
 

 

 

 

SOFTWARE ARCHITECTURAL PATTERNS: A PERFORMANCE ANALYSIS 

 

 

 

A Technical Paper submitted to the Department of Computer Science 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science in Computer Science 

 

 

 

 

 

 

By 

Aman Garg 

 

April 28, 2020 

 

Technical Project Team Members 

Vineeth Gaddam, Sai Konuri 

 

 

 

 

 

 

 

 

 

On my honor as a University student, I have neither given nor received unauthorized aid 

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments. 

 

 

 

 

ADVISOR 

Nada Basit, Department of Computer Science 



Software Architectural Patterns: A Performance
Analysis

Nada Basit
Research Supervisor

UVa Department of C.S

Sai Konuri
UVa Class of 2020

B.S. Computer Science

Aman Garg
UVa Class of 2020

B.S. Computer Science

Vineeth Gaddam
UVa Class of 2020

B.S. Computer Science

Abstract—A rise in demand for speed and reliability in
websites has focused performance as a pivotal factor in
the development of applications across the IT industry.
This document is a compare and contrast analysis of how
four different architectural patterns perform with respect
to pre-defined metrics. The architectural patterns under
study are the following: Model-View-controller (MVC),
Layered, Microservice, and Command Query Responsi-
bility Segregation (CQRS). The findings suggest that the
MVC pattern performs the most efficiently for the sample
application used. However, they also suggest that when
considering performance, there are other factors such as
ease of development that are equally as important as
performance.

Index Terms—architecture, performance, metrics

I. INTRODUCTION

The digital world has undergone a revolution and
demand for internet services of all aspects in daily life
have pushed the boundaries of the software industry.
People’s attention spans have dwindled and it is more
important than ever for software businesses to adapt to
such demands from their users [4]. The need for real time
data requires enhancing speed, computational resources,
and distribution. Some methods that the industry has
developed in order to sufficiently meet these demands
include: caching, vertical and horizontal scaling, content
distribution networks (CDN’s), compression, sharding,
etc [4]. These are all effective methods of improving the
performance of an application, but they fail to consider
whether the underlying software architecture could pos-
sibly have an effect on the performance. This is what this
documents aims to explore and find any suggestions that
architecture could be a factor affecting the performance
of thousands of web applications running around the
world.

The team selected four different architectures: MVC
(Model-View-Controller), Layered, Microservice, and
CQRS (Command Query Responsibility Separation).
These are all common patterns used by developers,
which convinced the team to explore them. The applica-
tion that was chosen to be implemented in each of these
architectures separately was a simple textbook catalog
service. This was chosen due to the availability of public

data at the institution. Each architecture used a replica
of the same database in order to ensure that the database
did not have an impact on the performance. The goal of
this compare and contrast analysis of these architectures
is to get more insight on whether an architecture could
potentially impact the performance of an application.

II. ARCHITECTURAL PATTERNS

A software architectural pattern is the layout of a soft-
ware application with respect to both the codebase and
the higher level tools. It helps to define the basic charac-
teristics and behavior of an application [1]. Although it
is common practice in the industry to use architecture
patterns, selecting one that meets the different needs
required by their application is a difficult task. These
requirements include scalability, reliability, development,
and testability [1]. For this research, the team focuses on
the performance needs of an application. Performance
requirements may not seem important at first glance, but
they can negatively impact user experience of a product
which, in turn, can hurt customer trust and brand loyalty.

A. Model View Controller

In the Model View Controller (MVC) architecture,
there primarily exists three main layers; model, view,
and controller. The MVC architecture is mostly used
to develop web-based programs. The three layers are
further described below: [2]

• Model - The logic used to interact with the data.
The model helps in creating, retrieving, and modi-
fying data in the database [2].

• View - Allows the user to interact with the appli-
cation [2].

• Controller - Works with the model layer to deter-
mine which view should be displayed based on the
users requests [2].

The application that was made for the analysis was
developed by utilizing Ruby on Rails, which is a frame-
work that contains structures for web pages and web
services. [3] The chosen database was SQLITE due to
its simplicity (a replica of the same database is used



in the other architectures). While working on the appli-
cation, it was assumed that the application was based
on requirements created by the team and not a client.
The MVC framework could be further explored by using
different frameworks such as Spring MVC, Django, and
ASP.NET, which could potentially have different degrees
of performance and reliability.

B. Layered

In the layered architecture pattern, different compo-
nents are organized into horizontal layers [1]. A typical
layered architecture has 4 layers which are described as
follows:

• Presentation - Handles user interface and browser
communication logic [1].

• Business - Responsible for handling specific busi-
ness rules associated with the request [1].

• Persistence - Responsible for communicating di-
rectly with the database.

• Database - All the data pertaining to the application
is stored in this layer.

Smaller applications may only utilize 3 layers and
combine the business and persistence layers into a one
business layer if persistence logic is inherently a part of
the business logic [1].

The application developed by the team consisted of
all 4 layers and each layer was implemented using the
following technologies:

• Presentation Layer - ReactJS
• Business Layer - ExpressJS
• Persistence Layer - Python
• Database Layer - SQLite
While developing the application, the team had to

make assumptions about what technologies to use in the
development process. Since there were no external or
client requirements, the technologies used to develop
the app were ones the team was previously familiar
with. It is possible that there were better alternatives
to the technologies chosen, for example if a different
framework had been used for the presentation layer
instead of ReactJS, there could have been performance
benefits but the team assumed that those differences were
negligible.

C. Microservice

The microservice architecture is one that emphasizes
many small, decoupled units as opposed to large com-
ponents that handle a variety of functions [1]. The
granulated structure provides for a more streamlined
production and reduces the need for application-wide
changes when one component of the application is
changed [1]. Multiple service components will interact
with the user interface layer to allow the application to
function as a whole [1].

The sample application created by the research team
was monolithic in nature and did not need many services.
Thus, the team opted to build the application with docker
rather than develop a true microservices application.
Docker provides a method of virtualization that sim-
plifies the complexity of dependencies by packaging
components and their dependencies into containers. [7].
It is a lightweight virtual machine that virtualizes at
the operating system level rather than at the hardware
level and is popular in microservice architecture because
containers allow the developer to spin up many small
services [7]. In reality, this application served to test the
enhancements or limitations of docker rather than a truly
microservice architecture. Other than the use of docker
containers, this application was built to be the same as
the application developed using the layered architecture.

D. Command-Query Responsibility Segregation

The Command-Query Responsibility Segregation
(CQRS) architecture is a complex architecture that serves
a niche programming audience. The primary function
of CQRS is the notion of having operations that are
able to read data be segregated from the operations that
update data. This segregation of data is significant in
certain situations. For example, when there is a scenario
where there are a lot of writes occurring, the segregation
will allow the operations to go into only one part of
the database which is the write and not worry about
the reads. Having the operations be split will allow the
requests to the database to be more streamlined since
they are being handled by the write or the read. A single
operation cannot be both a read from the database and
write to the database. [3] CQRS also utilizes models to
manage data, controllers to process requests, and views
for the interface. CQRS utilizes a database for the read
and the write. The textbook application was once again
used with the CQRS implementation in mind. The team
created a read and write database. [3]

The application was made by using React js, Python
Flask, and SQLite. When a request was made if the
command was a write operation it communicated with
the write file and then was put on a queue called the
event bus. The event bus then gradually also updated
the read database. Read operations went directly to the
read database. It was assumed that the user would be
performing more read tasks than write tasks, which
may have had an impact on the effectiveness of the
architecture.

III. TESTING

A. Performance Testing with Jmeter

Jmeter is an open source project used for performance
testing web applications [5]. It provides features such as



thread groups, iterations, HTTP samplers, and Chrome
drivers. The team set up three scenarios:

• A user searches for their university, their depart-
ment, a specific course, and its textbooks.

• The same as the above scenario but the user makes
an order for a specific textbook.

• A user makes an order and checks the past orders.
This combination was used in order to use a balance

of read heavy, mixed, and write heavy processes. Due
to the limitations of the hardware that the team had,
the maximum number of threads hitting the application
was set to 25. In a more perfect scenario, multiple
machines with a large amount of threads would be used
to mirror real usage. JMeter was configured to report on
the response time (total scenario time) and the size of
the data received. The connection time was near 0 ms
for all the architecture, so this was left out of the report.

The key components to interpreting the data collected
from JMeter are the following:

• Response Time - A measurement of how long the
architecture takes to return a response. (measured
in milliseconds)

• Data Size - The number of bytes that are in the
response provided by the architecture.

• CPU Usage - The percentage representing how
much of the machine’s CPU is utilized by the
application

• Memory Usage - The percentage representing how
much of the machine’s memory is utilized by the
application

B. Testing Environment

• CPU: 2.3 GHz 8-Core Intel Core i9
• Memory: 16 GB 2400 MHz DDR4
• Number of Threads used for Scenarios: 25
• Number of Threads used to measure CPU usage

and memory usage: 100

IV. RESULTS

A. Response Time

Scenario 1

Based on the data gathered for response time, MVC
performs the best for the read heavy scenario (Scenario

Scenario 2

Scenario 3

1), CQRS performs the best for the mixed scenario
(Scenario 2), and Layered/CQRS perform equally well
for the write heavy scenario (Scenario 3). Microservice
performs the worst for all the scenarios except Scenario
3.

The microservice data demonstrates one of the key
limitations of the microservice architecture. The text-
book catalog application is not complex, and does not
require various services as one might see on a heavier
website like Amazon. Services such as search indexing,
advertising, and recommendations all would benefit from
application separation due to the loose coupling to the
underlying database schema. However, given the sim-
plicity of the textbook catalog, this was unnecessary.
By introducing Docker there is an extra layer of net-
working required for the components to communicate
with each other, thus increasing the average response
time immensely. Docker, though lightweight, serves the
purpose of virtual machines. Since other architectures
that did not utilize docker ran natively, they did not
require as many resources from the computer. The mi-
croservice architecture, however, leveraged docker and
needed many more resources from the computer and, as
a result, slowed down the performance of the application
in Scenario 1. Since Docker utilizes so many computer
resources, it does not seem that it is likely to speed up
an application.

MVC performed considerably well compared to the
other architectures in the read heavy scenario. This
potentially could be influenced by the high coupling of
the architecture. Although MVC emphasizes separation
of concerns between the model, view, and controller,



the application as a whole is modulated tightly. The
controller directly sends function calls to the model and
template calls to the view, limiting the need for expensive
network calls. In a client server model, as opposed to
MVC, the controller is not as tightly coupled with the
other components. Communication requires the use of
HTTP requests, data parsing, and frequent cycles to the
database. This also lends an explanation for the poor
response time of the layered/CQRS architecture when
compared with MVC. In the layered pattern, communi-
cation between the business logic, the persistence layer,
and the presentation layer is done through HTTP calls
to each other. Since each one is a web server, the
only method of communication is the HTTP protocol.
While MVC uses one process for the entire application,
the layered pattern required three separate servers each
passing JSON data to each other. MVC has an internal
communication method that doesn’t require cross server
requests.

One interesting finding is that MVC performed rela-
tively poorly in Scenario 2 and Scenario 3, both of which
have writes to the database. MVC, specifically the Ruby
on Rails framework, generates SQL queries through a
class called the ActiveRecord [8]. Query optimization is
more difficult due to this layer above each model. The
database access layer in the layered architecture used a
Python module called Peewee which is more lightweight
as opposed to ActiveRecord.

B. Performance vs Data

Scenario 1

Scenario 2

In all three scenarios, the MVC architecture consis-
tently preformed the best by far. The gap in performance

Scenario 3

is due to the fact that the team developed the applications
for the other architectures using ReactJS which inher-
ently sends back large amounts of data to the browser
because it has many components to manage and has to
package all of the JavaScript files whenever it sends in-
formation back. A different, lighter framework like PHP
or AJAX could have been leveraged, but the performance
benefits from such a framework would still not bring
the architectures anywhere near the performance of the
MVC architecture. Had the application been developed
strictly HTML and CSS, it would have been much faster,
but most real life applications use a framework like
ReactJS. The team wanted to model a practical web
application instead of building an impractical product
that had the sole purpose of performing well against the
team’s metrics.

MVC, on the other hand, uses templates and creates
the HTML before sending data back to the browser. As
a result, since it does not need JavaScript to keep track
of things like application state, opposite to ReactJS, it
is able to send back an HTML page which is more
lightweight and requires much less data than its ReactJS
counterpart in this case. In this test, the performance
benefits of an MVC application shine through, but that
does not provide conclusive evidence that MVC as an
architecture is superior to the other three. It simply
shows that the applications built in this case suffered
in performance because they incorporated a framework
that MVC did not.

C. Architecture vs CPU Usage

The performance of the architectures are summarized
in the chart below1:

Looking at the two graphs, it is evident that the MVC
architecture had a smaller CPU usage throughout the
length of the tests than the layered architecture. The
layered architecture is generally hovering around 16%
of the CPU while the MVC architecture initially is at
18%, it then normalizes and stays around 12% for the
duration of the time. The layered architecture depends

1Measurements for the Layered architecture are representative of the
Microservices and CQRS architectures



MVC

Layered

on a decoupled system of primarily independent servers,
which quickly increases the burden on the CPU. [1]
In the application that was created by the team, the
layered architecture had four layers and was built by
using the ReactJS framework, which relies on HTTP
requests and communication with server components.
These additional HTTP requests add to the increased
CPU usage.

For the MVC framework on the other hand there are
some attributes that helped the architecture have a lower
CPU usage. MVC allows for the models to work directly
with the database. MVC also utilizes templates and does
not need the JavaScript as much as ReactJS does. The
MVC architecture for the project was built using the
Ruby on Rails, which is a more coupled framework than
the layered architecture. There is less communication
across multiple servers and the request handling system
based on user actions flows directly from one part of
the framework to the other since coupling is high. [9]
Overall, one cannot say definitively that MVC is the
superior architecture for every scenario. Another factor
that heavily impacts the architecture’s CPU usage is the
constant accessing and utilization of the database. In any
given instance the database handling is the bottleneck for
the architectures as there are many requests that have to
be handled.

D. Architecture vs Memory Usage

The performance of the architectures are summarized
in the chart below1:

In the graphs of the memory usage of each archi-
tecture, it can be seen that both architecture patterns
level out around 66%. The memory usage for the MVC

MVC

Layered

architecture levels out at approximately 65.5% while
the memory usage for the Layered architecture levels
out at approximately 66%. One potential reason for
both architectures using nearly the same percentage of
memory could be the fact that the database access is
often the bottle neck of many processes. So, since both
architectures are accessing the same database, which in
the current case is stored in the computer’s local memory,
both are showing approximately the same amount of
memory usage. The database, which is approximately
5GB in size, puts stress on the memory usage of the
computer. When load testing was performed, the stress
was amplified and a majority of the computer’s mem-
ory resources were required to perform the operations.
Since the test only considered a ”read” scenario, it was
expected that all of architectures would have a similar
percent of memory usage. If the test was changed to
a ”write” scenario and the databases were stored on
separate machines, it would have been expected that the
CQRS architecture saw better performance in terms of
memory usage than the other architectures. In that case,
the machine would experience a lighter load from the
memory access and could still perform reads while the
writes were happening. Both databases for the CQRS
architecture, however, were stored on the same machine.
For this reason the team was not able to test the scenario.
Another obstacle that arose from testing the architectures
on one machine was the limitations in testing ability.
Due to relatively small amount of resources available
on the single machine, the team was unable to perform
load testing of more than 100 threads. Therefore, it
was assumed that the results seen in the memory usage
graphs were comparable to what would have been seen in



a production environment, but that cannot be confirmed
without testing the applications in an actual production
environment.

V. DISCUSSION

One of the key ideas extracted from the gathered data
is the concept of coupling. Particular to reads, MVC
(which has highly coupled modules) responded notice-
ably faster to client requests. In the layered architecture,
the response time was longer due to network latency
from multiple HTTP requests across servers. As a result,
the first consideration when choosing an architectural
pattern should be the network latency. More services and
servers that deliver content also means more layers to
pass through to get to the client. One business request
could require multiple sub requests [1]. If one were to
use layered architecture, increasing response time is also
possible through load balancing and replicating each of
the servers at every layer. Although this would require
more computational resources, the lower load on each
individual server decreases, so the client will receive a
response faster.

Another key idea gathered is the choice of technology
and its usage. For the microservice, layered, and CQRS,
the response time could have been different if they
utilized different frameworks. In this research, the team’s
implementation involved ReactJS, ExpressJS, Flask, and
SQLITE. Each of these frameworks have benefits but
cause additional overhead for simpler applications like
a textbook catalog. For example, ReactJS comes with
state management which can speed up many business
processes by allowing the client itself to bear the load
of computation in dynamic websites [10]. Flask and
ExpressJS have multi-threading and asynchronous pro-
cessing features [11]. In MVC, the N+1 query problem
could be solved by eager loading ActiveRecord associa-
tions [13]. MVC also provides profilers which report on
latencies in different areas of the code in order to allow
the developer identify bottlenecks. Databases, which are
typically the bottlenecks in a CRUD heavy application,
also provide features such as indexing, sharding, and
scaling [12]. Choosing a database that meets the needs
of a website could improve response time as well. There-
fore, the second consideration when improving response
time is choosing the right technology or framework
within an architectural pattern.

Performance is not necessarily a measure of how fast
the website responds to the user. It also includes process-
ing load and the managing the health of the website. This
requires that a website is not only responding fast, but is
also not overloading the processor that could eventually
lead to a crash. The results suggest that MVC requires
less CPU and memory resources, however, not by much.
The layered architecture, while offering the flexibility

to choose separate technologies in each layer, actually
uses similar resources. A machine (several machines)
with high processing power would allow a layered ar-
chitecture to perform similar to the MVC. Therefore, the
third consideration for improving the performance of a
website is analyzing how an increase in computational
resources could help. This includes both the vertical
and horizontal scaling of the application servers and the
database.

The final consideration for improving performance
is how easily the architecture can be expanded to a
distributed system. Distributed systems allow websites
to manage the different processes and services of a
website through message communication between the
different components [1]. Using a messaging system
allows for asynchronous processing, separation of jobs,
useful redundancy, and scalability. With the rise in
data processing, running multiple programs and jobs
at different machines helps solve the load problem.
The website can potentially respond faster and maintain
its availability. In consideration with the architectures
discussed in this document, MVC proves to be the most
inflexible in allowing for expansion to distributed com-
puting. The tight coupling of the MVC makes it difficult
to spread the website’s services across multiple machines
outside of simple replication. CQRS is an example of a
simple distributed system. By separating the writes and
reads, the load is partitioned across different machines.
Communication is maintained between the read store and
the write store through an event messaging bus. CQRS is
not a method of increasing the computational resources,
rather it is an effective method of separating work into
different components.

A. Summary of Analysis
Consider the following factors when deciding on an

architectural pattern:
• Does the architecture have high network latency?

Could this be solved using methods such as caching,
CDN’s, load balancing, and prefetching?

• Does the architecture have different options for
technologies that implement it? If so, one can weigh
the options to suit the type of website being devel-
oped. For example, a real time application might
require multithreading and a technology which of-
fers that could help.

• Can the architecture respond well to more computa-
tional resources? Does it allow the database to scale
vertically or horizontally?

• Can the architecture adapt well to distributed com-
puting if needed?

VI. CONCLUSIONS AND IMPROVEMENTS

The project could be improved for the next iteration
in several ways. The first is to choose an application



that is much broader to allow us to test several ar-
chitectures thoroughly without having to make many
assumptions. Although the analysis primarily focuses on
MVC, Microservice, CQRS, and layered architectures
there exist many other services that could be deemed
beneficial for different scenarios. With the team deciding
to implement a textbook ordering application, the types
of architectures that were feasible for the program also
differed so some patterns were not considered. Another
improvement is to expand the testing environment used
to test the architectures. Having a testing environment
that would be able to handle a variety of tests and
handle many threads could reveal new information. A
proper testing infrastructure would allow the team to test
thousands of concurrent users in isolation.

In a real software development setting there can be
many other factors that can determine the successful
implementation of a software pattern. These include
the following: agility, ease of deployment, scalability,
testability, and ease of development [1]. One should keep
in mind the technologies a team has access to, the type
of coding knowledge the team has, and the adaptability
of the pattern. These are some of the many outlying
factors that exist in choosing a successful architecture.
The team has gained valuable knowledge not only about
software architectural patterns, but also about general
engineering research. In the future, the goal is to expand
this project further to other architectures, other metrics,
and technologies.

REFERENCES

[1] M. Richards, Software Architecture Patterns. Sebastopol, CA:
O’Reilly Media, Inc., 2015.

[2] : Abdul Majeed, Ibtisam Rauf. MVC Architecture: A Detailed
Insight to the Modern Web Applications Development Peer Rev
J Sol Photoen Sys

[3] dragon119, “CQRS pattern - Azure Architecture Center,”
CQRS pattern - Azure Architecture Center — Microsoft
Docs. [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/patterns/cqrs. [Accessed: 27-Apr-2020].

[4] J. Hall, “Council Post: Speed Matters: How Your
Website’s Page Speed Can Affect Your Mar-
keting Efforts” Forbes, 14-May-2019. Available:
https://www.forbes.com/sites/forbesagencycouncil/2019/05/14/speed-
matters-how-your-websites-page-speed-can-affect-your-
marketing-efforts. Accessed: 27-Apr-2020

[5] “What is JMeter? Introduction and Uses” Guru99. Avail-
able: https://www.guru99.com/introduction-to-jmeter.html. Ac-
cessed: 27-Apr-2020

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spec-
troscopy studies on magneto-optical media and plastic substrate
interface,” IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741,
August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301,
1982].

[7] D. Merkel, “Docker: lightweight Linux containers for consistent
development and deployment,” Linux Journal, vol. 2014, no. 239,
pp. 76–91, Mar. 2014.

[8] Urbanek, “Fix Slow Active Record SQL Queries in Rails”
Paweł U. — Ruby on Rails Web Development Con-
sultant Full Stack Blog, 12-Mar-2018. Online. Available:
https://pawelurbanek.com/slow-rails-queries. Accessed: 27-Apr-
2020.

[9] A. Majeed and I. Rauf, “MVC Architecture: A
Detailed Insight to the Modern Web Applications
Development,” Peer Review Journal of Solar &
Photoenergy Systems, 26-Sep-2018. [Online]. Available:
https://crimsonpublishers.com/prsp/fulltext/PRSP.000505.php.
[Accessed: 26-Apr-2020].

[10] “React – A JavaScript library for building user interfaces,”
– A JavaScript library for building user interfaces. [Online].
Available: https://reactjs.org/. [Accessed: 27-Apr-2020].

[11] “Welcome to AIOHTTP,” Welcome to AIOHTTP
- aiohttp 3.6.2 documentation. [Online]. Available:
https://docs.aiohttp.org/en/stable/. [Accessed: 28-Apr-2020].

[12] “Database Bottlenecks: The Hidden Cause of App Slow
Downs?,” DevOps.com, 02-Mar-2020. [Online]. Available:
https://devops.com/database-bottlenecks-hidden-cause-app-slow-
downs/. [Accessed: 28-Apr-2020].

[13] “Active Record Query Interface.” Ruby on Rails Guides,
guides.rubyonrails.org/active record querying.html.


