

REINFORCEMENT LEARNING FOR RESOURCE MANAGEMENT

A Summary of Research Submitted to the Department of Engineering and Society

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia – Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Cameron S. Dorsch

Fall, 2020

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

 Signed: __________CSD______________ Date: 12/12/2020

 Cameron Dorsch

 Approved: ____Haiying Shen____________ Date: 12/14/2020

 [approval on pp. 2]

2

3

The technical research of this work, completed as an Independent Capstone course,

consisted of training various reinforcement learning (RL) models in a simulated resource

management environment in order to test the potential run-time efficiency increase of RL models

in resource management. Researchers such as Rolik et al. (2018) and Cheng, Li, & Nazarian

have shown that similar RL methods could reduce the overall power consumption and runtime of

systems with other modern task-scheduling algorithms by up to 320% and 144%, respectively

(Cheng, Li, & Nazarian, 2018, pp. 238). This work, expanding on the work of MIT researchers

Mao et al. (2016), tests the runtime improvement of asynchronous advantage actor-critic (3AC)

models in the simulated environment created by Mao et al. to test Policy Gradient models.

EXPANSION ON PREVIOUS WORK

 The original work of Mao et al. trains a policy gradient model in which sampled rewards

are used to tune the actor. Since the environment uses a negative reward mechanism, any

penalties which an action incurs are totaled and returned to the agent, which then updates its

network accordingly with a policy gradient. Policy gradients update network parameters with

respect to the change in expected cumulative reward as by the equation ∇𝐸𝜋𝜃[∑ 𝛾𝑡𝑟𝑡] =
∞
𝑡=0

𝐸𝜋𝜃[∇𝜃 log 𝜋𝜃(𝑠, 𝑎)𝑄
𝜋𝜃(𝑠, 𝑎)] (Mao et al, 2018, pp. 51). Here 𝑄𝜋𝜃(s,a), named a Q-value,

represents the expected cumulative reward of choosing an action a in a state s. In a traditional

policy gradient method, this is empirically determined by observing trajectories of the agent in

the environment.

The implementation of 3AC in the environment attempted to improve on this in two main

ways. First, the variance of the Q values used in the update step can be reduced by implementing

a predictive agent for the average value of a state, V(s), in addition to empirically sampling

trajectories. Second, the Q-value can be improved to better represent how close to optimal a

4

reward is. With a learned predictor for V(s), the advantage function A(s,a) = Q(s,a) – V(s) can

be used to calculate how good an action ai was compared to the average action in a state s. In

order to test the success of the new model, the reward mechanism of the environment created by

Mao et al. was tuned in order to find the best possible models for runtime efficiency.

REWARD TESTING

 The resource management environment used in training responds to actions with three

different types of penalties: delay, hold, and miss. These punish the model for stopping a

currently running task, not scheduling a new task, or missing additional tasks due to a full job

queue. These mistakes will affect the runtime most greatly for short tasks, since the added time

created by the bad action will be a higher proportion of the time needed to complete the task in

isolation. The reward mechanism given by Mao et al. encapsulates this by dividing penalties by

the job length. To improve on this mechanism, different reward variants such as squaring and

cubing the previous function were tested and compared to the efficacy of the original reward

function. After the squared reward function was chosen as the best variant, the weights of the

three penalties were tuned

to see which penalties

most heavily encourage

runtime efficient behavior.

As shown from the results

to the left, one tuning led

to a model which

improved over every

heuristic in testing;

5

training with hold penalty = -3 and all other penalties = -1 resulted in a model slightly better than

both an SJF strategy and Tetris scheduling.

6

WORKS CITED

Cheng, M., Li, J., Nazarian, S. (2018). DRL-Cloud: Deep reinforcement learning-based resource

provisioning and task scheduling for cloud service providers. 2018 23rd Asia And South

Pacific Design Automation Conference (ASP-DAC), 129-134.

doi:10.1109/ASPDAC.2018.8297294

Mao, H., Alizadeh, M., Menache, I., Kandula, S. (2016). Resource Management with Deep

Reinforcement Learning. HotNets ’16: Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, 50-56. doi:10.1145/3005745.3005750

Rolik, O., Zharikov, E., Koval, A., Telenyk, S. (2018). Dynamic management of data center

resources using reinforcement learning. 14th International Conference on Advanced

Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET):

237-244. doi:10.1109/TCSET.2018.8336194

http://apps.webofknowledge.com.proxy01.its.virginia.edu/OutboundService.do?SID=7BqGmkrhaFxFvuyGsU2&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=2094938
http://apps.webofknowledge.com.proxy01.its.virginia.edu/OutboundService.do?SID=7BqGmkrhaFxFvuyGsU2&mode=rrcAuthorRecordService&action=go&product=WOS&lang=en_US&daisIds=801263

