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Abstract

The transition from gas-powered to electric vehicles (EVs) remains a central challenge for en-

vironmental policy. Despite federal and state subsidies, EV adoption remains limited, with

range anxiety—stemming from sparse charging infrastructure—acting as a key deterrent.

This thesis develops and estimates a dynamic game of product entry among all automak-

ers using parametric approximations to firms’ value functions and estimate the sunk cost

of introducing a new EV model. Additionally, to account for Tesla’s unique product posi-

tioning, I allow Tesla to provide exclusive charging stations for its users and estimate the

annual fixed cost to maintain each station. I estimate demand from micro-data on household

purchase patterns, from the National Highway Transportation Survey (NHTS), and high-

light the complementarity between the size of the charging network available to a consumer

and their utility from operating an EV, indicating that expanding the charging network in-

creases consumer utility from EVs, encouraging new model introductions and amplifying EV

adoption through a feedback loop between infrastructure growth and model variety. Results

indicate that during the period 2010-2019, Tesla consistently had a higher likelihood of EV

entry than the rest, while non-Tesla firms exhibited divergence in entry likelihoods over time.

To evaluate the impact of a large scale policy expanding the network of charging stations,

I conduct a counterfactual analysis simulating the National Electric Vehicle Infrastructure

(NEVI) program as an unanticipated shock in 2010. Simulation results indicate that this

large-scale expansion of charging infrastructure to have significantly increased model avail-

ability, accelerated EV adoption, but diminished Tesla’s market power by reducing the value

of its exclusive charging network, leading to a more evenly distributed EV market.

JEL Classification: C61, D43, L13, L62, Q58.
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Chapter 1

Introduction

A competitive and innovative automotive industry is at the center of a new industrial policy

that aims to allow greater transition from polluting gasoline vehicles to battery-operated

electric vehicles (“EV”). Automobiles contribute to “29 percent of total U.S. greenhouse gas

emissions”,1 making the transition to EVs a critical concern for environmental policy. Recent

legislative actions, including the Infrastructure Investment and Jobs Act and the Inflation

Reduction Act were passed into law with provisions to bolster adoption of electric vehicles

(EVs). The Infrastructure Investment and Jobs Act, signed into law in November 2021,

allocated $7.5 billion to expand the network of charging stations, to alleviate range anxiety

and facilitate long-range EV travel.2. The Inflation Reduction Act of 2022 has provisions to

reinforce Section 30D of the Internal Revenue Code, also called the Federal EV Tax Credit,

providing $7,500 in tax credits for purchases of new EVs and up to $4,000 for used EVs,

as well as well reversing the tax-credit phase out that certain manufacturers were subjected

to having hit 200,000 units in EVs sold.3 Prior to these recent legislative efforts, various

policies both at the federal as well as at the level of various states have been enacted to

1See “Carbon Pollution from Transportation”, United States Environment Protection Agency, available
at https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-transportation

2See “Bipartisan Infrastructure Law,” U.S. Department of Energy, available at
https://www.energy.gov/bil/bipartisan-infrastructure-law

3See “The Inflation Reduction Act Drives Significant EV Adoption,” U.S. Department of Energy, available
at https://www.energy.gov/articles/inflation-reduction-act-drives-significant-ev-adoption
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improve the rate of adoption of EVs.4

Despite these efforts, EVs comprise a modest portion of vehicle sales—only 8% quarterly

and a mere 1% of the total vehicle stock—attributable in part to range anxiety, which

arises from an insufficient network of charging stations.5 6 Against this backdrop, Tesla

has been relatively successful, accounting for 50-75% of all EV sales between 2012 and 2022,

likely due to its exclusive charging network.7 From its early days, Tesla adopted the policy

of providing stations exclusive to its users, which became a key channel of differentiation

compared to other EVs and a significant source of market power. In contrast, incumbent

firms like General Motors, Ford, and Hyundai have had to rely on the proliferation of stations

provided by third-party charging station providers. The sluggish growth of these third-party

networks has, until recently, served as a significant bottleneck, hindering the introduction of

more and updated EV models over the years.

Additionally, incumbent firms like General Motors, Ford, Hyundai, etc. predominantly

rely on sales from vehicles that run on Internal Combustion Engines (ICEs), i.e. gas vehicles,

and therefore, have to take into account for the potential reallocation of demand within the

firm’s own product lineup having introduced a new EV. Introducing newer models of EVs

makes them engage in a strategic tradeoff, typical of any multi-product oligopolist, where

they have to compare the profits from the sales of this new product introduced with respect to

sales lost or cannibalized into their existing set of products. Within the class of firms that sell

gas vehicles, the degree of potential cannibalization could also vary significantly across firms

depending on factors such as existing market share, quality of goods as well as the quality of

the potential EV to be introduced. The tradeoff incumbent firms face between incremental

profits from introducing a technological novel good and cannibalization into existing products

4See: Policies to promote electric vehicle deployment, Global EV Outlook 2021, IEA, available at
https://www.iea.org/reports/global-ev-outlook-2021/policies-to-promote-electric-vehicle-deployment

5See Global EV Outlook 2023, International Energy Agency, available at
https://www.iea.org/reports/global-ev-outlook-2023/executive-summary

6See The long road to electric cars, Reuters, available at https://www.reuters.com/graphics/AUTOS-
ELECTRIC/USA/mopanyqxwva/

7Cox Automotive
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have been investigated in other settings such MRI adoption in US hospitals, microprocessors,

hard disk drive, etc. (Schmidt-Dengler et al. (2006), Igami (2017), Igami (2017), Goettler

and Gordon (2011))

In this thesis, I model and estimate a forward looking game of entry in EV models,

played among auto-manufacturers within the United States. Electric vehicles, despite being

a technologically novel good and providing a promising way to address air pollution from

vehicular emissions, are vertically almost inferior compared to gas vehicles on account of

limitations on the driving range of the battery and a lack of sufficient network of charging

stations. Potential consumers of EVs suffer from range anxiety on account of this limitation,

which stifles sales of existing models of EVs as well deters firms from introducing newer

models, further stifling growth of EV adoption. Given the complementarity between the

size of the charging network available to a consumer and their utility from operating an EV,

increasing the availability of charging stations is expected to drive greater adoption of EVs by

consumers. As a result, firms introduce newer varieties of EVs that results in compounding

effect on sales, driven by both the increase in charging stations and the expansion of available

models.

Tesla’s position as the market leader within this subsegment could potentially be ex-

plained by the network of charging stations it maintains exclusively for its users. Compared

to an equivalent non-Tesla EV with similar characteristics, a Tesla EV would be vertically

superior due to the added convenience of these exclusive stations. Additionally, since Tesla

does not sell any gasoline vehicles and offers a limited number of models in its portfolio,

concerns about cannibalization are arguably lower than those faced by other firms. This

highlights the importance of evaluating Tesla’s ex-ante likelihood of entry and comparing it

against the likelihood of entry from other firms.

Any public build-out program of charging stations could potentially diminish Tesla’s

market power by subsidizing entry for its competitors. An extensive network of charging

stations that is publicly accessible deters Tesla’s entry by reducing the incremental value
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derived from its exclusive charging network. As such a program effectively addresses range

anxiety for all EV users, Tesla’s market advantage could be eroded, providing a relative ben-

efit to firms that may have more significant concerns about cannibalization. Therefore, the

ex-ante impact of such a policy is potentially ambiguous and requires empirical evaluation.

I use micro-data from National Highway Transportation Survey (NHTS) that records

purchases of vehicles at the household level. Additionally, NHTS records information on

households’ incomes as well as their respective travel need, which allows me to define range

anxiety and rationalize its contribution to the utility of a new vehicle being purchased.

Using data on individual household’s information on purchase of new vehicle, income, travel

requirements, etc., I apply the Conditional Logit model (McFadden (1974)) to estimate

the utility function that rationalizes the purchase patterns at the level of households as

observed. Within a conditional logit framework, each household has access to all possible

vehicles available in a given year, and the vehicle it chooses to purchase maximizes its utility

relative to all available options. Utility from a vehicle depends on range anxiety, among

other things such as price, mileage, etc., and is held to be zero for vehicles that can run on

gas. For battery operated electric vehicles, range anxiety depends on household’s respective

travel requirements, battery range of the respective EV and the relevant number of charging

stations in the respective household’s state of residence. A detailed description of the demand

system as conceptualized is provided in Chapter 5.1.

To analyze the aspect of the competition as characterized within this setting, I formulate

a forward-looking game played among automakers. The automakers compete not only in

prices, maximizing current variable profits by choosing Bertrand Nash prices, but also com-

pete in entry of new models electric vehicles (EVs). Firms maximize lifetime profits deciding

whether or to expand their respective product offerings by introducing a new EV model.

Introducing a new EV allows firm a greater differentiation in product offerings but simul-

taneously, involves considerations of cannibalization into the sales of its existing offerings,

in addition incurring the sunk cost to introduce the new product. In the dynamic competi-
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tive setup as presented in this thesis, firms compare the expected lifetime profitability from

having introduced a new EV or not, and optimize accordingly. A detailed description of the

competition structure is provided in Chapter 5.2.

Beyond considerations of the sunk costs of developing a new EV model as well as the

potential cannibalization of sales from existing offerings, the size of the available charging

network is also a crucial factor in the decision to introduce an EV model. Given the distribu-

tion of households’ daily travel requirements and the characteristics drawn for the potential

new EV, firms could potentially be deterred from introducing a new EV model on account

of lack of a sufficiently large network. Given Tesla’s absence of reliance on the sales of gas

vehicles, addressing range anxiety has been utmost important to it. From very early on,

Tesla has provided an exclusive charging network it provides to its users, and have gradually

expanded it, supporting the sales of both its existing and new products. The model as pre-

sented in this thesis capture this characteristic feature of the US EV landscape, and allows

Tesla to offer charging stations exclusively to its users. According to the model, each period,

Tesla not only chooses the prices of existing goods and whether to introduce a new EV model

or not, but also decides availability of charging station in each individual US state. For a

detailed description on Tesla’s decisions to build charging stations, refer to Chapter 5.2.3.

To rationalize firms’ decision to introduce new models of EVs, I model the competition

under the assumption that all auto-manufacturers play Markov perfect stationary strategies

(Maskin and Tirole (1988) and Ericson and Pakes (1995)). In this model, firms take ac-

tions maximizing lifetime profits, but can set new prices every period, without paying any

additional costs, for each of the products offered by them in the market. This makes that

prices chosen for respective products at a given period to not have bearing on the decisions

taken in the next period, and therefore can be solved for the static problem typical of a

Bertrand Nash game. The decision to introduce an EV or not is modeled as a discrete deci-

sion and for a typical firm, given its expectations of market structure and behavior of other

firms, it chooses the path that provides a higher payoff. I assume model entry decisions
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have payoff shocks that follows a distribution that allows me to map the optimal decision

regarding model introduction in the space of choice probabilities. For a detailed description

on characterization of equilibrium, refer to Chapter 5.3.

Introducing a new line of vehicles generates payoffs from future time periods, making

dynamic competition the appropriate way to capture strategic interactions in the context as

presented in this thesis. Estimating a model with differentiated products within a dynamic

framework has its challenges on account of dealing with the large state space that includes

all the necessary information as the industry evolves. To solve for the value function that

rationalizes the forward looking game, I follow Sweeting (2013) to apply parametric ap-

proximation to the value function to solve for the game. Using parametric policy iteration

procedure (Benitez-Silva et al. (2000)), repeatedly solving for a set of choice probabilities

that show convergence, the value function is rationalized as linear combination of polynomi-

als whose coefficients are recovered as those that attempt to approximate the value function

at those choice probabilities. For detailed description of the solution method used to solve

for the dynamic game, refer to Chapter 6.3.

Results indicate that the utility a household receives from the purchase of an electric

vehicle reduces as the household’s respective range anxiety goes up. Range Anxiety of a

household for a given electric vehicle, increases with the increase in household’s traveling

requirement, and decreases with the increase in the EV’s battery range as well as with the

increase in relevant charging network available in the household’s state of residence. Given

utility is negatively related to Range Anxiety, one can expect as battery ranges offered by

electric vehicles improve or the network of charging station expands or both, utilities from

EVs would increase leading to the increase in their adoption. Tesla users have accessibility

to both Tesla’s exclusive network as well as the third-party network of charging stations

available to all, limiting the extent of range anxiety. Given the excess stations Tesla users

have access to, Tesla users have to be compensated less than non Tesla users for the increase

in their traveling requirements. As the size network increases, the value of each additional
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station goes down. However, given Tesla users accessibility both Tesla as well as non-Tesla

stations, the value of an additional station is incrementally more devalued than non-Tesla

stations. For a detailed discussion of results pertaining to demand estimation and marginal

rate of substitution, refer to Chapter 7.1 and Chapter 7.2.

Firms can set new prices every period, without paying any additional costs, for each of

the products offered by them in the market, making the pricing sub-game in this model akin

to that of the Bertrand Nash pricing sub-game of a typical static problem. According to my

estimates, Battery operated EVs roughly 30% more expensive to produce than gas vehicles,

however they are cheaper than hybrid electric vehicles, plausibly on account hybrid EVs’

reliance on both internal combustion as well as electrical engine systems. My estimates also

indicate the battery operated EVs have lower marginal costs than both gas vehicles as well

as hybrid EVs, with the markup for hybrid EVs being the highest. For a detailed discussion

of marginal costs and markups, refer to Chapter 7.3.

To estimate the two key parameters that characterize the forward looking oligopolistic

nature of the model as presented in this thesis - sunk cost of EV entry and fixed cost for

maintaining a Tesla station, I implement a Grid Search over potential parameter values, and

select those which maximizes the likelihood of data as observed. The Grid Search I implement

to solve for the dynamic parameters involves solving for the model for sunk cost of EV entry

between 500 million USD and 10 billion USD in increments of 100 million USD, and fixed

cost of maintaining a Tesla stations between 10,000 USD and 500,000 USD in increments

of 10,000 USD. For a detailed discussion on the estimation of dynamic parameters, refer to

Chapter 6.4. With discount factor β = 0.95, the sunk cost of introducing an EV model is

estimated at $4.34 billion and the fixed cost of maintaining a Tesla station is estimated at

$83,000.8 For a detailed discussion on the estimated sunk cost of model entry and fixed cost

for maintaining a Tesla station, refer to Chapter 7.4.

8Solving dynamic model require us to assume values of the discount term as given. The discount term
which “weighs” payoffs from the future time periods has to be assumed at a given value on account of not
being separately identifiable from the expected value function characterizing the future payoff stream.
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For the counterfactual exercises conducted in this thesis, I first simulate the entry game

over multiple draws of EV characteristics across all firms and evaluate how the respective

probabilities of entry into new EV models evolve over the years. Each period, each firm

independently draws vehicle characteristics at random from the convex hull of characteristics

observed in the data for EVs in the subsequent period. Based on this realization, the

firm then decides whether to introduce a new EV model with those characteristics. Under

the assumption of perfect foresight, I simulate 100 draws for each firm and estimate the

probability of entry into a new EV model for every year from 2010 to 2019. The results

indicate that during this period, Tesla is consistently more likely than other firms to introduce

a new EV, with this difference widening from 2010 to 2016, after which most of the differences

diminish. Among non-Tesla firms, in the early years (2010–2011), most firms exhibit similar

likelihoods of introducing an EV. However, as time progresses, divergence emerges: firms

like BMW, General Motors, and Tata increase their likelihood of introducing a new EV

model, while firms like Ford and Honda experience a decline in their likelihood of entry. For

a detailed discussion on this counterfactual exercise, refer to Chapter 8.1.

Another counterfactual exercise I present in this thesis involves evaluating the impact of

a large-scale national policy aimed at expanding the network of charging stations across the

United States, by engaging in a full model simulation between 2010-2020. The National Elec-

tric Vehicle Infrastructure (NEVI) Formula Program is a federal initiative aimed to provide

funding to facilitate states to expand their respective network of charging stations. For my

counterfactual study, I evaluate the hypothetical impact had the policy been implemented

in 2010, with stations being built as planned in the current policy as an unanticipated shock

in 2010 across the respective states. With the stations being built as a shock, I forward sim-

ulate the model taking into account the full sequence of model dynamics including new EVs

being introduced, stations being maintained by both the third-party operators and Tesla, as

well as estimate the resulting demand. The results from the model simulation indicates the

policy to have had more than doubled the EV model offerings compared to what is observed
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in data. The evolution of third-party stations in the counterfactual analysis follows a similar

pattern as observed in data, but scaled bigger with the size of the third-party network in

counterfactual being almost thrice the size as observed in the data. Interestingly enough,

Tesla’s network in counterfactual is less than 5% of the overall network compared to 30-60%

as observed in data, indicating a decline in value from exclusivity on account of the sizeable

public network being built for all. In the counterfactual, EV sales grow steadily during the

period, crossing 25% in 2020, with no clear market leader and Tesla delegated a mid rank in

terms of EV sales. For a detailed discussion on this counterfactual exercise, refer to Chapter

8.2.

Widespread EV adoption suffers from a “Failure to Launch” problem, with payoff to

one side of the market is contingent on complementary behavior from other side. Firms are

reluctant to offer EV models without the presence of a sufficiently large network of charging

stations leading to meager sales figures in EVs, while investment on charging infrastructure

remains modest on account of a limited EV driver bases and product offerings. This creates

coordination failure typical in evolving two-sided platforms with important cross-group ex-

ternalities: the value of EV ownership increases with the availability of charging stations,

and the value of investing in stations increases with the stock of EVs on the road.

This thesis contributes to understanding the dynamics of a two-sided platform by analyz-

ing the interaction between the availability of charging infrastructure and the entry incentives

of automakers. I explicitly quantify how range anxiety, driven by the density of charging sta-

tions, affects household demand for EVs, and in turn, how this shifts firms’ forward-looking

incentives to introduce new EV models. By modeling Tesla’s behavior — introducing EVs

and building stations — unlike other firms which rely on third-party providers, the anal-

ysis captures how strategic control over the platform side can alter competitive outcomes.

Moreover, through counterfactual simulations, the study evaluates how public infrastructure

expansions could mitigate the failure to launch, accelerate EV model introductions, and

reshape the market structure of the automobile industry.

9



This thesis is organized as follows. Chapter 2 reviews the related literature and discusses

how this thesis contributes to the field. Chapter 4 overviews the data sources used in this

study and provides descriptive statistics of the key variables that are used in this thesis.

Chapter 5 outlines the structure of the model, detailing both household behavior on the

demand side and the competitive dynamics among auto manufacturers. Chapter 6 covers

the identification of model parameters and the estimation strategies used to recover them.

Chapter 7 presents the estimation results for the model parameters. Chapter 8 details the

counterfactual analysis conducted and presents the corresponding results. Finally, Chapter

9 provides the conclusion.
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Chapter 2

Related Literature & Contribution

This chapter provides an overview of the contribution this thesis makes to certain topics

and themes. First, the thesis contributes to the literature evaluating policy incentives that

have been institutionalized with a goal to promote EV adoption. DeShazo et al. (2017)

investigates California’s EV rebate program that provides higher incentives to lower income

households, and find that they are effective in promoting equity in EV adoption across

households with differential incomes. Similarly, Xing et al. (2021) finds that as much as

EV tax credits are effective in promoting sales, targeting low income households would be

more cost-effective and potentially lead to more equitable outcomes in EV adoption. Tal and

Nicholas (2016) show that 30% of the EV sales could potentially be attributed to federal tax

credits, however recommending tailoring the credits to household income and vehicle type

to maximize impact. Muehlegger et al. (2018) finds that the Enhanced Fleet Modernization

Program (EFMP) in California led to an uptick in EV adoption among low- and middle-

income households.

Environmental impacts are a crucial theme in evaluating EV policy effectiveness. Holland

et al. (2016) shows that environmental gains from EV replacement is differential across

locations, dependent on how clean the respective regional electricity grid is. Sinyashin (2021)

finds that subsidy schemes that are tailored to the characteristic such as driving range of
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a given EV, enhances environmental benefits as well as social welfare. Muehlegger and

Rapson (2020) underscores the important of accounting for appropriate counterfactuals in

estmating benefits from EV adoption, finding that EV incentives lead to replacement of

relatively fuel-efficient gasoline cars, which dampens net environmental gains. In a recent

paper, Allcott et al. (2024) evaluates the impact of the Inflation Reduction Act (2022) and

finds that targeted credits could significantly increase policy benefits while balancing trade

and environmental objectives.

My thesis also contributes to the literature evaluating the importance of charging net-

work on EV adoption. Similarly, Li et al. (2017) quantifies network effects from charging

stations and find that subsidizing charging stations would potentially be twice as effective

in promoting EV growth compared to purchase subsidies. Li et al. (2019) demonstrates that

a uniform charging standard if mandated can reduced double incidence of investments in

charging network, expand EV market and potentially lead to overall welfare gain. Springel

(2021) implements a two-sided approach and finds that subsidies for charging stations is more

effective than tax rebates to drive EV adoption, especially at lower income and spending lev-

els. Zhou and Li (2018) finds that markets failing to reach critical mass in deployment of

charging station stifles the growth of EV adoptions, with more than half of the MSAs within

the United States failing to reach this critical mass. Jenn et al. (2018) quantifies that $1,000

in purchase subsidies boosts EV sales by 2.6%, compared to 4.7% increase in EV sales from

equivalent non monetary incentives.

To rationalize firms’ decision to introduce new models of EVs, I design a forward-looking

game played among them. Following Maskin and Tirole (1988) and Ericson and Pakes

(1995), I model the competition under the assumption that all auto-manufacturers play

Markov perfect stationary strategies. As an alternative to the conventional way to solve for

forward-looking game theoretical models using forward simulation (Rust (1987); Bajari et al.

(2007)), I follow Sweeting (2013) to apply parametric approximation to the value function

to solve for the game. Some other empirical applications that have also used parametric
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approximation to solve for dynamic models include but are not limited to Fowlie et al.

(2016), Barwick and Pathak (2015) and Hendel and Nevo (2006) (Also see Arcidiacono et al.

(2013), Farias et al. (2012) and Benitez-Silva et al. (2000) for a more theoretical exposition).

In analyzing the impact of policies on the variety of products available in the market in

equilibrium, this relates to the literature on endogenous product positioning (Fan (2013),

Sweeting (2013), Wollmann (2018), Eizenberg (2014), and Crawford et al. (2015)). Endoge-

nizing firm responses to the introduction of new EV models in response to policies or compe-

tition or both, this paper contributes to this literature by presenting a model of competition

in which firms uniquely position themselves in the product space by deciding whether to in-

troduce an EV model or not. Additionally, Tesla can further enhance its product positioning

by modifying its network of charging stations.

Whitefoot et al. (2017) and Klier and Linn (2012) allow for firms endogenously choos-

ing vehicle attributes in response to changing fuel economy standards. Some recent work

has been conducted in exploring endogenous product selection or position within the EV

landscape. Remmy et al. (2022) evaluating the German market for automobiles, allows

firms to adjust price and range of their respective EV model in response to subsidies and

the presence of indirect network effects and finds firms adjust to price subsidies by offering

lower-range EVs whereas expanding the size of charging network leads to negligible changes

in product attributes offered. In another paper, Zhao (2022) endogenizes Tesla’s charging

network, investigating the complementarity of purchase subsidies and Tesla’s charging net-

work. Hutchens (2024) endogenizes gas stations’ decisions to enter the EV charging market

in response to policies that promote EV adoption.

There are various work within Industrial Organization that rationalize evolving market

structure by the virtue of firms adopting new technology. Firms incur sizable sunk costs to

introduce new products/technology for benefits often delayed into the future, which makes

forward looking approach to rationalize complementarity of policy changes and industry level

dynamics appropriate. Schmidt-Dengler et al. (2006) rationalizes timing of MRI adoption in
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US hospitals. De Groote and Verboven (2019) investigates the role of investment subsidies

to promote adoption of photo-voltaic(PV) systems. Igami (2017) explains the incumbent-

entrant innovation gap in the transition from 5.25 to 3.5-inch generation within the hard

disk drive (HDD). Goettler and Gordon (2011) explains the role of competition in explaining

innovations within the microprocessors industry.
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Chapter 3

Industry Background

Automotive Industry

The focus of this thesis is the automotive industry, with a particular focus upon Electric

Vehicles. The auto industry plays a crucial role in the US economy contributing 3% - 3.5% of

the overall Gross Domestic product within the United States.1 During 2022, the automotive

industry drove more than a trillion dollar of contribution into the US economy, at 4.9%

of the US economy.2 The automotive industry is directly responsible for the employment

of 1.7 million American workers and indirectly contributes to more than 8 million jobs.3

The Auto Industry also plays a key role in driving innovation and research within the US

economy, contributing $32.8 Billion in R&D in 2022.4 Within the United States, the auto-

manufacturers include - BMW, DaimlerAG, Ford, Geely, General Motors, Honda, Hyundai,

Mazda, Renault-Nissan-Mitsubishi Alliance, Stellantis, Subaru, Tata, Tesla, Toyota and

Volkswagen.

1See: Contribution of the Automotive Industry to the Economies of all Fifty State and the United
States, Center for Automotive Research, available at https://www.cargroup.org/publication/contribution-
of-the-automotive-industry-to-the-economies-of-all-fifty-state-and-the-united-states.

2See: 2022 Industry Report, Alliance for Automotive Innovation
3See: How The Auto Industry Predicts (And Shapes) The U.S. Economy, Trent Boberg, Oct 09,

2024, available at https://www.forbes.com/councils/forbestechcouncil/2024/10/09/how-the-auto-industry-
predicts-and-shapes-the-us-economy/.

4See: Press Release, Alliance for Automotive Alliance, January 29, 2025, available at
https://www.autosinnovate.org/posts/press-release/auto-innovators-data-driven-report-release
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Given the pervasiveness of automobiles around us, the auto industry plays a significant

and sizable role in contributing towards global pollution through vehicular emissions. Au-

tomobiles that run on Internal Combustion Engines (ICEs) particular contribute towards

air pollution account of their emissions releasing toxic gases into the atmosphere, including

carbon dioxide, nitrogen oxides, particulate matter, and volatile organic compounds. These

emissions have a detrimental quality on human life not only raising temperature globally by

contributing to global warming, but also the toxicity of these compounds that are released

through emissions causes a wide variety of diseases.

According to the Environmental Protection Agency (EPA), the automotive industry,

“Greenhouse gas (GHG) emissions from transportation account for about 28 percent of total

U.S. greenhouse gas emissions, making it the largest contributor of U.S. GHG emissions.”5

A 2013 study at Massachusetts Institute of Technology (MIT) estimates about 53,000 pre-

mature deaths every year to be directly attributable to air pollution from traffic congestion.6

The International Council on Clean Transportation (ICCT) reported ”that global trans-

portation emissions in 2010 and 2015, respectively, contributed 361000 and 385000 particu-

late matter and ozone-attributable premature deaths.”7 Another study at the Harvard T.H.

Chan School of Public Health have found a sizable relationship between improving vehicular

emissions standard and reduced mortality from air pollution.8

Given the severity of air pollution that the auto industry contributes to not just within

the United States, but globally as well, addressing and potentially fixing it remains one of

5See: Transportation and Climate Change, United States Environmental Protection Agency, May 14,
2024, available at https://www.epa.gov/transportation-air-pollution-and-climate-change/carbon-pollution-
transportation

6See: Study: Air pollution causes 200,000 early deaths each year in the U.S, MIT News, August 29, 2013,
available at https://news.mit.edu/2013/study-air-pollution-causes-200000-early-deaths-each-year-in-the-us-
0829

7See: A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions
in 2010 and 2015, International Council on Clean Transportation, 2019, available at https://theicct.org/wp-
content/uploads/2021/06/Globalhealthimpactstransportemissions2010− 201520190226.pdf

8See: Decreased vehicle emissions linked with significant drop in deaths attributable to
air pollution, Harvard T.H. Chan School of Public Health, December 14, 2021, available at
https://hsph.harvard.edu/news/decreased-vehicle-emissions-linked-with-significant-drop-in-deaths-
attributable-to-air-pollution/
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the key challenges of the modern century. Given Electric Vehicles run on electric engines

and do not rely on Internal Combustion Engines, Electric Vehicles provide a promising

solution to the problem of air pollution cause by the automotive industry, especially at the

vehicular level, potentially achieving significant reductions in Greenhouse gases and other

pollutants that are released from combustion engines. Despite EVs ultimately relying on

power that could potentially be produced from fossil fuels, growing reliance on renewable

sources of power, and development of efficient electricity markets, combined with zero tailpipe

emissions at the vehicular level provides a promising path forward to significantly reduce the

carbon footprint of the automotive industry. According to the data collected by International

Energy Agency (IEA), in 2023, an EV’s emission during its entire lifetime is less than 50%

on average than the lifecycle emission of an equivalent gas vehicle.9 Taking the current mix

of electricity grid within the United States into consideration, Union of Concerned Scientists

reports that “battery electric vehicle produces roughly half the global warming pollution

than a comparable gasoline or diesel vehicle.”10 Electric Vehicles are able to convert 77%

of electric energy from the electricity grid to the wheels, whereas conventional gas vehicles

have a comparable efficiency of 12%-30% to convert energy from gasoline to the wheels.11

According to the American Lung Association, a complete electrification of the vehicular

fleet within United States can lead to a reduction of 57,200 emergency room visits related to

asthma.12 A study from California found that increasing 20 Zero Emission Vehicles per 1000

population for a given zipcode led to a fall of 3.2% annual asthma hazard ratio, measured

using local hospital patient admission data (Garcia et al. (2023)).

9See: In most cases, electrifying cars reduces their emissions, Science Feedback, 20 September, 2024
available at https://science.feedback.org/in-most-cases-electrifying-cars-reduces-their-emissions/

10See: Driving Cleaner How Electric Cars and Pick-Ups Beat Gasoline on Lifetime Global Warming Emis-
sions, Union of Concerned Scientists, Jul 25, 2022, available at https://www.ucsusa.org/resources/driving-
cleaner

11See: Electric Vehicles, Clean Energy Alliance, 2025, available at
https://thecleanenergyalliance.org/energy-saving-tips-2/electric-vehicles/

12See: Boosting Health for Children: Benefits of Zero-Emission Transportation and Electricity, Amer-
ican Lung Association, Feb 2024, available at https://www.lung.org/getmedia/dec4362b-0467-4609-9639-
2e62301409a4/EV-Boosting-Health-for-Children.pdf (2024)
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Evolution of Electric Vehicles

Despite the advent of electric vehicles be traced to late 19th century, the modern EV produced

for mass consumption has its roots in 1990s with innovations in battery technology and the

growing acknowledgment of the need of a suitable alternative to gas vehicles. General Motors,

in 1996, introduced the EV1 which was a subcompact electric vehicle that ran either on a lead

acid battery or nickel metal hybrid battery. According to the EPA, the GM EV1 provided

a range of 78 miles with the lead acid battery and a range of 142 miles with nickel metal

hybrid battery, respectively. Despite spending more than 1B$ in development, GM decided

to cease all production of EV1 in 1999, having built just over a 1000 units.13 EV1s untimely

demise, driven by GM’s loss of faith in the future of electric vehicles, led Martin Eberhard

and Marc Tarpenning to set Tesla Motors, a Silicon Valley startup in 2003.14 In 2008, it

introduced Roadster, a luxury electric sports car with a range of 200+ miles, representing a

breakthrough in the industry.

Tesla’s introduction of Roadster, despite being an expensive, niche and a prototype model,

marks a watershed moment for the industry, as it changed the perception of the industry

to consider electric vehicles to be able to potentially replace gas vehicles. Following Tesla’s

lead, many manufacturers announced and subsequently introduced plans to produce electric

vehicles for the masses. In 2011, within the United States, Nissan introduced the Leaf, the

first commercially available battery operated EV with a modest range of 73 miles,15 shortly

followed by Mitsubishi who introduced the i-MiEV with a range of 62 miles and Daimler

who introduced the Smart ED which had a range of 63 miles. Within a year, in 2012, Tesla

introduced its commercially available model, Model S with a battery range of 250 miles. The

same year, Ford introduced Focus, Honda introduced Fit and Toyota introducing the Rav4

13See: This little electric car made history. 25 years ago, GM stopped making it, OPB, Dec. 6, 2024,
available at https://www.opb.org/article/2024/12/06/what-happened-to-the-general-motors-ev1

14See: The EV1 may have been first, but its demise launched Tesla, Haggerty, 23 January 2020, available
at https://www.hagerty.com/media/car-profiles/ev1-may-have-been-first-demise-launched-tesla/

15Mitsubishi had introduced the first battery operated EV i-MiEV in Japan in 2009.
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Table 3.1: Battery operated Electric Vehicles Introduced (2010-2019)

Year Make Model
2011 Daimler AG ED
2011 Mitsubishi i-MiEV
2011 Nissan Leaf
2012 Ford Motor Company Focus
2012 Honda Fit EV
2012 Tesla Model S
2012 Toyota RAV4 EV
2013 General Motors Spark EV
2013 Stellantis 500e
2014 BMW Group i3
2014 Daimler AG B-Class
2014 Hyundai Motor Group Soul
2015 Tesla Model X
2015 Volkswagen Group e-Golf
2016 General Motors Bolt
2017 Honda Clarity BEV
2017 Hyundai Ioniq EV
2017 Tesla Model 3
2018 Tata Motors I-Pace
2018 Volkswagen Group e-tron
2019 Hyundai Niro EV
2019 Hyundai Kona Electric

EV. The EV market, which had seemed stifled over the last couple of decades, with the start

of 2010, had finally found its momentum, which newer models being introduced every year.

What seemed like a niche, not too long ago, was poised to become a serious alternative to

gas vehicles. Table 3.1 presents a full list of Battery Operated EVs introduced between the

period 2010-19, the period of study as focused in this thesis.

Evolution of Charging Stations

With growing lineup of electric vehicles to purchase from, this period also witnessed an

increasing proliferation of charging stations to support the growing EV market. Many anec-
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Figure 3.1: This figure reports total number of stations within the United States between
2010-20.

dotal evidence suggests lack of charging stations to be a key concern driving consumers’

hesitance towards greater EV adoption due to Range Anxiety. Multiple surveys consistently

highlight range anxiety to be a key factor dissauding potential EV users. According to 2019

survey by AAA, 58% of potential EV purchasers are worried about running out of charge

while driving and 60% of potential EV purchasers are worried that there are not enough

charging stations around them.16

Figure 3.1 provides the number of stations within the United States between 2010-20 as

the network of charging stations has evolved. Tesla differentiates itself from other manufac-

turers by maintaining a network of stations which is exclusive to its users. The non-Tesla

Stations are non-exclusive, i.e., they are accessible to EVs from all manufacturers. They com-

prise a mix of stations that are run by charging network companies such as SemaCharge,

16See: AAA Research: 25% of Americans say They’d Buy an EV for their Next Auto Purchase,
AAA, available at https://info.oregon.aaa.com/aaa-research-25-of-americans-say-theyd-buy-an-ev-for-their-
next-auto-purchase/
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Figure 3.2: This figure reports total number of stations within the United States by brand
between 2010-20.

eVgo, etc., independent charging locations such shopping centers, gas stations, etc. or charg-

ing stations installed by office spaces, government buildings and so on. Overall, the figure

indicates that the public or the third-party charging stations network has grown exploding,

having exploded in 2018-2019. On the other hand, Tesla’s network grew sluggishly initially,

exploded and as the end of decade, approached seems to have reach some saturation point.

Figure 3.2 provides the details of the evolution of charging stations by brand type, within

the United States, within 2010-2020. Generic charging stations, those that are provided by

government buildings, residential complexes, etc. have grown steadily during this period. As

described in 3.1, Tesla’s network grew sluggishly initially, exploded and as the end of decade,

approached seems to have reach some saturation point. Of the other brands, ChargePoint

seems to have exploded during the last few years of 2010-20. ChargePoint operates under

a Hardware System Operator Model (SOM), which means that it focuses on EV hardware

manufacturing and sales and is not vertically integrated, such as SemaCharge or eVgo,
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where the company owns the charging stations themselves. Given ChargePoint is a hardware

SOM, its exploding from 2018 indicates that independent charging stations, which purchased

charging hardware, went up. The other brands grew at sluggish growth and by 2020, reached

a mass which is only a fraction of the total number of charging stations.

Subsidies and Rebates

In an attempt to promote the adoption of electric vehicles, the period 2010-2019 also wit-

nessed various programs to subsidize purchase electric vehicles both at the federal and the

state level. Section 30D of the Internal Revenue Code, also called the Federal EV Tax Credit,

codifies tax credits of upto $7,500 for the purchase of new electric vehicles, “There shall be

allowed as a credit against the tax imposed by this chapter for the taxable year an amount

equal to the sum of the credit amounts determined under subsection (b) with respect to each

new clean vehicle placed in service by the taxpayer during the taxable year.”17 The amount

of tax credit a new vehicle qualifies for is contingent upon its battery capacity, implying

that larger credits are awarded to EVs with longer electric ranges. One of the important

features of this law is the phase-out mechanism, which dictated once a manufacturer hit sales

of 200,000 qualifying EVs within the United States, the full tax credit remained available

until the end of the quarter when the limit was reached, following which it would be phased

out. The rebate would be reduced by half for the next two quarters, halved again in the

following two quarters, following which the tax rebate would cease to exist. Tesla became

first to trigger the phase-out, reaching 200,000 sales in July 2018, followed by GM in March

2020. However, the Inflation Reduction Act (IRA) of 2022 reversed the phase-out of the

Section 30D, allowing Tesla and GM to re-qualify for the tax credit.

Beyond, the federal Section 30D EV Tax Credit, many states within the United States

have introduced incentive and sibsidy programs of their own to promote EV usage. The

17See: 26 U.S. Code 30D - Clean vehicle credit, Legal Information Institute, Cornell Law School, available
at https://www.law.cornell.edu/uscode/text/26/30D
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Figure 3.3: This figure reports funding allocation to each individual state according to
National Electric Vehicle Infrastructure (NEVI).

“Clean Vehicle Rebate Project” (CVRP) from the state of California offers $2,500 in rebates

for the purchase of new Battery EVs. The “Drive Clean Rebate Program” in the state of

New York offers rebates of up to $2,000. Colarado offers a tax credit of up to $5,000 for the

purchase of an EV. Refer to Table 4.9 for a list of relevant subsidies at the state level.

National Electric Vehicle Infrastructure

The National Electric Vehicle Infrastructure (NEVI) Formula Program is a federal initiative

in the United States designed to support the deployment of electric vehicle (EV) charging

infrastructure across the country. Established under the Bipartisan Infrastructure Law, the

program provides funding to help states build a national network of EV chargers. Each

state receives its respective share of overall funding over five years, disbursed annually over

time. States are required to submit plans detailing how they intend to use their funds for
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the installation and maintenance of EV chargers in areas that will maximize the impact on

EV adoption and usage. Figure 3.3 presents the approved value in funds receivable for each

state under NEVI.
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Chapter 4

Data

In this chapter, I discuss the data used for estimation and analysis in this thesis. The

research relies on household-level information about daily travel behavior and vehicle pur-

chase decisions, along with demographic details such as household income, and location. I

use microdata from the 2017 National Household Travel Survey (NHTS), a nationally rep-

resentative survey of approximately 110,000 households across all U.S. states. This dataset

provides detailed information on household income, travel requirements, and vehicle owner-

ship, including the make and model of recently purchased new vehicles.

A key motivation for the research presented in this thesis is the limitation households

face in relying on electric vehicles (EVs) due to range anxiety. Among other factors, range

anxiety is influenced by daily travel requirements. All else being equal, households with

individuals who travel more frequently or over longer distances are likely to experience a

higher degree of range anxiety. Consequently, such households are less inclined to purchase

electric vehicles. The NHTS records daily travel patterns for each individual in a sampled

household. For a given household, I calculate the total distance traveled by each member

on a given day, determine the median distance, and use it as the household’s daily travel

requirement.

Table 4.1 presents the summary statistics of households’ daily travel requirements, mea-
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Table 4.1: Summary Statistics of Daily Commute by State in miles

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 186 33.10 56.80 62.57 MT 275 25.40 43.10 49.70
AL 269 48.90 68.29 63.31 NC 7540 43.87 63.37 59.74
AR 183 34.86 55.42 56.92 ND 244 23.88 49.43 60.71
AZ 2483 29.77 50.28 56.07 NE 237 33.60 57.48 64.31
CA 22193 36.38 55.78 57.48 NH 240 42.98 65.44 62.62
CO 399 40.61 60.55 61.62 NJ 498 37.85 55.87 53.59
CT 204 46.24 64.78 64.31 NM 216 29.78 45.71 49.38
DC 262 15.39 27.34 36.05 NV 188 30.98 44.71 42.66
DE 227 36.67 49.66 47.61 NY 14748 37.44 57.36 58.72
FL 1235 34.99 51.91 53.15 OH 881 40.00 57.28 54.26
GA 7474 41.55 58.48 55.47 OK 1071 41.81 58.20 53.63
HI 247 37.06 51.61 51.37 OR 333 32.86 53.59 59.39
IA 2367 30.94 48.29 52.59 PA 928 35.67 57.15 60.64
ID 282 33.17 53.73 57.21 RI 211 37.34 56.98 53.37
IL 852 35.78 57.00 58.09 SC 5994 43.19 60.70 57.17
IN 419 39.32 57.34 56.65 SD 258 31.17 55.12 62.04
KS 238 35.56 56.42 59.22 TN 368 45.53 63.07 57.35
KY 265 41.22 61.08 61.06 TX 21031 43.25 60.49 56.83
LA 214 36.19 54.59 53.22 UT 277 41.13 63.51 62.89
MA 450 34.33 50.50 50.60 VA 615 42.17 60.67 57.87
MD 1246 42.03 65.16 63.70 VT 334 39.46 59.36 59.81
ME 265 37.84 56.50 58.88 WA 539 39.27 57.32 58.49
MI 692 41.04 62.55 62.47 WI 10193 40.98 60.50 59.94
MN 529 41.61 61.81 60.04 WV 199 39.98 58.29 53.49
MO 402 45.45 62.62 59.63 WY 209 25.10 47.37 56.13
MS 173 54.17 77.21 69.22

sured in miles, for each state. Based on the data, households in Mississippi (MS) have the

highest median travel requirements, whereas households in the District of Columbia (DC)

have the lowest. Table 4.2 presents the summary statistics of households’ income, measured

in $, for each state. Based on the data, households in District of Columbia (DC) have the

highest median income, whereas households in the West Virginia (WV) have the lowest.

Additionally, I use information on vehicles available for purchase from 2010-2019. From

thecarconnection.com, I compile the set of make and model that were available for purchase

from 2010 till 2019, including data on Manufacturer Suggested Retail Prices (MSRPs). From

the same source, I also compile information on vehicle characteristics, such as horsepower,
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Table 4.2: Summary Statistics of Household Income by State

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 178 87,500 91,531 62,706 MT 269 62,500 62,900 49,225
AL 263 62,500 64,173 52,658 NC 7,273 62,500 66,407 54,525
AR 174 42,500 59,066 48,991 ND 238 62,500 69,664 53,217
AZ 2,397 62,500 65,360 53,015 NE 235 62,500 76,564 55,968
CA 21,569 62,500 88,856 67,557 NH 227 62,500 86,619 64,552
CO 391 62,500 85,115 65,051 NJ 479 87,500 99,828 71,480
CT 189 87,500 96,243 72,231 NM 213 62,500 72,101 58,328
DC 252 112,500 122,560 78,323 NV 181 62,500 70,925 51,422
DE 216 62,500 81,146 57,673 NY 14,256 62,500 79,190 61,105
FL 1,192 62,500 75,692 60,134 OH 862 62,500 73,619 58,279
GA 7,227 62,500 70,560 57,452 OK 1,032 62,500 70,153 52,744
HI 244 87,500 93,719 66,400 OR 320 62,500 75,297 53,196
IA 2,304 62,500 75,142 56,791 PA 894 62,500 74,765 58,713
ID 273 42,500 62,253 49,703 RI 201 62,500 84,826 65,789
IL 822 62,500 86,606 65,313 SC 5,782 62,500 66,552 53,949
IN 407 62,500 64,613 47,131 SD 255 62,500 67,578 48,464
KS 231 42,500 70,639 56,630 TN 350 62,500 70,557 55,650
KY 258 42,500 61,076 50,399 TX 20,458 62,500 83,762 64,809
LA 204 62,500 62,721 48,147 UT 269 62,500 81,422 56,196
MA 436 62,500 89,885 68,713 VA 604 87,500 91,714 65,021
MD 1,202 62,500 85,258 61,487 VT 324 62,500 78,202 58,011
ME 259 62,500 66,680 54,223 WA 520 62,500 90,361 65,457
MI 671 62,500 74,482 60,172 WI 9,906 62,500 71,461 52,879
MN 502 62,500 87,316 62,968 WV 194 42,500 55,825 49,939
MO 384 62,500 73,607 57,635 WY 201 62,500 73,694 50,896
MS 168 52,500 57,932 44,571

weight, capacity, capacity and floor span. Data on fuel economy for each make-model-year are

obtained from the Alternative Fuels Data Center (AFDC). Fuel economy is defined differently

for gasoline vehicles and electric vehicles (EVs). For gasoline vehicles, it is measured in miles

per gallon (MPG). For EVs, the Alternate Fuel Economy metric measures the distance a

vehicle can travel (in miles) using an amount of energy equivalent to the energy contained

in one gallon of gasoline. The U.S. Environmental Protection Agency (EPA) calculates this

based on the energy content of gasoline, which is equivalent to 33.7 kWh (kilowatt-hours)

of electricity. Table 4.3 provides summary statistics for the key variables associated with

vehicles, including prices and characteristics. Fuel economy for a given vehicle is a key
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Table 4.3: Descriptive Statistics for Vehicles

Variable Obs Mean Std. Dev.
MSRP ($) 2,345 36,281.21 18,477.83
HorsePower 2,345 242.63 92.27
Torque 2,345 246.57 91.73
Fuel Economy (miles/gallon) 2,241 24.10 5.31
Battery Range (miles) 104 129.8 73.3
Alternate Fuel Economy 104 110.3 16.5
Base Curb Weight (lbs) 2,345 3,604.73 604.44
Floor Span (ft2) 2,345 19.55 3.11
Passenger Capacity 2,326 4.96 1.37

characteristic in a household’s utility from it. To generalize the comparison across EVs and

non-EVs given fuel economy is defined differently for them, I evaluate miles per $.

Fuel economy for a given vehicle is a key characteristic in a household’s utility from it. To

generalize the comparison across EVs and non-EVs given fuel economy is defined differently

for them, I evaluate miles per $. Evaluating fuel economy in unit $ requires information on

gas prices as well electricity prices, available from Energy Information Administration (EIA).

Table 4.4 provides summary statistics for electricity prices for the purposes of transportation

for all US states from 2010-2020.1 Data indicates that during the period of focus in this study,

Rhode Island (RI) had the highest electricity prices for transportation, whereas Georgia (GA)

had the cheapest.

The EPA provide data on gas prices for the following states - California (CA), Colorado

(CO), Florida (FL), Massachusetts (MA), Minnesota (MN), New York (NY), Washington

(WA), Ohio (OH) and Texas (TX). For the other states, it does not report gas prices at

the state level but at an aggregate level referred to as Petroleum Administration for Defense

Districts (PADDs). The United States is divided into five PADDs. The Petroleum Adminis-

tration for Defense District 1 (PADD 1), also known as the East Coast region, is divided into

three sub-regions to reflect its diverse market characteristics. PADD 1A (New England) in-

1For years in which there are no charging stations having already been set up in a state, there is no
information on electricity prices for transportation available. For those years, I use the residential electricity
prices as an alternate for respective states, also available from Energy Information Administration (EIA).
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Table 4.4: Summary Statistics for Transportation Prices by State

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 11 16.051 15.771 1.843 AL 11 9.967 10.076 0.449
AR 11 11.350 11.533 0.744 AZ 11 9.380 9.334 0.466
CA 11 8.680 8.737 0.782 CO 11 9.770 9.650 0.692
CT 11 11.530 11.791 1.461 DC 11 9.520 9.504 0.627
DE 11 9.323 9.320 0.543 FL 11 8.580 8.537 0.407
GA 11 5.850 6.411 1.195 HI 11 26.901 27.386 3.333
IA 11 8.209 8.204 0.739 ID 11 7.133 6.856 0.510
IL 11 6.720 6.538 0.458 IN 11 9.920 10.087 0.568
KS 11 9.323 9.085 0.732 KY 11 8.688 8.550 0.710
LA 11 9.080 9.048 0.498 MA 11 6.240 7.087 2.218
MD 11 8.290 8.246 0.740 ME 11 11.477 11.324 0.370
MI 11 10.650 10.294 1.366 MN 11 9.500 9.258 0.718
MO 11 7.840 7.725 0.754 MS 11 9.360 9.254 0.491
MT 11 9.305 8.998 0.580 NC 11 7.880 7.819 0.437
ND 11 8.127 7.891 0.626 NE 11 8.034 7.884 0.374
NH 11 13.280 13.459 0.786 NJ 11 9.770 9.820 0.995
NM 11 9.010 8.977 0.517 NV 11 8.580 8.665 0.456
NY 11 12.950 13.008 0.793 OH 11 7.330 7.421 0.770
OK 11 7.151 7.158 0.245 OR 11 9.140 8.793 0.768
PA 11 7.810 7.874 0.516 RI 11 17.010 16.009 3.733
SC 11 9.397 9.211 0.491 SD 11 8.430 8.212 0.753
TN 11 9.719 10.211 1.123 TX 11 8.080 8.024 1.965
UT 11 10.260 10.065 0.649 VA 11 8.240 8.196 0.299
VT 11 13.400 13.577 0.773 WA 11 8.540 8.686 0.750
WI 11 13.850 12.204 2.468 WV 11 8.600 8.414 0.424
WY 11 8.393 8.193 0.750

cludes Connecticut (CT), Maine (ME), Massachusetts (MA), New Hampshire (NH), Rhode

Island (RI), and Vermont (VT). PADD 1B (Central Atlantic) consists of Delaware (DE),

the District of Columbia (DC), Maryland (MD), New Jersey (NJ), New York (NY), and

Pennsylvania (PA). Lastly, PADD 1C (Lower Atlantic) encompasses Florida (FL), Georgia

(GA), North Carolina (NC), South Carolina (SC), Virginia (VA), and West Virginia (WV).

Meanwhile, PADD 2 (Midwest) covers a large central region, including Illinois (IL), Indiana

(IN), Iowa (IA), Kansas (KS), Kentucky (KY), Michigan (MI), Minnesota (MN), Missouri

(MO), Nebraska (NE), North Dakota (ND), Ohio (OH), South Dakota (SD), and Wisconsin

(WI); PADD 3 (Gulf Coast) includes New Mexixo (NM), Arkansas (AS), Louisiana (LA),
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Table 4.5: Summary Statistics for Gas Prices by State

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 11 3.018 3.055 0.492 AL 11 2.446 2.609 0.596
AR 11 2.446 2.609 0.596 AZ 11 3.018 3.055 0.492
CA 11 3.483 3.421 0.429 CO 11 2.637 2.762 0.545
CT 11 2.742 2.878 0.611 DC 11 2.790 2.898 0.559
DE 11 2.790 2.898 0.559 FL 11 2.601 2.760 0.581
GA 11 2.563 2.730 0.588 HI 11 3.018 3.055 0.492
IA 11 2.596 2.763 0.592 ID 11 2.767 2.824 0.515
IL 11 2.596 2.763 0.592 IN 11 2.596 2.763 0.592
KS 11 2.596 2.763 0.592 KY 11 2.596 2.763 0.592
LA 11 2.446 2.609 0.596 MA 11 2.731 2.834 0.587
MD 11 2.790 2.898 0.559 ME 11 2.742 2.878 0.611
MI 11 2.596 2.763 0.592 MN 11 2.605 2.750 0.584
MO 11 2.596 2.763 0.592 MS 11 2.446 2.609 0.596
MT 11 2.767 2.824 0.515 NC 11 2.563 2.730 0.588
ND 11 2.596 2.763 0.592 NE 11 2.596 2.763 0.592
NH 11 2.742 2.878 0.611 NJ 11 2.790 2.898 0.559
NM 11 2.446 2.609 0.596 NV 11 3.018 3.055 0.492
NY 11 2.809 2.987 0.628 OH 11 2.533 2.748 0.593
OK 11 2.596 2.763 0.592 OR 11 3.018 3.055 0.492
PA 11 2.790 2.898 0.559 RI 11 2.742 2.878 0.611
SC 11 2.563 2.730 0.588 SD 11 2.596 2.763 0.592
TN 11 2.596 2.763 0.592 TX 11 2.441 2.611 0.604
UT 11 2.767 2.824 0.515 VA 11 2.563 2.730 0.588
VT 11 2.742 2.878 0.611 WA 11 3.113 3.160 0.473
WI 11 2.596 2.763 0.592 WV 11 2.563 2.730 0.588
WY 11 2.767 2.824 0.515

Mississippi (MS), Texas (TX) and Alabama (AL); PADD 4 (Rocky Mountain) with Idaho

(ID), Montana (MT), Wyoming (WY), Colorado (CO) and Utah (UT); and PADD 5 (West

Coast), featuring Arizona (AZ), Nevada (NV), Oregon (OR), California (CA), Washington

(WA), and Alaska (AK).

One of the important premises of the research presented in this thesis is predicated on

the range anxiety drivers of electric vehicles potentially face on account of lack of charging

stations, therefore, making data on availability of charging stations key to take into account.

I collect data on availability of charging stations from Alternate Fuels Data Center (AFDC).

The dataset contains information on availability of charging stations, including their respec-
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Table 4.6: Summary Statistics for Public Charging Stations available annually by State

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 11 0 3.73 7.76 AL 11 21 26.82 21.44
AR 11 0 6.09 11.38 AZ 11 35 60.27 66.28
CA 11 550 875.73 1132.96 CO 11 95 145.64 165.57
CT 11 119 101.09 63.71 DC 11 10 9.00 8.38
DE 11 10 11.00 11.01 FL 11 157 235.27 227.43
GA 11 90 141.73 141.33 HI 11 104 99.36 61.95
IA 11 5 18.55 28.33 ID 11 8 13.45 15.14
IL 11 95 121.18 110.56 IN 11 35 42.82 34.55
KS 11 22 20.82 23.56 KY 11 16 27.27 25.54
LA 11 6 11.91 15.25 MA 11 56 116.00 173.48
MD 11 133 190.45 166.26 ME 11 34 41.36 36.86
MI 11 43 78.45 78.81 MN 11 51 61.55 61.34
MO 11 43 99.27 108.02 MS 11 0 3.36 7.24
MT 11 1 5.55 8.57 NC 11 127 149.00 116.78
ND 11 0 2.00 6.63 NE 11 0 9.00 11.52
NH 11 16 21.18 17.41 NJ 11 42 65.09 63.53
NM 11 5 9.73 15.12 NV 11 19 26.73 31.98
NY 11 78 172.18 255.86 OH 11 66 103.09 104.35
OK 11 10 29.91 50.61 OR 11 85 130.73 114.39
PA 11 83 112.18 114.29 RI 11 8 16.45 19.85
SC 11 75 76.00 42.04 SD 11 0 1.09 2.47
TN 11 64 79.00 61.68 TX 11 111 180.27 200.52
UT 11 23 48.82 73.55 VA 11 100 128.18 106.30
VT 11 16 32.64 38.92 WA 11 145 206.55 183.51
WI 11 42 43.91 36.85 WV 11 8 12.18 9.84
WY 11 7 9.00 9.18

tive locations and data since which they have been operative. From this data, I compute for

each US state the number of charging stations available each year, within the duration this

study focuses on.

To account for Tesla’s unique differentiation to additionally provide charging station

exclusive to its users, I account for public charging station available to all electric vehicles

separately from Tesla charging station exclusively accessible to its users. Table 4.6 provides

the summary statistics for public charging stations available annually in each state. These

charging stations are accessible to all vehicle irrespective of make. Data indicates that during

the period of focus in this study, South Dakota (SD) had the least number of public charging
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Table 4.7: Summary Statistics for Tesla Charging Stations by State

State Obs Median Mean Std. Dev. State Obs Median Mean Std. Dev.
AK 11 0 0.18 0.40 AL 11 8 14.91 17.19
AR 11 0 7.45 10.62 AZ 11 42 38.82 37.36
CA 11 320 362.91 365.15 CO 11 40 39.27 39.23
CT 11 18 19.00 19.53 DC 11 1 0.91 0.54
DE 11 1 2.91 3.70 FL 11 85 139.82 155.57
GA 11 33 58.64 67.54 HI 11 1 2.91 3.30
IA 11 5 8.91 10.10 ID 11 10 9.73 9.74
IL 11 17 36.00 42.57 IN 11 13 17.36 18.30
KS 11 9 7.91 8.13 KY 11 5 13.00 15.71
LA 11 7 9.00 9.24 MA 11 29 29.00 29.04
MD 11 14 24.18 27.61 ME 11 24 25.45 25.71
MI 11 13 22.27 24.94 MN 11 11 18.82 23.44
MO 11 18 24.00 26.39 MS 11 0 9.27 11.97
MT 11 11 8.91 8.55 NC 11 31 36.36 39.52
ND 11 0 0.36 1.21 NE 11 0 3.09 3.94
NH 11 14 12.18 12.15 NJ 11 20 27.73 30.99
NM 11 15 11.73 10.83 NV 11 31 35.09 34.99
NY 11 86 188.91 217.54 OH 11 26 39.18 43.79
OK 11 4 8.27 10.31 OR 11 42 48.18 48.34
PA 11 28 44.45 49.13 RI 11 1 1.91 2.12
SC 11 14 20.45 22.67 SD 11 3 4.91 5.41
TN 11 8 22.36 26.33 TX 11 56 114.00 127.58
UT 11 23 24.00 24.91 VA 11 39 63.73 71.92
VT 11 9 12.45 14.00 WA 11 45 53.27 54.63
WI 11 30 28.09 24.97 WV 11 3 11.64 14.45
WY 11 11 10.18 9.95

stations, whereas California (CA) had the most. Table 4.7 provides the summary statistics

for Tesla charging stations available annually in each state. These charging stations are

available exclusively for Tesla users. Data indicates that during the period of focus in this

study, Alaska (AK) had the least number of public charging stations, whereas California

(CA) had the most.

Electric Vehicles are subject to a range of subsidies, both at the federal and the state

level, institutionalized to expedite the adoption of them. At the federal level, the primary

incentive is the federal tax credit, Internal Revenue Code Section 30D, which can provide

up to $7,500 for the purchase of a new EV. This credit is based on the size of the vehicle’s
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Table 4.8: Federal Electric Vehicle Credit under Internal Revenue Code Section 30D

Criteria Details
Battery Capacity $2,917 for at least 5 kWh
Additional Capacity Plus $417 for each kWh over 5 kWh
Maximum Credit Up to $7,500
Vehicle Weight Gross vehicle weight rating of less than 14,000 pounds
Manufacturer Limit Made by a manufacturer that hasn’t sold more than 200,000 EVs in the U.S.

battery and phases out for manufacturers after they have sold 200,000 qualifying vehicles.2

Table 4.8 lists the relevant details of the Internal Revenue Code Section 30D that determine

the federal subsidy subject to respecive electric vehicles which I take into account in the

analysis presented in this thesis.

At the state level, incentives vary widely by location but often include additional rebates,

tax credits, or exemptions from state sales taxes. Some states, like California, offer significant

rebates through programs such as the Clean Vehicle Rebate Project (CVRP), which can

provide up to $4,500 depending on the vehicle and the applicant’s income level.3 Figure 4.9

provides the list of the states that had state level rebates available between 2010-20.

Table 4.9: Summary of State-Level EV Rebates (2010-2020)

State Year Adjustment Summary
MA 2014+ +$2,500 for BEVs/PlugIns under $50k
WA 2015+ +6.5% MSRP for BEVs/PlugIns under $42.5k
DE, NY 2016+ +$1,500 (DE), +$2,000 (NY) for BEVs/PlugIns
CO 2017+ +$5,000 for BEVs/PlugIns
TX 2017+ +$3,000 for BEVs/PlugIns under $63k
ME 2018+ Varied by income: Up to +$3,500 for BEVs; Up to +$2,000 for PlugIns
CA 2019+ +$5,000 for BEVs/PlugIns
OR 2020+ +$5,000 for BEVs/PlugIns

2By the end of 2020, only GM and Tesla met the 200000 threshold. Threshold limit is no longer applicable
since 2023.

3Adjustments depend on vehicle type, MSRP, and household income. BEV = Battery Electric Vehicle,
PlugIn = Plug-in Hybrid
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Chapter 5

Model

In this chapter, I provide the description of the model I rely upon to estimate parameters

that rationalize household as well as firm behavior. The model comprises of households

choosing whether or not they wish to be in the market to purchase a new vehicle in a given

year, and conditional on choosing to be in the market to purchase a new vehicle in a given

year, choosing from the set of all vehicles (make-model) available in that given year, the

vehicle that maximizes their respective utility.

In addition to providing a detailed description of household behavior characterizing de-

mand, the chapter explains the market structure as well as the competition among firms.

The model consists of a forward-looking game played among auto manufacturers (i.e., firms),

where they compete not only in prices but also in the entry of electric vehicles (EVs). Firms

maximize their future expected lifetime profits by playing a Bertrand Nash game in setting

prices for all the vehicles available to be sold in a given year, as well as by deciding to expand

their respective product offerings by introducing a new EV model or not. The model takes

into account the differentiation Tesla provides by the virtue of providing charging stations

exclusive to its users. For a given year, in addition to choosing Bertrand Nash prices for

a given year and whether or not to introduce a model, starting next year, Tesla uniquely

chooses availability of charging station next year, modeled as a continuous decision.
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5.1 Demand

I apply a nested approach to rationalize demand. Households residing in region d at time t,

conditional on the state variables that are relevant to them, as well as the set of automobiles

they can purchase from, first decide whether or not they wish to be in the market to purchase

a new automobile. If a household does decide to be in the market for the purchase of an

automobile, they receive K utils on the outset or the outside margin. If the household

decides not to purchase anything, which is the the outside option, it receives 0 utils. Having

received K, each household chooses the vehicle that maximizes its respective utility from set

of all vehicles available. The utility that a household i receives, residing at region d, from

the purchase of vehicle j is defined as follows:

Uijdt = Xjβ + α
(pjt − sjt − sjdt)

Yi
+ γRijdt + ξjt + εijt

= Vijdt + εijt

(5.1)

For a vehicle j ∈ Jt included in the set of all vehicles (make-models) available in a

given year t, the utility household i receives residing in region d, is a function of vehicle

characteristicsXj, price of the vehicle pjt, federal subsidy available sjt, state subsidy available

sjdt, its income Yi, and most importantly range-anxiety Rijdt. For a vehicle j, the set of

exogenous characteristics Xj includes features such as Horsepower/Weight, Mileage for unit

$, Floor span and Passenger capacity. It is important to highlight that in this model,

consumers are in the market for all automobiles, i.e. once on the inside, they can potentially

choose both an EV as well as a non-EV. However, EVs do qualify for a menu of subsidy

schedule depending on the period the household is making its decision in as well as its

location.
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5.1.1 Range Anxiety

Anecdotal evidence suggests limited availability of charging stations to be one of the biggest

bottlenecks to greater EV adoption. For the scope of technological progress gone into the

evolution of EVs, from the point of view of a household, EVs might potentially be an inferior

good on account of Range Anxiety. In my description of the automobile market, households

potentially purchase from the set of all vehicles, not exclusively EVs or non-EVs. Given

Range Anxiety do not apply to the non-EVs, EVs are almost vertically differentiated from

non-EVs.

In my model, utility from EVs suffer from Range Anxiety, whereas utility from non-EVs

don’t. Range-Anxiety is defined as:

Rijdt =
Daily Travel Requirementi/Charging Stationsjdt

Battery Rangej
(5.2)

For a given EV j, for a household i that resides in region d at time t, Range Anxiety depends

on - i) how many miles does the household i travel on a given day ii) the range the vehicle j

can cover on a full charge measured in miles and iii) the relevant number of charging stations

for vehicle j in region d at time t. For a given vehicle j, for two identical households with

similar travel needs, range-anxiety will differ on account of their respective states of residence

with differing availability of charging stations.

For a given household i, Range-Anxiety will differ within the class of EVs depending on

whether the vehicle is a Tesla or not. Tesla users have access to additional charging stations

beyond the publicly available ones, provided by Tesla. In my model, I assume every non-Tesla

EV has access to all publicly available charging stations within a given state. Therefore, for

a given household i, the Range-Anxiety from all non-Tesla EVs is the same. However, due

to the additional stations exclusively available to Tesla users, the extent of Range-Anxiety

for Tesla EVs is alleviated based on the size of this additional network.
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5.1.2 Outside Margin and Preference Effect

If a household does decide to be in the market for the purchase of an automobile, they

receive K utils on the outset or the outside margin. At the outside margin, the decision

for households is modeled as discrete, with households choosing to go to the market of new

automobiles if and only if

E
[
(maxjϵJt Uijdt)

]
+K + µ1 > µ0 (5.3)

where µ0 and µ1 are payoff shocks that follow an extreme value distribution. Jt is the

set of of all make-models available to purchase from at a given year t and Uijdt, defined as

per 5.1 is the utility household i receives from vehicle j, residing at region d at time t. From

XXrefXX, E
[
(maxjϵJtUijdt)

]
= ln

(∑
j′ϵJt

exp(Vij′dt)
)
, defined as the log sum of the inside

options. Given the distribution of the payoff shocks, the probability with which a given

household chooses to go to the inside or the market for new automobiles is defined as :

Pr(i buys any vehicle|d,Jt) =

exp

(
ln
(∑

j′ϵJt
exp(Vij′dt)

)
+K

)
1 + exp

(
ln
(∑

j′ϵJt
exp(Vij′dt)

)
+K

) (5.4)

Combining the probability of choosing to go to the market for new automobiles, i.e. to

go to the inside and the probability of choosing a vehicle conditional on being on the inside,

defined as a typical logit share, for HH i living in d at t, the unconditional probability that

it purchases a vehicle j ∈ Jt is given as :

sijdt = Pr(i buys j|t) =
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)︸ ︷︷ ︸

Probability HH i goes to the inside

1× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)︸ ︷︷ ︸
Probability i buys j once inside

(5.5)

To form the aggregate demand for vehicle j at time t, I integrate the household level
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demand, sijdt, across the distribution of households nationally, dG(I).

Sjt =

∫
sijdtdG(I) (5.6)

K, which is received before the exact purchase of a vehicle is made, is intended to capture

the ’preference effect’ or ’opportunity cost’ for households simply on account of choosing to

purchase any vehicle. One can imagine K to capture the operative cost or the gross benefit

simply by the virtue of having a vehicle. K could alternatively be specified within the utility

specification 5.1 itself. However given it’s equal for all options, it cannot be estimated on

the inside. For the analysis that is presented to rationalize competition, I shall assume K

to be held constant.

5.2 Supply

To analyze the behavior of agents on the supply side, I design a forward-looking game

played among auto manufacturers (i.e., firms). The auto manufacturers are the agents

in this setting, where they compete not only in prices but also in the entry of electric

vehicles (EVs). In addition to maximizing current variable profits by choosing Bertrand

Nash prices, firms maximize lifetime profits deciding whether or to expand their respective

product offerings by introducing a new EV model. Each period, a given firm makes a draw

of vehicle characteristics and, based on its expectations of competitors’ behaviors, decides

whether to “package” these characteristics into a new EV model or not, with the sales of the

new EV beginning in the next period.

Introducing a new model, an EV in this case, allows firm a greater degree of differentiation

in product offerings but at the same time, involves considerations of cannibalization into

the sales of its existing offerings, in addition to the sunk cost incurred in building the new

product. In the dynamic setup as modelled in this paper, firms compare the expected lifetime

profitability from having introduced a new EV or not, and optimize accordingly. Beyond
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considerations of the sunk costs of developing a new EV model and potential cannibalization

of sales from existing offerings, the size of the available charging network is also a crucial

factor in the decision to introduce an EV model. Given the distribution of households’ daily

travel requirements and the characteristics drawn for the potential new EV, firms might be

deterred from introducing the model due to the lack of a sufficiently large network.

Between 2011 and 2020, the period of study in this paper, Tesla dominated EV sales

within the United States, peaking in 2019 with 82.5 % of the EV market share in Q3 of 2019.1.

One explanation for Tesla’s dominance in the EV sub-segment is the exclusive charging

network it provides to its users. Since Tesla does not offer non-EV vehicles, addressing range

anxiety has been a top priority and from its inception, Tesla has gradually expanded its

network to support the sales of its product. To capture this unalienable feature of the US

EV landscape, in this model, I allow Tesla to offer charging stations exclusively to its users,

to incrementally solve for Range Anxiety compared to all non-Tesla offerings. In my model,

each period, Tesla not only chooses the prices of existing goods and whether to introduce a

new EV model or not, but also decides availability of charging station in each US state.

Any government intervention to build public charging stations helps address range anxi-

ety for all vehicles, both Tesla and non-Tesla. Given the complementarity between the size

of the charging network and the utility of owning an EV, building more stations encourages

greater substitution from non-EVs to EVs among consumers for the existing set of available

vehicles. As range anxiety is progressively reduced, firms have stronger incentives to intro-

duce new models. However, public provision of charging stations dampens Tesla’s market

power given a key aspect of Tesla’s differentiation from other EV manufacturers is its ex-

clusive charging network. When the government provides public stations that are accessible

to everyone, the value of Tesla’s exclusive network diminishes, reducing Tesla’s incentive to

build these stations. This loss of market power also impacts Tesla’s decision to introduce new

EVs given they lose their differentiation compared to other EVs in terms of range anxiety.

1See “Tesla’s US EV market share dips below 50% in Q2 as Ford, Kia, BMW see growth”, Yahoo News,
July 11, 2024
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Although concerns about cannibalization of existing products are less significant for Tesla

compared to other firms, the reduction in Tesla’s relative superiority in addressing range

anxiety diminishes its incentive to introduce new EV models.

5.2.1 Competition Structure

The model comprises of O (o = 1, 2....O) firms playing a forward-looking dynamic oligopoly

game. Every period t, a given firm o, conditional on the publicly observed state variables,Mt,

chooses action aot that maximizes its expected lifetime profits. Firms choose actions taking

into account not only profits which are received today, but also expected profits received in

the future, on account of some of those actions potentially changing next period’s market

structure. The timing of the game is structured as follows:

1. At the start of the period t, each firm observes the state variables, Mt.

2. Given the the publicly observed state variables, Mt, each firm chooses its action aot.

aot refers to the following three or two decisions, depending on whether the firm is

Tesla or not:

(a) the set of Bertrand-Nash prices, {pj}Jot for each of its product j ∈ Jot, where Jot

is the set of vehicles it offers at t.

(b) the decision to introduce an EV or not, aeot, for a set of drawn EV characteristics,

{Xoj}, starting next year.

(c) (For Tesla only) the decision regarding next year’s availability of exclusive charg-

ing stations, {hdt}d, each US state d. I elaborate upon the modeling details for

this decision in one of the following subsections.

3. Each firm’s decision to introduce an EV next year, {aeot}O and Tesla’s decisions re-

garding next year’s availability of stations, {hdt}d are subject to modify next year

state variables, Mt+1.
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• Mt+1 is also subject to changes in availability of third-party stations, i.e. non-

Tesla or public. I assume availability of third-party stations follow an endoge-

nously pre-determined policy function, modeled as a linear combination of poly-

nomials of selected state variables.2

• Other changes to Mt+1, including changes in availability of non-EV models, ve-

hicle characteristics excluding range-anxiety, gas prices, electricity prices and in-

centives subsidizing EV purchase, are modelled exogenously.

4. At the start of period t+1, firms observe Mt+1 and the process repeats.

5.2.2 Model Introduction

A firm o that makes a draw of characteristics {Xoj}, chooses as to whether they wish to

introduce a new EV model packaged with those characteristics or not, i.e. a discrete binary

decision. If a firm chooses to do so, it has to pay a sunk cost τ . In this context, sunk

cost refers to the irreversible expenses incurred in developing a new electric vehicle, such

as research and development expenses, production setup, and marketing efforts. To allow

for uncertainty to payoffs associated with the decision of introducing a new EV or not, on

account of large scale cost uncertainty in changing production lines, inventory management,

hiring new labor, etc., I assume that there is payoff shock conditional on the decision made.

Assumption A.1: Firms observe privately an iid payoff shock νot(a
e
ot), dis-

tributed Type 1 extreme value before deciding upon model introduction

In the setting of the model, a given firm o makes a public random draw of characteris-

tics, {Xoj} which includes Horsepower/Weight, Mileage, Floor Span, Passenger Doors and

Battery Range. A given draw of {Xoj} refer to the characteristics a new EV model would

have if firm o would choose to introduce one. I assume all firms to make their respective

draws independently, from a convex hull of the characteristics, Conv()t, defined for period t.

2For the purposes of estimation, I assume perfect foresight on firms’ behalf regarding the availability of
third-party stations. By assumption, this policy function predicts the supply of 3rd party stations next
period conditional on state as observed. For estimation purposes, that would be the data as observed.
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Figure 5.1: The convex hull is inferred from the data observed in the next period, representing
the feasible set of characteristics for new EV models. This 2-D representation illustrates the
convex hull in terms of two key attributes: Battery Range and Mileage.

Conv()t is intended to capture the characteristic space that firms can potentially draw from

given the state of technology at period.

For empirical purposes, inferring what the true Conv()t for given time t is going to be a

challenge. I propose using data as observed to capture the Conv()t. Conv()t is defined as the

convex hull of characteristics as observed in data for the set of all EVs, that were available

in t+1. Figure 5.1 depicts the convex hull for 2018 of a representation using only two key

attributes: Battery range and Mileage, whereas Figure 5.2 depicts the convex hull for 2018 of

a representation using three key attributes: Battery Range, Mileage and Floor Span.3 The

convex hull is inferred from the data observed in the next period, representing the feasible

set of characteristics for new EV models. It encloses the set of possible combinations of

these attributes, reflecting the boundary within which firms can introduce new EV models

3I assume battery technology to change over time exogenously. Battery technology has applications ex-
tending well beyond the automotive sector, including in industries such as robotics, grid-scale energy storage,
aerospace, and consumer electronics. Consequently, innovation and improvements in battery technology are
driven by a wide range of global research efforts and industrial demands, not solely by incentives within the
automobile industry.
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Figure 5.2: The convex hull is inferred from the data observed in the next period, representing
the feasible set of characteristics for new EV models. This 3-D representation illustrates the
convex hull in terms of three key attributes: Battery Range, Mileage and Floor Span.

based on the observed characteristics. Information from next period informs us to trace the

technological today, however, admittedly, this approach suffers from an issue of selection on

account of only observed data points defining the boundary of this convex hull, potentially

ignoring many other draws of {Xoj} made, but not realized in a new EV model.

5.2.3 Station Build-out by Tesla

According to the model presented, Range Anxiety is a significant factor impacting consumers’

evaluation of an EV. Gas vehicles do not suffer from range anxiety which explains why EVs

have had a sluggish growth rate of adoption, despite being available for more than 10 years

and plethora of subsidies available both at the central as well as state levels. Concurrently,

Tesla has outperformed other manufacturers in EV sales, arguably on account of differen-
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tiating itself from other firms on account the additional availability of charging network it

exclusively provides to its users.

In the model as presented in this paper, I allow Tesla to choose the availability of charging

stations exclusive to its users. At period t, Tesla chooses for each US state or region d,

hdt ∈ [0, 1) defined as:

hdt =
Td,t+1

Hd,t+1 + Td,t+1

× 1

Ad

(5.7)

where Td,t+1 is the number of Tesla stations to be operated in region d next period, t+1,

Hd,t+1 is the number of third-party public stations operated in region d next period, t+1

and Ad is area (sq. miles) of region d.

I model Tesla’s decision regarding station provision as a continuous rather than a discrete

one for the sake of computational feasibility. Rationalizing a setup where Tesla, for each

region, chooses discretely, such as 1, 5, or 20 stations, would require solving the system

for each possible choice and then selecting the optimal number. Such solution concepts

suffer from the curse of dimensionality and are prohibitively expensive from a computational

perspective. Tesla makes the simultaneous decision regarding entry of a new EV model and

station build-out. By modeling Tesla’s station build-out decision in a continuous space,

conditional on the entry decision, a unique station solution is ensured.

In this model, Tesla’s station build-out decisions are reversible, unlike the model entry

decision. Tesla chooses upon the number of its operational stations in relation to the area

of the region and the availability of public third-party stations. I assume that for each

station Tesla maintains, it has to pay τ̃ in annual fixed cost. If τ̃ is the annual fixed cost of

maintaining a charging station in d, cost of hdt is:

fd(hdt) =
τ̃hdtAd

1− hdtAd

Hd,t+1 (5.8)

For a region d at time t, for Tesla to choose hdt, implies hdtAd

1−hdtAd
Hd,t+1 Tesla stations to
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be built, resulting in τ̃hdtAd

1−hdtAd
Hd,t+1 in fixed costs.

This model treats Tesla providing exclusive stations for its users as a feature. However,

Tesla building a network of charging stations could be a result of equilibrium behavior, i.e.

it optimally chooses to a build a network exclusive to its users, subsequently deciding upon

the state wise availability. The limitation I suffer from to identify this margin is that there

is no variation in the data in the period as investigated in this thesis where Tesla does not

have exclusive stations. In a pilot project recently, Tesla opened its network to other users

and therefore, an interesting counterfactual would be study the impact of such a policy.

However, this question is left to be explored in future work subject to access to pricing data

from charging stations.

5.3 Equilibrium

Assumption A.2 : Firms use stationary Markov Perfect Nash (MPNE) strategies.

In this model, firms use stationary Markov Perfect Nash (MPNE) strategies by choosing

actions that maximize their respective discounted lifetime profits. For the purposes of nota-

tion, I use Γ to denote the stationary Markov perfect strategies for all firms. By using aot to

collectively refer to the actions a given firm o takes at time t, the Bellman optimal condition

can be written down as

V Γ
o (Mo,t) = max

aot∈Ao(Mo,t)
[πo(aot,Mo,t) + β

∫
V Γ
o (Mt+1)dG(Mt+1|aot,Γ−o,Mo,t)] (5.9)

The Bellman condition for firm o, as represented in Equation in 5.9, characterizes the

“value” of firm o’s decision problem at a given point in time in terms of the value at future

points in time.

πo(aot,Mt) is the flow profits for period time t, firm o receives on account of their

decisions aot and state Mt. Flow profits not only include the contemporaneous profits from

sales of products as offered by firm o, but also include the sunk cost of introducing an EV
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and in Tesla’s fixed cost of operating stations as well. For firms other than Tesla, flow profits

consists of:

πo(aot,Mo,t) =
∑
j∈Jot

Sjt(Hothers,Mo,t,Θ,p)(pjt − cj)︸ ︷︷ ︸
Profits from sales

− τ .aeot︸︷︷︸
Product sunk cost

+ νot(a
e
ot) (5.10)

Tesla’s flow profits, on account of the station decisions it makes as well, are defined

differently as:

πo(aot,Mo,t) =
∑
j∈Jot

Sjt(Htesla,Mo,t,Θ,p)(pjt − cj)︸ ︷︷ ︸
Profits from sales

−
∑
d

f(hdt)︸ ︷︷ ︸
Station cost

− τ .aeot︸ ︷︷ ︸
Product sunk cost

+ νot(a
e
ot)

(5.11)

Equations 5.10 and 5.11 highlight the asymmetry of the optimization problem as faced

by Tesla versus the other firms. On account of Tesla users availing a differentially sized

network of charging stations, as opposed to their non-Tesla counterparts, Htesla v/s Hothers,

the demand of Tesla vehicles is defined differently. Additionally, Tesla being the sole firm

maintaining exclusive charging stations for its users, it has to account for the associated

maintenance costs, which does not enter the optimization problem for the other firms. The

Bellman equation as represented in Equation 5.9 is a convenient and tractable representation

of an infinite sequence of the flow payoffs conditional on all firms following the MPNE. Given

the asymmetry as highlight in equations 5.10 and 5.11, it is reasonable to expect Tesla to

behave differently compared to the rest of the firms, for a policy shock.
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5.3.1 Optimal Prices

Assumption A.3 : There are no switching costs to setting new prices every period

In this model, firms can set new prices every period, without paying any additional costs,

for each of the products offered by them in the market. What this implies is that the price

chosen for a given product at a given period, does not have bearing on the decisions taken

in the next period. When firms can set an altogether new set of prices without paying any

switching costs, information of current prices do not need to be taken over to the next period,

and therefore does not qualify as a state variables and does not enter the transition matrix.

Since prices do not enter the transition matrix, in equation 5.9, optimizing with respect to

them, implies that the discounted terms drop out, making the Bertrand Nash prices typical

of a static problem. One can imagine other settings, where firms commit to long term prices,

or changing prices involve a menu cost, where it would become appropriate to account for

prices within the set of state variables. However, in the current setting of the automotive

market, it is appropriate to assume firms can costly change their respective retail prices

every period without any expense. Conditional to the state variables observed at a given

time, the simplification of the Bellman equation in Equation 5.9 is akin to choosing prices

to maximize flow profits as represented in Equation 5.10 and 5.11. Price set at time t do not

enter the state transition matrix within the discounted term in Equation 5.9, and therefore

the pricing problem in this dynamic setting is akin to that of a static problem.

The equilibrium price of each product j ∈ Jot offered by a firm o, is determined as:

Sjt(Ho,Mo,t,Θ,p) +
∑
j′∈Jot

(pj′t − c′j)
∂

∂pjt
Sj′t(Ho,Mo,t,Θ,p) = 0 (5.12)

The second term of the above equation includes not only accounting for own-price deriva-

tive, ∂
∂pjt

Sjt, but cross-price derivative,
∂

∂pjt
Sj′t, as well. To see the formulation of ∂

∂pjt
Sjt and

∂
∂pjt

Sj′t, please refer to Section A.1 and Section A.2, respectively.
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5.3.2 Optimal Model Introduction

In this model, each firm makes a characteristic draw and decides whether or not to introduce

a new EV, packaged with the characteristic draw they made. If a firm chooses to introduce

a new EV, it pays a sunk cost τ , and if it chooses not to introduce the EV, it does not have

to pay the sunk cost. When firms make this decision, they also form expectations about

the behavior of other firms, who face the identical problem. The decision of whether or

not to introduce the new EV has implications for the state in the next period, which could

potentially witness other new EVs introduced by other firms.

Firm o,

time t

νot(a
e
ot) ∼ Type 1 error

expects Γ−o

(a
e
ot
=
1)

−τo

(a e
ot =

0)

vΓo (a
e
o = 1,Mo,t) + νot(1)

vΓo (a
e
o = 0,Mo,t) + νot(0)

Figure 5.3: Decision tree for a typical firm at time t

The Bellman equation in Equation 5.9 defines a firm’s expected lifetime value in a par-

ticular state when it chooses an optimal strategy, given other firms are using strategies as

defined in the MPNE Γ. Given Γ−o or expectations of behavior by other firms, each firm

chooses optimally, i.e. makes decisions to maximize lifetime payoffs, and it is this payoff

that defines the Bellman Value Function and the decision a component of the MPNE Γ. The

decision to introduce an EV or not is a discrete decision and for a typical firm, given state as

observed Mo,t, expecting others to behave following the MPNE, Γ−0, firms choose the path

that provides a higher payoff, illustrated in Figure 5.3. Given our assumption A.2 in Sec

5.2.2, with respect to payoff shocks allows us to map the optimal decision regarding model

introduction in the space of choice probabilities as

P Γo(aeot,Mo,t) =
exp(vΓo (a

e
o = 1,Mo,t))

exp(vΓo (a
e
o = 1,Mo,t)) + exp(vΓo (a

e
o = 0,Mo,t))

(5.13)
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where exp(vΓo (a
e
o = 1,Mo,t)) or exp(v

Γ
o (a

e
o = 0,Mo,t)) refer to choice-specific value func-

tion. For a firm o at time t, choice-specific value function omit the payoff shock related to

the choice, and captures the expected lifetime value from the choice at time t, i.e. aeo = 1 or

aeo = 0, assuming others to follow the MPNE Γ both in the current and subsequent periods

and itself to follow the MPNE Γ in subsequent periods.

In this model, Tesla faces a problem unlike the other typical firms. One of the crucial

details regarding the EV landscape within the United States is Tesla providing an additional

network of stations, exclusive to its users, in attempt to alleviate range anxiety. To capture

this important element of the EV landscape, in this model Tesla chooses every period t the

optimal availability of charging stations in each US state d next period t+1, in addition to

the decision of introducing a new EV model starting next period. Figure 5.4 illustrates the

problem that Tesla faces each period.

Tesla,

time t

νot(a
e
ot) ∼ Type 1 error

expects Γ−o

(a
e
ot
= 1)

−τo

(a e
ot = 0)

Choose {h∗
dt}ae

o=1

Choose {h∗
dt}ae

o=0

vΓo (a
e
o = 1,Mt) + νot(1)

vΓo (a
e
o = 0,Mt) + νot(0)

Figure 5.4: Decision tree for Tesla at time t

In Section 5.2.3, I provide the modeling details to account for Tesla’s decision to maintain

charging stations in each US state next period. The availability of the station decision is

modeled as a continuous variable, hdt with a cost function f(hdt) that is also continuous in

hdt within a given range. With the modeling details as specified, given Tesla’s expectations

of other firms capture in Γ−o, Tesla solves for its optimal availability of stations, conditional

on its decision to introduce a new EV or not. For each state d, Tesla solves for the following

− ∂

∂hdt
f(hdt) + β

∂

∂hdt

∫
V Γ
o (Mt+1)dG(Mt+1|aeot,Γ−o,Mt) = 0 (5.14)

with the hdt optimally chosen impacting the state observed period, Mt+1. For its decision
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to introduce a new EV or not, Tesla solves for its candidate station decisions, {h∗dt}aeo=1 and

{h∗dt}aeo=0, respectively, and nests those decisions directly into its evaluation of choice-specific

value functions, and maps into the space of choice-probability as

P Γo(aeot,Mo,t) =
exp(vΓo (a

e
o = 1, {h∗dt}aeo=1,Mo,t))

exp(vΓo (a
e
o = 1, {h∗dt}aeo=1,Mo,t)) + exp(vΓo (a

e
o = 0, {h∗dt}aeo=0,Mo,t))

(5.15)

In this model, households are assumed to be myopic agents who do not internalize ex-

pectations about future periods when making their current choices. Arguably, one could

model households as forward-looking, forming expectations about the future availability of

EV models or charging stations, which would in turn influence their choices today. How-

ever, allowing both the demand and the supply side to be forward-looking would introduce

the possibility of multiple equilibria in the model, which would require an equilibrium se-

lection mechanism for estimation. The focus of this thesis is to analyze firm behavior, and

therefore the priority is placed upon the forward-looking decision-making on the supply side.

This modeling choice reflects the central research objective of understanding firm incentives

and strategic behavior in the development of the electric vehicle ecosystem, while retaining

robustness in estimation by avoiding equilibrium multiplicity.
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Chapter 6

Identification and Estimation Strategy

In this chapter, I provide the details of the estimation strategy I apply to estimate the

parameters that characterize the model I presented in Chapter 5. The chapter presents the

discussion on estimation, separately for each component of the model as elicited in 5. A

separate discussion on identification is presented in Chapter ??.

6.1 Estimation of Coefficients Characterizing Demand

To estimate the coefficients characterizing the utility specification as represented in Equation

5.1, I follow the Conditional Logit model as elicited in McFadden (1974). As described in

Chapter 4, I use micro-data from National Highway Transportation Survey (NHTS) that

records purchases of vehicles at the household level. In addition, the data also provides

information on housholds’ incomes as well as their respective travel need, which is crucial to

context being investigated in this thesis.

Within a conditional logit framework, each household has access to all possible vehicles

available in a given year, and the vehicle it chooses to purchase maximizes its utility relative

to all available options. In equation 5.1, the utility is also dependent on an idiosyncratic

error term, εijt, which follows a Type 1 extreme value distribution. The assumption of

distribution of this idiosyncratic term allows us to map demand at the level of the household
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in the choice probability space. The condition logit framework estimates the the coefficients

that characterize the utility specification by maximizing the likelihood or probability of the

realized outcome as observed in data. While other logistic regression frameworks also rely on

maximizing the likelihood of observed choices, within this setting, the likelihoods of options

across the choice set is specific to the households, therefore making conditional logit, most

appropriate. For a detailed discussion on conditional logistic regression, see Hosmer Jr et al.

(2013) and Chamberlain (1980).

Beyond the coefficients that characterize the utility specification, the remaining parame-

ter that characterize the demand system isK. To recap the discussions presented in 5 Section

5.1.2, a household that decides to be in the market for the purchase of an automobile, re-

ceives K utils on the outside margin. At the outside margin, the decision for households is

modeled as discrete, with households choosing to go to the market of new automobiles if and

only if

ln
(∑
j′ϵJt

exp(Vij′dt)
)
+K + µ1 > µ0 (6.1)

where ln
(∑

j′ϵJt
exp(Vij′dt)

)
is the expected utility from households maximizing their

utility from purchase of vehicle at the inside margin, and µ0 and µ1 are payoff shocks that

follow an extreme value distribution. Given the distributional assumptions regarding the

payoff shocks, the probability with which a given household chooses to go to the inside

margin, i.e. the market for new automobiles is defined as :

Pr(i buys any vehicle|d,Jt) =

exp

(
ln
(∑

j′ϵJt
exp(Vij′dt)

)
+K

)
1 + exp

(
ln
(∑

j′ϵJt
exp(Vij′dt)

)
+K

) (6.2)

Similarly, the probability with which a given household does not choose to go to the
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inside margin is defined as :

Pr(i buys any vehicle|d,Jt) =
1

1 + exp

(
ln
(∑

j′ϵJt
exp(Vij′dt)

)
+K

) (6.3)

To estimate K, I use the micro-data from the National Highway Transportation Sur-

vey (NHTS), now also focusing on households that did not report purchasing any vehicle.

Households that are covered in the survey but do not report purchasing a new vehicle are

considered to be choosing the outside option, whereas covered households that do report

purchasing a new vehicle are considered to be going to the inside option. Using information

on location, income, and travel details of households, I can construct the log-sum of the

available choice set on the inside-option for both the set of households. Given the Equations

6.2 and 6.3, I estimate K by maximizing the realized likelihood of behavior as observed in

the data at the outside margin, i.e. whether they went into the market for new vehicles or

not.

As an alternative to the approach I present, K could be defined within the utility spec-

ification itself. However, given the conditional logit setting, K cannot be estimated on the

inside. Estimation of the utility specification is confined to moment conditions that are

restricted to sub-samples of households that make the purchase of any new vehicle. Since

K is same across all vehicles, by definition, it cannot be directly identified. If outside op-

tion where to be constructed within the choice set in parallel to product options available, K

could potentially be identified. However, in such settings, Andersen (1970) and Chamberlain

(1980) show the maximum likelihood estimate of K or fixed effect would be inconsistent.

6.2 Estimation of Marginal Costs

In Section 5.3.1, I discuss the price-setting strategy firms follow in the model presented. In

this model, firms can set new prices every period, without paying any additional costs, for
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each of the products offered by them in the market. What this implies is that the price

chosen for a given product at a given period, does not have bearing on the decisions taken

in the next period. When firms can set an altogether new set of prices without paying any

switching costs (Assumption A.3), information of current prices do not need to be taken

over to the next period, and therefore does not qualify as a state variables and does not

enter the transition matrix. Since prices do not enter the transition matrix, in equation 5.9,

optimizing with respect to them, implies that the discounted terms drop out, making the

Bertrand Nash prices typical of a static problem. The equilibrium price of each product

j ∈ Jot offered by a firm o, is determined as:

Sjt(Ho,Mo,t,Θ,p) +
∑
j′∈Jot

(pj′t − c′j)
∂

∂pjt
Sj′t(Ho,Mo,t,Θ,p) = 0 (6.4)

The second term of the above equation includes not only accounting for own-price deriva-

tive, ∂
∂pjt

Sjt, but cross-price derivative,
∂

∂pjt
Sj′t, as well. To see the formulation of ∂

∂pjt
Sjt and

∂
∂pjt

Sj′t, please refer to Section A.1 and Section A.2, respectively. The first order condition

in Equation 6.4 above could alternatively be written in matrix form as:

So +∆o(p0 − c0) = 0 (6.5)

So is |Jot|×1 matrix, with each row representing the demand for every vehicle included in

the product portfolio Jot for firm o at time t. p0 and c0 are also |Jot|× 1 matrices, with each

row representing the price and the marginal cost for every vehicle included in the product

portfolio Jot, respectively, for firm o at time t. ∆o is a |Jot| × |Jot| matrix, with the diagonal

elements representing the own-price derivatives and the non diagonal elements representing

cross-price derivatives, for the set of products Jot for firm o at time t. Given demand is

estimated for each product, the first order in Equation 6.5 can be manipulated to estimate
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the marginal costs directly is a systems of equation as:

c0 = p0 +∆−1
o So (6.6)

6.3 Solution Concept

In order to solve dynamic games, it is necessary to infer value functions, rationalizing behav-

ior as observed in data. A typical way to solve for forward-looking game theoretical models

involves forward simulation (Rust (1987); Bajari et al. (2007)), rationalizing every observed

data-point by calculating potential continuation values. This can become computationally

expensive as number of agents, actions, periods, state variables grow. To address the com-

putational challenge of a large state space with sizeable number of players, I follow Sweeting

(2013) to apply parametric approximation to the value function to solve and estimate the

dynamic oligopolistic model presented in this paper. Instead of solving for value function

at each state realization, I assume that the value function can be approximated by a linear

combination of the polynomials of the state variables that characterize the model

V Γ
o (Mo,t) ≈

K∑
k=1

λkϕk(Mo,t) (6.7)

For a set of N states, solving the value function now requires finding K coefficients rather

than N values, as would be the case using forward simulation. Given the distributional

assumption on payoff shocks associated with model entry decision (Assumption A.1), I

can map the Markov Perfect Nash Equilibrium Γ into choice probability space, as shown in

Equations 5.13 and 5.15. For a detailed discussion of mapping the MPNE into the space of

conditional choice probabilities, refer to Chapter 5 Section 5.3.2. At the set of equilibrium
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strategies mapped into choice probability space, Equation 6.7 can be rewritten as:

V P ∗

o (Mo,t) ≈
K∑
k=1

λkϕk(Mo,t) (6.8)

At the equilibrium strategies P ∗ comprising the MPNE, the Bellman as in Equation 6.8

if stacked for the N states in matrix form should give us

Φλ = π̃(P ∗) + β(EP ∗Φ)λ (6.9)

Each row of the matrix Φ corresponds to a state specific to each firm whereas each column

corresponds to the kth polynomial, with an element being ϕk(Mo,t). EP ∗Φ is defined similarly

as Φ with the exception that the polynomial approximation is weighted conditional on the

state transition matrix, with each element defined as
∫
ϕko

(
Mo,t+1

)
g
(
Mo,t+1|P ∗,Mo,t

)
dMo,t+1.

As along as the model is over-identified, i.e. the number of states the model is solved over

is at least as large as the number of polynomials the model is approximated over, the set

of λk parameters can be identified using typical OLS inversion. For the over-identified case

(N > K), the set of coefficients characterizing the linear combination of polynomials, λ̂P

can be found using an Ordinary Least Squares (OLS) estimator for any candidate choice of

choice probabilities.

λ̂P =

((
Φ− βEPΦ

)′
(
(
Φ− βEPΦ

))−1

(Φ− βEPΦ
)′
π̃(P ) (6.10)

The OLS estimator as defined in Equation 6.10 can be applied to any candidate P . How-

ever, the Bellman condition is representative of the true equilibrium P ∗ in choice probability

space, which we don’t know and need to solve for. It is standard to use policy iteration to

solve for dynamic models (Judd (1998); Rust (1987)). Policy iteration involves repeatedly

iterating over one, policy valuation, which involves calculating the value function V Pi for a

candidate set of choices probabilities Pi and two, policy improvement, which involves using
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the calculated V P
i to update the computed set of choices probabilities Pi. This two-step

procedure is iterated until convergence in choice probabilities in reached, and set of choice

probabilities at which the procedure converges to is representative of the equilibrium.

6.3.1 Parametric Policy Iteration

In this section, I sketch the outline of the method I use to solve for the value function using

parametric policy iteration procedure (Benitez-Silva et al. (2000)). The parametric policy

iteration procedure I implement consists of the following steps:

1. Select N states to fit the model over. This includes the observed states as well as their

duplicates, obtained by perturbing state variables which vary over time.

2. Calculate Φ or the polynomials for each of these N states. The polynomials of state

variables that I use to fit the model over are Chebyshev polynomials of the first and

second degree.

3. Estimate Initial Policy

• For Model Entry, I use a reduced form parametric multinomial logit model

with linear & interaction terms of variables included within state.

• For Tesla’s Station Decision, Station decisions are conditional on decision to

enter from Tesla. I use OLS with linear & interaction term of variables included

within state.

4. Given estimates of policy for iteration i, I estimate G(M′
o,t|P i,Mo,t). I would highlight

that the marginal distribution of Tesla’s station decisions is conditionally degenerate.

Given model assumptions regarding the continuous nature of station decision and well

behaved cost function of station maintenance, Tesla’s station decisions are conditionally

unique to decision of Tesla to introduce a new EV model or not. For a more detailed

discussion, refer to Chapter 5 Section 5.3.2.
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5. With the candidate P i (i stands for iteration),

• Calculate π̃(P i). This is the expected flow profit

• Calculate EP iΦ. This is the matrix comprising the polynomial terms for each

firm, weighted with respect to the state transition matrix

• Create the matrices (Φ− βEP iΦ)

• Use the OLS operator shown above in Equation 6.10 to estimate λ̂P i

6. From λ̂P i , calculate the choice-specific value function for each choice for each firm

v(aeo|Mo,t, P
i
o) = π(aeo,Mo,t) + β{EP iΦ}λ̂P i

Choice-specific value functions represents the expected payoff firm o receives from

choosing to enter with a new EV or not, conditional on other firms following the

MPNE as well as itself following the MPNE in the subsequent periods. For a firm o at

time t, choice-specific value function omit the payoff shock related to the choice, and

captures the expected lifetime value from the choice at time t, i.e. aeo = 1 or aeo = 0,

assuming others to follow equilibrium behavior both in the current and subsequent

periods and itself to follow the equilibrium behavior in subsequent periods. For a more

detailed discussion, refer to Chapter 5 Section 5.3.2.

7. Update policy:

• For Model Entry, update conditional choice probabilities for every firm and

state

P
′

o(M) =
ev(1|Mo,t,P i)

ev(1|Mo,t,P i) + ev(0|Mo,t,P i)

• For Tesla’s Station Decision, in every region d, solve for the system of equa-
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tions conditional on either aeTesla = 0 or 1:

−f ′(hd) + β
∂

∂hd
v(aeo|Mo,t, P

i
o) = 0

8. If the maximum absolute difference between P
′
o & P i

o is below a certain threshold,

the iterative procedure is terminated and the λ̂P i is saved as λ∗. In other words, if

||P ′
o − P i

o|| < µ for all firms and states (µ = 1e − 4), the procedure is terminated.

Otherwise, I update the conditional choice probabilities for the subsequent iteration

as P i+1
o (M) = ψP i

o(M) + (1−ψ)P
′
o(M) with ψ = 0.1 and the procedure repeats from

Step 4.

The parametric policy iteration involves repeatedly solving for a set of choice probabilities

for every selected state that the model is solved over, and subsequently recovering a set of

coefficients λ̂o that attempts to approximate the value function at those choice probabilities.

The model is solved when choice probabilities converge across iteration and those probabil-

ities comprise the MPNE strategies that the firms follow. λ̂o solved for choice probabilities

that shows convergences solves the value function approximation at equilibrium. They are

the true parameters for our polynomials, whose linear combination approximate the value

function; i.e. λ̂o(P
∗) = λ∗o.

6.4 Estimation of Dynamic Parameters

There are two key parameters that characterize the forward looking oligopolistic nature of

the model as presented in this thesis - sunk cost of EV entry and fixed cost for maintaining

a Tesla station. Firms if they choose to introduce a new EV next period have to pay a

sunk cost in the current period. In a way, firms compare the sunk cost of model entry in

EV with the differential in lifetime profits from either introducing the EV as drawn or not

and decide accordingly. Additionally, Tesla’s unique product positioning involves providing
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stations exclusive to its users. Depending on its decision on how many station Tesla wishes

to maintain next period, Tesla has to pay a fixed cost in the current period. Both the

product decision as well as the station decisions is contingent upon an inter-temporal trade-off

between payoffs and costs, making the sunk cost of EV entry and fixed cost of maintaining a

Tesla station the two key dynamic parameters that need to be estimated to fully characterize

the model as presented in this thesis.

The value function iteration method, as I explain in Section 6.4, allows us to solve for

the value function as linear combination of polynomials of various state variables. Updating

choice probabilities and simultaneously solving for the coefficients characterizing the poly-

nomials approximating the value function requires one to assume respective values for the

dynamic parameters. Step 5 of the parametric policy iteration requires us to solve for the

expected flow profits, π̃(P i) which requires on to assume values for the sunk cost of intro-

ducing EV model as well as the fixed cost for maintaining a Tesla Station. Given the linear

combination of polynomials are endogenous to the choice of these dynamic parameters, we

cannot analytically solve for them, as is typical in Generalize Method of Moments (GMM)

or Maximum Likelihood Estimation (MLE) settings.

I proceed to computationally estimate for the dynamic parameters that characterize this

model using Grid Search over potential parameter values. For a given tuple of candidate

dynamic parameters, I solve for the dynamic model, by recovering for the set of coefficients

that approximate the value function that show convergence in beliefs, and estimate the

respective choice probabilities for each firm at each period and calculate the log-likelihood

of behavior as observed in the data. The Grid Search method involves repeatedly solving

for the model at different value of dynamic parameters and looking for the parameters that

maximize the likelihood of behavior as observed in data. The Grid Search I implement to

solve for the dynamic parameters involves solving for the model for sunk cost of EV entry

between 500 million USD and 10 billion USD in increments of 100 million USD, and fixed

cost of maintaining a Tesla stations between 10,000 USD and 500,000 USD in increments of
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10,000 USD. The pair for the candidate sunk cost of EV entry and candidate fixed cost of

maintaining Tesla station that maximized the likelihood of behavior as recorded in data are

estimated dynamic parameters, θ∗ that characterize the model.

To estimate the standard error for the dynamic parameters the maximize the likelihood

of data as observed, I analytically solve for the variance-covariance matrix of θ∗, which is

calculated as the inverse of the Information matrix, which is in turn is the negative of the

expected value of the Hessian matrix of the log-likelihood function with respect to θ∗.

var(θ∗) = [I(θ∗)]−1

= (−E[H(θ∗)])−1

=

(
−E

[
∂2lnL

∂θ∗∂θ∗′

])−1

(6.11)

A detailed account of how this Hessian matrix is analytically derived for the set of pa-

rameters θ∗ = (τ, τ̃) that maximizes observed likelihood is provided in Appendix C.
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Chapter 7

Results

In this chapter, I provide the results from estimation of parameters that characterize the

model I presented in Chapter 5. The chapter presents the results, separately for each com-

ponent of the model. For the discussion on estimation and identification, refer to Chapter

6.

7.1 Estimation of Demand parameters

Following McFadden (1974), I follow the Conditional Logit model to estimate the coefficients

that characterize the utility specification as represented in Equation 5.1. Using micro-data

that records purchase of new vehicles at the household level, the approach estimates the

demand parameter by maximizing likelihood estimates at the household level, rationalizing

the data as observed. From the estimates as presented in Table 7.1, it is evident that a

household’s valuation of a vehicle from the set of vehicles available to them, depends on

their respective Range Anxiety from it. The estimates imply that as Range Anxiety goes

up, the utility from the respective vehicle goes down. Given gas vehicles or Hybrid vehicles

do not suffer from Range Anxiety, an EV, say with the same set of characteristics as well

as price as a non-EV, would be valuated less on account of Range Anxiety, and therefore

resulting in lower sales. As the available size of the charging network increases, given the
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Table 7.1: Estimation of Utility Specification

(1) (2)
Horsepower/Weight 6.744∗∗∗ 4.775∗∗

(1.700) (2.258)
Miles per $ 0.0284∗∗∗ 0.0295∗∗∗

(0.00370) (0.00378)
Area spanned 0.888∗∗∗ 0.923∗∗∗

(0.0345) (0.0435)
PassengerDoors=3 -0.529∗∗ -0.525∗∗

(0.211) (0.211)
PassengerDoors=4 0.698∗∗∗ 0.698∗∗∗

(0.0537) (0.0537)
PassengerDoors=5 0.186 0.0735

(0.362) (0.371)
Price/Income -4.421∗∗∗ -4.267∗∗∗

(0.245) (0.269)
Range anxiety -407.2∗∗∗ -406.9∗∗∗

(102.5) (102.4)
First-stage residuals -0.154

(0.115)
IVs included No Yes

Note: This table presents the estimation results of parameters
that characterize the utility a household receives from the pur-
chase of a new vehicle. The estimates follow condition logit
method relying on data at the household level that purchase
the records the purchase of new vehicles as well as the respec-
tive household characteristics. From the set of households that
purchase a vehicle, the results are estimated using 1,564,045 ob-
servation or household-vehicle pair. Column (2) presents the re-
sults using the Control function approach to account for the endo-
geneity of prices with respect to the unobservables. ∗∗∗p < 0.01,
∗∗p < 0.05, ∗p < 0.1

definition of Range Anxiety I present in Equation 5.2, Range Anxiety falls and some of

the discrepancy between the evaluation of an EV and non-EV of similar characteristics is

alleviated away, and therefore, potentially increasing the sales of the respective EV, and also

potentially increasing the likelihood of introduction of newer EV models from various auto

manufacturers.

Households, in this model, first decide whether or not they wish to be in the market

to purchase a new automobile before deciding which vehicle to purchase, i.e. the vehicle
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Table 7.2: Estimation of K

K -11.86∗∗∗

(0.0152)

Note: This table presents the estimation results of K
utils a household receives on the outside margin if it
chooses to go into the market to purchase a new vehi-
cle. The estimates follow maximizing log likelihood
of utility maximization at the outside margin rely-
ing on data at the household level that purchasing
behavior of the respective household characteristics.
K is estimated using information on 113,634 house-
holds. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

that maximize their respective utilities. Beyond the coefficients that characterize the utility

specification, the remaining parameter that characterize the demand system is K. To recap

the discussions presented in 5 Section 5.1.2, a household that decides to be in the market for

the purchase of an automobile, receives K utils on the outside margin. Given the Equations

6.2 and 6.3, I use micro-data at the household level using information on location, income,

and travel details, I estimate K by maximizing the realized likelihood of behavior as observed

in the data at the outside margin, i.e. whether they went into the market for new vehicles

or not and report the estimate

One feature of the demand model specification is that I do not separately account for Level

2 and DC fast charging stations. The number of charging stations that enters households’

formulation of range anxiety is defined as the sum of Level 2 and DC fast charging stations.

This modeling choice is based on the underlying assumption that there is a strong geographic

correlation of Level 2 and DC fast charging stations. In Figure ??, I map the latitude and

longitude of charging stations by type in California and Virginia, and find that DC fast

charging stations are predominantly located in areas where Level 2 stations are also present.

Specifically, 79% of DC fast stations in California are located within one kilometer of a

Level 2 station, while Level 2 stations are somewhat more independently distributed across

locations. Given that households primarily value access to any charging opportunity to

mitigate range anxiety, aggregating Level 2 and DC fast charging stations into a unified
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Figure 7.1: Latitude and longitude representation of charging stations by their respective
types in California (a) and Virginia (b).

measure is a natural modeling simplification. To highlight the limitations of the model, DC

fast stations are perceived as substantially more valuable than Level 2 stations, then the

estimated γ reflects an average sensitivity, weighted toward the effects of Level 2 stations

given their greater abundance. Consequently, the model may understate the specific role of

DC fast chargers in alleviating range anxiety.

Another limitation of the model is that it does not explicitly distinguish between house-

holds with different travel needs — for instance, households that typically drive shorter

distances versus those that require longer range on a regular basis. In reality, households

with lower travel demands may exhibit less sensitivity to charging station availability, while

households with higher travel demands may place greater value on an expanded network. In

the current framework, the parameter γ captures an average responsiveness across all house-

holds, effectively representing a weighted mean of the underlying heterogeneity in travel
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behavior. As a result, the estimated γ should be interpreted as an aggregation of the vary-

ing marginal utilities associated with station availability across different household types,

rather than as a parameter specific to any single group. Exploring this is left to future work.

What is also to be done later is re-estimating the entire model and assuming there is no

range-anxiety, i.e. γ = 0 and evaluating how do the estimates differ.

7.2 Marginal Rate of Substitution

One of the key motivations for this thesis relies upon the fact that Tesla provides a network

of charging stations exclusive to its own users. Given Tesla users can access both the Tesla

as well as the public network accessible to all, the range anxiety they experience for a Tesla

EV is less compared to a similar EV, in terms of other characteristics, manufactured by

others. The exclusive network that Tesla users have access to is an important differentiator

and potentially explains Tesla’s success in terms of sales within the EV segment.

In Table 7.3, I provide the details of the marginal rate of substitution of a vehicle’s price

with respect to household’s daily travel requirement in miles, calculating the statistics across

the sample of households available from the micro-data. The marginal rate of substitution

of a vehicle’s price with respect to household’s daily travel requirement in miles calculates

by how much should the price of a vehicle fall if their traveling needs were to increase by a

mile,such that the utility from an EV a household receives remains unchanged. Given the

additional stations Tesla builds for its users, the statistics reflect that the marginal rate of

substitution of a vehicle’s price with respect to household’s daily travel requirement is less

than that for other manufacturers. As more stations are build across the time, the value

falls for both Tesla EVs as well as others.

Interventions to build public charging stations help address range anxiety for all vehicles,

including both Tesla as well non-Tesla EVs. Given the complementarity between the size

of the charging network and the utility of owning an EV, building more stations encourages
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Table 7.3: Marginal Rate of Substitution (Distance) by Year and Manufacturer

Year Tesla Others
2011 - -3290.6

- (5363.18)
2012 -843.77 -2322.25

(1431.57) (4024.88)
2013 -759.28 -2041.38

(1446.25) (4224.15)
2014 -533.34 -1571.50

(1072.54) (3129.68)
2015 -267.17 -1539.27

(565.19) (3879.99)
2016 -197.14 -1270.66

(427.48) (3481.84)
2017 -158.57 -785.16

(340.00) (1785.45)
2018 -125.18 -532.56

(337.91) (1314.34)
2019 -99.49 -279.83

(294.33) (764.23)

Note: This table presents the estimates of mean and standard
deviation of the marginal rate of substitution of price with respect
to household’s daily travel requirement in miles. In other words,
the statistic represents for the utility from an EV a household
receives to remain unchanged, how much compensation should
the household receive if their traveling needs were to increase by
a mile. The mean and the standard error are calculated across
the sample of 107,671 households in the data. Given the available
vehicles and the size of the charging network vary each year, the
estimates are separately provided for each year. The estimates
are provided separately for Tesla and all the other manufacturers,
highlighting their differences.

greater substitution from non-EVs to EVs among consumers for the existing set of avail-

able vehicles. As range anxiety is progressively reduced, firms have stronger incentives to

introduce new models. However, government provision of charging stations for all dampens

Tesla’s market power, reducing the value of each of its stations. A key aspect of Tesla’s

differentiation from other EV manufacturers is its exclusive charging network, which is only

accessible to Tesla users. When the government provides public stations that are accessible

to everyone, the value of Tesla’s exclusive network diminishes.
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Table 7.4: Marginal Rate of Substitution (Stations) by Year and Manufacturer

Year Tesla Others
2011 - 15936.54

- (198192.2)
2012 3286.73 9123.48

(22281.24) (61954.00)
2013 3200.76 10381.88

(29531.62) (135704.50)
2014 1795.12 5982.57

(17724.91) (54599.43)
2015 606.36 7696.40

(4214.15) (79588.93)
2016 351.20 7146.12

(2835.37) (123034.50)
2017 181.94 2703.68

(1369.37) (46374.62)
2018 161.12 1587.23

(2689.49) (33945.92)
2019 111.02 580.21

(1626.28) (8886.24)

Note: This table presents the estimates of mean and standard de-
viation of the marginal rate of substitution of price with respect
to number of charging station available in a household’s state of
residence. In other words, the statistic represents for the util-
ity from an EV a household receives to remain unchanged, how
much additional payment could be received from the household
if the number of charging stations were to increase by 1. The
mean and the standard error are calculated across the sample of
107,671 households in the data. Given the available vehicles and
the size of the charging network vary each year, the estimates are
separately provided for each year. The estimates are provided
separately for Tesla and all the other manufacturers, highlighting
their differences.
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In Table 7.4, I estimate the marginal rate of substitution of a vehicle’s price with respect

to number of charging station available in a household’s state of residence, across the sample

of households available from the micro-data. Marginal rate of substitution of a vehicle’s

price with respect to number of charging station available in a household’s state of residence

measures how much additional payment could be received from the household if the number

of charging stations were to increase by 1, for the utility of a household from an EV to

remain unchanged. Given available stations to Tesla users is more than stations available to

non-Tesla users, non-Tesla users value stations more than Tesla users, across all years. As

more stations are built over time, stations get more incrementally devalued for both Tesla

as well as non-Tesla users.

7.3 Marginal Costs

In Section 5.3.1, I explain how firms, each period, choose the optimal prices for their re-

spective products. According to the model presented, firms can set new prices every period,

without paying any additional costs, for each of the products offered by them in the market.

Within the context of the model of dynamic oligopoly which characterizes firms’ behavior in

this model, what this implies is that price chosen for a given product at a given period, does

not have bearing on the decisions taken in the next period. The information of current prices

do not need to be taken over to the next period, and therefore, the pricing sub-game in this

model is akin to that of the Bertrand Nash pricing sub-game of a typical static problem.

In Section 6.2, I provide a detailed description of the estimation process for marginal

costs. The marginal costs of vehicles produced by a firm in a given year can be estimated or

recovered by inverting the firm’s first-order condition characterizing the pricing sub-game:

c0 = p0 +∆−1
o So (Equations 6.4, 6.5, and 6.6). Here, c0 and p0 are |Jot| × 1 matrices, where

each row represents the price and the marginal cost for every vehicle offered by firm o at

time t. So is a |Jot| × 1 matrix, where each row represents the demand for every vehicle

69



Table 7.5: Estimates of Marginal Costs by Vehicle Type

Statistic Battery EVs Plug-in Hybrids Gas Vehicles
Mean 23,647.57 30,691.40 17,442.02
Standard Deviation 14,248.30 23,689.61 19,002.44
Median (50%) 18,390.67 18,893.09 11,402.17
25th Percentile 13,445.28 11,498.74 3,423.79
75th Percentile 29,139.03 50,581.84 25,373.71
Observations 104 120 2,112

Note: This table presents summary statistics of estimates of marginal costs in $ of vehicles
available to be sold from 2010-2019, including their mean, standard deviation, median, 25th

percentile and 75th percentile. Between 2010-2019, there were 2336 vehicles available to be
sold, including 2112 Gas vehicles, 120 Plug-In Hybrids and 104 Battery EVs.

offered by firm o at time t. ∆o is a |Jot| × |Jot| matrix, with diagonal elements representing

the own-price derivatives and off-diagonal elements representing the cross-price derivatives

for the set of products Jot of firm o at time t.

In Table 7.5, I provide the summary statistics for the estimated marginal costs of vehicles

available for sale in the United States between 2010 and 2019. During this period, gas vehicles

were, on average, the cheapest to produce, with an average marginal cost of $17,442. Battery

EVs were more expensive to produce, as intuition suggests, given their reliance on a new

mechanical and technological platform. The average marginal cost for Battery EVs during

this period was $23,647.57. Plug-in hybrids, however, were significantly more expensive

than both gas vehicles and Battery EVs. The average marginal cost for plug-in hybrids from

2010 to 2019 was $30,691.40. This aligns with expectations, as plug-in hybrids rely on a

dual technological system that integrates both internal combustion as well batteries, leading

to higher production costs. Li et al. (2019) estimates the mean of the marginal costs for

both Battery EVs and plug-in hybrids combined up until 2015 to be $29,263. In contrast,

I estimate the marginal costs for the same sub-sample, Battery EVs and plug-in hybrids

combined up until 2015, to be $26,679.53.

I also estimate the markups of vehicles available for sale in the United States between

2010 and 2019, and the provide the summary statistics in Table 7.6. According to the

estimates, the estimated markups on Battery EVs during 2010-2019 were lowest, averaging
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Table 7.6: Descriptive Statistics of Markups by Vehicle Type

Statistic Battery EVs Plug-in Hybrids Gas Vehicles
Mean 16,023.69 20,426.97 17,856.69
Standard Deviation 6,708.70 1,972.32 6,404.43
Median (50%) 17,591.35 20,740.65 20,082.20
25th Percentile 14,373.52 19,313.60 17,180.36
75th Percentile 20,487.21 21,861.99 22,066.51
Observations 104 120 2,112

Note: This table presents summary statistics of markup estimates for vehicles available for
sale from 2010 to 2019, including the mean, standard deviation, median (50th percentile),
25th percentile, and 75th percentile. During this period, 2,336 vehicles were available for
sale, consisting of 2,112 gas vehicles, 120 plug-in hybrids, and 104 battery EVs.

at $16,023.69. Battery EVs to have the lowest markups can potentially be explained by

range-anxiety with firms compensating consumers by reducing prices, hence, serving our

intuition well. The markups for gas vehicles during this period were intermediate, averaging

at $17,856.69. The markups for Plug-In Hybrids during 2010-2019 were highest, averaging at

$20,426.97. Plug-In Hybrids do not suffer from Range Anxiety, given they also have internal

combustion engines in addition to batteries. However, they are subject to various incentive

schemes which provide direct subsidies to consumers. Not suffering from Range Anxiety and

being subject to purchase subsidies serves our intuition well to explain plugin hybrids to

have the highest markups among vehicles during this period. Li et al. (2019) estimates the

mean of the markups for both Battery EVs and plug-in hybrids combined up until 2015 to

be $13,872. In contrast, I estimate the markup for the same sub-sample, Battery EVs and

plug-in hybrids combined up until 2015, to be $16,324.17.

7.4 Dynamic Parameters

In Section 6.4, I explain the estimation strategy I adopt to estimate the two key dynamic

parameters characterizing the model. Firms, if they choose to introduce a new model of EV

starting next period, have to incur a sunk cost associated with product entry in the current

period. Tesla, in addition to deciding whether or not it wishes to introduce a new EV also
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Table 7.7: Estimates of Model Sunk Cost and Station Fixed Cost

Model Sunk Cost Station Fixed Cost

Panel A: β = 0.95

Estimate 43.4 0.0083

Standard Error (0.1705) 8.8425e-05

Panel B: β = 0.98

Estimate 87.2 0.0266

Standard Error (0.1819) 2.5099e-04

Note: Estimates are normalized in 100 million. Standard errors are reported in parentheses. The estimates
correspond to different discount factor assumptions.

have to decide how many stations it wishes to maintain next period and has to pay the fixed

cost in the current period to maintain each of the stations. The product decision as well as

Tesla’s decision to maintain availability of stations exclusive to its users is characteristic of

an inter-temporal trade-off comparing contemporary costs and expected discounted flow of

payoffs from the future.

The solution algorithm I adopt to approximate the value function, as I elaborate in

Section 6.3, is endogenous upon the choice of the values of these dynamic parameters which

makes it difficult to analytically solve for these parameters as is typical in many settings such

as Maximum Likelihood Estimation (MLE) or Generalized Method of Moments (GMM).

I computationally solve for the dynamic parameters by implementing a grid search over

potential parameter values and finding those that maximize observed likelihood. In the

Grid Search method, for any candidate tuple of dynamic parameters, I solve for the value

function reaching convergence in conditional choice probabilities and calculate the likelihood

of data as observed. By iterating the procedure over other candidate parameter values, I

look for the grid point at which the observed likelihood is maximized. For these parameter

values that maximize the observed likelihood of observed data, I analytically solve for their

standard errors by calculating the Hessian matrix of the log-likelihood function. For a

detailed exposition, see Appendinx C.
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In Table 7.7, I provide the estimation results of the dynamic parameters. Solving dynamic

model require us to assume values of the discount term as given. The discount term which

“weighs” payoffs from the future time periods has to be assumed at a given value on account

of not being separately identifiable from the expected value function characterizing the future

payoff stream. I solve for the dynamic parameters for two plausible values of the discount

factor, i.e. for β = 0.95 and β = 0.98. At the β = 0.95, the sunk cost of introducing an

EV model is estimated at $4.34 billion and the fixed cost of maintaining a Tesla station is

estimated at $83,000. Alternatively, using β = 0.98, the sunk cost of introducing an EV

model is estimated to be $8.72 billion and the fixed cost of maintaining a Tesla station is

estimated at $266,000. The estimates for the sunk cost of product entry and fixed cost of

maintaining a Tesla station is higher for β = 0.98 as opposed to β = 0.95. Given future

profits as “weighed” more with a higher discount factor, for the same set of data as observed,

it is intuitively appealing that set of costs that rationalizes the observed data is higher for

the discount term that is greater in value.
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Chapter 8

Counterfactual Experiments

In this chapter, I provide results from counterfactual experiments I conduct using the model

parameters estimated. First, I simulate the entry game over multiple draws of EV charac-

teristics across all firms and evaluate how the respective probabilities of entry in new EV

models compare across the respective firms over the years.

8.1 Simulating Vehicle Draws

In this model, each period, each firm makes an independent random draw of vehicle char-

acteristics specific to EVs and then decides whether to introduce a new EV packaged with

the realized characteristics. As described in Section 5.2.2, a given firm o makes a pub-

lic random draw of characteristics—including Mileage, Battery Range, Area Spanned, and

Horsepower/Weight—that a new EV model would have if firm o chose to introduce one. If

a firm chooses to introduce a new EV model with these characteristics, it incurs a sunk cost;

otherwise, it pays nothing.

Each draw of vehicle characteristics for a given period is made from the convex hull

of characteristics observed in the data from EVs in the next period. The convex hull is

intended to capture the characteristic space that firms can potentially draw from, given the

state of technology at a given period. I infer this space using characteristics observed from
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Figure 8.1: The figure plots the k-density plots of the various characteristics that are inde-
pendently drawn. Each set of characteristics drawn represent an EV draw for given firm and
year from their respective convex hull. 100 draws are iterated for each firm-year.

EVs in the next period. It encloses the set of possible combinations of these attributes,

defining the boundary within which firms can introduce new EV models based on observed

characteristics.

The decision to introduce an EV depends not only on market structure, such as the

availability of charging stations, and competition, such as the number of competing products

or the risk of cannibalization, but also on the quality of the characteristic draw itself. If the

characteristic draw a firm makes has a lower realization of say battery range, it exasperates

the issue of range anxiety and therefore, potentially inhibiting it from introducing a new

model of EV with that realization. Alternatively, if a firm makes a really good draw, it
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Figure 8.2: The figure plots the k-density plots of the various characteristics that are inde-
pendently drawn by year. Each set of characteristics drawn represent an EV draw for given
firm and year from their respective convex hull. 100 draws are iterated for each firm-year.

improves its chances of introducing the new EV model with that draw. To evaluate the

relative likelihood with which firm introduces a new EV model across different time periods,

it is informative to solve for the probability of model entry across a multiple draws of vehicle

characteristics, which is what I proceed to conduct in this section.

In this counterfactual exercise, given convex hull as defined earlier, I allow each firm to

make 100 characteristic draw each year. Given we evaluate behavior of 15 firms over a period

of 10 years, allowing each firm to make 100 characteristic draw each year renders us with

15000 vehicle draws. In Figure 8.1, I plot the k-density curves of the individual characteristics
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that are realized as part of the independent vehicle draws. These characteristics include

Mileage, Battery Range, Area Spanned, and Horsepower/Weight. Figure 8.1 presents the

k-density for values of characteristics that are realized across all the years.

To illustrate how vehicle characteristic draws differ across years, Figure 8.2 presents kernel

density (k-density) curves for individual characteristics realized as part of the independent

vehicle draws specific to each year covered in the analysis. These characteristic draws are

representative of the respective convex hulls from which they are drawn, and changes in

the set of vehicle characteristics available to firms can be inferred by evaluating how the

k-density curves for each characteristic—including Mileage, Battery Range, Area Spanned,

and Horsepower/Weight—evolved over time. The year-wise plots indicate that while mileage

and the area spanned by vehicles remained relatively stable across years, the battery range

of EVs consistently improved year after year, as did the horsepower-to-weight ratio.

In this counterfactual exercise, under the assumption of perfect foresight, I allow each

firm at given year to make 100 iterations of a vehicle draw at random, and calculate the

probability of introducing a new EV for each of those draw. The steps to conduct the

exercise are as follows:

1. For each firm and time, make a random draw of vehicle characteristics from the relevant

convex hull of characteristics.

2. Calculate the choice specific value functions under both entry as well no entry with

respect to the draw made.

3. The choice-specific value functions can be calculated for each choice as

v(aeo|Mo,t) = π(aeo,Mo,t) + β{EP iΦ}λ∗

where λ∗ is the set of coefficients that approximate value function at conditional choice

probabilities that show convergence.
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Figure 8.3: The figure provides the scatter plot of the probability of introducing a new EV
model across 100 product draws for each firm for the period 2010-2019.

4. Calculate the probability of entry with new EV model for a given draw as

P
′

o,t =
ev(1|Mo,t)

ev(1|Mo,t) + ev(0|Mo,t)

5. Repeat the exercise 100 times for each firm at a given time and record each realization

of P
′
o,t.

The objective of this exercise is to evaluate the probability of entry into a new EV model

by each firm in each year for a range of product draws evaluated at the set of coefficients that

approximate the value function. By estimating the probability of entry for a range of product

draws, I aim to provide a description of each firm’s relative likelihood of introducing a new

EV, by covering a range of vehicles draw they could have potentially made. The number of

EVs available to be purchased from has improved over the years. However, that is not the

same as the likelihood of EV entry to have improved. It becomes to crucial to know as the
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Figure 8.4: The figure provides the scatter plot of the probability of introducing a new EV
model across 100 product draws for each firm for the period 2010-2019. The figure labels
the estimates separately for Tesla and the rest

EV landscape within the United States have changed over the years, which firms’ likelihood

to introduce a new EV have improved, remained the same or even declined.

In Figure 8.3, I present estimates of the probability of introducing a new EV model

for all firms across the years 2010–2019, iterated across 100 independent draws of vehicle

characteristics for each firm-year. Several interesting patterns emerge from this figure. First,

in the early two-thirds of the period, there is a sizable gap in the likelihood of EV entry,

which worsens over time. Second, towards the latter part of the decade, this gap in EV entry

likelihood disappears. Third, for many firms, the likelihood of EV entry does not appear to

change significantly over the period.

In Figure 8.4, I separately label the probability estimates for Tesla and the rest of the

firms. This figure suggests that both the initial widening gap and the subsequent convergence

in entry probability are driven, in part, by Tesla’s changing likelihood of model entry during
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this period. Tesla’s probability of introducing a new EV increased between 2010 and 2016,

peaking in 2016 before subsequently declining. The figure also indicates that for non-Tesla

firms, the likelihood of EV entry has remained relatively stable, with some firms showing

improvement, though never to the extent of surpassing Tesla’s likelihood.

In Figure 8.5, I report the scatter plot for all firms, excluding Tesla. Visualizing the

figure, some interesting patterns emerge. At the period of inception of EV, in 2010, all firms

are equally likely to introduce an EV. However, they slowly begin diverging as the years

progress. BMW shows an increasing trend in probability from 2010 to 2015, after which it

stabilizes at a higher level. Ford and Honda indicates a decline in probability over time,

suggesting reduced interest or feasibility in introducing new EV models. General Motors

and Tata exhibits an increasing probability over time, particularly post-2015, suggesting a

stronger commitment to EV development. Geely, on the other hand, maintains a relatively

stable probability across the years with minor variations. Given these non-Tesla firms are

subject to the same network of station availability, and the exercise simulates vehicle draw

from the same pool, the contrast across firms’ likeliness in introducing EV potentially has

to do with considerations of cannibalization. Overall, the figure highlights the heterogeneity

among non-Tesla firms in entering the EV market. Some firms have increased their likelihood

of EV entry over time, while others have remained stable or declined.

8.2 Station build-out

In this section, I use the estimated model parameters to evaluate the impact of a large-scale

national policy aimed at expanding the network of charging stations across the United States.

The counterfactual exercise involves a full model simulation from 2010 to 2019, assuming

that all NEVI funds were exhausted in 2010 to build charging stations at the time of EV

introduction. To estimate the number of charging stations resulting from the state-wise

allocated spending, I use engineering estimates from the Idaho National Laboratory (INL),
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Figure 8.5: The figure provides the scatter plot of the probability of introducing a new EV
model across 100 product draws for each of the non-Tesla firms for the period 2010–2019.
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Figure 8.6: The figure reports the imputed number of stations built from respective state’s
NEVI allocations. The number of charging stations are imputed using engineering estimates
from Idaho National Laboratory (INL) at its upper bound at $2.03 million.

which places the upfront cost of a charging station between $0.38 million and $2.03 million.

Assuming the upper bound of $2.03 million per station, I impute the number of resulting

stations. The policy shock I introduce for this counterfactual exercise assumes that these

imputed stations were built as an unanticipated shock in 2010 across the respective states.

Figure 8.6 illustrates the number of stations assumed to have been built as a shock in various

U.S. states in 2010. The state-wise allocation in total $ value is listed in Figure 3.3.

The steps I follow to conduct this counterfactual exercise are as follows:

1. Assume each US state receives their allocated number of stations from NEVI as a shock

in 2010. These would be the number of stations as reported in Figure 8.6.

2. Each firm makes their respective draw of EV characteristics which I treat as public
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information.

3. Given the state as observed at current period, supply of third party stations next

period is exogenously determined. I used the observed relationship between evolution

of third-party charging stations and state variables to determine this relationship and

assume the relationship stays the same with the new stations being built as shock. I

detail how I capture this relationship in Chapter 8.2.1.

4. I calculate the choice specific value function under both entry and not for each firm.1

5. For each firm, I simulate 100 draws of payoff shocks for both entry as well as non-entry

and take the average of the payoff shocks. A firm enters with a new EV with the

characteristics it drew iff

ν(ae = 1) + ϵ̄(ν(ae = 1)) > ν(ae = 0) + ϵ̄(ν(ae = 0))

6. As time period progresses to t+1, introduced EVs are added to the set of vehicles

available, third party stations evolve following the relation as estimated, and tesla

stations are maintained depending on Tesla’s decision to enter with a new model or

not. The other state variables modify as observed.

7. At t+1, the process repeats from Step 2.

8.2.1 Third-Party Supply of Charging Stations

A lump-sum build-out of charging stations across all U.S. states not only elicits reaction from

both consumers and firms, but will also lead to changes in the supply of other third-party

charging stations. In this model, give how firms, that are forward-looking agents maximizing

1To account for expectations of behavior of other firms, I take the probability of entry estimated from
the first stage OLS I conducted during estimation, with values of state variables being noted as those in
counterfactual.
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lifetime profits, will internalize these changes in their respective decisions. Therefore, it be-

comes crucial to provide a robust characterization of third-party stations evolve. To provide

an accurate representation of how the market would evolve as a result of the stations built

as part of the shock, it is essential to track how other third-party charging stations develop,

given that firm and consumer behavior depend on this evolution.

To provide a characterization of the evolution of third-party charging stations, I estimate

a policy function predicting third-party charging stations as a function of certain state vari-

ables. Firms take this policy function into consideration when forming expectations about

the availability of charging stations in the next period. During estimation, I assumed perfect

foresight with respect to third party charging stations, as the “true” policy function would

ideally predict the next period’s station availability based on the current state. For estima-

tion purposes, this would simply involve using the observed data. However, since the scope of

the counterfactual exercise extends beyond the existing data, constructing a policy function

becomes necessary to meaningfully estimate firms’ reactions to the anticipated changes in

the market.

To predict the supply function of third-party charging stations, I fit an exponential decay

model that predicts the next period’s number of third-party charging stations relative to the

number of gas stations in a given region in a given year as a function of current state variables.

For the purposes of reasonably bounding the prediction of next year’s availability of charging

stations, I assume number of charging stations in a given state to be always bounded above

by the number of gas stations, i.e. charging stations never exceed the number of gas stations

in a given state. Using data available on availability of charging and gas stations, gas and

electricity prices, and availability of EV and non-EV models from 2010-20,2 I try to estimate

the following equation:

Yd,t+1 = 1− exp−(β0+β1Yd,t+
∑

z βzzd,t) (8.1)

2I additionally use the data for 2020 to fit this policy function. The rest of the analyses restricts data
usage from 2010-2019.
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Table 8.1: Estimated Coefficients of the Model Predicting Third-Party Station Availability

Variable Coefficient
Intercept -0.0289

( 0.0530)
# of 3rd party charging stations

# of gas stations
1.2748***

( 0.0642)

(# of 3rd party charging stations
# of gas stations

)2 0.8773***

( 0.1800)
# of Tesla charging stations

# of gas stations
0.2191

( 0.1649)

(# of Tesla charging stations
# of gas stations

)2 0.6774

( 1.1615)
Electricity Price -0.0032**

( 0.0015)
(Electricity Price)2 0.0002***

( 0.0001)
Gas Price 0.0250

( 0.0370)
(Gas Price)2 -0.0022

( 0.0066)
# of EV models
# of all models

-1.0140**

( 0.4102)

(# of EV models
# of all models

)2 16.9764**

( 7.0483)

Note: This table presents the estimated coefficients
of the policy function predicting the supply of third-
party charging stations relative to gas stations. Stan-
dard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗

p < .01

where Yd,t+1 is the next period’s availability of third-party charging stations relative to

gas stations in region d, predicted as a function of its current value and other state variables

represented with z. The state variables included within z are gas prices, electricity prices

and share of vehicles offered that are battery EVs.

In this model, I normalize the availability of the charging stations relative to gas stations,

which I assume to be fixed as observed in data. The normalization of charging stations

relative to gas stations provides a suitable benchmark by relating the availability of charging

stations to the existing infrastructure for gas stations, which serves as a proxy for the overall
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capacity and network availability need for each state. By fitting a variation of the exponential

decay function, I ensure that model does not explode and predicts the number of charging

station in limit to be equal to the number of gas stations. The functional form I use to

fit the policy function to predict next year’s availability of charging station in Equation

8.1 is an exponential decay function. The exponential decay form captures diminishing

returns, which is relevant in in charging station build-out. As the network of charging

stations becomes less sparse, additional stations contribute less to the network, yielding

progressively smaller benefits. This behavior is naturally modeled by the exponential decay

function, which approaches an upper limit, which is in this model I predict to be bounded by

the number of gas stations. Table 8.1 provide the variables that used to fit the exponential

decay model including their respective coefficients. To evaluate how the estimated policy

function performs in predicting number of third-party charging stations against the actual

number of charging stations as observed in data, I plot the prediction v/s actual data.

Figures D.1 and D.2 plot the predicted number of charging stations against against data for

the top and bottom 20 states in terms of existing network of charging stations, respectively.

From the figures, I infer the policy function as described in this section captures non-linearity

as is observed for how charging stations proliferate. The policy function is more stable in

prediction as the number of station grows, which serves to my purpose since the policy shock

evaluated is a sizable expansion of charging station network.

8.3 Simulation Results from NEVI build-out

Running the full sequence of model simulations, given the large-scale station build-out from

NEVI between 2010 and 2020, indicates a sizable increase in the number of EV models

offered by firms. In Figure 8.7, I use a grid plot to indicate whether each firm chooses to

enter with a new EV model in a given year. The model simulation begins in 2010, the first

year in which a firm can decide to introduce a new EV model in the following period.

86



20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

BMWGroup

DaimlerAG

FordMotorCompany

Geely

GeneralMotors

Honda

HyundaiMotorGroup

Mazda

Renault-Nissan-MitsubishiAlliance

Stellantis

Subaru

TataMotors

Tesla

Toyota

VolkswagenGroup

Figure 8.7: The figure presents the grid plot to indicate entry by made by each firm or not
in a given year between 2011-2020, inferred from the counterfactual exercise. In the figure,
each black block indicates entry whereas a blank space indicates no entry. A new model
being introduced in a given year is based upon the decision made by the respective firm the
year before. In counterfactual simulation, I predict 56 new models of EV being introduced
during the period 2011-2020, compared against 22 in observed data.

The results indicate that a majority of firms choose to introduce a new EV model early in

the simulation, likely motivated by the large-scale station build-out, which addresses range

anxiety, as well as price incentives provided by the tax credit in place. Entry slows in

the following years but sees a surge in 2014 and 2015, possibly due to improvements in EV

technology and increasing competitive pressure. Entry then declines in 2016 and 2017 before

picking up again in 2018 and 2019. This simulation, as presented in this thesis, highlights

the impact of NEVI—a policy that establishes a large-scale charging station network across

the United States—in significantly increasing the number of EV models offered. The number

of models more than doubles, rising from 22 in the observed data to 56 in the counterfactual

scenario.
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(a) Total EV sales compared against the total
sales of all vehicles.
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(b) Percentage of battery-operated EV sales
compared to total vehicle sales.

Figure 8.8: Comparison of EV sales trends: absolute sales (left) and percentage of total ve-
hicle sales (right), given the counterfactual exercise. EV sales grow steadily due to increased
charging infrastructure, expanded model offerings, and federal and state purchase subsidies.

Driven by an increase in the number of charging stations addressing range anxiety, a

growing variety of EV models offering greater differentiation, and a range of purchase subsi-

dies provided by both federal and state authorities, the counterfactual experiment indicates

that EV sales have grown steadily—not only in absolute terms but also relative to total

vehicle sales. In Figure 8.8a, I plot the predicted number of total vehicle sales alongside

EV sales. Overall vehicle sales increase during this period as the number of both EV and

non-EV models grows. However, in Figure 8.8b, I plot EV sales as a percentage of total

vehicle sales. The percentage of EV sales rises significantly over time, indicating that EVs

are steadily replacing internal combustion engine (ICE) vehicles. This trend confirms the

effectiveness of the policy in addressing environmental concerns.

To highlight how respective firms contribute to the rise in EV sales between 2011 and

2020, I depict their sales in a stacked bar chart in Figure 8.9. An immediate observation

is that there are no obvious market leaders in EV sales within the counterfactual exercise

as presented. Firms such as Toyota, Volkswagen, Honda, Ford, and General Motors lead in

EV sales and their respective ranks are shuffled over time. In contrast to the dominance in

EV sales as observed in data, Tesla exhibits inferior sales compared to the aforementioned

firms but demonstrates steady, albeit modest, growth. This suggests that a policy subsidiz-
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Figure 8.9: The figure provides the stacked bar chart of expected sales of EVs, given the
counterfactual exercise, breaking it down by make between the years 2011-2020.

ing station build-out across all firms incentivizes broader market entry, leading to a more

competitive EV landscape where sales are expedited across firms, but at the cost of Tesla’s

market power.

The station build-out program not only initiates a flurry of product entry from firms but

leads to further expansion of the charging network itself, which leads to more entry over

time. Given the estimation of the supply function of third party stations as an exponential

decay function of certain state variables, I am able to predict its evolution in each state as I

simulate the entire model. In Figure 8.10, I present how the network of third-part charging

stations evolve. The model simulation also involves solving for Tesla’s decision to maintain

charging stations in each state. Combining the values, in the same figure I also present how

the network of Tesla charging stations evolved and compare the two contrasting evolution in

the counterfactual exercise and evaluate how different it is compared to the actual evolution
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Figure 8.10: The figure represents the evolution of third-party charging station as well as
the evolution of Tesla charging stations in the counterfactual exercise.

(Figure 3.1. The evolution of third-party charging stations in counterfactual follow a similar

pattern to actual data but have scaled bigger. The shape being as preserved as observed in

data is a result of estimating the supply of third-party charging stations. What is startlingly

different from data is how relatively small Tesla’s network is. Although Tesla’s network

does grow over time, on account of increased competition, it is only a tiny fraction of the

overall size of the third-party charging network, and therefore does not contribute much to

its overall market power, reconciling its modest sales in the counterfactual estimation. I

record the state-wise evolution of the network in charging stations in Figure F.1 and F.2.
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Chapter 9

Conclusion

The transition from gas-powered to electric vehicles remains a critical concern for contem-

porary environmental policy. Despite a range of federal and state-level policies subsidizing

EV purchases over the past decade, EV sales accounted for only 9% of all new vehicle pur-

chases in 2024.1 Anecdotal evidence suggests that range anxiety—stemming from the limited

availability of charging stations—remains a key deterrent to greater EV adoption. Tesla’s

relatively success in this segment is related to the exclusive charging network it provides

to its users. In addition, recent policy initiatives aimed at accelerating EV adoption, such

as the National Electric Vehicle Infrastructure (NEVI) Formula Program, actively address

range anxiety by promoting the nationwide charging infrastructure.

In this thesis, I model and estimate a forward looking game of entry in new EV models

by auto-manufacturers within the US. Additionally, to account for Tesla’s unique product

positioning, I allow Tesla to maintain exclusive charging stations in each US state. Using

micro-data on purchase patterns from a nationally representative sample of households, I

find range anxiety to be a key factor negatively impacting a household’s utility from the

purchase of a new vehicle. Given the complementarity between the size of the charging

network available to a consumer and their utility from operating an EV, increasing the

1See: U.S. share of electric and hybrid vehicle sales reached a record in the
third quarter, U.S. Energy Information Administration, December 4, 2024, available at
https://www.eia.gov/todayinenergy/detail.php?id=63904
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availability of charging stations drives greater adoption of EVs by consumers, encouraging

firms to enter the market with newer varieties of EVs, leading to a compounding effect on

sales, driven by both the increase in charging stations and the expansion of available models.

Another dimension to evaluate in this context is competition from gas vehicles. Despite the

size of charging network improving, firms on account of concerns of cannibalization of sales

into their existing gas vehicles, might potentially choose to avoid introducing a new EV.

Analysis from the demand side shows that as the charging station network expanded

over the years, the compensating variance with respect to both the number of stations and

increased travel requirements declined in absolute value. Since Tesla users had access to a

larger network due to the additional Tesla-exclusive stations, their compensating variances

in both dimensions were smaller than those of non-Tesla users. This suggests that while an

increase in charging stations improves overall utility, the marginal value of each additional

station diminishes. A publicly funded charging station expansion reduces Tesla’s market

power and makes it less competitive. On the other hand, expansion of charging network

benefits other firms that may have previously been deterred from entering the market due

to concerns about cannibalization.

Using the model primitives as estimated, I engage in a counterfactual exercise where I

allow firms to make random draws of characteristics of EVs and evaluate their relative likeli-

hood of entry. Between the period 2010-2019, the likelihood on entry of Tesla is consistently

higher than the rest. For non-Tesla firms, early entry likelihoods are similar, but over time,

their paths diverge with some firms increasing their likelihood and some reducing over time.

To evaluate how a large scale national project to build stations, in another counterfactual

exercise, I conduct a full model simulation between 2010-2020 and find a large supply shock

in stations to greatly boost EV models being offered, subsequent stations being built as well

as the resulting sales. A substantial expansion of third-party charging infrastructure dimin-

ishes the value of exclusive charging access, impacting Tesla’s market power and leading to

a more attractive and equitable EV landscape. As a result, EV adoption accelerates, driven
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by early entry by most firms and market leadership becomes more evenly distributed among

firms.
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Appendix

A Accounting Price Derivatives

Accounting for price derivatives is not straightforward given the exposition as presented in
this thesis. First, The demand system as presented in this thesis follows a nested structure,
households first decide as to whether or not they wish to be in the market for the purchase
of new automobiles and if so, they subsequently choose the vehicle that maximizes their
utility. Second, I integrate the expected demand at the household levels over the distribution
of households accounting for their respective locations, incomes and travel requirements.
Therefore, any price derivative aggregated at the national level which firms take into account
their price settings need to also integrate derivatives accounted for at the household level.
I present the formulation of own-price derivation of demand in A.1 and the formulation of
cross-price derivation of demand in A.2.

A.1 Own-Price Derivative of Demand

From Equation 5.5, demand for household i’s demand for vehicle j at time t is

sijdt =
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)︸ ︷︷ ︸

Probability HH i goes to the inside

1× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)︸ ︷︷ ︸
‘xtProbabilityibuysjonceinside

Take the derivative of sijdt with respect to price of vehicle j at time t

∂

∂pjt
sijdt =

∂

∂pjt

[
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

]
× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

× ∂

∂pjt

[
exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

]

=

[
∂

∂pjt
(exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K))

{1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)}2

]
× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

×

[
( ∂
∂pjt

exp(Vijdt))(
∑

j′ϵJt
exp(Vij′dt))− exp(Vijdt)

∂
∂pjt

(
∑

j′ϵJt
exp(Vij′dt))

{
∑

j′ϵJt
exp(Vij′dt)}2

]

From our equation specification 5.1, we know that ∂
∂pjt

Vijdt = α 1
Yi

and ∂
∂pjt

Vij′dt = 0, for

vehicle j′ different from vehicle j. Continuing the simplification of the derivative of sijdt with
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respect to pjt

∂

∂pjt
sijdt =

(exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K))× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

× α
Yi

{1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)}2

× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

× α

Yi
× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

[
1− exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

]

Referring to equation 5.5 that defines sijdt, its derivative with respect to pjt can be further
simplified as

∂

∂pjt
sijdt =

α

Yi
× sijdt ×

1

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)

+
α

Yi
× sijdt ×

[
1− exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

]

=
α

Yi
× sijdt ×

[
1− exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

{
1− 1

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)

}]

=
α

Yi
× sijdt ×

[
1− exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

×
exp(ln(

∑
j′ϵJt

exp(Vij′dt)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)

]
=
α

Yi
× sijdt × [1− sijdt]

Given the formulation of aggregate demand, as per Equation 5.6, the own-price derivative
of aggregate demand can be written as

∂

∂pjt
Sjt =

∂

∂pjt

∫
sijdtdG(I)

=

∫
(
∂

∂pjt
sijdt)dG(I)

=

∫
(
α

Yi
× sijdt × (1− sijdt))dG(I)

A.2 Cross-price Derivative of Demand

From Equation 5.5, demand for household i’s demand for vehicle j at time t is

sijdt =
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)︸ ︷︷ ︸

Probability HH i goes to the inside

1× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)︸ ︷︷ ︸
Probability i buys j once inside
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Take the derivative of sijdt with respect to price of another vehicle k at time t

∂

∂pkt
sijdt =

∂

∂pkt

[
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

]
× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

× ∂

∂pkt

[
exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

]

=

[
∂

∂pkt
(exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K))

{1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)}2

]
× exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

×

[
( ∂
∂pkt

exp(Vijdt))(
∑

j′ϵJt
exp(Vij′dt))− exp(Vijdt)

∂
∂pkt

(
∑

j′ϵJt
exp(Vij′dt))

{
∑

j′ϵJt
exp(Vij′dt)}2

]

=

(exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K))× exp(Vikdt)∑

j′ϵJt
exp(Vij′dt)

× α
Yi

{1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)}2

× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)

+
exp(ln(

∑
j′ϵJt

exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

×

[
0− exp(Vijdt)× exp(Vikdt)× α

Yi

{
∑

j′ϵJt
exp(Vij′dt)}2

]

=
α

Yi
× sikdt

{1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)}

× exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)

− α

Yi
× sikdt ×

exp(Vijdt)∑
j′ϵJt

exp(Vij′dt)

=
α

Yi
× sikdt ×

[
exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

(
1

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

− 1

)]

=
α

Yi
× sikdt ×

[
exp(Vijdt)∑

j′ϵJt
exp(Vij′dt)

( −exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

1 + exp(ln(
∑

j′ϵJt
exp(Vij′dt)) +K)

)]
= − α

Yi
× sikdt × sijdt

Given the formulation of aggregate demand, as per Equation 5.6, the cross-price derivative
of aggregate demand can be written as

∂

∂pkt
Sjt =

∂

∂pkt

∫
sijdtdG(I)

=

∫
(
∂

∂pkt
sijdt)dG(I)

=

∫
(− α

Yi
× sikdt × sijdt)dG(I)
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B Polynomials used to approximate Value Function

According to the Stone-Weierstrass Theorem, any continuous function can be approximated
arbitrarily well by a uniform series of polynomials. However, while the theorem guarantees
the existence of such an approximating polynomial sequence, it does not construct or specify
this sequence explicitly. The task of identifying a suitable polynomial approximation is left to
the economist. In this thesis, I approximate the value function using first- and second-degree
Chebyshev polynomials of the relevant state variables. Chebyshev polynomials are particu-
larly useful due to their favorable numerical properties, including their ability to minimize
the Runge phenomenon, which can cause large oscillations in polynomial approximations of
high degree.

The ideal polynomial approximation, in a uniform sense, is the minimax polynomial,
which provides the best uniform approximation of a given degree within the class of poly-
nomials. By definition, the minimax polynomial minimizes the maximum deviation from
the true function over the entire state space. However, computing the minimax polynomial
is computationally challenging, as it requires solving a global minimization problem across
all points in the state space. Instead, I use least-squares Chebyshev approximation, which
offers a close approximation to the minimax solution while being significantly easier to com-
pute. Least-squares Chebyshev approximation optimally distributes approximation errors in
a least-squares sense, making it a practical and effective alternative for approximating the
value function in dynamic economic models.

Chebyshev polynomials are a special class of orthogonal polynomials that play a crucial
role in approximation theory and numerical analysis. They are orthogonal over the interval
[−1, 1] with respect to the weight function 1√

1−x2 , making them particularly well-suited for
interpolation and function approximation. These polynomials are defined using a trigono-
metric representation:

Tn(x) = cos(n · arccos(x))

This definition leads to the recursive structure of Chebyshev polynomials, which can be
expressed as:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

Tn+1(x) = 2xTn(x)− Tn−1(x).

This recurrence relation makes it computationally efficient to generate higher-order Cheby-
shev polynomials. Moreover, the derivatives of Chebyshev polynomials also follow a recursive
pattern, which facilitates their use in numerical differentiation and spectral methods:
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Table B.1: State Variables Used in Value Function Approximation

Firm-Specific Variables

- Number of EVs in the firm’s existing portfolio

- Number of competing EVs

- Number of non-EVs in the firm’s existing portfolio

- Number of competing non-EVs

Vehicle Characteristics

- Mean, median, and standard deviation (sd) of the following for the firm’s port-
folio:

· Horsepower-to-weight ratio
· Mileage for EVs

· Mileage for non-EVs

· Area spanned

· Battery range

- Mean, median, and sd of the following for all competing products:

· Horsepower-to-weight ratio
· Mileage for EVs

· Mileage for non-EVs

· Area spanned

· Battery range

Energy Prices

- Percentiles (10th, 25th, 50th, 75th, 90th) of gas prices across all U.S. states

- Percentiles (10th, 25th, 50th, 75th, 90th) of electricity prices for transportation

Charging Infrastructure

- Number of relevant charging stations in each U.S. state × Median battery range

Household Demographics

- Population in each U.S. state

Policy Variables

- State-wise subsidy on EV

- National eligibility on EV
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T ′
0(x) = 0,

T ′
1(x) = 1,

T ′
n+1(x) = 2Tn(x) + 2xT ′

n(x)− T ′
n−1(x).

Chebyshev polynomials are particularly useful for function approximation due to their
min-max property, which ensures that they provide near-optimal polynomial approximations
with minimal maximum error. For the full list of state variables whose first and second order
polynomials are used in the approximation of value function, refer to Table B.1.
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C Hessian Matrix of Dynamic Parameters

To estimate the standard error for the dynamic parameters the maximize the likelihood
of data as observed, I analytically solve for the variance-covariance matrix of θ∗, which is
calculated as the inverse of the Information matrix, which in turn is the negative of the
expected value of the Hessian matrix of the log-likelihood function with respect to θ∗. The
log-likelihood function given θ∗ for the set of data covering N observations can be represented
as:

lnL(θ∗) =
N∑
i=1

lnLi(θ
∗) (C.1)

The likelihood for each observed data point for a given firm and time period represents
the probability with which they would introduce a new EV model in the market. Given the
approach I adopt to rationalize the forward-looking game that is characteristic of this model,
the likelihood of model entry for a given firm-period can be calculated by comparing the
conditional choice value functions with respect to entry v/s not. Both the conditional choice
value functions with respect to entry v/s not is calculated as the sum of the respective flow
payoffs and the discounted conditional value function approximated as a linear combination
of polynomials using the set of coefficients calculated at equilibrium beliefs. The likelihood
for a data-point for given firm-time can be represented as:

Li(θ
∗) =

exp(v(ae = 1|Mo,t, θ
∗))

exp(v(ae = 1|Mo,t, θ∗)) + exp(v(ae = 0|Mo,t, θ∗))

=
exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

(C.2)

The above representation generalizes the formulation of likelihood for both Tesla as well as
non-Tesla firms. Given Tesla’s unique position to also provide stations exclusive to its users,
Tesla incurs the cost of maintaining stations respective to path differential. The indicator
variable I(Tesla) indicates that the related term is only applicable for Tesla and not other
firms, with N e representing the set of stations built under entry and Nne representing the
set of stations built under no entry. Before I analytically solve for the Hessian matrix of the
log-likelihood function at the equilibrium values of the dynamic parameter, it is convenient
to derive the first order derivative of the likelihood expression as shown in Equation C.2 with
respect to sunk cost of product entry, τ .
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∂Li

∂τ
=

∂

∂τ

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

=
−1× exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

+

[
exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

]2

= −L(1− L)

(C.3)

The first order derivative of the likelihood expression with respect to the fixed cost of
maintaining a Tesla station, τ̃ can also be solved for.

∂L

∂τ̃
=

∂

∂τ̃

exp(π̃ − τo − τ̃N e + βϕeλ∗)

exp(π̃ − τo − τ̃N e + βϕeλ∗) + exp(π̃ − τ̃Nne + βϕneλ∗)
.I(Tesla)

=
{ −N eexp(π̃ − τo − τ̃N e + βϕeλ∗)

exp(π̃ − τo − τ̃N e + βϕeλ∗) + exp(π̃ − τ̃Nne + βϕneλ∗)

+
exp(π̃ − τo − τ̃N e + βϕeλ∗){N eexp(π̃ − τo − τ̃N e + βϕeλ∗)}
[exp(π̃ − τo − τ̃N e + βϕeλ∗) + exp(π̃ − τ̃Nne + βϕneλ∗)]2

+
exp(π̃ − τo − τ̃N e.+ βϕeλ∗){Nneexp(π̃ − τo − τ̃Nne + βϕeλ∗)}

[exp(π̃ − τo − τ̃N e + βϕeλ∗) + exp(π̃ − τ̃Nne + βϕneλ∗)]2
}
.I(Tesla)

= [−N eL+ L{N eL+Nne(1− L)}] .I(Tesla)

= (Nne −N e)L(1− L).I(Tesla)

(C.4)
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Given the formulation of the likelihood function as presented in C.2, the log-likelihood
function can be updated as

lnL(θ∗) =
N∑
i=1

lnLi(θ
∗)

=
N∑
i=1

ln{ exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)
}

=
N∑
i=1

{ln(exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗))

− ln(exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗))}

=
N∑
i=1

{π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗

− ln(exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗))}

(C.5)

Taking the derivative of the log-likelihood with respect to the sunk cost of model entry

∂lnL(θ∗)

∂τ
=

1

∂τ

N∑
i=1

lnLi(θ
∗)

=
N∑
i=1

{−1

+
exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)
}

= −N +
N∑
i=1

Li(θ
∗)

(C.6)
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Taking the derivative of the log-likelihood with respect to the fixed cost of maintaining
stations

∂lnL(θ∗)

∂τ̃
=

∂

∂τ̃

N∑
i=1

lnLi(θ
∗)

=
N∑
i=1

{−N e.I(Tesla)

+

[
N e.I(Tesla)exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

]

+

[
Nne.I(Tesla).exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

exp(π̃ − τo − τ̃N e.I(Tesla) + βϕeλ∗) + exp(π̃ − τ̃Nne.I(Tesla) + βϕneλ∗)

]
}

=
N∑
i=1

{(−N e +N eL+Nne(1− L)).I(Tesla)}

(C.7)

Now that we have the analytical solution of the first order derivatives of the log-likelihood
functions with respect to our dynamic parameters θ∗ = (τ, τ̃), as presented in Equations C.6
and C.6, deriving the Hessian matrix is relatively straightforward. Given there are two
dynamic parameters that characterize the model, the Hessian would be a 2× 2 matrix. The
diagonal elements would correspond to taking double derivative of the log-likelihood function
with respect to the individual parameters. The non-diagonal term corresponds to the cross-
derivatives of the two parameters. Using the formulations as presented from Equations (C.1)
- (C.7), individual elements of the Hessian can be derived as:

∂2lnL(θ∗)

∂τ 2
=

∂2

∂τ 2

N∑
i=1

lnLi(θ
∗)

=
∂

∂τ

[
−N +

N∑
i=1

Li(θ
∗)

]

=
N∑
i=1

[−Li(θ
∗)(1− Li(θ

∗))]

(C.8)
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∂2lnL

∂τ̃ 2
=

∂2

∂τ̃ 2

N∑
i=1

lnLi(θ
∗)

=
∂

∂τ̃

N∑
i=1

{(−N e +N eLi(θ
∗) +Nne(1− Li(θ

∗)).I(Tesla)}

=
N∑
i=1

(N e −Nne)
∂Li(θ

∗)

∂τ̃
.I(Tesla)

= −
N∑
i=1

{(N e −Nne)2.Li(θ
∗)(1− Li(θ

∗)}.I(Tesla)

(C.9)

∂2lnL

∂τ∂τ̃
=

∂2

∂τ̃∂τ

N∑
i=1

lnLi(θ
∗)

=
∂

∂τ

N∑
i=1

{(−N e +N eLi(θ
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D Evaluating evolution of Third-Party Stations

To evaluate how the estimated policy function performs I plot the predicted number of
third-party charging stations against the actual number of charging stations as observed in
data. Proliferation of network of charging stations follows a non linear pattern, indicating
sluggish growth in early years, followed by a rapid growth and then again followed by sluggish
progression towards a potential saturation point. Figures D.1 and D.2 plot the predicted
number of charging stations against against data for the top and bottom 20 states in terms
of existing network of charging stations, respectively. From the figures, I infer the policy
function as described in this section captures non-linearity as is observed for how charging
stations proliferate. The policy function is more stable in prediction as the number of station
grows, which serves to my purpose since the policy shock evaluated is a sizable expansion of
charging station network.
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Figure D.1: The figure reports the predicted number of third-party charging stations from
the policy function estimated above and compares against the data. This figures reports the
prediction and compares against the true numbers for the top 20 states in terms of existing
network of charging stations.

110



0

2

4

6

8

10

12

SD

0

5

10

15

20

ND

0

5

10

15

20

25
MS

0

5

10

15

20

25
AK

0

5

10

15

20

25

30
MT

0

5

10

15

20

25

30

35

40
AR

0

5

10

15

20

25

30

DC

0

5

10

15

20

25

30

35
NE

0

5

10

15

20

25

30

35

WY

0

10

20

30

40

50

NM

0

5

10

15

20

25

30

35
DE

0

10

20

30

40

50

LA

0

10

20

30

40

WV

0

10

20

30

40

50

ID

0

10

20

30

40

50

60

RI

0

20

40

60

80

IA

2012 2014 2016 2018 2020
0

10

20

30

40

50

60

70

80

KS

2012 2014 2016 2018 2020

10

20

30

40

50

60

70
NH

2012 2014 2016 2018 2020
0

20

40

60

80

100

120
NV

2012 2014 2016 2018 2020

10

20

30

40

50

60

70

80
AL

Figure D.2: The figure reports the predicted number of third-party charging stations from
the policy function estimated above and compares against the data. This figures reports the
prediction and compares against the true numbers for the top 20 states in terms of existing
network of charging stations.

111



E Estimating Marginal Costs of New EVs

To solve for the Bertrand Nash pricing game within the model presented in this thesis, it is
necessary to have the respective marginal costs. In Section 8.2, we simulate the full model
dynamics from 2010-2020 given a policy shock that sizably expands the network of charging
station in 2010. Beyond solving for the entry game with firms choosing to enter with a new
EV or not each period, it is also imperative to solve for the pricing sub-game in a given
realization of state. I predict the marginal costs based on the linear relationship of marginal
costs estimated in Section 7.3 and the characteristics of electric vehicles as observed. The
results of the linear regression of marginal costs estimated characteristics as observed is
reported below in Table E.1.

Table E.1: Linear Model Estimating Marginal Costs from Observed Characteristics

Variable Estimate Standard Error

Area 709.21 (5920.49)

Horsepower/Weight 156155.7 (61282.41)

4 Passenger Doors -11944.66 (3494.18)

MPGe -253.47 (44.53)

Battery Range 85.73 (21.58)

Constant 40983.88 (8432.73)

Note: This table presents the estimated coefficients of a linear regression model fitting predicted marginal
costs on vehicle characteristics from data as observed.
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F State-wise Counterfactual evolution of stations

The supply function of third party stations allows me to predict state-wise evolution of
charging stations, concurrently also accounting for other changes the model solves for such
as electric vehicles available, network size of Tesla, etc. In Figure F.1 and F.2, I present
how the network of third-party charging stations evolve in the top 20 and bottom 20 states
given the size of initial NEVI allocation. The model simulation also involves solving for
Tesla’s decision to maintain charging stations in each state. The network of third-party
stations grow consistently in each station over time during the period, preserving the shape
as observed in aggregate data. Tesla’s network does grow over time, on account of increased
competition, it is only a tiny fraction of the overall size of the third-party charging network.
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Figure F.1: The figure provides the predicted evolution of network of charging stations in
top 20 US states as per size of NEVI allocation.
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Figure F.2: The figure provides the predicted evolution of network of charging stations in
bottom 20 US states as per size of NEVI allocation.

114



G Additional Tables and Figures

G.1 Relevant State Variables

t begins
Firms observe

state Mt

State Mt consists of :

Exogenous Variables:
1. Non-EV models

2. Vehicle Characteristics
3. Fuel Prices (Gas & Electricity)

4. Gas stations
5. 3rd party charging stations

6. EV incentives
Endogenous Variables:

1. EV models
2. Tesla Stations

Figure G.1: Relevant State Variables
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G.2 Competition Structure

t begins
Firms observe

state Mt

Choose prices

Choose to introduce
new EV for t+1
(discrete choice)

Tesla chooses to keep stations
in individual US states for t+1

(modeled as a continuous measure)

Product & Station decisions
to modify Mt+1

Non-Tesla stations are
endogenously pre-determined;

Other changes to Mt+1

modeled exogenously

t+1
begins

Firms observe
state Mt+1

Figure G.2: Decision process of firms in period t and transition to t+ 1
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