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The technical research of this work, completed as an Independent Capstone course, 

consisted of training various reinforcement learning (RL) models in a simulated resource 

management environment in order to test the potential run-time efficiency increase of RL models 

in resource management.  Researchers such as Rolik et al. (2018) and Cheng, Li, & Nazarian 

have shown that similar RL methods could reduce the overall power consumption and runtime of 

systems with other modern task-scheduling algorithms by up to 320% and 144%, respectively 

(Cheng, Li, & Nazarian, 2018, pp. 238).  This work, expanding on the work of MIT researchers 

Mao et al. (2016), tests the runtime improvement of asynchronous advantage actor-critic (3AC) 

models in the simulated environment created by Mao et al. to test Policy Gradient models. 

EXPANSION ON PREVIOUS WORK 

 The original work of Mao et al. trains a policy gradient model in which sampled rewards 

are used to tune the actor.  Since the environment uses a negative reward mechanism, any 

penalties which an action incurs are totaled and returned to the agent, which then updates its 

network accordingly with a policy gradient.  Policy gradients update network parameters with 

respect to the change in expected cumulative reward as by the equation ∇𝐸𝜋𝜃[∑ 𝛾𝑡𝑟𝑡] =
∞
𝑡=0

𝐸𝜋𝜃[∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝑄
𝜋𝜃(𝑠, 𝑎)] (Mao et al, 2018, pp. 51).  Here 𝑄𝜋𝜃(s,a), named a Q-value, 

represents the expected cumulative reward of choosing an action a in a state s.  In a traditional 

policy gradient method, this is empirically determined by observing trajectories of the agent in 

the environment. 

The implementation of 3AC in the environment attempted to improve on this in two main 

ways.  First, the variance of the Q values used in the update step can be reduced by implementing 

a predictive agent for the average value of a state, V(s), in addition to empirically sampling 

trajectories.  Second, the Q-value can be improved to better represent how close to optimal a 
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reward is.  With a learned predictor for V(s), the advantage function A(s,a) = Q(s,a) – V(s) can 

be used to calculate how good an action ai was compared to the average action in a state s.  In 

order to test the success of the new model, the reward mechanism of the environment created by 

Mao et al. was tuned in order to find the best possible models for runtime efficiency. 

REWARD TESTING 

 The resource management environment used in training responds to actions with three 

different types of penalties: delay, hold, and miss.  These punish the model for stopping a 

currently running task, not scheduling a new task, or missing additional tasks due to a full job 

queue.  These mistakes will affect the runtime most greatly for short tasks, since the added time 

created by the bad action will be a higher proportion of the time needed to complete the task in 

isolation.  The reward mechanism given by Mao et al. encapsulates this by dividing penalties by 

the job length.  To improve on this mechanism, different reward variants such as squaring and 

cubing the previous function were tested and compared to the efficacy of the original reward 

function.  After the squared reward function was chosen as the best variant, the weights of the 

three penalties were tuned 

to see which penalties 

most heavily encourage 

runtime efficient behavior.  

As shown from the results 

to the left, one tuning led 

to a model which 

improved over every 

heuristic in testing; 
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training with hold penalty = -3 and all other penalties = -1 resulted in a model slightly better than 

both an SJF strategy and Tetris scheduling.  
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