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Chapter 1

Introduction

Magnetism was discovered by the ancient Chinese and ancient Greeks in the
early years of human civilization. However, its microscopic mechanism was
not fully understood until the 20th century when Heisenberg explained fer-
romagnetism by considering it an effect of quantum mechanics. Heisenberg
constructed a model that incorporated exchange interactions between local-
ized spins, in which the exchange interaction is led by the Coulomb interac-
tion coupling with the Pauli exclusion principle. The model is given by the

following Hamiltonian:

1
)

where J;; are the exchange couplings between spins. Evidently, the negative
values of J would lead the ground state of the system to be ferromagnetic. On
the other hand, it was first pointed out by Louis Néel that a positive value
of J could lead the system to be antiferromagnetic. In an antiferromagnetic

state, the nearest neighbor spins are anti-parallel to each other. This can be



illustrated by a Heisenberg model with nearest neighbour exchange J on a
simple cubic lattice. The system is bipartite: it can be separated into two
non-overlapping sublattices in which spins of one sublattice have the nearest
neighbors from the other sublattice. The ground states of the system are two-
sublattice antiferromagnetic states, where spins from one sublattice have same
directions while the spins from the other one point oppositely. The model has

a symmetry that these states are unique up to global spin rotations.

1.1 Frustrated Magnetism

However, nowadays there are a type of magnets which can possibly evade the
antiferromagnetic order. They are posing much higher challenges than the
simple anti-ferromagnetism both in theories and in experiments. These so-
called frustrated magnets are named in contrast to the conventional ordered
"unfrustrated” magnets. Frustrated magnetism refers to competing interac-
tions that cannot be simultaneously satisfied |1} 2], and it was first introduced
by Wannier in the 1950s. Wannier showed a 2-dimensional Ising system with
triangular lattices that has a large degeneracy of ground states, as exemplified
by three spins antiferromagnetically coupled to each other on an equilateral
triangle. Frustrated magnets attract extensive interest because they can pos-
sibly destruct the antiferromagnetic order. These systems tend to have many
low-frequency modes. The excitations can reduce the ordered moment effec-
tively and they are thermally occupied at low temperature. Moreover, the

frustration could lead to many different kinds of classical ground states and



could suppress the Néel temperature T to zero, where the Néel temperature
describe a temperature limit at which a paramagnetic state transfers into an
antiferromangetic state, or vice versa.

As a way of evading antiferromagnetic order, frustration has been widely
studied in models with competing nearest neighbor (NN) and next nearest
neighbor (NNN) interactions. A well-known example is the competition be-
tween NN J; and NNN J, antiferromagnetic exchange couplings in bipartite
lattices (figure[L.1] (left and center)). When the ratio J,/J; < 0.5, neighboring
spins are anti-parallel, forcing the second nearest neighbors to be ferromag-
netic and resulting in frustration of interaction J;. On the other hand, for
Jo/J1 > 0.5, neighboring spins are parallel, leading the second nearest neigh-
bors to be antiferromagnetic and resulting in frustration of half of J; interac-
tions. The special point J, = J;/2 is particularly interesting since alternative
classical states are degenerate and thus the frustration is maximized [3].

Besides the models of the Ji-J5 type, there is another intriguing kind of
frustrated magnetic system in which the structure alone can destabilize the
antiferromagnetic order. This is called geometrical frustration. To give an
illustrative example of geometrical frustration, consider the structure depicted
in figure (right). The system has classical Heisenberg spins at vertices of
two neighboring triangles with nearest neighbor antiferromagnetic interactions.
The ground states of the system are the configurations where co-planar spins in
each triangle have a relative angle of 27 /3. In this case, the relative rotations
of the spin planes of the two triangles about the axis, which is aligned in the

orientation of the common spin, lead to an accidental degeneracy in the ground
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Figure 1.1: (left and center) .J;-Jo model shows ground state spin configura-
tions for conditions: Jy/J; > 0.5 on the left and Jy/J; < 0.5 on the right.
(Right) Heisenberg spins at the vertices of two connecting triangles.

states.

If we extend the features of this simple system of two corner-sharing trian-
gles to a periodic lattice, we can construct frustrated clusters on non-bipartite
lattices made of corner-sharing arrangements. In these clusters, local mag-
netized moments have exchange interactions equal in between and they are
located at the vertices connecting triangles. A typical example of these clus-
ters is the kagome lattice (left)). If we extend the similar concept to 3-
dimensional lattice, we could build pyrochlore lattice made of corner-sharing
tetrahedrons (right)). Both types of examples contain a macroscopic
number of triangular loops, are representative platforms for highly frustrated
magnets. Their ground state degeneracy scales exponentially with the system

size. The frustration is so severe that spins remain disordered at temperatures
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Figure 1.2: (left) Kagome lattice. (Right) Pyrochlore lattice. The figure is
extracted from the book Introduction to Frustrated Magnetism .

well below the exchange energy scale and a macroscopic degeneracy develops
in the classical ground state , , |§|, .

The most distinguishable feature of frustrated magnets is perhaps their
abnormal dependence on of magnetic susceptibility on temperature T of .

Consider the Curie-Weiss law:

Y ' x T —Ocw (1.2)

where the Curie-Weiss constant © ¢y distinguishes the sign and strength of in-

L usually has a linear relation against

teractions. For unfrustrated magnets, x~
T at high temperatures, and a sharp cusp in y~! would appear at the temper-
ature Ty ~ O¢w. The cusp indicates that the system releases a large amount
of entropy, and that it is transiting from a paramagnetic state to a magnetic
ordering state upon cooling. However, for frustrated magnets, such a sharp
cusp would not be observed in systems, since they do not form a conventional

long-range magnetic order even at temperatures below ©¢y,. The paramag-

netic phase survives and becomes highly correlated at temperatures T' << O ¢y .
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Figure 1.3: x vs T, the critical behavior of frustrated magnets.

Nevertheless, the spin ordering, or freezing, may possibly appear at a lower
temperature T, which will result in a large value of the ratio f := ©Ocw /Tc
. A large value of this operational definition f suggests that the system
has local degrees of freedom that fluctuate without the system leaving the
ground state.

In short, frustrated magnets can have macroscopic ground state degener-
acy and suppresses long range order. In this thesis, we will study a new type
of frustration with the anisotropic exchange. Also named as I' interaction,
this new type of frustration is shown to play an important role in compounds

such as RuCL3. Microscopically, the I' interaction originates from spin-orbit
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coupling, and is often viewed as the symmetric counterpart of the antisym-
metric Dzyaloshinski-Moriya interaction. Our research has as one of its foci
this so-called I' model. Previous study on the model demonstrated a thermal
order-by-disorder in the system leads to a phase transition into a new spin
liquid phase, that has a hidden long range flux order. Our goal in this study
is to continue the investigation of the flux order when an external field is ap-
plied on this system, until a new magnetic ordering is observed in the high
field. We further explore behaviors of the system when thermal fluctuation,
accompanied with the external field, lifts the O(2) symmetry of the mean field
magnetic order, wherein we observe a Kosterlitz—Thouless phase transition.

Our study also focuses on a system with disordered exchange interac-
tions. Systems of this type has randomly distributed, rather than periodically
arranged, exchange interactions. The interplay of disorder and frustration
therein may lead the system to exotic states such as spin glass from spin lig-
uid. Spin liquid has strong fluctuations that prevent the system from forming
long range order at temperatures as low as zero.

By introducing a quenched disorder, magnets with well-defined orders in
ground states may have frustrated pairwise interactions. When the disorder is
big enough to shatter the coherent propagation of ordering through the system,
a glass transition emerges in the system. However, for geometrical frustrations,
magnets could form spin liquid order if the frustration were somehow maxi-
mized. With the introduction of quenched disorder, the flat energy surface of
the frustrated magnet would be replaced by a rugged energy landscape. Spins

in the system simultaneously freeze at a temperature below the typical energy

13



variation in such an energy landscape. This temperature is defined as T7%.
In our study, we consider the disorder in interactions in the disordered Ji-.J5
system as a possible origin of spin glass, and investigate how does it spur the

glass transition of the system in low temperature.

1.2 Machine Learning Assisted Studies of Mag-
netic Systems

Machine learning is a fast advancing technique that has reshaped many indus-
tries. Due to the ability of deep neural networks to learn both patterns and
mapping between raw data and desired quantities, users are able to extract
essential information from large amounts of complex data, which previously
would have been unfeasible. Not surprisingly, machine learning has entered
such fields of physics research as density functional theory (DFT), structure
identifications, quantum molecular dynamics [9, |10} (11} {12} [13, [14], etc. For
example, DFT computations rely on an expensive self-consistent field proce-
dure of the Kohn-Sham (KS) equation to extract the functional derivatives
of exchange correlation energy. An alternative approach could use a neural
network (NN) to directly approximate energy functionals from atomic con-
figurations, thus bypass the costly self-consistent computation cycles of KS
equations |15, |16].

During the past decades, machine learning techniques have been applied
for structure identifications and energy estimations in numerous models, rang-

ing from simple Ising model to Hubbard model and topology models [17]. In
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their pioneering work, Carrasquilla and Melko, Convolutional Neural Networks
(CNN) were employed to study the Ising model, and successfully showed CNN
can accurately predict extensive physical parameters such as energy density
and phase transitions |18]. In their model, the way NN learn the mapping
between the system configuration and physical parameters is relatively prim-
itive that entire configurations of Ising systems need to befed into NN as as
training samples. Despite the machine learning’s tremendous success in those
physics studies, scalability could be a limiting factor preventing the progress
in such area. In these studies, the trained neural networks cannot be applied
for the predictions on arbitrary system sizes. This is because in these neu-
ral network models, optimized weights and biases work exclusively for a fixed
number of input nodes corresponding to the complete system configuration. If
a prediction needs to be made for a different system size other than training
samples’, the neural network must be rebuilt according the size of system. In
other words, these neural network models do not possess a scalability for the
same physical systems in different sizes.

Similar problems have been encountered in the studies of Ab-Inito molecu-
lar dynamics. Behler and Parrinello proposed a new neural network framework
to deal with configurations of different sizes. The main idea underlying the
framework is to constitute the total energy E of the system as a sum of con-
tributions of each atom E; [16]. The key concept relating to the reason of
summing over local energy contributions is locality. In short, the principle
of locality states that an object is directly influenced only by its immediate

surroundings. Thus when the locality is relatively small, the neural network
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is more possible to learn the global parameters by local segments of system
configurations. Moreover, to better describe the energetically relevant local
environment of each atom, a series of descriptors are introduced to transform
the Cartesian coordinates of each atom into a set of symmetry functions values
in the framework. The purpose of implementing descriptors is to respect the
permutation symmetry such that the total energy is invariant with respect to
interchange of spins, as well as to the translational and rotational symmetries.
These symmetry functions (descriptors) values are then sent into the NN as
training samples. The framework provides a so-called subnet 5; for each atom,
which would yield the energy contribution E; after being optimized. All of the
subnets share the same values of weights and biases to ensure permutation
symmetry. Through the repeated computations on the training dataset in
this way, the neural network model can learn the mapping between the local
structures relevant to each atom and the total energy related to the whole
system. In this way, the neural network can be transferable to predict energy
for systems of arbitrary sizes.

Also, study in chemical science used a similar scheme to apply neural net-
works to Ising system configurations. Their model sliced the configurations
of Ising systems into square shape segments that are considered to cover the
locality of desired quantities, such as energy density. The neural network was
then trained repeatedly with these square segments as input until the total
energy of the system is summed. Similarly, the neural network trained with a
certain size of Ising system configuration can be applied to predict systems of

arbitrary sizes. This so called Extensive Deep Neural Network (EDNN) takes
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advantage of length scale embedded in training data, but it does not learn
lengthy scale an does not clarify what impact is followed by such applications
[19].

Since the scalability rests on the foundation of an appropriate treatment
of locality, an interesting question arise so: how does locality, or the length
scale, influence the performance of the neural network? Evidently, prediction
accuracy deteriorates when the size of input data becomes smaller. One may
speculate that the prediction accuracy would break down when the size of input
fails to contain the correlation length. Therefore, it is necessary to perform
a numerical investigation to elucidate how the correlation length impacts the
prediction accuracy. In our study, we define the size of square segmental input
to be the focal length and use it as a measurement of correlation length.

In this study, we investigated the various scenarios of Ising systems where
convolutional or fully connected neural networks can be applied. We found a
systematic deviation around the phase transition point in the curve of energy
prediction compared with energy values extracted from Monte-Carlo simula-
tion. A neural network performing well in lower and higher temperatures may
overestimate or underestimate the energy density around the phase transition
due to the rapidly increase in correlation length. In order to explain such the
deviation, we investigated the relation between NN’s accuracy of phase classi-
fications and sizes of focal length. Finally, we carried out a quantitative study
that attempted to find the power law decay relation between focus size and

phase predicting accuracy.
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1.3 Thesis Layout

The thesis consists of topics listed in the following content, and the theis is
laid out in this order:

Honeycomb-lattice I' Model in a Magnetic Field. We show that a magnetic
field in the high-symmetry direction lifts the macroscopic classical ground-
state degeneracy of the honeycomb I' model and induces a long-range mag-
netic order. An intriguing v/3 x v/3 magnetic order is selected by magnetic
field for the antiferromagnetic interaction. We also show that, at high fields,
the breaking of the ground-state Zg symmetry is through two Berezinskii-
Kosterlitz-Thouless transitions that enclose a critical XY phase.

Disordered Ji-Jo Model. We present a numerical study of the disodered
Ji-J5 system. In the study, we find a glass transition of the disordered Ji-.J5
system modeled for a special compound at 7y = 0, and derive corresponding
critical exponents. Moreover, we conduct simulations to construct its dynamic
structure factor, in which a coexistence of spin-wave like dispersion and non-
coherent excitations can be observed. We further explain spin-wave excitation
by the Halperin-Saslow theory.

Machine learning Phases of Matter on Ising Model. In the study, we present
a transferable machine learning framework that can be applied to analyze
system configurations of arbitrary sizes for a certain kind of physics model. The
neural network model can make accurate predictions of extensive parameters
such as phase, energy and etc. We show the neural network used in this
research has a limitation that systematic deviations of the energy prediction

results are found around the phase transition temperature. We further infer
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the limitation is related to the locality of these extensive parameters. Finally,
we extract a critical exponent to describe the collapse of phase prediction

accuracy curves over the input focus sizes.
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Chapter 2

Gamma Model Subjected to an

External Field

Frustrated interactions in Mott insulators with unquenched orbital degrees of
freedom have aroused our great interests. A salient feature of this type of
systems is that orbital exchange interactions are highly directional, as rep-
resented by quantum compass or quantum 120° models. Expressing the or-
bital variables in terms of pseudo-spins, this anisotropy suggests that different
spin-components are involved in exchange interactions along different spatial
directions. Recently, a new type of frustration emerges, in which interaction-
energy between neighboring pairs along different orientations cannot be simul-
taneously minimized. Lattice geometry contributes to the orbital frustration
through its interplay with the anisotropic orbital exchange, instead of the loop-
induced frustration for conventional geometrically frustrated magnets. Indeed,

several highly frustrated orbital models are defined on bipartite lattices. More-
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over, similar to geometrically frustrated systems, large accidental degeneracy,
sometimes of macroscopic scale, results from orbital frustration.

Magnetic frustration that involves anisotropic exchange coupling has re-
cently attracted enormous research interests. These materials often contain
4d or Hd transition metal elements, and are Mott insulators with strong spin-
orbit coupling. In these compounds, the localized spin and orbital degrees of
freedom are entangled to each other by the relativistic spin-orbit interaction.
The resultant composite degree of freedom, which can be viewed as an effective
spin variable, preserves the orbital character and is spatially highly anisotropic.
One particular example is the spin-1/2 Kitaev model with Ising-like interac-
tions involving different spin components on the three distinct nearest-neighbor
bonds on the honeycomb lattice. Such anisotropic spin-spin interactions are
frustrated as evidenced by the macroscopic ground-state degeneracy in the
S + oo classical limit. Remarkably, the spin-1/2 Kitaev model is exactly
solvable and exhibits a quantum spin-liquid ground state with fractionalized
excitations. Originally proposed as a toy model for fractionalized excitations
and topological quantum computing, it was later pointed out that Kitaev-type
exchange interaction can be realized in 4d transition metal compounds such
as AsIrO3 (A = Li, Na) and RuCl;. However, other spin-spin interactions,
including the isotropic Heisenberg exchange, compete with the Kiatev interac-
tion and often destabilize the spin liquid phase. There has been a considerable
amount of efforts devoted to the study of general anisotropic pseudo-spin in-
teractions in spin-orbital coupled Mott insulators.

The recent renewed interest in such systems was partly generated by the
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advent of Kitaev materials [20, 21, |22, 23]. Originally proposed as a toy
model for fractionalized excitations and topological quantum computing [24],
it was later pointed out that Kitaev-type exchange interaction can be realized
in d® transition metal compounds such as A,IrO3 and RuClz (25, 26, 27].
The possibility that Kitaev materials might host the elusive quantum spin
liquids has generated a flurry of experimental efforts on related compounds
and their characterizations. However, other spin-spin interactions, including
the isotropic Heisenberg exchange, compete with the Kitaev interaction and
often destabilize the spin liquid phase. Considerable efforts have thus been
devoted to the study of general anisotropic pseudo-spin interactions in spin-

orbit coupled Mott insulators |28 29, |30, 131} |32, [33].

2.1 [ Model and its Hamiltonian

In particular, the anisotropic exchange, also called the I' interaction [34] is
shown to play an important role in compounds such as RuCls. The I' model

on the honeycomb lattice is defined as [35, [36, |37]

H=T> > (58] +8/9%)-H-) S, (2.1)
vy i

where (a, 3,7) are permutations of (x,y,z). We have also included the Zee-

man coupling to a magnetic field H = Hn in the n || [111] direction. The

honeycomb I" model is a highly frustrated spin system which supports a novel

classical spin-liquid ground state [35]. The extensive degeneracy associated

with the classical ground state is characterized by an emergent global O(3)

22



rotational symmetry and a local Zy gauge-like symmetry [35]. While the local
Ising-gauge symmetry cannot be spontaneously broken [38], the continuous
O(3) degeneracy is lifted by quantum or thermal fluctuations [35] [36]. Inter-
estingly, the spontaneous breaking of the O(3) symmetry actually corresponds
to a breaking of lattice translation symmetry. Through the order-by-disorder
mechanism, fluctuations thus induce a sharp phase transition below which
an exotic spin liquid with a hidden v/3 x v/3 plaquette order emerges as the
semiclassical ground state [36].

In this paper, we study the effect of magnetic field on the semiclassical
honeycomb I' model. The large degeneracy of frustrated magnets renders them
susceptible to perturbations brought about by the magnetic field. Indeed,
novel field-induced phases such as magnetization plateau and even spin liquid
have been reported in both geometrically frustrated magnets [39, 40, |41} 42,
43,1441 145] 46| 47, 48] and Kitaev spin models [49] |50, 51, 52, 53}, [54} 55, 56, |57,
58,159, 60]. In our case, the extensive ground-state degeneracy of the classical
[-model is lifted by field along the high-symmetry [111] direction. For the
ferromagnetic case with I' < 0, the polarized state with spins aligning with
the field direction is selected by the field since this particular ferromagnetic

state happens to be one of the ground state of the zero-field T" model [35].

2.2 Stability analysis

The antiferromagnetic I' model, on the other hand, remains frustrated in the

presence of magnetic field. To obtain the structure of possible field-induced
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Figure 2.1: (a) Density plot in k-space of the minimum eigen-energy of the
fluctuation interaction E5. The dashed line marks the boundary of the first
Brillouin zone. (b) Monte Carlo simulation results at temperature 7" = 0.01I"
showing the field dependence of v/3 x v/3 magnetic order A V3xy3s Plaquette
flux order ® s, /3, and magnetization M. (c) The static structure factor of the
intermediate state from Monte Carlo simulation at H = 2I" and 7" = 0.01I".

24



order, we investigate the stability of the polarized state at large H.We expect
at high field limit H = 4I', all spins are polarized to the direction parallel
to the unit vector n = é = \%[1, 1,1]. Here we define two unit vectors é, =
(éx+ &, —26.)/v/6 and é, = (¢, — &,)/+/2, where é,, é, and é, are three unit
vectors in the three cubic axes. Evidently é,, €, and n constitute an orthogonal
basis. Evidently, spins will de-polarize from 7 direction once the field decreases

to a certain level. By the definitions of €, and é,, we can decompose the spin

field as:

S; = /1 —|oi|?h + cle, + ole, (2.2)

where e, = (e, + e, — 2e.)/v/6 and e, = (e, — 2e,)/v/2. Therein, each

component of the spin can be expressed as:

1 2

where t* = (3, —‘?), v = (3, \/73), and t* = (—1,0). Without loss of general-
ity, we assume the magnitude of S to be 1. Expand the spin interaction SZ-“SJ-B

to second order in o

25



and,

2 1 1
a B B8 oo __ 2 2
S; Sj + S Sj =3 (1 — —2\0'1'\ — —2\0']-‘ )
V2 , . (2.5)

The external field term is approximated as:
1
Now we expand the Hamiltonian of I' model subjected to a magnetic field to
the form in terms of the forms derived above:

H=T3 (SUS7+8:Y)

<ij>z

+T ) (SPS; +5757)
<z (2.7)

+T ) (S8 +SYsy)

<ij>.

_H'Zsi

where v = z,y, and 2z denote the three distinct NN bonds of a honeycomb

lattice. Insert these expressions into the Hamiltonian of Gamma model. Note
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that the linear terms vanish in lattice summation.
H= (= HN— (T~ )Y |oif

L2 S (o) (0 ) + (1) o 1)

<i,j>

The summation of last term in z-bond:

3 (o3 t7) (05 ) + (03 - £7) (0 - 89) (2.9)

= Y l(ou(r) - £)(o2(r +dy) - ) + (o1(r) - ) (02(r + dy) - )] (2.10)

Z [trtiol (r)oy(r + do) + L0ty oT (r)oy (v + d)] (2.11)

where m,n € {a,b}. The third term summation in equation (5) over z,y, z is

Y tptrel(r)os(r + do) + o7 (r)oy (v + d)] (2.12)

r a={z,y,z}

Here the spin deviations o; are treated as classical variables. We analyze
the eigenmodes of the classical Hamiltonian. Insert the Fourier expression of
o; = \/LN S os(k)e* ™ to diagonalize the Hamiltonian above, the Hamilto-
nian becomes:

H=FEo+ Y SiHiSk (2.13)
k

where Fy = NI' — NH, where N is the number of unit cells, and S} =
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a b a b
(07k Ol O35 0gy) and

¢ 0 g g
0 € gab gbb
H,, = koook (2.14)

aa ab

97k 9 € 0

ggbk: glibk 0 €

The matrix elements are

e=H—2T (2.15)
= —P Z (tgtn + ) etk (2.16)
aa __ —EF ik-dy ik-dy 1 ik-d,
O = e +e e (2.17)
3 2
gr = —Te™ e (2.18)

0= gt = o (e g ) (219)

Sl

). dy = (~4,—5) and d. = (0, 1))

play the functions of connecting nearest neighbors in honeycomb lattice. As

where the three vectors d, = (%, —

N
S»—t
w

is shown in figure , the magnetic instability starts at the k® points when the
external field decreases, and Apink) has minima at K points. This suggests
that the magnetic instability grows at the corners of the Brillouin zone.
Hamiltonian is n-invariant. At high magnetic field, spins in zigzag order
will change into v/3 x /3 order through a first-order transition until they are
fully polarized by the external field. The lowest eigen-mode energy shown

in Fig. exhibits six minima at the corners of the Brillouin zone (BZ),
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Figure 2.2: Contour plot of minimum eigenvalue of Hj, showing minimum at
K points Qi = (4—” O)
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indicating that the most unstable mode has a wave vector k* = (3—2, 0), where
a is the lattice constant of the honeycomb lattice. This ordering wave vector
corresponds to the v/3 x v/3 periodic structure in real space. Consequently,
as the magnetic field is lowered below some critical value, the polarized state
becomes unstable against the development of the V3 x 3 magnetic order.
From the analytical solution of the minimum mode energy at the K-point,
e~ = H — 4I', the instability condition g+ = 0 gives an upper critical field
H. =4I,

This conclusion is verified by our classical Monte Carlo simulations, for
example, the magnetization curve at a low temperature 7' = 0.01T" (|I'] is set
to 1 in the simulation), shown in Fig. (b). At small magnetic field, the
plaquette-ordered spin liquid remains stable up to some critical field H,.;, above
which the flux order parameter ® sz, 5 drops abruptly. The magnetization M
increases linearly in this intermediate regime until spins are fully polarized at
H Z H., = 4T. Fig.[2.1|(c) shows the static structure factor of the intermediate
state, which exhibits six peaks at the corners of the BZ in addition to the

central peak at kK = 0 due to the field-induced finite magnetization.

2.3 Ground State Configuration

We next determine the structure of the v/3 x v/3 state. The six inequivalent
spins in the extended unit cell form an 18-dimensional representation of the
little group of the K-point. The relevant magnetic order parameters, which

can be obtained by examining the irreducible representations, can be very
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Figure 2.3: (a) The magnetic ground state of antiferromagnetic I'-model in
a [111] field. (b) Relative orientation of the six sublattice spins in the v/3 x
v/3 magnetic order shown in panel (a). The complex spin structure can be
described by two sublattice order parameter my and mpg shown in panel (c).
complicated. Our direct energy minimization, however, finds a rather sim-
ple magnetic structure which can be described by a Néel order parameter.
Generalizing parametrization of spins in the special v/3 x v/3 ground state
of the zero-field I'-model , we introduce two sublattice order parameters
my = (a,b,c) and mp = (@,b,¢). The six sublattice spins of the tripled unit

cell, as labeled in Fig. 2.3} can be expressed as

S; =S(a,b,c), Sy=S(b,c,a), Ss=S(ca,b),

S, = S(b,a,¢), S,=S(a@czcb), Ss=S(b,a). (2.20)
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Remarkably, with this parametrization the energy of the complex v/3 x /3

order is given by
1
E/N =TS5’m, - -mp — §HSf1 - (m4 + mp), (2.21)

which is exactly the same as the energy of the spin-flop state of a bipartite
antiferromagnet [61, |62, 63]. To obtain the ground state, we introduce the
magnetization vector M and a “Néel” vector L that characterizes the disparity

of the two sublattices:
M= (my + mp)/2, L=(my—mpg)/2. (2.22)

In the classical ground state, these two order parameters satisfy the conditions:
M? +L? =1, and M- L = 0. The energy in Eq. is minimized when M
and L are parallel and perpendicular to the field direction, respectively. The
magnetization of the minimum-energy solution is M = H/4ST. The upper
critical field obtained from the condition M = 1 of fully polarized spins is
H. = 4I'S, consistent with that derived from the stability analysis.

In terms of the order parameters, the energy per spin, F/N = ['S?(M? —
L?) — HSn-M, is invariant under rotation of the Néel vector around the field
direction. As the I' model itself does not possess such rotation symmetry,
this accidental O(2) degeneracy is expected to be lifted when quantum or
thermal fluctuations are taken into account. We first consider the quantum
order-by-disorder mechanism and outline the linear spinwave calculation for

the spin-flop state shown in Fig.[2.3(b). To this end, we write the Néel vector as
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L = L(cos© é; +sin© &;), where L = V1 — M2, and €1 2 are two unit vectors
perpendicular to the field direction introduced above; see Fig. [2.4(a). In the
ground state, the six sublattice spins defined in Eq. can be expressed as
S, =S77, and S, = 577, (r =1,2,3), where the quantization axes are

L, = £L[cos (O + w,) & +sin (O + w,) &) + Mn.

)

Here + corresponds to A/B sublattice, respectively, and w, = 0, 2; AT for
r = 1,2, 3, respectively. One can introduce an orthogonal triad of unit vec-
tors for each sublattice by defining % | = F[sin(0 + w,)é; — cos(© + w,)e&,]
and n{, = i, x ni,. For convenience, we use K; = (s;,7;), where s; =
+1 and r; = 1,2,3, to denote the magnetic sublattice of site-i. Using the
Holstein-Primakoff transformation, we write the spin operator at site-: as
S ~ V2S (aff%, +alnk) + (S — ala;)ng,, where af = (4, + af)/2, a! =
(a, — al)/2i, and a! (a,) are the on-site magnon creation (annihilation) op-
erators. Substituting the S, operator into Eq. , we obtain the following

magnon Hamiltonian
H = Esp + zrsz a, + Z Z ML al, (2.23)
(ig) wmv

where Egp = —N(I'S? + H?/8T") is the energy of the spin-flop state, the

coefficient M{;" = 257 - T'y; - 0, and I'; is the Gamma-interaction matrix
n (ij) bond.

The magnon Hamiltonian is then diagonalized using Fourier and Bogoli-

ubov transformations. Figs.[2.4|c) and (d) show the spinwave spectrum wy, (k),
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Figure 2.4: (a) Néel vector L = L(cos©é; + sin O é,) associated with a
hexoagon; here &, = (&, + &, — 2&.)/V6 and & = (&, — &,)/v/2 are two
unit vectors perpendicular to the [111] field direction. (b) Zero point energy of
magnons as a function of angle © for magnetization M = 0.5. The spinwave
spectra at © = 0 and 7/6 are shown in panels (¢) and (d), respectively.
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where n = 1,--- ;6 is the band index, along high-symmetry directions of the
BZ for two different angles © = 0 and © = 7/6, respectively. In both cases, a
pseudo-Goldstone mode [64] is obtained at the center and corners of the BZ,
which can be attributed to the O(2) symmetry combined with a Z3 symmetry
associated with the v/3 x v/3 order. The different spectra also means that the
quantum zero-point energy, given by the sum & = an wn(k)/2, depends on
the orientation angle © of Néel vector. As shown in Fig. [2.4b), the zero-point
energy exhibits six minima at © = mn /3, where m is an integer, indicating
that these six orientations, related by the hexagonal symmetry of the I'-model,

are favored by quantum fluctuations.

2.4 Order by Disorder

At non-zero but low temperatures the accidental O(2) degeneracy is also lifted
by thermal order by disorder, which selects the same six-fold degenerate ground
state, as confirmed by our Monte Carlo simulations. However, the O(2) sym-
metry is restored at further elevated temperatures and persists within a finite
window, giving rise to a critical XY phase. Indeed, field-induced XY criticality
in the spin-flop state of 2D bipartite antiferromagnets has been reported for
both classical and quantum spins [65 66, 67, |68, 69, 70, [71]. As the Néel
order in the spin-flop state is forced to lie in a plane perpendicular to the field
direction, the magnet effectively becomes an XY system.

For the Gamma model, a local Néel vector can be defined for each hexagon,

for example L* = S¥ — S} + S; — S5 + S¢ — S, and so on for the y and z
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Figure 2.5: (a) Schematic diagram showing ordering of local Néel vectors L, ~
(cos O, sin O,) associated with shaded hexagons representing a local magnetic
unit cell. (b) A snapshot of L-vector at H = 2I" and 7' = 0.1T". The histogram
of the L vectors at temperatures (c¢) 7" = 0.01T', (d) 7" = 0.1, and (e) T' =
0.2T".

components; see Eq. . These local Néel vectors behave as XY spins at
low temperatures in the spin-flop state of the I' model. A snapshot of the
hexagonal L-vectors at 7' = 0.1I" is shown in Fig. 2.5(b). Importantly, the
low-temperature behaviors of the Gamma model can be described by a fer-
romagnetic XY model subject to a six-state clock anisotropy. The breaking
of the Zg symmetry in this model is known to go through two Berezinskii-
Kosterlitz-Thouless (BKT) transitions which enclose an intermediate critical
XY phase [72},[73], a scenario that is confirmed in our Monte Carlo simulations.
As demonstrated by the histogram of local Néel vectors at three different tem-

peratures shown in Fig.[2.5(c)—(e), an O(2) rotational symmetry emerges in the
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intermediate critical phase where the spin-spin correlation decays algebraically

with distance.

2.5 Monte-Carlo Simulations and Phase Dia-
gram

The various thermodynamic phases obtained from Monte Carlo simulations
are summarized in the magnetic field H versus temperature T phase diagram
shown in Fig. (a). Depending on strength of the magnetic field, the I' model
follows two different routes to reach the v/3 x v/3 magnetic order. While the
high-field scenario is through two BKT transitions described above, at small
magnetic fields, the system undergoes a crossover and two phase transitions
to reach the v/3 x /3 magnetic ground state. As temperature is lowered be-
low the exchange energy scale, the magnet first enters a classical spin liquid
regime with short-range correlation [35]. This is followed by another spin liquid
with v/3 x v/3 ordering of plaquette fluxes through a continuous phase tran-
sition [36]. Upon further lowering the temperature, the plaquette spin liquid
phase stabilized by its configurational entropy gives way to the energetically
favored magnetic ground state via a first-order transition.

Despite both having the same wave vector, the ordering of hexagonal fluxes
is incompatible with that of spins, which is why the transition between them
is of first-order. It is also instructive to understand this discontinuous tran-
sition from the viewpoint of spin orientations. The ordering of the fluxes is

accompanied by the alignment of spins toward the cubic x, y, z directions due
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Figure 2.6: (a) Schematic phase diagram of the classical I' model obtained
from Monte Carlo simulations. The various phases are: (I) spin liquid with
hexagonal flux order that breaks the lattice translation symmetry. (II) Long-
range v/3 X /3 magnetic order with a tripled unit cell. (IIT) Critical XY phase
with an emergent O(2) symmetry of Néel vectors. (IV) Classical spin liquid
with short-ranged correlation that is smoothly connected to high-T" paramag-
net and the polarized state at high field. (b) the transition from the plaquette
spin liquid to the v/3 x v/3 magnetic order resembles a spin-flop transiton in
bipartite antiferromagnet with weak anisotropy.

to order-by-disorder [35| [36]. Notably, the Néel order parameter can still be
used to describe the “opposite” orientations of the two sublattices in the anti-
ferromagnetic case, although no long-rang spin order develops because of the
emergent Ising pseudo-gauge symmetry. The order-by-disorder mechanism at
small fields thus effectively induces a cubic anisotropy for the Néel vector:
Eewic = —D(L2 + L; + L%). The competition between this anisotropy and the
zeeman coupling to magnetic field leads to a first-order transition similar to

the well-studied spin-flop transition [61]; see Fig. [2.6(b).

To summarize, we have uncovered a novel field-induced magnetic ground
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state in the antiferromagnetic honeycomb Gamma model. This complex mag-
netic order with a tripled unit cell is a spin-flop state in disguise, and can
be described by a hidden Néel order parameter. Moreover, we show that the
first-order transition between the low-field spin liquid with an effective cubic
spin anisotropy and the high-field magnetic order resembles the spin-flop tran-
sition in a bipartite antiferromagnet. Although our semiclassical analysis only
applies to large-spin Gamma model, it is likely that this magnetic order is
stabilized at high magnetic field even for quantum spin-1/2. A related intrigu-
ing question is what happens to the ground state of spin-1/2 Gamma model,
which seems to be a gapless spin liquid that is proximate to a zigzag order 74}
75], in the presence of magnetic field. Also of interest is the effect of other
exchange interactions on the spin-flop state of the I' model reported here. Our
work sheds a new light on the nature of complex magnetic structures in such

frustrated spin-orbit systems.
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Chapter 3

Numerical Study of Double
Perovskite SroCuTe;_ . W, Og

The states of many types of frustrated magnetism models still form a magnetic
long-range order when the temperature reaches even much lower than O¢yy .
However, there is a type of frustrated magnets that behaves randomly, such
that their spins stay dynamical at zero temperature. One of these intriguing
frustrated magnets is the quantum spin liquid (QSL). QSLs do not develop
any long range order at any temperature in any local order parameter. They
are highly entangled states that exhibit many unique features involving their
topological characteristics. One of these characteristics is that elementary
excitations of the state are like fractions of an electron|76]. These exotic prop-
erties of QSLs enable a possible application of topological computing. Since
it was proposed theoretically by Anderson, there has been many experimental

efforts focusing on geometrically frustrated magnets, in the expectation that
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the induced competing interactions can lead to the spin liquid state.

However, several studies indicate that for some promising QSL candidates,
such as NiGaySy, a-RuCls, their spins will undergo a transition such that they
will freeze when temperature descends to a certain point. Such a transition
is called a glass transition. The 'freezing’ temperature is defined as Ty. Akin
to spin liquids, directions of spins in spin glasses remain random in very low
temperature even though they do not rotate anymore.

The spin glass concept was first introduced to describe diluted magnetic
alloys, such as AuFe and AgMn, in which nonmagnetic metal is diluted by mag-
netic impurities. When ions of magnetic metal (such as Mn, Fe) are mixed into
nonmagnetic noble metals (such as Au, Cu, Pt) in small doses, the impurity
spins inside the alloy interact through a mechanism called Ruderman-Kittle-
Kasuya-Yosida (RKKY) exchange. The RKKY theory introduces an indirect
exchange coupling in which conduction electrons create a correlation energy
between two nuclear spins by interacting with the nuclear spins through hy-
perfine interactions [77, 78, [79]. The corresponding Hamiltonian is written
as:

L - T [Ag g | *m”
H(Ry) == (27)RL 12

- 2k Rij cos(2kn, Rij) — sin(2k,, R;; )],

where R;; is the distance between ions of impurities /; is the nuclear spin of
atom i, m* is the effective mass of electrons, and Ay, are the elements in

a matrix which represents the strength of the hyperfine interaction. This dis-
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tance term can determine the sign and magnitude of the RKKY interactions,
resulting in a competition between ferromagnetic and antiferromagnetic in-
teractions inside the alloy. Combining with spatial disorder, the mechanism
provides conditions for forming a spin glass state.

Later, Edwards and Anderson came up with a model to extend the concept
of spin glass to regular lattice systems [80]. Their model assumes that spin
interactions are short-ranged and, that their signs are randomly assigned. In
the model, the Hamiltonian between two spins is formulated as H;; = J;;.S; -
S;, where J;; is a randomly assigned number for interaction. Since then,
extensive numerical simulations based on this model have been undertaken in
order to investigate the presence of a finite-temperature glass transition for
Heisenberg-like spins, and exponents in the corresponding universality class

are well extracted [81].

3.1 J;-Jo Antiferromagnetic System

We have discussed the basic concepts of the Ji-J5 system in the introduction.
But before we move on to the details of the disordered J;-.J5 system, the Ji-.J5
model needs to be discussed in detail first.

The J;-J5 Heisenberg model is a simple magnetic system that can well
demonstrate many 2D frustrated magnet phenomena, such as classical degen-
eracy, order by disorder, and so on. The model can particularly help us to
understand the competing interactions in frustrated magnetism as well as the

origin of the spin liquid in 2D lattice systems. Here we start our discussion
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with the classical ground state of a translation invariant Heisenberg model on

a square lattice. The model is defined as the following equation:

H=-J> Si-S;—J > Si-S; (3.1)

<ij> <<ij>>
where J; is the nearest neighbor interaction and J; is the next nearest neighbor
interaction (through the diagonal of the square). Usually the classical ground
states of such a translation invariant Heisenberg model on a Bravais lattice can
be found by minimizing system energy by alternating expressions of a planar
helix as 5’(1‘) = ¢ cos(q - r) + €ysin(q - r) into the model, such that the pitch

q would minimize the model’s Fourier transform J(q):

J(q) =Ji(cos(qz) + cos(gy))

+ Jg(cos(qx + (]y) + COS(Qz - Qy))

Alternating the ratio of J;/.Js shows there are two ground states for the classi-
cal Ji-J, Heisenberg model: Néel antiferromagnetic order (NAF), and colum-
nar antiferromagnetic order (CAF). The difference in microscopic view can be
explained as following: when J; < 0.5.J;, J(q) has a single minimum at (7, 7)
corresponding to NAF; when J, > 0.5.J;, the J(q) has two minima appearing
in (7,0) and (0, ) respectively. As for the case J, ~ 0.5.J;, the ground state
is highly degenerate. J(q) would have lines of minima around the edges of
the Brillouin zone. The zero-temperature quantum corrections to the sublat-
tice magnetization have great divergence at this point. The approximation of

large S usually overestimates the stability of magnetic phases, hence breaking
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down at the point is a strong evidence suggesting the existence of quantum
disordered phases [82]. The disordered J;-.J; Heisenberg model does not have
fixed J terms. Instead, the values of nearest neighbor interactions and next
nearest neighbor interactions are determined by the specific neighboring spin
pairs. Several studies indicated that disorder in frustrated magnetism could
lead QSLs into spin glass states [83], |84} 85]. The next step for us to investigate

the glass transition in a disordered J;-J5 system.

3.2 Double Pervovskite Compound SrCuTe;_, W ,Oq

The double perovskite compounds SrCuTe; _, W,Og provides an excellent stage
for researching the disordered J;-J, Heisenberg model, and it is also a possi-
ble candidate for quantum spin liquids. In this compound, Cu ions are sepa-
rated by nonmagnetic Te and W cations in B-site ordered AB’B”O compounds
SrCuTeOg and SrCuW Og respectively, and the magnetic coupling is a result
of the superexchange mechanism. The compound can be modeled to a nearly
ideal square lattice disordered J;-J5 system. Therein, the Cu cations can be
modeled on a 2-dimensional square lattice in the xy plane, while diamagnetic
B” cations dominate the superexchange pathways between Cu cations. By
manipulating the ratio of numbers of Te and W ions in the system, one can
alter the ratio of nearest neighbor J; and next nearest neighbor J, exchange
interactions. Thereby the system can show various behaviors including of Neel
antiferromagnetism, frustrated magnetism and columnar antiferromagnetism.

B” cations Te and W ions are randomly distributed in the compound, result-
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ing in a disorder in magnetic coupling that suppresses the magnetic order.
When the tungsten ratio x in the range |0.1 ~ 0.7|, the system will behave like
frustrated magnets. When the ratio J,/.J; reaches around 0.4 ~ 0.5, magnetic
frustration is expected to be maximized and a QSL ground state may emerge
in the system.

It is rather difficult to find the freezing temperature for most of spin glass
candidates, since T is usually very small. Similarly, earlier experimental re-
searches on SrCuTey5Wo 504 did not observe any evidence for the existence
of freezing temperature. The compound exhibits strong antiferromagnetic in-
teractions and a corresponding O¢y is found at -71K. A neutron scattering
study show a spin-wave like dispersion exhibited by the dynamics spin cor-
relations in the QSL phase [86]. Moreover, a uSR study found that the spin
correlations in this system remains entirely dynamical at temperatures as low
as 19 mK [87]. However, a recent study presented the evidence of the freezing
temperature, and a discovered Goldstone-like modes at very low temperatures
[88].

Since the existence of glass transition in the compound SrCuTeqsWq 504
has now been confirmed, and since these exotic forms of complex order break
SU(2) symmetry and support Goldstone modes, we can investigate the phe-
nomena by semi-classical (spin-wave-like) numerical approximations.

In this study, we shall first present a study based on a series of Monte-
Carlo simulations in order to search for glass transitions in the disordered
Ji-J5 system on a 2-dimensional square lattice. Then we shall present a nu-

merical Landau-Lifschitz dynamics study for the system showing that a long
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range spin-wave dispersion that survives the incoherent excitation even in the

frustrated region of disordered .J;-.J5 system.

3.3 Monte Carlo Simulations

Conventionally, the disordered .Ji-J; Heisenberg model is described by the

Hamiltonian:

H=—> J788;=> JPs.s, (3.2)

NN NNN
where each NN exchange coupling Ji(jl) randomly distributes in [J; — A®M J, +
AM], and each NNN exchange coupling Ji(jQ) randomly distributes in [Jy —

AP J, + A®] with constant As. The commonly used distribution for .J

values is a Gaussian distribution: P;; = \/#7 exp (—J2/2J?), where J is the
variance and the mean is zero. The energy scale is chosen to suffice | J;; 3vg =1.

However, the material SroCuTe;_,W,Og¢ gives us a realistic way to con-
struct the disordered J;-J5 system. In the specific J;-J5 system for the com-
pound, the values of a specific exchange J; and J; between two spins randomly
distribute in the system such that Ji(jl) € {Ju, b, J.} and Ji(jz) € {J4, J.}. Since
the value for interaction in the vertical direction .J, is considered to be too
small to impose serious influence on elements in the square lattice defined on
the xy plane, the compound can be treated as an effective 2-dimensional square
lattice model. In this study we assume Te and W atoms are perfectly ordered
such that each Cu®" cation is surrounded to two Te®" and two W ions. As is
shown in figure [3.1], there are three types of NN (J,, J;, and J.) and two types

of NNN (J; and J.) exchange couplings. Since the exchange coupling between
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— Jb JC ® W =
Jdooooo Jeooooo Te | |

Figure 3.1: Spin-1/2 square lattice disordered .J;-J5 scheme and NN and NNN
exchange interactions in SroCuTe; ,W,Og. In the periodic lattice setting,
tungsten and tellurium ions are randomly distributed in the system by the
constant probability z. J; type disordered bonds are determined by two neigh-
boring W and/or Te ions. J type disordered bonds are determined by the W
or T'e ion in between.
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Exchange couplings
QC INS
Ja 0. 0.
JIp 7.38 7.6
Je 0.68 1.02
Jq 8.33 8.5
Je 0.05 0.6

Table 3.1: Heisenberg exchange couplings obtained from ab-initio MR-DDCI
calculations (QC) and inelastic neutron scattering (INS) experiments for
SroCuTeOg and SroCuWOg . All values are given in meV.

Cu cations is only determined by the binary choice of its corner element (Te or
W), we can simplify the model to a lattice of Cu cations with its upright corner
element (Te or W). To simulate the random distribution of tungsten atoms in
the compound, we designed a function to randomly assign the upright corner
element of each Cu ion in the system with the probability corresponding to
the tungsten/tellurium ratio. For example, for SroCuTeq ;W 304, there is a
30% probability the atom will be tungsten. Thus the proportion of tungsten
atoms in the systems might not be exactly 30%. Then we can set the disor-
der bonds between Cu spins by its corner element and corner element of the
nearest neighbor. After the disorder bonds are set in the program, a standard
Metropolis-Hasting algorithm based on local updates is used to sample spin
configurations once the thermal equilibrium is reached.

The values of Heisenberg exchange couplings J,, Jy, J., Jg and J, used
for Monte-Carlo simulations in this study are acquired from ab-initio MR-
DDCI calculations (QC) and inelastic neutron scattering (INS) experiments
for SryCuTeOg and SroCuWOg [89, [90]. Their values are shown in the table
B.11
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3.4 Glass Transition at Zero Temperature

According to Edwards and Anderson [80], if spin glass transition exists, there
would exist a type of orientations of the spins that yields the minimum of
potential energy, and the type of orientations suffice < S; >= 0 such that the
system is neither in ferromagnetic nor in antiferromagnetic states. Also the
system does not need to be unique. The central point of the argument is that
if two observations are made for one particular spin .S; with a long time period
in between, there exists a non-vanishing probability such that two spins are
pointing in the same direction: ¢ =< Si(l) . Sj(?) > 0.

The spin glass transition, when there is no external field and when it is ap-
proached from a relatively high temperature, can be signalized by a divergence

of the spin glass susceptibility, which is defined by:

Xsa(l) = 1308 averae (3.3

1,J

where the items in ( )7 denotes a thermal average and | |aperage denotes the
average over different disordered runs. In an infinite system, the susceptibility

is supposed to follow the following relation:
xsa(k) ~ (T =Tc)™, (3.4)

where T is the transition temperature and v = (2 — n)v. v and 7 suffice the
universality class for Ising model, in which n denotes the power law decay of

the correlation at T, and v is the exponent of the spin glass correlation length
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Etor T 2 Te.

GQ(Wj) = [< Ssz >%]average ~ f(rl—J/g) (35)

d—2+n
ij

and & diverges by the relation:

E~ (T —T)™". (3.6)

Now rewrite the Edwards-Anderson spin-glass order parameter as:

q= [(Si>%]average ~ (TC - T)B, (37)

where = (d —2+1n) - v/2 and d is the dimension of the system. Since for
the 2D glass order transition, the transition temperature T = 0, there is only
one independent static exponent v we need to extract.

As for Monte-Carlo simulations, the thermal averages can be replaced by
time averages from two identical disorder realizations of the system with the
same set of interactions. The double replica technique can also accelerate the
simulation [bosel9]. Thus in our Monte-Carlo simulations, spin glass order

parameters at the wave vector k are defined as:

N
a 1 a ,
g (k) = N g o (l)uf@) exp(ik - r;) (3.8)
i=1

In the equation, «, 5 = z,y, z are the spin components and (1) and (2) denote

two disorder simulations with identical settings. (---) denotes thermal average
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over elongated time and |- - - | denotes different disorder averages.

xsa(k) = N> [(lgii))] (3.9)
B

As is discussed earlier, ysg would diverge as the lattice size L — oco. Of
particular interest to us is the xs¢ = xsq(k = 0). Furthermore, the correlation

length ¢ is defined as follows:

f= ! (X(kzo)—l)l/2 (3.10)

N 2sin% X(kmin)

where kypin = 2% (1,0,0). In the case that the glass transition should be

continuous in real life, the ratio /L is closer to a university value characteristic
of the critical point when L approaches infinity.

It is important to make sure that the results obtained from MC simulation
can describe equilibrium fluctuation correctly. Because spin dynamics are often
accompanied by frustrations and disorders, the length of these simulations
usually have logarithmic time dependence, thus it must be conducted over a
prolonged time period. Not only that, result states are quenched in disorder,
and therefore averaging a large number of independent samplings would be
necessary in order to sample fluctuations, and thus, to get relatively accurate
results.

In our simulations for finding the glass order, the tungsten ratio is set
to 0.3, which falls in the frustrated magnetism areas of the disordered J;-J,
model. For ensuring the correctness of our results, at a given temperature,

systems from 50 different disordered initial states were sampled and in each of
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Figure 3.2: Finite size scaling plot of the spin glass susceptibility. The transi-
tion temperature is at T = 0.
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these systems, 5,000 samplings for thermal averaging were captured.

The algorithm in simulations mainly follows the Eq. 3.8 and Eq. 3.9. The
result of the extensive Monte-Carlo simulation is shown in figure It is
noteworthy that the size dependence of xsg is as expected, namely that xsqg
gets larger as the system size L increases. Evidently when the temperature
approaches to zero (T = 0), the xg¢ tends to approach infinity. The finite
size scaling collapse of ygs¢ gives us the value of vgg = 1.0 £ 0.1. In addition
to it, we observe that correlation length also scales with vgq(fig. . The
result agrees with the result of a previous study on 2D disordered Heisenberg

model [91], which has the results vgg = 1.0 £ 0.15.

3.5 Landau Lifshitz Dynamics

The next step is to investigate the dynamical behaviors of the spin glass. In
order to do it, we employ the semi-classical Landau-Lifshitz dynamics (LLD)
technique [92]. In past decades, LLD has proved itself to be a very useful
tool for studying the dynamic structure factor of various classical spin liquid
systems. Here we are going to use LLD technique to investigate the disordered
J1-Jo system as is exhibited in the compound SrCuTe;_, W, Og.

In this study, we first conducted MC simulations to prepare initial states
in thermal equilibrium for T > T, where T} is T discussed in sec 3.4. Then,
we use energy-conserving LLD equation to calculate trajectories of spins S;(#)
over time. Finally, we use real space correlator (S (t)Sf (0)) to compute the

dynamic structure factor S*(k,w), in which a, 3 are the space components
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Figure 3.4: Numerical scheme of Landau-Lifshitz dynamics.

of the initial states.
The dynamics of the classical spins can be described by the LLD equation

as 1s shown in follows:

ds; OH

where B; = —g—;’i is the molecular field acting on the spin S;, and H is the
Hamiltonian of the disordered .J;-.Js system. Dissipation terms, like Gilbert
damping, are not included in the equation since we focus on the un-damped
oscillations of the excitations. Time-domain Fourier transform is employed
to calculate the excitation energies from these oscillations. Here we use a
half-explicit algorithm to realize the LLD equation in computer programs.

The algorithm preserves the spin length at every time step and energy values

remain conserved with time, independent of time length or size of time steps
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in the simulation. In the simulation, we used square lattice sizes of L = 90 and
L = 120. Time step is set to be At = 0.001 and total time length T" = 2000
are used in setting.

Through MC simulations, we acquire the system states S{? in thermal
equilibrium. Then we use them as the initial spin configurations for the LL
simulations. From these initial states, the program can compute the space-

time Fourier transform:

T .
S(k,w) = NZ /0 Si(t)ekre ™ gt (3.12)

W ratio = 0.1 W ratio = 0.3 W ratio = 0.5

Figure 3.5: Dynamic structure factor against k£ values on the high symmetry
path I'-X-M-T". For the tungsten ratio x = 0.1, the plot shows the co-existence
of the spin-wave-like excitation and non-coherent excitations.

The dynamic structure factor is computed by S(k,w) = |S(k,w)[®>. The
results are exhibited in two ways: (1) the dynamic structure factor over the
high symmetry path ' — M — K, and (2) the powder average over the
one or several more planes along with the reciprocal vector R spanning the

lattice. As is shown in[3.5] the structures of coherent quasi-particle dispersion
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can be seen at high energies for S(k,w) at low temperatures for the systems
with three different tungsten ratios (0.1, 0.3 and 0.5). The spin-wave-like
dispersion shown in figure (left) for the setting W ratio = 0.1 is likely
the remaining antiferromagnetic dispersion, while the spin-wave-like dispersion
shown in figure 3.5| (right) for the setting W ratio = 0.5 is likely the remnant of
columnar antiferromagnetic order from the J,; dominating case. Interestingly,
low energy incoherent excitations are very strong. In the plot of tungsten ratio
W ratio = 0.1, the strength of the incoherent excitation even overshadows the
dispersion lines radiating from the low energy area in the M point (left).
To highlight the dispersion relation, we manipulated the data by times the
dynamics structure factor by w and w?: S”(k,w) := w-S(k,w) and S"(k,w) :=
w? - S%(k,w). The dispersion relation originating from the low energy area in
M point can be clearly seen in the diagram [3.6]

The coexistence of spin-wave-like excitation and incoherent excitations can
be observed more clearly in the cross sectional k, - k, plot of the dynamics
structure factors. We used the spin configurations of 120 x 120 to conduct
the LLD calculations, and plotted the k,-k, cross sections of S(k,w) in the
energy level w = 0,10, and 20 respectively. In the energy region w = 10 (figure
3.7)), we can see that even in a tungsten setting as low as 10%, the spin-wave-
like dispersion is displayed as excitations forming in the shapes of circles,
accompanied by strong incoherent excitations. We choose three points on the
high symmetry path to illustrate the strength of incoherent excitations in low
energy area, as shown in figures 3.8/ and [3.9] It is interesting to see that high

energy spin-wave-like dispersion survives the strong incoherent excitations.
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W ratio = 0.1 % 10° W ratio = 0.1 % 10°
10

Figure 3.6: Highlighted dynamic structure factor against £ values on the high
symmetry path I'-X-M-T, simply by multiplying S(k,w) by w or w?. Evidently
the spin-wave-like excitations can be traced back to I' point at low energy
levels.

The nature of the incoherent excitations can be explained by the Halperin-
Saslow theory. Halperin and Saslow (HS) pointed out that a system with static
moments can support low-energy hydrodynamics modes [93, 94} 95]. Since spin
glass order can be treated as a presence of static moments in the ground state,
and also, since the spins in glass order have zero magnetization, for such kind
of systems, HS theory predicts that there exists linearly dispersing modes such
that w = vk, with velocity v = v1/ps/x, where x is the spin susceptibility and
ps is the spin stiffness. Such a dispersion relation tells us the density of states,
and consequently the dynamical susceptibility x”(w) = [1 —exp k;—“;,] -S(w), in

the low energy region have a linear relation with energy level w.
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W ratio =0.1 W ratio =0.3

Figure 3.7: (left to right) Plots of cross sections on the k,-k, plane showing
the structure of spin dynamics structure factor in a L = 120 square lattice
with tungsten ratio = 0.1, 0.3 and 0.5 at fixed energy levels w = 0, w = 10
and w = 20, from bottom to top respectively.
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Figure 3.8: Dynamic structure factor against energy level w values at the
(k =7, m).
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Figure 3.9: Dynamic structure factor against energy level w values for two k
vectors around the (k = 7, 7) on the high symmetry path.
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Chapter 4

Machine learning phases of
matter: Scalability and

limitations

As was discussed in the introduction, since system configurations of magnetic
systems can be technically treated as or be reconstructed to 2D or 3D images,
there is no surprise they can be processed in a similar fashion of how images
being processed today — by using the machine learning techniques, especially
neural networks, desired features can extracted in a moment of blinkering.
Normally, extensive physics quantities can be seen as such features. In this
chapter, we focus on how to use machine learning techniques to deal with
locality of these extensive physics parameters.

In order to deal with locality appropriately, we constructed a special pur-

pose machine learning framework. Figure [4.1] presents a schematic diagram
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Figure 4.1: (a)Configurations are sliced into non-overlapping segments — fo-
cuses before being added descriptors and sent into NN. Then focuses will be
used to train the NN. The neural network will back-propagate only until the
results from all focuses of the configuration have been considered. (b) For
the application of NN to large systems, the focuses are selected from the con-
figuration with random cut points. The predicting result is an average over
predictions of these selected focuses.

for our framework. The framework’s purpose is to translate a system con-
figuration of a specific physics model into a numerical value(s) representing
extensive parameters such as energy density and binary output referring to
specific phases. The framework consists of three basic components: the first
component cuts each system configuration into equal length non-overlapping
segments (a)); the second component adds descriptors to these segments
with respect to the symmetry group relating to the particular model; the last
component is the NN that uses the previously processed data segments as
training data and then aims to use the model for predicting desired physical
quantities. The goal of the framework is to use the NN for predictions on

various lattice models, with only a moderate amount of adaptions of the NN
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models. We will discuss the functions of each part in details in the following

paragraphs.

4.1 Data Pre-processing and Descriptors

Before training neural network to learn the features of spin configurations,
we need to pre-processed datasets according to the geometry of the physics
model. We used a method similar to the EDNN to enable the NN to learn the
features of whole system configuration of the particular model. As is shown
in figure (a), configurations were cut into non-overlapping segments with
focal length f (the side length in most cases), and we defined each of them as
focus. The shape of focuses is determined by the type of Bravais lattice of the
model that the NN is being applied. For example, the model will cut square
lattice Ising system configurations into square focuses, as is hown in figure 4.2]
In this case, each spin in the system is referred as o;, pointing up or down.
Evidently, we can acquire focuses in a number to the order of L?/f? from one
single system configuration with lattice length L. Then the cut focuses will be
added descriptors before being sent into neural network.

The next step is to add descriptor on to each of focuses. Here we continue
to use the Ising system as example. A descriptor is used to construct effective
coordinates {G,} from focuses from the specific system configurations {o;} up
to a cutoff to the focus size, where these feature variables {G,} are input to
the NN which predicts the specific physical quantities at the output [96, |97,

98]. Since the physical quantities of the system, such as phase and energy
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Figure 4.2: Machine learning model for phase classification or energy predic-
tion of two-dimensional Ising model. Descriptors are added to datasets to
respect the corresponding symmetry group.
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density, are invariant under a operation of the lattice symmetry group, the
goal of the effective coordinates {G;} is to provide a neighborhood environ-
ment information that is constant under the same operation, such as rotate 90°
around z-axis of the center. First of all, the standard procedure that decom-
pose the spin configuration {o;}, a high-dimension reducible representation of
the lattice information, is transforming it into a basis that consists of the irre-
ducible representations (irreps), where this basis’s matrix that represents the
spin configuration {o;} is decomposable and automatically block-diagonalized
due to the lattice geometry. In accord, this basis will be transformed with the
formula given in the character table of point group.

Instead of the power-spectrum and bispectrum, we introduce a descriptor
modified from the bispectrum method that is calculated by the reference basis
functions fL;. By averaging each {0;}’s surrounding in the particular con-
figuration, we can compute the reference basis functions so that they are less
sensitive to the small variation in the neighborhood spin configurations. Then,
we can define the effective coordinates {G;} as {nl}, where nf = fL;- fr.

In summary, our whole procedure can be simplified as the following for-

mula:

{oi} = {fr} = {n}

For example, figure (a), the four sites are the 3*"¢ nearest-neighbors to the
center, and they can be decomposed by: 4 = A; @ B, @ E in the discrete lattice

symmetry group D4. The irreps basis are:
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P =01 —0s+ 05— 04
fE = (01 — 03, 02—04)
While in the figure b), these eight sites Ising variables are the 4" nearest

neighbor and they can be readily decomposed through: 8 = A1 & Ay & By &

By @& 2F The corresponding irreps basis are:

U =01+0y+03+ 04+ 05+ 06+ 07+ 03
f2 =01 —0y+03—04+05— 06+ 07— 0y
% =0140y—03—04+05+06— 07— 0y
fY=01—0y—03+04+05— 06— 07+ 03
fE1:(02_U3_06+077 o1+ 04 — 05 — 03)

F2 = (01 + 09— 05 — 0g, 03+ 04 — 07 — %)

(@)

Figure 4.3: The examples of a block of the Ising configuration {o;} that are
used to generate block-diagonal representations of the D4 point group of square
lattice. (a) This four sites are the 37 nearest-neighbor to the center. (b) This
eight sites are the 4" nearest-neighbor.

Once the dataset is altered to the extent that the related symmetry group

is fully respected, we can finally move on to the step of training neural net-

66



works for predicting desired physical quantities. The aforementioned EDNN
approach, and our method here, can both be seen as variants of the batch
training method widely used in the machine learning area. Batch training is
the practice that divides the dataset into several equal length sub-datasets
(batches), and that only updates model after all training samples in one batch
have been evaluated. By contrast if the NN model is updated right after
each time a training sample has been evaluated, such practice uses a so-called
stochastic gradient descent. The main purpose of batch training is to mini-
mize training error by acquiring a smoother gradient descent curve. Therefore,
choosing batch size is a balancing act between maximizing prediction accuracy
and training speed. We use batch training for gradient descent but each batch
only consists of focuses from only one system configuration, so the contribu-
tions of these focuses can be evaluated with the training label associated to the
configuration. Thus, we can force the NN to learn the structural characteristics
of this physics model under the same specific conditions.

Furthermore, data used for predictions are pre-processed in a similar fash-
ion like the method for training purposes, but there is a small but noticeable
difference: instead of averaging the aggregated sum of contributions of focuses
all over the configuration, the focuses for predictions are randomly selected
with random cutting points from a system configuration (figure [4.I|(b)) and
then an average is computed. This is simply to make sure the neural network

can predict with random input form an arbitrarily large configurations.
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4.2 Application to 2D Ising model

As we discussed in the introduction, NNs have been proven their ability to
effectively detect the phase of Ising models. In the time since Carrasquilla and
Melko laid down the ground work, further efforts to exploit machine learning’s
potential on Ising systems have followed [99, |100, (101, 102, [103] 104, [105].
For example, there is a study that a trained neural network to classify phases
of configurations based on their energy levels and magnetization operators.
Another study used the correlation functions defined on each spin as input to
train the neural network. Methods in this area of studies are not just limited to
deep neural networks. Other machine learning models have also been used by
researchers on Ising models. For example, Restricted Boltzmann Machine has
been used to capture the temperature dependence of magnetization, energy
and spin correlations of Ising configurations. Principal Component Analysis
was used as an unsupervised learning method to discover phase transitions
of Ising system, and a Support Vector Machine was employed to learn the
mathematical form of physical discriminators such as order parameters of Ising
systems.

Before we move on the topic of our predictions, it is necessary to briefly
introduce the physics property of Ising model. The Ising model is a binary-

state spin (o) model with 0 = +1 with a Hamiltonian written as:

H = —JZO’iO'j, (41)

<ij>

where the summations are over the nearest neighbor pairs, and J refers to
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the interaction strength between spins. The basic configuration of an Ising
model is an L x L grid of discrete interacting spins that are either pointing
up (0 = 1) or pointing down (¢ = -1). Although the Ising model is easy
to define, its behaviors can be rich. We can set an Ising system to ferro-
magnetic or anti-ferromagnetic simply by manipulating the values of J. A
positive value of J indicates to ferromagnetic and a negative value of J refers
to anti-ferromagnetic. The canonical Ising model defined by periodic boundary
conditions exhibits continuous phase transition around a critical temperature
Te = 2.269. Besides the very particular point at the critical temperature,
configurations of the Ising model are considered to belong exclusively to the
one of two phases. At temperatures below T, most of spins in the system
would align to each other and the system would behave in an orderly way. On
the other hand, the system would behave in a highly disorderly way, such that
spin-ups and spin-downs are roughly equal in numbers when the temperature

is above T¢.

4.2.1 Energy Density Predictions

The specific model designed for energy density prediction is a convolutional
neural network (CNN) model. CNN is a type of neural network based on the
shared-weight architecture of the convolutional filters process input features by
smoothly sliding over the input, and thus provide translational equivariant re-
sponses [106]. This property enables CNN to capture the structural characters
of the images and other 2D /3D objects. In our case, since the configurations

and also the focuses of the Ising system can be treated as monochromatic
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Figure 4.4: Energy density estimation by NN vs. the exact energy density
extracted from Monte-Carlo simulations.
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images, we can utilize CNN’s advantages to help us better understand the
mapping between local structure and extensive parameters.

Basically, our model consists of two convolutional layers of size ¢ x ¢ and
five fully connected layers, and all the layers employ ReLLU to be its activation
function. Activation function is a type of function that allows neural networks
to have the capability to fit nonlinear functions. The convolutional filters
have unit stride and hence preserve the resolutions of the input data. Each
of convolutional layers is followed by a 2 x 2 max pooling layer to enhance its
structural characteristics. Each focus would be reduced to the size of (f —c+
1)/2 before being put into the first fully connected layer. The number of input
nodes in the first fully connected layer is proportional to the reduced focus size
with a fixed ratio. The fully connected layers would reduce data exponentially
until the output layer generates a single numerical value. The NN repeats the
preceding procedures until energy contributions from all focuses are averaged,
and a L1 loss function is used to compute the mean absolute error between
the averaged focus contribution and the exact energy density extracted from
Monte-Carlo simulations. Moreover, a standard Adam optimizer is used to
regulate the training process, together with a global learning rate 0.001. In
addition, a dropout layer with dropout probability 0.2 is implemented before
the output layer. Dropout layer is a simple way to prevent the model from
over-fitting the dataset |107]. All those neural networks are trained with same
number of iterations.

Training of the model was executed by a computer hosting multiple graphic

processing units (GPUs). We used the PyTorch library to realize our model
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and to enable the model’s ability to utilize the GPUs in parallel. In the training
process, 40, 000 Ising system configurations of lattice length L = 320 were used
to train the neural network and another 8, 000 Ising system configurations were
used for predictions. These configurations will be used multiple times for all
focus sizes. Ranging from 16 to 80, as for each focus size, there is a number
40,000 L?/ f* focuses constituting a training dataset for the model specific to
this size. Since focuses from one configuration compose one batch, the total
number of batches will also be 40, 000, and the model will iterate the training
process over all the batches by 40 epoches. Once the training process stabilizes
at a reasonable loss rate, the model is ready to be used for predictions.

For the temperature range 7" = 2.2 and focus size of 32, the neural net-
work’s prediction accuracy on energy achieves an accuracy of 97.5%, resulting
in a mean square error of 0.012J/L?. As is shown in Figure , the predic-
tion accuracy improves when the size of focuses increases to 64. For the same
temperature at T = 2.2, the prediction accuracy reaches 99.8% for f = 64. It
is noteworthy that the model tends to overestimate the energy density right
above the critical temperature and to underestimate the energy right below.
This systematic error persists in predictions based on small focuses. For ex-
ample, error is more prevalent in the predictions of f = 32 than in predictions
of f = 64. Evidently, systematic error could limit the NN’s accuracy in pre-
dictions, especially when one uses a small segment of data to predict a system
with large configuration. Hence, we may reckon that, among the abundant
information that f = 64 focus contains that the neural network could learn to

improve its prediction quality, what is the particular on that can help f = 64
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Figure 4.5: Focus’s coverage of correlation length. The system configuration
shown in left is captured at T = 4.2 and the right one is captured at T = 2.27.

prediction reducing the systematic error? The quality that is directly related

to system size is the correlation length of spins.

4.3 Scalability and Correlation Length

Correlation length is the measurement of how much the spins o; and o; at
two sites are correlated, especially when two spins are far apart. A simple

measurement of spin correlation can be written as:
< 0j,0) >=<0;0; > —<0; >< 0} > (4.2)

Spin correlation would be zero if all the spins were independent of each other.

This formula is called truncated correlation function and decays exponentially
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as |i — j| = 0o so < gj;0; >~ exp (—|i — j|/§). The quantity & is the length
scale which is called the correlation length. A short correlation length sug-
gests that the distant spins in the system are weakly correlated, and near
spins are strongly correlated. In general, locality is inversely correlated with
correctional length. If larger locality were exist in the system, the correla-
tion length would correspondingly become shorter. Moreover, the correlation
length grows algebraically when temperature approaches the phase transition
and it will approach infinity at the phase transition. As was discussed previ-
ously, the accuracy of the neural network is partly determined by the amount
of information contained in focus, and locality determines how much a physics
quantity is influenced by local neighborhood. Therefore, by using limited size
focuses, NN can predict with enough accuracy when the correlation length in
the system is short enough.

As is shown in figure , at a temperature close to phase transition (7" =
2.27 for the Ising system configuration in figure [£.5|right)), correlations be-
tween spins are strong, and so small-sized focuses cannot contain their inter-
actions. While for a temperature well above the phase transition, (7" = 4.2 in
figure [4.5(left)), the spins are only correlated to each other locally, so small-
sized focuses can well contain the information of distant interactions, and thus,
the local structure can well reflect the extensive parameters of the whole con-
figuration. On the other hand, since it is impossible for a NN to learn all
the features of an Ising system in the adjacency of phase transition through
training samples of limited system sizes, the NN would lose a considerable

portion of its accuracy in predictions made for temperatures around the phase
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transition due to focuses’ lack of information of correlation length.

From the perspective of batch training, choosing a smaller size for f results
in more square segments for which the model can parallelize computations
more efficiently. In view of the fact that the learning curve becomes flattened
if the focus size goes beyond the length scale, the choosing of sizes of focuses
and consequently sizes of batches also needs to contemplate focus’s coverage
of correlation length. We chose several focus sizes and examine them in a
naive neural network model to test their coverage of correlation length in a
stochastic training way. Then we conducted a full scale NN test with the range
of these focuses. The sizes of focuses covered in this study are 16, 20, 32, 40

and &0.

4.3.1 Phase Classification Results

The specific neural network model used for phase classifications includes func-
tions and parameters similar to ones used in the energy density prediction
model, including the dropout layer, ReLU functions followed by each layer,
and hyper-parameters such as learning rate. The model consists of one non-
reducing and five reducing fully connected layers. The model will finally out-
puts a single digit, zero or one, of which determines the phase of input systems.
Therein, zero refers that the system is in ferromagnetic order and one refers
that the system is in disordered state, respectively. The neural network repeats
the preceding procedures until contributions from each focus of one single Ising
configuration are averaged and used for calculating loss functions. Since the

samples are assigned one of two labels, we implemented the binary cross en-
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Figure 4.6: Preliminary phase prediction results corresponding to the input
data without added descriptors.
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tropy loss function, BCELogits, in our neural network. BCELogits calculates
a value summarizing the average difference between the actual and predicted
probability distribution for predicting class 1. The goal is to minimize this
value. A perfect cross-entropy value is 0. To minimize the loss function, an
Adam optimizer is used to accompany with the loss function. Same as in the
energy estimation model, the dropout layer is added before the output layer
with dropout probability set to 0.2 and global learning rate is 0.001.

Figure [4.6| shows preliminary results of phase predictions, in which we did
not add descriptors to the input focus data. The model has already shown
its distinguishing ability with more than 90% correction rate for temperatures
above 2.5 and below 2.2.

As is shown in [4.7(top), the results show that for any size of focus, the
accuracy of classification results deteriorates rapidly when the temperatures
approach to phase transition from either side. As expected, at a given temper-
ature and for a given arbitrarily large system configuration, the classification
accuracy of NN when using smaller focuses is equal to, or lower than, the
accuracy when using larger focuses. Furthermore, the extent of deterioration
differs depending on the sizes of the focuses. Evidently, the accuracy of clas-
sifications based on small sizes of focuses deteriorates faster than that with
classifications based on larger sizes. The results suggest there may exists a
focus size dependent re-scaling relation and thus the results may have a same
universal physics. Assuming the scenario, we speculate the relation between

focus sizes and the extents of the deterioration of prediction accuracy behaves
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Figure 4.7: Top: Phase prediction results by our fully connected neural net-
work model. Bottom: Scaling collapse of (1 — Accuracy)- LY in the form Eq
with the critical exponent v = 1.
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in the following way:
(1 — Accuracy) - L' = F((T — T¢) - L), (4.3)

where F is an universal function, the critical exponent v relates to the size
of correlations to the temperature.Same as the transition temperature, the
critical exponent v has been well studied before for 2-dimensional Ising model
and it is accordingly to 1. 6 is a new exponent that we introduce to relate the
size of correlations to the sizes of focuses. We infer the new exponent 6 from the
behavior of the classification accuracy. The data collapse of (1 — Accuracy)- LY
in figure (bottom) finally gives the value 6 to be 0.11.

In order to further prove the power law decay relation of the classification
accuracy and focus sizes, we measured the width of temperature windows for
difference focus sizes at a given accuracy level. Since the correlation length &

can be expressed as:
1

P — 4.4
T — Tel” (4.4)

§

from this relation, we can define a linear formula between temperature cut-offs

of the accuracy measurement and scaled focus sizes:
T =To+C - f/ (4.5)

where C'is a constant, T™ is a customized cut-off temperature. As is shown in

, at the accuracy levels 85% and 90%, the quantity AT = 2 - |T* — T¢| is

1/v

almost perfectly linear to the scaled focus size f~/¥, which further proves the
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Figure 4.8: AT vs. f~'/¥ at the accuracy levels 85% and 90%, showing the
result can be well extrapolated linearly.

existence of the scale invariant exponent 6.

4.4 Discussion and outlook

In this work we designed a machine learning framework to accurately predict
extensive parameters and we use it to classify spin-model configurations and
to predict their energy density. The framework is scalable that it can predict
systems of arbitrary sizes. The NN model in our framework can estimate en-

ergy density highly accurately. Furthermore, we have illustrated the accuracy
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limitation of phase classifications by using limited size focuses as input. Then
we did a exponent collapse study to investigate the relation of focus sizes and
prediction accuracy. We discovered a new exponent 6 to relate the size of
correlations to the sizes of focuses, and numerically proved that the prediction
accuracy is directly influenced by correlation length.

Besides the model’s distinguishing ability over different focuses can also
give use insights about the type of phase transitions. Power law decay of
correlation near criticality is one important property of second order phase
transitions. If we can use this power law decay relation extracted by ML
methods, it may give us an insight of how to determine the type of phase

transition.
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