =
{(
x(i),y(i)

)}N

i=1

In practice, this bi-level minimization cannot be achieved, due partially to its prohibitive size.
It is possible, however, to minimize the individual terms of (3.9a), each subject to the result of
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the previous, by solving individual instances sequentially. Algorithm 1 ensures that solutions to
subsequent instances have minimal distance with respect to the chosen p-norm (the experiments
of Section 3.1.6 use p = 1). This method approximates a set of solutions with minimal total
variation, while ensuring that the maximum magnitude of change between subsequent instances is
also small. When the data represent the result of a discrete optimization, this coincides naturally
with a representative function which requires less pieces, with less extreme changes in slope. The
method starts by solving a target instance, e.g., the last in the given ordering ⪯ (line 1). Therein, Õ
denotes the solution set of a (possibly approximated) minimizer for problem (3.1). In the case of
the job shop scheduling, for example, Õ represents a local optimizer with a suitable time-limit. The
process then generates the next dataset instance y(i) in the ordering ⪯ by solving the optimization
problem given in line 3. The problem finds a solution to problem x(i) that is close to adjacent
solution y(i+1) while preserving optimality, i.e., the objective of the sought y is constrained to be at
most that of

⋆
y (i) ∈ Õ(x(i)).

When the difficulty of the underlying optimization instances makes the sequential solving of
Algorithm 1 impractical, structural properties of the CO problem may be exploited to increase
efficiency, i.e., by the use of warm-starts or solution-guided search. In the Job Shop Scheduling
case study,

⋆
y (i+1) is feasible to the subsequent problem and may be used to warm-start its solution,

carrying forward solution progress between iterations of Algorithm 1. Therefore, a byproduct of
this data-generation approach is that the optimization problem in line 3 can be well-approximated
within a short timeout. When such exploits are not available, the secondary optimization of line 4
may be applied over independently pre-solved instances in an analogous way.

In addition to providing enhanced efficacy for learning, this method of generating target instances
is generally preferable from a modeling point of view. When predicted solutions to related decision
problems are close together, the resulting small changes are often more practical and actionable,
and thus highly preferred in practice. For example, a small change in power demands should result
in an updated optimal power network configuration which is easy to achieve given its previous state.

3.1.6 Application to case studies
The concepts introduced above are applied in this section to two representative case studies, Job
Shop Scheduling (JSS) and Optimal Power Flow (OPF). Both are of interest in the optimization
and machine learning communities as practical problems which must be routinely solved, but are
difficult to approximate under stringent time constraints. The JSS problem represents the class of
combinatorial problems, while the OPF problem is continuous but nonlinear and non convex.

Job shop scheduling

Job Shop Scheduling (JSS) assumes a set of J jobs, each consisting of a list of M tasks to be
completed in a specified order. Each task has a fixed processing time and is assigned to one of M
machines, so that each job assigns one task to each machine. The objective is to find a schedule
with minimal makespan, or time taken to process all tasks. The no-overlap condition requires that
for any two tasks assigned to the same machine, one must be complete before the other begins. See
the problem specification (A.5). The objective of the learning task is to predict the start times of all
tasks given a JSS problem specification (task duration, machine assignments).
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Instance Size Prediction Error Constraint Violation Optimality Gap (%) Time SoTA Eq. (s)

J × M Standard OD Standard OD Standard OD Standard OD

ta25 20×20 193.9 23.4 180.0 45.5 10.3 4.0 24 550
yn02 20×20 153.2 38.9 124.9 70.3 9.1 4.5 27 45

swv03 20×10 309.4 12.4 206.9 31.6 18.0 2.2 15 65
swv07 20×15 330.4 19.9 280.1 67.2 17.0 3.0 15 60
swv11 50×10 1090.0 51.2 906.4 151.7 28.5 4.5 13 100

Table 3.1: Standard vs OD training data: prediction errors, constraint violations, and optimality gap
(the smaller the better), Time SoTA Eq. (the larger the better). Best results are highlight in bold.

Data Generation Algorithms The experiments examine the proposed models on a variety
of problems from the JSPLIB library [138]. The ground truth data are constructed as follows:
different input data x(i) are generated by simulating a machine slowdown, i.e., by altering the time
required to process the tasks on that machine by a constant amount which depends on the instance i.
Each training dataset associated with a JSS benchmark is composed of a total of 5000 instances.
Increasing the processing time of selected tasks may also change the difficulty of the scheduling.
The method of sequential solving outlined in Section 3.1.5 is particularly well-suited to this context.
Individual problem instances can be ordered relative to the amount of extension applied to those
processing times, so that when d(i)

jt represents the time required to process task t of job j in instance
i, d(i)

jt ≤ d(i+1)
jt ∀ j, t. In this case, any solution to instance d(i+1) is feasible to instance di (tasks in a

feasible schedule cannot overlap when their processing times are reduced, and start times are held
constant). As such, the method can be made efficient by passing the solution between subsequent
instances as a warm-start.

The analysis compares two datasets: One consisting of target solutions generated independently
with a solving time limit of 1800 seconds using the state-of-the-art IBM CP Optimizer constraint
programming software (denoted as Standard), and one whose targets are generated according to
algorithm 1, called the Optimal Design dataset (denoted as OD).

Instance Size Total Variation (×106)

J × M Standard Data OD Data

ta25 20×20 67.8 0.194
yn02 20×20 55.0 0.483

swv03 20×10 109.4 0.424
swv07 20×15 351.2 0.100
swv11 50×10 352.0 1.376

Figure 3.4: Standard vs OD
training data: Total Variation.

Figure 3.4 presents a comparison of the total variation result-
ing from the two datasets. Note that the OD datasets have total
variation which is orders of magnitude lower than their Standard
counterparts. Recall that a small total variation is perceived as a
notion of well-behaveness from the perspective of function ap-
proximation. Additionally, it is noted that the total computation
time required to generate the OD dataset is at least an order of
magnitude smaller than that required to generate the standard
dataset (13.2h vs. 280h).

Prediction Errors and Constraint Violations Table 3.1 reports the prediction errors as L1-
distance between the (feasible) predicted variables, i.e., the projections π(ŷ) and their original
ground-truth quantities (y), the average constraint violation degrees, expressed as the L1-distance
between the predictions and their projections, and the optimality gap, which is the relative difference
in makespan (or, equivalently objective values) between the predicted (feasible) schedules and target
schedules. All these metrics are averaged over all perturbed instances of the dataset and expressed in
percentage. In the case of the former two metrics, values are reported as a percentage of the average
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task duration per individual instance. Notice that for all metrics the methods trained using the OD
datasets result in drastic improvements (i.e., one order of magnitude) with respect to the baseline
method. Additionally, Table 3.1 (last column) reports the runtime required by CP-Optimizer to
find a value with the same makespan as the one reported by the projected predictions (projection
times are also included). The values are to be read as the larger the better, and present a remarkable
improvement over the baseline method. It is also noted that the worst average time required to
obtain a feasible solution from the predictions is 0.02 seconds. Additional experiments, reported in
Appendix A.4 also show that the observations are robust over a wide range of hyper-parameters
adopted to train the learning models.

The results show that the OD data generation can drastically improve predictions qualities
while reducing the effort required by a projection step to satisfy the problem constraints.

AC Optimal Power Flow

Optimal Power Flow (OPF) is the problem of finding the best generator dispatch to meet the
demands in a power network. The OPF is solved frequently in transmission systems around the
world and is increasingly difficult due to intermittent renewable energy sources. The problem is
required to satisfy the AC power flow equations, that are non-convex and nonlinear, and are a core
building block in many power system applications. The objective function captures the cost of
the generator dispatch, and the Constraint set describes the power flow operational constraints,
enforcing generator output, line flow limits, Kirchhoff’s Current Law and Ohm’s Law for a given
load demand. The OPF receives its input from unit-commitment algorithms that specify which
generators will be committed to deliver energy and reserves during the 24 hours of the next day.
Because many generators are similar in nature (e.g., wind farms or solar farms connected to the same
bus), the problem may have a large number of symmetries. If a bus has two symmetric generators
with enough generator capacities, the unit commitment optimization may decide to choose one of
the symmetric generators or to commit both and balance the generation between both of them. The
objective of the learning task is to predict the generator setpoints (power and voltage) for all buses
given the problem inputs (load demands).

Data Generation Algorithms The experiments compare this commitment strategy and its
effect on learning on Pegase-89, which is a coarse aggregation of the French system and IEEE-
118 and IEEE-300, from the NESTA library [32]. All base instances are solved using the Julia
package PowerModels.jl [34] with the nonlinear solver IPOPT [149]. Additional data is reported
in Appendix A.3. A number of renewable generators are duplicated at each node to disaggregate
the generation capabilities. The test cases vary the load data by scaling the (input) loads from 0.8
to 1.0 times their nominal values. Instances with higher load pattern are typically infeasible. The
unit-commitment strategy sketched above can select any of the symmetric generators at a given
bus (Standard data). The optimal objective values for a given load are the same, but the optimal
solutions vary substantially. Note that, when the unit-commitment algorithm commits generators
by removing symmetries (OD data), the solutions for are typically close to each other when the
loads are close. As a result, they naturally correspond to the generation procedure proposed in this
section.

Prediction Errors and Constraint Violations As shown in Table 3.2, the OD approach to data
generation results in predictions that are closer to their optimal target solutions (error expressed in
MegaWatt (MW)), reduce the constraint violations (expressed as L1-distance between the predictions
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Instance Size Prediction Error Constraint Violation Optimality Gap (%)

No. buses Standard OD Standard OD Standard OD

Pegase-89 89 198.3 5.02 1.21 1.01 20.1 7.0
IEEE-118 118 172.5 13.31 2.12 1.98 32.5 9.6
IEEE-300 300 194.2 24.12 2.63 2.04 44.2 15.2

Table 3.2: Standard vs OD training data: prediction errors, constraint violations, and optimality gap.

and their projections), and improve the optimality gap, which is the relative difference in objectives
between the predicted (feasible) solutions and the target ones.

3.1.7 Limitations and Conclusions
This section was motivated by engineering applications where problem instances share an underlying
“infrastructure” (e.g., the power grid in optimal power flow or the manufacturing floor in job shop
scheduling) which is stable and does not evolve too rapidly. These problems are pervasive in
applications ranging from supply chains and logistics, to electricity grids, and manufacturing, to
name a few. Note that the approach to data generation presented in this section is not intended
for direct application to every task of learning to solve constrained optimization. In general, data
generation approaches should be tailored to exploit the properties of their respective optimization
problems and experimental settings, but the algorithms and insights demonstrated above may be
exploited in a variety of settings.

While the proposed methodology is limited to machine learning tasks in which optimization
problem instances admit useful orderings with respect to their parameters, this property may hold
only locally over a particular distribution of problems. For example, in timetabling applications, as
in the design of employees shifts, a desired condition may be for shifts to be diverse for different
but similar inputs. The proposed methodology may, in fact, induce a learner to predict similar
solutions across similar input data. A possible solution to this problem may be that of generating
various trajectories of solutions, learn from them with independent models, and then randomize the
model selection to generate a prediction. These more complex settings may require composition
or extension of the solutions presented in this section, and generalizations of the approach are an
avenue for future work.
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3.2 Learning Metrics to Accelerate Operator-Splitting Methods
A substantial literature has been dedicated to the use of machine learning to aid in the fast solution
of constrained optimization problems. This interest is driven by an increasing need for real-time
decision-making capabilities, in which decision processes modeled by optimization problems must
be resolved faster than can be met by traditional optimization methods. Such capabilities are of
interest in various application settings such as job scheduling in manufacturing [90, 88], power grid
operation [54], and optimal control [132].

A prominent application of machine learning in accelerating optimization is to learn the parame-
ters of a standard solution algorithm, such that iterations to convergence are minimized. Examples
include gradient stepsizes [8], and initial solution estimates [132]. This section proposes an alterna-
tive approach by parametrizing the underlying metric space of an optimization algorithm which
relies on proximal operators. Proximal operators, which include projections, are based on a notion
of distance within a metric space and employed in many practical optimization methods. While most
methods that employ proximal algorithms are typically based on the standard Euclidean metric, it is
well-known that many such methods are also guaranteed to converge for non-Euclidean metrics
defined as general quadratic forms over the continuous space of positive definite matrices [15].

The possibility of accelerating convergence by selecting non-Euclidean metrics within that
space has been noted [64], but no known method has shown to be effective over a general class of
optimization problems. For limited classes of problems, optimal metric choices have been modeled
as the solution to an auxiliary optimization problem. But for many problems including general
quadratic programming (QP) problems, such models are yet unknown [65]. Theoretical insights
have been used to suggest heuristic metric choices for QP problems [64, 65], but the potential for
improvement over these heuristic rules has not been fully explored.

This section proposes differentiable programming to both explore the potential, and to overcome
the challenges of metric selection for more general classes of optimization problems. Specifically, we
propose a system of end-to-end learning for proximal optimization, which trains machine learning
models to predict metrics that empirically minimize solution error over a prescribed number of
iterations on a given problem instance. Enhanced convergence of two proximal optimization methods
is demonstrated on Quadratic Programming (QP) problems, including test cases where theoretically
prescribed heuristic metric choices perform poorly.

We demonstrate that while prior heuristic models of optimal metric selection can fail in the
presence of active constraints at the optimal solution, our learned metrics are correlated with the
active constraints at optima, and can accelerate convergence by ignoring the inactive constraints.
This leads to an interpretation of metric selection as a problem which incorporates active set
prediction, whose difficulty may approach that of solving the optimization problem itself. The
proposed integration of optimization and learning thus shows advantages in both accuracy and
efficiency over theoretical approaches to metric selection in proximal optimization.

3.2.1 Related Work
This section’s topic is at the intersection of learning to accelerate optimization, and metric selection
in proximal optimization. Before proceeding to the main contributions, related work is summarized
with respect to both areas.
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Learning to Accelerate Optimization Various systems for learning fast solutions to optimization
problems have been proposed. For example, several works have shown how to learn heuristics such
as branching rules [12, 67, 78] and cutting planes [122] in mixed-integer programming. An early
survey [17] provides a comprehensive summary of machine learning in combinatorial optimization.
Further surveys on learning to branch [101] and learning to cut [39] provide even more detail on the
topic. To enhance the resolution of optimization problems with continuous variables, several works
have also considered simplifying an optimization problem by first learning its active constraints
[21, 108]. An altogether different paradigm aims to train deep neural networks to produce solutions
to optimization problem directly. For example, several works consider end-to-end learning of
solutions to combinatorial problems [16, 80, 85, 148]. Other works have shown how to learn
solutions to problems with general nonlinear constraints, either by leveraging Lagrangian duality
[57, 90, 119], differentiable constraint corrections [48], or reparametrization of the feasible space
[84]. Another closely related direction [132] focuses on learning warm-starts to proximal algorithms
for quadratic programming.

Metric Selection in Proximal Optimization The potential for accelerating the convergence
of a proximal algorithm by optimizing its underlying proximal metric has been theoretically
demonstrated in previous works. The authors in [65] derived the optimal choice of metric for
ADMM and Douglas-Rachford splitting algorithms on a limited class of problems. Based on this
result, they also suggested heuristic methods for selecting an appropriate metric for problems
outside of that class. Similar results were shown in [64] for a fast dual forward-backward splitting
method. Unfortunately, these theoretical results do not extend to many problems of practical interest,
including generic Quadratic Programming (QP) problems. Furthermore, when the optimal metric
can be computed, it typically requires solution of a difficult semidefinite program, reducing its
practical benefit in accelerating the solution of problems. This section demonstrates the use of
end-to-end machine learning to derive models whose predicted proximal metrics can outperform
the heuristic theory-based models of [65] on several QP problems.

3.2.2 Preliminaries
Let Sn

++ be the set of n × n positive definite matrices. For M ∈ Sn
++ let Rn

M be the Hilbert space on
Rn with the corresponding inner product and norm defined respectively for all x, y ∈ Rn as

⟨x, y⟩M = xT My, and ||x||2M = xT Mx .

We will denote by Γ(Rn
M) the set of functions f : Rn → R ∪ {∞} that are proper, closed and convex,

where R ∪ {∞} represents the extended reals. For f , g ∈ Γ(Rn
M), Douglas-Rachford splitting (DR)

considers optimization problems of the form

min
x∈Rn

f (x) + g(x) , (3.10)

and computes optimal solutions by following the iterations

yk = proxγg(xk) , (3.11a)

zk = proxγ f (2yk − xk) , (3.11b)

xk+1 = xk + zk − yk , (3.11c)
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where the proxγ f is the proximal operator defined with respect to the space Rn
M as

proxγ f (x) = argmin
z∈Rn

f (z) +
1
γ
||x − z||2M , (3.12)

for γ > 0. It can be shown that if a solution of (3.10) exists then the DR iterations will converge, in
particular the sequence proxγg(xk) will converge weakly to a solution and under additional mild
assumptions will converge strongly. Various alternative formulations and relaxations of DR exist
but here we will primarily restrict consideration to the formulation (3.11); for proofs and additional
details see for example [13].

This formulation naturally gives rise to the question of the selection of a positive-definite matrix
M to define a metric in (3.12) for a given problem to improve convergence of the iterations (3.11).
In [65] Giselsson and Boyd study the optimal metric choice to improve convergence rate for DR
applied to the Fenchel dual of (3.10), which can be shown to be equivalent to employing the
alternating direction method of multipliers (ADMM) on the primal problem [65, 60, 50]. In this
case, any choice of M other than the identity is equivalent to the use of preconditioning in ADMM.
A standard formulation for problems to be solved by ADMM is given by

min
x∈Rn,y∈Rm

f (x) + g(y) (3.13a)

subject to: Ax + By = c (3.13b)

for f ∈ Γ(Rn
M), g ∈ Γ(Rm

I ), A ∈ Rm,n, B ∈ Rm,m, and c ∈ Rm. ADMM applied to the preconditioned
primal problem

min
x∈Rn,y∈Rm

f (x) + g(y) (3.14a)

subject to: MAx + MBy = Mc , (3.14b)

is equivalent to DR applied to its Fenchel dual when utilizing the metric M. Thus dual DR using
metric M can be implemented by the primal ADMM iterations

xk+1 = argmin
x∈Rn

{ f (x) + γ2||M(Ax + Byk − c) + uk||
2
2} , (3.15a)

yk+1 = argmin
y
{g(y) +

γ

2
||M(Axk+1 + By − c) + uk||

2
2} , (3.15b)

uk+1 = uk + M(Axk+1 + Byk+1 − c) . (3.15c)

In [65] the authors show how to calculate the matrix M which optimizes the convergence rate of
ADMM applied to (3.14), under the additional assumptions that f is strongly convex and smooth,
and that A has full row rank. In such cases, an optimal metric M can be modeled as the solution
to a related semidefinite programming problem (SDP). However, those requisite assumptions
exclude many practical optimization problems, including general-form quadratic programming
(QP) problems. For QP forms outside the scope of these assumptions, the authors of [65] suggest
heuristic models of metric selection.

Significant work has been done to improve ADMM convergence using preconditioning, for
instance in [63, 18]. As pointed out in [65], in the case of QP problems these methods ultimately
amount to reconditioning the quadratic objective function. The same is true of the heuristic method
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they propose, which equates to selecting the optimal metric for a related unconstrained QP. In
this section, we explore the potential for empirically learning metrics to enhance convergence of
proximal algorithms on QP problems which do not satisfy the assumptions required for metric
optimization presented in [65]. We investigate solution of QP problems using learned metrics with
DR applied to both the primal and dual problems, implementing ADMM for solution of the dual as
given in (3.15).

3.2.3 Learning Metrics to Accelerate Quadratic Programming
The proposed system for metric learning in proximal optimization leverages a reformulation of
general QP problems which renders the metrics easier to learn. In this section, we first introduce
the problem reformulation before describing details of the end-to-end learning approach. In brief,
a neural network model is trained to predict positive definite matrices M as a function of the
parameters which define an optimization problem instance. Solution error after a fixed number of
iterations (3.11) or (3.15) is treated as a loss function and minimized, by backpropagation through
the solver iterations in stochastic gradient descent training. While the system is general and can
in principle be applied to any problem of the form (3.10), the scope of this work is limited to
demonstration on QP problems.

Problem Reformulation

Let Q ∈ Rn,n be a positive semi-definite matrix, q ∈ Rn, L ∈ Rm,n, b ∈ Rm, W ∈ Rk,n, and c ∈ Rk. We
consider QP problems of the form

argmin
x∈Rn

1
2

xT Qx + qT x (3.16a)

s.t. Lx = b (3.16b)
Wx + c ≤ 0. (3.16c)

For implementation with both primal DR and ADMM we introduce slack variables s ∈ Rm and
reformulate the problem as

argmin
z∈Rn+k

1
2

zT IT
x QIxz + qT Ixz (3.17a)

s.t. Rz + r = 0 (3.17b)
Isz ≥ 0, (3.17c)

where In is the n × n identity matrix, and

z =
[
x
s

]
, R =

[
L 0
W Ik

]
, r =

[
−b
c

]
,

Is =

[
0 0
0 Ik

]
, Ix =

[
In 0
0 0

]
,

where the zero entries in the matrices are presumed to be of dimension appropriate to make (3.17)
coherent.
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Note that even if the inequalities (3.16c) represent simple box constraints on the variables x (for
example x < 0) we still introduce corresponding slack variables. This is done to construct a splitting
for both primal DR and ADMM with the intent to increase the impact M can have on convergence,
as described below.

QP Splitting For implementation of both primal DR and ADMM on problem (3.17) we use the
splitting

f (z) = zT IT
x QIxz + qT Ixz + i{z∈Rn+k : Rz+r=0}(z) (3.18a)

g(z) = i{z∈Rn+k : Isz≥0}(z) (3.18b)

where for a set S we define the indicator function on S to be

iS (x) =

0 x ∈ S
∞ x < S .

With this splitting we implement the primal DR iteration as given in (3.11), and implement ADMM
as in (3.15), with A = I, B = −I, and c = 0. Minimization steps with respect to f can be
accomplished with for example the corresponding Karush-Kuhn-Tucker conditions. Minimization
steps with respect to g for both algorithms equate to projections onto the positive orthant. Slack
variables are initialized at zero throughout.

For both ADMM and DR iterations using the splitting (3.18), the proximal operators as given
in (3.11b) and (3.15a) equate to projections onto the relaxed constraint set (3.17b) with respect to
the underlying metric. With the slack variables for each inequality constraint initialized at zero, a
relatively large corresponding weight in the metric matrix M will bias the non-Euclidean projection
to maintain those slacks near zero. Hence if M has relatively large weights for just the slacks
corresponding to the active constraints of a problem, the projection can approximate projection onto
the active set. Indeed, the learned metrics exhibit this expected behavior as illustrated in Figure 3.6.

End-to-End Learning Framework

As suggested by the results of Section (3.2.4), the optimal metric for solving of an instance of
(3.17) can be closely related to the active constraints at its optimal solution. Thus, it is expected that
learning the optimal metrics for solving a class of problems may be nearly as difficult as learning
their optimal solutions. As is common in prior works on learning to solve optimization problems,
the metric learning problem is formulated relative to a parametric optimization problem

x⋆(p) = argmin
x∈Rn

fp(x) + gp(x) , (3.19)

and we learn to predict metrics for parametric problem instances within a limited distribution. In
the QP problem (3.16), this corresponds to the elements Q, q, L, b, W, and c each being potential
functions of p. The metric M which best solves problem (3.19) when formulated as in (3.18) is then
learned as a function of the problem’s parameters p ∈ Rv. This learned function takes the form of a
neural network Nω : Rv → Sn

++ with weights ω, so that M = Nω(p). It is trained over a distribution
of problem parameters p ∼ P, for which a finite dataset of instances {pi}i∈T are drawn. A target
dataset {x∗(pi)}i∈T contains the corresponding optimal solutions, as per (3.19).
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To define a loss function for training Nω on these data, first define the following function. Let
Dk : Rv × Sn

++ × R
n → Rn denote the application of k iterations of DR or ADMM, on problem

(3.19) with parameters p using metric M, starting from initial variable values x0. It yields a solution
estimate xk; that is,Dk(p,M, x0) = xk. The metric prediction model Nω is then trained to minimize
the overall loss function

min
ω

1
|T |

∑
i∈T

||Dk(pi,Nω(pi),Eθ(pi)) − x∗(pi)||2 (3.20)

by stochastic gradient descent. This requires backpropagation of gradients through the solver itera-
tions which constituteDk. In this work, backpropogation is performed by automatic differentiation
in PyTorch [120].

In equation (3.20), the function Eθ is an oracle which returns a starting point x0 for any parameter
vector p. As part of an overall mechanism for producing fast solutions to (3.16), it is a neural network
trained to produce direct estimates of the optimal solution to (3.19) by mean square error regression:

min
θ

1
|T |

∑
i∈T

||Eθ(pi) − x∗(pi)||2 . (3.21)

Metric Representation

Finally, we describe the manner of representation used to predict the metrics M via the model
M = Nω(p). As a neural network, Nω produces a vector of values m ∈ Rn which is then scaled
between predefined upper and lower bounds [mmin,mmax]. Finally, a scalar parameter ρ ∈ R is
predicted and also scaled to fit within predefined bounds [ρmin, ρmax]. The final metric is constructed
as the diagonal matrix M = diag(ρ · m). In this work we explore only diagonal metrics for both
ease of training and interpretability, however wider classes of positive definite matrices could be
searched over and could provide additional improvements in convergence.

3.2.4 Numerical Results
For illustrative purposes, this section begins with a reductive two-dimensional problem on which
some effects of metric learning are most easily observed. Then, we demonstrate the effect of metric
learning on convergence for larger examples consisting of a portfolio optimization problem, and a
model predictive control problem.

In the following experiments, predictive models Nω and Eθ are fully connected neural networks
with rectified linear unit (ReLU) activation functions. The values ρmin, ρmax,mmin,mmax can be treated
as hyperparameters; in practice, it is found that effective metrics can be learned by searching over
ρmax while the others remain fixed. All numerical test cases in this work are implemented using
NeuroMANCER, an open source differentiable programming library built on top of Pytorch [49].

Active Set Prediction

This section illustrates how metric learning correlates with active set prediction in inequality-
constrained problems, by assigning higher metric weights to the coordinates which correspond to
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slack variables on the problem’s active constraints. As an illustrative example, we consider a simple
QP problem:

min
x,y

x2 + y2 (3.22a)

subject to:
− x − y + p1 ≤ 0 (3.22b)
x + y − p1 − 1 ≤ 0 (3.22c)
x − y + p2 − 1 ≤ 0 (3.22d)
− x + y − p2 ≤ 0 (3.22e)

for parameters p1, p2 ∈ [−2, 2]. The constraint set defines a box which is translated around the
origin according to the parameter choices as shown in Figure 3.6. After assigning slack variables s,
the constraints become

− x − y + p1 + s1 = 0 (3.23a)
x + y − p1 − 1 + s2 = 0 (3.23b)
x − y + p2 − 1 + s3 = 0 (3.23c)
− x + y − p2 + s4 = 0 (3.23d)
s1, s2, s3, s4 ≥ 0 (3.23e)

We train both ADMM and DR metrics over the parameter space. The neural network map Nω
returns diagonal metrics with diagonals of the form

diag([wy,wx,w1,w2,w3,w4])

where the weights wx and wy correspond to the primal variables, and the weights {w1,w2,w3,w4}

correspond to the slack variables for each of the constraints.

Settings The initial prediction model Eθ uses hidden dimension 80. For Nω we use hidden
dimension 20, with bounds ρmin = 0.05, ρmax = 1.0, mmax = 5.0, and mmin = 0.2. We sample 2000
parameters uniformly at random to construct a training set, and an additional 2000 parameters
uniformly at random for a test set. The initial solution estimator Eθ was trained for 200 epochs at
learning rate of 0.001. Both ADMM and DR were run for 10 steps during training, and Nω was
trained for 100 epochs at a learning rate of 0.001 for both.

Results As shown in Figure 3.5, DR with a trained metric converges the fastest, while ADMM
using the heuristic metric as presented in [65] converges most slowly. Computation of the heuristic
metric effectively ignores the inequality constraints, and computes a metric that achieves the fastest
convergence with respect to the objective, were no constraints present this metric would achieve the
best possible convergence. However, the results show that in the presence of constraints it can be
detrimental.

Conversely, the learned metrics appear to achieve faster convergence by incorporating infor-
mation about the active constraints. Figure 3.6 and Figure 3.7 highlight the close correspondence
between the metric weights corresponding to slack variables and whether the associated constraints
are active at the optimum for a problem.
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Figure 3.5: Comparison of convergence of DR and ADMM using trained metrics versus not, as
well as comparison to use of a heuristic metric choice. Reported values are the mean error at each
iteration on 2000 test set problems.

(a) Optimal Solution (b) Metric weight for each slack variable

Figure 3.6: Plot (a) shows the optimal solution of (3.22) for parameter choice p1 = p2 = p, for
values of p ranging from −1.25 to 1.25. As the feasible set is translated around the origin the optimal
solution marked by a red star can be seen to trace along the constraints. Correspondingly, plot (b)
shows that the learned DR metric weights corresponding to the slack variables for the inequality
constraints are near zero when the constraint is not active and larger when the constraint is active,
showing a clear correspondence between the active set and metric weights on slack variables.
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(a) DR (b) ADMM

Figure 3.7: Plots of the learned metric weight for slack variables and the corresponding constraint
residual at the optimum on two thousand test problems for metrics learned using DR and ADMM.
As constraint residuals becomes zero the constraints become active and the metric weight for the
corresponding slack increases.

Portfolio Optimization Problem

This experiment models the optimal allocation of assets in an investment portfolio as a quadratic
programming problem. Given n investment assets, their future price differentials p ∈ Rn are treated
as parameters in the following QP:

x∗(p) = argmin
x

xTΣx − pT x (3.24a)

subject to: 1T x = 1 (3.24b)
x ≥ 0, (3.24c)

where Σ represents a constant covariance matrix. The objective (3.24a) balances maximization of
future profit with minimization of price covariance as a measure of risk. Constraints (3.24b,3.24c)
define a valid proportional allocation.

Settings Data on price action per asset are collected from the Nasdaq online database [112]. A
training dataset of 5000 observations for the future price differential p are generated by adding
Gaussian random noise to this data, plus an additional 500 each for the validation and test-
ing sets. A 5-layer neural network with hidden layer dimension equal to the problem size n is
used to predict the elements of a diagonal metric matrix M as a function of p. The following
parameters are fixed: mmin = 0.01, mmax = 1.0, ρmin = 0.01. A search over the upper bound
ρmax ∈ {1.0, 5.0, 10.0, 50.0, 100.0, 500.0} shows that the best results occur for ρmax = 100.0 but
remain similar for higher values of ρmax.

Results Figure 3.8 illustrates convergence of the DR and ADMM algorithms in solving (3.24),
under metric prediction trained with k iterations in the loop, for k ∈ {5, 10, 15, 20, 25, 30}. At test
time, 100 iterations of DR and 150 iterations ADMM are applied regardless of k. The plotted values
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represent mean relative solution error in the L2 norm. Dotted black curves correspond to a baseline
in which the standard Euclidean metric is used.

The following observations apply to both DR (at left) and ADMM (at right). The metric
prediction model which is trained using k solver iterations always attains the best accuracy at
exactly k solver iterations. Additionally, the models trained using more solver iterations k at each
training step perform better as more solver iterations are performed at test time. This implies that an
accelerated DR or ADMM model intended for exactly k solver iterations should be trained using k
solver iterations, while a model intended for solver iteration until convergence should train using
large values of k.

Note additionally that in this particular experiment, training for small k comes at a cost of
slower long-term convergence in the case of DR. In ADMM, models trained with larger k generally
perform equally or better than with smaller k. An exception is observed for k = 30 in ADMM, in
which error is minimized at iteration 30 at the cost of higher error in both earlier and later iterations.
In all but one case, the learned metrics outperform the Euclidean metric at test time.

Figure 3.8: Results of training proximal metrics for DR and ADMM on Portfolio Optimization, to
minimize error at increments of 5 iterations.

Comparison with Heuristic Metric Selection In order to compare the proposed metric learning
for ADMM against the theoretically prescribed heuristic metric choice given in [65] we test the
metric learning experiment on problem (3.24) with a reduced size of n = 20 assets. Problem size is
reduced to allow a heuristic metric to be calculated efficiently.

To illustrate the effect of active constraints on the viability of the heuristic metric, results for
ADMM are compared on two variants of problem (3.24). The first is as given in (3.24), and the
second replaces the equality constraint (3.24b) with a scaled asset allocation budget 1T x = 10. This
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increase in budget has the effect of reducing the percentage of active constraints over problem
parameters. Figure 3.9 shows the results due to each allocation budget, at left and right respectively.
In the larger budget case few constraints are active on average over the test set. This approximates a
problem setting with no constraints where the heuristic metric would be optimal, and it can be seen
to improve convergence in comparison to the Euclidean metric. Further, the learned optimal metrics
perform similarly when trained for more than k = 5 iterations. On the other hand, the smaller budget
leads to more active constraints and the heuristic metric performs poorly. Conversely, the trained
metric achieves a greater improvement in convergence rate with respect to the Euclidean metric than
in the high budget case, highlighting the capacity for improvement by incorporating information
about active constraints.

Figure 3.9: Comparison of trained and heuristic metrics for ADMM for Portfolio Optimization. The
left plot presents a case where problem constraints are routinely active over problem parameters,
while the right shows a case in which problem constraints are more rarely active.

Quadcopter Control

We also test metric learning on a standard reference tracking model predictive control problem
implemented for a linear discrete time dynamical model of a quadcopter. Let the dynamics be
defined by A ∈ Rn,n, B ∈ Rn,m, and the cost function be defined by positive semi-definite matrices
Q ∈ Rn,n and R ∈ Rm,m. Here we take the parameter p ∈ Rn to be the initial state of the system and
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solve

u∗(p), x∗(p) = argmin
x,u

N∑
k=0

(xk+1 − r)T Q(xk+1 − r) + uT
k Ruk (3.25a)

subject to:

x1 = Ap + Bu0 , (3.25b)

xk+1 = Axk + Buk , (3.25c)

ua ≤ uk ≤ ub , (3.25d)

xa ≤ xk ≤ xb , (3.25e)

∀k ∈ {0, 1, 2, . . .N} . (3.25f)

The optimal solution produces control actions uk ∈ R
m that drive the state of the system xk ∈ R

n

from a given initial state p towards the reference point r ∈ Rn over a finite number of time steps
k ∈ {1, 2, . . .N}. The control actions must also keep the state within the bounds xa, xb ∈ R

n while
staying within the control bounds ua, ub ∈ R

m. In practice the problem (3.25) is solved iteratively
with the control implemented for just the initial time step, then the problem is re-solved from the
new system state at the next time step. Thus the problem can be understood to be parameterized by
the initial state and reference point.

Settings The quadcopter model has a 12 dimensional state and 4 dimensional control input. Only
the first two state variables are constrained, and are restricted to the interval [−π/6 , π/6]. To
generate training data we take the reference point r to be the origin and we generate initial states
p uniformly at random with the first two variables sampled from [−π/6 , π/6] and the rest from
[−0.8, 0.8]. This choice was made such that generated problems were feasible, and state constraints
were routinely active at solutions. We solve the problem (3.25) over a 10 step horizon, resulting in
n = 304 variables with 132 inequality constraints, and 132 equality constraints. Diagonal elements
of a metric matrix M are predicted on a per-instance basis using a 5-layer ReLU network of hidden
layer size 400. As in Section 3.2.4, the parameter choices: mmin = 0.01, mmax = 1.0, ρmin = 0.01 are
fixed. A search over the upper bound ρmax ∈ {1.0, 5.0, 10.0, 50.0, 100.0, 500.0} shows that the best
results occur for ρmax = 50.0 and remain similar for higher values of ρmax.

Results Convergence of both DR and ADMM due to the various trained metric prediction models
are illustrated in Figure 3.10. Prediction models are trained using k steps of each algorithm for
{5, 10, 15, 20, 25, 30, 35, 40}. Solution error over the full horizon needed for convergence is not
shown, to make visible the effects of training up to the first 40 iterations. This is consistent with
the intended application in real-time optimization, which demands solutions within stringent time
constraints.

With regards to the effect of k, similar observations apply as in the portfolio optimization
experiments. Models trained to minimize error at iteration k consistently perform best after exactly
k iterations. Meanwhile, training with larger k generally benefits long-term convergence. Note that
nearly all trained models reach a relative error of 1 × 10−2 in a fraction of the iterations required by
the standard variant with a Euclidean metric.

51



Figure 3.10: Results of training proximal metrics for DR and ADMM on Quadcopter Control, to
minimize error at increments of 5 iterations.

3.2.5 Conclusions
Metric learning as presented here for parametric QP problems can consistently result in orders
of magnitude improvements in solution accuracy at low a number of iterations. The most benefit
is observed in problem settings with a significant number of inequality constraints relative to the
problem size that are routinely active over parameters of interest. Notably, this is exactly the case
in which the theoretically prescribed heuristic metrics are not guaranteed to be optimal. Future
work is needed to understand the capacity for metric learning to reduce solution time on large-scale
problems. By relying on a problem reformulation with slack variables, the total number of variables
is expanded resulting in a larger overall problem size. On the other hand, it allows for metric learning
to potentially significantly reduce the number of iterations required to achieve a given accuracy as
seen here. Because it is independent of other strategies for learning to accelerate optimization, it
may have significant potential to be combined with previously proposed techniques. Combining the
proposed metric learning with nonoverlapping strategies such as prediction of solution warmstarts
may further reduce overall solution times.

52



Chapter 4

Differentiable Solution of Optimization
Problems

This chapter is dedicated to original research on the topic of differentiable programming. Of the two
main sections, the first is methodologically driven, focused on analyzing the backpropagation routine
that results from automatic differentiation through an optimization algorithm. The analysis sheds
light on the convergence properties of that backpropagation, while making connections to the related
topic of implicit differentiation. Section 4.2 focuses on an application of differentiable programming
with the machine learning domain, in which the selection of models within an ensemble is optimized
end-to-end to enhance performance on classification tasks. The two sections, respectively, are based
on the author’s published works [94, 93].

4.1 Analyzing and Enhancing the Backpropagation of Opti-
mization Methods

The integration of optimization problems as components in neural networks has shown to be
an effective framework for enforcing structured representations in deep learning. A parametric
optimization problem defines a mapping from its unspecified parameters to the resulting optimal
solutions, and this mapping is treated as a layer of a neural network. Outputs of the layer are
guaranteed to obey the problem’s constraints, which may be predefined or learned [89].

Using optimization as a layer can offer enhanced accuracy and efficiency on specialized learning
tasks by imparting task-specific structural knowledge. For example, it has been used to design
efficient multi-label classifiers and sparse attention mechanisms [106], learning to rank based on
optimal matching [2, 91], accurate model selection protocols [93], and enhanced models for optimal
decision-making under uncertainty [154].

While constrained optimization mappings can be used as components in neural networks in a
similar manner to linear layers or activation functions [6], a prerequisite is their differentiation, for
the backpropagation of gradients in end-to-end training by stochastic gradient descent.

This poses unique challenges, partly due to their lack of a closed form, and modern approaches
typically follow one of two strategies. In unrolling, an optimization algorithm is executed entirely on
the computational graph, and backpropagated by automatic differentiation from optimal solutions
to the underlying problem parameters. The approach is adaptable to many problem classes, but
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has been shown to suffer from time and space inefficiency, as well as vanishing gradients [109].
Analytical differentiation is a second strategy that circumvents those issues by forming implicit
models for the derivatives of an optimization mapping and solving them exactly. However, current
frameworks have rigid requirements on the form of the optimization problems, such as relying on
transformations to canonical convex cone programs before applying a standardized procedure for
their solution and differentiation, based on cone programming [4]. This system precludes the use
of specialized solvers that are best-suited to handle various optimization problems, and inherently
restricts itself only to convex problems.

Contributions. To address these limitations, this section proposes a novel analysis of unrolled
optimization, which results in efficiently-solvable models for the backpropagation of unrolled
optimization. Theoretically, the result is significant because it establishes an equivalence between
unrolling and analytical differentiation, and allows for convergence of the backward pass to be
analyzed in unrolling. Practically, it allows for the forward and backward passes of unrolled opti-
mization to be disentangled and solved separately, using blackbox implementations of specialized
algorithms. More specifically, we make the following novel contributions: (1) A theoretical analysis
of unrolling that leads to an efficiently solvable closed-form model, whose solution is equivalent to
the backward pass of an unrolled optimizer. (2) Building on this analysis, it proposes a system for
generating analytically differentiable optimizers from unrolled implementations, accompanied by a
Python library called fold-opt to facilitate automation. (3) Its efficiency and modeling advantages
are demonstrated on a diverse set of end-to-end optimization and learning tasks, including the first
demonstration of decision-focused learning with nonconvex decision models.

4.1.1 Setting and Goals
In this section, the goal is to differentiate mappings that are defined as the solution to an optimization
problem. Consider the parameterized problem (4.1) which defines a function from a vector of
parameters c ∈ Rp to its associated optimal solution x⋆(c) ∈ Rn:

x⋆(c) = argmin
x

f (x, c) (4.1a)

subject to: g(x, c) ≤ 0, (4.1b)
h(x, c) = 0, (4.1c)

in which f is the objective function, and g and h are vector-valued functions capturing the inequality
and equality constraints of the problem, respectively. The parameters c can be thought of as a
prediction from previous layers of a neural network, or as learnable parameters analogous to the
weights of a linear layer, or as some combination of both. It is assumed throughout that for any c,
the associated optimal solution x⋆(c) can be found by conventional solution methods, within some
tolerance in solver error. This coincides with the “forward pass” of the mapping in a neural network.
The primary challenge is to compute its backward pass, which amounts to finding the Jacobian
matrix of partial derivatives ∂x

⋆(c)
∂c .

Backpropagation. Given a downstream task loss L, backpropagation through x⋆(c) amounts to
computing ∂L

∂c given ∂L
∂x⋆ . In deep learning, backpropagation through a layer is typically accomplished
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Figure 4.1: Compared to unrolling, unfolding requires fewer operations on the computational graph
by replacing inner loops with Jacobian-gradient products. Fixed-point folding models the unfolding
analytically, allowing for blackbox optimization implementations.

by automatic differentiation (AD), which propagates gradients through the low-level operations
of an overall composite function by repeatedly applying the multivariate chain rule. This can be
performed automatically given a forward pass implementation in an AD library such as PyTorch.
However, it requires a record of all the operations performed during the forward pass and their
dependencies, known as the computational graph.

Jacobian-gradient product (JgP). The Jacobian matrix of the vector-valued function x⋆(c) :
Rp → Rn is a matrix ∂x

⋆

∂c in Rn×p, whose elements at (i, j) are the partial derivatives ∂x
⋆
i (c)
∂c j

. When
the Jacobian is known, backpropagation through x⋆(c) can be performed simply by computing the
product

∂L

∂c
=
∂L

∂x⋆
·
∂x⋆(c)
∂c
. (4.2)

Folded Optimization: Overview. The problem (4.1) is most often solved by iterative methods,
which refine an initial starting point x0 by repeated application of a subroutine, which we view
as a function. For optimization variables x ∈ Rn, the update function is a vector-valued function
U : Rn → Rn:

xk+1(c) = U(xk(c), c). (U)

The iterations (U) converge if xk(c) → x⋆(c) as k → ∞. When unrolling, the iterations (U) are
computed and recorded on the computational graph, and the function x⋆(c) can be thereby be
backpropagated by AD without explicitly representing its Jacobian. However, unrolling over many
iterations often faces time and space inefficiency issues due to the need for graph storage and
traversal [109]. In the following sections, we show how the backward pass of unrolling can be
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analyzed to yield equivalent analytical models for the Jacobian of x⋆(c). The analysis recognizes
two key challenges in modeling the backward pass of unrolling iterations (U).

First, it often happens that evaluation ofU in (U) requires the solution of another optimization
subproblem, such as a projection or proximal operator, which must also be unrolled. Section
4.1.2 introduces unfolding as a variant of unrolling, in which the unrolling of such inner loops is
circumvented by analytical differentiation of the subproblem, allowing the analysis to be confined
to a single unrolled loop.

Second, the backward pass of an unrolled solver is determined by its forward pass, whose
trajectory depends on its (potentially arbitrary) starting point and the convergence properties of the
chosen algorithm. Section 4.1.3 shows that the backward pass converges correctly even when the
forward pass iterations are initialized at a precomputed optimal solution. This allows for separation
of the forward and backward passes, which are typically intertwined across unrolled iterations,
greatly simplifying the backward pass model and allowing for modular implementations of both
passes.

Section 4.1.4 uses these concepts to show that the backward pass of unfolding (U) follows exactly
the solution of the linear system for ∂x

⋆(c)
∂c which arises by differentiating the fixed-point conditions

of (U). Section 4.1.5 then outlines fixed-point folding, a system for generating Jacobian-gradient
products through optimization mappings from their unrolled solver implementations, based on
efficient solution of the models proposed in Section 4.1.4. The main differences between unrolling,
unfolding, and fixed-point folding are illustrated in Figure 4.1.

4.1.2 From Unrolling to Unfolding
For many optimization algorithms of the form (U), the update functionU is composed of closed-
form functions that are relatively simple to evaluate and differentiate. In general though,U may
itself employ an optimization subproblem that is nontrivial to differentiate. That is,

U(xk) B T ( O(S(xk)), xk ) , (O)

wherein the differentiation ofU is complicated by an inner optimization sub-routine O : Rn → Rn.
Here, S and T aggregate any operations preceding or following the inner optimization (such as
gradient steps), viewed as differentiable functions. In such cases, unrolling (U) would also require
unrolling O. If the Jacobians of O can be found, then backpropagation throughU can be completed,
free of unrolling, by applying a chain rule through Equation (O), which may be assisted by automatic
differentiation of T and S.

Then, only the outermost iterations (U) need be unrolled on the computational graph for
backpropagation. This partial unrolling, which allows for backpropagating large segments of
computation at a time by leveraging analytically differentiated subroutines, is henceforth referred to
as unfolding. It is made possible when the update stepU is easier to differentiate than the overall
optimization mapping x⋆(c).

Definition 1 (Unfolding). An unfolded differentiable optimization of the form (U) is one in which
the backpropagation ofU at each step does not require unrolling an iterative algorithm.

Unfolding of a solver is distinguished from its more general unrolling by the presence of
only a single unrolled loop. This definition sets the stage for Section 4.1.4, which shows how
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Figure 4.2: Unfolding Projected Gradient Descent at x⋆ consists of alternating gradient step S with
projection PC. Each function’s forward and backward pass are in blue and red, respectively.

the backpropagation of an unrolled loop can be modeled with a Jacobian-gradient product. Thus,
unfolded optimization is a precursor to the complete replacement of backpropagation through loops
in unrolled solver implementations by JgP.

When O has a closed form and does not require an iterative solution, there is no distinction
between unrolling and unfolding of (U). When O is nontrivial to solve but has known Jacobians, they
can be used to produce an unfolding. For example, in the case when O is a Quadratic Program (QP),
a JgP-based differentiable QP solver called qpth is provided by [6]. Alternatively, the replacement
of unrolled loops by JgP’s proposed in Section 4.1.4 can be applied recursively to O. These concepts
are illustrated in the following examples, highlighting the roles ofU, O and S. Each will be used
to create differentiable folded optimization mappings for a variety of end-to-end learning tasks in
Section 4.1.5.

Projected gradient descent. Given a problem

min
x∈C

f (x) (4.3)

where f is differentiable and C is the feasible set, Projected Gradient Descent (PGD) follows the
update function

xk+1 = PC(xk − αk∇ f (xk)), (4.4)

where O = PC is the Euclidean projection onto C, and S(x) = x − α∇ f (x) is a gradient descent
step. Many simple C have closed-form projections to facilitate unfolding of (4.4) (see [15]). Further,
when C is linear, PC is a quadratic programming (QP) problem for which a differentiable solver
qpth is available from [6].

Figure 4.2 shows one iteration of unfolding projected gradient descent, with the forward and
backward pass of each recorded operation on the computational graph illustrated in blue and red,
respectively.

Proximal gradient descent. More generally, to solve

min
x

f (x) + g(x) (4.5)
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where f is differentiable and g is a closed convex function, proximal gradient descent follows the
update function

xk+1 = Proxαkg (xk − αk∇ f (xk)) . (4.6)

Here O is the proximal operator, defined as

Proxg(x) = argmin
y

{
g(y) +

1
2
∥y − x∥2

}
, (4.7)

and its difficulty depends on g. Many simple proximal operators can be represented in closed form
and have simple derivatives. For example, when g(x) = λ∥x∥1, then Proxg = Tλ(x) is the soft
thresholding operator.

Sequential quadratic programming. Sequential Quadratic Programming (SQP) solves the
general optimization problem (4.1) by approximating it at each step by a QP problem, whose
objective is a second-order approximation of the problem’s Lagrangian function, subject to a
linearization of its constraints. SQP is well-suited for unfolded optimization, as it can solve a broad
class of convex and nonconvex problems and can readily be unfolded by differentiating its QP
subproblem with the qpth differentiable QP solver.

Quadratic programming by ADMM. A differentiable QP solver based on the alternating di-
rection of multipliers is constructed in Section 4.1.5. Its inner optimization step O is an easier
equality-constrained QP; its solution is equivalent to solving a linear system of equations, which
has a simple derivative rule in PyTorch.

Given an unfolded QP solver by ADMM, its unrolled loop can be replaced with backpropagation
by JgP as shown in Section 4.1.4. The resulting differentiable QP solver can then take the place of
qpth in the examples above. Subsequently, this technique can be applied recursively to the resulting
unfolded PGD and SQP solvers. This exemplifies the intermediate role of unfolding in converting
unrolled, nested solvers to fully JgP-based implementations, detailed in Section 4.1.5.

From the viewpoint of unfolding, the analysis of backpropagation in unrolled solvers can be
simplified by accounting for only a single unrolled loop. The next section identifies a further
simplification: that the backpropagation of an unfolded solver can be completely characterized by
its action at a fixed point of the solution’s algorithm.

4.1.3 Unfolding at a Fixed Point
Optimization procedures of the form (U) generally require a starting point x0, which is often chosen
arbitrarily, since convergence xk → x⋆ of iterative algorithms is typically guaranteed regardless of
starting point. It is natural to then ask how the choice of x0 affects the convergence of the backward
pass. We define backward-pass convergence as follows:

Definition 2. Suppose that an unfolded iteration (U) produces a convergent sequence of solution
iterates limk→∞ xk = x⋆ in its forward pass. Then convergence of the backward pass is

lim
k→∞

∂xk

∂c
(c) =

∂x⋆

∂c
(c). (4.8)
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Figure 4.3: Forward and backward pass error in unfolding PGD

Effect of the starting point on backpropagation. Consider the optimization mapping (4.26)
which maps feature embeddings to smooth top-k class predictions, and will be used to learn
multilabel classification later in Section 4.1.5. A loss functionL targets ground-truth top-k indicators,
and the result of the backward pass is the gradient ∂L

∂c . To evaluate backward pass convergence in
unfolded projected gradient descent, we measure the relative L1 errors of the forward and backward
passes, relative to the equivalent result after full convergence. We consider two starting points: the
precomputed optimal solution xa

0 = x⋆, and a uniform random vector xb
0 = η ∼ U(0, 1). The former

case is illustrated in Figure 4.2, in which xk remains stationary at each step.
Figure 4.3 reports the errors of the forward and backward pass at each iteration of the unfolded

PGD under these two starting points. The figure shows that when starting the unfolding from the
precomputed optimal solution xa

0, the forward pass error remains within error tolerance to zero. This
is because x⋆(c)=U(x⋆(c), c) is a fixed point of (U). Interestingly though, the backward pass also
converges, and at a faster rate than when starting from a random vector xb

0.
We will see that this phenomenon holds in general: when an unfolded optimizer is iterated at a

precomputed optimal solution, its backward pass converges. This has practical implications which
can be exploited to improve the efficiency and modularity of differentiable optimization layers based
on unrolling. These improvements will form the basis of our system for converting unrolled solvers
to JgP-based implementations, called folded optimization, and are discussed next.

Fixed-Point Unfolding: Forward Pass. Note first that backpropagation by unfolding at a fixed
point must assume that a fixed point has already been found. This is generally equivalent to finding
a local optimum of the optimization problem which defines the forward-pass mapping (4.1) [15].
Since the calculation of the fixed point itself does not need to be backpropagated, it can be furnished
by a blackbox solver implementation. Furthermore, when x0 = x⋆ is a fixed point of the iteration
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(U), we haveU(xk) = xk = x⋆, ∀k. Hence, there is no need to re-evaluate the forward pass ofU in
each unfolded iteration of (U) at a fixed point x⋆.

This enables the use of any specialized method to compute the forward pass optimization (4.1),
which can be different from unfolded algorithm used for backpropagation, assuming it shares the
same fixed point. It also allows for highly optimized software implementations such as Gurobi
[68], and is a major advantage over existing differentiable optimization frameworks such as cvxpy,
which requires converting the problem to a convex cone program before solving it with a specialized
operator-splitting method for conic programming [4], rendering it inefficient for many optimization
problems.

Fixed-Point Unfolding: Backward Pass. While the forward pass of each unfolded update step
(U) need not be recomputed at a fixed point, the dotted curves of Figure 4.3 illustrate that its
backward pass must still be iterated until convergence. However, since xk = x⋆, we also have
∂U(xk)
∂xk
=
∂U(x⋆)
∂x⋆ at each iteration. Therefore the backward pass ofU need only be computed once,

and iterated until backpropagation of the full optimization mapping (4.1) converges.
Next, it will be shown that this process is equivalent to iteratively solving a linear system

of equations. We identify the iterative method first, and then the linear system it solves, before
proceeding to prove this fact. The following textbook result can be found, e.g., in [126].

Lemma 1. Let B ∈ Rn×n and b ∈ Rn. For any z0 ∈ R
n, the iteration

zk+1 = Bzk + b (LFPI)

converges to the solution z of the linear system z = Bz + b whenever B is nonsingular and has
spectral radius ρ(B) < 1. Furthermore, the asymptotic convergence rate for zk → z is

− log ρ(B). (4.9)

Linear fixed-point iteration (LFPI) is a foundational iterative linear system solver, and can be applied
to any linear system Ax=b by rearranging z=Bz+b and identifying A=I−B.

Next, we exhibit the linear system which is solved for the desired gradients ∂x
⋆

∂c (c) by unfolding
at a fixed point. Consider the fixed-point conditions of the iteration (U):

x⋆(c) = U(x⋆(c), c) (FP)

Differentiating (FP) with respect to c,

∂x⋆

∂c
(c) =

∂U

∂x⋆
(x⋆(c), c)︸           ︷︷           ︸
Φ

·
∂x⋆

∂c
(c) +

∂U

∂c
(x⋆(c), c)︸           ︷︷           ︸
Ψ

, (4.10)

by the chain rule and recognizing the implicit and explicit dependence ofU on the independent
parameters c. Equation (4.10) will be called the differential fixed-point conditions. Rearranging
(4.10), the desired ∂x

⋆

∂c (c) can be found in terms ofΦ and Ψ as defined above, to yield the system
(DFP) below.

The results discussed next are valid under the assumptions that x⋆:Rn→Rn is differentiable in
an open set C, and Equation (FP) holds for c ∈ C. Additionally,U is assumed differentiable on an
open set containing the point (x⋆(c), c).
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Lemma 2. When I is the identity operator and Φ nonsingular,

(I −Φ)
∂x⋆

∂c
= Ψ. (DFP)

The result follows from the Implicit Function theorem [110]. It implies that the Jacobian ∂x
⋆

∂c
can be found as the solution to a linear system once the prerequisite Jacobians Φ and Ψ are found;
these correspond to backpropagation of the update functionU at x⋆(c).

4.1.4 Folded Optimization
We are now ready to discuss the central result of the section. Informally, it states that the backward
pass of an iterative solver (U), unfolded at a precomputed optimal solution x⋆(c), is equivalent to
solving the linear equations (DFP) using linear fixed-point iteration, as outlined in Lemma 1.

This has significant implications for unrolling optimization. It shows that backpropagation of
unfolding is computationally equivalent to solving linear equations using a specific algorithm and
does not require automatic differentiation. It also provides insight into the convergence properties of
this backpropagation, including its convergence rate, and highlights that more efficient algorithms
can be used to solve (DFP) in favor of its inherent LFPI implementation in unfolding.

The following results hold under the assumptions that the parameterized optimization mapping
x⋆ converges for certain parameters c through a sequence of iterates xk(c)→ x⋆(c) using algorithm
(U), and that Φ is nonsingular with a spectral radius ρ(Φ) < 1.

Theorem 4. The backward pass of an unfolding of algorithm (U), starting at the point xk = x⋆, is
equivalent to linear fixed-point iteration on the linear system (DFP), and will converge to its unique
solution at an asymptotic rate of

− log ρ(Φ). (4.11)

Proof. SinceU converges given any parameters c ∈ C, Equation (FP) holds for any c ∈ C. Together
with the assumption theU is differentiable on a neighborhood of (x⋆(c), c),

(I −Φ)
∂x⋆

∂c
= Ψ (4.12)

holds by Lemma 2. When (U) is unfolded, its backpropagation rule can be derived by differentiating
its update rule:

∂

∂c
[ xk+1(c) ] =

∂

∂c
[ U(xk(c), c) ] (4.13a)

∂xk+1

∂c
(c) =

∂U

∂xk

∂xk

∂c
+
∂U

∂c
, (4.13b)

where all terms on the right-hand side are evaluated at c and xk(c). Note that in the base case k = 0,
since in general x0 is arbitrary and does not depend on c, ∂x0

∂c = 0 and

∂x1

∂c
(c) =

∂U

∂c
(x0, c). (4.14)
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This holds also when x0 = x⋆ w.r.t. backpropagation of (U), since x⋆ is precomputed outside the
computational graph of its unfolding. Now since x⋆ is a fixed point of (U),

xk(c) = x⋆(c) ∀k ≥ 0, (4.15)

which implies

∂U

∂xk
(xk(c), c) =

∂U

∂x⋆
(x⋆(c), c) = Φ, ∀k ≥ 0 (4.16a)

∂U

∂c
(xk(c), c) =

∂U

∂c
(x⋆(c), c) = Ψ, ∀k ≥ 0. (4.16b)

Letting JkB
∂xk
∂c (c), the rule (4.13b) for unfolding at a fixed-point x⋆ becomes, along with initial

conditions (4.14),

J0 = Ψ (4.17a)
Jk+1 = ΦJk +Ψ. (4.17b)

The result then holds by direct application of Lemma 1 to (4.17), recognizing zk = Jk , B = Φ and
z0 = b = Ψ. □

The following is a direct result from the proof of Theorem 4.

Corollary 1. Backpropagation of the fixed-point unfolding is equivalent to a Jacobian computed as:

J0 = Ψ (4.18a)
Jk+1 = ΦJk +Ψ, (4.18b)

where Jk B
∂xk
∂c (c).

The proof illustrates that in the LFPI applied through fixed-point unfolding, the initial iterate is
J0 = Ψ. In any case, convergence to the true Jacobian is guaranteed regardless of the initial iterate.

Theorem 4 specifically applies to the case where the initial iterate is the precomputed optimal
solution, x0 = x⋆. However, it also has implications for the general case where x0 is arbitrary. As
the forward pass optimization converges, i.e. xk → x⋆ as k → ∞, this case becomes identical to the
one proved in Theorem 4 and a similar asymptotic convergence result applies. If xk → x⋆ and Φ is
a nonsingular operator with ρ(Φ) < 1, the following result holds.

Corollary 2. When the parametric problem (4.1) can be solved by an iterative method of the form
(U) and the forward pass of the unfolded algorithm converges, the backward pass converges at an
asymptotic rate that is bounded by − log ρ(Φ).

The result above helps explain why the forward and backward pass in the experiment of Section
4.1.3 converge at different rates. If the forward pass converges faster than − log ρ(Φ), the overall
convergence rate of an unfolding is limited by that of the backward pass.
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Fixed-Point Folding. Building on the above findings, we propose to replace unfolding at the
fixed point x⋆ with the equivalent Jacobian-gradient product following the solution of (DFP). This
leads to fixed-point folding, a system for converting any unrolled implementation of an optimization
method (U) into a differentiable folded optimization that eliminates unrolled loops. By leveraging
AD through a single step of the unrolled solver, but avoiding the use of AD to unroll through
multiple iterations on the computational graph, it enables backpropagation of optimization layers by
JgP using a seamless integration of automatic and analytical differentiation.

This section introduces fold-opt, a Python library which supplies routines for constructing
and solving the requisite linear systems, and integrating the resulting Jacobian-gradient products
into the computational graph of PyTorch. To do so, it requires an AD implementation of the update
functionU in Pytorch for an appropriately chosen optimization routine. Once constructed, the linear
system (DFP) may be solved by a blackbox linear solver. However, note that for backpropagation
it is often most efficient not to solve for the Jacobian matrix ∂x⋆

∂c , but rather to solve directly for
the desired JgP vector ∂L

∂c =
∂L
∂x⋆ ·

∂x⋆(c)
∂c . Solution by iterative methods can be implemented without

explicit matrix-vector products by utilizing the backward pass of (U) in place of its equivalent JgP.
The purpose of the fold-opt library is to facilitate the conversion of unfolded optimization

code into JgP-based differentiable optimization, by leveraging automatic differentiation in Pytorch.
It relies on the fact that backpropagation of a (gradient) vector g through the computational graph
of a function x→ f (x) by reverse-mode automatic differentiation is equivalent to computing the
JgP product g · ∂f (x)

∂x
.

We erite the backpropagation of the loss gradient ∂L
∂x⋆ through k unfolded steps of (U) at the

fixed point x⋆ as

∂L

∂x⋆
T (
∂xk(c)
∂c

)
. (4.19)

We seek to compute the limit ∂L
∂c = gTJ where g = ∂L

∂x⋆ , J B limk→∞ Jk , and Jk =
∂xk(c)
∂c .

Following the backpropagation rule (4.18), the expression (4.19) is equal to

gTJk = gT (ΦJk−1 +Ψ) (4.20a)

= gT
(
ΦkΨ +Φk−1Ψ + . . . +ΦΨ +Ψ

)
(4.20b)

This expression can be rearranged as

gTJk = vT
kΨ (4.21)

where
vT

k B
(
gTΦk + gTΦk−1 + . . . + gTΦ + gT

)
. (4.22)

The sequence vk can be computed most efficiently as

vT
k = vT

k−1Φ + g
T (4.23)

which identifies v B limk→∞ vk as the solution of the linear system

vT (I −Φ) = gT (4.24)
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Figure 4.4: Bilinear Programming (a), Enhanced Denoising with f-FDPG (b), and Portfolio opti-
mization (c).

under the conditions of Lemma (1), after transposing both sides of (4.23) and (4.24) .
Once vT is calculated by (4.23), the desired JgP is

gTJ = vTΨ. (4.25)

The left matrix-vector product with respect to Φ in (4.23) and Ψ in (4.25) can be computed by
backpropagation through the computational graph of the update functionU(x⋆(c), c), backward to
x⋆(c) and c respectively.

Notice that in contrast to unfolding, this backpropagation method requires to store the computa-
tional graph only for a single update step, rather than for an entire optimization routine consisting
of many iterations.

Having reduced the calculation of gTJ to the solution of a linear system (4.24) followed by
a matrix-vector product (4.25), it is clear how efficiency can be improved by replacing the LFPI
iterations (4.23) with a faster-converging linear solution scheme based on matrix-vector products,
such as Krylov subspace methods. This emphasizes the inherently sub-optimal convergence rate
of backpropagation in unfolded solvers, and such upgrades will be planned for future versions of
fold-opt.

Nested application As per Definition 1, the innermost optimization loop of a nested unrolling
can be considered an unfolded loop, and can be backpropagated by JgP with fixed-point folding.
Subsequently, the next innermost loop can be considered unfolded, and the same process applied
until all unrolled optimization loops are replaced with their respective JgP’s. Nested application of
fixed-point folding is exemplified by f-PGDb (see Section 6), which applies successive fixed-point
folding through ADMM and PGD to compose a JgP-based differentiable layer for any optimization
problem with a smooth objective function and linear constraints.

Optimization Parameters Note that before it can be used to generate JgP’s in folded optimization,
a differentiable solver stepU often requires specification of parameters such as gradient descent
stepsizes. This can affect ρ(Φ), and hence the backward pass convergence and its rate by Theorem 4.
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4.1.5 Experiments
This section evaluates folded optimization on four end-to-end optimization and learning tasks.
It is primarily evaluated against cvxpy, which is the preeminent general-purpose differentiable
optimization solver. Two crucial limitations of cvxpy are its efficiency and expressiveness. This is
due to its reliance on transforming general optimization programs to convex cone programs, before
applying a standardized operator-splitting cone program solver and differentiation scheme. This
precludes the incorporation of problem-specific solvers in the forward pass and limits its use to
convex problems only. One major benefit of fold-opt is the modularity of its forward optimization
pass, which can apply any black-box algorithm to produce x⋆(c). In each experiment below, this is
used to demonstrate a different advantage.

Implementations. The experiments test four fold-opt implementations: (1) f-PGDa applies
to optimization mappings with linear constraints, and is based on fixed-point folding of projected
gradient descent steps, where each inner projection is a QP solved by the differentiable QP solver
qpth [6]. (2) f-PGDb is a variation on the former, in which the inner QP step is differentiated
by fixed-point folding of an ADMM method. (3) f-SQP applies to optimization with nonlinear
constraints and uses folded SQP with the inner QP differentiated by qpth. (4) f-FDPG comes from
fixed-point folding of the Fast Dual Proximal Gradient Descent (FDPG) method. The inner Prox is
a soft thresholding operator, whose simple closed form is differentiated by AD in PyTorch.

Decision-focused learning with nonconvex bilinear programming. The first experiment show-
cases the ability of folded optimization to be applied in decision-focused learning with nonconvex
optimization. In this experiment, we predict the coefficients of a bilinear program

x⋆(c,d) = argmax
0≤x,y≤1

cT x + xT Qy + dT y

s.t.
∑

x = p,
∑

y = q,

in which two separable linear programs are confounded by a nonconvex quadratic objective term
Q. Costs c and d are predicted by a 5-layer network, while p and q are constants. Such programs
have numerous industrial applications such as optimal mixing and pooling in gas refining [11]. Here
we focus on the difficulty posed by the problem’s form and propose a task to evaluate f-PGDb in
learning with nonconvex optimization. Feature and cost data are generated by the process described
in Appendix B.1, along with 15 distinct Q for a collection of nonconvex decision models.

It is known that PGD converges to local optima in nonconvex problems [10], and this folded
implementation uses the Gurobi nonconvex QP solver to find a global optimum. Since no known
general framework can accommodate nonconvex optimization mappings in end-to-end models, we
benchmark against the two-stage approach, in which the costs c, and d are targeted to ground-truth
costs by MSE loss and the optimization problem is solved as a separate component from the learning
task. The integrated f-PGDb model minimizes solution regret (i.e., suboptimality) directly. [52].
Notice in Figure 4.4(a) how f-PGDb achieves much lower regret for each of the 15 nonconvex
objectives.
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Enhanced Total Variation Denoising. This experiment illustrates the efficiency benefit of incor-
porating problem-specific solvers. The optimization models a denoiser

x⋆(D) = argmin
x

1
2
∥x − d∥2 + λ∥Dx∥1,

which seeks to recover the true signal x⋆ from a noisy input d and is often best handled by variants
of Dual Proximal Gradient Descent. Classically, D is a differencing matrix so that ∥Dx∥1 represents
total variation. Here we initialize D to this classic case and learn a better D by targeting a set of
true signals with MSE loss and adding Gaussian noise to generate their corresponding noisy inputs.
Figure 4.4(b) shows test MSE throughout training due to f-FDPG for various choice of λ. Appendix
B.2 shows comparable results from the framework of [6], which converts the problem to a QP form
in order to differentiate the mapping analytically with qpth. Small differences in these results likely
stem from solver error tolerance in the two methods. However, f-FDPG computes x⋆(D) up to 40
times faster.

Mutilabel Classification on CIFAR100. Since gradient errors accumulate at each training step,
we ask how precise are the operations performed by fold-opt in the backward pass. This experi-
ment compares the backpropagation of both f-PGDa and f-SQP with that of cvxpy, by using the
forward pass of cvxpy in each model as a control factor.

This experiment, adapted from [19], implements a smooth top-5 classification model on noisy
CIFAR-100. The optimization below maps image feature embeddings c from DenseNet 40-40 [73],
to smoothed top-k binary class indicators (see Appendix B.1 for more details):

x⋆(c)=argmax
0≤x≤1

cT x +
∑

i

xi log xi s.t.
∑

x = k (4.26)

Appendix B.2 shows that all three models have indistinguishable classification accuracy throughout
training, indicating the backward pass of both fold-opt models is precise and agrees with a known
benchmark even after 30 epochs of training on 45k samples. On the other hand, the more sensitive
test set shows marginal accuracy divergence after a few epochs.

Portfolio Prediction and Optimization. Having established the equivalence in performance of
the backward pass across these models, the final experiment describes a situation in which cvxpy
makes non negligible errors in the forward pass of a problem with nonlinear constraints:

x⋆(c) = argmax
0≤x

cT x s.t. xT Vx ≤ γ,
∑

x = 1. (4.27)

This model describes a risk-constrained portfolio optimization where V is a covariance matrix, and
the predicted cost coefficients c represent assets prices [52]. A 5-layer ReLU network is used to
predict future prices c from exogenous feature data, and trained to minimize regret (the difference in
profit between optimal portfolios under predicted and ground-truth prices) by integrating Problem
(4.27). The folded f-SQP layer used for this problem employs Gurobi QCQP solver in its forward
pass. This again highlights the ability of fold-opt to accommodate a highly optimized blackbox
solver. Figure 4.4(c) shows test set regret throughout training, three synthetically generated datasets
of different nonlinearity degrees. Notice the accuracy improvements of fold-opt over cvxpy.
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Such dramatic differences can be explained by non-negligible errors made in cvxpy’s forward pass
optimization on some problem instances, which occurs regardless of error tolerance settings. In
contrast, Gurobi agrees to machine precision with a custom SQP solver, and solves about 50%
faster than cvxpy. This shows the importance of highly accurate optimization solvers for accurate
end-to-end training.

4.1.6 Conclusions
This section introduced folded optimization, a framework for generating analytically differentiable
optimization solvers based on unrolled implementations. Theoretically, folded optimization was
justified by a novel analysis of unrolling at a precomputed optimal solution, which showed that its
backward pass is equivalent to solution of a solver’s differential fixed-point conditions, specifically
by fixed-point iteration on the resulting linear system. This allowed for the convergence analysis of
the backward pass of unrolling, and evidence that the backpropagation of unrolling can be improved
by using superior linear system solvers. We showed that folded optimization offers substantial
advantages over existing differentiable optimization frameworks, including modularization of the
forward and backward passes and the ability to handle nonconvex optimization.
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4.2 Differentiable Model Selection Layers for Ensemble Learn-
ing

Model selection involves the process of identifying the most suitable models from a set of candidates
for a given learning task. The chosen model should ideally generalize well to unseen data, with the
complexity of the model playing a crucial role in this selection process. However, striking a balance
between underfitting and overfitting is a significant challenge.

A variety of techniques have been presented in the machine learning literature to address this
issue. Of particular relevance, ensemble learning [157] is a meta-algorithm that combines the
outputs of individually pre-trained models, known as base learners, to improve overall performance.
Despite being trained to perform the same task, these base learners may exhibit error diversity,
meaning they fail on different samples, and their accuracy profiles complement each other across
an overall distribution of test samples. The potential effectiveness of an ensemble model strongly
depends on the correlation between the base learners’ errors across input samples and their accuracy;
those with higher accuracy and error diversity have a higher potential for improved ensemble
accuracy [107].

However, the task of identifying the optimal aggregation of ensemble model predictions for any
particular input sample is nontrivial. Traditional approaches often aggregate predictions across all
base learners of an ensemble, aiming to make predictions more robust to the error of individual
base learners. While these techniques could be enhanced by selectively applying them to a subset of
base learners known to be more reliable on certain inputs, the design of algorithms that effectively
select and combine the base learners’ individual predictions remains a complex endeavor. Many
consensus rule-based methods apply aggregation schemes that combine or exclude base learners’
predictions based on static rules, thereby missing an opportunity to inform the ensemble selection
based on a particular input’s features.

Recently, the concept of differentiable model selection has emerged, aiming to incorporate
the model selection process into the training process itself [46, 133, 59]. This approach leverages
gradient-based methods to optimize model selection, proving particularly beneficial in areas like
neural architecture search. The motivation behind differentiable model selection lies in the potential
to automate and optimize the model selection process, thereby leading to superior models and
more efficient selection procedures. Despite its promises, however, it remains non-trivial how to
design effective differentiable model selection strategies and the use of gradient-based methods
alone further enhances the risk of converging to local optima which can lead to suboptimal model
selection.

In light of these challenges, this section proposes a novel framework for differentiable model
selection specifically tailored for ensemble learning. The framework integrates machine learning and
combinatorial optimization to learn the selection of ensemble members by modeling the selection
process as an optimization problem leading to optimal selections within the prescribed context.

Contributions. In more detail, this section makes the following contributions: (1) It proposes
end-to-end Combinatorial Ensemble Learning (e2e-CEL), a novel ensemble learning framework
that exploits an integration of ML and combinatorial optimization to learn specialized consensus
rules for a particular input sample. (2) It shows how to cast the selection and aggregation of
ensemble base learner predictions as a differentiable optimization problem, which is parameterized
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by a deep neural network and trained end-to-end within the ensemble learning task. (3) An analysis
of challenging learning tasks demonstrates the strengths of this idea: e2e-CEL outperforms models
that attempt to select individual ensemble members, such as the optimal weighted combination of
the individual ensemble members’ predictions as well as conventional consensus rules, implying a
much higher ability to leverage error diversity.

These results demonstrate the integration of constrained optimization and learning to be a key
enabler to enhance the effectiveness of model selection in machine learning tasks.

4.2.1 Setting and Goals
The section considers ensembles as a collection of n models or base learners represented by
functions fi, 1 ≤ i ≤ n, trained independently on separate (but possibly overlapping) datasets
(Xi,Yi), all on the same intended classification task. On every task studied, it assumed that (Xi,Yi)
are given, along with a prescription for training each base learners, so that fi are assumed to be
pre-configured. This setting is common in federated analytic contexts, where base learners are often
trained on diverse datasets with skewed distributions [77], and in ML services, where providers
offer a range of pre-trained models with different architectural and hyper-parametrization choices
[127].

Let n∈N be the number of base learners, c∈N the number of classes and d∈N the input feature
size. Given a sample z∈Rd, each base learner f j : Rd→Rc computes f j(z) = ŷ j. For the classification
tasks considered in this work, each ŷ j is the direct output of a softmax function Rc→Rc,

softmax(c)i =
eci∑c

k=1 eck
. (4.28)

Explicitly, each classifier fi(ϕi, x) is trained with respect to its parameters ϕi to minimize a
classification loss L as

min
ϕi
E(x,y)∼(Xi,Yi)

[
L( fi(ϕi, x), y)

]
. (4.29)

The goal is then to combine the base learners into an ensemble, whose aggregated classifier g
performs the same task, but with greater overall accuracy on a master dataset (X,Y), where Xi ⊂ X

and Yi ⊂ Y for all i with 0 ≤ i ≤ n:

min
θ
E(x,y)∼(X,Y)

[
L(g(θ, x), y)

]
. (4.30)

As is typical in ensemble learning, the base learners may be trained in a way that increases test-error
diversity among fi on X— see Section 4.2.3. In each dataset there is an implied train/test/validation
split, so that evaluation of a trained model is always performed on its test portion. Where this
distinction is needed, the symbols Xtrain, Xvalid, Xtest are used. A list of symbols used in the
section to describe various aspects of the computation, along with their meanings is provided in
[92], Table 4.

4.2.2 End-to-end Combinatorial Ensemble Learning
Ideally, given a pretrained ensemble fi, 1 ≤ i ≤ n and a sample z ∈ X, one would select from
the ensemble a classifier which is known to produce an accurate class prediction for z. However,
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Figure 4.5: End-to-end Ensemble Learning scheme: Black and red arrows illustrate forward and
backward operations, respectively.

a performance assessment for each base learners’ predictions is not available at test time. Thus,
conventional ensemble learning schemes resort to selection criteria such as plurality voting (see
Section 4.2.3 for a description of the aggregation rules here used as a benchmark).

The end-to-end learning scheme in this work is based on the idea that a more accurate ensemble
prediction can be made by using predictions based on z, and that selecting a well-chosen subset of
the ensemble, rather than the entire ensemble, can provide more reliable results than a single base
learner. The size of the subset, k, is treated as a hyperparameter. While it may seem logical to only
choose the best predicted base learner for a given input sample (setting k = 1), it is consistently
observed in Section 4.2.3 that the optimal performance is achieved for 1 < k < n.

The proposed mechanism casts the sub-ensemble selection as an optimization program that is
end-to-end differentiable and can thus be integrated with a learning model gθ to select a reliable
subset of the ensemble base learners to combine for predictions. An end-to-end Smart Selection
Ensemble (e2e-SSE), or simply, smart ensemble, consists of an ensemble of base learners along
with a module that is trained by e2e-CEL to select the sub-ensemble of size k, which produces the
most accurate combined prediction for a given input. The model g is called the selection net, and
the end-to-end ensemble model is trained by optimizing its parameters θ.

E2e-CEL overview. E2e-CEL is composed of three main steps:
1. Predict a vector of scores gθ(z) = ĉ, estimating the prediction accuracy for each base learner

on sample z.
2. Identify the base learner indices E ⊂ [n] which correspond the the top k predicted scores.
3. Collect the predictions of the selected sub-ensemble f j(z) and perform an approximate

majority voting scheme over those predictions to determine the z’s class.
By training on the master set Xtrain, the smart ensemble learns to make better predictions by

virtue of learning to select better sub-ensembles to vote on its input samples. However, note that
subset selection and plurality voting are discrete operations, and in plain form do not offer useful
gradients for backpropagation and learning. The next sections discuss further details of the e2e-CEL
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framework, including differentiable approximations for each step of the overall model.
Figure 4.5 illustrates the e2e-CEL model and its training process in terms of its component

operations. Backpropagation is shown with red arrows, and it only applies to the operations
downstream from the selection net g, since the e2e-CEL is parameterized by the parameters
of g alone.

Differentiable Model Selection

The e2e-CEL system is based on learning to select k < n predictions from the master ensemble,
given a set of input features. This can be done by way of a structured prediction of binary values,
which are then used to mask the individual base learner predictions.

Consider the unweighted knapsack problem

K(ĉ) = argmax
b

ĉ⊤b (4.31a)

subject to 1⊤b = k, (4.31b)
b ∈ {0, 1}n, (4.31c)

which can be viewed as a selection problem whose optimal solution assigns the value 1 to the
elements of b associated to the top k values of ĉ. Relaxing constraint (4.31c) to 0 ≤ b ≤ 1 results in
an equivalent linear program (LP) with discrete optimal solutions b ∈ {0, 1}n, despite being both
convex and composed of continuous functions. This useful property holds for any LP with totally
unimodular constraints and integer right-side coefficients [14].

This optimization problem can be viewed as a mapping from ĉ to a binary vector indicating
its top k values, and represents thus a natural candidate for selection of the optimal sub-ensemble
of size k given the individual base learners’ predicted scores, seen as ĉ. However, the outputs of
Problem (4.31) define a piecewise constant function,K(ĉ), which does not admit readily informative
gradients, posing challenges to differentiability. For integration into the end-to-end learning system,
the function K(ĉ) must provide informative gradients with respect to ĉ. In this work, this challenge
is overcome by smoothing K(ĉ) based on perturbing ĉ with random noise.

As observed by [20], any continuous, convex linear programming problem can be used to
define a differentiable perturbed optimizer, which yields approximately the same solutions but is
differentiable with respect to its linear objective coefficients. Given a random noise variable Z with
probability density p(z) ∝ exp (−v(z)) where v is a twice differentiable function,

K(ĉ) = Ez∼Z [K(ĉ + ϵz)] , (4.32)

is a differentiable perturbed optimizer associated to K . The temperature parameter ϵ > 0 controls
the sensitivity of its gradients (or properly, Jacobian matrix), which can itself be represented by the
expected value [1]:

∂K(ĉ)
∂ĉ

= Ez∼Z
[
K(ĉ + ϵz) v′(z)⊤

]
. (4.33)

In this work, Z is modeled as a standard Normal random variable. While these expected values
are analytically intractable (due to the constrained argmax operator within the knapsack problem
K), they can be estimated to arbitrary precision by sampling in Monte Carlo fashion. This procedure
is a generalization of the Gumbel Max Trick [66].

71



Note that simulating Equations (4.32) and (4.33) requires solving Problem (4.31) for potentially
many values of z. However, although the theory of perturbed optimizers requires the underlying
problem to be a linear program, only a blackbox implementation is required to produce K(ĉ) [20],
allowing for an efficient algorithm to be used in place of a (more costly) LP solver. The complexity
of evaluating the differentiable perturbed optimizer K(ĉ) is discussed next.

Theorem 5. The total computation required for solving Problem (4.31) is O(n log k), where n and k
are, respectively, the ensemble and sub-ensembles sizes.

Proof. This result relies on the observation that K(ĉ) can be computed efficiently by identifying
the top k values of ĉ in O(n log k) time using a divide-and-conquer technique. See, for example,
[35]. □

Generating m such solutions for gradient estimation then requires O(m n log k) operations. Note,
however, that these can be performed in parallel across samples, allowing for sufficient noise
samples to be generated for computing accurate gradients, especially when GPU computing is
available.

For clarity, note also that the function K , as a linear program mapping, has a discrete output
space since any linear program takes its optimal solution at a vertex of its feasible region [14],
which are finite in number. As such, it is a piecewise constant function and is differentiable except
on a set of measure zero [58]. However, ∂K/∂ĉ = 0 everywhere it is defined, so the derivatives lack
useful information for gradient descent [154]. While ∂K/∂ĉ is not the true derivative of K at ĉ, it
supplies useful information about its direction of descent.

In practice, the forward optimization pass is modeled asK(ĉ), and the backward pass is modeled
as ∂K(ĉ)/∂ĉ. This allows further downstream operations, and their derivatives, to be evaluated at K(ĉ)
without approximation, which improves training and test performance [89]. These forward and
backward passes together are henceforth referred to as the Knapsack Layer. Its explicit backward
pass is computed as

∂K(ĉ)
∂ĉ

≈
1
m

m∑
i=1

[
K(ĉ + ϵzi) v′(zi)⊤

]
, (4.34)

where zi ∼ N(0, 1)n are m independent samples each drawn from a standard normal distribution.

Combining Predictions

Denote as P ∈ Rc×n the matrix whose j − th column is the softmax vector ŷ j of base learner j,

P =
(
ŷ1 ŷ2 . . . ŷn.

)
(4.35)

For the purpose of combining the ensemble agent predictions, K(ĉ) is treated as a binary
masking vector b ∈ {0, 1}n, which selects the subset of agents for making a prediction. Denote as
B ∈ {0, 1}c×n the matrix whose ith column is Bi =

−→
1 bi; i.e.,

B =
[
b1 . . . bn

]⊤
.
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This matrix is used to mask the agent models’ softmax predictions P by element-wise multipli-
cation. Next, define

Pk = B ◦ P

=
[
b1 . . . bn

]⊤
◦
[
ŷ1 . . . ŷn

]
(4.36)

Doing so allows to compute the sum of predictions over the selected sub-ensemble E, but in a
way that is automatically differentiable, that is:

v̂ B
∑
i∈E

ŷi =

n∑
i=1

P(i)
k . (4.37)

The e2e-CEL prediction comes from applying softmax to this sum:

ŷ = softmax(v̂) = softmax

 n∑
i=1

P(i)
k

 , (4.38)

viewing the softmax as a smooth approximation to the argmax function as represented with one-hot
binary vectors. This function is interpreted as a smoothed majority voting to determine a class
prediction: given one-hot binary class indicators hi, the majority vote is equal to argmax(

∑
i hi). An

illustration of the process is given in Figure 4.5.
At test time, class predictions are calculated as

argmax
1≤i≤c

ŷi(x). (4.39)

Combining predictions in this way allows for an approximated majority voting over a selected
sub-ensemble, but in a differentiable way so that selection net parameters θ can be directly trained
to produce selections that minimize the classification task loss, as detailed in the next section.

Learning Selections

The smart ensemble mechanism learns accurate class predictions by learning to select better
subensembles to vote on its input samples. In turn, this is done by predicting better coefficients ĉ
which parameterize the Knapsack Layer.

The task of predicting ĉ based on input z is itself learned by the selection net, a neural network
model g so that ĉ = g(z). Since g acts on the same input samples as each fi, it should be capable of
processing inputs from z at least as well as the base learners’ models; in Section 4.2.3, the selection
net in each experiment uses the same CNN architecture as that of the base learner models. Its
predicted values are viewed as scores over the ensemble members, rather than over the possible
classes. High scores correspond to base learners which are well-qualified to vote on the sample in
question.

In practice, the selection net’s predictions ĉ are normalized before input to the mapping K :

ĉ←
ĉ
∥ĉ∥ 2
. (4.40)
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This has the effect of standardizing the magnitude of the linear objective term in (4.31a), and tends
to improve training. Since scaling the objective of an optimization problem has no effect on its
solution, this is equivalent to standardizing the relative magnitudes of the linear objective and
random noise perturbations in Equations (4.32) and (4.33), preventing ϵ from being effectively
absorbed into the predicted ĉ.

For training input x, let ŷθ(x) represent the associated e2e-SSE prediction given the selection net
parameters θ. During training, the model minimizes the classification loss between these predictions
and the ground-truth labels:

min
θ
E(x,y)∼(X,Y)

[
L(ŷθ(x), y)

]
. (4.41)

Generally, the loss function L is chosen to be the same as the loss used to train the base learner
models, as the base learners are trained to perform the same classification task.

e2e-CEL Algorithm Details

Algorithm 2 summarizes the e2e-CEL procedure for training a selection net. Note that only the
parameters of the selection net are optimized in training, and so only its downstream computations
are backpropagated. This is done by the standard automatic differentiation employed in machine
learning libraries [121], except in the case of the Knapsack Layer, whose gradient transformation is
analytically specified by Equation (4.34).

For clarity, Algorithm 2 is written in terms of operations that apply to a single input sample. In
practice, however, minibatch gradient descent is used. Each pass of the training begins evaluating
the base learner models (line 4) and sampling standard Normal noise vectors (line 5). The selection
net predicts from input features x a vector of base learner scores gθ(x), which defines an unweighted
knapsack problem K(gθ(x)) that is solved to produce the binary mask b (line 6).

Masking is applied to the base learner predictions before being summed and softmaxed for a
final ensemble prediction ŷ (line 8). The classification loss L is evaluated with respect to the label
y and backpropagated in 3 steps: (1) The gradient ∂L

∂b is computed by automatic differentiation
backpropagated to the Knapsack Layer’s output (line 9). (2) The chain rule factor ∂b

∂ĉ is analytically
computed by the methodology of Section 4.2.2 (line 10). (3) The remaining chain rule factor ∂ĉ

∂θ
is

computed by automatic differentiation (line 11). Note that as each chain rule factor is computed, it
is also applied toward computing ∂L

∂θ
(line 12). Finally, a SGD step [130] or one of its variants ([41],

[165]) is applied to update θ (line 13).
The next section evaluates the accuracy of ensemble models trained with this algorithm, on

classification tasks using deep neural networks.

4.2.3 e2e-CEL Evaluation
The e2e-CEL training is evaluated on several vision classification tasks: digit classification on
MNIST dataset [37], age-range estimation on UTKFace dataset [167], image classification on
CIFAR10 dataset [96], and emotion detection on FER2013 dataset [99].

Being an optimized aggregation rule, e2e-CEL is compared with state-of-the-art Super Learner
algorithm [76] along with the following widely adopted baseline aggregation rules when paired
with a pre-trained ensemble :
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Algorithm 2: Training the Selection Net
input :X,Y, α, k,m, epsilon

1 for epoch k = 0, 1, . . . do
2 foreach (x, y)← (X,Y) do
3 ŷi← fi(x) ∀ 1 ≤ i ≤ n
4 zi ∼ N(0, 1)n ∀ 1 ≤ i ≤ m
5 (b, ĉ)←

(
K(gθ(x)), gθ(x)

∥gθ(x)∥2

)
6 Pk ← [b, . . . , b]⊤◦

[
ŷ1, . . . , ŷn

]
7 p̂← softmax(

∑n
i=1 P(i)

k )
8 ∂L( p̂,y)/∂b← autodiff
9 ∂b/∂ĉ← 1

m

∑m
i=1

[
K(ĉ + ϵzi) v′(zi)⊤

]
10 ∂ĉ/∂θ← autodiff

11 ∂L( p̂,y)/∂θ← ∂L( p̂,y)
∂b · ∂b

∂ĉ ·
∂ĉ
∂θ

12 θ ← θ − α∂L( p̂,y)
∂θ

•Super Learner: a fully connected neural network that, given the base learners’ predictions, learns
the optimal weighted combinations specialized for any input sample.
•Unweighted Average: averages all the base learners’ softmax predictions and then compute the

index of the corresponding highest label score as the final prediction.
•Plurality Voting: makes a discrete class prediction from each base learner and then returns the

most-predicted class.
•Random Selection: randomly selects a size-k sub-ensemble of base learners for making prediction

and then applies the unweighted average rule to the selected base learners’ soft predictions.

Experimental settings. Ensemble learning schemes are most effective when base learner models
are accurate and have high error diversity. In this work, base learners are deliberately trained to have
high error diversity with respect to input samples belonging to different classes. This is done by
composing for each base learner model fi (1 ≤ i ≤ n) a training set Xi in which a subset of classes
is over-represented, resulting base learners that specialize in identifying those classes. The exact
class composition of each dataset Xi depends on the particular classification task and on the base
learner’s intended specialization.

For each task, each base learner is designed to be specialized for recognizing either one or
two particular classes. To this end, the training set of each base learner is partitioned to have a
majority of samples belonging to a particular class, while the remaining part of the training dataset
is uniformly distributed across all other classes by random sampling. Specifically, to compose the
smart ensemble for each task, a single base learner is trained to specialize on each possible class,
and on each pair of classes (e.g., digits 1 and 2 in MNIST). When c is the number of classes, the
experimental smart ensemble then consists of c +

(
c
2

)
total base learners. Training a specialized base

learner in this way generally leads to high accuracy over its specialty classes, but low accuracy over
all other classes. Therefore in this experimental setup, no single base learner is capable of achieving
high overall accuracy on the master test set Xtest. This feature is also recurrent in federated analytic
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Accuracy (%)
Dataset Specialized Complimentary Overall

MNIST 97.5 86.8 89.6
UTKFACE 93.2 25.2 51.2

FER2013 79.4 38.1 47.8
CIFAR10 76.3 24.8 31.1

Table 4.1: Specialized base learner model test accuracy

models [77].
Table 4.1 shows the average accuracy of individual base learner models on their specialty classes

and their non-specialty classes; reported, respectively as specialized accuracy and complementary
accuracy. The reported overall accuracy is measured over the entire master test set Xtest. This sets
the stage for demonstrating the ability of e2e-CEL training to compose a classifier that substantially
outperforms its base learner models on Xtest by adaptively selecting sub-ensembles based on input
features; see Section 4.2.3.

Note that, in each experiment, the base learner models’ architecture design, hyperparameter
selection, and training methods have not been chosen to fully optimize classification accuracy,
which is not the direct goal of this work. Instead, the base learners have been trained to maximize
error diversity, and demonstrate the ability of e2e-CEL to leverage error diversity and compose
highly accurate ensemble models from far less accurate base learner models, in a way that is not
shared by conventional aggregation rules. Note also that improving base learner model accuracies
would, of course, tend to improve the accuracy of the resulting ensemble classifiers. In each case,
throughout this section, the e2e-SSE selection net is given the same CNN architecture as the base
learner models which form its ensemble.

Datasets and Settings

For each task, the base learners are trained to specialize in classifying one or two particular classes,
which allows the selection program to leverage their error diversity. Additional details about the
base learners’ models and the dataset split can be found in [92], Appendix B.

Digit classification. MNIST is a dataset of 28x28 pixel greyscale images of handwritten digits. It
contains 60000 images for training and 10000 images for testing. The ensemble consists of 55 base
learners, 10 of which specialize on one class and

(
10
2

)
= 45 of which specialize on two classes.

Image classification. CIFAR10 is a 32x32 pixel color images dataset in 10 classes: airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. It contains 6000 images of each class.
The ensemble consists of 55 base learners, 10 of which specialize on 1 class and

(
10
2

)
= 45 of which

specialize on 2 classes.
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Accuracy (%)
Dataset e2e-CEL SL UA PV RS

MNIST 98.55 96.88 96.81 95.99 96.83
UTKFACE 90.97 85.07 84.60 80.78 84.60

FER2013 66.31 64.95 63.89 63.15 63.89
CIFAR10 64.09 60.13 60.59 60.35 60.59

Table 4.2: e2e-CEL vs super learner (SL), unweighted average (UA), plurality voting (MV), and
random selection (RS), using specialized base learners.

Age estimation. UTKFace is a face images dataset consisting of over 20000 samples and different
version of images format. Here 9700 cropped and aligned images are split in 5 classes: baby (up
to 5 years old), teenager (from 6 to 19), young (from 20 to 33), adult (from 34 to 56) and senior
(more than 56 years old). The classes are not uniformly distributed per number of ages, but each
class contains the same number of samples. The goal is to estimate a person’s age given the face
image. The ensemble consists of 15 base learners, 5 of which specialize on 1 class and

(
5
2

)
= 10 on

2 classes.

Emotion detection. Fer2013 is a dataset of over 30000 48x48 pixel grayscale face images, which
are grouped in 7 classes: angry, disgust, fear, happy, neutral, sad, and surprised. The goal is to
categorize the emotion shown in the facial expression into one category. The ensemble consists of
21 base learners, 7 of which specialize on 1 class and

(
7
2

)
= 21 of which specialize on 2 classes.

e2e-CEL Analysis

The e2e-CEL strategy is tested on each experimental task for sub-ensemble size k varying between
1 and n, and compared to the baseline methods described above. Note in each case that accuracy is
defined as the percentage of correctly classified samples over the master test set.

Table 4.2 reports the best accuracy over all the ensemble sizes k of ensembles trained by e2e-CEL
along with that of each baseline ensemble model, where each are formed using the same pre-trained
base learners. Note how the proposed e2e-CEL scheme outperforms all the baseline methods, in
each task, for all but the lowest values of k.

Figure 4.6 reports the test accuracy found by e2e-CEL along with ensembles based on the
Super Learner, weighted average, majority voting, or random selection scheme. We make two key
observations: (1) Note from each subplot in Figure 4.6 that smart ensembles of size k > 1 provide
more accurate predictions than baseline models that randomly select sub-ensembles of the same
size, a trend that diminishes as k increases and base learner selections have less consequence (the
two perform equally when k = n). (2) In every case, the sub-ensemble size which results in optimal
performance is strictly between 1 and n. Importantly, this illustrates the motivating intuition of the
e2e-CEL ensemble training. Neither the full ensemble (k = n), nor smart selection of a single base
learner model (k = 1) can outperform models that use smart selection of a sub-ensemble of any size.
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Figure 4.6: Comparison between e2e-CEL and other ensemble models at varying of the sub-
ensemble size k on image classification–CIFAR10–(top left), digit classification–MNIST–(top
right), age estimation–UTKFace–(bottom left), and emotion detection–FER2013–(bottom right)
The (*) in the label identifies methods that use specialized aggregation rules for every input sample..

A well-selected sub-ensemble has higher potential accuracy than the master ensemble, and is, on
average, more reliable than a well-selected single base learner.

Next, Table 4.3 (left) reports the accuracy of the e2e-SSE model trained on each task, along
with the sub-ensemble size that resulted in highest accuracy. In two cases, for the digit classification
and the image classification task, the e2e-SSE performs best when the sub-ensemble size is equal to
the number of classes. In the remaining tasks, this observation holds approximately. This is intuitive,
since the number of base learners specializing on any class is equal to the number of classes,
and e2e-CEL is able to increase ensemble accuracy by learning to select these base learners for
prediction.

Finally, observe the accuracy of e2e-CEL in Table 4.3 (left) and the performance of the individual
base learners predictors of the ensemble tested on both the labels in which their training was
specialized as well as the other labels. Note how e2e-SSE predictions outperform their constituent
base learners by a wide margin on each task. For example, on UTKFace, the e2e-SSE ensemble
reaches an accuracy 40 percentage points higher than its average constituent base learner. This
illustrates the ability of e2e-CEL to leverage the error diversity of base learners to form accurate
classifiers by composing them based on input features, even when the individual base learner’s
accuracies are poor.
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Accuracy (%)
Dataset Classes Best k e2e-CEL Base learners

MNIST 10 10 98.55 89.6
UTKFACE 5 7 90.97 51.2

FER2013 7 13 66.31 47.8
CIFAR10 10 10 64.09 31.1

Table 4.3: Left: Best ensemble size (Best k) and associated e2e-CEL test accuracy attained on each
dataset. Right: Average accuracy for the constituent ensemble base learners.

4.2.4 Conclusions
This study addresses a significant issue in model selection and ensemble learning: determining the
best models for the classification of distinct input samples. The presented solution is an innovative
approach for differentiable model selection, and tailored to ensemble learning, merging machine
learning with combinatorial optimization. This framework constructs precise predictions, adaptively
selecting sub-ensembles based on input samples.

The study show how to transform the ensemble learning task into a differentiable selection
process, trained cohesively within the ensemble learning model. This approach allows the proposed
framework to compose accurate classification models even from ensemble base learners with low
accuracy, a feature not shared by existing ensemble learning approaches. The results on various tasks
demonstrate the versatility and effectiveness of the proposed framework, substantially outperforming
state-of-the-art and conventional consensus rules in a variety of settings.

This work demonstrates that the integration of machine learning and combinatorial optimization
is a valuable toolset for not only enhancing but also combining machine learning models. This work
contributes to the ongoing efforts to improve the efficiency and effectiveness of model selection
in machine learning, particularly in the context of ensemble learning, and hopes to motivate new
solutions where decision-focused learning may be used to improve the capabilities of machine
learning systems.

79



80



Chapter 5

Learning the Parameters of Optimal
Decision Models

This chapter is dedicated to the Predict-Then-Optimize setting, in which an optimization problem
must be solved without full knowledge of its objective function. With its numerous practical applica-
tions, this setting is a prime example to demonstrate the benefits of differentiable programming. By
differentiating through the optimal solution that results from a prediction of its objective parameters,
the objective value of a downstream optimization problem can be used directly as a loss function
for training its prediction model.

Our contributions in this area are focused on algorithmic fairness of decisions made by combined
prediction and optimization models. Section 5.1 is methodologically oriented, addressing the
modeling challenges that arise when differentiating through optimizations with nondifferentiable
objectives. In particular, we propose a predict-then-optimize framework for the optimization of
Ordered Weighted Averaging objectives, known for their fair guarantees over multiple objective
functions. This work is based on the author’s publications [43, 42]. Then, Section 5.2 develops
a practical application of PtO in the fairness domain, also based on published works [92, 44].
It proposes the integration of learning to rank models end-to-end with fair ranking optimization
programs. This allows us to optimize web search results subject to guarantees on fairness of exposure
to users, across arbitrarily defined categories of content.

5.1 Differentiable Approximations of Fair OWA Optimization
The Predict-Then-Optimize (PtO) framework [104] models decision-making processes as optimiza-
tion problems with unspecified parameters c, which must be estimated by a machine learning (ML)
model, given correlated features z. An estimation of c completes the problem’s specification, whose
solution defines a mapping:

x⋆(c) = argmax
x∈S

f (x, c) (5.1)

The goal is to learn a model ĉ =Mθ(z) from observable features z, such that the objective value
f (x⋆(ĉ), c) under ground-truth parameters c is maximized on average. This is common in many
applications requiring decision-making under uncertainty, like planning the fastest route through a
city with unknown traffic delays or predicting optimal power generation schedules based on demand
forecasts.
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Optimization of multiple objectives is crucial in contexts requiring a balance of competing goals,
especially when fairness is essential in fields like energy systems [141], urban planning [131], and
multi-objective portfolio optimization [74, 30]. A common approach is using Ordered Weighted
Averaging (OWA) [161] to achieve Pareto-optimal solutions that fairly balance each objective.
However, optimizing an OWA objective in PtO is challenging due to its nondifferentiability, which
prevents backpropagation through x⋆(c) within machine learning models trained by gradient
descent. To our knowledge, no prior PtO models encounter a non-differentiable objective, making
this challenge novel.

5.1.1 Preliminaries

Fair OWA and its Optimization

The Ordered Weighted Average (OWA) operator [161] is used in various decision-making fields to
fairly aggregate multiple objective criteria [162]. Let y ∈ Rm be a vector of m distinct criteria, and
τ : Rm → Rm be the sorting map that orders y in increasing order. For any w satisfying w ∈ Rm,∑

i wi = 1, and w ≥ 0, the OWA aggregation with weights w is piecewise-linear in y [117]:

OWAw(y) = wTτ(y), (5.2)

We use its concave version, Fair OWA [118], characterized by weights in descending order:
w1 > . . . > wn > 0.

The following three properties of Fair OWA functions are crucial for fairly optimizing multiple
objectives: (1) Impartiality: Permutations of a utility vector are equivalent solutions. (2) Equitability:
Marginal transfers from a higher value criterion to a lower one increase the OWA aggregated
value. (3) Monotonicity: OWAw(y) is an increasing function of each element of y. This ensures
that solutions optimizing the OWA objectives are Pareto Efficient, meaning no criterion can be
improved without worsening another [117]. Optimization of aggregation functions that possess
these properties leads to equitably efficient solutions, which satisfy a rigorously defined notion of
fairness [87].

Predict-Then-Optimize Learning

Our problem setting fits within the PtO framework. Generally, a parametric optimization problem
(5.1) models an optimal decision x⋆(c) with respect to unknown parameters c drawn from a
distribution c ∼ C. While the true value of c is unknown, correlated feature values z ∼ Z can be
observed. The goal is to learn a predictive modelMθ : Z → C from features z to estimate problem
parameters ĉ =Mθ(z), by maximizing the empirical objective value of the resulting solution under
ground-truth parameters. That is,

argmax
θ

E(z,c)∼Ω f
(
x⋆(Mθ(z)), c

)
, (5.3)

where Ω represents the joint distribution betweenZ and C.
The above training goal is often achieved by maximizing empirical Decision Quality as a loss

function [104], defined:
LDQ(ĉ, c) = f

(
x⋆(ĉ), c

)
. (5.4)

Gradient descent training of (5.3) with LDQ requires a model of gradient ∂LDQ

∂ĉ
, either directly or

through chain-rule composition ∂LDQ

∂ĉ
=
∂x⋆(ĉ)
∂ĉ
·
∂LDQ

∂x⋆
. When x⋆ is not differentiable, as in OWA
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optimizations, smooth approximations are required, such as those developed in the next section.

Figure 5.1: Predict-Then-Optimize for OWA Optimization.

5.1.2 End-to-End Learning with Fair OWA Optimization
This section focuses on scenarios where the objective function f is an ordered weighted average
of m linear objective functions, each parameterized by a row of a matrix C ∈ Rm×n so that
f (x,C) = OWAw(Cx) and

x⋆(C) = argmax
x∈S

OWAw(Cx). (5.5)

Note that this methodology extends to cases where the OWA objective is combined with additional
smooth terms. For simplicity, the exposition primarily focuses on the pure OWA objective as shown
in equation (5.5).

The goal is to learn a prediction model Ĉ =Mθ(z) that maximizes decision quality through
gradient descent on problem (5.3), which requires obtaining its gradients w.r.t. Ĉ:

∂LDQ(Ĉ,C)

∂Ĉ
=
∂x⋆

∂Ĉ︸︷︷︸
J

·
∂OWAw(Cx⋆)

∂x⋆︸             ︷︷             ︸
g

, (5.6)

where x⋆ is evaluated at Ĉ. The main strategy involves determining the OWA function’s gradient g
and then computing Jg by backpropagating g through x⋆.

While nondifferentiable, the class of OWA functions is subdifferentiable, with subgradients as
follows:

∂

∂y
OWAw(y) = w(σ−1) (5.7)

where σ are the sorting indices on y [45]. Based on this formula, computing an overall subgradient
g = ∂/∂x OWAw(Cx) is a routine application of the chain rule (via automatic differentiation). We
apply the differentiable approximations proposed next to enable its backpropagation through OWA
optimization. A schematic illustration highlighting the forward and backward steps required for this
process is provided in Figure 5.1.

83



5.1.3 Differentiable Approximate OWA Optimization
This section introduces two differentiable approximations of the OWA optimization mapping
(5.5). Section 5.1.3 adapts a quadratic smoothing technique [154, 7] for a discontinuous linear
programming model of OWA. Then, Section 5.1.3 presents an efficient alternative by employing
OWA’s Moreau envelope approximation. To the best of the author’s knowledge, this is the first
instance of using objective smoothing via the Moreau envelope as an effective technique for
approximating nondifferentiable optimization programs in end-to-end learning.

OWA LP with Quadratic Smoothing

In [117], it’s observed that the OWA optimization (5.5) can have the following LP formulation when
x ∈ S is linear:

x⋆(C) = argmaxx∈S,y,z z (5.8a)

s.t.: y = Cx (5.8b)
z ≤ wτ · y ∀τ ∈ Pm. (5.8c)

This LP problem is typically solvable with a simplex method. However, its constraints (5.8c) grows
factorially as m!, where m is the number of criteria aggregated by OWA.

Our first approach to differentiable OWA optimization combines this LP transformation with the
smoothing technique of [154], which forms differentiable approximations to linear programs by
adding a scaled Euclidean norm term ϵ |x|2 to the objective function. This results in a continuous
mapping x⋆(c) = argmaxAx≤b cTx + ϵ∥x∥2, a quadratic program (QP) which can be differentiated
implicitly via its KKT conditions as in [5].

Smoothing by the scaled norm of joint variables x,y, z in 5.8a leads to a differentiable QP
approximation, viable when m is small. This optimization can be solved and differentiated using
techniques from [5] or a generic differentiable optimization solver such as [4]:

x⋆(C) = argmax
x∈S,y,z

z + ϵ
(
∥x∥22 + ∥y∥

2
2 + z2

)
(5.9a)

subject to: (5.8b), (5.8c). (5.9b)

While problem (5.8) does not fit the exact LP form due to its parameterized constraints (5.8b),
the need for quadratic smoothing (5.9a) is illustrated experimentally in Section 5.1.4. The main
disadvantage of this method is poor scalability in the number of criteria m, due to constraints (5.8c).
Another drawback is that the transformed QP is much harder to solve than its original associated
LP problems since quadratic smoothing increases the difficulty of an OWA-equivalent LP problem.
These drawbacks motivate the next smoothing method, which yields a tractable optimization
problem by replacing the OWA objective with a smooth approximation.

Moreau Envelope Smoothing

Instead of adding a quadratic term as in (5.9), we replace the piecewise linear function OWAw in
(5.5) with its Moreau envelope, defined for a convex function f as:

f β(x) = min
v

f (v) +
1

2β
∥v − x∥2. (5.10)
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Figure 5.2: Percentage OWA regret (lower is better) on test set, on the robust portfolio problem over
3,5,7 scenarios.

Compared to its underlying function f , the Moreau envelope is 1
β

smooth while sharing the same
optima [15]. The Moreau envelope-smoothed OWA optimization problem is

x⋆(C) = argmaxx∈S OWAβw(Cx). (5.11)

With its smooth objective function, problem (5.11) can be solved by gradient-based optimization
methods (see Section 5.1.4), and also differentiated for backpropagation.

Differentiation of (5.11) is nontrivial since its objective function lacks a closed form. We model
its Jacobian by differentiating the fixed-point conditions of a gradient-based solver. To proceed, we
first note from [45] that the gradient of the Moreau envelope OWAβw is equal to a projection:

∂

∂x
OWAβw(x) = projC(w̃)

(
x

β

)
, (5.12)

where w̃ = −(wm, . . . ,w1) and the permutahedron C(w̃) is the convex hull of all permutations of w̃.
The following approach to differentiation of (5.11) requires differentiation of the function (5.12).

For this, we leverage the differentiable permutahedral projection framework of [23], which was
originaly used to implement a soft sorting model. This allows evaluation and differentiation of
(5.12) in O(m log m) time, via isotonic regression.

LettingU(x,C) = projS(x−α · ∂
∂x

OWAβw(x,C)), a projected gradient descent step on (5.11) is
xk+1 = U(xk,C). Differentiating the fixed-point conditions of convergence where xk = xk+1 = x⋆,
and rearranging terms yields a linear system for ∂x

⋆

∂C
:I −

∂U(x⋆,C)
∂x⋆︸        ︷︷        ︸
Φ

 ∂x
⋆

∂C
=
∂U(x⋆,C)
∂C︸        ︷︷        ︸
Ψ

(5.13)

The partial Jacobian matrices Φ and Ψ above can be found given a differentiable implementation
of U. This is achieved by computing the inner gradient ∂

∂x
OWAβw(x,C) via the differentiable

permutahedral projection (5.12), and solving the outer projection mapping projS using a generic
differentiable solver such as cvxpy [4]. As such, applying U at a precomputed solution x⋆(C)
allows Φ and Ψ to be extracted in PyTorch, in order to solve (5.13); this process is efficiently
implemented via the fold-opt library [94].
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5.1.4 Experiments
This section extends the PtO framework to scenarios with multiple uncertain objectives jointly
learned and fairly optimized through OWA aggregation. The Robust Markowitz Portfolio Optimiza-
tion evaluates the differentiable approximations from Section 5.1.3 against baseline methods.

The training goal is to maximize empirical decision quality with respect to their Fair OWA
aggregation:

LDQ(Ĉ,C) = OWAw

(
Cx⋆(Ĉ)

)
. (5.14)

Evaluations Each model is evaluated based on its ability to train a model Ĉ =Mθ(z) to achieve
high decision quality (5.14) for the OWA-aggregated objective. Results are reported using the regret
metric of suboptimality, whose 0 corresponds to maximum decision quality:

regret(Ĉ,C) = OWA⋆w (C) − OWAw

(
Cx⋆(Ĉ)

)
(5.15)

where OWA⋆w (C) is the true optimal value of (5.5). This experiment evaluates the proposed
differentiable approximations (5.9) and (5.11), named OWA-QP and OWA-Moreau. Two common
baselines are compared against our methods: (1) Two-stage: This standard baseline for PtO (5.3)
[104] trains the prediction model Ĉ =Mθ(z) by minimizing MSE LTS (Ĉ,C) = ∥Ĉ −C∥2 without
considering the downstream optimization model, used only at test time. (2) Unweighted sum (UWS):
This baseline (Sum-QP) uses an LP model: x⋆(C) = argmaxx∈S 1

T (Cx) in end-to-end training,
with quadratic smoothing [154] in Section 5.1.4.

OWA Optimization Under Uncertainty: Robust Markowitz Portfolio Problem

The classic Markowitz portfolio problem is concerned with constructing an optimal investment
portfolio, given future returns c ∈ Rn on n assets, which are unknown and predicted from exogenous
data. An alternative risk-aware approach considers robustness over scenarios. In [26], m future price
scenarios are represented by a matrix C ∈ Rm×n, where the ith row contains per-asset prices for the
ith scenario. Thus, an optimal allocation is modeled as:

x⋆(C) = argmax
x∈∆n

OWAw(Cx). (5.16)

This experiment integrates robust portfolio optimization (5.16) end-to-end with per-scenario price
prediction Ĉ =Mθ(z). This experiment’s setting is detailed in Appendix C.1.

Results. Figure 5.2 shows average percent regret in the OWA objective over the test set (lower is
better). The end-to-end training Sum-QP outperforms Two-stage approach. However, both OWA-
QP and OWA-Moreau achieve substantially higher decision quality. While OWA-QP performs
slightly better, it cannot scale past 5 scenarios, highlighting the importance of the Moreau envelope
smoothing. More results on an alternate dataset can be found in Appendix C.1.

OWA-LP uses the OWA’s equivalent LP as a differentiable optimization without smooth-
ing. Grey bars show non-smoothed OWA LP results implemented with implicit differentiation
in cvxpylayers [4]. This comparison highlights the accuracy improvement due to quadratic
smoothing in OWA-QP. The poor performance of OWA subgradient training under non-smoothed
OWA-LP demonstrates the necessity of the proposed approximations in Section 5.1.3.

Runtimes of the smoothed models (5.9) and (5.11) are compared in Figure 5.3. Moreau envelope
smoothing keep runtimes low as m increases, while the QP approximation suffers past m = 5 and

86



3 4 5 6 7 8 9
# of Scenario

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ti
m

e 
(s

) P
er

 S
am

pl
e OWA-QP

OWA-Moreau

Figure 5.3: Average solving time of 2 smoothed OWA optimization models, on Robust Portfolio
Optimization, over 1000 input samples. Missing data points past 7 scenarios are due to memory
overflow as the QP model grows factorially.

encounters memory overflow beyond m = 6.

5.1.5 Conclusions
This work has presented a methodology for incorporating Fair OWA optimization end-to-end with
predictive modeling. These developments were used to demonstrate the potential of Fair OWA
optimization in data-driven decision making, with results not previously possible on important
problems, such as robust resource allocation. Furthermore, we believe that some insights developed
here may generalize to broader classes of problems - in particular, approximating an optimization
of nonsmooth objectives by that of its Moreau envelope may have potential for generalization to a
wider variety of problem settings.
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5.2 End-to-End Learning for Fairness-Constrained Learning to
Rank

Ranking systems are a pervasive aspect of our everyday lives: They are an essential component
of online web searches, job searches, property renting, streaming content, and even potential
friendships. In these systems, the items to be ranked are products, job candidates, or other entities
associated with societal and economic benefits, and the relevance of each item is measured by
implicit feedback from users (click data, dwell time, etc.). It has been widely recognized that the
position of an item in the ranking has a strong influence on its exposure, selection, and, ultimately
economic success.

The algorithms used to learn these rankings are typically oblivious to their potential disparate
impact on the exposure of different groups of items. For example, it has been shown that in a job
candidate ranking system, a small difference in relevance can incur a large difference in exposure
for candidates from a minority group [51]. Similarly, in an image search engine, a disproportionate
number of males may be shown in response to the query ‘CEO’ [134].

Ranking systems that ignore fairness considerations, or are unable to bound these effects, are
prone to the “rich-get-richer” dynamics that exacerbate the disparate impacts. The resulting biased
rankings can be detrimental to users, ranked items, and ultimately society. There is thus a pressing
need to design learning-to-rank (LRT) systems that can deliver accurate ranking outcomes while
controlling disparate impacts.

Current approaches to fairness in learning-to-rank systems rely on using a loss function repre-
senting a weighted combination of expected task performance and fairness. This strategy is effective
in improving the fairness of predicted rankings on average, but has three key shortcomings: (1)
The resulting rankings, even when fair in expectation across all queries, can admit large fairness
disparities for some queries. This aspect may contribute to exacerbate the rich-get-richer dynamics,
while giving a false sense of controlling the system’s disparate impacts. (2) While a tradeoff between
fairness and ranking utility is usually desired, these models cannot be directly controlled through
the specification of an allowed magnitude for the violation of fairness. (3) A large hyperparameter
search is required to find the weights of the loss function that deliver the desired performance
tradeoff. Furthermore, each of these issues becomes worse as the number of protected groups
increases.

This section addresses these issues and proposes the first fair learning to rank system–named
Smart Predict and Optimize for Fair Ranking (SPOFR)–that guarantees satisfaction of fairness in the
resulting rankings. The proposed framework uses a unique integration of a constrained optimization
model within a deep learning pipeline, which is trained end-to-end to produce optimal fair ranking
policies with respect to empirical relevance scores.

Contributions We make the following contributions: (1) It proposes SPOFR, a Fair LTR system
that predicts and optimizes through an end-to-end composition of differentiable functions, guaran-
teeing the satisfaction of user-specified group fairness constraints. (2) Due to their discrete structure,
imposing fairness constraints over ranking challenges the computation and back-propagation of
gradients. To overcome this challenge, SPOFR introduces a novel training scheme which allows di-
rect optimization of empirical utility metrics on predicted rankings using efficient back-propagation
through constrained optimization programs. (3) The model ensures uniform fairness guarantees over
all queries, a directly controllable fairness-utility tradeoff, and guarantees for multi-group fairness.
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Symbol Semantic

N Size of the training dataset
n Number of items to rank, for each query
xq = (xi

q)n
i=1 List of items to rank for query q

aq = (ai
q)n

i=1 protected groups associated with items xi
q

yq = (yi
q)n

i=1 relevance scores (1-hot labels)
σ Permutation of the list [n] (individual rankings)
Π Ranking policy
v = (vi)n

i=1 Position bias vector
w = (wi)n

i=1 Position discount vector

Table 5.1: Common symbols

(4) These unique aspects are demonstrated on two LTR datasets in the partial information setting.
Additionally, SPOFR is shown to significantly improve on current state-of-the-art fair LTR systems
with respect to established performance metrics.

5.2.1 Related Work
The imposition of fairness constraints over discrete rankings can require nontrivial optimizations. To
address this challenge, multiple notions of fairness in ranking have been developed. Celis et al. [29]
propose to directly require fair representation between groups within each prefix of a ranking, by
specifying a mixed integer programming problem to solve for rankings of the desired form. Zehlike
et al. [164] design a greedy randomized algorithm to produce rankings which satisfy fairness up
to a threshold of statistical significance. The approach taken by Singh and Joachims [134] also
constructs a randomized ranking policy by formalizing the ranking policy as a solution to a linear
optimization problem with constraints ensuring fair exposure between groups in expectation.

Fairness in learning-to-rank is studied by Zehlike and Castillo [163], which adopts the LTR
approach of Cao et al. [27] and introduces a penalty term to the loss function to account for the
violation of group fairness in the top ranking position. Stronger fairness results are reported by
Yadav et al. [160] and Singh and Joachims [135], which apply a policy gradient method to learn fair
ranking policies. The notion of fairness is enforced by a penalty to its violation in the loss function,
forming a weighted combination of terms representing fairness violation and ranking utility over
rankings sampled from the learned polices using a REINFORCE algorithm [155].

5.2.2 Settings and Goals
The LTR task consists in learning a mapping between a list of n items and a permutation σ of the
list [n], which defines the order in which the items should be ranked in response to a user query.
The LTR setting considers a training dataset D = (xq,aq,yq)N

q=1 where the xq ∈ X describe lists
(xi

q)n
i=1 of n items to rank, with each item xi

q defined by a feature vector of size k. The aq = (ai
q)n

i=1
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elements describe protected group attributes in some domain G for each item xi
q. The yq ∈ Y are

supervision labels (yi
q)n

i=1 that associate a non-negative value, called relevance scores, with each
item. Each sample xq and its corresponding label yq in D corresponds to a unique query denoted q.
For example, on a image web-search context, a query q denotes the search keywords, e.g., “nurse”,
the feature vectors xi

q in xq encode representations of the items relative to q, the associated protected
group attribute ai

q may denote gender or race, and the label yi
q describes the relevance of item i to

query q.
The goal of learning to rank is to predict, for any query q, a distribution of rankings Π, called a

ranking policy, from which individual rankings can be sampled. The utility U of a ranking policy Π
for query q is defined as

U(Π, q) = Eσ∼Π
[
∆(σ,yq)

]
, (5.17)

where ∆ measures the utility of a given ranking with respect to given relevance scores yq.
Let Mθ be a machine learning model, with parameters θ, which takes as input a query and

returns a ranking policy. The LTR goal is to find parameters θ∗ that maximize the empirical risk:

θ∗ = argmax
θ

1
N

N∑
q=1

U(Mθ(xq),yq). (P)

This description refers to the Full-Information setting [75], in which all target relevance scores are
assumed to be known.

Fairness This section aims at learning ranking policies that satisfy group fairness. It considers a
predictorM satisfying some group fairness notion on the learned ranking policies with respect to
protected attributes aq. A desired property of fair LTR models is to ensure that, for a given query,
items associated with different groups receive equal exposure over the ranked list of items. The
exposure E(i, σ) of item i within some ranking σ is a function of only its position, with higher
positions receiving more exposure than lower ones. Thus, similar to [135], this exposure is quantified
by E(i, σ) = vσi , where the position bias vector v is defined with elements v j = 1/(1+ j)p, for j ∈ [n]
and with p > 0 being an arbitrary power.

For ranking policy Mθ(xq) and query q, fairness of exposure requires that, for every group
indicator g ∈ G,M’s rankings are statistically independent of the protected attribute g:

Eσ∼Mθ(xq)
i∼[n]

[
E (i, σ) |ai

q = g
]
= Eσ∼Mθ(xq)

i∼[n]
[E (i, σ)] . (5.18)

We consider bounds on fairness defined as the difference between the group and population level
terms, i.e.,

ν(Mθ(xq), g) = E
[
E(i, σ)|ai

q = g
]
− E [E(i, σ)] . (5.19)

Definition 3 (δ-fairness). A modelMθ is δ-fair, with respect to exposure, if for any query q ∈ [N]
and group g ∈ G: ∣∣∣ν(Mθ(xq), g)

∣∣∣ ≤ δ.
In other words, the fairness violation on the resulting ranking policy is upper bounded by δ ≥ 0.

Our goal is to design accurate LTR models that guarantee δ-fairness for any prescribed fairness
level δ ≥ 0. As noted by Agarwal et al. [3] and Fioretto et al. [55], several fairness notions, including
those considered in this work, can be viewed as linear constraints between the properties of each
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group with respect to the population. While the above description focuses on exposure, the methods
discussed here can handle any fairness notion that can be formalized as a (set of) linear constraints,
including merit weighted fairness, introduced in Section 5.2.4. A summary of the common adopted
symbols is provided in Table 5.1.

5.2.3 Learning Fair Rankings: Challenges
When interpreted as constraints of the form (5.19), fairness properties can be explicitly imposed to
problem (P), resulting in a constrained empirical risk problem, formalized as follows:

θ∗ = argmax
θ

1
N

N∑
q=1

U(Mθ(xq),yq) (5.20a)

s.t.
∣∣∣ν(Mθ(xq), g)

∣∣∣ ≤ δ ∀q ∈ [N], g ∈ G. (5.20b)

Solving this new problem, however, becomes challenging due to the presence of constraints. Rather
than enforcing constraints (5.20b) exactly, state of the art approaches in fair LTR (e.g., [134, 160])
rely on augmenting the loss function (5.20a) with a term that penalizes the constraint violations ν
weighted by a multiplier λ. This approach, however, has several undesirable properties:
1. Because the constraint violation term is applied at the level of the loss function, it applies only

on average over the samples encountered during training. Because the sign (±) of a fairness
violation depends on which group is favored, disparities in favor of one group can cancel out
those in favor of another group for different queries. This can lead to models which predict
individual policies that are far from satisfying fairness in expectation, as desired. These effects
will be shown in Section 5.2.6.

2. The multiplier λmust be treated as a hyperparameter, increasing the computational effort required
to find desirable solutions. This is already challenging for binary groups and the task becomes
(exponentially) more demanding with the increasing of the number of protected groups.

3. When a tradeoff between fairness and utility is desired, it cannot be controlled by specifying
an allowable magnitude for fairness violation. This is due to the lack of a reliable relationship
between the hyperparameter λ and the resulting constraint violations. In particular, choosing λ to
satisfy Definition 3 for a given δ is near-impossible due to the sensitivity and unreliability of the
relationship between these two values.

The proposed approach avoids these difficulties by providing an end-to-end integration of predictions
and optimization into a single machine-learning pipeline, where (1) fair policies are obtained by
an optimization model using the predicted relevance scores and (2) the utility metrics are back-
propagated from the loss function to the inputs, through the optimization model and the predictive
models. This also ensures that the fairness constraints are satisfied on each predicted ranking policy.

5.2.4 SPOFR

Overview. The underlying idea behind SPOFR relies on the realization that constructing an optimal
ranking policy Πq associated with a query q can be cast as a linear program (as detailed in the next
section) which relies only on the relevance scores yq. The cost vector of the objective function of
this program is however not observed, but can be predicted from the feature vectors xi

q (i ∈ [n])
associated with the item list xq to rank. The resulting framework thus operates into three steps:
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ŷ>
q ⇧w

Figure 5.4: SPOFR. A single neural network learns to predict item scores from individual feature
vectors, which are used to construct a linear objective function for the constrained program that
produces a ranking policy.

1. First, for a given query q and its associated item list xq, a neural network modelMθ is used to
predict relevance scores ŷq = (ŷ1

q, . . . , ŷ
n
q);

2. Next, the predicted relevance scores are used to specify the objective function of a linear program
whose solution will result in a fair optimal (with the respect to the predicted scores) ranking
policy Π∗(ŷq);

3. Finally, a regret function, which measures the loss of optimality relative to the true optimal policy
Π∗(yq) is computed, and gradients are back-propagated along each step, including in the argmax
operator adopted by the linear program, creating an end-to-end framework.

The overall scheme is illustrated in Figure 5.4. It is important to note that, rather than minimizing
a standard error (such as a mean square loss) between the predicted quantities ŷq and the target
scores yq, SPOFR minimizes directly a loss in optimality of the predicted ranking with respect to
the optimal ones. Minimizing this loss is however challenging as ranking are discrete structures,
which requires to back-propagate gradients through a linear program. These steps are examined in
detail in the rest of this section.

While the proposed framework is general and can be applied to any linear utility metric U for
rankings (see Problem (5.17)), this section grounds the presentation on a widely adopted utility
metric, the Discounted Cumulative Gain (DCG):

DCG(σ,yq) =
n∑

i=1

yi
qwσi , (5.21)

where σ is a permutation over [n], yq are the true relevance scores, and w is an arbitrary weighting
vector over ranking positions, capturing the concept of position discount. Commonly, and throughout
this section, wi=1/log2(1+i). Note that following [160, 135], these discount factors are considered distinct
from the position bias factors v used in the calculation of group exposure.

Predict: Relevance Scores

Given a query q with a list of items xq = (x1
q, . . . , x

n
q) to be ranked, the predict step uses a single

fully connected ReLU neural networkMθ acting on each individual item xi
q to predict a score ŷi

q
(i = 1, . . . , n). Combined, the predicted scores for query q are denoted with ŷq and serve as the cost
vector associated with the optimization problem solved in the next phase.
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Model 1: LP Computing the Fair Ranking Policy

Π∗(ŷq) = argmaxΠ ŷ⊤q Πw (5.22a)

subject to:
∑

j

Πi j = 1 ∀i∈ [n] (5.22b)∑
i

Πi j = 1 ∀ j∈ [n] (5.22c)

0 ≤ Πi j ≤ 1 ∀i, j∈ [n] (5.22d)
|ν(Π, g)| ≤ δ ∀g ∈ G (5.22e)

Optimize: Fair Ranking Policies

The predicted relevance scores ŷq, combined with the constant position discount values w, can be
used to form a linear function that estimates the utility metric (DCG ) of a ranking policy. Expressing
the utility metric as a linear function makes it possible to form the LTR model as an end-to-end
continuous function.

Linearity of the Utility Function The following description omits subscripts “q” for readability.
The references below to ranking policy Π and relevance scores y are to be interpreted in relation to
an underlying query q.

Using the Birkhoff–von Neumann decomposition [22], any n× n doubly stochastic matrix Π can
be decomposed into a convex combination of at most (n − 1)2 + 1 permutation matrices P(i), each
associated with a coefficient µi ≤ 0, which can then represent rankings σ(i) under the interpretation
wσ(i) = P(i)w. A ranking policy is inferred from the set of resulting convex coefficients µi, which
sum to one, forming a discrete probability distribution: each permutation has likelihood equal to its
respective coefficient

Π =

(n−1)2+1∑
i=1

µiP(i). (5.23)

Next, note that any linear function on rankings can be formulated as a linear function on their
permutation matrices, which can then be applied to any square matrix. In particular, applying the
DCG operator to a doubly stochastic matrix Π results in the expected DCG over rankings sampled
from its inferred policy. Given item relevance scores y:

Eσ∼ΠDCG(σ,y) =
(n−1)2+1∑

i=1

µi y
⊤P(i) w

= y⊤

(n−1)2+1∑
i=1

µi P(i)

 w = y⊤Πw. (by Eq. (5.23))

The expected DCG of a ranking sampled from a ranking policy Π can thus be represented as a
linear function on Π, which serves as the objective function for Model 1 (see Equation (5.22a)). This
analytical evaluation of expected utility is key to optimizing fairness-constrained ranking policies in
an end-to-end manner.
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Importantly, and in contrast to state-of-the art methods, this approach does not require sampling
from ranking policies during training in order to evaluate ranking utilities. Sampling is only required
during deployment of the ranking model.

Ranking Policy Constraints Note that, with respect to any such linear objective function, the
optimal fair ranking policy Π∗ can be found by solving a linear program (LP). The linear program-
ming model for optimizing fair ranking DCG functions is presented in Model 1, which follows the
formulations presented in [134].

The ranking policy predicted by the SPOFR model takes the form of a doubly stochastic n × n
matrix Π, in which Πi j represents the marginal probability that item i takes position j within the
ranking. The doubly stochastic form is enforced by equality constraints which require each row
and column of Π to sum to 1. With respect to row i, these constraints express that the likelihood
of item i taking any of n possible positions must be equal to 1 (Constraints (5.22b)). Likewise, the
constraint on column j says that the total probability of some item occupying position j must also
be 1 (Constraints (5.22c)).

For the policy implied by Π to be fair, additional fairness constraints must be introduced.
Fairness Constraints. Enforcing fairness requires only one additional set of constraints, which
ensures that the exposures are allocated fairly among the distinct groups. The expected exposure of
item i in rankings σ derived from a policy matrix Π can be expressed in terms of position bias factors
v as Eσ∼ΠE(i, σ) =

∑n
j=1Πi jv j. The δ-fairness of exposure constraints associated with predicted

ranking policy Π and group g ∈ G becomes:∣∣∣∣∣∣
(

1
|Gg

q|
1g −

1
n
1

)⊤
Πv

∣∣∣∣∣∣ ≤ δ, (5.24)

where, Gg
q = {i : (ai

q) = g}, 1 is the vector of all ones, and 1g is a vector whose values equal to 1 if
the corresponding item to be ranked is in Gg

q, and 0 otherwise. This definition is consistent with that
of Equation (5.18). It is also natural to consider a notion of weighted fairness of exposure:∣∣∣∣∣∣

(
µ

|Gg
q|
1g −

µg

n
1

)⊤
Πv

∣∣∣∣∣∣ ≤ δ, (5.25)

which specifies that group g receive exposure in proportion to the weight µg. In this section, where
applicable and for a notion of merit-weighted fairness of exposure, µg is chosen to be the average
relevance score of items in group g, while µ is the average over all items. Note that, while the above
are natural choices for fairness in ranking systems, any linear constraint can be used instead.

Regret Loss and SPO Training

The training of the end-to-end fair ranking model uses a loss function that minimizes the regret
between the exact and approximate policies, i.e.,

L(y, ŷ) = y⊤Π∗(y)w − y⊤Π∗(ŷ)w. (5.26)

To train the model with stochastic gradient descent, the main challenge is the back-propagation
through Model (1), i.e., the final operation of our learnable ranking function. It is well-known that a
parametric linear program with fixed constraints is a nonsmooth mapping from objective coefficients
to optimal solutions. Nonetheless, effective approximations for the gradients of this mapping can
be found [52] (see also [89] for a review on the topic). Consider the optimal solution to a linear
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Algorithm 3: Training the Fair Ranking Function
input :D, α,w : Training Data, Learning Rate, Position Discount.

13 for epoch k = 0, 1, . . . do
14 foreach (x,a,y)←D do
15 ŷ ←Mθ(x)
16 Π1 ← Π

∗(y⊤w) by Model 1
17 Π2 ← Π

∗(2ŷ⊤w − y⊤w) by Model 1
18 ∇L(y⊤w, ŷ⊤w)← Π2 − Π1

19 θ ← θ − α∇L(y⊤w, ŷ⊤y)∂ŷ
⊤w
∂θ

programming problem with fixed constraints, as a function of its cost vector ŷ:

Π∗(ŷ) = argmax
Π

ŷ⊤Π

s.t. AΠ ≤ b,

with A and b being an arbitrary matrix and vector, respectively. Given candidate costs ŷ, the resulting
optimal solution Π∗(ŷ) can be evaluated relative to a known cost vector y. Further, the resulting
objective value can be compared to that of the optimal objective under the known cost vector using
the regret metric L(y, ŷ).

The regret measures the loss in objective value, relative to the true cost function, induced by the
predicted cost. It is used as a loss function by which the predicted linear program costs vectors can
be supervised by ground-truth values. However, the regret function is discontinuous with respect to
ŷ for fixed y. Following the approach pioneered in [52], we use a convex surrogate loss function,
called the SPO+ loss, which forms a convex upper-bounding function over L(y, ŷ). Its gradient is
computed as follows:

∂

∂y
L(y, ŷ) ≈

∂

∂y
LSPO+(y, ŷ) = Π∗(2ŷ − y) − Π∗(y). (5.27)

Remarkably, risk bounds about the SPO+ loss relative to the SPO loss can be derived [98], and the
empirical minimizer of the SPO+ loss is shown to achieve low excess true risk with high probability.
Note that, by definition, y⊤Π∗(y) ≥ y⊤Π∗(ŷ) and therefore L(y, ŷ) ≥ 0. Hence, finding the ŷ
minimizing L(y, ŷ) is equivalent to finding the ŷ maximizing y⊤Π∗(ŷ), since y⊤Π∗(y) is a constant
value.

In the context of fair learning to rank, the goal is to predict the cost coefficients ŷ for Model 1
which maximize the empirical DCG, equal to y⊤Π∗(ŷ)w for ground-truth relevance scores y. A
vectorized form can be written:

y⊤Πw =
−−−−−→
(y⊤w) ·

−→
Π, (5.28)

where
−→
A represents the row-major-order vectorization of a matrix A. Hence, the regret induced by

prediction of cost coefficients ŷ is

L(y, ŷ) =
−−−−−→
(y⊤w) ·

−−−−→
Π∗(y) −

−−−−−→
(y⊤w) ·

−−−−→
Π∗(ŷ). (5.29)

Note that while the cost coefficients y can be predicted generically (i.e., predicting an n2-sized
matrix), the modeling approach taken in this work is to predict item scores independently from
individual feature vectors (resulting in an n-sized vector). These values combine naturally with the
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known position bias values v, to estimate DCG in the absence of true item scores. This simplification
allows for learning independently over individual feature vectors, and was found in practice to
outperform frameworks which use larger networks which take as input the entire feature vector lists.

Algorithm 3 maximizes the expected DCG of a learned ranking function by minimizing this
regret. Its gradient is approximated as

−−−−−−−−−−−−−−−−→
Π∗(2ŷ⊤w − y⊤w) −

−−−−−−−−→
Π∗(y⊤w), (5.30)

with ŷ predicted as described in Section 5.2.4. To complete the calculation of gradients for the fair
ranking model, the remaining chain rule factor of line 19 is completed using the typical automatic
differentiation.

5.2.5 Multigroup Fairness
SPOFR generalizes naturally to more than two groups. In contrast, multi-group fairness raises
challenges for existing approaches that rely on penalty terms in the loss function [160, 135, 163].
Reference [160] proposes to formulate multi-group fairness using the single constraint∑

g,g′

∣∣∣∣( 1
|Gg

q|
1Gg

q
−

1

|Gg′
q |
1Gg′

q

)⊤
Π v

∣∣∣∣ ≤ δ (5.31)

where g and g′ are groups indicators in G, so that the average pairwise disparity between groups is
constrained. However, this formulation suffers when δ ≥ 0, because the allowed fairness gap can be
occupied by disparities associated with a single group in the worst case. Multiple constraints are
required to provide true multi-group fairness guarantees and allow a controllable tradeoff between
muti-group fairness and utility. Furthermore, the constraints (5.24) ensure satisfaction of (5.31)
for appropriately chosen δ and are thus a generalization of (5.31). If unequal group disparities are
desired, δ may naturally be chosen differently for each group in the equations (5.24).

5.2.6 Experiments
This section evaluates the performance of SPOFR against the prior approaches of [160] and [163],
the current state-of-the-art methods for fair learning rank, which are denoted by FULTR and DELTR
respectively. The experimental evaluation follows the more realistic Partial Information setting
described in [160].

Datasets Two full-information datasets were used in [160] to generate partial-information coun-
terparts using click simulation:
• German Credit Data is a dataset commonly used for studying algorithmic fairness. It contains

information about 1000 loan applicants, each described by a set of attributes and labeled as
creditworthy or non-creditworthy. Two groups are defined by the binary feature A43, indicating
the purpose of the loan applicant. The ratio of applicants between the two groups is around 8 : 2.
• Microsoft Learn to Rank (MSLR) is a standard benchmark dataset for LTR, containing a large

number of queries from Bing with manually-judged relevance labels for retrieved web pages. The
QualityScore attribute (feature id 133) is used to define binary protected groups using the 40th

percentile as threshold as in [160]. For evaluating fairness between k > 2 groups (multi-group
fairness), k evenly-spaced quantiles define the thresholds.
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Figure 5.5: Fairness-Utility tradeoff for unweighted and merit-weighted fairness on credit (left) and
MSLR (right) datasets.

Following the experimental settings of [160, 135], all datasets are constructed to contain item lists
of size 20 for each query. The German Credit and MSLR training sets consist of 100k and 120k
sample queries, respectively while full-information test sets consist of 1500 and 4000 samples.

The reader is referred to [160] for details of the click simulation used to produce the training
and validation sets.

Models and Hyperparameters The prediction of item scores is the same for each model, with a
single neural network which acts at the level of individual feature vectors as described in Section
5.2.4. The size of each layer is half that of the previous, and the output is a scalar value representing
an item score.

The special fairness parameters, while also hyperparameters, are treated differently. Recall that
fair LTR systems often aim to offer a tradeoff between utility and group fairness, so that fairness can
be reduced by an acceptable tolerance in exchange for increased utility. For the baseline methods
FULTR and DELTR, this tradeoff is controlled indirectly through the constraint violation penalty
term denoted λ, as described in Section 5.2.4. Higher values of λ correspond to a preference for
stronger adherence to fairness. In order to achieve δ-fairness for some specified δ, many values of
λ must be searched until a trained model satisfying δ-fairness is found. As described in Section
5.2.4, this approach is unwieldly. In the case of SPOFR, the acceptable violation magnitude δ can
be directly specified as in Definition (3).

The performance of each method is reported on the full-information test set for which all relevance
labels are known. Ranking utility and fairness are measured with average DCG (Equation (5.17))
and fairness violation (Equation (5.19)), where each metric is computed on average over the entire
dataset. The position bias power p = 1, so that v j = 1/(1+ j) when computing fairness disparity.

Fairness-Utility Tradeoff for Two Groups The analysis first focuses on experiments involving
two protected groups. Figure 5.5 shows the average test DCG attained by SPOFR on both the
German Credit and MSLR datasets, for each level of both unweighted and merit-weighted δ-fairness
as input to the model. Recall that each value of δ (defined as in Definition 3) on the x-axis is
guaranteed to bound the ranking policy’s expected fairness violation in response to each query. Note
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Figure 5.6: Fairness-Utility tradeoff for unweighted (left) and merit-weighted (right) fairness on
credit (top) and MSLR (bottom) datasets.

the clear trend showing an increase in utility with the relaxation of the fairness bound δ, for all
metrics and datasets. Note also that, in the datasets studied here, average merit favors the majority
group. Merit-weighted group fairness can thus constrain the ranking positions of the minority group
items further down than in unweighted fairness, regardless of their individual relevance scores,
leading to more restricted (thus with lower utility) policies than in the unweighted case.

Fairness Parameter Search Figure 5.6 shows the average DCG vs average fairness disparity
over the test set due to SPOFR, and compares it with those attained by FULTR and DELTR. Each
point represents the performance of a single trained model, taken from a grid-search over fairness
parameters δ (for SPOFR) and λ (for FULTR and DELTR). Darker colors represent more restrictive
fairness parameters in each case.

Note that points on the grid which are lower on the x-axis and higher on the y-axis represent
results which are strictly superior relative to others, as they represent a larger utility for smaller
fairness violations. Dashed lines represent the maximum utility attainable in each case, computed
by averaging over the test set the maximum possible DCG associated to each relevance vector.

Observe that the expected fairness violations due to SPOFR are much lower than the fairness
levels guaranteed by the listed fairness parameters δ. This is because δ is a bound on the worst-case
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Figure 5.7: Query level guarantees: German credit unweighted (1st column) and merit-weighted
fairness (2nd column); MSLR unweighted (3rd column) and merit-weighted fairness (4th column).

violation of fairness associated with any query, but actual resulting fairness disparities are typically
much lower on average.

Second, the figure shows that SPOFR attains a substantial improvement in utility over the
baselines, while exhibiting more consistent results across independently trained models. Note
the dashed line represents the theoretical maximum attainable utility; remarkably, as the fairness
parameter is relaxed, the DCG attained by SPOFR converges very close to this value. Section 5.2.7
provides theoretical motivation to explain these marked improvements.

Finally, notice that for FULTR and DELTR, large λ values (darker colors) should be associated
with smaller fairness violations, compared to models trained with smaller λ values (lighter colors).
However, this trend is not consistently observable: These results show the challenge to attain a
meaningful relationship between the fairness penalizers λ and the fairness violations in these fair
LTR methods. A similar observation also pertains to utility; It is expected that more permissive
models in terms of fairness would attain larger utilities; this trend is not consistent in the FULTR
and DELTR models. In contrast, the ability of the models learned by SPOFR to guarantee satisfying
the desired fairness violation equips the resulting LTR models with much more interpretable and
consistent outcomes.

Query-level Guarantees As discussed in Section 5.2.4, current fair LTR methods apply a fairness
violation term on average over all training samples. Thus, disparities in favor of one group can
cancel out those in favor of another group leading to individual policies that may not satisfy a
desired fairness level. This section illustrates on these behaviors and analyzes the fairness guarantees
attained by each model compared at the level of each individual query.

The results are summarized in Figure 5.7 which compares, SPOFR with FULTR (top) and
SPOFR with DELTR (bottom). Each bar represents the maximum expected DCG attained while
guaranteeing δ-fairness at the query level for δ as shown on the x-axis. Since neither baseline
method can satisfy δ-fairness for every query, confidence levels are shown which correspond to the
percentage of queries within the test set that resulted in ranking policies that satisfy delta-fairness.
If no bar is shown at some fairness level, it was satisfied by no model at the given confidence level.

Notably, SPOFR satisfies δ-fairness with 100 percent confidence while also surpassing the
baseline methods in terms of expected utility. This is remarkable and is due partly to the fact that the
baseline methods can only be specified to optimize for fairness on average over all queries, which
accomodates large query-level fairness disparities when they are balanced in opposite directions;
i.e., in favor of opposite groups. In contrast SPOFR guarantees the specified fairness violation to be
attained for ranking policies associated with each individual query.
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Figure 5.8: Multigroup Fairness on MSLR 120k.

Multi-group Fairness Finally, Figure 5.8 shows the fairness-utility tradeoff curves attained by
SPOFR for each number of groups between 2 and 7 on the MSLR dataset. Note the decrease in
expected DCG as the number of groups increases. This is not necessarily due to a degradation in
predictive capability from SPOFR; the expected utility of any ranking policy necessarily decreases
as fairness constraints are added. In fact, the expected utility converges for each multi-group
model as the allowed fairness gap increases. Because this strict notion of multi-group fairness in
LTR is uniquely possible using SPOFR, no results from prior approaches are available for direct
comparison.

5.2.7 Discussion
Theoretical Remarks This section provides theoretical intuitions to explain the strong perfor-
mance of SPOFR. As direct outputs of a linear programming solver, the ranking policy returned by
SPOFR are subject to the properties of LP optimal solutions. This allows for certain insights on the
representative capacity of the ranking model and on the properties of its resulting ranking policies.
Let predicted scores be said to be regret-optimal if their resulting policy induces zero regret, i.e,
y⊤Π∗(y) v − y⊤Π∗(ŷ) w = 0. That is equivalent to the maximization of the empirical utility.

Theorem 6 (Optimal Policy Prediction). For any given ground-truth relevance scores y, there exist
predicted item scores which maximize the empirical utility relative to y.

Proof. It suffices to predict ŷ = y. These scores are regret-optimal by definition, thus maximizing
empirical utility. □

Note that the above property is due to the alignment between the structured policy prediction of
SPOFR and the evaluation metrics, and is not shared by prior fair learning to rank frameworks.

Next, recall that any linear programming problem has a finite number of feasible solutions
whose objective values are distinct [14]. There is thus not only a single point but a region of ŷ
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which are regret-optimal under y, with respect to any instance of Model 1. This important property
eases the difficulty in finding model parameters which maximize the empirical utility for any input
sample, as item scores do not need to be predicted precisely in order to do so.

Finally, the set of ŷ which minimize the regret with respect to any instance of Model 1 overlaps
(has nonempty intersection) with the set of ŷ which minimize the regret with respect to any other
instance of the model, regardless of fairness constraints, under the same ground-truth y. To show
this, it suffices to exhibit a value of ŷ which minimizes the respective regret in every possible
instance of Model 1, namely y:

y⊤Π∗f1(y)w − y⊤Π∗f1(y)w = 0 = y⊤Π∗f2(y)w − y⊤Π∗f2(y)w, (5.32)

where Π∗f1(y) and Π∗f2(y) are the optimal policies subject to distinct fairness constraints f1 and f2.
This implies that a model which learns to rank fairly under this framework need not account for
the group composition of item lists in order to maximize empircal utility; It suffices to learn item
scores from independent feature vectors, rather than learn the higher-level semantics of feature
vector lists required to enforce fairness. This is because group fairness is ensured automatically by
the embedded optimization model.

The empirical results presented, additionally, show that the utility attained by SPOFR is close to
optimal on the test cases analyzed. Together with the theoretical observations above, this suggests
that, on the test cases analyzed, fairness does not change drastically the objective of the optimal
ranking policy. This may be an artifact of the LTR tasks, obtained from [160], being relatively easy
predict given a sufficiently powerful model. These observation may signal a need for the study and
curation of more challenging benchmark datasets for future research on fairness in LTR.

SPOFR Limitations The primary disadvantage of SPOFR is that it cannot be expected to learn to
rank lists of arbitrary size, as runtime increases with the size of the lists to be ranked. In contrast to
penalty-based methods, which require a single linear pass to the neural network to derive a ranking
policy for a given query, SPOFR requires solving a linear programming problem to attain an optimal
ranking policy. While this is inevitably computationally more expensive, solving the LP of Model 1
requires low degree polynomial time in the number of items to rank [143], due to the sparsity of
its constraints. Fortunately, this issue can be vastly alleviated with the application of hot-starting
schemes [103], since the SPO framework relies on iteratively updating a stored solution to each
LP instance for slightly different objective coefficients as model weights are updated. Thus, each
instance of Model 1 need not be solved from scratch.

5.2.8 Conclusions
This section has described a framework for learning fair ranking functions by integrating con-
strained optimization with deep learning. By enforcing fairness constraints on its ranking policies
at the level of each prediction, this approach provides direct control over the allowed disparity
between groups, which is guaranteed to hold for every user query. Since the framework naturally
accommodates the imposition of many constraints, it generalizes to multigroup fair LTR settings
without substantial degradation in performance, while allowing for stronger notions of multigroup
fairness than previously possible. Further, it has been shown to outperform previous approaches
in terms of both the expected fairness and utility of its learned ranking policies. By integrating
constrained optimization algorithms into its fair ranking function, SPOFR allows for analytical
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representation of expected utility metrics and end-to-end training for their optimization, along with
theoretical insights into properties of its learned representations. These advantages may highlight
the integration of constrained optimization and machine learning techniques as a promising avenue
to address further modeling challenges in future research on learning to rank.
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Chapter 6

Future Directions: End-to-End Integration
of Learned Optimizers

The previous chapters have studied original and prior works as they relate to the three main categories
of interest in this thesis: Learning to Optimize (Chapter 3), Predict-Then-Optimize (Chapter 5), and
Differentiable Programming (Chapter 4). Several areas of overlap between these domains have been
apparent: for example, we have seen how both of the former problem settings can benefit from the
use of differentiable programming solvers.

This chapter looks closer at the intersections between these topics, to consider ideas that may
have potential for future research directions. In particular, it proposes two frameworks in which
learned optimization models, in the Learning-to-Optimize sense, may be integrated end-to-end
with predictive models or even other learned optimizers. One motivating intuition shared by these
proposals, is that learned optimization models are differentiable by construction in addition to be
efficiently callable, giving them potential for integration into end-to-end trainable pipelines.

Section 6.1 shows how problems in the Predict-Then-Optimize setting can be treated purely with
Learning to Optimize methods, by learning the prediction and optimization steps in a single joint
model. It is based on published work [95]. Section 6.2, based on yet unpublished work, then shows
how pretrained LtO models can function as efficient surrogates for differentiable programming
solvers. We leverage their speed advantages and automatic differentiability to enable fast gradient-
based constraint correction schemes, and use them to learn bilevel programming with applications
to optimal control. It is hoped that these works will be part of a larger future effort to harness the
benefits of learned optimization models, in scientific and engineering applications beyond their
originally intended purposes.

6.1 Learning Joint Models of Prediction and Optimization
The Predict-Then-Optimize (PtO) framework models decision-making processes as optimization
problems whose parameters are only partially known while the remaining, unknown, parameters
must be estimated by a machine learning (ML) model. The predicted parameters complete the
specification of an optimization problem which is then solved to produce a final decision. The
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problem is posed as estimating the solution x⋆(ζ) ∈ X ⊆ Rn of a parametric optimization problem:

x⋆(ζ) = argmin
x

f (x, ζ) (6.1)

such that: g(x) ≤ 0, h(x) = 0,

given that parameters ζ ∈ C ⊆ Rp are unknown, but that a correlated set of observable values z ∈ Z
are available. Here f is an objective function, and g and h define the set of the problem’s inequality
and equality constraints. The combined prediction and optimization model is evaluated on the basis
of the optimality of its downstream decisions, with respect to f under its ground-truth problem
parameters [52]. This setting is ubiquitous to many real-world applications confronting the task of
decision-making under uncertainty, such as planning the shortest route in a city, determining optimal
power generation schedules, or managing investment portfolios. For example, a vehicle routing
system may aim to minimize a rider’s total commute time by solving a shortest-path optimization
model (6.1) given knowledge of the transit times ζ over each individual city block. In absence
of that knowledge, it may be estimated by models trained to predict local transit times based on
exogenous data z, such as weather and traffic conditions. In this context, more accurately predicted
transit times ζ̂ tend to produce routing plans x⋆(ζ̂) with shorter overall commutes, with respect to
the true city-block transit times ζ.

However, direct training of predictions from observable features to problem parameters tends to
generalize poorly with respect to the ground-truth optimality achieved by a subsequent decision
model [104, 89]. To address this challenge, End-to-end Predict-Then-Optimize (EPO) [52] has
emerged as a transformative paradigm in data-driven decision making in which predictive models
are trained by directly minimizing loss functions defined on the downstream optimal solutions
x⋆(ζ̂).

On the other hand, EPO implementations require backpropagation through the solution of the
optimization problem (6.1) as a function of its parameters for end-to-end training. The required
back-
propagation rules are highly dependent on

z
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Figure 6.1: Illustration of Learning to Optimize from Fea-
tures, in relation to other learning paradigms.

the form of the optimization model and are
typically derived by hand analytically for
limited classes of models [6, 4]. Further-
more, difficult decision models involving
nonconvex or discrete optimization may
not admit well-defined backpropagation
rules.

To address these challenges, this pa-
per outlines a framework for training
Predict-Then-Optimize models by tech-
niques adapted from a separate but re-
lated area of work that combines con-
strained optimization end-to-end with ma-
chine learning. Such paradigm, called
Learn-to-Optimize (LtO), learns a mapping
between the parameters of an optimization
problem and its corresponding optimal so-
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lutions using a deep neural network (DNN),
as illustrated in Figure 6.1(c). The resulting DNN mapping is then treated as an optimization proxy
whose role is to repeatedly solve difficult, but related optimization problems in real time [147, 54].
Several LtO methods specialize in training proxies to solve difficult problem forms, especially those
involving nonconvex optimization.

The proposed methodology of this paper, called Learning to Optimize from Features (LtOF),
recognizes that existing Learn-to-Optimize methods can provide an array of implementations for
producing learned optimization proxies, which can handle hard optimization problem forms, have
fast execution speeds, and are differentiable by construction. As such, they can be adapted to the
Predict-Then-Optimize setting, offering an alternative to hard optimization solvers with handcrafted
backpropagation rules. However, directly transferring a pretrained optimization proxy into the
training loop of an EPO model leads to poor accuracy, as shown in Section 6.1.2, due to the inability
of LtO proxies to generalize outside their training distribution. To circumvent this distributional
shift issue, this paper shows how to adapt the LtO methodology to learn optimal solutions directly
from features.

Contributions. In summary, this paper makes the following novel contributions: (1) It inves-
tigates the use of pretrained LtO proxy models as a means to approximate the decision-making
component of the PtO pipeline, and demonstrates a distributional shift effect between prediction and
optimization models that leads to loss of accuracy in end-to-end training. (2) It proposes Learning
to Optimize from Features (LtOF), in which existing LtO methods are adapted to learn solutions to
optimization problems directly from observable features, circumventing the distribution shift effect
over the problem parameters. (3) The generic LtOF framework is evaluated by adapting several
well-known LtO methods to solve Predict-then-Optimize problems with difficult optimization com-
ponents, under complex feature-to-parameter mappings. Besides the performance improvement over
two-stage approaches, the results show that difficult nonconvex optimization components can be
incorporated into PtO pipelines naturally, extending the flexibility and expressivity of PtO models.

6.1.1 Problem Setting and Background

In the Predict-then-Optimize (PtO) setting, a (DNN) prediction model Cθ : Z → C ⊆ Rk first
takes as input a feature vector z ∈ Z to produce predictions ζ̂ = Cθ(z). The model C is itself
parametrized by learnable weights θ. The predictions ζ̂ are used to parametrize an optimization
model of the form (6.1), which is then solved to produce optimal decisions x⋆(ζ̂) ∈ X. We call these
two components, respectively, the first and second stage models. Combined, their goal is to produce
decisions x⋆(ζ̂) which minimize the ground-truth objective value f (x⋆(ζ̂), ζ) given an observation
of z ∈ Z. Concretely, assuming a dataset of samples (z, ζ) drawn from a joint distribution Ω, the
goal is to learn a model Cθ : Z → C producing predictions ζ̂ = Cθ(z) which achieves

minimize
θ

E(z,ζ)∼Ω

[
f
(
x⋆(ζ̂), ζ

)]
. (6.2)

This optimization is equivalent to minimizing expected regret, defined as the magnitude of subopti-
mality of x⋆(ζ̂) with respect to the ground-truth parameters:

regret(x⋆(ζ̂), ζ) = f (x⋆(ζ̂), ζ) − f (x⋆(ζ), ζ). (6.3)

Two-stage Method. A common approach to training the prediction model ζ̂ = Cθ(z) is the
two-stage method, which trains to minimize the mean squared error loss ℓ(ζ̂, ζ) = ∥ζ̂ − ζ∥22, without

105



taking into account the second stage optimization. While directly minimizing the prediction errors
is confluent with the task of optimizing ground-truth objective f (x⋆(ζ̂), ζ), the separation of the two
stages in training leads to error propagation with respect to the optimality of downstream decisions,
due to misalignment of the training loss with the true objective [52].

End-to-End Predict-Then-Optimize. Improving on the two-stage method, the End-to-end
Predict-end-Optimize (EPO) approach trains directly to optimize the objective f (x⋆(ζ̂), ζ) by
gradient descent, which is enabled by finding or approximating the derivatives through x⋆(ζ̂). This
allows for end-to-end training of the PtO goal (6.2) directly as a loss function, which consistently
outperforms two-stage methods with respect to the evaluation metric (6.2), especially when the
mapping z → ζ is difficult to learn and subject to significant prediction error. Such an integrated
training of prediction and optimization is referred to as Smart Predict-Then-Optimize [52], Decision-
Focused Learning [153], or End-to-End Predict-Then-Optimize (EPO) [139]. This paper adopts the
latter term throughout, for consistency. Various implementations of this idea have shown significant
gains in downstream decision quality over the conventional two-stage method. See Figure 6.1 (a)
and (b) for an illustrative comparison, where the constraint set is denoted with F .

Challenges in End-to-End Predict-Then-Optimize Despite their advantages over the two-
stage, EPO methods face two key challenges: (1) Differentiability: the need for handcrafted
backpropagation rules through x⋆(ζ), which are highly dependent on the form of problem (6.1), and
rely on the assumption of derivatives ∂x

⋆

∂ζ
which may not exist or provide useful descent directions,

and require that the mapping (6.1) is unique, producing a well-defined function; (2) Efficiency: the
need to solve the optimization (6.1) to produce x⋆(ζ) for each sample, at each iteration of training,
which is often inefficient even for simple optimization problems.

This paper is motivated by a need to address these disadvantages. To do so, it recognizes a
body of work on training DNNs as learned optimization proxies which have fast execution, are
automatically differentiable by design, and specialize in learning mappings ζ → x⋆(ζ) of hard
optimization problems. While the next section discusses why the direct application of learned
proxies as differentiable optimization solvers in an EPO approach tends to fail, Section 6.1.3
presents a successful adaptation of the approach in which optimal solutions are learned end-to-end
from the observable features z.

6.1.2 EPO with Optimization Proxies
The Learning-to-Optimize problem setting encompasses a variety of distinct methodologies with
the common goal of learning to solve optimization problems. This section characterizes that setting,
before proceeding to describe an adaptation of LtO methods to the Predict-Then-Optimize setting.

Learning to Optimize. The idea of training DNN models to emulate optimization solvers is
referred to as Learning-to-Optimize (LtO) [89]. Here the goal is to learn a mapping Fω : C → X
from the parameters ζ of an optimization problem (6.1) to its corresponding optimal solution x⋆(ζ)
(see Figure 6.1 (c)). The resulting proxy optimization model has as its learnable component a DNN
denoted F̂ω, which may be augmented with further operations S such as constraint corrections or
unrolled solver steps, so that Fω = S ◦ F̂ω. While training such a lightweight model to emulate
optimization solvers is in general difficult, it is made tractable by restricting the task over a limited
distribution ΩF of problem parameters ζ.
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A variety of LtO methods have been proposed, many of which specialize in learning to solve
problems of a specific form. Some are based on supervised learning, in which case precomputed
solutions x⋆(ζ) are required as target data in addition to parameters ζ for each sample. Others are
self-supervised, requiring only knowledge of the problem form (6.1) along with instances of the
parameters ζ for supervision in training. LtO methods employ special learning objectives to train
the proxy model Fω:

minimize
ω

Eζ∼ΩF

[
ℓLtO

(
Fω(ζ), ζ

)]
, (6.4)

where ℓLtO represents a loss that is specific to the LtO method employed. A primary challenge in
LtO is ensuring the satisfaction of constraints g(x̂) ≤ 0 and h(x̂) = 0 by the solutions x̂ of the proxy
model Fω. This can be achieved, exactly or approximately, by a variety of methods, for example
iteratively retraining Equation (6.4) while applying dual optimization steps to a Lagrangian loss
function [54, 119], or designing S to restore feasibility [48], as reviewed in Appendix 6.1.4. In
cases where small constraint violations remain in the solutions x̂ at inference time, they can be
removed by post-processing with efficient projection or correction methods as deemed suitable for
the particular application [89].

EPO with Pretrained Optimization Proxies Viewed from the Predict-then-Optimize lens,
learned optimization proxies have two beneficial features by design: (1) they enable very fast
solving times compared to conventional solvers, and (2) are differentiable by virtue of being trained
end-to-end. Thus, a natural question is whether it is possible to use a pre-trained optimization
proxy to substitute the differentiable optimization component of an EPO pipeline. Such an approach
modifies the EPO objective (6.2) as:

minimize
θ

E(z,ζ)∼Ω

[
f
( x̂︷      ︸︸      ︷
Fω

(
Cθ(z)︸︷︷︸

ζ̂

)
, ζ

)]
, (6.5)

in which the solver output x⋆(ζ̂) of problem (6.2) is replaced with the prediction x̂ obtained by LtO
model Fω on input ζ̂ (gray color highlights that the model is pretrained, before freezing its weights
ω).

However, a fundamental challenge in LtO lies in the inherent limitation that ML models act
as reliable optimization proxies only within the distribution of inputs they are trained on. This
challenges the implementation of the idea of using pretrained LtOs as components of an end-to-end
Predict-Then-Optimize model as the weights θ update during training, leading to continuously
evolving inputs Cθ(z) to the pretrained optimizer Fω . Thus, to ensure robust performance, Fω
must generalize well across virtually any input during training. However, due to the dynamic nature
of θ, there is an inevitable distribution shift in the inputs to Fω , destabilizing the EPO training.

Figures 6.2 and 6.3 illustrate this issue. The former highlights how the input distribution to a
pretrained proxy drifts during EPO training, adversely affecting both output and backpropagation.
The latter quantifies this behavior, exemplified on a simple two-dimensional problem (described
in Appendix D.1), showing rapid increase in proxy regret as ζ̂ diverges from the initial training
distribution ζ ∼ ΩF (shown in black). The experimental results presented in Tables 6.2,6.3, and 6.4
reinforce these observations. While each proxy solver performs well within its training distribution,
their effectiveness deteriorates sharply when utilized as described in (6.5). This degradation is
observed irrespective of any normalization applied to the proxy’s input parameters during EPO
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Figure 6.2: A distribution shift between the training distribution of a LtO proxy and the parameter
predictions during training leads to inaccuracies in the proxy solver.
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Figure 6.3: Effect on regret as LtO proxy acts outside its training distribution.

training.
A step toward resolving this distribution shift issue allows the weights of Fω to adapt to its

changing inputs, by jointly training the prediction and optimization models:

minimize
θ,ω

E(z,ζ)∼Ω

[
f
( x̂︷     ︸︸     ︷
Fω

(
Cθ(z)︸︷︷︸

ζ̂

)
, ζ

)]
. (6.6)

The predictive model Cθ is then effectively absorbed into the predictive component of Fω, resulting
in a joint prediction and optimization proxy model Jϕ = Fω ◦ Cθ, where ϕ = (ω, θ). Given
the requirement for feasible solutions, the training objective (6.6) must be replaced with an LtO
procedure that enforces the constraints on its outputs. This leads us to the framework presented next.
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6.1.3 Learning to Optimize from Features
The distribution shift effect described above arises due to the disconnect in training between the
first-stage prediction network Cθ : Z → C and the second-stage optimization proxy Fω : C →
X. However, the Predict-Then-Optimize setting (see Section 6.1.1) ultimately only requires the
combined model to produce a candidate optimal solution x̂ ∈ X given an observation of features
z ∈ Z. Thus, the intermediate prediction ζ̂ = Cθ(z) in Equation (6.6) is, in principle, not needed.
This motivates the choice to learn direct mappings from features to optimal solutions of the second-
stage decision problem. The joint model Jϕ : Z → X is trained by Learning-to-Optimize procedures,
employing

minimize
ϕ

E(z,ζ)∼Ω

[
ℓLtO

(
Jϕ(z), ζ

)]
. (6.7)

This method can be seen as a direct adaptation of the Learn-to-Optimize framework to the Predict-
then-Optimize setting. The key difference from the typical LtO setting, described in Section 6.1.2,
is that problem parameters ζ ∈ C are not known as inputs to the model, but the correlated features
z ∈ Z are known instead. Therefore, estimated optimal solutions now take the form x̂ = Jϕ(z)
rather than x̂ = Fω(ζ). Notably, this causes the self-supervised LtO methods to become supervised,
since the ground-truth parameters ζ ∈ C now act only as target data while the separate feature
variable z takes the role of input data.

We refer to this approach as Learning to Optimize from Features (LtOF). Figure 6.1 illustrates
the key distinctions of LtOF relative to the other learning paradigms studied in the paper. Figures
(6.1c) and (6.1d) distinguish LtO from LtoF by a change in model’s input space, from ζ ∈ C to
z ∈ Z. This brings the framework into the same problem setting as that of the two-stage and
end-to-end PtO approaches, illustrated in Figures (6.1a) and (6.1b). The key difference from the PtO
approaches is that they produce an estimated optimal solution x⋆(ζ̂) by using a true optimization
solver, but applied to an imperfect parametric prediction ζ̂ = Cθ(z). In contrast, LtOF directly
estimates optimal solution x̂(z) = Jϕ(z) from features z, circumventing the need to represent an
estimate of ζ.

Sources of Error Both the PtO and LtOF methods yield solutions subject to regret, which
measures suboptimality relative to the true parameters ζ, as defined in Equation 6.3. However,
while in end-to-end and, especially, in the two-stage PtO approaches, the regret in x⋆(ζ̂) arises
from imprecise parameter predictions ζ̂ = Cθ(z) [104], in LtOF, the regret in the inferred solutions
x̂(z) = Jϕ(z) arises due to imperfect learning of the proxy optimization. This error is inherent to the
LtO methodology used to train the joint prediction and optimization model Jϕ, and persists even in
typical LtO, in which ζ are precisely known. In principle, a secondary source of error can arise from
imperfect learning of the implicit feature-to-parameter mapping z → ζ within the joint model Jϕ.
However, these two sources of error are indistinguishable, as the prediction and optimization steps
are learned jointly. Finally, depending on the specific LtO procedure adopted, a further source of
error arises when small violations to the constraints occur in x̂(z). In such cases, restoring feasibility
(e.g, through projection or heuristics steps) often induces slight increases in regret [54].

Despite being prone to optimization error, Section 6.1.4 shows that Learning to Optimize from
Features greatly outperforms two-stage methods, and is competitive with EPO training based on
exact differentiation through x⋆(ζ), when the feature-to-parameter mapping z → ζ is complex.
This is achieved without any access to exact optimization solvers, nor models of their derivatives.
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This feat can be explained by the fact that by learning optimal solutions end-to-end directly from
features, LtOF does not directly depend on learning an accurate representation of the underlying
mapping from z to ζ.

Efficiency Benefits Because the primary goal of the Learn-to-Optimize methodology is to achieve
fast solving times, the LtOF approach broadly inherits this advantage. While these benefits in speed
may be diminished when constraint violations are present and complex feasibility restoration are
required, efficient feasibility restoration is possible for many classes of optimization models [15].
This enables the design of accelerated PtO models within the LtOF framework, as shown in Section
6.1.4.

Modeling Benefits While EPO approaches require the implementation of problem-specific back-
propagation rules, the LtOF framework allows for the utilization of existing LtO methodologies
in the PtO setting, on a problem-specific basis. A variety of existing LtO methods specialize in
learning to solve convex and nonconvex optimization [54, 119, 48], combinatorial optimization
[16, 86], and other more specialized problem forms [158]. The experiments of this paper focus
on the scope of continuous optimization problems, whose LtO approaches share a common set of
solution strategies.

6.1.4 Experiments
This section evaluates three distinct LtO methods adapted to the LtOF setting, on three different
Predict-Then-Optimize tasks, where each task involves a distinct second stage optimization com-
ponent x⋆ : C → X, as in (6.1). These include a convex quadratic program (QP), a nonconvex
quadratic programming variant, and a nonconvex AC-Optimal Power Flow problem, to demonstrate
the general utility of the framework. First, the section’s three LtOF methods are briefly described.

Learning to Optimize Methods This section reviews in more depth those LtO methods which
are adapted to solve PtO problems in Section 6.1.4 of this paper. Each description below assumes a
DNN model F̂ω, which acts on parameters ζi specifying an instance of problem (6.1), to produce
an estimate of the optimal solution x̂ B Fω(ζ), so that x̂ ≈ x⋆(ζ).

Lagrangian Dual Learning (LD) Fioretto et al. [54] uses the following modified Lagrangian
loss function for training x̂ = Fω(ζ):

LLD(x̂, ζ) = ∥x̂ − x⋆(ζ)∥22 + λ
T [g(x̂, ζ)]+ + µ

Th(x̂, ζ). (6.8)

At each iteration of LD training, the model Fω is trained to minimize the lossLLD. Then, updates
to the multiplier vectors λ and µ are calculated based on the average constraint violations incurred
by the predictions x̂, mimicking a dual ascent method [25]. In this way, the method minimizes a
balance of constraint violations and proximity to the precomputed target optima x⋆(ζ).

Self-Supervised Primal-Dual Learning (PDL) Park and Van Hentenryck [119] use an augmented
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Lagrangian loss for self-supervised learning:

LPDL(x̂, ζ) = f (x̂, ζ) + λ̂Tg(x̂, ζ) + µ̂Th(x̂, ζ) +
ρ

2

∑
j

ν(g j(x̂)) +
∑

j

ν(h j(x̂))

 , (6.9)

where ν measures the constraint violation. At each iteration of PDL training, a separate estimate
of the Lagrange multipliers is stored for each problem instance in training, and updated by an
augmented Lagrangian method [25] after training x̂ = Fω(ζ) to minimize (6.9). In addition to the
primal network Fω, a dual networkDω′ learns to store updates of the multipliers for each instance,
and predict them as (λ̂, µ̂) = Dω′(ζ) to the next iteration.

Deep Constraint Completion and Correction (DC3) Donti et al. [48] use the loss function

LDC3(x̂, ζ) = f (x̂, ζ) + λ∥ [g(x̂, ζ)]+ ∥
2
2 + µ∥h(x̂, ζ)∥22 (6.10)

which combines a problem’s objective value with two additional terms which aggregate the total
violations of its equality and inequality constraints. The scalar multipliers λ and µ are not adjusted
during training. However, feasibility of predicted solutions is enforced by treating x̂ = F̂ω(ζ) as
an estimate for only a subset of optimization variables. The remaining variables are completed by
solving the underdetermined equality constraints h(x̂) = 0 as a system of equations. Inequality
violations are corrected by gradient descent on the their aggregated values ∥ [g(x̂, ζ)]+ ∥2 . These
completion and correction steps form the function S, where Fω(ζ) = S ◦ F̂ω(ζ).

While several other Learning-to-Optimize methods have been proposed in the literature, the
above-described collection represents diverse subset which is used to demonstrate the potential of
adapting the end-to-end LtO methodology as a whole to the Predict-Then-Optimize setting.

Experimental Settings Feature generation. End-to-End Predict-Then-Optimize methods in-
tegrate learning and optimization to minimize the propagation of prediction errors–specifically,
from feature mappings z → ζ to the resulting decisions x⋆(ζ) (regret). It’s crucial to recognize
that even methods with high error propagation can yield low regret if the prediction errors are
low. To account for this, EPO studies often employ synthetically generated feature mappings to
control prediction task difficulty [52, 104]. Accordingly, for each experiment, we generate feature
datasets (z1, . . . zN) ∈ Z from ground-truth parameter sets (ζ1, . . . ζN) ∈ C using random mappings
of increasing complexity. A feedforward neural network, Gk, initialized uniformly at random with k
layers, serves as the feature generator z = Gk(ζ). Evaluation is then carried out for each PtO task
on feature datasets generated with k ∈ {1, 2, 4, 8}, keeping target parameters ζ constant.

Baselines. In our experiments, LtOF models use feedforward networks with k hidden layers.
For comparison, we also evaluate two-stage and, where applicable, EPO models, using architectures
with k hidden layers where k ∈ {1, 2, 4, 8}. Further training specifics are provided in Appendix D.2.

Comparison to LtO setting. It is natural to ask how solution quality varies when transitioning
from LtO to LtOF in a PtO setting, where solutions are learned directly from features. To address
this question, each PtO experiment includes results from its analogous Learning to Optimize setting,
where a DNN Fω : C → X learns a mapping from the parameters ζ of an optimization problem to
its corresponding solution x⋆(ζ). This is denoted k=0 (LtO), indicating the absence of any feature
mapping. All figures report the regret obtained by LtO methods for reference, although they are not
directly comparable to the Predict-then-Optimize setting.
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Figure 6.4: Comparison between LtO (k = 0), LtOF,
Two-stage (2S) and EPO (k > 1) on the portfolio opti-
mization. 2S(EPO)-m indicates that the prediction model
of the respective PtO method is an m layer ReLU neural
network.

Method Portfolio N/conv. QP AC-OPF

L
tO

F

LD it 0.0003 0.0000 0.0004
LD fct 0.0000 0.0045 0.1573
PDL it 0.0003 0.0000 0.0006
PDL fct 0.0000 0.0045 0.1513
DC3 it 0.0011 0.0001 -
DC3 fct 0.0003 0.0000 -

Pt
O

PtO-1 et 0.0054 0.0122 0.1729
PtO-2 et 0.0059 0.0104 0.1645
PtO-4 et 0.0062 0.0123 0.1777
PtO-8 et 0.0067 0.0133 0.1651

Table 6.1: Execution (et), inference (it), and fea-
sibility correction (fct) times for LtOF and PtO
(in seconds) for each sample. Two-stage methods
execution times are comparable to PtO’s ones.

Comparison to EPO with Pretrained Proxy. The end-to-end LtOF implementations are also
compared against EPO models with pre-trained optimization proxies as a baseline, as described in
Section 6.1.2.

All reported results are averages across 20 random seeds and the reader is referred to Appendix
D.2 for additional details regarding experimental settings, architectures, and hyperparamaters
adopted.

Convex Quadratic Portfolio Optimization A well-known problem combining prediction and
optimization is the Markowitz Portfolio Optimization [129]. This task has as its optimization
component a convex Quadratic Program:

x⋆(ζ) = argmax
x≥0

ζTx − λxTΣx, s.t. 1Tx = 1 (6.11)

in which parameters ζ ∈ RD represent future asset prices, and decisions x ∈ RD represent their
fractional allocations within a portfolio. The objective is to maximize a balance of risk, as measured
by the quadratic form covariance matrix Σ, and total return ζTx. Historical prices of D = 50 assets
are obtained from the Nasdaq online database [112] and used to form price vectors ζi, 1 ≤ i ≤ N,
with N = 12, 000 individual samples collected from 2015-2019. In the outputs x̂ of each LtOF
method, possible feasibility violations are restored, at low computational cost, by first clipping [x̂]+
to satisfy x ≥ 0, then dividing by its sum to satisfy 1Tx = 1. The convex solver cvxpy [40] is used
as the optimization component in each PtO method.

Results. Figure 6.4 shows the percentage regret due to LtOF implementations based on LD, PDL
and DC3. Two-stage and EPO models are evaluated for comparison, with predictive components
given various numbers of layers. For feature complexity k > 1, each LtOF model outperforms the
best two-stage model, increasingly with k and up to nearly two orders of magnitude when k = 8.
The EPO model, trained using exact derivatives through (6.11) as provided by the differentiable
solver in cvxpylayers [4] is competitive with LtOF until k = 4, after which point its best variant
is outperformed by each LtOF variant. This result showcases the ability of LtOF models to reach
high accuracy under complex feature mappings without access to optimization problem solvers or
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Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8
L

tO
F LD Regret 1.2785 0.9640 1.7170 2.1540 2.1700

LD Regret (*) 1.1243 1.0028 1.5739 2.0903 2.1386
LD Violation (*) 0.0037 0.0023 0.0010 0.0091 0.0044
PDL Regret 1.2870 0.8520 1.5150 2.0720 2.3830
PDL Regret (*) 1.2954 0.9823 1.4123 1.9372 2.0435
PDL Violation (*) 0.0018 0.0097 0.0001 0.0003 0.0003
DC3 Regret 1.3580 2.1040 2.1490 2.3140 2.6600
DC3 Regret (*) 1.2138 1.8656 2.0512 1.9584 2.3465
DC3 Violation (*) 0.0000 0.0000 0.0000 0.0000 0.0000

Two-Stage Regret (Best) - 0.3480 2.8590 4.4790 91.3260
EPO Regret (Best) - 1.0234 0.9220 1.4393 4.7495
EPO Proxy Regret (Best) - 136.4341 154.3960 119.3082 114.6953

Table 6.2: Regret and Constraint Violations for Portfolio Experiment. (*) denotes “Before Restora-
tion”.

their derivatives, in training or inference, in contrast to conventional PtO frameworks. Full accuracy
results are reported in Table 6.2, which includes constraint violation and regret of the inferred
solutions before feasibility restoration.

Table 6.1 presents LtOF inference times (it) and feasibility correction times (fct), which are
compared with the per-sample execution times (et) for PtO methods. Run times for two-stage
methods are closely aligned with those of EPO, and thus obmitted. Notice how the LtOF methods
are at least an order of magnitude faster than PtO methods. This efficiency has two key implications:
firstly, the per-sample speedup can significantly accelerate training for PtO problems. Secondly,
it is especially advantageous during inference, particularly if data-driven decisions are needed in
real-time.

Nonconvex QP Variant As a step in difficulty beyond convex QPs, this experiment considers
a generic QP problem augmented with an additional oscillating objective term, resulting in a
nonconvex optimization component:

x⋆(ζ) = argmin
x

1
2
xTQx + ζT sin(x)

s.t. Ax = b, Gx ≤ h,

in which the sin function is applied elementwise. This formulation was used to evaluate the LtO
methods proposed both in [48] and in [119]. Following those works, 0 ≼ Q ∈ Rn×n, A ∈ Rneq×n,
b ∈ Rneq , G ∈ Rnineq×n and h ∈ Rnineq have elements drawn uniformly at random. Here it is evaluated
as part of a Predict-Then-Optimize pipeline in which predicted coefficients occupy the nonconvex
term. Feasibility is restored by a projection onto the feasible set, which is calculated by a more
efficiently solvable convex QP. The problem dimensions are n = 50 neq = 25, and nineq = 25.

Results. Figure 6.5 (left) shows regret due to LtOF models based on LD, PDL and DC3,
along with two-stage baseline PtO methods. No EPO baselines are available due to the optimization
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Figure 6.5: Comparison between LtO (k = 0), LtOF, and Two Stage Method (2S) on the nonconvex QP (left)
and AC-OPF case (right). Right plot y-axis is in log-scale.

Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8

L
tO

F

LD Regret 8.0757 8.6826 9.9279 9.7879 9.5473
LD Regret (*) 8.1120 8.7416 9.9250 9.8211 9.5556
LD Violation (*) 0.0753 0.0375 0.0148 0.0162 0.0195
PDL Regret 7.4936 11.424 7.2699 10.7474 7.6399
PDL Regret (*) 7.7985 11.429 7.2735 10.749 7.6394
PDL Violation (*) 0.0047 0.0032 0.0028 0.0013 0.0015
DC3 Regret 13.946 14.623 14.271 11.028 10.666
DC3 Regret (*) 14.551 14.517 13.779 11.755 10.849
DC3 Violation (*) 1.4196 0.8259 0.5158 0.5113 0.5192

Two-Stage Regret (Best) - 23.2417 36.1684 37.3995 38.2973
EPO Proxy Regret (Best) - 793.2369 812.7521 804.2640 789.5043

Table 6.3: Regret and Constraint Violations for Nonconvex QP Experiment. (*) denotes “Before
Restoration”.

component’s nonconvexity. The best two-stage models perform poorly for most values of k, implying
that the regret is particularly sensitive to prediction errors in the oscillating term. Thus its increasing
trend with k is less pronounced than in other experiments. The best LtOF models achieve over 4
times lower regret than the best baselines, suggesting strong potential for this approach in contexts
which require predicting parameters of non-linear objective functions. Additionally, the fastest LtOF
method achieves up to three order magnitude speedup over the two-stage, after restoring feasibility.

Nonconvex AC-Optimal Power Flow Given a vector of marginal costs ζ for each power generator
in an electrical grid, the AC-Optimal Power Flow problem optimizes the generation and dispatch of
electrical power from generators to nodes with predefined demands. The objective is to minimize
cost, while meeting demand exactly. The full optimization problem and more details are specified
in Appendix D.1, where a quadratic cost objective is minimized subject to nonconvex physical and
engineering power systems constraints. This experiment simulates a energy market situation in
which generation costs are as-yet unknown to the power system planners, and must be estimated
based on correlated data. The overall goal is to predict costs so as to minimize cost-regret over an
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Method k = 0 (LtO) k = 1 k = 2 k = 4 k = 8
L

tO
F

LD Regret 0.0680 0.0673 0.1016 0.4904 0.7470
LD Regret (*) 0.0009 0.0009 0.0013 0.0071 0.0195
LD Violation (*) 0.0035 0.0017 0.0020 0.0037 0.0042
PDL Regret 0.6305 0.7958 0.9603 0.8543 0.8304
PDL Regret (*) 0.0210 0.0242 0.0260 0.0243 0.0242
PDL Violation (*) 0.0001 0.0002 0.0000 0.0002 0.0002

Two-Stage Regret (Best) - 0.7620 1.4090 1.5280 2.4740
EPO Proxy Regret (Best) - 431.7664 389.0421 413.8941 404.7452

Table 6.4: Regret and Constraint Violations for AC-OPF Experiment. (*) denotes “Before Restora-
tion”.

example network with 54 generators, 99 demand loads, and 118 buses taken from the well-known
NESTA energy system test case archive [33]. Feasibility is restored for each LtOF model by a
projection onto the nonconvex feasible set. Optimal solutions to the AC-OPF problem, along with
such projections, are obtained using state-of-the-art Interior Point OPTimizer IPOPT [150].

6.1.5 Limitations, Discussion, and Conclusions
The primary advantage of the Learning to Optimize from Features approach to PtO settings is its
generic framework, which enables it to leverage a variety of existing techniques and methods from
the LtO literature. On the other hand, as such, a particular implementation of LtOF may inherit any
limitations of the specific LtO method that it adopts. For example, when the LtO method does not
ensure feasibility, the ability to restore feasibility may be need as part of a PtO pipeline. Future
work should focus on understanding to what extent a broader variety of LtO methods can be applied
to PtO settings; given the large variety of existing works in the area, such a task is beyond the scope
of this paper. In particular, this paper does not investigate of the use of combinatorial optimization
proxies in learning to optimize from features. Such methods tend to use a distinct set of approaches
from those studied in this paper, often relying on training by reinforcement learning [16, 86, 105],
and are not suited for capturing broad classes of optimization problems. As such, this direction is
left to future work.

The main disadvantage inherent to any LtOF implementation, compared to end-to-end PtO, is
the inability to recover parameter estimations from the predictive model, since optimal solutions
are predicted end-to-end from features. Although it is not required in the canonical PtO problem
setting, this may present a complication in situations where transferring the parameter estimations
to external solvers is desirable. This presents an interesting direction for future work.

By showing that effective Predict-Then-Optimize models can be composed purely of Learning-
to-Optimize methods, this paper has aimed to provide a unifying perspective on these as-yet
distinct problem settings. The flexibility of its approach has been demonstrated by showing superior
performance over PtO baselines with diverse problem forms. As the advantages of LtO are often
best realized in combination with application-specific techniques, it is hoped that future work can
build on these findings to maximize the practical benefits offered by Learning to Optimize in settings
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that require data-driven decision-making.
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6.2 Learning Bilevel Optimization for Optimal Control
Bilevel optimization problems arise in a wide range of control system applications, enabling the
determination of system parameters that satisfy predefined objectives under optimal control policies.
These problems have been instrumental in achieving state-of-the-art results in both the design and
analysis of control systems. For example, in inverse system design, bilevel optimization is employed
to infer the design parameters of a system by observing its optimal control sequences. Similarly,
in optimal control co-design, the goal is to develop new system designs whose performance
under optimal control meets additional economic and performance criteria. Though they provide a
powerful analytical tool, bilevel optimization problems are notoriously difficult and computationally
expensive to solve, especially when dealing with nonlinear systems, which is the case for many
real settings. This complexity thus hinders their use in scenarios requiring real-time or repeated
solutions.

To address these challenges, this paper proposes Neural Control Codesign, a novel method for
learning to solve parametric bilevel optimization problems over optimal control. Building upon prior
work in neural control policy learning, we demonstrate that these problems can be treated through
unsupervised training of neural networks. The trained models effectively map the parameters of a
bilevel problem to both its upper-level and lower-level solutions.

The approach of this paper is based on an assumed capability of solving and differentiating
through the lower-level optimal control problem, as a function of its system design parameters for
each iteration of training. This allows for a predictor of system parameters to be trained by a loss
function on its resulting behavior, in terms of state trajectories and control sequences. However, such
differentiable optimal control is difficult to implement in general, especially when the underlying
control model is nonlinear. Additionally, solving the associated nonconvex programs during each
forward pass of training can be prohibitively inefficient.

To overcome these challenges, we propose an alternative approach to differentiable optimal con-
trol within our end-to-end learning framework. Our proposal builds upon recent work demonstrating
that recurrent neural networks can be trained as closed-loop optimal control policies, offering
substantial runtime efficiency improvements over conventional model predictive control. In this
paper, we recognize that such neural control models are automatically differentiable by construction
while possessing the efficiency to also render the training of an upper-level prediction model highly
efficient.

6.2.1 Problem Setting
We consider optimal control problems, which call for the control inputs to a dynamical system
that optimize a given objective. The solution to such a problem consists of time-varying functions
u : [0, 1] → RNu and x : [0, 1] → RNx , which represent control inputs and their resulting system
state trajectories, respectively. We view the problem parametrically, with dependence on parameters
p ∈ RNp which may represent initial and boundary conditions along with reference trajectories and
objective function weights. Since we are interested in optimizing the design of a control system, we
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also make explicit the dependence on a set of free design variables c ∈ RNc:

O(p, c) B argmin
x(t), u(t)

l( x(t), u(t), p ) (6.13a)

s.t. ẋ(t) = fc( x(t), u(t) ) (6.13b)
h(x(t), p) = 0 ∀t ∈ [0, 1] (6.13c)
g(u(t), p) ≤ 0 ∀t ∈ [0, 1] (6.13d)
e( x(0),x(1) ,p) = 0. (6.13e)

The relationship between x(t) and u(t) is defined by the dynamics (6.13b), which take the form of
an ordinary differential equation. Constraint (6.13d) represents physical limits on the control inputs
which hold for all time. Similarly, (6.13c) constrains the state of the system, to reflect its physical
limits as well as obstacles to be avoided. Additionally, (6.13e) indicates that additional constraints
may be used to specify initial (at t = 0) and final (at t = 1) conditions of the system’s state. Optimal
control inputs u(t) and their resulting state trajectory x(t) are determined by optimizing the control
objective l in (6.13a). For example, (6.13a) may call for the u(t) which causes x(t) to have minimal
deviation from a desired reference trajectory. Design variables c primarily affect the system’s
dynamics, via fc.

Discretization of the control problem Our approach to solving (6.13) will depend on discretiza-
tion of the variable t into Nt time frames. Let xk ∈ R

Nx and uk ∈ R
Nu be the control and state

variables at step k, as well as the kth columns of matrices x ∈ RNx×Nt , u ∈ RNu×Nt . The continuous
dynamics (6.13b) are then converted to discrete-time dynamics via a suitable integration method
represented by f̄ ; similarly we assume approximation of l by a discrete-time objective l̄:

Ō(p, c) B argmin
x, u

∑
k

l̄( xk, uk, p ) (6.14a)

s.t. xk+1 = f̄c( xk, uk ) ∀k 1 ≤ k ≤ Nt − 1 (6.14b)
h( xk,p ) = 0 ∀k 1 ≤ k ≤ Nt (6.14c)
g( uk, p) ≤ 0 ∀k 1 ≤ k ≤ Nt (6.14d)
ec( x0,xNt ) = 0. (6.14e)

Bilevel Optimization Setting

The goal of this paper is to learn to solve bilevel programs, whose lower level has the form (6.14).
The upper-level problem (6.15) will be primarily concerned with optimizing the design variables
c over a feasible set C. The upper-level objective is modeled by a function L of c as well as its
resulting states and optimal controls ( x,u ). The constraint (6.15c) indicates how trajectories
( x,u ) are related to design variables c via the lower-level problem (6.13):

B(p) = argminc Lp( c,x,u ) (6.15a)
s.t. c ∈ C (6.15b)

( x,u ) ∈ Ō(p, c). (6.15c)

Problem (6.15) above is a parametric bilevel optimization, whose solution can be viewed as a
function of the parameters p. Bilevel problems (6.15) are notoriously difficult to solve, even when
L, C and Ō are simple, due to the constraint (6.15c) which is itself defined by an optimization
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problem (6.13). Further difficulty arises when L is nondifferentiable at the upper level, or when the
lower-level problem defining (6.15c) is nonconvex, as occurs in our experiments (see Section 6.2.4).
The goal of this paper is to develop a fast approximator, for settings which call for the problem
(6.15) to be solved repeatly under various p. Our approach, described in the next section, will be to
learn the mapping p→ B(p) by unsupervised training of a neural network.

6.2.2 Learning Bilevel Optimization for Optimal Control
This section proposes an unsupervised method for learning to solve the parametric bilevel optimiza-
tion problems described in Section 6.2.1. In particular, it trains a neural network to approximate the
mapping (6.15), from problem parameters p to upper-level solutions B(p). The general framework
is based on employing a differentiable solver of (6.13) within the training loop, in order to ensure
satisfaction of constraint (6.15c). However, this concept becomes especially difficult to implement
when the optimal control problem (6.13) is nonlinear or otherwise difficult to solve. Solution of
(6.13) even at each forward-pass iteration can be cost-prohibitive in many cases.

The key insight of this paper is that we can overcome those challenges by incorporating existing
techniques in the realm of learning to solve the lower-level problem (6.13). In particular, we may
train a recurrent neural network as a closed-loop control policy to solve (6.15), as a more efficient
alternative to model-predictive control (MPC). In addition to their runtime efficiency, we show for
the first time how such learned neural control policies can be leveraged for their differentiability
via automatic differentiation. This insight enables an efficient framework for learning to solve
parametric bilevel problems (6.15,6.14) which consists purely of unsupervised neural network
training, without the need for MPC solvers. We first describe a generic framework for learning the
upper-level mapping (6.15) based on differentiable MPC, and then its modification via a learned
model of the lower-level mapping (6.13).

Learning the Upper-Level Solution Mapping

We first describe a generic method for learning the upper-level solutions c = B(p) as a function of
problem parameters p. We model the function B using a neural network B̂θ with weights θ, and pair
it with differentiable components that maintain feasibility of predicted solutions throughout training.
First, we assume access to a differentiable operation ΠC which maps points in RNc to C. Its imple-
mentation depends on the form of C, and may for example consist of (1) a sigmoid function when C
is a bounded box or interval, or (2) a differentiable projection onto C. Second, a differentiable MPC
solver implementing Ō is required to map candidate design solutions to their resulting trajectories.

Algorithm 4:Neural Bilevel Optimal Control
input :{p(i)}

N
i=1: Input parameters, B̂θ: a neural network with weights θ, α: the learning rate

1 for i = 1 to M do
2 ĉ← B̂θ(p(i))
3 ĉ← ΠC(ĉ)
4 (x̂, û)← Ō(p(i), ĉ) by solving (6.13)
5 g ← ∇θLp(i)( ĉ, x̂, û ) by backpropagation through Ō and ΠC
6 θ ← θ + α · g

7 return B̂θ
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Algorithm 6 outlines the overall procedure. Given a prediction ĉ = B̂θ(p) at Line 2, Line 3 maps
the prediction to a feasible point in C, ensuring constraint (6.15b). Line 4 then computes resulting
trajectories (x̂, û) = Ō(p, ĉ) by solving problem (6.13), so that (6.15c) is also satisfied. Ultimately,
Line 6 calls for a gradient descent step on upper-level objective value F(ĉ, x̂, û), with respect
to the weights of B̂θ. The prerequisite backpropagation of gradients at Line 5 can be carried out
automatically on the overall model’s computational graph, given differentiability of each preceding
step.

This proposed framework works by minimizing the empirical objective value of the upper-level
problem, while maintaining feasibility of the predicted solutions to (6.15b) and (6.15c). Importantly
however, the bilevel problem (6.15, 6.14) must satisfy two main conditions for the method to
be viable: (1) The lower-level problem (6.13) has a unique optimal solution for any choice of
(c,p). Indeed, this is required for the mapping Ō to be a function, and uniqueness can generally
be ensured by sufficiently specifying l̄ in (6.13). (2) The upper-level problem is free of coupling
constraints which jointly constrain the variables c with x and u. Section 6.2.3 extends this approach
to handle coupling constraints. As alluded earlier, the main drawback of Algorithm 6 is its reliance
on solving and differentiating the problem (6.14) at each training iteration. This quickly becomes
cost-prohibitive when problem (6.14) is nontrivial to solve. Next we discuss the incorporation of
neural network models to replace Ō at the lower level in Line 4 to overcome this challenge.

Integrating Lower-Level Neural Control

We propose to enhance the computational efficiency of Algorithm 6, by implementing the differen-
tiable optimal control solver Ō at line 4 with a lightweight neural network. Recent work on learning
optimal control policies has demonstrated the potential of training recurrent neural networks (RNNs)
as closed-loop policies which execute much faster than traditional MPC, often with comparable
accuracy. In this section, we recognize that such RNN policies are automatically differentiable by
construction, and thus offer an efficient alternative to differentiable optimization. This work is the
first to propose the integration of such models into end-to-end trainable pipelines, by leveraging
their automatic differentiability with respect to their design variables. To do so, we must train the
RNN policy over a joint distribution of lower-level problem parameters as well as upper-level design
variables.

We introduce a recurrent neural network πϕ, which learns a closed-loop control policy by
modeling control actions uk+1 as a function of the current state xk along with sequential input data
such as a reference trajectory {rk ∈ R

Nx : 1 ≤ k ≤ Nt}. It is proposed in previous work to train it
over a joint distribution of parameters such as initial and reference states, which equate to p in
problem (6.13). Here we propose to train it also over a distribution of design parameters C which
are uniformly sampled from their feasible space C. This allows the trained control policy to act as a
differentiable function of the design parameters learned by the upper-level prediction model.

The training objective for the control policy πϕ is as follows:
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min
ϕ

Ep∼P,c∼C
∑

k

l̄( xk, uk, p ) (6.16a)

s.t. xk+1 = f̄c( xk, uk ) ∀k 1 ≤ k ≤ Nt − 1 (6.16b)
uk+1 = πϕ( xk, p, c ) ∀k 1 ≤ k ≤ Nt − 1 (6.16c)
h(xk, p) ≤ 0 ∀k 1 ≤ k ≤ Nt (6.16d)
g(uk, p) ≤ 0 ∀k 1 ≤ k ≤ Nt (6.16e)
e( x(0),x(1) ,p) = 0, (6.16f)

With a policy model πϕ trained according to (6.16), we can estimate solutions to the lower-
level problem (6.15) by rolling out the operations (6.16c,6.16b) from any initial state x0, ensuring
satisfaction of the constraints (6.16b) and (6.16c). Constraints (6.16e) typically arise as bounds on
the control inputs, enforcible with sigmoid activations within πθ. Finally, (6.16d) is often enforced
using a penalty on its violation, incorporated in l̄. The rollout of πϕ and f̄c yields a mapping Ô,
which can be used as a differentiable proxy for Ō in Algorithm 6.

6.2.3 Incorporating Coupling Constraints
So far we have described a system for learning to solve bilevel problems (6.15) by leveraging neural
networks as learned proxies of the lower-level control problem (6.14). Compared to other proposals
for differentiable optimal control, this approach primarily offers the benefit of speed. In this section,
we show how that speed advantage can be leveraged into a modeling advantage by building an
iterative correction mechanism for coupling constraints on top of the learned proxies.

Our parametric bilevel problem can be restated with coupling constraints defined by the function
U:

B(p) = argminc Lp( c,x,u ) (6.17a)
s.t. c ∈ C (6.17b)

( x,u ) ∈ Ō(p, c) (6.17c)
U(x, c) ≤ 0 (6.17d)

Our efficient proxy for solving the lower-level problem barO allows the problem to be repeatedly
solved and differentiated - this allows us to propose a graidient-based strategy for minimizing the
violation of 6.17d with an internal gradient based optimization. Similar to the popular DC3 method
for learning to optimize, we propose to iteratively satisfy 6.17d while maintaining feasibility to 6.17c
and 6.17b by performing a projected gradient descent method on the coupling constraint violation,
over the predicted design variables c. Algorithm 6 describes the resulting Coupling Constraint
Correction.
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Algorithm 5:Coupling Constraint Correction
input : ĉ: predicted variables, γ: stepsize, m number of steps

1 for i = 1 to m do
2 ĉ← ΠC(ĉ)
3 (x̂, û)← Ō(p(i), ĉ) by solving (6.13)
4 g ← ∇∥ [U( ĉ, x̂ )]+ ∥2 by backpropagation through Ō and ΠC
5 ĉ← ĉ + γ · g

6 return ĉ

Using this mechanism as a means to ensure feasibility of any design to the full set of upper-level
constraints, we may augment Algorithm 4 to incorporate coupling constraints. Since our aim is to
solve optimal control co-design problems, Algorithm 6 is called Neural Control Codesign.

Algorithm 6:Neural Control Codesign
input :{p(i)}

N
i=1: Input parameters, B̂θ: a neural network with weights θ, α: the learning rate

1 for i = 1 to M do
2 ĉ← B̂θ(p(i))
3 for i = 1 to m do
4 ĉ← ΠC(ĉ)
5 (x̂, û)← Ō(p(i), ĉ) by solving (6.13)
6 g ← ∇ĉ∥ [U( ĉ, x̂ )]+ ∥2 by backpropagation through Ō and ΠC
7 ĉ← ĉ + γ · g

8 (x̂, û)← Ō(p(i), ĉ) by solving (6.13)
9 g ← ∇θLp(i)( ĉ, x̂, û ) by backpropagation through the inner correction loop

10 θ ← θ + α · g

11 return B̂θ

6.2.4 Experiments
We evaluate the ability of Neural Control Codesign to solve bilevel optimization problems over
various control systems. The lower-level neural control models are all trained using the Neuro-
MANCER library [49]. All experimental models are implemented in PyTorch and trained using
the Adam optimizer [166]. To our knowledge, there exists no solver package capable of solving
the bilevel optimization problems being learned in these experiments, which include nonconvex
lower-level problems and nondifferentiable objectives at the upper level (although they may be
treated approximately with evolutionary algorithms. Therefore, objective values of the learned
solutions are reported in terms of their nominal values, rather than more informative optimality
gaps.

Design of a Closed-Loop System

We consider a canonical nonlinear control problem, in which two connected tanks are controlled
by a single pump and a two-way valve. The system is a simplified model of a pumped-storage
hydroelectricity, which is a form of energy storage used by electric power systems for load balancing.
The system dynamics are described by the following nonlinear ODE’s:
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Figure 6.6: Training curves for the inverse design problem.

ẋ1 = c1(1 − v)p − c2
√

x1 (6.18a)
ẋ2 = c1vp + c2

√
x1 − c2

√
x2 (6.18b)

in which x1, x2 are the water levels in each tank. Control actions consist of p and v, which are
the pump modulation and valve opening. The inlet and outlet valve coefficients c1, c2 comprise the
system’s free design parameters in this experiment.

Learning Inverse Design of a Closed-Loop System

We first evaluate the proposed method on an inverse design task: Assume we have knowledge of the
system’s control objective given a single observed state trajectory from a two-tank system. Given
an observed state trajectory x, predict its design parameters c1 and c2. The training loss for this
task is the MSE residual from the target trajectory, and the optimal trajectory which results from a
predicted design c. We learn to solve the resulting bilevel problem with Algorithm 4.

Figure 6.6 shows that when learning over a distribution of observed state trajectories, the residual
error in the state variable goes to zero as a loss function. As a result, the mis-specification of the
underlying design variables also goes to zero, showing that design parameters are recovered to high
accuracy on average. Figure 6.7 shows an example of the resulting learned trajectories, relative to
the model’s target trajectory.

An Optimal Control Co-Design Task

The controllability of the two-tank system is highly dependent on the relative values of c1 and
c2. It happens that when c1 is much smaller than c2, the system cannot be reliably controlled to a
reference state. We suppose that an economic cost is associated to the value of c1. In this task, we
wish to find the design with minimal sum c1 + c2 which allows the system to be controlled to a given
reference state. This is expressed as a coupling constraint xN − xr = 0. The upper-level objective is
to minimize c1 + c2.
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Figure 6.7: Example learned and target trajectories in the inverse design problem.

Figure 6.8: Training curves for the optimal control co-design problem.

Figure 6.8 shows the upper-level objective along with the coupling constraint residual, thoughout
training via Algorithm 6. The coupling constraint suffers negligible violation, while the design
objective is simultaneously driven down. Figure 6.9 shows an example of the resulting system
behavior for a given target state, which the system just barely achieves under its control policy.

6.2.5 Conclusions
This section detailed designs and results of some preliminary work aimed at showing the promise
of using learned optimizers as differentiable control policies within end-to-end trainable models.
The inherent efficiency and differentiability of the those learned models allowed us to build efficient
constraint correction mechanisms based on their repeated solution and backpropagation. This in
turn allowed for the development of methods which learn to solve bilevel optimization problems
subject to difficult coupling constraints. It is hoped that this effort can help encourage future work
on integrating learned optimization models within larger end-to-end frameworks.
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Figure 6.9: Example dynamics from the minimal system capable of reaching a target state.
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Chapter 7

Summary and Conclusion

This thesis has aimed to study the algorithmic foundations for the integration of machine learning
models with constrained optimization methods, as well as its broad applications to enhancing
performances on both machine learning and optimization tasks. We began by categorizing this topic
into three distinct domains, named Learning to Optimize, Predict-Then-Optimize, and Differentiable
Programming. Within each domain, we have described our methodological contributions as well as
our original designs aimed at enhancing performance in various application areas.

As part of a commentary on future directions for the space, we ended with a chapter which
explores the integration of these three major domains, and the extent to which techniques from one
problem setting may benefit the other. By proposing algorithm designs which blur the lines between
Learning to Optimize, Predict-Then-Optimize, and Differentiable Programming, we hope to make
the case that the Integration of Optimization and Machine Learning merits a field of study in its
own right, which should encompass all three of the major domains studied in this thesis.

As advances in machine learning continue to change the landscape of computational science,
and the availability of data grows, informed decisions will increasing rely on a combination of
predictive and prescriptive modeling. It is hoped that this thesis can provide a comprehensive view
of these technologies in the current year, and how they can be not only combined but integrated
together, to enable more than was possible by the sum of their individual parts.
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Appendix A

Appendix for Chapter 3

A.1 Lagrangian Dual-based approach
In both case studies presented below, a constrained deep learning approach is used which encourages
the satisfaction of constraints within predicted solutions by accounting for the violation of constraints
in a Lagrangian loss function

fλ(y) = f (y) +
m∑

i=1

λi max(0, gi(y)), (A.1)

where f is a standard loss function (i.e., mean squared error), λi are Lagrange multipliers and gi

represent the constraints of the optimization problem under the generic representation

P = argmin
y

h(y) subject to gi(y) ≤ 0 (∀i ∈ [m]). (A.2)

Training a neural network to minimize the Lagrangian loss for some value of λ is anologous to
computing a Lagrangian Relaxation:

LRλ = argmin
y

fλ(y), (A.3)

and the Lagrangian Dual problem maximizes the relaxation over all possible λ:

LD = argmax
λ≥0

f (LRλ). (A.4)

The Lagrangian deep learning model is trained by alternately carrying out gradient descent for
each value of λ, and updating the λi based on the resulting magnitudes of constraint violation in its
predicted solutions.

A.2 Job Shop Scheduling
The Job Shop Scheduling (JSS) problem can be viewed as an integer optimization program with
linear objective function and linear, disjunctive constraints. For JSS problems with J jobs and T
machines, a particular instance is fully determined by the processing times d j

t , along with machine
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assignments σ j
t , and its solution consists of the resulting optimal task start times st

j. The full problem
specification is shown below in the system (A.5). The constraints (A.5c) enforce precedence between
tasks that must be scheduled in the specified order within their respective job. Constraints (A.5d)
ensure that no two tasks overlap in time when assigned to the same machine.

A.2.1 Problem specification
P(d) = argmin

s
u (A.5a)

subject to: u ≥ s j
T ∀ j∈ [J] (A.5b)

s j
t+1 ≥ s j

t + d j
t ∀ j∈ [J − 1],∀t∈ [T ] (A.5c)

s j
t ≥ s j′

t′ + d j′

t′ ∨ s j′

t′ ≥ s j
t + d j

t ∀ j, j′∈ [J], t, t′∈ [T ] withσ j
t = σ

j′

t′ (A.5d)

s j
t ∈N ∀ j∈ [J], t∈ [T ] (A.5e)

Given a predicted, possibly infeasible schedule ŝ, the degree of violation in each constraint must
be measured in order to update the multipliers of the Lagrangian loss function. The violation of
task-precedence constraints (A.5c) and no-overlap constraint (A.5d) are calculated as in (A.6a) and
(A.6b), respectively. Note that the violation of the disjunctive no-overlap condition between two
tasks is measured as the amount of time at which both tasks are scheduled simultaneously on some
machine.

ν10b

(
ŝ j

t , d
j
t

)
= max

(
0, ŝ j

t + d j
t − ŝ j

t+1

)
(A.6a)

ν10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′

)
= min

(
νL

10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′

)
, νR

10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′

))
, (A.6b)

where

νL
10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′

)
= max

(
0, ŝ j

t + dt
j − ŝ j′

t′

)
νR

10c

(
ŝ j

t , d
j
t , ŝ

j′

t′ , d
j′

t′

)
= max

(
0, ŝ j′

t′ + dt′
j′ − ŝ j

t

)
.

The Lagrangian-based deep learning model does not necessarily produce feasible schedules
directly. An additional operation is required for the construction of feasible solutions, given the direct
neural network outputs representing schedules. The model presented below is used to construct
solutions that are integral, and feasible to the original problem constraints. Integrality follows from
the total unimodularity of constraints (A.7a, A.7b), which converts the no-overlap condition of the
problem (A.5) into addition task-precedence constraints following the order of predicted start times
ŝ, denoted ⪯ŝ. By minimizing the makespan as in (A.5), this procedure ensures optimality of the
resulting schedules subject to the imposed ordering.

Π(s) = argmins u
subject to: (A.5b), (A.5c)

s j
t ≥ s j′

t′ + d j′

t′ ∀ j, j′∈ [J], t, t′∈ [T ] s.t. ( j, t) ⪯ŝ ( j′, t′) (A.7a)

s j
t ≥ 0 ∀ j∈ [J], t∈ [T ] (A.7b)
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A.2.2 Dataset Details
The experimental setting, as defined by the training and test data, simulates a situation in which
some component of a manufacturing system ’slows down’, causing processing times to extend
on all tasks assigned to a particular machine. Each experimental dataset is generated beginning
with a root problem instance taken from the JSPLIB benchmark library for JSS instances. Further
instances are generated by increasing processing times on one machine, uniformly over 5000 new
instances, to a maximum of 50 percent increase over the initial values. To accommodate these
incremental perturbations in problem data while keeping all values integral, a large multiplicative
scaling factor is applied to all processing times of the root instance. Targets for the supervised
learning are generated by solving the individual instances according to the methodology proposed
in Section 3.1.5. A baseline set of solutions is generated for comparison, by solving individual
instances in parallel with a time limit per instance of 1800 seconds.

The results presented in Section 3.1.6 are taken from the best-performing models, with respect
to optimality of the predicted solutions following application of the model (A.7), among the results
of a hyperparameter search. The model training follows the selection of parameters presented in
Table A.1.

Parameter Value Parameter Value

Epochs 500 Batch Size 16
Learning rate [1.25e−4, 2e−3] Batch Normalization False
Dual learning rate [1e−3, 5e−2] Gradient Clipping False
Hidden layers 2 Activation Function ReLU

Table A.1: JSS: Training Parameters

A.2.3 Network Architecture
The neural network architecture used to learn solutions to the JSS problem takes into account the
structure of its constraints, organizing input data by individual job, and machine of the associated
tasks. When I( j)

k and I(m)
k represent the input array indices corresponding to job k and machine k, the

associated subarrays d[I( j)
k ] and d[I(m)

k ] are each passed from the input array to a series of respective
Job and Machine layers. The resulting arrays, one for every job and machine, are concatenated to
form a single array and passed to further Shared Layers. Each shared layer has size 2JT in the case
of J jobs and T machines, and a final layer maps the output to an array of size JM, equal to the
total number of tasks. This architecture improves accuracy significantly in practice, when compared
with fully connected networks of comparable size.

A.3 AC Optimal Power Flow

A.3.1 Dataset Details
Table A.2 describes the power network benchmarks used, including the number of buses |N|, and
transmission lines/transformers |E|. Additionally it presents a comparison of the total variation
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Model 2: OOPF: AC Optimal Power Flow

variables: S g
i ,Vi ∀i ∈ N, S f

i j ∀(i, j) ∈ E ∪ ER

minimize: O(Sd) =
∑
i∈N

c2i(ℜ(S g
i ))2 + c1iℜ(S g

i ) + c0i (A.8)

subject to: ∠Vi = 0, i ∈ N (A.9)

vl
i ≤ |Vi| ≤ vu

i ∀i ∈ N (A.10)

θli j ≤ ∠(ViV∗j ) ≤ θ
u
i j ∀(i, j) ∈ E (A.11)

S gl
i ≤ S g

i ≤ S gu
i ∀i ∈ N (A.12)

|S f
i j| ≤ s f u

i j ∀(i, j) ∈ E ∪ ER (A.13)

S g
i − S d

i =
∑

(i, j)∈E∪ER S f
i j ∀i ∈ N (A.14)

S f
i j = Y∗i j|Vi|

2 − Y∗i jViV∗j ∀(i, j) ∈ E ∪ ER (A.15)

Instance Size Total Variation
|N | |E| Standard Data OD Data

30_ieee 30 82 2.56570 0.00118
57_ieee 57 160 11.5160 0.00509
89_pegase 89 420 20.9309 0.02538
118_ieee 118 372 40.2253 0.01102
300_ieee 300 822 213.075 0.13527

Table A.2: Standard vs OD training data: Total Variation.

resulting from the two datasets. Note that the OD datasets have total variation which is orders of
magnitude lower than their Standard counterparts.

A.3.2 Network Architecture
The neural network architecture used to learn solutions to the OPF problem is a fully connected
ReLU network composed of an input layer of size proportional to the number of loads in the power
network. The architecture has 5 hidden layers, each of size double the number of loads in the power
network, and a final layer of size proportional to the number of generators in the network. The
details of the learning models are reported in Table A.3.

A.4 Additional Results
Table A.4 compares prediction errors and constraint violations for the OD and Standard approach to
data generation for the Optimal Power Flow problems. As expressed in the main paper, the results
show that the models trained on the OD datset present predictions that are closer to their optimal
target solutions (error expressed in MegaWatt (MW)), reduce the constraint violations (expressed as
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Parameter Value Parameter Value

Epochs 20000 Batch Size 16
Learning rate [1e−5, 1e−4] Batch Normalization True
Dual learning rate 1e−4 Gradient Clipping True
Hidden layers 5 Activation Function LeakyReLU

Table A.3: OPF: Training Parameters

Instance Size Prediction Error Constraint Violation Optimality Gap (%)

No. buses Standard OD Standard OD Standard OD

IEEE-30 30 22.31 0.11 0.063 0.00004 6.28 0.76
IEEE-57 57 83.61 0.58 0.139 0.0002 1.04 0.66

Pegase-89 89 89.17 2.78 1.353 0.003 20.1 0.83
IEEE-118 118 36.55 0.54 1.330 0.002 3.80 0.36
IEEE-300 300 157.3 2.27 1.891 0.009 22.9 0.12

Table A.4: OPF – Standard vs OD training data: prediction errors, constraint violations, and
optimality gap.

L1-distance between the predictions and their projections), and improve the optimality gap, which
is the relative difference in objectives between the predicted (feasible) solutions and the target ones.
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Appendix B

Appendix for Chapter 4

B.1 Experimental Details
Additional details for each experiment of Section 4.1.5 are described in their respective subsections
below. Note that in all cases, the machine learning models compared in Section 4.1.5 use identical
settings within each study, with the exception of the optimization components being compared.

B.1.1 Nonconvex Bilinear Programming
Data generation Data is generated as follows for the nonconvex bilinear programming experi-
ments. Input data consists of 1000 points ∈ R10 sampled uniformly in the interval [−2, 2]. To produce
targets, inputs are fed into a randomly initialized 2-layer neural network with tanh activation, and
gone through a nonlinear function x cos 2x + 5

2 log x
x+2 + x2 sin 4x to increase the nonlinearity of the

mapping between inputs and targets. Train and test sets are split 90/10.

Settings A 5-layer NN with ReLU activation trained to predict cost c and d. We train model with
Adam optimizer on learning rate of 10−2 and batch size 32 for 5 epochs.

Nonconvex objective coefficients Q are pre-generated randomly with 15 different seeds. Con-
straint parameters are chosen arbitrarily as p = 1 and q = 2. The average solving time in Gurobi is
0.8333s, and depends per instance on the predicted parameters c and d. However the average time
tends to be dominated by a minority of samples which take up to ∼ 3 min. This issue is mitigated
by imposing a time limit in solving each instance. While the correct gradient is not guaranteed
under early stopping, the overwhelming majority of samples are fully optimized under the time
limit, mitigating any adverse effect on training. Differences in training curves under 10s and 120s
timeouts are negligible due to this effect; the results reported use the 120s timeout.

B.1.2 Enhanced Denoising
Data generation The data generation follows [6], in which 10000 random 1D signals of length 100
are generated and treated as targets. Noisy input data is generated by adding random perturbations
to each element of each signal, drawn from independent standard-normal distributions. A 90/10
train/test split is applied to the data.
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Settings A learning rate of 10−3 and batch size 32 are used in each training run. Each denoising
model is initialized to the classical total variation denoiser by setting the learned matrix of parameters
D ∈ R99×100 to the differencing operator, for which Di,i = 1 and Di,i+1 = −1 ∀i with all other values
0.

B.1.3 Multilabel Classification
Dataset We follow the experimental settings and implementation provided by [19]. Each model
is evaluated on the noisy top-5 CIFAR100 task. CIFAR-100 labels are organized into 20 “coarse”
classes, each consisting of 5 “fine” labels. With some probability, random noise is added to each label
by resampling from the set of “fine” labels. The 50k data samples are given a 90/10 training/testing
split.

Settings The DenseNet 40-40 architecture is trained by SGD optimizer with learning rate 10−1

and batch size 64 for 30 epochs to minimize a cross-entropy loss function.

B.1.4 Portfolio Optimization
Data Generation The data generation follows exactly the prescription of Appendix D in [52].
Uniform random feature data are mapped through a random nonlinear function to create synthetic
price data for training and evaluation. A random matrix is used as a linear mapping, to which
nonlinearity is introduced by exponentiation of its elements to a chosen degree. The studies in
Section 4.1.5 use degrees 1, 2 and 3.

Settings A five-layer ReLU network is trained to predict asset prices c ∈ R20 using Adam optimizer
with learning rate 10−2 and batch size 32.

B.2 Additional Figures

B.2.1 Enhanced Denoising Experiment
Figure B.1 shows test loss curves, for a variety of λ, in learning enhanced denoisers with a baseline
method which implements a denoising quadratic program in qpth. The results from f-FDPG
are again shown alongside for comparison. Small differences between the results stem from the
slightly different solutions found by their respective solvers at each training iteration, due to their
differently-defined error tolerance thresholds.

B.2.2 Multilabel Classification Experiment
Figure B.2 shows Top-1 and Top-k accuracy on both train and test sets where k = 5. Accuracy
curves are indistinguishable on the training set even after 30 epochs. On the test set, generalization
error manifests slightly differently for each model in the first few epochs.
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Figure B.1: Enhanced Denoiser Test Loss
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Figure B.2: Multilabel Classification Accuracy
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Appendix C

Appendix for Chapter 5

C.1 Portfolio Optimization Experiment
The classic Markowitz portfolio problem is concerned with constructing an optimal investment
portfolio, given future returns c ∈ Rn on n assets, which are unknown and predicted from exogenous
data. A common formulation maximizes future returns subject to a risk limit, modeled as a quadratic
covariance constraint. Define the set of valid fractional allocations ∆n = {x ∈ R

n : 1Tx = 1,x ≥ 0},
then :

x⋆(c) = argmax
x∈∆n

cTx s.t.: xTΣx ≤ δ. (C.1)

where Σ ∈ Rn×n are the price covariances over n assets. The optimal portfolio allocation (C.1) as a
function of future returns c ∈ Rn is differentiable using known methods [4], and is commonly used
in evaluation of Predict-Then-Optimize methods [104].

Settings. Historical prices of n = 50 assets are obtained from the Nasdaq online database [112]
years 2015-2019, and N = 5000 baseline asset price samples ci are generated by adding Gaussian
random noise to randomly drawn price vectors. Price scenarios are simulated as a matrix of
multiplicative factors uniformly drawn asU(0.5, 1.5)m×n, whose rows are multiplied elementwise
with ci to obtain Ci ∈ R

m×n. While future asset prices can be predicted on the basis of various
exogenous data including past prices or sentiment analysis, this experiment generates feature vectors
zi using a randomly generated nonlinear feature mapping. The experiment is replicated in three
settings which assume m = 3, 5, and 7 scenarios.

Two sets of stocks were selected to generate two different datasets based on their average returns
across observations. The first set consists of assets from the index with average returns within the
25th to 50th quantile range, while the second set includes assets from the 75th quantile.

The predictive model Mθ is a feedforward neural network with three shared hidden layers
followed by one separated hidden layer for each species that is trained using Adam Optimizer
and with a batch size of 64. The size of each shared layer is halved, and the output dimension of
the separated layer is equal to the number of assets. Hyperparameters were selected as the best-
performing on average among those listed in Table C.1). Results for each hyperparameter setting are
averaged over five random seeds. In the OWA-Moreau model, the forward pass is executed using
projected gradient descent for 300, 500, and 750 iterations, respectively, for scenarios with 3, 5, and
7 inputs. The update step size is set to γ = 0.02.
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Table C.1: Hyperparameters

Hyperparameter Min Max Final Value

OWA-LP Two-Stage Sum-QP OWA-QP OWA-Moreau Sur-QP

learning rate 1e−3 1e−1 1e−2 5e−3 1e−2 1e−2 1e−2 1e−2

smoothing parameter ϵ 0.1 1.0 N/A N/A 1.0 1.0 N/A 1.0
smoothing parameter β0 0.005 10.0 N/A N/A N/A N/A 0.05 N/A

MSE loss weight λ 0.1 0.5 0.4 N/A 0.3 0.4 0.1 0.3
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OWA-LP Two-Stage Sum-QP OWA-QP OWA-Moreau
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Figure C.1: Percentage OWA regret (lower is better) on test set, on robust portfolio problem over
3,5,7 scenarios.

At test time, Mθ is evaluated over a test set for the distribution (z,C) ∈ Ω, by passing its
predictions to a projected subgradient solver of (5.16).

C.1.1 Additional Results
Figure C.1 and 5.2 display models’ performance on datasets generated from assets with average
returns in the 75th quantile and within the 25th-50th percentiles, respectively. The y-axis represents
the percentage of regret based on optimal OWA values. A consistent trend is observed in both
datasets: end-to-end approaches tend to outperform two-stage approaches. Additionally, our pro-
posed frameworks (OWA-QP and OWA-Moreau) perform better than Sum-QP, with improvements
ranging from 5-30%. OWA-QP performs better when the number of scenarios is small but struggles
to scale beyond 6 scenarios.

C.1.2 Effect of adding MSE loss
Figure C.2 illustrates the impact of combining the Mean Squared Error loss LMS E in a weighted
combination with the decision quality loss LDQ. Except OWA-LP, which exhibited instability, and
Two-Stage, already trained with MSE Loss, the addition of MSE resulted in slight enhancements to
the regret performance.
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Figure C.2: Effect of MSE Loss on differentiable optimization models. From left to right: 3, 5, 7
scenarios

C.1.3 Solution Methods
The OWA portfolio optimization problem (5.16) is solved at test time, for each compared method,
by projected subgradient descent using OWA subgradients (5.7) and an efficient projection onto the
unit simplex ∆ as in [106]:

xk+1 = proj∆

(
xk − α

∂

∂x
OWAw(Cx)

)
(C.2)

For the Moreau-envelope smoothed OWA optimization (5.11) proposed for end-to-end training,
the main difference is that its objective function is differentiable (with gradients (5.12)), which
allows solution by a more efficient Frank-Wolfe method [15], whose inner optimization over ∆
reduces to the simple argmax function which returns a binary vector with unit value in the highest
vector position and 0 elsewhere, which can be computed in linear time:

xk+1 =
k

k + 2
xk +

2
k + 2

argmax
(
∂

∂x
OWAw(Cxk)

)
(C.3)
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Appendix D

Appendix for Chapter 6

D.1 Optimization Problems
Illustrative 2D example Used for illustration purposes, the 2D optimization problem used to
produce the results of Figure 6.3 takes the form

x⋆(ζ) = argmin
x

ζ1x2
1 + ζ2x2

2

s.t. x1 + 2x2 ≤ 0.5,
2x1 − x2 ≤ 0.2,
x1 + x2 ≤ 0.3

and its optimization proxy model is learned using PDL training.

AC-Optimal Power Flow Problem. The OPF determines the least-cost generator dispatch that
meets the load (demand) in a power network. The OPF is defined in terms of complex numbers,
i.e., powers of the form S = (p+ jq), where p and q denote active and reactive powers and j the
imaginary unit, admittances of the form Y = (g+ jb), where g and b denote the conductance and
susceptance, and voltages of the form V = (v∠θ), with magnitude v and phase angle θ. A power
network is viewed as a graph (N ,E) where the nodes N represent the set of buses and the edges
E represent the set of transmission lines. The OPF constraints include physical and engineering
constraints, which are captured in the AC-OPF formulation of Figure D.1. The model uses pg,
and pd to denote, respectively, the vectors of active power generation and load associated with
each bus and p f to describe the vector of active power flows associated with each transmission
line. Similar notations are used to denote the vectors of reactive power q. Finally, the model uses v
and θ to describe the vectors of voltage magnitude and angles associated with each bus. The OPF
takes as inputs the loads (pd, qd) and the admittance matrix Y , with entries gi j and bi j for each line
(i j)∈E; It returns the active power vector pg of the generators, as well the voltage magnitude v at
the generator buses. The problem objective (2a) captures the cost of the generator dispatch and is
typically expressed as a quadratic function. Constraints (2b) and (2c̄) restrict the voltage magnitudes
and the phase angle differences within their bounds. Constraints (2d̄) and (2ē) enforce the generator
active and reactive output limits. Constraints (2 f̄ ) enforce the line flow limits. Constraints (2ḡ) and
(2h̄) capture Ohm’s Law. Finally, Constraint (2ī) and (2j) capture Kirchhoff’s Current Law enforcing
flow conservation at each bus.
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minimize :
∑
i∈N

cost(pg
i , ζi) (2a)

s.t. vmin
i ≤ vi ≤ vmax

i ∀i ∈ N (2b)

− θ∆i j ≤ θi − θ j ≤ θ∆i j ∀(i j) ∈ E (2c̄)

p
g min
i ≤ pg

i ≤ p
g max
i ∀i ∈ N (2d̄)

q
g min
i ≤ qg

i ≤ q
g max
i ∀i ∈ N (2ē)

(p f
i j)

2 + (q f
i j)

2 ≤ S
f max
i j ∀(i j) ∈ E (2 f̄ )

p f
i j = gi jv2

i − viv j(bi j sin(θi − θ j)+

gi j cos(θi − θ j)) ∀(i j) ∈ E (2ḡ)

q f
i j = −bi jv2

i − viv j(gi j sin(θi − θ j)−

bi j cos(θi − θ j)) ∀(i j) ∈ E (2h̄)

pg
i − p

d
i =

∑
(i j)∈E p f

i j ∀i ∈ N (2ī)

qg
i − q

d
i =

∑
(i j)∈E q f

i j ∀i ∈ N (2j)

Output : (pg, v) – The system operational parameters

Figure D.1: AC Optimal Power Flow (AC-OPF).

∆xn = −J−1(xn)f(xn) (D.2)

xn+1 = xn + ∆xn (D.3)

Figure D.2: Newton’s method.

Feasibility restoration (AC-Optimal Power Flow) Being an approximation, a LtO solution
(p̂g, v̂) may not satisfy the original constraints. Feasibility can be restored by applying Netwon’s
method, which is reported in Figure D.2. It is an iterative method that produces better approximation
to the root x ∈ Rp, of a function f (x) ∈ Rm by iteratively solving a non-linear system of equations. If
solving for xn+1, given xn, the method requires to compute the inverse of the Jacobian J(xn) ∈ Rm×p.
From Eq. D.2 and D.3, it can be noticed that J(xn)∆xn = − f (xn), and so is possible to avoid
computing the inverse of the Jacobian J of f , and solving a linear system of equation for the
unknown ∆xn. In the context of restoring feasibility of the LtO solution to the AC-Optimal Power
Flow problem, f represents the set of inequality and equality constraint functions, from (2b) to
(2h̄), while x = [v, θ, pg, qg]T . Since the method requires each fi(x), i = 1, . . .m to be an equality
function, to construct a system of only equations, a ReLU( f (x)) = max(0, f (x)) is applied to each
inequality function. For the AC-OPF experiment, the number of constraint function m = 602 while
the number of variables p = 472; being m > p, the inverse J−1 of the Jacobian J is the generalized
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inverse J+ = (JT J)−1JT , and ∆xn is the solution in the least square sense. The convergence of the
method requires the starting point x0 to be such that the 2-norm ∥ f (x0)∥2 ≪ 1. In the experiments,
we verified that such assumption holds as evidenced by the minimal Constraint Violation achieved
by each LTO method adopted . We consider the method to have converged when the absolute value
of each constraint function | fi(xn)| < 1e−6.

D.2 Experimental Details

D.2.1 Portfolio Optimization Dataset
The stock return dataset is prepared exactly as prescribed in [132]. The return parameters and asset
prices are ζ = α(ζ̂t + ϵt) where ζ̂ is the realized return at time t, ϵt is a normal random variable,
ϵt ∼ N(0, σϵ I), and α = 0.24 is selected to minimize E∥ζ̂t − ζ∥22. For each problem instance, the
asset prices ζ are sampled by circularly iterating over the five year interval. In the experiments, see
Prob. 6.11, λ = 2.0.

The covariance matrix Σ is constructed from historical price data and set as Σ = FΣF FT + D,
where F ∈ Rn,l is the factor-loading matrix, Σ ∈ Sl

+ estimates the factor returns and D ∈ Sl
+, also

called the idiosyncratic risk, is a diagonal matrix which takes into account for additional variance
for each asset.

D.2.2 Nonconvex Optimization Dataset
The nonconvex optimization dataset has 2400 samples, divided into training, validation and test
set, each consisting of 2000, 200 and 200 samples, respectively. The matrix Q = µI, where
µ ∈ Rn ∼ U(0, 1). The parameter ζ ∼ U(0, 5) and the matrix A and G are both drawn from the
normal distribution N(0, 1). The right-hand side of the equality constraint b ∼ U(−1, 1), while the
right-hand side of the inequality constraint h =

∑n
i=1 |Mi j|, where M = GA+ and A+ = (AT A)−1AT .

D.2.3 Nonconvex AC-OPF Dataset
The nonconvex optimization dataset has 10000 samples, divided into training, validation and test
set, each consisting of 8334, 833 and 833 samples, respectively. The Nonconvex AC-OPF Dataset is
constructed by applying random perturbations of the cost values found in NESTA benchmark case
118. More specifically, a perturbation µ ∈ U(0, 100) is applied to each generator cost value ζi.

D.2.4 Nonconvex EPO Baselines
The nonconvex QP variant (6.12) of Section 4.1.5 admits derivatives for EPO training by differen-
tiation of the fixed-point conditions of a locally convergent solution method. Projected Gradient
Descent is known to be locally convergent in nonconvex optimization [10], and it is found empiri-
cally to converge locally on the problem (6.12).

A–17



On a problem of form

x⋆(ζ) = argmin
x

f (x, ζ))

s.t. x ∈ S

one step of the method follows

xk+1 = projS(xk − α∇ f (xk, ζ)) (D.5)

leading to the fixed-point conditions

x⋆ = projS(x⋆ − α∇ f (x⋆, ζ)) (D.6)

whose implicit differentiation results in a linear system which can be solved for ∂x
⋆

∂ζ
:

∂x⋆

∂ζ
=
∂

∂x⋆
projS(x⋆ − α∇ f (x⋆, ζ)) ·

∂x⋆

∂ζ
(D.7a)

+
∂

∂ζ
projS(x⋆ − α∇ f (x⋆, ζ)) (D.7b)

Differentiation of the inner projection step is performed by cvxpy [4], while the system (D.7) is
constructed and solved by fold-opt [94].

D.2.5 Hyperparameters
For all the experiments, the size of the mini-batch B of the training set is equal to 200. The optimizer
used for the training of the optimization proxy’s is Adam, and the learning rate is chosen as the
best among {5e − 2, 1e − 2, 5e − 3, 1e − 3, 5e − 4, 1e − 4}. For each task, an early stopping criteria
based on the evaluation of the test-set percentage regret after restoring feasibility, is adopted to all
the LtO(F) the proxies, the predictive EPO (w/o) proxy model, and pre-trained predictive model;
an early stopping criteria based on the evaluation of the mean squared error is adopted to all the
Two-Stage predictive model.
For each optimization problem, the LtO proxies are 2-layers ReLU neural networks with dropout
equal to 0.1 and batch normalization. All the LtOF proxies are (k + 1)-layers ReLU neural networks
with dropout equal to 0.1 and batch normalization, where k denotes the complexity of the feature
mapping. For the LtOF, Two-Stage, EPO (w/o) Proxy algorithm, the feature size of the Convex
Quadratic Optimization and Non Convex AC Optimal Power Flow |z| = 30, while for the Non
Convex Quadratic Optimization |z| = 50. The hidden layer size of the feature generator model is
equal to 50, and the hidden layer size of the LtO(F) proxies, and the 2Stage, EPO and EPO w/
proxy’s predictive model is equal to 500.
A grid search method is adopted to tune the hyperparameters of each LtO(F) models. For each exper-
iments, and for each LtO(F) methods, below is reported the list of the candidate hyperparameters for
each k, with the chosen ones marked in bold. We refer to [54], [119] and [48] for a comprehensive
description of the parameters of the LtO methods adopted in the proposed framework. In our
result, two-stage methods report the lowest regret found in each experiment and each k across all
hyperparameters adopted.
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Convex Quadratic Optimization and Non Convex Quadratic Optimization

LD

Parameter Values

λ(0) 0.1, 0.5, 1.0, 5.0, 10.0, 50.0
µ(0) 0.1, 0.5, 1.0, 5.0, 10.0, 50.0
Training epochs 50, 100, 200, 300, 500
LD step size 1.0, 0.1, 0.01, 0.001, 0.0001

PDL

Parameter Values

τ 0.5, 0.6, 0.7, 0.8, 0.9
ρ 0.1, 0.5, 1, 10
ρmax 1000, 5000, 10000
α 1, 1.5, 2.5, 5, 10

DC3

Parameter Values

λ + µ 0.1, 1.0, 10.0, 50.0, 100.0
λ
λ+µ

0.1, 0.5, 0.75, 1
ttest 1, 2, 5, 10, 100
ttrain 1, 2, 5, 50, 100

Non Convex AC-Optimal Power Flow

LD

Parameter Values

λ(0) 0.1, 0.5, 1.0, 5.0, 10.0, 50.0
µ(0) 0.1, 0.5, 1.0, 5.0, 10.0, 50.0
Training epochs 50, 100, 200, 300, 500
LD step size 1.0, 0.1, 0.01, 0.001, 0.0001
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PDL

Parameter Values

τ 0.5, 0.6, 0.7, 0.8, 0.9
ρ 0.1, 0.5, 1, 10
ρmax 1000, 5000, 10000
α 1, 1.5, 2.5, 5, 10
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